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a b s t r a c t

The classical Hill estimator of a positive extreme value index (EVI) can be regarded as
the logarithm of the geometric mean, or equivalently the logarithm of the mean of order
p = 0, of a set of adequate statistics. A simple generalisation of the Hill estimator is
now proposed, considering a more general mean of order p ≥ 0 of the same statistics.
Apart from the derivation of the asymptotic behaviour of this new class of EVI-estimators,
an asymptotic comparison, at optimal levels, of the members of such class and other
known EVI-estimators is undertaken. An algorithm for an adaptive estimation of the tuning
parameters under play is also provided. A large-scale simulation study and an application
to simulated and real data are developed.

© 2012 Elsevier B.V. All rights reserved.

1. The new class of estimators and scope of the paper

Let us consider a sample of size n of independent, identically distributed (i.i.d.) random variables (r.v.’s), X1, . . . , Xn,
with a common distribution function (d.f.) F . Let us denote by X1:n ≤ · · · ≤ Xn:n the associated ascending order statistics
(o.s.’s) and let us assume that there exist sequences of real constants {an > 0} and {bn ∈ R} such that themaximum, linearly
normalised, i.e. (Xn:n − bn) /an, converges in distribution to a non-degenerate r.v. Then, the limit distribution is necessarily
of the type of the general extreme value (EV) d.f., given by

EVγ (x) =

exp(−(1+ γ x)−1/γ ), 1+ γ x > 0 if γ ≠ 0
exp(− exp(−x)), x ∈ R if γ = 0. (1)

The d.f. F is said to belong to the max-domain of attraction of EVγ , and we use the notation F ∈ DM


EVγ


. The parameter γ

is the extreme value index (EVI), the primary parameter of extreme events.
Let us denote by RVa the class of regularly varying functions at infinity, with an index of regular variation equal to a ∈ R,

i.e. positive measurable functions g(·) such that for all x > 0, g(tx)/g(t) → xa, as t → ∞ (see Bingham et al., 1987). The
EVI measures the heaviness of the right tail function

F(x) := 1− F(x),

and the heavier the right tail, the larger γ is. In this paper we work with Pareto-type underlying d.f.’s, with a positive EVI, or
equivalently, models such that F(x) = x−1/γ L(x), γ > 0, with L ∈ RV0, a slowly varying function at infinity, i.e. a regularly
varying function with an index of regular variation equal to zero. These heavy-tailed models are quite common in many
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areas of application, like computer science, telecommunications, insurance, finance, bibliometrics and biostatistics, among
others.

For Pareto-type models, the classical EVI-estimators are the Hill estimators (Hill, 1975), which are the averages of the
log-excesses, given by

Vik := ln
Xn−i+1:n

Xn−k:n
, 1 ≤ i ≤ k < n. (2)

We thus have

γ H
n (k) ≡ H(k) :=

1
k

k
i=1

Vik, 1 ≤ k < n. (3)

Note that with F←(x) := inf{y : F(y) ≥ x} denoting the generalised inverse function of F , and

U(t) := F←(1− 1/t), t ≥ 1,

the reciprocal quantile function, we can write the distributional identity X = U(Y ), with Y a unit Pareto r.v., i.e. a r.v. with
d.f. FY (y) = 1 − 1/y, y ≥ 1. For the o.s.’s associated with a random Pareto sample (Y1, . . . , Yn), we have the distributional

identity Yn−i+1:n/Yn−k:n = Yk−i+1:k, 1 ≤ i ≤ k. Moreover, kYn−k:n/n
p
−→
n→∞

1, i.e. Yn−k:n
p
∼ n/k. Consequently, and provided that

k = kn, 1 ≤ k < n, is an intermediate sequence of integers, i.e. if

k = kn →∞ and kn = o(n), as n→∞, (4)

we get

Uik :=
Xn−i+1:n

Xn−k:n
=

U(Yn−i+1:n)

U(Yn−k:n)
=

U(Yn−k:nYk−i+1:k)

U(Yn−k:n)
= Y γ

k−i+1:k(1+ op(1)), (5)

i.e. Uik
p
∼ Y γ

k−i+1:k. Hence, we have the approximation lnUik ≈ γ ln Yk−i+1:k = γ Ek−i+1:k, 1 ≤ i ≤ k, with E denoting a
standard exponential r.v. The log-excesses, Vik = lnUik, 1 ≤ i ≤ k, in (2), are thus approximately the k top o.s.’s of a sample
of size k from an exponential parent with mean value γ . This justifies the Hill EVI-estimator, in (3).

We can write

H(k) =
k

i=1

ln

Xn−i+1:n

Xn−k:n

1/k

= ln


k

i=1

Xn−i+1:n

Xn−k:n

1/k

, 1 ≤ i ≤ k < n,

the logarithm of the geometric mean of the statistics Uik, given in (5). More generally, we now consider as basic statistics for
the EVI estimation, themean of order p (MOP) of Uik, i.e. the class of statistics

Ap(k) =




1
k

k
i=1

Up
ik

1/p

if p > 0
k

i=1

Uik

1/k

if p = 0.

(6)

From (5), we can write Up
ik = Y γ p

k−i+1:k(1+ op(1)). Since

E(Y a) =
1

1− a
if a < 1, (7)

the law of large numbers enables us to say that if p < 1/γ ,

Ap(k)
p
−→
n→∞


1

1− γ p

1/p

, i.e.
1− A−pp (k)

p
p
−→
n→∞

γ .

Hence the reason for the new class of MOP EVI-estimators,

γ Hp
n (k) ≡ Hp(k) :=


1− A−pp (k)


/p if p > 0

ln A0(k) = H(k) if p = 0,
(8)

with Ap(k) given in (6), and with H0(k) ≡ H(k), given in (3). This class of MOP EVI-estimators depends on this tuning
parameter p ≥ 0, which makes it very flexible, and even able to overpass one of the simplest and one of the most efficient
EVI-estimators in the literature, the corrected-Hill (CH) estimator in Caeiro et al. (2005), to be introduced in Section 2.2.
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In this paper, after the introduction, in Section 2, of a few technical details in the field of extreme value theory (EVT) and
a brief bibliographical study on various types of EVI-estimators, we deal in Section 3 with the asymptotic behaviour of the
new class of MOP EVI-estimators, in (8). In Section 4 we compare asymptotically, at optimal levels, a large set of alternative
classes of EVI-estimators, drawing some concluding remarks. In Section 5,we provide amethod for the adaptive choice of the
tuning parameters k and p, on the basis of the bootstrap methodology. Section 6 is dedicated to the finite sample properties
of the new class of estimators comparatively with the behaviour of the aforementioned CH EVI-estimators, done through
a large-scale simulation study. Finally, in Section 7, we illustrate the behaviour of the new class of MOP EVI-estimators,
together with the adaptive choices provided in Sections 5 and 6, through an application to simulated random samples, and
to sets of real data in the fields of insurance, finance and environment.

2. Preliminary results in the area of EVT

After a reference, in Section 2.1, to the most common first and second-order frameworks for heavy-tailed models, we
briefly review, in Sections 2.2 and 2.3, the most popular EVI-estimators. Finally, in Section 2.4, we provide details on the
asymptotic behaviour of those EVI-estimators. Recent reviews on the topic can be found in Beirlant et al. (2012) and Scarrott
and MacDonald (2012).

2.1. A brief note on first and second-order conditions

In the area of statistics of extremes and whenever working with large values, a model F is usually said to be heavy-tailed
whenever the right tail function F is a regularly varying function with a negative index of regular variation equal to −1/γ ,
γ > 0, or equivalently, the reciprocal quantile function U is of regular variation with an index γ , i.e.

