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Adaptive Diffusion Models for the Growth of 
Robotics in New York State Industry 

STUART BRETSCHNEIDER and BARRY BOZEMAN 

ABSTRACT 

Forecasts are developed for the diffusion of robotics in the state of New York through the year 2015. The 

chief objective is to compare static approaches with dynamic models for forecasting diffusion processes of 

various time horizons. Results for a Bass-Mansfield model are compared to those for a dynamic time-varying 

parameter model. The results indicate the advantages and disadvantages of a robust heuristic approach which 

smooths data as opposed to providing an optimal fit. 

I. Introduction 
New York’s traditional industrial base has been in an apparent state of decline since 

the early 1970s. In 1972, the manufacturing industries provided 22.8% of all nonagri- 
cultural employment; by 1982, that percentage had dropped to only 18.8%. During that 
ten-year period, the number of people employed in durable goods manufacture fell from 
750,300 to 701,200, and nondurable goods manufacturing employment correspondingly 
dropped from 852,000 to 660,000. Blue-collar employment is expected to continue to 
decline, falling 1.2% by the mid-1980s [24]. 

As a means of regaining their competitive edge, many U.S. firms have turned to 
automated manufacturing processes and have achieved some qualified success [ 131. Sim- 
ilarly, a number of New York firms have begun to rely on automation to increase 
productivity and to reduce costs. One result of this has been an increased interest in 
automation and robotics. Of particular interest has been the rate of diffusion of robotics 
technology, because it is expected to (at some point) have a significant effect on levels 
of employment and productivity for many manufacturing industries. 

The purposes of this paper are twofold: (1) to develop forecasts of the diffusion of 
robotics in the state of New York through the year 2015; and (2) to compare static 
approaches with dynamic models for forecasting diffusion processes over extended fore- 
cast horizons, 10, 20, or 30 years ahead. The next section of the paper provides some 
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basic background for understanding robotics. This is followed by a review of the Bass- 
Mansfield model for forecasting technological substitution. The traditional approach is 
extended here to include underlying models in which the rate of substitution is allowed 
to vary over the forecast period. Such dynamic models are often referred to as time- 

varying parameter models. The fourth section of the paper reviews the data and as- 
sumptions necessary to apply diffusion models to forecasting robotics through the year 
2015 for the state of New York. Results for forecasting robotics through the year 2015 
are presented for both the static and dynamic diffusion models. This article concludes 
with some observations about the problems of forecasting technological substitution by 
use of either technique. 

II. Description of Robotics Technology 
One definition of a robot “is a mechanical device that can be programmed to perform 

some task of manipulation or locomotion under automatic control” [22]. Robots are 
composed of a manipulator, which physically performs the task, a control system, and 
a power supply. 

Robots are currently limited in accuracy, force, and versatility and are used primarily 
in repetitive, “preprogrammable” or easily programmed tasks such as spot welding, 
grinding, spray painting, or materials handling [2, pp. 35-381. The main thrust in robotics 
research and development is now directed at increasing the sensory and intelligence 
capabilities of the machines [23]. Engelberger [lo] drafted a list of desirable capabilities 
for future robots: 

1. Rudimentary sense of vision; 
2. Tactile senses; 
3. Computer interpretation of sensory data; 
4. Mechanical hand-to-hand coordination; 
5. Mobility; 
6. Minimized spatial intrusion; 
7. Energy-conserving musculature; 
8. General-purpose hands; 
9. Self-diagnostic fault tracing; 

10. Man-robot voice communication; and 
11. Inherent safety (safe human-robot work area). 

The attainment of these goals is anticipated by the generational descriptions outlined in 
Table 1. The current state of the art can be characterized as at the beginning edge of the 
Generation 1.5 robot technology. 

The pace at which these capabilities will be attained is uncertain. Concerning machine 
vision, current models perform tasks such as inspecting photographs of spot welds to 
determine whether or not imperfections exists. Skepticism exists about the attainment of 
20120 vision and eye-manipulator coordination before the year 2000, if ever [lo]. Tactile 
sensory perception and the computer interpretation of both tactile and visual data are not 
likely for many years. The full duplication of human hand functions is even further away 
[14]. Near-term innovations will occur in such tasks as assembly, inspection, and con- 
tinuous welding. These advances have important implications for New York State. 
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TABLE 1 
Evolution of Robot Technolow 

Generalion I Robot: This is a robot in use today. It is characterized by being a programmable, memory- 
controlled machine with several degrees of freedom. It can be equipped with grippers or special handling 

attachments, which can hold and operate hand tools, welding guns, and power tools, and can perform work- 

piece and material-handling manipulation and transfer functions. 

