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a b s t r a c t

Evaluating the biomedical literature and health-related websites for quality are challenging information
retrieval tasks. Current commonly used methods include impact factor for journals, PubMed’s clinical
query filters and machine learning-based filter models for articles, and PageRank for websites. Previous
work has focused on the average performance of these methods without considering the topic, and it is
unknown how performance varies for specific topics or focused searches. Clinicians, researchers, and
users should be aware when expected performance is not achieved for specific topics. The present work
analyzes the behavior of these methods for a variety of topics. Impact factor, clinical query filters, and
PageRank vary widely across different topics while a topic-specific impact factor and machine learn-
ing-based filter models are more stable. The results demonstrate that a method may perform excellently
on average but struggle when used on a number of narrower topics. Topic-adjusted metrics and other
topic robust methods have an advantage in such situations. Users of traditional topic-sensitive metrics
should be aware of their limitations.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The size of the biomedical literature and web make it difficult
to find high-quality documents among the large number of arti-
cles, journals, and websites. Automated methods have been
developed since manually monitoring the literature and web is
becoming increasingly resource prohibitive or otherwise imprac-
tical. Such methods include the impact factor to measure journal
impact or quality [1]. PubMed clinical query filters measure
methodological quality of papers in well-defined content catego-
ries [2]. Machine learning methods such as polynomial support
vector machine (SVM) models have been recently introduced as
pattern recognition query filters for identifying high-quality arti-
cles [3,4]. Finally, the most popular way to rank the quality of
web pages is PageRank [5].

Previous studies have measured the performance of these
methods across a wide range of topics although clinicians, research-
ers, and users typically search for specific topics each time. The
variability of these methods for different topics is currently un-
ll rights reserved.
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known, and it is possible for a method with excellent average per-
formance to fail in focused domains. To make the point clear,
suppose we have a set of articles about two topics (topic A and to-
pic B) where 90% of the articles relate to topic A and the remaining
articles are about topic B. If a method has a sensitivity of 1 for topic
A and .1 for topic B, overall performance would be relatively high.
The problem is that a researcher interested in only topic B would
unknowingly experience much worse than expected performance.

In web-related research, topic sensitivity is known as topic drift
where the topic of the top results is different from the query topic
[6]. PageRank is known to suffer from topic drift and may not yield
the best results for a specific topic. A simple example that shows
the possibility is the following: suppose we have two web pages
with different degrees of relevance to a topic of interest (topic A).
If the first page receives most of its links from pages related to an-
other topic (topic B), it is only marginally relevant to topic A. If the
second page receives most of its links from pages about topic A, it
is more relevant to topic A. However, PageRank is calculated in a
manner where the unrelated first page may be ranked higher than
the second page although the second page is a better resource for
the topic of interest. The first page could be cited by many pages
which are of high quality but related to a different topic.

The purpose of this work is to examine the extent to which per-
formance varies with different topics for journal impact factor,
clinical query filters, machine learning pattern recognition meth-
ods, and PageRank when identifying high quality journals, articles,
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and websites. We also examine modified approaches that adjust
for topic or are insensitive to topic as alternatives to highly to-
pic-sensitive methods.
2. Methods

We utilize tailored methods for evaluating journal, articles, and
websites respectively. For each document type, there are three sec-
tions: methods, experimental design, and corpus or experimental
data set construction.

2.1. Evaluation methods for journals

2.1.1. Journal impact factor
The journal impact factor evaluates journal impact regardless of

publication size or frequency [1,7,8]. It affects journal readership
and helps researchers determine which journal to submit their
work. Essentially, it is the average number of citations received
per article published in the journal. It is defined for a year y as
the quotient of two terms [1]:

Impact factor

¼Number of citations in year y to journal items published in years ðy�1Þ and ðy�2Þ
Number of journal articles published in years ðy�1Þ and ðy�2Þ

ð1Þ

The numerator is the number of citations received in a given
year to journal items published in the previous 2 years. The
denominator is the number of journal articles from the previous
2 years. The numerator includes articles, editorials, and letters to
the editor, while the denominator consists only of articles. For
example, the impact factor of the New England Journal of Medicine
(NEJM) for 2004 is the number of citations in 2004 to its published
items from 2002 to 2003 divided by the number of articles from
2002 to 2003.

