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a b s t r a c t

The PageRank algorithm is widely considered these years because of its great significance
in search engine technology and other scientific domains. Though the power method is
the initial measure to settle the PageRank problem, it gives poor convergence when the
damping factor is sufficiently close to 1. This difficulty encourages researchers to present
improved iterativemethods for accelerating PageRank computations. In this paper, a cheap
and practical extrapolation approachwhich is determined by the trace of the Googlematrix
is proposed, and it is more attractive when combined with the well-known Arnoldi-type
algorithm. Convergence analysis of our algorithms is given. Numerical examples illustrate
the efficiency of these accelerated schemes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

PageRank is a system of scores based on the Web link structure to rank the importance of Web pages [1]. PageRank
computations have played a vital role in modern Web search ranking systems and have received widespread attention by
researchers since it was devised by Google. After years of development, the PageRank algorithm is now frequently applied
to any graph or network in any domain [2], such as biology [3–5], neural network [6,7] and social network [8] analysis,
bibliometric indexes [9] and so forth.

Computing PageRank is mathematically a process of determining the stationary probability vector called the PageRank
vector of the Google matrix, where the Google matrix is a sparse Markov matrix with dimension in excess of some billions.
The calculation of the PageRank vector can be viewed as either the solution of an eigenvector problem or an equivalent
form, a homogeneous linear system. Due to the Web graph’s high dimension and sparse structure, the power method and
its variants based on matrix–vector products are preferred for the eigenvector problem. The power method was initially
considered for the PageRank computation by Brin and Page et al. [1], since then a number of acceleration techniques have
been presented such as adaptive method [10], lumpable aggregation method [11,12], parallel computation [13], quadratic
extrapolationmethod [14], Arnoldi-type algorithm [15], vector extrapolationmethods [16,17], inner–outer algorithms [18],
and so on. For more details about the PageRank problem, see, e.g., [2,19,20].

Among the aforementioned strategies, Krylov subspace methods have been implemented constantly. In 2006, Golub and
Greif proposed an outstanding Arnoldi-type algorithm [15] which is the restarted refined Arnoldi method [21] but entails
no Ritz value computations. However, it does not perform efficiently when the Arnoldi step is small and the damping factor
is high. Wu and Wei have done some improvements by developing the Power–Arnoldi algorithm [22] and the Arnoldi-
Extrapolation algorithm [23], where the former method combines the power method with the thick restarted Arnoldi
algorithm [24] and the latter knits an extrapolationmethod based on Ritz valueswith the Arnoldi-type algorithm.Motivated
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by theseworks,we give a newextrapolationmethod to speed up the convergence of power iterations. Our newextrapolation
strategy is easy to be executed as it is only determined by the trace of the Google matrix, and is similar to the quadratic
extrapolation method in the numerical behavior but superior in the storage saving. Furthermore, by combining this new
extrapolation process with the Arnoldi-type algorithmwe establish a hybridmethodwhich shows satisfactory performance
in the PageRank computation especially when high damping factor is given.

The remainder of this paper is organized as follows. The background of the PageRank problem is introduced in Section 2.
The power method with the new extrapolation measure is discussed and analyzed in Section 3. In Section 4 the new
extrapolation strategy is combined with the Arnoldi-type algorithm and the convergence theorem is provided. Numerical
experiments show the merits of our techniques in Section 5, and conclusions point out the future work in Section 6.

2. Background

The adjacency matrix P ∈ Rn×n of the Web graph is described as

P = (pij) =


1

deg(i)
, if page i links to page j,

0, otherwise,

where deg(i) denotes the outdegree of page i. If page i contains no outlinks, then the ith row of P will be zero and page i is
called a dangling node. The existence of dangling nodes is a drawback for computing PageRank. To remedy this simply is to
revise the form of P by setting

P̄ = P + dwT ,

where d = (di) ∈ Rn with

di =


1, if deg(i) = 0,
0, otherwise,

and 0 ≤ w = (wi) ∈ Rn with ∥w∥1 = 1. Then P̄ is a row-stochastic matrix, i.e., P̄e = e where e = (1, 1, . . . , 1)T .
To guarantee the aperiodicity and irreducibility of P̄ , a damping factor α and a personalization vector v are introduced to
establish the final Google matrix A as

