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Abstract

In this paper, we present a well-defined general matrix framework for modelling Information Retrieval (IR). In this

framework, collections, documents and queries correspond to matrix spaces. Retrieval aspects, such as content, struc-

ture and semantics, are expressed by matrices defined in these spaces and by matrix operations applied on them. The

dualities of these spaces are identified through the application of frequency-based operations on the proposed matrices

and through the investigation of the meaning of their eigenvectors. This allows term weighting concepts used for con-

tent-based retrieval, such as term frequency and inverse document frequency, to translate directly to concepts for struc-

ture-based retrieval. In addition, concepts such as pagerank, authorities and hubs, determined by exploiting the

structural relationships between linked documents, can be defined with respect to the semantic relationships between

terms. Moreover, this mathematical framework can be used to express classical and alternative evaluation measures,

involving, for instance, the structure of documents, and to further explain and relate IR models and theory. The high

level of reusability and abstraction of the framework leads to a logical layer for IR that makes system design and con-

struction significantly more efficient, and thus, better and increasingly personalised systems can be built at lower costs.

� 2004 Published by Elsevier Ltd.
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1. Introduction

With the Web and its search engines, ranking of retrieved objects becomes a focus in many application

areas. More and more people face the task of building complex information systems that provide ranking
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functionality. In this paper, we present a matrix framework in which key Information Retrieval (IR) con-

cepts (Baeza-Yates & Ribeiro-Neto, 1999; Belew, 2000; Grossman & Frieder, 1998; van Rijsbergen, 1979)

are described. This matrix framework supports the construction of efficient, flexible and robust search sys-

tems, since the matrix operations provide a high level of reusability and abstraction. For a search system

engineer, this flexibility of retrieval and indexing functions is crucial, since it yields the possibility to tune
the effectiveness and efficiency of a system for the particular personalised needs of end users.

The major theoretical foundations and motivations for this framework include the generalised vector-

space model (Wong & Yao, 1995) and the probabilistic framework (Wong & Yao, 1995) for IR. Further-

more, research on the duality of document indexing and relevance feedback (Amati & van Rijsbergen,

1998), on term frequencies normalisation (Amati & van Rijsbergen, 2002) and on link analysis ranking

algorithms for Web IR (Kleinberg, 1999; Page, Brin, Motwani, & Winograd, 1998) motivated the develop-

ment of our matrix framework. While these works, however, address the formalisation of either content or

structure, we propose a general matrix framework for both content and structure together with semantics.
In addition, we include the modelling of evaluation measures and of retrieval models.

Throughout the paper, particular emphasis is given to a well-defined notation of matrix norms and

operations. This allows for the dualities of the matrices and spaces defined within the framework to be sys-

tematically explored. For instance, widely used frequencies, such as tf-idf term weighting used for content-

based retrieval, can be applied on the structure of collections or documents. On the other hand, concepts,

such as pagerank, authorities and hubs, determined by the relationships between the documents of a col-

lection (the collection structure), can be transferred to the relationships between the terms of a collection

(the collection semantics).
The paper is structured as follows. Section 2 introduces the content-based, structure-based and semantic-

based aspects of retrieval. We consider collection, document, and query matrix spaces and define matrices

and operations on them to express these retrieval aspects. Section 3 proposes frequency-based operations

for expressing basic content-based IR concepts, such as term frequency and inverse document frequency.

Section 4 shows how to use the general matrix framework for modelling classical and alternative evaluation

measures. In Section 5, the general matrix framework is used for the modelling of retrieval models. Finally,

Section 6 examines the meaning of the eigenvectors of the symmetric matrices and shows the dualities

between collection, document and query spaces.
2. Retrieval aspects expressed in the matrix spaces

The underlying framework of our general IR model consists of matrix spaces, matrices associated with

each element of a space and standard linear algebra operations on matrices. We consider three matrix

spaces: a collection space, a document space and a query space. Each space may contain several elements.

For example, the collection space contains collections and the document space contains documents. Each
space has two dimensions. For example, the collection space has document and term dimensions, each rep-

resented by a vector. For each element of a space, we introduce matrices to represent the relationships be-

tween pairs of elements of the two dimensions of the space and matrices to represent the parent–child

relationships 1 between pairs of elements of a single dimension of the space.

We propose a carefully chosen notation for indicating the spaces and their associated matrices. In our

notation, a space is represented by a lower case letter and its dimensions by capital case letters. Let us con-

sider a space s and its dimensions X and Y. The vectors Xs, Ys contain the elements of the dimensions. The
1 The terminology parent–child relationship is used to describe any directed association between a source (parent) and a target

(child), i.e. it is not restricted to (tree-like) hierarchical relationships.
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matrix XYs reflects the relationships between pairs of elements of the two dimensions of this space. This

notation further denotes that the elements of dimension X are represented as rows of the matrix XYs,

whereas the elements of dimension Y are represented as columns of the matrix XYs. To represent the ma-

trix, which reflects the parent–child relationships among the elements of one dimension, we use matrices

named PC for parent–child, carrying a subscript to indicate the dimension and the space. To represent,
for instance, the parent–child relationships among the elements of the X dimension in space s, we use

the PCXs matrix.

In this framework, collections, documents and queries correspond, respectively, to the following matrix

spaces: the collection space c, the document space d, and the query space q. Retrieval aspects, such as con-

tent, structure and semantics, are expressed by matrices defined in these spaces. These matrices are dis-

cussed in the following sections.

2.1. Content

In our matrix framework, the content of a collection is represented by the document–term matrix DTc of

the collection space and the content of a document is represented by the location–term matrix LTd of the

document space. We choose the terminology location to cover concepts indicating document components of

varying granularity, such as section, paragraph, and position. Within the query space, the ‘‘content’’ of a

query is defined in terms of the relevance assessments provided for the query, and, hence, is represented

by the document-assessor matrix DAq or the location-assessor matrix LAq. Table 1 shows the content

matrices associated with the collection space and the document space, whereas Table 2 shows the content
matrices associated with the query space. Next, we discuss in detail the content matrices of our spaces.

2.1.1. Collection space

In a collection space c, the two dimensions are documents D and terms T. We define the vector of doc-

uments in the collection as Dc ¼ ½wdi �N�1, where wdi P 0 is the weight of document di. This weight can be
Table 2

Content of query space

Content

Query space

DAq: Documents · assessors LAq: Locations · assessors

DDq ¼ DAq � DAT
q LLq ¼ LAq � LAT

q
Document similarity (assessor degree) Location similarity (assessor degree)

AAq ¼ DAT
q � DAq AAq ¼ LAT

q � LAq

Assessor similarity (document degree) Assessor similarity (location degree)

Table 1

Content of collection and document spaces

Content

Collection space Document space

DTc: Documents · terms LTd: Locations · terms

DDc ¼ DT c � DTT
c LLd ¼ LT d � LT T

d
Document similarity (term degree) Location similarity (term degree)

TT c ¼ DTT
c � DT c TT d ¼ LT T

d � LT d

Term similarity (document degree) Term similarity (location degree)
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used to define the importance of a document in the collection. It can be estimated by taking into account

the source of the document, its size, the number of incoming and outgoing links (in the case of hyperlinked

documents) or other available evidence. In the simple case, the document weight denotes just the presence

(occurrence) of the document in the collection:
2 G

corresp

matrix
3 W

alterna

an exp
wdi :¼
1 if di 2 c

0 if di 62 c

�

In this case, the L1-norm (Golub & van Loan, 1996) of a document vector, defined as kDck1 �
PN

i¼1jwdi j,
represents the number of documents in the collection: NDc ¼ kDck1.

Similarly, we define the vector of terms in the collection as T c ¼ ½wti �M�1, where wti P 0 is the weight of

the term ti and the L1-norm of the term vector is defined as kT ck1 �
PM

i¼1 j wti j. In the simple case where
wti :¼
1 if ti 2 c

0 if ti 62 c

�

the L1-norm represents the number of distinct terms in the collection: NTc ¼ kT ck1.
Let DT c ¼ ½dtij�N�M , be the matrix of document–term pairs in the collection, where rows correspond to

documents and columns to terms. We define each matrix element as:
dtij :¼
1 if tj 2 di

0 if tj 62 di

�

where 1 6 i 6 N and 1 6 j 6 M.