2.1.2. Topic-specific impact factor
Prior work considered the impact factor of topics irrespective of

journal by computing the number of citations received by articles
in a topic area (e.g. asbestos) [9,10]. However, this metric does not
assess journals. We need a formula that isolates the contribution of
a specific topic from the overall impact factor to study the sensitiv-
ity of impact factor to topic. We calculate a topic-specific impact
factor (TIF) for a journal in year y by considering only publications
related to a given topic:

TIF

¼Number of citations in year y to items published in years ðy�1Þ and ðy�2Þ that were relevant to topic
Number of journal articles published in years ðy�1Þ and ðy�2Þ that were relevant to topic

ð2Þ

For example, the numerator of the cardiology-specific impact
factor of NEJM in 2004 is the number of citations in 2004 to cardi-
ology-related items published in NEJM from 2002 to 2003. The
denominator is the number of cardiology-related articles. Deter-
mining topic relevance is topic-specific. For example, we consider
an item relevant to cardiology if its MEDLINE record contains the
MeSH term ‘‘Cardiology’’, a related topic such as ‘‘Cardiovascular
Diseases’’ that is specified in the ‘‘See Also’’ field of the MeSH re-
cord, or a term residing in a sub-tree of these terms [11]. When
we specify topics, the topics do not need to be exclusive or cover
all items for the adjustment to be meaningful.

2.1.3. Topic-mix adjusted impact factor
Impact factor can be adjusted for a mix of topics by computing a

weighted average of the topic-specific impact factors. We define
the topic-mix adjusted impact factor for k topics as:
Topic-mix adjusted impact factor ¼
Xk

i¼1

wi � TIFi ð3Þ

TIFi is the topic-specific impact factor of topic i, and wi is a weight
proportional to the importance of topic i normalized such that the
sum of all weights equals one and each weight is between 0 and
1. For example, a researcher interested in gastroenterology twice
as much as hematology would weight the topic-specific impact fac-
tors of gastroenterology and hematology by 2/3 and 1/3 respec-
tively. If all topics are weighted equally, the topic-mix adjusted
impact factor is the arithmetic mean of the topic-specific impact
factors for all topics.

2.2. Evaluation methods for articles

2.2.1. Clinical query filters
The clinical query filters were originally designed by Haynes

and colleagues [2] and are the most widely available method for
identifying high-quality articles through PubMed [2]. These filters
are semi-manually constructed Boolean queries of terms in the
MeSH headings, publication type, or text of the MEDLINE record.
All articles that match a given combination of terms are returned.
Performance of these filters is typically measured by sensitivity
and specificity. Filters are defined for diagnosis, etiology, prognosis,
and treatment with queries optimized for sensitivity and specific-
ity. For example, the specificity-optimized filter for therapy is:
(randomized controlled trial [Publication Type] OR (randomized
[Title/Abstract] AND controlled [Title/Abstract] AND trial [Title/Ab-
stract])). This query returns all articles with publication type ‘‘ran-
domized controlled trial’’ or with all three words in the title or
abstract.

2.2.2. Support vector machine models
Machine learning methods are another approach to identifying

high-quality articles. In previous research, polynomial support
vector machine models [12] had superior performance compared
to clinical query filters [3,4]. These models preprocess fields and
text from MEDLINE records by converting them into input fea-
tures for learning. A kernel function maps the input space to a
feature space where a hyperplane is calculated to separate the
classes of data. We used the models learned from a previous
study [3] which includes further details about the learning proce-
dure. Performance is measured by area under the receiver operat-
ing curve (AUC).

2.3. Evaluation method for websites

2.3.1. PageRank
PageRank is a citation-based method for evaluating the quality

of web pages [5]. One way to explain this method is that it consid-
ers a page to be of high quality if many pages link to it and these
pages are also of high quality using the same criterion recursively.
A more mathematical way to describe PageRank is that it models
user behavior as a random surfer who ignores page content by
either arbitrarily following a link or randomly jumping to a page.
The PageRank of a page is proportional to the likelihood that the
random surfer visits a page. A page with a high PageRank will be
linked by many pages or by pages with high PageRanks.

The PageRank of a page u is then calculated as follows:

PRðuÞ ¼ 1� a
N
þ a

X

v2Bu

PRðvÞ
jFv j

where N is the total number of web pages in the network, Bu is the
set of pages linking to page u, and Fv represents the set of pages to
which page v links. The term a specifies the probability of following
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a link. The surfer will jump to a random page with probability 1 � a
or follow an outlink with probability a. It is typically set at .85 but
can take any value between 0 and 1. The first term in the equation is
the probability of visiting a page after a random jump. The second
term is the sum of all PageRanks from all incoming links. For each
inlink, the PageRank is divided by the number of links for that page.
These values are summed over all incoming links and weighted by
a. A vector of PageRank values is defined for all pages in the net-
work, and PageRank calculations are performed as matrix opera-
tions. The PageRank values are guaranteed to converge by adding
links to pages without any links and having the random jumps.

