
A

a

K
A
T
S
I
e
S
L
C
F

1

d
e
h
a
d
p
b
b

o
a
t
e
f
n
t
t
a
S
m
a
m
m
i
f
t
w
o
v

0
d

The Journal of Systems and Software 85 (2012) 1213– 1221

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

 decade of agile methodologies: Towards explaining agile software development

 r t i c l e i n f o

eywords:
gile software development
heory
oftware engineering

a b s t r a c t

Ever since the agile manifesto was created in 2001, the research community has devoted a great deal
of attention to agile software development. This article examines publications and citations to illustrate
how the research on agile has progressed in the 10 years following the articulation of the manifesto.
nformation systems
Xtreme programming, XP
crum
ean software development
rystal method

Specifically, we delineate the conceptual structure underlying agile scholarship by performing an analysis
of authors who have made notable contributions to the field. Further, we summarize prior research and
introduce contributions in this special issue on agile software development. We conclude by discussing
directions for future research and urging agile researchers to embrace a theory-based approach in their
scholarship.
eature-driven development

. Introduction

The articulation of the agile manifesto in 20011 – a little over a
ecade ago – has brought unprecedented changes to the software
ngineering field. Indeed, the transformation that the manifesto
as brought in its wake is quite remarkable. It is hard to think of

 decade in the twentieth century that has witnessed the intro-
uction of so many software methods, tools, techniques, and best
ractices. While this unparalleled growth has been readily accepted
y many practitioners, much work has still to be undertaken to
ring coherence to the current discourse on agility.

As with any nascent discipline, the early years of agile devel-
pment were marked by exuberance of a few and by scepticism
mong many. A host of methods, adhering to varying degrees to the
enets of the manifesto, appeared on the landscape. These include
Xtreme programming (XP), scrum, lean software development,
eature-driven development (FDD), and crystal methodologies, to
ame but a few. Broadly speaking, all these methods endeavoured
o address the core principles of the manifesto. First, there was a dis-
inct move towards collaborative development, with people being
ccorded privileges over processes that formerly constrained them.
econd, a dominant “lean” mentality was advocated with a view to
inimizing unnecessary work, particularly with regard to the cre-

tion of wasteful documentation. While this was misconstrued by
any to mean “no documentation”, the discerning realized that this
eant documenting only what was absolutely necessary and noth-

ng more. Third, customers/stakeholders were no longer just at the
ringes of software development, but actively shaped and guided
he evolution of the end software product or service. Fourth, there
as an acceptance of the fact that uncertainty was a part and parcel
f software development, and that the inherent tendency to control
ariations through statistical and other means was futile.

1 See http://agilemanifesto.org/.

164-1212 © 2012 Elsevier Inc.
oi:10.1016/j.jss.2012.02.033

Open access under CC BY-NC-ND license.
© 2012 Elsevier Inc.

After much discussion about the idiosyncrasies of the many
methods that were proposed, the conversation shifted to the rel-
ative merits of plan-driven and agile methods, the need to have a
balanced approach, the circumstances under which each would be
more appropriate, and so forth (for example, see Boehm and Turner,
2004). In recent times, the attention has been focused on issues
related to managing the actual project—agile planning, control, and
estimation, streamlining flow of stories (e.g., Kanban), using lean
six-sigma, and so forth. Most of these ideas have spawned a num-
ber of practices that are claimed to be efficacious, but empirical
validation of such assertions is lacking.

The early research on agile focused, quite understandably, on
issues related to the adoption of agile methods (e.g., Boehm, 2002;
Nerur et al., 2005) and on the efficacy of pairs vis-à-vis indi-
viduals in software development (Nawrocki and Wojciechowski,
2001; Williams et al., 2000). Other studies have investigated var-
ious aspects of team dynamics -e.g., trust, self-organization, and
communication) (Moe et al., 2009), consequences of test-driven
development (Erdogmus et al., 2005; Janzen and Saiedian, 2005),
adoption and post-adoption issues (Cao et al., 2009; Mangalaraj
et al., 2009), challenges of implementing agile in distributed set-
tings (Ramesh et al., 2006), and the like. Despite the copious
research on agile software development and its ramifications,
one cannot help but sense a lack of a unified framework that
brings coherence to the seemingly disparate streams of research
being pursued. Clearly, more work has to be done to articulate
quintessential principles of agile software development that are
at once unequivocal and useful for practice. The goal of this special
issue is to draw attention to this imperative and to present articles
that could further our understanding of the myriad implications of
agile software development.

The rest of the article is structured as follows. In the next section

Open access under CC BY-NC-ND license.
we present an overview of research on agile software development.
Specifically, we examine publications and citations related to agile
development to delineate the structure of the field. Subsequently,
we summarize prior research on agile, followed by a brief account

dx.doi.org/10.1016/j.jss.2012.02.033
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://agilemanifesto.org/
dx.doi.org/10.1016/j.jss.2012.02.033
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 develo

o
t

2

2

m
i
v
i
t
c
m
s
a
s
s
i
o
a
a
d
t
i
C
t
i
fl
c
C
n
2
i
i
a

r
d
S
t
p
m
e
d
m
s
r
i
g
t
o
m
i
c
C
c
t
c
s
w

w
t

Software has the largest number of papers, followed by the Jour-
nal of Systems and Software, Information and Software Technology,
and Empirical Software Engineering. The leading publisher of agile

2 We used the following search: Topic=(“Agile development” OR “Agile software
development” OR “Agile Methodologies” OR Ägile methods” OR “Agile Project Man-
agement” OR “Lean development” OR “Lean software development” OR “Scrum” OR
“Extreme Programming” OR “Pair Programming” OR “Test-Driven Development”)
214 A decade of agile methodologies: Towards explaining agile software

f the contributions made by the papers in this special issue. Finally,
he conclusions and directions for future research are discussed.

. An overview of research on agile software development

.1. Agile principles and agility

According to the agile principles enunciated in the agile
anifesto1, motivated and empowered software developers – rely-

ng on technical excellence and simple designs – create business
alue by delivering working software to users at regular short
ntervals. These principles have spawned a number of practices
hat are believed to deliver greater value to customers. At the
ore of these practices is the idea of self-organizing teams whose
embers are not only collocated but also work at a pace that

ustains their creativity and productivity. The principles encour-
ge practices that accommodate change in requirements at any
tage of the development process. Furthermore, customers (or their
urrogates) are actively involved in the development process, facil-
tating feedback and reflection that can lead to more satisfying
utcomes. The principles are not a formal definition of agility, but
re rather guidelines for delivering high-quality software in an
gile manner. While individual principles and practices of agile
evelopment were not entirely new to the software community,
he way in which they were put together into a cogent “theoret-
cal and practical framework” was certainly novel (Williams and
ockburn, 2003). Ever since the manifesto was articulated, practi-
ioners and researchers have been trying to explicate agility and
ts different facets. At its core, agility entails ability to rapidly and
exibly create and respond to change in the business and techni-
al domains (Henderson-Sellers and Serour, 2005; Highsmith and
ockburn, 2001). Other aspects of agility explored include light-
ess or leanness (i.e., having minimal formal processes) (Cockburn,
007) and related concepts such as nimbleness, quickness, dexter-

ty, suppleness or alertness (Erickson et al., 2005). In essence, these
deas suggest a “light’ methodology that promotes manoeuvrability
nd speed of response” (Cockburn, 2007).