We can consider the product of the collection�s content matrix DTc and its transpose. 2 Using post-mul-

tiplication, we generate the DDc ¼ DT c � DT T
c matrix, its elements reflecting document similarity within the

collection. To be more specific, the ijth element of matrix DDc expresses the similarity of documents di and

dj, as this is reflected by the overlap in their term occurrences. Using pre-multiplication, on the other hand,

the TT c ¼ DT T
c � DT c matrix is produced, its elements representing the number of common documents con-

taining each pair of terms and thus reflecting term similarity within the collection. 3

2.1.2. Document space

Similarly to the description of the collection space, the two dimensions of the document space d are loca-

tions L and terms T. We define the vector of locations in the document as Ld ¼ ½wli �R�1, wli P 0 and the

vector of terms in the document as T d ¼ ½wti �S�1, wti P 0.

Let LTd = [ltij]R·S be the matrix of location–term pairs in the document, where rows correspond to loca-

tions and columns to terms. Each matrix element is defined as:
ltij :¼
1 if tj 2 li
0 if tj 62 li

�

where 1 6 i 6 R and 1 6 j 6 S.

Again, we compute the product of the document content matrix LTd and its transpose, to generate the

LLd ¼ LT d � LT T
d matrix using post-multiplication and the TT d ¼ LT T

d � LT d matrix using pre-multiplication.

The elements of the LLd matrix reflect location similarity within the document with respect to the overlap in
enerally speaking, an element yij of a matrix Y, generated by post-multiplying a matrix X by its transpose XT, i.e. Y = X Æ XT,

onds to the dot product of the rows i, j of the X matrix. Similarly, an element zij of a matrix Z, generated by pre-multiplying a

X by its transpose XT, i.e. Z = XT Æ X, corresponds to the dot product of the columns i, j of the X matrix.

e apologise for the double meaning of the letter T, namely for the term dimension and for matrix transposition. We considered

tive notations for the transposition, but decided finally that it is best to keep the common notation, since transposition is always

onent T, whereas the term dimension is always part of a matrix name.
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their term occurrences, whereas the elements of the TTd matrix reflect term similarity with respect to over-

lap in the locations containing them.

2.1.3. Query space

We consider two content matrices associated with the query space: the document-assessor matrix DAq

and the location-assessor matrix LAq (Table 2). Both matrices represent relevance assessments made by

assessors (elements of dimension A) over the set of documents or locations in the query space (elements

of dimension D or L, respectively). We consider both relevance judgements made by human assessors

and estimations of relevance produced by retrieval systems simply as relevance assessments. The DAq ma-

trix reflects traditional IR (e.g. document retrieval), where the unit of retrieval is the document, whereas the

LAq matrix represents assessments at location (e.g. document component) level. This view reflects struc-

tured document retrieval, where any location may serve as a retrieval unit. Note that the space of the loca-

tions here is the query, meaning that components from different documents may be included. In addition,
the documents themselves may be viewed as types of locations. Therefore, the DAq matrix can be viewed

as a special case of the LAq matrix.

We define the vector of documents in the query space as Dq ¼ ½wdi �K�1, where wdi P 0 is the weight of

document di. This weight may combine different query-specific or query-independent evaluation parameters

or may in the simple case represent the presence (or absence) of documents in the query space:
wdi :¼
1 if di 2 q

0 if di 62 q

�

For the assessor dimension, we define the vector of assessors as Aq ¼ ½wai �L�1, where wai P 0 is the weight

associated with an assessor ai. The weights associated with an assessor may reflect its quality or trust value,

or may in the simple case be:
wai :¼
1 if ai has provided assessments for the query

0 if ai has not provided assessments for the query

�

Let DAq = [daij]K·L, be the matrix of document-assessor information associated with a query, where rows

correspond to documents and columns to assessors. We define each matrix element as:
daij :¼
1 if di is judged relevant by assessor aj
0 if di is judged not relevant by assessor aj

�

where 1 6 i 6 K and 1 6 j 6 L. In the general case, the weight of an element in the DAq matrix can reflect

the relevance degree or relevance status value of a document to the query as judged by an assessor (human

judge or retrieval system).

Similarly to the above definitions, the vector of locations in the query space is defined as Lq ¼ ½wli �V�1,

wli P 0, the assessors dimension as Aq ¼ ½wai �U�1, wai P 0, and the LAq = [laij]V·U matrix is defined in the
simple case as:
laij :¼
1 if li is judged relevant by assessor aj
0 if li is judged not relevant by assessor aj

�

where 1 6 i 6 V and 1 6 j 6 U.

The product of these matrices and of their transpose provides, on the one hand a representation for doc-
ument and location similarity expressing assessor agreement (DDq and LLq), while the AAq matrices reflect

assessor similarity and provide a framework for the calculation of precision/recall measures (see Section 4).

Next we define the matrices PCXs reflecting the parent–child relationships between the elements of a sin-

gle dimension X of a matrix space x. We define the elements of these matrices as pcij = 1 if element xi is
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parent of element xj and 0 otherwise. For the scope of this paper, we restrict ourselves to the relationships

of the elements along the dimensions of the collection space and the document space. First, we consider the

document and location dimensions in the collection and document space, respectively (Section 2.2), and

then the term dimensions in these two spaces (Section 2.3).

2.2. Structure

The parent–child relationships among the documents in the collection space and the locations in the doc-

ument space constitute the structure of a collection and a document, respectively. Table 3 shows the mod-

elling of these relationships. The matrix PCDc in a collection space could represent the link-structure of a

Web document collection (collection structure), while the PCLd matrix in the document space could repre-

sent the relationships among document parts (document structure).

By multiplying the PCDc matrix with its transpose, the matrices PPDc ¼ PCDc � PCT
Dc

and CCDc ¼
PCT

Dc
� PCDc are generated, whose elements reflect document parent and document child similarity, respec-

tively. An element of PPDc is also referred to as bibliographic coupling degree, i.e. it reflects the degree to

which two documents cite the same children. An element of CCDc is referred to as co-citation degree, i.e.

it reflects the degree to which two documents are cited by the same parents. These are measures of the sim-

ilarity of two pages and whereas the terminology was initially introduced in the field of bibliometric studies,

it has been adopted in the field of link analysis algorithms in Web IR, by considering that the links between

documents act as citations. One of the most prominent link analysis algorithms is HITS (Kleinberg, 1999),

which considers that there are two types of quality Web pages: authorities, which contain definitive, high-
quality information and hubs, which are comprehensive lists of links to authorities. Every page is viewed as

being to some extent both a hub and an authority. These hub and authority values correspond to the prin-

cipal eigenvectors of the PPDc and CCDc matrices, respectively (see Section 6 for discussion on the meaning

of the eigenvectors of the matrices defined in the framework).

In a dual way, we can consider PPLd and CCLd in a document. These parameters are potentially useful

in structured document retrieval, where we face the task of estimating probabilities for document parts. There-

by, the probability estimation could take the ‘‘hub’’ and ‘‘authority’’ feature of document parts into account.

2.3. Semantics

Table 4 shows the modelling of the parent–child relationships among the terms of the collection space

and the terms of the document space, respectively. In this case, the relationships among the terms constitute

the semantics in a collection and a document, respectively. The semantics in the collection space is reflected

in PCTc , from which we derive PPTc ¼ PCTc � PCT
T c

and CCTc ¼ PCT
T c
� PCTc , representing the term parent and

term child similarities. Similarly, PCTd reflects the semantics in the document space, from which we derive

PPTd and CCTd to denote respectively the term parent and term child similarities in a document.
Table 3

Structure of collection space and document space

Structure

Collection space Document space

PCDc
: Parents · children PCLd

: Parents · children

PPDc ¼ PCDc � PCT
Dc

PPLd ¼ PCLd � PCT
Ld

Out-degree of documents Out-degree of locations

CCDc ¼ PCT
Dc

� PCDc CCLd ¼ PCT
Ld � PCLd

In-degree of documents In-degree of locations



Table 4

Semantics of collection space and document space

Semantics

Collection space Document space

PCTc : Parents · children PCTd : Parents · children

PPTc ¼ PCT c � PCT
T c

PPT d ¼ PCTd � PCT
T d

Generality of terms Generality of terms

CCTc ¼ PCT
T c

� PCT c CCTd ¼ PCT
T d

� PCTd

Specificity of terms Specificity of terms
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From the PPTc and the PPTd matrices, we can estimate the ‘‘authority’’ and ‘‘hub’’ value of a term. An

‘‘authority’’ term is a term with a high number of incoming links, i.e. it is a specialisation of several general

terms. For example, ‘‘business technology transfer manager’’ is an authority, since this compound is a spe-

cialisation of several general terms. A ‘‘hub’’ term is a term with many outgoing links (many specialisa-

tions). For example, a name such as ‘‘Smith’’ could be a hub term, since it expands to many compounds

that are distinctive in the first name. With this ‘‘hub’’ view on terms, terms with several meanings (homon-
ymy) and smallest parts of a word with a meaning (morphemes) are hub candidates. Hub terms tend to be

general (broad) terms whereas authority terms tend to be specific (narrow) terms. This hub and authority

view on terms could be combined with the term similarity matrix TTc (Section 2.1.1) to add a semantic

aspect to an otherwise purely occurrence-based similarity measure.

