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Ever  since  the  agile  manifesto  was  created  in  2001,  the  research  community  has  devoted  a  great  deal
of attention  to agile  software  development.  This  article  examines  publications  and  citations  to  illustrate
how  the  research  on  agile  has  progressed  in the  10 years  following  the  articulation  of  the  manifesto.
nformation systems
Xtreme programming, XP
crum
ean software development
rystal method

Specifically,  we  delineate  the  conceptual  structure  underlying  agile  scholarship  by performing  an  analysis
of authors  who  have  made  notable  contributions  to the  field.  Further,  we  summarize  prior  research  and
introduce  contributions  in  this  special  issue  on agile  software  development.  We  conclude  by  discussing
directions  for  future  research  and  urging  agile  researchers  to embrace  a theory-based  approach  in  their
scholarship.
eature-driven development

. Introduction

The articulation of the agile manifesto in 20011 – a little over a
ecade ago – has brought unprecedented changes to the software
ngineering field. Indeed, the transformation that the manifesto
as brought in its wake is quite remarkable. It is hard to think of

 decade in the twentieth century that has witnessed the intro-
uction of so many software methods, tools, techniques, and best
ractices. While this unparalleled growth has been readily accepted
y many practitioners, much work has still to be undertaken to
ring coherence to the current discourse on agility.

As with any nascent discipline, the early years of agile devel-
pment were marked by exuberance of a few and by scepticism
mong many. A host of methods, adhering to varying degrees to the
enets of the manifesto, appeared on the landscape. These include
Xtreme programming (XP), scrum, lean software development,
eature-driven development (FDD), and crystal methodologies, to
ame but a few. Broadly speaking, all these methods endeavoured
o address the core principles of the manifesto. First, there was a dis-
inct move towards collaborative development, with people being
ccorded privileges over processes that formerly constrained them.
econd, a dominant “lean” mentality was advocated with a view to
inimizing unnecessary work, particularly with regard to the cre-

tion of wasteful documentation. While this was  misconstrued by
any to mean “no documentation”, the discerning realized that this
eant documenting only what was absolutely necessary and noth-

ng more. Third, customers/stakeholders were no longer just at the
ringes of software development, but actively shaped and guided
he evolution of the end software product or service. Fourth, there
as an acceptance of the fact that uncertainty was  a part and parcel
f software development, and that the inherent tendency to control
ariations through statistical and other means was futile.

1 See http://agilemanifesto.org/.
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After much discussion about the idiosyncrasies of the many
methods that were proposed, the conversation shifted to the rel-
ative merits of plan-driven and agile methods, the need to have a
balanced approach, the circumstances under which each would be
more appropriate, and so forth (for example, see Boehm and Turner,
2004). In recent times, the attention has been focused on issues
related to managing the actual project—agile planning, control, and
estimation, streamlining flow of stories (e.g., Kanban), using lean
six-sigma, and so forth. Most of these ideas have spawned a num-
ber of practices that are claimed to be efficacious, but empirical
validation of such assertions is lacking.

The early research on agile focused, quite understandably, on
issues related to the adoption of agile methods (e.g., Boehm, 2002;
Nerur et al., 2005) and on the efficacy of pairs vis-à-vis indi-
viduals in software development (Nawrocki and Wojciechowski,
2001; Williams et al., 2000). Other studies have investigated var-
ious aspects of team dynamics -e.g., trust, self-organization, and
communication) (Moe  et al., 2009), consequences of test-driven
development (Erdogmus et al., 2005; Janzen and Saiedian, 2005),
adoption and post-adoption issues (Cao et al., 2009; Mangalaraj
et al., 2009), challenges of implementing agile in distributed set-
tings (Ramesh et al., 2006), and the like. Despite the copious
research on agile software development and its ramifications,
one cannot help but sense a lack of a unified framework that
brings coherence to the seemingly disparate streams of research
being pursued. Clearly, more work has to be done to articulate
quintessential principles of agile software development that are
at once unequivocal and useful for practice. The goal of this special
issue is to draw attention to this imperative and to present articles
that could further our understanding of the myriad implications of
agile software development.

