
A comprehensive analysis of energy management strategies for hybrid
electric vehicles based on bibliometrics

Pei Zhang a,b,c, Fuwu Yan a,b,c,n, Changqing Du a,b,c

a School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
b Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan 430070, China
c Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, China

a r t i c l e i n f o

Article history:
Received 23 September 2014
Received in revised form
18 January 2015
Accepted 8 March 2015
Available online 7 April 2015

Keywords:
Hybrid electric vehicles
Energy management strategy
Bibliometrics
Rule-based energy management strategy
Optimization-based energy management
strategy

a b s t r a c t

Hybrid electric vehicles (HEVs) are one of the most viable technologies to achieve the goals of energy
saving and environmental protection before a breakthrough in battery technology and fuel cell
technology. Energy management strategy as a key technology of HEVs is studied extensively and deeply
to improve the performance of HEVs and speed up the industrialization of HEVs. This paper
quantitatively analyzes and evaluates current research status of energy management strategies for
HEVs based on bibliometrics for the first time, through content analysis involving analysis of author
keywords and abstracts. Then qualitative analysis is performed for all kinds of energy management
strategies that are used in HEVs in detail, essential characteristics involving pros and cons, interconnec-
tions and improvement potential among various energy management strategies are revealed from the
view of control theory. Finally, latest developing trends in energy management strategies of HEVs are
presented to improve the performance of HEVs based on above quantitative analysis and qualitative
analysis, covering driving cycle recognition/prediction algorithms, integrated multi-objective, coordi-
nated optimization energy management strategies, good balance between computation complexity and
optimization performance of energy management strategies, fair and credible evaluation system of
energy management strategies. This paper not only first provides a comprehensive analysis of energy
management strategies for HEVs, but also puts forward the emphasis and orientation of future study,
which will broaden relevant researchers' vision and promote the development of a simple and practical
energy management controller with low cost and high performance for HEVs.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Energy saving and environmental protection have become two
main themes of the world today. To overcome current energy limi-
tations and environmental issues generated by vehicles, several
approaches have been proposed by governments and scholars around
the world, including limiting transportation activity, restricting auto-
mobile purchases, enacting strict emission regulations, improving fuel
efficiency of conventional vehicles and developing new energy veh-
icles. Among all suggested solutions, restricting transportation activity
and automobile purchases would hinder the development of indus-
trial economy, and the potential for improving fuel efficiency of
conventional vehicles is also limited, thus developing new energy
vehicles is considered to be one of the most promising and practical
solutions. That is why auto-manufacturers and researchers have put
much effort into developing new energy vehicles.

There are mainly three types of new energy vehicles: purely
electric vehicles (usually being referred to as battery electric vehi-
cles-BEVs), fuel cell electric vehicles (FCEVs) and HEVs [1]. Though
BEVs and FCEVs are believed to be the cleanest automobiles without
using fossil fuel in the future, the development of BEVs and FCEVs is
influenced by battery technology and fuel cell technology respectively,
as well as charging infrastructure and hydrogen infrastructure. Limited
by the safe, lifetime, purchasing cost and energy/power density of
battery packs and fuel cells, and the unavailability of desired infra-
structure, BEVs and FCEVs will not likely be ready for mass production
in the next few years. HEV generally uses an electric motor (EM)
powered by an energy storage system (ESS) along with a downsized
internal combustion engine (ICE) powered by fossil fuel. It is therefore
considered as an in-between product for the transition from conven-
tional vehicle to future clean vehicle. HEV combines benefits of BEV
and conventional vehicle, such as long driving range, good power
performance, convenient refueling, low emission and noise. Therefore,
before a great breakthrough in battery and fuel cell technology, due to
great potential to reduce fuel consumption and pollutant emissions,
HEV has become one of the most viable technologies to achieve goals
of energy saving and environmental protection in the short to
medium term, thus attracting great attention from auto-manu-
facturers and research institutions.

HEV is a typical complex electro-mechanical-chemical system,
integrating electrical, mechanical, chemical and thermodynamic sys-
tems. The transfer, transform, and evolution of complex power flow,
energy flow and information flow occur when HEV is in motion.
Therefore, the potential of energy saving and emission reduction for
HEV is decided by mechanical connection way of components and
instantaneous power split law between ICE and EM, namely, depends
on configuration and energy management. HEV's configuration is the
basis of energy management, which determines algorithm selection of
energy management and optimization potential. The system's config-
uration includes the selection of system topology and parameter
design of major components. Based on mechanical architecture, HEV
powertrain configuration can be generally classified into three types:
series, parallel, and power-split (series–parallel). Every configuration
has its own advantages and disadvantages. The selection of config-
uration is usually dependent on customer requirements. As a result,
main challenge for HEV is how to split the power in an optimal
manner while delivering desired performance under system con-
straints. For the past decades, numerous attempts have been made to

design effective energy management strategies. Energy management
has become one of most extensive research topics in HEVs so far.

The existing energy management strategies of HEVs can be mainly
classified into rule-based energy management strategy and optim-
ization-based energy management strategy. Both types of energy
management strategies have been extensively studied by many
scholars, and research contents involves various aspects, including
state-of-the-art of energy management strategy, general formalization
of energy management problem, characteristics and control effects of
different energy management strategies, effect factors of energy
management strategies, relations and differences among diffe-
rent energy management strategies. The state-of-the-art, classifica-
tion, pros and cons of various energy management strategies applied
in HEVs were described in [2–7]. An innovative four-step method for
designing optimal energy management strategy was introduced in [8]
while a unified approach to describe energy fluxed within HEVs was
presented in [9]. A general formulation of energy management
problem for HEVs and plug-in HEVs (PHEVs) was proposed in [10].
Fundamental structural limitations of rule-based energy management
strategy were discussed by Opila et al. [11]. Optimization techniques
and their implementation methods used in energy management of
HEVs were illustrated in [12]. The characteristics and control effects of
various energy management strategies were deeply compared and
analyzed, involving the comparison between power split and torque
split energy management strategy [13], the comparison between rule-
based and global optimization-based energy management strategy
[14–15], the comparison between deterministic logic and fuzzy logic
energy management strategy [16–19], the comparison between rule-
based energy management strategy and equivalent consumption
minimization strategy (ECMS) [20–21], the comparison between
stochastic dynamic programming (SDP) and ECMS [22], the compar-
ison among electric assistant energy management strategy, adaptive
energy management strategy and genetic algorithm (GA) [23], the
comparison among parallel electric assistant, adaptive and fuzzy logic
energy management strategy [24], the comparison among rule-based
energy management strategy, adaptive equivalent consumption mini-
mization strategy (A-ECMS) and H1 energy management strategy
[25], the comparison among dynamic programming (DP), Pontryagin's
minimum principle (PMP) and ECMS [26], the comparison among all
electric-charge sustaining (EV-CS), charge depleting–charge sustaining
(CD–CS) and blended energy management strategy for PHEVs [27–
32]. The relations between different optimization-based energy man-
agement strategies were also revealed, such as adaptive equivalence
strategy and mixed integer quadratically constrained linear program
(MI-QCLP) [33], DP and ECMS [34], DP and PMP [35–36]. The effect
factors of energy management strategies covered intelligent transpor-
tation system (ITS) [37], terrain preview [38] and noise factors [39].

