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This paper introduces two principles for relational similarity, and based on these principles it proposes a
novel geometric representation for similarity. The first principle generalizes earlier measures of similarity
such as Pearson-correlation and structural equivalence: while correlation and structural equivalence
measure similarity by the extent to which the actors have similar relationships to other actors or objects,
the proposed model views two actors similar if they have similar relationships to similar actors or objects.
The second principle emphasizes consistency among similarities: not only are actors similar if they have

similar relationships to similar objects, but at the same time objects are similar if similar actors relate
to them similarly. We examine the behavior of the proposed similarity model through simulations, and
re-analyze two classic datasets: the Davis et al. (1941) data on club membership and the roll-call data of
the U.S. Senate. We find that the generalized model of similarity is especially useful if (1) the dimensions
of comparison are not independent, or (2) the data are sparse, or (3) the boundaries between clusters are

not clear.

. Introduction

The notion of similarity presents itself in most walks of life. As
umans we constantly make similarity judgments: whenever we
ncounter a new situation, we apply the knowledge we have gained
n similar situations (Hume, 2004 (1748); Shepard, 1987). When-
ver we evoke a category or concept, say, “apple”, we implicitly
efer to a set of objects that are similar to each other (Murphy,
002). Similarity and categorization, through their influence on
ognitive structures, shape the life of societies and organizations.
eople are put together into classes, races, age groups or nations.
rganizations are classified based on their similarity to industries
nd populations. How and why things are deemed similar and are
lassified thus has deep-rooted consequences to how the (social)
orld works.

When data on the attributes of actors are not available or the
eighting of the attributes is unobvious, researchers may turn to

elational analysis to assess similarity. The underlying principle

f relational similarity is that actors1 are considered to be simi-
ar if they have similar relationships to other actors or objects. For
xample, sociologists group people based on whether they have
imilar relationships to other people (White et al., 1976), or based

1 Throughout the paper we shall use the expression “actors” to denote the things
hat are being compared for their similarity. This is only a notational simplicity,
nd stands as a shortcut for whatever the unit of analysis is, be it concepts, objects,
r attributes for that case. That is, in my usage “actor” do not have any specific
onnotation such as, for example, agency.
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© 2010 Elsevier B.V. All rights reserved.

on whether they attend the same clubs (Breiger, 1974; Doreian
et al., 2004). Or, senators who tend to vote similarly are similar
(Clinton et al., 2004).

This article is an endeavor to rethink the concept of relational
similarity. We propose two principles we believe similarity repre-
sentations should satisfy. First, we generalize the idea that “two
actors are similar if they have similar relationships to other actors
or objects” to “two actors are similar if they have similar rela-
tionships to similar actors or objects.” For example, the logic that
“people who attend the same clubs are similar” can be generalized
to “people who attend similar clubs are similar.” This generalized
approach, as we further demonstrate in the paper, incorporates
more information on similarity than first-order measures such as
structural equivalence (Lorrain and White, 1971; Burt, 1976) or
Pearson-correlation.

The second principle emphasizes consistency in similarity. That
is, the similarity matrices have to be self-consistent and also consis-
tent with other similarity matrices. To follow our earlier example,
not only “people who visit similar clubs are similar,” but also “clubs
that are visited by similar people are similar.” This argument builds
on the duality concept of Breiger (1974) and Breiger and Pattison
(1986), and is quite similar in spirit to Correspondence Analysis
(Greenacre, 1984) and to Latent Semantic Analysis (Landauer and
Dumais, 1997).
These two principles provide a unified framework for the anal-
ysis of one-mode, two-mode, and multi-mode data. For one-mode
data (for example social networks), the representation solves the
“two persons are similar if they are linked to similar persons” prob-
lem. An example for a two-mode data is the already mentioned

http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
dx.doi.org/10.1016/j.socnet.2010.02.001
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lub-membership affiliation network, in which the “people who
isit similar clubs are similar” and “clubs that are visited by sim-
lar people are similar” relations have to hold. An example for a
hree-mode data would be an article-scientist-academic journal
ataset, for which the following consistency relationships have to
old: “scientists are similar if they publish similar articles”, “aca-
emic journals are similar if similar scientists publish in them”,
academic journals are similar if they contain similar articles” –
nd their symmetric relationships (see Fig. 2).2

Of course, we are not the first to generalize direct structural
imilarity. There exist a variety of concepts and measures that
eneralizes direct structural similarity, especially in the social net-
orks literature. Just to mention a few, these include: automorphic

quivalence (Winship, 1988), regular equivalence (White and Reitz,
983), and cumulated social roles (Breiger and Pattison, 1986). In a
omewhat unusual manner, we postpone the detailed discussion of
he connection between the proposed representation and the mod-
ls in the literature to the second half of the paper. We decided to
o so because we want to emphasize the conceptual novelty of the
aper, and we believe that the general insights of the principles are
alid independently of the merits or disadvantages of the specific
easure proposed.
The rest of the paper is structured as follows. In Section 2, we

tudy the need for a generalized representation of similarity data.
e outline the two principles for such a representation. Also, in this

ection we formalize the principles and describe a modified version
f Pearson-correlation that meets these principles. In Section 3, to
urther study and understand the proposed model, we observe its
ehavior on simulated data. In Section 4, we reanalyze two classic
elational datasets with the generalized similarity framework. In
oing so, we compare the results with the findings in the similarity
nd clustering literature. In Section 5, we compare the proposed
odel to the most commonly used models of similarity in the net-
orks literature: blockmodeling (White et al., 1976), the CONCOR

lgorithm (Breiger et al., 1975), concepts of more abstract equiv-
lences (e.g., automorphic equivalence, see Borgatti and Everett,
992), and Correspondence Analysis (Greenacre, 1984). Finally, we
iscuss the findings and explore directions for further research.

. Two principles for similarity

We believe that a generalized model of similarity should satisfy
wo principles: it should take the similarity among the dimen-
ions into account, and the similarity matrices should be consistent.
elow we discuss these principles in detail and introduce a geo-
etrical representation that satisfies them. For simplicity, we first

resent the principles through the setting of senators and their
otes, that is, through two-mode data. Later, we demonstrate how
he same principles apply to various kinds of data (for examples
nd illustration of the model for one-, two-, and three-mode data,
ee Fig. 2). In the senator-votes setting, the first principle states that
Two senators are similar if they vote similarly on similar issues.”
he second principle, consistency, requires that a similar relation-
hip holds concurrently for the similarity of issues as well, thus
Two issues are similar if similar senators vote similarly on them.”

.1. Principle 1: taking the similarity among the dimensions into
ccount
Take a dataset that consists of senators and their votes in the
enate. Roll call data is one of the most often analyzed dataset
n political science (e.g., Clinton et al., 2004; Poole and Rosenthal,

2 For a discussion of further applications of three-mode data, see Fararo and
oreian (1984).
Fig. 1. Two hypothetical voting scenarios to illustrate why taking the similarity of
contexts into account is important.