A = [αP̄ + (1 − α)evT
]
T ,

= αP̄T
+ (1 − α)veT , α ∈ [0, 1),

where v is a probability vector and is usually taken as v =
1
n e in the experiments. Therefore A is column-stochastic,

irreducible and by the Perron–Frobenius theorem [25], A has a simple and maximum eigenvalue equal to 1, whose
corresponding eigenvector is nonnegative and unique.When such eigenvector is normalized, it is then named the PageRank
vector which is denoted as u∗. That is to say, the PageRank vector u∗ satisfies

Au∗
= u∗, ∥u∗

∥1 = 1.

The power method (Algorithm 1) is the traditional choice for PageRank computation. According to Algorithm 1, for a
starting vector u(0), the iteration sequence u(l) converges to the unique dominant eigenvector of A as αl [19]. Thus a small
value of α ensures a fast convergence rate and α is originally chosen as 0.85 by Google. However, a higher value of α (close
to 1) means the Google matrix A approaches the original Web link graph and gives a truer ranking, but it leads to apparent
slow convergence. Hence it is important to design a simple and efficient accelerated method.

Algorithm 1 (The Power Method)
1. Choose an initial positive vector u(0) and a prescribed tolerance ε.
2. Set l = 1;
Repeat
u(l)

= Au(l−1);
τ = ||u(l)

− u(l−1)
||1;

u(l)
= u(l)/||u(l)

||1;
l = l + 1;
Until τ < ε

In [14], Kamvar et al. give the quadratic extrapolation method to accelerate the convergence of the power method
by periodically subtracting off estimates of the nonprincipal eigenvectors from the current iterate of the power method.
Brezinski et al. generalize the quadratic extrapolation method by establishing its relationship with the Krylov subspace
methods [16]. Sidi then applies the minimal polynomial extrapolation (MPE) and the reduced rank extrapolation (RRE) to
the PageRank computations, and demonstrates that the quadratic extrapolation method is very closely related to MPE [17].

In the following section, we will depict a new extrapolation technique which depends on the trace of the Google matrix
and is efficient in speeding up the convergence of the power method.
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3. The power method with extrapolation process based on matrix trace

The Google matrix Awill be more closer to the original Web link graph when the damping factor α is sufficiently close to
1, however, the increasing α will dramatically slow down the convergence of the powermethod. Accordingly, in this section
we introduce our new extrapolation strategy based on the trace of A to accelerate the convergence of the powermethod. Our
new algorithmwill produce a sequence of subspaces that converges linearly to the invariant eigenspace span{u∗

}, where u∗

is the PageRank vector. We will also extend our discussion to show that the convergence rate of the new algorithm depends
on a contraction number that is smaller than αm−1 (m is a described positive integer), which implies that our algorithm can
improve the convergence of the power method.

3.1. Derivation

Since the Google matrix A is a primitive stochastic matrix, all its eigenvalues λi (i = 1, 2, . . . , n) must satisfy 1 = λ1 >
|λ2| ≥ |λ3| ≥ · · · ≥ |λn| ≥ 0, which indicates that the characteristic polynomial of A can be written as (λ − 1)QA(λ) where
QA(λ) is a polynomial of degree n − 1 without the factor λ − 1. Thus, by Cayley–Hamilton theorem [26], (A − I)QA(A) = 0
and (A − I)QA(A)u = 0 for any nonzero vector u. By considering the properties of minimal polynomial, we may conclude
that there exists at least a nonzero vector u(0) such that QA(A)u(0)

≠ 0, which implies that QA(A)u(0) can be looked as an
eigenvector corresponding to the eigenvalue 1, or in other words, QA(A)u(0) gives a representation of its parallel vector, the
PageRank vector u∗. However, it is hopelessly complicated and impractical to compute QA(A)u(0) when A is a high order
matrix. This leads to the motivation of a good approximation to the polynomial QA(λ).