Researchers have modified PageRank to address the issue of to-
pic drift. Haveliwala computed topic-sensitive PageRank scores by
calculating a score for each page with respect to a number of topics
[13]. The topics were top level categories from the Open Directory
Project. The topic-sensitive PageRanks were computed by biasing
the random jump step to favor pages related to a given topic.
The final PageRank values were computed at query time by
weighting each topic-sensitive PageRank according to how similar
the topic was to the query. Richardson and Domingos [6] used an
intelligent surfer model which analyzed the content of a webpage.
The probability of following a link or jumping to a page was pro-
portional to the relevance of a page to the query. Nie et al. [14] aug-
mented the random surfer model by using a topical random surfer
that considered topics while surfing. When a surfer follows an out-
link, the surfer could stay on the same topic or change the topic of
interest.

3. Results

3.1. Results for journal methods

Experiments for the journal methods were performed on a de-
fined set of journals, topics, and time periods. Six journals were
chosen: Annals of Internal Medicine (AIM), American Journal of
Medicine (AJM), British Medical Journal (BMJ), Journal of the Amer-
ican Medical Association (JAMA), Lancet, and New England Journal
of Medicine (NEJM). These journals represent a wide range of top-
ics and citability. We selected eight general topics of internal med-
icine and a set of narrowly-defined random subtopics from
Gastroenterology. All topics were used as defined by the MeSH
vocabulary. For each journal and topic, all relevant MEDLINE re-
cords from 2003 to 2004 were retrieved, and citation counts and
journal impact factors were obtained from the ISI Web of Knowl-
edge [15].

We calculated the absolute differences of impact factor to topic-
specific impact factor to analyze how much impact factors varied
Table 1
Topic-specific impact factors for general topics and journal impact factor in 2004 and 200

Journal Topic-specific impact factors for general topics

Cardiology Endocrinology Gastroenterology Hematology M
on

AIM 16.07 13.85 16.92 7.94 12
AJM 4.09 3.44 2.73 6.38 3

2004 BMJ 7.55 6.48 7.37 5.73 5
JAMA 42.18 28.27 60.55 13.87 35
Lancet 33.80 47.70 18.86 11.98 23
NEJM 37.46 54.31 37.68 33.71 44

AIM 14.37 19.83 12.73 10.63 12
AJM 4.21 5.82 2.43 4.30 3

2003 BMJ 7.95 6.84 4.98 5.57 5
JAMA 38.12 28.24 70.00 13.38 39
Lancet 24.42 34.33 17.91 8.34 17
NEJM 38.05 55.78 33.66 28.78 40
for different topics. There should be little difference between im-
pact factor and topic-specific impact factor if impact factor is stable
for different topics. The results in Table 1 show that a higher over-
all impact journal did not always have a higher topic-specific im-
pact factor. For example, NEJM had a higher impact factor than
JAMA but had a lower cardiology-specific impact factor. Of the
120 comparisons among the 15 journal pairs and 8 topics, there
were 10 reversals (8.33% of the comparisons, 95% confidence inter-
val 3.39–13.28%) where a higher impact journal had a lower topic-
specific impact factor. There were three extreme cases where a
journal impact factor was 1.5 times greater than another journal
while the other journal’s topic-specific impact factor was 1.5 times
greater. The topics were nephrology (AJM, BMJ), gastroenterology
(NEJM, JAMA), and rheumatology (Lancet, NEJM). The results show
that rankings based on impact factor and topic-specific impact fac-
tor are not always equivalent.

The minimum, median, maximum, and interquartile ranges of
the differences were calculated to assess the skewness and spread
of the values. Interquartile range measures dispersion and is the
difference between the third and first quartiles. When computing
topic-specific impact factors, we do not have p-values or confi-
dence intervals since they are population totals and not point esti-
mates. Table 2 shows the values. The maximum differences ranged
from about 10–35 which means that the values can vary greatly for
different topics.

