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Abstract 

Accurate estimation of the future state of the traffic is an attracting area for researchers in the field of Intelligent Transportation 
Systems (ITS). This kind of predictions can lead to traffic managers and drivers to act in consequence, reducing the economic 
and social impact of a possible congestion. Due to the inter-urban traffic information nature, the task of predicting the future state 
of the traffic requires, in most cases, a non-linear patterns search in the input data. In recent years, a wide variety of models has 
been used to solve this problem in the most accurate way. Due to that, models generated to provide information about the future 
state of the road are, usually, incomprehensible to a human operator, making impossible to give him/her an explanation about the 
causes of the prediction. Given the capacity of rule based systems to explain the reasoning followed to classify a new pattern, the 
advantages and disadvantages of such approaches are explored in this work. 
To conduct such task, datasets recorded from the California Department of Transportation are created. A 9-kilometer section of 
the I5 highway of Sacramento is used for this research. Two different types of datasets are built for the experimentation. One of 
them contains the entire information recorded. The other one contains with a simplified version of the information, considering 
only the first, middle and last monitored points of the road. Twelve prediction horizons, from 5 to 60 minutes, were considered 
for prediction. An experimental comparative study involving 16 state of the art techniques is performed. Techniques tested 
include those that fall within the categories of Evolutionary Crisp Rule Learning (ECRL) and Evolutionary Fuzzy Rule Learning 
(EFRL). These methods were selected since they offer to the final user, not only a prediction, but also a legible model about the 
way in which the decision was taken. Techniques are compared in terms of accuracy and complexity of the models generated. 
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1. Introduction 

Getting a fully sustainable mobility is one of the biggest challenges of modern traffic management. Sustainable 
mobility refers to social and ecological objectives associated with the transport. Today, traffic levels are reaching 
high values. This fact leads to serious problems associated with congestion, especially during peak hours 
(Steenbruggen et al., 2013). According to the European Commission, the share of road transport in total freight is at 
the level of 76.9% (http://epp.eurostat.ec.europa.eu). The current capacity of networks is not able to meet the 
growing demand, which causes congestion in urban areas and transit roads (Golinska and Hajdul, 2012). Congestion 
costs are estimated to increase by about 50%, to nearly 200 billion € annually (European Commission, 2011). 

Therefore, the proper prediction of traffic congestion is an attracting area for researchers in the field of Intelligent 
Transportation Systems (ITS) (Cobo et al., 2014, Chen and Cheng, 2010). Accurate predictions can lead to traffic 
managers and drivers to act in consequence, reducing so the economic and social impact of the occurrence of 
congestion. 

Over the last decades, the literature on short-term traffic flow forecasting has undergone great development 
(Hong, 2011). Many works describing a wide variety of different approaches have been published. Some of the most 
used methodologies lie in Kalman state space filtering models (Okutani and Stephanedes, 1984, Stathopoulos and 
Karlaftis, 2003), and the Autoregressive Integrated Moving Average (ARIMA) methodology, initially developed at 
(Box et al., 2008), and widely used since then. Given that the rapid variational process changes underlying traffic 
flow is complicated to be captured by a single linear statistical algorithm, more recent techniques such as Artificial 
Neural Networks (ANNs) (Schalkoff, 1997) or Support Vector Machines (SVMs) (Hearst et al. 1998) have proven 
their good performance in this task (Vlahogianni et al., 2005, Zhang et al., 1998). 

The issue with imbalance in the class distribution became more pronounced with the applications of the machine 
learning algorithms to the real world. These applications range from telecommunications, bioinformatics, text 
classification, or speech recognition, to detection of oil spills in satellite images. The imbalance can be an artifact of 
class distribution and/or different errors applied over examples of different classes. A dataset is called imbalanced if 
it contains many more samples from one class than from the rest of the classes. Datasets are imbalanced when at 
least one class is represented by only a small number of training examples while other classes make up the majority 
(Ganganwar, 2012). 

