Information and Software Technology 55 (2013) 1374-1396

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A systematic mapping study of web application testing @ CroseMark

Vahid Garousi *“*, Ali MesbahP, Aysu Betin-Can ¢, Shabnam Mirshokraie

2 Electrical and Computer Engineering, University of Calgary, Calgary, Canada
Y Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
€ Informatics Institute, Middle East Technical University, Ankara, Turkey

ARTICLE INFO ABSTRACT
Article history: Context: The Web has had a significant impact on all aspects of our society. As our society relies more and
Received 14 June 2012 more on the Web, the dependability of web applications has become increasingly important. To make

Received in revised form 9 February 2013
Accepted 11 February 2013
Available online 1 March 2013

these applications more dependable, for the past decade researchers have proposed various techniques
for testing web-based software applications. Our literature search for related studies retrieved 147 papers
in the area of web application testing, which have appeared between 2000 and 2011.

Objective: As this research area matures and the number of related papers increases, it is important to
systematically identify, analyze, and classify the publications and provide an overview of the trends in
this specialized field.

Keywords:
Systematic mapping
Web application

Testing Method: We review and structure the body of knowledge related to web application testing through a
Paper repository systematic mapping (SM) study. As part of this study, we pose two sets of research questions, define
Bibliometrics selection and exclusion criteria, and systematically develop and refine a classification schema. In addi-

tion, we conduct a bibliometrics analysis of the papers included in our study.
Results: Our study includes a set of 79 papers (from the 147 retrieved papers) published in the area of
web application testing between 2000 and 2011. We present the results of our systematic mapping study.
Our mapping data is available through a publicly-accessible repository. We derive the observed trends,
for instance, in terms of types of papers, sources of information to derive test cases, and types of evalu-
ations used in papers. We also report the demographics and bibliometrics trends in this domain, includ-
ing top-cited papers, active countries and researchers, and top venues in this research area.
Conclusion: We discuss the emerging trends in web application testing, and discuss the implications for
researchers and practitioners in this area. The results of our systematic mapping can help researchers to
obtain an overview of existing web application testing approaches and indentify areas in the field that
require more attention from the research community.

© 2013 Elsevier B.V. All rights reserved.

Contents

B R o U o e L Tot o (o) + PPN 1375
Related WOTK. . . . oottt e e e e e e e e e e e 1376
2.1, Secondary studies in SOftWare teStiNg v ottt ittt et e e e e e e e 1376
2.2, Online paper repoSitories I SEttt e e e e e e e e e e 1376
2.3. Secondary studies in web application teSting i i e e 1376
3. Research Methodologyottt ettt e e e e e e e e 1376
3.1, Goal and research QUESTIONS.ttt ettt et et e e e e e e e e e e e 1377

3.2. Paper selection strategy
3.2.1. Resource selection and search query definition it e 1378
3.2.2. Exclusion and inClUSION CIIteIIa. oottt ettt ettt et e et e e e e e et e et et et 1379
3.3. Final pool of papers and the online FrePOSITOTYottt t ettt et e e e e e ettt et e e ettt et ettt 1379
4. Classification SCHEMIE. ottt et et e e et e e e e e e e e e e e e e 1379
5. SystematiC MaPPINg [ESUILS.ottt ittt et ettt et et e e e e e e e e e 1381

* Corresponding author at: Electrical and Computer Engineering, University of Calgary, Calgary, Canada. Tel.: +1 403 210 5412.
E-mail addresses: vgarousi@ucalgary.ca, vahid@metu.edu.tr (V. Garousi), amesbah@ece.ubc.ca (A. Mesbah), betincan@metu.edu.tr (A. Betin-Can), shabnamm®@ece.ubc.ca
(S. Mirshokraie).

0950-5849/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.02.006

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.infsof.2013.02.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.02.006
mailto:vgarousi@ucalgary.ca
mailto:vahid@metu.edu.tr
mailto:amesbah@ece.ubc.ca
mailto:betincan@metu.edu.tr
mailto:shabnamm@ece.ubc.ca
http://dx.doi.org/10.1016/j.infsof.2013.02.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396 1375

5.1. RQ 1.1 - Types of papers by contribution facetttt et ettt et e e 1381
5.2. RQ 1.2 — Types of papers by research facet.ttt e ettt et e e e 1382
53. RQ 1.3 = Type Of teSting aCtiVityo i ittt ettt et e et ettt e e e e e e 1383
54. RQ 1.4 — TSt I0CAtIONS . . . oottt et ettt et e e et e et e e e e e e e e e e 1384
5.5, RQ 1.5 = TeSting leVelS . . .o\ttt ettt et e ettt et e e e e e e e e e e e e 1384
5.6. RQ 1.6 - Source of information to derive test artifacts. it e 1385
5.7. RQ 1.7 - Techniques to derive test artifactsttt e et e et et e e e 1385
5.8. RQ 1.8 — Type of test artifact generated ittt ettt ettt e e 1386
5.9. RQ 1.9 - Manual versus automated teStiNg.ottt ittt ettt e e e e e e e 1386
5.10. RQ 1.10 - type of the Evaluation Method ittt ettt e et et et et et ettt et e 1386
5.11. RQ 1.11 - Static web sites versus dynamic web applicationsi. ittt ittt ittt et 1386
5.12. RQ 1.12 = Synchronicity of HTTP Calls.ottt et e et e e e e et ettt ettt ieiaeas 1387
5.13. RQ 1.13 - Client-tier Web teChNOIOZIeS o\ttt e e e et e e et e et e e 1387
5.14. RQ 1.14 — Server-tier wWeb teChNOIOZIes.ottt et e e e e e e e e 1388
5.15. RQ 1.15 — Tools presented in the PapersS.ottt ettt e ettt et et et e s 1388
5.16. RQ 1.16 — Attributes of the wWeb software SUT(S)ottt ettt e e e ettt et et ettt et et et et e 1388
5.16.1. Number of SUTs used in €aCh Paper.ottt et e ettt e et et ettt ettt et et 1388
5.16.2. NAmes Of the SUTS . . . o .ottt ettt et e 1389
5.16.3. LOC size Of the SUTS. . . . oottt ittt ettt e e e e e e et e e e e e e e e et et et et e e e 1389
5.16.4. Types of SUTs: academic experimental, real open-source, or commercial software 1389
5.16.5. Other SIiZ@ MeLIICS . . . o . vttt ettt et ettt e e e e e e e et e e e e e e e et et e e e e e e e e 1389

6. Demographic trends and bibliOmetIiCS.ttt e e e e e e e e e e 1390
6.1. RQ 2.1 — publication trend PeI YeaT. . . .ottt ettt ettt et e e et e ettt e e e e e e 1390
6.2. RQ 2.2 - Citation analysis and tOP-Cited PaPeISottt ettt et e e e e e et e 1390
6.3. RQ 2.3 - Most active researchers in the area ittt et et et ettt et et et et e 1391
6.4. RQ 2.4 — ACHIVE NMATIONS. . . .\ttt ettt e et e e e e e e e e 1391
6.5. RQ 2.5 = TOP VEIMUES . . . o ettt ittt et ettt e e e et e 1392
/2 0) T 111 T) L3 PP 1392
7.1. Findings, trends, and iMpPliCAtioNSottt ittt e e e et e e e e 1392
7.2, Threats t0 Validityottt ettt e e e e e e e e e e e 1393
7.2.0. Internal Validityottt e e e e e e e e e e e 1393

7.2.2. CONStIUCE VAlIAitY . . . oottt ettt e e e e e e e e e e e e e e e 1393

7.2.3. Conclusion Validity vttt e e e e e e e e e e e e e 1393

7.24. EXternal Validityottt e e e e e e e e e 1394

8. Conclusions and fUtUIe WOTK. ot e ittt et et e et e et e et e e e e e e e 1394
ACKNOWIBA MBS . . . ottt ettt et e e e e e e e e e e e e e e e e 1394
RO OO . . o . ittt e e e e e e e e e e e e 1394

1. Introduction

The Web has had a significant impact on all aspects of our soci-
ety, from business, education, government, entertainment sectors,
industry, to our personal lives. The main advantages of adopting
the Web for developing software products include (1) no installa-
tion costs, (2) automatic upgrade with new features for all users,
and (3) universal access from any machine connected to the Inter-
net. On the downside, the use of server and browser technologies
make web applications particularly error-prone and challenging
to test, causing serious dependability threats. In addition to finan-
cial costs, errors in web applications result in loss of revenue and
credibility.

The difficulty in testing web applications is many-fold. First,
web applications are distributed through a client/server architec-
ture, with (asynchronous) HTTP request/response calls to synchro-
nize the application state. Second, they are heterogeneous, i.e., web
applications are developed using different programming lan-
guages, for instance, HTML, CSS, JavaScript on the client-side and
PHP, Ruby, Java on the server-side. And third, web applications
have a dynamic nature; in many scenarios they also possess non-
deterministic characteristics.

During the past decade, researchers in increasing numbers,
have proposed different techniques for analyzing and testing these
dynamic, fast evolving software systems. As the research area ma-
tures and the number of related papers increases, we feel it is
important to systematically identify, analyze and classify the
state-of-the-art and provide an overview of the trends in this spe-

cialized field. In this paper, we present a systematic mapping of the
web application testing research work.

According to Petersen et al. [47], a systematic mapping (SM) is a
method to review, classify, and structure papers related to a spe-
cific research field in software engineering. The goal is to obtain
an overview of existing approaches, outlining the coverage of the
research field in different facets of the classification scheme. Iden-
tified gaps in the field serve as a valuable basis for future research
directions [39,36]. Results of SM studies can also be valuable re-
sources for new researchers (e.g., PhD students) by providing a de-
tailed overview of a specific research area [16].

There are major differences between SM studies and systematic
literature reviews (SLR). Kitchenham et al. [39] report a compre-
hensive comparison of SM and SLR studies using the following se-
ven criteria: goals, research questions, search process, scope,
search strategy requirements, quality evaluation, and results.
According to that report, the goal of a SM is classification and the-
matic analysis of literature on a software engineering topic, while
the goal of a SLR is to identify best practices with respect to specific
procedures, technologies, methods or tools by aggregating infor-
mation from comparative studies. Research questions of a SM are
generic, i.e., related to research trends, and are of the form: which
researchers, how much activity, what type of studies. On the other
hand, research questions of a SLR are specific, meaning that they
are related to outcomes of empirical studies. For example, they
could be of the form: Is technology/method A better than B? Unlike
a SLR [37], finding evidence for impact of a proposed approach is
not the main focus in a systematic mapping [47]. An SLR analyzes

1376 V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396

primary studies, reviews them in depth and describes their meth-
odology and results. SLRs are typically of greater depth than SMs.
Often, SLRs include an SM as a part of their study [47]. In other
words, the results of a SM can be fed into a more rigorous SLR
study to support evidence-based software engineering [38].

SM studies generally consist of five steps [47] including a defi-
nition of research questions, conducting the search for relevant pa-
pers, screening of papers, keywording of abstracts, and data
extraction and mapping, which we follow in this paper.

To the best of our knowledge, this paper is the first systematic
mapping study in the area of web application testing. The main
contributions of this paper are:

e A generic classification scheme for categorizing papers in the
field of web application testing.

e A systematic mapping study in the field of functional testing of
web applications, structuring related research work over the
past decade by capturing and analyzing 79 included papers.

e An analysis of the demographic trends and bibliometrics in the
area of web application testing.

e An online repository of the papers collected and analyzed
through this systematic study.

The remainder of this paper is outlined as follows. A review of
the related work is presented in Section 2. Section 3 explains our
research methodology and research questions. Section 4 provides
the classification scheme we have developed for the web testing
domain and the process used for constructing it. Section 5 presents
the results of the systematic mapping followed by the bibliometric
analysis in Section 6. Section 7 discusses the main findings, impli-
cations and trends. Finally, Section 8 concludes the paper.

2. Related work

We classify related work into three categories: (1) secondary
studies that have been reported in the broader area of software
testing, (2) related online repositories in software engineering,
and (3) secondary studies focusing on web application testing
and analysis.

2.1. Secondary studies in software testing

We were able to find 22 secondary studies reported, as of this
writing, in different areas of software testing. We list these studies
in Table 1 along with some of their attributes. For instance, the
“number of papers” (No.) included in each study shows the num-
ber of primary studies analyzed, which varies from six (in [32])
to 264 (in [33]). Our study analyzes 147 papers and includes 79
in the final pool, as described in Section 3.

We have observed that SMs and SLRs have recently started to
appear in the area of software testing. We found six SMs in the area
of software testing: (1) product lines testing [20,23,44], (2) SOA
testing [45], (3) requirements specification and testing [12], and
(4) non-functional search-based software testing [3]. There are also
five SLRs in the area: (1) search-based non-functional testing [4],
(2) search-based test-case generation [7], (3) formal testing of
web services [22], (4) unit testing approaches for Business Process
Execution Language (BPEL) [51], and (5) regression test selection
techniques [24]. The remaining 11 studies are “surveys”, “taxono-
mies”, “literature reviews”, and “analysis and survey”, terms used
by the authors themselves to describe their secondary studies
[13,35,42,31,17,46,14,33,19,43,32]. Note that none of these studies
is related to web application testing, which is the focus of our
study.

2.2. Online paper repositories in SE

A few recent secondary studies have reported online reposito-
ries to supplement their study with the actual data. These reposi-
tories are the by-products of SM studies and will be useful to
practitioners by providing a summary of all the works in a given
area. Most of these repositories are maintained and updated regu-
larly, typically every six months. For instance, Harman et al. have
developed and shared two online paper repositories: one in the
area of mutation testing [33,34], and another in the area of
search-based software engineering (SBSE)' [52].

We believe this is a valuable undertaking since maintaining and
sharing such repositories provides many benefits to the broader
community. For example, they are valuable resources for new
researchers in the area, and for researchers aiming to conduct addi-
tional secondary studies. Therefore, we provide our mapping study
as an online paper repository, which we intend to update on a reg-
ular basis.

2.3. Secondary studies in web application testing

Here we provide a brief overview of existing secondary studies
(e.g., surveys/taxonomy papers), focusing on different areas of web
testing and analysis.

Di Lucca and Fasolino [21] present an overview of the differ-
ences between web applications and traditional software applica-
tions, and how such differences impact the testing of the former.
They provide a list of relevant contributions in the area of func-
tional web application testing. Alalfi et al. [5] present a survey of
24 different modeling methods used in web verification and test-
ing. The authors categorize, compare and analyze the different
modeling methods according to navigation, behavior, and content.
Amalfitano et al. [8] propose a classification framework for rich
internet application testing and describe a number of existing
web testing tools from the literature by placing them in this frame-
work. Van Deursen and Mesbah [49] describe the challenges of
testing Ajax-based web applications, discuss to what extent cur-
rent automated testing can be used to address those challenges,
and formulate directions for future research. Marin et al. [40] dis-
cuss the testing challenges of future web applications and provide
a concise overview of current testing techniques and their limita-
tions for testing future web applications.

All these existing studies have several shortcomings that limit
their replication, generalization, and usability in structuring the re-
search body on web application testing. First, they are all con-
ducted in an ad hoc manner, without a systematic approach for
reviewing the literature. Second, since their selection criteria are
not explicitly described, reproducing the results is not possible.
Third, they do not represent a broad perspective and their scopes
are limited, mainly because they focus on a limited number of re-
lated papers.

To the best of our knowledge, there are currently no systematic
mappings or reviews for the field of web application testing.

3. Research methodology
This systematic mapping is carried out following the guidelines
and process proposed by Petersen et al. [47], which has the follow-

ing main steps:

o Defining research questions.
o Defining the search query and searching for papers.

1 This repository is quite comprehensive and has 1,020 papers as of April 2012.

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396

Table 1
18 Secondary studies in software testing.

Type Secondary study area No. Year Ref.