1997). As a general approach, senators are viewed similar if they
tend to vote the same. To measure similarity, correlation or the
cosine distance between the vote vectors are often used. Taking a
simple correlation between the voting vectors works rather well:
for example, Fig. 8b shows how a Multidimensional Scaling (MDS,
see Shepard, 1962) map of the 109th Senate based on correlation as
a similarity measure recreates the clustering of senators into two
major groups. (We analyze this case later more in detail.)

Note that Pearson-correlation assumes that the dimensions
along which the senators are compared (i.e., the votes) are inde-
pendent. Here, we argue that a similarity measure should take
the relationships among the dimensions into account. To see why
this is important, consider the two settings in Fig. 1. These set-
tings describe two hypothetical situations in which two senators
vote on three issues. Senator 1 votes “Yea”, “Nay”, and “Yea”,
while Senator 2 votes “Yea”, “Yea”, and “Nay”, respectively. That
is, the senators agree on one issue out of three. The correla-
tion between the senator-vote vectors is −.5 in both examples
(if one codes “Yea” as 1 and “Nay” as −1). The votes have, how-
ever, markedly different interpretations in the two examples. In
the first example, one can assume that the three issues represent
three independent dimensions, thus in this case the correlation is
a good measure of similarity. In the second example, however, the
issues are clearly not independent. If we assume that there exists
a pacifist-warmonger dimension, then the first two issues both
provide information about the senators’ positions in this dimen-
sion. Senator 1 is a middle-of-the-road in questions about war and
peace, while Senator 2 is a warmonger. Thus, in the second example
there exist only two dimensions, war and abortion, and the vote-
vectors of the senators can be rewritten as (0,1) and (1, −1), the
correlation of which two vectors is −1. Clearly, taking the relation-
ships among the dimensions into account is important, and a good
representation of similarity needs to incorporate this.

The dimensions along which actors are compared are correlated
not only in the case of senators and issues, but virtually in any
settings (in some settings more than in others). For example, the
dimensions along which demographers group individuals, such as
education, income, and gender, are correlated. Or, if the measure of
similarity of people is overlap in club-membership, the same argu-
ment applies as clubs have their own similarity structure (chess
clubs are more similar to other chess clubs than to karate clubs).
Indeed, if actors are compared along more than one dimension, then
it is hard to find two dimensions that are perfectly independent.

How should one incorporate the non-independence of dimen-
sions into the similarity measure? Let us return to the senators’
example. At the baseline, when the two senators do not cast any
votes, their similarity is zero. Principle 1 states that for all issues
the two senators vote the same, the similarity between the issues
should increase the similarity of the senators. This is the case, for
example, if they vote on two wars. (Note that this principle includes
the case in which the two issues are exactly the same: In this case,

the issues are obviously similar – and their similarity is highest –
so the similarity of the senators needs to increase.) Likewise, the
similarity of senators should not change if they vote differently on
unrelated issues, but should decrease if they vote dissimilarly on
similar issues.
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Let us introduce the notation. In two-mode data, the relation of
ne kind of actors to another kind of actors or objects is stored in a
ectangular matrix. Examples include senator-issues, people-club
embership, people-workplace, and word-document matrices. To

tay at a high level of generality, we shall refer to this rectangu-
ar matrix as the actor-setting matrix (denoted by M), with rows
enoting actors and columns denoting settings. The cells of M con-
ain the values of the “actors” along the “settings”. For example,
n the senator-vote example, 1 denotes that the senator voted for
he bill, −1 denotes he or she voted against, and 0 means he or
he abstained. From M, two similarity matrices can be derived. The
rst, O1 contains the pairwise similarity of actors, and O2, which
ontains the pairwise similarity of settings.

A common approach to measure similarity among the actors is
o take the cosine distance or correlation between the row-vectors
Widdows, 2004). Eq. (1) shows how Pearson-correlation is calcu-
ated.

correlation(i, j)

= (Mi, − Mi,)(Mj, − Mj,)
T

√
(Mi, − Mi,)(Mi, − Mi,)

T
√

(Mj, − Mj,)(Mj, − Mj,)
T

, (1)

here Mi, denotes the ith row of the M matrix, Mj, denotes the
ector composed of the mean of the jth row, and T denotes matrix
ransposition.

Our starting model of similarity is the Pearson-correlation,
hich we modify to meet Principle 1. One main problem with

earson-correlation is that it does not incorporate the similari-
ies among the settings when comparing the actors. There exists,
owever, an easy way to incorporate this information into the cor-
elation measure. As a basic relationship in linear algebra states,
he scalar product of vectors x and y in a base space of A is
Ay. Building on this relationship, we create a modified version
f Pearson-correlation that incorporates the non-independence of
imensions. The main idea of the generalized measure is to use
he setting-similarity matrix, O2, as a base space for calculating the
ctor similarity matrix (“actors are similar if they appear in similar
ettings”). Formally, if M denotes the original m × n actor-setting
atrix (the input for the model), O1 denotes the m × m actor-actor

imilarity matrix, and O2 denotes the n × n setting-setting similar-
ty matrix, then the following equation describes the similarity of
ctors i and j 3:

1 = (Mi, − Mi,)O2(Mj, − Mj,)
T

√ √ .
i,j

(Mi, − Mi,)O2(Mi, − Mi,)
T

(Mj, − Mj,)O2(Mj, − Mj,)
T

(2)

3 Note the similarity of this formula to the Mahalanobis-distance (Mahalanobis,
936), and to the formula of Breiger (1974, p. 186).
32 (2010) 197–211 199

The value of this modified similarity measure is in the
range of [−1, 1], 1 denoting perfect similarity and −1 denot-
ing perfect dissimilarity. Values around 0 mean independence
or neutrality between the actors. Also, note that the similar-
ity measure is symmetric, i.e., O1

i,j
= O1

j,i
. In Appendix A, we

show that this formula satisfies all the requirements we set
out for Principle 1: (1) if two actors have similar values on
similar dimensions, their similarity increases; (2) if two actors
have dissimilar values on similar dimensions, their similarity
decreases; (3) if two actors have similar values on dissimilar
dimensions, their similarity decreases; and (4) if actors have
dissimilar values along dissimilar dimensions, their similarity
increases. Thus, we have provided a geometric representation for
similarity that is able to incorporate the non-independence of
dimensions.

Note that Principle 1 can be applied independently from Princi-
ple 2. If the similarity or correlational structure of the dimensions
are known, then one can plug this similarity data into Eq. (2), and
obtain the similarity of actors in the warped space. So, for exam-
ple, if the similarity among the issues are given from some external
source or can be calculated (for example from matching the text of
the bill-proposals), then the similarity of senators can be directly
calculated.