F ∈ D+M := DM


EVγ


γ>0 ⇐⇒ F ∈ RV−1/γ ⇐⇒ U ∈ RVγ . (9)

The first condition, in (9), was proved in Gnedenko (1943) and the second one in de Haan (1984).
The second-order parameter ρ (≤ 0) rules the rate of convergence in the first-order condition, in (9), and it is the non-

positive parameter appearing in the limiting relation

lim
t→∞

lnU(tx)− lnU(t)− γ ln x
A(t)

=


xρ
− 1


/ρ if ρ < 0

ln x if ρ = 0, (10)

which is assumed to hold for every x > 0, and where |A| must then be of regular variation with index ρ (Geluk and de
Haan, 1987). This condition has been widely accepted as an appropriate condition to specify the right-tail of a Pareto-type
distribution in a semi-parametric way. For reduced-bias estimators, and for technical simplicity, we often assume that we
are working in the Hall–Welsh class of models (Hall and Welsh, 1985), with a right tail function,

F(x) =

x/C

−1/γ 
1+ β(x/C

ρ/γ
/ρ + o(xρ/γ )


, as x→∞,

C > 0, β ≠ 0 and ρ < 0. Equivalently, we can say that, with (β, ρ) a vector of second-order parameters, the general
second-order condition in (10) holds with A(t) = γ βtρ, ρ < 0. Also,

U(t) = C tγ

1+ γ β tρ/ρ + o(tρ)


, as t →∞. (11)

Models like the log-gamma and the log-Pareto (ρ = 0) are thus excluded from this class. The standard Pareto is also
excluded. But most heavy-tailed models used in applications, like the EVγ , the Fréchet and the Student’s t d.f.’s, among
others, belong to the Hall–Welsh class.

2.2. Explicit EVI-estimators

Due to its simplicity, the most popular EVI-estimator, valid only for γ ≥ 0, is the Hill estimator in (3). Apart from the Hill
estimator, and with the notation

M(j)
k,n :=

1
k

k
i=1

V j
ik
, L(j)

k,n := 1−
1
k

k
i=1


1−

Xn−k:n

Xn−i+1:n

j

, j ≥ 1, (12)

with Vik , 1 ≤ i ≤ k, defined in (2), we also consider in the asymptotic comparison at optimal levels performed in Section 4,
the following classes of EVI-estimators.

• The moment (Mo) estimator (Dekkers et al., 1989), given by

γ Mo
n (k) ≡ Mo(k) := M(1)

k,n +
1
2


1−


M(2)

k,n/

M(1)

k,n

2
− 1

−1
. (13)
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• The generalised Hill (GH) estimator (Beirlant et al., 1996), based on the Hill estimator in (3) and with the functional form

γ GH
n (k) ≡ GH(k) := γ̂ H

n (k)+
1
k

k
i=1


ln γ̂ H

n (i)− ln γ̂ H
n (k)


, (14)

further studied in Beirlant et al. (2005).
• The mixed moment (MM) estimator (Fraga Alves et al., 2009), based on the statisticsM(1)

k,n and L(1)
k,n in (12), and given by

γ MM
n (k) ≡ MM(k) :=

ϕ̂k,n − 1
1+ 2min


ϕ̂k,n − 1, 0

 , with ϕ̂k,n :=
M(1)

k,n − L(1)
k,n

L(1)
k,n

2 . (15)

In the simulation study we consider

• the simplest class of CH EVI-estimators, the one introduced in Caeiro et al. (2005),

γ CH
n (k) ≡ γ CH

n,β̂,ρ̂
(k) ≡ CH(k) := γ̂ H

n (k)

1− β̂(n/k)ρ̂/(1− ρ̂)


. (16)

The estimators in (16) can be second-order minimum-variance reduced-bias (MVRB) estimators, for adequate levels k
and an adequate external estimation of the vector of second-order parameters, (β, ρ), in (11), i.e., the use ofγ CH

n (k), and
an adequate estimation of (β, ρ), enables the elimination of the dominant component of bias of the Hill estimator,γ H

n (k),
keeping its asymptotic variance. For details on algorithms for the (β, ρ)-estimation, see Gomes and Pestana (2007a,b)
and Gomes et al. (2008). We have so far suggested the use of the ρ-estimators in Fraga Alves et al. (2003) and the β-
estimators in Gomes and Martins (2002).

The estimators in (13)–(15) are valid for γ ∈ R, but are considered only for γ ≥ 0.

2.3. Maximum likelihood EVI-estimators

As mentioned in de Haan and Ferreira (2006), the class of d.f.’s F ∈ DM(EVγ ), for γ > 0 (or, more generally, for γ ∈ R),
cannot be parameterised with a finite number of parameters, and consequently, there does not exist a maximum-likelihood
(ML) estimator for γ in such a wide class of models. There exists however an estimator, introduced by Smith (1987), usually
denoted as the ML estimator. Such an estimator was based on the excesses over a deterministic high level u, but can easily
be rephrased on the basis of the excesses over the high random threshold Xn−k:n,

Wik := Xn−i+1:n − Xn−k:n, 1 ≤ i ≤ k < n. (17)

For models in (9), αWik is well approximated by Y γ

k−i+1:k − 1, with Y a unit Pareto r.v., i.e. the k excesses, in (17), are
approximately distributed as the whole set of k top o.s.’s associated with a sample of size k from a generalised Pareto d.f.,
GP(x; γ , α) = 1 − (1+ α x)−1/γ , x > 0 (α, γ > 0), a re-parameterisation due to Davison (1984). The solution of the
associatedML equations gives rise to an explicit expression for theML estimator of γ , a function of theML implicit estimator
α̂ML of α and the sample of excesses,

γ ML
n (k) ≡ γ̂ ML

n,αML
(k) ≡ ML(k) :=

1
k

k
i=1

ln(1+ α̂ML Wik). (18)

A comprehensive study of the asymptotic properties of theML estimator in (18) has been undertaken in Drees et al. (2004).

Remark 1. A simple heuristic estimator of α is 1/Xn−k:n. If we consider α̂ = 1/Xn−k:n and the excesses Wik , 1 ≤ i ≤ k, in
(17), 1+ α̂ Wik = Xn−i+1:n/Xn−k:n. Then,γ ML

n,α̂(k) = 1
k

k
i=1 {ln Xn−i+1:n − ln Xn−k:n} is the classical Hill estimator in (3).

2.4. Asymptotic behaviour of the EVI-estimators

Under the validity of the second-order condition in (10), trivial adaptations of the results in de Haan and Peng (1998),
Beirlant et al. (2005), Caeiro et al. (2005), de Haan and Ferreira (2006) and Fraga Alves et al. (2009) enable us to restate the
following theorem, already stated in Gomes and Henriques-Rodrigues (2010). Let the notationN


µ, σ 2


stand for a normal

r.v. with mean value µ and variance σ 2.

Theorem 1 (Gomes and Henriques-Rodrigues, 2010, Theorem 2.1). Assume that condition (10) holds. Let k = kn be such
that (4) holds, and let us additionally assume that we are working with values of k such that λ := limn→∞

√
k A(n/k) is

finite. We can then guarantee that
√
k
γ •n (k)− γ

 d
−→
n→∞

N

λb•, σ 2

•


,
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where

bH =
1

1− ρ
, bM = bGH =

γ − γ ρ + ρ

γ (1− ρ)2
, bMM = bML =

(1+ γ )(γ + ρ)

γ (1− ρ)(1+ γ − ρ)
,

σ 2
H
= γ 2, σ 2

M
= σ 2

GH
= 1+ γ 2 and σ 2

MM
= σ 2

ML
= (1+ γ )2.

If we further assume to be working in the Hall–Welsh class of models in (11), and estimate β and ρ consistently through β̂ and
ρ̂ , with ρ̂ − ρ = op(1/ ln n), we get bCH = 0 and σ 2

CH
= σ 2

H
= γ 2.

3. Asymptotic behaviour of MOP EVI-estimators

To have consistency of the Hill estimator, in (3), in all D+M , we need to work with intermediate values of k, i.e. a sequence
of integers k = kn, 1 ≤ k < n, such that (4) holds. Under the second-order framework, in (10), the asymptotic distributional
representation

H(k) d
= γ +

γ
√
k
Zk +

1
1− ρ

A(n/k)(1+ op(1)) (19)

holds (de Haan and Peng, 1998), where, with {Ei} a sequence of i.i.d. standard exponential r.v.’s,

Zk =
√
k


k

i=1

Ei/k− 1


(20)

is an asymptotically standard normal r.v.
We now state the main theorem in this paper.