SM Non-func. search-based testing 35 2008 [3]
SOA testing 33 2011 [45]
Requirements specification 35 2011 [12]
Product lines testing 45 2011 [20]
Product lines testing 64 2011 [23]
Product lines testing tools N/A? 2015 [44]

SLR Search-based non-func. testing 35 2009 [4]
Unit testing for BPEL 27 2009 [51]
Formal testing of web services 37 2010 [22]
Search-based test-case generation 68 2010 [7]
Regression test selection techniques 27 2010 [24]

Survey/Analysis Object oriented testing 140 1996 [13]
Testing techniques experiments 36 2004 [35]
Search-based test data generation 73 2004 [41]
Combinatorial testing 30 2005 [31]
SOA testing 64 2008 [17]
Symbolic execution 70 2009 [46]
Testing web services 86 2010 [14]
Mutation testing 264 2011 [33]
Product lines testing 16 2011 [19]

Taxonomy Model-based GUI testing 33 2010 [43]

Lit. rev. TDD of user interfaces 6 2010 [32]

2 We could not find/access this paper.

e Screening the retrieved papers, resulting in a set of relevant
papers.

e Keywording using abstracts, resulting in a classification scheme.

e Data extraction and mapping process, resulting in a systematic
map.

The process that we have used to conduct this SM study is out-
lined in Fig. 1. The process starts with article selection (discussed
in detail in Section 3.2). Then, the classification scheme/map is sys-
tematically built to classify the primary studies (Section 4). After-
wards, the systematic mapping itself is conducted and results are
reported in Section 5. Trends and demographics of studies are then
analyzed and reported in Section 6.

In the remainder of this section, we explain our (1) goal and re-
search questions and (2) paper selection strategy.

3.1. Goal and research questions

The goal of our study is to identify, analyze, and synthesize
work published during the past ten years in the field of web
application testing. We aim to (1) systematically review related
scientific papers in the field in order to conduct a mapping of
the area and (2) present bibliometrics and demographic analysis
of the field.

Based on our research goal, we formulate two main research
questions (RQ 1 and RQ 2). To extract detailed information, each
question is further divided into a number of sub-questions, as de-
scribed below.

e RQ 1 - systematic mapping: What is the research space of the
literature in the field of functional testing and analysis of web
applications? The sub-questions of this RQ are:

- RQ 1.1 - type of contribution: How many papers present
test methods/techniques, test tools, test models, test met-
rics, or test processes? The SM guideline paper by Petersen
et al. [47] proposes the above types of contributions.
Answering this RQ will enable us to assess whether the com-
munity as a whole has had more focus on developing new
test techniques, or, more focus on developing new test tools.

RQ 1.2 - type of research method: What type of research
methods are used in the papers in this area? The SM guide-
line paper by Petersen et al. [47] proposes the following
types of research methods: solution proposal, validation
research, and evaluation research. The rationale behind this
RQ is that knowing the breakdown of the research area with
respect to (w.r.t.) research-facet types will provide us with
the maturity of the field in using empirical approaches.

RQ 1.3 - type of testing activity: What type(s) of testing
activities are presented in the papers? Examples of testing
activity are: test-case design, test automation, and test exe-
cution [9]. Addressing this RQ will help us gain knowledge
about the type of test activities that have been more popular.
RQ 1.4 - test location: How many client-side versus server-
side testing approaches have been presented? Is it true that
server-side testing has received more focus? Addressing this
RQ will help us determine whether client-side or server-side
testing methods have been more popular.

RQ 1.5 - testing levels: Which test levels have received
more attention (e.g., unit, integration and system testing)?
RQ 1.6 - source of information to derive test artifacts:
What sources of information are used to derive test arti-
facts? The term test “artifacts” in this context denotes any
type of artifact generated and used for purpose of web-appli-
cation testing, e.g., test cases, test requirements, test harness,
test code, etc. Example sources of information to derive test
artifacts include (but are not limited to): source code (white-
box testing), requirements such as models (black-box test-
ing), invariants and web usage logs. The rationale behind this
RQ is that knowing the breakdown of various testing tech-
niques w.r.t. their inputs will enable practising web develop-
ers and researchers to use the most appropriate techniques
given the availability of inputs in their projects.

RQ 1.7 - technique to derive test artifacts: What tech-
niques have been used to generate test artifacts? Examples
are: requirements based testing, static code analysis, and
coverage. Addressing this RQ will help practising web devel-
opers and researchers, when searching for test techniques, to
select the appropriate techniques based on their web testing
needs.

1378

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396

Google
Scholar

Avrticles by browsing
personal web pages

IEEE
Xplore

ACM
Digital
Library

|

: Application Final pool
’ Relevant articles found in databases (147) H—» of exclusion/ (79p)
f 4 * * inclusion criteria
| t 1
AMlc(;'osqft CiteSeerX Science Referenced J Artlp!es from J
cacemic Direct articles specific venues
Search
Article Selection (Section 3.3)
\
Attribute " [.
. . Initial Attribute
Final Map Gent.arahzat!on and Attributes Identification}
Iterative Refinement
Classification Scheme/Map (Section 4)
|
Systematic Systematic
. ; RQ1
mapping Mapping results
Systematic mapping (Section 5)
RQ 2 RQ 2

Bibliometrics and
Demographic
Analysis

Bibliometrics of
the research space

Demographics of
the research space

Trends and Demographics (Section 6)

Fig. 1. The research protocol used in this study.

RQ 1.8 - type of test artifact: Which types of test artifacts
(e.g., test cases, test inputs) have been generated? Similar
to the above RQ’s, addressing this RQ will again help practis-
ing web developers and researchers to select the proposed
techniques easily, based on their web testing needs.

RQ 1.9 - manual versus automated testing: How many
manual versus automated testing approaches have been
proposed?

RQ 1.10 - type of the evaluation method: What types of
evaluation methods are used? For example, some papers
use mutation analysis while some use coverage measure-
ment to assess the applicability and effectiveness of their
proposed web testing techniques.

RQ 1.11 - static web sites versus dynamic web applica-
tions: How many of the approaches are targeted at static
web sites versus dynamic web applications?

RQ 1.12 - synchronicity of HTTP calls: How many tech-
niques target synchronous calls versus asynchronous Ajax
calls?

RQ 1.13 - client-tier web technologies: Which client-tier
web technologies (e.g., JavaScript, DOM) have been sup-
ported more often?

RQ 1.14 - server-tier web technologies: Which server-tier
web technologies (e.g., PHP, JSP) have been supported more
often?

RQ 1.15 - tools presented in the papers: What are the
names of web-testing tools proposed and described in the
papers, and how many of them are freely available for
download?

RQ 1.16 - attributes of the web software under test: What
types of Systems Under Test (SUT), i.e., in terms of being
open-source or commercial, have been used and what are
their attributes, e.g., size, metrics?

* RQ 2 - trends and demographics of the publications: The fol-
lowing set of RQs have been motivated by reviewing the exist-

ing bibliometrics

studies in software engineering, e.g.,

[48,27,30,29].
- RQ 2.1 - publication count by year: What is the annual

number of publications in this field?

RQ 2.2 - top-cited papers: Which papers have been cited
the most by other papers?

RQ 2.3 - active researchers: Who are the most active
researchers in the area, measured by number of published
papers?

RQ 2.4 - active countries: Which countries are contributing
the most to this area, based on the affiliations of the
researchers?

RQ 2.5 - top venues: Which venues (i.e., conferences, jour-
nals) are the main targets of papers in this field?

Sub-questions RQ 1.1-1.16 together will help us answer the
first main question (RQ 1). Similarly, in order to answer RQ 2 prop-
erly, we need to address sub-questions RQ 2.1-2.5.

3.2. Paper selection strategy

Our paper selection strategy consists of the following activities:

1. Resource selection, search query definition, and searching.
2. Application of exclusion and inclusion criteria.

We explain each step subsequently below. We then, present an
overview of the final pool of papers and the online repository that
were produced after conducting the above activities.

3.2.1. Resource selection and search query definition

To find relevant papers, we searched the following six major on-
line academic paper search engines: (1) IEEE Xplore,? (2) ACM Dig-
ital Library,” (3) Google Scholar,* (4) Microsoft Academic Search,® (5)
CiteSeerX,® and (6) Science Direct.” These search engines have also
been used in other similar studies [25,20,3].

N o ou s wN

http:/
http:/
http:/
http:/
http:/
http:/

ieeexplore.ieee.org.

dl.acm.org.

scholar.google.com.
academic.research.microsoft.com.
citeseer.ist.psu.edu.
'www.sciencedirect.com.

http://ieeexplore.ieee.org
http://dl.acm.org
http://scholar.google.com
http://academic.research.microsoft.com
http://citeseer.ist.psu.edu
http://www.sciencedirect.com

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396 1379

In order to ensure that we were including as many relevant
publications as possible in the pool of papers, all authors identified
and proposed potential search keywords in several iterations. The
coverage landscape of this SM is the area of functional testing of
web applications, as well as (dynamic or static) analysis to support
web-application testing. The set of search terms were devised in a
systematic and iterative fashion, i.e., we started with an initial set
and iteratively improved the set until no further relevant papers
could be found to improve our pool of primary studies. By taking
all of the above aspects into account, we formulated our search
query as follows:

(web OR website OR ¢ ‘web application’’

OR Ajax OR JavaScript OR

HTML OR DOM OR PHP OR J2EE OR Java servlet

OR JSP OR.NET OR Ruby OR

Python OR Perl OR CGI) AND (test OR testing OR
analysis OR analyzing OR

¢ ‘dynamic analysis’’ OR ‘¢ ‘static analysis’’ OR
verification)

Related papers published between 2000 and 2011 were in-
cluded in our pool. 2000 is the year that the very first web testing
papers appeared. Note that the paper selection phase of this study
was carried out during the Summer 2011 (May until August) and,
thus, papers published by the end of that summer were included in
our pool.

To decrease the risk of missing related and important publica-
tions, similar to previous systematic mapping/review studies, the
authors looked for:

e Related papers by browsing personal web pages of active
researchers in the area.

o Related papers referenced from papers already in the pool.

e Related papers from major software (e.g., TSE, ICSE, FSE, ICST,
ISSTA) and web (e.g., ICWE, WSE, WWW, TWEB, TOIT) engineer-
ing research venues.

3.2.2. Exclusion and inclusion criteria

Since the focus on this study is on functional testing, a large
number of papers that target non-functional properties, such as
accessibility and performance testing or security vulnerability
detection (e.g., cross-site scripting), were excluded from our study.
We included papers with static analysis used an enabling tech-
nique in web application testing.

To increase the reliability of our study and its results, the
authors applied a systematic voting process among the team mem-
bers in the paper selection phase for deciding whether to include
or exclude any of the papers in the first version of the pool. This
process was also utilized to minimize personal bias of each of
the authors. The team members had conflicting opinions on four
papers, which were resolved through discussions.

Our voting mechanism (i.e., exclusion and inclusion criteria) was
based on two questions: (1) Is the paper relevant to functional web
application testing and analysis? (2) Does the paper include a rela-
tively sound validation? These criteria were applied to all papers,
including those presenting techniques, tools, or case studies/exper-
iments. Each author then independently answered each of the two
questions for each paper. Only when a given paper received at least
two positive answers (from three voting authors) for each of the two
questions, it was included in the pool. Otherwise, it was excluded.

We primarily voted for papers based on their title, abstract, key-
words, as well as their evaluation sections. If not enough informa-
tion could be inferred from the abstract, a careful review of the

contents was also conducted to ensure that all the papers had a di-
rect relevance to our focused topic. We considered all peer-re-
viewed papers regardless of the venue. As such, we considered
papers published in journals, conference proceedings, workshops,
and magazines.

Only papers written in English and only those available elec-
tronically were included. If a conference paper had a more recent
journal version, only the latter was included. We excluded papers
on “web services”, because the nature of web services differs from
that of web applications.

3.3. Final pool of papers and the online repository

Initially, our pool included 147 papers. After the exclusion crite-
ria were applied, the paper pool size decreased to 79 papers. The
entire pool of 79 papers has been published as an online repository
on the Google Docs service [26]. The intention is to update the on-
line repository at least annually to add related papers that appear
in the future. Detailed classification of each paper is also available
in our online repository.

4. Classification scheme

To conduct a systematic mapping, a classification scheme (also
called systematic map or attribute framework [18]) needs to be de-
rived by a careful analysis of the primary studies [47]. Our classifi-
cation scheme started with an initial version, and evolved during
data extraction, through attribute generalization and iterative
refinement steps. New categories were added, and existing catego-
ries were merged or split. The iterative refinement process was
finalized and a stable final scheme was derived when the scheme
was able to consistently categorize all the papers in the pool. This
phase of our process is also depicted in our research protocol (See
Fig. 1).

For this step, we collaboratively used an online spreadsheet in
Google Docs to document the data extraction process. Each identi-
fied category of the classification scheme was added to the spread-
sheet. When we entered the data of a paper into the scheme, we
provided a short rationale why the paper should be in a certain cat-
egory (for example, why/how a paper has applied evaluation re-
search). We used the “observer triangulation” method in
designing the classification scheme and data extraction (mapping)
phases. Each paper was reviewed by at least two reviewers
(authors of this paper) and differences of opinions were discussed
in detail until a final decision was made. When needed, the classi-
fication scheme was also updated.

Table 2 shows our final classification scheme along with the re-
search questions (RQs) addressed by each attribute of the map.
Attributes of our classification scheme are discussed next.

The columns of the table show the research question (RQs), attri-
butes, and possible types of the attribute. Also, the last two columns
indicate whether for each of the attributes, multiple or just one
type(s) can apply, respectively. For example, for RQ 1.1 (the contri-
bution facet attribute), multiple types can be selected for the same
paper. On the other hand, for the row corresponding toRQ 1.11 (sta-
tic web sites versus dynamic web applications), only one type (static
or dynamic) can be chosen, which is self explanatory.

We have adopted the two “type” attributes widely used in other
SM studies: contribution facet, and research facet.

A contribution facet (corresponding to RQ 1.1) denotes the type
of contribution(s) proposed in each paper and can be either: meth-
od/technique, tool, model, metric, process, or other [47]. Naturally,
these contribution facets would turn to the following in our web
application testing context: test method/technique, test tool, test
model, test metric, and test process, respectively.

1380 V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396

Table 2
The classification scheme developed and used in our study.

RQ Attribute Possible types Multiple selections Single selection

RQ 1

RQ 1.1 Type of Paper-Contribution Facet {Test method/technique, Test tool, Test x
model, Metric, Process, Other}

RQ 1.2 Type of Paper-Research Facet {Solution Proposal, Validation Research, Evaluation x
Research, Experience Papers, Philosophical
Papers, Opinion Papers, Other}

RQ 1.3 Type of Testing Activity {Test-case Design (Criteria-based), Test-case Design x
(Human knowledge-based), Test Automation, Test
Execution, Test Evaluation (oracle),Other}

RQ 1.4 Testing Location {Client-side, Server-side} x

RQ 1.5 Testing Level {Unit, Integration, System} x

RQ 1.6 Source of information to derive Test artifacts {Source code (white-box), Requirements and Source x
code (gray-box),Requirements (Models,
etc.),Invariants, (user) logs, Inferred Model
(automatic), Inferred Model (manual), Other}

RQ 1.7 Techniques used {Requirements based, Symbolic execution, Static x
code analysis, Dynamic code
analysis, Coverage, Crawling, Concolic testing, Model
checking, Search-based testing, Record/
playback,Model-based, Other}

RQ 1.8 Type of test artifact generated {Test cases, Test input (data), Test requirements (not X
input values), Expected outputs (oracle), Test driver
(code),Other}

RQ 1.9 Manual versus Automated testing {Manual,Automated} x

RQ 1.10 Type of the Evaluation Method {Coverage (code, model), Mutation testing (fault x
injection), Manual comparison, Time/
performance, Detecting real faults,Example, Other}

RQ 1.11 Static Web Sites versus Dynamic Web Apps {Static,Dynamic}

RQ 1.12 Synchronicity of HTTP calls {Synchronous calls, Asynchronous calls (AJAX)} X

RQ 1.13 Client-tier Web Technology {HTML,DOM, JavaScript,N/A,Unknown, Other} X

RQ 1.14 Web-server-tier Web Technology {PHP,]2EE, .NET, Ruby, Python, Perl (CGI),Java X
(Servlet, JSP),N/A,Unknown, Other}

RQ 1.15 Presented tool(s) Tool name: String
Whether the tool is available for download (as
reported in the paper): Boolean

RQ 1.16 Attributes of the web software SUT(s) # of SUTs: Integer
SUT names: String|[]
Total SUT Size in LOC: Integer
Other size metrics (e.g., # of pages, # of forms, etc.):
Integer(]
For each SUT, SUT scale € {Academic
experimental, Open-source, Commercial}

RQ 2

RQ 2.1 Publication year Year: Integer

RQ 2.2 Number of times the paper is cited in other papers Number of Citations: Integer

RQ 23 List of authors Authors: String[]

RQ 2.4 Venue in which the paper has appeared Venue: String

RQ 2.5 The country (ies) of the author(s)" affiliation Author Countries: String[]

The research facet attribute corresponds to RQ 1.2. As discussed
by Petersen et al., research facet denotes the type of research ap-
proach used in each paper. We adopted the following research fac-
ets for our study:

1. Solution Proposal: A solution for a problem is proposed, which
can be either novel or a significant extension of an existing
technique. The potential benefits and the applicability of the
solution is shown by a small example or a good line of
argumentation.