More formal definitions of agility have started to appear in the
ecent past, drawn mainly from manufacturing and management
omains, where agile appears to have its roots. For Henderson-
ellers and Serour (2005), agility involves both the ability to adapt
o different changes and to refine and fine-tune development
rocesses as needed. Lee and Xia (2010) define software develop-
ent agility “as the software team’s capability to efficiently and

ffectively respond to and incorporate user requirement changes
uring the project life cycle.” Conboy (2009) provides by far the
ost comprehensive definition of software development agility by

ystematically examining its various facets and definitions from
elated disciplines. He makes a distinction between agility, flexibil-
ty, and leanness—in fact, agility is conceptualized to include and
o beyond both flexibility and leanness. While flexibility relates to
he ability of a systems development method to “create change,
r proactively, reactively, or inherently embrace change in a timely
anner, through its internal components and its relationships with

ts environment”, leanness captures the “contribution to perceived
ustomer value through economy, quality, and simplicity.” Thus,
onboy (2009, p. 340) defines software development agility as the
ontinued readiness “to rapidly or inherently create change, proac-
ively or reactively embrace change, and learn from change while
ontributing to perceived customer value (economy, quality, and
implicity), through its collective components and relationships

ith its environment.”

While leanness emphasizes cost reduction through eliminating
aste and inefficiencies, agility treats leanness – i.e., cost reduction

hrough waste elimination – as a qualifier to focus more heavily
pment / The Journal of Systems and Software 85 (2012) 1213– 1221

on creating effective responses and valuable outcomes (Agarwal
et al., 2006). Thus, leanness may be perceived as efficiency oriented,
while agility entails embracing lean processes with an emphasis on
realizing effective outcomes. Lyytinen and Rose (2006) suggest that
agility is achieved through learning processes involving both explo-
ration and exploitation. The next section highlights the extent of
research on agile development undertaken during the past decade
across countries and across journals/conferences.

2.2. Research on agile software development

A literature search in the ISI Web of Science2 identified 1551
research papers on agile software development that were pub-
lished between 2001 and 2010, inclusive. As shown in Fig. 1,
the number of journal articles as well as conference papers has
been steadily increasing until 2010. A plausible explanation for
the decline in the number of conference publications in 2010 is
that the 2010 Agile conference was not indexed in ISI Web of
Science database. The increase in journal articles indicates that
the research field is maturing. A systematic review of empirical
research published before 2005 revealed a lack of theoretical and
methodological rigor (Dybå and Dingsøyr, 2008). The total num-
ber of publications shows that agile development has received
much interest from the academic community; however, most of
the research is inspired by practices emerging in industry.

Our literature search also permitted us to examine the extent
of agile research undertaken in different countries. Fig. 2 shows
the number of publications by country, darker colours indicating a
larger volume of agile papers. Note that although the majority of
the articles originate in the US, Canada and Western Europe, agile
software development has been a research theme on all continents,
in a total of 63 countries (see Appendix 1 for details).

We also tried to identify the popular conferences and journals
in which publications on agile research appear. It can be seen from
Fig. 3 that the International Conference on Agile Software Develop-
ment (”XP”) based in Europe has been the main forum for agile
research, followed by Agile3 in the US. This is not surprising, as
the two conferences focus exclusively on issues related to agile
software development. Other popular avenues for agile research
are Profes and EuroSPI – both of which focus on process improve-
ment – and the International Conference on Software Engineering
(ICSE). EuroMicro and the Conference on Software Engineering Edu-
cation and Training (CSEE&T) have also been able to attract some
papers on agile. Finally, the IFIP community and the International
Conference of Global Software Engineering (ICGSE), as well as the
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), have devoted some attention to this topic. Thus,
several research communities have focused on agile development.
A vast majority of the papers (1064 out of 1302) are from the top
ten conferences. The remaining 238 articles are spread over about
200 other forums. This shows that agile development has received
widespread attention across various scientific communities.

An overview of journal publications (see Fig. 4) reveals that IEEE
Refined by: Subject Areas=(COMPUTER SCIENCE OR ENGINEERING OR TELECOMMU-
NICATIONS OR OPERATIONS RESEARCH MANAGEMENT SCIENCE) AND Document
Type=(PROCEEDINGS PAPER OR REVIEW OR ARTICLE OR BOOK CHAPTER).

3 These numbers also include the previous Agile Development Conference and
the XP Agile Universe, but not all years have had the proceedings indexed.

A decade of agile methodologies: Towards explaining agile software development / The Journal of Systems and Software 85 (2012) 1213– 1221 1215

Fig. 1. Publications on agile software development from 2001 to 2010, total number (top), conference papers (middle) and journal articles (bottom).

Fig. 2. Publications on agile software development by country. Darker colour indicates more publications. See Appendix 1 for details.

Fig. 3. Number of papers by conference.

1216 A decade of agile methodologies: Towards explaining agile software development / The Journal of Systems and Software 85 (2012) 1213– 1221

pers i

a
J
Y
l
t
i

2

t
s
M
e
c
u
R
y
a
c
o
j
c
s
l

M
t
W
a
u

Fig. 4. Number of pa

rticles among non-software engineering journals is the European
ournal of Information Systems, thanks to a special issue on the topic.
et another popular outlet, Communications of the ACM, has pub-

ished five articles on agile software development. Thus, we see that
he topic has gained traction not just in software engineering but
n other areas as well.

.3. Seminal contributors and their relationships

There is perhaps no better way to understand a field than
o identify its seminal sources of information and the relation-
hips among them. Indeed, experts in bibliometric studies, such as
cCain (1990), White and Griffith (1981), and White (1990), have

laborated on the use of co-citation analysis to delineate the con-
eptual underpinnings of disciplines. Specifically, researchers have
sed either authors (e.g., Nerur et al., 2008) or documents (e.g.,
amos-Rodríguez and Ruíz-Navarro, 2004) as the units of anal-
sis. Whatever be the case, the unit of analysis – author or the
rticle written by the author – is regarded as a concept (or con-
epts) that it promulgates. Co-citation analysis, whether it is based
n co-citations of authors or documents, rests on the premise that
oint citations between two units occur when they share some
onceptual similarity. This study used author co-citation analy-
is (ACA) to unravel dominant conceptual themes in the agile
iterature.