Theorem 2. Under the validity of the first-order condition, in (9), and for intermediate sequences k = kn, i.e. if (4) holds, the
class of estimators Hp(k), in (8), is consistent for the estimation of γ , provided that p < 1/γ .

If we moreover assume the validity of the second-order condition in (10), the asymptotic distributional representation

Hp(k)
d
= γ +

σp(γ ) Z (p)
k

√
k
+ bp(γ |ρ) A(n/k)+ op(A(n/k)) (21)

holds for all p < 1/(2γ ) and ρ ≤ 0, with Z (p)
k asymptotically standard normal,

σp(γ ) :=
γ (1− pγ )
√
1− 2pγ

and bp(γ |ρ) :=
1− pγ

1− pγ − ρ
. (22)

Proof. As we have seen before, on the basis of (7) and the law of large numbers, the statistics in (8) are consistent for the
estimation of γ for all p < 1/γ . With Y denoting again a unit Pareto r.v., and working under the second-order framework
in (10), we can write

p ln Ap(k) = ln


1
k

k
i=1


U(Yn−i+1:n)

U(Yn−k:n)

p


= ln


1
k

k
i=1


Y γ

i


1+ A(n/k) (Y ρ

i − 1)/ρ + op(A(n/k))
p

= ln


1
k

k
i=1

Y pγ
i


1+ pA(n/k) (Y ρ

i − 1)/ρ + op(A(n/k))


.

Consequently,

p ln Ap(k) = ln


1
k

k
i=1

Y pγ
i + pA(n/k)

1
k

k
i=1

Y pγ
i (Y ρ

i − 1)
ρ

+ op(A(n/k))


.

On the basis of (7), and for a < 1/2, Var(Y a) = a2/

(1− a)2(1− 2a)


. We thus know that for p < 1/(2γ ),

√
k(1− pγ )

√
1− 2pγ


1
k

k
i=1

Y pγ
i −

1
1−pγ


pγ

=: Z (p)
k (23)
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is asymptotically standard normal, and we can write

1
k

k
i=1

Y pγ
i =

1
1− pγ

+
pγ Z (p)

k
√
k(1− pγ )

√
1− 2pγ

.

Also, and now for p < 1/γ ,

E

Y pγ (Y ρ

− 1)/ρ

=

1
(1− pγ )(1− pγ − ρ)

.

Let us go back to the EVI-estimators in (8):

pHp(k) = 1− exp

−p ln Ap(k)


= 1− 1


1
k

k
i=1

Y pγ
i + pA(n/k)

1
k

k
i=1

Y pγ
i (Y ρ

i − 1)/ρ + op(A(n/k))



= 1− (1− pγ )


1+

pγ Z (p)
k

√
k
√
1− 2pγ

+
pA(n/k)

1− pγ − ρ
+ op(A(n/k))


.

We can thus further write

pHp(k) = 1− (1− pγ )


1−

pγ Z (p)
k

√
k
√
1− 2pγ

−
pA(n/k)

1− pγ − ρ
+ op(A(n/k))



= pγ +
pγ (1− pγ )Z (p)

k
√
k
√
1− 2pγ

+
p(1− pγ )A(n/k)

1− pγ − ρ
+ op(A(n/k)),

i.e. (21) follows, with σp(γ ) and bp(γ |ρ) given in (22). �

Remark 2. For p = 0, Z (0)
k ≡ Zk, with Zk and Z (p)

k given in (20) and (23), respectively, and on the basis of (21), we get for
H0(k) ≡ H(k), in (3), the particular result in (19), as derived in de Haan and Peng (1998).

Remark 3. Note that, for any γ > 0, the asymptotic standard deviation σp(γ ), in (22), is increasing in p ≥ 0. In Fig. 1, we
present such a standard deviation, as a function of p.

p

p

Fig. 1. The asymptotic standard deviation σp(γ ) for γ = 0.1, 0.5 and 1, as a function of p ≥ 0.

Remark 4. On the other side, also for any γ > 0, ρ < 0 and p ≠ (1 − ρ)/γ , the asymptotic bias bp(γ |ρ), also in (22), is
decreasing in p. Such a performance is shown in Fig. 2.

These aforementioned results claim for an asymptotic comparison, at optimal levels of the class of EVI-estimators in (8),
a topic to be dealt with next, in Section 4.
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p

Fig. 2. The asymptotic bias ruler, bp(γ |ρ), for ρ = −1 and γ = 0.1, 0.5, 1, as a function of p ≥ 0.

4. Asymptotic comparison at optimal levels

Wenext proceed to the comparison of ‘classical’ EVI-estimators at their optimal levels. This is again done in away similar
to the one used in de Haan and Peng (1998), Gomes andMartins (2001), Gomes et al. (2005, 2007, 2011a), Gomes and Neves
(2008) and Gomes and Henriques-Rodrigues (2010). Let us assume thatγ •n (k) denotes any arbitrary semi-parametric EVI-
estimator, for which we have the asymptotic distributional representation

γ •n (k) = γ +
σ•Z•k
√
k
+ b•A(n/k)+ op(A(n/k)), (24)

for any intermediate sequence of integers k = kn, and where Z•k is asymptotically standard normal. Then,
√
k
γ •n (k)−γ

 d
→

N (λAb•, σ
2
•
) provided that k is such that

√
k A(n/k) → λA , finite, as n → ∞. We then write Bias∞

γ •n (k)

:= b• A(n/k)

and Var∞
γ •n (k)


:= σ 2

•
/k. The so-called asymptotic mean square error (AMSE) is then given by

AMSE
γ •n (k)


:= σ 2

•
/k+ b2

•
A2(n/k).

Regular variation theory (Bingham et al., 1987) enabled Dekkers and de Haan (1993) to show that, whenever b• ≠ 0, there
exists a function ϕ(n) = ϕ(n, γ , ρ), such that

lim
n→∞

ϕ(n) AMSE
γ •n0 = σ 2

•

− 2ρ
1−2ρ


b2
•

 1
1−2ρ =: LMSE

γ •n0 ,
whereγ •n0 := γ •n (k0|•(n)) and k0|•(n) := argmink MSE

γ •n (k)

. Moreover, if we slightly restrict the second-order condition

in (10), assuming that A(t) = γ βtρ, ρ < 0, just as happens for the class in (11), we can write

k0|•(n) := argmin
k

MSE
γ •n (k)


=


σ 2
•
n−2ρ

b2
•
γ 2β2(−2ρ)

1/(1−2ρ)

(1+ o(1)). (25)

We again consider the following definition.

Definition 1. Given two biased estimatorsγ (1)
n (k) andγ (2)

n (k), for which a distributional representation of the type of the
one in (24) holds, with constants (σ1, b1) and (σ2, b2), b1, b2 ≠ 0, respectively, both computed at their optimal levels, the
asymptotic root efficiency (AREFF) ofγ (1)

n0 relatively toγ (2)
n0 is

AREFF1|2 ≡ AREFFγ (1)
n0 |γ (2)

n0
:=

LMSE
γ (2)

n0


LMSE

γ (1)
n0

 = σ2

σ1

−2ρ b2b1

 1

1−2ρ

. (26)

Remark 5. Note that the AREFF indicator, in (26), has been conceived so that the highest the AREFF indicator is, the better
is the first estimator.



M. Fátima Brilhante et al. / Computational Statistics and Data Analysis 57 (2013) 518–535 525

4.1. Asymptotic comparison of MOP EVI-estimators at optimal levels

Let us now turn back to the MOP EVI-estimators Hp(k) in (8). We have

LMSE(Hp0) =


γ 2(1− pγ )2

1− 2pγ

− 2ρ
1−2ρ


1− pγ

1− pγ − ρ

 2
1−2ρ

.

For every (γ , ρ) there is thus always a positive p-value, p0, such that

LMSE(Hp0) < LMSE(H00) = LMSE(H0), for any p ∈ (0, p0).

