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Aggregation of comparisons data to rank experimental results and take decisions is being
more and more practiced in diverse areas, spanning over a variety of disciplines including,
e.g., quality function deployment in industrial engineering, scientometrics, and recovery
rate testing of new medications. Problems in decision making may be accrued from the
presence of hidden confounding interactions, spurious relationships, lurking variables at
work. An analysis of partitioned datasets is carried-on using contingency tables and condi-
tional probabilities. The focus is on intermediate interpretation of evidence to avoid para-
doxical reversal of statistical inference when passing from sub-level data to the global
level: to this aim, care in partitioning criteria is needed to balance distribution of partitioned
data over successive levels, not to incur statistical dependence. An example of counter-intu-
itive amalgamation effects – also known as Yule-Simpson’s ‘‘paradox’’ – is presented and
discussed, showing how to prevent such effects by proper design of experiments.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Aggregation of data initially collected according to two
separated groupings may give raise to a disturbing phe-
nomenon known under the name of Simpson’s paradox.
However, ‘‘paradox’’ is a wrong label. In most general
terms, it may happen that the probabilistic plausibility of
a conclusion drawn from inspection of each single dataset
might become questioned (and even contradicted) if data
are considered as a whole. Given that merging datasets to-
gether is obtained after logically consistent operations, the
paradoxicality is not the consequence of an inadvertent
mistake, but an uncontrolled effect of the intervention of
some confounding variable, sometimes a lurking one.

The paradox was so-named after the title of Blyth’s
paper [1], referring to the paper published in 1951 by
Simpson [2], although the phenomenon was previously
detected by diverse authors, such as Yule in 1903 [3] (as
noted by Good and Mittal [4], this misnaming is a confir-
mation of the law that every eponymy is wrong). A ‘‘para-
dox’’ such Yule–Simpson’s one can be referred to as a
reversal phenomenon. Apart from precedence of names,
an analysis of this phenomenon – in the following called
the Yule–Simpson’s paradox – is required in statistical
terms.

The paucity of studies of Simpson’s paradox (and of its
generalization) – compared to the abundance of realistic
examples that can be found in statistical literature – was
a ground for complaint in a more recent work [5]. Although
improperly defined a paradox, the occurrence of such a sit-
uation is the source of authentic dilemmas when an incon-
trovertible decision is to be taken based on available
evidences. This situation may be encountered in a variety
of areas, such as:

� medicine, for instance in epidemiology, where the prob-
lem is approached in terms of confounding (e.g. [6]) and
also by pointing out other paradoxes (e.g. [7]), or in
medical research methodology (e.g. [8]);
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� psychological science, see e.g. [9];
� insurance ratemaking, see e.g. [10];
� scientometrics (treatment of bibliometric indicators

and impact measures), see e.g. [11], and experimental
research assessment, see e.g. [12];
� study of probabilistic causality models, see e.g. [13], and

of the logic of Simpson’s paradox, see e.g. [14].

From a more general point of view, problems with reli-
ability of partwise comparison are addressed by [15],
where paradoxes possibly arising in decision analysis are
focused with application to engineering design and con-
sumer survey.

The areas pointed-out so far involve measurement re-
sults and comparisons [16,17]; this is the reason why the
reversal phenomenon is of metrological interest too. The
metrologist may be challenged by analyses of results of
comparative experiments performed by third-parties (each
of them independent of each other): if different experi-
menters are presenting different groupings of results, e.g.
for conformity purpose, a reversal phenomenon may play
a role against impartial conclusion, by introducing a diffi-
cult-to-detect bias (for some extensions of the idea of bias,
see [18]). This will be the central theme of the next Section 2.
Section 3 is devoted to point-out concluding remarks.
2. Statistical analysis with applicability to metrology

Let random events be represented by set-theoretical
variables a, b and c; let prime denote the operation of set
complementation (in terms of logical connectives, its coun-
terpart is negation), let product denote the operation of set
intersection (its counterpart is conjunction, here denoted
by &) and let the sign + denote the set-theoretic union (log-
ical counterpart, disjunction). If P stands for a probability
measure on such sets, the following system of equations
can be written in terms of conditional probabilities:

PðajbÞP Pðajb0Þ; ð1aÞ
Table 1
PðajbcÞ 6 Pðajb0cÞ; ð1bÞ

Global dataset (n, l, m, k, N, M, L, K: see Table 2).