Generarion 1.5 Robot: This is a robot that will be sensory controlled and will have capabilities for 

performing “make” and “test” functions. It will work on principles of electro-optics pressure torque, force- 

sensitive touch, and proximity. It will be capable of recognizing and manipulating work pieces, parts, and 

tools. The motion paths of the robot will be memory controlled with overrides of preprogrammed control 

depending on sensory input. 

Generation 2 Robot: This is a future robot that will have hand-eye coordination through its own vision. The 

robot will see objects and will be able with hand interactions to perform manipulative functions. 

Generation 3 Robot: A “factory-intelligence-controlled” robot that will provide artificial intelligence to help 
solve “factory” problems. 

Source: Tver and Bolz [22]. 

III. Traditional Diffusion Models 
Viewing the diffusion of robotics technology in New York for Generation 1 and 

Generation I .5 robots as a “new” product, we can consider application of the Mansfield- 
Bass model [3, 4, 11, 181. In mathematical terms: 

dN(t + 1) / dt = N(t + 1) - N(t) = [a + bN(t)][N - N(t)], 

where N(t) is the current number of adopters at time t from a fixed population of potential 
adopters, ??, a is the coefficient of innovation, and b is the coefficient of imitation. The 
model explains the incremental number of adopters in a time period t as a function of 
spontaneous adoption, innovativeness, and the influence of those already using the new 
product on the remaining nonadopters (that is, imitation). Several major attempts have 
focused on extending the basic theory presented in Equation (1) by making a and b explicit 
functions of other factors thought to directly influence the rate of diffusion [ 16, 171. One 
approach suggested by Hernes [ 151 was to make a and b explicit functions of time. Recent 
work by Bretschneider and Mahajan [8] illustrated the use of a heuristic procedure in 
estimating such models when a and b were expressed as implicit functions of time. We 
may characterize such approaches by the following dynamic-diffusion model: 

dN(t + 1) / dt = [u(t) + b(t)N(t)][N - N(t)], (2) 

where u(t) and b(t) are time-varying parameters. The procedure illustrated by Bret- 
Schneider and Mahajan [8] adaptively estimated the parameter paths for both u(t) and 
b(t) from data using feedback techniques without a priori specification of a structure for 
the time path of the parameters. The two major advantages of such an approach were 
improved forecast performance in the short run and estimated parameter paths that could 
be explored separately in order to find potential causes for accelerating or decelerating 
rates of innovation and imitation (see [7]). 
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IV. Data and Assumptions 
In order to apply the models presented in Equation (1) or Equation (2), we need 

knowledge of the total population for which the innovation is aimed (E) and some data 
on the early adoption of the innovation. Such data, even at the national level, is sparse. 
Table 2 summarizes the currently available data on the industrial robot population for 
the United States, including the sources of each estimate by year. We have estimated the 
total population of industrial robots in the U.S. for the year 2000 at slightly over 1.5 
million. This estimate was developed by assuming that 40% of all industrial jobs could 
potentially be met by either Generation 1 or Generation 1.5 robots, and that, on average, 
one robot could replace three regular positions [2]. Using Bureau of Labor Statistics [26], 
we made projections of the numbers of basic laborers, nontransport operatives, and metal- 
working craftsmen in manufacturing for the year 2000. The estimate of potential robots 
was calculated as 40% of the sum of these projected positions divided by three. This, 
then, provides an estimate of the total potential population for Generation 1 and Generation 
1.5 robots through the year 2000. Implicit in this calculation is the view that all such 
positions can potentially be replaced by either Generation 1 or Generation 1.5 robots. 

Due to the absence of specific data for New York State, we decided to build a model 
using U.S.-level data and then apportion a share of the total to New York. One strategy 
for apportioning New York State’s share of total U.S. robots is to apply the proportion 
of New York’s manufacturing jobs to the total number of U.S. manufacturing jobs. This 
approach does not adequately reflect the higher concentration of robots in specific in- 
dustries. Consequently, a weighted average of New York’s proportion of total U.S. 
manufacturing was calculated based on specific industries known to have high concen- 
trations of robots; fabricated metals, machinery, electronics, and transportation. Within 
these four groups the New York State percentage of the United States as a whole ranged 
from 3.4% to 8.4%, with the weighted average at 6.4% [25]. 

