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a b s t r a c t

Experts have more difficulty identifying reverse salients in R&D because of increasing technological
complexity and a shortened technology lifecycle. As an alternative, we suggest a new and systematic
method of identifying and forecasting reverse salients using QFD (quality function deployment),
bibliometric analysis, and TIA (trend impact analysis). QFD allows users to systematically identify and
prioritize reverse salients. An integration of QFD, bibliometric analysis, and TIA makes it possible to
specify key performance indicators of reverse salient in order to identify the performance gap between
current and market-required performance and to make a probabilistic forecast about when reverse
salients will be corrected. Our method will help managers identify a top priority reverse salient, forecast
its future, and thus make better R&D decisions with regard to market requirements. A carbon nanotube
biosensor technology is used as an example.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is important to commercialize emerging technologies (Bhat,
2005) as these reshape industry structure and competition rules
through disruptive technological innovation, creating new growth
opportunities (Hung and Chu, 2006). For instance, polyimide
technology reshaped traditional markets, creating new markets
in various industries including film, display, secondary battery, and
semiconductor (Mochizuki and Umeda, 2001). However, among
emerging technologies, commercialization of some technologies
has experienced greater than expected delay.

A number of previous studies have investigated key factors of such
delay, focusing mainly on external factors including financing, human
resources, absorptive capacity, and collaboration (Cheng, 2012;
Holman et al., 2008; Jacobs et al., 2010; Linton and Walsh, 2008;
Yanez et al., 2010). However, in early phases of technology develop-
ment and commercialization, technological obstacles are more impor-
tant than other obstacles, though non-technological factors become
important in later phases (Jolly, 1997).

Despite their importance, there is no systematic method to
identify and forecast such technological obstacles. Most previous
studies depend on expert judgments (McNeil et al., 2007).

However, the increasing technological complexity and shortened
technology lifecycle have reduced the reliability of expert judg-
ments, making identification increasingly difficult. As an alterna-
tive, bibliometric analysis of large technological data has been
proposed but is not used much in R&D practice because it cannot
specify obstacles in detail (Alencar et al., 2007; Porter and
Detampel, 1995; Van Raan, 2005). Also, since forecasting is based
on reliable identification, there has been little effort to forecast
when technological obstacles are overcome.

Considering this past research, we suggest a new and systematic
method to identify and prioritize key technological obstacles and
to forecast when a technological obstacle is overcome in terms of
performance. Above all, to clarify the concept of technological
obstacles, we introduce reverse salience methodology. A reverse
salient (RS) is defined as a subsystem that hinders the full perfor-
mance potential of an entire system (Dedehayir and Mäkineif, 2008).
Since we focus on technological obstacles for commercialization, we
define an RS as a technological obstacle that hinders the full market
potential of a technology. Note that market potential can be fully
exploited when various market requirements are met by technolo-
gies. Thus, in our research, operational criteria and measures of RSs
are derived from key market requirements, comprising not only
externally imposed criteria such as regulation, but also internal
technological performance measures. However, operational mea-
sures might vary with technology and relevant market and thus
can include technological architecture, performance standards, and
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other measures. Overall, an RS is useful to define, evaluate and
prioritize key technological problems.

Our method consists of three phases. In the first phase, using
QFD (quality function deployment), we identify, evaluate, and
prioritize RSs. In the second phase, key performance indicators
of top priority RSs are defined. Through bibliometric analysis of
journal papers and patents, we plot past trends of key perfor-
mance indicators and identify the gap between current and
desired performance for commercialization. Finally, using TIA,
we perform a probabilistic forecast of achievement of the RS
solution and the desired performance. TIA is a forecasting techni-
que to create a range of future values by reflecting combined
effects of important future events (Agami et al., 2009).

As an illustrative example, the carbon nanotube (CNT) biosen-
sor is selected. The CNT is an emerging technology that can be
applied to various fields, including films, solar cells, and sensors
(Spitalsky et al., 2010). However, its commercialization has been
limited in some high-strength products and has occurred later
than industrial experts expected. Also, there is no consensus on
the top priority technological RS for R&D and commercialization
(Endo et al., 2008). Among various CNT-based products, a CNT
biosensor typically has these problems and thus is selected.

This paper proceeds as follows. In Section 2, we review
previous RS studies and existing forecasting methods, positioning
our approach in the context of current literature. Then, the
research framework and methodology are explained. Subse-
quently, an empirical analysis of the CNT biosensor is provided.
Finally, we end with some discussion and conclusions.

2. Literature review

2.1. Reverse salients

In contrast with a unitary view on technology systems,
a systemic view perceives a technology system as consisting of
multiple interactive subsystems. If a certain subsystem cannot
deliver the necessary level of performance compared with other
subsystems, it can hinder the advance of the entire technology
system while limiting overall performance due to the continuous
interaction among subsystems. A technology system cannot make
advances unless the technological obstacle is solved (Hughes,
1983). An RS can be defined as such a subsystem.