In this work, the problem of dealing with traffic information as a machine learning problem is considered. When 
dealing with traffic information, with the objective of detecting or predicting abnormal traffic situation, data 
collected became highly imbalanced, due to the reason that, in most of the time, the traffic will flow in a normal 
way. For this reason, it is normal not to find congestion or incidents in most of the time the road is being monitored. 

The rest of the work is organized as follows. Section 2 presents the process used to capture and prepare data for 
the application of the selection of methods to study in this article. After that, Section 3 presents the methods to be 
tested. Section 4 is dedicated to explain the performance measures used to compare among techniques. In Section 5, 
results of the comparative study are shown, in terms of the parameters explained until then. Finally, some 
conclusions and future works are presented in Section 6. 

2. Datasets used 

Data used in this work was collected from the Performance Measurement System (PeMS) platform 
(http://pems.dot.ca.gov/). PeMS is a real-time database from the California Department of Transportation that offers 
over 10 years of historical traffic measurement for analysis. A 9-kilometers section of I5 highway in Sacramento, 
California, is used for this research. 

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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A schematic graphic of the scenario used in this work is provided in Figure 1. In this figure, loop detectors are 
distributed in 13 points along the main road (MSi, {i = 1, 2, 3 …13}). In addition, four loop detectors are located in 
each one of the off-ramps (OSi, {i = 1, 2, 3, 4}), and another four loop detectors in each one of the on-ramps  
(ISi, {i = 1, 2, 3, 4}). Data from 0:00 September 1st, 2013 until 23:55 September 30th, 2013 was collected for this 
study, obtaining 7938 samples in total. Each sample contains the following attributes: 

 
 Fx, {x = 1, 2, 3 …13}: Flow reported by sensor in the road at point i, measured in number of vehicles. 
 Ox, {x = 1, 2, 3…13}: Occupancy reported by sensor in the road at point i. Percentage of time the sensor has 

detected a vehicle. 
 Sx, {x = 1, 2, 3…13}: Average speed of the vehicles passing through the point i, in km/h. 
 iFx, {x = 1, 2, 3, 4}: Flow reported by each sensor located at the on-ramps of the road or, in other words, number 

of vehicles that entered the highway. 
 oFx, {x = 1, 2, 3, 4}: Flow reported by each sensor located at the off-ramps of the road or, in other words, number 

of vehicles that leaved the highway. 
 

Fig. 1. Scheme of the scenario used in this study. 

It is important to note that ramps do not report values of occupancy or speed, so only flow values are associated 
with them. With all of them, the total number of variables involved in the prediction is 47. Two different datasets 
have been built from this information; the first one is named Complete, and involves all the 47 attributes collected. 
The second one, named Simplified, includes 13 attributes; 11 of them are directly inherited from the Complete 
dataset, denoting the flow, occupancy and speed at the first and last sensors in the section of the road, and the same 
at the point of interest {F1, O1, S1, F7, O7, S7, F13, O13, S13}. The input and output flows before the interest points 
{iF1, oF1} are also included. Last two attributes denote the aggregation of input and output flows after the interest 
point, and they are calculated as presented at Equations 1 and 2. 

    (1) 

   (2) 

A calculated value of congestion associated with the point of interest (S7) is added as the last column of the 
datasets. This congestion level is calculated according with the extended HCM LOS F rating (Maryland, 2009), 
reported in Table 1. Finally, in order to generate datasets with different time horizons, the congestion value is 
translated one by one to the previous set of attributes, obtaining an increment in the prediction horizon of 5 minutes 
(but losing one sample) each time. This process is illustrated in Figure 2. This procedure was repeated until 
a prediction horizon of 60 minutes was reached. In summary, 24 datasets were finally obtained, whose names are 
Comh for the complete ones (47 attributes), and Simh for the simplified ones (13 attributes). h = {10, 20 …60} 
represents the prediction horizon. 
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Fig. 2. Graphical representation of the process followed in order to obtain datasets with different prediction horizon. 

Table 1. Levels of Congestion and their calculus. 

