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Abstract -The notion of linked informetric processes is considered and a simple math- 
ematical formulation is presented. Analysis of the model gives some insight on the dif- 
ferences in concentration between such processes which has been noted in empirical work. 
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1. INTRODUCTION 

The general setting for the description of an informetric process is that of a population of 
sources producing items at random over time. Standard examples include authors writing 
papers, monographs accumulating loans, journals providing references for a bibliography, 
papers receiving citations. Much of the mathematical work in informetrics over the past 
decade or so has been concerned with the manner in which the items are distributed over 
the sources in such situations although the origins can be traced back to Lotka (1926) for 
the case of scientists publishing research papers and Bradford (1934) for the contributions 
of different journals to a subject bibliography. However, as Rousseau (in press) has re- 
marked, two such source-item pairings might well be linked in a natural way. For example, 
scientists write papers which then receive citations so that the items from the first pairing 
become the sources for the second. In this situation, we can consider the secondary items 
as arising from the original as well as from the secondary sources, that is, we could con- 
sider the citations as relating to the original authors as well as to the published papers. [This 
is an example of what Egghe & Rousseau (1990, p. 378) call a three-dimensional informetric 
study.] 

In this case of a linked pair of informetric processes, it is of some interest to compare 
the distributions of, for example, “papers over scientists” with “citations over scientists.” 
Rousseau (in press) quoted just such an example using data taken from Allison (1980), and 
noted that the inequality, as measured by the coefficient of variation, was greater in the 
latter case than in the former. He showed, by consideration of the Leimkuhler curve (equiv- 
alent to the standard Lorenz curve), that this inequality could be explained in the case where 
the number of citations is a simple function (having certain monotonicity properties) of the 
number of papers. This result turns out to be a special case of a more general theorem of 
Fellman (1976), see also Burrell (in press). 

In this article, we present a slightly more realistic setting in which the original produc- 
tion process is stochastic, developing in time, and in which the number of citations received 
by a published paper is random. 

2. THE STOCHASTIC MODEL 

To simplify and at the same time motivate the discussion, we shall talk in terms of the 
particular context alluded to above, viz. we imagine a population of scientists publishing 
papers over time and that each paper then receives citations, where both the number of pa- 
pers published and the number of citations to a published paper may be zero. 

A citation study typically takes the form “citations acquired during 1985-1990 by pa- 
pers published during 1985”. More generally, consider a publication period of length t and 
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, Citation period , 

C-- Pubfication period 

Fig. 1. The publication/citation process. 

a citation period of length T with T B t. Consider first an individual scientist for whom 
the publication/citation process may be pictured as in Figure 1. Here, the marked points 
on the main time axis denote the publication events, while those on the branches denote 
the subsequent citation events for each of those papers. Thus, this author published four 
papers during the publication period for which the first paper published received two ci- 
tations during the period of study, the second received none, the third three, and so on. 
In general, the total number of citations to the author’s work is given by the sum of the 
numbers of citations to each of the individual papers. Hence, if we write X = X, = num- 
ber of papers published during [0, t] by a randomly chosen author; q = number of cita- 
tions to the jth paper of this author; and N = total number of citations during [0, T] 
received by these papers then we have 

N = YI + Y, + . . . + Yx (1) 

So that N is a random sum of random variables. In order to simplify matters we make 
the following: 

ASSUMPTION 

y,,r,,. * * are independent and identically distributed random variables. 

Some comments on this assumption are in order. While the independence assumption 
may be tenable, there are several objections to the Y,s all having the same distribution. It 
is clear, for example, that papers appearing late in the publication period have less oppor- 
tunity to attract citations than those published early on. It is on this point that the require- 
ment TB t is important because it is then reasonable to suppose that slight differences in 
publication date will have little real effect on the resulting citation opportunity and the iden- 
tical distribution assumption might then be justified. 

[Aside: In the limit as T -+ 00, N = N, gives the total number of future citations to pa- 
pers publishing during [0, t] and the assumption is perfectly justified. If {X,; t 2 01 were 
assumed to be a Poisson process, then IN,; t 2 0) would be called a compound Poisson 
process (see e.g. Parzen (1962, p. 128)).] 

A further objection is that it is assumed that the distribution of citations to individ- 
ual papers is the same for all authors. We have no direct evidence to support this assump- 
tion and admit that it is counter to the success-breeds-success philosophy. However, given 
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these admittedly rather severe assumptions, the resulting model allows simple yet sugges- 
tive analysis of the difference in concentration between the X and N distributions. 

3. CONCENTRATION ASPECTS 

3.1 The coefficient of variation 
In keeping with the context under discussion, assume that X takes values 1,2, . . . , that 

is, only authors who have published during the period are included, while for any of these 
the number of citations received, N, may be 0,1,2,. . . . Of course a citation index only lists 
papers which have actually been cited, that is, authors for whom N = 0 would not be listed. 
However, knowing the number of publishing authors and the number of cited authors al- 
lows us to fill in the number of uncited authors. (Similar remarks apply to citations to in- 
dividual papers so that we know the number of uncited papers, i.e. those for which Y = 
0, even though these are not listed.) 