A Bland–Altman plot [16] determined whether topic-specific
impact factors coincided with impact factors or if they were signif-
icantly different. This graph shows whether a new measurement
method agrees with another method by plotting the measurement
differences against their mean and illustrating any dependence be-
tween the values. We note that the correlation coefficient is not an
optimal method for judging agreement among methods and thus
was not pursued here [16]. The Bland–Altman plot in Fig. 1 shows
that the difference between impact factor and topic-specific im-
pact factor depended on their values, and the divergence increased
as the values increased. Also, the difference did not depend on spe-
cialty since all topics showed some difference. If impact factor and
topic-specific impact factor were equivalent, all values would ap-
pear between horizontal lines at �22.17 and 17.7, which is the
range of two standard deviations from the mean difference of
�2.24. Three values fall outside this range. The Bland–Altman plot,
along with the absolute differences between impact factor and to-
pic-specific impact factor, demonstrate that the two methods are
not always equivalent.

The observations for the eight general topics from internal med-
icine were also evident for gastroenterology subtopics (data not
shown due to space restrictions). As with the general topics, there
3.

Impact
factor

edical
cology

Nephrology Pulmonary
disease

Rheumatology

.49 23.17 12.66 15.40 13.11

.95 4.31 3.10 6.29 4.18

.57 2.37 7.94 8.77 7.04

.58 20.32 36.47 13.40 24.83

.16 14.30 27.41 52.50 21.71

.8 27.93 37.97 24.08 38.57

.14 23.06 13.21 14.50 12.43

.98 5.33 3.44 5.82 4.40

.76 4.00 5.37 12.25 7.21

.27 18.94 30.13 12.80 21.46

.78 14.61 14.12 17.94 18.32

.46 39.51 22.42 45.33 34.84



Table 2
The minimum, median, maximum, and interquartile ranges for the absolute
differences between impact factor and topic-specific impact factor in 2004.

Topic Min Median Max IQR

Cardiology 0.09 2.04 17.35 11.58
Endocrinology 0.56 2.09 25.99 15.00
Gastroenterology 0.33 2.15 35.72 2.92
Hematology 1.31 5.02 10.96 7.53
Medical oncology 0.23 1.46 10.75 5.61
Nephrology 0.13 6.04 10.64 5.55
Pulmonary disease 0.45 0.99 11.64 5.10
Rheumatology 1.73 6.86 30.79 12.38
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were a number of ranking reversals. The variation increased for
more specialized topics and was most pronounced in the three
highest impact journals. JAMA had the greatest variability with a
maximum topic-specific impact factor that was over 13 times lar-
ger than its minimum. The overall impact factor became less
meaningful for increasingly specialized topics. In 2004, JAMA had
an impact factor of 24.83, gastroenterology-specific impact factor
of 60.55, and topic-specific impact factors for gastroenterology-
based subtopics ranging from 6 to 80.07. These results clearly sug-
gest that researchers studying a specific disease should not rely on
overall impact factor for journal evaluation.

We performed additional experiments to ensure that variation
was not a random occurrence unique to a single year. First, we rep-
licated the experiments for 2003 and found consistent results as
shown in Table 1. Many of the relative rankings of the journals
were consistent, while some of the same reversals existed. Ranges
of topic-specific impact factors were also comparable. Next, we
verified that variation was not randomly caused by smaller sample
sizes independent of topic. By definition, journal impact factor is
calculated on a larger number of publications than the topic-
specific impact factor. We tested whether the difference between
the two measures was associated with sample size by computing
the regression coefficients of the following regression model:

DiffðTIF; IFÞ ¼ b0 þ b�1 ðsample size differenceÞ þ b�2 topic

þ b�3 yearþ b�4 journal

Diff(TIF, IF) is the difference between topic-specific impact factor
and impact factor, and ‘‘sample size difference’’ is the difference be-
tween the number of articles used in each calculation. The ‘‘topic’’,
‘‘year’’, and ‘‘journal’’ variables are categorical variables represent-
ing different values for the topic, year, and journal. They were in-
cluded in the model to account for any possible confounding
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Fig. 1. Bland–Altman plot for differences between
effects. We found that b1, the regression coefficient for sample size
difference, was .0021 and not significantly different from zero (p-
value = .6062). The difference between topic-specific impact factor
and impact factor did not appear associated with differences in
sample size.

For an example of a topic-mix adjusted impact factor, we used
the 2004 data and a topic mix where cardiology is weighted three
times more than pulmonary disease. JAMA had a topic-mix ad-
justed impact factor of 40.75 while NEJM was 37.59. In this case,
JAMA had a higher cardiology-specific impact factor, while NEJM
had a higher pulmonary disease-specific impact factor. Due to
the emphasis on cardiology in this example, JAMA had a higher
topic-mix adjusted impact factor despite the fact that NEJM had
a higher overall impact factor. This example shows that the
unadjusted impact factor may not be the best guide in evaluating
journals for topic mixes either.