2. Validation Research: Techniques investigated are novel and
have not yet been implemented in practice. Techniques used
are for example experiments, i.e., work done in the lab.

3. Evaluation Research: Techniques are implemented in practice
and an evaluation of the technique is conducted. That means,
it is shown how the technique is implemented in practice (solu-
tion implementation) and what are the consequences of the
implementation in terms of benefits and drawbacks (imple-
mentation evaluation).

4. Experience Papers: Experience papers explain how something
has been done in practice. It has to be the personal experience
of the author(s).

Papers with examples only are categorized in (1), papers having
validation sections, but not in the full-scale of systematic empirical
studies, are categorized in (2), if the proposed technique in a study
is evaluated comprehensively using systematic empirical evalua-
tions (e.g., case study, controlled experiment), and its benefits,
drawbacks, and threats to validity of the results are discussed thor-
oughly, we categorize its research facet as (3). Papers that merely
report applications or experiences in practice are categorized in
(4).

The next attribute in Table 2 is the type of testing activity pro-
posed in each paper (corresponding to RQ 1.3). In their book on
software testing [9], Ammann and Offutt divide testing activities
into six types as follows: (1) test-case design based on criteria
(e.g., line coverage), (2) test-case design based on human knowl-
edge (e.g., exploratory testing), (3) test automation: embedding

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396 1381

test values into executable test code (scripts), (4) test execution:
running tests on the software under test and recording the results,
(5) test evaluation (test oracle): evaluating results of testing (pass/
fail), a.k.a. test verdict, and reporting results to developers, and (6)
other. We found this particular classification applicable to the pa-
pers in our pool and adopted it for our classification scheme.

The testing location attribute (corresponding to RQ 1.4) can be
client-side and/or server-side. Some papers present testing tech-
niques for client side aspects of web applications, and others focus
merely on the server side. There are also papers that test both cli-
ent and server sides.

The next attribute denotes the testing level, which corresponds
to RQ 1.5. As it has been discussed and defined in software testing
books, e.g. [9], testing level in this context denotes, in an abstract
viewpoint, the scope (granularity) of testing which could be: mod-
ules in isolation (unit testing), testing the integration of different
modules (integration testing), or the entire software system (sys-
tem testing). Conceptually, many alternative testing terminologies
would also fall into each of the above categories, e.g., acceptance
testing and even smoke testing fall into the system testing level.

RQ 1.6 is about the source of information to derive test artifacts
(e.g., test cases): source code, requirements and source code (gray-
box testing), requirements only (models, etc.), invariants, (user)
logs, inferred models (derived automatically), inferred models (de-
rived manually), and other.

Similar to RQ 1.6, the attributes and type sets for RQs 1.7 through
1.14 in Table 2 were derived iteratively. However, we should clarify
the notion of ‘test requirements’ for RQ 1.8 (type of test artifact gen-
erated). Test requirements are usually not actual test input values,
but the conditions that can be used to generate test inputs [9]. For
example, a coverage-based test technique might require that a cer-
tain control-flow path of a function be covered, e.g., the set of logical
expressions that should be made true. By having test requirements,
one can manually or automatically generate test inputs, an area of
research referred to as test-data generation [41].

In RQ 1.10, we looked for evaluation methods used in each paper.
The evaluation methods we looked for included code or model cov-
erage measurements, mutation testing, detecting real faults, and
manual comparison. In addition, there were papers that provided
examples and proofs of concept. One of the methods to evaluate
a testing technique was measuring the time/performance of the
testing effort. Note that, this time/performance attribute was an
evaluation metric of a testing technique itself, and not the perfor-
mance evaluation of an SUT by a proposed technique.

To answer RQ 1.15, we extracted the names of the web testing
tools presented in each paper, and also checked whether the tool is
available for download (as indicated in the paper).

For RQ 1.16, we extracted the following data regarding the web
software under test (SUT) in each paper (i.e., used for validation/
evaluation, a.k.a. subject systems): (1) number of SUTs, (2) SUT
name(s), (3) total SUT size in Lines of Code (LOC), and (4) any other
size metrics when reported (e.g., number of web pages, number of
web forms). The scale of each SUT was determined according to the
following categorization: (a) academic experimental, (b) open-
source, or (¢) commercial web application.

The attributes and type sets for RQs 2.1 through 2.5 relate to
demographic and bibliometric information of papers and the
explanations provided in Table 2 should be self-explanatory.

Building the classification scheme was an iterative process. We
started with an initial version and then used attribute generaliza-
tion and iterative refinement, while reviewing the papers in the
pool, to derive the final classification scheme. The classification
scheme was considered “final” if it was able to classify all the pa-
pers properly.

After we developed the classification scheme, the papers in the
pool were then classified using the scheme, i.e., the actual data

extraction took place. From the final table in the spreadsheet, we
were then able to calculate the frequencies of publications in each
category, presented in detail in Section 5.

5. Systematic mapping results

In this section, we present the results of our systematic map-
ping study (RQ 1).

5.1. RQ 1.1 - Types of papers by contribution facet

Fig. 2 shows the distribution of the type of papers by contribu-
tion face, for all the 79 papers included in our study. Based on their
contributions, some papers were classified under more than one
facet. For example, [60] made three contributions: (1) a test
method (a framework for feed-back directed testing of JavaScript
applications), (2) a test tool called Artemis, and (3) a test model
(event-driven execution model). Fig. 3 depicts a histogram of
the frequency of contribution facets for a single paper. Most
papers presented two contribution facets, followed by only one
contribution, three, and four contribution facets. There were five
papers [96,115,74,94,84] that covered four facets. For example,
[96] contributed: (1) a test method (automated cross-browser

Technique
Tool
Model
Metric
Process

Other

0 15 30 45 60
Number of papers

Technique: [60, 111, 116, 104, 103, 96, 78, 54, 68, 105, 100, 88, 115, 130, 85, 117, 101,
102, 128, 72, 62, 122, 67,75, 77, 97, 70, 66, 81, 82, 71, 99, 61, 110, 109, 56, 59, 95, 98,
131, 126, 83, 90, 74, 108, 89, 86, 58, 64, 57, 94, 84, 65, 127, 124]

Tool: [60, 116, 104, 103,96, 78, 119, 54, 53, 68, 105, 115, 130, 101, 102, 128, 72, 62, 67,
75,77, 55,97, 80, 61, 109, 56, 59, 98, 126, 74, 108, 86, 64, 57, 94, 84, 65, 118, 129]

Test model: [125, 60, 87, 106, 96, 105, 115, 123, 85, 117, 72, 97, 66, 81, 82, 71, 99, 80,
109, 95, 90, 74, 89, 86, 64, 57, 94, 84, 124]

Metric: [111, 87, 53, 115, 93, 77, 55, 99, 74, 94]

Process: [96, 68, 115, 67, 108, 58]

Other: [92, 120, 121, 119, 91, 112, 69, 76, 73, 79, 113]

Fig. 2. Contribution facet. (See above mentioned references for further
information).

35 1

30 1

25 1

20 A

Frequency

1 2 3 4
Number of contribution facets in one paper

Fig. 3. Histogram of frequency of contribution facets per paper.

1382

compatibility testing), (2) a test tool called CrossT, (3) a test model
(state navigation model), and (4) a model generation process to
facilitate web testing.

Fig. 2 indicates that proposing new techniques or improving an
existing technique has attracted the most research with 54 papers
(about 68%) focusing on this aspect. Also, relatively a high propor-
tion (about 51%) of papers (36 out of 79) proposed web testing
tools of some sort. Section 5.15 provides an extended discussion
on test tools presented in the papers. There were 11 papers which
could not be categorized into the five contribution facets of our
scheme, thus we categorized them under ‘Other’. Those papers
were mainly secondary studies, such as comparison studies (e.g.,
[92]) or empirical studies (e.g., [120,121]).

The annual trend of the same data is shown in Fig. 4. It can be
seen that in recent years, there is a focus on a mix of different fac-
ets. In terms of time, the earliest papers in our paper pool were
published in 2001. This was the time that the web started to be
widely used. We notice that except for a few exceptions (in
2003, 2006, 2007 and 2009), there is a clear increase in the quan-
tity of papers on web application testing over the past decade. The
simple reason is that web application and their testing are becom-
ing more important as time goes by. Recall from Section 3.2.1 that
since the paper selection of this study was done during the Sum-
mer 2011, only papers published (or accepted for publication) by
the end of Summer 2011 are included in our pool. Thus, the data
for 2011 is incomplete.

5.2. RQ 1.2 - Types of papers by research facet

Fig. 5 shows the types of papers by research facet. To provide a
cross-subject comparison of these facets, we have compared our
data with the facet distribution of a related recent systematic map-
ping which has been done in the area of software product-lines
testing [20]. The research in web application testing is dominated
by solution proposals (27 papers, 34.18%) and validation studies
(41 papers, 51.90%). Since there are various types and locations
of faults in web applications, there exists a large body of studies

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396

Solution Proposal

Validation

Evaluation

Experience

© T

5 10 15 20 25 30 35 40 45
Number of papers

Il Web testing Software product-line testing

Solution Proposal: [125, 116, 87, 104, 100, 115, 130, 107, 123, 85, 117, 122, 67, 75, 66,
82,71,99, 98,73, 89, 86, 58, 64, 84, 65, 127, 129]

Validation Research: [60, 111, 106, 114, 103, 96, 78, 119, 54, 53, 68, 105, 88, 93, 101,
102,128, 72,91, 62, 77, 55, 112, 81, 80, 61, 76, 56, 59, 95, 131, 126, 83, 90, 74, 108, 57,
79,124, 118]

Evaluation Research: [92, 120, 121, 97, 70, 69, 110, 109, 94, 113]
Experience Papers: [63]

Fig. 5. Research facet. (See above mentioned references for further information).

proposing different testing strategies and techniques. There were
also a reasonable share of papers with full-scale experimental
studies (10 papers, 12.66%). Comparing our data to the mapping re-
sults of the software product-lines testing literature [20], it is clear
that, in terms of ratio, validation and evaluation studies are more
popular in the web testing community compared to software prod-
uct-lines testing. This indicates the relatively higher level of atten-
tion to empirical approaches in web application testing research.
The yearly trend of research facet types is shown in Fig. 6. The
figure shows that in earlier years (from 2001 to 2006), more solu-
tion proposals with less rigorous empirical studies were published
in the area. However from 2006 to 2011, we notice more rigorous
empirical studies compared to solution-proposal-type papers. This
is good news for the web testing community as it indicates that the
empirical maturity of the literature in this area is increasing as
a whole. Certainly, to understand the landscape of empirical

s ’/M\ Technique
5
0

10
5 Tool
V]
5
Model
25
0
2
1 Metric
0
2
Process

L NN

M Other

Fig. 4. Annual trend of papers by contribution facet. The x-axis denotes the years (2000-2011) and the y-axis is the number of papers.

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396 1383

Solution Proposal

\

Validation Research

--

(=]

Evaluation Research

-0 v = L NON B ®PDON O

=
]
o

0.25
0

Experience Papers

Fig. 6. Annual trend of papers by research facet. The x-axis denotes the years (2000-2011) and the y-axis is the number of papers.

Solution Props. 23 12 14 2 3
Validation Res. 28 26 13 6 3 5
@
& Evaluation Res. 5 3 3 1 5
[T
<=
O Experience Art. 1
g
g Philo. Art.
Opinion Art.

Techni‘JUe Tool Moge, Metrje Procé’ss Other

Contribution Facet

Fig. 7. Cross analysis of number of studies in different contribution facet types
versus research facet types.

research in web testing, dedicated systematic reviews focusing on
empirical studies in this area, for instance similar to a recent re-
view [6] conducted in the search-based testing community, are
needed.

Furthermore, we conducted a cross analysis of number of stud-
ies in different contribution facet types versus research facet types.
Fig. 7 shows the results, in which the x-axis and y-axis show the
different contribution facet and research facet types, respectively.
For example, there are 23 studies which propose (contribute) a
(test) “technique” and their research facet type is “solution pro-
posal”. As we can observe, the concentration in the top left corner
of the chart is the highest, denoting that majority of the works are
contributing techniques or tool and are low or medium in terms of
research facet maturity.

5.3. RQ 1.3 - Type of testing activity

As mentioned in Section 4, we base our test activity categoriza-
tion on the terminology proposed by Ammann and Offutt [9].

In the pool of 79 papers included in our mapping, 69 papers
(87.3%) utilized code or model coverage. Fifty of those papers
(63.3%) actually presented (coverage) criteria-based testing activi-
ties as seen in Fig. 8. Control-flow (e.g, line, branch coverage), data
flow (e.g., all uses coverage), and model/state-based coverage (e.g,

Criteria-based

Human know.-based

Test Automation

Test Execution

Test Evaluation

Other
0 15 30 45
Number of papers
Test-case Design (Criteria-based): [125, 92, 60, 111, 120, 87, 104, 106, 114, 103, 96, 53,

105, 100, 88, 115, 130, 123, 93, 85, 101, 128, 91, 77, 97, 70, 81, 82, 99, 61, 109, 56, 59,
95, 98, 126, 83, 90, 73, 74, 108, 89, 86, 58, 64, 57,79, 94, 113, 124]

Test-case Design (Human knowledge-based): [67, 75, 90]

Test Automation: [92, 60, 87, 104, 103, 96, 115, 130, 93, 101, 122, 67, 75, 97, 71, 99,
109, 59, 95, 126, 89, 86, 64, 57, 84, 65, 129]

Test Execution: [92, 60, 111, 106, 114, 96, 68, 115, 130, 93, 102, 62, 122,75, 97,71, 61,
109, 95, 126, 108, 86, 64, 84, 65, 129]

Test Evaluation (oracle): [119, 68, 105, 115, 130, 62, 97, 66, 82, 71, 109, 86, 118]
Other: [87, 78, 54, 107, 102, 72,91, 55, 112, 80, 76, 84, 113, 124]

Fig. 8. Type of testing activity.

all nodes, or all paths criteria) customized for web applications
have been proposed and evaluated in many papers, e.g, [125,92].

Only three papers (3.8%) presented test-case design based on
human knowledge. This type of test-case design activity is usually
advocated by the exploratory testing community [50] and also con-
text-driven school of testing [2]. Thus, it seems that there is a rel-
atively small number of researchers using exploratory testing for
web applications. This is somewhat surprising since exploratory
testing is quite popular in the software industry.

Test automation was another popular research activity as 27
papers (34.2%) address test automation. For example, 14 papers
(e.g., [67,96,71]) adopted the popular browser automation tool
Selenium [15] in their tools and evaluations. Ref. [94] approached
test automation by using another existing tool called FitNesse. In
[97], an approach for generating JUnit test cases from an automat-
ically reverse-engineered state model was proposed.

A large portion of the papers, i.e., 26 of 79 (32.9%), addresses the
test execution activity, which is merely concerned with running
test cases on the software and recording the results. “Test harness”
is also used by some, e.g., [71] as an acronym for test execution.

1384 V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396

The test evaluation activity is also known as the test oracle con-
cept. 13 papers (16.5%) addressed this issue. For example, [118]
presented a tool for visualization of automated test oracles and test
results. Ref. [109] proposed an approach for detecting and visualiz-
ing regressions in Ajax-based web applications. Ref. [66] generated
test oracles in the form of Object Constraint Language (OCL) rules.
Ref. [97] proposed DOM-based invariants as test oracles. Ref. [91]
presented an automated test oracle, which determines the occur-
rence of fatal failures or HTML well-formedness failures (the latter
via use of an HTML validator). Ref. [105] generated oracles in the
context of database-driven web applications using Prolog rules.

There are also a number of papers that fall in other types of test
activities than the five major types we have adopted from [9]. For
instance, [87,121,112,56,127,113] were among the works that ad-
dress test suite minimization (reduction) in web applications. We
also found other topics such as: repairing test data [54], testability
[55], reliability and statistical testing [81], fault localization [61],
and test-case prioritization [110].