To measure the performance of Hp0, we have computed the AREFF-indicator, in (26), now denoted as follows:

AREFFp|0 =

√
1− 2pγ
1− pγ

−2ρ  1− pγ − ρ

(1− ρ)(1− pγ )


 1

1−2ρ

. (27)

We can reparameterise AREFFp|0, so that we have a dependence on two parameters only, the second-order parameter ρ
and the parameter a = pγ < 1/2. In Fig. 3, we picture the values of

AREFF∗a|0 =

√1− 2a
1− a

−2ρ  1− a− ρ

(1− ρ)(1− a)


 1

1−2ρ

. (28)

a

0.0

–0.5

–1.0

–1.5

–2.0

0.0 0.1 0.2 0.3 0.4 0.5

1.01

1.02

Fig. 3. The indicator ARREF∗a|0 , in (28), as a function of (a, ρ).

The gain in efficiency is not terribly high, but, at optimal levels, there is a wide region of the (a, ρ)-plane where the new
class of MOP EVI-estimators performs better than the Hill estimator. Let pM := arg supp AREFFp|0. Note again that AREFFp|0,
in (27), depends on (p, γ ) through pγ . There thus exists a function ϕ(ρ) such that pM = ϕ(ρ)/γ . Moreover, as derived in
Brilhante et al. (submitted for publication), we have

ϕ(ρ) = 1− ρ/2−


ρ2 − 4ρ + 2/2. (29)

Thus AREFFpM |0 depends only on ρ and AREFFpM |0 > 1 if ρ < 0, being equal to 1 only if ρ = 0.

4.2. An overall comparison of EVI-estimators at optimal levels

As detected in Section 4.1, at optimal levels, the MOP EVI-estimator, HpM0, can beat the Hill EVI-estimator, H00, in
the whole (γ , ρ)-plane. But it can be beaten by the Mo EVI-estimator, unless γ is small. The MM-estimator in (15)
(asymptotically equivalent to the ML estimator, unless γ + ρ = 0 and (γ , ρ) ≠ (0, 0)), can also outperform the Mo
estimator at optimal levels, in a region around γ + ρ = 0. In Fig. 4 we exhibit the comparative behaviour of all ‘classical’
EVI-estimators under consideration.
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Fig. 4. Comparative overall behaviour of the classical EVI-estimators under consideration.

As expected, none of the estimators can always dominate the alternatives, but the MOP EVI-estimators have a nice
performance in a region of the (γ , ρ)-plane quite usual in the real world.

Note that in the region γ + ρ ≠ 0 and γ ≠ −ρ/(1− ρ), the CH-estimators, in (16), overpass at optimal levels all other
classical estimators under consideration. They are thus not included in Fig. 4 so that we can see the comparative behaviour
of the non reduced-bias EVI-estimators. The MM , the CH and the ML estimators, in (15), (16) and (18), respectively, are
all second-order reduced-bias estimators in the region γ + ρ = 0 (where bML = bMM = bCH = 0), and consequently, are
expected to outperform at optimal levels any of the other EVI-estimators. TheMM and theML estimators have an asymptotic
variance equal to (1 + γ )2 > γ 2, the asymptotic variance of CH . However, this does not mean too much. All depends on
the dominant component of bias . . . and it is without doubt a challenge for further research, out of the scope of this paper.
A similar comment applies to the behaviour of theM , the GH and the CH-estimators in the region γ = −ρ/(1− ρ) (where
bM = bGH = bCH = 0). Again, despite of the fact that the M and the GH estimators have an asymptotic variance equal to
1+ γ 2 > γ 2, the asymptotic variance of CH , all depends on the comparative behaviour of the mean square errors.

5. An adaptive choice of p and k

A reasonably sophisticated algorithm, that has proved to work properly in many situations, is the double-bootstrap
algorithm. The basic framework for such algorithm is next provided. For the new class of MOP EVI-estimators Hp(k), in (8),

k0|p(n) = argmin
k

MSE(Hp(k)) = kA|p(n)(1+ o(1)), (30)

with

kA|p(n) := argmin
k

AMSE

Hp(k)


. (31)

For any admissible p, and provided that we can assure the asymptotic normality of the estimator under play, i.e. if p < 1/
(2γ ), the bootstrap methodology can thus enable us to consistently estimate the optimal sample fraction (OSF), k0|p(n)/n,
with k0|p(n) given in (30), on the basis of a consistent estimator of kA|p(n), in (31), in a way similar to the one used in Gomes
and Oliveira (2001), for the classical adaptive Hill EVI estimation, performed through H(k) ≡ H0(k), in (3), and in Gomes
et al. (2011b, in press-a), for second-order reduced-bias estimation. With the notation ⌊x⌋ for the integer part of x, we use
again the auxiliary statistics

Tk,n ≡ T (k|Hp) ≡ Tk,n|p := Hp(⌊k/2⌋)− Hp(k), k = 2, . . . , n− 1, (32)
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which converge in probability to zero, for any intermediate k, and have an asymptotic behaviour strongly related with the
asymptotic behaviour of Hp(k). Indeed, under the above-mentioned second-order framework in (10), we get, for all p ≥ 0,

T (k|Hp)
d
=

σp(γ ) P (p)
k

√
k
+ bp(γ |ρ)(2ρ

− 1) A(n/k)(1+ op(1)),

with P (p)
k asymptotically standard normal, and


σp(γ ), bp(γ |ρ)


given in (22).

Consequently, denoting k0|T (n) := argmink MSE(Tk,n), we have

k0|p(n) = k0|T (n)× (1− 2ρ)
2

1−2ρ (1+ o(1)). (33)

Given the random sample Xn = (X1, . . . , Xn) from any unknown model F , and the functional in (32), Tk,n =: φk(Xn),
1 < k < n, consider for any n1 = O(n1−ϵ), 0 < ϵ < 1, the bootstrap sample X∗n1 = (X∗1 , . . . , X∗n1), from the model

F∗n (x) =
1
n

n
i=1

I[Xi≤x],

the empirical d.f. associated with the available sample, Xn. Next, associate to the bootstrap sample the corresponding
bootstrap auxiliary statistic, T ∗k1,n1 := φk1(X

∗

n1), 1 < k1 < n1. With k∗0|T (n1) = argmink1 MSE

T ∗k1,n1


,

k∗0|T (n1)

k0|T (n)
=

n1

n

− 2ρ
1−2ρ

(1+ o(1)).

Consequently, for another sample size, n2 = ⌊n2
1/n⌋ + 1, we have

k∗0|T (n1)
2

/k∗0|T (n2) = k0|T (n)(1+ o(1)), as n→∞. (34)

On the basis of (34), we are now able to first consistently estimate k0|T , and next k0|p through (33), on the basis of any
estimate ρ̂ of the second-order parameter ρ. With k̂∗0|T denoting the sample counterpart of k∗0|T , ρ̂ an adequate ρ-estimate,

and cρ = (1− 2ρ)
2

1−2ρ , we thus have the k0-estimate

k̂∗0|p ≡ k̂∗0|p(n; n1) := min

n− 1,


cρ̂ (k̂∗0|T (n1))

2/k̂∗0|T ([n
2
1/n] + 1)


+ 1


. (35)

The adaptive estimate of γ is then given by

H∗p ≡ H∗p,n,n1|T := Hp(k̂∗0|p(n; n1)). (36)

5.1. A double-bootstrap algorithm for an adaptive MOP EVI-estimation

We now proceed with the description of an algorithm for the adaptive estimation of γ . In Steps 2–4, we reproduce the
algorithm provided in Gomes and Pestana (2007b) for the estimation of the second-order parameters β and ρ.

Algorithm 5.1. Step 1. Given an observed sample (x1, . . . , xn), compute H0(k) ≡ H(k), in (3), for k = 1, 2, . . . , n− 1.
Step 2. Compute, for the tuning parameters τ = 0 and τ = 1, the observed values of ρ̂τ (k), the most simple class of

estimators in Fraga Alves et al. (2003). Such estimators have the functional form

ρ̂τ (k) := min

0, 3(W (τ )

k,n − 1)/(W (τ )
k,n − 3)


,

dependent on the statistics

W (0)
k,n :=

ln

M(1)

k,n


−

1
2 ln


M(2)

k,n/2


1
2 ln


M(2)

k,n/2

−

1
3 ln


M(3)

k,n/6
 ,

W (1)
k,n :=

M(1)
k,n −


M(2)

k,n/2
1/2


M(2)

k,n/2
1/2
−


M(3)

k,n/6
1/3 ,

whereM(j)
k,n, j = 1, 2, 3, are given in (12).