The rest of the article is structured as follows. In the next section

Open access under CC BY-NC-ND license.
we present an overview of research on agile software development.
Specifically, we  examine publications and citations related to agile
development to delineate the structure of the field. Subsequently,
we summarize prior research on agile, followed by a brief account
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Software has the largest number of papers, followed by the Jour-
nal of Systems and Software, Information and Software Technology,
and Empirical Software Engineering. The leading publisher of agile

2 We used the following search: Topic=(“Agile development” OR “Agile software
development” OR “Agile Methodologies” OR Ägile methods” OR “Agile Project Man-
agement” OR “Lean development” OR “Lean software development” OR  “Scrum” OR
“Extreme Programming” OR “Pair Programming” OR “Test-Driven Development”)
214 A decade of agile methodologies: Towards explaining agile software 

f the contributions made by the papers in this special issue. Finally,
he conclusions and directions for future research are discussed.

. An overview of research on agile software development

.1. Agile principles and agility

According to the agile principles enunciated in the agile
anifesto1, motivated and empowered software developers – rely-

ng on technical excellence and simple designs – create business
alue by delivering working software to users at regular short
ntervals. These principles have spawned a number of practices
hat are believed to deliver greater value to customers. At the
ore of these practices is the idea of self-organizing teams whose
embers are not only collocated but also work at a pace that

ustains their creativity and productivity. The principles encour-
ge practices that accommodate change in requirements at any
tage of the development process. Furthermore, customers (or their
urrogates) are actively involved in the development process, facil-
tating feedback and reflection that can lead to more satisfying
utcomes. The principles are not a formal definition of agility, but
re rather guidelines for delivering high-quality software in an
gile manner. While individual principles and practices of agile
evelopment were not entirely new to the software community,
he way in which they were put together into a cogent “theoret-
cal and practical framework” was certainly novel (Williams and
ockburn, 2003). Ever since the manifesto was articulated, practi-
ioners and researchers have been trying to explicate agility and
ts different facets. At its core, agility entails ability to rapidly and
exibly create and respond to change in the business and techni-
al domains (Henderson-Sellers and Serour, 2005; Highsmith and
ockburn, 2001). Other aspects of agility explored include light-
ess or leanness (i.e., having minimal formal processes) (Cockburn,
007) and related concepts such as nimbleness, quickness, dexter-

ty, suppleness or alertness (Erickson et al., 2005). In essence, these
deas suggest a “light’ methodology that promotes manoeuvrability
nd speed of response” (Cockburn, 2007).

More formal definitions of agility have started to appear in the
ecent past, drawn mainly from manufacturing and management
omains, where agile appears to have its roots. For Henderson-
ellers and Serour (2005),  agility involves both the ability to adapt
o different changes and to refine and fine-tune development
rocesses as needed. Lee and Xia (2010) define software develop-
ent agility “as the software team’s capability to efficiently and

ffectively respond to and incorporate user requirement changes
uring the project life cycle.” Conboy (2009) provides by far the
ost comprehensive definition of software development agility by

ystematically examining its various facets and definitions from
elated disciplines. He makes a distinction between agility, flexibil-
ty, and leanness—in fact, agility is conceptualized to include and
o beyond both flexibility and leanness. While flexibility relates to
he ability of a systems development method to “create change,
r proactively, reactively, or inherently embrace change in a timely
anner, through its internal components and its relationships with

ts environment”, leanness captures the “contribution to perceived
ustomer value through economy, quality, and simplicity.” Thus,
onboy (2009, p. 340) defines software development agility as the
ontinued readiness “to rapidly or inherently create change, proac-
ively or reactively embrace change, and learn from change while
ontributing to perceived customer value (economy, quality, and
implicity), through its collective components and relationships

ith its environment.”