In general, the hyperlink matrix P of the Web graph may contain a considerable number of dangling nodes. Assume that
P has l dangling nodes, then the Google matrix A has at least l identical columns, therefore zero is an eigenvalue of A with
the algebraic multiplicity not less than l − 1. Furthermore, QA(λ) has the form QA(λ) = λn−1

− (µ − 1)λn−2
+ α3λ

n−3
+

α4λ
n−4

+ · · · + αpλ
n−p (p ≤ n − l + 1) where µ is the trace of A and αi (i = 3, 4, . . . , p) are scalars with αp ≠ 0. As a

result, the larger the l, the fewer the nonzero items QA(λ) will have. Consequently, it is natural to use λn−1
− (µ− 1)λn−2 as

a rational approximation to QA(λ) when copious dangling nodes exist.1 Then, we can select [An−1
− (µ − 1)An−2

]u(0)
≠ 0

as an approximation for the PageRank vector u∗. Further, we observe that

[An−1
− (µ − 1)An−2

]u(0)
= An−2

[A − (µ − 1)I]u(0)

= An−m−1
[A − (µ − 1)I]Am−1u(0)

= An−m−1
[A − (µ − 1)I]u(m−1)

= An−m−1
[u(m)

− (µ − 1)u(m−1)
],

where m < n − 1 is a positive integer and u(i) (i = m − 1,m) is the ith iteration of the power method (Algorithm 1). Such
observation inspires us to establish an extrapolation scheme based upon u(m−1), u(m) andµ to accelerate the power iteration.
That is, for an initial vector u(0), we can execute the power iteration form steps obtaining u(m−1) and u(m), then approximate
the PageRank vector u∗ by the linear combination of u(m−1) and u(m) which is given as u(0)

new = u(m)
− (µ − 1)u(m−1), where

u(0)
new is viewed as the new initial vector to restart the power iteration. In aword, we can apply this new extrapolation process

in the cycling mode to speed up the convergence of the power method.
Next we derive the formula ofµwhich stands for the trace of the Googlematrix A. Remember that A = αP̄T

+(1−α)veT ,
and by adding up all the main diagonal elements of A, we have µ = 1 + α( l

n − 1). Moreover, it is obvious that µ < 1 since
l ≤ n and 0 ≤ α < 1.

We now give the power method with the new extrapolation procedure based on µ as follows.

Algorithm 2 (The Power Method with the Extrapolation Process Based on Trace)
1. Choose an initial positive normalized vector u(0), a positive integerm and a prescribed tolerance ε.

2. Compute the number of dangling nodes l and set µ = 1 + α(
l
n

− 1).

3. Run the power iterationm steps to obtain u(m−1) and u(m):
{ for i = 1 tom
u(i)

= Au(i−1);
τ = ||u(i)

− u(i−1)
||1;

u(i)
= u(i)/||u(i)

||1;
if τ <= ε
u∗

= u(i) and break;
else i = i + 1;
end for }

1 In particular, if A is a 2 × 2 matrix, then its characteristic polynomial is λ2
− µλ + (µ − 1) and the approximation [A − (µ − 1)I]u(0) (for any vector

u(0)
∈ R2 such that [A − (µ − 1)I]u(0)

≠ 0) is an accurate eigenvector corresponding to eigenvalue 1.
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Table 1
Comparison of matrix–vector multiplications and storage requirements.

Power method Quadratic extrapolation Algorithm 2

Matrix–vector 1 3 1
Storage 2 4 2

4. Set u(0)
= u(m)

− (µ − 1)u(m−1);
u(0)

= u(0)/||u(0)
||1;

τ = ||u(0)
− u(m)

||1;
if τ > ε
go to step 3;
else
u∗

= u(0) and break.
In Table 1, we compare Algorithm 2 with the power method and the quadratic extrapolation method [14] in terms of

the storage requirements and computational cost. The advantage of Algorithm 2 is that it has approximately the same
computational complexity as the power method and is more economical than the quadratic extrapolation method both in
terms of storage and computational effort. As a result, Algorithm 2 is an effective technique for speeding up the convergence
of the power method, especially in the high damping factor case (see examples in Section 5).

3.2. Convergence analysis

In this subsection, we pay attention to the convergence of Algorithm 2. Employing the view of subspace iteration, we can
consider Algorithm 22 as the stationary subspace iteration

S(i)
= p(A)S(i−1), S(0)

= span{u(0)
}, i = 1, 2, 3, . . . ,

where p(A) = Am−1
[A − (µ − 1)I] is a matrix polynomial of degreem. In order to reveal the convergence rate of Algorithm

2, we begin with the following theorems.