The procedure followed is very consistent with those outlined by
cCain (1990) and Nerur et al. (2008). The first step was to iden-

ify the authors most frequently cited in the agile literature. ISI’s

eb of Science was used for this purpose. Our search4 yielded 452

rticles. The cited references of each of these articles were then
sed to get a list of the most frequently cited authors. Fifty-one

4 Same search as in endnote 2, but limited to articles or reviews.
n scientific journals.

authors were included in our final analysis. A 51 × 51 matrix of
raw co-citation frequencies was then computed based on a “cited
references search” involving each of the 51 authors. Specifically,
the co-citation frequency between a pair of authors was obtained
by determining the number of matching records in their respec-
tive cited references. The input to the cluster analysis program was
a correlation matrix derived from the 51 × 51 matrix of raw co-
citation counts. Consistent with other ACA studies, we used the
Ward’s method. The results are shown in Fig. 5.

Fig. 5 shows the key conceptual themes that have appeared in
the agile literature. Distances in the figure provide a sense of the
level of conceptual similarity between two authors, with shorter
distances implying greater thematic closeness in their writings. For
example, the short linkage distance between Fowler and Gamma
– both of whom have written about patterns – implies that their
works are highly related. As mentioned earlier, the formative years
of the field saw the proliferation of research related to the differ-
ences between process-oriented approaches such as CMM/CMMI
and agile methods such as XP. Further, there were extensive debates
on topics related to reconciling differences between agile and erst-
while practices, striking a balance between traditional and agile,
using a risk-driven approach to choosing practices, and so forth.
The presence of pair-programming and test-driven development is
no surprise, since a lot of research has been devoted to these prac-
tices. Sharp and Robinson distinguish themselves by their work on
XP, particularly in the context of organizational culture, distributed
cognition, and the role of physical artefacts in agile development
(see Sharp and Robinson, 2006, 2008; Sharp et al., 2009). The influ-
ence of patterns – both analysis and design patterns – based on the
works of Fowler and Gamma is also evident in the analysis. Robert

Martin’s book on agile software development shows the role of pat-
terns in agile development; hence the link among Martin, Fowler,
and Gamma. The next section identifies the various theoretical per-
spectives used in prior agile research.

A decade of agile methodologies: Towards explaining agile software development / The Journal of Systems and Software 85 (2012) 1213– 1221 1217

Tradi�onal so �wa re eng ineering ,
CMM, Proj ect Mana gement

Pair Dev elopm ent

Distribute d Co gni �on

Agile method s

Pa�erns

User-cent ere d desi gn,
Agil e me thodolo gies

0 1 2 3 4 5 6 7

Distan ces

ABRAHAMSSON

AMBLER

ARISHOLM

BACK

BASILI

BASKERVILLE

BECK

BOEHM

BROOKS

CANFORA

COCKBURN

COHN

CONSTANTINE

DEMARCO

DYBA

ERDOGMUS

FENTON

FITZGERALD

FOWLER
GAMMA

GEORGE

GLASS

HIGHSMITH

HUMPHREY

JEFFRIES

KITCHENHAM

KRUCHTEN
LARMAN

LAYMAN

LINDVALL

LUI

MADEYSKI

MARTIN

MCDOWELL

MEYER

MULLER

NAWROCKI

NOSEK

PALMER

PAULK

POPPENDIECK

REIFER

ROBINSON

SALO

SCHWABER

SHARP

STEPHENS

TURK

WILLIAMS

WOHLIN

YIN

Case Stud y Method olo gy

So�ware es�ma �on

F
i

2

a
t
h
m
p
i
p
t
c
t
a
F
s
a
e
m
o
e

s
a
2
a
i
v
fi
a
u
(
c

Table 1
Theoretical perspectives used in agile research.

Theoretical Perspective Number of
Articles

Article(s)

Knowledge management 9 Dingsøyr and Hanssen (2002)
Holz and Maurer (2002)
Sena and Shan (2002)
Doran (2004)
Fang et al. (2004)
Bellini et al. (2005)
Crawford et al. (2006)
Salazar-Torres et al. (2008)
Chan and Thong (2009)

Personality 6 Sfetsos et al. (2006)
Choi et al. (2008)
Layman et al. (2008)
Sfetsos et al. (2009)
Acuna et al. (2009)
Hannay et al. (2010)

Organizational learning 1 Holz and Maurer (2002)
Double loop learning 1 McAvoy and Butler (2007)
Triple-loop learning 1 McAvoy and Butler (2007)

Complex adaptive systems 2 Meso and Jain (2006)
Socha and Walter (2006)

Social facilitation 2 Arisholm et al. (2007)
Balijepally et al. (2009)

Adaptive Structuration
theory

1 Cao et al. (2009)

Chaos theory 1 Levardy and Browning (2009)
Complexity theory 1 Falessi et al. (2010)
Coordination theory 1 Pikkarainen et al. (2008)
Distributed cognition 1 Sharp and Robinson (2008)
Evolutionary theory of
knowledge

1 Northover et al. (2006)

Fuzzy set theory 1 Mafakheri et al. (2008)
Game theory 1 Hazzan and Dubinsky (2005)
Graph theory 1 Zimmer (2003)
Socio technical 1 Johannessen and Ellingsen (2009)
ig. 5. Key research themes in agile software development. Cluster analysis of sem-
nal authors using the Ward’s method.

.4. Theoretical exploration of agile development

Agile development evolved from the personal experiences
nd collective wisdom of the consultants and thought leaders of
he software community. While most individual agile practices
ave intuitive appeal – as they are based on generally accepted
anagement principles – they certainly lacked theoretical under-

innings or empirical support for their stated benefits, when
nitially conceived. Thus, there was a pressing need for theoretical
erspectives that throw light on how these disparate practices and
heir interactions could produce valued outcomes. Theoretically
omprehending the distinction between agile methods and their
raditional counterparts was another concern begging for research
ttention. Some early studies sought to address these concerns.
or instance, Nerur and Balijepally (2007) illustrate that the
hifts in the approach to software development reflected in the
gile methods has parallels to similar shifts in design thinking
vident in several disparate fields, e.g., architecture and strategic
anagement domains. They suggested the theory of holographic

rganization and its various principles as a theoretical lens to
xplore agile development.

To get a sense of the various theoretical perspectives used in
tudies on agile development during the last decade, we did a quick
nalysis of the topic search of the 452 articles published between
001 and 2010 that we identified earlier for author co-citation
nalysis. Using ISI’s Web of Science we searched through the top-
cs of these 452 articles using keywords outlined in Table 1. The
arious theoretical perspectives and the number of articles identi-
ed by ISI’s Web of Science using these terms in the topic results

re showcased in Table 1. An obvious limitation of the approach
sed for identifying these articles relates to the keywords used
which are based on our understanding of the popular theoreti-
al perspectives found in agile studies) and the search procedure
Teamwork model 1 Moe et al. (2010)
Theory of diagnosis 1 Trinidad et al. (2008)

adopted here (i.e., searching in the topic field of ISI Web of Sci-
ence database). However, we believe this provides a broad sense of
the various theoretical perspectives used in agile studies and their
relative popularity.