Treatment a: Success count;
rate

a0: Failure
count

Total

b: Drug (n + l) = 500; 50% 500 (N + L) = 1000
b0: Placebo (m + k) = 400; 40% 600 (M + K) = 1000
Total 900 1100 2000

Table 2
Dataset from Table 1 partitioned according patient’s gender.

Treatment a: Success count; rate a0: Failure count Total

c, Males
b: Drug n = 450; 60% 300 N = 750
b0: Placebo m = 175; 70% 75 M = 250
Subtotal 625 375 1000

c0, Females
b: Drug l = 50; 20% 200 L = 250
b0: Placebo k = 225; 30% 525 K = 750
Subtotal 275 725 1000
Pðajbc0Þ 6 Pðajb0c0Þ: ð1cÞ

There is no conflict within system of Eq. (1), where each
inequality sign can be replaced by its opposite one: how-
ever, if at least one of them is strict inequality, the situation
can be described as positive Simpson’s reversal (as nega-
tive Simpson’s reversal, if opposite signs replace inequali-
ties in the above system).

The sets b and b0, which appear in all of three equations
above, are dichotomic subsets: the label ‘‘dichotomic’’ is a
short for denoting that two such subsets define an exhaus-
tive partition of their whole universe, say B, into two mutu-
ally exclusive subsets, i.e., such that their union is b + b0 = B
and their intersection bb0 is £ (the empty set). Similarly, c
and c0 are dichotomic with respect to their universe, say C.
They are introduced in Eqs. (1b) and (1c), whereas they do
not appear in Eq. (1a): while they are remaining latent
within Eq. (1a), c and c0 play a confounding role. That role
becomes explicit through Eqs. (1b) and (1c). Note that
bc + bc0 = b and b0c + b0c0 = b0.

Let b stand for patient treated with a new drug and b0

for patient treated with placebo, where the group of pa-
tients under treatment and the control group are equally
numerous (1000 each); let c stand for male patients and
c0 for female patients. Suppose all inequality signs in the
system of Eq. (1) are limited to strict inequalities: thus, if
a stands for success (recovery) rate, the interpretation of
Eq. (1a) is that the new drug is effective (compared to pla-
cebo), regardless patients’ gender; on the contrary, Eqs.
(1b) and (1c) state that the drug is worst than placebo
for both males – Eq. (1b) – and females – Eq. (1c).

A possible realization of this scenario is shown by a
numerical example in next tables. From the global dataset
reported in Table 1, the success rate of the new drug,
administered to patients regardless their gender, indicates
it is superior to placebo effects. However, if the global data-
set is partitioned according to the patients’ gender (the
population under treatment and control is composed of
two subpopulations of 1000 males and 1000 females), pla-
cebo outperforms drug in both subpopulations. A ‘‘para-
dox’’ therefore would emerge, since an inference about
drug efficacy, although based on results from the same
experiment, is prone to Simpson’s reversal, the final deci-
sion depending on which table – whether Table 1 or Table 2
– is taken into account.

If probability is interpreted in term of relative frequency,
data in Tables 1 and in 2 lead to a translation of the system
of Eq. (1) into the following system of Eq. (2), where; in
terms of conditional recovery rates, Eq. (2a) corresponds
to Table 1, Eqs. (2b) and (2c) correspond to Table 2:

PðsuccessjdrugÞ ¼ 50% > PðsuccessjplaceboÞ ¼ 40%;

ð2aÞ

Pðsuccessjdrug & maleÞ¼60%< Pðsuccessjplacebo & maleÞ
¼70%; ð2bÞ
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Pðsuccessjdrug & femaleÞ ¼ 20%

< Pðsuccessjplacebo & femaleÞ ¼ 30%: ð2cÞ

The paradoxical situation could be managed taking into
account the goal of the experiment and the criteria of data
stratification. In the above scenario – following the line of
reasoning depicted in [19] –, the experiment might be
aimed at deciding whether the new drug is approved or
not. If both Tables 1 and 2 are available, a prudential
safe-oriented decision should be not to admit the new drug
in the pharmaceutical market. However, if the decision
maker is not acquainted with Table 2 – or perhaps results
according to stratified data are purposely unreported (after
all, the patient’s gender can be known to the experimenter
before administering the drug) – approval of the new drug
could not be excluded on the base of results reported in
Table 1 only. Suppose instead that Tables 1 and 2 are
referred to a diverse scenario, such that: b and b0 now
represent black and white varieties of a plant, respectively;
c and c0 represent long-stemmed and short-stemmed vari-
eties, respectively; a stands for yield rate. Although numer-
ical results are the same of the drug experiment above, the
decision maker might favor the white variety, thus giving
priority to the yield rate, regardless the stem length, that
can be considered a more or less negligible accident
(contrary to gender in the medical example).