Congestion Flow/Speed (ve/km/ln) Speed (km/h) 

Severe > 50 < 40 

Moderate [37–50] [24–64] 

Slight [29–37] [48–80] 

Free Other cases 

3. Techniques used 

Experiments have been developed using the KEEL (http://www.keel.es) software (Alcalá-Fdez et al., 2009). 
Among the methods available in KEEL, a selection has been made among those that fall within the categories of 
Evolutionary Crisp Rule Learning (ECRL) and Evolutionary Fuzzy Rule Learning (EFRL). These categories include 
methods that make use of any Evolutionary computation (EC) mechanism for the generation and tuning of sets of 
rules to perform classification tasks. Methods included in the ECRL category used in this work are: 

 C4.5 (Quinlan, 1993): This is a well-known algorithm used to generate decision trees from a set of training data 
in the same way as the ID3 algorithm. 

 Bioinformatics-oriented Hierarchical Evolutionary Learning (BioHEL) (Bacardit et al., 2009): This system 
applies an almost standard generational Genetic Algorithm (GA). In this case, classification rules are the evolving 
individuals. The learning process creates a rule set by iteratively learning one rule at a time using a GA. 

 GAssist_ADI (Bacardit and Garrell, 2003): The core of the system consists of a GA whose population is 
composed by a set of production rules. Individuals are evaluated according to the proportion of correct classified 
training examples. 

 GAssist_Intervalar (Bacardit and Garrell, 2007): This method is an extension of the previous one, incorporating 
a rule deletion mechanism and a selection operator designed to guide the search to both accurate and short 
individuals. 

 Hierarchical decision rules (Hider) (Aguilar-Ruiz et al., 2003): This method produces a hierarchical set of rules 
by means of a real coded GA. Two genes will define the lower and upper bounds of the rule attribute. One rule is 
extracted from the GA every iteration and all the examples covered by that rule are removed for the next 
iteration. 

 Incremental Learning with Genetic Algorithms (ILGA) (Guan and Zhu, 2005): It follows the incremental 
learning approach supported by a GA with different initialization schemes. In addition, ILGA iteratively searches 
in one dimension each time, inheriting the information obtained step by step. 

 Memetic Pittsburgh Learning Classifier System (MPLCS) (Bacardit and Krasnogor, 2009): This method 
hybridizes a GA with local search operators in the context of a Pittsburgh learning classifier system. Two 
different policies of integration are used, either applying the operators to the whole population or only to the best 
individual of the population. 
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 Ordered Incremental training with Genetic Algorithms (OIGA) (Zhu and Guan, 2004): This method works in two 
steps: first, it learns one-condition rules for each one of the attributes. Then it optimizes their values using a GA. 
Once all the attributes have been explored in a separated way, it joins the obtained rule sets ordered by fitness. 

 Real Encoding Particle Swarm Optimization (REPSO) (Liu et al., 2004): This method uses a Particle Swarm 
Optimization for rule discovery following a Michigan approach, where an individual encodes a single rule. 

It is important to note that C4.5 is not formally an ECRL algorithm, since it does not apply any kind of 
evolutionary process. Anyway, for this study, it has been considered because of being one of the most recognized 
techniques in the field of machine learning. Methods in the EFRL category used in the comparative study are: 

 GFS_GCCL (Ishibuchi et al., 1999): In this method, each fuzzy rule is handled as an individual. The technique 
uses linguistic values with fixed membership functions as antecedent of the rules. 

 GFS_SP (Sánchez et al., 2001): In this approach, a simulated annealing is used to learn a fuzzy classifier with 
tree structure that can use any combination of conjunction and disjunctions in the antecedent part of the rules. 

 GFS_LogitBoost (Otero and Sánchez, 2006): This method uses the boosting paradigm to fuzzy rules extracted 
from data by means of a GA. Each time a new rule is added to the classifier, the examples in the training set are 
re-weighted. In this way, future rules will focus on the most difficult examples. 