2.2. Principle 2: the consistency of similarity matrices

In Principle 1, we demonstrated how the pairwise similarity
of actors can be obtained if the setting similarity matrix, O2 is
known. But what if the setting similarity matrix is not given? To
continue with the senator-vote example of Fig. 1, what if the issues
are not known, and we do not know that they represent “War,”
“Taxes,” or “Abortion”? With the help of Principle 2, this prob-
lem can be overcome, and the similarity of the dimensions can be
inferred from the voting data (although not in this specific exam-
ple, because there are only two senators in the dataset). The trick
is to use Principle 1 again on the same input matrix, but instead
of comparing the actors (rows), now we compare the settings
(columns). In the example of senators and their votes, this would
mean that “two issues are similar if similar senators vote simi-
larly on them.” That is, for calculating the setting similarity matrix,
O2, the actor similarity matrix O1 can be used as a base space.
Formally,

O2
i,j = (M,i − M,i)

T
O1(M,j − M,j)√

(M,i − M,i)
T
O1(M,i − M,i)

√
(M,j − M,j)

T
O1(M,j − M,j)

(3)

Principle 2 states that the similarity matrices have to satisfy the
consistency conditions: the solution of Eq. (2) have to satisfy Eq.
(3), and vice versa.

Eqs. (2) and (3) define a system of equations with two inde-
pendent variables, O1 and O2. To be more precise, Eqs. (2) and (3)
define m2 + n2 equations with m2 + n2 variables, for each cell in the
O1 and O2 matrices. Excluding the equations for the diagonals (as
the diagonal values are always one) and half of the off-diagonal
cells (because of symmetry), there are ((m − 1)2 + (n − 1)2)/2
equations.

Although we did not find analytical solution for the system
of Eqs. (2) and (3), we can solve the equations iteratively. Start
with O2

0 equal to the identity matrix (the subscript 0 denotes the
0th iteration). Plug this in to Eq. (2), which yields O1

1, the first

iteration of the actor-similarity matrix (note that this is equiva-
lent to the similarity matrix from the Pearson-correlation). Next,
use this O1

1 in Eq. (3) to get O2
1, the first iteration for O2. Repeat

until the process converges, i.e., until ‖O1
t+1 − O1

t ‖ < � (where �
is a pre-defined convergence threshold). Although we found no
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els in the literature. In comparing the similarity methods, we
Fig. 2. Overview and illustration of the consiste

roof for convergence, in all the empirical settings we studied,
he process converged quite fast, in 10–100 iterations for � =
.001.4

Note that this iterated solution of the equations strongly resem-
les the hierarchical clustering method CONCOR (Breiger et al.,
975). CONCOR takes the correlation of the original co-occurence
atrix, then takes the correlation of the resulting correlation
atrix, and iterates this process until convergence. The main dif-

erence between the generalized similarity model proposed in this
aper and CONCOR is that CONCOR either takes the correlation
f the rows or the correlation of the columns, while the general-
zed similarity model provides a representation which incorporates
oth row and column correlations simultaneously. Although the
athematical results behind CONCOR cannot be directly applied

o the generalized similarity model, it is interesting to note that
ONCOR, similarly to the generalized similarity model, achieves
onvergence rather quickly (for a discussion on the mathematical
ackground of CONCOR, see Chen, 2002).

The two principles, generalization and consistency, apply to
elational data of any modality. For one-mode network data, there is

nly one similarity matrix. In this case, Principle 2 requires this sim-
larity matrix to be self-consistent. In higher mode data, each mode
orresponds to a similarity matrix, and Principle 2 requires that
hese similarity matrices satisfy the consistency principle. Fig. 2

4 We have investigated how the speed of convergence depends on the dimen-
ionality and sparsity of the matrices. Preliminary results show that larger matrices
onverge faster than smaller matrices, while sparser matrices converge slower than
ense matrices. (Caution is needed in taking these results for granted, as we have
nly investigated the convergence properties of the generalized similarity model in
he senator-issues setting of Section 3). All in all, we can state that the generalized
imilarity model converges relatively fast, and does not require significant running
ime with the computing power of current computers.
onditions for one-, two-, and three-mode data.

provides examples and an overview of the principles for one-, two-,
and three-mode data.5

3. Properties of the model

In this section, we turn to simulations to investigate the prop-
erties of the generalized similarity model. Through simulations,
we can explore how the proposed generalized similarity model
performs in recovering the underlying data generating process.
(When the data is simulated, we exactly know what the underlying
data generating process is, while this is not the case for empirical
data.)

The structure of the simulations is as follows. First, we stochas-
tically generate datasets based on a model of data. Next, we
compare the generalized similarity model’s solution with the solu-
tion of other similarity and clustering models. In this section, we
focus on the comparison with correlation6; and later, in Section
5 we compare the generalized similarity model with other mod-
focus on two issues: how robust the methods are to local distur-
bances in the data; and how well they deal with the sparsity of
data.

5 In this paper, we only discuss one- and two-mode data in detail, and we have
not made thorough investigations regarding how the model works for three or
higher mode data. For example, it is not guaranteed that the iterative solutions will
converge in higher mode data. We leave this issue for further research.

6 A reviewer has pointed out that because of the iterated nature of the solution the
generalized model of similarity should be compared to CONCOR and not to correla-
tion. Indeed, the way of solving the generalized similarity model strongly resembles
the iterative solution of CONCOR. However, we believe that the interpretation of the
solution itself relates more strongly to the interpretation of the Pearson-correlation,
and not to that of CONCOR.
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measure more in detail, we compare how correlation and the gen-
eralized similarity measure detect the differences in the underlying
ideal positions of the senators. Fig. 4 shows that both correlation
and the general similarity measure move together with the simi-
ig. 3. Comparison of the distribution of similarity values for Pearson-correlation a
oise.

.1. Robustness of classification in the Senate setting

First, we build a simulation that analyzes how the generalized
odel of similarity works in the U.S. Senate example. We assume

hat there are 100 senators,7 and each senator votes on 100 issues.
e assume that the voting preferences can be described with an

deal position along a single dimension, liberal-conservative. This
ssumption is not too far from reality, as political scientists find
hat most of the variance in roll-call data can be explained by the
enators’ position along the liberal-conservative dimension (Poole
nd Rosenthal, 1997). Let 0 denote the liberal, 1 the conserva-
ive end of the scale. First, we assume two parties, Red and Blue.
he ideal values of the Blue senators are drawn from a normal
istribution with mean 0.3 and standard deviation 0.2, and the

deal values of the red senators are drawn from a normal distri-
ution with mean 0.7 and standard deviation 2. The issues are
imilarly located on a liberal-conservative scale, and are drawn
rom a 0–1 uniform distribution. We further assume that the closer
n issue is to the senator’s ideal position, the more likely that
he senator will vote vote “Yea”. Specifically, the probability of
Yea” is P(“Yea′′) = |issue position − senator′s ideal position|. This
s an admittedly simplistic modeling of senatorial votes, but our
ocus is the illustration of the workings of the generalized model of
imilarity, and not the introduction of a senatorial choice model.