There have been a small number of literature surveys on energy
management strategies of HEVs, and the existing review papers focus
on analyzing the development of energy management strategies and
comparing several energy management strategies qualitatively. How-
ever, there has been no scholar presenting a comprehensive overview
of all types of energy management strategies developed for energy
management control of HEVs from both quantitative and qualitative
view. This study tends to fill this gap. By means of bibliometrics,
quantitative description of current research situation in the field of
energy management strategies for HEVs is presented first. Then, from
the view of control theory, qualitative analysis is carried out to reveal
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essential characteristics, interconnections and improvement potential
of various energy management strategies. Finally, based on quantita-
tive and qualitative analysis results, research focus and the trend of
development of energy management strategies for HEVs are
identified.

This paper is organized as follows. After this introduction, major
research method adopted by this study is introduced briefly in Section
2. The current research status of energy management strategies for
HEVs based on quantitative analysis is presented in Section 3. From
the point of qualitative view, essential characteristics, interconnections
and improvement potential of various energy management strategies
are revealed in Section 4. Latest developing trends in energy manage-
ment strategies of HEVs are discussed in Section 5. Finally, significant
results are summarized in Section 6.

2. Methodology and data collection

Bibliometric analytical technique is a method to quantitatively
analyze academic literature using mathematical and statistical tech-
niques, which has been widely used in various disciplines [40].
Bibliometric analysis methods include temporal analysis, geographic
analysis, and content analysis [41]. According to the number of
publications, authors and citations, temporal bibilometric analysis
usually focuses on the development of research areas across different
stages. Based on publication outputs by countries and institutions,
geographic analysis displays global distribution of research areas.
Different from temporal and geographic analysis, content analysis
aims to identify current hotspots on the basis of the frequency of
author keywords and subject distribution. This study is concerned
with present status and future developing trends; therefore, only con-
tent analysis covering author keywords analysis and abstracts analysis
is conducted to give a quantitative description of development status
for energy management strategy, as described in Section 3. Based on
content analysis results, qualitative analysis of rule-based energy
management strategy and optimization-based energy management
strategy based on control theory is made to present focus and dif-
ficulties of energy management strategy for HEVs, involving esse-
ntial characteristics, interconnections and improvement potential of
various energy management strategies. Future developing trends of
energy management strategy for HEVs are derived from quantitative
and qualitative analyses.

All documents employed in this study were from databases of
Science Citation Index Expanded (SCI-EXPANDED) and Conference
Proceedings Citation Index-Science (CPCI-S), based on ISI Web of
Science, Philadelphia, PA, USA. In this study, only documents pub-
lished from 1998 to 2014 were discussed due to few articles regarding

energy management strategies of HEVs prior to 1998. HEVs presented
in this paper did not include fuel cell HEVs and hybrid solar vehicles.
In order to find all documents in the field of energy management
strategies for HEVs as completely as possible, hybrid search method
combining computer search and manual search was adopted. First,
terms such as hybrid electric vehicle, hybrid powertrain, hybrid ele-
ctric car, hybrid electric bus, hybrid electric truck and hybrid electric
automobile were used as keywords to search in the categories of title/
keywords/abstract based on SCI-EXPANDED and CPCI-S. The docu-
ment types were limited in articles, proceedings papers and reviews.
Then, based on the result of computer search, there were a total of 575
documents related to energy management strategies of HEVs through
manual search furthermore.

In summary, employed research method and framework of this
study is shown in Fig. 1.

3. Quantitative analysis of energy management strategy for
HEVs based on bibliometrics

3.1. Analysis of author keywords

Among 575 articles, 373 articles have provided author keywords,
accounting for 64.9% of total articles. An analysis of author keywords is
conducted to identify research focus in energy management strategy
for HEVs. There are a total of 697 unique author keywords for 373
articles proposed by authors, which appear 1749 times. The frequency
of author keywords and their ranks follows the power law distribution
as shown in Fig. 2, indicating that the majority of author keywords are
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not used frequently and only a small number of author keywords are
widely employed. 508 author keywords only appear one time, which
account for 72.9% of these 697 author keywords. Nevertheless, the 25
(3.6%) most frequent author keywords appear 708 times and occupy
40.5% of total occurrences for author keywords. Based on the analysis
of total author keywords, we can find that many different author
keywords mean the same idea. As a consequence, it is necessary to
make co-words clustering analysis for identifying current research
directions and hotspots of energy management strategies for HEVs.
Traditional hierarchical clustering algorithm is sensitivity to the
frequency of author keywords and may not cover all related research
subject. Due to the above drawbacks, a new improved hierarchical
clustering algorithm is proposed as follows.

The research is usually composed of objects, purposes, methods
and contents of the study. For this reason, in this new clustering
algorithm, author keywords involving above four aspects are consid-
ered as co-words. By this way, the clustering algorithm is not sensitive
to the frequency of author keywords. Then, based on our expertise
and experience, for energy management strategy of HEVs, all co-
words are classified into four types, and the frequency of author
keywords in each type is obtained by our own statistical analysis
software. As shown in Fig. 3, HEV is main research object including
series HEV, parallel HEV, series–parallel HEV and PHEV. The research
purpose is to improve fuel economy, reduce emissions and ensure
drivability of HEVs. Simulation and modeling as two main methods
are utilized to study energy management and optimal control of HEVs
for realizing above mentioned goals. By comparing the frequency of
different types of co-words, it is revealed that: (1) PHEV attracts more
attention; (2) researchers are more concerned with fuel economy than
emissions of HEVs while few researchers focus on drivability of HEVs;
and (3) specific energy management strategies have been widely
studied. In order to understand different kinds of energy management
strategies further, clustering analysis of co-words in specific energy
management strategies is also made as described in Fig. 3. DP and
fuzzy logic control are the two most widely used energy management
strategies, followed by GA, PMP, model predictive control (MPC),
neural network (NN) and ECMS. The other energy management
strategies include rule-based control, particle swarm optimization
(PSO), robust control, stochastic optimal control, evolutionary algo-
rithm (EA), support vector machine (SVM), convex optimization, bees
algorithm (BA), direct method, machine learning, simulated annealing
(SA), quadratic programming (QP), simplex method, shooting method,
extremum seeking (ES), game theory (GT), parallel chaos optimization
algorithm (PCOA), Dividing RECTangles algorithm (DIRECT), varying-
domain optimization and so on.

Although analysis results of author keywords can reflect current
research focus to some extent, 35% of total articles still have no author
keywords. Moreover, some author keywords are not relevant to the
subject of the article. Given that, abstracts analysis of articles is
necessary for further understanding subjects of articles, which will
be described in the following section.

3.2. Analysis of abstracts

Through reading and analyzing abstracts of these 575 articles
carefully, research subjects of all these articles can be categorized into
three main research fields as shown in Fig. 4 (a) review and
comparative analysis of energy management strategy; (b) rule-based
energy management strategy; and (c) optimization-based energy
management strategy. Rule-based energy management strategy can
be classified as deterministic rule-based energy management strategy
and fuzzy rule-based energy management strategy according to
characteristics of used rules, while optimization-based energy man-
agement strategy can be classified into global optimization energy
management strategy and real-time optimization energy manage-
ment strategy based on employed information level of driving

conditions. On the basis of solving methods of optimization control
problem, global optimization energy management strategy and real-
time optimization energy management strategy applied in the energy
optimal control of HEVs can be divided into different subcategories, as
shown in Fig. 5. According to statistical analysis, quantity distribution
of various types of energy management strategies is displayed in
Fig. 6.