Theorem 1 ([27]). If the row-stochastic matrix P̄ ∈ Rn×n has at least two irreducible closed subsets (which is the case for the
Web hyperlink matrix), then the second eigenvalue of the Google matrix A is given by λ2 = α where α is the damping factor.

Theorem 2 ([28]). Let B ∈ Cn×n (need not to be diagonalizable), and let p be a polynomial of degree m that is smaller than n.
Let λ1, λ2, . . . , λn denote the eigenvalues of B, ordered so that |p(λ1)| ≥ |p(λ2)| ≥ · · · ≥ |p(λn)|. Suppose that k is an integer
satisfying 1 ≤ k < n for which |p(λk)| > |p(λk+1)|, and let ρ = |p(λk+1)|/|p(λk)| < 1. Let U and V be the invariant subspaces
of B associated with λ1, λ2, . . . , λk and λk+1, λk+2, . . . , λn, respectively. Consider the stationary subspace iteration

S(i)
= p(B)S(i−1), S(0)

= S, i = 1, 2, 3, . . . ,

where S is a k-dimensional subspace satisfying S ∩ V = {0}. Then for every ρ̂ satisfying ρ < ρ̂ < 1 there is a constant C such
that

d(S(i),U) ≤ C ρ̂ i, i = 1, 2, 3, . . . ,

where d(X, Y ) denotes the distance between X and Y as

d(X, Y ) = max
x∈X

∥x∥=1

d(x, Y ) = max
x∈X

∥x∥=1

min
y∈Y

∥x − y∥.

Using Theorem 2, we can prove the following convergence theorem.

Theorem 3. Let A ∈ Cn×n be the Google matrix, let λi (i = 1, 2, . . . , n) be the eigenvalues of A ordered as 1 = λ1 > |λ2| ≥

|λ3| ≥ · · · ≥ |λn| ≥ 0, and let U and V be the invariant subspaces of A associated with λ1 and λ2, λ3, . . . , λn, respectively.
Define p(λ) = λm

− (µ−1)λm−1 and ρ = |p(α)|/|p(1)|, whereµ is the trace of A, α is the damping factor and m is the positive
integer given in Algorithm 2. Suppose that S(0)

= span{u(0)
} where u(0)

∈ Cn is an initial vector satisfying S(0)
∩ V = {0}.

Consider Algorithm 2 as the stationary subspace iteration

S(i)
= p(A)S(i−1), S(0)

= span{u(0)
}, i = 1, 2, 3, . . . .

2 Here the last loop of Algorithm 2 is omitted for the sake of clarity. Generally, the last loop of Algorithm 2 will achieve the precision ε during the power
iteration of step 3, and the subspace iteration of this loop is S(i)

= ArS(i−1), r < m.
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Then ρ < αm−1 < 1, and for every ρ̂ satisfying ρ < ρ̂ < αm−1 < 1 there exists a constant C such that

d(S(i),U) ≤ C ρ̂ i, i = 1, 2, 3, . . . ,

where d(X, Y ) denotes the distance between X and Y as

d(X, Y ) = max
x∈X

∥x∥=1

d(x, Y ) = max
x∈X

∥x∥=1

min
y∈Y

∥x − y∥.

Proof. By the conclusion of Theorem 1, we know that λ2 equals to α. Thus,

p(λ1) = p(1) = 2 − µ,

p(λ2) = p(α) = αm−1
[α − (µ − 1)].

It follows that ρ =
|p(α)|

|p(1)| = |
αm−1

[α−(µ−1)]
2−µ

| <
αm−1

[1−(µ−1)]
2−µ

= αm−1 < 1, which deduces that |p(λ1)| = |p(1)| > |p(α)| =

|p(λ2)|. Note that S(0)
∩ V = {0} holds where V represents the invariant subspaces of A associated with λ2, λ3, . . . , λn.