Using reverse salience, previous studies have investigated
the evolution of technology systems and the role of RSs. Hughes
(1983) introduced the concept of RSs to analyze a direct-current
electric system generator. Similarly, Murmann and Frenken (2006)
decomposed an automotive technology system into technological
sub-systems, including the body and engine, and identified tech-
nological RSs. Similarly, MacKenzie (1987) identified technological
RSs of a ballistic missile technology system. Others suggested
external RSs including the consumer, supplier, and law (Bijker
et al., 1987; Takeishi and Lee, 2005).

RSs are useful to understand not only stable, but also dynamic
technology systems. For instance, Dedehayir and Mäkineif (2008)
analyzed dynamics of changing RSs in personal computer (PC)
games. Between the two subsystems, the central processing unit
(CPU) and graphics processing unit (GPU), the RS changed. They
subsequently calculated the different speeds of technology devel-
opment and forecasted future RSs (Dedehayir and Mäkinen, 2011).
However, with their approach, they had difficulty identifying RSs
of a sophisticated technological system comprised of many sub-
systems because they depended on intuitive judgments.

Mulder and Knot (2001) divided a PVC technology system into
lower-level subsystems, identified RSs at the level not only of a
subsystem but of related subsystems and thus attempted to
systematize identification. Further, they tried to identifying chan-
ging RSs as the technology system changed over time. However,
most problems of expert judgments, such as subjective bias and
bounded knowledge, remained unsolved. As shown in Table 1,
there have been no efforts to overcome such weaknesses for ex-
ante and structured identification of RSs. RS forecasting is at a very
early stage, with only one previous study using simple extrapola-
tion. Addressing these issues, our approach aims at ex-ante and
structured RS identification as well as RS forecasting.

2.2. RS identification and forecasting methods

As noted above, ex-ante and structured identification of RSs
might be one way of making the concept of the RS more useful and
relevant for researchers, technology developers and managers.
Also, the relationship between market requirements and RSs
should be considered to prioritize RSs in terms of technology
commercialization. As for forecasting, it should be noted that
experts have been struggling to make a reliable time forecast
regarding the performance of RSs. It has frequently been observed
that the performance increases of RSs were slower or faster than
expected (Lo et al., 2012). Quantitative methods based on histor-
ical data can be used to minimize such time errors and thus
produce better forecasts by extrapolating past data into the future.
However, these methods cannot consider the effects of future
uncertainties that can deflect the future trend. Considering this
information, there is need for a forecasting method that can
minimize time scale errors and reflect future uncertainties.

Based on our methodological requirements, we select existing
methods that fulfilled more than two of our requirements, as
shown in Table 2. Trend extrapolation is included because it
was used in recent RS forecasting research by Daim et al. (2013).
Advanced expert-based methods including Delphi, scenario, and
technology roadmap have the advantages of ex-ante and struc-
tured identification and future uncertainty consideration but have
difficulty specifying technology-market relationships and reducing
time errors (Linstone and Turoff, 2011; Meyer and Winebrake,
2009; Carvalho et al., 2013). Also, trend extrapolation is too simple
to reflect future uncertainties.

MCDM (multiple criteria decision making) methods meet the
requirements for RS identification. However, quantitative MCDM

Table 1
Previous RS studies.

Previous study Technology system RS type Method Ex-ante RS
identification

Structured RS
identification

RS forecasting

MacKenzie (1987) Missile Technological Expert judgment X X X
Mulder and Knot (2001) PVC plastic Technological Social Expert judgment X X X
Takeishi and Lee (2005) Mobile music Technological Social Expert judgment X X X
Murmann and Frenken (2006) Automobile Technological Expert judgment X X X
Dedehayir (2009) PC game Technological Expert judgment X X X
Daim et al.(2013) Video game console Technological Expert judgment X X Extrapolation
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methods such as goal programming and data envelopment analy-
sis cannot be used when there are little quantitative data. Some
qualitative MCDM methods, such as the analytic network process,
are of little use when an individual expert cannot evaluate the
relative importance of various criteria or RSs (Kim et al., 2010).
QFD is relatively free from these problems, while satisfying the
requirements and thus is appropriate for RS identification.

As for forecasting, note that RS performance is a time series of a
single variable. Also, future uncertainties should be considered. Thus,
there is need for a quantitative forecasting method in which a time
series is modified to consider future uncertainties. Among existing
forecasting methods, these requirements can be met by TIA and CIA
(cross impact analysis). TIA identifies a set of important future events
that can deviate from the extrapolation of historical data, judges their
probabilities and impacts, and thus forecasts a range of future values
rather than a single point (Agami et al., 2009). CIA estimates the
potential interactions among future events and adjusts the probabil-
ities of occurrence (Bañuls and Turoff, 2011). When experts have little
confidence in quantifying such interactions, TIA is better than CIA.

Previous reverse salient studies have used expert-based meth-
ods or trend extrapolation, and thus have had some drawbacks
due to missing requirements. Integrated methods of identification
and forecasting including Delphi, scenario, technology roadmap
are subject to a serious problem of time scale errors. Probabilistic
time-series forecasting methods including TIA and CIA can mini-
mize these errors, but cannot identify RSs. Identification-focused
methods including QFD and MCDM are better than others for
identification, but not for forecasting. There is no integrated RS
identification and forecasting method satisfying all requirements.
Combining QFD with TIA, our approach can meet all requirements,
as listed in Table 2, and thus is likely to overcome the limitations of
existing methods. Before explaining the methods in details, we
briefly touch the technological background of CNT biosensors.