As described in Fig. 4 and Fig. 6, optimization-based energy
management strategy has received more attention from scholars
than rule-based energy management strategy. DP, PMP and
stochastic search methods are top three types of global optimiza-
tion energy management strategies while ECMS, MPC and intelli-
gent control are the three most widely studied real-time
optimization energy management strategy. Although rule-based
energy management strategy cannot obtain the optimum as
optimization-based energy management strategy, it still gains a
certain concern due to easy implementation. In order to acquire
the development trends of above most widely used energy
management strategies, temporal analysis of these strategies is
made as shown in Fig. 7. From Fig. 7, it is clearly seen that: (a) the
study on rule-based energy management strategy is continuing
over the past years; (b) for global optimization energy manage-
ment strategy, on one hand, DP has gained great development
since 2007 while PMP is widely studied from 2011; on the other
hand, the research on stochastic search method is conducted for
many years, especially in 2006, 2009 and 2014; and (c) for real-
time optimization energy management strategy, ECMS and MPC
have obtained rapid development since 2009, while intelligent
control is employed almost every year with relatively few occur-
rences. Generally speaking, rapid and tremendous development of
energy management strategy for HEVs begins around 2009.

Above analysis of author keywords and abstracts shows devel-
opment status and focuses from the quantitative point of view;
yet, it does not propose any development difficulties or offer
corresponding solutions. Furthermore, based on only quantitative
analysis results, specific and complete development trends as well
as control effects of different energy management strategies
cannot be derived. Therefore, qualitative analysis of various energy
management strategies is necessary. In this study, essential char-
acteristics involving advantages and disadvantages, interconnec-
tions and improvement potential of total employed energy
management strategies are analyzed and compared. The details
are as follows.

4. Qualitative analysis of energy management strategy for
HEVs based on control theory

The qualitative analysis is based on above quantitative analysis,
focusing on rule-based energy management strategy and optim-
ization-based energy management strategy. First, various subtypes
of applied deterministic rule-based and fuzzy rule-based energy
management strategies are analyzed and characteristics of rule-
based energy management strategy are generalized. Second, various
subtypes of employed global optimization and real-time optimization
energy management strategies are discussed and characteristics of
optimization-based energy management strategy are summarized.
Finally, comparative analysis between rule-based energy management
strategy and optimization-based energy management strategy is per-
formed.

4.1. Rule-based energy management strategy

4.1.1. Deterministic rule-based energy management strategy
Deterministic rule-based energy management strategies can

be sub-divided into thermostat (on/off) strategy, power follower
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(baseline) strategy, engine optimal working point strategy, engine
optimal operation line strategy, engine optimal efficiency region
strategy, system optimal operation point strategy and frequency-bas-
ed strategy.

In the thermostat strategy, ICE operates at its highest efficiency
point once it turns on, while battery SOC is always maintained
between its preset upper and lower bounds by turning on or turning
off ICE. Although the thermostat strategy provides best efficiency for
the engine-generator set, overall system efficiency of HEV is low.
Furthermore, the battery pack requires high performance to satisfy

power demands under various operating conditions. Therefore, the
thermostat strategy is mostly used in series HEVs [42]. The power
follower strategy uses ICE as main power source, ICE works along its
optimal working curve as much as possible while EM is used to
provide additional power and sustain battery SOC. Compared to the
thermostat strategy, the power follower strategy improves overall
system efficiency and the durability of the battery pack and other
electrical components. The power follower strategy is applicable to
parallel HEVs and series–parallel HEVs [43]. In order to overcome the
weakness of thermostat strategy and power follower strategy, hybrid
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thermostat strategy combining thermostat strategy and power fol-
lower strategy is proposed to improve fuel economy further for series
HEVs [44]. Frequency-based strategy splits power demand into low
and high frequency components by low-pass filtering incorporated

with load-leveling, which is mainly applied in series HEVs. Compared
with the thermostat strategy, it can improve fuel economy, decrease
emissions and increase battery life simultaneously [45].

Due to special powertrain components of series–parallel HEVs
such as planetary gear set and continuously variable transmission
(CVT), the operating point of ICE can be adjusted freely. So engine
optimal working point strategy [46], engine optimal operation line
strategy [47] and engine optimal efficiency region strategy [48] are
proposed for series–parallel HEVs. The engine optimal working point
strategy adopts EM to provide additional power due to good dynamic
characteristic of EM, while keeping ICE working at its optimal working
point. The engine optimal operation line strategy is similar to the
above power follower strategy, and ICE will always work along
optimal operation line unless required current exceeds the limits of
battery packs or EM. The engine optimal efficiency region strategy is
also called power-balancing strategy, where ICE is kept to operate in
optimal efficiency region. Considering transmission energy loss,
system optimal operation point strategy combining ICE optimal ope-
ration line and the maximization of transmission efficiency is intro-
duced to further improve the performance of series–parallel HEVs
[49].

Deterministic rule-based energy management strategy is usually
implemented using state machine logic. Although it has been success-
fully used in commercial HEVs, like Toyota Prius, due to fixed rules, it
lacks the flexibility to different driving cycles and the ability to deal
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with uncertainty caused by model errors of the powertrain. Conse-
quently, both driving cycle recognition [50] and driving cycle predic-
tion [51] are introduced to deterministic rule-based energy mana-
gement strategy.

4.1.2. Fuzzy rule-based energy management strategy
Fuzzy rule-based energy management strategy is an extension of

deterministic rule-based energy management strategy. The basic idea
of such strategy is to formulate a collection of fuzzy IF-THEN rules

from human knowledge and reasoning, which offers a qualitative
description of controlled system. So the dependence of deterministic
rule-based energy management strategy on precise mathematical
model of controlled system is removed. The main advantages of fuzzy
rule-based energy management strategy are its robustness to mea-
surement noise and component variability as well as its adaption. As a
result, fuzzy rule-based energy management strategy is very suitable
to multi-domain, nonlinear, time-varying systems such as HEVs. As
pioneers of fuzzy rule-based energy management strategy, Baumann
et al. [52], Lee and Sul [53] propose a fuzzy rule-based torque control
strategy for parallel HEVs as early as 1998. Then, fuzzy rule-based
energy management strategy is also applied to series HEVs [54],
series–parallel HEVs [55].

Fuzzy rule-based energy management strategy is generally
composed of five parts: input quantization, fuzziness, fuzzy
reasoning, inverse fuzziness, and output quantization. Fuzzy
reasoning consists of membership function and fuzzy rule, which
determines control performance of fuzzy rule-based energy man-
agement strategy. However, membership function and fuzzy rule
are usually derived from human's experience and intuition, thus
good control performance cannot be guaranteed. In order to
improve fuel economy and emission further, a proportional factor
method [56], GA [57], PSO [58], and BA [59] are utilized to
optimize membership function or fuzzy rule. However, the above
optimization process is based on a specific driving cycle. To further
improve the robustness and adaptability of fuzzy rule-based ene-
rgy management strategy, adaptive neural fuzzy inference system
(ANFIS) [60], machine learning algorithm such as LOPPS [61], and
driving cycle recognition [62–63] are introduced to fuzzy rule-
based energy management strategy for improving its robustness
to the change of driving cycle, while compensation fuzzy neural
network (CFNN) is employed to improve self-adaptive ability of
fuzzy rule-based energy management strategy [64].