5.4. RQ 1.4 - Test locations

As far as the location is concerned, the majority of the papers
have focused on testing the server-side. As Fig. 9 depicts, 41
(51.9%) of the papers focus on server-side of web applications, 22
(27.8%) targets the client side, and 14 (17.7%) examine both sides.

The numbers show that both ends of web applications are get-
ting attention from researchers. Server-side of web applications
usually has a database and consists of scripts or programs that gen-
erate HTML code to be interpreted by the client browsers. This
complexity led many researchers to examine the server-side of
the applications. On the other hand, with the rise of the client-side
scripting (e.g., using JavaScript) and Ajax for building Web 2.0
applications, the complexity of web clients has increased. This in
turn has motivated many researchers to shift the focus on client-
side analysis and testing in recent years (as shown in Fig. 10).

Details and mapping of client-tier and server-tier web technol-
ogies will be discussed in Sections 5.13 and 5.14, respectively.

We also wanted to know whether more researchers are focus-
ing towards or away from server-side versus client-side testing.
Fig. 10 is a cumulative distribution function (CDF) and depicts
the annual trend for the two types of test location. We can observe
from this trend that, in terms of cumulative numbers, server-side
testing papers out number the client-side testing papers. However,
after year 2008 in terms of growth rate, the number of papers on
client-side testing have been slightly higher than those on ser-

60
n
o 45
aQ
®
a
©
- 30
)
Q
E
z 15
0
Client-side Server-side Both
Client-side: [92, 60, 116, 106, 96, 123, 117, 102, 67, 75, 81, 82, 69, 80, 109, 56, 95, 83,
73,94, 65, 124]
Server-side: [111, 120, 87, 121, 114, 78, 119, 54, 53, 68, 105, 100, 88, 115, 85, 101, 128,
72,62,122,77, 112,70, 99, 61, 76, 110, 59, 98, 126, 74, 108, 89, 58, 57,79, 84, 127, 113,
118, 129]

Both: [125, 104, 103, 130, 107, 93, 91, 55, 97, 71, 131, 90, 86, 64]

Fig. 9. Test locations.

45
40 “
35
30
25 Server-side
20 " Both

15 7

10
5 /
0__7,_—?

2001 2003 2005 2007 2009 2011

=== Client-side

Number of papers (CDF)
\

Fig. 10. Annual trend for test location (cumulative distribution function).

ver-side testing. Quantitatively, the cumulative number of papers
on client-side testing increased from nine in 2008 to 22 in 2011
(a growth of 144%), while the cumulative number of papers on ser-
ver-side testing increased from 30 in 2008 to 41 in 2011 (a growth
of only 37%).

5.5. RQ 1.5 - Testing levels

To examine which test levels have received more attention, we
have divided the papers into three groups: unit testing, integration
testing, and system testing which is usually performed through a
graphical user interface (GUI). The distribution is shown in Fig. 11.

In this context, a “unit” included a single HTML file, a source-
code function inside a JavaScript (JS), JSP or PHP file. A paper was
considered to have had a focus on web integration testing, if it ad-
dressed the problem of how to test several “units” together, e.g.,
the client-server interactions of a HTML or]S file on the client with
the corresponding PHP handler module on server. Last but not
least, a given paper was considered to have had a focus on web sys-
tem testing, if it addressed testing of a given web software from a
holistic standpoint, e.g., GUI testing of a web site.

Unit testing and system testing have been almost equally pop-
ular (38% each) while integration testing has been targeted only in
24% of the papers.

Our main criteria to classify papers in these three categories
were based on the coverage criteria and granularity of test ap-
proaches. For example, [111] performed client-side web-page-le-
vel, statement coverage measurement. It also analysed test
coverage of functions and function calls. Thus, it was mapped to
unit and integration testing levels. As another example, [78] tests
each HTML document separately, thus we consider that as a unit
testing approach.

45

2

o

T 30

Q

—

o

=

3

c 15

=}

z

0 , ,
Unit Integration System

Unit testing: [92, 111, 104, 106, 114, 103, 96, 78, 119, 53, 123, 93, 85, 101, 128, 91, 63,
62,67,77,55, 112,97, 70, 66, 71, 80, 61, 76, 109, 56, 95, 131, 83, 74, 86, 64, 94, 113]
Integration testing: [111, 104, 106, 114, 103, 54, 105, 88, 85, 117, 72, 91, 55, 71, 99,

108, 89, 86, 127]

System testing: [125, 92, 60, 120, 87, 121, 96, 68, 100, 88, 115, 130, 93, 117, 102, 91,
122,75, 55,97, 70, 66, 81, 82, 71, 99, 110, 59, 98, 126, 90, 73, 58, 64, 57,79, 84, 65, 124,
118, 129]

Fig. 11. Testing levels.

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396 1385

Source code
Requirements

(User) logs

Inferred Model (Auto.)
Inferred Model (Man.)
Gray-box

Invariants

Other

0 10 20 30 40

Number of papers

Source code (white-box): [125, 92, 60, 116, 104, 106, 103, 78, 54, 53, 68, 100, 115, 130,
107,93,85,101, 128,62, 122,77, 55,70,99, 80,61, 76,98, 131,74, 108, 89, 86, 84, 127,
118]

Requirements and Source code (gray-box): [117,72, 112, 64, 84]

Requirements (Models, etc.) : [92, 121, 106, 78, 105, 117, 67, 66, 81, 71, 80, 73, 86, 57,
79,113, 124]

Invariants : [102, 97, 66]

(User)logs : [111, 120,87, 121, 114, 54, 88, 115,70, 81, 110, 126,79, 113, 124]
Inferred Model (automatic): [92, 96, 75,97, 109, 56, 95, 126, 90, 64, 94, 84, 65]
Inferred Model (manual): [81, 82, 56, 59, 90, 108, 58]

Other: [119, 61,95, 94, 83]

Fig. 12. Source of information to derive test artifacts.

5.6. RQ 1.6 - Source of information to derive test artifacts

Fig. 12 shows the distribution of the type of information sources
for all the 79 papers surveyed.

Thirty-seven papers (46.8%) used source code as information
source to derive test artifacts. We discuss four example works
[53,100,122,77] next. The coverage of PHP and SQL is analyzed to
derive test cases in [53]. Ref. [100] analyzed client code to test ser-
ver code. Ref. [122] worked on HTML source code. Ref. [77] used
server-side source code to derive a set of interfaces for the purpose
of interface testing.

The second mostly-used source to derive test artifacts is
requirements (17 papers, or 21.5%), both textually and graphically
represented. For example, [105] used state transition diagrams.
Ref. [81] used state transitions in unified Markov models. Ref.
[57] used use-case maps (UCMs). Last but not least, [66] derived
test cases from a formal notation called Abstract Description of
Interaction (ADI), a type of class diagram.

Four papers used both requirements and source code, thus fol-
lowing a gray-box approach. For example, in [84], properties to be
verified (test oracle) were from requirements, but the test model to
generate test inputs were generated from source code.

The next information source was user logs (15 out of 79, or
18%). For example, [124,81] generated unified Markov models from
logs and then used those models to generate test cases. Ref. [79]
analyzed server access and error logs to derive navigation patterns.

User-log-based test techniques are followed by inferred models,
which range from state machines to UML models.

We further divided inferred models as automatically-inferred
(16.5%) and manually-inferred (8.9%) models. Examples of ap-
proaches based on the automatically-inferred test models are the
followings. Ref. [65] inferred a navigational model through crawl-
ing. Refs. [64,95] reverse engineered UML models from code. Ref.
[92] inferred models from execution states. As an example of ap-
proaches based on the manually-inferred test models, Ref. [90]
used user reports manually, collected during the testing phase, to
refine a specific test model.

Finally, invariants are used in three papers (3.7%) in our pool.
Ref. [66] expected invariants to be provided in form of Object Con-
straint Language (OCL) rules. Ref. [97] automatically crawled and
dynamically asserted invariants on web applications. Ref. [102] de-
rived DOM invariants dynamically by recording a sequence of user
interactions with the application and observing the changes to the
DOM tree by repeatedly replaying the sequence.

Static code ana.
Model based
Crawling
Requirement - based
Dynamic code ana.
Model checking
Record/playback
Concolic testing
Symbolic exec.
Search - based
Other

0 5 10 15 20 25
Number of papers

Symbolic execution: [116, 76]

Staticcode analysis: [106, 78, 53, 68, 100, 107, 85, 122,77, 55, 99, 80, 95, 98, 131, 74,
89,64, 84, 118]

Dynamic code analysis e.g., Coverage : [125, 60, 104, 53, 130, 70, 89, 127]

Crawling: [96, 54, 93, 55,97, 109, 56, 126, 83, 65]

Concolictesting: [101, 128,62, 61]

Model checking: [106, 117,72, 66, 98, 84]

Search-based testing: [92, 94]

Record/playback: [111, 114, 115, 130, 102,75, 112]

Model-based: [92, 120, 121, 54, 88, 81, 82, 71, 80, 59, 95, 126, 74, 108, 86, 58, 64, 57,

124]
Other: [111,87, 104, 121, 106, 114, 103, 115, 123,89, 79]

Fig. 13. Techniques used/proposed.

The remaining five papers (6.33%) used other source of informa-
tion to derive test artifacts. For instance, the technique reported in
this work [83] associated each input field of a web form with a reg-
ular expression that defines valid-input constraints for the input
field. It then applied perturbation on regular expressions to gener-
ate invalid test inputs. Ref. [94] used DOM models to generate test
cases.

5.7. RQ 1.7 - Techniques to derive test artifacts

Fig. 13 shows the distribution of the type of testing/analysis
techniques used in the papers. It is natural that this attribute is re-
lated to a great extent to results of RQ 1.6 (i.e., source of informa-
tion to derive test artifacts) with results shown in Fig. 12. The
reason is that since whatever source of information is used, an
appropriate technique (or techniques) is (are) needed to derive
the necessary test artifacts.

In general, majority of the papers used static code analysis (21
papers, 26.6%) and model-based approaches (19 papers, 24.1%) to
derive test artifacts. This is also the case in Fig. 12 (source of infor-
mation) as source code, requirements, logs and models were the
most frequent sources of information.

Crawling and requirement-based were also popular and used in
10 papers (12.7%) and nine papers (11.4%), respectively. The
remaining types of techniques used were, in order of usage: (1) dy-
namic code analysis (e.g,. code coverage), (2) model checking, (3)
record and playback, (4) concolic testing, (5) symbolic execution,
and (6) search-based techniques.

“Other” techniques in this attribute included: classification of
user logs [111], agent-based [104], mutation testing [103], anti-
random testing [123], and statistical/probabilistic [81] testing.

For papers using model-based techniques to derive test cases, a
type of model was to be either reverse engineered for the System
Under Test (SUT) or be provided by users. These two types were re-
ferred to as “inferred model (automatic)” and “inferred model
(manual)” in the previous attribute (Fig. 12).

We noticed that some papers were using more than one tech-
nique to derive test artifacts. We thus mapped each paper to as
many types of techniques it was using. Details can be found in
our online repository and mapping [26]. Fig. 14 depicts the histo-
gram of the number of techniques used in each paper. Fifty-two
papers (65.82%) used one technique only. Twenty and four papers
(25.31% and 8.86%) used two and three techniques, respectively.

1386 V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396

50 | 52
40
>
Q
[=
o 301
S
g 20
I 204
10 A
3 4
0 T T T -
0 1 2 3

Number of techniques used in each paper

Fig. 14. Number of techniques used in each paper.

For example, Ref. [92] used three techniques (requirements based,
search-based, and model-based testing) to compare web testing
techniques applied to Ajax web applications in a case study con-
text. Three papers [129,63,91] did not use any particular technique
as they were either overview papers [129], or focusing on test pro-
cesses only [63], or reporting an empirical validation of a web fault
taxonomy [91].

5.8. RQ 1.8 - Type of test artifact generated

The distribution of generated test artifacts is shown in Fig. 15.
The majority (49.4%) of the primary studies created (concrete) test
inputs, i.e., input data or input event sequence, in their proposed
approach.

The second most preferred test artifact generated was test
requirements (27.8%). Recall from Section 4 that test requirements
are not actual test input values, but the conditions that can be used
to generate test inputs. For example, a coverage-based test tech-
nique would generate as test requirement the need to cover a cer-
tain control-flow path of a function, i.e., the set of logical
expressions that should be made true to cover that control-flow
path. By having test requirements, one can manually or automati-
cally generate test inputs, an area of research referred to as test-
data generation [41].

Merely 17 papers (21.5%) focused on creating expected outputs
to address the oracle problem. Generating automated test drivers
(code) received the least attention (15.2%). Although current test-
ing frameworks have built-in test drivers to set up and exercise

Testinput (data)
Testrequirements
Expected outputs

Testdriver (code)

Other
8 16 24 32 40
Number of papers
Test input (data): [125,92, 111, 120, 87, 121, 106, 114, 96, 54, 100, 88, 115, 130, 123, 93,

101, 128, 62, 67,75, 70, 82,99, 61, 76, 109, 56, 59, 95, 126, 83, 90, 108, 89, 86, 58, 64, 65]
Test requirements: [60, 104, 106, 103, 53, 105, 88, 85, 77, 70, 81, 80, 90, 73, 74, 79, 94,
113, 124]

Expected outputs (oracle): [96, 119, 68, 105, 115, 130, 102, 72, 62, 75, 97, 66, 82, 71,
90, 86, 118]

Test driver (code): [114, 130, 122, 67,97, 71, 109, 95, 86, 64, 57, 129]

Other: [96, 78, 54, 107, 117, 101, 55, 112, 69, 76, 110, 98, 84, 127]

Fig. 15. Type of test artifacts generated.

the system/unit under test, not many proposed techniques have
benefited from these frameworks to generate automated test code.
Examples of papers that did leverage testing frameworks are
[97,57,122,67], which respectively generate test code in JUnit, Fit-
nesse, Testing and Test Control Notation (TTCN), and Selenium.

Forteen papers (17.7%) generated some other type of test arti-
facts. For example, Ref. [78] generated a list of interface invocations
that do not match any accepted interface. Ref. [96] generated two
types of web navigation graphs that are isomorphically compared
to spot cross-browser defects. Ref. [55] generated testability mea-
sures. Ref. [112] generated reduced test suites and [110] generated
test case orders.

In addition, we noticed that some papers generated more than
one type of test artifacts. We thus mapped each paper to as many
types of test artifacts as it generated. Fifty-four, 18, and four papers
(68.35%, 22.78%, and 5.06%) generated one, two, and three types of
artifact, respectively. Three papers [116,91,63] generated no test
artifacts according to our mapping: [116] presented a symbolic
execution framework for JavaScript, a method which can help test-
ing, but is not a testing activity itself. Ref. [91] is an empirical val-
idation of a web fault taxonomy. Ref. [63] evaluated testing
processes of web-portal applications and had no need to generate
test artifacts. For the details, we refer the interested reader to our
online repository and mapping spreadsheet [26].

5.9. RQ 1.9 - Manual versus automated testing

Test automation usually reduces testing effort and therefore it is
a quite popular research topic. Forty-nine papers (62.0%) provided
full automation for the test approaches they were presenting. For
example, [96] presented a fully automated approach for cross-
browser compatibility testing.

The techniques in seven papers (8.9%) were fully manual. For
example, [125] presented a 2-layer model (based on control flow
graphs) for the white-box testing of web applications, in which
the model had to be manually provided by the user (tester).

In another set of 20 papers (25.3%), there were both manual and
automated aspects (i.e., they were semi-automated). Note that the
above three categories add to 76 (=49 + 7 +20). The remaining
three papers in the pool [91,63,69] were not directly involved with
test techniques, but with other aspects of testing web applications.
For example, for [91] which presented an empirical validation of a
web fault taxonomy, manual or automated testing was not
applicable.

5.10. RQ 1.10 - type of the Evaluation Method

We looked for methods used for evaluating proposed testing
techniques. Our mapping includes papers that use coverage criteria
(e.g., code coverage or coverage based on a model), fault injection
(a.k.a. mutation testing), and manual comparison. The distribution
of these evaluation methods is depicted in Fig. 16. Coverage criteria
(used in 25 papers, 31.65%) and manual comparison (used in 22 pa-
pers, 27.85%) were the most preferred approaches. Mutation test-
ing was used in 14 papers (17.72%). Thirty-six papers (45.57%)
used other evaluation methods to validate their proposed testing
technique. For example, [81,79,124] each conducted a type of reli-
ability analysis as its evaluation method. Ref. [113] used test suite
size as its evaluation metric.