We use the above simulation framework to investigate how the
earson-correlation8 and the general similarity model performs in
omparing the senators. First, we explore how robust the methods

re to noise in the data. We model noise with a certain p probabil-
ty that senator’s vote is randomized. Fig. 3 shows the distribution
f the pairwise similarity values between the senators: the gen-
ralized similarity measure is superior to the simple correlation

7 The specific parameters of the simulation model are not important: we tried a
arious number of other parameter settings and the results remained very similar.
8 Again, the “Yea” vote is coded with 1, the “Nay” with −1.
eralized similarity, in the simulated Senator-vote setting, with the introduction of

measure in identifying the two parties for most levels of p. The effi-
ciency of the generalized similarity measure is surprisingly high. By
taking the cross-issue information into account, it perfectly iden-
tifies the parties. This occurs even when the level of noise is high,
35%.

To investigate the workings of the generalized similarity
Fig. 4. Simulated two-mode senator data: the comparison of the correlation and
the generalized similarity values, as a function of the real difference between the
senators.
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Fig. 5. The correlation between the real similarity of the senators (measured by the
02 B. Kovács / Social Ne

arity in the ideal positions (the graph is based on the simulations
escribed in the previous paragraph, with no noise). The figure
hows that in the lower similarity regions, the generalized similar-
ty model is more efficient in detecting the underlying differences
n the senators’ positions. In the higher similarity region, however,
he generalized similarity measure does not pick up the differences,
ut lumps the similar senators together. This graph suggests that (in
two-mode data setting) the generalized similarity measure mag-
ifies within-group similarities and between-group dissimilarities.
his magnification implies that the similarity values will gravitate
oward 1 (perfect similarity), or −1 (perfect dissimilarity).

We also analyzed how the generalized model of similarity works
f there exist more than two groups of senators. Specifically, we
ssumed that the ideal positions of senators are located in a two
imensional space, and there exist four separate groups (high–high,
igh–low, low–high, and low–low) along these two dimensions. As
reviously, we simulated votes based on the senators’ similarity to
he issues, and analyzed the resulting vote matrix with the gener-
lized model of similarity. We found that the model successfully
ecovers the underlying groups in this setting as well (results not
hown here).

.1.1. Data sparsity
Relational data are often sparse. Such is the case, for example,

ith a dataset of senatorial votes across various Senates: many
enators never voted together. We expect the generalized simi-
arity approach to be especially efficient in sparse-data settings, as
t incorporates indirect similarities of actors and settings. Take, for
xample, three senators, one that served between 1991 and 1999,
second that served between 1995 and 2007, and a third one that

erved between 2001 and 2007. As the first and the third senators
ever voted on the same proposition as they never served in the
ame Senate, first-order similarity measures are not able to assess
heir similarity. The generalized model of similarity, however, is
ble to assess the similarity of senators one and three, based on
heir similarity to senator two.9

To investigate the behavior of the generalized similarity model
ith sparse data, we use the same senator voting model. We now

dd a probability that the senator will not vote at all (coded with
). Fig. 5 explores how the correlation between the real simi-

arity of the senators (measured by the difference in their ideal
ositions) and their similarity according to the generalized sim-

larity measure changes, as a function of (1) the proportion of
issing votes, and (2) the number of issues the senators vote on.

he figure is based on simulated data (with 100 senators), and
ach data point represents an average of 100 simulation runs.
he figure reveals important features of the generalized similarity
odel. As the proportion of missing data increases, the accu-

acy of the generalized similarity model decreases. This finding
s not really surprising. Also, with the increase in the number of
otes, the accuracy of the generalized similarity model increases.
hat is really interesting is that it is not purely the vote-matrix

ize or the sparsity of the matrix that matters, but the combina-
ion of the two. Namely, the matrix can be very sparse and the
eneralized similarity model still works, if the matrix is large.
hat matters is that the actors should have some overlap, and
or large matrices this can be the case even if the density is
ow.

9 There exist other methods to find the similarity of actors who are not directly
onnected. A prime example is Latent Semantic Analysis (Landauer and Dumais,
997), which uses Singular Value Decomposition to relate terms that do not appear
ogether (See Section 5).
difference in their ideal positions) and their similarity according to the generalized
similarity measure, as a function of (1) the proportion of missing votes, and (2) the
number of issues the senators vote on. Based on simulated data.

3.2. Recovering the true social network

How does the generalized similarity framework perform on one-
mode social network data? To investigate this question, we build
a stochastic network formation model (Snijders et al., 2010). We
specify a given distribution of attributes of the nodes, generate ran-
dom networks based on these attributes, and see how the solution
of the generalized similarity model compares to the correlational
solution. As we shall see, the generalized similarity measure can
recover the real, underlying distribution of data even in stochas-
tic and sparse settings, even when the first-order co-appearance
measures fail to do so.

We modeled 100 individuals, indexed from 1 to 100. This num-
ber represents the individual’s attribute along a dimension; we
assume that the individuals are ordered along this dimension such
that the ends of the distribution meet and the closer two numbers
are, the more similar the individuals are. The similarity map of these
individuals is thus a circle (shown in Fig. 6a). We simulate random
networks in which the tie creation rule is homophily (McPherson
et al., 2001; Snijders et al., 2010): the more similar the individuals
are, the more likely that there will be a tie between them. This tie
creation rule is consistent with the approach “two individuals are
similar if they are connected to similar individuals.”

To calculate the generalized similarity solution for first order
data, we use a slightly modified version of Eq. (2). For one mode
data, the following equation encompasses both principles:

Oi,j = (Mi, − Mi,)O(Mj, − Mj,)
T

√
(Mi, − Mi,)O(Mi, − Mi,)

T
√

(Mj, − Mj,)O(Mj, − Mj,)
T

. (4)

We compare the differences between the generalized model of
similarity and Pearson-correlation in two settings: one in which
the individuals have a relatively large number of ties, and another
in which the individuals only have a few ties. In the first setting,
we define the probability of a tie between any two individual to be

Pi,j = 1/(3 exp(10 × |distance(i, j)/100|)). Thus, the probability that
an individual will be connected to its closest neighbor is 30%, to its
second closest neighbor is 27%, etc. In the generated networks, the
individuals on average have 10 ties. In this setup, both the Pearson-
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In this section, we illustrate how the generalized similarity
model works on empirical data by analyzing two datasets: the roll-
call data of the U.S. Senate, and the classic club-membership data
ig. 6. Comparison of the two-dimensional MDS solutions based on (a) real data,
etwork in which people are located along a ring and they only have a few ties.

orrelation and the general similarity measure are quite efficient in
ecovering the original data (for brevity, we do not show the results
ere).