V. Estimation 
Given the data in Table 1 and an estimate of the fixed population (N), direct estimation 

of Equation (1) is possible using ordinary least squares. We rewrite Equation (1) as: 

dN(r + 1) / dt = a [E - N(r)] + b N(t)[N - N(t)], 

and we estimate a and b by simply transforming the raw data on cumulative adopters in 
period t into changes in cumulative_adopters between pe_riods [N(t + 1) - N(t)] and 
form the two independent variables N - N(t) and N(r)[N - N(t)]. Following this ap- 
proach, hypothesis tests are possible on a and b directly. The empirical results of applying 
Equation (3) to the data were: 

dN(t + 1) I dt + -0.00002153 [i - N(r)] + O.OOOOOO2832 N(t)[N - N(t)] 

The estimate of a was found to not be statistically different from 0, whereas the estimate 
of b was statistically significant at an alpha level of .OOOl. This result implied that the 
predominant effect was one of imitation and not innovation. When a is found to be not 
significantly different from 0, the Bass Model becomes identical to the Mansfield Model: 

dN(t + 1) / dt = b N(t)@? - N(t)]. (4) 
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TABLE 2 

U.S. Robotic Population 

Year Number Source 

1970 200 J. Engelberger [lo] 

1971 580” 

1972 950” 
1973 1,330” 

1974 1,700” 

1975 2,000” 

1976 2,ooo Eikonix [9] 

1977 2,400 Eikonix [9] 

1978 2,500” 
1979 3.7006 Robotics Industry Association (1986) 

1980 4,300b Robotics Industry Association (1986) 
1981 4.7006 Robotics Industry Association (1986) 
1982 6,3006 Robotics Industry Association (1986) 

1983 9,4W Robotics Industry Association (1986) 

1984 14,5W Robotics Industry Association (1986) 

1985 20,000b Robotics Industry Association (1986) 

“Interpolated values. 
qelephone interview. 

One consequence of this analysis was that Equation (4) was deemed a more appropriate 
model for forecasting diffusion of robots than was Equation (l), hence, our interest shifts 
to estimation of 6, the coefficient of imitation. 

In considering forms of the dynamic-diffusion model, we find that preliminary results 
similarly tend to favor a Mansfield specification over that of the Bass model. ’ Two 
alternatives for forecasting dynamic-parameter models are available, neither of which 
allow for traditional approaches of statistical inference. Both are based on notions of 
feedback that adjust parameter estimates for time t based on previous estimates using 
data through time t - 1 and the size of the one-step-ahead forecast error. Specifically, 

h(t) = i(t - 1) + A(e(t)), 

where h(t) is an estimate of b at time t, and e(t) is the one-step-ahead forecast error 
associated with applying the model using 6(t - 1). The first approach, known as the 
adaptive-estimation procedure (AEP), was applied to diffusion models by Bretschneider 
and Mahajan [8]. The reader is directed to that work for a detailed description of the 
means for implementing the procedure. 

A second approach advocates the use of recursively weighted least squares to estimate 
b(t) [27]. This approach can be viewed as a feedback approach when formulated as a 
Kalman Filter. A first-order Markov chain model is stipulated as a model of motion or 
a system model for the time-varying parameter b(t). To estimate a dynamic form of 
Equation (4) using Kalman Filtering, the model of motion is 

b(t) = b(t - 1) + cl(t), (6) 

‘Preliminary estimates of a(r) for Equation (2) resulted in negative values. 
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with a measurement relationship 

dN(t + 1) / dr = b(t) N(t)& - N(t)] + e2(t), 

where el( t) and e2( f) are random terms. We normally assume that el( t) and e2( t) are 
uncorrelated normal random deviates. Under these circumstances the standard Kalman 
Filter recursive equations can be applied to estimate the parameter path for b(t) (see 