 Steady-state GA for Extracting fuzzy classification Rules from Data (SGERD) (Mansoori et al., 2008): This 
method uses a steady-state GA that generates a specified number of rules per class. In each generation, candidate 
rules are divided according to their consequent class, and they are ranked with respect to their fitness. This 
technique uses multiple fuzzy partitions simultaneously with different granularities and a don’t care condition for 
fuzzy rule extraction. 

 Structural Learning Algorithm on Vague Environment (SLAVE) (González and Pérez, 1999): This approach 
extracts a set of fuzzy rules from a set of examples through an iterative process in which a rule is selected each 
time. It uses a GA to select the rule which best represents the system. The rule obtained is incorporated into the 
final set of rules. In order to obtain new and different rules, the rule previously got is penalized, and the process is 
repeated. 

 Chi_RW (Chi et al., 1996): This method generates a fuzzy rule for each one of the examples, using a predefined, 
normalized partition of the universe of discourse of each one of the variables. Once the initial complete rule base, 
weights of the individual rules are adjusted. 

 Fuzzy Association Rule-based Classification model for High-Dimensional problems (FARCHD) (Alcalá-Fdez 
et al., 2011): This method mines fuzzy association rules limiting the order of the associations in order to obtain 
a reduced set of candidate rules with less attributes in the antecedent. Finally, a genetic rule selection and lateral 
tuning are applied to select a small set of fuzzy association rules with high classification accuracy. 

It is important to note that both Chi_RW and FARCHD are not included in the EFRL category in the KEEL 
distribution. Chi_RW is one of the first and most recognized methods for the automatic learning of fuzzy systems, 
despite not having the EC component. In the case of FARCHD, it appears under the associative classification 
category, but it has been included in this list because it considers fuzzy association rules and uses an EC process in 
its work-flow. All the methods were run considering default configurations given by KEEL, which are the same 
suggested by authors in the publications in which those methods were presented. 

4. Performance evaluation measures 

In the four-class problem faced here, the confusion matrix (shown in Table 2) records the results of correctly and 
incorrectly recognized examples of each class after the execution of the method. Since a large number of methods 
use the accuracy rate (Eq. 3) as empirical measure for the quality of the models, a first comparison in this term will 
be provided. However, in the framework of imbalanced data-sets, as the one presented here, it does not distinguish 
between the numbers of correctly classified examples of different classes. 
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    (3) 

Table 2. Confusion matrix for the four-class problem used in this work. 

Actual/Predicted Free Light Medium Severe Total 

Free FF FL FM FS F’ 

Light LF LL LM LS L’ 

Medium MF ML MM MS M’ 

Severe SF SL SM SS S’ 

To save this inconvenience, a generalized version of the averaged accuracy measure (Kubat et al., 1998) for more 
than two classes (Eq. 4) is used. This value measures the balanced performance of the model between the different 
classes of the problem, allowing to simultaneously maximizing the accuracy in each one of them (Gu et al., 2009). 

    (4) 

In order to compare the complexity of the models, both number of rules generated and average length of rules 
were used for comparison purposes. Since most of the techniques presented here use a format of rules where the 
antecedent is composed by a set of and-linked atomic clauses (crisp or fuzzy, depending on the method), the length 
of the rule becomes equal to the number of clauses in its antecedent. 

5. Experimentation and results 

All the experiments conducted in this work have been performed on an Intel Core i5 2410 laptop, with 2.30 GHz 
and a RAM of 4 GB. In order to evaluate the performance of the models with independence of the particular 
instances used for training them, 10-fold cross validation partition was applied over each dataset. Along the present 
section, results obtained by all the techniques shown in Section 3 applied over the datasets described in Section 2 are 
presented. First, results in terms of accuracy and averaged accuracy per class are analyzed. After that, a comparison 
in terms of time to generate models and complexity is performed. Finally, a discussion among different results 
obtained by crisp and fuzzy techniques in overall is provided. 

