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Preface

In the social sciences, social network analysis has become a powerful
methodological tool alongside statistics. Network concepts have been de-
fined, tested, and applied in research traditions throughout the social sci-
ences, ranging from anthropology and sociology to business administra-
tion and history.

This book is the first textbook on social network analysis integrating
theory, applications, and professional software for performing network
analysis. It introduces structural concepts and their applications in social
research with exercises to improve skills, questions to test the understand-
ing, and case studies to practice network analysis. In the end, the reader
has the knowledge, skills, and tools to apply social network analysis.

We stress learning by doing: readers acquire a feel for network con-
cepts by applying network analysis. To this end, we make ample use of
professional computer software for network analysis and visualization:
Pajek. This software, operating under Windows 95 and later, and all ex-
ample data sets are provided on a Web site (http://vlado.fmf.uni-lj.si/pub/
networks/book/) dedicated to this book. All the commands that are needed
to produce the graphical and numerical results presented in this book are
extensively discussed and illustrated. Step by step, the reader can perform
the analyses presented in the book.

Note, however, that the graphical display on a computer screen will
never exactly match the printed figures in this book. After all, a book is
not a computer screen. Furthermore, newer versions of the software will
appear, with features that may differ from the descriptions presented in
this book. We strongly advise using the version of Pajek software supplied
on the book’s Web site (http://vlado.fmf.uni-lj.si/pub/networks/book/)
while studying this book and then updating to a newer version of Pa-
jek afterwards, which can be downloaded from http://vlado.fmf.uni-
lj.si/pub/networks/pajek/default.htm.

Overview

This book contains five sections. The first section (Part I) presents the
basic concepts of social network analysis. The next three sections present
the three major research topics in social network analysis: cohesion

xxiii
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(Part II), brokerage (Part III), and ranking (Part IV). We claim that all
major applications of social network analysis in the social sciences re-
late to one or more of these three topics. The final section discusses an
advanced technique (viz., blockmodeling), which integrates the three re-
search topics (Part V).

The first section, titled Fundamentals, introduces the concept of a net-
work, which is obviously the basic object of network analysis, and the
concepts of a partition and a vector, which contain additional information
on the network or store the results of analyses. In addition, this section
helps the reader get started with Pajek software.

Part II on cohesion consists of three chapters, each of which presents
measures of cohesion in a particular type of network: ordinary networks
(Chapter 3), signed networks (Chapter 4), and valued networks (Chap-
ter 5). Networks may contain different types of relations. The ordinary
network just shows whether there is a tie between people, organizations,
or countries. In contrast, signed networks are primarily used for storing
relations that are either positive or negative such as affective relations:
liking and disliking. Valued networks take into account the strength of
ties, for example, the total value of the trade from one country to another
or the number of directors shared by two companies.

Part III on brokerage focuses on social relations as channels of ex-
change. Certain positions within the network are heavily involved in the
exchange and flow of information, goods, or services, whereas others
are not. This is connected to the concepts of centrality and centraliza-
tion (Chapter 6) or brokers and bridges (Chapter 7). Chapter 8 discusses
an important application of these ideas, namely the analysis of diffusion
processes.

The direction of ties (e.g., who initiates the tie) is not very important in
the section on brokerage, but it is central to ranking, presented in Part IV.
Social ranking, it is assumed, is connected to asymmetric relations. In the
case of positive relations, such as friendship nominations or advice seek-
ing, people who receive many choices and reciprocate few choices are
deemed as enjoying more prestige (Chapter 9). Patterns of asymmetric
choices may reveal the stratification of a group or society into a hierarchy
of layers (Chapter 10). Chapter 11 presents a particular type of asymme-
try, namely the asymmetry in social relations caused by time: genealogical
descent and citation.

The final section, Part V, on roles, concentrates on rather dense and
small networks. This type of network can be visualized and stored effi-
ciently by means of matrices. Blockmodeling is a suitable technique for
analyzing cohesion, brokerage, and ranking in dense, small networks. It
focuses on positions and social roles (Chapter 12).

The book is intended for researchers and managers who want to apply
social network analysis and for courses on social network analysis in all
social sciences as well as other disciplines using social methodology (e.g.,
history and business administration). Regardless of the context in which
the book is used, Chapters 1, 2, and 3 must be studied to understand the
topics of subsequent chapters and the logic of Pajek. Chapters 4 and 5
may be skipped if the researcher or student is not interested in networks
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Ch.1 - Looking
for social structure

Ch.2 - Attributes
and relations

Ch.3 - Cohesive
subgroups

Ch.4 - Sentiments and friendship

Ch.5 - Affiliations

Ch.6 - Center and periphery

Ch.7 - Brokers and bridges

Ch.8 - Diffusion

Ch.9 - Prestige

Ch.10 - Ranking

Ch.11 - Genealogies and citations

Ch.12 - Blockmodels

Figure 1. Dependencies between the chapters.

with signed or valued relations, but we strongly advise including them
to be familiar with these types of networks. In Parts III (Brokerage) and
IV (Ranking), the first two chapters present basic concepts and the third
chapter focuses on particular applications.

Figure 1 shows the dependencies among the chapters of this book. To
study a particular chapter, all preceding chapters in this flow chart must
have been studied before. Chapter 10, for instance, requires understanding
of Chapters 1 through 4 and 9. Within the chapters, there are not sections
that can be skipped.

In an undergraduate course, Part I and II should be included. A choice
can be made between Part III and Part IV or, alternatively, just the first
chapter from each section may be selected. Part V on social roles and
blockmodeling is quite advanced and more appropriate for a postgraduate
course. For managerial purposes, Part III is probably more interesting than
Part IV.

Justification

This book offers an introduction to social network analysis, which implies
that it covers a limited set of topics and techniques, which we feel a
beginner must master to be able to find his or her way in the field of social
network analysis. We have made many decisions about what to include
and what to exclude and we want to justify our choices now.

As reflected in the title of this book, we restrict ourselves to exploratory
social network analysis. The testing of hypotheses by means of statistical
models or Monte Carlo simulations falls outside the scope of this book.
In social network analysis, hypothesis testing is important but compli-
cated; it deserves a book on its own. Aiming our book at people who
are new to social network analysis, our first priority is to have them ex-
plore the structure of social networks to give them a feel for the concepts
and applications of network analysis. Exploration involves visualization
and manipulation of concrete networks, whereas hypothesis testing boils
down to numbers representing abstract parameters and probabilities. In
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our view, exploration yields the intuitive understanding of networks and
basic network concepts that are a prerequisite for well-considered hy-
pothesis testing.

From the vast array of network analytic techniques and indices we
discuss only a few. We have no intention of presenting a survey of all
structural techniques and indices because we fear that the readers will not
be able to see the forest for the trees. We focus on as few techniques and
indices as are needed to present and measure the underlying concept. With
respect to the concept of cohesion, for instance, many structural indices
have been proposed for identifying cohesive groups: n-cliques, n-clans,
n-clubs, m-cores, k-cores, k-plexes, lambda sets, and so on. We discuss
only components, k-cores, 3-cliques, and m-slices (m-cores) because they
suffice to explain the basic parameters involved: density, connectivity, and
strength of relations within cohesive subgroups.

Our choice is influenced by the software that we use because we have
decided to restrict our discussion to indices and techniques that are incor-
porated in this software. Pajek software is designed to handle very large
networks (up to millions of vertices). Therefore, this software package
concentrates on efficient routines, which are capable of dealing with large
networks. Some analytical techniques and structural indices are known to
be inefficient (e.g., the detection of n-cliques), and for others no efficient
algorithm has yet been found or implemented. This limits our options:
we present only the detection of small cliques (of size 3) and we can-
not extensively discuss an important concept such as k-connectivity. In
summary, this book is neither a complete catalogue of network analytic
concepts and techniques nor an exhaustive manual to all commands of
Pajek. It offers just enough concepts, techniques, and skills to understand
and perform all major types of social network analysis.

In contrast to some other handbooks on social network analysis, we
minimize mathematical notation and present all definitions verbatim.
There are no mathematical formulae in the book. We assume that many
students and researchers are interested in the application of social network
analysis rather than in its mathematical properties. As a consequence, and
this may be very surprising to seasoned network analysts, we do not intro-
duce the matrix as a data format and display format for social networks
until the end of the book.

Finally, there is a remark on the terminology used in the book. Social
network analysis derives its basic concepts from mathematical graph the-
ory. Unfortunately, different “vocabularies” exist within graph theory, us-
ing different concepts to refer to the same phenomena. Traditionally, social
network analysts have used the terminology employed by Frank Harary,
for example, in his book Graph Theory (Reading, Addison-Wesley, 1969).
We choose, however, to follow the terminology that prevails in current
textbooks on graph theory, for example, R. J. Wilson’s Introduction to
Graph Theory (Edinburgh, Oliver and Boyd, 1972; published later by
Wiley, New York). Thus, we hope to narrow the terminological gap be-
tween social network analysis and graph theory. As a result, we speak
of a vertex instead of a node or a point and some of our definitions and
concepts differ from those proposed by Frank Harary.
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Part I

Fundamentals

Social network analysis focuses on ties among, for example, people,
groups of people, organizations, and countries. These ties combine to
form networks, which we will learn to analyze. The first part of the book
introduces the concept of a social network. We discuss several types of
networks and the ways in which we can analyze them numerically and vi-
sually with the computer software program Pajek, which is used through-
out this book. After studying Chapters 1 and 2, you should understand
the concept of a social network and you should be able to create, manip-
ulate, and visualize a social network with the software presented in this
book.

1
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Looking for Social Structure

1.1 Introduction

The social sciences focus on structure: the structure of human groups,
communities, organizations, markets, society, or the world system. In this
book, we conceptualize social structure as a network of social ties. Social
network analysts assume that interpersonal ties matter, as do ties among
organizations or countries, because they transmit behavior, attitudes, in-
formation, or goods. Social network analysis offers the methodology to
analyze social relations; it tells us how to conceptualize social networks
and how to analyze them.

In this book, we present the most important methods of exploring so-
cial networks, emphasizing visual exploration. Network visualization has
been an important tool for researchers from the very beginning of social
network analysis. This chapter introduces the basic elements of a social
network and shows how to construct and draw a social network.

1.2 Sociometry and Sociogram

The basis of social network visualization was laid by researchers who
called themselves sociometrists. Their leader, J. L. Moreno, founded a
social science called sociometry, which studies interpersonal relations.
Society, they argued, is not an aggregate of individuals and their char-
acteristics, as statisticians assume, but a structure of interpersonal ties.
Therefore, the individual is not the basic social unit. The social atom
consists of an individual and his or her social, economic, or cultural ties.
Social atoms are linked into groups, and, ultimately, society consists of
interrelated groups.

From their point of view, it is understandable that sociometrists studied
the structure of small groups rather than the structure of society at large.
In particular, they investigated social choices within a small group. They
asked people questions such as, “Whom would you choose as a friend
[colleague, advisor, etc.]?” This type of data has since been known as
sociometric choice. In sociometry, social choices are considered the most
important expression of social relations.

3
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Figure 2. Sociogram of dining-table partners.

Figure 2 presents an example of sociometric research. It depicts the
choices of twenty-six girls living in one “cottage” (dormitory) at a New
York state training school. The girls were asked to choose the girls they
liked best as their dining-table partners. First and second choices are
selected only. (Here and elsewhere, a reference on the source of the
data can be found under Further Reading, which is at the end of each
chapter.)

Figure 2 is an example of a sociogram, which is a graphical representa-
tion of group structure. The sociogram is among the most important in-
struments originated in sociometry, and it is the basis for the visualization
of social networks. You have most likely already “read” and understood
the figure without needing the following explanation, which illustrates its
visual appeal and conceptual clarity. In this sociogram, each girl in the
dormitory is represented by a circle. For the sake of identification, the
girls’ names are written next to the circles. Each arc (arrow) represents a
choice. The girl who chooses a peer as a dining-table companion sends
an arc toward her. Irene (in the bottom right of the figure), for instance,
chose Hilda as her favorite dining-table partner and Ellen as her second
choice, as indicated by the numbers labeling each arrow.

A sociogram depicts the structure of ties within a group. This example
shows not only which girls are popular, as indicated by the number of
choices they receive, but also whether the choices come from popular
or unpopular girls. For example, Hilda receives four choices from Irene,
Ruth, Hazel, and Betty, and she reciprocates the last two choices. But
none of these four girls is chosen by any of the other girls. Therefore,
Hilda is located at the margin of the sociogram, whereas Frances, who
is chosen only twice, is more central because she is chosen by “popular”
girls such as Adele and Marion. A simple count of choices does not reveal
this, whereas a sociogram does.
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Looking for Social Structure 5

The sociogram has proved to be an important analytical tool that helped
to reveal several structural features of social groups. In this book, we make
ample use of it.

1.3 Exploratory Social Network Analysis

Sociometry is not the only tradition in the social sciences that focuses
on social ties. Without going into historical detail (see Further Reading
for references on the history of social network analysis), we may note
that scientists from several social sciences have applied network analysis
to different kinds of social relations and social units. Anthropologists
study kinship relations, friendship, and gift giving among people rather
than sociometric choice; social psychologists focus on affections; political
scientists study power relations among people, organizations, or nations;
economists investigate trade and organizational ties among firms. In this
book, the word actor refers to a person, organization, or nation that is
involved in a social relation. We may say that social network analysis
studies the social ties among actors.

The main goal of social network analysis is detecting and interpreting
patterns of social ties among actors.

This book deals with exploratory social network analysis only. This means
that we have no specific hypotheses about the structure of a network
beforehand that we can test. For example, a hypothesis on the dining-
table partners network could predict a particular rate of mutual choices
(e.g., one of five choices will be reciprocated). This hypothesis must be
grounded in social theory and prior research experience. The hypothesis
can be tested provided that an adequate statistical model is available.

We use no hypothesis testing here, because we cannot assume prior re-
search experience in an introductory course book and because the statisti-
cal models involved are complicated. Therefore, we adopt an exploratory
approach, which assumes that the structure or pattern of ties in a so-
cial network is meaningful to the members of the network and, hence,
to the researcher. Instead of testing prespecified structural hypotheses, we
explore social networks for meaningful patterns.

For similar reasons, we pay no attention to the estimation of network
features from samples. In network analysis, estimation techniques are even
more complicated than estimation in statistics, because the structure of a
random sample seldom matches the structure of the overall network. It
is easy to demonstrate this. For example, select five girls from the dining-
table partners network at random and focus on the choices among them.
You will find fewer choices per person than the two choices in the overall
network for the simple reason that choices to girls outside the sample are
neglected. Even in this simple respect, a sample is not representative of a
network.
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We analyze entire networks rather than samples. However, what is the
entire network? Sociometry assumes that society consists of interrelated
groups, so a network encompasses society at large. Research on the so-
called Small World problem suggested that ties of acquaintanceship con-
nect us to almost every human being on the earth in six or seven steps,
(i.e., with five or six intermediaries), so our network eventually covers the
entire world population, which is clearly too large a network to be stud-
ied. Therefore, we must use an artificial criterion to delimit the network
we are studying. For example, we may study the girls of one dormitory
only. We do not know their preferences for table partners in other dormi-
tories. Perhaps Hilda is the only vegetarian in a group of carnivores and
she prefers to eat with girls of other dormitories. If so, including choices
between members of different dormitories will alter Hilda’s position in
the network tremendously.

Because boundary specification may seriously affect the structure of a
network, it is important to consider it carefully. Use substantive arguments
to support your decision of whom to include in the network and whom
to exclude.

Exploratory social network analysis consists of four parts: the definition
of a network, network manipulation, determination of structural features,
and visual inspection. In the following subsections we present an overview
of these techniques. This overview serves to introduce basic concepts in
network analysis and to help you get started with the software used in
this book.

1.3.1 Network Definition

To analyze a network, we must first have one. What is a network? Here,
and elsewhere, we use a branch of mathematics called graph theory to
define concepts. Most characteristics of networks that we introduce in
this book originate from graph theory. Although this is not a course in
graph theory, you should study the definitions carefully to understand
what you are doing when you apply network analysis. Throughout this
book, we present definitions in text boxes to highlight them.

A graph is a set of vertices and a set of lines between pairs of vertices.

What is a graph? A graph represents the structure of a network; all it
needs for this is a set of vertices (which are also called points or nodes)
and a set of lines where each line connects two vertices.

A vertex (singular of vertices) is the smallest unit in a network. In
social network analysis, it represents an actor (e.g., a girl in a dormitory,
an organization, or a country). A vertex is usually identified by a number.

A line is a tie between two vertices in a network. In social network
analysis it can be any social relation. A line is defined by its two endpoints,
which are the two vertices that are incident with the line.

A loop is a special kind of line, namely, a line that connects a ver-
tex to itself. In the dining-table partners network, loops do not occur
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Looking for Social Structure 7

because girls are not allowed to choose themselves as a dinner-table part-
ner. However, loops are meaningful in some kinds of networks.

A line is directed or undirected. A directed line is called an arc, whereas
an undirected line is an edge. Sociometric choice is best represented by
arcs, because one girl chooses another and choices need not be recipro-
cated (e.g., Ella and Ellen in Figure 2).

A directed graph or digraph contains one or more arcs. A social relation
that is undirected (e.g., is family of) is represented by an edge because
both individuals are equally involved in the relation. An undirected graph
contains no arcs: all of its lines are edges.

Formally, an arc is an ordered pair of vertices in which the first vertex
is the sender (the tail of the arc) and the second the receiver of the tie (the
head of the arc). An arc points from a sender to a receiver. In contrast,
an edge, which has no direction, is represented by an unordered pair. It
does not matter which vertex is first or second in the pair. We should note,
however, that an edge is usually equivalent to a bidirectional arc: if Ella
and Ellen are sisters (undirected), we may say that Ella is the sister of
Ellen and Ellen is the sister of Ella (directed). It is important to note this,
as we will see in later chapters.

The dining-table partners network has no multiple lines because no girl
was allowed to nominate the same girl as first and second choice. Without
this restriction, which was imposed by the researcher, multiple arcs could
have occurred, and they actually do occur in other social networks.

In a graph, multiple lines are allowed, but when we say that a graph
is simple, we indicate that it has no multiple lines. In addition, a simple
undirected graph contains no loops, whereas loops are allowed in a simple
directed graph. It is important to remember this.

A simple undirected graph contains neither multiple edges nor loops.

A simple directed graph contains no multiple arcs.

Now that we have discussed the concept of a graph at some length, it is
very easy to define a network. A network consists of a graph and addi-
tional information on the vertices or lines of the graph. We should note
that the additional information is irrelevant to the structure of the net-
work because the structure depends on the pattern of ties.

A network consists of a graph and additional information on the ver-
tices or the lines of the graph.

In the dining-table partners network, the names of the girls represent
additional information on the vertices that turns the graph into a network.
Because of this information, we can see which vertex identifies Ella in the
sociogram. The numbers printed near the arcs and edges offer additional
information on the links between the girls: a 1 indicates a first choice
and a 2 represents a second choice. They are called line values, and they
usually indicate the strength of a relation.
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8 Exploratory Network Analysis with Pajek

The dining-table partners network is clearly a network and not a graph.
It is a directed simple network because it contains arcs (directed) but not
multiple arcs (simple). In addition, we know that it contains no loops.
Several analytical techniques we discuss assume that loops and multiple
lines are absent from a network. However, we do not always spell out
these properties of the network but rather indicate whether it is simple.
Take care!

Application
In this book, we learn social network analysis by doing it. We use the
computer program Pajek – Slovenian for spider – to analyze and draw so-
cial networks. The Web site dedicated to this book (http://vlado.fmf.uni-
lj.si/pub/networks/book/) contains the software. We advise you to down-
load and install Pajek on your computer (see Appendix 1 for more details)
and all example data sets from this Web site. Store the software and data
sets on the hard disk of your computer following the guidelines provided
on the Web site. When you have done so, carry out the commands that
we discuss under “Application” in each chapter. This will familiarize you
with the structural concepts and with Pajek. By following the instructions
under “Application” step by step, you will be able to produce the figures
and results presented in the theoretical sections unless stated differently.
Sometimes, the visualizations on your computer screen will be slightly dif-
ferent from the figures in the book. If the general patterns match, however,
you know that you are on the right track.

Network data
file

Some concepts from graph theory are the building blocks or data objects
of Pajek. Of course, a network is the most important data object in Pajek,
so let us describe it first. In Pajek, a network is defined in accordance
with graph theory: a list of vertices and lists of arcs and edges, where
each arc or edge has a value. Take a look at the partial listing of the data
file for the dining-table partners network (Figure 3, note that part of the
vertices and arcs are replaced by [ . . . ]). Open the file Dining-table_
partners.net, which you have downloaded from the Web site, in a
word processor program to see the entire data file.

*Vertices 26
1 "Ada" 0.1646 0.1077 0.5000
2 "Cora" 0.0481 0.3446 0.5000
3 "Louise" 0.3472 0.0759 0.5000
4 "Jean" 0.1063 0.6284 0.5000

[…]
25 "Laura" 0.5101 0.6557 0.5000
26 "Irene" 0.7478 0.9241 0.5000

*Arcs
1 3 2
1 2 1
2 1 1
2 4 2
3 9 1
3 11 2

[…]
25 15 1
25 17 2
26 13 1
26 24 2

*Edges

Figure 3. Partial listing of a network data file for Pajek.
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First, the data file specifies the number of vertices. Then, each vertex is
identified on a separate line by a serial number, a textual label [enclosed
in quotation marks (“ ”)] and three real numbers between 0 and 1, which
indicate the position of the vertex in three-dimensional space if the net-
work is drawn. We pay more attention to these coordinates in Chapter 2.
For now, it suffices to know that the first number specifies the horizontal
position of a vertex (0 is at the left of the screen and 1 at the right) and
the second number gives the vertical position of a vertex (0 is the top of
the screen and 1 is the bottom). The text label is crucial for identification
of vertices, the more so because serial numbers of vertices may change
during the analysis.

The list of vertices is followed by a list of arcs. Each line identifies an
arc by the serial number of the sending vertex, followed by the number of
the receiving vertex and the value of the arc. Just as in graph theory, Pajek
defines a line as a pair of vertices. In Figure 3, the first arc represents Ada’s
choice (vertex 1) of Louise (vertex 3) as a dining-table partner. Louise is
Ada’s second choice; Cora is her first choice, which is indicated by the
second arc. A list of edges is similar to a list of arcs with the exception
that the order of the two vertices that identify an edge is disregarded in
computations. In this data file, no edges are listed.

It is interesting to note that we can distinguish between the structural
data or graph and the additional information on vertices and lines in the
network data file. The graph is fully defined by the list of vertex numbers
and the list of pairs of vertices, which defines its arcs and edges. This part
of the data, which is printed in regular typeface in Figure 3, represents the
structure of the network. The vertex labels, coordinates, and line values
(in italics) specify the additional properties of vertices and lines that make
these data a network. Although this information is extremely useful, it is
not required: Pajek will use vertex numbers as default labels and set line
values to 1 if they are not specified in the data file. In addition, Pajek can
use several other data formats (e.g., the matrix format), which we do not
discuss here. They are briefly described in Appendix 1.

It is possible to generate ready-to-use network files from spreadsheets
and databases by exporting the relevant data in plain text format. For
medium or large networks, processing the data as a relational database
helps data cleaning and coding. See Appendix 1 for details.

File>Network>

Read
We explain how to create a new network in Section 1.4. Let us first look

at the network of the dining-table partners. First, start Pajek by double-
clicking the file Pajek.exe on your hard disk. The computer will display
the Main screen of Pajek (Figure 4). From this screen, you can open the
dining-table partners network with the Read command in the File menu or
by clicking the button with an icon of a folder under the word Network.
In both cases, the usual Windows file dialog box appears in which you can
search and select the file Dining-table_partners.net on your hard
disk, provided that you have downloaded the example data sets from the
book’s Web site.

Network
drop-down menu

When Pajek reads a network, it displays its name in the Network drop-
down menu. This menu is a list of the networks that are accessible to Pajek.
You can open a drop-down menu by left-clicking on the button with the
triangle at the right. The network that you select in the list is shown when
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Figure 4. Pajek Main screen.

the list is closed (e.g., the network Dining-table_partners.net in
Figure 2). Notice that the number of vertices in the network is displayed
in parentheses next to the name. The selected network is the active net-
work, meaning that any operation you perform on a network will use this
particular network. For example, if you use the Draw menu now, Pajek
draws the dining-partners network for you.

The Main screen displays five more drop-down menus beneath the Net-
work drop-down menu. Each of these menus represents a data object in
Pajek: partitions, permutations, clusters, hierarchies, and vectors. Later
chapters will familiarize you with these data objects. Note that each ob-
ject can be opened, saved, or edited from the File menu or by using the
three icons to the left of a drop-down menu (see Section 1.4).

1.3.2 Manipulation

In social network analysis, it is often useful to modify a network. For in-
stance, large networks are too big to be drawn, so we extract a meaningful
part of the network that we inspect first. Visualizations work much bet-
ter for small (some dozens of vertices) to medium-sized (some hundreds
of vertices) networks than for large networks with thousands of vertices.
When social networks contain different kinds of relations, we may focus
on one relation only; for instance, we may want to study first choices only
in the dining-table partners network. Finally, some analytical procedures
demand that complex networks with loops or multiple lines are reduced
to simple graphs first.

Application
Network manipulation is a very powerful tool in social network analysis.
In this book, we encounter several techniques for modifying a network or
selecting a subnetwork. Network manipulation always results in a new
network. In general, many commands in Pajek produce new networks or
other data objects, which are stored in the drop-down menus, rather than
graphical or tabular output.
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Figure 5. Menu structure in Pajek.

Menu structureThe commands for manipulating networks are accessible from menus in
the Main screen. The Main screen menus have a clear logic. Manipulations
that involve one type of data object are listed under a menu with the ob-
ject’s name; for example, the Net menu contains all commands that oper-
ate on one network and the Nets menu lists operations on two networks.
Manipulations that need different kinds of objects are listed in the Oper-
ations menu. When you try to locate a command in Pajek, just consider
which data objects you want to use.

Net>Transform>

Arcs→Edges>
Bidirected
only>Sum
Values

The following example highlights the use of menus in Pajek and their
notation in this book. Suppose we want to change reciprocated choices
in the dining-table partners network into edges. Because this operation
concerns one network and no other data objects, we must look for it in
the Net menu. If we left-click on the word Net in the upper left of the
Main screen, a drop-down menu is displayed. Position the cursor on the
word Transform in the drop-down menu and a new submenu is opened
with a command to change arcs into edges (Arcs→Edges). Finally, we
reach the command allowing us to change bidirectional arcs into edges
and to assign a new line value to the new edge that will replace them
(see Figure 5). We choose to sum the values of the arcs, knowing that
two reciprocal first choices will yield an edge value of two, a first choice
answered by a second choice will produce an edge value of three, and a
line value of four will result from a reciprocal second choice.

In this book, we abbreviate this sequence of commands as follows:

[Main]Net>Transform>Arcs→Edges>Bidirected only>Sum
Values

The screen or window that contains the menu is presented between square
brackets and a transition to a submenu is indicated by the > symbol. The
screen name is specified only if the context is ambiguous. The abbreviated
command is also displayed in the margin (see above) for the purpose of
quick reference.

When the command to change arcs into edges is executed, an in-
formation box appears asking whether a new network must be made
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Figure 6. An information box in Pajek.

(Figure 6). If the answer is yes, which we advise, a new network named
Bidirected Arcs to Edges (SUM) of N1 (26) is added to the
Network drop-down menu with a serial number of 2. The original net-
work is not changed. Conversely, answering no to the question in the
information box causes Pajek to change the original network.

Exercise I
Net>Transform>

Remove>lines
with value>
higher than

Remove all second choices from the original network of dining-table part-
ners with the command summarized in the left margin. Which number do
you enter in the dialog box headed “Remove lines with high values” and
why is this command part of the Net menu? (The answers to the exercises
are listed in Section 1.9.)

1.3.3 Calculation

In social network analysis, many structural features have been quantified
(e.g., an index that measures the centrality of a vertex). Some measures
pertain to the entire network, whereas others summarize the structural
position of a subnetwork or a single vertex. Calculation outputs a single
number in the case of a network characteristic and a series of numbers in
the case of subnetworks and vertices.

Exploring network structure by calculation is much more concise and
precise than visual inspection. However, structural indices are sometimes
abstract and difficult to interpret. Therefore, we use both visual inspection
of a network and calculation of structural indices to analyze network
structure.

Application
Report screen

File>Show
Report Window

In Pajek, results of calculations and other kinds of feedback to the user
are automatically reported in a separate window that we call the Report
screen. If you closed the Report screen or if it is hidden behind other
screens, you can show it again with the Show Report Window command
in the File menu of Pajek’s Main screen.

The Report screen displays numeric results that summarize structural
features as a single number, a frequency distribution, or a cross-tabulation.
Calculations that assign a value to each vertex are not reported in this
screen. They are stored as data objects in Pajek, notably as partitions and
vectors (see Chapter 2). The Report screen displays text but no network
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Figure 7. Report screen in Pajek.

drawings. The contents of the Report screen can be saved as a text file
from its File menu.

Info>Network>

General
The Report screen depicted in Figure 7 shows the number of vertices,

edges, and arcs in the original dining-table partners network. This is
general information on the network that is provided by the command
Info>Network>General (as you know now, this means the General com-
mand within the Network submenu of the Info menu). In addition to the
number of vertices, edges, and arcs, the screen shows the number of multi-
ple lines and loops and two indices of network density that are explained
in Chapter 3. Also, this command displays the number of lines requested
in the dialog box depicted in Figure 8.

Figure 8. Dialog box of Info>Network>General command.
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In this example, we typed a 5 in the dialog box, so the report screen
shows the five lines with the highest line values that are second choices
in the dining-table partners network. In the Report screen, each line is
described by its rank according to its line value, a pair of vertex numbers,
the line value, and a pair of vertex labels. Hence, the first line in Figure 7
represents the arc from Ada (vertex 1) to Louise (vertex 3), which is Ada’s
second choice.

Exercise II
Can you see the number of first choices from the listing in Figure 7 and
does this number surprise you? Which number should you enter in the
dialog box depicted in Figure 8 to get a list of all arcs representing first
choices?

1.3.4 Visualization

The human eye is trained in pattern recognition. Therefore, network vi-
sualizations help to trace and present patterns of ties. In Section 1.2, we
presented the sociogram as the first systematic visualization of a social
network. It was the sociometrists’ main tool to explore and understand
the structure of ties in human groups. In books on graph theory, visualiza-
tions are used to illustrate concepts and proofs. Visualizations facilitate an
intuitive understanding of network concepts, so we use them frequently.

Our eyes are easily fooled, however. A network can be drawn in many
ways, and each drawing stresses different structural features. Therefore,
the analyst should rely on systematic rather than ad hoc principles for
network drawing. In general, we should use automatic procedures, which
generate an optimal layout of the network, when we want to explore
network structure. Subsequently, we may edit the automatically generated
layout manually if we want to present it.

Some basic principles of network drawing should be observed. The
most important principle states that the distance between vertices should
express the strength or number of their ties as closely as possible. In
a map, the distance between cities matches their geographical distance.
In psychological charts, spatial proximity of objects usually expresses
perceived similarity. Because social network analysis focuses on relations,
a drawing should position vertices according to their ties: vertices that
are connected should be drawn closer together than vertices that are not
related. A good drawing minimizes the variation in the length of lines. In
the case of lines with unequal values, line length should be proportional
to line value.

The legibility of a drawing poses additional demands, which are known
as graph drawing esthetics. Vertices or lines should not be drawn too
closely together and small angles between lines that are incident with
the same vertex should be avoided. Distinct vertices and distinct lines
should not merge into one lump. Vertices should not be drawn on top of
a line that does not connect this vertex to another vertex. The number of
crossing lines should be minimized because the eye tends to see crossings
as vertices.
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Figure 9. Draw screen in Pajek.

Application
Draw screenPajek offers many ways to draw a network. It has a separate window

for drawing, which is accessed from the Draw>Draw menu in the Main
screen. The Draw screen has an elaborate menu of choices (see Figure 9),
some of which are presented in later chapters. Use the index of Pajek
commands in this book to find them. We discuss the most important
commands now to help you draw your first network.

It is very important to note the following. Figure 9 is a screen shot of
the Draw screen in Pajek. This figure does not necessarily exactly match
the Draw screen that you see on your computer. First, the size of the com-
puters’ Draw screens may be different. Second, on your computer screen
the vertices are most probably red instead of gray. In this book, colors are
replaced by grays; we discuss this matter in greater detail in Chapter 2.

Next, compare Figure 9 to Figure 2. Although the two figures display
the same network, there are differences. Reciprocal arcs, for example, are
drawn as straight arcs with two heads in Figure 9, whereas they are two
arcs in Figure 2. Figure 2 is exported to a format (Encapsulated PostScript)
that is optimal for publication in a book. It also allows manual editing
(e.g., moving the vertex labels a little bit so as not to obscure arcs or
headings of arcs). In Section 1.3.4.3 and Appendix 2, you can learn more
about this format and how to edit it. The Draw screen of Pajek as shown
in Figure 9, however, is meant for efficient drawing and redrawing of
networks, so it is less detailed.

Keep in mind that the level of detail in the book is greater than that on
the screen. This does not mean that the layout of the network in the Draw
screen is wrong and that you followed the wrong procedure or applied
the wrong commands.

[Draw]
Options>Lines>
Mark Lines>
with Values

Finally, Figure 2 displays line values, whereas Figure 9 does not. Do
not worry about such differences unless the text is explicitly discussing
this aspect. There are many options for changing features of the layout
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in the Draw screen, which may be turned on or off. The line values,
for instance, can be displayed by selecting the option with Values in the
Mark Lines submenu of the Lines command in the Options menu of
the Draw screen. Activate this option now – pressing Ctrl-v will have the
same effect (see Appendix 3) – and you will see the line values on your
computer screen. Line values will now be shown until you turn this option
off. Note the difference between a command and an option in Pajek: a
command is executed once, whereas an option remains effective until it
is turned off.

1.3.4.1 Automatic Drawing
Automated procedures for finding an optimal layout are a better way to
obtain a basic layout than manual drawing, because the resulting picture
depends less on the preconceptions and misconceptions of the investiga-
tor. In addition, automated drawing is much faster and quite spectacular
because the drawing evolves before your eyes.

Layout>Energy
menu

In Pajek, several commands for automatic layout are implemented. Two
commands are accessible from the Layout>Energy menu and we refer to
them as energy commands. Both commands move vertices to locations
that minimize the variation in line length. Imagine that the lines are springs
pulling vertices together, though never too close. The energy commands
“pull” vertices to better positions until they are in a state of equilibrium.
Therefore, these procedures are known as spring embedders.

Layout>Energy>

Starting
positions:

random, circular,
Given xy, Given

z

The relocation technique used in both automatic layout commands has
some limitations. First, the results depend on the starting positions of ver-
tices. Different starting positions may yield different results. Most results
will be quite similar, but results can differ markedly. The Starting positions
submenu on the Layout>Energy menu gives you control over the starting
positions. You can choose random and circular starting positions, or you
can use the present positions of vertices as their starting positions: option
Given xy, where x and y refer to the (horizontal and vertical) coordinates
of vertices in the plane of the Draw screen. The fourth option (Given z)
refers to the third dimension, which we present in Chapter 5.

The second limitation of the relocation technique is that it stops if
improvement is relatively small or if the user so requests in a dialog box
(Figure 10). This means that automatic layout generation outputs a draw-
ing that is very good but not perfect. Manual improvements can be made.
However, make small adjustments only to reduce the risk of discover-
ing a pattern that you introduced to the drawing yourself. To improve a

Figure 10. Continue dialog box.
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drawing it is usually worth the effort to repeat an energy command a
couple of times with given starting positions.

Because of these limitations, take the following advice to heart: never
rely on one run of an energy command. Experiment with both commands
and manual adjustment until you obtain the same layout repeatedly.

Layout>Energy>

Kamada–
Kawai>Free,
Fix first and last,
Fix one in the
middle

The first energy command is named Kamada–Kawai after its authors.
This command produces regularly spaced results, especially for connected
networks that are not very large. The dining-table partners network as
available from the book’s Web site was energized in this way. Kamada–
Kawai seems to produce more stable results than the other energy com-
mand (Fruchterman Reingold) but it is much slower and it should not
be applied to networks containing more than five hundred vertices. With
Kamada–Kawai, commands Fix first and last and Fix one in the middle
enable you to fix vertices that should not be relocated. The first command
fixes the two vertices with the lowest and highest serial numbers. This is
very useful if these vertices represent the sender and target in an informa-
tion network. The second command allows you to specify one vertex that
must be placed in the middle of the drawing.

Layout>Energy>

Fruchterman
Reingold>

2D, 3D

The second energy command, which is called Fruchterman Reingold, is
faster and works with larger networks. This command separates uncon-
nected parts of the network nicely, whereas Kamada–Kawai draws them
on top of one another. It can generate two- and three-dimensional lay-
outs, as indicated by commands 2D and 3D in the submenu. We discuss
three-dimensional visualizations in Chapter 5.

Layout>Energy>

Fruchterman
Reingold>Factor

The third command in the submenu, which is labeled Factor, allows
the user to specify the optimal distance between vertices in a drawing
energized with Fruchterman Reingold. This command displays a dialog
box asking for a positive number. A low number yields small distances
between vertices, so many vertices are placed in the center of the plane. A
high number pushes vertices out of the center toward positions on a circle.
An optimal distance of 1 is a good starting point. Try a smaller distance
if the center of the drawing is quite empty, but try a higher distance if the
center is too crowded.

Each energy command has strong and weak points. We advise start-
ing with Fruchterman Reingold and using several optimal distances un-
til a stable result appears. The drawing can then be improved using
Kamada–Kawai with the actual location of vertices as starting positions.
Finally, improve the drawing by manual editing, which we discuss under
Section 1.3.4.2.

Exercise III
Manipulate the Factor option of the Fruchterman Reingold energy com-
mand to obtain a sociogram of the dining-table partners network with
a clear distinction between vertices in the center and vertices in the mar-
gin or periphery. Do you think your drawing is better than the original?
Justify your answer.

1.3.4.2 Manual Drawing
Pajek supports manual drawing of a network. Use the mouse to drag
individual vertices from one position to another. Place the cursor on a
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Figure 11. A selected option in the Draw screen.

vertex, hold down the left mouse button, and move the mouse to drag a
vertex. Notice that the lines that are incident with the vertex also move.
You can drop the vertex anywhere you want, unless you constrain the
movement of vertices with the options in the Move menu.

Move>Fix, Grid,
Circles

The Move menu in the Draw screen has (at least) three options: Fix,
Grid, and Circles. The Fix option allows you to restrict the movement of
a vertex. It cannot be moved either horizontally or vertically if you select
x or y, respectively, in the drop-down menu. Select Radius to restrict the
movement of a vertex to a circle. The options Grid and Circles allow you
to specify a limited number of positions to which a vertex can be moved.
In the case of small networks, this generates esthetically pleasing results.
In Pajek, when you select an option, it is marked by a dot (Figure 11).

Redraw

Previous

Next
GraphOnly

You can zoom in on the drawing by pressing the right mouse button
and dragging a rectangle over the area that you want to enlarge. Within
the enlargement, you can zoom in again. To return to the entire network,
you must select the Redraw command on the Draw screen menu. It is
not possible to zoom out in steps. The GraphOnly menu is similar to
the Redraw menu, except that GraphOnly removes all labels as well as
the heads of the arcs (press Ctrl-l to redisplay them). It shows vertices
and lines only. This option speeds up automatic layout of a network,
which is particularly helpful for drawing large networks. The Previous and
Next commands on the menu allow you to display the network before
or after the current network in the Network drop-down menu, so you
need not return to the Main screen first to select another network. Note,
however, that this is true only if the option Network is selected in the
Previous/Next>Apply to submenu of the Options menu.

Options menu:
Transform,

Layout, Mark
Vertices Using

The Options menu offers a variety of choices for changing the appear-
ance of a network in the Draw screen and for setting options to commands
in other Draw screen menus (Figure 12). Many drawing options are self-
explanatory. Options for changing the shape of the network are listed in
the Transform and Layout submenu, whereas options for the size, color,
and labeling of vertices and lines are found in several other submenus.
Figure 12 shows the Options>Mark Vertices Using submenu and its
options for changing the type of vertex label displayed. Note the key-
board shortcuts in this submenu: pressing the Ctrl key along with the l,
n, or d key has the same effect as selecting the accompanying item in the
submenu.

[Draw]Info>

Closest Vertices
To improve your drawing, Pajek can evaluate a series of esthetic prop-

erties, such as closest vertices that are not linked or the number of crossing
lines. This allows you to find the worst aspects of a drawing and to im-
prove them manually. The Info menu in the Draw screen allows you to
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Figure 12. Options menu of the Draw screen.

select one or all esthetic properties. If you select one of these commands
(e.g., Closest Vertices), Pajek identifies the vertices that perform worst on
this feature: they are identified by a color (other than light blue) in the
drawing and they are listed in the Report screen [e.g., vertices 10 (Maxine)
and 14 (Frances) are closest]. In the Draw screen, they are now colored
yellow. Because they are not directly linked, it may be wise to move them
apart a little.