Step 3. Consider

ρ̂τ (k)


k∈K , with K =


⌊n0.995

⌋, ⌊n0.999
⌋

, compute their median, denoted χτ , and compute Iτ :=


k∈K

ρ̂τ (k)− χτ

2, τ = 0, 1. Next choose the tuning parameter τ ∗ = 0 if I0 ≤ I1; otherwise, choose τ ∗ = 1.
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Step 4. Work with ρ̂ ≡ ρ̂τ∗ = ρ̂τ∗(k1) and β̂ ≡ β̂τ∗ := β̂ρ̂τ∗
(k1), k1 = ⌊n0.999

⌋, being β̂ρ̂(k) the estimator in Gomes and
Martins (2002), given by

β̂ρ̂(k) :=

k
n

ρ̂ dk(ρ̂) Dk(0)− Dk(ρ̂)

dk(ρ̂) Dk(ρ̂)− Dk(2ρ̂)
,

dependent on the estimator ρ̂ = ρ̂τ∗(k1), and where, for any α ≤ 0,

dk(α) :=
1
k

k
i=1

(i/k)−α and Dk(α) :=
1
k

k
i=1

(i/k)−α Ui,

with Ui = i

ln Xn−i+1:n − ln Xn−i:n


, 1 ≤ i ≤ k < n, the scaled log-spacings.

Step 5. Next, consider sub-sample sizes n1 = ⌊nb
⌋, b = 0.925(0.001)0.999, n2 = ⌊n2

1/n⌋ + 1.
Step 6. For l from1 until B = 250 (number of bootstrap iterations), generate independently, from the empirical d.f. F∗n (x) =

1
n

n
i=1 I[Xi≤x] associated with the observed sample, the bootstrap samples (x∗1, . . . , x

∗
n2) and (x∗1, . . . , x

∗
n2 , x

∗

n2+1
,

. . . , x∗n1), of sizes n2 and n1, respectively.
Step 7. Denoting T ∗k,n the bootstrap counterpart of Tk,n, in (32), obtain, for 1 ≤ l ≤ B, t∗k,n1,l, 1 < k < n1, t∗k,n2,l, 1 < k < n2,

the observed values of the statistic T ∗k,ni , i = 1, 2, and compute, for i = 1, 2 and k = 2, . . . , ni − 1,

MSE∗(ni, k) =
1
B

B
l=1


t∗k,ni,l

2
.

Step 8. Obtain k̂∗0|T (ni) := argmin1<k<ni MSE∗(ni, k), i = 1, 2, and return to Step 6 if k̂∗0|T (n2) > k̂∗0|T (n1).

Step 9. Compute k̂∗0|0 ≡ k̂∗0|H0
(n; n1), with k̂∗0|p given in (35).

Step 10. Compute H∗0 ≡ H∗0,n,n1|T , with H∗p given in (36), and the MSE-estimate

MSE
∗

0 ≡
MSE

∗

0(n1) ≡MSE(k̂∗0|0|H
∗

0 ) :=
(H∗0 )

2

k̂∗0|0
+

H∗0 β̂

n/k̂∗0|0

ρ̂
1− ρ̂

2

=: (σ̂ ∗00)
2
+ (b̂∗00)

2.

Step 11. For p = a/(20H∗0 ), with H∗0 the estimate obtained in Step 10, and a = 1, 2, . . . , 9, compute Hp(k), k = 1, 2,
. . . , n− 1, and perform the algorithm from Step 5 until Step 8.

Step 12. Compute k̂∗0|p ≡ k̂∗0|p(n; n1), given in (35).
Step 13. Compute H∗p ≡ H∗p,n,n1|T , given in (36), and the MSE-estimate

MSE
∗

p ≡
MSE

∗

p(n1) ≡MSE(k̂∗0|p|H
∗

p )

:=
σ 2
p (H∗p )

k̂∗0|p
+

H∗p β̂(1− pH∗p )

n/k̂∗0|p

ρ̂
1− pH∗p − ρ̂

2

=: (σ̂ ∗0p)
2
+ (b̂∗0p)

2, (37)

where σp(γ ) has been defined in (22).

Step 14. Compute the median, χp, of MSE
∗

p(n1) for the values of n1 in Step 5, and consider p∗min := arg infp χp.

Step 15. Choose n∗1 := argminn1
MSE

∗

p∗min
(n1), with MSE

∗

p(n1), obtained in Step 13.

Step 16. Consider the adaptive threshold estimate k̂∗∗0 := k̂0|p∗min
(n; n∗1) and the final EVI-estimate H∗∗ := H∗p∗min

= H∗p,n,n∗1 |T
.

Remark 6. For any p ≥ 0, and with k̂∗0|p and (σ ∗0p, b
∗

0p) given in (35) and (37), respectively, the r.v.

Hp(k̂∗0|p)− γ − b∗0p


/σ ∗0p

is approximately N (0, 1). We can then get approximate 100(1− α)% confidence intervals (CIs) for γ , given by
Hp(k̂∗0|p)− b∗0p − ξ1−α/2σ

∗

0p,Hp(k̂∗0|p)− b∗0p + ξ1−α/2σ
∗

0p


,

where ξq denotes the quantile of probability q of a standard normal d.f.

Remark 7. Wemake the following comments.

(i) If there are negative elements in the sample, the value ofnmust be replaced byn0 :=
n

i=1 I[Xi>0], the number of positive
elements in the sample. The same comment applies to n1 and n2.
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(ii) As already mentioned in several papers essentially related with bias reduction, in Step 2 of the algorithm we are led in
almost all situations to the tuning parameter τ = 0 whenever−1 ≤ ρ < 0 and τ = 1, otherwise. We thus claim again
for the relevance of the choice τ = 0, the one considered in the applications in Section 7.

(iii) Regarding second-order parameters’ estimation, attention should also bepaid to themore recent classes ofρ-estimators
proposed in Goegebeur et al. (2008, 2010), Ciuperca and Mercadier (2010) and Caeiro and Gomes (2012), and to the
estimators of β in Caeiro and Gomes (2006) and in Gomes et al. (2010).

(iv) In Algorithm 5.1 above, we have also dealt with the choice of the tuning parameter n1 associated with the bootstrap
methodology, but again, the method is only moderately dependent on the choice of the nuisance parameter n1, in Step
5 of Algorithm 5.1. This enhances the practical value of themethod. Moreover, although aware of the need of n1 = o(n),
it seems that, once again, we get good results up till n.

(v) TheMonte-Carlo procedure in Steps 6–16 of Algorithm 5.1 can be replicated, if wewant to associate standard bootstrap
errors to the OSF and to the EVI-estimates. The value of B can also be adequately chosen.

(vi) We would like to stress again that the use of the random sample of size n2, (x∗1, . . . , x
∗
n2), and of the extended sample of

size n1, (x∗1, . . . , x
∗
n2 , x

∗

n2+1
, . . . , x∗n1), leads to a higher precision of the result with a smaller B, the number of bootstrap

samples generated. Indeed, if we had generated the samples of sizes n1 and n2 independently, we would have got a
wider confidence interval for the EVI, should we have kept the same value for B. This is quite similar to the use of the
simulation technique of ‘‘Common RandomNumbers’’ in comparison algorithms, whenwewant to decrease the variance
of a final answer to z = y1 − y2, inducing a positive dependence between y1 and y2.

(vii) For a different way to overcome the complex uncertainties associated with threshold choice, see MacDonald et al.
(2011).