5.11. RQ 1.11 - Static web sites versus dynamic web applications

A majority of papers (75 papers, 94.9%) investigated dynamic
web applications and only four (5.1%) of the papers were geared to-
wards static web sites.

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396 1387

Coverage

Manual comparison
Mutation testing
Detecting real faults
Time/performance
Proof of concept
Other

0 7 14 21 28
Number of papers
Coverage (code, model): [125, 60, 111, 120, 116, 87, 104, 121, 106, 114, 53, 101, 102,
62,77, 112,70, 99, 76, 56, 90, 74, 108, 89, 86, 64, 94, 113]
Mutation testing (fault injection): [92, 111, 121, 114, 103, 68, 88, 115, 102,91, 112, 70,
80, 110, 56, 95, 83,90, 73, 74, 57,94, 113, 118]
Manual comparison: [106, 114, 96, 78, 119, 54, 107, 93, 101, 77, 82, 99, 80, 61, 76, 109,
59,98, 131, 126, 83, 89, 58, 127, 129]
Time/performance: [111, 78, 119, 105, 102, 97, 76, 131]
Detecting real faults: [100, 88, 128, 62, 97, 71, 69, 99, 80, 61, 83]
Example (proof of concept): [125, 85, 117, 122, 66]
Other: [111, 54,77, 81, 109, 131,79, 113, 124]

Fig. 16. Type of evaluation method.

It is clear that testing dynamic web applications is a more pop-
ular area (perhaps due to being clearly more challenging) com-
pared to testing static web sites. The handful number of papers
in testing static web sites are [81,124,79,82] which has been pub-
lished in 2001 [81], 2006 [124,79], and 2008 [82]. For example [81]
proposed an approach for measuring and modeling the reliability
of static web sites using statistical testing. The technique extracts
the web usage and failure information from existing web logs.
The usage information is then used to build models for statistical
web testing. The related failure information is used to measure
the reliability of Web applications and the potential effectiveness
of statistical web testing.

We can clearly observe that with the introduction of dynamic
web languages and technologies in the early 2000s, e.g., JSP and
PHP, researchers have focused on testing dynamic web applica-
tions, rather that static web sites. This is since the former type of
applications have much more chances of having defects compared
to the latte. In static web sites, defects are usually quite of limited
types, e.g., broken links and invalid resources (e.g., images), which
can be detected quite easily using a large collection of automated
tools (e.g., LinkChecker).

5.12. RQ 1.12 - Synchronicity of HTTP calls

In terms of synchronicity of HTTP calls, 66 papers (83.5%) have
targeted synchronous HTTP calls, while only 13 papers (16.5%)
have targeted asynchronous (Ajax-based) calls.

Although asynchronous calls make web applications more com-
plex, and web development more error-prone, the number of pa-
pers on this topic is much lower than on synchronous calls. One
of the reasons is that asynchronous client-server communication
has been a relatively recent technology through the adoption of
the XMLHttpRequest object in modern browsers. Ajax, a tech-
nique advocating the use of asynchronous server calls, was first
introduced in 2005 [28].

As a stack bar chart, Fig. 17 shows the annual trends of the focus
on synchronous web calls versus asynchronous web calls (Ajax). It
is clear from the two trends that testing Ajax-based web applica-
tions is starting to attract more researchers in recent years, and
its general trend is in increasing slope.

5.13. RQ 1.13 - Client-tier web technologies

Recall from Section 5.4 (RQ 1.4: test locations) that, respec-
tively, 22, 41 and 14 papers in the pool focused on client-side test-

16

12 B

]

2001 2003 2005 2007 2009 2011
2002 2004 2006 2008 2010

M Synchronous calls

Number of papers
(o]

0

| Asynchronous calls (Ajax)

Synchronous calls: [125, 111, 120, 116, 87, 104, 121, 106, 114, 103, 78, 119, 54, 53, 68,
105, 100, 88, 115, 130, 107, 123, 93, 85, 117, 101, 128,72, 91, 63, 62, 122, 67,75, 77, 55,
112,70, 66, 81, 82,71, 99, 80, 61, 76, 110, 59, 98, 126, 83, 90, 74, 108, 89, 86, 58, 64, 57,
79, 84, 65, 127, 124, 118, 129]

Asynchronous calls (Ajax): [92, 60, 96, 102, 96, 69, 109, 56, 95, 131, 73, 94, 113]

Fig. 17. (A) synchronicity of HTTP calls (annual trend).

HTML
JavaScript
DOM
Other
Unknown

N/A

0 7 14 21 28

Number of papers

HTML: [125, 92, 60, 106, 103, 119, 100, 88, 130, 123,93, 85, 91, 122, 75, 55, 81, 82, 69,
99, 83,90, 86, 64, 79, 65, 124, 118]

JavaScript: [125, 92, 60, 116, 104, 96, 100, 130, 107, 123, 93, 102, 91, 55, 97, 70, 71, 80,
109, 95, 73, 94, 65]

DOM: [92, 96, 100, 102, 75, 97, 80, 109, 56, 95, 83, 90, 86, 94]

Other: [123, 76, 56]

Unknown: [53, 67, 66, 82, 59, 131, 108, 58, 113]

N/A:[111,120,87, 121, 114,78, 54, 105, 115, 117, 101, 128, 72, 62, 77, 112, 61, 110, 98,
126, 89, 57, 84]

Fig. 18. Client-tier web technologies used.

ing, server-side testing, or both locations. Fig. 18 shows the
distribution of the client-tier web technologies used.

HTML, Document Object Model (DOM), and JavaScript are the
three top main technologies in this context, appearing in 28, 14,
and 24 papers (35.44%, 17.72%, and 30.38%), respectively. One pa-
per (1.27%) [123] was categorized under “other” client-tier web
technologies, i.e., it discussed the testing implications of browser
cookies.

For 23 papers (29.1% of the pool), the client-tier web technology
was 'not applicable’ (shown as N/A in Fig. 18). This was due to the
fact that either the paper under study was focused on server-side
application testing only (e.g., [110]), or the paper was not discuss-
ing test techniques, per se. For example, [84] titled 'Verifying Inter-
active Web Programs’, is a paper in conceptual level, i.e., it
presented formalisms such as control-flow graph for web applica-
tions and the technique seemed to be quite neutral of any client- or
serve-tier web technology.

As per our analysis, nine other papers (11.4%), which were on
client-tier testing, did not explicitly discuss the client-tier technol-
ogies used. We also did not intend to judge the technologies based
on our own interpretations. These papers are shown as “Unknown”
in Fig. 18.

1388 V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396

J2EE
PHP
NET
Perl/CGI
Other
Unknown
N/A

0 6 12 18 24

Number of papers

J2EE (Servlet, JSP, etc.): [111, 120, 104, 121, 114, 103, 78, 119, 100, 88, 115, 130, 85,
112,99, 76, 110, 95, 131, 74, 86, 57, 94, 113]

PHP: [125, 87, 121, 53, 68, 107, 93, 128, 72, 91, 62, 75, 61, 98, 131, 90, 127]

.NET: [101, 91, 89]

Perl (CGI): [105, 70]

Other: [100, 129]

Unknown: [54, 67, 66, 71, 59, 108, 58, 64, 79, 84, 124]

N/A: [60, 116, 106, 96, 117, 102, 81, 82, 69, 80, 109, 56, 83, 73, 65, 118]

Fig. 19. Server-tier web technologies used.

5.14. RQ 1.14 - Server-tier web technologies

Fig. 19 shows the frequency of server-tier web technologies
used in the papers.

J2EE, PHP, .NET, Perl/CGI were the most focused-on server tech-
nologies appearing in 24, 17, three, and two papers (30.38%,
21.52%, 3.80%, and 2.53%), respectively.

In Fig. 18, the bar labeled as “Other” includes papers targeting
technologies such as XML, Lisp, PLT scheme, and Portlet.

As per our analysis, we decided that 11 papers (13.9%) were
concerned with server-tier testing, but did not explicitly discuss
the server-tier technologies they were focusing on.

After having studied client-tier and server-tier web technolo-
gies in isolation, we found that it would be useful to also conduct
a cross-analysis of number of studies in different client-tier versus
server-tier web technologies. Fig. 20 depicts this information. Re-
call from the above discussions that in some papers, the client-tier
was not applicable (N/A) since they were fully focusing on server-
tier testing and, likewise, in some papers, server-tier web technol-
ogies were not present. As we can see in this figure, there are a
handful number of techniques targeting both client and server
side.

5.15. RQ 1.15 - Tools presented in the papers

Forty-one papers (51.9% of the pool) presented at least a tool,
which were mostly of research-prototype strength. We believe this
is quite a positive sign for the web testing community as about half

Other S 9

Unknown 8
N/A 7 7 7 7

Perl (CGI) 6 6
Python
Ruby
.NET 3 3

Javafamily

Server-tier Web Technologies

PHP

HTML DOM JavaScript N/A Unknown Other

Client-tier Web Technologies

Fig. 20. Cross analysis of number of studies in different client-tier versus server-tier
web technologies.

of the papers in the pool provided tool support (automation) along
with proposing test techniques.

As a randomly-chosen set of names, the following tools were
presented: Artemis [60], Kudzu [116], TestWeb [106], webMuJava
[103], and CrossT [96].

We thought that a natural question to ask in this context is
whether the presented tools are available for download, so that
other researchers or practitioners could use them as well. We only
counted a presented tool available for download if it was explicitly
mentioned in the paper explicitly. If the authors had not explicitly
mentioned that the tool is available for download, we did not con-
duct internet searches for the tool names. The result was some-
what surprising. Only six of the 41 tool-presenting papers
explicitly mentioned that their tools are available for download.

5.16. RQ 1.16 - Attributes of the web software SUT(s)

As discussed in Section 4 (Classification Scheme), and shown in
Table 2, we extracted the following attributes for the web software
SUT(s), discussed in each paper:

. Number of SUTs used in each paper.

. The name(s) of the SUT(s).

. Total LOC size of the SUT(s).

. For each SUT, its scale which could be a type in this set {Aca-
demic experimental, Open-source, Commercial}.

5. Other size metrics (e.g., # of pages, # of form).

AW N =

Number of SUTs used in each paper: We discuss next the data
and findings for the above items #1 through #5.

5.16.1. Number of SUTs used in each paper

Fig. 21 depicts the histogram of the number of SUTs used in
each paper. 16, 23 and nine papers (20.25%, 29.11%, and 11.39%)
evaluated their approaches on 1, 2, and 3 SUTs, respectively. There
were six papers (7.59%), each using more than 10 SUTs. The paper
with the highest number of SUTs (53 of them) was [80], published
in 2011. The average number of SUTs per papers was 4.8.

By statistically reviewing the number of SUTs analyzed in each
paper, we hypothesized that there might be correlation between
number of SUTs analyzed in each paper, and its research facet type
(e.g., solution proposal, validation research, and evaluation re-
search). To systematically analyze this hypothesis, we cluster the
papers by their research facet types. Fig. 22 shows the individ-
ual-plot of number of SUTs for each of the three research-facet-
type clusters. As we can see, the three distributions are mostly
overlapping, thus rejecting the above hypothesis. Thus, it is not
necessarily true that papers with more mature research facet types
would have applied their methods to more number of SUTSs.

25

20

15 +—

10 +—

of papers

1 2 3 4 5 6-10 10+
Number of SUTs

Fig. 21. Number of SUTs analyzed in each paper.

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396 1389

60 1

50 1

40

30 1

20

Number of SUTs

10 4

Solution Proposal Validation Research Evaluation Research

Research Facet Types

Fig. 22. Cross analysis of number of studies in different client-tier versus server-tier
web technologies.

5.16.2. Names of the SUTs

We recorded the name(s) of the SUT(s) used in each paper and
conducted some brief statistical/text analysis on the list of names.
In total, 176 unique SUT names were used, while the sum of the
number of SUTs used in all the papers was 210. This indicated that
some SUTs were used in more than one paper. For example, we
found that an open-source e-commerce bookstore web application
[1] has been used for evaluations in eleven papers.

The followings are also examples of the real web applications
used as SUTs for testing in the papers: (1) Yahoo Auto Classifieds
(used in [65]), (2) http://www.msn.com (used in [131]), and (3)
Facebook Chat (used in [116]).

Listing the names of all 176 different SUTs in this article is
impossible, but can be found in our online repository [26].

5.16.3. LOC size of the SUTs

Only 41 of the 79 primary studies reported the LOC size of their
SUTs. Fig. 23 depicts the histogram of the total LOC size of the
SUT(s) used in each paper. It is good to see that many papers have
used relatively large SUTs (more than one or even 10 KLOC) for
evaluating their approaches. The paper with the largest SUT LOC
sizes was [72], published in 2011, in which only one large-scale
SUT (named Mambo) was used, having a total of 601 KLOC. The
average number of SUTs per papers was 75, 610.35.

In this context, we hypothesized that the LOC of SUTs may have
been increasing in newer papers. To visually assess this hypothesis,
Fig. 24 depicts as an X-Y (scatter) plot the LOC size of SUT(s) used
in each paper versus year of publication of each paper. Each dot in
this plot corresponds to a single paper. Note that the Y-axis in this
figure is in logarithmic scale. The correlation value of this data set
if only 0.33, meaning that there is only a weak correlation between
the year of publication and SUT size. It is still nice to observe that

12

10

of papers
(<)}

1 .
g1 B N
o) m H N

<500 500-1K 1K-10K 10K-50K
LOC of SUTs

B

50K-100K 100K+

Fig. 23. SUT sizes in LOC.

1000000
[
—_ []
w ¢ o °
= []
= 100000 o o $ $
® o 8 4
£ 10000 LI $
5 ° ° ° o
O []
S
[}
T 1000 ® e
Ig []
o []
100
2000 2003 2006 2009 2012

Year of publication

Fig. 24. SUT size (LOC) versus publication year.

larger and larger SUT sizes appear in more recent papers. The three
papers [72,68,96] rank, in order, 1st, 2nd and 3rd in terms of hav-
ing the highest LOC sizes of SUTs.

It should be noted in this context that most of the papers have
not applied their testing technique to the entirety of each SUT that
they selected, but only to a or few selected sub-system(s) of each
SUT. Thus, the LOC sizes of the SUTs are not entirely precise in
terms of the scale of the system and evaluation conducted in each
paper.

5.16.4. Types of SUTs: academic experimental, real open-source, or
commercial software

In addition to LOC, we wanted to assess the frequency of using
academic experimental, real (not academic) open-source, or com-
mercial SUTs in the papers. Fig. 25 depicts the histogram of that
information. Forty-two papers (53.16%) used open-source SUTs,
22 papers (27.85%) used academic experimental systems, and 21
papers (26.58%) used commercial applications. A brief conclusion
from observing these numbers is that relatively a small number
of academic experimental web systems have been used (i.e.,
tested) in the papers in contrast to the large number of open-
source software.

5.16.5. Other size metrics

In addition to LOC measures and statistics, some studies re-
ported other size metrics for their SUTSs, e.g., # of pages, # of ses-
sions, # of forms, # of methods, and # of classes. We also
recorded them in our online data repository [26] whenever we no-
ticed such reported data.

Forty-six papers reported other size metrics, which denotes, as
a good indicator, attention to detail and high level of transparency
in the web testing literature. For example, the authors of [126] re-
ported that they applied their statistical testing method to 2046
sessions of their SUT.

Real open-source software

Academic experimental software

Commercial software

18 26 34 42 50
Number of papers

Fig. 25. Type of web software as SUTs.

http://www.msn.com

1390 V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396

100

75

50

Number of papers

2 .

SBST

Mutation Testing

it /Web testing

] ~ bu /V‘V__Guwesting
S Y

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Fig. 26. Publication trend per year.

6. Demographic trends and bibliometrics

To address RQ 2, we analyzed the demographic trends and bib-
liometrics of the web testing literature. We will elaborate on the
results for each related sub question (RQ 2.1-RQ 2.5) in the follow-
ing subsections.

6.1. RQ 2.1 - publication trend per year

The annual publication volume of web testing papers is shown
in Fig. 26. To conduct cross-area comparisons, we compare the
trend of web testing publications to the publication trends of three
other software testing areas: Graphical User Interface (GUI) testing,
search-based software testing (SBST), and mutation testing. Data
for these three other subjects have been extracted from
[11,52,33,34], respectively.