[Draw]Info>All
Properties

When you select all esthetic properties, each property will be associated
with a color (see Figure 13 for esthetic information on the dining-table
partners network as supplied on the book’s Web site). Sometimes, vertices
violate several esthetic indices, so they ought to be marked by several
colors. Because this is not possible, some colors may not show up in the
drawing. There are no rules of thumb for optimal scores on the esthetic
properties. The Info command helps to identify the vertices that perform
worst, but it is up to you to see whether you can improve their placement.

Exercise IV
Open the original dining-table partners network and improve it according
to the esthetic criterion for minimizing crossing lines. Which vertex can
you move to reduce the number of crossing lines?

1.3.4.3 Saving a Drawing
To present pictures of networks to an audience, we have to save our visu-
alizations. This subsection sketches the ways in which network drawings
can be exported from Pajek.

-------------
Layout Info
-------------
Yellow: The closest vertices: 10 and 14. Distance: 0.07267
LimeGreen: The smallest angle: 2.1.2. Angle: 0.00000
Red: The shortest line: 9.14. Length: 0.08530
Blue: The longest line: 11.20. Length: 0.29546
Pink: Number of crossings: 13
White: Closest vertex to line: 6 to 15.25. Distance: 0.03463

Figure 13. Textual output from [Draw]Info>All Properties.
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Figure 14. A 3-D rendering of the dining-table partners network.

[Main]File>
Network>Save

If a researcher wants to save a layout for future use, the easiest thing to
do is to save the network itself. Remember that a network consists of lists
of vertices, arcs, and edges. The list of vertices specifies a serial number, a
label, and coordinates in the plane for each vertex. Relocation of a vertex
in the Draw screen changes its coordinates and the latest coordinates are
written to the network file on execution of the Save command. When the
network is reopened in Pajek, the researcher obtains the layout he or she
saved, that is, the general pattern because the size and colors of vertices
and lines are usually not specified in the network data file.

Export menu Pajek offers several ways to save the drawing as a picture for presen-
tation to an audience. They are listed in the Export menu of the Draw
screen. Three commands produce two-dimensional output (EPS/PS, SVG,
and Bitmap) and another three commands yield three-dimensional output
(VRML, MDL MOLfile, and Kinemages). Although three-dimensional
representations can be quite spectacular (Figure 14: a ray-traced image
from a VRML model exported by Pajek), we do not discuss them in this
chapter but rather in Chapter 5. Here we briefly outline the commands
for two-dimensional output (see Appendix 2 for more details).

Export>Bitmap The Bitmap export command produces an image of the Draw screen:
each screen pixel is represented by a point in a raster, which is called a
bitmap. You get exactly what you see; even the size of the picture matches
the size of the Draw screen (e.g., see Figure 9). Every word processor and
presentation program operating under Windows can load and display
bitmaps. Bitmaps, however, are cumbersome to edit, they are “bumpy,”
and they lose their sharpness if they are enlarged or reduced.
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Export>EPS/PS,
SVG,Options

Vector graphics produce more pleasing results than bitmaps. In a vec-
tor graphic, the shape and position of each circle representing a vertex
and each line, arc, loop, or label are specified. Because each element in the
drawing is defined separately, a picture can be enlarged or reduced without
loss of quality and its layout can be manipulated easily. Pajek can export
vector graphics in two formats, which are closely related: PostScript (com-
mand EPS/PS) and Scalable Vector Graphics (command SVG). PostScript
(PS) and Encapsulated PostScript (EPS) are meant for printing, whereas
the Scalable Vector Graphics format was developed for the Web. The user
can modify the layout of both PostScript and Scalable Vector Graphics
drawings in the Export>Options submenu, which is covered in detail in
Appendix 2.

In this book, we use vector graphics because of their high quality. For
example, the sociogram shown in Figure 2 was exported from Pajek as
Encapsulated PostScript. However, PostScript and Scalable Vector Graph-
ics are formats that are not universally supported by Windows software.
For example, most printers cannot print Encapsulated PostScript directly.
Appropriate software (e.g., CorelDraw) is necessary to edit vertices, la-
bels, and lines or to convert a vector graphic to a format that your word
processor can handle (e.g., Windows MetaFile). To display Scalable Vec-
tor Graphics on a Web page, download a plug-in from the Web site of
Adobe Systems Incorporated (see Appendix 2 for details).

1.4 Assembling a Social Network

To perform network analysis, social relations must be measured and
coded. In this section, we briefly discuss data collection techniques for
social network analysis and explain how to convert data to a network file
for Pajek.

There are several ways to collect data on social relations. Traditionally,
sociometrists focus on the structure of social choice within a group. They
gather data by asking each member of a group to indicate his or her
favorites (or opponents) with respect to an activity that is important to
the group. For example, they ask pupils in a class to name the children
they prefer to sit next to. In a questionnaire, respondents may write down
the names of the children they choose or check their names on a list. These
methods are called free recall and roster, respectively. The latter method
reduces the risk that respondents may overlook people.

Sometimes, the respondent is asked to nominate a fixed number of fa-
vorites. In sociometry, it was very popular to restrict the number of choices
to three. For example, in the dining-table partners network each girl was
asked to make three choices. This restriction is motivated by the empirical
discovery that the more choices that are allowed the more they concen-
trate on people who are already highly chosen. When asked for their best
friends, most people mention four or fewer people. If they have to men-
tion more people, they usually nominate people they think they should like
because they are liked by many others. However, restricting the number
of choices reduces the reliability of the data: choices are less stable over
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time and correlate less well than other measurement techniques such as
unrestricted choices, ranking (rank all other group members with respect
to their attractiveness), or paired comparison (list all possible pairs of
group members and choose a preferred person in each pair). A researcher
who fixes the number of choices available to respondents eliminates the
difference between a respondent who entertains many friendships and a
loner.

Fixed and free choice, ranking, and paired comparison are techniques
that elicit data on social relations through questioning. However, there
are several data collection techniques that register social relations rather
than elicit them. For example, the amount of interaction between pupils
in a class may be observed by a researcher; respondents may be asked
to register their contacts in a diary; membership lists and files that log
contacts in electronic networks may be coded; family relations or trans-
actions can be retrieved from archives and databases. The rapid growth
of electronic data storage offers new opportunities to gather data on large
social networks.

Indirect data are usually better than reported data, which rely on the of-
ten inaccurate recollections of respondents. However, it is not always easy
to identify people and organizations unambiguously in data collected indi-
rectly: is a Mr. Jones on the board of one organization the same Mr. Jones
who is CEO of another firm? It goes without saying that network analysis
demands correct identification of vertices in the network.

Application
When you have collected your data, it is time to create a network that can
be analyzed with Pajek. In Section 1.3.1, we discussed the structure of a
Pajek network file. This is a simple text file that can be typed out in any
word processor that exports plain text. Do not forget to attribute serial
numbers to the vertices ranging from 1 to the number of vertices. Save the
network from the word processor as plain, unformatted text (DOS text,
ASCII) and use the extension .net in the file name. If your data are stored
as a relational database, the database software may be able to produce
the Pajek network file; see Appendix 1 for an example.

Net>Random
Network>

Total No. of Arcs

It is also possible to produce the network file in Pajek. First, make a new
random network with the command Net>Random Network>Total No.
of Arcs. In the first dialog box, type in the number of vertices you want.
In the second dialog box, request zero arcs to obtain a network without
lines. The command creates a new network and adds it to the Network
drop-down menu in the Main screen. When you draw it (Draw>Draw),
you will see that the vertices are nicely arranged in a circle or ellipse
(Figure 15).

File>Network>

Edit

Editing Network
screen

As a second step, add lines to the network, which may be done in
the Main screen or in the Draw screen. In the Main screen, both the
Edit button at the side of the Network drop-down menu (a picture of a
writing hand) and the command File>Network>Edit open a dialog box
that allows you to select a vertex by serial number or by label. Next, the
Editing Network screen is shown for the selected vertex (Figure 16). In the
Draw screen, you can open the Editing Network screen by right-clicking
a vertex.
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Figure 15. Random network without lines.

[Editing
Network]
Newline

Double-clicking the word Newline in the Editing Network screen opens
a dialog box allowing the user to add a line to or from the selected vertex.
To add an edge, type the number of another vertex. Type the number of
the vertex preceded by a + sign to add an arc to the selected vertex and use
a − sign to add an arc from the selected vertex. Each new edge and arc is
displayed as a line in the Editing Network screen. For example, Figure 16
displays an arc from vertex 4 to vertex 1, an arc from vertex 1 to 3, and
an edge (indicated by a dash between vertex numbers) between vertices
1 and 2. Also, you can delete a line in the Editing Network screen: just
double-click the line you want to delete.

By default, all lines have unit line value as indicated by the expression
val = 1.000 in the Editing Network screen. Line values can be changed
in this screen by selecting the line (left-click) and right-clicking it. A dia-
log box appears that accepts any number (positive, zero, or negative) as
input.

File>Network>

Save
As a final step, save the network. Networks in Pajek are not automati-

cally saved. Because network analysis usually yields many new networks,
most of which are just intermediate steps, Pajek does not prompt the user
to save networks. Save the new network as soon as you finish editing it.

Figure 16. Edit Network screen.
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Use Save from the submenu File>Network or use the save button (the pic-
ture of a diskette) at the side of the Network drop-down menu. We recom-
mend that you save a network in Pajek Arcs/Edges format for easy manual
editing and for a maximum choice of layout options (see Appendix 2).
Give the file a meaningful name and the extension .net.

Exercise V
Create some random networks with as many vertices and arcs as the
dining-table partners network (without multiple lines). Energize them
and inspect the number of crossing lines. Which systematic differences
occur between the random networks and the original dining-table part-
ners network?

1.5 Summary

This chapter introduced social network analysis and emphasized its theo-
retical interest in social relations between people or organizations and its
roots in mathematical graph theory. A network is defined as a set of ver-
tices and a set of lines between vertices with additional information on the
vertices or lines. This flexible definition permits a wide variety of empiri-
cal phenomena, ranging from the structure of molecules to the structure
of the universe, to be modeled as networks. In social network analysis, we
concentrate on relations between people or social entities that represent
groups of people (e.g., affective relations between people, trade relations
between organizations, or power relations between nations).

This simple definition of a network covers all types of networks encoun-
tered in this book: directed and undirected networks and networks with
and without loops or multiple lines. Most social networks are simple undi-
rected or directed networks, which contain no multiple lines, and loops
usually do not occur. As a result of transformations, however, networks
may acquire multiple lines and loops. The results of analytic procedures
may depend on the kind of network we are analyzing, so it is important
to know what kind of network it is.

The mathematical roots of network analysis permit powerful and well-
defined manipulations, calculations, and visualizations of social networks.
Exploratory social network analysis as we present it here makes ample use
of these three techniques. In exploring a social network, we first visualize
it to get an impression of its structure. The sociogram, which originates
from sociometry, is our main visualization technique.

We are convinced that doing social network analysis is a good way to
learn about it. Therefore, the program Pajek for network analysis is an
integral part of the course. We urge you to practice the commands demon-
strated rather than just read about them. The data related to each example
in the book are available from the book’s Web site (http://vlado.fmf.uni-
lj.si/pub/networks/book/). This chapter introduced the menu structure of
Pajek and some basic commands for visualizing networks. You are now
ready to start analyzing social networks.
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1.6 Questions

1. A sociogram is
a. an index of sociability.
b. a graphic representation of group structure.
c. the structure of sociometric choices.
d. a set of vertices connected by edges or arcs.

2. Which of the following definitions is correct?
a. A graph is a set of vertices and a set of lines.
b. A graph is a set of vertices and a set of edges.
c. A graph is a network.
d. A graph is a set of vertices and a set of pairs of vertices.

3. Have a look at the following networks and choose the correct state-
ment.

1

2

3

4Network A Network B

1

2

3

4

a. Neither A nor B is a simple directed graph.
b. A is not a simple directed graph but B is.
c. A and B are simple directed graphs.
d. A and B are networks but not graphs.

4. Social network analysis is exploratory if
a. the researcher has no specific ideas on the structure of the network

beforehand.
b. it deals with social settings that are unexplored by social scientists.
c. the network is studied outside a laboratory.
d. it does not try to predict network structure from a sample.

5. Which of the following statements is correct?
a. A line can be incident with a line.
b. A line can be incident with a vertex.
c. An edge can be incident with a line.
d. A vertex can be incident with a vertex.

6. Open the dining-table partners network and remove all second choices
(see Exercise I in Section 1.3.2).
a. What in your opinion is the most striking result if you draw the new

network?
b. Which energy command do you recommend to optimize this draw-

ing? Explain your choice.
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1.7 Assignment

Your first social network analysis: investigate the friendship network
within your class as it is or as you perceive it. Choose the right kind
of network to conceptualize friendship ties (directed, undirected, valued,
with multiple lines and loops?), collect the data (design a questionnaire
or state the friendships you observe), make a Pajek network file, and then
draw and interpret it. If you use perceived friendship ties, it is worthwhile
to compare your network to networks made by other students. Where do
they differ?

1.8 Further Reading

� The example of the girls’ school dormitory is taken from J. L.
Moreno, The Sociometry Reader (Glencoe, Ill.: The Free Press,
1960, p. 35).

� A brief history of social network analysis can be found in J. Scott,
Social Network Analysis: A Handbook [London, Sage (2nd ed.
2000), 1991, Chapter 2].

� Stanley Milgram originated research on the Small World prob-
lem; for example, see S. Milgram, “Interdisciplinary thinking and
the small world problem.” In: M. Sherif & C. W. Sherif (Eds.),
Interdisciplinary Relationships in the Social Sciences (Chicago,
Aldine, 1969, pp. 103–20).

� For the problem of boundary specification and sampling see
S. Wasserman & K. Faust, Social Network Analysis: Methods
and Applications (Cambridge, Cambridge University Press, 1994,
Section 2.2, pp. 30–5). Information on data collection can be
found in Section 2.4 (pp. 43–59). This impressive monograph is
a good starting point for further reading on any topic in social
network analysis.

1.9 Answers

Answers to the Exercises
I. Because first choices have line values of 1 and second choices have

line values of 2, you must type 1 in the dialog box that appears
on activation of the command Net>Transform>Remove>lines with
value>higher than. This command is part of the Net menu because it
operates on a single network only.

II. In Figure 7, the line starting with “Number of lines with value = 1”
shows the number of lines with line value one: 26 arcs. Because the line
value of 1 represents a first choice here, the number of first choices is
26. This should not come as a surprise because each of the 26 girls was
supposed to inidicate one first choice among her peers. To get a list of
all first choices in the dining-table partners network, we should have
entered -26 or the range 27 to 52 (type the two numbers seperated by
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a space), which contains the arcs on ranks 27 up to and including 52,
in the dialog box.

III. Setting Factor to 2 or higher will yield a drawing with a lot of vertices
placed on a circle and few vertices in the middle, notably Anna, Eva,
or Edna. This drawing is not an improvement; the selection of central
vertices is arbitrary. Repeat the energy command several times (with
random starting positions) and you will find different persons in the
center.

IV. Select the command No. of Crossings in the Info menu of the Draw
screen. The vertices in the center are now colored pink: their lines
cross. The Report screen shows the number of crossing lines to be 13.
The easiest improvement is to drag Alice to a position above the arc
from Laura to Eva. Now Alice’s arcs cross no others and the number
of crossing lines is reduced to 12. However, it is even better to drag
Alice and Martha to the left of the arc from Francis to Eva, because
Martha and Marion are connected by mutual choice, which counts
twice at every crossing. If you do this, it is better to drag Maxine
below the arc from Martha to Anna, because Eva and Maxine are
doubly connected. Another improvement is made if Adele is placed
to the left of the arc from Anna to Lena. We reach a minimum of
seven crossing arcs. Can you do better?

V. The random networks seem to be “messier” than the original dining-
table partners network. This is clearly reflected by the fact that the
number of crossing lines in the energized drawing is much higher: ap-
proximately forty crossing lines compared to thirteen in the dining-
table partners network. There are several possible reasons. First, in the
dining-table partners network, each girl makes two choices, whereas
the number of arcs emanating from a vertex in the random network
differs: you may find isolates next to vertices sending four or more
arcs. The vertices sending many arcs are likely to “clutter” the view.
Another reason pertains to the ratio of mutual choices. In the ac-
tual selection of dining-table partners, there is a fair chance that girls
will nominate each other. In the sociogram, this is represented by a
bidirectional arc, which needs no more space than a single arc.

Answers to the Questions in Section 1.6
1. Answer b is correct because a sociogram is a specific way of drawing

the structure of ties within a human group.
2. A graph is defined as a set of vertices and a set of lines between pairs

of vertices (see Section 1.3.1), so answer d is correct: lines can be
defined as pairs of vertices. Answer a does not specify that the lines
must have the graph’s vertices as their endpoints, so this answer is not
correct. Answer b has the same fault and it restricts the definition to
undirected graphs, which is not correct according to our definitions.
Answer c ignores the difference between a graph and a network.

3. Answer b is correct. A simple directed graph contains at least one
arc (so it is directed) and no multiple lines; it may contain loops.
Therefore, network B is a simple directed graph but network A is not
because of its multiple lines. Answer d is wrong because there is no
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additional information on the vertices and arcs, such as vertex labels
or line values.

4. Answers a and d are correct.
5. Answer b is correct.
6. See also the answer to Exercise I.

a. The network is no longer connected. Some girls and pairs of girls
are disconnected (e.g., Cora, and Ada and Jean and Helen).

b. We prefer Fruchterman Reingold because Kamada–Kawai some-
times draws disconnected parts on top of one another.



2

Attributes and Relations

2.1 Introduction

In Chapter 1, we argued that social network analysis focuses on social
relations. A network is a set of vertices and lines. Both vertices and lines
have characteristics that we may want to include in our analysis (e.g., the
gender of people and the strength of their ties). As noted in Chapter 1,
properties of relations are represented by line values in the network (e.g.,
first and second choices among girls in the dormitory). Now, we add
characteristics of the vertices to the analysis. How can we use information
on the actors to make sense of the social network?

In this chapter, we present techniques that combine relational network
data and nonrelational attributes, such as psychological, social, econom-
ical, and geographical characteristics of the vertices in the network. The
attributes enhance our interpretation of network structure and they en-
able us to study subsections of the network. In addition, we briefly discuss
how to use the network position of vertices in statistical analysis; social
network analysis and statistics are two complementary sets of techniques.
After having studied this chapter, you will understand the basic data used
in network analysis and you will be able to combine relational and non-
relational data.

2.2 Example: The World System

Social network analysis can be applied to large-scale phenomena. In 1974,
Immanuel Wallerstein introduced the concept of a capitalist world system,
which came into existence in the sixteenth century. This system is charac-
terized by a world economy that is stratified into a core, a semiperiphery,
and a periphery. Countries owe their wealth or poverty to their position
in the world economy. The core, Wallerstein argues, exists because it suc-
ceeds in exploiting the periphery and, to a lesser extent, the semiperiphery.
The semiperiphery profits from being an intermediary between the core
and the periphery.

The world system is based on a global division of labor. Countries in
the core specialize in capital-intensive and high-tech production, whereas
peripheral countries apply themselves to low-valued, labor-intensive
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products or unprocessed, raw materials. Core countries import raw and
less-processed products from the periphery and turn them into expensive
high-tech products that are exported to countries in the core, semipe-
riphery, and periphery. In consequence, there is much trade among core
countries, but little trade between countries in the periphery. The core
dominates the world trade in a double sense: core countries are more
often involved in trade ties than peripheral countries and the value of
exports from core countries exceeds the value of imports because their
products have higher added value. This is why core countries do very
well economically.

Which countries belong to the core, semiperiphery, or periphery? In
political economy, several attempts have been made to answer this ques-
tion, some of which are based on social network analysis. The network
analysts analyzed the structure of the trade relation and classified coun-
tries according to the pattern of their trade ties; for instance, the nations
that trade with almost all other countries are classified as core countries.
World trade statistics, which are widely available, offer the data required
for this analysis.

In this chapter, we use statistics on world trade in 1994. We included
all countries with entries in the paper version of the Commodity Trade
Statistics published by the United Nations, but we had to add data on
some countries for 1993 (Austria, Seychelles, Bangladesh, Croatia, and
Barbados) or 1995 (South Africa and Ecuador) because they were not
available for 1994. Countries that are not sovereign are excluded be-
cause additional economic data are not available: For example, the Faeroe
Islands and Greenland or Macau, which belong to Portugal and Denmark
respectively. In the end, the network contains eighty countries and most
missing countries are located in central Africa and the Middle East or
belong to the former USSR.

The arcs in our network represent imports into one country from an-
other. We restrict ourselves to one class of commodities rather than total
imports and we picked miscellaneous manufactures of metal, which rep-
resents high-technology products or heavy manufacture. We use the abso-
lute value of imports (in 1,000 U.S.$) but we did not register imports with
values less than 1 percent of the country’s total imports on this commodity.
The network data are stored in the file Imports_manufactures.net.

In addition, we use several attributes of the countries in our analysis,
namely their continent (Continent.clu), their structural world sys-
tem position in 1994 (World_system.clu), their world system po-
sition in 1980 according to a previous analysis by Smith and White
(World_system_1980.clu; see the reference in Section 2.10), and
their gross domestic product per capita in U.S. dollars in 1995 (GDP_
1995.vec). Note that in this chapter, we do not determine the world sys-
tem position of the countries, we use results from an advanced structural
technique called blockmodeling, which is presented in Chapter 12. The
three world system positions in 1994 – core, semiperiphery, and periph-
ery – are defined such that the core countries trade a lot of manufactures
of metal among themselves and they export a lot to the countries in the
semiperiphery, whereas the countries in the semiperiphery and periphery
do not export a substantial amount of these manufactures.
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2.3 Partitions

A partition of a network is a classification or clustering of the network’s
vertices. Each vertex is assigned to exactly one class or cluster (we use
these words as synonyms); for example, one country is assigned to the
core and another to the semiperiphery. A partition may contain a special
class that collects the vertices we cannot classify because data are missing.
Usually, the classes are identified by integers; for instance, a core country
receives code 1 in the partition, and a country in the semiperiphery gets a
2. In this format, a partition is simply a list of nonnegative integers, one
for each vertex in the network.

A partition of a network is a classification or clustering of the vertices
in the network such that each vertex is assigned to exactly one class or
cluster.

In network analysis, partitions store discrete characteristics of vertices.
A property is discrete if it consists of a limited number of classes; for
instance, we may code the continents of countries by digits such that
African countries consitute class 1, Asian countries constitute class 2, and
so on. Six classes will suffice. A classification contains a limited number
of classes and most classes contain several vertices because we want the
classes to represent groups of actors rather than single actors or nothing
at all. Partitions, therefore, are very useful for making selections from a
network to reduce its size and complexity. We discuss this in Section 2.4.

In some cases, the order of class numbers in a partition is arbitrary for
instance, in the partition of nations according to continents: there is no
compelling reason why African countries should have a lower class code
than Asian countries. In other instances, however, the order is meaningful.
For instance, it would be foolish to assign the semiperiphery to class 1,
the core to class 2, and the periphery to class 3, because this would not
correctly reflect the obvious ranking of the three classes. Finally, the class
codes may represent “real” numbers, for instance, the number of lines
incident with a vertex: all vertices in class 1 are incident with one line,
vertices in class 2 are incident with two lines, and so on, so make sure
that you attach the right meaning to class numbers!

Partitions may specify a structural property such as world system po-
sition, which is a result of network analysis or a characteristic measured
independently of the network (e.g., the continent where a nation is lo-
cated). We call the latter attributes of vertices.

Figure 17 displays the trade in manufactures of metal and their position
in the world system in 1994. In line with the spatial connotations of the
concepts of core, semiperiphery, and periphery, the core countries are
placed in the center (black vertices), the semiperiphery constitutes the
middle ring (gray vertices), and the peripheral countries (white vertices)
are located on the outer ring. The intense trade ties among the countries
in the core and between the core and semiperiphery are apparent, just like
the relative absence of trade in manufactures of metal among countries
in the periphery. We should, however, note that the impression of clear
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Figure 17. World trade of manufactures of metal and world system
position.

boundaries between the three classes has deliberately been created by
the researcher: this layout shows the world system positions rather than
proves them.

Application
File>Partition>

Read

File>Partition>

Save

Partition
drop-down menu

In Pajek, partitions are a data object on their own, so they are accessible
from a drop list once they are read (File>Partition>Read). Partitions are
saved in files with the extension .clu (File>Partition>Save) and these
files are just lists of nonnegative integers preceded by a line which specifies
the number of vertices. The first integer represents a property of the first
vertex (e.g., world system position), the second integer belongs to the
vertex with serial number 2, and so on. You should change neither the
sequence of vertices in a network nor the sequence of entries in a parti-
tion because this will destroy the compatibility of the partition and the
network: vertices are then no longer associated with the corresponding
classes.

File>Pajek
Project File

Although partitions can be stored separately, we can also save them
with the network to which they belong. Pajek has a special data format –
the project file – that may contain all networks, partitions, and other
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Figure 18. Edit screen with partition according to world system position.

data objects that belong together. You may, for example, read the world
trade network and associated partitions and vectors from the project file
World_trade.paj with the command File>Pajek Project File>Read.
With the Save command from the same submenu, you can create your
own project file, which contains all data (networks, partitions, and so
on) at the time you save the project. We advise to open the project file
World_trade.paj now.

Editing Partition
Screen

File>Partition>

Edit

If you edit it, it is easy to see that a partition consists of a series of
integers. Choose the command Edit in the File>Partition submenu or
simply click on the edit button at the left of the Partition drop-down
menu (with the writing hand) to open the Edit screen (see Figure 18).
The Edit screen contains three columns, which display the vertex number
(Vertex), the class code (Val), and the vertex label (Label). The first vertex
in the world trade network represents Algeria, which belongs to class 2
(semiperiphery), and the fourth vertex is Austria, part of the core (class 1).
You may click on the class code to change it manually but you can also
change the labels of vertices in the network. Note that the labels are
displayed only if the associated network is selected in the Network drop-
down menu.

Info>PartitionThe command Partition in the Info menu produces a frequency table
of the classes in the active partition, which offers a quick way to in-
spect a partition. On execution, this command displays two dialog boxes.
In the first box, which is similar to the dialog box associated with the
Info>Network>General command (see Section 1.3.3), the user may re-
quest a listing of vertices with the highest or lowest class numbers. Type a
positive integer to list vertices with the highest class numbers and type a
negative integer to list vertices with the lowest class numbers. The second
dialog box allows for suppressing classes in the table which occur seldom;
for instance, type 5 in this dialog box to exclude classes with four vertices
or less from the frequency tabulation.

The Info>Partition command presents a table that lists the number of
vertices in each class of the partition. In Table 1, we can see that twelve
countries belong to the first class, which is 15 percent of all countries.
The number 12 is the frequency (abbreviated to Freq in the table) with
which class 1 occurs among the vertices. Pajek does not “know” that this
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Table 1. Tabular Output of the Command Info>Partition

Class Freq Freq% CumFreq CumFreq% Representative

1 12 15.0000 12 15.0000 Austria
2 51 63.7500 63 78.7500 Algeria
3 17 21.2500 80 100.0000 Bangladesh
sum 80 100.0000

class refers to the core. It can only help the interpretation of the meaning
of the class by showing a representative of the class, that is, the label of
a vertex that belongs to this class. Together, the core and semiperiphery
contain sixty-three of the eighty countries (column CumFreq), which is
78.75 percent (CumFreq%).

Draw>

Draw
-Partition

Because partitions contain discrete classes, the class to which a vertex
belongs can be represented by the color of the vertex. Each class is as-
sociated with a color (e.g., vertices in class 1 are yellow). It is easy to
obtain a colored sociogram. First, make sure the right network and parti-
tion are selected in the drop-down menus of the Main screen, for example,
the manufactures of metal network (Imports_manufactures.net) in
the Network drop-down menu and the world position partition (World_
system.clu) in the Partition drop-down menu. Next, execute the com-
mand Draw-Partition from the Draw menu (or press Ctrl-p). If the se-
lected network and partition are compatible, that is, if the number of
entries in the partition is equal to the number of vertices in the net-
work, Pajek draws the network with vertex color determined by the
partition.

Layout>Energy>

Kamada–
Kawai>Free

Move>Circles

In Figure 17, the circular layout was created in the following way. First,
the layout was energized with the Kamada–Kawai energy command. This
brought most core countries to the center and most peripheral countries
to the margin of the sociogram. Then, manual movements of vertices was
restricted to three circles and eighty positions on each of them with the
Circles command in the Move menu. Finally, the countries were manually
dragged toward the nearest position on the appropriate circle.

Then, what you get is a sociogram such as in Figure 17 in color. On your
screen, the core countries are yellow, the countries in the semiperiphery are
green, and the peripheral countries are red. Because this book is printed
in black and white, we cannot reproduce the colors here but we stored all
the color illustrations in a document (illustrations.pdf) on the Web
site dedicated to this book (http://vlado.fmf.uni-lj.si/pub/networks/book/)
so you can check the colors that you are expected to see on your
screen.

Options>
Colors>
Partition

Colors

For black-and-white printing, a limited number of grays can replace
color. Pajek offers a command to switch between colors and grays in the
Colors submenu of the Options menu in the Draw screen: the command
Partition Colors. On selection of this command, Pajek displays a dialog
box such as that in Figure 19. It contains forty colored squares and the
partition’s class numbers with which they are associated. For class num-
bers above 39, Pajek cycles through the first forty colors again: the vertex
color of class 40 is equal to the color of class zero, and so on. Press the but-
ton labeled “Default GreyScale 1” to change the first five colors (classes
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Figure 19. Vertex colors according to a partition in Pajek.

zero to four) into grays (this color scheme is represented in Figure 19) or
the button “Default GreyScale 2” to change the first eleven colors into
grays. The button “Default Partition Colors” resets the original colors.
Unless stated differently, we use partition color scheme “GreyScale 1” in
the sociograms printed in this book.

In addition, you can change the color of a particular class by means of
the Partition Colors dialog box. If you want to change the color associated
with a particular class, click on the square with the desired color and type
the number of the class you want this color to be associated with in the
dialog box that appears and Pajek will swap the colors. Press the button
labeled “Default Partition Colors” if you want to restore the original
colors of classes.

Options>Mark
Vertices
Using>Partition
Clusters

When colors or grays do not suffice, you may display the class numbers
of the vertices in the vertex labels of a sociogram. Select the option Parti-
tion Clusters in the Options>Mark Vertices Using submenu in the Draw
screen. Until you turn this option off, vertex labels in the Draw screen
will begin with their class number between brackets, provided, of course,
that a network and a matching partition are being drawn.

Partition>Create
Null Partition

In Pajek, you can create a new partition that can be edited manually. In
the Partition menu, the command Create Null Partition makes a new par-
tition for the selected network. All vertices are placed in class zero. With
the edit command, which was discussed previously (File>Partition>Edit),
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Draw>Draw-
SelectAll

you can assign vertices to other classes: just change their class numbers in
the list. You can obtain the same result with the command Draw-SelectAll
from the Draw menu in the Main screen (shortcut: Ctrl-a). This command
creates a new partition and displays it in the Draw screen.

Change the class
number of

vertices

In the Draw screen, you can raise the class number of a vertex by 1 in
the following way: click on the vertex with the middle mouse button – if
available – or with the left mouse button while holding down the Shift
key on the keyboard. If the cursor is not on a vertex, all class numbers
are raised. Clicking a vertex while the Alt key is pressed subtracts 1 from
the class number and clicking between vertices with the Alt key pressed
lowers the class numbers of all vertices provided that they are larger than
zero, which is the minimum value. In this way, you can easily create a
partition that groups a small number of vertices.

Layout>Energy>

Kamada–
Kawai>Fix

selected vertices

In a sociogram with colored classes, it is very easy to move all vertices
that belong to one class. Position the cursor near but not on a vertex,
press the left mouse button and drag: all vertices in the class will move
simultaneously. This is a very useful technique. In addition, the Kamada–
Kawai energy procedure has a special command for energizing networks
with class colors; you can restrict the automatic relocation to the vertices
in class 0 with the Fix selected vertices command. If the partition does
not contain vertices in class zero, Pajek issues a warning and it does not
change the layout of the network.

menu Partition

menu Partitions

There are several ways to manipulate partitions, make a new parti-
tion or combine two partitions. We encounter most of these techniques in
later chapters. Suffice it to say here that the commands that involve one
partition are located in the Partition menu, whereas commands operat-
ing on two partitions can be found in the Partitions menu of the Main
screen.

Exercise I
Open the original manufactures of metal trade network and energize the
positions of the core countries only. What changes? Hint: create a new
partition in which the core countries belong to class zero and the other
countries to class one or higher and energize it with the Fix selected vertices
command.

2.4 Reduction of a Network

Partitions divide the vertices of a network into a number of mutually
exclusive subsets. In other words, a partition splits a network into parts.
Therefore, we can use partitions to reduce a network in three ways: extract
one part (local view), shrink each class of vertices into one new vertex
(global view), or select one part and shrink neighboring classes to focus
on the internal structure and overall position of this class (contextual
view). We now discuss the three types of reduction.

2.4.1 Local View

The easiest way to reduce a network is to select one class of vertices. Of
course, a mere selection of vertices is not very interesting; we must also
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select all lines between them – and their loops eventually – if we want
to inspect the structure of ties in this part of the network. This opera-
tion is called subnetwork extraction and its result is called an induced
subnetwork that offers a local view.

To extract a subnetwork from a network, select a subset of its vertices
and all lines that are only incident with the selected vertices.

If we want to examine the trade in manufactures of metal within South
America, we can extract the subnetwork of South American countries,
which is depicted in Figure 20. From the energized drawing, it is clear that
Brazil occupies a central position, whereas French Guiana, Martinique,
and Guadeloupe are isolated. Apparently, these islands trade with coun-
tries in other parts of the world. Finally, geography appears to be impor-
tant within the continent, because neighboring countries are close in the
network.

Application
To extract a subnetwork, we need a network and a partition that de-
fines the sets (classes) of vertices that we want to extract. Therefore,
the extraction commands are located in the Operations menu. In this
section, we use the manufactures of metal trade network (Imports_
manufactures.net) and the continents partition (Continent.clu).

Operations>
Extract from
Network>

Partition

To obtain a local view of the South American trade network, use the
command Partition from the Operations>Extract from Network sub-
menu. Because South America is the sixth class in the partition, select
class 6 in the two dialog boxes that appear. Pajek produces a new net-
work, which contains fifteen countries. Energize it to obtain a drawing
similar to Figure 20.

It is very important to note that the original partitions do not fit the
induced subnetwork because the subnetwork contains fewer vertices than
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Figure 20. Trade ties within South America.
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Figure 21. The Partitions menu.

the original vertices. This is a pity, because we may want to know, for
instance, the world system position of the countries in the South American
trade network. However, we can extract a new partition that matches the
induced subnetwork in a few steps.

Partitions>First
Partition

Second Partition

Extract Second
from First

First, we must select the original partition that we want to translate to
the induced subnetwork as the first partition in the Partitions menu. Make
sure that the world system partition is selected in the Partition drop-down
menu. Then, select command First in the Partitions menu. Nothing seems
to happen but open the Partitions menu again and you will see the name
of the world system partition in it (Figure 21). Second, select the partition
that you used to extract the network – in our case the continents partition –
as the second partition in the Partitions menu. You need this partition
to identify the subset of vertices that must be extracted from the world
positions partition. Finally, execute the command Extract Second from

(2) Argentina

(2) Barbados

(3) Bolivia

(2) Brazil

(2) Chile

(2) Colombia

(2) Ecuador

(3) French Guiana

(3) Guadeloupe

(3) Martinique

(3) Paraguay

(2) Peru

(2) Trinidad Tobago

(2) Uruguay

(2) Venezuela

Figure 22. World system positions in South America: (2) semiperiphery
and (3) periphery.
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First from this menu. Dialog boxes will ask for the class numbers to be
extracted and if you type 6 twice, Pajek produces a new partition for the
fifteen South American countries. Figure 22 shows the South American
trade network drawn with this partition.

2.4.2 Global View

Instead of zooming in on a particular region of the network, we may also
zoom out to obtain a global view. Now, we are no longer interested in
each individual vertex but we want to study relations between classes,
for instance, continents. Which continents have strong trade ties? In this
example, a global view of the network covers the whole world but we
should note that a global view may also pertain to ties between groups in
a local setting.

To shrink a network, replace a subset of its vertices by one new vertex
that is incident to all lines that were incident with the vertices of the
subset in the original network.

In network analysis, we obtain a global view by shrinking all vertices
of a class to one new vertex. In our example, we shrink all countries
within a continent to a new vertex that represents the entire continent (see
Figure 23). Lines incident with shrunken vertices are replaced, for in-
stance, all imports by South American countries from European countries
are replaced by one new arc pointing from Europe to South America.
Its line value is equal to the sum of all original line values. In the net-
work of trade ties, line values indicate the value of imports expressed in
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2,280,462

28,402,992

549,445

2,045,151

7,355,707
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(#Algeria)

South America
(#Argentina)
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(#Australia)
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North America (#Belize)

Figure 23. Trade in manufactures of metal among continents (imports
in thousands of U.S.$).
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thousands of U.S. dollars (U.S.$), so values of lines in the shrunken net-
work represent the value of total imports of metal manufactures. Lines
between shrunken vertices within one class, (e.g., trade in manufactures
of metal within South America), are replaced by a loop.

Figure 23 shows the world trade network that is shrunk according to
continents. To obtain a clear picture, we deleted arcs (total imports) with
summed values below three hundred million U.S. dollars. We can see
that South American countries import manufactures of metal with a total
value of 729 million U.S. dollars from Europe but they do not export
a substantial amount to Europe, so there is an asymmetrical trade tie
between South America and Europe. The countries in Oceania and Africa
are also importing rather than exporting. Trade within South America
(549 million U.S.$) is much higher than in Oceania and Africa but internal
trade is at its highest in Europe.

Application
Operations>

Shrink
Network>

Partition

The command Partition in the Operations>Shrink Network submenu
shrinks classes of vertices in a network according to the active partition,
in this case, the continents partition. A dialog box asks for the minimum
number of connections between clusters. This is the minimum number of
lines that must exist between shrunken vertices to obtain a new line in
the shrunken network. We recommend choosing 1 (the default value). In
a second dialog box, you may choose a class of vertices that must not
be shrunk to give them a contextual view. Shrink all classes to obtain a
global view, so type any class number that is not present in your partition
or accept the default value (zero). Finally, Pajek shrinks all classes except
the selected class and adds the shrunken network to the Network drop-
down menu.

File>Partition>

Edit
Pajek’s Shrink Network command also creates a new partition – called

shrinking – along with the new network identifying the classes in the
partition that was used to shrink the original network. However, Pajek
does not know the meaning of these classes, so it cannot assign meaningful
new labels to shrunken classes. It chooses the label of the first vertex
of a class that is shrunk and adds a pound sign (#) to obtain a label
for the shrunken class. For example, Argentina happens to be the first
South American country in the network, so the vertex that represents
this continent carries the label “#Argentina” in the shrunken network.
We added the names of continents to Figure 23 manually by editing the
shrunken partition (“Shrinking”) with the File>Partition>Edit command
(see Section 2.3).

Net>Transform>

Remove>lines
with value>

lower than

In Figure 23, we removed lines with summed values below three hun-
dred million U.S. dollars to obtain a clear picture. Lines with low values
can be removed automatically with the command Remove>lines with
value>lower than in the Net>Transform submenu. We entered 300000
as the threshold for this operation, because import values are measured
in thousands of U.S. dollars.

In a shrunken network, a class of vertices is replaced by one new vertex;
in our example, the Latin American countries are substituted by a new
vertex representing this continent. Properties of the original vertices, such
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Figure 24. Trade among continents in the Draw screen.

as their world system position, are lost: it is impossible to assign the
entire continent to a particular world system position. Therefore, it is
impossible to use the data from a partition that was not used to shrink the
network.

[Main]
Options>
Blockmodel –
Shrink

Note that the way a network is shrunk depends on the option selected
in the Options>Blockmodel – Shrink submenu. By default, option 0 is
selected, which means that the number of links in the original network is
used to decide whether a new line is added to the shrunken network. This
option causes Pajek to display the dialog box mentioned above. We advise
not to select another option from this submenu until you understand
blockmodeling, which is presented in Chapter 12.

[Draw]
Options>Lines>
Mark Lines>
with Values

Loops, which signify the trade within a continent in this example, can-
not be drawn in the Draw screen. If the option Options>Lines>Mark
Lines>with Values (shortcut Ctrl-v) has been selected, the line values are
shown in the Draw screen (see Figure 24), including the values of loops,
which are printed very close to the vertices. The value of a loop can be
examined more closely if you right click a vertex in the Draw screen.
Among the lines, which are then listed in the Editing Network dialog
box, you can find the loop, for instance, the line from #Argentina to #Ar-
gentina. Its line value is 549445, which means that the total value of trade
in manufactures of metal among South American countries amounted to
549,445,000 U.S. dollars.