Figure 3 presents, in a graphical way, accuracy measures obtained by each one of the techniques when applied 
over the datasets. From Figure 3, it can be appreciated that lower results in accuracy (darker) are mainly obtained by 
Hider and GFS_GCCL, in addition to GFS_LogitBoost, in the case of complete datasets. Another conclusion that 
can be extracted from Figure 3 is the fact that all the methods obtain, in all the cases, accuracy values beyond 0.95. 
Additionally, no clear (with exception in some particular cases) differences can be appreciated. This can be 
translated in a percentage of matching of the level of congestion higher than 95% of the examples contained in the 
dataset. But, as commented in previous section, this assumption may result in mistaken conclusions. 

 

  
Fig. 3. Accuracy obtained for each technique in complete (left) and simplified (right) datasets. 
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In order to provide a more clear view of the differences on results obtained in this experimentation, Tables 3 and 
4 present results in terms of averaged accuracy for complete and simplified datasets, respectively. The last column, 
named R, denotes the averaged ranking obtained by the technique in the total group of datasets. In all the cases, the 
three best values for each column are boldfaced. It can be seen that, for both types of datasets, C4.5 obtains, in most 
of the cases, the best value. After it, FARCHD gets, in almost all the cases, the second or third best value. Apart 
from them, second or third best values are usually shared among MPLCS, OIGA and ILGA, in the case of complete 
datasets. While for simplified datasets, MPLCS, ILGA and Gassist_Intervalar appear among the three best 
techniques. In addition, it is interesting to remark that, for all the cases, averaged accuracy is not deteriorated as the 
prediction horizon increases. 

Table 3. Accuracy (Eq. 4) value obtained for each technique in normal datasets. 

 Com5 Com10 Com15 Com20 Com25 Com30 Com35 Com40 Com45 Com50 Com55 Com60 R 

C45 0.604 0.604 0.604 0.604 0.604 0.604 0.604 0.604 0.604 0.604 0.604 0.604 1.2 

BioHEL 0.538 0.567 0.544 0.529 0.537 0.529 0.535 0.542 0.540 0.543 0.520 0.538 9.2 

Gassist_ADI 0.601 0.588 0.567 0.554 0.582 0.590 0.583 0.569 0.560 0.585 0.569 0.555 4.5 

Gassist_Invervalar 0.574 0.569 0.551 0.543 0.557 0.540 0.557 0.560 0.542 0.553 0.565 0.576 6.5 

Hider 0.493 0.493 0.492 0.498 0.491 0.494 0.494 0.492 0.494 0.491 0.491 0.490 13.0 

ILGA 0.564 0.553 0.578 0.518 0.519 0.598 0.573 0.554 0.500 0.550 0.558 0.573 7.3 

MPLCS 0.579 0.549 0.581 0.567 0.585 0.561 0.581 0.585 0.590 0.570 0.5809 0.604 4.1 

OIGA 0.603 0.552 0.578 0.563 0.535 0.605 0.562 0.5754 0.581 0.586 0.607 0.583 4.2 

REPSO 0.527 0.527 0.527 0.512 0.512 0.512 0.512 0.512 0.512 0.512 0.512 0.512 11.8 

GFS_GCCL 0.338 0.349 0.364 0.364 0.364 0.371 0.371 0.364 0.364 0.380 0.380 0.380 15.0 

GFS_SP 0.479 0.479 0.479 0.479 0.479 0.477 0.451 0.451 0.483 0.483 0.451 0.451 14.0 

GFS_LogitBoost 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 16.0 

SGERD 0.531 0.531 0.531 0.531 0.531 0.531 0.531 0.531 0.531 0.531 0.531 0.531 10.3 

SLAVE 0.533 0.547 0.525 0.527 0.545 0.554 0.530 0.542 0.545 0.564 0.552 0.549 8.8 

Chi_RW 0.551 0.551 0.551 0.551 0.551 0.551 0.551 0.551 0.551 0.551 0.551 0.551 7.5 

FARCHD 0.578 0.586 0.586 0.586 0.593 0.597 0.593 0.593 0.593 0.593 0.590 0.590 2.7 

Table 4. Averaged accuracy (Eq. 4) value obtained for each technique in simplified datasets. 