While leanness emphasizes cost reduction through eliminating
aste and inefficiencies, agility treats leanness – i.e., cost reduction

hrough waste elimination – as a qualifier to focus more heavily
pment / The Journal of Systems and Software 85 (2012) 1213– 1221

on creating effective responses and valuable outcomes (Agarwal
et al., 2006). Thus, leanness may  be perceived as efficiency oriented,
while agility entails embracing lean processes with an emphasis on
realizing effective outcomes. Lyytinen and Rose (2006) suggest that
agility is achieved through learning processes involving both explo-
ration and exploitation. The next section highlights the extent of
research on agile development undertaken during the past decade
across countries and across journals/conferences.

2.2. Research on agile software development

A literature search in the ISI Web  of Science2 identified 1551
research papers on agile software development that were pub-
lished between 2001 and 2010, inclusive. As shown in Fig. 1,
the number of journal articles as well as conference papers has
been steadily increasing until 2010. A plausible explanation for
the decline in the number of conference publications in 2010 is
that the 2010 Agile conference was not indexed in ISI Web  of
Science database. The increase in journal articles indicates that
the research field is maturing. A systematic review of empirical
research published before 2005 revealed a lack of theoretical and
methodological rigor (Dybå and Dingsøyr, 2008). The total num-
ber of publications shows that agile development has received
much interest from the academic community; however, most of
the research is inspired by practices emerging in industry.

Our literature search also permitted us to examine the extent
of agile research undertaken in different countries. Fig. 2 shows
the number of publications by country, darker colours indicating a
larger volume of agile papers. Note that although the majority of
the articles originate in the US, Canada and Western Europe, agile
software development has been a research theme on all continents,
in a total of 63 countries (see Appendix 1 for details).

We  also tried to identify the popular conferences and journals
in which publications on agile research appear. It can be seen from
Fig. 3 that the International Conference on Agile Software Develop-
ment (”XP”) based in Europe has been the main forum for agile
research, followed by Agile3 in the US. This is not surprising, as
the two  conferences focus exclusively on issues related to agile
software development. Other popular avenues for agile research
are Profes and EuroSPI – both of which focus on process improve-
ment – and the International Conference on Software Engineering
(ICSE). EuroMicro and the Conference on Software Engineering Edu-
cation and Training (CSEE&T) have also been able to attract some
papers on agile. Finally, the IFIP community and the International
Conference of Global Software Engineering (ICGSE), as well as the
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), have devoted some attention to this topic. Thus,
several research communities have focused on agile development.
A vast majority of the papers (1064 out of 1302) are from the top
ten conferences. The remaining 238 articles are spread over about
200 other forums. This shows that agile development has received
widespread attention across various scientific communities.

An overview of journal publications (see Fig. 4) reveals that IEEE
Refined by: Subject Areas=(COMPUTER SCIENCE OR ENGINEERING OR TELECOMMU-
NICATIONS OR OPERATIONS RESEARCH MANAGEMENT SCIENCE) AND Document
Type=(PROCEEDINGS PAPER OR REVIEW OR ARTICLE OR BOOK CHAPTER).

3 These numbers also include the previous Agile Development Conference and
the  XP Agile Universe, but not all years have had the proceedings indexed.
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Fig. 1. Publications on agile software development from 2001 to 2010, total number (top), conference papers (middle) and journal articles (bottom).

Fig. 2. Publications on agile software development by country. Darker colour indicates more publications. See Appendix 1 for details.

Fig. 3. Number of papers by conference.
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Fig. 4. Number of pa

rticles among non-software engineering journals is the European
ournal of Information Systems, thanks to a special issue on the topic.
et another popular outlet, Communications of the ACM, has pub-

ished five articles on agile software development. Thus, we see that
he topic has gained traction not just in software engineering but
n other areas as well.

.3. Seminal contributors and their relationships

There is perhaps no better way to understand a field than
o identify its seminal sources of information and the relation-
hips among them. Indeed, experts in bibliometric studies, such as
cCain (1990),  White and Griffith (1981),  and White (1990),  have

laborated on the use of co-citation analysis to delineate the con-
eptual underpinnings of disciplines. Specifically, researchers have
sed either authors (e.g., Nerur et al., 2008) or documents (e.g.,
amos-Rodríguez and Ruíz-Navarro, 2004) as the units of anal-
sis. Whatever be the case, the unit of analysis – author or the
rticle written by the author – is regarded as a concept (or con-
epts) that it promulgates. Co-citation analysis, whether it is based
n co-citations of authors or documents, rests on the premise that
oint citations between two units occur when they share some
onceptual similarity. This study used author co-citation analy-
is (ACA) to unravel dominant conceptual themes in the agile
iterature.