6. Finite sample properties of the EVI-estimators

We have implemented multi-sample Monte Carlo simulation experiments of size 5000 × 20 for the class of MOP EVI-
estimators, in (8), comparatively with the MVRB EVI-estimators, in (16), for sample sizes n = 100, 200, 500, 1000, 2000 and
5000, from the following underlying models:

(1) the Fréchet model, with d.f. F(x) = exp(−x−1/γ ), x ≥ 0, γ = 0.1, 0.25, 0.5 and 1;
(2) the extreme valuemodel, with d.f. F(x) = EVγ (x), with EVγ (x) given in (1), for the same values of γ ;
(3) the generalised Pareto model, with d.f. F(x) = 1 + ln EVγ (x) = 1 −


1 + γ x

−1/γ
, 0 ≤ x < −1/γ , EVγ (x) given in (1),

also for the same γ -values;
(4) the Student-tν , with ν = 1, 2, 4, i.e. for values of γ = 1, 0.5, 0.25(γ = 1/ν).

For details on multi-sample simulation, see Gomes and Oliveira (2001).

6.1. Mean values and mean square error patterns

For each value of n and for each of the above-mentionedmodels, we have first simulated themean values (E) and the root
mean square errors (RMSEs) of the estimators Hp(k), in (8), as functions of the number of top order statistics k involved in
the estimation and for p = j/(10γ ), with j assuming values from 0 to 4, with step 1. As a curiosity, we have also considered
values of j from 5 until 12, again with step 1. Note that for j ≤ 9 we can guarantee consistency. Values of j ≥ 10 are totally
outside the scope of Theorem 2. Some of those values, based on the first replicate with a size 5000, are pictured in Figs. 5–7,
for samples of size n = 1000 from EVγ underlying parents with γ = 0.25, γ = 0.5 and γ = 1, respectively. As mentioned
above, we also picture the patterns of E and RMSE for the MVRB EVI-estimators in (16).

Fig. 5. Mean values (left) and RMSE (right) of the EVI-estimators under study for an EVγ d.f. with γ = 0.25.
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Fig. 6. Mean values (left) and RMSE (right) of the EVI-estimators under study for an EVγ d.f. with γ = 0.5.

Fig. 7. Mean values (left) and RMSE (right) of the EVI-estimators under study for an EVγ d.f. with γ = 1.

Similar patterns have been obtained for all other simulatedmodels. We can always find an optimal value for p, clear from
these pictures in what concerns RMSE, but also valid for mean values at optimal levels, in the sense of minimal RMSE, as we
shall see next, in Section 6.1.1. Astonishingly, p = 1/γ (j = 10) provides very interesting results, even for large values of γ .

6.1.1. Mean values of the EVI-estimators at optimal levels
Table 1 is again related with the EVγ model. We there present, for n = 200, 500, 1000, 2000 and 5000, the simulated

mean values at optimal levels (levels where RMSEs areminima as functions of k) of the EVI-estimators CH , in (16) andHp(k),
in (8), for p = j/(10γ ), and the three regions, j = 0, 2, 4, j = 5, 7, 9 and j = 10. Information on 95% confidence intervals,
computed on the basis of the 20 replicates with 5000 runs each, is also provided. Among the estimators considered, and
distinguishing the three regions of j-values, the one providing the smallest squared bias is underlined, and written in bold
whenever it outperforms the behaviour achieved in the previous region.

Remark 8. Wemay draw the following specific comments.

• As intuitively expected, Hp0 are decreasing in p until pmin, approaching the true value of γ , not only for the EVγ model,
but for all simulated models.
• The above mentioned remark means that, regarding bias, and if we restrict ourselves to the region of p-values where we

can guarantee asymptotic normality, we can safely take p = 4/(10γ ). However, we have to pay attention to variance,
which increases with p.
• The MOP EVI-estimators outperform the MVRB EVI-estimators, unless both γ and n are large.

6.1.2. Mean square errors and relative efficiency indicators at optimal levels
We have computed the Hill estimator, in (8) whenever p = 0, at the simulated value of k0|0 := argmink MSE


H0(k)


,

the simulated optimal k in the sense of minimal RMSE, not relevant in practice, but providing an indication of the best
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Table 1
Simulated mean values, at optimal levels, and associated 95% confidence intervals, of CH(k) and Hp(k), with p = j/(10γ ),
j = 0, 2, 4, 5, 7, 9, 10, for EV underlying parents.

EVγ parent, γ = 0.25
n 200 500 1000 2000 5000

CH 0.372± 0.0021 0.353± 0.0014 0.342± 0.0017 0.330± 0.0008 0.317± 0.0008
j = 0 0.392± 0.0026 0.365± 0.0019 0.348± 0.0012 0.335± 0.0013 0.321± 0.0010
j = 2 0.350± 0.0026 0.338± 0.0011 0.330± 0.0013 0.321± 0.0008 0.312± 0.0009
j = 4 0.309± 0.0006 0.303± 0.0013 0.301± 0.0013 0.300± 0.0011 0.294± 0.0008

j = 5 0.295± 0.0023 0.293± 0.0012 0.289± 0.0011 0.288± 0.0007 0.285± 0.0007
j = 7 0.278± 0.0007 0.274± 0.0004 0.272± 0.0005 0.270± 0.0005 0.268± 0.0003
j = 9 0.261± 0.0002 0.259± 0.0002 0.258± 0.0002 0.257± 0.0001 0.256±0.0001

j = 10 0.250± 0.0000 0.250± 0.0000 0.250± 0.0000 0.250± 0.0000 0.250±0.0000

EVγ parent, γ = 0.5

CH 0.573± 0.0016 0.564± 0.0014 0.558± 0.0012 0.550± 0.0009 0.541± 0.0006
j = 0 0.624± 0.0033 0.596± 0.0011 0.579± 0.0016 0.565± 0.0010 0.551± 0.0010
j = 2 0.602± 0.0019 0.582± 0.0016 0.570± 0.0013 0.559± 0.0012 0.547± 0.0009
j = 4 0.570± 0.0016 0.562± 0.0015 0.558± 0.0012 0.550± 0.0008 0.541± 0.0007

j = 5 0.556± 0.0024 0.551± 0.0012 0.546± 0.0011 0.541± 0.0007 0.536± 0.0008
j = 7 0.532± 0.0015 0.526± 0.0005 0.524± 0.0006 0.523± 0.0007 0.520± 0.0004
j = 9 0.512± 0.0004 0.510± 0.0001 0.509± 0.0001 0.507± 0.0002 0.506±0.0001

j = 10 0.497± 0.0003 0.499± 0.0000 0.500± 0.0000 0.500± 0.0000 0.500±0.0000

EVγ parent, γ = 1

CH 0.975± 0.0046 1.003± 0.0024 1.004± 0.0013 1.003± 0.0007 1.001± 0.0004
j = 0 1.124± 0.0032 1.091± 0.0030 1.073± 0.0020 1.058± 0.0014 1.042± 0.0009
j = 2 1.109± 0.0032 1.083± 0.0018 1.067± 0.0014 1.054± 0.0013 1.040± 0.0011
j = 4 1.085± 0.0019 1.070± 0.0017 1.060± 0.0015 1.050± 0.0010 1.039± 0.0010

j = 5 1.070± 0.0024 1.060± 0.0015 1.053± 0.0013 1.046± 0.0009 1.037± 0.0006
j = 7 1.041± 0.0011 1.035± 0.0009 1.031± 0.0009 1.027± 0.0005 1.023± 0.0004
j = 9 1.016± 0.0003 1.013± 0.0004 1.012± 0.0001 1.010± 0.0003 1.009± 0.0000

j = 10 0.959± 0.0019 0.979± 0.0010 0.987± 0.0005 0.992± 0.0004 0.995± 0.0002

possible performance of the Hill estimator. Such an estimator is denoted by H00. We have also compute Hp0, the estimator
Hp computed at the simulated value of k0|p := argmink MSE


Hp(k)


. The simulated indicators are

REFFp|0 :=
RMSE (H00)

RMSE

Hp0
 = MSE (H00)

MSE

Hp0
 . (38)

A similar indicator has also been computed for the CH EVI-estimator, and as mentioned in Remark 5, the higher these
indicators are, the better the associated EVI-estimators perform, comparatively to H00.