Stochastic 
search 

method, 40

Other 
method, 7

SQP, 2

Simplex 
method, 2

Complex 
method, 1

DIRECT, 1

PMP, 44

Direct 
collocation 
method, 6

Other 
optimization 

method, 8

DP, 95

Deterministic 
rule based 

strategy, 104

Real-time 
optimization 
strategy, 120

Global 
optimization 
strategy, 206

Fuzzy rule 
based 

strategy, 85

Robust 
control, 7

ES, 3

ECMS, 62
MPC, 26

Intelligent 
control, 22

Dynamic 
optimization 
method, 153

Static 
optimization 
method, 53

PSO, 5

EA, 5

SEUMRE, 1

SA, 2
Genetic-
particle 

swarm hybrid 
algorithm, 1

BA, 1

PCOA, 1

GA, 24

Fig. 6. Quantity distribution of various types of energy management strategies.

0

20

40

60

80

100

120

Logic Fuzzy
logic

DP PMP Stochastic
search
method

ECMS MPC Intelligent
control

2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1998

Fig. 7. Temporal distribution of most widely used energy management strategies.

P. Zhang et al. / Renewable and Sustainable Energy Reviews 48 (2015) 88–10494



4.1.3. Characteristics of rule-based energy management strategy
Based on the above analysis, rule-based energy management

strategy is a real-time energy management strategy in which a set
of rules are designed based on human expertise, heuristics, engineer-
ing intuition and powertrains characteristics. Such a type of energy
management strategy is computationally efficient and easy to imple-
ment, which has been widely used in prototypes and commercial
HEVs. The control performance of rule-based energy management
strategy depends on employed thresholds and rules. However, accu-
rate thresholds and rules are difficult to define due to the lack of
mathematical analysis and theoretical basis. Extensive calibration and
tuning of the parameters are required to improve the performance of
given vehicle configuration over a specific driving cycle. Therefore, the
development of rule-based energy management strategy is time-
consuming, vehicle-dependent, and driving cycle-dependent. Further-
more, any minimization or optimization is not involved in this kind of
energy management strategy, the optimality of the solutions cannot
be guaranteed. Various techniques have been proposed to optimize
the performance of rule-based energy management strategy, such as
blending energy management strategy composed of rule-based ene-
rgy management strategy and instantaneous energy management
strategy [65], hybrid energy management strategy combining rule-
based energy management strategy and ECMS [66], extracting effi-
cient thresholds and rules from optimization-based energy manage-
ment strategy such as DP [67] and PMP [68].

4.2. Optimization-based energy management strategy

4.2.1. Global optimization energy management strategy
The energy management strategy based on global optimization

technique is to get global optimum by minimizing a cost function
representing fuel economy and/or emissions along a given driving
cycle, as well as considering physical constraints from ICE, ESS and EM.
This technique relies on a-priori knowledge of driving cycle, so it is
also called as a non-causal control approach. Unless future driving
condition can be predicted during real-time operation, this kind of
energy management strategy cannot be implemented directly. Furt-
hermore, computational burden of global optimization energy man-
agement strategy is larger than that of rule-based energy manage-
ment strategy. Despite of preview nature and computational com-
plexity, global optimization energy management strategy is still the
most studied energy management strategy of HEVs as shown in Fig. 5.

In view of optimization control problem of HEVs, there exist three
main solution methods. The first one optimizes strategy parameters of
a rule-based energy management strategy, thus energy management
problem becomes a parameter optimization problem, also called a
static optimization problem, and the optimum can be obtained via
static optimization methods. The second one formulates energy
management problem of HEVs as a dynamic, nonlinear, and con-
strained optimization problem, also known as an optimal control
problem. Such problem can be solved by dynamic optimization
methods. The third one simplifies optimal control problem of HEVs
with model approximations as mathematical programming problem,
such as sequential quadratic programming problem [69], quadratic
programming problem [70], mixed integer linear programming pro-
blem [71–72], and convex programming problem [73]. The mathe-
matical programming problem can also be solved by means of static
optimization methods. Both static optimization methods and dynamic
optimization methods that have been utilized in optimization control
problem of HEVs are explained in detail below.

4.2.1.1. Dynamic optimization method. The solving methods of
optimal control problem generally can be classified into three types:
indirect methods, direct methods and other methods. Indirect met-
hods are based on optimal control theory, including calculus of

variations, PMP and DP; while direct methods approximate optimal
control problem as static optimization problem by discretization, and
solve such problem using the same method as for solving static
optimization problem. Other methods refer to some new solving
methods except direct methods and indirect methods.

4.2.1.1.1. Indirect methods. The calculus of variations requires that
admissible control set of optimal control problem is an open set and
optimized functions are continuously differentiable, which limit its
application in optimization control problem of HEVs. Both DP and
PMP have been widely used in the development of global optimiza-
tion energy management strategy, as described below.

4.2.1.1.1.1. DP. DP was proposed by Bellman in the 1950s to solve
optimal control problems for nonlinear dynamical systems. DP
decomposes dynamic optimization problem into a sequence of sub-
problems by discretizing original optimization problem over time,
thus forming a cost-to-go function at each sample time. Optimal
control schedule can be obtained by solving sub-problems backwards.
So DP requires priori knowledge of entire driving cycle, also known as
deterministic DP (DDP). Due to nonlinear characteristics of the
powertrain for HEVs, DDP has to be solved numerically by approx-
imations. The most popular approximation ways are quantization and
interpolation. Therefore, both optimality and computational load of
DDP are directly related to grid density, there is a tradeoff between
optimality and computational load. Although the dependence on
driving cycle and the well-known “curse of dimensionality” have
limited DDP's application in a real-time control system of HEVs, global
optimality derived from DDP has attracted many researchers' atten-
tion in the field of HEVs.Since Lyshevski et al. [74] first apply DDP to
optimal energy management of series HEVs in 1998, DDP has been
widely applied to optimization control for various types of HEVs,
covering parallel HEV [75], power-split HEV [76], and PHEV [77]. DDP
is usually employed to extract simple, implementable and optimal
rules for a rule-based energy management strategy [75], or assess
maximum performance of HEVs [78]. Although some feasible rule
extraction methods have been proposed [79–80], the rule extraction
process is generally time consuming; moreover, extracted rules are
only suitable for a specific driving cycle.To overcome above drawbacks
of DDP, Lin et al. [81] first propose SDP energy management strategy.
This approach adopts a Markov process to represent power demand
from the driver, thus optimal solution over a family of driving cycles
rather than a given driving cycle can be obtained. Because it is
formulated as an infinite-horizon optimization problem, the control
law derived from SDP is a time-invariant state feedback and thus can
be directly implemented in real-time control system. However, there
are still some drawbacks for SDP-based energy management strategy.
First, state transition probabilities of Markov process depend on
driving cycles under consideration. Therefore, SDP only can obtain
optimal solution under given Markov chain, at the same time control
performance of SDP will be inferior to that of DDP for given driving
cycle. Second, SDP problem is usually solved via value iteration or
policy iteration, thus computation time is huge. Finally, the cost
function of SDP discounts future cost and assigns a penalty to ESS's
SOC deviation, thus two tunable parameters are introduced, namely
discount factor and SOC deviation penalty.Based on aforementioned
weakness in SDP-based energy management strategy, Tate et al. [82]
first use shortest path stochastic dynamic programming (SP-SDP) to
design HEVs' energy management strategy. SP-SDP is a specific
formulation of SDP, which allows infinite horizon optimization
problems to be addressed without the use of discounting (a discount
factor in the cost function assures convergence by weighting future
costs exponentially less than current costs). Without a discount factor,
SP-SDP can realize advantages of SDP based energy management
strategy with better SOC control and fewer parameters to tune.
Afterwards, Opila et al. [83–84] design a SP-SDP based energy
management strategy for a series–parallel HEV considering both fuel
economy and drivability; whilst Moura et al. [85] develop a battery
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health-conscious energy management strategy by applying SP-SDP.To
reduce computational burden and dependence on future driving
cycles of DP, various improved algorithms based on DP are introduced.
Fast dynamic programming (FDP) [86], neuro-dynamic programming
(NDP) [87], iterative dynamic programming (IDP) [88], boundary-line
DP [89], two-scale DP [77], multi-rate DP [90], and hybrid optimal
energy management strategy combining DP and classical control
theory [91] are proposed to improve computational efficiency.
Furthermore, an online learning energy management strategy that
composed of SDP and temporal difference (TD) method is also
employed to improve the robustness to varying driving cycles and
lower computational cost simultaneously [92]. However, the accuracy
of improved DP-based algorithms is relatively poor.