The procedure followed is very consistent with those outlined by
cCain (1990) and Nerur et al. (2008).  The first step was to iden-

ify the authors most frequently cited in the agile literature. ISI’s

eb  of Science was used for this purpose. Our search4 yielded 452

rticles. The cited references of each of these articles were then
sed to get a list of the most frequently cited authors. Fifty-one

4 Same search as in endnote 2, but limited to articles or reviews.
n scientific journals.

authors were included in our final analysis. A 51 × 51 matrix of
raw co-citation frequencies was then computed based on a “cited
references search” involving each of the 51 authors. Specifically,
the co-citation frequency between a pair of authors was obtained
by determining the number of matching records in their respec-
tive cited references. The input to the cluster analysis program was
a correlation matrix derived from the 51 × 51 matrix of raw co-
citation counts. Consistent with other ACA studies, we  used the
Ward’s method. The results are shown in Fig. 5.

Fig. 5 shows the key conceptual themes that have appeared in
the agile literature. Distances in the figure provide a sense of the
level of conceptual similarity between two authors, with shorter
distances implying greater thematic closeness in their writings. For
example, the short linkage distance between Fowler and Gamma
– both of whom have written about patterns – implies that their
works are highly related. As mentioned earlier, the formative years
of the field saw the proliferation of research related to the differ-
ences between process-oriented approaches such as CMM/CMMI
and agile methods such as XP. Further, there were extensive debates
on topics related to reconciling differences between agile and erst-
while practices, striking a balance between traditional and agile,
using a risk-driven approach to choosing practices, and so forth.
The presence of pair-programming and test-driven development is
no surprise, since a lot of research has been devoted to these prac-
tices. Sharp and Robinson distinguish themselves by their work on
XP, particularly in the context of organizational culture, distributed
cognition, and the role of physical artefacts in agile development
(see Sharp and Robinson, 2006, 2008; Sharp et al., 2009). The influ-
ence of patterns – both analysis and design patterns – based on the
works of Fowler and Gamma  is also evident in the analysis. Robert

Martin’s book on agile software development shows the role of pat-
terns in agile development; hence the link among Martin, Fowler,
and Gamma. The next section identifies the various theoretical per-
spectives used in prior agile research.
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Table 1
Theoretical perspectives used in agile research.

Theoretical Perspective Number of
Articles

Article(s)

Knowledge management 9 Dingsøyr and Hanssen (2002)
Holz and Maurer (2002)
Sena and Shan (2002)
Doran (2004)
Fang et al. (2004)
Bellini et al. (2005)
Crawford et al. (2006)
Salazar-Torres et al. (2008)
Chan and Thong (2009)

Personality 6 Sfetsos et al. (2006)
Choi et al. (2008)
Layman et al. (2008)
Sfetsos et al. (2009)
Acuna et al. (2009)
Hannay et al. (2010)

Organizational learning 1 Holz and Maurer (2002)
Double loop learning 1 McAvoy and Butler (2007)
Triple-loop learning 1 McAvoy and Butler (2007)

Complex adaptive systems 2 Meso and Jain (2006)
Socha and Walter (2006)

Social facilitation 2 Arisholm et al. (2007)
Balijepally et al. (2009)

Adaptive Structuration
theory

1 Cao et al. (2009)

Chaos theory 1 Levardy and Browning (2009)
Complexity theory 1 Falessi et al. (2010)
Coordination theory 1 Pikkarainen et al. (2008)
Distributed cognition 1 Sharp and Robinson (2008)
Evolutionary theory of
knowledge

1 Northover et al. (2006)

Fuzzy set theory 1 Mafakheri et al. (2008)
Game theory 1 Hazzan and Dubinsky (2005)
Graph theory 1 Zimmer (2003)
Socio technical 1 Johannessen and Ellingsen (2009)
ig. 5. Key research themes in agile software development. Cluster analysis of sem-
nal  authors using the Ward’s method.

