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Abstract--In this article we propose a mathematical model using the probability formalism 
in order to explain why we often observe a geometrical law in the case of library circulation 
data. To obtain this result we used simple techniques based on convolution theory. © 1997 
Elsevier Science Ltd 

I. INTRODUCTION 

The crucial point of most of bibliometric studies is the observation of the frequencies of events, 
generally called bibliometric distributions. We can quote: 

• the productivity of scientific journals in articles on a given subject 
• the distribution of words in a text 
• the productivity of scientific authors 
• the circulation of journals (periodicals) within a library or a documentation center 

In these informetrics studies the notion of a collection of 'sources' producing distinct items is 
fundamental, and has been pointed out by many authors. Studies have modelled these problems 
by defining an 'Information Product Process (IPP)'(Egghe, 1990) which generalizes relation- 
ships between sources and items. IPPs, as explained above, involve two attributes and so could 
be called two-dimensional informetric studies. Our study concerns a three-dimensional IPP. 

Journals---*Articles---,Occasions when they are borrowed. 

Here we have two source sets (Journals, Articles) and one item set (Uses). We have already 
studied the distribution of requests in each volume starting from user requests for articles in a 
host (Lafouge & Delarbre, 1989). 

The results obtained allowed us to confirm a classification of the periodicals: i.e. fundamental 
periodicals, where all the articles seemed 'important', and technical or applied periodicals where 
requests focused on more 'specialized' or 'practical' problems. 

In these infometrics studies, the common point of these distributions is their discrete domain: 
r= 1,2,3. The case r=0  may also be encountered, the so-called 'no use'. Haitum has studied this 
type of statistics in particular, which are well known under the name of 'Zipfian statistics' 
(Haitun, 1982a, 1982, 1983). Many numerous studies consist of adjusting these curves using 
theoretical models, by multiplying the parameters (Sichel, 1985; Burrel & Fenton, 1993) and the 
methods of adjustment. 

2. PROBLEM 

Some authors using urn models to describe statistical after-effects ('contagion') have tried to 
explain these phenomenas. Polya (Feller, 1968) uses the following statistical model: an um 
contains b black (failure) and r red balls (success). A ball is drawn at random, then c balls of 
the drawn colour are added in the urn. Polya calculates the probability that after n drawings the 
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result is k red balls. 
The limiting form of the Polya distribution is a negative binomial law. 
Price (1976) uses this model in an article which became a fundamental basis for bibliometric 

studies. 
In his model, c balls are added in the urn, only if the drawing is a success. Then he calculates 

the density of the corresponding distribution, knowed under the name of 'law of the cumulative 
advantage'. This law may be explained as follows: the more items (successes) a source 
produces, the higher is the probability of new successes. He also demonstrates that the limiting 
forms are Bradford's law and Lotka's. 

Distributions relating to library circulation data are often adjusted with geometric 
distributions (Burrel, 1986). But the negative binomial law gives better results (Leemans et al., 
1992), especially when the 'no use' case is taken into account. (Recall that the negative binomial 
law is a generalisation of the geometrical law.) In this paper, we will build a model which may 
explain these geometrical distributions. To obtain this result, we used the following process: 

1. We have eliminated the effect of cumulative advantage. A volume is said to have been used 
i times if i articles of this volume have been used at least once. The user demand for an article 
is taken into account if the article has been requested at least one time. So, two or more users 
who have requested the same article are considered as being equivalent to one user for this 
article. 

2. We have eliminated the effect of the case of 'no use': it is very important to take or not to 
take the case of 'no use' into account, because it often totally changes the adjustment of the 
distribution. We use standard statistical distribution to adjust these curves. 

But if we may accept easily an adjustment of a curve in the discrete interval [1. oo], where we 
may admit that the measured phenomenas are homogeneous, it is much more difficult to 
consider the result at the point 0 ( 'no use') as being of the same nature: actually, when an article 
is not requested, it is not a failure but more a non-event. Unfortunately, the position of this 
particular point will be of a great importance for the result of the adjustment. 

Egghe (1994) carries out a continuous approach of an equivalent problem based on 
convolution theory. He gives a new explanation of the historical Lotka's law. He also shows (see 
Section 3.3) that we have the following exact stability result for the geometrical distribution. In 
his paper he uses the continuous model. Similar techniques, using a discrete model, will be used 
in this article. 