So far, we have described how the retrieval aspects are expressed in the spaces of our matrix framework.

The notation we have introduced allows for a general IR model with high abstraction. In the next section,

we present the frequency-based operations on the matrices of our framework, which allows for the mod-

elling of classical term weighting schemes, such as term frequency and inverse document frequency, using
the content matrices of the collection and the document space.
3. Frequency-based operations on matrices

Our aim is to describe key IR concepts using our matrix framework. In this section, we propose fre-

quency-based operations on matrices. We focus on the exploitation and definition of widely used frequen-

cies, such as the classical term weighting schemes used for content-based retrieval. This section investigates
how the inverse document frequency of terms can be described using a collection�s content matrix (Section

3.1) and how the location frequency of terms (commonly referred to as term frequency in IR) can be

described using a document�s content matrix (Section 3.2).

3.1. Collection space

The common IR definition of the inverse document frequency idf(t,c) based on the document frequency

df(t,c) of a term in a collection is:
df ðt; cÞ :¼ nDðt; cÞ
NDðcÞ

ð1Þ

idf ðt; cÞ :¼ � log df ðt; cÞ ð2Þ

where ND(c) is the number of documents in the collection and nD(t,c) is the number of documents in the

collection in which term t occurs.
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Following these definitions, we provide the definition of the inverse document frequency in our matrix

framework. We describe the inverse document frequency idf of a term in a collection, by defining a vector

of the terms in the collection, where each element is the number of documents that contain the term:
ndT c ¼ DT
c � DT c ¼ ½ndti �1�M
For example, let us consider the collection containing documents d1, d2 and d3 and terms t1, t2, t3 and t4.

The document and term vectors are:
and the number of documents and terms in the collection are NDc ¼ 3 and NTc ¼ 4, respectively. Let the

document–term matrix of our collection be:
For our example, we then obtain:
By normalising each element of ndT c with the number of documents in the collection, we obtain a vector of

the terms in the collection, where each element is the document frequency (df) of the term:
df T c
¼ 1

NDc

� ndT c
For our example, this yields:
Next, we apply the negative logarithm on each matrix element of dfTc
to obtain the inverse document fre-

quencies. Let apply(f,M) be a function which applies the function f to each element of matrix M. We obtain

the idfTc
vector, which is the vector of the terms in the collection, where each element is the inverse docu-

ment frequency of the term:
idf T c
¼ applyð� log; df T c

Þ

For our example, we obtain:
Next, we investigate (analog to the document frequency of a term) the term frequency of a document. Note

that we investigate the term frequency of a document, not the term frequency of a term, as traditionally con-

sidered in IR. The latter one is dealt with in Section 3.2.

The definition of the inverse term frequency of a document itf(d,c) is based on the term frequency of a
document in a collection tf(d,c):
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tf ðd; cÞ :¼ nT ðd; cÞ
NT ðcÞ

ð3Þ

itf ðd; cÞ :¼ � log tf ðd; cÞ ð4Þ

whereNT(c) is the number of terms in the collection and nT(d,c) is the number of terms occurring in document

d. Note the correspondence between the definition of document frequency (Eq. (1)) and term frequency (Eq.

(3)) and between the definition of inverse document frequency (Eq. (2)) and inverse term frequency (Eq. (4)).

Therefore, we can analogously define the following three vectors: a vector of the documents in the col-

lection, where each element is the number of terms occurring in the document: ntDc ¼ DT c � T c ¼ ½ntdi �N�1, a

vector of the documents in the collection, where each element is the term frequency of the document:
tf Dc

¼ 1
NTc

� ntDc and a vector of the documents in the collection where each element is the inverse term

frequency of the document: itf Dc
¼ applyð� log; tf Dc

Þ. For our example, we obtain:
The inverse document frequency reflects the so-called discriminative power (occurrence) of a term, the in-

verse term frequency reflects the specificity (length) of a document. Note the perfect mathematical analogy

between document and term frequency. However, there is a terminological misfit with the common IR def-

inition of term frequency (where term frequency is used for a term in a document) and the term frequency

of a document used here. The term frequency defined in this section is the term frequency of a document

in a collection, whereas the classical term frequency corresponds to the location frequency of a term in a

document, as we point out in the next section.

3.2. Document space

Let a document with content such as ‘‘sailing boats greece sailing’’ be given. The location (where location

in this case corresponds to a term position in the document) and the term vectors of this document are then

defined as:
with t1 = ‘‘sailing’’, t2 = ‘‘greece’’ and t3 = ‘‘boats’’. The location–term matrix representing the document

content is:
Our aim is to define the location frequency of a term in a document using the matrices of the document

space. Note that this corresponds to the classical IR notion of term frequency and this becomes clear as
we first present the classical term frequency definition and then introduce the location frequency definition.

Let nL(t,d) be the number of locations at which t occurs in d. Then, the common IR definition of the

term frequency is as follows:
tf ðt; dÞ :¼ nLðt; dÞ
nLðtmax; dÞ

ð5Þ
where nL(tmax,d) is the maximal occurrence, i.e. "t: nL(t,d) 6 nL(tmax,d).
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Following these definitions, we introduce the matrix-based definition of the location frequency of a term

in a document. First, we define a vector of the terms in the document, where each element is the number of

locations (nl) containing the term:
nlT d ¼ LT
d � LT d ¼ ½nlti �1�S
For our example, we obtain:
The next step is to define a vector of the terms in the document, where each element is the location fre-

quency (lf) of the term: lf T d
¼ nlTd

knlTd k1
(where kÆk1: L1�normk~xk1 � maxijxij (Golub & van Loan, 1996)).

Whereas the document frequency of a term was defined by normalising with the number of documents
in the collection, the location frequency of a term is defined by normalising with the maximal location

frequency in the document.

For our example, we obtain:
However, there are several alternative approaches for estimating the classical IR notion of term frequency.

These approaches are based on the idea of lifting the probabilities of rare terms. Experiments (see Robert-

son, Walker, & Hancock-Beaulieu, 1995; Salton & Buckley, 1988 and related publications) prove that such

approaches improve retrieval quality. We can distinguish between two main approaches: (1) linear lifting

and (2) non-linear lifting using a Poisson approximation.

In the first approach, the lifting to the interval a 6 tf(t,d) 6 1 is described by:
tf ðt; dÞ :¼ aþ ð1� aÞ � nLðt; dÞ
nLðtmax; dÞ
On the other hand, the estimate based on a Poisson approximation leads to a non-linear increase of tf-val-

ues. In addition, a document length normalisation can be considered, while tf-values still remain in the

interval [0,1], which is a welcome property in a probabilistic framework. This is described by:
tf ðt; dÞ :¼ nLðt; dÞ
K þ nLðt; dÞ
The definition of K includes parameters such as k1 and b for controlling the influence of K itself and of the
document length normalisation:
K :¼ k1 � ð1� bÞ þ b � NLðdÞ
avgNLðdÞ

� �
The parameter K is small for small documents and large for large documents. Small k1 values lead already

for relatively small nL(t,d) values to large tf-values, while a small b reduces the impact of the length

normalisation.

Whereas linear lifting requires just a multiplication of the involved matrices with a scalar, in order to be

expressed in the matrix framework, the Poisson-based non-linear lifting requires more complex operations.

The inclusion of non-linear lifting is a topic of future research in extending the matrix framework.