Therefore, as an immediate consequence of Theorem 2, we can gain Theorem 3. �

Remark 1. Since d(S(i),U) converges to zero, the subspace iteration related to Algorithm 2 generates a sequence of
subspaces {S(i)

} that converges to the dominant 1-dimensional invariant subspace U , where U is the invariant subspaces
of A associated with λ1. That is to say, Algorithm 2 generates a sequence of vectors which is convergent to the PageRank
vector u∗.

Remark 2. Theorem 3 indicates that the convergence rate of Algorithm 2 depends on ρ̂ where ρ̂ ∈ (ρ, αm−1), whichmeans
that Algorithm 2 can accelerate the convergence rate of the power method. In addition, the initial guess u(0) can be chosen
at random provided that span{u(0)

} ∩ V = {0}.

4. The Arnoldi-type method combined with Algorithm 2

In this section, we first present a hybrid approach which combines Algorithm 2 with the Arnoldi-type algorithm [15]
in order to speed up the convergence performance for PageRank computing with a moderately small overhead, then we
propose the convergence analysis of the approximate eigenvector obtained by this hybrid method to the exact one.

4.1. Blending Algorithm 2 into the Arnoldi-type method

The Arnoldi procedure (Algorithm 3) [29] is a famous orthogonal projection process for reducing a general matrix A into
the upper Hessenberg form. In short, given amatrix A, an initial vector v and a number of steps k, wewill have AVk = Vk+1H̃k

where the columns of Vk form an orthonormal basis of the Krylov subspace Kk(A, v) = span{v, Av, A2v, . . . , Ak−1v} and H̃k
is a (k + 1) × k upper Hessenberg matrix.

Algorithm 3 (Arnoldi Process)
1. Given the initial vector v, Arnoldi steps number k.
2. v1 = v/||v||2;
for j = 1 to k
z = Avj;
for i = 1 to j
hi,j = vT

j z;
z = z − hi,jzi;
end for
hj+1,j = ||z||2;
if hj+1,j = 0, quit
vj+1 = z/hj+1,j;
end for

By excluding the last row of H̃k, we obtain the matrix Hk whose eigenvalues are known as the Ritz values. Ritz values and
its corresponding eigenvectors are often utilized for approximating the eigenpairs of A. To find the dominant eigenpair of A,
the restartedArnoldimethod canbe appliedwhichuses theRitz vector computed from theprevious k-stepArnoldi process as
an initial vector for the next Arnoldi procedure. But in theory Ritz vectors may not converge to the true eigenvectors granted
that Ritz values do. Thus the refined Arnoldi algorithm [21] is designed in which the refined Ritz vectors are calculated by
the singular value decompositions.

In 2006, Golub and Greif proposed the remarkable Arnoldi-type algorithm (Algorithm 4) [15] which is a variant of the
restarted refined Arnoldi algorithmby forcing the largest Ritz value to be 1. The algorithm tries to seek the vector ũ satisfying

∥Aũ − ũ∥2 = min
u∈Kk(A,v)

∥u∥2=1

∥Au − u∥2,
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and
∥Aũ − ũ∥2 = σmin(H̃k − Ĩ)

holds where σ(·) denotes the non-zero singular value of a matrix and Ĩ stands for a k × k identity matrix augmented by a
row of zeros.
Algorithm 4 (The Arnoldi-type Method for Computing PageRank)
1. Given an initial vector v, an Arnoldi steps number k, and a prescribed tolerance ε.
2. Repeat
Run the Arnoldi process for computing Vk and H̃k;
Compute SVD: H̃k − Ĩ = UΣST ;
Set v = VkS(:,m);
Until σmin(H̃k − Ĩ) < ε

Nevertheless, the Arnoldi-type method may not behave efficiently when a high damping factor α and a small number
of Arnoldi steps k are picked [15,22]. Motivated by these tough problems, we address a hybrid method (Algorithm 5) that
combines Algorithm 2 with the Arnoldi-type method.
Algorithm 5 (The Arnoldi-type Method combined with Algorithm 2 )
1. Given an initial positive vector u(0), a positive integerm, an Arnoldi steps number k, and prescribed tolerance values ε1, ε
(ε1 > ε).
2. Run Algorithm 2 until τ < ε1;
3. Use the vector u resulted from step 2 as the initial vector for step 4;
4. Run Algorithm 4 until σmin(H̃k − Ĩ) < ε

Remark 3. Through step 2 and 3, we get the vector u fulfilling a sketchy convergence tolerance ε1, and then use u as an
initial vector of the Arnoldi-type method (step 4). Since u is a vector relatively approximating to the PageRank vector and
is taken as the initial guess of step 4, the Arnoldi-type method will be accelerated in reaching the convergence precision
ε. In the later section (Section 5), ε will be chosen to be 10−8 and ε1 will be selected such that ε1

ε
∈ {10, 102, 103, 104

},
e.g., ε1 = 10−6 and ε = 10−8, or ε1 = 10−5 and ε = 10−8.