2.4.3 Contextual View

A global view shows the position of South America in the world system
and a local view clarifies the central position of Brazil within the South
American trade network. But how do countries in this regional network
relate to the rest of the world? From which continents do the isolated
islands import their manufactures of metal? If you want to focus on one
class of vertices (e.g., countries on one continent) and take into consid-
eration aggregated ties to the “outside world,” you need a contextual
view.
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Figure 25. Contextual view of trade in South America.

In a contextual view, all classes are shrunk except the one in which you
are particularly interested. In Figure 25, all countries are shrunk to conti-
nents (black vertices) except the South American countries (gray vertices).
We removed ties between continents because we already know them from
Figure 23 and we discarded trade in manufactures of metal with summed
values under ten million U.S. dollars to obtain an intelligible drawing. This
sociogram shows the South American countries in the context of world
trade. Clearly, Africa and Oceania are not important trading partners to
South American countries. The larger countries on the continent import
from Europe and North America, but smaller countries are connected
to either North America (Barbados, Trinidad and Tobago, Bolivia) or
Europe (Uruguay, Guadeloupe, Martinique, and French Guiana). Former
colonial ties surely play a part here.

There are many ways to extract or shrink a network and extraction and
shrinking can even be combined. Subnetwork extraction and shrinking are
important techniques to dissect a network and to obtain partial views of
a network when its structure is too complicated to understand at a first
glance.

Application
Operations>

Shrink
Network>

Partition

Net>Transform>

Remove>lines
with value>

lower than

A contextual view is obtained by partially shrinking the network, so
we can use the Shrink Network command. In the dialog box asking for
the class that should not be shrunk, type the appropriate class number,
namely class 6 for South America. Lines with summed values below ten
million U.S. dollars can be removed automatically with the command
Remove>lines with value>lower than in the Net>Transform submenu
as discussed.
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Operations>
Transform>

Remove
Lines>Inside
Clusters

Lines between continents can be deleted automatically provided that
you have a partition that identifies the continents in the shrunken network.
You may create this partition manually with the commands described
under Application in Section 2.3: create a null partition and assign the
five shrunken continents to class 1. Now, you can execute the command
Operations>Transform>Remove Lines>Inside Clusters to remove the
lines between vertices in the continents class (class 1, enter 1 twice in the
dialog box).

Exercise II
Create a global view of the trade relation (manufactures of metal) be-
tween the core, semiperiphery, and the periphery. Explain the structural
differences between the world system positions from this network.

2.5 Vectors and Coordinates

Partitions store discrete properties of vertices and vectors store continuous
properties. In principle, a continuous property may take any value within
a defined range; for instance, the surface of a country may take any value
between zero square kilometers (or miles) and the total surface of the
Earth. When two countries have different sizes, it is always possible to
imagine a country that is smaller than one and bigger than the other.

In practice, of course, we do not care about differences in sizes of coun-
tries smaller than a square kilometer, but the principle is important: con-
tinuous properties are not meant to group vertices into classes, so they
cannot be used to reduce a network by extraction or shrinking. Continu-
ous properties express a particular and often unique value of a vertex, for
instance, the wealth of a country indicated by its gross domestic product
per capita. In practice, no two countries have exactly the same GDP per
capita because it is equal to the quotient of the economic production of
a country and the size of its population, both of which are usually fig-
ures that characterize no other country. Most quotients yield results with
decimals, so a vector is not a list of integers but a list of real numbers.

A vector assigns a numerical value to each vertex in a network.

In our discussion of partitions, we have distinguished between struc-
tural indices and attributes. This distinction applies to continuous prop-
erties or vectors as well. In later chapters, we encounter several examples
of vectors that represent structural features of vertices, for instance, their
centrality (Chapter 6). GDP per capita of a country is an example of a
continuous attribute that is measured independently of the network and
added to the graph as additional data: it is a continuous attribute.

A special continuous property of a vertex is its location in a sociogram.
Location is expressed by coordinates, real numbers that correspond with
positions on one or more axes. For example, the two-dimensional Draw
screen has two axes, a horizontal x axis and a vertical y axis. Both axes
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Figure 26. Geographical view of world trade in manufactures of metal,
ca. 1994.

range from zero to 1 (see Figure 26). The position of a vertex in the Draw
screen is determined by two coordinates (e.g., Canada is located at 0.14
on the x axis and 0.33 on the y axis).

Because coordinates are real numbers, they can be stored as vectors:
one representing the location of vertices on the x axis and the other lo-
cations on the y axis. In Figure 26, we did something special: we made
sure that locations in the Draw screen matched geographical locations on
a map of the world projected behind the network (see Appendix 2 for
details on how to produce this image). Now, vectors express geographical
coordinates and we can see geographical patterns in a social network.

Application
File>Vector

Info>Vector

In Pajek, vectors have a drop-down menu of their own. A vector (e.g.,
the vector GDP_1995.vec containing GDP per capita in 1995) can be
opened, edited, and saved like a network or a partition. Basic information
can be gathered from the output of the Info>Vector command. When you
execute this command, you can ask for a list of highest or lowest vector
values. In a second dialog box, you can specify the number or boundaries
of the classes of values that will be reported in the frequency distribution
(Figure 27). Note that vector values are supposed to be continuous, so each
value probably occurs only once. As a consequence, it is not informative
to list each separate value as an entry in the frequencies table; values must
be joined into classes. You may either list selected values that must be
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Figure 27. Info>Vector dialog box.

used as class boundaries (as in Figure 27) or specify the number of classes
preceded by the pound (#) sign.

In the Report screen, the Info>Vector command outputs some statis-
tics on the vector values; for instance, it tells us that GDP per capita
ranges from 115 to 43,034 U.S. dollars, with an average of 10,249.9 U.S.
dollars and standard deviation 10,834.7. Then it prints the requested fre-
quencies table, which is shown in Table 2. The first entry of this table
contains the twenty-two countries with GDP per capita ranging from the
lowest value up to and including 2,000 U.S. dollars. The second entry
contains the twenty-seven countries with GDP per capita over 2,000 U.S.
dollars up to and including 10,000 U.S. dollars, and so on. In the first
column, the round bracket means “from” and the square bracket means
“up to and including.”

Partition>Make
Vector

As we discussed before, partitions and vectors have different appli-
cations: partitions serve to select subsets of vertices from a network,
whereas vectors specify numerical properties that can be used in calcu-
lations. Sometimes, however, you may want to change partitions into
vectors or vice versa. It is very easy to convert a partition to a vector: just
use the Make Vector command in the Partition menu. Note, however,
that conversion may be meaningful only if classes in a partition express a
quantity – if they are numbers that can meaningfully be added, subtracted,
and so on.

Vector>Make
Partition >by
Truncating (Abs)

The translation of a vector into a partition is more complicated be-
cause you have to change real numbers into integers, which can be done
in several ways in the Vector>Make Partition submenu. Truncation is
the easiest way, which means that you drop the decimals from the real
numbers in the vector to obtain integers that can be stored in a partition.
A GDP per capita of 115 U.S. dollars up to but not including 116 U.S.
dollars is changed to class 115 in a new partition. In the command name,
Abs stands for absolute, which means that negative vector values are

Table 2. Distribution of GNP per Capita in Classes

Vector Values Freq Freq% CumFreq CumFreq%

( . . . 2000] 22 27.5000 22 27.5000
( 2000 . . . 10000] 27 33.7500 49 61.2500
( 10000 . . . 20000] 15 18.7500 64 80.0000
( 20000 . . . 43043] 16 20.0000 80 100.0000
total 80 100.0000
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transformed into positive class numbers because partitions cannot hold
negative integers.

Vector>Make
Partition>by

Intervals>First
Threshold and

Step

Another way to convert a vector into a partition is to recode vector
values into classes of fixed width; for instance, recode GDP per capita
into classes of 10,000 U.S. dollars. Use the command by Intervals>First
Threshold and Step in the Vector>Make Partition submenu and specify
the upper bound of the lowest class as the first threshold (e.g., 10000
for a class including a minimum value up to and including 10,000) and
class width as the step (e.g., fill in 10000 again). Note that Pajek does not
accept a comma separating thousands from hundreds.

Vector>Make
Partition>by

Intervals>
Selected

Thresholds

In the case of GDP per capita, a conversion of values to classes with
fixed width is not very useful. GDP per capita is unevenly distributed,
so many countries are lumped together in the lowest classes, whereas
higher classes contain few countries. In this example, it is better to cre-
ate classes of unequal width, namely narrow classes for low values and
wider classes for higher values, with the command Selected Thresholds
in the Make Partitions by Intervals submenu. In the dialog box, specify
the boundaries between classes (e.g., 2000, 10000, and 20000). Just type
the numbers separated by spaces and do not use <= as specified in the top
of the dialog box. The <= sign means that all classes include the upper
boundary.

Draw>

Draw-Vector

Draw>

Draw-Partition-
Vector

[Draw]
Options>Size>

of Vertices

In a sociogram, vector values are represented by the size of vertices if
you use Draw-Vector or Draw-Partition-Vector from the Draw menu.
The area of a vertex is proportional to its vector value. Note that GDP
per capita ranges from 115 to 43,034 U.S. dollars, but in the Draw screen
vertices usually have sizes between 2 to 4. If you draw a network with
vector sizes ranging from 115 to 43034, vertices are so large that they
do not fit in the screen. Pajek may issue a warning that it changes the
size of the vertices. If vertices are still too large, you can adjust the vector
values to get reasonable sizes in a drawing. The Options>Size>of Vertices
command of the Draw screen offers the simplest way to achieve this. In
the dialog box issued by this command, enter 0 to activate the AutoSize
utility of Pajek, which computes optimal vertex sizes automatically.

In Figure 28, countries with higher GDP per capita have larger ver-
tices, according to their vector values. We can see that the wealthiest
countries are part of the core and strong semiperiphery, but note that ge-
ographical location is also important; Scandinavian countries have similar
(high) GDP per capita, whether they belong to the core (Sweden) or to
the semiperiphery (Norway, Denmark, Finland).

Representation of vector values by size of vertices is not useful for nega-
tive numbers, because negative size is meaningless. Pajek ignores negative
signs of vector values when it computes the size of a vertex in a drawing.
Vertices with large negative value are drawn as big as vertices with large
positive value, which is quite misleading. Always check whether negative
vector values exist with the Info>Vector command.

Options>Mark
Vertices

Using>Vector
Values

Vector values may also be displayed as vertex labels in the Draw screen:
select the option Vector Values in the Options>Mark Vertices Using sub-
menu. In most networks, the result is visually not very attractive but it is
a good way to check the exact vector values of vertices in a drawing.
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Figure 28. Trade, position in the world system, and GDP per capita.

Vector>Extract
Subvector

In Section 2.4.1, we learned how to select a part of a network (e.g.,
the trade in manufactures of metal among countries of one continent)
and how to reduce a partition to fit the extracted network. In a similar
way, we can adjust vectors to induced subnetworks. Recall that we need
a partition to extract a network; a partition of countries according to
their continent is needed for extracting countries of one continent from
the network. We can use the same partition for extracting the vector
values, for instance, GDP per capita, of the selected countries. First, make
sure that the partition which was used to reduce the network is selected
in the Partition drop-down menu. Next, execute the command Extract
Subvector in the Vector menu. Just like the command for extracting a
partition, the Extract Subvector command asks the user to choose a class
of vertices or range of classes which must be extracted: enter 6 to select
South American countries. Finally, Pajek adds the reduced vector to the
Vector drop-down menu.

Vector>Shrink
Vector

To obtain a global or contextual view, we shrink networks (see Sections
2.4.2 and 2.4.3). Recall that a class of vertices is replaced by one new
vertex in a shrunken network; we replaced all countries belonging to
the same continent by a vertex representing the continent. To use vector
values associated with the original network (e.g., GDP per capita of a
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country) we must also shrink the vector. The command Shrink Vector in
the Vector menu accomplishes this provided that you have selected the
relevant vector and the partition that you want to use for the shrinking,
namely Continent.clu. The command allows you to choose among
taking the sum, mean, minimum, maximum, or median of the vertices in
a class that will be shrunk. In the example of GDP per capita, it makes
sense to calculate the mean or median GDP per capita on a continent.

As noted, coordinates of vertices can be thought of as vectors. In
Chapter 1, we have learned that coordinates of vertices are saved in the
network data file, so we do not need vectors to store the location of ver-
tices. However, vectors of coordinates are useful if, for instance, you want
to use coordinates from one network in another network with the same
vertices, for instance, you have a network of trade in another product and
you want to use the geographical coordinates from the manufactures of
metal trade network.

Net>Vector>Get
Coordinate

Operations>
Vector>Put
Coordinate

You can save the present coordinates of the vertices as vectors with
the Get Coordinate command in the Net>Vector submenu. You must
create a vector of coordinates for each axis separately. The Put Coordinate
command in the Operations>Vector submenu loads coordinates from
vectors: one vector for each axis. In our example, geographical location
of countries can be read from two vectors: x_coordinates.vec and
y_coordinates.vec. Note that the save and load commands are listed
in different menus. For saving coordinates, you need only a network, but
for loading coordinates from a vector you need a vector to load from and
a network to add coordinates to. Therefore, the load command is situated
in the Operations menu.

Options>
Transform>Fit

Area

When you load coordinates from a file that was not created by Pajek, the
Draw screen may be blank. This happens if the coordinates are not in the
range between zero and 1. In this case, use the Options>Transform>Fit
Area command in the Draw screen and Pajek will fit the sociogram to the
size of the screen.

Exercise III
Shrink all countries to continents except the North American countries in
the network of trade in metal manufactures. Remove the lines between the
continents and trade ties with values under five million U.S. dollars (recall
that line values reflect trade in thousands of U.S.$). Draw the energized
network with vertex sizes reflecting (mean) GDP per capita. Describe the
structure that you see.

2.6 Network Analysis and Statistics

In this chapter, we use attributes of vertices in social network analysis; for
instance, we compare GDP per capita of countries to their visual positions
in the trade network. We find that countries in the core of the world trade
system have higher GDP per capita than countries in the periphery. Thus,
social network analysis handles relational data as well as attributes of
vertices.
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Attributes like GDP per capita are usually analyzed with statistical tech-
niques. GDP per capita is compared, for instance, to population growth
and level of education to find out which properties of countries are as-
sociated. GDP per capita is found to be higher in countries with a lower
population growth and a higher level of education. Statistics offers a wide
range of techniques to describe attributes and investigate the association
between attributes, but it cannot handle relational data directly. If we are
able to express structural properties of vertices as attributes or properties
of actors, however, they can be included in statistical analysis.

The position of countries in the world system that we use here was
calculated from the world trade network. It is stored in a partition, which
can be used in statistical analysis. Continuous structural indices, such
as vertex centrality (Chapter 6), can be stored as vectors. Partitions and
vectors that store structural properties of vertices are the bridge between
network analysis and statistics.

In this book, some examples of statistical analysis are given but are
restricted to basic statistical techniques that are incorporated in Pajek.
After all, this is not a course in statistics. Nevertheless, the link between
statistics and social network analysis should be well understood, because
the two techniques make up a powerful combination.

Application
One of the basic statistical techniques implemented in Pajek is the cross-
tabulation of two partitions and some measures of association between
the classifications represented by two partitions. Let us look at the world
trade example. Our partition of positions in the world trade network
was derived from the trade in manufactures of metal around 1994. In
addition, we have at our disposal a classification of countries according
to their position in the world system in 1980 that was proposed by Smith
and White (World_system_1980.clu). To analyze the transition of
countries between world system positions from 1980 to 1994, we can use
simple statistical techniques.

Partitions>First
Partition, Second
Partition

First, we must select the two partitions that we want to compare. In
Section 2.3, we learned how to do this. Select the partition with world
system positions in 1980 (World_system_1980.clu) in the Partition
drop-down menu and execute the command First Partition from the
Partitions menu. Next, select the world system positions partition in
1994 (World_system.clu) and execute the command Second Parti-
tion in the same menu. When you open the Partitions menu now, you will
see the names of the selected partitions in the menu. To obtain a cross-
tabulation and measures of association, the selected partitions must refer
to the same network: the same number of vertices in the same order. It is
meaningless to compare partitions that do not refer to exactly the same
vertices.

Partitions>Info>

Cramer’s V,
Rajski

Second, select the Info>Cramer’s V, Rajski command from the Par-
titions menu. Pajek will show a cross-tabulation and some measures of
association in the Report screen. Table 3 contains the results of the Info
command. In the cross-tabulation, the rows contain the four classes ac-
cording to world system position in 1980: core countries in class 1, strong
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Table 3. Output of the Info Command

Cramer’s V, Rajski
Rows: 1. World system 1980.clu (80)

Columns: 3. World system.clu (80)

1 2 3 Total

1 10 1 0 11
2 1 16 0 17
3 0 15 0 15
4 0 4 5 9
total 11 36 5 52

Warning: 28 vertices with missing values excluded from cross
tabulation!
Warning: 8 cells (66.67%) have expected frequencies less than 5!

The minimum expected cell frequency is 0.87!
Chi-Square: 66.2597
Cramer’s V: 0. 7982
Rajski(C1↔C2): 0.3422
Rajski(C1→C2): 0.6827
Rajski(C1←C2): 0.4069

semiperiphery in class 2, weak semiperiphery in class 3, and periph-
ery in class 4. The columns contain the three world system positions in
1994: core countries in class 1, semiperiphery in class 2, and periphery
in class 3. Countries with an unknown world system position are au-
tomatically omitted by Pajek; their number is reported below the table.
As a result, the first column represents eleven of the twelve countries in
the core of the trade system in 1994. We do not know the world sys-
tem position of China in 1980, so it is placed in class 9999998 in the
World_system_1980.clu partition. Note that rows and columns are
swapped when the first and second partition are exchanged in the Parti-
tions menu.

From this table, we may conclude that the composition of the core
has hardly changed between 1980 and 1994 (see the row and column of
the cross-tabulation labeled “1”). The countries in the strong and weak
semiperiphery in 1980 constitute the major part of the semiperiphery in
1994 (column 2), and four countries were promoted from the periphery
in 1980 to the semiperiphery in 1994 (row 4, column 2).

Statistical indices of association tell us how strong the association is.
Indices range from 0 to 1 and as a rule of thumb we may say that values
between 0 and .05 mean that there is no association, values between .05
and .25 indicate a weak association, values from .25 to .60 indicate a
moderate association, and values over .60 indicate a strong association.

In Pajek, two types of association indices are computed: Cramer’s V
and Rajski’s information index. Cramer’s V measures the statistical de-
pendence between two classifications. It is not very reliable if the cross-
tabulation contains many cells that are (nearly) empty, so Pajek issues a
warning if this is the case. Rajski’s indices measure the degree to which the
information in one classification is preserved in the other classification. It
has three variants: a symmetrical version, represented by (C1↔C2) in the
output of Pajek, and two asymmetrical versions, which indicate the extent
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to which the first classification can be predicted by the second (C1←C2)
or the second classification can be predicted by the first (C1→C2).

In our example, Cramer’s V is not very reliable because many cells have
low expected frequencies. Rajski’s information indices suggest that world
system position in 1994 can be predicted quite well from the positions in
1980: Rajski C1→C2 is .68. The two world system positions are strongly
associated.

Exercise IV
Determine the statistical association between the position of countries
in the world system of trade in metal manufactures in 1994 and their
GDP per capita in 1995. Hint: translate the GDP per capita vector into
a partition with four classes: 0 to two thousand U.S. dollars, two to ten
thousand U.S. dollars, ten to twenty thousand U.S. dollars, and twenty
thousand and higher U.S. dollars.

2.7 Summary

In this chapter, we used properties of vertices to find and interpret patterns
of ties in a network. These properties are stored in partitions or vectors.
Both partitions and vectors are lists of numbers, one number for each
vertex in a network, but numbers in partitions refer to discrete classes,
whereas vector values express continuous properties of vertices. Classes in
partitions are represented by integers (e.g., countries on the African con-
tinent have code 1) and negative class numbers are not allowed. Vectors
contain real numbers, which can be negative.

Social networks are often large and complicated. To understand net-
work structure, it helps to study reductions of the network first. Partitions
can be used to reduce a network in two ways: by extraction and by shrink-
ing. Extraction is the selection of a subset of vertices from a network as
well as the lines among these vertices. You can now concentrate on the
structure of a part of the network, which is called a local view. In contrast,
shrinking a network means that you lump together sets of vertices and
lines incident with these vertices (e.g., you replace all African countries
by one vertex representing the African continent). This yields a global
view of the network if all classes are shrunk and a contextual view if one
class of vertices is not shrunk. In all cases, classes of a partition define the
subsets of vertices that are extracted or shrunk.

Properties of social actors that are not based on their structural po-
sition in a network are called attributes. They are added to a network
to enhance the analysis and interpretation of its structure. Partitions and
vectors, however, can also contain structural indices of vertices, which
result from network analysis (e.g., the world system position of countries
that is inferred from the trade network). These properties may be included
in statistical analysis, so partitions and vectors are the nexus between so-
cial network analysis and statistics. In Chapter 3 techniques to compute
structural properties of vertices in a network are discussed.
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2.8 Questions

1. Which of the following statements is correct?
a. Each property of a vertex or a line is an attribute.
b. Each property of a vertex is an attribute.
c. Each nonrelational property of a vertex is an attribute.
d. Each nonrelational property of a line is an attribute.

2. There are two lists of numbers. Numbers in list A range from −1 to 1
and list B contains numbers between 1 and 10. Which statements can
be correct?
a. A and B are partitions.
b. A is a partition and B is a vector.
c. A is a vector and B is a partition.
d. A and B are vectors.

3. Suppose that the average population growth rate between 1990 and
1995 is available for the countries in the trade network, coded as 0 =
negative growth, 1 = 0 to 1.0 percent, 2 = 1.0 to 3.0 percent, and 3 =
3.0 percent and over. Would you use a partition or a vector for these
data?
a. A partition because we cannot add or subtract the codes meaning-

fully.
b. A partition because percentages are recoded to integers.
c. A vector because negative population growth is possible.
d. A vector because percentages are “real” numbers.

4. What happens to the sociogram of a network if the order of numbers
in the accompanying partition is changed?
a. Nothing changes in the sociogram.
b. Pajek does not draw the partition any longer.
c. Pajek uses other colors to draw the vertices.
d. Vertices are drawn in the wrong color.

5. Which of the following statements is correct about the networks be-
low?

A B

a. A is extracted from B.
b. B is extracted from A.
c. A is shrunk from B.
d. B is shrunk from A.
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6. Which of the following statements is correct about the networks of
Question 5?
a. B is a contextual view of A.
b. A is a global view of B.
c. B is a local view of A.
d. A is a local view of B.

2.9 Assignment

Analyze the manufactures of metal trade network of Asian countries (lo-
cal view) and their position with regard to other continents (contextual
view). Does the structure of trade ties match the world system positions
of countries, their prosperity (indicated by GDP per capita), and their ge-
ographical locations? Try to apply the theory of the world system, which
was outlined in Section 2.2.

2.10 Further Reading

� In The Modern World System: Capitalist Agriculture and the Ori-
gins of the European World-Economy in the Sixteenth Century
(New York: Academic Press, 1974), Immanuel Wallerstein in-
troduced the concept of a world system. The Capitalist World-
Economy (Cambridge/Paris: Cambridge University Press & Edi-
tions de la Maison des Sciences de l’Homme, 1979) is a collec-
tion of essays that introduces the theory of a world economy.
Bornschier and Trezzini (“Social stratification and mobility in
the world system – Different approaches and recent research.”
In: International Sociology 12 (1997), 429–55) offer a summary
of research traditions which use the concept of a world system
or world economy.

� See Snyder and Kick (“Structural position in the world system
and economic growth 1955–70.” In: American Journal of So-
ciology 84 (1979), 1096–126) for the first (published) applica-
tion of social network analysis to world systems theory and see
Smith and White (“Structure and dynamics of the global econ-
omy – network analysis of international-trade 1965–1980.” In:
Social Forces 70 (1002), 857–93) for the research design followed
here.

� Our data on imports are taken from the Statistical Papers. Com-
modity Trade Statistics [Series D Vol. XLIV, No. 1–34 (1994)]
published by the United Nations and we gathered additional eco-
nomic and demographic data from the Statistical Yearbook of the
United Nations (Ed. 43, IVATION Datasystems Inc.). Imports of
miscellaneous manufactures of metal are listed as SITC code 69
in the commodity trade statistics.
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2.11 Answers

Answers to the Exercises
I. If you want to fix the locations of the countries of the semiperiphery

and periphery in the Draw screen, you must create a partition in
which the core countries belong to class zero and the other countries
to another class. The easiest way to achieve this is to create and draw
a new empty partition with the Draw>Draw-Select All command in
the Main screen. The Draw screen opens and shows the world trade
network with all vertices in class zero (light blue). Pressing down
the Shift key, click somewhere between the vertices to raise all class
numbers to one. Then, zoom in on the core countries, dragging your
mouse around them while pressing the right mouse button. After you
have zoomed in on the core countries, lower their class number back to
zero by clicking between the vertices while pressing the Alt key. Press
Redraw in the Draw screen and you will see that the core countries
are the only ones that belong to class zero in the partition. Now
you have the right partition and you can select the Energy>Kamada–
Kawai>Fix selected vertices command to optimize the location of the
core countries with respect to the other countries. You will probably
see that Japan is pulled toward the Latin American countries, Canada,
and the Philippines, whereas Austria moves in the direction of the
Eastern European countries (Czech Republic, etc.).

II. Make sure that the partition with world system positions is active
in the Partition drop-down menu and select the original trade net-
work in the Network drop-down menu. Shrink the network with
the Operations>Shrink Network>Partition command. The ener-
gized shrunken network may look like the sociogram depicted below
(Figure 29), although the loops are not visible in the Draw screen.

The shrunken network shows several characteristics of the world
system. First, the values associated with the loops reveal that trade
between countries within one position of the world system decreases

3502832
21448662

3461375

28768997

7217802

284540

62286

959462

55638

Semiperiphery (#Algeria)

Core (#Austria)

Periphery (#Bangladesh)

Figure 29. Aggregate trade in manufactures of metal among world sys-
tem positions.
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from core to periphery: from twenty-eight billion U.S. dollars within
the core to fifty-five million within the periphery. Second, values of
arcs between world system positions show asymmetries in world
trade. Core countries export goods at a much higher value to the
semiperiphery than vice versa and the semiperiphery exports more to
the periphery than the other way around. The values of arcs indicate
that the larger the difference in world system position, the larger the
difference between exports and imports.

III. In the partition according to continents, Continent.clu, the North
American countries constitute class 4. Shrink the network according
to this partition, entering 4 in the dialog box asking for the class that
must not be shrunk. Now you have the contextual view of the North
American countries, from which you can remove the lines among
the shrunken continents (see Section 2.4.3) and the lines with val-
ues less than 5000 (command Net>Transfrom>Remove>lines with
value>lower than). Make sure that you select the original partition
according to continents again in the Partition drop list before you
apply the Vector>Shrink Vector>Mean command to the GDP per
capita vector. Finally, draw the shrunken network with vector val-
ues (command Draw>Draw-Vector in the Main screen) and ener-
gize it. The result should be similar to the sociogram depicted here
(Figure 30). The United States occupies a central place in the trade
of metal manufactures among the North American countries. South
America and to a lesser extent Europe play an important part in the
trade ties of the smaller countries on the North American continent.

IV. You can extract a partition from the GDP vector with the Make
Partition>by Intervals>Selected Thresholds command (see Section
2.5). Select the world system positions partition as the first partition
in the Partitions menu and the GDP partition as the second. The
Info>Cramer’s V, Rajski command produces the table depicted be-
low (Table 4). The table shows that the core countries have higher

Afrca (#Algeria)

South America (#Argentina)
Oceania (#Australia)

Europe (#Austria)

Asia (#Bangladesh)

Belize

Canada

El Salvador

Guatemala

Honduras

Mexico

Nicaragua

Panama

United States

Figure 30. Contextual view of North American trade ties and (mean)
GDP per capita.
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Table 4. Cross-Tabulation of World System Positions
(Rows) and GDP per Capita (Columns)

3. World system.clu (80) / 4. From Vector 3 [2000 10000 20000] (80)

1 2 3 4 Total

1 1 0 2 9 12
2 13 21 10 7 51
3 8 6 3 0 17
total 22 27 15 16 80

Warning: 7 cells (58.33%) have expected frequencies less than 5!
The minimum expected cell frequency is 2.25!
Chi-Square: 31.5510
Cramer’s V: 0.4441
Rajski(C1↔C2): 0.0962
Rajski(C1→C2): 0.1460
Rajski(C1←C2): 0.2200

GDP per capita (classes 3 or 4) than countries in the semiperiphery
and periphery, which are found in the lower GDP classes. The asso-
ciation between world system position and GDP per capita, however,
is weak according to Rajski’s indices. The low GDP per capita of
China, which is one of the core countries, is partly responsible for the
moderate association.

Answers to the Questions in Section 2.8
1. Statement c is correct. Attributes (e.g., the continent of a country) are

properties of vertices (viz., countries) and not lines, therefore state-
ments a and d are incorrect. Recall that properties of lines are called
line values. Properties that express the structural position of a vertex
in a network (e.g., centrality) are distinguished from social, economic,
psychological, and other characteristics that do not measure network
position. We restrict the concept of an attribute to the latter, nonrela-
tional, kind of property.

2. Statements c and d can be correct. List A contains negative numbers,
so it must be a vector. List B contains positive numbers, so it is either
a partition (if it contains integers) or a vector.

3. Statement a is the right choice. Aggregation of the percentages into
four classes of unequal width implies that we cannot make meaningful
calculations on the class numbers; for instance, add and divide class
numbers of two countries. We cannot say that two countries have aver-
age population growth of 2.5. Classes of equal width, such as rounding
to the nearest integer, would yield “real” numbers, which may safely
be used in calculations. But this is not the case here (statement b). The
properties of the original percentages no longer matter after they have
been aggregated in classes, so statements c and d are incorrect.

4. Answer d is correct. Changing the order of numbers in a partition
does not change the total number of entries or the class numbers. The
number of entries of a partition must match the number of vertices in
the network, otherwise Pajek does not draw the partition. Answer b is
incorrect. Class numbers determine the colors used. Because they do
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not change, the same colors are used (answer c is incorrect). The order
of entries in a partition determines which class is assigned to which
vertex: the class number in the first entry of a partition is assigned
to the first vertex in the network, and so on. Changing the order of
entries in a partition changes the links between vertices and entries
with class numbers, so at least some vertices will be drawn in other
colors (answer d).

5. Statement d is correct. Network B contains fewer vertices than network
A, so B is extracted or shrunk from A and not the other way around
(statements a and c). B is shrunk from A (statement d), because we find
a loop in B but no loops in A and because there is no subset of five
vertices in network A that are connected like B: three triangles which
share a line with at least one other triangle. In fact, the white vertices
in network A are shrunk to one new vertex, namely the vertex with
the loop in network B.

6. Answer a is correct. B is shrunk from A, but not all vertices are shrunk:
the black vertices are not shrunk (see answer to Question 5). A partially
shrunken network offers a contextual view.





Part II

Cohesion

Solidarity, shared norms, identity, collective behavior, and social cohesion
are considered to emerge from social relations. Therefore, the first concern
of social network analysis is to investigate who is related and who is
not. Why are some people or organizations related, whereas others are
not? The general hypothesis here states that people who match on social
characteristics will interact more often and people who interact regularly
will foster a common attitude or identity.

In this part of the book, which covers Chapters 3 through 5, we discuss
several measures of cohesion. You will learn to detect cohesive subgroups
within several types of social networks.
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3

Cohesive Subgroups

3.1 Introduction

Social networks usually contain dense pockets of people who “stick to-
gether.” We call them cohesive subgroups and we hypothesize that the
people involved are joined by more than interaction. Social interaction is
the basis for solidarity, shared norms, identity, and collective behavior, so
people who interact intensively are likely to consider themselves a social
group. Perceived similarity, for instance, membership of a social group,
is expected to promote interaction. We expect similar people to interact
a lot, at least more often than with dissimilar people. This phenomenon
is called homophily: birds of a feather flock together.

In this chapter, we present a number of techniques to detect cohesive
subgroups in social networks, all of which are based on the ways in which
vertices are interconnected. These techniques are a means to an end rather
than an end in themselves. The ultimate goal is to test whether structurally
delineated subgroups differ with respect to other social characteristics,
for instance, norms, behavior, or identity. Does the homophily principle
work? May we conclude that a cohesive subgroup represents an emergent
or established social group?

3.2 Example

In 1948, American sociologists executed a large field study in the Turrialba
region, which is a rural area in Costa Rica (Latin America). They were
interested in the impact of formal and informal social systems on social
change. Among other things, they investigated visiting relations between
families living in haciendas (farms) in a neighborhood called Attiro. The
network of visiting ties (Attiro.net, drawn in Figure 31) is a simple
directed graph: each arc represents “frequent visits” from one family to
another. The exact number of visits was not recorded. Line values classify
the visiting relation as ordinary (value 1), visits among kin (value 2), and
visits among ritual kin (i.e., between godparent and godchild), but we
do not use them in this chapter. Loops do not occur because they are
meaningless.
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Figure 31. Visiting ties in Attiro.

We compare cohesive subgroups in this network with an ethno-
graphic classification of the families into six family–friendship group-
ings that were made by the researchers on substantive criteria
(Attiro_grouping.clu; we adjusted the class numbers to get optimal
grays with the Options>Colors>Partition Colors>Default Greyscale 2
option). In rural areas where there is little opportunity to move up and
down the social ladder social groups are usually based on family relations.
All relevant data are collected in the project file Attiro.paj. Open this
file now and draw the network with its partition to obtain a sociogram
like Figure 31 (Draw>Draw-Partition command). You may want to use
real colors instead of grays for easy recognition of the family–friendship
groupings.

Which cohesive subgroups can we find in the Attiro network and do
they match the family–friendship groupings? Figure 31 offers a visual
impression of the kin visits network and the family–friendship groupings,
which are identified by the colors and numbers within the vertices (in
the Draw screen, class numbers are displayed in parentheses next to the
vertices). As is shown, the network is tightly knit with family–friendship
groupings 0 and 10 dominating the center. Most families that belong to
one grouping are connected by visiting ties, so they are rather close in the
network. Exceptions occur, however; notably family f43 (bottom right),
which is separated from the other vertices in the seventh family–friendship
grouping (left). In subsequent sections, we set out this first impression in
detail.

3.3 Density and Degree

Intuitively, cohesion means that a social network contains many ties. More
ties between people yield a tighter structure, which is, presumably, more
cohesive. In network analysis, the density of a network captures this idea.
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It is the percentage of all possible lines that are present in a network.
Maximum density is found in a complete simple network, that is, a simple
network in which all pairs of vertices are linked by an edge or by two
arcs, one in each direction. If loops are allowed, all vertices have loops in
a complete network.

Density is the number of lines in a simple network, expressed as a pro-
portion of the maximum possible number of lines.

A complete network is a network with maximum density.

In this definition of density, multiple lines and line values are disre-
garded. Intuitively, multiple lines between vertices and higher line val-
ues indicate more cohesive ties. Although density measures have been
proposed that account for multiplicity and line values, we prefer not to
present them. We count distinct lines only, which means that we treat a
multiple line as one line and multiple loops as one loop. We discuss other
measures that capture the contribution of multiple lines and line values
to cohesion in Chapter 5.

In the kin visiting relation network, density is 0.045, which means that
only 4.5 percent of all possible arcs are present. It is very common to find
density scores as low as this one in social networks of this size. Density is
inversely related to network size: the larger the social network, the lower
the density because the number of possible lines increases rapidly with
the number of vertices, whereas the number of ties which each person
can maintain is limited. In a visiting relation network, there is a practical
limit to the number of families you can visit. Therefore, including more
families in the network will reduce network density.

This is a problem if you want to interpret or compare network density.
Density in the visiting network in San Juan Sur, which is another neigh-
borhood in the Turrialba region, is 0.036. This is slightly lower than in
Attiro but the difference may be due to a larger number of families in San
Juan Sur (seventy-five families). Therefore, we can not draw a conclusion
from this comparison.

The degree of a vertex is the number of lines incident with it.

Network density is not very useful because it depends on the size of the
network. It is better to look at the number of ties in which each vertex is
involved. This is called the degree of a vertex. Vertices with high degree
are more likely to be found in dense sections of the network. In Figure 31,
family f88 (a member of family–friendship grouping number 10) is con-
nected to thirteen families by fifteen visiting ties (note that the double-
sided arcs between f88 and f73, f92 indicate that these families are linked
by mutual visits), so its degree is 15. The lines incident with this family
contribute substantively to the density of the network near this family.

A higher degree of vertices yields a denser network, because vertices
entertain more ties. Therefore, we can use the average degree of all vertices
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to measure the structural cohesion of a network. This is a better measure of
overall cohesion than density because it does not depend on network size,
so average degree can be compared between networks of different sizes.

Two vertices are adjacent if they are connected by a line.

The indegree of a vertex is the number of arcs it receives.

The outdegree is the number of arcs it sends.

In a simple undirected network, the degree of a vertex is equal to the
number of vertices that are adjacent to this vertex: its neighbors. Each
line that is incident with the vertex connects it to another vertex because
multiple lines and loops, which contribute to the degree of a vertex with-
out connecting it to new neighbors, do not occur. In a directed network,
however, there is a complication because we must distinguish between
the number of arcs received by a vertex (its indegree) and the number
of arcs sent (its outdegree). Note that the sum of the indegree and the
outdegree of a vertex does not necessarily equal the number of its neigh-
bors, for instance, family f88 is involved in fifteen visiting ties but it has
thirteen adjacent families because families f73 and f92 are counted twice
(Figure 31).

In this section, we restrict ourselves to degree in undirected networks.
When we encounter a directed network, we symmetrize it, which means
that we turn unilateral and bidirectional arcs into edges. A discussion of
indegree in directed occurs in Chapter 9, which presents the concept of
prestige.

To symmetrize a directed network is to replace unilateral and bidirec-
tional arcs by edges.

Application
[Main] Info>

Network>

General

Let us analyze the network of visiting ties in Attiro (Attiro.net), which
contains neither multiple lines nor loops. In Pajek, the density of a network
can be obtained by means of the Network submenu of the Info menu in the
Main screen. Choose the command General to display basic information
on the selected network, such as the number of vertices and lines as well
as its density. When executed, this command displays a dialog box asking
the user to specify the number of lines to be displayed. When you are
only interested in network density, request zero lines. Pajek computes two
density indices in the Report screen. The first index allows for loops and
the second does not. Because loops are meaningless in a visiting relation
network – people do not visit themselves – the second index is valid.
Density in the directed network is 0.045.

Net>Transform>

Arcs→Edges>
All

File>Network>

Save

In undirected simple networks, the degree of a vertex is equal to its
number of neighbors. This is the easiest interpretation of degree, so
we concentrate on undirected simple networks in this section. The kin
visiting network, however, is directed, so we must symmetrize it first.
Use the Arcs->Edges>All command in the Net>Transform submenu to
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replace all arcs by edges. Pajek will ask whether you want to make a
new network and we advise you to do so because you may want to use
the directed network later. Next, Pajek asks whether you want to remove
multiple lines. To obtain a simple undirected network, that is, a network
without multiple lines and loops, you should choose option 1 (sum the
line values of lines that will be joined into a new line), 2 (count the number
of lines that are joined), 3 (preserve the minimum value of joined lines),
or 4 (take their maximum line value) in this dialog box. It does not matter
which of these four options you choose because in this chapter we pay no
attention to line values. Now, the network is symmetrized and it is simple
because multiple lines are removed and there were no loops in the original
network. You may want to save it (File>Network>Save) for future use
under a new name (e.g., Attiro_symmetrized.net).

Degree is a discrete attribute of a vertex (it is always an integer), so
Net>Partitions>
Degreeit is stored as a partition. We obtain the degree partition with a com-

mand from the Net>Partitions>Degree submenu: Input, Output, or All.
Input counts all incoming lines (indegree), Output counts all outgoing
lines (outdegree), and All counts both. Note that an edge, which has no
direction, is considered to be incoming as well as outgoing, so each edge
is counted once by all three degree commands. In an undirected network,
therefore, it makes no difference whether you select Input, Output, or
All. In addition, these commands create a vector with the normalized de-
gree of vertices, that is, their degree divided by the number of potential
neighbors in the network.

Info>PartitionThe command Info>Partition displays the partition as a frequency table
(see Table 5). Class numbers represent degree scores, so we can see that the
degree of vertices varies markedly from zero to fourteen neighbors in the
symmetrized network. Clearly, family f68 is connected to most families
by visiting ties. One family, family f67, is isolated in the network: it is
linked to no other families by regular visits.