Also, as previously done in the collection space, where we defined the term frequency of a document, we
can define in the document space the term frequency of a location. This can be achieved by defining the

vector of the locations in the document ntLd
, where each element is the number of terms occurring in the
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location: ntLd ¼ LT d � T d ¼ ½ntli �R�1 and the vector of the locations in the document tfLd
, where each element

is the term frequency of the location:
4 W

scores
tf Ld ¼
ntLd

kntLdk1

We have discussed term weighting in the collection space and in the document space by applying frequency-
based operations on the content matrices of these spaces. Note that similar frequency-based operations

could be applied to the structure and semantics matrices of the collection and document spaces. Therefore,

tf-idf like measures may be applied to gauge the level of structural or semantic dependency. Next, we

discuss evaluation measures in the query space.
4. Evaluation

We show in this section how to express evaluation measures in our general matrix framework. This inte-

gration of evaluation concepts within our framework allows to fully realise and exploit the duality of the

meanings of the applied matrix operations within the different spaces. For example, we can build a similar-

ity matrix for assessors just as we did for terms or documents, or we can apply the notion of precision and

recall for terms in a collection space DT T
c (representing the ratio of the number of co-occurring terms in two

documents to the length of the individual documents, respectively).

First, we discuss the standard precision and recall measures, then we extend the discussion and demon-

strate how to use the collection and document structure matrices (PCDc and PCLd ) for expressing concepts
such as aggregated relevance and novelty-based evaluation.

4.1. Precision and recall

Precision and recall (Baeza-Yates & Ribeiro-Neto, 1999; van Rijsbergen, 1979) are the most common

quality evaluation measures in IR, and are defined as follows:
precision :¼ retrieved \ relevant

retrieved
recall :¼ retrieved \ relevant

relevant
The description of precision/recall in our matrix framework is based on the document-assessor DAq and

location-assessor LAq matrices of a query as introduced in Section 2.1.3.
First we consider the DAq matrix and define precision and recall when documents represent the atomic

unit of retrieval. In our definition, we make use of the notation DAq (:,ai) (Golub & van Loan, 1996) denot-

ing the ith assessor column of the DAq matrix. Each such column of DAq represents the assessments of an

assessor ai (i.e. retrieval system or human judge) over the documents of the query space. The L1-norm of a

column vector then gives the number of documents that a given assessor judged relevant. 4 The number of

retrieved and relevant documents is the number of documents that have been assessed relevant by both

assessors (i.e. by the system under investigation and by the human judge, whose assessment is considered

as the ground truth that the system is evaluated against). This can be calculated simply as the dot product
of the two column-vectors. Based on these, precision and recall can be obtained as:
precisionðai; ajÞ :¼
DAqð:; aiÞT � DAqð:; ajÞ

kDAqð:; aiÞk1
e assume binary relevance assessments here. For graded assessments (or RSVs) the L1-norm gives the sum of the relevance

, which can then be used to calculate generalised precision and recall (Kekalainen & Jarvelin, 2002).
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recallðai; ajÞ :¼
DAqð:; aiÞT � DAqð:; ajÞ

kDAqð:; ajÞk1

The dot product of any two assessment vectors can also be obtained directly from an assessor–assessor

matrix AAq, derived from DAq using pre-multiplication (e.g. as we have done when obtaining a term–term
matrix from the document–term matrix):
AAq ¼ DAT
q � DAq
Given AAq, the precision/recall values for an assessor ai evaluated against the ground truth of the assess-
ment of aj can be calculated as:
precisionðai; ajÞ :¼
AAqðai; ajÞ
kDAqð:; aiÞk1

recallðai; ajÞ :¼
AAqðai; ajÞ

kDAqð:; ajÞk1

In the special case of binary assessment values, kDAq(:,ai)k1 and kDAq(:,aj)k1 can also be directly obtained

from the AAq matrix as AAq(ai,ai) and AAq(aj,aj), respectively.

The generalisation of the AAq matrix is that it provides a complete summary of the evaluation of any

system or user assessment against any other system or user assessment, giving the relative performance

of one assessor against another. In addition, any element within the matrix reflects the relative similarity

between assessments and/or retrieval strategies.
The above definitions reflect the set view on retrieval results. However, a retrieval system returns a

ranked list of documents rather than a set of documents. We can capture the ranking information and cal-

culate precision/recall at a given rank by taking the sub-matrix of the DAq assessment matrix containing

documents retrieved up to that rank.

Similarly to the calculations based on the DAq matrix, we can obtain the precision and recall measures

for structured document retrieval systems whose assessments, consisting of varying granularity document

components, are described within a LAq matrix. The assessor–assessor matrix in this case reflects assess-

ment similarity at a location level (i.e. location degree).
So far in this section, we have sketched the usage of our matrix framework for a retrieval quality mea-

sure. The potential of the matrix framework lies in the definition and management of more complex mea-

sures. For example, we may want to consider the efficiency of query processing. We may then introduce an

additional assessment column in DAq or LAq, where the column reflects, for instance, the time at which a

document is delivered by a system. Numerous other factors may be considered in system evaluation, includ-

ing the structure of documents, which we investigate next.

4.2. Evaluation measures for linked documents

In this section, we look at the extension of our assessment matrices for situations where dependencies

(e.g. links) among the documents of a collection or among document parts within a document exist. By

exploiting the dependency information, we can extend traditional evaluation measures to consider the re-

trieval of indirectly relevant documents as partial successes or to penalise the retrieval of multiple related,

and hence redundant, documents.

4.2.1. Near-misses

We use the term ‘‘near-miss’’ to refer to a document (or location), which is not itself relevant to a given

query, but which is linked to one or more relevant documents (or locations). The rationale behind incor-

porating a mechanism within the evaluation to score the retrieval of near-misses is that such documents

may still be considered useful for the user (especially if the relevant document itself is not found by the

search engine) (Hawking, Voorhees, Craswell, & Bailey, 1999). With this aim, we describe the process of
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relevance propagation, which supports an evaluation framework, where additional (partial) scores may be

rewarded for near-misses.

Given a link structure PCDc
of documents within a collection and the document-assessor matrix DAq for

the same set of documents, we can propagate relevance along the links, in a given direction, reflecting the

notion that if a document is relevant, then a document linked to or from it may also be considered relevant
(to some degree). Previous research has investigated a number of relevance propagation strategies, includ-

ing pessimistic and optimistic approaches (Roelleke, Lalmas, Kazai, Ruthven, & Quicker, 2002). A pessi-

mistic strategy only considers a linked document relevant if all documents linking to or from it are relevant.

For the optimistic propagation it is sufficient if only one of the linked documents is relevant.

For each step of a propagation approach, we first derive a matrix whose elements reflect the number of

relevant linked parent (nPAq) or child (nCAq) documents (assuming binary assessment values in DAq),

where relevance is propagated to children or parent documents, respectively:
5 W

effectiv

1999;
nPAq ¼ PCT
Dc

� DAq nCAq ¼ PCDc � DAq
From these, the propagated child CAq and parent PAq assessment matrices can be derived by assigning

assessment weights according to the selected propagation strategy. For example, for the optimistic strategy,

we can obtain each element of the propagated child assessment matrix as:
caij :¼
1 if nPAqðdi; ajÞ > 0

0 otherwise

�

For the propagated parent assessment matrix, we assign paij := 1 if nCAq(di,aj) > 0 and 0 otherwise. With

respect to the pessimistic strategy, the elements of the propagated child assessment vector are calculated as:
caij :¼
1 if nPAqðdi; ajÞ ¼ kPCDcð:; diÞk1
0 otherwise

�

Similarly, for the propagated parent assessment matrix, we assign paij := 1 if nCAqðdi; ajÞ ¼ kPCT
Dc
ð:; diÞk1

and 0 otherwise. According to this, the propagated assessment value of 1 is assigned to a child (or parent),

if the number of linked relevant documents equals the number of parent (or child) documents.

Alternative propagation methods may consider other threshold values, and various parameters. One
such parameter is the number of linked relevant documents, which may be regarded as a measure of doc-

ument ‘‘relevancy-authority’’ or ‘‘relevancy-hub’’ value. In addition, as the propagation process is repeated

iteratively, the propagated values may be normalised to reflect the distance from the original relevant

document. Such a strategy reflects the increasing user effort required in locating relevant documents from

returned near-misses. When non-binary relevance scores are propagated, various adaptations of the opti-

mistic and pessimistic strategies can be employed, such as assigning a parent or child document the average

or maximum of the linked documents� relevance scores.

The derived propagated assessments matrices, combined with the original DAq matrix, allow a possible
evaluation metric to score near-misses. The definition of such a metric is, however, a non-trivial issue 5 and

is outside the scope of this paper.