.4. Theoretical exploration of agile development

Agile development evolved from the personal experiences
nd collective wisdom of the consultants and thought leaders of
he software community. While most individual agile practices
ave intuitive appeal – as they are based on generally accepted
anagement principles – they certainly lacked theoretical under-

innings or empirical support for their stated benefits, when
nitially conceived. Thus, there was a pressing need for theoretical
erspectives that throw light on how these disparate practices and
heir interactions could produce valued outcomes. Theoretically
omprehending the distinction between agile methods and their
raditional counterparts was another concern begging for research
ttention. Some early studies sought to address these concerns.
or instance, Nerur and Balijepally (2007) illustrate that the
hifts in the approach to software development reflected in the
gile methods has parallels to similar shifts in design thinking
vident in several disparate fields, e.g., architecture and strategic
anagement domains. They suggested the theory of holographic

rganization and its various principles as a theoretical lens to
xplore agile development.

To get a sense of the various theoretical perspectives used in
tudies on agile development during the last decade, we did a quick
nalysis of the topic search of the 452 articles published between
001 and 2010 that we identified earlier for author co-citation
nalysis. Using ISI’s Web  of Science we searched through the top-
cs of these 452 articles using keywords outlined in Table 1. The
arious theoretical perspectives and the number of articles identi-
ed by ISI’s Web  of Science using these terms in the topic results

re showcased in Table 1. An obvious limitation of the approach
sed for identifying these articles relates to the keywords used
which are based on our understanding of the popular theoreti-
al perspectives found in agile studies) and the search procedure
Teamwork model 1 Moe  et al. (2010)
Theory of diagnosis 1 Trinidad et al. (2008)

adopted here (i.e., searching in the topic field of ISI Web  of Sci-
ence database). However, we believe this provides a broad sense of
the various theoretical perspectives used in agile studies and their
relative popularity.

As is evident from Table 1, knowledge management, personal-
ity, and organizational learning and related perspectives have been
more popular with agile researchers. As software development
is a knowledge creation activity, knowledge management should
be an attractive perspective when exploring knowledge genera-
tion in software teams in general and agile teams in particular.
Similarly, personality theories (e.g., Big Five personality theory)
should be useful in exploring the interpersonal dynamics of col-
located agile teams and programming pairs. As agile principles of
change readiness and adaptability are expected to foster a learn-
ing environment in agile teams, organizational learning and related
perspectives would be a logical choice for researchers when explor-
ing learning outcomes of agile development. As is also apparent
from Table 1, other theoretical perspectives have been used to a
much lesser extent. Most importantly, a majority of agile studies
do not seem to be concerned about any theoretical underpinnings
for their research exploration, which reinforces the general popular
perception that agile research tends to be a-theoretical.

3. Towards a theory of agile software development
In this section, we  first describe the state-of-the art in agile
development, and then proceed to place this special issue in con-
text.
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.1. An overview of prior research

Introductions to and overviews of agile development are pro-
ided by Abrahamsson et al. (2002),  Cohen et al. (2004),  Erickson
t al. (2005),  and Dybå and Dingsøyr (2008).  These four reports
escribe the state-of-the-art and state-of-the-practice in terms of
haracteristics of the various agile methods and lessons learned
rom applying such methods in industry. In addition, the book,
gile Software Development: Current Research and Future Directions
Dingsøyr et al., 2010), contains eleven overviews of the main
treams within agile research, structured in chapters explaining
oundations and background of agile development, agile methods
n practice, and principal challenges and new frontiers.