As is evident from Table 1, knowledge management, personal-
ity, and organizational learning and related perspectives have been
more popular with agile researchers. As software development
is a knowledge creation activity, knowledge management should
be an attractive perspective when exploring knowledge genera-
tion in software teams in general and agile teams in particular.
Similarly, personality theories (e.g., Big Five personality theory)
should be useful in exploring the interpersonal dynamics of col-
located agile teams and programming pairs. As agile principles of
change readiness and adaptability are expected to foster a learn-
ing environment in agile teams, organizational learning and related
perspectives would be a logical choice for researchers when explor-
ing learning outcomes of agile development. As is also apparent
from Table 1, other theoretical perspectives have been used to a
much lesser extent. Most importantly, a majority of agile studies
do not seem to be concerned about any theoretical underpinnings
for their research exploration, which reinforces the general popular
perception that agile research tends to be a-theoretical.

3. Towards a theory of agile software development
In this section, we first describe the state-of-the art in agile
development, and then proceed to place this special issue in con-
text.

1 develo

3

v
e
d
c
f
A
(
s
f
i

o
a
S
a
c
o
d
t
a
a

i
b
o
a
e
d
w
r
d
o

M
s
i
a

a
f
d
d
r
o
s
a

2
I
t
T
c
o
w
i

E
T
c
t
d

n

218 A decade of agile methodologies: Towards explaining agile software

.1. An overview of prior research

Introductions to and overviews of agile development are pro-
ided by Abrahamsson et al. (2002), Cohen et al. (2004), Erickson
t al. (2005), and Dybå and Dingsøyr (2008). These four reports
escribe the state-of-the-art and state-of-the-practice in terms of
haracteristics of the various agile methods and lessons learned
rom applying such methods in industry. In addition, the book,
gile Software Development: Current Research and Future Directions
Dingsøyr et al., 2010), contains eleven overviews of the main
treams within agile research, structured in chapters explaining
oundations and background of agile development, agile methods
n practice, and principal challenges and new frontiers.

From 2003 until 2011 five special issues and one special section
n agile software development have been published, including 32
rticles. The most common agile methods described were XP and
crum. An examination of these special issues revealed that most
rticles were devoted to furthering our understanding of agile con-
epts. Other dominant topics included adoption and/or adaptation
f agile, reconciliation of the tension between agile and plan-driven
evelopment (i.e., flexibility and control), and evaluation of adop-
ion issues in environments that are not inherently conducive to
gile. We will now give a short summary of these special issues
nd the special section:

In 2003, Williams and Cockburn (2003) edited a special issue
n Computer titled, “Agile Software Development: It’s about Feed-
ack and Change”. The primary emphasis of the special issue was
n determining how to blend agile methodologies with plan-driven
pproaches to software development. The six articles included cov-
red the history of iterative and incremental development, the
ebate on mixing agile and plan-driven development, and how and
hen to mix these two approaches. Furthermore, the special issue

eported experience on the use of XP and Scrum, as well as on intro-
ucing agile processes into an organization working in an ISO 9000
r CMMI environment.

The second special issue appeared in the Journal of Database
anagement in 2005 (Siau, 2005). In addition to a review of the

tate of research on XP and agile methods, the issue covered top-
cs related to adoption of agile methods, process improvement, XP,
nd the underlying assumptions of agile.

In 2009, Abrahamsson et al. (2009) selected seven articles for
 special issue in the European Journal of Information Systems to
urther our understanding of various phenomena in agile system
evelopment. The title of the special issue editorial was “‘Lots
one, more to do’: the current state of agile systems development
esearch”. The papers not only addressed the fundamental question
f what constitutes ‘agility’ and agile methods, but also demon-
trated approaches to broadening the scope of the applicability of
gile concepts.

Ågerfalk, Fitzgerald, and Slaughter also edited a special issue in
009 (Ågerfalk et al., 2009). Seven papers were published in the

nformation Systems Research under the banner, “Flexible and Dis-
ributed IS Development: State of the Art and Research Challenges”.
he papers attempted to explore and/or define the central con-
ept of agility, the enablers and inhibitors of agility, the question
f how to balance flexibility and control, the circumstances under
hich agile methods are most effective, and the challenges of agile

n distributed projects.
Yet another special issue was published in Software Practice and

xperience 2011, which was edited by Greer and Hamon (2011).
he papers addressed a range of research areas including the appli-
ation of agile methods to safety critical software development,

he relationship between agile development and user experience
esign, and the measurement of flow in lean software development.

Finally, in 2011, Dybå (2011) edited a special section in the Jour-
al of Information and Software Technology, based on best papers
pment / The Journal of Systems and Software 85 (2012) 1213– 1221

from the XP2010 conference. The four articles that were pub-
lished described the relationship between organizational culture
and development of agile methods, customer involvement in agile
projects, self-management, and the evolution of the practice of
agile information systems development within a company over a
10-year period.

3.2. This special issue

For this special issue, we asked for contributions that crit-
ically reflect on the current status of research and practice in
agile development. In particular, we were looking for contributions
questioning and exploring the theoretical underpinnings of agile
and lean development and the agile manifesto. We received a total
of 21 submissions, of which five were selected for the special issue.
Three of these articles focus on specific aspects of agile practices
– coordination, decision making and post adaptive use – while the
last two articles provide insight on broad topics of agile develop-
ment – a grounded theory of software development, and a review
of experience reports on “lean and agile” software development.
We describe these contributions in more detail below.

In their article, “Coordination in co-located agile software devel-
opment projects”, Strode, Huff and Hope link agile development
to theory of coordination, using a model with three components:
synchronization, structure and boundary spanning.

Decision-making, an important aspect of software development,
is the focus of Drury, Conboy and Power’s article, “Obstacles to
Decision-Making in Agile Software Development Teams”. Using a
mixed method approach, they investigate decisions involved in
iteration planning, execution, review and retrospective, and iden-
tify six obstacles to decision-making. They connect the findings to
a theory of descriptive decision-making and describe the effects of
these obstacles.

Senapathi and Srinivasan focus on the use of agile development
methods in the post-adoption stage, in their article, “Understanding
Post-Adoptive Agile Usage—An Exploratory Cross-Case Analysis”.
By adapting theories from systems development and diffusion of
innovations, they develop a model that seeks to explain post-
adoptive usage of agile practices.