3. MODEL 

3.1. Main principles 

Cfi- 
BOp): 
P(i): 
p(i): 

Po: 

The circulation of volumes of a collection of journals, each containing a certain number of 
articles, is observed. We suppose that the use frequency for each article over a given period is 
known. A volume is said to have been used i times if i articles of this volume have been used 
at least once. It can be noted: 

Number of combinations of i elements in a set o f j  elements(i--<j). 
The binomial distribution of parameters j and p (0-<p-  < 1 j e 1~.) 
Probability that a volume be used i times, i=0,1,2 .... 
Probability that a volume contains i articles, i= 1,2 .... 
Probability that an article will not be used (0-<p0 < 1). 

We will define a general model for P: 
We suppose that we have: B(j 1 -po)(i) the fraction of the volumes having j articles, used i 

times (each used article is only counted once). It is equivalent to the fraction of volumes in 
which i articles have been used at least once, i<--j. 

We can therefore write 



Geometric law in the case of library circulation data 525 

P(0)= ~ B(jl -p0)(0)p(j)  (0) 
j=l ,  

P( i )=  . ~ B ( j l  - p o ) ( i ) p ( j )  i= 1,2... 
J=l,~¢ 

It is easy to show that P is a probability. 
P designates the probability that i articles belonging to a volume have been used at least 

once. 
If the expectation of p is m, then we can easily demonstrate (Lafouge, 1995) that the 

expectation of P is m(l  - Po). 

The  case  w i thou t  'no use '  

We suppose now that P never takes the value zero. This means that all the volumes have been 
used at least once. It is possible, however, that some articles have never been used, so we define 
the distribution of volumes, such that we note P P  as: 

P(i)  
PP( i )  = - - -  i = 1,2. . .  (1) 

1 - e ( o )  

where we have: P(0)= . ~. p ~ ( j ) . I f  we choose the probability defined in F_xluation (1), it can 

be noted that i fpo=0  then we have P- -p ,  so we give the following theorem. 
T h e o r e m  1. Let p be a geometrical distribution of expectation m taking values for i= 1,2... then 

the probabili W defined in Equation (1) is a geometrical distribution of expectation 

m( 1 - Po) +P0. 
Proof .  p being geometrical, we can write: p(j)=q(1 - q ) J - t , j  = 1,2... where the expectation m 

can be written: m= l /q  with 0<q-< l .  
Calculation of the denominator: 

PJoP(I') = Y PJoq( l - q)J - '  = qPo j ~  ~ PJo- '( 1 - q )J- ' = qPo/(1 - ( 1 - q)Po) 
.j= I,~ j= I, 

therefore: 1 - P ( 0 )  = ( 1  - p o ) / ( 1  - ( 1  - q)Po).  

Calculation of the numerator: 

P0) q Y" Cj~o~-'(1 _ q ) j - i  E B ( j l - p o ) ( i ) p ( j ) =  E c j i ( l - p o ) i p J o - i q ( 1 - q ) J - ' = ( l - q ) i - ' ( 1  - i 
j=i,~ j=i, j=i,~ 

Given h = ( l  -q ) .Po  we have: 

~ Cj~o~-'(1 _ q ) / - i =  k=o.~ Y C,+i lh*=(l l i ! )  ,,o.E ( k + l ) ( k + 2 ) . . . ( k + i ) h * ,  

=(1/i!) E [h~+k]i([ ]i:defivative of order i) h being less than l we have: 
k=0, 

=( lli!).[(h~l(1 - h)] i 

We can show that: [(h il(1 - h)] i= (i!/(1 - h)i+l),therefore: 

E B q  1 - po)( i )pq)  = (1 - q) i -  t ( l - Po) i q/(1 - po(1 - q ) ) i+ i 

So we can write: 

PP( i )  = q(1 - q) i -  l( 1 - po) i -  i /( l  - Po( 1 - q)) i i = 1,2. . .  

If q is replaced by lira we have: 

P P ( i ) = ( m ( 1  - p o ) + P o -  l) i- I/(m(l - p o ) + p o )  i i= 1,2... 

Therefore, P P  is a geometrical distribution of expectation m(1 -Po)+P0. 