In terms of starting year of the publication range, we can see
that web testing papers started to appear in 2001, however, the
other three areas have a longer history, especially mutation testing.
This is probably due to the fact that the web technology has a rel-
atively younger history compared to the general software engi-
neering research.

Compared to the other three, the publication volume trend for
web testing is relatively less stable, e.g., our pool had 0 papers from
the year 2003. In terms of the absolute number of papers, accord-
ing to the above data sources, as of this writing, web testing, GUI
Testing, SBST, and mutation testing domains have 79, 122, 474,
and 289 papers, respectively.

Of course, we should note that there are overlaps between the
different areas. For example, a paper can present a web search-
based method, e.g., [94], or another paper in our pool uses the Sele-
nium web GUI test tool [15], which falls under both web and GUI
testing domains.

6.2. RQ 2.2 - Citation analysis and top-cited papers

This RQ intended to identify the top-cited papers. Since the pa-
pers under study were published in different periods, we deemed it
appropriate to consider the publication year of each paper in ana-
lyzing its citation count. With citation numbers constantly increas-
ing, we should note that citation data used for our analysis were
extracted from Google Scholar on April 7, 2012. For papers that
have appeared both as a conference publication and a journal
extension (e.g., [70]), we count the citations to both versions.

Fig. 27 visualizes the citation count of each paper vs. publication
year as an X-Y plot. Two types of metrics are shown in this figure:
(1) absolute (total) value of number of citations, and (2) normal-
ized number of citations which is defined as follows:

TotalCitations(p)

NormalizedGitations(p) = 2012 — PublicationYear(p)

Citation count versus Year of Publication

400
)

300 ®
<
>
Q
o
'S 200 ®
g
o o °

100 °

TR P
: f o
O &-
2000 2003 2006 2009 2012
Publication year
Normalized Citation Count vs Year Published

50.0
= [}
>
8 375
s °
E ®
S 250
° e *
8 °
s $
£ 125 o © °
5)
o [] []
z . [] .

) ‘ g 8 ! ' ’
0.0 - <
2000 2003 2006 2009 2012

Publication year

Fig. 27. Citation count vs. publication year.

For example, [106] has 361 total citations as of this writing and
was published in 2001. Thus, its normalized citations is calculated
as:

361
~2012-2001

Compared to the absolute value, the normalized metric essen-
tially returns the average number of citations of a paper per year,
since its publication year.

The top three publications with the most absolute and normal-
ized citations include [106,70,58]. Filippo Ricca and Paolo Tonella
[106] were among the very first researchers to publish a paper
on web testing in 2001. Their ICSE 2001 paper [106] has 361 total
citations and 32.8 normalized citations. That paper is seen as one of
the flagship papers in the web testing domain, and is thus cited by
many researchers in this area.® Elbaum et al. [70] were the first to

NormalizedCitations([106]) 32.8

8 This paper won an ACM SIGSOFT Most Influential Paper Award in 2011.

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396 1391

propose the use of ‘user session data’ for web application testing.
With 311 citations, their paper (ICSE'03 and TSE'05 extension) has
the highest normalized citation count (44.4). Andrews et al. [58] pro-
posed to model web applications as Finite State Machines (FSMs)
and generate test cases.

A histogram of the citations, based on the two metrics, for all
papers in our pool is shown in Fig. 28. Note the x-axes in the two
graphs have different scales. Only four papers [101,67,90,73] have
had no citations at all. It is easy to see that both distributions are
leaning towards the left side, thus indicating that most papers have
relatively a small number of citations.

6.3. RQ 2.3 - Most active researchers in the area

To get an overview of active researchers in this area, we follow a
similar approach as other bibliometric/ranking studies in software
engineering, such as [48,27,30,29]. As the metric, we count the
number of papers published by each author. To keep the brevity
of the ranking results, we show the order of top authors who have
published at least three papers in the pool in Fig. 29.

The competition is close as the second and third ranks are in tie.
The ranking is as follows: Paolo Tonella (12 papers), Filippo Ricca
and Lori Pollock with nine papers, Alessandro Marchetto, Sara
Sprenkle and Sreedevi Sampath, each with seven papers.

6.4. RQ 2.4 - Active nations

Similar to other bibliometric studies in software engineering,
e.g., [52], we ranked the most active countries based on the affili-
ation of the authors who have published web testing papers. The
rationale for this ranking is to know the researchers of which coun-
tries (as a group) focus more on web application testing. Similar

Frequency
w

17 {
N1 |11 S
0 50 100

150 200 250 300 350
Number of citations

= N N
(&) o (&)
L L L

Frequency
>

oL : : ﬂ T [. [
0.0 7.5 15.0 225 30.0 37.5 45.0

Normalized number of citations
(=citations/(2012-publication year))

Fig. 28. Histogram of number of citations for all papers included in our study.

Number of papers

0 5 10 15
Paolo Tonella #
Filippo Ricca
Lori Pollock

Alessandro Marchetto
Sara Sprenkle
Sreedevi Sampath
Jeff Offutt

Emily Gibson
Alessandro Orso
Ali Mesbah

Amie Souter

Anna Rita Fasolino
Anneliese Andrews
Frank Tip

Julian Dolby

Mark Harman

Shay Artzi

William Halfond

Fig. 29. Authors with at least three related papers (2001-2011).

studies to rank the most active nations have been done in other
areas of science, e.g., [10].

If an author had moved between two or more countries, we
attributed each of his/her papers to the explicit affiliation informa-
tion on top of each paper. If a paper was written by authors from
more than one country, we incremented the counters for each of
those countries by one.

Fig. 30 shows the ranking of countries from which at least two
papers have been published in this area. The top three countries
are: (1) USA (with 40 papers, 50.6%), (2) Italy (with 18 papers,
22.8%), and Canada (nine papers, 11.4%).

We had access to the country breakdown of authors from an-
other recent mapping study in testing (namely, GUI testing) [11].
Thus, as another analysis, it would be interesting to compare the
two datasets and assess the activity of the top nations in these
two related areas of software testing. The country listing for the
domain of GUI testing is taken from [11] and is shown in Fig. 31.
Note that the paper pool in the mapping study done in [11] is
122, which denotes that the GUI testing literature is larger (in
terms of paper quantity) than web testing.

USA
ltaly
Canada
UK
Netherlands
Denmark
Brazil
China
Germany
Japan
Lebanon
New Zealand
Russia
Saudi Arabia
Taiwan
Turkey
Singapore

0 10 20 30 40

Number of papers

Fig. 30. Countries contributing to the web testing literature (based on author
affiliations).

1392 V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396

USA
China
Portugal
Germany
Brazil
Canada
Finland
Australia
Italy
Japan
_Poland
Switzerland
Taiwan
Turkey
UK

Hungary
Korea
Lebanon
Singapore
Sweden

0 20 40 60
Number of articles

Fig. 31. Countries contributing to GUI testing literature. Source: [11].

There are both similarities and differences between the trends
in Figs. 30 and 31. Both domains (web and GUI testing) is domi-
nated by the US researchers, 50.6% and 54.9%, respectively.

To evaluate the degree of contribution to the web testing liter-
ature across the world, we could easily calculate the international-
ization index in this context, i.e, the number of countries
represented in these papers divided by the number of nations in
the world. We considered the value of 193 for the number of na-
tions, as the United Nations has 193 member states. There are 19
and 20 countries represented in web and GUI testing, respectively
and the respective internationalization indices are 9.85% and
1.36%. This denotes that the two areas have contributions from
only 10 of the world countries.

According to our analysis, 71 (89%) of the papers have been
authored by authors from one nation only, while eight papers
(11%) [54,60,71,72,83,93,96,102] have been written by authors
from more than one country.

The followings are the list of internationally-authored papers
and the collaborating nations. As we can see, collaborations be-
tween researchers from USA and Canada are the highest in this cat-
egory. This information provides a high-level snapshot of the level
of international collaborations in the web testing community, and
could be compared to other software engineering/testing sub-
fields once their data is available.

o USA, Canada [102,72,96].
e USA, Denmark [60].

o USA, China [83].

« USA, UK [71].

o Italy, UK [93].

e Saudi Arabia, UK [54].

6.5. RQ 2.5 — Top venues

To rank the venues, we used two metrics: (1) the number of pa-
pers published in each venue and (2) the total number of citations
to web testing papers published in each venue. Using the first met-
ric, the ranking of the top venues with at least three papers is
shown in Table 3. There are 13 venues in this list: 10 confer-
ences/symposia, and three journals. Many major software engi-
neering conferences and journals are in this list. For example, the
venue with most papers (six papers, 7.59%) is ICST, which has re-
cently attracted and published many web-testing related papers.

We then measured the total number of citations to web testing
papers published in each venue (as we had in our paper pool).
Table 4 shows the top 10 venues ranked by number of citations.
Expectedly, many of the venues in the two Tables 3 and 4 are over-
lapping. According to the values in Table 4, ICSE and TSE (seen by

Table 3

Venues with at least three papers, ranked by number of papers.
Venue Acronym #
Int. Conf. on Software Testing ICST 6
Int. Conf. on Automated Software Engineering ASE 5
Information and Software Technology IST 5
Int. Conf. on Software Engineering ICSE 5
Int. Conf. on Web Engineering ICWE 4
Int. Symposium on Software Reliability Engineering ISSRE 4
Int. Symposium on Software Testing and Analysis ISSTA 4
Int. Symposium on Web System Evolution WSE 4
Transactions on Software Engineering TSE 3
Int. Symposium on Foundations of Software Engineering FSE 3
Int. Conf. on Software Maintenance ICSM 3
Software Tools for Technology Transfer STTT 3
Int. Conf. on World Wide Web WwWw 3

Table 4
Top 10 venues ranked by number of citations.

Venue # Of papers # Of citations
TSE 3 498
ICSE 5 438
SoSym 2 209
ICSM 3 158
ISSTA 4 155
WWWwW 3 135
ISSRE 4 131
ASE 5 126
ICST 6 122
FSE 3 64

many software engineering researchers as the top two software
engineering venues) have the highest ratio of citations to number
of papers.

7. Discussions

Based on the research work-flow of this study as presented in
Fig. 1, summarized discussions and implications of this study along
with some of the threats to validity are presented in this section.

7.1. Findings, trends, and implications

First of all, we witness a clear increase in the number of re-
search papers in the area of web application testing.

Most of the published papers propose new testing techniques or
an adoption of existing software testing techniques geared towards
the web domain. The most popular techniques used for testing web
applications include static analysis, model-based testing, and
crawling. Analysis and testing techniques such as fault-based test-
ing (e.g., mutation testing), symbolic execution, concolic testing,
and search-based have gained very limited attention from this
community so far.

Our answer to RQ 1.1 indicates that about half of the papers
mention an accompanying tool implementation in their paper.
However, merely a few papers (6/79, or 7.59%) have a tool that
can be downloaded (RQ 1.15). This is an alarming fact that needs
to be taken more seriously by the web testing research community,
especially if they intend to have an impact in industry.

As far as the evaluation methods are concerned (RQ 1.2), the
majority of the papers present an empirical validation of their pro-
posed solutions. However, most of these validations are conducted
on self-implemented or small open-source web applications. We
did not encounter many “experience” papers in our study.
Conducting empirical evaluations on large-scale industrial web

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396 1393

applications is an area that still needs much attention from this re-
search community.

The primary focus of the papers seems to be on automation and
coverage (code or model), while (automating) the oracle problem
has received relatively limited attention (RQ 1.3).There is relatively
much less work on “exploratory” web testing (test activity being
based on human knowledge), which is not in line with the regular
pervasive practice of manual ad hoc testing of web applications in
the industry.

The majority of the work has focused on testing the server-side
in the past (RQ 1.4). However, in order to create more responsive
modern web applications, much of the web application state is
being offloaded to the client-site. That is why we see an increasing
trend towards papers that target client-side testing and we believe
this trend will continue in the coming years. RQ 1.5 revealed the
need for more integration testing in the web context.

RQ 1.6 revealed that white-box testing is the most popular ap-
proach to derive test artifacts in the area, while new approaches
such as those based on invariants have been proposed in recent
years.

RQ 1.7 showed that a variety of various techniques have been
used and proposed to derive test artifacts, such as search-based
testing. Even, there are papers using up to three different tech-
niques together.

In term of type of test artifact generated, RQ 1.8 revealed that
while many paper generate test data in abstract notion, few papers
propose approaches to automatically create test driver (automated
test code). There have been a mix of manual and automated testing
(RQ 1.9).

Various types of evaluation methods have been used (RQ 1.10),
e.g., coverage and mutation testing.

Most papers focused on testing dynamic web applications,
rather than static web applications (RQ 1.11).

With the introduction of Ajax and similar technologies in recent
years, the community is gradually shifting its focus on applications
with asynchronous (Ajax-based) calls (RQ 1.12).

On the client-side (RQ 1.13), HTML has received most of the
attention so far. JavaScript, a dynamic loosely-typed language that
is known to be challenging to test, is getting increasingly more
attention. The dynamic DOM, which plays a prominent role in
the realization of modern web applications, will need more spot-
light. Surprisingly, there is no work on CSS, a widely used language
for defining the presentation semantics of web pages.

On the server-side (RQ 1.14), however, most of the research
work has revolved around J2EE and PHP. There is limited work
on server-side languages such as Python, Ruby, and almost none
on the nowadays popular Node.js framework (Server-side
JavaScript).

SUT’s with various (LOC) sizes and either open-source or com-
mercial systems have been the subject of evaluations in different
papers (RQ 1.16).

An interesting observation we have made is that almost every
paper is using a different set of web applications (SUTs) for their
validations, which makes tool or technique comparisons quite
challenging in this field. Having a set of subject systems that every-
one can use for rigorous controlled experimentation is needed
here. Ideally, researches in this field should create a web applica-
tion-artifact repository, similar to the Software-artifact Infrastruc-
ture Repository,® which hosts many Java and C software systems, in
multiple versions, together with supporting artifacts such as test
suites, fault data, and scripts.

9 http://sir.unl.edu/portal/.

7.2. Threats to validity

The results of a systematic mapping study can be affected by a
number of factors such as the researchers conducting the study,
the data sources selected, the search term, the chosen time-frame,
and the pool of primary studies. Below we discuss potential threats
to validity of this study and the steps we have taken to mitigate or
minimize them.

7.2.1. Internal validity

We presented in Section 3.2 a detailed discussion around the
concrete search terms and the databases used in our study. In order
to obtain as complete a set of primary studies covering the given
research topic as possible, the search term was derived systemati-
cally. Different terms for web application testing and analysis were
determined with many alternatives and different combinations.
However, the list might not be complete and additional or alterna-
tive terms might have affected the number of papers found.

Furthermore, our inclusion and exclusion criteria are discussed
in Section 3.2.2. The decision on which papers to include in the fi-
nal pool depended on the group judgement of the researchers con-
ducting the systematic mapping study. As discussed in Section 3,
the authors adopted a defined systematic voting process among
the team in the paper selection phase for deciding whether to keep
or exclude any of the papers in the first version of the pool. This
process was also carried out to minimize personal bias of each of
the authors. When the authors of the study disagreed, discussions
took place until an agreement was reached. A high conformance
value was achieved, which indicates a similar understanding of
relevance.

Though a replication of this systematic mapping study may lead
to a slightly different set of primary studies, we believe the main
conclusions drawn from the identified set of papers should not
deviate from our findings.

7.2.2. Construct validity

Construct validity is concerned with the extent to which what
was to be measured was actually measured. In other words, threats
to construct validity refer to the extent to which the study setting
actually reflects the construct under study. As discussed in
Section 4, once the classification scheme was developed, the
papers in the pool were sorted into the scheme, i.e., the actual data
extraction took place. The pool of papers were partitioned to the
authors (i.e., each author was assigned about 27 papers). Each
author first extracted the data by mapping the paper inside the
classification scheme independently. Then a systematic peer
review process was conducted in which the data and attributes
extracted by each researcher were cross-checked by another
researcher. In case of differences in opinions, online discussions
(e.g., email, Skype) were conducted to resolve the differences. This
cross-check helped the team to extract the data and conduct the
measurement in a reliable manner. The above steps mitigate some
of the threats to construct validity of our study.