4.2.1.1.1.2. PMP. PMP is another optimal approach based on optimal
control theory that can be used to solve constrained global optimiza-
tion problem, which is the extension of calculus of variations. PMP
reduces constrained global optimization problem into local Hamilto-
nian minimization problem. As a result, PMP can be used in real-time
control theoretically with less computation load than DP. PMP was
first introduced to energy management control of HEVs in 2001 by
Delprat et al. [93]. However, PMP only produces necessary but not
sufficient conditions for an optimal solution, sufficient conditions only
can be satisfied in special cases [94]. The major benefit of PMP is that
initial costate is sole calibration parameter over a specific driving cycle,
which has considerable influence on battery state. The optimal value
of initial costate can be computed by an iterative process such as a
simple dichotic search [95] if and only if future driving cycle is
available in advance. Yet, in true driving environment, full knowledge
of driving cycle cannot be known in advance. Moreover, initial costate
is related to driving cycle, different driving cycles require different
optimal values of initial costate. Both these limits present a challenge
for real-time implementation of PMP. Various techniques have been
proposed to estimate real-time initial costate as described below.Due
to close relation between initial costate and battery state, the first
approach computes real-time initial costate via correcting initial guess
costate with feedback control on the error between actual battery SOC
or state of energy (SOE) and reference battery SOC or SOE that derived
from past, present or future driving information. The feedback control
can be proportional (P) feedback control [96], or proportional integral
(PI) feedback control [97], or proportional integral differential (PID)
feedback control [98], or other nonlinear feedback control [99].
However, this kind of approach has good adaption to different driving
cycle only if reference battery SOC or SOE is from future driving
information, at the same time, the feedback coefficients and initial
guess costate should be calibrated. In order to overcome the above
disadvantages, the second approach is based on future driving
condition from driving cycle prediction [100–102] or driving cycle
recognition [103]. For driving cycle prediction, the driving information
is collected from global position system (GPS) or ITS. The optimal
value of initial costate is approximated on the basis of effective SOC
drop rate and effective mean required power in [100] while it is
estimated based on cruise time and available regenerative energy in
[101]. Different from the methods proposed by [100] and [101],
Boehme et al. [102] and Kim et al. [104] determine initial costate by
solving a simplified optimal control problemwith indirect variation of
extremals such as dampened Newton-method and a shooting method
with multiple initial conditions based on Newton-Raphson method.
Except for the estimation of initial costate, the discrepancy between
computation load of PMP and computational power of the vehicle
controller also limits the application of PMP on real-time control
system. Generally the look-up table is a good solution to the limits of
storage capacity and computational power for the vehicle controller,
which has been used to implement PMP online [102]. However, the
size of the table will grow exponentially with the number of
dimensions. Therefore, approximate PMP (A-PMP) is introduced by
Hou et al. [105]. In A-PMP, based on piecewise linear approximation of

engine fuel rate, instantaneous Hamiltonian optimization problem is
simplified to convex optimization problem that can be implemented
in the vehicle controller.

4.2.1.1.2. Direct method. Direct methods approximate an opti-
mal control problem to a static optimization problem by discreti-
zation, so approximate optimal solution can be obtained by solving
corresponding static optimization problem. Direct methods mainly
consist of two kinds: control variable parameterization methods
and direct collocation methods (also called as direct transcription
methods). The big difference between both methods is that only
control variables are discretized in control variable parameteriza-
tion methods while both control variables and state variables are
discretized in direct collocation methods. Due to difficulty in
dealing with inequality constraints, control variable parameteriza-
tion methods are not suitable for solving optimal control problems
of HEVs. So, only direct collocation methods are employed to solve
optimal control problems of HEVs [106]. The accuracy of approx-
imate optimal solution acquired by direct collocation methods
depends on approximation quality of original functions. The
smaller segments can improve the accuracy of the solution but
lead to a larger amount of calculation. Moreover, approximation
optimal solution cannot always satisfy optimality necessary con-
ditions. In order to overcome the above drawbacks, an improved
direct collocation method is proposed by Dosthosseini et al. [107]
to find optimal solution of HEVs control problem. This improved
direct collocation method is based on orthogonal polynomials, also
called as pseudo-spectrum method. The main advantage of this
pseudo-spectrum method is that it can improve the accuracy of
approximate optimal solution by relatively few discrete points.
Meanwhile, the optimality of the solution can also be guaranteed.

4.2.1.1.3. Other methods. Other optimization methods that have
been used in energy management optimization control for HEVs
include GT [108], stochastic optimal control [109] and nonlinear
optimal regulation feedback control [110]. Although GT is a
mathematic approach to understand human behaviors which is
initially developed in economics, it has also been applied to design
energy management strategies of HEVs. GT decouples optimal
solution from driving cycle, and offline computation of GT is
simpler than SDP. However, the robustness of GT is rather weak.
Stochastic optimal control can maximize expected time of HEVs to
operate without constraint violation, but online estimation of
transition probabilities and online reconfiguration of the control
law are usually difficult. Nonlinear optimal regulation feedback
control can ensure optimality and stability, but it is sensitive to
calibration parameter.

4.2.1.2. Static optimization method. The solving methods for static
optimization problem can be roughly divided into gradient-
based methods and derivative-free methods. Gradient-based
methods use derivative information of objective function to
solve such optimization problem. For example, sequential
quadratic programming (SQP) algorithm has been applied in the
optimization of energy management strategy parameters for a
parallel HEV [111]. The main drawback of gradient-based methods
is that they cannot find global optimum since being trapped in
local minimum. Furthermore, strong assumptions of objective
function are required to obtain the derivative, such as continuity,
differentiability, satisfying the Lipschitz condition and so on.
Due to noisy, discontinuous and multi-modal nature of HEV
optimization problems, gradient-based methods are not suitable
for control strategy optimization of HEVs.

Derivative-free methods find optimal solution by iterative method
rather than relying on the derivatives, which have been proved to be
appropriate for energy management strategy optimization of HEVs.
Moreover, such approaches are superior to gradient-based methods in
searching global optimum over entire design space. Derivative-free
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methods that applied to energy management strategy optimization of
HEVs mainly include simplex method [112], modified simplex method
[113], complex method [114], DIRECT [115] and stochastic search
methods (also called meta-heuristic search methods) [116–121]. A
summary of gradient-based methods and derivative-based methods is
given in Table 1. Due to global optimality and robustness, stochastic
search methods are more suitable to optimization control problems of
HEVs and thus attract more attention. These stochastic search
methods include GA [116], SA [117], PSO [118], EA [119], BA [120],
and PCOA [121]. Each algorithm has its own advantages and dis-
advantages, as shown in Table 2. Adaptive SA (ASA) [122], adaptive
differential evolution algorithm (ADEA) [123], genetic-algorithm
swarm hybrid algorithm [124], real-valued GA (RGA) [125], space
exploration and unimodal region elimination (SEUMRE) [126] also
have been proposed to improve convergence speed and robustness.