A compact explanation of Yule–Simpson’s paradox is ex-
posed in [20]; more discussion with application to numer-
ical examples can be found e.g. in [10]. In the following, the
statistical machinery that produces such paradoxes is
reverse-engineered in its elemental components. Let us
reconsider the system of Eq. (1) noting that a can be 2-par-
titioned (dichotomized) into a = ac + ac0 (with (ac)(ac0) =£):
thus, adding probabilities conditioned on b yields
P(a|b) = P(ac|b) + P(ac0|b).

By definition of conditional probability, P(ac|b) = P(abc)/
P(b), P(ac0|b) = P(abc0)/P(b); moreover P(abc) = P(a|bc)P(bc),
P(abc0) = P(a|bc0)P(bc0); P(bc) = P(c|b)P(b), P(bc0) = P(c0|b)P(b)
(similarly for P(a|b0) = P(ac|b0) + P(ac0|b0). Thus:

PðajbÞ ¼ PðabcÞ=PðbÞ þ Pðabc0Þ=PðbÞ
¼ PðajbcÞPðcjbÞ þ Pðajbc0ÞPðc0jbÞ; ð3aÞ

Pðajb0Þ ¼ Pðajb0cÞPðcjb0Þ þ Pðajb0c0ÞPðc0jb0Þ: ð3bÞ

According to Eqs. (2b) and (2c), it may be the case that
P(a|bc) < P(a|b0c), P(a|bc0) < P(a|b0c0) and, in the same time,
according to Eq. (2a), P(a|b) > P(a|b0). Since Eqs. (3a) and
(3b) are weighted means (with weights P(c|b), P(c0|b) in
Eq. (3a) and weights P(c|b0), P(c0|b0) in Eq. (3b)), this kind
of reversal may happen – unless b and c are statistically
independent (relatively to the probability measure P) – with
no reason to invoke any paradox. In fact, given integers n, N,
m, M, l, L, k, and K such that n

N <
m
M and l

L <
k
K, it may be true

that nþl
NþL >

mþk
MþK (see [21] for an elegant geometrical illustra-

tion). For example, taking data from Tables 1 and 2:

450þ 50
750þ 250

¼ 50% >
175þ 225
250þ 750

¼ 40%; ð4aÞ

450
750

<
175
250

; ð4bÞ
50
250

<
225
750

: ð4cÞ

In fact, independence would impose P(c|b) = P(c|b0) and
P(c0|b) = P(c0|b0), thus mathematically preventing any possi-
bility of reversal at all (absence of confounding variable);
in terms of ratios, independence can be translated into
conditions:

n
N
¼ l

L
and

m
M
¼ k

K
: ð5Þ

If the variable under comparative analysis (in the med-
ical example, success of drug vs. placebo) is independent
on the potential confounding variable (the patient’s’ gen-
der) – i.e., if Eq. (5) holds –subpopulations data fulfil the
following relationship too:

m
M
� n

N
¼ k

K
� l

L
¼ q; ð6Þ

It can be easily verified [10] that when Eq. (6) holds it is
also true that:

mþ k
M þ K

� nþ l
N þ L

¼ q: ð7Þ

In such a scenario, there is no reversal and no change at
all (conditions stated in Eqs. (6) and (7) are also known as
collapsibility in contingency tables [23]): analyses of
stratified or aggregated data lead exactly to the same
statistical inference using the criterion of comparing treat-
ments success rates.