In the article, “Reconciling perspectives: How people man-
age the process of software development”, Adolph and Kruchten
develop a grounded theory of social factors in software develop-
ment. They conceptualize software development as a negotiation
process that involves reconciling perspectives, i.e., seeking conver-
gence by sorting out different points of view or perspectives about
a software process. Thus, it offers a unique perspective on how agile
software development is undertaken in organizations.

A growing interest is evident at agile conferences on iden-
tifying ways to combine principles of lean development with
software development. In the article “’Leagile’ software develop-
ment: An experience report analysis of the application of lean
approaches in agile software development”, Wang, Conboy and
Cawley distil lessons from 30 experience reports, in six types of lean
applications—from practices for continuous process improvement
to flow-based development with the Kankan approach.

4. Conclusion

It should be apparent from this introductory article that the
research community has lavished attention on the issues related
to agile software development ever since the agile manifesto was

pronounced in 2001. This is evident from the number of scientific
publications, the widespread interest in the topic in various sci-
entific forums, and the number of countries (63) that have been
engaged in agile research. The number of special issues devoted

develo

t
p
i

(
b
f
d
i
s
i
a

w
r
n
i
b
w
o
e
p
o
o
t
T
s
p
a
m
y
i

m
f
i
a
i
o
i
i

c
t
i
r
m
a
m
o
e
p
i
p

p
p
p
r
a
s
t
t
r
w
a

20 JAPAN 17 1.1
A decade of agile methodologies: Towards explaining agile software

o agile development is also an indication of the keen interest dis-
layed in software engineering and other related fields, notably

nformation systems.
A systematic review of empirical studies published until 2005

Dybå and Dingsøyr, 2008) called for an increase in both the num-
er and quality of studies. The review also found that most studies
ocused on eXtreme programming and very few on the Scrum
evelopment process, which was gaining significant traction in

ndustry. Further, the review showed the urgent need for more
tudies involving mature agile development teams, as most stud-
es until then had focused on projects that were just starting to use
gile methods.

Has recent progress brought us any closer to a unified frame-
ork that brings coherence to the seemingly disparate streams of

esearch being pursued? Our overview of research shows that the
umber of studies has increased significantly since 2005, and the

ncreased number of journal articles, not just the increased num-
er of conference proceedings, is a sign of increase in quality as
ell. Going by the attention that they have received, some subfields

f agile development appear to be more mature than others. For
xample, there are meta-studies summarizing experiments on pair
rogramming, with focus on effectiveness (Dybå et al., 2007) and
n use in university education (Salleh et al., 2011). Our overview
f theories in use in explaining agile software development shows
hat a range of theories, drawn from many fields, have been applied.
his special issue is a further contribution with five articles with
trong focus on theory. After the initial spurt of studies on eXtreme
rogramming, the academic community seems to have turned its
ttention to scrum. Flow-based as well as lean software develop-
ent has been popular among industry practitioners, but has not

et been extensively researched, as the article by Wang et al. in this
ssue shows.

Many have called for directions to research on agile develop-
ent. At Agile2008, Dingsøyr et al. (2008) suggested a roadmap

or research on agile software development, focusing on provid-
ng more empirical research, primarily on experienced agile teams
nd organizations, connecting better to existing streams of research
n more established fields, giving more attention to management-
riented approaches, and finally give more emphasis to core ideas
n agile software development in order to increase our understand-
ng.

Ågerfalk et al. (2009) in their introductory article to the spe-
ial issue on agile/distributed systems development, compiled a
op-ten list of future research areas. In the list developed from the
nputs of the authors of the special issue articles, the following
esearch areas figured at the top: suitability of agile develop-
ent to new context such as open source software and software

s service; factors affecting the organizational adaptation of agile
ethods including tailoring to specific projects; different forms

f distributed development and factors facilitating the flexibility,
fficiency and effectiveness of such work; ways to extend agile
ractices beyond software teams into the organizational realm; and

dentifying boundaries to agile development by applying agility to
rojects traditionally considered to be non-agile.

At the XP2010 conference, Freudenberg and Sharp (2010) com-
iled a list of “top ten burning questions” based on feedback from
ractitioners. Among other issues, they identified agile and large
rojects, barriers to self-organization, distributed agile, and the
ole of architecture as high priority topics. At a workshop on new
nd emerging ideas at Agile2011, we posed the question “what
hould be researched less” and “what should be researched further”
o a group mainly consisting of academics. Among other things,

hey opined that pair programming in educational settings and the
euse of code did not require any further attention. Themes that
ere deemed to be important included agile across projects and

cross organizations, the “core” of agile, distributed agile, and the
pment / The Journal of Systems and Software 85 (2012) 1213– 1221 1219

role of architecture and knowledge management in agile develop-
ment.

We concur that these are exciting research areas that can fur-
ther our understanding of the effectiveness of agile methods and
practices, particularly in different project/organizational contexts.
However, our limited analysis of the theoretical perspectives used
in prior agile development research suggests that not enough
attention is being paid to establishing theoretical underpinnings,
when investigating agile development and its various practices. As
Jacobson and Spence (2009) point out, sound theoretical roots help
us glean the essential concepts, or the “truths” of software devel-
opment that are methodology-independent. Such theory-driven
research enables us to separate true innovations among agile prac-
tices from the reinventions and remixes of old approaches, thereby
helping us adopt such innovations at a faster rate in the future.
Therefore, we urge agile researchers to embrace a more theory-
based approach in the future when inquiring into these promising
research areas of agile development.

Clearly, the pioneers as well as subsequent researchers of agile
development have established a foundation on which the edifice
of software development theory and practice can be built. As we
stand on the “shoulders of [these] giants” and endeavour to extend
the frontiers of software engineering, it is important to remember
that the field can mature and progress as a scientific discipline only
if efforts are made to provide a robust theoretical scaffold for the
conduct of research on agile development. We hope that the articles
in this special issue are a step in this direction.

Acknowledgements

We are very grateful to the program committee members of
the research at work stage at Agile2011, who helped us in invit-
ing authors to revise contributions for this special issue. We also
thank the following reviewers: Aybuke Aurum, John McAvoy,
Robert Biddle, Philip L. Bond, Nancy Bonner, Judith Brown, Lan
Cao, Kieran Conboy, Tore Dybå, Tor E. Fægri, Felix Garcia, Geir
Kjetil Hanssen, Børge Haugset, Kishen Iyengar, Philippe Kruchten,
Kalle Lyytinen, George Mangalaraj, Kannan Mohan, Maurizio Mori-
sio, Andreas Opdahl, Nilay Oza, Rafael Prikladnicki, Asif Qumer,
Bernhard Rumpe, Sherry Ryan, Helen Sharp, Jason Sharp, Vijay Sug-
umaran, Aakash Taneja, and Vishnu V. Vinekar.