According to their classification, Egghe and Rousseau (1991) have shown that the best 
concentration measures are those equivalent to what they term the “generalized Pratt mea- 
sures”. Of these, the most widely known is that of order 2, otherwise the coefficient of vari- 
ation (CV). The CV of a random variable, or its probability/frequency distribution is just 
the ratio of its standard deviation to its mean. Actually, in the following it is more con- 
venient to work with the square of the CV which we denote G as it is sometimes referred 
to as Gastwirth’s index. Thus, for a random variable W we have 

G = Var(W 
w (E[w1)2 = (wv)2 

For the model of $2 the result is: 

THEOREM 1 

GY 
G,=G,+ - 

E[Xl 

Proof. See Appendix. 
From this we have immediately: 

COROLLARY 1 

cv, > cv, 

This result therefore supports the empirical findings of Rousseau (in press) mentioned 
in 0 1, although the context is not exactly equivalent to the one modelled here. 

3.2 The uncited papers 
The assumption that it is the full distribution of citations over authors, including those 

from whom N = 0, is important in the above result. If instead we work with the zero-trun- 
cated form N” giving the number of citations to an author receiving at least one citation, 
so that N* has possible values 1,2,. . . and its distribution may be determined directly 
from the citation index, then we have: 

COROLLARY 2 

P(N # 0) 
CV+ z CV, according as P(N = o) + (Gx + l)E[Xl 

GY 

(Again, the proof is given in the Appendix). Note that the left-hand side of the above 
is just the odds against a published paper being uncited. 

The importance of being specific about whether or not the nonproducers are included 
in informetric studies has been raised many times before. In the context of library circu- 
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lation models, see the discussion following Burrell and Cane (1982), the pointed remarks 
of Bagust (1983) and the response by Burrell(l984). The effect on concentration measures, 
in particular the Gini index, is graphically illustrated in Burrell (1992). 

3.3 Another example as a special case 
A citation index often includes also an author index, that is, a listing of cited authors 

and their cited papers. One might then consider the distribution of the number of cited pa- 
pers over this population of cited authors and compare this with the original distribution 
of publications as another example of a linked pair of informetric processes. This can be 
modelled exactly as before simply by redefining 

t 

1 
r,= 

if the author’s jth published paper is cited, 

0 otherwise 

M = Number of the author’s published papers which are cited 

= Y, + Y, + . . . + Y, 

and as a special case of the theorem we have 

COROLLARY 3 

l-0 
G,=G,+ ___ 

~E1-U 

where 8 is the probability that a published paper is cited. 

In particular note, therefore, that CV, > CV,. Of course, the author index will only 
include authors having at least one cited paper so that we should consider the zero-trun- 
cated form M* in which case we have 

COROLLARY 4 

Cl&* % CV, according as 
P(A4 # 0) 

P(M = 0) 
z (Gx + lP[Xl & (3) 

Note that A4 = 0 H N = 0 and the left-hand side of the above is again the odds against 
a published paper being uncited. 

4. A SIMPLE TIME-DEPENDENT EXAMPLE 

Suppose that each author in the population publishes papers as a Poisson process 
where the rates of these processes vary over the population as an exponential distribution. 
The resulting publication process for the population is then the well-known exponential 
mixture of Poisson processes which has been employed in many informetric models, see, 
for example, Burrell (1980) and Burrell and Cane (1982) in the context of library circula- 
tions. The resulting distribution of X,, the number of published papers of a publishing au- 
thor during [0, t ] , is then a time-dependent geometric distribution: 

P(X, = k) =pqk-‘, k = 1,2,. . 

where the parameter is 

p=p(t) = & =1-q (4) 
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and 8 > 0 is a (time) scale parameter giving the mean number of publications per unit time 
for the entire population of potentially publishing authors (whether or not they happen to 
have published during the particular period of observation). 

Let us further assume that the common distribution of the number of citations to a 
published paper is given by 

P(Y=k)=&, k=0,1,2... 

where I_Y + @ = 1, so that the q s have a geometric distribution on 0, 1, 2. . . . Note that 
there is no time dependence in the distribution of the 5 s so that essentially we are assum- 
ing that T-+ 00 or equivalently that each published paper effectively receives all its citations 
immediately upon publication. 

Using well-known properties of the geometric distribution we have 

E[X] = l/p, E[Y] = p/(Y 

Var(X) = q/p2, Var( Y) = P/a2 

so that 

Gx=q, GY = l/P 

and hence from the theorem 

GN=q+; 

For the case where the uncited papers are not counted note that P(iV= 0) = pa/( 1 - qa) 
(see Appendix) so that from Corollary 2 

ol>l+q 
(Y 

(5) 

P o->q=l-p 
CY 

In particular, note that if a! I 4 (so that E[ Y] L 1) then necessarily 

cv,. > cv, 

that is, if the mean number of citations per published paper exceeds 1, then the coefficient 
of variation of the distribution of citations over (cited) authors exceeds that of the distri- 
bution of publications over (published) authors. 