The superiority of the generalized similarity model shows more
trongly if we generate networks with fewer ties. For exam-
le, if we reduce the probability of ties to Pi,j = 1/(5 exp(10 ×

distance(i, j)/100|)), then the individuals have on average 7 ties.
n this case, the Pearson-correlation measure cannot recover the
riginal structure of data, but the generalized similarity measure
an (see Fig. 6b and c). The reason for this is that the Pearson-
orrelation measure only takes the first-order relational data into
ccount, being exclusively concerned with whether the two indi-
iduals are linked to the same individuals or not. When links are
are, most of the individuals will be relatively similar to each
ther because there is a high overlap in people to whom they
o not link. There will be only small differences for individuals
hey do link to. In other words, the Pearson-similarity measure
s too crude because it lumps together most of the dissimilar
ndividuals (absence of ties). The generalized model of similarity,
owever, by taking indirect similarities into account, can recover
he underlying similarity structure even if the data is sparse. As
ig. 7 shows, the generalized similarity model is much better in
icking up the underlying difference among people than the cor-

elation measure. Note that in this case the generalized similarity
easure does not overestimate the similarity of the highly similar

eople (as it was the case in the senator simulations in the previ-
us section), but is superior to correlation in the whole similarity
ange.
arson-correlation, and (c) the generalized similarity model for a simulated social

4. Two empirical illustrations
Fig. 7. Simulated one-mode data: the comparison of the correlation and the gener-
alized similarity values, as a function of the real difference between the people.
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Fig. 8. The distribution of the pairwise similarity measures of the senators (a), and the two-dimensional MDS map based on these similarity values (b). Calculated from the
109th U.S. Senate roll-call data.
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Fig. 9. The distribution of the senator–senator similarity values (a) and the issu

f Davis et al. (1941). We chose these two datasets as they are both
ommonly analyzed in the literature.

.1. Similarity of senators and issues

Here we analyze the voting record of the 109th U.S. Senate (that
hich was in office 2005–2006). The 109th U.S. Senate had 101
embers,10 and there were 644 issues on which there were no

erfect consensus.11 Thus, the M matrix, which contains the data,
s a 101 × 644 matrix. We coded the “Yea” vote with 1, the “Nay”

ith -1, and the “Not present” or “Abstain” with 0.
First, we analyze the similarity of the senators using Pearson-

orrelation. The similarity of senators i and j is set equal to the
orrelation of the their voting vectors, Mi, and Mj,. As there are 101
enators in our dataset, the senator-senator similarity matrix con-
ains 101 × 101 = 10, 201 cells. This similarity matrix is symmetric,
ith 1s in the diagonal. Fig. 8 shows the distribution of the pair-
ise correlation values (Fig. 8a). The bimodal distribution in Fig. 8a

eflects the bipartisan nature of the Senate. Nonetheless, it indicates
ome overlap between the parties. The two-dimensional MDS map
Fig. 8b) visualizes the similarity map of the senators based on cor-
elation. As can be seen, the map identifies two distinct clusters,
nd these clusters perfectly identify the two parties in the Senate.
here is, however, a relatively large heterogeneity within the clus-

ers, especially among the members of the Democratic Party. Also,
t is important to note that MDS does take the indirect relationships
etween the senators into account, so the MDS map is a significant
nhancement above the simple pairwise correlation.

10 Robert Menendez filled the seat of Jon Corzine in 2006, when the latter became
he Governor of New Jersey.
11 The data on the votes and senators was retrieved from the U. S. Senate’s website,
ttp://www.senate.gov/pagelayout/legislative/a three sections with teasers/votes.
tm on April 5th, 2008.
e similarity values (b), based on the result of the generalized similarity model.

How do the results of the generalized similarity model differ
from the results based on Pearson-correlation? Fig. 9a shows the
distribution of the generalized similarity values. The generalized
similarity values show that the partisanship of the senate is much
stronger than indicated by the Pearson-correlation above. The gen-
eralized similarity model classifies U.S. senators into two clearly
distinct and uniform subsets: Democrats and Republicans. Even if
there are within party variance in given votes, the model incorpo-
rates across-vote patterns and found that there are no systematic
differences between party members, only across the parties. These
findings indicate that the method is robust for small, local varia-
tions, and can pick up the real underlying data even if the local
variances are relatively high. In the U.S. Senate example, this trans-
lates to saying that the individual Democrats might deviate from
the other party members in their vote here and there, but overall
they tend to vote with their party. In this sense, deviations are not
substantial, and the generalized model of similarity filters out these
small differences by pooling across vote data.

The generalized similarity representation provides a similar
clustering for issues. As Fig. 9b shows, the issues are bipolar in
nature as well, although less than the senators. This is consistent
with earlier findings in political science showing that the issue-
space in the Senate is bipolar, and constrained in the sense that
position on a given issue strongly correlate with positions on other
issues (Poole, 2007). The bipartisan nature of issues underlines the
necessity of taking inter-issue relationships into account.

4.2. Comparing senators who never voted together

As simulations show, a major advantage of the generalized
measure of similarity is its efficiency in dealing with data spar-

sity. The 109th Senate dataset is relatively dense, in the sense
that there is not much missing data. In order to demonstrate the
advantages of the generalized similarity model in a setting with
large amount of missing data, we expand the time-frame of the
roll-call analysis. As our next step, we analyze the voting data of

http://www.senate.gov/pagelayout/legislative/a_three_sections_with_teasers/votes.htm
http://www.senate.gov/pagelayout/legislative/a_three_sections_with_teasers/votes.htm
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Fig. 10. Comparison of the distribution of Pearson-correlation and generalized similarity for the 202 senators serving in the 101st–110th U.S. Senate. (a) Distribution of the
correlation values and (b) distribution of the generalized similarity values.
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Our second illustration uses Davis et al. (1941)’s data on
the participation of 18 women in 14 social events. The orig-
ig. 11. The original Davis et al. (1941) data on the social event participation of 18
2004).

0 consecutive Senates: the 101st–110th Senates, serving during
989–2008. These Senates have 202 senators altogether, who voted
n 6510 issues, therefore the resulting senator-issue vote matrix
as 202 × 6, 510 = 1, 315, 020 cells. As no more than 100 senators
an vote on any given issue, the resulting matrix is clearly sparse:
1% of the cells are missing. 28.4% of the senator-pairs never voted
ogether, so the measures using first-order relations cannot say
nything about their similarity.