The exact same procedures can be applied to linked document parts and hence propagate relevance to

related components within a document. The structure matrix employed here would be a matrix, which com-

bines all the PCLd
matrices of documents contained in the query space. This can be derived by spanning

the PCLd
matrices within the diagonal of the main structure matrix. The resulting framework allows to
ithin the standard precision/recall framework, the simple addition of near-misses to the recall-base can lead to skewed

eness results, where 100% recall can only be reached if systems return all relevant and near-miss documents (Hawking et al.,

Kazai, Lalmas, & de Vries, 2004).
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calculate precision/recall for assessments containing varying granularity document components while also

allowing to reward near-misses.

4.2.2. Novelty

While, on the one hand, we may want to reward systems for retrieving near-misses, on the other hand,
we may also want to discourage systems from returning redundant results, i.e. multiple related documents

(or components). In this case, the evaluation should consider the dependency among documents/compo-

nents in order to score systems based on the novelty value 6 of the returned results.

A simple (heuristic) measure of novelty may be given as the inverse of dependency:
6 N

respect
novelty :¼ 1

dependencyþ 1
where dependency may be calculated as:
dependency :¼
XNDai

k¼1

kPCDai
ð:; dkÞk1 ¼

XNDai

k¼1

XNDai

j¼1

PCDai
ðdj; dkÞ
The PCDai
matrix here is the structure matrix derived for documents assessed relevant by ai, where NDai

is

the number of documents. For locations, we sum over the PCLai
structure matrix reflecting dependencies

among locations assessed relevant by ai.

The obtained novelty value of 1 reflects independence and high novelty, while values close to 0 represent

high dependency and low novelty among assessments.

An exact definition of novelty and its adoption within the recall/precision measures will depend on the

objective of the evaluation, which is again outside the scope of this paper. Here our aim is only to highlight

that our matrix framework provides a way to extend the classical evaluation approaches to consider the
dependency among documents (components) in order to allow rewarding near-misses and novelty. The def-

inition of new evaluation measures based on the above extensions of DAq and LAq are especially important

for Web and structured document retrieval, where assessments may contain high ratios of related compo-

nents. The matrix framework provides a formalism in which those new evaluation measures can be

established.
5. Retrieval models

In this section, we use our matrix framework for expressing the vector-space model (Section 5.1), the

logical approach (Section 5.2), the probabilistic inference network model (Section 5.3), and the probability

of relevance models (Section 5.4), where in the latter section we consider the binary independent retrieval

model (Section 5.4.1) and language modelling (Section 5.4.2). The main outcome of viewing all models in

the matrix framework is to highlight the parallels and dualities of the models.

5.1. Vector-space model

The vector-space model is by its nature straight-forward to formalise in the matrix framework. We start

with a binary document–term matrix, consider then tf-idf, and extend the discussion with the generalised

vector-space model.
ote that novelty is considered here only with regards to redundancy among returned documents/components and not with

to the information contained within the documents.
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Consider the product DT c � DT T
c of the document–term matrix DTc. The equation
DDc ¼ DT c � DT T
c

yields in DDc a similarity measure for each pair of documents. This similarity measure is also referred to as

retrieval status value (RSV). Rows of the DTc matrix constitute document or query vectors, respectively.

The notation DTc(di,:) selects document and query vectors. Considering row dk as a query, we write:
~q ¼ DT cðdk; : ÞT
The equation
RSVVSMðd1; qÞ

..

.

RSVVSMðdn; qÞ

0
BBB@

1
CCCA ¼ DT c �~q ð6Þ
yields a vector of RSV�s for query q. Assuming a binary matrix DTc, this formulation of the VSM in the
matrix framework corresponds to the so-called coordination level match, i.e. the RSV corresponds to the

number of terms shared by the document and query.

The coordination level match based on a binary matrix DTc is outperformed by the tf-idf approach. The

tf-idf approach is described in the matrix framework by using a DTc matrix in which the components dtij
correspond to the within-document–term frequency (actually, location frequency, see Section 3.2 for the

computation of the location frequency) of term tj in document di. Further, we use the vector idf T c
which

contains the idf-values of the terms in collection c (see Section 3.1 for the computation of idfTc
). The

tf-idf approach without normalisation is then described as the product of a document–term matrix with
location frequencies and the diagonal matrix diagðidf T c

Þ of idf-values.
lf T d1

..

.

lf T dn

0
BBBB@

1
CCCCA � diagðidf T c

Þ ¼

lf T d1

..

.

lf T dn

0
BBBB@

1
CCCCA �

idf ðt1; cÞ 0 . . . 0

0 idf ðt2; cÞ 0

0 . . . 0 idf ðtn; cÞ

0
BB@

1
CCA
The multiplication of the location frequency matrix and the diagonal matrix of the vector idfTc
yields

a D · T matrix in which dtij is the tf-idf value of a document–term pair. The L2-norm (Euclidean norm)

applied to each row yields a classical document length normalisation.

One motivation to view IR in the general matrix framework of this paper comes from the work (Wong,

Ziarko, & Wong, 1985) on the generalised VSM, in which a matrix G is introduced as follows:
RSVGVSMðd; qÞ ¼~d
T � G �~q ð7Þ
G is a term · term matrix that reflects semantic relationships between terms. By setting a matrix element

such as g12 to 1, we obtain, for example, a revised document vector:
~d
T � G ¼

dt1

dt2

..

.

dtn

0
BBBBBB@

1
CCCCCCA

T

�

1 1 0 . . . 0

0 1 0 . . . 0

. .
.

0 0 0 . . . 1

0
BBBBBB@

1
CCCCCCA

¼

dt1

dt1 þ dt2

..

.

dtn

0
BBBBBB@

1
CCCCCCA

T



T. R€olleke et al. / Information Processing and Management 42 (2006) 4–30 19
Because g12 = 1, the weight dt1
7 of term ~t1 is added to the weight dt2 of ~t2, and the sum dt1 + dt2 is the new

weight of term ~t2. For a query, the weight qt2 is added to qt1, and the sum qt1 + qt2 becomes the weight of ~t1.
In the scalar product of document and query, the factor g12 Æ dt1 Æ qt2 is added to the basic scalar product.

This generalisation of the scalar product is useful for addressing word-mismatch problems that are beyond

stemming. For example, a query for ‘‘classification’’ shall retrieve documents that are indexed with ‘‘cate-
gorisation’’, and this can be achieved by setting the corresponding element in G that relates the two terms.

With respect to the matrices introduced in this paper, the TTc matrix for term similarity or the PCTc
matrix

of term relationships can be viewed as settings for the generalisation matrix G.

The general vector-space model has an interesting relationship with the logical approach to IR, which is

highlighted in the next section.

5.2. Logical approach P(d ! q)

In van Rijsbergen (1986), a logical approach for IR is proposed. The idea is to define a logic such that the

probability P(d ! q) is a good estimate of the probability of relevance. We show in the context of the ma-

trix framework, how an interpretation of P(d ! q) as conditional probability P(qjd) relates to the general-

ised vector-space model. Based on a set of disjoint terms (see Wong & Yao, 1995), the conditional

probability is expressed as the sum over the product of query and term probabilities.
7 dt
P ðd ! qÞ :¼ P ðqjdÞ ¼
X
t

P ðqjtÞ � PðtjdÞ
Here, we assume that P(qjt) = P(qjd, t), i.e. given term t, the query does not depend on the document. Using

Bayes for P(tjd), we rewrite the equation and obtain:
P ðqjdÞ ¼ 1

P ðdÞ �
X
t

P ðqjtÞ � PðdjtÞ � PðtÞ
Now, consider vectors ~q ¼ ðP ðqjt1Þ; . . . ; P ðqjtnÞÞT and ~d ¼ ðP ðdjt1Þ; . . . ; PðdjtnÞÞT for query and document.

Then, we can write P(qjd) in a form similar to the generalised vector-space model:
P ðqjdÞ ¼ 1

P ðdÞ �
~d
T
� diagðP ðt1Þ; . . . ; P ðtnÞÞ �~q ð8Þ
The diagonal matrix of term probabilities connects query and document vector. Query and document vec-

tor have the same semantics, i.e. both contain probabilities depending on a term.

We have shown how to express P(qjd) in our matrix framework, and that the modelling is related to the

generalised vector-space model. Next, we look at the computation of P(qjd) based on probabilistic inference
networks.