Therefore, attention should be focused on whether
statistical dependence arises from introduction of a poten-
tially confounding variable used to partition global data.
For instance, statistical dependence is introduced when
data are unequally distributed over partitions as it happens
in Table 2, where m

M ¼ 70%, n
N ¼ 60%, k

K ¼ 30%, l
L ¼ 20%, and

q = 10%: in this case Eq. (6) holds, whereas conditions of
Eq. (5), namely independence, does not hold. This may
happen if data are acquired in experiments where not all
involved variables are under the control of the experi-
menter: in the medical example above, the patient’s gen-
der is uncontrolled variable. (For more about the crucial
role of independence and conditional independence in sta-
tistical inference and other areas of statistics, see e.g. [22]).

On the other hand, if the experimenter has control over
all involved variables, paradoxes may be avoided by imple-
menting a balanced experiment design: in this case, it is up
to the experimenter that the global population be propor-
tionally distributed over subpopulations being investi-
gated in details. An experiment is balanced if:

N
M
¼ L

K
ð8Þ

For example, in the medical scenario depicted above,
Eq. (8) translates into imposing the condition that the ratio
of number of patients treated with drug to the number of
patients of the same gender treated with placebo be the
same for both male and female patients. A special instance
of proportional distribution is obtained when both N = L
and M = K, a fully balanced experiment. In a balanced
experiment, Eq. (7) follows – see [10] for algebraic pas-
sages – from Eqs. (6) and (8).
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A metrologist might be faced to a similar dilemma, the
horns of which could be positioned in between the two
scenarios where the drug recovery rate and the plant yield
rate were the decision criteria, respectively. Requests of
assessments in the sectors of health, food and nutrition,
ecology may bring challenging questions: procedures
involving comparisons, traceability, verification and deci-
sion making urge caution. A paradigmatic situation is re-
cently reported in [24]: the producer of a drug that failed
to show efficacy against placebo after two trials (per-
formed according to two mutually unrelated procedures),
asked the regulatory agency – who, being aware of the ex-
pected reversal of result interpretation, refused the option
– the permission of pooling both trials in view of a global
analysis of comparative drug/placebo performance.

From a broader metrological point of view, a seemingly
paradoxical situation may arise, e.g., in the framework of
conformity assessment. Guidelines how to conduct confor-
mity assessment are provided by standard [25]; here a
potential situation is described where a comparative
assessment is supposed in view of a decision based on
rating two alternative production processes in terms of
product quality. Let the quality of process A and process
B be compared by inspection of respective products, say
A-products and B-products, sampled at random. Let
inspections be performed according to two successive
measurements campaigns: let iA (iB, respectively) denote
the first campaign with application to process A (B, respec-
tively) and similarly let iiA (iiB) denote the second one.
Results of iA are compared to results of iB, and results of
iiA are compared to those of iiB. It may happen that, for
both campaigns, the percentage of A-products satisfying
the specified requirements is sensibly greater than the
corresponding percentage of B-products. However, in case
the two measurement campaigns are designed distinctly
from each other, rather than as a whole, they are prone
to lack of overall control. In this case a reversal phenome-
non might occur if the inspection results are merged all
together: inference based on merged data could be biased
due to uncontrolled statistical dependence introduced
with merging, and/or to uncontrolled presence of unbal-
anced distributions of sampled products over their
populations.
3. Concluding remarks

A reversal phenomenon such as the so called Simpson’s
paradox may potentially affect grouping of measurements
whatever about the metrological area of application. This
may happen if data are acquired in experiments where
not all the involved variables are under the control of the
experimenter: in fact, difficulties related to the presence
of hidden confounding interactions, spurious relationships,
lurking variables at work, may arise.

Moreover, the metrologist may be challenged by analy-
ses of results of comparative experiments performed by
third-parties, in a variety of sensible sectors, including,
e.g., health, food and nutrition, and ecology. Further re-
search of metrological interest is envisaged to address
the topic of bias caused by reversal phenomena and related
effects on uncertainty evaluation and conformity
assessment.

In the light of the analysis presented in this paper, the
following conclusions are pointed-out:

� paradoxes may arise due to the fact that global data can
be diversely partitioned according to given subtotals:
statistical dependence is introduced when partitioned
data are unbalanced over sub-partitions;
� design of experiments is crucial in view of aggregation

of partition-wide comparisons without high risk of
(paradoxical) reversal of interpretation of relevant
results;
� a probabilistic interpretation of global results,

expressed in terms of relative frequency, should be
based on the rules of conditional probabilities for cor-
rect weighting of mean values over the partitions level.
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