To compare the Pearson-correlation and the generalized simi-
arity solutions, we coded the missing data as “Not present,” that is,

ith 0. Fig. 10 shows the distribution of the correlation (Fig. 10a)

nd the generalized similarity (Fig. 10b) values for the senator
airs. This figure clearly demonstrates the advantage of the gen-
ralized similarity model in settings with sparse data: while the
earson-correlation cannot capture the structure of the Senate,
he generalized similarity can. Using correlation, the mode of the
ern women, with the generalized blockmodel solution generated by Doreian et al.

distribution is around zero, which indicates that correlation, not
surprisingly, is not able to compare the senator-pairs who never
voted together.12 On the other hand, the generalized similarity
measure reveals a bipartisan Senate.

4.3. Davisetal.(1941)’s data on Southern women’s social event
12 One might suspect that this finding is due to the fact that we coded the missing
observations as zero. But even if we code the missing observations as missing, the
main result does not change: the correlation measure is unable to compare senators
who never voted together.
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ig. 12. Comparison of the two-dimensional MDS maps of Pearson-correlation (a
embership of 18 women.

nal data are shown in Fig. 11 (as sorted by Doreian et al.,
004).

Freeman (2003) provides an exhaustive literature review of 21
rticles analyzing the Southern women data. He arrives at the con-
lusion that the underlying structure of the data is composed of two
ubgroups of women. One subgroup is composed of Evelyn, Laura,
heresa, Brenda, Charlotte, Frances, Eleanor, Pearl, Ruth; the other
as Verne, Myra, Katherine, Sylvia, Nora, Helen, Dorothy, Olivia,
lora as its members. Note that Freeman (2003) does not analyze
he corresponding partition of events.

Doreian et al. (2004), in their article introducing generalized
lockmodeling for two-mode network data, reanalyze the Southern
omen data and arrive at a slightly different conclusion. Instead of

wo subgroups, they find that there are actually three subgroups of
omen, with Pearl and Dorothy constituting the third. Simultane-

usly, they provide a partitioning for the social events into three
ain subgroups of events: (1, 2, 3, 4, 5), (6, 7, 8, 9), (10, 11, 12, 13,

4). Their partitioning is shown in Fig. 11.
Here we reanalyze the Southern women social event partici-

ation data using the generalized similarity model. Fig. 12 shows
he two-dimensional Multidimensional Scaling (MDS) maps based
n the Pearson-correlation similarity measure and the generalized
imilarity measure.13 The MDS map based on correlation (Fig. 12a)
s consistent with the blockmodeling results, but does not show
lear clustering. The generalized similarity measure (Fig. 12b),
owever, clearly identifies three clusters, and perfectly recovers
he generalized blockmodel solution of Doreian et al. (2004). Note
hat the generalized similarity model, as in other examples, have

agnified the within-group similarity and the between-group dis-
imilarity, and therefore provides a crisper grouping of the actors.

The generalized similarity model provides a grouping for the
vents as well (not shown here). This grouping differs slightly from
oreian et al. (2004)’s grouping: although the (1, 2, 3, 4, 5) and (10,
1, 12, 13, 14) clusters emerge in the generalized similarity solution

s well, the picture differs for events 6, 7, 8, and 9. Event 6 here is
lustered together with (1, 2, 3, 4, 5), while events 7, 8 and 9 do not
all into any group but stand separately.

13 The Pearson-correlation and generalized similarity values are between −1 and 1
−1 denoting perfect dissimilarity). However, the MDS procedure takes distances as
nput (0 denoting the closest distance), so the similarity values had to be transformed
o dissimilarity values. The rule of transformation used here was dissimilarity = (1 −
imilarity)/2.
the generalized similarity model (b) for the Davis et al. (1941) data on the club

5. Comparison with other similarity models and clustering
algorithms

In this section we compare the generalized model of similar-
ity to other major concepts in the literature on similarity and
social positions. Specifically, we look at blockmodeling (White et al.,
1976), CONCOR (Breiger et al., 1975), regular equivalence (White
and Reitz, 1983), and Correspondence Analysis (Greenacre, 1984).
We discuss these four modeling frameworks/concepts because we
believe these provide the most relevant comparisons to the gener-
alized model of similarity.

5.1. Blockmodeling

Blockmodeling was developed in the 1970s to partition the
nodes of a network into clusters based on node positions (White
et al., 1976). The rationale of this partitioning is relational sim-
ilarity: nodes in a partition (block) are similar in their relations
to other nodes and, therefore, to other blocks that include those
nodes. There are two major approaches two blockmodeling: the
first approach converts the data into a similarity matrix, and then
clusters the actors into blocks based on this similarity matrix. The
second approach, generalized blockmodeling, defines a so-called
criterion function which evaluates how well a given blockmodeling
solution describes the data, and provides as solution a block-
modeling that minimizes this criterion function (Doreian et al.,
2004).

The generalized similarity measure proposed in this paper
speaks more closely to the first approach to blockmodeling by
providing a new approach to measuring similarity. While most
blockmodeling applications use structural equivalence to measure
similarity, we provide a similarity measure that generalizes the
notion of structural equivalence, and calls nodes equivalent if they
have similar relationships to similar nodes. This extension, we

argue, is essential for two reasons. It yields a more precise measure
of similarity by incorporating indirect similarity; and it provides
a better measure of similarity in sparse matrices.14 Thus, the gen-
eralized similarity model can be used to come up with a similarity

14 Matrices describing relations between large number of actors and settings tend
to be sparse (e.g., in a matrix describing the club membership of all Americans in
all clubs in the U.S. most of entries would be 0). It is worth noting that most of
the applications of blockmodeling analyze small networks, in which the sparsity
problem does not arise.
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Table 1
Comparison of (1) Pearson-correlation, (2) generalized similarity model, and (3)
Correspondence Analysis. Spearman rank correlation on the senators–issues simu-
lations, noise=.3.

Issue distance Correlation Gen. similarity
B. Kovács / Social Net

atrix, then the usual clustering methods can be applied to identify
locks.

.2. CONCOR

One of the most commonly used algorithm to define blocks
s CONCOR. CONCOR is a hierarchical clustering algorithm, intro-
uced by Breiger et al. (1975). This algorithm has some resemblance
o the generalized similarity model: it uses iterated correlations
o cluster the relational matrix into blocks. The major difference
etween CONCOR and the generalized similarity model is that the
imilarity of the columns in CONCOR is not built into the similarity
f the rows, and the algorithm can be used either on row similarity
r on column similarity, while the generalized model can provide
oth row and column correlations simultaneously. The general-

zed similarity model shows how the row correlations and column
orrelations can be unified.

Unfortunately, it is not straightforward to compare the two
lgorithms, as they provide different outputs: the output of the gen-
ralized similarity model is a transformed similarity matrix, while
he output of CONCOR is a hierarchical clustering. However, we
nalyzed how CONCOR performs in the social network simulation
odel of Section 3. Our preliminary analyses show that in sparse

ata settings (in this case, when people only have a few ties), CON-
OR performs better than Pearson-correlation, but worse than the
eneralized similarity model (for brevity, results not shown here).