Appendix A. Appendix 1

Rank Country Number of publications %

1 USA 338 21.7
2 CANADA 110 7.1
3 GERMANY 96 6.2
4 FINLAND 94 6.0
5 UK 94 5.3
6 ITALY 56 3.6
7 CHINA 52 3.3
8 IRELAND 51 3.3
9 AUSTRALIA 48 3.1

10 SWEDEN 43 2.8
11 SPAIN 41 2.6
12 NORWAY 33 2.1
13 BRAZIL 29 1.9
14 AUSTRIA 25 1.6
15 ISRAEL 23 1.5
16 NEW ZEALAND 23 1.5
17 POLAND 23 1.5
18 NETHERLANDS 22 1.4
19 CHILE 17 1.1
21 DENMARK 16 1.0
22 IRAN 15 1.0
23 INDIA 14 0.9
24 CZECH REPUBLIC 11 0.7

1 develo

A

R

A

A

A

A

Å

A

B

B

B
B

C

C

C

C

220 A decade of agile methodologies: Towards explaining agile software

ppendix 1 (Continued)

Rank Country Number of publications %

25 SOUTH KOREA 11 0.7
26 ARGENTINA 10 0.6
27 SOUTH AFRICA 10 0.6
28 GREECE 9 0.6
29 PORTUGAL 8 0.5
30 TURKEY 8 0.5
31 FRANCE 7 0.5
32 SWITZERLAND 7 0.5
33 MALAYSIA 6 0.4
34 MEXICO 6 0.4
35 BELGIUM 5 0.3
36 SLOVENIA 5 0.3
37 PAKISTAN 4 0.3
38 ROMANIA 4 0.3
39 TAIWAN 4 0.3
40 BULGARIA 3 0.2
41 CROATIA 3 0.2
42 ESTONIA 3 0.2
43 HUNGARY 3 0.2
44 PHILIPPINES 3 0.2
45 SAUDI ARABIA 3 0.2
46 SINGAPORE 3 0.2
47 COLOMBIA 2 0.1
48 OMAN 2 0.1
49 SYRIA 2 0.1
50 THAILAND 2 0.1
51 U ARAB EMIRATES 2 0.1
52 BOSNIA HERCEG 1 0.1
53 COTE IVOIRE 1 0.1
54 EGYPT 1 0.1
55 ICELAND 1 0.1
56 JORDAN 1 0.1
57 LATVIA 1 0.1
58 LEBANON 1 0.1
59 LITHUANIA 1 0.1
60 MONTENEGRO 1 0.1
61 SERBIA 1 0.1
62 SLOVAKIA 1 0.1
63 ZIMBABWE 1 0.1

eferences

brahamsson, P., Conboy, K., Wang, X., 2009. ‘Lots done, more to do’: the current
state of agile systems development research. European Journal of Information
Systems 18, 281–284.

brahamsson, P., Salo, O., Ronkainen, J., Warsta, J., 2002. Agile software development
methods: review and analysis. VTT Technical report, p. 107.

cuna, S.T., Gomez, M., Juristo, N., 2009. How do personality, team processes and
task characteristics relate to job satisfaction and software quality? Information
and Software Technology 51, 627–639.

garwal, A., Shankar, R., Tiwari, M.K., 2006. Modeling the metrics of lean, agile and
leagile supply chain: an ANP-based approach. European Journal of Operational
Research 173, 211–225.

gerfalk, P., Fitzgerald, B., Slaughter, S., 2009. Introduction to the special issue:
flexible and distributed information systems development: state of the art and
research challenges. Information Systems Research 20, 317.

risholm, E., Gallis, H., Dyba, T., Sjoberg, D.I.K., 2007. Evaluating pair programming
with respect to system complexity and programmer expertise. IEEE Transactions
on Software Engineering 33, 65–86.

alijepally, V., Mahapatra, R., Nerur, S., Price, K.H., 2009. Are two heads better than
one for software development? The productivity paradox of pair programming.
MIS Quarterly 33, 91–118.

ellini, E., Canfora, G., Garcia, F., Piattini, M., Visaggio, C.A., 2005. Pair designing
as practice for enforcing and diffusing design knowledge. Journal of Software
Maintenance and Evolution-Research and Practice 17, 401–423.

oehm, B., 2002. Get ready for agile methods with care. IEEE Computer 35, 64–69.
oehm, B., Turner, R., 2004. Balancing Agility and Discipline: A Guide to the Per-

plexed. Addison-Wesley, Boston, MA.
ao, L., Mohan, K., Xu, P., Ramesh, B., 2009. A framework for adapting agile develop-

ment methodologies. European Journal of Information Systems 18, 332–343.
han, F.K.Y., Thong, J.Y.L., 2009. Acceptance of agile methodologies: a critical review

and conceptual framework. Decision Support Systems 46, 803–814.

hoi, K.S., Deek, F.P., Im, I., 2008. Exploring the underlying aspects of pair pro-

gramming: the impact of personality. Information and Software Technology 50,
1114–1126.

ockburn, A., 2007. Agile Software Development: The Cooperative Game. Addison-
Wesley.
pment / The Journal of Systems and Software 85 (2012) 1213– 1221

Cohen, D., Lindvall, M., Costa, P., 2004. An introduction to agile methods. In:
Zelkowitz, M.V. (Ed.), Advances in Computers, Advances in Software Engineer-
ing. Elsevier, Amsterdam.

Conboy, K., 2009. Agility from first principles: reconstructing the concept of agility
in information systems development. Information Systems Research 20, 329–
354.

Crawford, B., Castro, C., Monfroy, E., 2006. Knowledge management in different soft-
ware development approaches. In: Yakhno, T., Neuhold, E.J. (Eds.), Advances in
Information Systems, Proceedings. , pp. 304–313.

Dingsøyr, T., Dybå, T., Abrahamsson, P.,2008. A Preliminary Roadmap for Empirical
Research on Agile Software Development. In: in Proc. of Agile2008. IEEE Press,
pp. 83–94.

Dingsøyr, T., Dybå, T., Moe, N.B., 2010. Agile Software Development: Current
Research and Future Directions. Springer, Berlin/Heidelberg.

Dingsøyr, T., Hanssen, G.K., 2002. Extending agile methods: postmortem reviews
as extended feedback. In: Henninger, S., Maurer, F. (Eds.), Advances in Learning
Software Organizations. , pp. 4–12.

Doran, H.D., 2004. Agile knowledge management in practice. In: Melnik, G., Holz,
H. (Eds.), Advances in Learning Software Organizations, Proceedings. , pp. 137–
143.

Dybå, T., 2011. Special section on best papers from XP2010. Information and Soft-
ware Technology 53, 507–508.

Dybå, T., Arisholm, E., Sjøberg, D.I.K., Hannay, J.E., Shull, F., 2007. Are two heads better
than one? On the effectiveness of pair programming. IEEE Software 24, 12–15.