5.3. Probabilistic inference network (PIN) model

Fig. 1 shows a PIN. The general computation of P(q) in the PIN is based on the link matrix L and the

vector of incoming probabilities, where each combination of incoming events has to be considered.
P ðqjdÞ
P ð�qjdÞ

� �
¼ L �

P ðt1; t2jdÞ
P ðt1; �t2jdÞ
P ð�t1; t2jdÞ
P ð�t1; �t2jdÞ

0
BBB@

1
CCCA
i is here the scalar in row ti of vector ~d.
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Fig. 1. A probabilistic inference network.
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The link matrix L contains conditional probabilities of the form
L ¼
P ðqjt1; t2Þ P ðqjt1; �t2Þ P ðqj�t1; t2Þ P ðqj�t1; �t2Þ
P ð�qjt1; t2Þ P ð�qjt1; �t2Þ P ð�qj�t1; t2Þ P ð�qj�t1; �t2Þ

� �
In Turtle and Croft (1991) and related publications a special setting of the link matrix is proposed. Let wi be

query term weights, and let ws be the sum of query term weights (ws ¼
P

iwi). The link matrix is defined

as follows:
LPIN :¼
w1þw2

ws

w1

ws

w2

ws
0

0 w2

ws

w1

ws

w1þw2

ws

 !
This definition leads to a closed form for P(qjd):
P ðqjdÞ ¼ 1

ws
�
X
i

wi � P ðtijdÞ ¼
1

ws
�
X
i

PðqjtiÞ � PðtijdÞ
The same closed form can be obtained by representing the network in a matrix and computing the eigen-

vector of the matrix. Consider the matrix PIN representing the network:
With~x ¼ ðP ðdÞ; Pðt1jdÞ; P ðt2jdÞ; P ðqjdÞÞT , we need to solve the equation system
0 ¼~bþ ðPIN� IÞ �~x

for computing P(qjd), which is the fourth component of vector ~x. For demonstrating the solution of this

equation system, we rewrite it first:
From the rewritten form, x1 = b1 follows directly, then x2 and x3 follow. We use x2 and x3 and obtain x4.
x1 ¼ b1
x2 ¼ b1 � P ðt1jdÞ þ b2
x3 ¼ b1 � P ðt2jdÞ þ b3
x4 ¼ ðb1 � Pðt1jdÞ þ b2Þ � P ðqjt1Þ þ ðb1 � P ðt2jdÞ þ b3Þ � P ðqjt2Þ þ b4
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By setting the starting vector ~b :¼ ð0; P ðt1jdÞ=ws; Pðt2jdÞ=ws; 0Þ, we obtain the ranking formula of the PIN

approach as the solution for x4:
x4 ¼ P ðqjdÞ ¼ Pðt1jdÞ=ws � P ðqjt1Þ þ P ðt2jdÞ=ws � P ðqjt2Þ ¼
1

ws
�
X
i

P ðqjtiÞ � P ðtijdÞ
This result connects the PIN approach with Eigenvector computation. The impact of this result is a topic of

further research.
Finally, we express the PIN approach in a form based on vectors ~d ¼ ðP ðt1jdÞ; . . . ; P ðtnjdÞÞT and

~q ¼ ðP ðqjt1Þ; . . . ; P ðqjtnÞÞT . We obtain:
RSVPINðd; qÞ :¼
1

k~qk1
�~d

T
�~q ð9Þ
Here, k~qk1 ¼ ws is the sum of query term weights.
Next, we recall models based on the probability of relevance and show how to express the models in the

general matrix framework.

5.4. Probability of relevance models

The probability P(rjd,q) of relevance r given a document–query pair d, q is the optimal measure for rank-

ing retrieved documents (Robertson, 1977; Robertson & Sparck Jones, 1976). Using the theorem of Bayes,

we obtain:
P ðrjd; qÞ ¼ Pðd; q; rÞ
P ðd; qÞ
Depending on whether we let the document to be conditioned by the query, or the query conditioned by the

document, we can write the numerator as follows:
P ðd; q; rÞ ¼ P ðdjq; rÞ � P ðrjqÞ � PðqÞ
¼ P ðqjd; rÞ � P ðrjdÞ � PðdÞ
With an odds formulation on the relevance event, i.e. using RSVðd; qÞ ¼ P ðrjd; qÞ=Pð�rjd; qÞ as the retrieval
status value (RSV), probabilities P(d,q), P(d) and P(q) drop out. We obtain:
RSVðd; qÞ ¼ P ðdjq; rÞ
P ðdjq;�rÞ �

PðrjqÞ
Pð�rjqÞ ð10Þ

¼ P ðqjd; rÞ
P ðqjd;�rÞ �

PðrjdÞ
Pð�rjdÞ ð11Þ
The approach with d depending on q (Eq. (10)) is the foundation of the binary independent retrieval (BIR)

model, and the approach with q depending on d (Eq. (11)) is the foundation of the language modelling

approaches (Lafferty & Zhai, 2002).

5.4.1. Binary independent retrieval (BIR) model

For the BIR model, the probabilities P(rjq) and P ð�rjqÞ do not affect the ranking of documents with

respect to one query. Therefore, we do not consider this factor further.

One of the main assumptions in the BIR model is to represent a document d by a vector~x of independent
features xi.
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P ðdjq; rÞ ¼ P ð~xjq; rÞ ¼
Y
i

P ðxijq; rÞ
Assuming the features to be terms, and assuming that non-query terms are distributed in relevant as they

are distributed in non-relevant documents (i.e. P ðxijq; rÞ ¼ P ðxijq;�rÞ), we obtain:
P ð~xjq; rÞ
P ð~xjq;�rÞ ¼

Y
ti2q

P ðxijq; rÞ
P ðxijq;�rÞ
Assuming further that features are binary, i.e. a vector component xi is 1 if term ti occurs in the document,
otherwise the component is 0, we can split the product into xi = 1 and xi = 0, and obtain:
P ð~xjq; rÞ
P ð~xjq;�rÞ ¼

Y
ti2d\q

P ðxi ¼ 1jq; rÞ
P ðxi ¼ 1jq;�rÞ �

Y
ti2qnd

P ðxi ¼ 0jq; rÞ
P ðxi ¼ 0jq;�rÞ
Multiplying the equation with 1.0 as expressed in the following equation
1:0 ¼
Y
ti2d\q

Pðxi ¼ 0jq;�rÞ
Pðxi ¼ 0jq; rÞ �

P ðxi ¼ 0jq; rÞ
P ðxi ¼ 0jq;�rÞ
yields
P ð~xjq; rÞ
P ð~xjq;�rÞ ¼

Y
ti2d\q

P ðxi ¼ 1jq; rÞ
P ðxi ¼ 1jq;�rÞ �

P ðxi ¼ 0jq;�rÞ
P ðxi ¼ 0jq; rÞ �

Y
ti2q

P ðxi ¼ 0jq; rÞ
P ðxi ¼ 0jq;�rÞ
The product for ti 2 q does not influence the ranking for one query, and therefore can be dropped. This

leads to the following parameters of the BIR model:
P ðtijrÞ :¼ P ðxi ¼ 1jq; rÞ probability that ti occurs in relevant documents

P ðtij�rÞ :¼ P ðxi ¼ 1jq;�rÞ probability that ti occurs in non-relevant documents

P ð�tijrÞ :¼ P ðxi ¼ 0jq; rÞ probability that ti does not occur in relevant documents

P ð�tij�rÞ :¼ P ðxi ¼ 0jq;�rÞ probability that ti does not occur in non-relevant documents
Using the abbreviation
ci :¼ log
PðtijrÞ � P ð�tij�rÞ
Pðtij�rÞ � P ð�tijrÞ
in which the logarithm is a monotonous transformation, we obtain the RSV for the BIR model:
RSVBIRðd; qÞ :¼
X
ti2d\q

ci
Now, we use our matrix framework for describing the BIR model. Consider the following document–term