.3. Relation to structural equivalence and more abstract
quivalences

As we noted in Section 1, generalizing direct structural similar-
ty has produced a sizable body of research, and many models were
roposed to generalize structural equivalence, such as automorphic
quivalence or regular equivalence (for an overview, see Borgatti
nd Everett, 1992). The objective of these generalized equivalences
s to generalize the “actors are structurally equivalent if they are
onnected to the same actors” definition to, for example, “a group
f actors is regular equivalent if they are connected to other reg-
lar equivalent actors.” For example, according to this definition
parents” are regularly equivalent because they have the same rela-
ionship to another regularly equivalent class, “children.”

A main difference between structural equivalence and the more
eneral equivalences is whether they require the actors to be con-
ected. In this sense, structural equivalence is a local concept (if
wo actors are structurally equivalent, it means that they are con-
ected to the same actors, thus they cannot be more than two
teps away from each other15). The generalized equivalences are,
owever, independent of proximity: role equivalent actors can be
onnected, distant, or unreachable from each other. In this sense,
he generalized model of similarity lies between structural equiv-
lence and more general equivalences: while it does not require
irect connection or close proximity, it does require that the actors
re reachable for each other. To see why this is the case, consider
hat the generalized similarity model will recognize members of
wo disconnected clusters as independent (thus, for example, it is
nable to identify “parents” and “children”).
.4. Correspondence Analysis

Correspondence Analysis (CA) is a generalized principle com-
onent analysis for two or higher mode data (Greenacre, 1984). CA
ransforms the data matrix into two sets of factor scores, which

15 Of course, this statement only holds if the tie is undirected.
Correlation −0.6662
Gen. similarity −0.8217 0.7449
Dist(CA) 0.2862 −0.1841 −0.1476

represent the similarity structure of the row and column actors.
Correspondence Analysis is often used to map the similarity struc-
tures of higher mode data, especially because the resulting row and
column similarity matrices are of the same structure thus can be
plotted on the same graph.

Correspondence Analysis is rather close in spirit to the gener-
alized model of similarity. To see why, consider one of its many
interpretations: reciprocal averaging (Hill, 1973). In reciprocal
averaging, the goal is to recover the underlying values of the rows
and the columns, by calculating the row actors’ values as the
weighted average of the columns, and the values of the columns
as a weighted average of the rows. For example, in the senator-
issues setting of the paper, this would translate to the following:
the position of a senator (in the issue-space) is the average of the
position of the issues it has voted for; and, concurrently, the posi-
tion of an issue is the average of the position of the senators who
voted for it. Correspondence Analysis solves this dual problem.

The spirit of this duality is very close to the second principle of
the generalized similarity model, but the two approaches are dif-
ferent. On one hand, CA does not directly looks for similarity, but
positions the row and column actors in a space, from which the
similarity can later be calculated. On the other hand, and this is the
more important difference, the averaging is different: CA does not
take into account Principle 1 in averaging the actors’ votes. Also,
CA is only applicable for two or higher mode data, while the gen-
eralized similarity model can be applied to one mode data as well
(although one could think of a reciprocal similarity model for one
mode data).

How does the solution of the generalized similarity model com-
pares to the solution of CA? Again, it is hard to compare the two
models, as they provide different outputs: the generalized simi-
larity model provides a transformed similarity matrix, while CA
provides the location of the row and column actors in the issues
space. However, this latter can be easily transformed to a distance
matrix (by simply taking the distance among the locations), and
these can be compared with the transformed similarity matrix.

Table 1 shows how correlation, generalized similarity and Cor-
respondence Analysis compare in the senator simulation setting.
To create this table, we ran the senator simulation with 100 sena-
tors and 100 issues, with 30% noise level, and ran a Spearman rank
correlation between these three measures. As the table illustrates,
out of these three measures the generalized similarity model seems
to be the most efficient in recovering the underlying similarity of
the senators. Note, however, that these results are only for illustra-
tion, and to properly compare the generalized similarity model to
Correspondence Analysis, further research is required.

6. Discussion, applications and further work

This paper proposes two principles for similarity data. First, we
emphasize the need for taking relationship among dimensions into
account. As we demonstrate on a simple example of senators and

issues, it is crucial that the relationship among dimensions are
taken into account when comparing actors. Thus, we propose that
the approach “two actors are similar if they are related to other
actors or objects similarly” should be extended to “two actors are
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Table 2
A hypothetical voting record of two senators on three issues.

Issue 1 Issue 2 Issue 3

Fig. 14 illustrates through five cases how the similarity of sen-
ators 1 and 2 changes as a function of ˛. As the model is rather
complex, we discuss each cases separately, and then we sum up
the main implications of the modified correlation measure.

Table 3
˛ denoting the similarity of issues 1 and 2.
08 B. Kovács / Social Ne

imilar if they are related to similar actors or objects similarly.” Just
o recall one of the main examples of the paper: “Senators are sim-
lar if they vote similarly on similar issues.” The second principle
tates that similarity matrices should be consistent with each other.
uilding on the duality argument of Breiger (1974), we require that
ot only should senators be similar if they vote similarly on similar

ssues, but issues should be similar if similar senators vote similarly
n them.

These principles naturally imply a geometrical representation
f data. In this representation, each mode of data represents a
imension. The first principle provides a way to calculate similarity
f actors along these dimensions. The second principle warps the
imensions of the space such that the similarity matrices resulting
rom the warped space satisfy the consistency equations.

When is the generalized similarity model preferable to Pearson-
orrelation, or to other similarity measures that take only direct
elations into account? First, the generalized similarity measure is
pplicable if the dimensions along which actors are being compared
re not independent (if the dimensions are independent in all mode
f the data, then the generalized similarity measure is equal to the
earson-correlation). Second, we have found that the generalized
imilarity model is especially efficient in analyzing sparse data. The
eneralized similarity model is also preferable if other similarity
easures do not provide a clear clustering of the data: As the gen-

ralized similarity model emphasizes within-cluster similarity and
etween-cluster dissimilarity, it yields a more distinct classification
han the standard Pearson-correlation based similarity measures.

The approach proposed in the paper is very general, and can
e applied to a wide range of social and natural phenomena.
e have already mentioned a few applications in the paper. The

eneralized similarity measure directly applies to one-mode rela-
ional data, such as social network data. The “actors are similar
f they are related similarly to similar people” approach can be
sed to assess the similarity of not only people, but for example
rganizations. For two-mode data, we analyzed in detail two set-
ings: the senator-vote and people-club membership settings, but
learly the approach applies to a plethora of other settings, includ-
ng nations belonging to alliances, or organizations employing
eople.