Furthermore, based on derivative-free methods, multi-objective
optimization problem is generally converted into single objective
optimization problem by assigning weights to every objective function

or considering only one objective as main objective and the others as
constraints. However, optimal weights are very difficult to acquire;
moreover, only one solution is acquired after the optimization. In
order to overcome the above limits, varying-domain method is pres-
ented to give a flexible priority among multi-objectives [127],
improved non-dominated sorting genetic algorithm (NSGA-II) is
utilized to solve multi-objective problems directly [128].

However, like dynamic optimization methods, all above static
optimization methods are sensitive to driving cycle. Hence, driving
cycle recognition is also necessary for improving the adaptability
of this kind of method [129].

4.2.2. Real-time optimization energy management strategy
The global optimization techniques are not directly applicable

for real-time control system. By definition of an instantaneous cost
function, a real-time optimization energy management strategy
can be acquired. In order to guarantee electrical self-sustainability,

Table 1
A summary of gradient-based methods and derivative-free methods.

Algorithm
type

Algorithm name Advantages Disadvantages

Gradient-
based

SQP Easy to implement; Requires imposing strong assumptions on objective function to obtain
derivative;Effective for solving continuous and smoothing

problems. Only obtain local optimum.
Derivative-

free
Simplex method Easy to implement; Rely on a good initial point;

Requires only function value without analytic
expression and derivative;

Easy to get trapped in local optimum;

Has strong capability of local search. Not suitable for high-dimensional, multiple-constraints problems and
constrained optimization problems.

Complex method Easy to implement; Rely on a good initial point;
Requires only function value without analytic
expression and derivative.

Easy to get trapped in local optimum;
Not suitable for high-dimensional, multiple-constraints problems.

DIRECT Requires no derivative of objective function; Slow convergence to true global optimum when reaching global optimal
region;Not need to specify the starting point;

Covers entire design space in search of global
optimum;

Does not have a convergence rule to determine the convergence of the
optimization.

Does not have tuning parameters.
Stochastic search

methods
Requires no derivative of objective function; The performance depends on tuning parameters or initial random population;
Can find global optimum;
Has strong robustness and extensive application
scope;
Parallel calculation is possible; Slow convergence to true global optimum when reaching global optimal

region.Easy to combine with other methods.

Table 2
A summary of stochastic search methods.

Algorithm
name

Advantages Disadvantages

GA Can find global optimum over entire design space; The performance depends on initial random population and tuning parameters;
Has strong capability of global search;
Has a strong universality. Has weak capability of local search.

SA Can find global optimum without covering entire design space; The performance depends on tuning parameters;
Has strong capability of local search. Has weak capability of global search.

PSO Fewer parameters must be adjusted compared to SA and GA; Easy to get trapped in local optimum;
Simple to understand and implement without natural operators
compared to GA;

The performance relies on the selection of the constants in the updating velocity and
initial random population;

Has stronger capability of local search compared to GA; Has weaker capability of global search compared to GA.
Convergence speed is faster than GA.

EA Has good convergence properties compared to GA; The performance depends on tuning parameters.
Easy to understand;
Fewer parameters must be adjusted compared to GA;
Convergence speed is faster than GA.

BA Has a higher convergence rate than GA. The performance depends on tuning parameters;
Easy to get trapped in local optimum.

PCOA Has strong capability of global search. Accuracy of optimal solution is relatively low.
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instantaneous cost function should consider the variations of
electrical energy as equivalent fuel consumption. Real-time opti-
mization energy management strategy must be simple enough in
order to be implementable with limited computation cost and
memory resources. Moreover, manual tuning of control para-
meters should be avoided. In principle, the realization of a real-
time optimization energy management strategy can be accom-
plished in several ways. So far real-time optimization energy man-
agement strategies that have been applied in energy optimal
control of HEVs are shown in Fig. 5. All these types of real-time
optimization energy management strategies will be discussed in
detail in the next section.

4.2.2.1. ECMS. ECMS is one of the well-known real-time optimization
energy management strategies, which has been originated by
Paganelli et al. [130]. The main idea of ECMS is to reformulate global
optimization problem into local optimization problem by minimizing
equivalent fuel consumption that is the sum of actual fuel
consumption from ICE and converted fuel consumption from ESS.
Based on PMP, an equivalence factor is proposed to convert electric
energy to equivalent fuel energy, equivalent to the costate of PMP. As
an approximate realization of PMP [131], ECMS can be applied as a
real-time optimization energy management strategy. However,
control performance of HEVs is heavily dependent on proper
estimation of equivalence factor. Optimal equivalence factor is
related to driving cycle, battery SOC limits and the direction of
electric current that are generally unpredictable. Therefore, equiv-
alence factor is the key of ECMS, which has been studied extensively
by a large number of scholars. The study of equivalence factor mainly
involves estimation methods as well as impact factors.

In general, these estimation methods can be classified into two
kinds. The first kind of estimation methods is to assume that
equivalence factor is constant during driving cycle. Optimal constant
equivalence factor can be obtained based on average energy conver-
sion efficiency between fuel and electrical energy [132], shooting
algorithm [133], offline global optimization such as DP [134], DP-based
marginal cost method [135], GA [136], and ant colony optimization
algorithm [137]. Although such methods are very simple, full knowl-
edge of driving cycle must be known in advance, re-calibration of
equivalence factor is a necessity for individual driving cycle, thus
limiting the generality of ECMS. The second kind of estimation
methods is to calculate variable equivalence factor online, which can
be further divided into three sub-categories.

The first category considers battery SOC limits during driving cycle.
Due to similarity between equivalence factor and the costate, based on
the first estimation method of the costate, equivalence factor function
can be composed of constant optimal equivalence factor obtained
from offline optimization combined with a SOC or SOE correction
term that is formulated as a P control [138], or a PI control [139], or
other nonlinear feedback control [135]. Moreover, it also can be
computed based on battery SOC error that is designed as a PI control
[140], or based on battery SOC and speed constraint [141]. The main
drawback of such approaches is that the equivalence factor function is
sensitive to driving cycle. Pei et al. [135] overcome this weakness by
adding an adaptive law to above equivalence factor function. Further-
more, adding battery SOC deviation into cost function can meet the
requirement of battery SOC limits, but will make a certain sacrifice of
fuel economy due to unexpected behaviors of the battery. So, a new
SOC-sustaining strategy is presented to further improve optimization
performance by eliminating SOC deviation from cost function and
determining search space of optimization parameters based on upper
and lower SOC limits [142].

The second category considers both battery SOC limits and the
direction of electrical current to improve the robustness of the first
kind of approach to driving cycle variations. A two-argument function

based on SOC and the derivative of SOC is defined to calculate
equivalence factor in [143], while equivalence factor function consists
of the pair of optimal equivalence factor (Schg, Sdis) and a probability
factor based on current electrical energy usage and future energy
usage in [144].