3. Technological background: CNT biosensor

A nano-biosensor is a device which can be used to detect a
minute number of biomarkers, such as specific genes and proteins.
It has a variety of applications including medical diagnosis, food
analysis, drug discovery and environmental monitoring. In addition
to nanotechnology, information and biomedical technologies are
needed to further this technology (Juanola-Feliu et al., 2012).
A nano-biosensor is composed of a sensitive biological element and
a transducer. The former identifies a specific biomarker and then

forms a bond between biomarkers and receptors of a biosensor. The
latter translates the interaction of the analyte with the biological
element into an electrical signal (Burg and Poulikakos, 2011).

Early biosensors combined electrochemical sensors with enzyme
transducers. Then, researchers have changed the couplings of biolo-
gical element and transducer. Enzyme, organelles, antibody and
others were coupled to optical, mass, magnetic, thermal, electro-
chemical and micro-mechanical sensors (Palchetti and Mascini,
2010). Recently, advances and convergences in micro and nano-
scale photonic, electronic and mechanical technologies have created
an era of modern integrated biosensors including a nano-biosensor.

A nano-biosensor can be classified as either a silicone nanowire
biosensor, CNT biosensor, or other type of biosensor. A CNT biosensor
has excellent sensitivity and requires neither an additional marker
nor an expensive optical sensing device. Thus, it is appropriate for
miniaturization. With its enhanced sensitivity and reduced size, a
CNT biosensor can improve the current bio-diagnostic capacity with
respect to specificity, accuracy, speed and cost, and can be incorpo-
rated into wearable and implantable medical devices. It will poten-
tially contribute to more personalized medicine as well as ubiquitous
healthcare system. However, various CNT biosensors have been
proposed but have not been commercialized.

The typical structure of a CNT biosensor is a combination of
bio-macromolecules and CNTs in the vicinity of the electrode. The
well-defined nanostructure of CNTs leads to good interaction
between CNTs and enzymes (Wang, 2004). CNTs also enhance
the electron transfer from the reaction center of an enzyme to the
electrode. Thus, high performance can be realized.

Attracted by these properties, many companies with weak R&D
capability developed CNT biosensors but could not commercialize
them due to the reproducibility problem. In other words, technology
commercialization failed because of unsolved technological RSs. For
successful commercialization of CNT biosensors, it is obvious that the
top priority should be identifying and solving technological RSs. Our
method to identify and forecast RSs is explained in Section 4, and is
applied to CNT biosensors in Section 5.

4. Methodology

4.1. Research framework

Our research consists of three phases, as shown in Fig. 1. Based
on a review of the current literature, we define the commerciali-
zation processes of CNT biosensor as well as its key technologies

Table 2
Review of identification and forecasting methods.

Method Classification Requirements for RS identification and forecasting Reference

Qualitative/
quantitative

Normative/
exploratory

Ex-ante structured
identification

Technology-market
relationship

Time scale
error

Future uncertainty
consideration

Delphi Qualitative Exploratory O O Linstone and Turoff
(2011)

Scenario Qualitative Normative O O Meyer and
Winebrake (2009)

Technology roadmap Qualitative Normative O O Carvalho et al.
(2013)

Quality function
deployment

Qualitative Exploratory O O Wang et al. (2010)

Multi-criteria
decision analysis

Quantitative Exploratory O O O Kim et al. (2010)

Trend extrapolation Quantitative Exploratory O Daim et al.(2013)
Trend impact

analysis
Quantitative/
qualitative

Exploratory O O Agami et al. (2009)

Cross impact analysis Quantitative/
qualitative

Exploratory O O Bañuls andTuroff
(2011)
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and core physical properties. Examining all technologies and
properties, six experts add, modify and delete some of these.
Three CNT experts and three nano-biosensor commercialization
experts identify and prioritize key RSs using QFD. As previously
noted, QFD is chosen because it has the advantages of ex-ante
structured RS identification and specification of technology-
market relationships.

In the second phase, to understand global R&D trends of
previously identified RSs, we define key performance indicators
of RSs, collect relevant patents and journal articles, and plot the
changing key performances over time through bibliometric ana-
lysis. We use the US Patent and Trademark Office (USPTO)
database, which includes global patent applications, and Thomp-
son Reuters’ Web of Science journal database, which has global
research paper submissions. Reverse salience methodology is used
to identify the current performance gaps in key RSs for technology
commercialization.

Then, employing TIA, we forecast a range of future values of key
performance indicators of RSs. Considering technology character-
istics and dynamic patterns of data, the most appropriate growth
curves are selected. Key parameters of those curves are estimated
using data between 2000 and 2011. Extrapolating the data, we
project future performances of RSs. Our experts identify key future
events and estimate probabilities of occurrence of those events
with their impacts. Using these estimations, Monte-Carlo simula-
tion produces a range of future performances including the
median, 5th, and 95th percentiles. Tracking the future perfor-
mance growth within the upper and lower limits, we elucidate the
change in performance gap in the near future.