From 2003 until 2011 five special issues and one special section
n agile software development have been published, including 32
rticles. The most common agile methods described were XP and
crum. An examination of these special issues revealed that most
rticles were devoted to furthering our understanding of agile con-
epts. Other dominant topics included adoption and/or adaptation
f agile, reconciliation of the tension between agile and plan-driven
evelopment (i.e., flexibility and control), and evaluation of adop-
ion issues in environments that are not inherently conducive to
gile. We  will now give a short summary of these special issues
nd the special section:

In 2003, Williams and Cockburn (2003) edited a special issue
n Computer titled, “Agile Software Development: It’s about Feed-
ack and Change”. The primary emphasis of the special issue was
n determining how to blend agile methodologies with plan-driven
pproaches to software development. The six articles included cov-
red the history of iterative and incremental development, the
ebate on mixing agile and plan-driven development, and how and
hen to mix  these two approaches. Furthermore, the special issue

eported experience on the use of XP and Scrum, as well as on intro-
ucing agile processes into an organization working in an ISO 9000
r CMMI  environment.

The second special issue appeared in the Journal of Database
anagement in 2005 (Siau, 2005). In addition to a review of the

tate of research on XP and agile methods, the issue covered top-
cs related to adoption of agile methods, process improvement, XP,
nd the underlying assumptions of agile.

In 2009, Abrahamsson et al. (2009) selected seven articles for
 special issue in the European Journal of Information Systems to
urther our understanding of various phenomena in agile system
evelopment. The title of the special issue editorial was “‘Lots
one, more to do’: the current state of agile systems development
esearch”. The papers not only addressed the fundamental question
f what constitutes ‘agility’ and agile methods, but also demon-
trated approaches to broadening the scope of the applicability of
gile concepts.

Ågerfalk, Fitzgerald, and Slaughter also edited a special issue in
009 (Ågerfalk et al., 2009). Seven papers were published in the

nformation Systems Research under the banner, “Flexible and Dis-
ributed IS Development: State of the Art and Research Challenges”.
he papers attempted to explore and/or define the central con-
ept of agility, the enablers and inhibitors of agility, the question
f how to balance flexibility and control, the circumstances under
hich agile methods are most effective, and the challenges of agile

n distributed projects.
Yet another special issue was published in Software Practice and

xperience 2011, which was edited by Greer and Hamon (2011).
he papers addressed a range of research areas including the appli-
ation of agile methods to safety critical software development,

he relationship between agile development and user experience
esign, and the measurement of flow in lean software development.

Finally, in 2011, Dybå (2011) edited a special section in the Jour-
al of Information and Software Technology,  based on best papers
pment / The Journal of Systems and Software 85 (2012) 1213– 1221

from the XP2010 conference. The four articles that were pub-
lished described the relationship between organizational culture
and development of agile methods, customer involvement in agile
projects, self-management, and the evolution of the practice of
agile information systems development within a company over a
10-year period.

3.2. This special issue

For this special issue, we  asked for contributions that crit-
ically reflect on the current status of research and practice in
agile development. In particular, we  were looking for contributions
questioning and exploring the theoretical underpinnings of agile
and lean development and the agile manifesto. We received a total
of 21 submissions, of which five were selected for the special issue.
Three of these articles focus on specific aspects of agile practices
– coordination, decision making and post adaptive use – while the
last two articles provide insight on broad topics of agile develop-
ment – a grounded theory of software development, and a review
of experience reports on “lean and agile” software development.
We describe these contributions in more detail below.

In their article, “Coordination in co-located agile software devel-
opment projects”, Strode, Huff and Hope link agile development
to theory of coordination, using a model with three components:
synchronization, structure and boundary spanning.

Decision-making, an important aspect of software development,
is the focus of Drury, Conboy and Power’s article, “Obstacles to
Decision-Making in Agile Software Development Teams”. Using a
mixed method approach, they investigate decisions involved in
iteration planning, execution, review and retrospective, and iden-
tify six obstacles to decision-making. They connect the findings to
a theory of descriptive decision-making and describe the effects of
these obstacles.

Senapathi and Srinivasan focus on the use of agile development
methods in the post-adoption stage, in their article, “Understanding
Post-Adoptive Agile Usage—An Exploratory Cross-Case Analysis”.
By adapting theories from systems development and diffusion of
innovations, they develop a model that seeks to explain post-
adoptive usage of agile practices.