3.2. Results for article methods

Experiments for the article methods were performed on a cor-
pus previously used to compare clinical query filters and SVM
models [3]. The ACP Journal Club [17] was used as the gold stan-
dard. It is a meta-publication where experts review the best jour-
nals in internal medicine monthly to identify high-quality
articles for categories including diagnosis, etiology, prognosis,
and treatment. All MEDLINE articles from the ACP Journal Club
during the study period were positive cases or considered high-
quality. The remaining journal articles from the same period were
negative cases or not considered high-quality. There were 15,786
MEDLINE records from July 1998 to August 1999 for the treatment
and etiology categories. There were 34,938 MEDLINE records from
July 1998 to August 2000 for prognosis and diagnosis. The longer
timeline enabled the collection of a sufficient number of positive
cases. Articles were formatted for learning by extracting and
encoding terms from the abstract, title, MeSH terms, and publica-
tion type.

We measured the topic-sensitivity of the clinical query filters
and the SVM models by observing the change in performance
when articles were separated by topics. Overall performance was
first calculated for all articles. The performance metrics were sen-
sitivity and specificity for clinical query filters, and the metric was
AUC for the SVM models. Then, performance was measured for
subsets of articles related to a specific topic. We randomly selected
18 MeSH terms covering a range of topics. The topics were: Bone
Diseases, Cardiovascular Diseases, Cysts, Diabetes Mellitus, Endo-
crine System Diseases, Gastroenteritis, Gastrointestinal Diseases,
40 50
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Endocrinology

Gastroenterology

Hematology

Medical Oncology
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Rheumatology

impact factor and topic-specific impact factor.



Table 4
The minimum, median, maximum, and interquartile ranges for the absolute
differences between overall and topic-specific AUC values for SVM models.

Category Min Median Max IQR

Diagnosis 0.0083 0.038 0.04 0.012
Etiology 0.0027 0.028 0.13 0.050
Prognosis 0.0041 0.045 0.10 0.065
Treatment 0.00054 0.0040 0.041 0.0078
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Heart Diseases, Hematologic Diseases, Hernia, Infection, Kidney
Diseases, Lung Neoplasms, Myocardial Infarction, Muscular Dis-
eases, Neoplasms, Respiratory Tract Diseases, and Rheumatic Dis-
eases. Articles were relevant to a topic if its MEDLINE record
contained the MeSH term or a term residing in a sub-tree.

Absolute differences were computed between the overall per-
formance and the topic-specific performances. We computed the
minimum, median, maximum, and interquartile ranges of these
differences to summarize the results. We also performed Wilcoxon
signed rank tests which test the difference between paired mea-
surements. The null hypothesis is that the difference is zero. A p-
value less than .05 means that the difference is significantly differ-
ent from zero, which implies that the method does not maintain
the same performance for individual topics.

Table 3 summarizes the differences between the overall sensi-
tivity/specificity and the observed values for clinical query filters.
Appendix A shows the actual values for specific topics. There was
considerable variability for clinical query filters within some cate-
gories. For example, the sensitivity-optimized prognosis filter had
a median difference of 0.1, maximum difference of 0.57, and an
interquartile range of 0.15 for sensitivity. These values are rela-
tively large since sensitivity ranges from 0 to 1. The Wilcoxon
signed rank tests suggested that performance was unstable for
most categories. The p-values were less than .05 for all cases except
sensitivity with the sensitivity-optimized diagnosis filter and both
sensitivity/specificity for the sensitivity-optimized prognosis filter.
A p-value less than .05 means that the method does not maintain
the same performance for individual topics.

The SVM models were more stable over topics as shown in Ta-
ble 4. Appendix B shows the actual values for specific topics. The
results cannot be compared directly with the Haynes’ filters results
since AUC values are not sensitivity or specificity values. However,
AUC values also range from 0 to 1. Differences are much smaller
since the largest interquartile range is .065, and the largest maxi-
mum difference is 0.13. The Wilcoxon tests for the SVM models
showed that all categories except for diagnosis did not differ signif-
icantly from the overall AUC values. These results imply that the
machine learning models are less sensitive to topic and are more
stable for specific topics. One important observation for the diag-
nosis category is that it had few positive documents. A number
of the topics had no positive documents, and most of the topics
had fewer than four positive cases out of several 100 or 1000 arti-
cles. The diagnosis results may be consistent with the results for
the other categories if given more positive cases.
3.3. Results for websites

3.3.1. Experimental considerations for websites
Experiments for PageRank were performed on a collection of

web pages provided by the Stanford WebBase [22] which is a
repository of topic-focused web crawls intended for research use.
Table 3
The minimum, median, maximum, and interquartile ranges of the absolute differences b
specificity-optimized filter for diagnosis did not return any articles.