Through the three phases, we systematically identify and
prioritize key RSs while minimizing biases in expert judgments.
Also, we identify the performance gap in RSs between current and
market required performance and forecast when a certain RS will
be corrected.

4.2. QFD

QFD is a method originally developed in order to reduce some
biases in expert judgments and also to systematically identify RSs
(Cohen, 1995). In 1966, it was first developed to translate customer
requirements into engineering characteristics. Since it proved
effective for Mitsubishi Heavy Industries and Toyota in the
1970s, it has been used mainly for product development in a wide
array of industries (Sullivan, 1986). Its use has extended to rating
the importance of methods (how) for achieving goals (what), and
therefore it has been used in various disciplines including R&D and
policy. Also, there have been several efforts to improve the basic
method. For instance, the axiomatic design by Suh (2001) has

advantages for analyzing the transformation of customer needs
into not only functional requirements, but also design and process
variables and thus has been useful for the design of complex
products.

The first phase in the implementation of QFD usually involves
development of a House of Quality. This method utilizes a plan-
ning matrix to relate customer requirements on the left to product
features across the top. First, experts rate the importance of
customer requirements. Then, they engage in discussion, rate the
correlations between product features and customer require-
ments, typically using the standard QFD scale composed of 1
(weak), 3 (medium), and 9 (strong), and input the scores into the
matrix. For each product feature, a weighted sum of the impor-
tance of customer requirements and the correlation is calculated.
The higher is the weighted sum, the more important is the product
feature.

Similarly, for technology commercialization, customer require-
ments can be replaced by market requirements, and product
features can correspond to key technologies. Experts rate the
importance of market requirements and relevance between mar-
ket requirements and key technologies using the 1-3-9 scale. Note
that the relevance score should be low if there are no technological
RSs. Thus, a weighted sum of importance and relevance scores for
a key technology represents the importance of the technology for
commercialization, measuring the priority of its RSs.

Alternative methods have been suggested, including ontology-
based inference and the technology tree. However, QFD is more
appropriate than the others for technology commercialization
research because it considers both technology and market
perspectives.

4.3. Bibliometrics

Bibliometrics is defined as the quantitative study of publica-
tions as reflected in bibliographies (White and McCain, 1989).
Researchers have used bibliometric methods to analyze science
and technology literatures, including patents and journal papers,
because the use of global large-scale bibliometric data can reduce
subjective and local biases frequently observed in expert judg-
ments (Porter and Detampel, 1995; Van Raan, 2005). Over the
decades, bibliometric methods have been widely applied in
technology management areas including technology opportunity
and evaluation (Meyer, 2001; Van Raan, 2006).

Bibliometrics has proven to be useful to analyze macro-
phenomena such as technological megatrends (Kostoff et al.,
2007). Yet, it is not appropriate for a detailed analysis of specific
technologies due to the limitations of bibliometric indicators,
including the number of documents and number of citations

Fig. 1. Research framework.
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(Costas and Bordons, 2007). For instance, using the number of
patents, we can identify some technological domains in which
companies have made greater commercialization efforts, but we
have difficulty identifying a specific technology in terms of key
performances and commercialization factors without qualitative
analysis by experts (Moed and Burger, 1985). Put briefly, we cannot
count only on bibliometric indicators to make specific R&D
decisions in practices.

Considering this information, we combine bibliometrics with
QFD, capitalizing on the advantages of both methods. Biases in
expert judgments can be reduced by both QFD and bibliometrics.
Also, for a detailed analysis of both technology and RSs, experts
define key performance indicators (KPIs) of RSs with the minimum
required performance for technology commercialization. Using
keywords of KPIs, we collect relevant journals and patents and
plot the changing performances over time. A current performance
gap is defined as the difference between the current and minimum
required performance. This enables us not only to identify the
current difficulty of solving RSs, but also to forecast future RSs.

Bibliometric indicators, however, have been frequently criti-
cized for being outdated (Hall et al., 2001). Patents take 2–4 years
to be granted, and journal papers take time to be published. To
reduce such truncation problems, we use patent application and
paper submission data rather than grant and publication data.

4.4. Trend impact analysis

Gordon (2009) developed TIA to address criticism of the
quantitative forecasting methods based on historical data. These
methods, from simple extrapolation to various time-series tech-
niques, produce forecasts by extrapolating historical data, suffer-
ing from a common weakness of ignoring the effects of future
uncertainties. It has frequently been observed that future uncer-
tainties can impact relationships and thus affect the expected
trend. As a remedy, TIA was suggested as a forecasting method in
which a time series is modified to consider perceptions of how
future events may change extrapolations.

The TIA process is comprised of two principal steps: (1) a curve
fitting to historical data without any consideration for future
events and (2) expert judgments for identification of important
future events and probability estimation of the occurrence of those
events as a function of time and expected impact. These judg-
ments can be elicited by other qualitative forecasting methods
including environmental scanning and Delphi (Gordon and Glenn,
2009; Linstone and Turoff, 2011). Combining the probabilities and
impacts of future events with the results of the extrapolation, TIA
produces a range of possible future values including upper and
lower limits at determined probability levels. A typical range is
between the 5th and 95th percentiles. Simulation techniques such
as Monte Carlo simulation are used to estimate upper and lower
limits.