(content) matrix DTc, in which term t1 occurs in documents d1, d2, d4, d5, t2 occurs in d1, d3, d4, d6, and t3
occurs in d4.
For the document-assessor matrix DAq of query q, let the five documents d1, d2, d3, d5, d6 be retrieved, and

let d4 be not retrieved. Let d1 and d6 be relevant, and let d2, d3, and d5 be not relevant. Since d4 is not
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retrieved, we do not have relevance information on d4, but we work here with a closed world assumption

and assume that all not retrieved documents are not relevant. The information about retrieved and relevant

is represented in the document-assessor matrix DAq:
We create a NDc
· NDc

square matrix with the system assessment (column system retrieved in matrix DAq)

on the main diagonal (NDc
= 6 is the number of documents).
The equation
retrieved \ relevant ¼ diagðDAqð:; retrievedÞÞ � DAqð:; relevantÞ

yields a vector retrieved \ relevant in which the document components reflect retrieved and relevant

documents. Similar, we obtain the retrieved but not relevant documents:
retrieved \ relevant ¼ diagðDAqð:; retrievedÞÞ � ð1�DAqð:; relevantÞÞ

Here, 1 is a matrix with 1 in each component. Now we can compose the matrix DA0

q which contains

normalised vectors of retrieved and relevant, and retrieved but not relevant.
DA0
q ¼ ½1=kretrieved \ relevantk1 � retrieved \ relevant;

1=kretrieved \ relevantk1 � retrieved \ relevant�
The equation
TAq ¼ DT T
c � DA0

q

yields in TAq for each term the probability that the term occurs in relevant or non-relevant of the retrieved

documents.
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Here, term t1 occurs in one of the two retrieved and relevant documents, and in two of the three retrieved

but not relevant documents. Term t2 occurs in all retrieved and relevant documents, and in one of the

retrieved but not relevant documents. Term t3 occurs only in documents that are not retrieved. The

term-assessor matrix TAq has the following probabilistic semantics:
Then, the equation
NTAq ¼ 1� TAq
yields the probabilities P ð�tjrÞ and P ð�tj�rÞ.
Next, we rewrite the term weight ci as a sum of logarithms on the involved probabilities:
ci ¼ log
P ðtijrÞ � P ð�tij�rÞ
P ðtij�rÞ � P ð�tijrÞ

¼ log P ðtijrÞ þ log P ð�tij�rÞ � log P ðtij�rÞ � log P ð�tijrÞ
Now, we can use the TAq and NTAq matrices for computing ct.
CT ¼ ½ci� ¼ logðTAqð:; retrieved \ relevantÞÞ þ logðNTAqð:; retrieved \ relevantÞÞ
� logðTAqð:; retrieved \ relevantÞÞ � logðNTAqð:; retrieved \ relevantÞÞ
Finally, we need to multiply the term weight vector CT with a vector that represents the intersection of

terms, so to obtain the sum of ct weights. The product ~d
T
� diagð~qÞ yields the vector representing the inter-

section of document and query terms. For the RSV of the BIR model, we obtain:
RSVBIRðd; qÞ ¼~d
T � diagð~qÞ � CT ð12Þ
We have expressed the BIR model in our general matrix framework. Next, we address the language

modelling approach.

5.4.2. Language modelling (LM)

In LM, the task is to estimate the following parameters:
P ðqjd; rÞ : probability of qgiven dand relevant documents

P ðqjd;�rÞ : probability of qgiven dand non-relevant documents

P ðrjdÞ : probability of relevance given d

P ð�rjdÞ : probability of non-relevance given d
Similar to the BIR model, there are several assumptions involved in the LM approach for achieving an

appropriate ranking formula, but the assumptions differ from the BIR model. The first assumption is that

we consider a query as a conjunction of term events, and those term events are independent:
P ðqjd; rÞ ¼
Y
t2q

P ðtjd; rÞ
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The next assumption concerns the probability P ðqjd;�rÞ. The LM approach assumes that the probability of a

query shall not depend on d given non-relevant documents:
P ðqjd;�rÞ ¼ Pðqj�rÞ

This assumption is welcome since P ðqj�rÞ is independent from d and thus P ðqj�rÞ is a constant factor that does
not influence the ranking. If the assumption has a reasonable rationale shall be not the topic of this paper

(see Croft & Lafferty, 2003 for discussions). Further assumptions could be made for P(rjd) and P ð�rjdÞ. We

could argue that relevance (respectively non-relevance) does not depend on a particular d, or that the prob-

ability of relevance given d is equal to the probability of non-relevance given d. For both assumptions, the

factor P ðrjdÞ=Pð�rjdÞ would not affect the ranking.

However, rather than finding assumptions to drop P ðrjdÞ=P ð�rjdÞ, it makes sense to use the factor as a

query-independent measure of document relevance: for example, number of incoming links, distribution
of important terms, or other parameters.

After these considerations, we obtain the following RSV for language modelling, in which we use as

before for the BIR model a formulation based on the logarithm of probabilities:
RSVLMðd; qÞ :¼
X
ti2q

ðlog P ðtijd; rÞÞ þ log
P ðrjdÞ
P ð�rjdÞ
Before we address the main problem in LM, namely the estimation of P(tijd, r), we formulate the RSV of

LM in our matrix framework. We use a vector of term probabilities P(tijd, r), a query vector ~q with qi = 1

for query terms and qi = 0 for non-query terms, and the constant ~b ¼ log P ðrjdÞ
P ð�rjdÞ. Then, we obtain:
RSVLMðd; qÞ :¼ log P ðt1jd; rÞ . . . log P ðtnjd; rÞð Þ �~qþ~b ð13Þ

Considering a matrix DTc with components dtij = P(tjjdi,r), we obtain DT c �~qþ~b and find again, as before
for the PIN, a strong parallel with the basic system analysis equation ~y ¼ A �~xþ~b, where A = DTc and
~x ¼~q. Exploring this parallel is a topic of future research.

In the context of this paper, we look now at the estimation of P(tjd, r). The LM approach views the prob-

ability as a mixture (linear combination) of a term probability P 0(t) that is independent of (d, r) and a term

probability P 0(tjd, r) that depends on (d, r).
P ðtjd; rÞ ¼ ð1� kÞ � P 0ðtÞ þ k � P 0ðtjdÞ
A common estimate for P 0(t) is the frequency of the term in the collection, whereas P 0(tjd) is estimated

based on the within-document–term frequency.

For defining the estimates, we build on the notation of the previous sections. Let nL(t,c) be the number

of locations in collection c at which term t occurs, and let NL(c) be the number of locations in collection c.

The definition of nL(t,d) and NL(d) is analogous. We define the estimates:
P 0ðtÞ :¼ P 0ðtjcÞ :¼ nLðt; cÞ
NLðcÞ

P 0ðtjdÞ :¼ nLðt; dÞ
NLðdÞ
The estimate for P 0(t), the so-called collection term frequency, can be expressed in the general matrix frame-

work based on the matrix location–term matrix LTc of the collection. LTc is the concatenation of the LTd

matrices of the documents that are part of the collection.
The estimate for P 0(tjd), the so-called within-document term frequency, is based on the location–term

matrix LTd of the document (as shown in Section 3).
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Using a vector-based and matrix-based notation, we obtain a vector Pð~tjd; rÞ of term probabilities:
P ðt1jd; rÞ

..

.

P ðtnjd; rÞ

0
BBB@

1
CCCA ¼ ð1� kÞ �

P 0ðt1Þ

..

.

P 0ðtnÞ

0
BBB@

1
CCCAþ k �

P 0ðt1jdÞ

..

.