Dybå, T., Dingsøyr, T., 2008. Empirical studies of agile software development: a
systematic review. Information and Software Technology 50, 833–859.

Erdogmus, H., Morisio, M., Torchiano, M., 2005. On the effectiveness of the test-
first approach to programming. IEEE Transactions on Software Engineering 31,
226–237.

Erickson, J., Lyytinen, K., Siau, K., 2005. Agile modeling, agile software development,
and extreme programming. Journal of Database Management 16, 88–100.

Falessi, D., Cantone, G., Sarcia, S.A., Calavaro, G., Subiaco, P., D’Amore, C., 2010. Peace-
ful coexistence: agile developer perspectives on software architecture. IEEE
Software 27, 23–25.

Fang, M., Ying, J., Wu, M.H., 2004. Effective elements of integrated software devel-
opment process supported platform. In: Shen, W., Lin, Z., Barthes, J.P.A., Li, T.
(Eds.), Computer Supported Cooperative Work in Design I. , pp. 368–377.

Freudenberg, S., Sharp, H., 2010. The top 10 burning research questions from prac-
titioners. IEEE Software 27, 8–9.

Hannay, J.E., Arisholm, E., Engvik, H., Sjoberg, D.I.K., 2010. Effects of personality on
pair programming. IEEE Transactions on Software Engineering 36, 61–80.

Hazzan, O., Dubinsky, Y., 2005. Social perspective of software development methods:
the case of the prisoner dilemma and extreme programming. In: Baumeister, H.,
Marchesi, M., Holcombe, M. (Eds.), Extreme Programming and Agile Processes
in Software Engineering, Proceedings. , pp. 74–81.

Henderson-Sellers, B., Serour, M.K., 2005. Creating a dual-agility method: the value
of method engineering. Journal of Database Management 16, 1–23.

Highsmith, J., Cockburn, A., 2001. Agile software development. 1. The business of
innovation. IEEE Computer 34, 120–127.

Holz, H., Maurer, F., 2002. Knowledge management support for distributed agile
software processes. In: Henninger, S., Maurer, F. (Eds.), Advances in Learning
Software Organizations. , pp. 60–80.

Jacobson, I., Spence, I., 2009. Why we need a theory for software engineering. Dr.
Dobb’s Journal.

Janzen, D., Saiedian, H., 2005. Test-driven development concepts, taxonomy, and
future direction. Computer 38, 43–50.

Johannessen, L.K., Ellingsen, G., 2009. Integration and generification-agile software
development in the healthcare market. Computer Supported Cooperative Work-
the Journal of Collaborative Computing 18, 607–634.

Layman, L., Williams, L., Slaten, K., Berenson, S., Vouk, M., 2008. Addressing
diverse needs through a balance of agile and plan-driven software development
methodologies in the core software engineering course. International Journal of
Engineering Education 24, 659–670.

Lee, G., Xia, W., 2010. Toward agile: an integrated analysis of quantitative and qual-
itative field data on software development agility. MIS Quarterly 34, 87–114.

Levardy, V., Browning, T.R., 2009. An adaptive process model to support product
development project management. IEEE Transactions on Engineering Manage-
ment 56, 600–620.

Lyytinen, K., Rose, G.M., 2006. Information system development agility as organiza-
tional learning. European Journal of Information Systems 15, 183–199.

Mafakheri, F., Nasiri, F., Mousavi, M., 2008. Project agility assessment: an integrated
decision analysis approach. Production Planning & Control 19, 567–576.

Mangalaraj, G., Mahapatra, R., Nerur, S., 2009. Acceptance of software process
innovations—the case of extreme programming. European Journal of Informa-
tion Systems 18, 344–354.

McAvoy, J., Butler, T., 2007. The impact of the Abilene Paradox on double-loop learn-
ing in an agile team. Information and Software Technology 49, 552–563.

McCain, K.W., 1990. Mapping authors in intellectual space: a technical overview.
Journal of the American Society for Information Science 41, 433–443.

Meso, P., Jain, R., 2006. Agile software development: adaptive systems principles
and best practices. Information Systems Management 23, 19–30.
Moe, N.B., Dingsøyr, T., Dybå, T., 2009. Overcoming barriers to self-management in
software teams. IEEE Software 26, 20–26.

Moe, N.B., Dingsøyr, T., Dybå, T., 2010. A teamwork model for understanding an agile
team: a case study of a Scrum project. Information and Software Technology 52,
480–491.

develo

N

N

N

N

N

P

R

R

S

S

S

S

S

S

S

S

S

S

T

W

W

W

W

Z

T
a
T
a
i
D
S
a
S

A decade of agile methodologies: Towards explaining agile software

awrocki, J., Wojciechowski, A., 2001. Experimental evaluation of pair program-
ming. In: 12th European Software Control and Metrics Conference, ESCOM,
London, UK, pp. 269–276.

erur, S., Balijepally, V., 2007. Theoretical reflections on agile development method-
ologies. Communications of the ACM 50, 79–83.

erur, S., Mahapatra, R., Mangalaraj, G., 2005. Challenges of migrating to agile
methodologies. Communications of the ACM 48, 73–78.

erur, S.P., Rasheed, A.A., Natarajan, V., 2008. The intellectual structure of the strate-
gic management field: an author co-citation analysis. Strategic Management
Journal 29, 319–336.

orthover, M., Boake, A., Kourie, D.G., 2006. Karl Popper’s critical rationalism in agile
software development. In: Scharfe, H., Hitzler, P., Ohrstrom, P. (Eds.), Conceptual
Structures: Inspiration and Application. , pp. 360–373.

ikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J., 2008. The impact of
agile practices on communication in software development. Empirical Software
Engineering 13, 303–337.

amesh, B., Cao, L.A.N., Mohan, K., Peng, X.U., 2006. Can distributed software devel-
opment be agile? Communications of the ACM 49, 41–46.

amos-Rodríguez, A.-R., Ruíz-Navarro, J., 2004. Changes in the intellectual struc-
ture of strategic management research: a bibliometric study of the Strategic
Management Journal, 1980–2000. Strategic Management Journal 25, 981–1004.

alazar-Torres, G., Colombo, E., Da Silva, F.S.C., Noriega, C.A., Bandini, S., 2008. Design
issues for knowledge artifacts. Knowledge-Based Systems 21, 856–867.

alleh, N., Mendes, E., Grundy, J., 2011. Empirical studies of pair programming for
CS/SE teaching in higher education: a systematic literature review. IEEE Trans-
actions on Software Engineering 37, 509–525.

ena, J.A., Shan, A.B., 2002. Integrating knowledge management, learning mecha-
nisms, and company performance. In: Karagiannis, D., Reimer, U. (Eds.), Practical
Aspects of Knowledge Management. , pp. 620–631.