 Sim5 Sim10 Sim15 Sim20 Sim25 Sim30 Sim35 Sim40 Sim45 Sim50 Sim55 Sim60 R 

C45 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 0.605 1 

BioHEL 0.529 0.529 0.539 0.507 0.511 0.526 0.529 0.531 0.517 0.541 0.524 0.521 10.8 

Gassist_ADI 0.535 0.572 0.548 0.550 0.561 0.573 0.558 0.557 0.565 0.571 0.539 0.579 6.0 

Gassist_Invervalar 0.541 0.547 0.547 0.569 0.525 0.541 0.535 0.541 0.555 0.581 0.570 0.540 6.9 

Hider 0.458 0.491 0.476 0.488 0.484 0.486 0.463 0.492 0.456 0.490 0.480 0.458 15.0 

ILGA 0.576 0.533 0.528 0.556 0.516 0.535 0.544 0.545 0.55 0.562 0.566 0.586 7.3 

MPLCS 0.577 0.584 0.591 0.566 0.589 0.590 0.572 0.599 0.588 0.566 0.571 0.580 3.1 

OIGA 0.545 0.558 0.565 0.555 0.571 0.537 0.542 0.566 0.564 0.547 0.550 0.559 6.4 

REPSO 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530 10.0 

GFS_GCCL 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 16.0 

GFS_SP 0.509 0.492 0.492 0.492 0.491 0.491 0.503 0.503 0.498 0.491 0.491 0.497 13.5 

GFS_LogitBoost 0.508 0.508 0.51 0.514 0.512 0.506 0.506 0.509 0.506 0.509 0.506 0.504 11.9 

SGERD 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 7.3 

SLAVE 0.557 0.564 0.566 0.559 0.566 0.566 0.571 0.565 0.551 0.576 0.568 0.568 5.0 

Chi_RW 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 13.3 

FARCHD 0.591 0.591 0.591 0.591 0.591 0.584 0.584 0.584 0.584 0.584 0.584 0.584 2.4 
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With the aim of providing a general view on complexities of the algorithms, as well as the ones for the returned 
models, Table 5 presents complexity results. In this table the computational time needed by all the methods to return 
the prediction model is shown, in columns denoted with T. With respect to the complexity of the models, the 
average number of rules (#R) and attributes (#A) are presented. All the measures are separated in values obtained 
for both complete and simplified version of the datasets. Regarding the complexity, it is important to note that some 
of the techniques use a fixed number of rules or antecedents. These methods are remarked with an asterisk in the 
table. 

Table 5. Complexity measures of the methods and the models returned. 

 T(Comx) T(Simx) #R(Comx) #R(Simx) #A(Comx) #A(Simx) 