Partition>Make
Vector

The average degree of all vertices can be calculated from the degree
distribution. In this example, the class numbers in the degree partition

Table 5. Frequency Distribution of Degree in the Symmetrized Network
of Visits

Class Freq Freq% CumFreq CumFreq% Representative

0 1 1.6667 1 1.6667 f67
1 3 5.0000 4 6.6667 f37
2 1 1.6667 5 8.3333 f59
3 19 31.6667 24 40.0000 f3
4 20 33.3333 44 73.3333 f1
5 4 6.6667 48 80.0000 f45
6 6 10.0000 54 90.0000 f51
7 2 2.3333 56 93.3333 f6
8 1 1.6667 57 95.0000 f86
9 1 1.6667 58 96.6667 f42

13 1 1.6667 59 98.3333 f88
14 1 1.6667 60 100.0000 f68
sum 60 100.0000
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Info>Vector represent integers, namely the number of neighbors of a vertex, but this
is not true for all partitions. As a consequence, no average class number
is calculated and presented by the Info>Partition command. To obtain
the average degree, we have to convert the degree partition to a vector
and calculate summary statistics on the vector. In Chapter 2, you learned
how to do this: use Partition>Make Vector to create a vector from the
degree partition and use the Info>Vector command to obtain the average,
which is 4.27. Families in Attiro regularly visit more than four families
on average.

Exercise I
Open the visiting relation network in San Juan Sur (SanJuanSur.net),
symmetrize it, and determine the average degree. Is this network more
cohesive than the Attiro network in this respect?

3.4 Components

Vertices with a degree of one or higher are connected to at least one
neighbor, so they are not isolated. However, this does not mean that they
are necessarily connected into one lump. Sometimes, the network is cut
up in pieces. Isolated sections of the network may be regarded as cohesive
subgroups because the vertices within a section are connected, whereas
vertices in different sections are not. The network of visits in Attiro is
not entirely connected (see Figure 31). In this section, we identify the
connected parts of a network, which are called components, but we must
introduce some auxiliary graph theoretic concepts first.

Let us have a look at a simple example (Figure 32). Intuitively, it is clear
that some vertices are connected to other vertices, whereas others are not;
for instance, vertex v2 is adjacent to no other vertex, but the other four
vertices have one or more neighbors. If we consider the arcs to be roads,
we can walk from vertex v5 to v3 and, not considering the direction of
the arcs, we can proceed from vertex v3 to v1. We say that there is a
semiwalk from vertex v5 to vertex v1. From vertex v2, however, we can
walk nowhere.

v1

v2

v3

v4

v5

Figure 32. A simple unconnected directed network.
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A semiwalk from vertex u to vertex v is a sequence of lines such that
the end vertex of one line is the starting vertex of the next line and the
sequence starts at vertex u and ends at vertex v.

A walk is a semiwalk with the additional condition that none of its
lines are an arc of which the end vertex is the arc’s tail.

Imagine that the arcs represent one-way streets, so we take into account
the direction of the arcs. Now, we can drive from vertex v5 to vertex v3
but we cannot arrive at vertex v1. In graph theory, we say that there is a
walk from vertex v5 to v3 but there is not a walk from vertex v5 to v1.
In a walk, you have to follow the direction of the arcs.

Walks and semiwalks are important concepts but we need another,
related concept to define whether a network is connected. We should
note that there are many – in fact, infinitely many – walks from vertex
v5 to v3 in our example; for instance, v5→v3→v4→v5→v3 is also a
walk and we may repeat the circular route v5→v3→v4→v5 as many
times as we like. Clearly, we do not need these repetitions to establish
whether vertices are connected, so we use the more restricted concepts
of paths and semipaths, which demand that each vertex on the walk or
semiwalk occurs only once, although the starting vertex may be the same
as the end vertex. In the example, the walk v5→v3 is a path but the walk
v5→v3→v4→v5→v3 is not because vertices v5 and v3 occur twice. A
path is more efficient than a walk, one might say, because it does not pass
through one junction more than once.

A semipath is a semiwalk in which no vertex in between the first and
last vertex of the semiwalk occurs more than once.

A path is a walk in which no vertex in between the first and last vertex
of the walk occurs more than once.

Now we can easily define the requirements a network must meet to be
connected. A network is weakly connected – often we just say connected –
if all vertices are connected by a semipath. In a (weakly) connected net-
work, we can “walk” from each vertex to all other vertices if we neglect
the direction of the arcs, provided that there are any. The example of Fig-
ure 32 is not connected because vertex v2 is isolated: it is not included in
any semipath to the other vertices.

In directed networks, there is a second type of connectedness: a network
is strongly connected if each pair of vertices is connected by a path. In a
strongly connected network, you can travel from each vertex to any other
vertex obeying the direction of the arcs. Strong connectedness is more
restricted than weak connectedness: each strongly connected network is
also weakly connected but a weakly connected network is not necessarily
strongly connected. Our example is not weakly connected, so it cannot
be strongly connected.
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A network is (weakly) connected if each pair of vertices is connected
by a semipath.

A network is strongly connected if each pair of vertices is connected
by a path.

Although the network of our example is not connected as a whole,
we can identify parts that are connected; for instance, vertices v1, v3,
v4, and v5 are connected. In comparison with the isolated vertex v2,
these vertices are relatively tightly connected, so we may say that they
are a cohesive group. If the relation represents communication channels,
all vertices except vertex v2 may exchange information. Vertices v1, v3,
v4, and v5 constitute a (weak) component because they are connected
by semipaths and there is no other vertex in the network which is also
connected to them by a semipath.

Formally, we say that a (weak) component is a maximal (weakly) con-
nected subnetwork. Remember that a subnetwork consists of a subset of
the vertices of the network and all lines between these vertices. The word
maximal means that no other vertex can be added to the subnetwork
without destroying its defining characteristic, in this case connectedness.
If we would add the only remaining vertex – v2 – the subnetwork is no
longer connected. In contrast, if we would omit any of the vertices v1, v3,
v4, or v5, the subnetwork is not a component because it is not maximal:
it does not comprise all connected vertices.

Likewise, we can define a strong component, which is a maximal
strongly connected subnetwork. The example network contains three
strong components. The largest strong component is composed of ver-
tices v3, v4, and v5, which are connected by paths in both directions.
In addition, there are two strong components consisting of one ver-
tex each, namely vertex v1 and v2. Vertex v2 is isolated and there
are only paths from vertex v1 but no paths to this vertex, so it is not
strongly connected to any other vertex. It is asymmetrically linked to the
larger strong component. In general, the ties among strong components
are either asymmetrical or absent. In Chapter 10, we elaborate on this
feature.

A (weak) component is a maximal (weakly) connected subnetwork.

A strong component is a maximal strongly connected subnetwork.

In an undirected network, lines have no direction, so each semiwalk is
also a walk and each semipath is also a path. As a consequence, there is
only one type of connectedness, which is equivalent to weak connected-
ness in directed networks, and one type of component. In an undirected
network, components are isolated from one another, there are no lines
between vertices of different components. This is similar to weak compo-
nents in directed networks.
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Figure 33. Strong components (contours) and family–friendship group-
ings (vertex colors and numbers) in the network of Attiro.

In a directed network, should you look for strong or weak components?
The choice depends on substantive and practical considerations. Substan-
tive reasons pertain to the importance you attach to the direction of a
relation: does it matter to social processes whether actor A turns to actor
B, actor B turns to actor A, or both? If the flow of communication is being
investigated, it probably does not matter who initiates a contact. If family
f98 visits both families f11 and f99 (Figure 33, left), it may inform family
f11 about family f99 and the other way around. Families f11 and f99 may
share information although there is no path between them. In this case,
direction of the relation is quite unimportant and weak components are
preferred.

If substantive arguments are indecisive, the number and size of com-
ponents may be used to choose between strong and weak components.
Recall that strong components are more strict than weak components,
which means that strong components usually are smaller than weak com-
ponents. It is a good strategy to detect weak components first. If a network
is dominated by one large weak component (e.g., the network in Attiro),
we advise to use strong components to break down the weak component
in a next step.

Figure 33 shows the strong components in the visiting relation network.
Each strong component of more than one vertex is manually delineated
by a contour. Each vertex outside the contours is a strong component on
its own (e.g., families f67 and f59). The original classification according
to family–friendship groupings is represented by vertex colors and by the
numbers inside the vertices. We see that the large weak component is
split up in several small strong components, some of which approximate
family–friendship groupings, for instance, family–friendship groupings
one (at the right) and seven (at the left).

ARA
Underline



70 Exploratory Network Analysis with Pajek

Components can be split up further into denser parts by considering the
number of distinct, that is, noncrossing, paths or semipaths that connect
the vertices. Within a weak component, one semipath between each pair
of vertices suffices but there must be at least two different semipaths in a
bi-component. The concept of a bi-component is discussed in Chapter 7.
This can be generalized to k-connected components: maximal subnet-
works in which each pair of vertices is connected by at least k distinct
semipaths or paths. A weak component, for instance, is a 1-connected
component and a bi-component is a 2-connected component.

Application
Net>

Components>
Strong

Draw>

Draw-Partition

With Pajek, it is easy to find components in the visiting relation network
(Attiro.net). The Net menu has a submenu to find three types of com-
ponents: strong, weak, and bi-components. We discuss bi-components
in Chapter 7. When you execute commands Strong or Weak, a dialog
box appears asking for the minimum size of components. Sometimes,
very small components are not interesting, for instance, isolated vertices,
which are counted as separate components if minimum component size is
set to 1 vertex. Raise this number to exclude them. The command creates
a partition in which each class represents a component. Draw the net-
work with the strong components partition (Draw>Draw-Partition) to
see the clusters enclosed in contours in Figure 33. Draw it with the original
family–friendship groupings partition to obtain the clusters represented
by vertex color in Figure 33. Figure 33 combines these two layouts.

Net>
Components>

Weak

In undirected networks, it makes no difference whether you select
strong or weak components because the commands yield identical re-
sults. Furthermore, weak components in a directed network are equal to
components in the symmetrized network. Therefore, it is not necessary to
symmetrize a directed network when you want to know its components:
just compute weak components in the directed network.

3.5 Cores

The distribution of degree reveals local concentrations of ties around in-
dividual vertices but it does not tell us whether vertices with a high degree
are clustered or scattered all over the network. In this section, we use de-
gree to identify clusters of vertices that are tightly connected because each
vertex has a particular minimum degree within the cluster. We pay no at-
tention to the degree of one vertex but to the degree of all vertices within
a cluster. These clusters are called k-cores and k indicates the minimum
degree of each vertex within the core; for instance, a 2-core contains all
vertices that are connected by degree two or more to other vertices within
the core. A k-core identifies relatively dense subnetworks, so they help to
find cohesive subgroups. As is shown, however, a k-core is not necessarily
a cohesive subgroup itself!

A k-core is a maximal subnetwork in which each vertex has at least
degree k within the subnetwork.
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Figure 34. k-cores in the visiting network at Attiro.

The definition of a k-core is more complicated than you might think.
It is easiest to explain if we apply it to a simple undirected network and,
as a rule, we apply it only to this type of network. In a simple undirected
network, the degree of a vertex is equal to the number of its neighbors,
as discussed in Section 3.3, so a k-core contains the vertices that have at
least k neighbors within the core. A 2-core, then, consists of all vertices
that are connected to at least two other vertices within the core. In the
definition, the word maximal means that we are interested in the largest
set of vertices that satisfy the required property, in this case a minimum
number of k neighbors within the core.

The undirected visiting relation network, which we obtained by sym-
metrizing the directed network, contains a large 3-core (white vertices in
Figure 34). In the 3-core, each family is connected to at least three other
families. In addition, there is a 2-core (dark gray), a 1-core (black), and a
0-core (light gray). Do the k-cores in the kin visits network represent co-
hesive subgroups? For the 3-core, this seems to be true because it is clearly
a dense pocket within the network. The 2-core and the 0-core, however,
consist of one vertex (families f59 and f67) and the 1-core is situated at
two different places in the network (at the left and at the bottom). It is
silly to regard them as cohesive subgroups.

The meaning of the lower k-cores can be illustrated by the simple ex-
ample in Figure 35. This little network is connected, so all ten vertices

Figure 35. k-Cores.
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72 Exploratory Network Analysis with Pajek

Figure 36. Stacking or nesting of k-cores.

are linked to at least one other vertex. As a result, all vertices belong to
the 1-core, which is drawn in black at the bottom of Figure 36. One vertex,
v5, has only one neighbor, so it is not part of the 2-core (gray, in the mid-
dle of Figure 36). Vertex v6 has a degree of 2, so it does not belong to the
3-core (white, in the top of Figure 36). A vertex belongs to the highest
k-core, so the resulting sociogram looks like Figure 35: the different lev-
els are stacked one on top of the other. We say that k-cores are nested: a
vertex in a 3-core is also part of a 2-core, but not all members of a 2-core
belong to a 3-core.

The example illustrates another feature of k-cores, namely that a k-core
does not have to be connected. As a result of nesting, different cohesive
subgroups within a k-core are usually connected by vertices that belong to
lower cores. In Figure 36, vertex v6, which is part of the 2-core, connects
the two segments of the 3-core. If we eliminate the vertices belonging to
cores below the 3-core, we obtain a network consisting of two compo-
nents, which identify the cohesive subgroups within the 3-core.

This is exactly how k-cores help to detect cohesive subgroups: remove
the lowest k-cores from the network until the network breaks up into
relatively dense components. Then, each component is considered to be
a cohesive subgroup because they have at least k neighbors within the
component. In (very) large networks, this is an effective way of find-
ing cohesive subgroups. In the Attiro visiting relation network, however,
this strategy does not work because there are no unconnected k-cores.
Elimination of the lower k-cores does not split the network into separate
components.

Application
Net>Partitions>

Core>Input,
Output, All

In Pajek, k-cores are detected with the Core command in the Net>
Partitions submenu. The Input, Output, and All commands operate ex-
actly in the same way as in the Net>Partitions>Degree submenu, distin-
guishing among input cores, output cores, and cores that ignore the di-
rection of lines. We advise using the All command and applying it only to
simple undirected networks. The command yields a partition that assigns
each vertex to the highest k-core in which it appears. Vertex colors and
the numbers inside the vertices display the k-core partition in Figure 34.
In this example, the k-cores do not match the ethnographic clustering into
family–friendship groupings.
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Operations>
Extract from
Network>

Partition

Net>
Components>
Strong

With the k-core partition, you can easily delete low k-cores from the
network to distill the densest sections in the network. Select the k-core par-
tition in the Partition drop list and execute the Operations>Extract from
Network>Partition command. Select the lowest and highest k-cores that
you want to extract from the network, in this case the third k-core. Sub-
sequently, use the Net>Components>Strong command to check whether
the selected k-core levels are split into two or more components.

Exercise II
Determine the k-cores in the network ExerciseII.net and extract the
4-core from this network.

3.6 Cliques and Complete Subnetworks

In the visiting relation network, most vertices belong to one large 3-core.
If we want to split this large 3-core into subgroups, we need a stricter
definition of a cohesive subgroup. In this section, we present the strictest
structural form of a cohesive subgroup, which is called a clique: a set of
vertices in which each vertex is directly connected to all other vertices. In
other words, a clique is a subnetwork with maximum density.

A clique is a maximal complete subnetwork containing three vertices
or more.

The size of a clique is the number of vertices in it. Maximal complete
subnetworks of size 1 and 2 exist, but they are not very interesting be-
cause they are single vertices and edges or bidirectional arcs, respectively.
Therefore, cliques must contain a minimum of three vertices.

Unfortunately, it is very difficult to identify cliques in large networks:
the computational method is very time-consuming and even medium-sized
networks may contain an enormous number of cliques. In this book, there-
fore, we restrict ourselves to the analysis of small complete subnetworks,
which may or may not be cliques. We concentrate on complete triads, that
is, complete subnetworks consisting of three vertices, but the argument is
easily extended to complete subnetworks of size four or more.

Figure 37 shows the complete undirected and directed triad as well as an
example of a network that contains several complete triads. Note that the
complete triad with vertices v1, v5, and v6 is a clique because we cannot
add another vertex from the network to this subnetwork such that it is
still complete. This subnetwork is maximal with respect to completeness.
In contrast, triad v2, v4, v5 is not a clique because we can add vertex v3
and the subnetwork is still complete. Vertices v2 to v5 constitute a clique
of size 4, which, by the way, is made up of four complete triads.

Figure 37 shows a very important feature of cliques and complete sub-
networks, namely that they can overlap. The complete triad v1, v5, v6
overlaps with the complete triad v2, v4, v5 because they share vertex v5.
As a consequence, it is impossible to assign all vertices unambiguously
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complete triad example

undirected

directed

v1

v5v6

v2

v3

v4

v1

v5v6

v2

v3

v4

Figure 37. The complete triad and an example.

to one clique or complete subnetwork. We cannot equate each clique or
complete subnetwork with a cohesive subgroup and this is a serious com-
plication if we want to classify vertices into cohesive subgroups.

In social network analysis, structures of overlapping cliques, which are
thought to represent social circles rather than individual cliques, are re-
garded as cohesive subgroups. Cliques or complete triads are the densest
sections or “bones” of a network, so the structure of overlapping cliques
are considered its “skeleton.” Sometimes, additional conditions are im-
posed on the overlap of cliques (e.g., a minimum number or percentage
of vertices that two cliques must share) but we do not use them here.

Application
Net>Transform>

Arcs →Edges>
All

Because clique detection is particularly useful for dense networks, we now
analyze the symmetrized (undirected) network of visiting ties in Attiro,
which has higher density (0.072) than the directed network (0.045). Sym-
metrize the network with the Net>Transform>Arcs→Edges>All com-
mand and avoid multiple lines by selecting option 1, 2, 3, or 4 in the
“Remove multiple lines?” dialog box. This network is too dense to spot
complete triads and structures of overlapping triads visually. Even the best
energized drawing contains many crossing edges, which makes it difficult
to see complete triads; there are probably many.

Nets>First
Network, Second

Network

The first step, then, is to detect all complete triads within the network.
In other words, we have to find all occurrences of one particular network
or fragment – in our case, a complete triad – in another network, namely
the original network. The command is situated in the Nets menu, which
contains all operations on two networks, and it requires that the fragment
and the original network are identified as the First Network and Second
Network, respectively, in this menu. The project file Attiro.paj con-
tains the network triad_undir.net, which is a single complete undi-
rected triad. Select this network as the first network in the Nets menu
and select the symmetrized visiting ties network as the second network:
select the network in the drop list and click the Nets>First Network or
Nets>Second Network command. Now, the names of these networks are
shown in the Nets menu.
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+Root
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Figure 38. A hierarchy of cliques.

Nets>Fragment
(1 in 2)>Find

Nets>Fragment
(1 in 2)>Options

Next, we can find all complete triads in the network by executing the
Find command of the Fragment (1 in 2) submenu. Executing this com-
mand, Pajek reports the number of fragments it has found and it creates
one or more new data objects, depending on the options selected in the
Options submenu of the Fragment command. We recommend to have the
option Extract subnetwork checked only. This produces a network labeled
“Subnetwork induced by Sub fragments.” It is called induced because
Pajek selects vertices and lines within the fragments (complete triads)
only. This network contains the overlapping cliques that we are looking
for and we discuss it at the end of this section. In addition, Pajek creates a
hierarchy and a partition. The partition counts the number of fragments to
which each vertex belongs and the hierarchy lists all fragments: complete
triads in our example.

A hierarchy is a data object that we have not yet encountered. It is
designed to classify vertices if a vertex may belong to several classes.
In the visiting relation network, for instance, a family may belong to
several complete triads. A hierarchy is a list of groups and each group
may consist of groups or vertices. Ultimately, vertices are the units which
are grouped. Figure 38 shows the hierarchy for the example of overlapping
complete triads of Figure 37. There are five complete triads; each of them
is represented by a gray vertex in Figure 38. Each complete triad consists
of three vertices (white in Figure 38). Note that most vertices appear more
than once because the triads overlap. At the top of the hierarchy, one node
(black) connects all groups; it is called the root of the hierarchy.

Hierarchy
drop-down menu

File>Hierarchy>

Edit

A hierarchy is stored as a data object in the Hierarchy drop-down menu.
You can browse a hierarchy in an Edit screen, which is opened with the
Edit command in the File>Hierarchy submenu or by the Edit button to
the left of the Hierarchy drop list. On opening, the Edit screen displays
the root only. Click on the plus sign preceding the root to display the (first
level of) groups in the hierarchy.

Figure 39 shows part of the 36 complete triads in the visiting relation
network of Attiro. Select a group with your left mouse button and click
with the right mouse button to display its vertices in a separate window. If
the original network is selected in the Network drop-down menu, vertex
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76 Exploratory Network Analysis with Pajek

Figure 39. Viewing a hierarchy in an Edit screen.

labels are displayed next to their numbers in this window. In this way,
you can see which vertices belong to a complete triad.

Info>Partition Now let us turn to the induced network and the partition created by
the Nets>Fragment (1 in 2)>Find command. The partition, labeled “Sub
fragments,” shows the number of triads that include a particular vertex.
Using the Info>Partition command in the Main screen, you can see that
two vertices belong to no less than seven complete triads, whereas thir-
teen vertices are not included in any of the complete triads. The latter
vertices are not part of the structure of overlapping cliques, so they are
eliminated from the induced network (labeled “Subnetwork induced by
Sub fragments”), which contains the remaining forty-seven vertices of the
Attiro network.

Partitions>
Extract Second

from First

With this partition, we can make the original partition according to
family–friendship groupings (in Attiro_grouping.clu) match the
new induced network. Select the original partition as the first partition
in the Partitions menu and select the fragments partition as the second
partition in this menu. Then execute the Partitions>Extract Second from
First command and specify one as the lowest class number and seven (or
higher) as the highest class number to be extracted. Pajek creates a new
partition holding the family–friendship groupings of the forty-seven ver-
tices in the induced network of overlapping complete triads. Draw this
network and partition, and energize it with Kamada–Kawai to obtain
a sociogram such as Figure 40 (use Default GreyScale 2 in the [Draw]
Options>Colors>Partition Colors dialog screen to get the grays).

The induced subnetwork is displayed in Figure 40. It has three com-
ponents of overlapping complete triads, so we say that we have found
three social circles under the criterion of complete triads that share at
least one member. Family–friendship grouping 1 is a separate social cir-
cle but the other family–friendship groupings are interconnected although
they are clearly clustered within the largest component. Family–friendship
grouping 10 occupies a pivotal position in this structure, connecting
groupings zero, 5, and part of family–friendship grouping 4.

In a directed network, you may follow the same procedure but you have
to use a complete directed triad as a fragment (e.g., triad_dir.net). In
general, you will find fewer cliques in the directed network than undirected
cliques in the symmetrized network. In the directed Attiro network, for
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Figure 40. Complete triads and family–friendship groupings (colors and
numbers inside vertices).

instance, there is just one complete directed triad, containing families f62,
f71, and f90, so we cannot speak of overlapping cliques in the directed
network.

3.7 Summary

In this chapter, social cohesion was linked to the structural concepts of
density and connectedness. Density refers to the number of links between
vertices. A network is strongly connected if it contains paths between
all of its vertices and it is weakly connected when all of its vertices are
connected by semipaths. Connected networks and networks with high av-
erage degree are thought to be more cohesive. This also applies to sections
of a network (subnetworks). We expect local concentrations of ties in a
social network to identify cohesive social groups.

There are several techniques to detect cohesive subgroups based on
density and connectedness, three of which are presented in this chapter:
components, k-cores, and cliques or complete subnetworks. All three tech-
niques assume relatively dense patterns of connections within subgroups,
but they differ in the minimal density required, which varies from at least
one connection (weak components) to all possible connections (cliques).
Two more techniques based on a similar principle (m-slices and bicom-
ponents) are presented in later chapters. There are many more formal
concepts for cohesive subgroups but all of them are based on the notions
of density and connectedness.

ARA
Highlight

ARA
Underline

ARA
Underline



Fi
gu

re
41

.
D

ec
is

io
n

tr
ee

fo
r

th
e

an
al

ys
is

of
co

he
si

ve
su

bg
ro

up
s.

78



Cohesive Subgroups 79

Components identify cohesive subgroups in a straightforward manner:
each vertex belongs to exactly one component. The link between cohesive
subgroups and k-cores or cliques is more complicated. k-Cores are nested,
which means that higher k-cores are always contained in lower k-cores,
so a vertex may belong to several k-cores simultaneously. In addition,
k-cores are not necessarily connected: the vertices within one k-core can
be spread over several components. To identify cohesive subgroups, the
researcher has to eliminate vertices of low k-cores until the network breaks
up into relatively dense components. Cliques or complete subnetworks,
such as complete triads, may overlap, that is, share one or more vertices,
so a component of overlapping cliques is regarded as a cohesive subgroup
rather than each clique on its own.

Because the techniques to detect cohesive subgroups are based on the
same principle, substantive arguments to prefer one technique over an-
other are usually not available. The choice of a technique depends pri-
marily on the density of the network. In a dense network, the structure
of overlapping cliques reveals the cohesive skeleton best, whereas com-
ponents and k-cores unravel loosely knit networks better. In exploratory
research, we recommend looking for components first and then applying
k-cores and searching for complete triads to subdivide large k-cores if
necessary (see the decision tree in Figure 41).

Another choice pertains to the treatment of directed relations. In gen-
eral, symmetrizing directed relations yields higher density, thus more or
larger cohesive subgroups. For k-cores, we recommend to use simple undi-
rected or symmetrized networks to make sure that k equals the number
of neighbors to which each vertex is connected in a core. In a directed
network, components may be weak or strong. Strong components and
complete directed triads are based on reciprocal ties, whereas weak sub-
groups consider unilateral ties as well.

In this chapter, we use the word subgroup, but a cohesive subgroup is
not necessarily a social group. We need to check this by comparing the
structural subgroups with respect to the social characteristics, behavior,
and opinions of their members. Sometimes, our prior knowledge about the
entities in the network enables us to make sense of the cohesive subgroups
we detect. Otherwise, we must systematically compare the partition which
identifies cohesive subgroups with partitions representing social attributes
of the vertices.

3.8 Questions

1. Inspect the networks that are depicted below. If we symmetrize the
directed networks, which ones become identical to the undirected net-
work?
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a. A, B, and C
b. A and B only
c. A and C only
d. A only

2. Which of the following statements is correct?
a. Density is the degree sum of all vertices in a simple undirected net-

work.
b. Density is the degree sum of all vertices divided by the number of

vertices in a simple undirected network.
c. Density is the number of arcs divided by the number of pairs of

vertices in a simple directed graph.
d. Density is the number of edges divided by the number of pairs of

vertices in a simple undirected graph.
3. Which of the following statements about the network below are cor-

rect?

v1

v2

v3 v4

v5

v6

v7

v8

a. v6 and v4 are not connected by a semipath.
b. v1 and v4 are not connected by a path.
c. There is no path from v7 to v3.
d. There is no path from v1 to v8.

4. How many strong components does the network of Question 3 con-
tain?
a. No strong components
b. 1 strong component
c. 2 strong components
d. 3 strong components

5. Which of the following statements is correct?
a. A subnetwork is maximal if it cannot be enlarged without loosing

its structural characteristic.
b. A subnetwork is not maximal if it does not cover the whole network.
c. A subnetwork is maximal if it is connected.
d. A subnetwork is maximal if it is complete.

6. Which of the following statements is correct for simple undirected
networks?
a. In a 1-core, each vertex has exactly one neighbor.
b. A component containing 2 or more vertices is always a 1-core.
c. Each 1-core is a clique.
d. Each 3-core is a clique.
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7. Count the number of 3-cores in the network below. Vertex colors in-
dicate the level of k (white: k = 1; light gray: k = 2; dark gray: k = 3;
black: k = 4).

v1

v2

v3

v4

v5

v6

v7
v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18
v19

v20

v21

v22

v23

v24

v25

v26

v27v28

v29

v30

v31v32

v33

v34
v35

v36
v37

v38

v39
v40

v41

v42

v43

v44

v45

v46

v47

v48

v49

a. One 3-core
b. Two 3-cores
c. Three 3-cores
d. Four 3-cores

3.9 Assignment

The researchers assigned the families of another village in the Turri-
alba region, San Juan Sur, to family–friendship groupings on the ba-
sis of their answers to the question: in case of a death in the fam-
ily, whom would you notify first? Their choices are stored in the file
SanJuanSur_deathmessage.net. In this file, the coordinates of fam-
ilies correspond with the locations of families in the original sociogram
drawn by the researchers. The partition SanJuanSur_deathmessage.
clu contains the family–friendship groupings for this network.

We would like to reconstruct the way the families were assigned to
family–friendship groupings. Find out which type of cohesive subgroups
match the family–friendship groupings best and use the indices of statisti-
cal association presented in Chapter 2, Section 2.6, to assess how well they
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match. Do you think that the researchers used additional information to
assign families to family–friendship groupings?

3.10 Further Reading

� The example is taken from Charles P. Loomis, Julio O. Morales,
Roy A. Clifford, & Olen E. Leonard, Turrialba: Social Systems
and the Introduction of Change (Glencoe (Ill.): The Free Press,
1953). We will also use these data in Chapter 9 on prestige.

� Chapter 6 in John Scott, Social Network Analysis: A Handbook
[London: Sage (2nd ed. 2000), 1991] offers an overview with
some additional types of connected subnetworks. Chapter 7 in
Stanley Wasserman and Katherine Faust, Social Network Anal-
ysis: Methods and Applications (Cambridge: Cambridge Univer-
sity Press, 1994) is even more detailed.

3.11 Answers

Answers to the Exercises
I. In the symmetrized network of San Juan Sur without multiple lines,

vertex degree ranges from 1 to 12 and the average degree is 4.13
(change the degree partition into a vector and inspect the vector with
the Info>Vector command).

II. Open the network ExerciseII.net and determine the k-core par-
tition with one of the Net>Partition>Core commands. Inspecting the
core partition with the Info>Partition command, you will see that 13
vertices belong to the 4-core, 33 (13 + 20) to the 3-core, 47 (33 + 14)
vertices to the 2-core, and all 49 vertices (47 + 2) to the 1-core. You
can extract the 4-core from the network with the Operations>Extract
from Network>Partition command (just extract class 4). The ex-
tracted 4-core is not connected, as shown in the figure below; it consists
of two parts.

v1

v3

v5

v8

v10

v21

v22

v27
v28

v35

v38

v43

v49

Answers to the Questions in Section 3.8
1. Answer c is correct. Symmetrizing a network means that unilateral and

bidirectional arcs are replaced by an edge. Multiple arcs (e.g., from the
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top-right vertex to the bottom-left vertex in network B) are replaced by
multiple edges. Therefore, the undirected network is not a symmetrized
version of network B.

2. Answer d is correct. Density is defined as the number of lines in a net-
work, expressed as a proportion of the maximum possible number of
lines. In a simple undirected network, a pair of vertices can be con-
nected by one edge because multiple lines do not occur. In addition,
loops do not occur. Therefore, the number of pairs of vertices equals
the maximum possible number of lines and answer d is correct. Recall
that an edge is defined as an unordered pair of vertices and an arc as an
ordered pair. In a simple directed network, each pair of vertices may
be connected by two arcs, so the maximum possible number of lines
is twice the number of pairs. Morever, a simple directed network may
also contain loops. Thus, answer c is incorrect. Answers a and b refer
to the sum of degrees and average degree, which are other kinds of
indices.

3. Answer c is correct because the only path which originates in v7 leads
to v4, where it stops because v4 sends no arcs. Answer a is incor-
rect because there are several semipaths between v6 and v4 (e.g.,
v6→v3←v2→v7→v4) and each path (v6→v4) is also a semipath.
Answer b is incorrect because there is a path from v1 to v4 (e.g.,
v1→v5→v2→v7→v4). Answer d is incorrect because there is a path
from v1 to v8 as follows: v1→v5→v2→v3→v6→v8.

4. Answer d is correct. Vertex v4 is a strong component on its own because
it has no path to any other vertex. Vertex v7 is the start of one path,
which ends at v4. Because there is no path in the opposite direction,
v7 is not a member of a larger strong component. The third strong
component consists of the remaining six vertices, which are connected
by paths in both ways.

5. Statement a is correct; for example, a component is a maximal con-
nected subnetwork because no vertex can be added in such a way
that the subnetwork is still connected. Connectedness in itself is not
enough for a subnetwork to be maximal (statement c), nor is complete-
ness (statement d). A maximal subnetwork does not need to include
all vertices in the network (statement b is incorrect).

6. Answer b is correct for every simple undirected network. In a compo-
nent, of size 2 or more, vertices must be linked to at least one other
vertex for the component to be connected, so each component is at
least a 1-core. A star network is a 1-core because all vertices except the
central vertex has just one neighbor. Nevertheless, the central vertex
has more than one neighbor, so answer a is incorrect. k-cores are not
necessarily cliques, so answers c and d are not correct.

7. Answer a is correct. A k-core is not necessarily connected, so all un-
connected parts of the 3-core still belong to one 3-core.
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Sentiments and Friendship

4.1 Introduction

In the preceding chapter, we discussed several techniques for finding co-
hesive subgroups within a social network. People who belong together
tend to interact more frequently than people who do not. In the current
chapter, we extend this idea to affective relations that are either positive
or negative, for instance, friendship versus hostility, liking versus dislik-
ing. We expect positive ties to occur within subgroups and negative ties
between subgroups.

Hypotheses about patterns of affective relations stem from social psy-
chology and they are widely known as balance theory. First, we introduce
this theory and discuss how it was incorporated in network analysis. Then,
we apply it to affective relations, that is, social relations that are subjective
and mental rather than tangible.

4.2 Balance Theory

Social psychology is interested in group processes and their impact on in-
dividual behavior and perceptions. In the 1940s, Fritz Heider formulated
a principle that has become the core of balance theory, namely that a per-
son feels uncomfortable when he or she disagrees with his or her friend
on a topic. Figure 42 illustrates this situation: P is a person, O is another
person (the Other), and X represents a topic or object. P likes O, which is
indicated by a positive line between P and O, but they disagree on topic
X because P is in favor of it (positive line), whereas O is opposed to it
(negative line). Note the convention of drawing negative ties as dashed
lines, which is also adopted in Pajek.

Heider predicted that P would become stressed and feel an urge to
change the imbalance of the situation, either by adjusting his opinion on
X, by changing his affections for O, or by convincing himself or herself
that O is not really opposed to X. Research in small groups corroborated
the hypothesis that people feel stressed in a situation of imbalance.

A social psychologist (Dorwin Cartwright) and a mathematician (Frank
Harary) translated Heider’s ideas into network analysis. They defined a
special kind of network to represent structures of affective ties, namely

84
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+

+

-

P

X

O

Figure 42. A Person–Other–Object (X) triple.

a signed graph. In a signed graph, a positive or negative sign is attached
to each line indicating whether the associated tie (e.g., an affection) is
positive or negative.

A signed graph is a graph in which each line carries either a positive
or a negative sign.

In a signed graph, Heider’s Person–Other–Object triple is represented
by a cycle, that is, a path in which the first and last vertex coincide. All
balanced cycles contain an even number of negative lines or no negative
lines at all; for instance, there is one negative line in the cycle of Figure 42,
which is an uneven number, so this triple is not balanced. P, and possibly
O, will feel stressed in this situation.

However, affective relations do not need to be symmetrical. My feelings
for you may differ from your feelings toward me. Affections are projected
from a person to something or someone else. Therefore, it is usually better
to represent affect ties by arcs rather than edges. It is easy to generalize
balance theory to signed directed graphs: ignore the direction of arcs and
count the number of negative arcs in each semicycle (a closed semipath).
In Figure 43, the sequence of arcs from P to X, on to O, and back to P con-
stitute a semipath and a semicycle but not a path and a cycle, because not
all arcs point toward the next vertex within this sequence. The semicycle
is unbalanced because it contains an uneven number of negative arcs.

A cycle is a closed path.

A semicycle is a closed semipath.

A (semi-)cycle is balanced if it does not contain an uneven number of
negative arcs.

+

+

-

P

X

O

Figure 43. P-O-X triple as a signed digraph.
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Fritz Heider was concerned with the feelings and perceptions of one per-
son. Therefore, Figure 43 contains affections from person P to the other
(O) and to the object or topic X. Even O’s tie to X is measured from the
perspective of P: it is P’s idea about what O thinks of X, which does not
necessarily correspond to O’s real opinion. In social psychology, this phe-
nomenon is called attribution. Of course, O may have positive or negative
affect for P as well, and if X is a human being (or an animal) rather than
a topic, X may also express affections for P and O.

Network analysts are interested in the feelings of all members of a group
toward each other. This has led to the notion of structural balance, which
expects balance in the overall pattern of affect ties within a human group
rather than in one person’s affections and attributions.

Cartwright and Harary formulated exact conditions for a signed graph
to be balanced. They noted that a balanced signed graph can be parti-
tioned into two clusters such that all positive arcs are contained within
the clusters and all negative arcs are located between clusters. You might
say that a balanced network is extremely polarized because it consists of
two factions and actors only have positive ties with members of their own
faction, whereas they have negative ties with members of the other fac-
tion. Clusters group people who like each other but who dislike members
of the other cluster. It is easy to check this in Figure 44, which uses gray
and black to identify the clusters.

In addition, they proved that a signed graph is balanced if all of its
semicycles are balanced. Find one unbalanced semicycle and you know
that the network is unbalanced.

A signed graph is balanced if all of its (semi-)cycles are balanced.

A signed graph is balanced if it can be partitioned into two clusters such
that all positive ties are contained within the clusters and all negative
ties are situated between the clusters.

But why would human groups consist of two clusters or factions instead
of three or more? In Figure 44, for instance, vertices v7, v9, and v12 could
very well be a cluster on their own. To allow for three or more clusters,

v1v2
v3

v4

v5

v6v7

v8

v9

v10

v11

v12

Figure 44. A balanced network.
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balance was generalized to clusterability. A signed network is clusterable
if there is a partition satisfying the criterion that positive lines connect
vertices within a cluster and negative lines are incident with vertices in
different clusters, no matter the number of clusters. The network analyst
Davis proved that a network is clusterable if it contains no semicycles with
exactly one negative arc. Clearly, balance is a special case of clusterability
because all balanced semicycles are clusterable.

A cycle or semicycle is clusterable if it does not contain exactly one
negative arc.

A signed graph is clusterable if it can be partitioned into clusters such
that all positive ties are contained within clusters and all negative ties
are situated between clusters.

In the course of time, balance theory has been generalized to models that
incorporate hierarchy. We present these models in Chapter 10. Some of
them apply to unsigned networks but we analyze signed relations only in
the current chapter. To find subgroups in unsigned networks, we advise
using the techniques for tracing cohesive subgroups, which is presented
in Chapter 3.

4.3 Example

In this chapter, we use a case that has been reanalyzed by network analysts
many times, namely the ethnographic study of community structure in a
New England monastery by Samuel F. Sampson. The study describes sev-
eral social relations among a group of men (novices) who were preparing
to join a monastic order. We use the affect relations among the novices,
which were collected by asking them to indicate whom they liked most
and whom they liked least. The novices were asked for a first, second,
and third choice on both questions.

The social relations were measured for several moments in time. The
file Sampson.net contains the affect relations at five different moments.
The first choice of the most liked peer is coded with line value 3, the
second choice with line value 2, and the third choice with line value 1.
Least liked choices are coded with negative line values as follows: −3 for
the most disliked colleague, −2 for the second choice, and −1 for the
third choice. In the present section, however, we focus on the affective
ties between the novices at the fourth moment in time (T4), which was
one week before four of them were expelled from the monastery. For the
sake of illustration, we use their first choices only, which are recoded to
1 for most liked and −1 for least liked. The data are available in the
file Sampson_T4.net. The Pajek project file Sampson.paj contains
all networks and partitions.

Some novices had attended the minor seminary of “Cloisterville” be-
fore they came to the monastery; they are identified as class 1 in the par-
tition Sampson_cloisterville_T4.clu. Based on his observations
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and analyses, Sampson divided the novices into four groups, which are
represented by classes in the partition Sampson_factions_T4.clu:
Young Turks (class 1), Loyal Opposition (class 2), Outcasts (class 3),
and an interstitial group (class 4). The Loyal Opposition consists of the
novices who entered the monastery first. The Young Turks arrived later,
in a period of change. They questioned practices in the monastery, which
the members of the Loyal Opposition defended. Some novices did not
take sides in this debate, so they are labeled “interstitial.” The Outcasts
are novices who were not accepted into the group.

4.4 Detecting Structural Balance and Clusterability

Social networks are seldom perfectly balanced or clusterable. In some ap-
plications, researchers want to know whether a social network is more
balanced or clusterable than we may expect by chance. If so, they con-
clude that the actors in the network adjust their ties to balance. In ex-
ploratory social network analysis, however, we are primarily interested
in detecting balanced clusters, which represent cohesive subgroups within
the network.

There are several ways to detect clusters in a signed network such that
positive lines are within clusters and negative lines between clusters. Some-
times, clusters can be found by visual exploration. If we draw positive
lines, which indicate attraction, as short as possible and negative lines,
which signal repulsion, as long as possible, clusters of positive ties are
clearly visible in a sociogram. In Figure 45, which is drawn in this man-
ner (as is explained under “Application”), we can see three clusters in
the network of novices. Because there are three clusters, the network is
clusterable rather than balanced.