4. COMMENT 

When the number of  articles is fixed, all the articles have the same probability (1 - P o )  of 
being requested at least once (that is a consequence of the hypothesis of  a binomial law). In this 
model, we have introduced a distribution of probability which will quantify the number of 
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articles in each volume. 
Consequently, given g, a geometrical distribution taking values 1, 2, 3 .... of expectation M, the 

number of possible values for m (expectation of the geometrical distribution p) and of values for 
P0 (proportion of 'no use') which verify the equation is infinite. 

E B ( j l - p o ) ( i ) p ( i )  
g(i)= ' l i '2  

(Po)J'p(J) j=l.~ 

where i= 1,2 ..... i < = j j =  1, 2 .... 
We therefore have the relationship: m = ( M -  po)l(1 -Po), which allows us to calculate Po if we 

know the value of m.The case with 'No Use'  
If we suppose p is a geometrical distribution in Equation (0), we can easily demonstrate that 

P is not a geometrical distribution. We extend to the limit to get the same result. 
Theorem 2. Let p be a geometrical distribution of expectation m and Po a number between 0 

and 1. Then the distribution defined by: 

H(0)= .  ~ .  B(jl -po)(O)p(j)  (2) 
J = t ,  

H( i) = FB( j  l - po)( i)p(j) i= 1,2... j = i, oo 

converges in law towards a geometrical distribution of expectation M; when P0 tends towards 1, 
m towards infinity, in such a way that m(l -Po) converges towards a finite limit denoted M. 

Let us note that m(l -Po)  is the expectation of the distribution H. 
Proof. According to the calculations of the previous theorem we can write: tt(O)=qpo/ 

( 1 - (1 - q)Po) =po/(m(l - Po) +Po) 
For i>= 1 we have: H(i)=(I  - q)i-](1 - p o ) ' q . ( l l ( l  -po(1 - q))i+zi= 1,2. 
If q is replaced by its value: H ( i ) = ( l - p o ) ~ ( l l m ) ( ( m - l ) / m ) ~ - I ( m / ( m ( 1 - p o ) + P o )  i+~ 

H ( i )  = ( m (  1 - Po) +Po - 1) i(m/(m - l ) ) / (m(l  - Po) +Po) i+ t 
We note: M=limit m(l -Po),  po--*l, m--~oo. 
If we extend to the limit we obtainlimit (H(i)=M~(M+ 1) i÷~ i=0,1,2..., po---'l, m---.oo. 
Therefore H is a geometrical distribution of expectation M. 

5. COMMENT 

Such conditions of extension to the limit are very frequent in probability such as the well- 
known approximation of a Poisson's law by a binomial law. 

It must be remembered that an article used i times is counted just once. This result can be 
compared to that of Egghe (1994) where he defines the distribution F by: 

F(i)= E P~(i)p(j)i>--O (3) 
j= 1 .~  

Pj(i): probability that a volume containing j articles be used i times, where Pj is the 
convolution product o f j  geometrical continuous distributions, and p is a geometrical continuous 
distribution. 

(p( i )=pq i i>-O). In this case he has supposed that an article used i times is counted i times. 
So he has supposed that the distribution of the use of articles is of a geometrical nature. Egghe 
therefore shows that F is a geometrical distribution. 

6. CONCLUSIONS 

Bradford's law says that the repartition of articles of periodics dealing with a specific area is 
of a geometrical kind. In our study, it is when we suppose that the quantification of the number 
of articles in a periodical is geometrical that we get (Theorem 1) a geometrical distribution of 
the circulation. 
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The passage to the limit in Theorem 2 corresponds to a more complex situation P0" 1. This 
means that the majority of  articles are not used, which is associated for the passage to the limit 
to the fact that m---,~. Therefore the number of accessible articles is increasing, and 
consequently the number of unrequested articles is increasing (with the mean value of the 
distribution which has a finite limit). This increasing phenomena becomes more and more 
frequent in actual information systems. 

We get a result which could seem quite surprising: it is when the weight of  'no use' becomes 
important that we again find a geometric distribution (when we had partially eliminated its 
influence in Theorem 1, where we only took into account the articles not used in requested 
volumes). 

Note: all the distributions of circulation cannot be built from the model we defined. (cf. 
Equation (0)). By example, if we try to apply it to the circulation of books in a library, we will 
have to define a grouping criteria, which could be the area, or the acquisition date, etc., but these 
grouping criteria don't mean the same thing as grouping articles in a periodical. 
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