Optimized for Category Sensitivity

Min Median Max

Diagnosis 0.020 0.02 0.15
Sensitivity Etiology 0.028 0.07 0.070

Prognosis 0.031 0.10 0.57
Treatment 0.004 0.010 0.030
Diagnosis – – –

Specificity Etiology 0.16 0.34 0.49
Prognosis 0.11 0.24 0.52
Treatment 0.034 0.053 0.070
WebBase provided link and html information, but only the link
structure was needed for our purposes.

A number of technical issues had to be resolved before the to-
pic-sensitivity of PageRank could be evaluated. Research involving
the web is challenging since it is difficult to replicate real-world
conditions. The size of the web makes experiments computation-
ally intensive, and web crawlers cannot determine if all incoming
links to a page have been detected. Researchers typically create a
static snapshot of the web by sampling pages. PageRank values
are affected when pages are removed since the network topology
changes dramatically as links are removed, and it is not completely
understood how sampling affects the stability of rankings [18–20].

Given these considerations, we made two decisions about how
to sample web pages. First, we sampled networks by selecting
pages from the same domain. Kamvar demonstrated that most
pages link to pages from the same domain [21]. He found that
83.9% of links connected pages from the same domain in his test
corpus. The percentage rose to 95.2% after removing pages without
outlinks. Sampling pages from the same domain appears to mini-
mize the effect on PageRank.

The second sampling decision was to select high-ranking pages.
Ng [20] showed that removing pages with low PageRank does not
affect the stability of the top 10 results. We investigated whether
rankings are stable for all results since users may be interested
in more than 10 results. PageRanks were first computed for all
pages within a domain. Then the lowest ranking pages were re-
moved, and PageRanks were computed for the remaining pages.
The stability of rankings was calculated using Haveliwala’s Ksim
metric [13], which is based on Kendall’s s distance measure. Ksim
is the fraction of pairwise ranking comparisons that are consistent
between both sets of rankings. If page A is ranked higher than page
B in one set of rankings, it verifies whether page A is ranked higher
than page B in the other set. For example, a Ksim value of .9 means
that 90% of the pairwise comparisons are consistent in both rank-
ings. The steps of removing pages and re-calculating PageRanks
were repeated until a small number of pages remained.

Four domains were chosen: the National Diabetes Education
Program (ndep.nih.gov, 415 pages), the National Eye Institute
(www.nei.nih.gov, 1151 pages), the National Heart Lung and Blood
Institute (www.nhlbi.nih.gov, 3784 pages), and the Centers for Dis-
ease Control and Prevention (www.cdc.gov, 9434 pages). These do-
etween overall and topic-specific sensitivity/specificity for clinical query filters. The

Specificity

IQR Min Median Max IQR

0.0013 0.015 0.087 0.23 0.10
0.00 0.00047 0.059 0.22 0.10
0.15 0.0029 0.053 0.18 0.04
0.0025 0.0027 0.03 0.17 0.05
– – – – –
0.28 0.0066 0.13 0.31 0.09
0.33 0.030 0.099 0.22 0.04
0.023 0.00037 0.048 0.13 0.030

http://www.nei.nih.gov
http://www.nhlbi.nih.gov
http://www.cdc.gov


Fig. 2. Ksim values for subsets of NDEP as pages removed (initially 415 pages).

Fig. 3. Ksim values for subsets of NEI as pages removed (initially 1151 pages).

Fig. 4. Ksim values for subsets of CDC as pages removed (initially 9434 pages).

Fig. 5. Ksim values for subsets of NHLBI as pages removed (initially 3784 pages).
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mains were selected to provide biomedically relevant samples of
various sizes. The stability of rankings was measured by repeatedly
removing pages with low PageRanks and re-computing PageRanks.
Experiments for the CDC and NHLBI domains were started by
removing the lowest ranked 25% and 50% of pages respectively
(shown in Figs. 4 and 5). These domains contain a larger number
of sites compared to the NDEP and NEI domains. The running time
for computing Ksim values becomes prohibitive for large domains
because of the large number of pairwise comparisons required.