Again as an illustration of the results obtained, we present Table 2. In the first row, we provide the RMSE ofH00 so that we
can easily recover the RMSE of all other estimators Hp0. The following rows provide the REFF indicators of CH|H and REFFp|0
in (38), for the different MOP EVI-estimators under study. A similar mark (underlined and bold) is used for the highest REFF
indicator. Also, if the highest value in the first two regions is not achieved by some of the MOP EVI-estimators, we place in
italic the highest REFF among those MOP EVI-estimators. Confidence intervals are not provided for REFF-indicators larger
than 20, achieved when j = 10.

Remark 9. We now provide a few comments related with the REFF-indicators.
• Just as for mean values at optimal levels, and again if we restrict ourselves to the region of p-values where we can

guarantee asymptotic normality, the best results were obtained for p = 4/(10γ ) for all simulatedmodels but the Fréchet
(independently of γ ) and models with γ = 1.
• For Fréchet underlying parents, the REFF-indicator REFFp|0, provided in Table 3 for p = j/γ , j = 1(1)10, does not depend

on γ .
• Regarding RMSE, and at optimal levels, the consistent MOP EVI-estimators can always beat the MVRB EVI estimators,

also computed at optimal levels.

Conjecture 1. We are just led to conjecture that the choice p = 1/γ can be an adequate one, but we have no theoretical support
for such a choice, because for such a p-value we can guarantee neither asymptotic normality nor consistency. We have however
at the moment a computational validation of the result. Note also that the bias leading term is null for p = 1/γ , as can be seen
from (22). We have thus also considered in the case-studies the MOP EVI-estimate,H, associated withp = 1/H00, and computed
at k = ⌊n0.99

⌋.
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Table 2
Simulated RMSEs of H (first row) and REFF-indicators of CH(k) and Hp(k), p = j/(10γ ), j = 2, 4, 5, 7, 9, 10, for EV
underlying parents, together with 95% confidence intervals.

EVγ parent, γ = 0.25
n 200 500 1000 2000 5000
RMSEH 0.216± 0.0185 0.174± 0.0141 0.151± 0.0136 0.133± 0.0127 0.113± 0.0108

CH 1.238± 0.0056 1.171± 0.0042 1.130± 0.0021 1.101± 0.0021 1.072± 0.0020
j = 2 1.245± 0.0043 1.180± 0.0024 1.147± 0.0029 1.121± 0.0021 1.099± 0.0016
j = 4 1.744± 0.0067 1.565± 0.0055 1.463± 0.0066 1.379± 0.0052 1.300± 0.0040

j = 5 2.154± 0.0078 1.905± 0.0070 1.757± 0.0077 1.633± 0.0064 1.509± 0.0052
j = 7 3.745± 0.0147 3.264± 0.0138 2.975± 0.0127 2.723± 0.0104 2.459± 0.0075
j = 9 11.358± 0.0444 9.895± 0.0578 8.989± 0.0493 8.189± 0.0308 7.331± 0.0242

j = 10 4698.72 45624.5 226148 1144373 7957240

EVγ parent, γ = 0.5
RMSEH 0.200± 0.0199 0.157± 0.0153 0.133± 0.0132 0.113± 0.0100 0.092± 0.0081

CH 1.501± 0.0097 1.476± 0.0059 1.452± 0.0057 1.417± 0.0057 1.359± 0.0052
j = 2 1.143± 0.0023 1.104± 0.0020 1.085± 0.0022 1.071± 0.0020 1.059± 0.0021
j = 4 1.409± 0.0050 1.287± 0.0049 1.221± 0.0054 1.169± 0.0052 1.123± 0.0048

j = 5 1.650± 0.0059 1.468± 0.0066 1.362± 0.0071 1.275± 0.0067 1.189± 0.0062
j = 7 2.663± 0.0115 2.290± 0.0110 2.060± 0.0104 1.857± 0.0097 1.643± 0.0113
j = 9 7.616± 0.0408 6.479± 0.0360 5.732± 0.0267 5.071± 0.0218 4.330± 0.0278

j = 10 50.756 132.335 258.474 516.237 1188.7

EVγ parent, γ = 1
RMSEH 0.202± 0.0229 0.151± 0.0140 0.122± 0.0109 0.100± 0.0090 0.077± 0.0068

CH 1.182± 0.0230 1.410± 0.0212 1.679± 0.0192 2.005± 0.0192 2.500± 0.0218
j = 2 1.088± 0.0032 1.064± 0.0018 1.052± 0.0025 1.042± 0.0019 1.036± 0.0015
j = 4 1.225± 0.0068 1.134± 0.0040 1.084± 0.0062 1.045± 0.0055 1.014± 0.0046

j = 5 1.362± 0.0074 1.214± 0.0051 1.128± 0.0072 1.055± 0.0072 0.987± 0.0061
j = 7 2.016± 0.0100 1.688± 0.0083 1.484± 0.0088 1.306± 0.0087 1.119± 0.0081
j = 9 5.250± 0.0314 4.334± 0.0178 3.696± 0.0170 3.127± 0.0165 2.514± 0.0181

j = 10 5.086± 0.2246 7.110± 0.3126 8.915± 0.2890 11.316± 0.4723 14.851±0.4968

Table 3
Simulated RMSEs of H/γ (first row) and REFF-indicators of CH(k) and Hp(k) (independent of γ ), for p = j/(10γ ), j = 1(1)10, for Fréchet parents, together
with 95% confidence intervals.

Fréchet parent, γ
n 200 500 1000 2000 5000
RMSEH 0.163± 0.1520 0.117± 0.1432 0.091± 0.1345 0.071± 0.1977 0.052± 0.1764

CH 1.237± 0.1591 1.337± 0.0080 1.460± 0.0123 1.574± 0.0123 1.795± 0.0097
j = 1 1.031± 0.0011 1.026± 0.0010 1.023± 0.0009 1.020± 0.0010 1.019± 0.0010
j = 2 1.059± 0.0028 1.046± 0.0020 1.039± 0.0020 1.032± 0.0024 1.030± 0.0019
j = 3 1.084± 0.0057 1.055± 0.0032 1.041± 0.0037 1.028± 0.0040 1.022± 0.0033
j = 4 1.120± 0.0081 1.060± 0.0047 1.027± 0.0055 0.999± 0.0069 0.982± 0.0053

j = 5 1.195± 0.0092 1.086± 0.0061 1.021± 0.0071 0.964± 0.0090 0.918± 0.0072
j = 6 1.347± 0.0100 1.173± 0.0071 1.066± 0.0078 0.970± 0.0091 0.878± 0.0074
j = 7 1.645± 0.0110 1.383± 0.0076 1.219± 0.0087 1.071± 0.0088 0.924± 0.0073
j = 8 2.277± 0.0130 1.864± 0.0097 1.602± 0.0107 1.370± 0.0099 1.137± 0.0090
j = 9 4.196± 0.0237 3.363± 0.0151 2.833± 0.0169 2.370± 0.0142 1.901±0.0140

j = 10 5.383± 0.0389 5.320± 0.0231 5.140± 0.0260 4.875± 0.0305 4.466±0.0248

7. Case-studies

We now consider an application of Algorithm 5.1 to:

(1) two randomly simulated samples, with size n = 500, from a Fréchet parent with γ = 0.25, denoted by FRE1 and FRE2;
(2) two randomly simulated samples, with size n = 1000, from a Student tν parent with ν = 4 (γ = 1/ν = 0.25), denoted

by STU1 and STU2;
(3) the data analysed in Drees (2003) and later on in Araújo Santos et al. (2006) and Gomes et al. (in press-b), the daily

log-returns of NASDAQ index from 1997 to 2000, which corresponds to a sample size given by n = 1037;
(4) a sample, with size n = 371, of automobile claim amounts exceeding 1,200,000 Euro over the period 1988–2001,

gathered fromseveral European insurance companies co-operatingwith the same re-insurer (Secura BelgianRe), already
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studied in Beirlant et al. (2004, 2008), Vandewalle and Beirlant (2006) andGomes et al. (2011b), as an example to excess-
of-loss reinsurance rating and heavy-tailed distributions in car insurance, and denoted by SECURA;

(5) a sample, of size n = 2627, denoted by FIRES, already considered in Gomes et al. (in press-a) and associated with the
number of hectares, exceeding 100 ha, burnt during wildfires recorded in Portugal during 14 years (1990–2003).