In the article, “Reconciling perspectives: How people man-
age the process of software development”, Adolph and Kruchten
develop a grounded theory of social factors in software develop-
ment. They conceptualize software development as a negotiation
process that involves reconciling perspectives, i.e., seeking conver-
gence by sorting out different points of view or perspectives about
a software process. Thus, it offers a unique perspective on how agile
software development is undertaken in organizations.

A growing interest is evident at agile conferences on iden-
tifying ways to combine principles of lean development with
software development. In the article “’Leagile’ software develop-
ment: An experience report analysis of the application of lean
approaches in agile software development”, Wang, Conboy and
Cawley distil lessons from 30 experience reports, in six types of lean
applications—from practices for continuous process improvement
to flow-based development with the Kankan approach.

4. Conclusion

It  should be apparent from this introductory article that the
research community has lavished attention on the issues related
to agile software development ever since the agile manifesto was

pronounced in 2001. This is evident from the number of scientific
publications, the widespread interest in the topic in various sci-
entific forums, and the number of countries (63) that have been
engaged in agile research. The number of special issues devoted
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o agile development is also an indication of the keen interest dis-
layed in software engineering and other related fields, notably

nformation systems.
A systematic review of empirical studies published until 2005

Dybå and Dingsøyr, 2008) called for an increase in both the num-
er and quality of studies. The review also found that most studies
ocused on eXtreme programming and very few on the Scrum
evelopment process, which was gaining significant traction in

ndustry. Further, the review showed the urgent need for more
tudies involving mature agile development teams, as most stud-
es until then had focused on projects that were just starting to use
gile methods.

Has recent progress brought us any closer to a unified frame-
ork that brings coherence to the seemingly disparate streams of

esearch being pursued? Our overview of research shows that the
umber of studies has increased significantly since 2005, and the

ncreased number of journal articles, not just the increased num-
er of conference proceedings, is a sign of increase in quality as
ell. Going by the attention that they have received, some subfields

f agile development appear to be more mature than others. For
xample, there are meta-studies summarizing experiments on pair
rogramming, with focus on effectiveness (Dybå et al., 2007) and
n use in university education (Salleh et al., 2011). Our overview
f theories in use in explaining agile software development shows
hat a range of theories, drawn from many fields, have been applied.
his special issue is a further contribution with five articles with
trong focus on theory. After the initial spurt of studies on eXtreme
rogramming, the academic community seems to have turned its
ttention to scrum. Flow-based as well as lean software develop-
ent has been popular among industry practitioners, but has not

et been extensively researched, as the article by Wang et al. in this
ssue shows.

Many have called for directions to research on agile develop-
ent. At Agile2008,  Dingsøyr et al. (2008) suggested a roadmap

or research on agile software development, focusing on provid-
ng more empirical research, primarily on experienced agile teams
nd organizations, connecting better to existing streams of research
n more established fields, giving more attention to management-
riented approaches, and finally give more emphasis to core ideas
n agile software development in order to increase our understand-
ng.

Ågerfalk et al. (2009) in their introductory article to the spe-
ial issue on agile/distributed systems development, compiled a
op-ten list of future research areas. In the list developed from the
nputs of the authors of the special issue articles, the following
esearch areas figured at the top: suitability of agile develop-
ent to new context such as open source software and software

s service;  factors affecting the organizational adaptation of agile
ethods including tailoring to specific projects; different forms

f distributed development and factors facilitating the flexibility,
fficiency and effectiveness of such work; ways to extend agile
ractices beyond software teams into the organizational realm; and

dentifying boundaries to agile development by applying agility to
rojects traditionally considered to be non-agile.

At the XP2010 conference, Freudenberg and Sharp (2010) com-
iled a list of “top ten burning questions” based on feedback from
ractitioners. Among other issues, they identified agile and large
rojects, barriers to self-organization, distributed agile, and the
ole of architecture as high priority topics. At a workshop on new
nd emerging ideas at Agile2011,  we posed the question “what
hould be researched less” and “what should be researched further”
o a group mainly consisting of academics. Among other things,

hey opined that pair programming in educational settings and the
euse of code did not require any further attention. Themes that
ere deemed to be important included agile across projects and

cross organizations, the “core” of agile, distributed agile, and the
pment / The Journal of Systems and Software 85 (2012) 1213– 1221 1219

role of architecture and knowledge management in agile develop-
ment.