Because the network is highly clusterable and not very dense, we can
visually check that all positive arcs are situated within clusters and almost

Figure 45. First positive and negative choices between novices at T4.
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all negative arcs are directed from one cluster to another. The only negative
arc within a cluster points from John Bosco to Mark at the bottom of the
sociogram. Note that the triple John Bosco, Mark, and Gregory contains
exactly one negative arc, so it is unclusterable and it will yield problems
in any clustering we may attempt.

In Figure 45, vertex colors and class numbers indicate the factions that
Sampson delineated: Young Turks (black, class 1), Loyal Opposition (light
gray, class 2), Outcasts (white, class 3), and the interstitial group (dark
gray, class 4). The social cleavage between the Young Turks (black) and the
Loyal Opposition (light gray) is evident, but the Outcasts are not clustered
perfectly. Ramuald and Victor are clustered with the Loyal Opposition
and they probably felt somewhat related to them because they all (except
Louis) came from Cloisterville.

If sociograms are not as orderly as Figure 45, we must use computa-
tional techniques to find the clustering that fits balance or clusterability
best. In exploratory network analysis, a good strategy is to try many
clusterings and select the one containing the lowest number of forbidden
lines: positive lines between clusters or negative lines within a cluster. The
number of forbidden lines is an error score that measures the degree of
balance or clusterability in a network: more errors mean less balance or
clusterability.

In Figure 45, there is just one forbidden line if we partition the novices
into three clusters, namely the negative arc from John Bosco to Mark
in the bottom right cluster. It is up to the researcher to decide whether
the degree of balance or clusterability is acceptable. Criteria cannot be
specified without the use of estimation techniques, which fall outside the
scope of this book, because the acceptability of an error score depends on
the size and density of a network. The error score allows us to pick the
best fitting clustering, but it does not say whether it is good enough.

The approach of rearranging vertices into clusters over and over again
and selecting the best solution, is an optimization technique that has three
features that are worth noting. First, an optimization technique may find
several solutions or partitions that fit equally well. It is up to the researcher
to select one or present them all.

Second, it is possible that this technique does not find the best fitting
clustering, although this is expected to happen only in exceptional cases.
Nevertheless, there is no guarantee that there is not a better solution,
unless, of course, you find a clustering which fits perfectly. We advise
repeating the procedure many times and inspecting the results visually to
see whether you can find a better solution.

Third, starting options may yield different results; for instance, the
procedure finds another solution if it is told to look for two clusters instead
of three or four. It is usually possible to estimate the approximate number
of clusters from an energized sociogram, but it is hard to tell the exact
number of clusters that will yield the lowest error score. Therefore, it is
important to repeat the optimization technique with different numbers of
clusters.

In addition, the user may attribute different weights or penalties to for-
bidden positive and negative arcs. For instance, researchers have noted
that negative arcs within a cluster are tolerated less than positive arcs
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between clusters, so we can raise the penalty on negative arcs within
clusters. In the network of affect relations between novices depicted
in Figure 45, this would mean that John Bosco’s negative feelings for
Mark are more important than Gregory’s positive affection for John
Bosco. Hence, the optimization technique will split the bottom cluster be-
tween John Bosco and Gregory. Different weights may produce different
results.

Application
[Draw]

Options>Values
of Lines>

Similarities

A sociogram that minimizes the length of positive lines and maximizes the
length of negative lines can be made in two steps. First, select the option
Similarities in the Options>Values of Lines submenu of the Draw screen.
This option tells the energy procedures that line values indicate similarity
or attraction: the higher a line value, the closer two vertices should be
drawn. Negative line values mean that vertices are dissimilar and must be
drawn far apart. In Pajek, signs of lines are represented by the sign of the
line values (e.g., 1 and −1) so positive arcs are short and negative arcs
are long in an energized drawing. Note that this option remains effective
until another option is selected. Second, apply an energy procedure to
the sociogram. Figure 45 was created with the Kamada–Kawai energy
command.

The command Balance, which searches an optimal clustering in a signed
network, is located in the Operations menu because it requires two dif-
ferent data objects: a network and a partition. The network contains the
vertices and ties that must be clustered and the partition specifies the
number of clusters and the initial clustering that the computer tries to
improve.

Partition>Create
Random
Partition

If you have no partition with a meaningful initial clustering, you can
easily make a random partition with the Create Random Partition com-
mand in the Partition menu. This command issues two dialog boxes. The
first box asks for the number of vertices or dimension of the partition. By
default, Pajek shows the number of vertices in the network that is cur-
rently active, which is the right number because you want the partition to
fit this network. In the second dialog box, you enter the number of clus-
ters you want to detect in the network. In this example, you may want to
obtain three clusters.

Operations>
Balance

The Balance command asks how many times it must try to find an opti-
mal clustering. In each repetition, it starts with a new random partition. If
a starting partition fits quite well, the optimization technique will not find
better solutions because all changes will increase the error score initially.
This could happen, for instance, with a starting clustering based on vi-
sual inspection of the energized sociogram. With several random starting
partitions, the procedure is unlikely to miss a good clustering that differs
greatly from your expectations, although this is not guaranteed. In a small
network, one hundred repetitions is a reasonable first choice but you are
advised to try many more repetitions if the computer needs little time for
one hundred repetitions.

Next, you have to specify the error weight of a forbidden negative arc,
that is, a negative arc within a positive cluster. This weight is called α and
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------------------------------------------------------------------------
Partitioning Signed Graphs
------------------------------------------------------------------------
Working...

Number of clusters: 3, alpha: 0.500
------- Starting partition -------
Errors: 5.50 Lines
-----------------------------------

-1.00 : 6.3
-1.00 : 14.4
1.00 : 1.3
1.00 : 3.1
1.00 : 6.4
1.00 : 7.2
1.00 : 8.4
1.00 : 9.8
1.00 : 10.4
1.00 : 14.1
1.00 : 15.2

-----------------------------------
------- Improvements -------

1: 1.50
2: 0.50

------- Final partition 1-------
Errors: 0.50 Lines
-----------------------------------

1.00 : 7.2
-----------------------------------
------- Final partition 2-------
Errors: 0.50 Lines
-----------------------------------

-1.00 : 1.7
-----------------------------------
------- Final partition 3-------
Errors: 0.50 Lines
-----------------------------------

1.00 : 2.1
-----------------------------------
3 solutions with 0.50 errors found.
Time spent: 0:00

Figure 46. Output listing of a Balance command.

it is .5 by default. The error weight for an erroneous positive arc is equal
to 1 − α, so negative and positive arcs are treated equally by default. If
you want to penalize a forbidden negative arc more than an erroneous
positive arc, raise α in the dialog box, for instance, to .75. In consequence,
a forbidden positive arc is weighted by .25, which is a third of the weight
attached to an out-of-place negative arc.

Figure 46 shows the results for the novices network. We used a ran-
dom partition containing three classes as the starting partition and it was
instructed to weigh positive and negative errors equally (α = .5). First,
the listing displays the error score and the erroneous arcs in the initial
clustering. There are many errors, which are identified by their line value
(1 or – 1) and their vertex numbers in the listing of lines. Using a ran-
dom starting partition of your own, you will probably find a different list
of errors. You should, however, find final solutions that match the ones
displayed here, so let us concentrate on them.

With sufficient repetitions, the Balance command finds three solutions
with exactly one “forbidden” arc. In the first clustering, a positive arc
wrongly connects vertices 7 (Mark) and 2 (Gregory), which are appar-
ently members of different clusters. In the second clustering, a negative
arc from vertex 1 (John Bosco) to vertex 7 (Mark) is a problem because
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Figure 47. Three solutions with one error.

it is situated within a cluster. In the third clustering, the positive arc from
vertex 2 (Gregory) to vertex 1 (John Bosco) causes problems. As expected,
the unclusterable triple John Bosco-Mark-Gregory causes these prob-
lems. Nevertheless, the clustering is nearly perfect, so we may conclude
that the network is clusterable. To know whether it is balanced as well,
we must repeat the procedure with a starting partition containing two
clusters.

All optimal solutions are saved as partitions in the Partitions drop-
down menu. Drawing the network with these partitions, we can see that
clusters at the left and at the top are correctly identified. The cluster at
the bottom is split in three ways (Figure 47): Mark is added to the cluster
of Simplicius, Elias, and Amand (solution 1); he is part of an undivided
cluster including Gregory and John Bosco (solution 2); or he is grouped
with Albert, Boniface, and Gregory, who are separated from John Bosco,
Basil, Hugh, and Winfrid (solution 3). The first and last solution are
most likely if negative arcs within a cluster are considered slightly more
problematic than positive arcs between clusters. For instance, try Balance
with α set to .6.

Let us conclude this section with a warning. The Balance command
triggers a procedure that is very time-consuming, so it should not be
applied to networks with more than a hundred vertices unless you do not
need your computer for some hours or days. In Pajek, commands that
should be applied only to small networks are marked by an asterisk in
the menu.

Exercise I
Use Sampson’s classification according to factions (Sampson_
factions_T4.clu) to find four optimal clusters in the network
of first choices at time four (Sampson_T4.net). Weigh positive and
negative errors equally. Do the optimal clustering(s) match Sampson’s
classification?

4.5 Development in Time

Balance theory expects a tendency toward balance. In the course of time,
affect relations within a human group are hypothesized to become more
balanced or clusterable. This raises the question of how to analyze the
evolution of social networks. In this section, we discuss the simplest way
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to analyze longitudinal networks, namely by comparing network structure
at different points in time.

Sampson measured affect relations at the monastery at five moments.
At the time of the first measurement (T1), the group consisted mainly of
novices who soon left the monastery to study elsewhere. The second mea-
surement (T2) concerns the period just after the arrival of a number of
newcomers. The third measurement (T3) shows affective ties around the
time when one of the newcomers (Brother Gregory) organized a meeting
to discuss the situation in the monastery. This meeting fueled a process
of polarization, which led to the expulsion of four novices (among them
Brother Gregory) one week after the fourth measurement (T4). The ex-
pulsion triggered the voluntary departure of many novices in the next few
weeks. At the time of the fifth measurement (T5), no more than seven of
the eighteen novices were still living in the monastery, so this network is
difficult to compare to the previous networks. We analyze the networks
at T2, T3, and T4 only.

Application
Pajek has special facilities for longitudinal networks. Figure 48 shows
part of the network file Sampson.net. By now, the structure of the

*Vertices 25
1 "Leo" 0.1000 0.5000 0.5000 [1-1]
2 "Arsenius" 0.1126 0.4005 0.5000
3 "Bruno" 0.1495 0.3073 0.5000
4 "Thomas" 0.2084 0.2262 0.5000
5 "Bartholomew" 0.2857 0.1623 0.5000
6 "John Bosco" 0.3764 0.1196 0.5000 [2-4]
7 "Gregory" 0.4749 0.1008 0.5000
8 "Basil" 0.5750 0.1071 0.5000
9 "Martin" 0.6703 0.1381 0.5000 [1-1]

10 "Peter" 0.7550 0.1918 0.5000 [1-5]
11 "Bonaventure" 0.8236 0.2649 0.5000 [1-*]
12 "Berthold" 0.8719 0.3528 0.5000
13 "Mark" 0.8968 0.4499 0.5000 [1-4]
14 "Brocard" 0.8968 0.5501 0.5000 [1-1]
15 "Victor" 0.8719 0.6472 0.5000 [1-4]
16 "Ambrose" 0.8236 0.7351 0.5000 [1-*]
17 "Ramuald" 0.7550 0.8082 0.5000 [2-5]
18 "Louis" 0.6703 0.8619 0.5000 [2-*]
19 "Winfrid" 0.5750 0.8929 0.5000 [2-5]
20 "Amand" 0.4749 0.8992 0.5000 [2-4]
21 "Hugh" 0.3764 0.8804 0.5000
22 "Boniface" 0.2857 0.8377 0.5000
23 "Albert" 0.2084 0.7738 0.5000
24 "Elias" 0.1495 0.6927 0.5000
25 "Simplicius" 0.1126 0.5995 0.5000

*Arcs
6 7 2 [3]
6 7 -2 [4]
6 8 2 [2]
6 8 3 [4]
6 10 -2 [3]
6 11 1 [3]
6 11 3 [2]
6 12 -2 [2]
6 13 -1 [2]
6 13 -3 [4]
6 15 3 [3]
6 17 -1 [4]
6 17 -3 [2,3]

Figure 48. Partial listing of Sampson.net.
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lists of vertices and arcs are familiar, so the focus is on the time indica-
tors in square brackets that are added to each vertex and arc. For in-
stance, Brother John Bosco was at the monastery from T2 up to and
including T4. He left before T5. This is also true for Brothers Gregory
and Basil; Pajek assumes that a time indicator remains valid until it en-
counters a new one (e.g., with Brother Martin, who left the monastery
after T1). Bonaventure arrived at the monastery before the first measure-
ment and he stayed after the last measurement. The asterisk (∗) indicates
infinity.

At T3, the arc from vertex 6 (John Bosco) to vertex 7 (Gregory) has
a value of 2, indicating a positive second choice. At T4, however, it has
turned into a second negative choice (line value −2). In Figure 48, the last
line indicates that John Bosco chooses Ramuald (vertex 17) as the person
he likes least (line value −3) at T2 and T3. Note that time is always
represented by positive integers and a line value must be specified before
the time indication in the arcs and edges lists.

Net>Transform>

Generate in Time
The time notation can be used to split the longitudinal network

into separate networks for different moments or periods. The submenu
Net>Transform>Generate in Time offers the user several commands for
generating a series of cross-sectional networks. First, you can choose to
obtain a network for each period requested (option All) or to produce a
network only if it differs from the previous one (option Only Different).
The latter command is useful if a network does not change much over
time. Whichever command you choose, you will have to specify the first
and last time point you want to analyze as well as the time interval (step)
between successive networks. In our example, we start at T2 (enter 2) and
stop at T4 (enter 4), and we want a network for each moment in between,
so we choose step value 1. Step values must be positive integers. For ex-
ample, with a step value of 2, starting at the first moment in time, the
command would create a network for the first, third, and fifth moments,
and so on.

Note that serial numbers of vertices change in generated networks when
vertices disappear from the network (as at T5) or when new vertices are
added, because numbers of vertices must always range from 1 to the num-
ber of vertices in Pajek. As a result, a partition accompanying the original
longitudinal network may not match the generated cross-sectional net-
works. Therefore, the Generate in Time command automatically creates
new partitions for each generated network from the active partition, pro-
vided that it matches the original longitudinal network.

Previous

Next

Options>
Previous/Next>

Apply to

Options>
Previous/Next>

Optimize
Layouts

After generating networks for separate moments, you can easily
switch from one moment to another with the commands Previous and
Next, provided that the option Network is selected in the Options>
Previous/Next>Apply to submenu in the Draw screen. If one of the en-
ergy options in the Options>Previous/Next>Optimize Layouts submenu
has been selected, Pajek automatically energizes the network when you
step to the next or previous network. It is sensible to inspect all gener-
ated networks to check whether the results are as intended. Errors in time
indicators may have serious consequences; for instance, if Brother John
Bosco is not present at T3 – by mistake, the indicator reads [2,4] instead
of [2–4] – all arcs to and from him are deleted from the network at T3.
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Table 6. Error Score with all Choices at
Different Moments (α = .5)

Time Points

Number of Clusters T 2 T 3 T4

2 (balance) 21.5 16.0 12.5
3 17.5 11.0 10.5
4 19.0 13.5 12.5
5 20.5 16.0 15.0

Having generated networks for T2, T3, and T4, we can analyze the de-
gree of balance or clusterability with the Operations>Balance command
in each period. Table 6 shows the error scores associated with the optimal
clustering for several numbers of clusters and different time points. Some
optimal solutions are hard to find; you may need thousands of repetitions
in some cases. Note that the network now consists of all three positive
and negative choices at T2, T3, and T4. First choices count three times
(line values are 3 and −3 for the first positive and negative choice respec-
tively), second choices count double (values 2 or −2), and third choices
count once (1 or −1). The error score is computed from these line values,
which explains why it is quite large compared to error scores in the pre-
vious section: a forbidden first choice contributes .5 (α) times 3 instead
of .5 times 1 to the error score.

Table 6 helps us to draw a conclusion on the evolution of balance and
clusterability in the network of novices. Each clustering fits better in the
course of time and the partition with three clusters fits best at any moment,
so we may conclude that there is a tendency toward clusterability rather
than balance. This is probably due to a process of polarization, which
ends when several novices leave the monastery. Instead of a continuing
trend toward balance or clusterability, human groups probably experi-
ence limited periods of polarization, which are reflected in increasingly
balanced or clusterable patterns of affective ties.

Exercise II
Net>Transform>

Remove>lines
with value>
within interval

Check whether the networks of first positive and negative choices display
a tendency toward balance or clusterability from the second to the fourth
moment in time. Hint: use the command Net>Transform>Remove>lines
with value>within interval to remove the lines with values from −2 to 2
from the longitudinal network (Sampson.net) before you split it into
separate networks for different moments.

4.6 Summary

In this chapter, we discuss cohesive subgroups in signed networks, that
is, in networks with positive and negative ties. If relations represent af-
fections, people who like each other tend to huddle together, whereas
negative sentiments exist predominantly between groups. This principle
stems from balance theory and has been generalized to groups with three
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or more clusters (clusterability). Balance and clusterability occur in times
of polarization between opposing factions.

We may determine whether affective ties are patterned according to
balance theory by searching for a partition or clustering that satisfies the
principle that positive lines are found within clusters and negative lines
between clusters. If a signed network can be partitioned into two clusters
according to this principle, the network is balanced. A partition with three
or more clusters is a clusterable network.

The weighted number of lines that do not conform to the balance the-
oretic principle, namely negative lines within a cluster and positive lines
between clusters, indicates the degree of balance or clusterability in a net-
work. This is called the error score of the best fitting clustering. For one
network, we compare error scores for different numbers of clusters to
find the optimal clustering. If the error score is acceptable, the clusters
represent cohesive groups. In addition, we may compare error scores of a
network at different moments to check whether group structure displays
a tendency toward balance that is predicted by balance theory.

4.7 Questions

1. Which of the following statements is correct?
a. A signed graph is balanced if it is clusterable into two clusters.
b. A signed graph is balanced if it is not clusterable.
c. A signed graph is balanced if its vertices can be partitioned into two

groups.
d. A signed graph cannot be balanced because it is undirected.

2. Have a look at the following two networks and check which
of the following statements is correct.

v1

v2

v3

v4 v5

v2

v1

v3

v5

v4

A B

a. A and B are balanced.
b. A is balanced and B is clusterable.
c. A is clusterable and B is balanced.
d. Neither A nor B is balanced.
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3. How many cycles and semicycles does network A of Question 2 con-
tain?
a. No cycles and two semicycles
b. One cycle and one semicycle
c. One cycle and two semicycles
d. Two cycles and one semicycle

4. Which of the following statements about the sequence of lines v2-v3-
v4-v5 in network B (Question 2) is correct?
a. It is neither a semiwalk nor a semipath.
b. It is a semiwalk and a semipath.
c. It is a walk and a semipath.
d. It is a walk and a path.

5. An analysis of 58 alliance (a line value of 1) and 58 antagonistic (a line
value of −1) ties among 16 tribes in New Guinea yields error scores
reported in the table below (α = .5). Which conclusion do you support?
Please, state your reasons.

Number of Clusters

2 3 4 5

Error score 7.0 2.0 4.0 6.0

a. The tribal network is balanced.
b. The tribal network is clusterable.
c. The tribal network is neither balanced nor clusterable.
d. It is impossible to draw a conclusion from these results.

6. In the best fitting clustering presented in Question 5, how many arcs
violate the balance theoretic principle?
a. Two arcs
b. Four arcs
c. Six arcs
d. Seven arcs

4.8 Assignment

In 1943, Leslie D. Zeleny administered a sociometric test to forty-eight
cadet pilots at an U.S. Army Air Forces flying school. Cadets were trained
to fly a two-seated aircraft, taking turns in flying and aerial observing.
Cadets were assigned at random to instruction groups ranging in size
from five to seven, so they had little or no control over who their fly-
ing partners would be. The sociometric test was used to improve the
composition of instruction groups. Zeleny asked each cadet to name
the members of his flight group with whom he would like to fly as
well as those with whom he would not like to fly. The data are avail-
able in the project file Flying_teams.paj, which contains a network
(Flying_teams.net) and the original (alphabetical) instruction groups
(Flying_teams.clu).
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Which instruction groups would you advise to reduce the risk of cadets
flying with partners they do not want? Try to find groups of five to ten
cadets.

4.9 Further Reading

� The example was taken from S. F. Sampson, A Novitiate in a
Period of Change: An Experimental and Case Study of Social
Relationships (Ph.D. thesis Cornell University, 1968). An analysis
of the data using the method presented in this chapter can be
found in P. Doreian and A. Mrvar, “A partitioning approach to
structural balance” (in Social Networks, 18 (1996), 149–68).

� The New Guinea data were reported in K. Read, “Culture of
the central highlands, New Guinea,” in Southwestern Journal of
Anthropology [10 (1954), 1–43] and reanalyzed in P. Hage and
F. Harary, Structural Models in Anthropology (Cambridge/New
York: Cambridge University Press, 1983). The data are also dis-
tributed with UCINET network analysis software.

� The flying teams data are taken from J. L. Moreno (et al.), The
Sociometry Reader. Glencoe, Ill.: The Free Press, 1960, 534–47.

� For an overview of balance theory in social network anal-
ysis, consult Chapter 6 in S. Wasserman and K. Faust, So-
cial Network Analysis: Methods and Applications (Cambridge:
Cambridge University Press, 1994).

� Fritz Heider introduced the notion of balance in his article “Atti-
tudes and Cognitive Organization,” which appeared in the Jour-
nal of Psychology [21 (1946), 107–12]. A more detailed account
can be found in his book The Psychology of Interpersonal Re-
lations (New York: Wiley, 1958). F. Harary, R. Z. Norman, and
D. Cartwright, Structural Models: An Introduction to the The-
ory of Directed Graphs (New York: Wiley, 1965) formalized the
concept of balance. The lucidity of this book makes it a plea-
sure to read. Clusterability was defined by J. A. Davis in the
article “Clustering and structural balance in graphs.” In: Human
Relations 20 (1967), 181–7. Discrete Mathematical Models by
F. S. Roberts (New York: Prentice Hall, 1976) is a good book
to further your understanding of several mathematical models
including balance.

4.10 Answers

Answers to the Exercises
I. With a sufficient number of repetitions, the Balance command finds

two optimal partitions with one mistake each (.5 error score). In one
partition, Mark (vertex 7) is considered a cluster on his own, so his
choice of Gregory (vertex 2) as his most liked colleague is erroneously
situated between two classes instead of within a class (Figure 49, left).
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John Bosco

Gregory

Basil

Mark

Winfrid
Hugh

Boniface

Albert

John Bosco

Gregory

Basil

Mark

Winfrid
Hugh

Boniface

Albert

Solution 1 Solution 2

Figure 49. Differences between two solutions with four classes.

In the other partition, Mark, Albert, Gregory, and Boniface are sep-
arated from John Bosco, Basil, Hugh, and Winfrid (Figure 49, right).
Now, the positive arc from Gregory (vertex 2) to John Bosco (vertex
1) is troublesome. The first solution matches Sampson’s classification
into factions better because he assigned Gregory, Albert, Boniface, John
Bosco, Hugh, and Winfrid to the Young Turks (class 1 in Figure 45).
In both partitions, however, the interstitial group (Amand, Victor, and
Ramuald; class 4) is divided over the Loyal Opposition (class 2) and
the Outcasts (class 3).

II. Remove the lines with values from −2 to 2 from the longitudi-
nal network (Sampson.net) with the command Net>Transform>

Remove>lines with value>within interval (enter −2 as the lower limit
and 2 as the upper limit) and then split it with Net>Transform> Gen-
erate in Time>All. For the networks at time two to four, find the op-
timal balanced partitions with the Operations>Balance command as
described in Section 4.5. If you use many repetitions, you should find
the results summarized in Table 7. We already obtained some results
for time four in Section 4.4 but now the error scores are three times as
high because the line values are 3 and −3 instead of 1 and −1. The error
scores tend to diminish in the course of time and they are lowest with
three or four classes: this indicates a tendency toward clusterability
rather than balance.

Answers to the Questions in Section 4.7
1. Answer a is correct. Balance is a special case of clusterability, because

a network is balanced if it can be partitioned into two clusters in such
a way that all positive lines are within clusters and all negative lines
are between clusters.

Table 7. Error Score with First Choices
Only (α = .5)

Time Points

Number of Clusters T 2 T 3 T4

2 (balance) 7.5 4.5 3.0
3 4.5 3.0 1.5
4 4.5 3.0 1.5
5 4.5 3.0 3.0
6 6.0 4.5 4.5
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2. Answer c is correct. Semicycles v1-v3-v4-v5 and v3-v4-v5 contain three
negative arcs, so network A is not balanced. Cycle v1-v3-v5 has two
negative arcs. There is no (semi-)cycle with exactly one negative arc,
so network A is clusterable. Network B contains just one (semi-)cycle,
namely v1-v2, which contains two negative arcs. Hence, network B is
balanced. Network A can be partitioned into according to the principle
of positive arcs within clusters and negative arcs between clusters: v1,
v2, and v5 are a cluster and v3 and v4 are separate clusters. Likewise,
network B can be divided into two clusters: v2 versus the rest.

3. Answer c is correct, see the answer to Question 2.
4. Answer d is correct. The sequence of lines is a walk because the lines

are adjacent and they point in the same direction: the head of one arc
is the tail of the next arc. This walk is a path because all vertices are
distinct, meaning that no vertex occurs more than once in the walk.

5. Answer b is the most likely conclusion. Clearly, a partition with three
clusters fits better than a partition with two clusters. Therefore, the
network is clusterable rather than balanced. Strictly speaking, however,
even an error score of 2.0 is too high and you should conclude that the
network is neither balanced nor clusterable (answer c).

6. Answer b is correct. Alpha is .5, which means that every “forbidden”
arc – positive or negative – contributes .5 to the error score. Because
the absolute line values are 1, four arcs in the wrong places yield a
total error score of 2.0, which is the minimal error score in the table.
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Affiliations

5.1 Introduction

Membership of an organization or participation in an event is a source
of social ties. In organizations and events, people gather because they
have similar tasks or interests and they are likely to interact. Members
of a sports club, for instance, share a preference for a particular sport
and play with or against one another. Directors and commissioners on
the boards of a corporation are collectively responsible for its financial
success and meet regularly to discuss business matters. Inspired by the
sociology of Georg Simmel, groups of people that gather around one or
more organizations and events are called social circles.

In previous chapters, we studied direct ties among people, such as the
choice of friends, or among other social entities, for instance, trade rela-
tions between countries. Note that we studied relations among actors of
one kind: relations between people or between organizations, but not be-
tween people and organizations. Now, we focus on the latter type, which
is called an affiliation. Data on affiliations can be obtained relatively easily
and they are very popular in data mining.

Affiliations are often institutional or “structural,” that is, forced by cir-
cumstances. They are less personal and result from private choices to a
lesser degree than sentiments and friendship. Of course, membership in a
sports team depends much more on a person’s preferences than detention
in a particular prison ward, but even the composition of sports teams
depends on circumstances and on decisions made by coaches and sports
club authorities. Affiliations express institutional arrangements and be-
cause institutions shape the structure of society, networks of affiliations
tell us a lot about society. People are often affiliated with several organi-
zations and events at the same time, so they belong to a number of social
circles, or, in other words, they are the intersection of many social circles.
Society may be seen as a fabric of intersecting social circles.

Although membership lists do not tell us exactly which people interact,
communicate, and like each other, we may assume that there is a fair
chance that they will. Moreover, joint membership in an organization
often entails similarities in other social domains. If, for example, people
have chosen to become members in (or have been admitted to) a particular
golf club, they may well have similar professions, interests, and social
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status. Different types of affiliations do not overlap in a random manner:
social circles usually contain people who are clustered by affiliations to
more than one type of organization. From the number or intensity of
shared events, we may infer the degree of similarity of people. However,
this argument can be reversed: organizations or events that share more
members are also more close socially. A country club with many members
from the local business elite can be said to be part of the business sphere.

In this chapter, we present a technique for analyzing networks of affilia-
tions that focuses on line values. In addition, we discuss three-dimensional
displays of social networks.

5.2 Example

In political science, economy, and sociology, much attention has been
paid to the composition of the boards of large corporations. Who are the
directors of the largest companies and, in particular, who sits on the boards
of several companies? If a person is a member of the board of directors
in two companies, he or she (although women are seldom found in these
positions) is a multiple director, who creates an interlocking directorate
or interlock between firms.

The network of interlocking directorates tells us something about the
organization of a business sector. It is assumed that interlocking direc-
torates are channels of communication between firms. In one board, a
multiple director can use the information acquired in another board. In-
formation may or may not be used to exercise power, depending on the
role played by the director. If directors are elected because of their social
prestige within a community, they serve the public relations of a firm,
but they do not influence its policy: they fulfill a symbolic role. However,
multiple directors who have executive power may coordinate decisions in
several companies, thus controlling large sections of an economy. Then,
interlocking directorates are power lines.

In this chapter, we use a historical example: the corporate interlocks
in Scotland in the beginning of the twentieth century (1904–5). In the
nineteenth century, the industrial revolution brought Scotland railways
and industrialization, especially heavy industry and the textile industry.
The amount of capital needed for these large-scale undertakings exceeded
the means of private families, so joint stock companies were established
that could raise the required capital. Joint stock companies are owned
by the shareholders, who are represented by a board of directors. This
opens up the possibility of interlocking directorates. By the end of the
nineteenth century, joint stock companies had become the predominant
form of business enterprise at the expense of private family businesses.
However, families still exercised control through ownership and director-
ships.

The data are taken from the book The Anatomy of Scottish Capital by
John Scott and Michael Hughes. It lists the (136) multiple directors of the
108 largest joint stock companies in Scotland in 1904–5: 64 nonfinancial
firms, 8 banks, 14 insurance companies, and 22 investment and property
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companies (Scotland.net). The companies are classified according to
industry type (see Industrial_categories.clu): 1 – oil & mining,
2 – railway, 3 – engineering & steel, 4 – electricity & chemicals, 5 – domes-
tic products, 6 – banks, 7 – insurance, and 8 – investment. In addition,
there is a vector specifying the total capital or deposits of the firms in
1,000 pounds sterling (Capital.vec). The data files are collected in the
project file Scotland.paj.

Exercise I
Open the project file Scotland.paj and draw the network of firms
and directors with the affiliation partition. What do the classes in the
affiliation partition mean?

5.3 Two-Mode and One-Mode Networks

By definition, affiliation networks consist of at least two sets of vertices
such that affiliations connect vertices from different sets only. There are
usually two sets, which are called actors and events, for example, directors
(actors) and boards of corporations (events). Affiliations connect direc-
tors to boards, not directors to directors or boards to boards, at least not
directly. Figure 50 shows a fragment of the interlocking directorates net-
work in Scotland: a set of directors (gray in the figure, possibly green on
your computer screen) and firms (black or yellow). Note that lines always
connect a gray and a black vertex (e.g., director J. S. Tait to the Union
Bank of Scotland). This type of network is called a two-mode network
or a bipartite network, which is structurally different from the one-mode
networks, which we have analyzed thus far because all vertices can be
related in a one-mode network.

In a one-mode network, each vertex can be related to each other vertex.

In a two-mode network, vertices are divided into two sets and vertices
can only be related to vertices in the other set.

union bank of scotland

national guarantee
& suretyship association

scottish american
investment

scottish american mortgage

alliance trust

edinburgh
investment trust

tait, j.s.

sanderson, w.

campbell, p.w.
maitland, t.

whitton, a.

Figure 50. A fragment of the Scottish directorates network.
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We can describe the two-mode network of Scottish directorships in
the usual manner by its number of vertices (108 firms and 136 multi-
ple directors – see the affiliation partition) and lines (358 affiliations or
board seats), the number of components (16 isolated firms without mul-
tiple directors, three small components containing 2 firms, and one large
component), and its degree distribution. Recall that the degree of a vertex
is equal to the number of its neighbors if the network does not contain
multiple lines and loops. Because this is the case in the directorships net-
work, the degree of a firm specifies the number of its multiple directors.
This is known as the size of an event. The degree of a director equals the
number of boards he sits on, which is called the rate of participation of
an actor. Have a look at Figure 50 and determine the size of events and
participation rates of its vertices.

In our description of a two-mode network, we must distinguish be-
tween actors and events, because simple measures such as degree have
different meanings for actors and events. There are more complications:
some structural indices must be computed in a different way for two-mode
networks. Consider, for example, the concept of completeness, which we
defined as the maximum possible number of lines in a network (see Chap-
ter 3). In a one-mode network, this number is much higher than in a two-
mode network because each vertex can be related to all other vertices
in a one-mode network but it can only be related to part of the vertices
in a two-mode network. As a consequence, the density of a two-mode
network, which is the actual number of lines divided by the maximum
possible number of lines, must be computed differently for one-mode and
two-mode networks.

Techniques for analyzing one-mode networks cannot always be applied
to two-mode networks without modification or change of meaning. Spe-
cial techniques for two-mode networks are very complicated and fall out-
side the scope of this book. So, what can we do? The solution commonly
used, which we will follow, is to change the two-mode network into a
one-mode network, which can be analyzed with standard techniques.

We can create two one-mode networks from a two-mode network: a
network of interlocking events and a network of actors that are members
of the same organization or attend common events. Figure 51 shows the
one-mode network of firms (events) that is derived from the network in
Figure 50. It is constructed in the following way. Whenever two firms
share a director in the two-mode network, there is a line between them
in the one-mode network. For instance, J. S. Tait creates a line between
the Union Bank of Scotland and The Edinburgh Investment Trust because
he sits on the boards of both companies. Because he is also on the board
of the National Guarantee and Suretyship Association, he is responsible
for lines between three firms. Each line can be labeled by his name. In
addition, he creates a loop for each of these firms. The number of loops
incident with a vertex shows the number of its neighbors in the two-mode
network. In our example, it shows the number of multiple directors on the
board of a firm: the size of the event. In short, the actors in the two-mode
network become the lines and loops in the one-mode network of events.
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tait, j.s.

tait, j.s.

tait, j.s.
sanderson, w.

campbell, p.w.

campbell, p.w.

campbell, p.w.

maitland, t.

whitton, a.

union bank of scotland

national guarantee & suretyship association

scottish american investment

scottish american mortgage

alliance trust

edinburgh investment trust

2

1

3

2

2

2

Figure 51. One-mode network of firms created from the network in
Figure 50.

From Figure 51, it is clear that firms can be connected by multiple
lines, namely in the case that two firms share more than one director. The
derived network, therefore, usually is not a simple network. Because it
may also contain loops, you must take care when you interpret the degree
of a vertex in a network derived from a two-mode network.

Multiple lines can be replaced by a single line to obtain a valued network
with a line value indicating the original number of lines between two
vertices. Such a line value is called a line multiplicity. Figure 52 shows
the valued network of directors (comembership) that can be derived from
the example in Figure 50. Now, the events of the two-mode network are
represented by lines and loops in the one-mode network of actors. J. S.
Tait meets W. Sanderson in board meetings of two companies. We are
confident that you can trace the firms that are responsible for the lines in
this network.

Although we stated that one-mode networks derived from two-mode
networks can be analyzed with standard techniques, there is a risk of

tait, j.s.

sanderson, w.

campbell, p.w.

maitland, t.

whitton, a.

2

1

2

1

1

3
1

1

2

2

3

Figure 52. One-mode network of directors derived from Figure 50.
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interpreting the results erroneously. A direct tie in a derived one-mode
network is easy to interpret: it indicates that two boards have common
directors or that two directors meet at one or more boards. Absence of a
direct tie implies that two boards do not share a director (e.g., Alliance
Trust and Edinburgh Investment Trust in Figure 51) or that two direc-
tors do not meet in a board, for instance, A. Whitton and J. S. Tait in
Figure 52.

The interpretation of subgroups consisting of three or more vertices is
more complicated in derived one-mode networks. Figure 51 contains three
cliques of size three. Two cliques are due to directorships of one person,
namely P. W. Campbell and J. S. Tait, but one clique is not: the clique of
size three with Scottish American Mortgage, Alliance Trust, and Scottish
American Investment exists thanks to the memberships of three directors
(Campbell, Whitton, and Maitland). In a valued network, this difference
is not visible because the multiple lines labeled by names of directors
are replaced by single lines with multiplicity values. When interpreting a
derived valued network, restrict your conclusions about the number of
shared persons (or events) to pairs of vertices. For threesomes and larger
sets of vertices you can conclude only that they share one or more actors
or events, but you do not know the actual number.

Application
Pajek has special facilities for two-mode networks. We advise to use the
data format for two-mode data, which is an ordinary list of vertices and
list of edges with the special feature that the list of vertices is sorted: the
first part contains all vertices that belong to one subset and the remainder
lists the vertices of the other subset. In our example (Scotland.net),
vertices numbered 1 to 108 are firms and 109 to 224 are multiple directors.
The first line of the data file specifies the total number of vertices and the
number of vertices in the first subset (e.g., *Vertices 244 108). When
Pajek opens a data file in this format, it automatically creates a partition
that distinguishes between the first subset of vertices (class 1) and the
second (class 2). This partition is labeled “Affiliation partition” in the
Partition drop-down menu.

Net>Transform>

2-Mode to
1-Mode >Rows,

Columns

You need the affiliation partition to derive a one-mode network from the
two-mode network. The submenu Net>Transform>2-Mode to 1-Mode
contains commands for translating two-mode into one-mode networks.
You can create a one-mode network on each of the two subsets of vertices.
By convention, vertices of the first subset are called rows, whereas columns
refers to the second subset. These terms are derived from matrix notation,
which we present in Chapter 12. The subsets are defined by the affiliation
partition. In our example, the first subset contains the firms, so the Rows
command in the 2-Mode to 1-Mode submenu will create a network of
firms, provided that the two-mode network and affiliation partition are
selected in the drop lists of the Main screen. The Columns command
creates a network of directors.Net>Transform>

2-Mode to
1-Mode>

Include Loops,
Multiple lines

Check the Include Loops option before you derive a one-mode network
if you want to know the number of affiliations per vertex in the new
network. Depending on the subset you choose for induction, loops specify
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Table 8. Line Multiplicity in the One-Mode Network of Firms

Line Values Frequency Freq% CumFreq CumFreq%

( . . .1.0000] 231 83.6957 231 83.6957
(1.0000 . . .2.0000] 28 10.1449 259 93.8406
(2.0000 . . .3.0000] 7 2.5362 266 96.3768
(3.0000 . . .4.0000] 3 1.0870 269 97.4638
(4.0000 . . .5.0000] 1 0.3623 270 97.8261
(5.0000 . . .6.0000] 0 0.0000 270 97.8261
(6.0000 . . .7.0000] 0 0.0000 270 97.8261
(7.0000 . . .8.0000] 6 2.1739 276 100.0000
total 276 100.0000

the participation rate of actors or the size of events. When the option
Multiple lines is checked, the derived network will contain one line for
each shared actor or event with labels of the events or actors that create
the lines. If this option is not checked, a valued network without multiple
lines is created with line values expressing line multiplicity. Usually, you
do not want loops or multiple lines in the one-mode network, so we do
not check these options now.

Info>Network>

Line Values
There is an easy way to display the distribution of line values in Pajek;

for example, line multiplicity in a derived one-mode network can be dis-
played by executing the command Line Values from the Info>Network
submenu. In a dialog box, you may either specify custom class bound-
aries or you may choose a number of classes of equal width. To obtain
classes of equal width, type a number preceded by a pound (#) sign in the
dialog box. Usually, the number suggested by the dialog box serves the
purpose.

Table 8 lists the multiplicity of the lines in the one-mode network of
Scottish firms. The first class contains 231 lines with values up to and
including 1. Because there are no lines with a multiplicity of less than 1,
this class contains all lines with multiplicity one: the single lines. The next
class contains lines with values higher than 1, up to and including lines
with a value of 2. We assume that you will understand that all 28 lines in
this class have a multiplicity of 2. They refer to pairs of firms interlocked
by two directors.

You can use the affiliation partition, which distinguishes between the
two modes (actors and events), to select the vertices of one mode from a
partition or vector associated with the two-mode network. The standard
techniques for extracting one or more classes from one partition or vector
according to another, which was presented in Chapter 2, can be used to
this end.

Net>Partitions>
Degree>Input

Partitions>
Extract Second
from First

Imagine, for example, that we want to know the degree of the firms in
the two-mode network, which is equal to the number of their multiple di-
rectors (the size of the events). We compute the degree in the usual manner
with the Degree>Input command in the Net>Partitions submenu. The
partition created by this command does not distinguish between the firms
and the directors, so we must extract the firms from it. We select the degree
partition as the first partition in the Partitions menu to extract the firms
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108 Exploratory Network Analysis with Pajek

from it. Next, we select the affiliation partition as the second partition
in the Partitions menu because it identifies the firms within the network.
Finally, we extract class 1 (the firms) of the affiliation partition from the
degree partition with the Partitions>Second from First command. Now,
we can make a frequency distribution (Info>Partition) of the degree of
the firms. In the same way, we can translate partitions belonging to a
two-mode network to a one-mode network derived from it.