TIA is well suited for policy evaluation for managers wishing to
modify the course of a specific time-series indicator. Managers can
analyze the effect of a certain policy on the indicator by changing
the probabilities and impacts. Also, TIA enables managers to
calculate the probability that current strategic targets will be
met over the coming years. Thus, it has been used in many
organizations, including the US National Science Foundation and
US Department of Energy. Recent studies have combined TIA with
other methods, including neural network (Agami et al., 2009) and
fuzzy logic (Agami et al., 2010), compensating for the incomplete
identification of future events and inaccurate estimation of prob-
abilities and impacts.

The future performance of RSs can be influenced by future events
that may change extrapolations based on historical performance data.
For instance, if unexpected new production equipment is developed

and used, it can increase future performance of some RSs more than is
expected. Experts involved in the QFD process can identify key future
events and also estimate their probabilities of occurrence and their
impacts. TIA can consider future uncertainties while avoiding the risk
of simple extrapolation, and thus it is appropriate for forecasting the
future performance of RSs.

4.5. Judgments by a panel of experts

Expert judgments have been used in several identification and
forecasting methods including Delphi, Scenario, Roadmap, MCDM
and others. Given some problems, experts are required to give
qualitative or quantitative judgments, and the final aggregate is
taken as the output. Despite effective in many practices, expert
judgments have several deficits, such as subjective biases of
experts and negative effects of interactions among experts
(Landeta, 2006). In our approach, QFD is a method not only to
reduce such biases, but to satisfy methodological requirements
comprising ex-ante and structured identification and balanced
view of technology and market.

However, methodological weaknesses of expert judgments
remain, including normative social influence and group confor-
mity (Bolger and Wright, 2011). A structured brainstorming
technique is useful to reduce such deficits when experts focus
on a particular subject (Byrne and Barlow, 1993). It proceeds
through four phases: (1) problem statement, (2) individual gen-
eration of ideas, (3) collective organization of ideas, and (4) collec-
tive evaluation and selection of ideas. It separates idea generation
from collective evaluation process, therefore reducing negative
effects arising from social interactions of experts. Also, we make
the process workshop-based and neutrally facilitated, and thus
encourage participation and positive mutual reinforcement (Kerr
et al., 2013). The selection of experts is as important as the process,
and will be explained in the next section.

5. Empirical analysis and results

5.1. Data

Our method requires several experts and bibliometric data.
As previously noted, six experts are involved in identifying and
prioritizing RSs of CNT biosensor commercialization for three six-
hour days. The panel of experts is comprised of a university
researcher, a researcher from a private company in Korea, a
researcher from a governmental electronics research institute,
and three biosensor commercialization experts from private com-
panies in Korea. Three CNT experts hold Ph.D. degrees in engineer-
ing. Each has more than ten years of R&D experience. With degrees
in either management or chemistry, the three commercialization
experts also have been in charge of technology commercialization
over the last decade. These experts also review the results of
bibliometric analysis and forecasting.

For bibliometric analysis, we use USPTO and Thompson
Reuters’ Web of Science databases to collect patents and journal
papers published between 2000 and 2011. As a result, 7439
patents and 42,000 papers are collected using keywords such as
CNT, SWCNT, and other similar and relevant words. Again, using
keywords of key performance indicators, we extract patents and
papers with key performance information of top priority RSs.

5.2. RS identification

Reviewing previous studies of 42,000 papers, we define four
commercialization processes comprising material research, production
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technology development, application technology development, and
commercialization technology development, as shown in Fig. 2 (Fam
et al., 2011; Wartburg and Teichert, 2008). According to Jolly (1997),
the technology commercialization process is sequential, meaning that
it cannot proceed to the next phase without solving problems in the
current phase. If key technologies in some preceding processes cannot
meet the minimum required performance, commercialization of CNT
biosensors will fail in later processes.

Previous studies suggest seven key technologies comprising
high purity SWCNT synthesis and separation, device fabrication,
sensing material combination, sample pre-processing, electrode
optimization, and signal processing (Lee, 2008; Saeed, 2010).
Given seven key CNT biosensor technologies from the literature
review, six experts engage in discussion and identify key technol-
ogies in each commercialization process.

Among these key technologies, high purity SWCNT synthesis is
regarded as the top priority (Li et al., 2008; Yang et al., 2010).
Several scholars argue that length, diameter, electrical properties,
and purity of SWCNTs produced under the same conditions can
vary (Jacobs et al., 2010; Yang et al., 2010). Such non-uniformity is
a major threat to commercialization. Others point out the difficulty
of obtaining high purity SWCNT with specific helicity and empha-
size the necessity of technologies to change physical and chemical
properties (Vashist et al., 2011; Wang, 2004). To date, it is possible
to produce a small amount of high purity SWCNT with specific
helicity. However, on a large scale, the unit price of such SWCNTs
would soar above an acceptable level and thus become a com-
mercialization barrier (Fam et al., 2011). Considering this informa-
tion, our experts divide high-purity SWCNT synthesis and
separation into six sub-technologies and include structure and
physical property technologies to the material research process.
As shown in Fig. 3, 13 key technologies used in the CNT biosensor
commercialization processes are identified, including six sub-
technologies.