We concur that these are exciting research areas that can fur-
ther our understanding of the effectiveness of agile methods and
practices, particularly in different project/organizational contexts.
However, our limited analysis of the theoretical perspectives used
in prior agile development research suggests that not enough
attention is being paid to establishing theoretical underpinnings,
when investigating agile development and its various practices. As
Jacobson and Spence (2009) point out, sound theoretical roots help
us glean the essential concepts, or the “truths” of software devel-
opment that are methodology-independent. Such theory-driven
research enables us to separate true innovations among agile prac-
tices from the reinventions and remixes of old approaches, thereby
helping us adopt such innovations at a faster rate in the future.
Therefore, we urge agile researchers to embrace a more theory-
based approach in the future when inquiring into these promising
research areas of agile development.

Clearly, the pioneers as well as subsequent researchers of agile
development have established a foundation on which the edifice
of software development theory and practice can be built. As we
stand on the “shoulders of [these] giants” and endeavour to extend
the frontiers of software engineering, it is important to remember
that the field can mature and progress as a scientific discipline only
if efforts are made to provide a robust theoretical scaffold for the
conduct of research on agile development. We  hope that the articles
in this special issue are a step in this direction.
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Appendix A. Appendix 1

Rank Country Number of publications %

1 USA 338 21.7
2  CANADA 110 7.1
3 GERMANY 96 6.2
4  FINLAND 94 6.0
5  UK 94 5.3
6  ITALY 56 3.6
7  CHINA 52 3.3
8 IRELAND 51 3.3
9  AUSTRALIA 48 3.1

10  SWEDEN 43 2.8
11  SPAIN 41 2.6
12  NORWAY 33 2.1
13  BRAZIL 29 1.9
14  AUSTRIA 25 1.6
15  ISRAEL 23 1.5
16  NEW ZEALAND 23 1.5
17  POLAND 23 1.5
18  NETHERLANDS 22 1.4
19  CHILE 17 1.1
21  DENMARK 16 1.0
22  IRAN 15 1.0
23 INDIA 14 0.9
24 CZECH REPUBLIC 11 0.7
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ppendix 1 (Continued)

Rank Country Number of publications %

25 SOUTH KOREA 11 0.7
26  ARGENTINA 10 0.6
27 SOUTH AFRICA 10 0.6
28  GREECE 9 0.6
29  PORTUGAL 8 0.5
30  TURKEY 8 0.5
31 FRANCE 7 0.5
32  SWITZERLAND 7 0.5
33 MALAYSIA 6 0.4
34  MEXICO 6 0.4
35  BELGIUM 5 0.3
36  SLOVENIA 5 0.3
37 PAKISTAN 4 0.3
38 ROMANIA 4 0.3
39  TAIWAN 4 0.3
40  BULGARIA 3 0.2
41 CROATIA 3 0.2
42  ESTONIA 3 0.2
43  HUNGARY 3 0.2
44  PHILIPPINES 3 0.2
45  SAUDI ARABIA 3 0.2
46  SINGAPORE 3 0.2
47  COLOMBIA 2 0.1
48 OMAN 2 0.1
49  SYRIA 2 0.1
50 THAILAND 2 0.1
51  U ARAB EMIRATES 2 0.1
52  BOSNIA HERCEG 1 0.1
53 COTE IVOIRE 1 0.1
54 EGYPT 1 0.1
55  ICELAND 1 0.1
56  JORDAN 1 0.1
57  LATVIA 1 0.1
58  LEBANON 1 0.1
59  LITHUANIA 1 0.1
60 MONTENEGRO 1 0.1
61  SERBIA 1 0.1
62 SLOVAKIA 1 0.1
63  ZIMBABWE 1 0.1
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