4.2. Convergence analysis

We begin with some definitions. Let Pk be the orthogonal projector onto the Krylov subspace Kk(A, v1), and define
ϵk = min

p∈P∗
k−1

p(λ1)=1

max
λ∈∧(A)−λ1

|p(λ)|,

where P∗

k−1 stands for the set of all polynomials of degree not exceeding k−1 and∧(A) denotes the spectrum of A. To discuss
the convergence behavior of Algorithm 5, we first introduce a fundamental theorem which studies the distance between
the approximate eigenvector obtained from the Arnoldi’s method and the exact one.

Theorem 4 ([30]). Assume that A is diagonalizable and that the initial vector v1 in Arnoldi’s method has the expansion
v1 =

n
i=1 αiui with respect to A′s eigenbasis {ui}i=1,2,...,n in which ∥ui∥2 = 1, i = 1, 2, . . . , n and α1 ≠ 0. Then the following

inequality holds

∥(I − Pk)u1∥2 ≤ ξ1ϵk

where

ξ1 =

n
i=2

|αi|

|α1|
.

For the sake of ease of discussion, we assume that the Google matrix A is diagonalizable, then we state the convergence
analysis of Algorithm 5 in the following theorem.

Theorem 5. Assume that A is diagonalizable and the initial vector u(0) of Algorithm 5 can be written as u(0)
=

n
i=1 αiui (α1 ≠

0) where ui (i = 1, 2, . . . , n) are A′s normalized eigenvectors associated with eigenvalues λi (i = 1, 2, . . . , n) and 1 = λ1 >

|λ2| ≥ |λ3| ≥ · · · ≥ |λn| ≥ 0, let ξ1 =
n

i=2
|αi|
|α1|

, then:
(1) The initial vector of step 4 in Algorithm 5 has the form

u =
1
ω
û =

1
ω
As(m−1)+r

[A − (µ − 1)I]s
n

i=1

αiui, ω = ∥û∥2,

where r is the number of power iterations in the last cycle in step 3 in Algorithm 2, and s is the total restarting number in
step 4 in Algorithm 2.
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(2) The convergence about Algorithm 5 satisfies the following inequality:

∥(I − Qk)u1∥2 ≤ αs(m−1)+rβsξ1ϵk

where Qk represents the orthogonal projector onto the Krylov subspace Kk(A, u), β =
α+1−µ

2−µ
< 1 and α is the damping

factor.

Proof. Since the initial vector of Algorithm 5 is supposed to be written as u(0)
=

n
i=1 αiui, it is easy to verify (1) from the

construction of Algorithm 2.
Now, we turn to the verification of (2). Observe that for any v ∈ Kk(A, u) there exists a polynomial q(x) ∈ P∗

k−1 such that

v =
1
ω
As(m−1)+r

[A − (µ − 1)I]sq(A)

n
i=1

αiui

=
1
ω
As(m−1)+r

[A − (µ − 1)I]s

α1q(1)u1 +

n
i=2

αiq(λi)ui



=
1
ω

(2 − µ)sα1q(1)u1 +
1
ω

n
i=2

αiq(λi)λ
s(m−1)+r
i [λi − (µ − 1)]sui,

where the last equality is the immediate consequence of Au1 = u1 and Aui = λiui (i = 2, 3, . . . , n). Hence, we have ωv

(2 − µ)sα1q(1)
− u1


2

=

 n
i=2

αiq(λi)

(2 − µ)sα1q(1)
λ
s(m−1)+r
i [λi − (µ − 1)]sui


2

≤

n
i=2

|αi|

|α1|

|q(λi)|

|q(1)|
1

(2 − µ)s
|λi|

s(m−1)+r(|λi| + |µ − 1|)s

≤
αs(m−1)+r(α + 1 − µ)s

(2 − µ)s
·

n
i=2

|αi|

|α1|
· max

i≠1

|q(λi)|

|q(1)|
.