C45 11.7 5 45.93 39.15 7.85 7.26 

BioHEL 48.7 27.1 13.61 14.56 4.01 3.92 

Gassist_ADI 865.1 223.4 5.36 5.56 3.57 2.46 

Gassist_Invervalar 398.4 81.7 4.7 5.12 46.67 13.21 

Hider 331.8 28.1 54.36 3.63 43.2 8.47 

ILGA 1787.3 364.9 30* 30* 45.48 12.03 

MPLCS 4164.1 643.4 13.82 11.73 5.28 4.1 

OIGA 2135.7 363.9 30* 30* 45.48 12.03 

REPSO 31.5 15.4 7.57 7.42 3.68 3.03 

GFS_GCCL 8.4 4 30.82 19.54 2.8 1.06 

GFS_SP 1536.3 806.9 4* 4* 2.2 3.11 

GFS_LogitBoost 814.1 212.2 25* 25* 10* 10* 

SGERD 9.9 6.9 5.41 6.81 1.93 1.94 

SLAVE 1601.7 728.1 31.77 26.68 7.54 4.89 

Chi_RW 99.3 4.3 2936.82 318.32 46.44 13 

FARCHD 626 49.7 25.25 14.34 2.27 2.08 

Looking at Table 5, remarkable differences can be observed in the complete datasets in terms of execution times 
when comparing the three faster methods with the rest of them. Six methods are capable of returning a model in less 
than 120 seconds, while five of them do it in more than 1200 seconds. Regarding the simplified ones, nine of the 
methods finish in less than 120 seconds, and only three of them last more than 600 seconds. The behavior of 
Chi_RW is remarkable since, while in the simplified datasets is the second less time consuming technique, in the 
complete one it achieves the sixth position, multiplying the value more than 20 times. Observing the number of 
rules, Chi_RW obtains the highest number of rules in both complete and simplified datasets, with high difference 
from the second highest value, which is achieved by C4.5. Finally, regarding the number of antecedents, some 
methods use almost all the available attributes in their rules (Gassist_Intervalar, ILGA, OIGA and Chi_RW), while 
other ones use very simple rules, composed by less than 4 attributes, as FARCHD, SGERD, GFS_SP, GFS_GCCL, 
Gassist_ADI. 

5.1. Discussion 

In order to provide a final analysis of the study conducted in this work, Table 6 presents all the results grouped by 
type of technique, distinguishing between the selected crisp and fuzzy learning methods (ECRL and EFRL). Each 
cell of the table represents the averaged ranking obtained by the techniques of the groups, considering the four 
criteria managed along the article, distinguishing between the complete and simplified datasets. Next, it is proceeded 
to provide general conclusions about the results, having into account that these conclusions may not be extended to 
all the fuzzy or crisp techniques, but limited to the field of study and considering the parametrization used. In 
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addition, it is important to note that these considerations are deduced from results obtained for all the techniques in 
the group. Without taking into account specific cases of behavior shown from particular techniques. 

Table 6. Complexity measures of the methods and the models returned.  

 Aacc(Comx) Aacc(Simx) T(Comx) T(Simx) #R(Comx) #R(Simx) #A(Comx) #A(Simx) 

ECRL 6.86 7.38 9.22 8.88 8 7.88 10 9.66 

EFRL 10.61 9.91 7.75 8 9 9.14 6.42 6.85 

As can be seen in Table 6, crisp methods improve results obtained by fuzzy ones in terms of averaged accuracy 
and number of rules, while the fuzzy ones get better values in terms of time needed for constructing the models and 
in the length of the rules included in them. It is noteworthy that when a group of techniques gets better results than 
the other, it does for both complete and simplified datasets. 

Bigger differences can be found between values for accuracy and number of antecedents. This is an expected 
result when dealing with these two paradigms since, usually, crisp methods do not use to consider the readability or 
interpretability of the model provided, in case it affects to the performance, while fuzzy methods, because of their 
linguistic nature, are designed to return easily interpretable models. 

6. Conclusions and future works 

This work presents an empirical study on the application of machine learning methods to the task of predicting 
a certain level of congestion in a road. The study is oriented to find relevant conclusions and differences among 
techniques that generate a model consisting in a set of rules, considering both crisp and fuzzy variants. 

With the aim of carrying out the study, 16 techniques, nine of them included in the category of crisp and seven in 
the category of fuzzy, are applied over 24 datasets. Half of the datasets make use of all the available information in 
the studied road segment, while the other half only uses a reduced number of variables available. 

Data used in this experimentation is highly imbalanced, which represents a big challenge for techniques which 
are mainly designed for dealing with well-distributed data. However, methods used show reasonable good 
performances, returning models with a large variety of complexities, from those which infer a high number of rules 
that make use of almost all the attributes, to those which infer a low number of short and interpretable rules. 

Next research in the direction of using well-known machine learning algorithms to prediction of the future state 
of the road will be oriented to solve deficiencies presented in this work. In particular, the main research line will be 
oriented in adapting those techniques to highly imbalanced domains, or to hybridize those techniques with the ones 
coming from specialized literature in the field. Other point that will be present in future research will be to extract 
those aspects of the studied methods that are desirable to get applied in the domain of processing information 
coming from traffic scenarios, such as the low computational times, even for large datasets, and the equilibrium 
between the accuracy shown by systems and the size of the generated models. 
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