P 0ðtnjdÞ

0
BBB@

1
CCCA
Thus, we also have expressed in the matrix framework the mixture of term probabilities. In the following

section, we summarise the definitions of the retrieval status values of the considered retrieval models.
5.5. Summary

Consider the definitions of the RSV of the models in one overview:

Vector-space model: RSVVSMðd; qÞ :¼~d
T
�~q

Generalised VSM: RSVGVSMðd; qÞ :¼~d
T
� G �~q

Logical approach: RSVlogicðd; qÞ :¼ 1
PðdÞ �~d

T
� diagðPðt1Þ; . . . ; P ðtnÞÞ �~q

PIN: RSVPINðd; qÞ :¼ 1
k~qk1

�~d
T
�~q

BIR model: RSVBIRðd; qÞ :¼~d
T � diagð~qÞ � CT

Language modelling: RSVLMðd; qÞ :¼ ðlog P ðt1jd; rÞ; . . . ; log P ðtnjd; rÞÞ �~qþ log PðrjdÞ
Pð�rjdÞ

The logical approach and the PIN approach show strong parallels in their probabilistic and vector-based

definitions. The main difference is that in the logical approach, terms are considered as disjoint events,

whereas in the PIN approach, terms are independent events. The special setting of the link matrix in the

PIN approach leads to a normalisation (L1 norm) with respect to the query. Both, the logical approach

and the PIN approach can be expressed in a VSM-like definition and in a GVSM-like definition with a
diagonal matrix of terms. We show above the GVSM-like definition for the logical approach, and the

VSM-like definition for the PIN approach. The GVSM-like definition has the advantage that the probabil-

ities in vectors ~d and ~q have the same semantics, namely P(djt) and P(qjt), respectively.
The BIR model shows a parallel to the generalised vector-space model. Here, the term vector CT plays

the role of the query in the GVSM, and the diagonal matrix of query term weights connect the vector

CT (the result of the relevance feedback) with the document vector. The language modelling approach

shows the closest relationship to the basic equation of system analysis, namely ~y ¼ A �~xþ~b.
The overall result of this section is that the general matrix framework allows to explore the sometimes

surprisingly close relationships of the models. This result might lead to new possibilities of how to compare

models on a theoretical level and how to estimate parameters for language modelling, since the system

analysis approach is one of the main foundations for parameter learning.
6. Eigenvectors

In this section, we examine the meaning of the eigenvectors of the square matrices of the spaces in our
framework. Some of these matrices, together with a summary of the description of their elements and their

eigenvectors, are listed in Tables 5 and 6. We start with the symmetric matrices derived from the content

matrices of the spaces (Section 6.1) and we continue with the parent–child matrices, focusing on the ones

related to the collection structure (Section 6.2).



Table 5

Matrices related to the content of spaces and their eigenvectors

Content (Section 2.1)

Space Matrix Matrix elements Eigenvector meaning

Collection c (Section 2.1.1) DDc Number of common terms A term that reflects document co-containment

Document similarity

TTc Number of common documents A document that reflects term co-occurrence

Term similarity

Document d (Section 2.1.2) LLd Number of common terms A term that reflects location co-containment

Location similarity

TTd Number of common locations A location that reflects term co-occurrence

Term similarity

Query q (Section 2.1.3) DDq Number of common assessors An assessor that reflects document co-attraction

Document similarity

LLq Number of common assessors An assessor that reflects location co-attraction

Location similarity

AAq Number of common documents A document that reflects assessor co-selection

Assessor similarity

Table 6

Matrices related to the collection structure and their eigenvectors

Structure (Section 2.2)

Space Matrix Matrix elements Eigenvector meaning

Collection c

(dimension D)

PCDc
PCDc

= [pcij], pcij = 1 if di parent of dj Pagerank based on outlinks hub-oriented

PCT
Dc

PCT
Dc

¼ ½cpij�, cpij = 1 if di child of dj Pagerank based on inlinks authority-

oriented

PPDc
Number of common child documents—parent similarity Hub

CCDc
Number of common parent documents—child similarity Authority
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6.1. Eigenvectors of the matrices related to the content

Consider the TTc matrix, where each element ttij represents the number of documents containing both

terms ti and tj, and thus reflecting term similarity (term co-occurrence) within the collection. The eigenvec-
tors~x of TTc are obtained from:
k �~x ¼ TT c �~x ð14Þ

where k is a scalar and~x is a vector, its elements corresponding to the terms in the collection. Therefore,~x
could be either a document or a query (see discussion on the vector-space models in Section 5).

For Eq. (14) to hold, the vectors ~x of TTc are the documents that reflect the information in TTc. This
means that if a term occurs in the document, then the similar terms also do occur in the document. The

eigenvectors of TTc are documents that reflect term co-occurrence. Similarly, the eigenvectors of DDc

are terms that reflect document co-containment.

In the document space, the interpretation of the eigenvectors of the LLd and TTd matrices works

analogously. This means that the eigenvectors of TTd are locations that reflect term co-occurrence and

the eigenvectors of LLd are terms that reflect location co-containment. In the query space, we consider doc-

uments that ‘‘attract’’ assessors, and assessors that ‘‘select’’ or ‘‘judge’’ documents. Using this terminology,

the eigenvectors of DDq and LLq are assessors that reflect co-attraction, and the eigenvectors of AAq are
documents that reflect co-selection.
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6.2. Eigenvectors of the matrices related to the structure

In this section, we examine the eigenvectors of the structure-related matrices of the collection space

(Table 6). We consider these matrices within the context of a Web collection, where link analysis ranking

algorithms can be used to compute their eigenvectors, in order to derive measures of ‘‘quality’’ of Web
pages. We focus the discussion on the most prominent of these algorithms: PageRank (Page et al., 1998)

and HITS (Kleinberg, 1999).

PageRank computes a query-independent measure of the quality of each Web page, which is recursively

defined and depends on the quality of the pages pointing to it. In this algorithm, the collection c corre-

sponds to whole of the Web and the derived PCT
Dc

matrix has all its column-sums normalised to 1

(
PNDc

j¼1 cpij ¼ 1). For the eigenvectors ~y of PCT
Dc
, the equation
8 T

(1998)
k �~y ¼ PCT
Dc

�~y
holds and the elements of~y correspond to the documents in the Web collection. The principal eigenvector

of PCT
Dc

is a vector of values measuring the ‘‘quality’’ of the Web documents based on their parent docu-

ments (inlinks). This measure is called pagerank and the relationship among the pagerank values is such

that the child-parent structure of the collection is reflected. 8 Similarly, the principal eigenvector of PCDc

is a vector of values measuring the ‘‘quality’’ of the Web documents based on their child documents (out-

links), where the relationship of these values is such that the parent–child structure of the collection is

reflected.
HITS, on the other hand, computes two query-dependent measures of the quality of each Web page: its

authority and its hub. Authorities are pages that contain definitive, high quality information on the query

topic and hubs are comprehensive lists of links to quality pages on the query topic. The measure of being a

good hub depends on how good neighbouring pages are as authorities and vice versa. In this case, the col-

lection c corresponds to a query-biased subset of the Web, consisting of the top k pages retrieved in

response to a query, together with their parent and child documents. Each element ppij of the PPDc
repre-

sents the number of child documents pointed to by both parent documents di and dj, and thus reflecting

parent similarity among the documents in this collection. An eigenvector of PPDc
is a vector of the docu-

ments in the collection that reflects this parent similarity. Similarly, each element ccij of the CCDc
represents

the number of parent documents pointing to both child documents ci and cj, and thus reflecting child sim-

ilarity among the documents in the collection. An eigenvector of CCDc
is a vector of the documents in the

collection that reflects this child similarity. The principal eigenvectors of the PPDc
and CCDc

matrices cor-

respond to the hub and authority values of the documents in this collection.
7. Summary

We have described key concepts of Information Retrieval in a well-defined and general matrix frame-

work. These concepts are expressed with a set of standard linear algebra operations on matrices corre-

sponding to elements of appropriately defined matrix spaces. We considered three spaces: a collection

space with document and term dimensions, a document space with location and term dimensions, and

a query space with document and assessor dimensions. In addition, we considered parent–child matrices

representing the relationships between documents or locations or terms.
his is a simplified view of PageRank which assumes that the Web graph is strongly connected and aperiodic. See Page et al.

for discussion on these assumptions and on how to overcome them.
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In the matrix framework, we described content-based retrieval, structure-based retrieval, semantic-based

retrieval, evaluation, and classical IR models. The dualities we presented include that the similarity mea-

sures as known for the document–term matrix of a collection can be defined for the document-assessor ma-

trix of a query, where the similarity measures lead to the classical measures of precision and recall. The

matrix-based approach supports the well-defined modelling of more complex evaluation measures that take
into account the collection and document structure. Also, the matrix-based approach proved suitable for

expressing the main retrieval models and viewing the models in the matrix framework highlights the par-

allels and dualities of the models.

Further to the dualities regarding similarity measures, we discussed the interpretation of eigenvectors of

matrices derived from the content matrices of the spaces and matrices related to the collection structure.

The result of this paper is a matrix framework that is general enough to serve as a logical layer for the

design and construction of IR systems.

Matrix operations have a close link to relational algebra and multi-dimensional database systems. The
presented framework paves the way for modelling IR on the layer of relational and multi-dimensional data-

base technology. Thus, IR applications can share the expressive languages and knowledge representations

of data models as provided by database technology. Then, the construction of IR systems becomes efficient

and flexible, and we can build effective and increasingly personalised retrieval systems.
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