Note that all key technologies should meet the market require-
ments for commercialization. Through the literature review
and experts brainstorming, nine market requirements are
identified and then categorized into performance, practicality, eco-
nomics, and regulation subsets, as shown in Table 3. A structured
brainstorming technique is used because we focus on a particular
subject (Byrne and Barlow, 1993). Six experts are individually asked to
adopt their own perspectives and then to state important market
requirements within a period of 30 min. Having examined a multi-
perspective point of view, they collectively categorize, evaluate, and fix
market requirements over a period of two hours.

In Fig. 5, the derived market requirements correspond to goals
in QFD and thus are designated in the left column in the category
of House of Quality. Key technologies are used to achieve those
goals and accordingly appear in the upper row. Using the
standard 1-3-9 scale, six experts rate the importance of market
requirements and the difficulty of achieving market requirements
through key technologies. Thus, a weighted sum of importance
and difficulty score at the bottom represent the priority of RSs. The
higher is the score, the more difficult and important is the RS.

Experts reach a consensus on the importance level of market
requirements as a result of sufficient discussion during the
brainstorming session. Then, they are individually asked to rate
the difficulty score and show some differences in individual scores.
Discussing the causes of varying scores, they fix the final scores.
New information from other experts is of great use to facilitate this
process. For instance, there are more 1 or 3 scores than in Fig. 4,
but new production technology information makes experts change
those scores to zero.

A4c (high purity SWCNT separation with specific electrical
properties) receives the highest score, whileA4d, A5, A6, and A7
score higher than 80. These RSs are important for commercializa-
tion but difficult to solve, forming the key RS group. Other RSs are
of relatively little importance with scores less than 40. Note that
CNT biosensor commercialization cannot proceed without solving
prior RSs. Therefore, A4c and A4d in the CNT production technol-
ogy development process are given top priority.

5.3. RS bibliometric analysis and forecasting

Although key RSs are identified, the gaps between current and
minimum required performance cannot be determined. Biblio-
metric analysis of patents and journal papers can help illustrate
not only current performance gaps, but also dynamics of changing
gaps. The first step in this process is to define KPIs of RSs.
Combining the literature review with expert judgments, we define
the KPI of A4c (high purity SWCNT separation with specific
electrical properties) as a semi-conductive SWCNT purity, and
we define the KPI of A4d (mass high purity SWCNT separation
with specific electrical properties) as the semi-conductive SWCNT
scale. The market required minimum performance is derived from
the literature review on recent studies and is examined and
confirmed by six experts. Definitions and measurement units are
as shown in Table 4.

Fig. 2. CNT biosensor commercialization process.

Fig. 3. Process-wise key CNT biosensor technology.
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Among 7439 patents and 42,000 papers, using a set of KPI
keywords as queries, we collect 95 USPTO patents and 18 Web of
Science journal papers including KPI information. Using these
patents and papers, we plot the changing three-year moving
averages of KPIs between 2000 and 2011. The publication of older
research results before more recent findings due to time differ-
ences of paper reviews and patent examinations cause KPIs to
fluctuate. To reduce such fluctuation, we use a three-year moving
average.

As shown in Fig. 5, we plot the changing performance of semi-
conductive SWCNT purity, which gradually increased from 82% in
2004 and stabilized around 95% in 2008. The market required
minimum purity for most biosensors is 95%, meaning that market
requirements were almost met in 2008. The purity should be
greater than 99% only for biosensors inserted into a human body.

The market share of these biosensors is expected to be less than
5%. Thus, RS of A4c (high purity SWCNT separation with specific
electrical properties) was almost solved around 2008. For some
biosensors, the current performance gap in purity is 4%.

Given the three-year moving average data of purity, we employ
an extrapolation method to forecast when the purity will reach
99%. Among several curves, a logistic curve is chosen because the
data shows a typical pattern of a logistic curve with the known
upper limit of purity (99%). Its formula is shown below.

y¼ ð1=Lþc � btÞ�1 ð1Þ

Assuming that an upper limit of purity denoted by L is 99%, we
can estimate , as shown in Table 5. Parameter estimates are
statistically significant at the 1% level. A high R2 (0.988) with a

Table 3
Market requirements for CNT biosensor commercialization.

Category Requirement Notation

Market requirements for
commercialization

Performance Selectivity B1
Sensitivity B2
Speed B3
Multiplex sensing B4

Practicality Reproducibility B5
Miniaturization B6
Lifecycle B7

Economics Price B8
Regulation Safety (no toxicity) B9

Fig. 4. CNT biosensor QFD.

Table 4
Reverse salient key performance indicators.

RS KPI RS KPI definition Measurement unit

Semi-conductive SWCNT purity A mass ratio of semi-conductive SWCNT with specific electrical properties after separation %
Semi-conductive SWCNT separation scale Mass of metallic and semi-conductive SWCNT mixtures for separation Mg
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p-value of 0.012 indicates that the logistic curve is a good fit with
the data.