The third category considers battery SOC limits and driving cycle
information, which is similar to the second estimation approach of the
costate. According to the level of preview information, different maps
of equivalence factor and relevant factors are constructed to update
equivalence factor. Equivalence factor can be related to (1) battery SOC
and vehicle position [145–146], (2) battery SOC, vehicle position,
elevation profile and average speed [147], (3) battery SOC, trip length
and elevation change [148], and (4) battery SOC, past and predicted
vehicle speed and GPS data [149]. Such approaches do not require full
knowledge of driving cycle, thus can be applied in real-time control
system by employing past, current and future information from in-
vehicle 3D maps [145], GPS-based navigation system [147–149], and
telemetry system [146]. ECMS based on such estimation method is
also called as A-ECMS or telemetric ECMS (T-ECMS). The weakness of
this type of approach is that prediction methods of driving cycle
information generally suffer from prediction error and huge computa-
tional cost. Considering above shortcoming, on one hand, driving cycle
recognition algorithm is used to update equivalence factor [150]; on
the other hand, the influence of optimization window sizes and
prediction error [151], driving profiles [152], the level of preview
information [148] on equivalence factor and control performance of
ECMS are analyzed in detail to identify the most effective prediction
method of preview information for real-time calculation of equiva-
lence factor.

4.2.2.2. MPC. MPC is a popular strategy that has been widely
employed in industry to deal with multivariable constrained
control problems. MPC generally consists of three main steps: (1)
calculate optimal control sequence in a prediction horizon that
minimizes cost function subject to constraints; (2) implement the
first part of derived optimal control sequence to physical plant;
and (3) move entire prediction horizon one step forward and
repeat step 1 [153].

As described above, unlike DP or PMP, MPC is an optimization-
based receding horizon control strategy, which has the potential to
reduce computational effort and be implemented in HEVs. However,
the solution method of DP or PMP still can be used to find optimal
solution at each time step in the MPC framework. That is why MPC's
solution will be suboptimal. Due to its receding horizon nature, MPC
can adapt to the variations of driving cycles. Since the optimization
problem is solved over a future prediction horizon in MPC, MPC is
neither short-sighted nor sensitive, which is an advantage over ECMS.
However, future driving cycle must be known in advance by the
method of prediction or recognition.

Based on the characteristics of control-oriented model, MPC can be
classified into linear varying-timeMPC (LTV-MPC) and nonlinear MPC.
Although linearization of nonlinear plant model and constraints can
reduce computational complexity, model error introduced by linear-
ization becomes an obstacle to hinder HEVs from improving fuel
economy further [154]. Nonlinear MPC can noticeably improve fuel
economy, but computational cost is higher than that of LTV-MPC
[155–156]. On the basis of the capability of responding to drivers'
actions, MPC can also be divided into classical MPC and stochastic
MPC (SMPC). SMPC can improve closed-loop control performance of
classical MPC by introducing a stochastic driver model [157]. Com-
pared to SDP, SMPC can easily adapt itself to the change of stochastic
parameters and it can also be applied to high order models. SMPC
with learning (SMPCL) is proposed to improve adaptation of SMPC to
environmental changes and proved to have good performance close to
MPC with full knowledge of future driving information [158].
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According to prediction methods for future torque demand, MPC can
be grouped into two subcategories: (1) MPC based on navigation
technology or vehicle-mounted sensors and (2) MPC based on
mathematical prediction model. In MPC based on navigation technol-
ogy or vehicle-mounted sensors, road information in future horizon
can be acquired by vehicle-mounted sensors [155] or GPS [159] or ITS
[160]. Optimization performance of this kind of MPC heavily relies on
the accuracy of information from vehicle-mounted sensors, GPS and
so on. However, the stability of GPS system cannot be guaranteed in
real-time control system of HEVs, meanwhile, update time of GPS
information cannot meet the requirement of real-time control for
HEVs. Moreover, the cost of vehicle-mounted sensors is too high. Due
to the weakness of MPC based on navigation technology or vehicle-
mounted sensors above mentioned, obtaining prediction information
by mathematical model has drawn much attention of relevant
scholars, thus formulating MPC based on mathematical prediction
model. In this kind of MPC, mathematical prediction models consist of
two types: one provides deterministic torque demand over prediction
horizon, for example, future torque demand can be assumed to be
exponentially decreasing in the prediction horizon [161], the other
describes probability distributions of future torque demand based on
current driving cycle or historical data, e.g., various standard driving
cycles are used to acquire probability distributions of future torque
demand in [162].

4.2.2.3. ES. ES is a non-model-based adaptive control algorithm,
which can dynamically search optimum point of performance
function of a system. Therefore, ES is very suitable to real-time
optimization of nonlinear, dynamical systems, e.g., HEVs. ES is first
applied to power split control of HEVs by Dincmen et al. [163] in 2010.
Compared to ECMS, proposed ES-based energy management strategy
no longer needs to calculate equivalence factor, but it also only obtains
local optimal solution. In order to realize a better local optimization,
Wang et al. [164] propose a SDP-ES energy management strategy for
HEVs, which combines the advantages of both SDP and ES. In SDP-ES
energy management strategy, SDP is used to ensure global optimality
and SOC sustainability of ESS while ES is employed to search local
optimum online. Although ES-based energy management strategy has
the potential to be implemented in real-time control system, the study
on ES-based energy management strategy of HEVs still remains in the
simulation phase with single objective.

4.2.2.4. Robust control. Robust control is a kind of output feedback
control whose parameters are tuned such a way that matrix norms
or signal norms of close loop systems are in desired boundaries.
Above norms are defined according to design requirements like
robustness or disturbance rejection. So, robust control is very suitable
to nonlinear, time-varying systems. Moreover, robust control is
derived based on dynamic models, thus it can be used in real-time
optimization control of HEVs. Pisu et al. [165], Reyss et al. [166], Fekri
et al. [167] apply robust control using mixed-μ synthesis to torque
management of HEVs, guaranteeing the stability and performance
robustness subject to parametric uncertainties, unmodeled complex-
valued uncertainty, sensor noises and estimation errors. However,
robust control can only obtain sub-optimal solution like other real-
time optimization energy management strategies. Besides, robust
control requires much effort in the manipulation of system
equations. Mathematical complexity as well as simplification of a
nonlinear time-varying system to a linear time-invariant system has
prevented further development of robust control in the field of
energy management for HEVs.

4.2.2.5. Intelligent control strategy. Intelligent control takes reasoning
decisions by emulating human brain, according to quantitative and

qualitative information of controlled system, which
is well suited to the control of complex nonlinear system. This
characteristic has facilitated widespread use of intelligent control
strategies in the control of HEVs. Among intelligent control str-
ategies, machine learning algorithms are mostly used in energy
management control of HEVs, including NN [168], Elman neural
network (ENN) [169], SVM [170], recursive least square (RLS) [171]
and other machine learning algorithms [172]. For machine learning
algorithms, precise powertrain models are no longer needed while
computational effort is reduced extremely. Nevertheless, on one hand,
creating required full and correct database is difficult and time
consuming, especially for optimized train database such as DP [173];
on the other hand, structure sizes of the database directly affects com-
putation time and the performance of controlled system. Although
fuzzy c-means clustering algorithm and an agent-based architecture
have been proposed to overcome above drawbacks [174], this kind of
approach can also only obtain suboptimal solution.

4.2.3. Characteristics of optimization-based energy management
strategy

Optimization-based energy management strategy minimizes cost
function which is numerical description of HEVs' system performance
requirements through different optimization control approaches.
Different cost functions forms various types of optimization control
problems, thus different optimization-based energy management
strategies have been proposed to solve above optimization control
problems including global optimization energy management strategy
and real-time optimization energy management strategy.