Exercise II
Derive the one-mode network of firms without loops and multiple lines
from the two-mode network in Scotland.paj. Energize and adjust the
network manually until you obtain a structure such as the one depicted in
Figure 53. Pay no attention to the contours, which were added manually
in special drawing software (see Appendix 2), or to the colors of the
vertices.

8 7
6 5
4 3

2

1

4
3
2

2
32 31

x
x

Figure 53. m-Slices in the network of Scottish firms, 1904–5 (contours
added manually).
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5.4 m-Slices

One-mode networks derived from two-mode affiliation networks are of-
ten rather dense. They contain many cliques, so we can analyze the struc-
ture of overlapping cliques or complete subnetworks if we want to detect
cohesive subgroups (see Chapter 3, Section 3.6). Chapter 12 presents ad-
ditional techniques that are useful for analyzing dense networks. In the
present chapter, however, we concentrate on a technique based on line
multiplicity: m-slices.

Multiple lines are considered more important because they are less per-
sonal and more institutional. From this point of view, we may define
cohesive subgroups on line multiplicity rather than on the number of
neighbors. The larger the number of interlocks between two firms, the
stronger or more cohesive their tie, the more similar or interdependent
they are. In Figure 53, for instance, the four gray firms share eight di-
rectors; they are connected by six lines of multiplicity eight (compare
Table 8). These firms are connected much more tightly than other firms,
which are connected at a multiplicity level of 5 or less.

This brings us to the concept of an m-slice: a subnetwork defined by
the multiplicity or value of lines. In an m-slice, vertices are connected by
lines of multiplicity m or higher to at least one other vertex. This concept
was introduced by John Scott, who called it an m-core, but we prefer to
rename it because we reserve the term core for a k-core.

An m-slice is a maximal subnetwork containing the lines with a multi-
plicity equal to or greater than m and the vertices incident with these
lines.

An m-slice is similar to a k-core in several respects. A trivial point of
resemblance concerns its notation. Just like a 2-core of a simple undirected
network is a core in which vertices are connected to at least two neighbors,
vertices in a 2-slice are connected by lines with a multiplicity of 2 or higher.
Furthermore, m-slices are nested like k-cores. In Figure 53, we manually
circled the components within the m-slices. The contours show the nesting
of the slices. Look, for example, at the four dark gray vertices in the top
middle of Figure 53. These firms belong to an 8-slice because they share
eight directors. Because this implies that they share at least seven, six, five,
and so on directors, they also belong to a 7-slice, 6-slice, 5-slice, and so
on. Because of the nesting, the number of contours that surround a vertex
is equal to the multiplicity value defining the m-slice to which it belongs.
The isolated firms at the top right are not circled because they belong to
a 0-slice: they share no directors with other firms.

Finally, note that an m-slice does not need to be connected, for instance,
the 2-slice of the Scottish firms network contains several unconnected
parts. Just like a k-core, an m-slice does not necessarily identify one co-
hesive subgroup because it does not guarantee that all vertices within the
m-slice are connected at a minimum level of line multiplicity. Because we
assume that cohesive subgroups are connected, we regard components
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Figure 54. 2-Slice in the network of Scottish firms (1904–5) with indus-
trial categories (class numbers) and capital (vertex size).

within an m-slice as cohesive subgroups rather than the m-slice itself. If
you want to find the cohesive subgroups within a particular m-slice, that
is, the vertices that are connected by lines of a particular minimum mul-
tiplicity, remove all lines with values lower than m as well as all vertices
that are not part of the m-slice and identify the weak components in the
resulting subnetwork. Each component contains vertices that are directly
or indirectly linked by ties of a particular strength.

Figure 54 shows the components within the 2-slice with the indus-
trial categories of the firms (class numbers from Industrial_cate-
gories.clu) and their economic value (vertex size determined by
Capital.vec). Note that you can infer the outline of this sociogram
from Figure 53: just eliminate the vertices that belong to the 1-slice and
the lines that are incident with these vertices. Filtering out the weakest
lines, the stronger compartments emerge from the network. The large
component in Figure 53 is now broken down into a number of smaller
components: several small components of firms of one type [domestic
products (class 5), railways (class 2), electricity (class 4), and investments
(class 8)] and one larger component mainly connected by financial in-
stitutions [banks (class 6), insurance companies (class 7), and investment
banks (class 8)]. In the large component, the wealthy Caledonian Railway
and the Scottish Widows Fund occupy pivotal positions. We may conclude
that plural interlocks interconnect financial organizations rather than that
they link the financial sphere to the heavy industries or to the production
of consumer goods in this historical example.
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Application
Net>Partitions>
Valued Core>
Use max instead
of sum

The Net>Partitions>Valued Core submenu contains commands that de-
termine the m-slices to which the vertices belong, provided that the net-
work contains no multiple lines or loops. Select the one-mode network of
Scottish firms created earlier and make sure that the option Use max
instead of sum is checked in the submenu before you execute either
the First Threshold and Step or Selected Thresholds command in the
Net>Partitions>Valued Core submenu, which are two different ways
to group continuous line values into classes. If you want m to represent
classes of equal width, choose the command First Threshold and Step and
choose Selected Thresholds otherwise. The latter command needs a vector
for input, which is a little bit complicated, so we do not discuss it here.

Net>Partitions>
Valued Core>
First Threshold
and Step

If you use the command First Threshold and Step, you must choose
among Input, Output, and All. In a directed network, Input takes into
account incoming arcs only, Out focuses on outgoing arcs, and All uses
both types of arc. In an undirected network such as our example, all three
options yield the same result so it makes no difference which option you
choose. In a dialog box, you must specify the first threshold, which is the
upper limit of the lowest class. Note that each class includes its upper
limit. The default threshold (e.g. 0) is the correct choice if you want the
partition’s class numbers to match the level of multiplicity. A second dialog
box asks for the step value, which is the class width. It is one by default
and this is a good value for m-slices because it creates a class for each
consecutive level of multiplicity.

Now, Pajek creates a partition with class numbers corresponding to
the highest m-slice each vertex belongs to. In addition, Pajek reports a
frequency table with the distribution of vertices over m-slices (denoted
by m). Note that loops (if present) are taken into consideration in the
computation, so remove them from the network first, otherwise isolated
vertices may be regarded as having one or more neighbors.

Net>Transform>

Remove>lines
with value>
lower than

Operations>
Extract from
Network>

Partition

Net>
Components>
Weak

As argued, the m-slices do not represent cohesive subgroups. We must
identify the components within the m-slices. To this end, we have to re-
move all lines and vertices that do not belong to an m-slice first. Delete all
lines with line values below m with the Net>Transform>Remove>lines
with value>lower than command: enter the desired level of m (e.g., 2) in
the dialog box issued by this command. Note that this command prompts
you to create a new network. Next, remove all vertices that belong to
lower m-slices with the Operations>Extract from Network>Partition
command. Make sure that the m-core partition (“max valued core parti-
tion”) is selected in the Partition drop-down menu and extract the classes
from the selected value of m (e.g., 2) up to and including the highest
value of m, which is 8 in this example. In the resulting network, you can
easily identify the weak components with the Net>Components>Weak
command.

Partitions>
Extract Second
from First

Vector>Extract
Subvector

With the m-core partition, you can also extract the remaining ver-
tices from the partition of industrial classes (Industrial_cate-
gories.clu) and from the vector containing the capital or deposits
of the firms (Capital.vec). Use the Partitions>Extract Second from
First (make sure that Industrial_categories.clu and the m-core
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Draw>Draw-
Partition-Vector

partition are selected as the first and second partition respectively in the
Partitions menu) and Vector>Extract Subvector (make sure the m-core
partition is selected in the Partition drop list) commands discussed in
Chapter 2 (Sections 2.4 and 2.5 respectively). If you draw the new net-
work, partition, and vector (command Draw>Draw-Partition-Vector),
you obtain a sociogram similar to the one depicted in Figure 54, pro-
vided that you obtained a layout similar to Figure 53 (see Exercise II)
before you deleted lines and vertices of lower m-slices from the network.
Note that the absolute size of the vertices depends on the size specified in
the Options>Size>of Vertices option of the Draw screen and that small
vertices may be hidden behind large ones.

Export>SVG>

Line Values>
Nested Classes

Finally, Pajek offers a powerful tool to show m-slices interactively on
the Web with the Export>SVG submenu. Select the one-mode network
of firms and the m-slices partition in the drop-down menu. Then, draw
the network and partition and execute the command Nested Classes from
the submenu Export>SVG>Line Values in the Draw screen to obtain an
HTML file and SVG file containing the drawing of the network. Dia-
log boxes ask for the name of the HTML (and SVG) file that stores the
drawing and the number of classes from the active partition that must
be represented by different layers. In the latter case, accept the default
number suggested in the dialog box.

If you open this file in an Internet browser with the SVG plug-in installed
(see Appendix 2 for details), you will see the sociogram and a set of
checkboxes to its right, such as in Figure 55. Each checkbox is associated
with a class of lines. If you deselect a checkbox, all lines with values up
to and including the deselected class are removed from the picture as well
as the vertices that do not belong to the remaining m-slices. Figure 55
displays part of the 3-slice in the network of Scottish firms. With the
checkboxes you can view the lines and vertices at different multiplicity
levels interactively.

On the book’s Web site (http://vlado.fmf.uni–lj.si/pub/networks/book/),
the HTML file m-slices.htm, which loads the file m-slices.svg au-
tomatically, offers an example. Note that the class numbers and vertex
colors may be different if you create the SVG image yourself. If two par-
titions are selected as first and second partition in the Partitions menu,
Pajek displays the class numbers from the first partition and it determines
the color of the vertices from the second partition. In Figure 55, how-
ever, vertex colors and class numbers identify the multiplicity level of the
m-slice to which the vertices belong.

5.5 The Third Dimension

Contours around m-slices resemble elevation lines on a hiker’s map: cross-
ing a contour means that you go up or down one m-slice as if you are
reaching a new level of altitude in the mountains. Can we model the net-
work as a landscape in which the elevation of a point matches the value
of its m-slice? In principle, this can be done but it involves techniques
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114 Exploratory Network Analysis with Pajek

from geography that are not available in Pajek. We can, however, apply
the principle of adding heights to points in a plane in different ways.

In previous chapters, we alluded to the possibility of drawing net-
works in three dimensions but we restricted ourselves to two dimensions.
The third dimension is called the z axis, which points from the plane of
the Draw screen toward the person in front of the computer monitor. If we
use the m-slice class numbers of vertices as their scores on the z axis, the
highest m-slice peaks out of the plane. If computer screens were flexible,
a three-dimensional drawing of the m-slices in the network of Scottish
firms would change its surface to a landscape and we would be able to
feel m-slices with our fingertips.

As is, we must be satisfied with a faint sensation of depth, which is
caused by the size of vertices and the darkness of vertex labels in a two-
dimensional drawing. Nearby vertices are drawn larger and distant vertex
labels are gray rather than black. When we rotate the network, we get
a better view of the landscape of m-slices (Figure 56), which is clearly
dominated by the dark gray peak of the 8-slice.

The third dimension offers another opportunity to visualize social net-
works. Instead of using a predetermined set of values as z scores (heights)
(e.g., values of m-slices), we can energize a network in three dimensions,
allowing the Energy procedure to locate vertices in a three-dimensional
space to optimize the length of lines. Sometimes, a third dimension helps to
detect patterns, for instance, a 3D model of the Scottish firms networks
separates the different 3-slices better than a two-dimensional drawing

Figure 56. m-Slices in three dimensions.
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Z

Y

X0 1

1

1

Figure 57. Coordinate system of Pajek.

but the results are often disappointing. Our graphical devices can han-
dle two-dimensional representations much better than three-dimensional
models.

Application
First, let us have a look at the coordinate system of Pajek (Figure 57).
Imagine that the light gray square is the Draw screen. As we have seen
before, the x value defines the horizontal location of a vertex (from left to
right) and its y value specifies the vertical position (from top to bottom).
The z value of a vertex defines its amount of protrusion from the back-
ground of the Draw screen. The arrows indicate the direction of positive
rotations around the axes.

Layers>Type of
Layout

Layers>In z
direction

You can lift the m-slices out of the plane of the screen with the Layers
menu in the Draw screen. Note that the Layers menu is available only
if you draw a network with a partition. First, draw the network with
the m-slices partition and energize it using line values as similarities (see
Exercise II) to make sure that components within m-slices are drawn
closely together. Next, choose option 3D from the Type of Layout sub-
menu and the Layers menu will show a command that displays the layers
in the z direction. On execution of the In z direction command, nothing
seems to happen but if you take a closer look, you will see that some ver-
tices are drawn larger than others and some vertex labels are gray instead
of black. You are looking at the peaks from above, which does not give
much sense of relief.

Options>
ScrollBar
On/Off

When you rotate the structure, peaks and lowlands become more ap-
parent. Toggle the ScrollBar On/Off option in the Options menu to add
two scrollbars to the top left of the Draw screen (see Figure 56). Press the
buttons on the vertical scroll bar to rotate the network around the x axis,
which will raise or lower the peaks, and use the buttons on the horizontal
scroll bar to rotate the network around the y axis. Continue until you are
satisfied with your view. Now you can see that the dark gray 8-slice is
towering high above the rest of the network. If the Draw screen is active,
you can use the x, y, and z keys on your keyboard to spin the network
around the x, y, and z axes, respectively. Use the capitals X, Y, and Z for
rotation in the opposite direction.

Spin menuYou can also rotate the three-dimensional structure in any direction you
wish with the Spin menu, but this is slightly more complicated because
you have to choose the axis of rotation (command Normal) and the angle
of rotation, which you must enter in a dialog box displayed by the Spin
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around command. When you ask for a rotation over 360 degrees (or just
press s or S if the Draw screen is active), you will see the network revolve
for your eyes. If the rotation is too fast, lower the step in degrees setting.
This allows you to inspect the network from all angles.

Layout>Energy>

Fruchterman
Reingold>3D

Export>VRML

Three-dimensional optimization is accomplished with the command
3D in the Layout>Energy>Fruchterman Reingold submenu. For a bet-
ter view, rotate the network with the scrollbars or the Spin commands.
The sense of depth is much greater if the model is viewed in special 3D
software. To accomplish this, Pajek can export the network to a Virtual
Reality Markup Language (VRML) model: just select the VRML com-
mand in the Export menu of the Draw screen. A dialog box asks for a
name of the file that will contain the model. By default, the extension
of this file is .wrl, which stands for world. VRML viewers recognize
this extension, so do not change it. The VRML file can be displayed and
manipulated in an Internet browser provided that a special plug-in is in-
stalled (for details see Appendix 2). You can rotate and move through the
structure as if it is part of a video game, but you need a fast computer and
graphics card for smooth operations. The file m-slice.wrl (available
from the book’s Web site http://vlado.fmf.uni-lj.si/pub/networks/book/),
which was created by Pajek with the Export>VRML command, contains
a model of the Scottish firms network with vertex colors indicating m-
slices. Enjoy.

Exercise III
Create a three-dimensional energized drawing of the information network
in San Juan Sur, which we analyzed in the assignment presented in Chap-
ter 3 (SanJuanSur_deathmessage.net). Which family–friendship
groupings (SanJuanSur_deathmessage.clu) are nicely clustered in
this image?

5.6 Summary

Affiliation networks are typically two-mode networks, in which persons
are related to organizations. The structure of these networks may be
analyzed with standard network techniques, but several structural con-
cepts have to be redefined or must be interpreted differently when ap-
plied to two-mode networks. Therefore, network analysts usually focus
on the one-mode person-by-person or organization-by-organization net-
work that can be induced from a two-mode affiliation network.

Induced one-mode networks tend to be rather dense, because all people
affiliated with one organization are interrelated in the one-mode network
of persons and all organizations that share a particular person are com-
pletely connected in the one-mode network of organizations. Researchers
apply the techniques of overlapping cliques and m-slices to one-mode net-
works derived from affiliations. Overlapping cliques identify relatively
dense sections of the network and m-slices identify clusters of persons
or organizations that are related by multiple lines (e.g., firms sharing a
number of directors).
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Finally, this chapter introduces three-dimensional displays. We can use
the third dimension to represent predetermined values by layers (e.g.,
the multiplicity level of m-slices), which turns a sociogram into a land-
scape, or we can use all three dimensions to energize a network. In sub-
sequent chapters, we encounter more applications of the third dimension
but it should be noted that two-dimensional sociograms are often easier to
interpret.

5.7 Questions

1. Could the sociogram depicted below represent a two-mode network? If
so, show the way in which the vertices can be divided into two modes.

v1v2
v3

v4

v5
v6v7

2. Add the names of the firms to the lines of the one-mode network of
directors in Figure 52 (Section 5.3).

3. Which of the following statements is correct? Justify your choice.
a. Each affiliation network is a two-mode network.
b. Each two-mode network is an affiliation network.

4. What is the multiplicity of the tie between the two vertices marked by
an X in the middle of Figure 53 (Section 5.4)?
a. we do not know
b. 4
c. 5
d. 5 or higher

5. The sociogram below depicts a one-mode network of firms derived
from affiliations between multiple directors and firms. Which of the
following interpretations can be incorrect?

1

2

3

1

2

1

2
1

1

1

v1

v2

v3

v4

v5 v6

v7

a. Three directors sit on the boards of v1 and v5 simultaneously.
b. No director sits on all four boards of firms v2, v3, v5, and v6.
c. Two directors sit on the boards of v3, v4, and v7 simultaneously.
d. No director sits on the boards of v1 and v4 simultaneously.

6. Manually add contours of m-slices to the sociogram of Question 5.
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5.8 Assignment

In Hollywood, composers of soundtracks work on a freelance basis. For
each movie, a producer hires a composer and negotiates a fee. The earnings
of composers is highly skewed: a handful of composers earn a lot, whereas
most of them have moderate or low revenues. This is characteristic of
artistic labor markets.

Why do some composers earn much more money than their colleagues
in Hollywood? Let us assume that there are two hypotheses:

1. A successful composer works for the same producer(s) on a reg-
ular basis, whereas less successful composers do not.

2. The most successful composers all work for the top producers
who are responsible for the most expensive movies.

The network Movies.net contains the collaboration of forty composers
and the sixty-two producers who produced a minimum of five (completed,
shown, and reviewed) movies in Hollywood, 1964–76. This is a 2-mode
network: a line between a composer and a producer indicates that the
former created the soundtrack for the movie produced by the latter. The
line values indicate the number of movies by one producer for which
the composer created the music in the period 1964–76. The partition
Movies_top_composers.clu identifies the five top composers, each
of whom earned 1.5 percent or more of the total income of Hollywood
movie score composers in the 1960s and 1970s.

Analyze the 2-mode network in order to test hypothesis 1. Then, create a
1-mode network of composers and see whether it corroborates or falsifies
hypothesis 2.

5.9 Further Reading

� Georg Simmel stated his ideas about social circles in Soziologie:
Untersuchungen über die Formen der Vergesellschaftung (Berlin:
Duncker & Humblot, 1908), which was translated by Kurt H.
Wolff as The Sociology of Georg Simmel (New York: The Free
Press, 1950). It contains the often-cited chapter “The Web of
Group Affiliations” (Chapter 6). Charles Kadushin used this con-
cept and adapted it to network analysis in his book The American
Intellectual Elite (Boston: Little, Brown and Company, 1974), us-
ing the technique of overlapping cliques. Ronald Breiger wrote a
seminal article on the social meaning of affiliations: “The duality
of persons and groups.” In: Social Forces 53 (1974), 181–90).

� In the article “Analysing interlocking directorates: theory and
methods” [In: Social Networks 1 (1979) 1–36], Meindert
Fennema and Huibert Schijf survey research on interlocking di-
rectorates. Our example is taken from John Scott and Michael
Hughes, The Anatomy of Scottish Capital: Scottish Companies
and Scottish Capital, 1900–1979 (London: Croom Helm, 1980).
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� The concept of m-cores, which we renamed m-slices, can be found

in John Scott, Social Network Analysis: A Handbook (London:
Sage, 1991, 115–16).

� Stanley Wasserman and Katherine Faust discuss affiliation net-
works and some advanced techniques in Chapter 8 of their book
Social Network Analysis: Methods and Applications (Cambridge:
Cambridge University Press, 1994).

� The data of the assignment are taken from Robert R. Faulkner,
Music on Demand: Composers and Careers in the Hollywood
Film Industry (New Brunswick: Transaction Books, 1983).

5.10 Answers

Answers to the Exercises
I. Select the partition labeled “Affiliation partition of N1 [108,136]

(244)” in the Partition drop-down menu before you draw the net-
work. Note that the other partition (Industrial categories.clu) con-
tains information about 108 vertices (the firms), whereas there are
244 vertices in the network. Therefore, the industrial categories par-
tition cannot be drawn with the network.

In the circular layout of the network, you may notice that all vertices
in the first class of the affiliation partition (yellow or black vertices)
are grouped together. These are the firms. The second class (green or
gray vertices) contains the directors.

II. As explained in the Application part of Section 5.3, transform
the two-mode network to a one-mode network of firms with the
Net>Transform>2-Mode to 1-Mode>Rows command. Check that
the options Include Loops and Multiple lines are not selected before
you execute the Transform command. To obtain a layout compara-
ble to the one shown in Figure 53, make sure that line values are
regarded as measures of similarity: select the option Options>Values
of Lines>Similarities in the Draw screen. Energy commands will now
shorten lines with high multiplicity. Because the one-mode network
is not connected, it is best to energize it with Fruchterman Reingold
first. Then, apply Kamada–Kawai (once or repeatedly) for refined re-
sults. Perhaps, your layout is reflected or rotated – never mind that.
It is very likely that you will have to rearrange the isolates and small
components by hand because the energy commands do not always set
them apart nicely. It is easy to locate and drag the components if you
create a partition according to components (minimum size 2) with the
Net>Components>Weak command first.

III. Energize the network with Fruchterman Reingold>3D and spin it
around. You will see that all family–friendship groupings are clustered
quite well in the three-dimensional model, with the exception of the
light green family–friendship grouping consisting of families f5, f14,
f17, f25, f58, and f69, which is like a thread through the middle of
the sphere.
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Answers to the Questions in Section 5.7
1. Yes, the sociogram may represent a two-mode network. The vertices

can be divided into two modes such that all lines connect vertices from
different modes (the network is bipartite): vertices v1, v4, and v6 would
make up one mode and the remaining vertices the other. Vertices v1,
v4, and v6 could, for example, represent firms and vertices v2, v3, v5,
and v7 could be directors.

2. The sociogram should look like this (do not forget the loops!):

tait, j.s.

sanderson, w.

campbell, p.w.

maitland, t.

whitton, a.

national guarantee &suretyship assistent
edinburgh investment trust

union bank of scotland

national guarantee &suretyship assistent

national guarantee &suretyship assistent
edinburgh investment trust

edinburgh investment trust

edinburgh investment trust

scottish american mortgage
alliance trust

scottish american investment
alliance trust

scottish american investment

edinburgh investment trust

scottish american mortgage

alliance trust

scottish american mortgage

scottish american investment

edinburgh investment trust

3. Answer a is correct, because affiliations are ties between people and
organizations or events, there must be two subsets that cannot be linked
internally. Heterosexual love ties constitute a two-mode network but
not an affiliation network, so answer b is not correct.

4. Answer c is correct. There are exactly five contours around the two
vertices, so their multiplicity level is five.

5. Interpretation c can be incorrect because it is possible that firms v3 and
v4 share other directors than firms v3 and v7 and firms v7 and v4. The
other interpretations can be correct.

6. Your answer should look like the sociogram below. Do not forget to
draw two contours around the 3-slice (left) and to include a contour for
the 1-slice, that is, the component, otherwise the level of multiplicity
does not correspond to the number of contours.

1

2

3

1

2

1

2
1

1

1

v1

v2

v3

v4

v5 v6

v7



Part III

Brokerage

In quite a few theories, social relations are considered channels that trans-
port information, services, or goods between people or organizations. In
this perspective, social structure helps to explain how information, goods,
or even attitudes and behavior diffuses within a social system. Network
analysis reveals social structure and helps to trace the routes that goods
and information may follow. Some social structures permit rapid diffu-
sion of information, whereas others contain sections that are difficult to
reach.

This is a bird’s-eye view of an entire social network. However, we can
also focus on the position of specific people or organizations within the
network. In general, being well connected is advantageous. Contacts are
necessary to have access to information and help. The number and in-
tensity of a person’s ties are called his or her sociability or social capital,
which is known to correlate positively to age and education in Western
societies. Some people occupy central or strategic positions within the
system of channels and are crucial for the transmission process. Such po-
sitions may put pressure on their occupants, but they may also yield power
and profit.

In this part of the book, we focus on social networks as structures that
allow for the exchange of information. In this approach, the direction of
ties is not very important, so we discuss only undirected networks (with
one exception). In Chapter 6, we present the concepts of centrality and
centralization. In Chapter 7, we discuss the structure of the immediate
network of actors, especially the pressure or power that is connected to
particular structures of this ego network. In Chapter 8, we take time into
account as we study the role of network structure in the diffusion of
innovations and diseases.
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6

Center and Periphery

6.1 Introduction

In this chapter, we present the concepts of centrality and centralization,
which are two of the oldest concepts in network analysis. Most social net-
works contain people or organizations that are central. Because of their
position, they have better access to information and better opportuni-
ties to spread information. This is known as the ego-centered approach
to centrality. Viewed from a sociocentered perspective, the network as
a whole is more or less centralized. Note that we use centrality to refer
to positions of individual vertices within the network, whereas we use
centralization to characterize an entire network. A network is highly cen-
tralized if there is a clear boundary between the center and the periphery.
In a highly centralized network, information spreads easily but the center
is indispensable for the transmission of information.

In this chapter, we discuss several ways of measuring the centrality of
vertices and the centralization of networks. We confine our discussion of
centrality to undirected networks because we assume that information
may be exchanged both ways between people or organizations that are
linked by a tie. Concepts related to importance in directed networks,
notably prestige, are discussed in Part IV of this book.

6.2 Example

Studies of organizations often focus on informal communication: who
discusses work matters with whom and to whom do people turn for ad-
vice? Informal communication is important to the operation of the orga-
nization and it does not always coincide with the organization’s formal
structure. For the diffusion and retrieval of information, it is crucial to
know the people who occupy central positions in the communication net-
work.

Our example is a communication network within a small enterprise: a
sawmill. All employees were asked to indicate the frequency with which
they discussed work matters with each of their colleagues on a 5-point
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HP-1
HP-2

HP-3

HP-4

HP-5

HP-6

HP-7
HP-8

HP-9

HP-10
HP-11

HM-1 (Juan)

HM-2
HM-3

HM-4

HM-5

HM-6

HM-7

HM-8

HM-9

HM-10

HM-11

EM-1 EM-2

EM-3

EM-4
EM-5

Y-1

Y-2
Forester

MillManagerOwner

Kilnoperator

EP-1

EP-2

EP-3

Figure 58. Communication ties within a sawmill.

scale ranging from less than once a week to several times a day. Two
employees were linked in the communication network if they rated their
contact as three or more. We do not know whether both employees had
to rate their tie in this way or that at least one employee had to indicate a
strength of three or more. The network is stored in the file Sawmill.net.

In the sawmill, the employees are Spanish speaking (H) or English
speaking (E), which, of course, is relevant to their communication. The
sawmill contains two main sections: the mill (M), where tree trunks are
sawn into logs, and the planer section (P), where logs are planed. Then
there is a yard (Y) where two employees are working and some managers
and additional officials.

Figure 58 shows the communication network in the sawmill. Note that
vertex labels indicate the ethnicity and the type of work of each employee,
for example, HP-10 is an Hispanic (H) working in the planer section (P).
In this figure, vertex labels instead of vertex colors identify the attributes
of employees. It is quite easy to see that work-related communication is
structured along work section (planers at the left, sawyers at the right)
and ethnicity: Hispanics at the top and English-speakers at the bottom –
assuming that management, forester, kiln operator, and employees in the
yard are English-speakers.

Intuitively, HM-1 (Juan) is a central, perhaps the most central, person
in this network. He communicates with many colleagues directly and
through his direct contacts it is easy for him to reach most of the people
working in the sawmill. Juan seems to occupy a pivotal position in the flow
of information between the planers, the mill section, and management.
This chapter presents formal measures of centrality and centralization,
which capture these intuitions.
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6.3 Distance

One approach to centrality and centralization is based on the simple idea
that information may easily reach people who are central in a communi-
cation network. Or, to reverse the argument, people are central if infor-
mation may easily reach them.

The larger the number of sources accessible to a person, the easier
it is to obtain information; for instance, an elderly person will acquire
information about where to look for help more easily if his or her social
support network is larger. In this sense, social ties constitute a social
capital that may be used to mobilize social resources. Hence, the simplest
indicator of centrality is the number of its neighbors, which is his or her
degree in a simple undirected network (see Chapter 3). The higher the
degree of a vertex, the more sources of information it has at its disposal,
the quicker information will reach the vertex, so the more central it is.
In the sawmill network, Juan communicates with no fewer than thirteen
colleagues, whereas the manager of the mill has only seven communication
ties (Figure 58). In this respect, Juan is more central than the manager and
information from the shop floor will reach him more easily than it will
reach the manager. If degree is the simplest measure of the centrality of
a vertex, what is the associated measure of centralization for the entire
network, which expresses the extent to which a network has a center? Let
us first answer another, related question: Given a fixed number of lines,
what is the most efficient structure to exchange information? We should
note that this network must be connected, otherwise information cannot
reach all vertices. In this case, the star-network is known to be the most
efficient structure given a fixed number of lines. A star is a network in
which one vertex is connected to all other vertices but these vertices are
not connected among themselves (e.g., network A in Figure 59).

Compare the star-network in Figure 59 to the line-network, containing
the same number of vertices and lines (network B). It is much easier to
identify the central vertex in the star-network than in the line-network
because the difference between the central vertex (v5) and the peripheral
vertices (v1, v2, v3, and v4) is much more apparent than in the line-
network. This leads to an idea that may be counterintuitive, namely that
a network is more centralized if the vertices vary more with respect to

v1 v2

v3v4

v5

v1 v2

v3v4

v5

Network A Network B

Figure 59. Star- and line-networks.
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their centrality. More variation in the centrality scores of vertices yields a
more centralized the network.

Now we can define degree centralization as the variation in the degree
of vertices divided by the maximum variation in degree which is possi-
ble given the number of vertices in the network. In a simple network of
a particular size, the star-network has maximum degree variation. The
division by maximum degree variation ensures that degree centralization
ranges from zero (no variation) to 1 (maximum variation) in the case of
a star-network.

The degree centrality of a vertex is its degree.

Degree centralization of a network is the variation in the degrees of
vertices divided by the maximum degree variation which is possible in
a network of the same size.

Variation is the summed (absolute) differences between the centrality
scores of the vertices and the maximum centrality score among them. In
network A (Figure 59), for instance, one vertex (v5) has degree 4, which is
the maximum degree in a simple undirected network of this size because
this vertex is connected to all other vertices. The other four vertices have
minimum degree, which is 1 in a connected undirected network. Hence,
the degree variation amounts to 12: (vertices v1 to v4 contribute) 4 ×
(4 − 1) and (vertex v5 contributes) 1 × (4 − 4). In a simple undirected
network, the degree of vertices cannot vary more than this, so 12 is the
maximum variation and dividing 12 by itself, of course, yields a degree
centralization of 1.00.

In network B, two vertices have a degree of 1 (v1 and v2) and the
other vertices have a degree of 2. Because 2 is the maximum degree in
this network, the degree variation equals 2 × 2 − 1 (for vertices v1, v2)
and 3 × 2 − 2 (for vertices v3 to v5), which is 2. To obtain the degree
centralization of network B, we divide 2 by 12, which is the maximum
variation in a simple undirected network, and we obtain 0.17. If we add
a line between v1 and v2, degree centralization becomes minimal (0.00)
because all vertices have equal degree, so variation in degree is zero and
degree centralization is zero.

We should issue a warning here. In a network with multiple lines or
loops, the degree of a vertex is not equal to the number of its neighbors.
Therefore, the star-network does not necessarily have maximum variation
and we may obtain centralization scores over 1.00 if we compare the
variation in a network with multiple lines or loops to the variation in a
simple star-network of the same size. In this case, we advise not using
degree centralization.

In a simple undirected network, degree centrality is just the number of
neighbors of a vertex. In some cases, this is all we know about the net-
work position of people, for instance, when data are collected by means
of a survey in which people are asked to indicate the size of their per-
sonal network. If we want to analyze the communication structure of the
network, however, we need to know who is connected to whom in the
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entire network and we must pay attention to indirect ties because infor-
mation can flow from one person to the next and on to other people. In
a communication network, information will reach a person more easily
if it does not have to “travel a long way.” This brings us to the concept
of distance in networks, namely the number of steps or intermediaries
needed for someone to reach another person in the network. The shorter
the distance between vertices, the easier it is to exchange information.

In Chapter 3, we defined paths as a sequence of lines in which no vertex
in between the first and last vertices occurs more than once. Via a path,
we can reach another person in the network: we can inform our neighbor,
who passes the information on to his neighbor, who in turn passes it
on, until the information finally reaches its destination. We say that a
person is reachable from another person if there is a path from the latter
to the former. Note that two persons are mutually reachable if they are
connected by a path in an undirected network, but that two paths (one in
each direction) are needed in a directed network.

In an undirected network, the distance between two vertices is simply
the number of lines or steps in the shortest path that connects the vertices.
A shortest path is also called a geodesic. In a directed network, the geodesic
from one person to another is different from the geodesic in the reverse
direction, so the distances may be different. This sounds strange if you are
used to geographic distances but think of a directed network as a system
of one-way streets: it is easy to imagine that the route from A to B differs
from the journey back. In this chapter, however, we use only undirected
networks, so you do not have to worry about this now.

A geodesic is the shortest path between two vertices.

The distance from vertex u to vertex v is the length of the geodesic
from u to v.

With the concept of distance, we can define another index of centrality,
which is called closeness centrality. The closeness centrality of a vertex
is based on the total distance between one vertex and all other vertices,
where larger distances yield lower closeness centrality scores. The closer
a vertex is to all other vertices, the easier information may reach it, the
higher its centrality.

Just like degree centralization, we can conceptualize closeness central-
ization as the amount of variation in the closeness centrality scores of
the vertices. Again, we compare the variation in centrality scores to the
maximum variation possible, that is, the variation in closeness centrality
in a star-network of the same size.

The closeness centrality of a vertex is the number of other vertices
divided by the sum of all distances between the vertex and all others.

Closeness centralization is the variation in the closeness centrality
of vertices divided by the maximum variation in closeness centrality
scores possible in a network of the same size.
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In star-network A (Figure 59), vertex v5 has maximum closeness central-
ity because it is directly linked to all other vertices. The sum of distances
to the other vertices is minimal, namely four geodesics of length 1 com-
bine into a summed distance of 4. Because there are four vertices other
than v5, the closeness centrality of vertex v5 is maximal: 4/4 = 1.00.
The other vertices of network A have a closeness centrality score that is
considerably lower (0.57) because three vertices are two steps away from
them.

In network B, v5 also has the highest closeness centrality because it
is in the middle, but now its closeness centrality is not maximal (0.67)
and it differs less from the other vertices, which have closeness centrality
0.57 (vertices v3 and v4) and 0.40 (v1 and v2). Because the variation
of closeness centrality scores in network B is less than in network A,
network B is less centralized. Its closeness centralization is 0.42, whereas
the maximum centralization of network A is 1.00.

Note that complications arise if the network is not (strongly) connected.
If an undirected network is not connected or a directed network is not
strongly connected, there are no paths between all vertices, so it is im-
possible to compute the distances between some vertices. The solution to
this problem is to take into account only the vertices that are reachable
to or from the vertex for which we want to calculate closeness centrality
and weight the summed distance by the percentage of vertices that are
reachable. This solution works fine for the closeness centrality of vertices.
However, it does not allow us to compute the closeness centralization of
the entire network because the star-network does not necessarily have
the highest variation in closeness centrality scores if the network is not
(strongly) connected. Therefore, we do not use closeness centralization in
the case of a network that is not (strongly) connected.

Application
Net>Partitions>

Degree

Net>Transform>

Edges→Arcs

Net>Transform>

Remove>
multiple lines

Net>Transform>

Remove>loops

In Chapter 3, we explained how to compute the degree of vertices
in Pajek. Note that the Net>Partitions>Degree>All command counts
edges only once, which is fine if the network is undirected. In a net-
work containing edges and arcs, however, you may want to count the
edges as incoming and outgoing arcs. If so, replace the edges by bidirec-
tional arcs (Net>Transform>Edges→Arcs) before you calculate degree
with the All command. In addition, we advise removing multiple lines
(Net>Transform>Remove>multiple lines) and loops (Net>Transform>

Remove>loops) from the network before you compute degree centrality
and degree centralization.

The degree partition contains the degree centrality scores of the ver-
tices and the normalized degree vector contains the degree centrality of
the vertices expressed as a proportion of the maximum degree, which is
the number of other vertices in the network. If you inspect these scores,
you will see that Juan has thirteen neighbors, which we already noted
in Figure 58, which is more than one-third (0.37) of all thirty-five people
with whom he can be connected. In addition to the degree partition, Pajek
automatically writes the degree centralization of the entire network to the
Report screen provided that the network contains no multiple lines and
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loops. Otherwise Pajek reports a message explaining that degree central-
ization is not valid for this network. Here, the degree centralization of
the network is 0.289, which is meaningful only in comparison to other
networks.

Net>
k-Neighbours

If you want to know the distance between one vertex (e.g., Juan) and all
other vertices in the network, you can use the commands in the Net>k-
Neighbours submenu, which create a partition of classes containing the
distances between one vertex and all other vertices. The Input command
calculates the distances from the selected vertex, whereas the Output com-
mand computes distances to the vertex. The All command disregards the
direction of the lines. In an undirected network, you may choose the
Input, Output, or All commands: they yield the same results. The From
Cluster command is useful if you want to compute distances for a subset
of vertices in a large network.

When you execute a k-Neighbours command, you must first specify
the vertex number or the label of the vertex from which distances will
be computed. In the case of Juan, enter 12 (his vertex number) or HM-1
(the start of his vertex label). Next, you can set a limit to the maximum
distance that will be computed. In very large networks, setting a limit
may speed up computation considerably. In this dialog box, 0 means that
you want all distances, which is usually the right choice in the case of a
small network. The distances are stored in a partition and unreachable
vertices or vertices further away than maximum distance are placed in
class number 9999998, which indicates that their distance is not known.

In Figure 60, vertex colors and class numbers indicate the distances be-
tween Juan and other employees. Most employees are directly connected
to Juan (black or yellow) or indirectly connected with one intermediary
(light gray or green, distance 2). Two employees are four steps away from
Juan, namely HP-1 and EM-4.

HP-14 HP-2
3

HP-33

HP-4
2

HP-5 1

HP-6 1

HP-71
HP-8

2

HP-9 3

HP-10 3

HP-11
2

HM-1 (Juan)0

HM-2
1

HM-32

HM-4 1

HM-51

HM-61

HM-7 1

HM-82

HM-91

HM-102

HM-11
1

EM-1
1 EM-22

EM-33

EM-4
4EM-5

2

Y-12

Y-23

Forester2

Mill Manager1Owner 1

Kiln operator2

EP-13

EP-22

EP-3 2

Figure 60. Distances to or from Juan (vertex colors: Default Grey-
Scale 1).
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HP-1
HP-2 HP-4

HP-5

HP-7

HM-1 (Juan)

EM-1 EM-2

EM-3EM-5
EM-4

Figure 61. Geodesics between HP-1 and EM-4.

Net >Paths
between 2

vertices>All
Shortest

Employees HP-1 and EM-4 seem to be furthest apart in the communica-
tion network because their distance to Juan is 4. However, their geodesic
does not necessarily include Juan, so they may be connected in fewer than
eight steps. In Pajek, the geodesics between two vertices can be found with
the command Net>Paths between 2 Vertices>All Shortest. In the first di-
alog box, enter the vertex number or label of HP-1. In the second dialog
box, enter EM-4 and subsequently answer Yes to the question “Forget
values of lines?” because you do not want to weight the lines by their
values. This is the right thing to do unless line values indicate distances,
for instance, geographical distances. Finally, a dialog box asks whether
the paths must be identified in the source network. If you answer Yes to
this question, Pajek produces a partition for the original network that
assigns vertices on the geodesics to class 1 and other vertices to class zero.
Regardless of your choice in this dialog box, Pajek creates a new network
with the vertices and lines that constitute the geodesics (Figure 61). In
addition, it prints the distance in the Report screen. In our example, all
geodesics between HP-1 and EM-4 include Juan (see Figure 61), so the
distance between HP-1 and EM-4 cannot be less than 8, which is the sum
of their distances to Juan.