Applications pertain outside of the traditional domains of the
etwork literature. For example, in linguistics, word co-appearance

s a common measure of word-associations and word similarity
Manning and Schütze, 1999): “words that tend to co-appear in
he same documents are similar”. Our approach generalizes direct
ord associations and states that “two words are similar if they

ppear in similar documents”, and, also, “documents are similar
f similar words appear in them.” Although we do not pursue this
rgument further here, our approach seems to solve the duality
etween article and document similarity.

The same approach applies to similarity measures in computer
cience and bibliometrics, which disciplines measure similarity by
o-citations. For example, to measure the similarity of webpages,
ink-overlap is used: two webpages are similar to the extent that
hey overlap in incoming citations (Dean and Henzinger, 1999).
imilarly, two articles are similar if they tend to appear-together in
he citation lists (Garfield, 1972). Clearly, our generalized approach
o similarity could be applied in both of these settings.

The generalized similarity model might also help in handling
nother problem of first-order relational data. In settings in which
ctors serve as substitutes, it is not generally true that the more
imilar two actors are, the more likely they appear together. For

xample, the words “America” and “U.S.” rarely appear in the same
entence (Widdows, 2004), and customers rarely buy two different
ecordings of the same Beethoven concerto. The proposed general-
zed approach solves this problem as “America” and “U.S.” tend to
ppear in similar sentences, and as people who buy Beethoven con-
Senator 1 1 −1 −1
Senator 2 1 −1 1

certos tend to make other similar purchases, their similarity will be
quite high.

The presented model is, of course, not without limitations. First,
if possible, an analytical solution of the model would be needed.
Second, the exact model is just one of the possible frameworks
for generalized similarity, other methods exists. We proposed an
approach that can possibly be combined with other methods.

The third, possibly most severe limitation of the proposed model
is that it builds on correlations among the dimensions, and cor-
relation is not a useful concept if the relationship between two
dimensions is not linear. Such is the case for example between age
and income. The model presented in this paper is not able to cap-
ture this, and to deal with such cases an alternative model would
be required.
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Appendix A. A detailed illustration for Principle 1

This section illustrates the basic properties of the modified
version of the Pearson-correlation (Principle 1). Throughout this
Appendix, we use the example of two senators who vote on three
issues, and we shall illustrate how the similarity of the senators
change as a function of the similarity of issues.

Take two senators voting on three issues. First we go through
one specific constellation of votes (see Table 2).

The baseline is that the issues are independent. That is, the
issue similarity matrix is a matrix with 1s in the diagonal and 0s
otherwise. In this case the similarity of senators is the Pearson-
correlation value, that is, 0.5.

What happens if we introduce some non-independence to the
issue similarity matrix? Let ˛ denote the similarity of Issue 1 and
Issue 2. Thus, the similarity matrix is (Table 3):
Issue 1 Issue 2 Issue 3

Issue 1 1 ˛ 0
Issue 2 ˛ 1 0
Issue 3 0 0 1
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ig. 13. Geometrical illustration of the votes of the two senators in the three differe
he votes. In the first setting, the issues are independent. In the second setting, Issu

In Case 1., senator 1 votes “Yea” on Issue 1, and “Nay” on Issues
and 3. Senator 2 votes “Yea” on Issues 1 and 3, and “Nay” on Issue
. As one can see, if ˛ is 0, then the similarity of senators 1 and 2

s 0.5, which corresponds to the Pearson-correlation value. Fig. 14
hows that as ˛ gets bigger, the similarity between senators 1 and
decreases. To explain this result, we discuss three scenarios: (1)
hen ˛ is −1, (2) when ˛ is 0, and when (3) when ˛ is 1. The three

cenarios are illustrated in Fig. 5. When ˛ is −1, Issues 1 and 2 are
pposing. For example, a “Yea” Issue 1 one means war, but a “Yea”
n Issue 2 means peace. The third issue is independent of 1 and
, it is, say, about education (for a moment assume that education

s independent from war and peace). When a given senator votes
pposingly on two opposing issue, she makes her position more
trongly (a “Yea” on war and a “Nay” on peace). In other words,
he two votes add-up. However, if Issues 1 and 2 are similar (˛ =
), the opposing vote of a given senators on Issues 1 and 2 cancel
ach other. That is, we can not really tell what is the position of a
enator who votes (a “Yea” on war and a “Nay” on another war).
utting these arguments together with the senators’ vote on Issue
explains the negative effect of ˛ on similarity: when Issue 1 and
are dissimilar, then the senators have strong opinion about the

ssues, and because they vote the same on Issues 1 and 2, they will

e highly similar. This similarity is stronger then the dissimilarity
temming from disagreement on Issue 3. However, when Issues
and 2 are similar, the opposing votes on them cancel each other,

hereby putting a stronger weight on Issue 3, on which the senators
re dissimilar.
e-similarity settings. The dotted lines represent the issues, the solid line represents
d 2 are opposing. In the third setting, Issues 1 and 2 are the same.

These arguments can be nicely illustrated geometrically, as
shown in Fig. 13. As discussed in the “Principle 1: Taking the similar-
ity among dimensions into account” section, the non-independence
of the issues is modeled as “warping” of the base space, and the
generalized similarity measure is nothing else but the standard-
ized version of the normalized cosine distance in this warped space.
Fig. 13a shows the case of ˛ = 0, and notes the votes of the two sen-
ators with a three dimensional voting vector which corresponds to
their votes. Fig. 13b and c displays the same two voting vectors, but
in the warped base space (˛ = −1 and ˛ = 1).

The other for voting scenarios further illustrate the mechanics of
Principle 1. In Case 2 of Fig. 14, senator 1 votes “Yea” on Issues 1 and
2, and “Nay” on Issue 3. senator 2 votes “Yea” on Issue 1, and “Nay”
on Issues 2 and 3. The similarity of senators 1 and 2 increases with
˛, but note that the similarity is always positive. When ˛ = −1, the
similarity is weaker because the “Yea” and “Nay” votes of senator 1
cancel each other, and this make senator 1 dissimilar from senator
2. In Case 3, the senators vote opposingly on each issues, so they are
perfectly dissimilar regardless of the content of the issues. In Case 4.,
senator 1 votes “Yea” on Issues 1 and 3, and “Nay” on Issue 2. Senator
2 votes “Yea” on Issues 1 and 2, and “Nay” on Issue 3. The senators
similarity decreases with the similarity of Issues 1 and 2 (˛), but

note that they are always dissimilar. Finally, Case 5, describes a
voting scenario in which senators 1 and 2 vote “Yea, Nay, Nay” and
“Nay, Yea, Nay” on the issues, respectively. When Issues 1 and 2 are
dissimilar, the “Yea” and “Nay” votes strengthen each other and
make the senators rather dissimilar. However, when Issues 1 and
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Fig. 14. Five voting scenarios for two senators on three issues. ˛ denotes the similarity of Issues 1 an 2. Issue 3 is independent from Issues 1 and 2 in all settings.
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