Remark 10. Apart from the bootstrap adaptive EVI-estimates in Algorithm 5.1 and the bootstrap CIs, in Remark 6, we
consider, for the Hill estimator, the most common estimate of k0|0 ≡ k0|H(n) := argmink MSE(H0(k)) (Hall, 1982), with
k0|• given in (25), i.e.,

k̂0|0 = min

n− 1,


(1− ρ̂)2n−2ρ̂/


−2 ρ̂ β̂21/(1−2ρ̂)


+ 1


. (39)

Next, with bk,n,β,ρ = 1+ β(n/k)ρ/(1− ρ), we consider the approximate 100(1− α)% CI for γ ,
H(k)

bk,n,β̂,ρ̂ + ξ1−α/2/
√
k
,

H(k)

bk,n,β̂,ρ̂ − ξ1−α/2/
√
k


.

For all data sets under analysis, the sample paths of the ρ-estimates associated with τ = 0 and τ = 1 led to the choice
of the estimates associated with τ = 0, on the basis of any stability criterion for large k, including the one in Step 2 of the
algorithm. In Tables 4–6, we present a summary of the data analysis performed. In Table 4, apart from an indication of
the sample size n, the number n0 of positive elements in the sample, and the estimates (β̂0, ρ̂0) of the vector of second-
order parameters (β, ρ), in (11), obtained in Step 4, we provide the sub-sample size choice n∗1 , in Step 14, the value a∗ and
associated p∗min, in Step 15, and the bootstrap threshold estimates,k0|0, k̂∗0|0 and k̂∗∗0 , in (39), Steps 9 and 16, respectively. We
further presentp = 1/H00 := 1/H(k0|0).

Table 4
Values of n, n0 , estimates (β̂0, ρ̂0), n∗1 , a

∗ and p∗min , adaptive estimates of the threshold k (k̂0|0 , k̂∗0|0 , k̂
∗∗

0 ), andp = 1/H00 , for
the data sets under analysis.

Data n n0 (β̂0, ρ̂0) n∗1 a∗ p∗min k̂0|0 k̂∗0|0 k̂∗∗0 p
FRE1 500 500 (0.89,−1.02) 409 5 1.493 88 101 101 3.670
FRE2 500 500 (0.87,−1.50) 366 6 0.544 137 201 176 3.670
STU1 1000 496 (1.02,−0.72) 483 3 0.435 52 37 40 2.748
STU2 1000 489 (1.03,−0.67) 479 2 0.528 47 10 14 3.192
SECURA 371 371 (0.81,−0.74) 266 6 1.010 54 53 61 3.423
NASDAQ 1036 570 (1.02,−0.73) 453 3 0.397 58 48 48 2.468
FIRES 2627 2627 (0.48,−0.39) 1917 2 0.136 120 57 71 1.401

In Table 5, we provide the adaptive Hill-estimates, H00 := H(k̂0|0), and the bootstrap adaptive EVI-estimates H∗0 :=
H0,n,n∗1 |T

andH∗∗ ≡ Hp∗min
:= Hp∗min,n,n∗1 |T

, obtained through Algorithm 5.1. Close to those estimates, and between parenthesis,
we place the associated approximate 99% CIs. We further present the ad-hoc estimatesH = Hp̃(⌊n0.99

⌋).

Table 5
Adaptive EVI-estimates and associated 99% CIs obtained through Hill estimators at estimated optimal level (H00), bootstrap
adaptive estimates (H∗0 ,H∗p∗min

) in Algorithm 5.1 andH = Hp̃(⌊n0.99
⌋), for the data sets under analysis.

Data H00 := H(k̂0|0) H∗0 := H0,n,n∗1 ,|T H∗∗ := Hp∗min,n,n∗1 |T
H

FRE1 0.272 (0.2020, 0.3406) 0.268 (0.1762, 0.3135) 0.266 (0.1777, 0.3158) 0.252
FRE2 0.272 (0.2145, 0.3283) 0.276 (0.2012, 0.3015) 0.265 (0.1915, 0.3062) 0.247
STU1 0.364 (0.2547, 0.5095) 0.359 (0.1870, 0.4913) 0.285 (0.1266, 0.4065) 0.364
STU2 0.313 (0.2153, 0.4453) 0.242 (0.0381, 0.4323) 0.267 (0.1311, 0.3900) 0.313
SECURA 0.292 (0.1998, 0.3837) 0.297 (0.1591, 0.3692) 0.282 (0.1565, 0.3508) 0.274
NASDAQ 0.405 (0.2876, 0.5531) 0.378 (0.2139, 0.4947) 0.372 (0.2101, 0.4909) 0.405
FIRES 0.714 (0.5332, 0.8220) 0.738 (0.4288, 0.9321) 0.725 (0.4428, 0.8889) 0.682

In Table 6, we provide information on the bootstrap estimates of bias and RMSE of the adaptive estimates obtained in the
implementation of Algorithm 5.1, the sizes of the CIs in Table 5, respectively denoted by sH , s

∗

0
and sp∗min

, and the corrected-

bias bootstrap adaptive estimates, H
∗

0 = H∗0 − b∗0,0 and H
∗∗
= H∗p∗min

− b∗0,p∗min
. The smallest bias and RMSE estimates, the

smallest size and the EVI-estimate close to the true value of γ (known only for the four initial samples) are written in bold.
The second smallest size is written in italic.

Finally, and to illustrate the robustness of themethod to changes ofn1, we picture Fig. 8,wherewe represent the bootstrap
RMSE estimates associated with a = 6, i.e. p = a/20H∗0 , for the samples FRE2 and SECURA.
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Table 6
Adaptive bootstrap estimates of bias and RMSE of the adaptive estimates obtained through Algorithm 5.1, sizes of the CIs in
Table 5, and corrected-bias bootstrap adaptive EVI-estimates, for the different data sets under analysis.

Data b∗0,0 b∗0,p∗min
RMSE

∗

0
RMSE

∗

p∗min
sH s∗0 sp∗min

H
∗

0 H
∗∗

FRE1 0.023 0.019 0.035 0.033 0.139 0.137 0.138 0.245 0.247
FRE2 0.025 0.016 0.031 0.027 0.114 0.100 0.115 0.251 0.249
STU1 0.020 0.019 0.062 0.058 0.255 0.304 0.280 0.339 0.267
STU2 0.007 0.006 0.077 0.051 0.230 0.394 0.259 0.235 0.261
SECURA 0.033 0.029 0.052 0.047 0.184 0.210 0.194 0.264 0.254
NASDAQ 0.023 0.021 0.059 0.059 0.266 0.281 0.281 0.354 0.351
FIRES 0.057 0.059 0.113 0.105 0.289 0.503 0.446 0.680 0.666

Fig. 8. Bootstrap RMSE estimates for FRE2 (left) and SECURA (right), as function of b (n1 = nb).

7.1. Concluding remarks

• For the four simulated samples, we know the true value of γ , the value 0.25, and we see that such a value belongs to all
99% CIs, but the one associated with the Hill estimate and the STU1 sample. It is again clear that Hill’s estimation leads to
a strong over-estimation of the EVI and the adaptive MOP provides a more adequate EVI-estimation.
• The size of theMOP-CI is always the second largest, but the smallest RMSE is always the one associatedwith theMOP EVI-

estimators. A similar comment applies to the smallest BIAS, excluding the FIRES sample. These are obviously arguments
in favour of the new methodology.
• These case studies claim for a Monte-Carlo derivation of the properties of the adaptive MOP EVI-estimate provided by

Algorithm 5.1. Also, a robust version of these MOP EVI-estimators, similar to the one in Beran and Schell (2012), can be
of high practical interest. These are however topics out of the scope of this article.
• Results obtained for other simulated samples, not presented here, clearly indicate an over-estimation of the most

common adaptive Hill estimate and an overall best performance of this data-driven MOP method of estimation of the
EVI.
• The ad-hoc choiceH works onlywhenH00 does not provide a clear over-estimation of the EVI, as happenswith the Fréchet

samples.
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