Let p(λi) =
q(λi)
q(1) (i = 2, 3, . . . , n), the above inequality then becomes ωv

(2 − µ)sα1q(1)
− u1


2

≤
αs(m−1)+r(α + 1 − µ)s

(2 − µ)s
· ξ1 · max

i≠1
|p(λi)|

= αs(m−1)+rβsξ1 · max
i≠1

|p(λi)|,

where β =
α+1−µ

2−µ
< 1 due to α < 1. Since

∥(I − Qk)u1∥2 = min
v∈Kk(A,u)

∥v − u1∥2,

then the result in (2) can be obtained directly. �

Remark 4. Theorem 5 proclaims that when the power method with the extrapolation process (Algorithm 2) is combined
with the Arnoldi-type method (Algorithm 4), the convergence speed can be successfully accelerated by the factor of at least
αs(m−1)+rβs, where both α and β are constants smaller than 1.

5. Numerical results

In this section we provide numerical experiments to illustrate the speedup achievements of Algorithm 2 and Algorithm
5 by MATLAB 2014b programming package on 2.6 GHz CPU with 8 GB RAM. The test matrices are downloaded
from http://www.cise.ufl.edu/research/sparse/matrices. As a rule, 1

n e is selected both as the starting vector u(0) and
personalization vector v for all the numerical examples. α is chosen in the interval [0.85, 0.999]. ∥Au(k)

− u(k)
∥1 ≤ 10−8

is employed as the stopping criterion where u(k) is the approximate eigenvector computed by the current iteration of the
involved method. Power, QuaExt, Arnoldi-type are respectively the brief denotations of the power method, the quadratic
extrapolation method, and the Arnoldi-type method. To exhibit the comparisons between the previous three methods and
our algorithms (Algorithm 2 and Algorithm 5), we enumerate total number of matrix–vector products and CPU time (in
seconds) required for convergence in tables.

Example 1. The testmatricesweuse here are 281 903×281 903web-Stanford and916 428×916 428web-Google, containing
respectively 172 and 176974 dangling nodes. We compare the numerical behaviors of Power, QuaExt and Algorithm 2. We

http://www.cise.ufl.edu/research/sparse/matrices
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Fig. 1. α = 0.9.

Fig. 2. α = 0.95.

set α = 0.9, 0.95 for web-Stanford and α = 0.9, 0.99 for web-Google. The quadratic extrapolation is applied every 60 power
iterations, and to be fair, the extrapolation strategy based on trace is also performed at every 60th power iteration (i.e.,
m = 60). In the following figures, the x-axis exhibits the iteration numbers (the times that multiplication Au occurs) and
y-axis shows the 1-norms of the residual vectors with Log function.

From Figs. 1 to 4, we notice that when the extrapolation strategy based on trace is applied periodically, Algorithm 2
can apparently accelerate the convergence of Power and lead to rapid decrease in the residual norms even α is close to 1.
The numerical performance of Algorithm 2 is slightly better than QuaExt in theweb-Stanford case, but somewhat similar to
QuaExt in theweb-Google case. Nevertheless, Algorithm 2 is easier to be used in practice andmore economical both in terms
of storage and computational effort compared to QuaExt.

Example 2. The test matrix wb-cs-stanford is a small one which contains 9914 nodes and 2861 dangling nodes. In Table 2,
we display experimental comparisons of Power, QuaExt, Arnoldi-type, Algorithm 2 and Algorithm 5 in terms of the total
number of matrix–vector multiplications and CPU time. For every 40 power iterations, we perform the new extrapolation
strategy based on trace to Algorithm 2 and Algorithm 5, and run the quadratic extrapolation procedure to QuaExt. Set the
number of the Arnoldi steps k = 4 or k = 6 for the Arnoldi process, and the tolerances ε1 = 10−4 or ε1 = 10−5 for
Algorithm 5.