fetsos, P., Stamelos, I., Angelis, L., Deligiannis, I., 2006. Investigating the impact
of personality types on communication and collaboration-viability in pair
programming—an empirical study. In: Abrahamsson, P., Marchesi, M., Succi,
G. (Eds.), Extreme Programming and Agile Processes in Software Engineering,
Proceedings. , pp. 43–52.

fetsos, P., Stamelos, I., Angelis, L., Deligiannis, I., 2009. An experimental investi-
gation of personality types impact on pair effectiveness in pair programming.
Empirical Software Engineering 14, 187–226.

harp, H., Robinson, H., 2006. A distributed cognition account of mature XP teams.
In: Abrahamsson, P., Marchesi, M., Succi, G. (Eds.), Extreme Programming and
Agile Processes in Software Engineering. Springer, Berlin/Heidelberg, pp. 1–10.

harp, H., Robinson, H., 2008. Collaboration and co-ordination in mature eXtreme
programming teams. International Journal of Human-Computer Studies 66,
506–518.

harp, H., Robinson, H., Petre, M., 2009. The role of physical artefacts in agile software
development: two complementary perspectives. Interacting with Computers
21, 108–116.

iau, K., 2005. A retrospective review of JDM from 2003 to 2005 and a discussion on
publication emphasis of JDM for the next two to three years. Journal of Database
Management 16, 1.

ocha, D., Walter, S., 2006. Is designing software different from designing other
things? International Journal of Engineering Education 22, 540–550.

rinidad, P., Benavides, D., Duran, A., Ruiz-Cortes, A., Toro, M., 2008. Automated error
analysis for the agilization of feature modeling. Journal of Systems and Software
81, 883–896.

hite, H.D., 1990. Author co-citation analysis: overview and defense. In: Borgman,
C.L. (Ed.), Scholarly Communication and Bibliometrics. Sage Publications, New-
bury Park, pp. 84–106.

hite, H.D., Griffith, B.C., 1981. Author cocitation: a literature measure of intellec-
tual structure. Journal of the American Society for Information Science 32, 163–
171.

illiams, L., Cockburn, A., 2003. Agile software development: it’s about feedback
and change. Computer 36, 39–43.

illiams, L., Kessler, R.R., Cunningham, W., Jeffries, R., 2000. Strengthening the case
for pair programming. IEEE Software 17, 19–25.

immer, J.A., 2003. Graph theoretical indicators and refactoring. In: Maurer, F., Wells,
D. (Eds.), Extreme Programming and Agile Methods. XP/Agile Universe 2003, pp.
62–72.

orgeir Dingsøyr works with software process improvement and knowledge man-
gement projects as a senior scientist at SINTEF Information and Communication
echnology. In particular, he has focused on agile software development through

 number of case studies, co-authoring of a systematic review of empirical stud-

es, co-editing of the book Agile Software Development: Current Research and Future
irections, and was co-organizing chair of the 11th International Conference on Agile
oftware Development (XP2010) as well as co-producer of the research at work stage
t Agile2011. He wrote his doctoral thesis on Knowledge Management in Medium-
ized Software Consulting Companies at the Department of Computer and Information
pment / The Journal of Systems and Software 85 (2012) 1213– 1221 1221

Science, Norwegian University of Science and Technology, where he is now adjunct
associate professor.

Sridhar Nerur is an associate professor of Information Systems at the University of
Texas at Arlington. He holds an engineering degree in electronics from Bangalore
University, a PGDM (MBA) from the Indian Institute of Management, Bangalore,
India, and a PhD in business administration from the University of Texas at Arling-
ton. His publications include articles in leading journals such as MIS Quarterly, the
Strategic Management Journal, Journal of International Business Studies, Communica-
tions of the ACM, Communications of the AIS, the DATA BASE for Advances in Information
Systems, European Journal of Information Systems, and Information Systems Manage-
ment. He served as an associate editor of the European Journal of Information Systems.
His research and teaching interests are in the areas of software design, adoption of
software development methodologies, cognitive aspects of programming, dynamic
IT capabilities, and agile software development.

Venu Gopal Balijepally is an associate professor of MIS in the College of Business
at Prairie View A&M University, Texas. He received his PhD in information systems
from the University of Texas at Arlington and post-graduate diploma in manage-
ment (MBA), from the Management Development Institute, Gurgaon, India. He also
holds a masters degree from Indian Institute of Technology, Mumbai and a bache-
lor’s degree from Osmania University, India, both in civil engineering. His research
interests include software development, social capital of IS teams, knowledge man-
agement and IT management. His research publications appear in MIS Quarterly,
Journal of International Business Studies, Journal of the AIS, Communications of the
ACM, Communications of the AIS, and various conference proceedings such as the
Americas Conference on Information Systems, the Hawaii International Conference
on System Sciences, and the Decision Sciences Institute.

Nils Brede Moe works with software process improvement, agile software develop-
ment and global software development as a senior scientist at SINTEF Information
and Communication Technology. His research interests are related to organiza-
tional, socio-technical, and global/distributed aspects. His main publications in the
field of agile software development include several longitudinal studies on self-
management and teamwork, and co-editing of the books Agile Software Development:
Current Research and Future Directions and Agility Across Time and Space: Implement-
ing Agile Methods in Global Software Projects. Moe was also a co-organizing chair
of the 11th International Conference on Agile Software Development (XP2010) and
co-producer of the research at work stage at Agile2011 and Agile India 2012. He
wrote his thesis for the degree of doctor philosophiae on From Improving Processes
to Improving Practice—Software Process Improvement in Transition from Plan-driven
to Change-driven Development. He is currently a visiting researcher at the University
of New South Wales, Sydney.

Torgeir Dingsøyr a,b,∗

Sridhar Nerur c

VenuGopal Balijepally d

Nils Brede Moe a

a SINTEF, NO-7465 Trondheim, Norway
b Norwegian University of Science and Technology,
Department of Computer and Information Science,
Sem Sælandsvei 7-9, NO-7491 Trondheim, Norway

c Department of Information Systems and Operations
Management, University of Texas at Arlington,

Arlington, TX 76019, USA
d Department of Accounting, Finance & MIS, Prairie

View A&M University, Prairie View,
TX 77446-0519, USA

∗ Corresponding author at: SINTEF, NO-7465
Trondheim, Norway. Tel.: +47 93008714.

E-mail addresses: torgeir.dingsoyr@sintef.no
(T. Dingsøyr), snerur@uta.edu (S. Nerur),

vebalijepally@pvamu.edu (V. Balijepally),
nils.b.moe@sintef.no (N.B. Moe)
12 February 2012

13 February 2012
Available online 7 March 2012

mailto:torgeir.dingsoyr@sintef.no
mailto:snerur@uta.edu
mailto:vebalijepally@pvamu.edu
mailto:nils.b.moe@sintef.no