Using this logistic curve, we forecast the future values of semi-
conductive SWCNT purity, which is expected to reach 98% by 2011
and 99% by 2013. Contrary to forecasting results, however, the
purity has not increased since 2008. To identify the reason in more
detail, we plot the three-year moving average of the annual
number of patents and journal papers with semi-conductive
SWCNT purity information, as shown in Fig. 6. The number of
journal papers reached a peak around 2004 and has continuously
decreased since then. The number of patents shows a similar
pattern with a later peak in 2006. In other words, basic science
reached its limits in 2004, and applied science reached its
performance ceiling in 2006. Then, both entered a declining period
with little technological innovation. Qualitatively reviewing recent
papers, six experts confirm that there has been no new separation
technology since centrifugation technology was developed in
2005. Finally, as previously noted, the market share of CNT
biosensors, which require a purity greater than 99%, is less than
5%. Therefore, the purity of semi-conductive SWCNTs is not likely
to exceed 95% in the near future and will remain an RS for CNT
biosensors inserted into a human body.

A mass high purity SWCNT separation with specific electrical
properties is the second most important RS and is rated on a semi-
conductive SWCNT scale. Through bibliometrics analysis, the
changing performance of this RS is plotted between 2004
and 2011. By 2004, the separation scale was between 1 mg and
10 mg. Then, it increased rapidly and reached around 150 mg
by 2011. However, the minimum required separation scale

for commercialization is 10,000 mg (10 g). At an early stage of
performance growth, the separation scale is affected by several
future uncertainties.

Thus, we employ TIA to modify the future trend by reflecting
key future uncertainties. The historical performance data during
2004–2011 are extrapolated to 2020. The performance growth
curve is expected to become steeper with an unknown limit.
Considering these predictions for the pattern of data, we choose
an exponential curve whose formula is shown below.

y¼ c expðbtÞ ð2Þ
The estimation results of key parameters are given in Table 6.

All estimates are statistically significant at the 1% level. A high R2

(0.94) with a p-value of 0.01 indicates adequate curve selection.
Given this forecast, six experts identify key future events that

could change the curve and judge the occurrence probabilities of
these events and their impacts by 2020. They are individually asked
to complete these tasks and then collectively finalize the figures, as
shown in Table 7. Experts are certain of the improvement in CNT
technologies, including separation methods and production, but also
identify two external threats: (1) progress in competitive nano-
material development and (2) decreasing R&D investment.

Using these judgments, we run a Monte-Carlo simulation. For each
event, a random number is generated. If the probability of an event in
a given year exceeds the random number, the event is considered to
occur. The impacts of all the occurring events are summed to
determine the total impact on the extrapolated curve in a given year.
The results are recorded, and the process is repeated 500 times. Each

Fig. 5. Semi-conductive SWCNT purity trend and future projection.

Table 5
Parameter estimation results of a semi-conductive SWCNT purity growth curve.

Coefficient Standard deviation T p-Value F p-Value R2

b 0.619 0.033 18.926 0.003 82.495 0.012 0.988
c 0.003 0.000 6.911 0.02

Table 6
Parameter estimation results of a semi-conductive SWNT separation scale
growth curve.

Coefficient Standard deviation T p-Value F p-Value R2

b 0.311 0.38 8.211 0.001 67.42 0.01 0.944
c 25.090 3.698 6.785 0.002
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of these 500 runs is considered a mini-scenario, i.e., a single future
projection. Generating 100 future projections allows to formation of a
range of future projections including the 5th and 95th percentiles.

As shown in Fig. 7, future events create a lopsided range of
uncertainty toward the upper limit, positioning the median beyond
the original extrapolation. This means that the separation scale could
reach the market required level earlier than is expected by extrapola-
tion. Along the 95th percentile curve, the market required level can be
met in 2017 if positive events dominate negative ones. Contrastingly,
the 5th percentile curve cannot reach the required level before 2020.

For two high priority RSs of CNT biosensors, we identify the
current performance gap between current and minimum required
performance and further forecast the future performance gaps. The
top priority RS, A4c (high purity SWCNT separation with specific
electrical properties), is almost solved. However, the second priority
RS, A4d (mass high purity SWCNT separation with specific electrical
properties) shows a severe performance gap and will not be solved
before 2017. Thus, the semi-conductive SWCNT separation scale is,
and will be, the largest obstacle to CNT biosensor commercialization.
Technological innovation efforts should be concentrated on this RS.

6. Conclusion

This study suggests a new and systematic way of identifying
and forecasting RSs of emerging technologies using a sequential
combination of QFD, bibliometrics, and TIA. QFD enables several
experts to systematically identify and prioritize RSs while reducing
several biases in expert judgments. Bibliometrics help us not only
collect highly relevant scientific and technological information, but

also identify the performance gaps of RSs between current and
minimum required performance. Going a step further, we make
probabilistic forecasts of the future performance gaps using TIA,
therefore indicating when technological obstacles can be overcome.