Net>Vector>
Centrality>

Closeness

In Pajek, the computation of closeness centrality is straightforward.
Because closeness centrality scores are continuous rather than discrete,
the centrality commands are located in the Net>Vector submenu. The
Net>Vector>Centrality submenu has commands to compute closeness
centrality for all vertices in the network. For undirected networks, you
may choose the commands Input, Output, or All, which yield the same
results. If the network is not (strongly) connected, Pajek creates a vector
with closeness centrality scores but it does not compute closeness cen-
tralization, which is undefined in such a network. Closeness centrality of
vertices that are not reachable to or from all other vertices is set to zero.
For medium-sized and large networks, closeness centrality demands a lot
of computing time so it should be applied with care.

Pajek creates a vector with the closeness centrality scores of the vertices.
You may inspect this vector or use it for computations in the ways ex-
plained in previous chapters. In our example, closeness centrality scores
range from 0.20 to 0.51 and Juan (0.51) turns out to be more central
than the manager (0.42). In addition, Pajek computes the closeness cen-
tralization of the network, which is printed in the Report screen. The
sawmill communication network has a closeness centralization score of
0.38, which, again, must be interpreted in comparison to other networks.
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Exercise I
What will happen to the network if Juan (HM-1) disappears? Remove
the vertex, compute closeness centrality and centralization, and interpret
the results.

6.4 Betweenness

Degree and closeness centrality are based on the reachability of a person
within a network: How easily can information reach a person? A second
approach to centrality and centralization rests on the idea that a person
is more central if he or she is more important as an intermediary in the
communication network. How crucial is a person to the transmission
of information through a network? How many flows of information are
disrupted or must make longer detours if a person stops passing on in-
formation or disappears from the network? To what extent may a person
control the flow of information due to his or her position in the commu-
nication network?

This approach is based on the concept of betweenness. The centrality
of a person depends on the extent to which he or she is needed as a link in
the chains of contacts that facilitate the spread of information within the
network. The more a person is a go-between, the more central his or her
position in the network. If we consider the geodesics to be the most likely
channels for transporting information between actors, an actor who is
situated on the geodesics between many pairs of vertices is very important
to the flow of information within the network. This actor is more central.

Juan, for instance, is important to the communication between HP-1
and EM-4 in the sawmill because all (four) geodesics include Juan (Figure
61). In contrast, HP-5 and HP-7 or EM-2 and EM-5 are less important
because if one fails to pass on information, the other may fulfill this role
and the communication chain between HP-1 and EM-4 is still intact.

Each pair of vertices may contribute to the betweenness centrality of
a vertex. HP-5 and EM-1, for example, contribute to the betweenness
centrality of Juan, because their geodesic includes Juan. In contrast, the
pair HP-4 and HP-5 does not contribute to Juan’s betweenness centrality,
because he is not included in their geodesic. In general, we may say that
the betweenness centrality of a vertex is the proportion of all geodesics
between other vertices in the network that include this vertex. Between-
ness centralization is the ratio of the variation in betweenness centrality
scores to the maximum variation.

The betweenness centrality of a vertex is the proportion of all geodesics
between pairs of other vertices that include this vertex.

Betweenness centralization is the variation in the betweenness cen-
trality of vertices divided by the maximum variation in betweenness
centrality scores possible in a network of the same size.
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It is easy to see that the center of a star network (vertex v5 in Figure
59) has maximum betweenness centrality: all geodesics between pairs
of other vertices include this vertex. In contrast, all other vertices have
minimum betweenness centrality (0) because they are not located between
other vertices. The centrality scores of vertices in a star have maximum
variation, so the betweenness centralization of the star is maximal: remove
its central vertex and all communication ties are destroyed. In the line-
network (B in Figure 59), removal of a vertex may also break the flow
of information, but parts of the chain remain intact. Therefore, centrality
indices vary less than in the star-network and betweenness centralization
is lower.

Application
Net>Vector>

Centrality>

Betweenness

The Betweenness command in the Net>Vector>Centrality submenu cre-
ates a vector of betweenness centrality scores for the vertices in the net-
work. In addition, the betweenness centralization of the network is printed
in the Report screen. In directed networks, the procedure automatically
searches for directed paths, so there are no separate commands for Input,
Output, and All. Even in unconnected networks, betweenness centrality
can be computed.

The sawmill communication network has a betweenness centralization
of 0.55. Betweenness centrality scores of employees range from 0.00 to
0.59. In Figure 62, vertex size indicates betweenness centrality. Several ver-
tices are invisible because they have zero betweenness centrality: they do
not mediate between other vertices. In this example, the betweenness cen-
trality of vertices varies more than their closeness centrality because ver-
tices at the outer margin of the network have zero betweenness, whereas
they are still close to part of the network. As a consequence, betweenness
centralization is higher than closeness centralization.
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Figure 62. Betweenness centrality in the sawmill.
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It is interesting to note that Juan (0.59), EM-1 (0.21), and HP-5 (0.20)
are more central than the manager of the mill (0.17). Each ethnic group
within the mill’s departments – with the exception of the English-speaking
planers – seems to have an informal spokesman who is taking care of the
communication with other departments or ethnic groups. Juan, who is
the spokesman of the Hispanic employees at the mill, is clearly most
central.

Exercise II
Compute betweenness centrality on the sawmill network and draw it with
vertex sizes corresponding to the betweenness centrality like Figure 62.

6.5 Summary

The concepts of vertex centrality and network centralization are best un-
derstood by considering undirected communication networks. If social
relations are channels that transmit information between people, central
people are those who either have quick access to information circulating
in the network or who may control the circulation of information.

The accessibility of information is linked to the concept of distance: if
you are closer to the other people in the network, the paths that informa-
tion has to follow to reach you are shorter, so it is easier for you to acquire
information. If we take into account direct neighbors only, the number
of neighbors (the degree of a vertex in a simple undirected network) is a
simple measure of centrality. If we also want to consider indirect contacts,
we use closeness centrality, which measures our distance to all other ver-
tices in the network. The closeness centrality of a vertex is higher if the
total distance to all other vertices is shorter.

The importance of a vertex to the circulation of information is captured
by the concept of betweenness centrality. In this perspective, a person is
more central if he or she is a link in more information chains between other
people in the network. High betweenness centrality indicates that a person
is an important intermediary in the communication network. Information
chains are represented by geodesics and the betweenness centrality of a
vertex is simply the proportion of geodesics between pairs of other vertices
that include the vertex.

The centralization of a network is higher if it contains very central ver-
tices as well as very peripheral vertices. Network centralization can be
computed from the centrality scores of the vertices within the network:
more variation in centrality scores means a more centralized network.
There is an index of network centralization for each measure of centrality
but some centralization measures need special networks: degree central-
ization is applicable only to networks without multiple lines and loops,
and closeness centralization requires a (strongly) connected network.

In this book, we apply centrality and centralization only to undirected
networks. It is easy to devise centrality measures for directed networks.
We could base degree centrality on the outdegree of vertices, compute
closeness centrality from the distances from a vertex to all other vertices
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(and not in the reverse direction), and consider only shortest directed
paths in the case of betweenness centrality. In fact, other books on social
network analysis advocate such an approach. We think, however, that it
is conceptually more clear to restrict centrality and centralization to undi-
rected networks and to apply other concepts (e.g., prestige) to directed
networks.

6.6 Questions

1. Which of the following statements is correct?
a. The centrality of a network equals the degree of its vertices.
b. Centralization depends on the variation of centrality scores.
c. A single vertex is always the center of a network.
d. The center of a network is always a cohesive subgroup.

2. Put the four networks (below) in order of ascending centralization.

v1 v2

v3v4

v5

Network A

v1 v2

v3v4

v5

Network B

v1 v2

v3v4

v5

Network C

v1 v2

v3v4

v5

Network D

a. B, A, C, D
b. A, D, B, C
c. D, A, B, C
d. A, B, D, C

3. Manually compute the closeness centrality of vertices v1 and v3 in
network D of Question 2.

4. The betweenness centrality of vertex v3 in network D of Question 2 is
0.83. List the geodesics that include v3 and the geodesics that do not.

5. The file question5.net contains the nominations made by thirty-
two employees of an organization who were asked to name the col-
leagues with whom they discuss work matters. Note that not all nom-
inations are reciprocated. Omit the unilateral nominations, which are
less reliable, from the network and find out who is most central in this
communication network.

6.7 Assignment

In the 1970s, Rogers and Kincaid studied the diffusion of family plan-
ning methods in twenty-four villages in the Republic of Korea. The files
Korea1.net and Korea2.net contain the communication networks
among women in two villages: a village with a successful family plan-
ning program (Korea1.net) and a village in which family plan-
ning was not adopted widely (Korea2.net). In both networks, a
line indicates that two women discussed family planning. In addition,
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we know which women adopted family-planning methods at least
temporarily (class 1 in the partitions Korea1_adopters.clu and
Korea2_adopters.clu) and which women were members of the local
Mothers’ Club, which played an important role in the diffusion of family-
planning methods (class 1 in the partitions Korea1_members.clu and
Korea2_members.clu) in both networks. The project file Korea.paj
contains all files.

Analyze the networks and find whether centrality and centralization
are associated with the success of the family-planning program in one
village and its relative failure in the other village. Explain the effects of
centrality and centralization by discussing the role of communication in
the adoption of family planning methods.

6.8 Further Reading

� The sawmill example is taken from J. H. Michael and J. G.
Massey, “Modeling the communication network in a sawmill.”
In: Forest Products Journal 47 (1997), 25–30.

� The data on the Korean villages stem from E. M. Rogers and
D. L. Kincaid, Communication Networks: Toward a New Para-
digm for Research (New York: The Free Press, 1981), which of-
fers an overview over network analysis from the perspective of
communication studies. Note that some of the methods and soft-
ware packages discussed in the book are obsolete.

� Many more measures of centrality have been proposed, notably
information centrality, which considers all paths and not just
geodesics in computing a betweenness score, and eigenvector cen-
trality or power, which takes into account how central those are
to whom an ego is connected. Read more about these and other
measures of centrality in A. Degenne and M. Forsé, Introduc-
ing Social Networks (London: Sage, 1999, Chapter 6), J. Scott,
Social Network Analysis: A Handbook (London: Sage (2nd ed.
2000), 1991, Chapter 5), and S. Wasserman and K. Faust, So-
cial Network Analysis: Methods and Applications (Cambridge:
Cambridge University Press, 1994, Chapter 5).

� The method for calculating closeness centrality on networks that
are not (strongly) connected was proposed by G. Sabidussi [“The
centrality index of a graph.” In Psychometrika 31 (1966), 581–
603].

6.9 Answers

Answers to the Exercises
I. Remove Juan by creating a partition identifying him in one class and

then extracting the other vertices from the network. When Juan’s ver-
tex is deleted, the network changes considerably (see figure below).
Now, the mill’s manager is most central (his or her closeness centrality
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score is 0.29). The network’s closeness centralization decreases to 0.16
and the planers (left) are clearly separated from the mill (right). It is in-
teresting to see that the English-speaking employees are more central,
because they are closer than the Spanish-speaking employees to the
manager. Juan seemed to function as the informal Hispanic manager.
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II. Section 6.4 explains how to compute betweenness centrality. To obtain
a sociogram such as that in Figure 62, draw it with the command
Draw>Draw-Vector (or Ctrl-u) from the Main screen.

Answers to the Questions in Section 6.6
1. Answer b is correct: network centralization measures the variation of

the centrality of the vertices within the network. The more variation,
the easier it is to distinguish between the center and the periphery, the
more centralized the network. Answer a is incorrect because central-
ity is a property of a vertex, not of a network. Answers c and d are
incorrect, because the center of a network, if it has one, may either be
a single vertex or a cohesive subgroup (e.g., a clique) consisting of a
number of vertices that are equally central.

2. Answer d is correct. The star-network is most central, so answer a is not
correct. In the circle network (network A), all vertices have degree 2,
each vertex is equally distant from all other vertices, and each vertex
is situated on one geodesic between pairs of other vertices, so there
is no variation in centrality, hence minimum centralization. Network
A is least centralized, so answer c is not correct. Network D is more
centralized than network B, so answer d is correct.

3. The distances between vertex v1 and vertices v2, v3, v4, and v5 are 3, 2,
3, and 1 respectively. The sum distance is 9, so the closeness centrality
of vertex v1 is 4 (the number of other vertices) divided by 9, which is
0.44.

The sum distance of vertex v3 to v1, v2, v4, and v5 is 2 + 1 + 1 + 1 =
5, so its closeness centrality is 4/5 = 0.8.

4. The geodesics between vertex v1 and v2 (v1-v5-v3-v2), v1 and v4 (v1-
v5-v3-v4), v5 and v2 (v5-v3-v2), v5 and v4 (v5-v3-v4), and v2 and v4
(v2-v3-v4) include vertex v3, whereas the geodesic between v1 and v5
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(v1-v5) does not. Five of six geodesics include v3, so its betweenness
centrality is 0.83.

5. The easiest way to omit all unilateral nominations is to change bi-
directional arcs into edges (Net>Transform>Arcs->Edges>Bidirec-
ted Only) and remove the remaining arcs subsequently (Net>Trans-
form>Remove>all arcs). Now you have an undirected network and
it is easy to compute the three kinds of centrality (degree, closeness,
and betweenness) and display the vertices with highest scores with the
Info>Partition and Info>Vector commands. Vertex v9 has highest de-
gree (17), highest closeness centrality (0.67), and highest betweenness
centrality (0.20). Person v9 consistently ranks highest on the three cen-
trality indices.



7

Brokers and Bridges

7.1 Introduction

A person with many friends and acquaintances has better chances of
getting help or information. Therefore, social ties are one measure of
social capital, an asset that can be used by actors for positive advantage.
Network analysts, however, discovered that the kind of tie is important in
addition to the sheer number of ties. Their general argument is that strong
(i.e., frequent or intense) ties with people who are themselves related yield
less useful information than weak ties with people who do not know one
another. Having a lot of ties within a group exposes a person to the same
information over and over again, whereas ties outside one’s group yield
more diverse information that is worth passing on or retaining to make a
profit.

As a consequence, we have to pay attention to the ties between a per-
son’s contacts. A person who is connected to people who are themselves
not directly connected has opportunities to mediate between them and
profit from his or her mediation. The ties of this person bridge the struc-
tural holes between others. It is hypothesized that people and organiza-
tions who bridge structural holes between others have more control and
perform better.

In this chapter, we first discuss bridges at the level of the entire network
(Section 7.3). Which ties (bridges) and which vertices (cut-vertices) are
indispensable for the network to remain connected? If a network contains
such ties and vertices, it contains bottlenecks and the flow of information
through the network is vulnerable. In the remaining sections, we focus on
brokerage at the level of individuals. Who is in the best position to profit
from his or her social ties (Section 7.4) and how is this affected by group
membership (Section 7.5)?

7.2 Example

The example in this chapter shows the importance of informal com-
munication structures within a firm. In a wood-processing facility, a
new management team proposed changes to the workers’ compensation

138
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Figure 63. Communication network of striking employees.

package, which the workers did not accept. They started a strike, which
led to a negotiation stalemate. Then, management asked an outsider to
analyze the communication structure among the employees because it felt
that information about the proposed changes was not effectively commu-
nicated to all employees by the union negotiators.

The outside consultant asked all employees to indicate the frequency
with which they discussed the strike with each of their colleagues on a
5-point scale, ranging from almost never (less then once per week) to very
often (several times per day). The consultant used 3 as a cutoff value.
If at least one of two persons indicated that they discussed work with a
frequency of 3 or more, a line between them was added to the informal
communication network (Strike.net).

The network displays fairly stringent demarcations between groups
defined on age and language (Figure 63). The Spanish-speaking young
employees, who are of age 30 or younger (class 1 in the partition
Strike_groups.clu, black or yellow vertices), are almost discon-
nected from the English-speaking young employees (class 2, gray or green
vertices), who communicate with no more than two of the older English-
speaking employees (38 years old or older, class 3: white or red vertices).
These divisions mirror the homophily principle discussed in Chapter 3:
people tend to relate to those who are similar.

All ties between groups have special backgrounds. Among the Hispan-
ics, Alejandro is most proficient in English and Bob speaks some Spanish,
which explains their tie. Bob owes Norm for getting his job and probably
because of this, they developed a friendship tie. Finally, Ozzie is the father
of Karl.

Sam and Wendle are the union negotiators; they are represented by
boxes in Figure 63 (open the network data file Strike.net in a text
editor to see how we created boxes for Sam and Wendle in the list of
vertices). They were responsible for explaining the new program proposed
by the managers. When the informal communication structure among
employees was reported to the management, they approached two of the
other employees directly (Bob and Norm) to explain the reforms to them
personally. Then, they gave them some time to discuss the plans with
their colleagues. Within two days, the young and old employees were
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willing to strike a deal with the management and they persuaded the
union representatives to reopen negotiations. Soon, the labor dispute was
reconciled and the strike ended.

7.3 Bridges and Bi-Components

The example shows the importance of social ties to the diffusion of infor-
mation. Information is the key to the exploitation of social ties as social
capital. Social ties offer access to information, which can be used to reduce
uncertainty and risk and to create trust, as for instance, when informa-
tion is confirmed from several sources. People in crucial positions in the
information network may also spread or retain information strategically
because they have control over the diffusion of information.

In a social system, for instance, an organization, the overall structure of
informal ties is relevant to the diffusion of information. Can information
reach all members of the organization or is it more likely to circulate in
one segment of the network? Are there any bottlenecks that are vital to
the flow of information, which may prohibit the spread of information
because of information overload or because people pursue their private,
strategic goals?

In Figure 63, the tie between Alejandro and Bob is clearly a bottleneck
because it is the only channel for information exchange between the His-
panic employees and all other employees. Removing this single line will
cut off the Hispanics from information circulating among the other em-
ployees. Formally, this line is a bridge in the network because its removal
creates a new component, which is isolated from other components. The
strike network consists of one component (recall that a component is
a maximal connected subnetwork; see Chapter 3), so information may
travel to each employee via social ties. When you remove the line be-
tween Alejandro and Bob, you disconnect the Hispanic workers from the
communication network, so they become a component on their own.

A bridge is a line whose removal increases the number of components
in the network.

Note that there is one more bridge in the information network of striking
employees: the tie between Frank and Gill. If you remove this tie, Frank
becomes an isolate. Because an isolate is a component, the network con-
sists of two components after removing Frank’s tie with Gill.

The removal of a line may annul the connectedness of a network or
component but the deletion of a vertex may have the same effect, because
you remove the lines that are incident with the deleted vertex. After all,
you cannot have a line with a single endpoint! When Bob refuses to dis-
cuss the strike any further, he is lost to the communication network and
all of his ties disappear, including the bridge to Alejandro. Therefore, Bob
is a cut-vertex or articulation point: its deletion disconnects the network
or it disconnects a component of the network. Just as with a bridge, a
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Figure 64. Cut-vertices (gray) and bi-components (manually circled) in
the strike network.

cut-vertex is crucial to the flow of information in a network. It is a bot-
tleneck in the network that controls the flow from one part to another
part of the network. Norm, for example, is indispensable for exchanging
information between the older and younger employees.

Deleting a vertex from a network means that the vertex and all lines
incident with this vertex are removed from the network.

A cut-vertex is a vertex whose deletion increases the number of com-
ponents in the network.

In Figure 64, all cut-vertices are gray. Note that vertices incident with a
bridge may or may not be cut-vertices. Alejandro and Bob are cut-vertices,
but Frank is not, because removal of Frank and his bridge to Gill does
not increase the number of components.

Now that we have defined cut-vertices, it is easy to define sections of a
network that are relatively invulnerable to the withdrawal or manipula-
tion of a single vertex, namely bi-components. A bi-component is simply
a component – a maximal connected subnetwork – of minimum size 3
without a cut-vertex. In a bi-component, no person can control the infor-
mation flow between two other persons completely because there is always
an alternative path that information may follow. In a bi-component, each
person receives information from at least two sources (in an undirected
network), so he or she may check the information. We may say that a bi-
component is more cohesive than a strong or weak component because
there are at least two different paths between each pair of vertices; that is,
two paths that do not share a vertex in between their starting point and
endpoint.

A bi-component is a component of minimum size 3 that does not
contain a cut-vertex.

The strike network as a whole clearly is not a bi-component because
it contains five cut-vertices. Within the network, however, there are four



142 Exploratory Network Analysis with Pajek

bi-components, which are manually circled in Figure 64. These are, clock-
wise and starting at the top, (1) a Hispanic bi-component, consisting of
Alejandro, Carlos, Domingo, and Eduardo; (2) a bi-component with the
two union representatives and Xavier; (3) a bi-component with all older
English-speaking employees except Ozzie, Wendle, and Xavier; and (4) a
bi-component with Ozzie, Norm, and all young English-speakers except
Frank.

You should be puzzled now. Didn’t we define a bi-component as a
component (of minimum size three) without a cut-vertex? Then, how is
it possible that each of the listed bi-components contains at least one
gray vertex in Figure 64, that is, at least one cut-vertex? The answer
is that a bi-component does not contain cut-vertices if you look at the
bi-component only and ignore the rest of the network. Concentrate on
the Hispanic employees, for instance: if you remove Alejandro, the other
three Hispanics remain connected into one component, so the removal
of Alejandro does not increase the number of components among the
Hispanic employees. Looking at the entire network, however, Alejandro
is a cut-vertex because he connects the Hispanic bi-component to Bob.

In other words, a cut-vertex always connects different bi-components or
bridges. Norm, for example, belongs to two bi-components: to the ma-
jority of older English-speakers and to the bi-component of the young
English-speaking employees. In a similar way, Sam connects two bi-
components. Alejandro, Bob, and Gill, however, connect a bi-component
to a bridge, namely the bridge between Alejandro and Bob or the
bridge between Gill and Frank. Cut-vertices indicate the borders of bi-
components and bridges. A component usually consists of overlapping
bi-components and bi-components connected by bridges.

It is interesting to note that the two union representatives among the
employees, Wendle and Sam, are part of a bi-component that is connected
to the bi-component of older employees by Sam. So we may say that Sam
controls the information exchange between the union representatives and
all other employees except Xavier. If Sam does not want to strike a deal
with the management of the firm, he can manipulate the information to
and from the other employees.

In numerous applications, it has been shown that people with strong
ties belong to cliques and strong ties tend to be located in or develop into
cliques; for example, family ties are usually strong in the sense that they are
intense, and family ties display cliques: several or all members of a family
maintain strong ties among themselves. As a consequence, family ties are
not very useful in finding new jobs because they relate you to people with
whom you are already related. Usually, they do not supply information
about new jobs of which you have not already heard. In contrast, less
intense and irregular contacts such as former colleagues or acquaintances
are better sources of information on new job opportunities. These weak
ties are more likely to be bridges to distant information networks, hence
the concept of “the strength of weak ties,” meaning that weak ties are
often more important for the dispersion of information than strong ties.
The strength of a tie may be taken as a proxy of its chances of being a
network bridge.
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This hypothesis could apply to the Spanish-speaking employees. Strong
ethnic ties develop into a clique and the only nonethnic tie (between
Alejandro and Bob) is a bridge to the rest of the network. In this example,
however, family ties connect employees outside cliques: Gill is Frank’s
cousin and Ozzie is Karl’s father. We should note that the strength of
weak ties depends on the situation: on the shop floor, family ties, which
are usually considered strong, may fulfill the bridging role of weak ties
because family ties are uncommon and they will not develop into cliques
within the firm (a firm is not the natural setting for raising a family).

Remember, however, that we consider only the stronger communication
ties because irregular communication ties are disregarded (scores 1 and 2
on the 5-point scale) in this example. The strength of weak ties argument
predicts that strong ties will constitute cliques, which is clearly the case.
Perhaps, the weaker ties cross group boundaries more often. Note that the
strength of a tie may be defined in several ways, for instance, frequency
versus social intensity, which is important to consider when you apply the
strength of weak ties hypothesis.

Application
Net>
Components>
Bi-Components

You may use the Bi-Components command in the Net>Components sub-
menu for finding bi-components, bridges, and cut-vertices in a network.
On selection of this command, you are prompted to specify the mini-
mum size of the bi-components to be identified. The default value 3 will
identify the bi-components within the network and it will only report cut-
vertices that connect two or more bi-components. A minimum size of two
will trace all bi-components, bridges, and all cut-vertices, including cut-
vertices connecting bridges. Note that a bridge and its incident vertices
constitute a component of size two without a cut-vertex in an undirected
network.

Pajek’s Bi-Components command treats directed networks as if they
were undirected, which means that it identifies weak instead of strong
components without cut-vertices in directed networks. If you symmetrize
a directed network before you execute the Bi-Components command, you
will obtain exactly the same results.

In this example, we want to identify the bi-components and the bridges,
so we issue the Bi-Components command with a minimum component
size of 2. The output of the Bi-Components command consists of two
partitions and a hierarchy. The first partition (“Vertices belonging to ex-
actly one bicomponent”) indicates the sequential number of the bridge
or bi-component to which a vertex belongs. Vertices that do not be-
long to a bridge or bi-component (e.g., isolates) are collected in class
0 and vertices that belong to two or more bridges or bi-components –
cut-vertices – are placed in class number 9999998.

The second partition (“Articulation points”) indicates the number of
bridges or bi-components to which a vertex belongs: 0 for isolates, 1
for a vertex that belongs to exactly one bridge or bi-component, 2 for
vertices that belong to two bridges or bi-components, and so on. This
partition is used in Figure 64. Finally, the hierarchy shows the bridges
or bi-components to which each vertex belongs. We need a hierarchy to
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Figure 65. Hierarchy of bi-components and bridges in the strike net-
work.

store the bridges and bi-components because cut-vertices belong to two or
more bi-components. Note that bridges are not counted if the minimum
size has been set to 3.

File>
Hierarchy>Edit Because bridges are bi-components of size 2 in an undirected network

without multiple lines, you can easily find the bridges in the hierarchy of
bi-components: open the Edit screen with the hierarchy of bi-components
(see Figure 65) with the command File>Hierarchy>Edit or with the Edit
button on the left of the hierarchy drop-down menu. Figure 65 lists the six
bridges and bi-components in the communication network among striking
employees. The size of each subnetwork is reported between brackets, so
it is easy to find the two bridges in this example: subnetworks four and
six. Double-click them to see their vertices.

Exercise I
Detect only the bi-components in the strike network by setting the min-
imum component size to three in the Bi-Components command. How
many cut-vertices does Pajek identify now. And what happens to Frank?

7.4 Ego-Networks and Constraint

In the previous section, we analyzed the structure of the entire network,
which is a sociocentered approach. Now we turn to the ego-network and
ego-centered approach: we focus on the position of one person in the
network and his or her opportunities to broker or mediate between other
people.

Let us first have a look at a triad, which consists of a focal person
(ego), an alter, a third person, and the ties among them. The triad is the
smallest network that contains more than two persons and it highlights
the complexities of ties within a group. According to the sociologist Georg
Simmel, a complete triad (A in Figure 66) reduces the individuality of its
members. When three people are fully connected, they share norms and
information, they create trust by feedback, and conflicts between two
members may be resolved or moderated by the third person. In other
words, complete connections between three persons make them behave
as a group rather than as a set of individuals.
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Figure 66. Three connected triads.

In an undirected triad that is connected but incomplete, for instance,
networks B and C in Figure 66, people are considered less bound by group
norms. One person is in an advantageous, powerful position, because
he or she may broker between the other two. The person in the middle
(the ego in B and alter in C, Figure 66) may profit from the competition
between the other two, for example, the ego negotiates the price of a good
or service to be delivered by either alter or the third party in network B.
The ego makes them compete, which would not be possible if the alter
and third would agree about a price among themselves. This is known
as the tertius gaudens (“the third who benefits”) or the tertius strategy:
induce and exploit competition or rivalry between the other two, who
are not directly related. The absence of a tie between an alter and the
third party is known as a structural hole, which may be exploited by the
ego.

A more malicious variant is known as divide et impera or the divide-
and-rule strategy, in which a person creates and exploits conflict between
the other two to control both of them; for example, the ego tells alter
unpleasant things about the third party and the third party about alter,
which results in hostility among them. This would not be possible if they
could directly check the information and find out the ego’s subversive
strategy. Again, the structural hole allows the ego to apply this strategy.

In both strategies, an individual’s advantage or power is based on his
or her control over the spread of information, goods, or services, which
stems from the structure of his or her network. We want to stress that
brokerage is related to the absence of ties (i.e., the presence of holes)
between neighbors, whereas we concentrated on the presence of ties in
our chapters about cohesive subgroups in Part II.

The opportunities that a structural hole offers in an incomplete triad
have a reverse side: they imply constraint in a complete triad. A complete
triad is not just a triad without opportunities because it has no structural
holes. The situation is even worse from the perspective of brokerage,
because you cannot withdraw from any of these unrewarding ties without
creating a structural hole around yourself. In network A (Figure 66), the
ego is more or less obliged to maintain both ties, because if the ego ends
ties with one (e.g., with the third in A, so triad C evolves), there is a
structural hole around the ego that the alter may take advantage of.

The ego-network of a vertex contains this vertex, its neighbors, and
all lines among the selected vertices.

Now, let us focus on the ego-network, which consists of an ego, the ego’s
neighbors, and the ties among them. Alejandro’s ego-network is displayed
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Figure 67. Alejandro’s ego-network.

in Figure 67. The ego-network of a person contains all triads that include
this person, so we can analyze it as a set of triads. For each triad, we can
determine whether it constrains ego or whether it contains a structural
hole that the ego may exploit; for instance, Alejandro (ego) has an oppor-
tunity to broker between Bob (alter) and Domingo (third) because Bob
and Domingo are not directly connected. For the same reason, Alejandro
may broker between Bob and Carlos or Eduardo. There are three triads
in Alejandro’s ego-network that give him an opportunity to broker for
Bob.

In a similar way, we can compute the constraint on Alejandro that is
exercised by his tie with Bob: the number of complete triads containing
Alejandro, Bob, and another neighbor of Alejandro. Because no other
neighbor of Alejandro is directly connected to Bob, there is no constraint
on Alejandro because of his tie with Bob. A low constraint indicates many
structural holes, which may be exploited. In contrast, the constraint on
Alejandro’s ties with Carlos, Domingo, and Eduardo is very high because
these ties are involved in three complete triads. When Alejandro with-
draws from any of these ties, they may start brokering for him.

The higher the constraint, the fewer the opportunities to broker and the
more dangerous it is to withdraw from a tie. This constraint is known as
the dyadic constraint associated with a tie from ego’s point of view. Note
that the constraint of a tie on ego may differ from the constraint experi-
enced by alter on the same tie. The tie between Alejandro and Carlos, for
instance, is more constrained for Carlos than for Alejandro, because all
triads in Carlos’ ego-network are complete.

In our discussion of structural holes and constraint, something is still
missing: we ought to take into account the importance of a tie to a person.
If a tie is very cheap in terms of investment (money, network time, and
energy), it is not really a problem to be obliged to maintain it. If a tie is
just one among many (low exclusivity), ego does not depend on this tie
much and it is no big deal if alter threatens to break it. Besides, if the tie
between the alter and the third party is not important to them, it may
function like an absent tie, which can be exploited.

The proportional strength of a tie with respect to all ties of a person is a
simple indicator of the importance or exclusivity of a tie. It is computed as
the value of the line(s) representing a tie, divided by the sum of the values
of all lines incident with a person. If line values express costs, time, or
energy, the proportional strength of a tie is the portion of an actor’s
total expenditure that is invested in the ties with an alter. Just like dyadic
constraint, it makes a difference from which standpoint you look at the
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Figure 68. Proportional strength of ties around Alejandro.

network, for instance, the tie between Alejandro and Bob is one out of
Alejandro’s four ties (0.25) but it is only one of Bob’s seven ties (0.14),
so the proportional strength of a tie must be represented by a directed
network (Figure 68). Note that the original network may contain multi-
ple lines, directed and undirected lines, and line values, but the network
with proportional strength ties is always simple directed and contains only
bidirected arcs.

The dyadic constraint on vertex u exercised by a tie between vertices u
and v is the extent to which u has more and stronger ties with neighbors
who are strongly connected with vertex v.

This definition describes the ideas behind dyadic constraint rather than
the exact computation. For those interested in the exact computation: add
the proportional strength of the tie from the ego to the alter (investment
of the ego in the alter) to the products of the proportional strength of the
two arcs in each path from the ego to the alter via another neighbor of
the ego and take the square of this sum.

The constraint on Alejandro attached to his tie with Eduardo is equal
to the square of the following sum: 0.25 (Alejandro’s investment in
Eduardo), plus 0.25×0.33 (Alejandro’s tie to Carlos times Carlos’ tie to
Eduardo), plus 0.25×0.33 (idem via Domingo). All numbers are propor-
tional strengths which can be read from Figure 68, from which we omitted
arcs toward Bob that are not relevant to the constraints on Alejandro. The
sum is 0.415 and the square of this sum is 0.17 (see Figure 69). As you
may have expected, the constraint on Alejandro that is attached to his
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0.063
Bob

Alejandro
Carlos
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Domingo

Figure 69. Constraints on Alejandro.
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ties with Domingo or Carlos is also 0.17. The constraint on his tie with
Bob is just the square of the proportional strength of this tie (0.0625)
because there are no indirect paths from Alejandro to Bob in Alejandro’s
ego-network.

We may conclude that the constraint on Alejandro’s tie with Bob is
about one-third of the constraint of his ties within the Hispanic cluster.
Clearly, the structural holes in Alejandro’s network are attached to his
link with Bob: he is able to play the tertius gaudens strategy between Bob
and the other Hispanics because he may act as a representative of the
Hispanics to Bob.

If we have the dyadic constraint on all ties of a person, we can simply
add them to obtain the aggregate constraint on this person. The aggregate
constraint is a nonnegative number that is usually between 0 and 1 but it
can be greater than 1. The aggregate constraint on Alejandro, for instance,
is 0.174 + 0.174 + 0.174 + 0.063 = 0.585. The higher the aggregate con-
straint, the less “freedom” a person has to withdraw from existing ties or
to exploit structural holes.

In general, more direct links between an ego’s neighbors yield a higher
aggregate constraint on that ego because each link between neighbors
creates a complete triad with the ego. For this reason, network analysts
have used the density of the ego-network without the ego as an indicator
of the constraint on an ego. In the case of Alejandro, there are three lines
among his four neighbors (see Figure 67) (viz. between Carlos, Domingo,
and Eduardo). The egocentric density is 0.5: three of the six possible lines
exist among Alejandro’s four neighbors. In contrast, Carlos’ egocentric
density is maximal because all of his neighbors (Domingo and Eduardo)
are directly linked.

People or organizations with low aggregate constraint are hypothesized
to perform better. It has been shown that employees with low constraint
in an organization have more successful careers and that business sectors
with lower constraint on firms are more profitable. In general, researchers
compare the constraint on an actor to one or more indicators of its (eco-
nomic) success. In our example, this could be the success in resolving
the conflict between employees and management or personal influence
on the conditions specified in the final agreement. Bob and Norm nego-
tiated the proposal with the management before they called in the union
representatives, so they may have been successful in changing the condi-
tions according to their interests.

Application
Net>Vector>

Structural Holes
In Pajek, one command computes the proportional strength of ties,
the dyadic constraint, and the aggregate constraint for all vertices in a
network. This command is aptly called Structural Holes and you can find
it in the Net>Vector submenu. The proportional strength of ties is output
as a new network and so is dyadic constraint. In these networks, the line
values express the strength and constraint on ties, respectively. Note that
these networks are always directed and that all arcs are reciprocated, no
matter whether the original network is directed or undirected and valued
or unvalued or contains multiple lines and loops.
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Figure 70. Energized constraint network.

Options >Values
of Lines>
Similarities

There is an easy way to visualize the structural holes in a network. Take
the network of dyadic constraint and, using the line values as similarities
(option Options>Values of Lines>Similarities in the Draw screen), ener-
gize it. Now, vertices that are tied by links of high constraint are drawn
closely together, whereas ties of low constraint are long, so they create
a lot of space between the vertices that looks like a hole (Figure 70 –
energized with Kamada–Kawai).

Info>Vector

Vector>
Transform>

Multiply by

[Draw]Options>
Size>of Vertices

Aggregate constraint is output as a vector. You may inspect this vec-
tor in the usual ways with the Info>Vector command or by editing it. If
you want the size of the vertices to represent their aggregate constraint
in the Draw screen, we advise multiplying the vector by 10 (command
Vector>Transform>Multiply by) or using the Autosize option in the
Options>Size>of Vertices submenu of the Draw screen, otherwise the
vertices are drawn too small.

Net>k-
Neighbours>All

Operations>
Extract from
Network>

Partition

[Main] Info>

Network>

General

To calculate the egocentric density of a vertex, that is, the density of
ties among its neighbors, you must extract the subnetwork of the neigh-
bors from the overall network. First, select the neighbors of a particular
vertex with the Net>k-Neighbours>All command. In the first dialog box,
specify the number or label of the vertex for which you want to compute
egocentric density (e.g., Alejandro). In the second dialog box, enter 1 as
the maximum distance. The command now creates a partition with the
ego in class zero and its neighbors in class 1. Second, extract the neighbors
from the network with the Operations>Extract from Network>Partition
command, selecting class 1 as the only class to be extracted. Now that
you have created the network of neighbors, you can inspect its density
with the Info>Network>General command in the Main screen.

Net>Vector>
Clustering
Coefficients>
CC1

For a simple undirected network you can compute the egocentric den-
sity of all vertices with the Net>Vector>Clustering Coefficients>CC1
command. This command produces two vectors; the first vector –
“Clustering Coefficients CC1” but not “Clustering Coefficients CC1′” –
contains the egocentric density. The results for directed networks
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represent egocentric density only if the network does not contain loops
or bidirectional arcs.

Exercise II
Compute the aggregate constraint on Norm and Bob in the strike network
as well as their egocentric density. Do aggregate constraint and egocentric
density match in this case?

7.5 Affiliations and Brokerage Roles

Group affiliation is often important in brokerage processes. A union rep-
resentative mediates between the management and the workers. He or she
can negotiate with one manager or another and choose whom of his or her
colleagues to consult. To some extent, his or her contacts are replaceable
by someone else from the same group. Moreover, the union representa-
tive himself must belong to a particular group, namely the workers. In
our example, the union representatives Sam and Wendle are a subgroup
of workers and the management is supposed to negotiate with them. This
restricts the managers’ choice of negotiation partners enormously, so they
have little opportunity to play off one negotiator or worker against an-
other. In this case, the opportunity to broker depends not only on the
position of people in the network but also on their group affiliations.

The easier it is to replace your contact by someone else from his or
her group, the stronger your position is to negotiate and the higher the
chance of striking a good deal or of getting things done your way. The
replacement does not have to be one of your present contacts; it may
be someone outside of your present ego-network whom you include at
the expense of someone else. Is there someone else in your contact’s group
who is at least as central as your contact but who is not directly linked to
your contact so including him or her in your ego-network would create a
structural hole between your present contact and the new contact? Such
a structural hole is called a secondary structural hole.

Let us illustrate this with an example. Suppose Alejandro wants to play
a divide-and-rule strategy against Bob because he feels too constrained
by him. Bob is in a good structural position to negotiate on behalf of
the English-speaking young employees because he is directly connected to
most members of this group. It is very difficult to spread discord among
members of his group by spreading rumors about Bob, because the other
members of the group are likely to inform Bob when they maintain direct
ties. Alejandro’s best choice seems to be Gill, because he is not directly
connected to Bob and it is very likely that Frank will team up with him,
after which Gill may try to play Ike versus Hall and John, although these
colleagues are constrained by Bob. Frank and Karl, the only other English-
speaking young employees who are not directly related to Bob, are less
suited as an alternative to Bob because they are less central in the group.

Because secondary structural holes concern the ties within one
group, namely the opportunities to exploit structural holes within that
group, the aggregate constraint within a group seems to be a useful
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Figure 71. Five brokerage roles of actor v.

indicator of whom to contact and persuade as an alternative to your
present contact in the group: the person who is least constrained and who
is not constrained by your present contact because he is not directly tied
to him or her (see Figure 73 in the Application section).

For another approach to brokerage and affiliations, we have to turn
to triads again. A triad in which person v mediates transactions between
persons u and w can display five different patterns of group affiliations,
which are indicated by vertex color as well as contours in Figure 71.
Each pattern is known as a brokerage role. Research into brokerage roles
is concerned with describing the types of brokerage roles that dominate
a transactional or exchange network. In addition, individual positions
within the network may be characterized by the dominant type of broker-
age role and hypotheses may be tested about the personal characteristics
of individuals with certain types of brokerage roles.

Two brokerage roles involve mediation between members of one group.
In the first role, the mediator is also a member of the group. This is known
as the coordinator role. In the second role, two members of a group use
a mediator from outside, an itinerant broker. The other three brokerage
roles describe mediation between members of different groups. In one role,
the mediator acts as a representative of his group because he regulates the
flow of information or goods from his or her own group. In another role,
the mediator is a gatekeeper, who regulates the flow of information or
goods to his or her group. Finally, the liaison is a person who mediates
between members of different groups but who does not belong to these
groups himself or herself.