Figs. 2–5 show that rankings do not fluctuate dramatically if
low ranking pages are removed. All domains had Ksim values over
0.8 after the first removal. The Ksim values gradually decreased
with fewer pages until a small number remained. The results indi-
cate that sampling a network by selecting high-ranking pages is a
reasonable method for creating a subset with consistent rankings.

3.3.2. Studying the topic-sensitivity of PageRank
After deciding how to sample web pages while minimizing the

effect on PageRank, we measured the variability of PageRank for
different topics by removing pages unrelated to a given topic. It
is possible for highly-ranked pages in a network with a mixture
of topics to receive many links from pages unrelated to a topic of
interest. These pages could decrease in rank within a topic-specific
network. The analysis involved first computing PageRanks for all
pages. Then, we isolated the pages related to a specific topic, re-
computed PageRanks on this subset, and assessed the similarity
between the two sets of rankings. High-ranking pages in the origi-
nal network could decrease in rank in the topic-isolated network if
it received many links from unrelated pages.

Evaluating the similarity is not as straightforward as simply
applying the Ksim metric. Sampling topic-specific networks drasti-
cally changes the network topology by removing links which af-
fects PageRank values. Similarity differences are then caused by
random fluctuations from the changing topology as well as the ef-
fect of topic isolation. Distinguishing between these two causes
was necessary to accurately measure topic-sensitivity. To address
this problem, we generated random subsets of the same size as
each topic-isolated subset, and PageRanks were computed for the
random subset. The similarity between the original network and
random subsets was measured with Ksim, and results were aver-
aged over 5 runs. The Ksim values for the random subsets provided
a baseline for comparison. Ksim values were then computed be-
tween the original network and the topic-isolated subsets. These
values were compared to the values for the random subsets, and
any increase was attributed to the effect of isolating for topic.

Two health-related domains were used: the Centers for Disease
Control and Prevention (www.cdc.gov, 9434 pages) and the Na-
tional Cancer Institute (www.cancer.gov, 9708 pages). A number
of well-represented topics were selected for each domain. The
CDC site was organized in a directory structure that prompted us
to separate pages according to the following categories: genomics,
National Center on Birth Defects and Developmental Disabilities
(NCBDDD), National Center for Infectious Diseases (NCIDOD), Na-
tional Immunization Program (NIP), and tobacco. For the NCI do-
main, a website was considered relevant to a topic if the address
contained a related word. For example, a page was included in
the ‘‘lung’’ topic if ‘‘lung’’ or ‘‘pulm’’ was in the address. The topics
used were breast, cervix, colon, lung, and prostate.

Table 5 displays the Ksim values for the two domains. Ksim val-
ues for the topic subsets were greater than the values for the ran-
dom subsets which implies that the rankings are dependent on
topic. It is important to note that the Ksim values for the CDC top-
ics were higher than the NCI topics. The CDC rankings were more
stable because of the prevalence of intra-topic linking in the origi-
nal network. At least 71% of the links in the original CDC network
originated from pages related to each topic. Removing unrelated
pages does not considerably alter the rankings if pages mostly link
to pages within the same topic. On the other hand, rankings are
very unstable after removing unrelated pages if most links connect
pages unrelated to the topic. The Tobacco and Genomics topics in
the CDC site had the greatest proportion of intra-topic links (94%
and 97%) and the highest Ksim values (.87 and .85). The Breast
and Prostate topics in the NCI site had the lowest proportions of

http://www.cdc.gov
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Table 5
Ksim values for topic-isolated and random subsets along with the percentage of links remaining after topic isolation.

Domain Topic Num. pages Ksim for topic subset Ksim for random subset Proportion of links within topic

Breast 219 0.71 0.31 0.32
NCI Cervix 204 0.74 0.24 0.42

Colon 199 0.72 0.20 0.37
Lung 254 0.76 0.32 0.36
Prostate 151 0.70 0.24 0.32

Genomics 647 0.97 0.58 0.85
CDC NCBDDD 725 0.87 0.63 0.71

NCIDOD 1185 0.79 0.68 0.76
NIP 357 0.87 0.49 0.83
Tobacco 482 0.94 0.53 0.87
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intra-topic links (32% and 32%) and two of the lowest Ksim values
(.71 and .7). The correlation between the two measurements shows
that the stability of PageRank for different topics depends on the
proportion of links from pages related to the topic of interest. In
other words, PageRank is more stable with a greater proportion
of related links.