Conceptually, our approach builds on an emerging system’s
concept of technology (Sahal, 1981). Sahal (1985) suggested that
technological innovation should arise from a process of differential
growth whereby the parts and the whole of a system do not grow at
the same rate. Choices about components, methods, and theories are
made to solve these technological constraints, improving the techno-
logical system. The evolving paths, i.e., technological trajectories, are
created by new logic of design (Clark, 1985), technological guideposts
(Sahal, 1985), creative combination of existing technologies (Arthur,
2009), and other methods. Despite many previous studies on frame-
works, models, and cases, there has been little effort to identify key
technological constraints using large amounts of data. Tackling this
issue, our study is intended to spur analysis of the recursive process of
technology evolution between constraints and solutions.

From a practical standpoint, using our method, corporate
managers can identify current and future RSs and thus make
better R&D decisions with due regard to technological RSs. In other
words, our method can optimize R&D portfolios in terms of
commercialization, improving R&D productivity. Although internal
experts can identify RSs, they often underestimate or overestimate
RSs due to a variety of reasons including bounded knowledge and
subjective bias. Combining QFD with specific bibliometric analysis, our
method helps internal experts systematically reach a consensus on key
RSs. Moreover, definition and measurement of the KPIs of RSs enable
corporate managers to monitor globally changing performance of RSs;
therefore, increasing the effectiveness of R&D strategies and planning.

Fig. 6. Numbers of patents and journal papers regarding semi-conductive SWCNT purity.

Table 7
Expert judgments of key future events, probabilities, and impacts for TIA.

Event Maximum impact
(%)

Years to first impact Years to maximum
impact

Probability by 2015
(%)

Probability by 2020
(%)

Introduction of new effective separation
method

40 5 8 25 45

Improvement of CNT production equipment 25 3 7 50 60
Complementary technology development 10 1 10 40 50
Progress of competitive nano-material �50 6 10 15 40
Rapid expansion of biosensor market 20 4 11 5 30
Decreasing R&D investment for CNT �45 1 6 50 65
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TIA helps managers identify key future uncertainties and events and
further calculate the probability that important technological obstacles
will be removed over the coming years.

From an academic perspective, the primary contribution of this
paper is ex-ante identification of top-priority technological RSs.
Previous studies have focused on ex-post identification and thus
are of little help to identify current bottlenecks in the process of
technology commercialization. A joint use of QFD and qualitative
bibliometrics makes possible such ex-ante identification and
prioritization. Previous studies have had difficulty defining and
measuring specific RSs. An integration of QFD and bibliometric
analysis enables us not only to define a specific KPI of an RS, but
also to identify the performance gap of KPIs between current and
minimum required performance, therefore overcoming such
weaknesses. Further, considering future uncertainties and events,
we forecast a range of future RS performance values between the
upper and lower limits with regard to the reduction of time errors.

Our approach is based on historical bibliometric data and thus
is of little use when an emerging technology is at a very early stage
because few data are available. Expert-based methods such as
Delphi and scenario analysis are relatively free from such con-
straints and thus are more appropriate forecasting methods under
such conditions. Bibliometric data become available to identify and
forecast technological paradigms when competing paradigms
appear (Kuusi and Meyer, 2007). Thus, our approach is first useful
at an early development stage and becomes increasingly effective
as technology commercialization proceeds. However, at the later
stages, other non-technological problems are expected to more
highly affect commercialization than are technological RSs. Hybrid
methods of expert-based and large data-based methods are
appropriate. Overall, our approach is most useful for emerging
technologies in early- and mid-development stages.

Six experts who participate in QFD and TIA are asked the merits
and demerits of our approach. Appreciating the ex-ante specific
identification of RS, they come to the consensus that it can be useful
in actual R&D planning because top priority should be given to a
technology for which RSs can be most readily overcome. Also, they
have experience reducing the misidentification of RSs as well as

market requirements due to bounded knowledge and subjective bias.
The set of individually identified RSs and market requirements is
different from a finalized set after QFD, providing evidence of
reduced misidentification. However, the experts commonly point
out that the method is very time-consuming and requires the
assistance of several experts, suggesting the use of information and
communication technologies to improve efficiency. Also, the estima-
tion of future events, probabilities, and impacts can vary with the
knowledge and experience of experts, communication techniques,
and other elements and thus needs to be designed carefully.

Our approach also has several limitations. Above all, biblio-
metric analysis of patents and journal papers reduces several
biases in expert judgments on technological RSs using KPI data.
However, minimum market requirements depend heavily on
expert judgments and thus are not free from biases. Also, our
RSs are externally imposed by experts, and therefore some RSs
that emerge from within the technological system can be ignored.
Methods for defining and measuring market requirements need to
be investigated. Also, TIA has limitations for forecasting the future
of disruptive technologies characterized by breaks and explosive
growth, which is true of many emerging technologies. Therefore,
we should find and use appropriate methods such as system
dynamics and agent models for disruptive technologies. Finally,
our method might be of little use to short lifecycle technologies
because of the time-lag problem of bibliometric data.
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Fig. 7. TIA of semi-conductive SWCNT scale.
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Table A1
Yearly average of RS KPIs.

Semi-conductive
SWCNT purity (%)

Semi-conductive SWCNT
separation scale (mg)

2004 76 50
2005 89 17
2006 84 21
2007 89 105
2008 95 135
2009 95 –

2010 95 100
2011 95 500
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