1121). 
Adaptive estimation procedures defined by Equation (5) imply the need for initial 

estimates of the parameter b at time 0, b(0). Application of Kalman Filtering further 
requires initial estimates for the variance of el and e2, plus the variance of the parameter 
estimate at time 0. The AEP approach similarly requires initial estimates of the rate of 
adaptation and variances but in the form of a smoothing and damping parameter. In both 
cases, these initial conditions strongly influence the resulting parameter path estimates. 
Heuristic procedures were applied to obtain “reasonable” estimates of these initial con- 
ditions. The first four observations were used to obtain an OLS estimate of b based on 
Equation (l), and these estimates were used as an initial value of b(0) for both AEP and 
Kalman Filtering. The estimate of the variance of the parameter’s b(0) was used as the 
initial estimate of the parameter’s variance, as well as an estimate of the variance in el , 
whereas mean square error associated with fitting the first four observations was used as 
an initial estimate of the variance of e2. For alternative approaches to estimating initial 
conditions, see Sarris [21] and Gelb [ 121. In applying AEP, smoothing and damping 
parameters play a role similar to those of initial variance terms in the Kalman Filter. For 
this application, the smoothing factor was set at .Ol and the damping factor at .lO. See 
Pack, Pike and Downing [ 191 for procedures on selection of these parameters using AEP. 

Table 3 presents the estimates of b(t) obtained using both recursive feedback ap- 
proaches. The most striking distinction between the results is that the Kalman Filter 
estimates exhibit greater variance from time period to time period than do those produced 
by AEP. This reflects the tendency of AEP to smooth results and illustrates the advantage 
of heuristic selection of small damping factors to control the rate of change between time 
periods, as opposed to “optimally” estimating random fluctuations [6]. Both sets of results 

TABLE 3 
Estimated Parameter Paths For Coefficient of Imitation 

Year AEP Estimates 

1971 0.OOOOO021059 
1972 0.OOWOO22090 

1973 0.00000022400 
1974 0.00000021859 
1975 0.ooooO020283 

1976 O.OOOOOO18214 
1977 O.OOOOOO16393 

1978 0.00000014753 

1979 0.00000016229 
1980 O.OOOWO14606 

1981 o.OwOOO13145 
1982 O.OOOOOO14460 

1983 0.0OOOOO15906 
1984 O.OOOOOQ17496 

1985 O.OooOOO19246 

Kalman Filter Estimates 

O.-2707 
0.OOOOOO41702 

O.OOOOOO29714 
0.OotxwO20152 
o.ooOOO012641 

o.OoOOoo015oO 
0.OoOoO011471 

O.OOOOOOO3463 

O.OOOOOO28561 
0.OooOo011191 

O.OOOOOOO6162 
O.OOOOOO21513 

o.OOOOOO31593 
0.OoOoO035055 

O.OOOOOO24639 



GROWTH OF ROBOTICS 117 

indicate a decline in the effect of imitation between 1971 and 1981, followed by a rapid 
increase in 1982 through 1985. One interpretation of these results is that in the last few 
years, an acceleration in imitation behavior has occurred due to changing economic 
conditions. People are more willing to try new approaches during periods of real growth. 
Although 1982 was a recession year, the growth in robots during 1982 more than likely 
reflected prior commitments (made as many as 18 months earlier) to purchasing robots. 
Although sustained growth from 1983 through 1985 reflected the rapid growth of robots 
in those years, the growth cannot be explained purely by diffusion. 

VI. Forecast 
Making use of our estimates in forecasting can be done in several ways. Using the 

OLS estimate of b based on all the data, we assume that the value of b is constant over 
the sample and will remain constant over the forecast horizon. Using this approach, 
calculation of forecasts are accomplished by applying the following formula 

N(t + 1) = N(t) + hN(t)[N - N(t)]. (8) 

By substituting the most recent forecast back into Equation (8), one may bootstrap 
forecasts forward over any future forecast period desired. 

In the case of the feedback approaches, we have a parameter path and have assumed 
that the coefficient is not constant either within the sample or over the future time period. 
The simplest approach to forecasting using feedback results is to apply Equation (8), 
substituting the last, most current estimate of b(r) for the constant value. Here we assume 
that despite changes in the coefficient within the historic sample, it will remain constant 
over the forecast horizon. Figure 1 presents the results of applying these approaches to 
forecasting the diffusion of robots. Annual estimates of the level of robots were multiplied 
by 6.4% to obtain an estimate for New York State. 