If on the other hand CY > 4 (so that E[ Y] c 1) then (4) and (5) together yield 

P cv,. > cvxoetc ~ 
2cY - 1 

which inequality will hold initially but fail for larger 1. 
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Actually this example can be analyzed further because the distribution of N: can be 
found explicitly as 

P(??:=k)= (~~(~~-‘, k=1,2,... 

(see Appendix). Hence, N: also has a geometric distribution, with parameter pa/( 1 - 
q(Y) = a/[1 - (1 + cu)&]. 

In general, it is shown in Burrell (1992) that if Z has a geometric distribution on 
1,2,. . . with parameter p, that is, 

P(Z=k)=p(l -p)“-‘, k=1,2,... 

then the Gini index or coefficient of concentration (equivalent to the generalized Pratt mea- 
sure of order 1) of Z is given by 

Hence, 

P/(1 - wf 
YN*‘Yx* 1 +@/(I -4a) 

This last inequality reduces, after a little algebra, 

4 
‘1+q 

to 

exactly as at (5). Hence, the conditions for inequality of concentration as measured by the 
Gini index are exactly the same as those for when measured by the coefficient of variation. 
This is to be expected because, following Egghe and Rousseau (1991), we have that “good 
concentration measures respect the Lorenz (or Leimkuhler) dominance ordering”. For the 
case of a geometric distribution on 1,2, . . . with parameter p, the Leimhkuhier curve of con- 
centration is given by Burrell (1992) as 

9=@ 1+ 
i 

P 

(1 - p)ln(l -P) 
In Cp 

i 

from which it easily follows that if Z, ,Z, have such distributions with parameters pI,p2 
then the Leimkuhler curve of Z, dominates that of Zz if and only if p1 < p2. Hence, we 
have that the concentration measure (however defined) of NT exceeds that of X, 

5. CONCLUDING REMARKS 

The proposed model is perhaps oversimpiified and the assumptions unrealistic so that 
the results are suggestive rather than definitive. The model already allows for variation in 
publication rates across the population of authors, the next step would be to allow for a 
variation in citation rates also, if such a variation does indeed exist. 
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APPENDIX 

All of the random variables X, N and q, j = 1,2, . . . as defined in $2 are non-nega- 
tive and integer-valued. For such a random variable W, it is convenient to work with its 
probability generating function ( pgf) II,(z) where 

&v(z) = 5 ?P(W= k) 
kc0 

= azwl 

Here, E denotes expectation/expected value. The following result is well-known, see 
e.g. Feller (1968, p. 287). 

LEMMA 1 
For N defined via ( 1) , 

&v(z) = n,(n,(z)). (Al) 

where Y has the same distribution as Y, , Y,, . . . 

Proof of Theorem 1. Recall that for any pgf II& z) we have 

l-I,(l) = 1 

II;(l) = E[W] 

l-I;;(l) = E[W(W- l)] 

Differentiating (Al) twice then gives, on putting z = 1, 

E[N] = E[X]E[Y] 

E[N(N- l)] = E[X2]E[Y12 + E[X]Var(Y) - E[X]E[Y] 

so that 

E[N2] = E[X2]E[Y12 + E[X]Var(Y) 
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G = V=(W) E[W’l 
W -=-- 

E[W12 E[W12 ’ 
so that Gw is the square of the coefficient of variation of W 

GN = 
E[X2]E[Y12 + E[X]Var(Y) _ 1 

E[X]2E[ Y]2 

Kf21 
=E(XIZ+ 

Varf Y) 
EWlEIY12 

_ 1 

GY 
=Gx+- 

E[Xl 

For Corollary 1 note that GY > 0, E [X] > 0 so that GN > Gx and hence 

cv, > cv, 

For the case of zero-truncated data, 

P(N*=k)=P(N=kfNfO)= 
P(N = k) 

P(N # 0) 

and then 

so that 

GN* = 

Wtf+‘*)21 _ I 

E[N*12 

=P(N+O)(GN+ 1) - 1 

wP(N#O)(G,+ 1) >Gx+ 1 from(A4) 

*PP(N#O) 
GY 

G,+ 1+ - 
HXI 

> Gx + 1 from (A2) 

GY 
*RN+@ EIXI - >P(N=O)(Gx+ 1) 

P(N # 0) 
e=+ P(N=O) 

>(Gx+l)~=~$ 

0 

cl 

(A31 

(A4) 

For the special case mentioned in $3.3, note that E[YI = 8, and Var(Y) = 0(1 - 0) 
SO that GY = (1 - 0)/& 
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EXAMPLE. 
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Here 

so from (Al) 

P(X=k)=pqk--1, k=1,2,... 

P(Y=k)=c@, k=0,1,2 ,... 

II,(z) = -E- 
1 -qz’ n,(z) = & 

h(z) = Pa/(1 - Pz) 
1 - f&x/(1 - Pz) 

A 
=- 

1 - Bz 

= A 2 Bkzk 
k=O 

where 

A =pa! 
1 -qcY’ 

B=B 
1 - qa 

Thus 

P(N = k) = coeff. zk 

= ABk, k = 0,1,2,. . . 

and from (A2) 

= ($----(i-f---& k= 1,2 ,.... 