When formulated in dynamic optimization problems, dynamic
optimization methods can obtain the optimum with huge computa-
tion cost. When formulated in static optimization problems, static
optimization methods gain near optimum with smaller computation
cost than dynamic optimization methods. When converting dynamic
optimization problems into mathematical programming problems,
although computational time can be reduced significantly, modeling
errors introduced by model approximations of powertrains will
sacrifice precise of the optimum. In general, due to preview nature
and computational complexity, global optimization energy manage-
ment strategy is not applicable to real-time control system of HEVs.
However, it can be used as an evaluation, comparison and analysis
tool of HEVs' energy management strategy. First, it can identify
maximal potential performance of a given powertrain configuration
for HEVs. Second, it can serve as a benchmark for evaluating the
effectiveness of other energy management strategies. Finally, it can
also be employed to derive implementable rules for rule-based energy
management strategy. This is why global optimization energy man-
agement strategy has received most attention.

When formulated in instantaneous optimization problems, real-
time optimization energy management strategy is applied. Real-time
optimization energy management strategy must be simple enough in
order to be implementable with limited computation cost and
memory resources. Moreover, manual tuning of control parameters
should be avoided. ECMS and MPC are the two most widely studied
real-time optimization energy management strategies, which are
respectively considered as the realization of PMP and DP. ECMS is
sensitive to equivalence factor affected by driving cycle while MPC
needs future driving information. Therefore, driving cycle information
is also important for real-time optimization energy management str-
ategy.

Although much effort has been made to improve the performance
of optimization-based energy management strategy, a good balance
between the optimality and implementation is difficult to realize. An
easy, practical and optimization-based energy management strategy
has not been offered so far.
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4.3. Comparison and summary

On the basis of thorough analysis, it is clearly seen that rule-based
energy management strategy and optimization-based energy man-
agement strategy have their own characteristics and application, as
shown in Table 3. Rule-based energy management strategy is sole
strategy that has been commercially implemented due to easy
implementation, but it cannot obtain optimum solution. Optim-
ization-based energymanagement strategy overcomes inherent draw-
back of rule-based energy management strategy through optimization
control approach, whereas it is hard to implement in real-time control
system even with real-time optimization energy management strat-
egy. In order to obtain practical and optimal energy management
strategy of HEVs, related research focus on improving optimality of
rule-based energy management strategy and reducing computation
load of optimization-based energy management strategy. Though
control principle of both types of energy management strategy is
completely different, control performance of them is related to driving
cycle. Therefore, driving cycle prediction and recognition algorithms
are widely studied during the development of energy management
strategy for HEVs, however, they usually increase computational time
further.

5. Future trends of energy management strategy for HEVs

In light of quantitative and qualitative analysis of current situation
for HEVs' energy management strategy, there are still some problems
to be solved as well as room to improve control performance of
energy management strategy for HEVs.

Firstly, control effects of all existing energy management strategies
are affected by driving cycle. Therefore, intelligent energy manage-
ment strategy including driving cycle recognition or driving cycle
prediction is a promising solution to improve the performance of
HEVs. However, driving cycle recognition or prediction algorithm
generally will increase computation load, and prediction information
provided by vehicle-mounted sensors or navigation system may
include uncertainties and disturbances. A simple, practical, effective
and robust recognition or prediction algorithm of driving cycle needs
to be presented, which is a significant research direction of the
research in the field of energy management strategy of HEVs.

Secondly, integrated, multi-objective and coordinated optimization
energy management strategies, which combine energy conservation
(fuel economy), environmental protection (emissions), safety (fault
tolerance and component durability), and comfort (drivability), are

necessities for commercially high-performance HEVs, which are also
ultimate objectives of energy management control of HEVs. Most of
available energy management strategies only consider fuel economy
of HEV, even if a small amount of energy management strategies take
into account other performance indices such as emission and driva-
bility, these performance indices almost are expressed as penalty term
in the optimization problems. However, for HEVs, environmental
protection, safety and comfort are as important as energy conserva-
tion. Although convex optimization has been considered as an
efficient energy management strategy for dimensioning of power-
trains, energy management control, engine on/off control and gear
shifting control of HEVs simultaneously [175], approximation methods
of powertrains as well as influence of modeling errors on control
performance should be carefully studied. Moreover, other feasible
energy management strategies should also be explored.

Thirdly, the tradeoff between computation complexity and opti-
mization performance of energy management strategy remains an
open issue. The existing approaches all reduce computation load at
the expense of optimization performance. These are only considered
as interim solutions not final solutions. Cloud computing may be a
good solution to handle complexity computation as well as to keep
the optimality of energy management strategy. In addition, before
new feasible real-time optimization algorithms appear, the way of
reducing calculation amount of existing optimization algorithms
without sacrificing significant performance through appropriate sim-
plification is another solution. The simplification may be aimed at
optimization problems or implementation ways of optimization algo-
rithms or powertrain models or above three, which needs exte-
nsive study.

Finally, every energy management strategy has its own merits
and demerits. A fair and credible evaluation system of energy
management strategies is helpful to design a suitable energy
management strategy for specific HEV with particular perfor-
mance objectives. Also, it is meaningful to establish corresponding
evaluation system for filling above gaps.

6. Conclusions

Based on bibiometrics, this paper thoroughly analyzes develop-
ment status of energy management strategies for HEVs through
content analysis involving author keywords and abstracts, thus gives
a comprehensive quantitative description for the first time. Based on
quantitative analysis, qualitative analysis of whole existing ene-
rgy management strategies for HEVs are presented and discussed.

Table 3
Characteristics of various types of energy management strategies.

Strategy type Advantages Disadvantages Applications

Deterministic rule-based energy
management strategy

Computationally efficient; Requires extensive calibration and
tuning of the parameters;

Widely used in HEV prototypes and
commercial HEVs.

Easy to implement. Cannot guarantee the optimality;
Non-portability.

Fuzzy rule-based energy
management strategy

Has the robustness to measurement noise
and component variability;

Cannot guarantee the optimality; Used in HEV prototypes and commercial
HEVs.Requires calibrating membership

function and fuzzy rule;Low computation;
Easy to implement. Non-portability.

Real-time optimization energy
management strategy

Has the potential to be implemented on
HEVs;

Cannot obtain global optimal solution; Used in HEV prototypes.

Can obtain sub-optimal solution. Still difficult to be implemented in
current vehicle controller.

Global optimization energy
management strategy

Can obtain optimal solution; Requires a-priori knowledge of driving
cycle;

Identify maximal potential performance of
specific HEV;

Computation is the most complex; Evaluating the effectiveness of other energy
management strategies;

Requires no calibration.

Derive implementable rules for rule-based
energy management strategies.

Cannot be implemented directly.
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Classification and comparison of different energy management stra-
tegies are based on the control theory. The pros and cons of each
energymanagement strategy are summarized in detail. The optimality
and implementation are two main concerns in designing energy
management strategies, but there is a tradeoff between them. Driving
cycle is common influence factor of all energy management strategies.
Future trends of energy management strategies are derived from
comprehensive analysis combining quantitative and qualitative ana-
lysis to improve control performance of HEVs. Proposing simple, pra-
ctical, effective and robust driving cycle recognition/prediction algo-
rithms, developing integrated multi-objective, coordinated optimiza-
tion energy management strategies, realizing a good balance between
computation complexity and optimization performance of energy
management strategies, establishing a fair and credible evaluation
system of energy management strategies are four development
trends. The original work of this paper not only provides a broader
vision for relevant researchers but also facilitate the design of simple,
practical, optimal energy management strategy.
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