4. Discussion

The present paper studied the variability of evaluation metrics
for the scientific literature and web when considering different
topics. For journals and articles, previous research had studied
the average performance of impact factor, clinical query filters,
and SVM-based models over all topics. The present study analyzed
the stability of these methods for specific topics as well as two as-
pects of PageRank’s behavior for evaluating web pages. First, our
results demonstrated that removing pages with low PageRanks is
a reasonable sampling method since the rankings of the remaining
pages were relatively stable. Second, the current study showed
that rankings based on PageRank vary according to topic in direct
correspondence to the variation of links from pages related to dif-
ferent topics of interest.

We initially hypothesized that impact factor, clinical query fil-
ters, and PageRank are unstable for different topics since they are
query-independent methods built separately from the learning
task. This was verified by our data. Conversely query-dependent
methods always consider the search topic and are constructed
for a particular learning task. Machine learning filter models and
topic-specific impact factor are two examples. We hypothesized
that query-focused methods would be less variant across topics
which was confirmed by our data.

Citation-based metrics such as impact factor and PageRank are
query-dependent methods that are highly topic variant according
to our data. It is relatively straightforward to understand why:
an average document often discusses multiple topics and receives
multiple citations. However, all topics are not relevant to any one
citation. This is compounded by the fact that a citation plays a vari-
ety of roles that do not necessarily constitute endorsement related
to all the topics of interest for a document. An article may cite an-
other article for a variety of reasons: to acknowledge prior work,
identify methodology, correct or criticize, or disclaim the work of
others [23].

We postulate without proof that the topic-sensitivity of clinical
query filters is due to the manual, expert-driven process by which
they are constructed. Experts choose terms that reflect their exper-
tise in particular areas. The coverage of terms therefore may not be
exhaustive since research areas use different jargon and vocabu-
lary, and topics outside the experts’ knowledge may lack adequate
consideration. On the other hand, machine learning models auto-
matically learn terms for all topics in the corpus. The machine
learning methods in principle and in our experiments perform well
for any topics that are sufficiently sampled in the corpus.
One factor that needs to be considered is that the set of papers
and web pages is finite. Topic-adjusted metrics cannot be esti-
mated with acceptable statistical certainty for very narrow topics.
The issue of adequate sample size (or equivalently adequate statis-
tical certainty about estimates for such metrics) should be consid-
ered whenever topic adjustments are made. Simple and standard
power-size analysis and statistical inference techniques from sta-
tistics are adequate for this purpose [24].

Finally, one word of caution is warranted regarding the devel-
opment cost of machine learning models. The primary costs for
such models are the collection and construction of training cor-
pora. This cost is expected to be amortized over several years
worth of use by potentially thousands of users and models. Thus
it is reasonable to expect very small development costs for popular
literature and web searches. The machine learning approach how-
ever may be too costly to implement for some important yet infre-
quent searches where training corpora are hard to come by.

4.1. Conclusions and practical implications of the present work

The experiments and results discussed in the present paper
point to specific, practical ways to improve current practices in
information retrieval and academic quality assessment. Since the
impact factor and clinical query filters are considerably sensitive
to topic, we believe that they should be replaced eventually by ver-
sions that are adjusted for topic (subject to technical feasibility and
other practical considerations). We presented specific ways to ad-
just the impact factor. We note however that the adjustment tech-
nique we proposed is fine grained (i.e., performed at the topic level,
not the average of a field that contains many topics) but may be re-
source intensive to compute. Machine learning models do not ex-
hibit topic sensitivity, so the practical implication is that the
methodologies employed for constructing such models are sound
and do not need adjustments (like citation-based methods do).

Until the topic adjusted approach to citation-based methods is
widespread, users of uncorrected metrics will benefit by recogniz-
ing the limitations of traditional metrics. For example, researchers
interested in gastrointestinal diseases would believe that the New
England Journal of Medicine is the best journal to read according to
impact factor. However, JAMA may be a better choice since it has
higher topic-specific impact factors for gastroenterology and gas-
trointestinal diseases. We believe that there is an urgent need for
topic-specific impact factor and citation count databases to allow
for a more robust guidance for end users. Similar conclusions and
practical implications apply to the realm of web page search and
review. Our results suggest that next generation search engines
will benefit by offering topic-adjusted search results ranking (at
least for a core set of frequent queries or medical topic categories).
Finally machine learning scoring of web pages with existing meth-
ods offers an attractive alternative technology for ranking web
pages as long as machine learning models are built and made avail-
able to users for a class of widely used cases.
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