We should mention that for tool availability, we relied on the
information in the papers. If the authors did not explicitly mention
that their tool was available for download, we did not conduct inter-
net searches for the tool. Furthermore, recall from 5.16 (RQ 1.16:
attributes of the SUTs) that most of the papers have not applied their
testing technique to the entirety of each SUT that they selected, but
only to a or few selected sub-system(s) of each SUT. Thus, the LOC
sizes of the SUTs are not entirely precise in terms of the scale of
the systems and evaluations conducted in each paper.

7.2.3. Conclusion validity
It is important for a systematic mapping study to present re-
sults and conclusions that are directly traceable to data and results

http://sir.unl.edu/portal/

1394 V. Garousi et al. /Information and Software Technology 55 (2013) 1374-1396

that have in turn been carefully extracted from the primary stud-
ies, and can be reproduced by other researchers. To ensure conclu-
sion validity of our study, we presented throughout Sections 5, 6
and 7.1 graphs generated directly from the data and discussed
the explicit observations and trends. This ensures a high degree
of traceability between the data and conclusions. In addition, our
mapping data are available in the form of an online repository,
for others to validate.

7.2.4. External validity

The results of the systematic mapping study were considered
with respect to approaches in the software engineering domain.
Thus, the classification map and data presented and the conclu-
sions drawn are only valid in the given context (web application
testing). The classification scheme presented in this paper can
serve as a starting point for future studies. Additional papers and
approaches that are identified in the future can be categorized
accordingly. Due to the systematic procedure followed during the
mapping study, we believe our study is repeatable.

8. Conclusions and future work

The web has proven to be a powerful medium for delivering
software services over the Internet. Due to its inherit distributed
complexity and dynamism, testing is known to be a challenge for
web developers. That is why many researchers have worked in this
domain from the early days of the web.

In this paper, we present a first systematic mapping of the pa-
pers in the area of web application functional testing, published
between 2000 and 2011. Our initial search retrieved 147 papers
of which 79 were included in this study using a selection strategy.
We incrementally derived a classification scheme by analyzing the
included papers and used that scheme to conduct the mapping.

In addition, we present a first bibliometrics analysis of the do-
main to gain an understanding of the publication trend per year,
citations, active researchers and venues in the area.

Our study indicates that web testing is an active area of re-
search with an increasing number of publications. Our mapping
shows the state-of-the-art in web application testing, areas that
have been covered and techniques and tools that have been pro-
posed. It provides a guideline to assist researchers in planning fu-
ture work by spotting research areas that need more attention. For
instance, areas that need additional investigation for web applica-
tion testing include automated oracle generation, mutation testing,
concolic testing, testing asynchronous client/server interactions,
coverage metrics (e.g., state coverage and code coverage), test sup-
port for server-side languages such as Ruby and Python, and client-
side DOM and CSS.

As future work, based on this study, we intend to conduct a sys-
tematic literature review of the field to analyze the existing evi-
dence for different web testing techniques and their
effectiveness. Also, an interesting additional classification would
be related to the domain of the web application under test (e.g.,
medical, financial, academic domains).

Acknowledgements

Vahid Garousi was supported by the Discovery Grant #341511-
07 from the Natural Sciences and Engineering Research Council of
Canada (NSERC), and also by the Visiting Scientist Fellowship Pro-
gram (#2221) of the Scientific and Technological Research Council
of Turkey (TUBITAK). Ali Mesbah was supported by NSERC through
its Discovery and Strategic Project Grants programmes.

References

[1] An Open Source E-Commerce Bookstore (book), Open Source Web
Applications with Source Code <http://www.gotocode.com>.

[2] Context-Driven School of Testing <http://www.context-driven-testing.com>
(accessed April 2012).

[3] W. Afzal, R. Torkar, R. Feldt, A systematic mapping study on non-functional
search-based software testing, in: 20th International Conference on Software
Engineering and Knowledge Engineering (SEKE 2008), 2008.

[4] W. Afzal, R. Torkar, R. Feldt, A systematic review of search-based testing for
non-functional system properties, Information and Software Technology 51
(2009) 957-976.

[5] M.H. Alalfi, J.R. Cordy, T.R. Dean, Modelling methods for web application

verification and testing: state of the art, Software Testing, Verification and

Reliability 19 (2009) 265-296.

S. Alj, L.C. Briand, H. Hemmati, R.K. Panesar-Walawege, A systematic review of

the application and empirical investigation of search-based test case

generation, IEEE Transactions on Software Engineering 36 (6) (2010) 742-

762.

S. Alj, L.C. Briand, H. Hemmati, R.K. Panesar-Walawege, A systematic review of

the application and empirical investigation of search-based test case

generation, [EEE Transactions on Software Engineering 36 (2010) 742-762.

D. Amalfitano, A. Fasolino, P. Tramontana, Techniques and tools for rich

internet applications testing, in: Proceedings 12th IEEE International

Symposium on Web Systems Evolution (WSE), IEEE Computer Society,

2010, pp. 63-72.

[9] P. Ammann,]. Offutt, Introduction to Software Testing, Cambridge University
Press, 2008.

[10] E. Archambault. 30 Years in Science: Secular Movements in Knowledge
Creation <http://www.science-metrix.com/30years-Paper.pdf>.

[11] L Banerjee, B.N. Nguyen, V. Garousi, A.M. Memon, Graphical User Interface
(GUI) Testing: Online Repository <http://www.softqual.ucalgary.ca/projects/
2012/GUI_SM/> (accessed April 2012).

[12] Z.A. Barmi, A.H. Ebrahimi, R. Feldt, Alignment of requirements specification
and testing: A systematic mapping study, in: Proceedings of the 2011 IEEE
Fourth International Conference on Software Testing, Verification and
Validation Workshops, ICSTW '11, 2011, pp. 476-485.

[13] R.V. Binder. Testing object-oriented software: a survey, in: Proceedings of the
Tools-23: Technology of Object-Oriented Languages and Systems, 1997, p.
374.

[14] M. Bozkurt, Y.H.M. Harman, Testing web services: a survey, in: Technical
Report TR-10-01, Department of Computer Science, King’s College London,
2010.

[15] C.T. Brown, G. Gheorghiu, J. Huggins, An Introduction to Testing Web
Applications with Twill and Selenium, O'Reilly Media, 2007.

[16] D. Budgen, M. Turner, P. Brereton, B. Kitchenham, Using Mapping Studies in
Software Engineering, in: Proceedings of PPIG 2008, Lancaster University,
2008, pp. 195-204.

[17] G. Canfora, M.D. Penta, Service-oriented architectures testing: a survey, in:
International Summer Schools on Software Engineering, 2008, pp. 78-105.

[18] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, R. Koschke, A
systematic survey of program comprehension through dynamic analysis, IEEE
Transactions on Software Engineering 35 (5) (2009) 684-702.

[19] P.A. da Mota Silveira Neto, P. Runeson, I. do Carmo Machado, E.S. de Almeida,
S.R. de Lemos Meira, E. Engstrom, Testing software product lines, IEEE
Software 28 (2011) 16-20.

[20] P.A. da Mota Silveira Netoa, I. do Carmo Machadoa,].D. McGregord, E.S. de
Almeidaa, ilvio Romero de Lemos Meiraa, A systematic mapping study of
software product lines testing, Information and Software Technology 53 (5)
(2011) 407423.

[21] G.A. Di Lucca, A.R. Fasolino, Testing web-based applications: the state of the
art and future trends, Information and Software Technology 48 (2006) 1172-
1186.

[22] A. Endo, A. Simao, A systematic review on formal testing approaches for
web services, in: Brazilian Workshop on Systematic and Automated
Software Testing, International Conference on Testing Software and
Systems, 2010.

[23] E. Engstrom, P. Runeson, Software product line testing - a systematic
mapping study, Journal of Information and Software Technology 53 (2011) 2—
13.

(6

(7

[8

[24] E. Engstrom, P. Runeson, M. Skoglund, A systematic review on regression test
selection techniques, Journal of Information and Software Technology 52
(2010) 14-30.

[25] V.T.N.N. Frank Elberzhager, Jiirgen Miinch, A systematic mapping study on
the combination of static and dynamic quality assurance techniques, Inform.
Softw. Technol. 54 (2012) 1-15.

[26] V. Garousi, A. Mesbah, A.B.-C.S. Mirshokraie, A Systematic Mapping of Web
Application Testing: Online Repository <http://www.softqual.ucalgary.ca/
projects/Web_Application_Testing_Repository/>.

[27] V. Garousi, T. Varma, A bibliometric assessment of canadian software
engineering scholars and institutions (1996-2006), Canadian Journal of
Computer and Information Science 3 (2) (2010) 19-29.

[28] J.J. Garrett, Ajax: A New Approach to Web Applications, February 2005
<http://www.adaptivepath.com/ideas/ajax-new-approach-web-
applications> (visited 27.01.2012).

http://www.gotocode.com
http://www.context-driven-testing.com
http://www.science-metrix.com/30years-Paper.pdf
http://www.softqual.ucalgary.ca/projects/2012/GUI_SM/
http://www.softqual.ucalgary.ca/projects/2012/GUI_SM/
http://www.softqual.ucalgary.ca/projects/Web_Application_Testing_Repository/
http://www.softqual.ucalgary.ca/projects/Web_Application_Testing_Repository/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications

V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396 1395

[29] R.L. Glass, T.Y. Chen, An assessment of systems and software engineering
scholars and institutions (1998-2002), Journal of Systems and Software 68
(1) (2003) 77-84.

[30] R.L. Glass, T.Y. Chen, An assessment of systems and software engineering
scholars and institutions (1999-2003), Journal of Systems and Software 76
(1) (2005) 91-97.

[31] M. Grindal, J. Offutt, S. F Andler, Combination testing strategies: a survey,
Software Testing, Verification, and Reliability 15 (2005) 167-199.

[32] T.D. Hellmann, A. Hosseini-Khayatand, F. Maurer, Agile Interaction Design
and Test-Driven Development of User Interfaces - A Literature Review, vol. 9,
Springer, 2010.

[33] Y. Jia, M. Harman, An analysis and survey of the development of mutation
testing, IEEE Transactions of Software Engineering 37 (5) (2011) 649-678.

[34] Y. Jia, M. Harman, Mutation Testing Repository <http://www.dcs.kcl.ac.uk/pg/
jiayue/repository> (accessed April 2012).

[35] N. Juristo, A.M. Moreno, S. Vegas, Reviewing 25 years of testing technique
experiments, Empirical Software Engineering 9 (2004) 7-44.

[36] B. Kitchenham, D. Budgen, P. Brereton, The value of mapping studies - a
participant-observer case study, in: Proceedings of Evaluation and
Assessment in Software Engineering, 2010.

[37] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report, 2007.

[38] B. Kitchenham, T. Dyba, M. Jorgensen, Evidence-based software engineering,
in: Proceedings of 26th International Conference on Software Engineering
(ICSE), IEEE Computer Society, 2004, pp. 273-281.

[39] B.A.Kitchenham, D. Budgen, O.P. Brereton, Using mapping studies as the basis
for further research: a participant-observer case study, Journal of Information
and Software Technology 53 (2011) 638-651.

[40] B. Marin, T. Vos, G. Giachetti, A. Baars, P. Tonella, Towards testing future web
applications, in: Proceedings 5th International Conference on Research
Challenges in Information Science (RCIS), IEEE, 2011, pp. 1-12.

[41] P. McMinn, Search-based software test data generation: a survey, Software
Testing, Verification and Reliability 14 (2) (2004).

[42] P. McMinn, Search-based software test data generation: a survey: research
articles, Software Testing, Verification and Reliability 14 (2004) 105-156.

[43] AM. Memon, B.N. Nguyen, Advances in automated model-based system
testing of software applications with a GUI front-end, Advances in
Computers, vol. 80, Academic Press, 2010.

[44] C.R.L. Neto, P.A. da Mota Silveira Neto, E.S. de Almeida, S.R. de Lemos Meira, A
mapping study on software product lines testing tools, in: Proceedings of
International Conference on Software Engineering and Knowledge
Engineering, 2012.

[45] M. Palacios,]. Garcia-Fanjul,]. Tuya, Testing in service oriented architectures
with dynamic binding: a mapping study, Information Software and
Technology 53 (2011) 171-189.

[46] C.S. Pasareanu, W. Visser, A survey of new trends in symbolic execution for
software testing and analysis, International Journal on Software Tools for
Technology Transformation 11 (4) (2009) 339-353.

[47] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in
software engineering, in: 12th International Conference on Evaluation and
Assessment in Software Engineering (EASE), 2008, pp. 71-80.

[48] J. Ren, R.N. Taylor, Automatic and versatile publications ranking for
research institutions and scholars, Communications of the ACM 50 (6)
(2007) 81-85.

[49] A. van Deursen, A. Mesbah, Research issues in the automated testing of Ajax
applications, in: Proceedings 36th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM'10), Lecture
Notes in Computer Science, vol. 5901, Springer-Verlag, 2010, pp. 16-28.

[50] J.A. Whittaker, Exploratory Software Testing, Pearson Education, 2009.

[51] Z. Zakaria, R. Atan, A. Ghani, N. Sani, Unit testing approaches for bpel: a
systematic review, in: Proceedings of the Asia-Pacific Software Engineering
Conference, 2009.

[52] Y. Zhang, Repository of Publications on Search based Software Engineering
<http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/> (April 2012).

[53] Systematic Mapping References (79 papers) M. Alalfi, J. Cordy, T. Dean,
Automating coverage metrics for dynamic web applications, in: Proceedings
of the 14th European Conference on Software Maintenance and
Reengineering (CSMR), IEEE Computer Society, 2010, pp. 51-60.

[54] N. Alshahwan, M. Harman, Automated session data repair for web application
regression testing, in: Proceedings of the 1st International Conference on
Software Testing, Verification, and Validation (ICST), IEE Computer Society,
2008, pp. 298-307.

[55] N. Alshahwan, M. Harman, R. Marchetto, P. Tonell, Improving web application
testing using testability measures, in: Proceedings of 11th IEEE International
Symposium on Web Systems Evolution (WSE), IEE Computer Society, 2009,
pp. 49-58.

[56] D. Amalfitano, A.R. Fasolino, P. Tramontana, Rich internet application testing
using execution trace data, in: Proceedings of the 3rd International
Conference on Software Testing, Verification, and Validation Workshops
(ICSTW), IEE Computer Society, 2010, pp. 274-283.

[57] D. Amyot,]J. Roy, M. Weiss, UCM-driven testing of web applications, in:
Proceedings of the 12th International SDL Forum, Springer, 2005, pp. 247-
264.

[58] A. Andrews,]. Offutt, R. Alexander, Testing web applications by modeling
with FSMs, Software Systems and Modeling (SoSYM) 4 (3) (2005) 326-345.

[59] A. Andrews,]. Offutt, C. Dyreson, C. Mallery, K. Jerath, R. Alexander, Scalability
issues with using FSMWeb to test web applications, Information and
Software Technology (IST) 52 (1) (2010) 52-66.

[60] S. Artzi, J. Dolby, S.H. Jensen, A. Meller, F. Tip, A framework for automated
testing of javascript web applications, in: Proceeding of the 33rd
International Conference on Software Engineering, ICSE '11, ACM, 2011, pp.
571-580.

[61] S. Artzi, J. Dolby, F. Tip, M. Pistoia, Practical fault localization for dynamic web
applications, in: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering (ICSE), ACM, 2010, pp. 265-274.

[62] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, Finding bugs in
dynamic web applications, in: Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), ACM, 2008, pp.
261-272.

[63] H. Bajwa, W. Xiong, F. Maurer, Evaluating current testing processes of web-
portal applications, in: Proceedings of the International Conference Web
Engineering (ICWE), Springer, 2005, pp. 603-605.

[64] C. Bellettini, A. Marchetto, A. Trentini, TestUml: User-metrics driven web
applications testing, in: Proceedings of the 2005 ACM Symposium on Applied
Computing (SAC), ACM, 2005, pp. 1694-1698.

[65] M. Benedikt,]J. Freire, P. Godefroid, VeriWeb: Automatically testing dynamic
web sites, in: Proceedings of the 11th International World Wide Web
Conference (WWW), ACM, 2002.

[66] B. Bordbar, K. Anastasakis, MDA and analysis of web applications, in:
Proceedings of the 2nd International Conference on Trends in Enterprise
Application Architecture (TEAA), Springer, 2006, pp. 44-45.

[67] E.CB. de Matos, T. Sousa, From formal requirements to automated web
testing and prototyping, Innovations in Systems and Software Engineering
(ISSE) 6 (1-2) (2010) 163-169.