Observe that Algorithm 2 behaves similar to QuaExt when α = 0.85 or α = 0.9, but a little better than QuaExt both in
the number of matrix–vector products and CPU time when α is sufficiently near 1. Moreover, Algorithm 5 records superior
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Fig. 3. α = 0.9.

Fig. 4. α = 0.99.

Table 2
Total number of matrix–vector products and CPU time(in brackets), wb-cs-stanford.

α Power QuaExt Arnoldi-type Algorithm 2 Algorithm 5
k = 4 k = 6 ε1 = 10−4 ε1 = 10−5

k = 4 k = 6 k = 4 k = 6

0.85 80(0.016) 77(0.013) 76(0.081) 60(0.065) 78(0.012) 56(0.029) 50(0.027) 63(0.031) 61(0.029)
0.9 118(0.027) 107(0.018) 92(0.11) 78(0.089) 113(0.016) 75(0.034) 67(0.026) 83(0.037) 77(0.031)
0.99 1143(0.23) 934(0.14) 596(0.61) 390(0.41) 930(0.12) 435(0.28) 305(0.11) 395(0.08) 431(0.06)
0.999 11396(2.31) 4230(0.63) 3320(3.39) 798(0.85) 4185(0.56) 1483(0.92) 965(0.42) 1615(0.34) 1477(0.21)

results when α is of high value. For instance, α = 0.999, k = 4, and ε1 = 10−5, Algorithm 5 reduces the CPU time needed
to reach a residual of 10−8 by about 85.3%, 46%, 90% relative to Power, QuaExt and Arnoldi-type, respectively.

Example 3. Stanford-Berkeley is a 683 446 × 683 446 Web matrix with 68062 dangling nodes. We run the corresponding
extrapolation process on QuaExt, Algorithm 2 and Algorithm 5 every 50 power iterations. Let the Arnoldi steps number
k = 6 or 8, select ε1 = 10−6 or ε1 = 10−7 in Algorithm 5. Then Table 3 provides the related numerical results.

It is stated that when α is approaching 1, Algorithm 5 performs perfectly with a smaller number of matrix–vector
multiplications and less CPU time compared with other methods. In the case where α = 0.999 and k = 8, Algorithm 5
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Table 3
Total number of matrix–vector products and CPU time(in brackets), Stanford-Berkeley.

α Power QuaExt Arnoldi-type Algorithm 2 Algorithm 5
k = 6 k = 8 ε1 = 10−6 ε1 = 10−7

k = 6 k = 8 k = 6 k = 8

0.9 138(2.19) 123(1.82) 132(20.54) 120(18.10) 120(1.68) 93(3.38) 97(4.18) 107(2.56) 109(2.96)
0.99 1341(21.27) 1031(14.64) 936(163.74) 888(172.21) 1041(14.77) 639(11.21) 635(10.51) 837(12.37) 839(13.02)
0.999 12569(201.52) 8144(117.62) 8382(1497.44) 7080(1429.68) 8089(114.92) 4834(154.53) 4532(109.37) 6116(85.06) 6118(85.66)

with ε1 = 10−7 speeds up the CPU time required for computing the PageRank vector by approximately 57.5%, 27.2%, 94%
relative to Power, QuaExt and Arnoldi-type, respectively. We also observe that both Algorithm 2 and QuaExt behave well
on the CPU time due to their cheap memory requirements and ease of implementation. In addition, when α = 0.999 and
k = 6, Algorithm 5 with ε1 = 10−6 takes a little more time than QuaExt since its Arnoldi process is time-consuming for
lower k and higher α. To resolve this, we set ε1 = 10−7 or give higher value of k at the price of more matrix–vector products
or higher storage requirements.

6. Conclusions

We have presented a new extrapolation strategy for accelerating PageRank computation by taking advantage of the
trace of the Google matrix. We also combine the extrapolation schemewith the Arnoldi-type algorithm and demonstrate by
theorems that these approaches can accelerate the convergence of the iterative PageRank computation. Experimental tests
show that our methods are more attractive and efficient than some existed methods when the damping factor is close to
1. To further investigations, we would like to discuss the accelerated technique on the dynamic networks and explore the
large scale applications based on random walks such as social networks, neural networks etc.
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