An alternative to this approach is to extrapolate the parameter path estimates as a 
polynomial function of time over the forecast period. This approach takes advantage of 
our knowledge that the imitation process appears to be accelerating in the early 1980s. 
The most appropriate model for extrapolating the parameter paths presented in Table 3 
was that of a quadratic function of time. This approach adequately captured the initial 
decline in the value of the parameter, followed by a reversal in trend. We can also tie 
such variation to more causal factors such as a quadratic function of industrial production 
lagged one or two years. Though such an approach is useful, forecasting industrial 
production over a twenty-year period is then necessary to forecast the coefficient of 
imitation to in turn forecast diffusion of industrial robots.* Figure 2 graphically displays 
the extrapolated values of b( t) based on fitting quadratic time-trend models to the estimates 
in Table 3. Forecasts of New York State robots can be obtained by applying Equation 
(8) again to the data and substituting each forecasted value of b(t) into the equation 
before calculating the next forecast. Figure 3 presents the results of forecasting that applies 
each model using extrapolated values for b(r). OLS, AEP, and Kalman Filtering forecasts 
for the U.S. robot population are again adjusted for an estimate of New York State’s 
share of manufacturing jobs (6.4%). 

*Both of the estimated-parameter paths showed significant correlation with lagged values of GNP, national 

disposable income, and industrial production. 
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Fig. 1. Standard Diffusion Forecasts of Industrial Robots in New York State Through 2015. 

Using the most recent estimate of b(t) from the sample (see Figure 1), the OLS 
model implies the most rapid diffusion, whereas the AEP estimate generates the slowest 
diffusion. The results of the forecasts based on the Kalman Filtering estimates behave 
similarly to the OLS results. When using extrapolated values for b(t), we found that the 
Kalman Filter forecasts jump up almost immediately to saturate the population, whereas 
the AEP approach demonstrates the effect of a slower acceleration in the coefficient (see 
Figure 3). Starting out at a rate slower than that predicted by the OLS estimate, the AEP 
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Fig. 3. Dynamic Diffusion Forecasts of Industrial Robots in New York State Through 2015. 

forecasts eventually accelerate enough to reach saturation prior to the OLS forecasts by 
about nine years. 

Each model predicts market saturation for robots at different times, ranging from 
1992 to 2010. The AEP approach using dynamic forecast estimates market saturation 
around 2001. Which of these is most accurate depends upon how much acceleration is 
expected in the rate of imitation over the next decade. As mentioned above, the true 
determinant of acceleration relates directly to economic growth, particularly growth in 
specific components of the manufacturing sector-those most directly affected by the use 
of Generation 1 and Generation 1.5 robots. The rapid acceleration demonstrated using 
Kalman Filter estimates reflects some of the eccentricities of applying “optimal” filters 
in a heuristic fashion. Particularly important are the specification of initial conditions, 
which here have led to greater variance in estimated parameters across time and ultimately 
have led to a very large rate of acceleration. The AEP approach, developed heuristically, 
appears to give more robust results that have greater face validity. 

VII. Conclusions 
In applying diffusion models to the forecasting of technological substitution, we 

urge the reader to remember that such forecasts usually look ten, 20, or more years into 
the future. The structural nature of the diffusion model places a cap on the maximum 
value of a forecast based on the initial estimate of the population through which the new 
technology is to diffuse. Hence, the critical issue in technological forecasting is the rate 
of substitution. The use of dynamic-diffusion models reflect this point by allowing the 
rate of innovation and imitation to change over time, subject to various factors simul- 
taneously. The application of empirical techniques to estimating such changing coeffi- 
cients, such as Kalman Filtering and AEP, not only provide a basis for improved fore- 
casting, they also provide intermediate results useful for investigating the causes of 
accelerating or decelerating rates of substitution. 

In the application presented here, various projections for the diffusion of robotics 
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in New York State reflect the strengths and weaknesses of the two heuristic estimation 
approaches. Kalman Filtering results lack some face validity, partially because of poor 
initialization and partially due to the application of optimality criteria in estimation (see 
[ 121). The AEP approach, on the other hand, reflects the advantage of robust heuristics 
that smooth data as opposed to optimally fitting it. The result is forecasts that are less 
radical. 

The authors gratefully acknowledge the assistance of participants in the Technology 
and Information Policy Workshop on Robotics Forecasting, including Jon Bryson, Brian 

Bisset, Mike Torak, Martha Chow, R.F. Shangraw, Jr., Ann Catino, and Todd Meyer. 
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