[68] K. Dobolyi, E. Soechting, W. Weimer, Automating regression testing using
web-based application similarities, International Journal on Software Tools
for Technology Transfer (STTT) 13 (9) (2011) 111-129.

[69] K. Dobolyi, W. Weimer, Modeling consumer-perceived web application fault
severities for testing, in: Proceedings of the 19th International Symposium on
Software Testing and Analysis (ISSTA), ACM, 2010, pp. 97-106.

[70] S.Elbaum, G. Rothermel, S. Karre, M. Fisher II, Leveraging user-session data to
support web application testing, [EEE Transactions on Software Engineering
31 (3) (2005) 187-202.

[71]]J. Ernits, R. Roo,]. Jacky, M. Veanes, Model-based testing of web applications
using NModel, in: Proceedings of IFIP International Conference on Testing of
Software and Communication Systems and International FATES Workshop
(TESTCOM-FATES), Springer, 2009, pp. 211-216.

[72] T. Ettema, C. Bunch, Eliminating navigation errors in web applications via
model checking and runtime enforcement of navigation state machines, in:
Proceedings of the IEEE/ACM International Conference on Automated
Software (ASE), ACM, 2010, pp. 235-244.

[73] Y. Gerlits, Testing ajax functionality with UniTESK, in: Proceedings of the 4th
Spring/Summer Young Researchers’ Colloquium on Software Engineering
(SYRCoSE), 2010, pp. 50-57.

[74] HB.K.T.H. Liu, Testing input validation in web applications through
automated model recovery, Journal of Systems and Software (JSS) 81 (2)
(2008) 222-233.

[75] h. Raffelt, B. Steffen, T. Margaria, M. Merten, Hybrid test of web applications
with webtest, in: Proceedings of the Workshop on Testing, Analysis, and
Verification of Web Services and Applications (TAV-WEB), ACM, 2008, pp. 1-
7.

[76] W. Halfond, S. Anand, A. Orso, Precise interface identification to improve
testing and analysis of web applications, in: Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis (ISSTA’09), ACM,
20009, pp. 285-296.

[77] W. Halfond, A. Orso, Improving test case generation for web applications
using automated interface discovery, in: Proceedings of the 6th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering (ESEC-FSE), ACM,
2007, pp. 145-154.

[78] W. Halfond, A. Orso, Automated identification of parameter mismatches in
web applications, in: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), ACM, 2008, pp.
181-191.

[79] J. Hao, E. Mendes, Usage-based statistical testing of web applications, in:
Proceedings of the 6th International Conference on Web Engineering (ICWE),
ACM, 2006, pp. 17-24.

[80] S.H. Jensen, M. Madsen, A. Moller, Modeling the HTML DOM and browser API
in static analysis of JavaScript web applications, in: Proceedings of ACM
SIGSOFT Symposium and European conference on Foundations of Software
Engineering (ESEC-FSE), ACM, 2011, pp. 59-69.

[81] C. Kallepalli, J. Tian, Measuring and modeling usage and reliability for
statistical web testing, IEEE Transactions on Software Engineering (TSE) 27
(11) (2001) 1023-1036.

[82] P. Koopman, P. Achten, R. Plasmeijer, Model-based testing of thin-client
web applications and navigation input, in: Proceedings of the 10th
International Conference on Practical Aspects (PADL), Springer, 2008, pp.
299-315.

[83] N.Li, T. Xie, M. Jin, C. Liu, Perturbation-based user-input-validation testing of
web applications, Journal of Systems and Software (JSS) 83 (11) (2010) 2263~
2274.

http://www.dcs.kcl.ac.uk/pg/jiayue/repository
http://www.dcs.kcl.ac.uk/pg/jiayue/repository
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

1396 V. Garousi et al./Information and Software Technology 55 (2013) 1374-1396

[84] D. Licata, S. Krishnamurthi, Verifying interactive web programs, in:
Proceedings of the 19th International Conference on Automated Software
Engineering (ASE), IEEE Computer Society, 2004, pp. 164-173.

[85] C. Liu, Data flow analysis and testing of JSP-based web applications,
Information and Software Technology (IST) 48 (12) (2006) 1137-1147.

[86] G.D. Lucca, A. Fasolino, F. Faralli, Testing web applications, in: Proceedings of
the International Conference on Software Maintenance (ICSM), IEEE
Computer Society, 2002, pp. 310-319.

[87] G.D. Lucca, A. Fasolino, P. Tramontana, A technique for reducing user session
data sets in web application testing, in: Proceedings of the 8th IEEE
International Symposium on Web Site Evolution (WSE), IEEE Computer
Society, 2006, pp. 7-13.

[88] X. Luo, F. Ping, M. Chen, Clustering and tailoring user session data for testing
web applications, in: Proceedings of the International Conference on Software
Testing Verification and Validation (ICST), IEEE Computer Society, 2009, pp.
336-345.

[89] N. Mansour, M. Houri, Testing web applications, Information and Software
Technology (IST) 48 (1) (2006) 31-42.

[90] A. Marchetto, Talking about a mutation-based reverse engineering for web
testing: a preliminary experiment, in: Proceedings of the 2008 Sixth
International Conference on Software Engineering Research, Management
and Applications (SERA), IEEE Computer Society, 2008, pp. 161-168.

[91] A. Marchetto, F. Ricca, P. Tonella, Empirical validation of a web fault
taxonomy and its usage for fault seeding, in: Proceedings of the 9th IEEE
International Workshop on Web Site Evolution (WSE), IEEE Computer Society,
2007, pp. 31-38.

[92] A. Marchetto, F. Ricca, P. Tonella, A case study-based comparison of web
testing techniques applied to AJAX web applications, International Journal on
Software Tools for Technology Transfer (STTT) 10 (6) (2008) 477-492.

[93] A. Marchetto, R. Tiella, P. Tonella, N. Alshahwan, M. Harman, Crawlability
metrics for automated web testing, International Journal on Software Tools
for Technology Transfer (STTT) 13 (2) (2011) 131-149.

[94] A. Marchetto, P. Tonella, Using search-based algorithms for ajax event
sequence generation during testing, Empirical Software Engineering (ESE) 16
(1) (2011) 103-140.

[95] A. Marchetto, P. Tonella, F. Ricca, State-based testing of ajax web applications,
in: Proceedings of the 1st International Conference on Software Testing,
Verification, and Validation (ICST), IEEE Computer Society, 2008, pp. 121-130.

[96] A. Mesbah, M.R. Prasad, Automated cross-browser compatibility testing, in:
Proceeding of the 33rd International Conference on Software Engineering,
ICSE '11, ACM, 2011, pp. 561-570.

[97] A. Mesbah, A. van Deursen, Invariant-based automatic testing of Ajax user
interfaces, in: Proceedings of the 31st International Conference on Software
Engineering (ICSE’09), IEEE Computer Society, 2009, pp. 210-220.

[98] Y. Minamide, Static approximation of dynamically generated web pages, in:
Proceedings of the 14th International Conference on World Wide Web
(WWW), ACM, 2005, pp. 432-441.

[99] J. Offutt, Y. Wu, Modeling presentation layers of web applications for testing,
Software Systems Modeling (SoSYM) 9 (2) (2010) 257-280.

[100] J. Offutt, Y. Wu, X. Du, H. Huang, Bypass testing of web applications, in:
Proceedings of the 15th International Symposium on Software Reliability
Engineering (ISSRE), IEEE Computer Society, 2004, pp. 187-197.

[101] M. Ozkinaci and A. betin Can, Detecting execution and html errrors in ASP.Net
web applications, in: Proceedings of the 6th International Conference on
Software and Data Technologies (ICSOFT), 2011, pp. 172-178.

[102] K. Pattabiraman, B. Zorn, DoDOM: Leveraging DOM invariants for Web 2.0
application robustness testing, in: Proceedings of thel International
Symposium on Software Reliability Engineering (ISSRE), IEEE Computer
Society, 2010.

[103] U. Praphamontripong and]. Offutt, Applying mutation testing to web
applications, in: Proceedings of the 3rd International Conference on
Software Testing, Verification, and Validation Workshops (ICSTW), 2010,
pp. 132-141.

[104] Y. Qi, D. Kung, E. Wong, An agent-based data-flow testing approach for web
applications, Information and Software Technology (IST) 48 (12) (2006)
1159-1171.

[105] L. Ran, C. Dyreson, A. Andrews, R. Bryce, C. Mallery, Building test cases and
oracles to automate the testing of web database applications, Information
and Software Technology (IST) 51 (2) (2009) 460-477.

[106] F. Ricca, P. Tonella, Analysis and testing of web applications, in: Proceedings
of the 23rd International Conference on Software Engineering (ICSE), IEEE
Computer Society, 2001, pp. 25-34.

[107] F. Ricca, P. Tonella, Construction of the system dependence graph for web
application slicing, in: Proceedings of the 2nd IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM), IEEE Computer Society,
2002, pp. 123-132.

[108] F. Ricca, P. Tonella, Testing processes of web applications, Annals of Software
Engineering (ASE) 14 (1-4) (2002) 93-114.

[109] D. Roest, A. Mesbah, A. van Deursen, Regression testing ajax applications:
coping with dynamism, in: Proceedings of the 3rd International Conference

on Software Testing, Verification and Validation (ICST'10), IEEE Computer
Society, 2010, pp. 128-136.

[110] S. Sampath, R. Bryce, G. Viswanath, V. Kandimalla, A.G. Koru, Prioritizing
user-session-based test cases for web application testing, in: Proceedings of
the 2008 International Conference on Software Testing, Verification, and
Validation (ICST), IEEE Computer Society, 2008, pp. 141-150.

[111] S. Sampath, V. Mihaylov, A. Souter, L. Pollock, A scalable approach to
user-session based testing of web applications through concept
analysis, in: Proceedings of the 19th IEEE International Conference on
Automated Software Engineering (ASE), IEEE Computer Society, 2004,
pp. 132-141.

[112] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, Integrating customized test
requirements with traditional requirements in web application testing, in:
Proceedings of the Workshop on Testing, Analyis and Verification of Web
Services and Applications (TAV-WEB), ACM, 2006, pp. 23-32.

[113] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, Web application testing with
customized test requirements - an experimental comparison study, in:
Proceedings of the 17th International Symposium on Software Reliability
Engineering (ISSRE), IEEE Computer Society, 2006, pp. 266-278.

[114] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, Applying concept analysis to
user-session-based testing of web applications, IEEE Transactions on
Software Engineering (TSE) 33 (10) (2007) 643-658.

[115] S. Sampath, V. Mihaylov, A. Souter, L. Pollock, Composing a framework to
automate testing of operational web-based software, in: Proceedings of the
20th IEEE International Conference on Software Maintenance (ICSM), IEEE
Computer Society, 2004, pp. 104-113.

[116] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, D. Song, A symbolic
execution framework for JavaScript, in: Proceedings of the 31st IEEE
Symposium on Security and Privacy (SP), IEEE Computer Society, 2010, pp.
513-528.

[117] E.D. Sciascio, F. Donini, M. Mongiello, R. Totaro, D. Castelluccia, Design
verification of web applications using symbolic model checking, in:
Proceedings of the 5th International Conference Web Engineering (ICWE),
Springer, 2005, pp. 69-74.

[118] S. Sprenkle, H. Esquivel, B. Hazelwood, L. Pollock, WebVizOr: a visualization
tool for applying automated oracles and analyzing test results of web
applications, in: Proceedings of the Testing: Academic and Industrial
Conference - Practice and Research Techniques (TAIC-PART), IEEE Computer
Society, 2008, pp. 89-93.

[119] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, S. Ecott, Automated oracle
comparators for testing web applications, in: Proceedings of the 18th IEEE
International Symposium on (ISSRE), IEEE Computer Society, 2007, pp. 117-
126.

[120] S. Sprenkle, L. Pollocky, L. Simko, A study of usage-based navigation models
and generated abstract test cases for web applications, in: Proceedings of the
4th IEEE International Conference on Software Testing, Verification and
Validation (ICST), IEEE Computer Society, 2011, pp. 230-239.

[121] S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, A. Souter, An empirical
comparison of test suite reduction techniques for user-session-based
testing of web applications, in: Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM), IEEE
Computer Society, 2005, pp. 587-596.

[122] B. Stepien, L. Peyton, P. Xiong, Framework testing of web applications using
TTCN-3, International Journal on Software Tools for Technology Transfer
(STTT) 10 (4) (2008) 371-381.

[123] A. Tappenden,]. Miller, Cookies: A deployment study and the testing
implications, ACM Transactions on the Web (TWEB) 3 (3) (2009) 1-49.

[124] J. Tian, L. Ma, Web testing for reliability improvement, Advances in
Computers 67 (2006) 178-225.

[125] P. Tonella, F. Ricca, A 2-layer model for the white-box testing of web
applications, in: Proceedings of the 6th IEEE International Workshop on Web
Site Evolution (WSE), IEEE Computer Society, 2004, pp. 11-19.

[126] P. Tonella, F. Ricca, Statistical testing of web applications, Journal of Software
Maintenance and Evolution: Research and Practice (JSME) 16 (1-2) (2004)
103-127.

[127] P. Tonella, F. Ricca, Web application slicing in presence of dynamic code
generation, Automated Software Engineering (ASE) 12 (2) (2005) 259-288.

[128] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, Z. Su, Dynamic
test input generation for web applications, in: Proceedings of the
International symposium on Software testing and analysis (ISSTA), ACM,
2008, pp. 249-260.

[129] W. Xiong, H. Bajwa, F. Maurer, WIT: A framework for in-container testing of
web-portal applications, in: Proceedings of the 5th International Conference
on Web Engineering (ICWE), Springer, 2005, pp. 87-97.

[130] J. Yang, J. Huang, F. Wang, W. Chu, Constructing an object-oriented
architecture for web application testing, Journal of Information Science and
Engineering (JISE) 18 (1) (2002) 59-84.

[131] Y. Zheng, T. Bao, X. Zhang, Statically locating web application bugs caused by
asynchronous calls, in: Proceedings of the 20th International Conference on
World Wide Web (WWW), ACM, 2011, pp. 805-814.

	A systematic mapping study of web application testing
	1 Introduction
	2 Related work
	2.1 Secondary studies in software testing
	2.2 Online paper repositories in SE
	2.3 Secondary studies in web application testing

	3 Research methodology
	3.1 Goal and research questions
	3.2 Paper selection strategy
	3.2.1 Resource selection and search query definition
	3.2.2 Exclusion and inclusion criteria

	3.3 Final pool of papers and the online repository

	4 Classification scheme
	5 Systematic mapping results
	5.1 RQ 1.1 – Types of papers by contribution facet
	5.2 RQ 1.2 – Types of papers by research facet
	5.3 RQ 1.3 – Type of testing activity
	5.4 RQ 1.4 – Test locations
	5.5 RQ 1.5 – Testing levels
	5.6 RQ 1.6 – Source of information to derive test artifacts
	5.7 RQ 1.7 – Techniques to derive test artifacts
	5.8 RQ 1.8 – Type of test artifact generated
	5.9 RQ 1.9 – Manual versus automated testing
	5.10 RQ 1.10 – type of the Evaluation Method
	5.11 RQ 1.11 – Static web sites versus dynamic web applications
	5.12 RQ 1.12 – Synchronicity of HTTP calls
	5.13 RQ 1.13 – Client-tier web technologies
	5.14 RQ 1.14 – Server-tier web technologies
	5.15 RQ 1.15 – Tools presented in the papers
	5.16 RQ 1.16 – Attributes of the web software SUT(s)
	5.16.1 Number of SUTs used in each paper
	5.16.2 Names of the SUTs
	5.16.3 LOC size of the SUTs
	5.16.4 Types of SUTs: academic experimental, real open-source, or commercial software
	5.16.5 Other size metrics

	6 Demographic trends and bibliometrics
	6.1 RQ 2.1 – publication trend per year
	6.2 RQ 2.2 – Citation analysis and top-cited papers
	6.3 RQ 2.3 – Most active researchers in the area
	6.4 RQ 2.4 – Active nations
	6.5 RQ 2.5 – Top venues

	7 Discussions
	7.1 Findings, trends, and implications
	7.2 Threats to validity
	7.2.1 Internal validity
	7.2.2 Construct validity
	7.2.3 Conclusion validity
	7.2.4 External validity

	8 Conclusions and future work
	Acknowledgements
	References