The five types of brokerage roles have been conceived for directed net-
works, namely transaction networks. Note, however, that the direction of
relations is only needed to distinguish between the representative and the
gatekeeper. The other brokerage roles are also apparent in undirected rela-
tions, so we can apply the brokerage roles to undirected networks if we do
not distinguish between representatives and gatekeepers. In an undirected
network, each representative is also a gatekeeper and vice versa.

Now, let us have a look at the brokerage roles in the strike network.
We use the groups according to language and age (see Figure 63) and we
assume that a line is equivalent to a bidirectional arc: discussing work
implies the possibility of disseminating and receiving information. Em-
ployees who are isolated or whose ties are contained within a clique (e.g.,
Carlos, Domingo, and Eduardo, but also Wendle and Xavier) have no op-
portunity to mediate because all of their contacts are directly connected.
As a result, none of the brokerage roles apply to them.
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Figure 72. Bob’s ego-network.

Most of the other employees have ties only within their own group,
so they can play only the coordinator role. In the network, brokerage is
clearly dominated by the coordinator role. It is easy to see that Alejandro,
Bob, Norm, and Ozzie are the only employees who also have other types
of brokerage roles because they are the only ones who are connected to
members of different groups.

Let us have a closer look at Bob (Figure 72), who combines several
types of brokerage roles. There are several structural holes among Bob’s
ties within the group of English-speaking young employees (e.g., between
Ike and Mike, on the one hand, and Hal, John, and Lanny, on the other
hand). To them, Bob plays the coordinator role. In addition, Bob bridges
many structural holes between his group of English-speaking young em-
ployees and the Hispanic workers or the older employees. For information
about his group, Bob is a representative and for information flowing to-
ward members of his group, he is a gatekeeper. Finally, he may mediate
between Alejandro and Norm, that is, between the Hispanics and the
older workers. In this role, he is a liaison.

The only brokerage role that Bob cannot play given the ties in the
network, is the role of an itinerant broker because he has no ties with two
or more members of any group other than his own. Actually, none of the
employees can play this role – this role is absent in the strike network.

Bob was the first employee whom the management contacted directly.
Perhaps, this was justified not only by the amount of structural holes in
his ego-network but also by the variety of brokerage roles that Bob may
play.

Application
Secondary structural holes are related to constraint within a group, so we
may delete the ties between groups and calculate the constraint within
each group. If there is another member of the group with equal or less
constraint than the one you are already connected to, you may play him
or her off against your present contact provided that they are not strongly
and directly connected. In a similar manner, you may evaluate your po-
sition within your own group to see whether you may easily be replaced
by someone else.

Operations>
Transform>

Remove Lines>
Between Clusters

The detection of secondary structural holes consists of two steps. In
the first step, we delete the lines between groups. Because the groups are
defined as classes in a partition (in our example Strike_groups.clu),
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Figure 73. Constraint inside groups.

we must make sure that this partition is selected in the partitions drop-
down menu. Then we can remove the lines between clusters with the
command Operations>Transform>Remove Lines>Between Clusters.

Net>Vector>
Structural HolesIn the second step, we apply the Structural Holes command to the net-

work without lines between clusters to obtain the constraint of vertices
within their groups (Figure 73). We can see that Gill is even less con-
strained within the class of young English-speaking employees than Bob.
Because there is no direct tie between Gill and Bob, Gill seems to be a
good candidate to be played off against Bob. In the Hispanic group, there
is no real alternative to Alejandro because he is directly connected to
all others. Among the older employees, Norm is clearly less constrained
than any other employee, so there is no good alternative in this group.
Judging from their structural positions and ignoring their linguistic abil-
ities or special relationships, we conclude that Norm and Alejandro are
less likely to be replaced as representatives or gatekeepers of their groups
than Bob because there is a good alternative to Bob only.

Operations>
Brokerage Roles

Info>Partition

Pajek contains a command that counts the brokerage roles in a net-
work. Make sure that the strike network and the appropriate partition
(strike_groups.clu) are selected in the drop-down menus of the
Main screen. Then, execute the command Operations>Brokerage Roles
to obtain five new partitions, one for each brokerage role, which are added
to the Partition drop-down menu. The class number of a vertex in a par-
tition specifies the number of incomplete triads in which this vertex plays
the corresponding brokerage role. A frequency table of a partition is ob-
tained in the usual way (Info>Partition). Table 9 shows the results for the
coordinator role, which is stored in the partition labeled “Coordinators
in N1 according to C1.”

We can see that ten employees have no coordinator roles. The number
of coordinator roles per person is unevenly distributed: some employees
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Table 9. Frequency Tabulation of Coordinator Roles in the Strike
Network

Class Freq Freq% CumFreq CumFreq% Representative

0 10 41.6667 10 41.6667 Frank
1 5 20.8333 15 62.5000 Hal
2 3 12.5000 18 75.0000 Ike
4 2 8.3333 20 83.3333 Utrecht
5 1 4.1667 21 87.5000 Gill
6 1 4.1667 22 91.6667 John
7 1 4.1667 23 95.8333 Bob
9 1 4.1667 24 100.0000 Norm
sum 24 100

have one or two coordinator roles, whereas Norm has no less than nine
coordinator roles. If we sum the roles (five employees with one coordina-
tor role plus three with two roles, etc.), we count forty-six coordinator
roles. In the representative roles partition we count twenty-one roles and
there is just one liaison role. As noted, the coordinator role occurs most
frequently in this network because most employees have direct ties only
within their own subgroup.

7.6 Summary

In a connected social network, information may reach anybody through
their ties. Holes in this network, that is, absent ties, are obstacles to flows
of information. Information is less likely to reach anybody easily in a
connected network with large holes. In this chapter, we focus on the holes
in a network. The information flow is especially vulnerable in networks
with bridges and cut-vertices because the removal of a bridge or cut-vertex
disconnects the network. Actors who are cut-vertices in a network control
the flow of information from one part of the network to another. They
may decide to retain information when it suits their personal purposes.

From the perspective of the communication system as a whole, bridges
and cut-vertices are undesirable. From the individual point of view, how-
ever, being a cut-vertex is attractive because it offers opportunities for
brokering information and for profiting from brokerage in one way or
another. The advantage of the broker position in an ego-network, which
is the network of one actor and its neighbors, is that you can play a tertius
strategy: you can induce competition or conflict between neighbors who
are not linked directly. The gap between the neighbors is called a structural
hole and each structural hole represents an opportunity to broker.

There is a drawback, however: you must avoid becoming the object
of a tertius strategy yourself. This implies that you cannot end ties with
neighbors who are directly linked. This is called the constraint on your
tie with a neighbor. The constraint on a tie is inversely related to the
structural holes associated with it: low constraint means many structural
holes and vice versa. The constraint on each tie as well as on each vertex
in the network may be calculated to find the segments that have most
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opportunities to broker, which are hypothesized to be more successful
and profitable.

In many social contexts, brokerage is connected to group affiliations
and the people involved can be replaced only by other persons from their
groups. Threatening a contact to replace him or her by another contact
is also a tertius strategy. This strategy is successful only if there is a good
alternative to the present contact in the group, someone who is also quite
central in the group but who is not directly linked to the present contact
so the (secondary) structural hole between them can be exploited.

When we consider brokerage in the context of group membership, there
are five brokerage roles. We can characterize a network or an actor in
a network by the kinds of brokerage roles that occur. The brokerage
signature of a network or actor can be compared to other characteristics
to determine whether certain types of actors or types of social relations
develop particular brokerage roles.

7.7 Questions

1. List the bridges in the network depicted below (ignore contours and
vertex colors).

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14
v15

v16

2. How many bi-components and cut-vertices does the network of Ques-
tion 1 contain?
a. Three bi-components and two cut-vertices
b. Three bi-components and three cut-vertices
c. Six bi-components and two cut-vertices
d. Six bi-components and three cut-vertices

3. Let the network of Question 1 represent the communication network
within an organization. If you would like to reduce the power of
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cut-vertices to control the flow of information, which pair of vertices
would you urge to establish a communication tie? Justify your answer.

4. Which of the following statements is correct?
a. Vertices incident with a bridge are cut-vertices if and only if they

have two or more neighbors.
b. Vertices which are part of a bi-component cannot be cut-vertices.
c. A bi-component is a subnetwork without cut-vertex.
d. If there are two paths between all pairs of vertices in a component,

this component is a bi-component.
5. Which of the following statements about the strength of weak ties

hypothesis is correct?
a. Strong family ties cannot be bridges in a communication network.
b. A tie is weak if and only if it is a bridge in a communication network.
c. In general, weak ties are more likely to be bridges in a communica-

tion network.
d. A tie is strong if and only if it is part of a clique in a communication

network.
6. In the network of Question 1, which vertex is least constrained: v4,

v7, or v13? Justify your answer.
7. When vertex v7 wants to reduce the number of ties that he is main-

taining in the network of Question 1, which tie would you advise him
to end?

8. In the network of Question 1, vertex colors and contours indicate the
group to which a vertex is affiliated. Count each brokerage role that
vertex v7 may play in this network.

7.8 Assignment

In our discussion of the triad, we compared complete and nearly com-
plete triads. We stressed the opportunities that the incomplete structure
offers to the person in the middle and the constraint exercised by the
complete triad. Especially in the case of public behavior, that is, behavior
that cannot be concealed from people in other groups, it has been argued
that membership in several different cliques is very stressful because it
obliges a person to conform to the (supposedly different) sets of norms
of the different cliques. In this position, a person has very little room to
maneuver.

In particular instances, this hypothesis contradicts the structural holes
argument. If a person is a member in several different cliques, there are
structural holes between the cliques, which may be exploited. In the
network depicted in Figure 74, for example, vertex v3 may exploit struc-
tural holes between the other members in the 3-clique (v1 and v2) and the
other members in the 4-clique (v4, v5, and v6). According to the structural
holes hypothesis, vertex v3 is least constrained. According to the hypoth-
esis of overlapping cliques, however, v3 is most constrained because it is
a member in two cliques.

Having two competing hypotheses, it is interesting to see which one
applies in a particular situation. The case is a small hi-tech computer firm
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Figure 74. Two overlapping cliques.

that sells, installs, and maintains computer systems. The data file hi-
tech.net contains the friendship ties among the employees, which were
gathered by means of the question: Who do you consider to be a personal
friend? Three employees (Fran, Quincy, and York) did not return the
questionnaire. Note that most friendship nominations are reciprocated,
but not all (112 of 147).

Some months later, employees tried to unionize the firm: they sought
support among the employees to let the union have a say in the firm. The
three top managers (class 3 in the partition hi-tech.union.clu) and
three employees who were not directly involved (class 2) were opposed to
union certification of the firm. Five employees (class 1) were pro-union,
but two of them (Chris and Ovid) did not actively advocate the pro-union
position. At the end, the proposal to unionize the firm was voted down.
Chris resigned from the firm ten days before the vote because he did not
want to participate in it. He rejoined the firm two days after the vote.

Analyze these data, which are joined in the project file Hi-tech.paj,
and argue whether they support the structural holes argument or the
overlapping cliques hypothesis. For the analysis of cliques, review Section
3.6 in Chapter 3. Pay attention to the position and behavior of Chris
in particular. In addition, analyze the brokerage roles if the groups are
defined by their stance toward unionization (hi-tech.union.clu) and
find out whether this explains Chris’s behavior.

7.9 Further Reading

� The example is taken from J. H. Michael, “Labor dispute recon-
ciliation in a forest products manufacturing facility.” In: Forest
Products Journal 47 (1997), 41–5.

� G. Simmel explains his ideas about triadic configurations in “In-
dividual and society” in The Sociology of Georg Simmel (New
York, London: The Free Press, 1950, a translation of Soziologie:
Untersuchungen über die Formen der Vergesellschaftung, Berlin:
Duncker & Humblot, 1908). A recent approach from a different
angle can be found in H. C. White, Identity and Control. A Struc-
tural Theory of Social Action (Princeton, New Jersey: Princeton
University Press, 1992).

� Read more on social capital in Chapter 5 of A. Degenne and M.
Forsé’s Introducing Social Networks (London: Sage, 1999) or
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N. Lin’s Social Capital: A Theory of Social Structure and Action
(Cambridge: Cambridge University Press, 2001).

� Mark Granovetter’s article “The strength of weak ties”
[American Journal of Sociology 78 (1973), 1360–80] is the
source of the strength of weak ties hypothesis. The second edi-
tion of his book Getting a Job: A Study of Contacts and Careers
(Chicago: The University of Chicago Press, 1974, 1995) includes
an appendix which surveys and analyses research based on this
hypothesis.

� The theory of structural holes was introduced by R. S. Burt in
his book Structural Holes: The Social Structure of Competition
(Cambridge/London: Harvard University Press, 1992), which
contains applications of this theory to careers of managers and
to the profitability of business sectors. We use the formulae pre-
sented in the second chapter of this book.

� The five types of brokerage roles were proposed by R. V. Gould
and R. M. Fernandez in “Structures of mediation: a formal ap-
proach to brokerage in transaction networks.” In: Sociologi-
cal Methodology 1990. San Francisco: Jossey-Bass (1989), 89–
126.

� The example used in the assignment as well as the theory of
constraint by overlapping cliques stems from D. Krackhardt’s
“The ties that torture: Simmelian tie analysis in organizations”
[Research in the Sociology of Organizations 16 (1999), 183–
210].

7.10 Answers

Answers to the Exercises
I. When Pajek detects the bi-components but ignores bridges, it identifies

a cut-vertex only if it belongs to two or more bi-components, that is,
if bi-components intersect at this vertex. In the strike network, this is
the case only for Norm and Sam, as one can tell from the contours in
Figure 64. Frank is not part of a bi-component, so he is put in class
zero in both partitions produced by the Bi-Components command and
he is not included in the hierarchy of bi-components.

II. The aggregate constraint on Norm and Bob can be determined with the
Net>Vector>Structural Holes command. This command produces a
vector containing the aggregate constraint on vertices. Open this vector
in an Edit screen (e.g., use the writing hand button left of the Vector
droplist) and look for Norm and Bob. Their aggregate constraint is
0.20 and 0.24, respectively.

Extracting the subnetwork of Norm’s neighbors, we find one link
among six neighbors, so a density of 0.07. The subnetwork of Bob’s
seven neighbors contains three links: a density of 0.14. Both Bob’s
constraint and his egocentric density are higher than Norm’s, so they
match in this respect. Norm has more opportunities to broker.
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Answers to the Questions in Section 7.7
1. The lines between v13 and v2, v14, and v15 are bridges. If you remove

one of these lines, v2, v14, or v15 becomes an isolate, so the network
contains two components instead of one.

2. Answer b is correct. The network contains three cut-vertices: v4, v7,
and v13. Removal of any of these vertices disconnects the network.
Cut-vertex v4 belongs to two bi-components: one bi-component con-
tains vertices v1, v3, v4, v12, and v16, and the other bi-components
consists of v4, v7, and v13. Cut-vertex v7 belongs to the latter bi-
component and to the third bi-component with vertices v5, v6, v7, v8,
v9, v10, and v11. Cut-vertex v13 is part of the second bi-component
and links it with the bridges (see Exercise 1) toward vertices v2, v14,
and v15. These bridges and the vertices incident to them, however, are
not bi-components, so the total number of bi-components is three, not
six.

3. To reduce the control of a cut-vertex, you must join two or more bi-
components into one bi-component. A tie between members of the two
largest bi-components, which are not cut-vertices, produces this effect,
for instance, between vertices v3 and v6. Now v4 and v7 are no longer
cut-vertices.

4. Statement a is correct. A vertex that is incident to a bridge can have
only fewer than two neighbors if its only neighbor lies at the other
side of the bridge. The vertex, then, is a “hanger,” such as v2 in the
network of Question 1. If you remove this vertex, you create no new
components. If the vertex has two or more neighbors, however, it me-
diates between the vertex at the other side of the bridge and its other
neighbor(s). When you remove the vertex, the latter neighbor is discon-
nected from the network, so the number of components in the network
increases.

Statement b is not correct because a vertex in a bi-component may
well be a cut-vertex in the network at large (e.g., vertices v4, v7, and
v13 in the network of Question 1). Statement c is not correct because a
subnetwork is not necessarily connected. It may consist of several com-
ponents that are not one bi-component by definition. Finally, statement
d is not correct because the two paths between a pair of vertices may
share a vertex in between the endpoints, for instance, the paths v16-
v3-v4-v7 and v16-v1-v4-v13-v7 in the network of Question 1. This
vertex (v4) is a cut-vertex, so the component is not a bi-component.
Statement d would be correct if it read “two distinct paths,” meaning
that the two paths share no vertex between the endpoints.

5. Answer c is correct. It is not ruled out that a strong family tie is a
bridge in an information network, for instance, the tie between Frank
and Gill in the strike network, so answer a is not correct. Strong and
weak ties are defined on the basis of their frequency or intensity, not
on their structural features, so it is not ruled out that strong ties oc-
cur outside cliques and weak ties occur inside cliques, so answers b
and d are incorrect. However, there is a statistical association between
the property (strength) of a tie and its structural location, so we may
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say that weak ties are more likely to be bridges in general, which is
answer c.

6. Vertex v13 is less constrained than vertices v4 and v7. Note, first,
that these three vertices have the same degree: each has five neigh-
bors. As a consequence, the proportional strength of their ties is equal,
namely 0.20. Therefore, we do not have to bother with the propor-
tional strength of ties and we can simply count the number of struc-
tural holes around each vertex to find out who is least constrained.
We count only one direct tie among the five neighbors of vertex v13,
namely between v4 and v7, so nine of the ten possible pairs of neigh-
bors are not directly linked: they are separated by structural holes.
Among the neighbors of v7, two pairs are directly linked, which leaves
eight structural holes. Finally, three pairs of v4’s neighbors are directly
linked, so there are seven structural holes. More structural holes means
less constraint, so vertex v13 is least constrained.

7. It is not wise to withdraw from ties that are part of a complete triad
because that allows a neighbor to play the tertius strategy against you.
Vertex v7 has only one tie outside a complete triad, namely the tie with
vertex v10. He may safely withdraw from this tie because he is already
connected to vertex v9, which is the most central member of the white
group.

8. Vertex v7 does not broker between members of its own group, so he
cannot play the coordinator role. V7 is connected to three vertices
in the white group, two of whom are directly connected, so he is an
itinerant broker between v10 on the one hand and v6 and v9 on the
other hand. V7 may mediate between v4, who is a member of his
group, and three vertices in the white group: v6, v9, and v10. Here, v7
plays the representative or gatekeeper role, which occurs three times.
Finally, v7 may mediate between three white neighbors and v13, who
is in the light gray group, which yields three liaisons.
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Diffusion

Diffusion is an important social process. Administrators are interested in
the diffusion of information and opinions manufacturers seek the adop-
tion of new techniques and products, and all of us have a vivid interest in
not acquiring contagious diseases. Diffusion processes are being studied
in the communication sciences, social psychology and sociology, public
administration, marketing, and epidemiology.

In this chapter, we present diffusion processes from a network point of
view. Diffusion is a special case of brokerage, namely brokerage with a
time dimension. Something – a disease, product, opinion, or attitude – is
handed over from one person to another in the course of time. We assume
that social relations are instrumental to the diffusion process: they are
channels of social contagion and persuasion.

If personal contacts are important, then the structure of personal ties is
relevant to the diffusion process and not just the personal characteristics
that make one person more open to innovations than another. We inves-
tigate the relation between structural positions of actors and the moment
at which they adopt an innovation.

8.1 Example

Educational innovations have received a lot of attention in the tradition of
diffusion research. Our example is a well-known study into the diffusion
of a new mathematics method in the 1950s. This innovation was instigated
by top mathematicians and sponsored by the National Science Foundation
of the United States as well as the U.S. Department of Education. The
diffusion process was successful because the new method was adopted in
a relatively short period by most schools.

The example traces the diffusion of the modern math method among
school systems that combine elementary and secondary programs in Al-
legheny County (Pennsylvania, U.S.A.). All those school superintendents
who were in office at least two years were interviewed. They are the
gatekeepers to educational innovation because they are in the position
to make the final decision. The researchers obtained data from sixty-one
of sixty-eight superintendents, fifty-one of whom had adopted by 1963
(84%).

161
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Figure 75. Friendship ties among superintendents and year of adoption.

Among other things, the superintendents were asked to indicate their
friendship ties with other superintendents in the county with the fol-
lowing question: Among the chief school administrators in Allegheny
County, who are your three best friends? The researcher analyzed the
friendship choices among the thirty-eight interviewed superintendents
who adopted the method and were in position at least one year before
the first adoption, so they could have adopted earlier. Unfortunately, the
researcher did not include the friendship choices by superintendents who
received no choices themselves; they are treated as isolates. In the orig-
inal network, some friendship choices are reciprocated and others are
not (ModMath_directed.net) but we use the symmetrized network
(ModMath.net), which is depicted in Figure 75. A line in this network
indicates that at least one superintendent chooses the other as his friend.

As you may infer from Figure 75, adoption started in 1958 and all the
schools researched had adopted by 1963. The year of adoption by a super-
intendent’s school is coded in the partition ModMath_adoption.clu:
1958 is class (time) 1, 1959 is class (time) 2, and so on. The first adopter
(v1) is a superintendent with many contacts outside Allegheny County
but few friends within the county. He is a “cosmopolite” and cosmopo-
lites usually are early adopters but they are often too innovative to be
influential in a local network.
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Application
Draw>Draw-
Partition

Layers>in y
direction

For a first visual impression of a diffusion process, open the Pajek project
file ModMath.paj and draw the sociogram in the order of adoption time
(see Figure 75; we manually added the years to the top of this figure). To
do this, the adoption time of vertices must be specified in a partition (e.g.,
ModMath_adoption.clu). Draw the sociogram with vertex colors de-
fined by the partition (Draw>Draw-Partition or Ctrl-p) and select the
command Layers>in y direction to arrange the vertices by adoption time.
Note that this procedure is available only when a network with partition
is drawn.

Layers>Optimize
layers in x
direction

In most cases, the vertices are not optimally placed within each level.
To improve their positions, use the Optimize layers in x direction com-
mand. You can let this command adjust all levels (i.e., classes) or you can
restrict the optimization to a range of levels. Play around with the op-
tions (Forward, Backward, Complete) until you obtain a layout without
lines that cross vertices with which they are not incident. In Figure 75, this
was not possible because superintendent v8 is connected to too many ver-
tices in his adoption class, so we decided to move him away from the line
of his class. Even for our small diffusion network, the sociogram needs
a lot of fine-tuning, so you should not expect a clear picture if you are
working with large networks.

Move>Fix>ySometimes it helps to rearrange the vertices within a layer by hand. If
you do this but you want to be sure that the vertices within a class remain
aligned, activate the option y in the Fix menu of the Draw screen. Now,
you can move vertices horizontally only.

[Draw screen]
Options>
Transform>

Rotate 2D

The layers are drawn in the y direction: from the top down. In Figure
75, however, time flows from left to right on the x axis, which is the
standard way to represent time. We obtained this figure by rotating the
standard layout of layers by 90 degrees. Select the command Rotate 2D
from the Options>Transform submenu in the Draw screen. Type 90 in
the dialog box captioned Angle in degrees and press the OK button.

8.2 Contagion

Information is important to the diffusion of new opinions, products, and
the like. In most societies, the mass media are central to the spreading of
information, so we ought to pay attention to mass communication. Several
models have been proposed for the process of mass communication, one
of which is consistent with a network approach: the two-step flow model.
According to this model, mass communication consists of two phases. In
the first phase, mass media inform and influence opinion leaders. In the
second phase, opinion leaders influence potential adopters within their
communities or social systems.

Network models of diffusion focus on the second phase, assuming that
opinion leaders use social relations to influence their contacts. Social ties
are thought to be important because innovations are new, hence risky.
Personal contacts are needed to inform and persuade people of the ben-
efits associated with the innovation. Note that salient social relations for
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Figure 76. Adoption of the modern math method: diffusion curve.

spreading information may be different from relations used for persua-
sion. The relations most commonly investigated are advice and friendship
relations.

Basically, network models see diffusion as a process of contamination,
just like the spread of an infectious disease. Therefore, passing on an
innovation via social ties is called social contagion. This perspective is
backed by the empirical fact that many innovations diffuse in a pattern
that is similar to the spread of infectious diseases. First, an innovation is
adopted by few people but their number increases relatively fast. Then,
large numbers adopt but the growth rate decreases. Finally, the number
of new adopters decreases rapidly and the diffusion process slowly stops.
This diffusion pattern is characteristic for a chain reaction in which people
contaminate their contacts, who contaminate their contacts in the next
step, and so on.

The adoption of the modern math method is represented by a diffusion
curve (Figure 76). The x axis shows the moment of adoption and the y
axis represents the prevalence of the innovation, which is the percentage
of all interviewed superintendents who have adopted the modern math
method by that year. Note that prevalence is represented by cumulative
percentages, that is, the sum of all percentages of previous adopters: in
1958, 3 percent of the superintendents adopt and in 1959 another 10
percent adopt, so the cumulative percentage of adopters is 13 percent in
1959.

The diffusion curve has the logistic S-shape, which is characteristic of a
chain reaction. We find a similar curve when we take a random network
and choose a vertex as a source of contamination (the white vertex in
Figure 77). When we assume that a vertex contaminates its neighbors
at time 1, who contaminate their neighbors at time 2, and so on, we
obtain the typical diffusion curve of Figure 78 (bold line). Note that the
number of new adopters increases faster and faster in the first three steps
(vertices with numbers 1, 2, and 3) and that the absolute number of new
adopters decreases sharply after the fourth step. This example illustrates
that contagion through network ties may explain the logistic spread of an
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Figure 77. Diffusion by contacts in a random network (N = 100, vertex
numbers indicate the distance from the source vertex).

innovation or a disease. If we find a diffusion curve that does not have
the typical S shape, it is quite unlikely that network ties are important to
the diffusion process and diffusion is probably propelled predominantly
by other forces such as mass media campaigns.

When contagion drives the diffusion process, the structure of an in-
formation or contact network conditions the diffusion of information,
innovations, diseases, and so on. Using the measures introduced in previ-
ous chapters, some broad hypotheses are easily derived as follows:
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diffusion
from central
vertex

diffusion from
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Figure 78. Diffusion from a central and a marginal vertex.



166 Exploratory Network Analysis with Pajek

� In a dense network an innovation spreads more easily and faster
than in a sparse network,

� In an unconnected network diffusion will be slower and less com-
prehensive than in a connected network,

� In a bi-component diffusion will be faster than in components
with cut-points or bridges,

� The larger the neighborhood of a person within the network, the
earlier s/he will adopt an innovation,

� A central position is likely to lead to early adoption,
� Diffusion from a central vertex is faster than from a vertex in the

margins of the network.

The adoption rate is the number or percentage of new adopters at a
particular moment.

The speed of the diffusion process is measured by the adoption rate,
which is the number or percentage of new adopters at a particular mo-
ment. It is easy to see that the adoption rate is higher when an innovation
spreads from a central vertex than when it starts at a marginal vertex.
Figure 78 shows the diffusion curves for the diffusion from the central
white source vertex in Figure 77 (bold line) and from the peripheral gray
vertex (dotted line). Both curves have the typical S shape but it takes con-
siderably more time for a diffusion to reach half or all of the population
when it is triggered by a vertex in the periphery.

The hypotheses presented above highlight the impact of network struc-
ture on the diffusion process. We should note, however, that personal
characteristics and the type of innovation also influence the rate of adop-
tion. The perceived risk of an innovation, its perceived advantage over
alternatives, and the extent to which the innovation complies with so-
cial norms that govern the target group determine whether it is adopted
quickly, reluctantly, or not at all. A risky innovation, for instance, will
diffuse slower regardless of the network’s density and connectivity.

Application
Info>Partition The diffusion curve is constructed from a simple frequency tabulation of

adoption time, which is displayed by the Info>Partition command (Table
10). The table shows the cumulative relative frequencies that are plotted
on the y axis in the chart of Figure 76. The class numbers represent the
moments that are displayed on the x axis. Note that the table and chart
are basic statistical techniques, which may be produced in any statistical
software package or spreadsheet.

Exercise I
Net>Random

Network>

Vertices Output
Degree

Create a simple random network with fifty vertices that have an outde-
gree of 1 or 2 (use the Net>Random Network>Vertices Output Degree
command with a minimum outdegree of 1 and a maximum outdegree of
2 and no multiple lines). Pick a vertex as the source of a diffusion process
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Table 10. Adoption in the Modern Math Network

Class Freq Freq% CumFreq CumFreq% Representative

1 1 2.63 1 2.63 v1
2 4 10.53 5 13.16 v2
3 10 26.32 15 39.47 v6
4 12 31.58 27 71.05 v16
5 8 21.05 35 92.11 v28
6 3 7.89 38 100.00 v36
sum 38 100.00

and determine the adoption time of all vertices and the adoption rate at
each point in time, assuming that a vertex will adopt at the first time
point after it has established direct contact with an adopter. Note that the
adoption time of a vertex is equal to its distance (see Chapter 7) from the
source vertex under this assumption. Ignore the direction of the lines in
the network.

8.3 Exposure and Thresholds

In the previous section, we assumed that every person is equally suscepti-
ble to contagion. One infected neighbor is enough to get infected; friend-
ship with one adopter is enough to persuade someone to adopt. This is not
very realistic because some people are more receptive to innovations than
other people. There are two different ways to conceptualize the inno-
vativeness of people, namely relative to the system and relative to their
personal networks: adoption categories and threshold categories.

Adoption categories classify people according to their adoption time
relative to all other adopters. These typologies are very popular in prod-
uct marketing. A standard classification distinguishes between the early
adopters (the first 16 percent who adopt), the early majority (the next
34 percent), the late majority (the next 34 percent), and late adopters or
laggards (the last 16 percent to adopt). To classify people, we have to know
only their adoption time. Then, we can simply mark the first 16 percent
of all adopters as early adopters, and so on. This classification is useful for
marketing purposes because it enables the marketing manager to identify
the social and demographic characteristics of early adopters.

In the modern math example, early adopters are characterized by higher
professionalism ratings and more accurate knowledge about the spread of
educational innovations in their district. In addition, the superintendents
who adopted early were not recruited from the school staff but they came
from outside.

We concentrate on the second approach to innovativeness, threshold
categories, which considers the personal network of actors. The network
model of diffusion is based on contagion: an adopter spreads the innova-
tion to his or her contacts. It is quite natural to assume that the chance that
a person will adopt increases when he or she is linked to more people who
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Figure 79. Adoption (vertex color) and exposure (in brackets) at the end
of 1959.

already have adopted, that is, when he or she is exposed to more adopters.
Hearing about the benefits of an innovation from different sources will
persuade a person to adopt. The amount of exposure varies over time and
among individuals, which explains that some people adopt early although
they are not close to the sources in a diffusion process. The exposure of
a person is expressed as a proportion so it may be the thought of as a
chance to adopt.

The exposure of a vertex in a network at a particular moment is the
proportion of its neighbors who have adopted before that time.

Figure 79 shows the modern math network with the exposure of vertices
in 1959 indicated by vertex size and by the numbers in brackets. Note that
invisible vertices have zero exposure: none of their neighbors adopted in
or before 1959. Eight of the ten superintendents who adopted in 1960 had
friends among the 1959 adopters, so they were exposed. Clearly, superin-
tendent v10 was most exposed: two of his three friends adopted in 1959,
so his exposure was 0.67 at the end of 1959. However, not all exposed su-
perintendents adopted in 1960: superintendents v16 and v23 adopted in
1961 and v28, v29, and superintendent v32 adopted in 1962. They were
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not less exposed than several superintendents who adopted immediately
in 1960, for instance, v8, v9, v13, and v15, so we would expect them
also to adopt in 1960. They contradict the simple contagion model which
presupposes that all actors need the same amount of exposure to adopt.

In fact, statistical analyses of diffusion data do not always find a sys-
tematic relation between exposure and adoption. This means that either
exposure and contagion are irrelevant to adoption or people need differ-
ent levels of exposure before they adopt. If we pursue the latter option,
we assume that some people are easily persuaded (e.g., they need only
one contact with an adopter), whereas others are talked into adopting an
innovation with difficulty. Some people are more susceptible than others,
which is an established fact for media exposure as well as social exposure.

In the network model of diffusion, the innovativeness of a person is
perceived as his or her threshold to exposure. An individual’s threshold is
the degree of exposure that he or she needs to adopt an innovation. Now,
differences between individual thresholds may account for the fact that
only part of the people adopt who are equally exposed.

The threshold of an actor is his or her exposure at the time of adoption.

In our example, four superintendents (gray vertices in Figure 79)
adopted the new math method in 1959. They exposed thirteen super-
intendents (white vertices) to their experience with this method and eight
of them adopted the method in the next year. However, five superinten-
dents adopted two or three years later. Why? Each of the exposed su-
perintendents who adopted after 1960 has one or two friends among the
colleagues who adopted in 1960 or 1961. By the time they adopted, these
friends had also adopted, so their exposure was higher than at the end
of 1959. According to the threshold hypothesis, their exposure had not
reached the required threshold in 1959 but it did in 1960 or 1961. This
explains why they adopted later.

At the end of 1959, for example, one of the four friends of superin-
tendent v23 had adopted the modern math method, so his exposure was
0.25. In 1960, one more friend (v15) adopted and his exposure increased
to 0.5. Then, superintendent v23 adopted, so we assume that his threshold
was 0.5 or somewhere between 0.25 and 0.5.

We should note that individual thresholds are computed from the dif-
fusion network after the fact: they are predictions with hindsight and they
are not very informative by themselves. It is important to make sense of
them or to validate them, which means that they should be associated
with other indicators of innovativeness, for instance, adoption time or
personal characteristics.

Thresholds indicate personal innovativeness, a lower threshold means
more innovative, and we expect innovative people to adopt an innovation
earlier than noninnovative people. Therefore, individual thresholds must
be related to adoption time: innovative people have low thresholds and
adopt early. If we find such a relation, we obtain some support for the
assumption that individual thresholds indicate innovativeness.
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At least to some extent, however, a positive relation between adoption
time and individual thresholds is an artifact of the contagion model that
we use. The first adopters cannot be exposed to previous adopters, so
their thresholds are zero by definition. Within the network of adopters,
the last adopters are very likely to be connected to previous adopters,
so their exposure and thresholds are high at the time of adoption. When
measurement of adoption time is restricted to a small number of moments,
this will automatically produce a relation between individual thresholds
and adoption time.

Therefore, it is also important to compare individual thresholds to ex-
ternal characteristics of the actors that usually indicate innovativeness.
In general, innovativeness and low thresholds are supposed to be re-
lated to broad media use, many cosmopolitan contacts (contacts outside
your local community), a high level of education, and high socioeconomic
status.

Application
Net>Transform>

Arcs→Edges>
All

Let us compute exposure levels in the modern math network at one mo-
ment, for instance, at time 2, 1959 (see Figure 79). The procedure consists
of several steps, which illuminate the calculation and exact meaning of the
exposure concept. We assume that the network is undirected. If not, sym-
metrize it (Net>Transform>Arcs→Edges>All and remove any multiple
lines, e.g., take the sum or minimum line value).

Partition>

Binarize

Partition>Make
Vector

First, we identify the adopters in the network at the selected time, which
is 1959 or time 2 in our example. Make a binary partition from the
adoption time partition where adoption times 1 and 2 are assigned a score
of 1 (adopted) and others are assigned a score of zero (notadopted yet)
with the Partition>Binarize command, selecting classes 1 through 2 in
the dialog boxes. In Figure 79, the adopters are gray and the nonadopters
are white. Then turn this partition into a vector to use it for computation
(Partition>Make Vector or simply press Ctrl-v).

Operations>
Vector>

Summing up
Neigbours

Second, compute the number of adopters in each actor’s neighborhood
with the command Operations>Vector>Summing up Neigbours>Input,
Output, or All. A dialog box appears that asks whether a vertex should
be included in its own neighborhood; answer no. Pajek does not count
the number of neighbors but it sums the class numbers of the neighbors
of a vertex. Because we use a binary partition in which an adopter has
class number 1 and a nonadopter has class number zero, this sum is equal
to the number of adopters in the neighborhood. It is a little trick, but it
works.

Vectors>First
Vector

Vectors>Second
Vector

Vectors>Divide
First by Second

Third, the number of adopters in the neighborhood of a vertex must
be divided by its total number of neighbors because we defined exposure
as the percentage of neighbors who have adopted. The division can be
done in the Vectors menu. The vector we just made must be selected as
the first vector in this menu (Vectors>First Vector). Next, we must make
a vector with the total number of neighbors of a vertex. Recall that the
degree of a vertex in a simple undirected network specifies the number
of neighbors of a vertex, so we can make a degree partition in the usual
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way (Net>Partitions>Degree) and turn it into a vector (Partition>Make
Vector – do not use the Normalized Indegree vector!). This vector must
be used as the second vector in the Vector menu (Vector>Second Vector).
Finally, we divide the number of adopters in a vertex’s neighborhood by
the total number of neighbors with the Vectors>Divide First by Second
command. Now, we obtain a vector with the exposure of vertices at the
end of 1959 (time 2).

[Main]
Options>Read/
Write>0/0

Note that the computation of exposure is not straightforward if the
network contains isolated vertices. An isolated vertex has no neighbors, so
its degree is zero. The division described in the previous paragraph would
ask Pajek to divide by zero, which is mathematically incorrect. In this case,
Pajek assigns the value zero to the exposure of the vertex, that is, if the
default setting of 0/0 to zero was not changed in the Options>Read/Write
submenu of the Main screen.

Macro>PlayThe calculation of exposure consists of a considerable number of steps.
If you want to compute exposure at several points in time, you have to
repeat these steps over and over again. This is not very efficient, so Pajek
contains the possibility of executing a number of steps in one command,
which is called a macro. A macro is a file that consists of a list of com-
mands that are executed when you play the macro in Pajek. We prepared
the macro exposure.mcr, which you can execute by clicking on the
Play command in the Macro menu and selecting the file exposure.mcr,
which is located in the directory with the data accompanying this chap-
ter. Make sure that the original undirected network and the adoption time
partition are selected before you execute the macro. When you open this
file, Pajek starts to execute the commands. It displays the dialog boxes
that allow you to select the first time of adoption (Select clusters from),
which is 1 in our example, and the time for which you want to compute
exposure (Select clusters from 1 to), for instance, time 3. Upon comple-
tion of the macro, several new partitions and vectors have been created
and the last vector contains the exposure at the requested time.

Macro>Record

Macro>Add
message

Creating a macro yourself is fairly simple. In essence, Pajek records
all commands that you execute between the first and second time you
click the Record command in the Macro menu. It prompts for a filename
with the extension.mcr in which to store the recorded commands. While
recording, you can add messages to the macro (Macro>Add message)
that will be displayed in the Report screen when the macro is played
afterwards. Make sure that you have the relevant network, partition, and
vector selected in the drop-down menus before you record the macro and
check the results when you play it for the first time.

Now that we have computed the exposure at one time, let us turn our
attention to the calculation of thresholds. The threshold of a vertex is the
proportion of its neighbors who have adopted before ego does, so we have
to divide the number of prior adopters among the neighbors of a vertex
by the size of its neighborhood. The computation of thresholds is fairly
simple once you realize that the number of neighbors who have adopted
prior to ego is equal to the indegree of ego in a directed network in which
each line points from an earlier adopter to a later adopter. Figure 80,
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Figure 80. Modern math network with arcs pointing toward later
adopters.

for instance, shows the modern math network if edges are replaced by
arcs that point to later adopters. If social ties are used to spread the
innovation, the arcs represent the direction of the spread. Note that ties
within an adoption class are omitted because they are not supposed to
spread the innovation.

Operations>
Transform>

Direction

In Pajek, we can change an undirected network (e.g., the modern math
network) into a directed network with all arcs pointing from an ear-
lier adopter to a later adopter with the commands in the Operations>
Transform>Direction submenu. The commands are located in the Opera-
tions menu, so you need a network and something else, namely a partition
that specifies the (adoption) classes to which the vertices belong. There
are two commands: Lower→Higher and Higher→Lower. The first com-
mand replaces an edge in an undirected network by an arc that points
toward the vertex with the higher class number. In our case, the par-
tition contains adoption time classes so the Lower→Higher command
produces arcs toward later adopters. This command issues a dialog box
asking whether lines within classes must be deleted. In a directed diffusion
network, we do not want to have lines within adoption classes normally,
so answer yes. Now, we obtain the network shown in Figure 80. Applied
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to a directed network, the Direction procedure selects the arcs that con-
form to the selected option (lower to higher or higher to lower).

Net>Partitions>
Degree>Input

Vectors>Divide
First by Second

Now, we can simply compute the thresholds of all vertices in the dif-
fusion network by dividing the indegree of vertices in the transformed
directed network by their degree in the original undirected network pro-
vided that both networks contain neither multiple lines nor loops. Select
the vector with normalized indegree in the directed network as the first
vector in the Vectors menu, select the corresponding vector for the undi-
rected network as the second vector, and divide the first by the second to
obtain a vector with the individual thresholds. Make sure that a division
of zero by zero (no neighbors) yields zero in the Options>Read/Write
menu.

Exercise II
Compute the thresholds of the vertices in the modern math diffusion
network as explained in this section. Is the threshold higher for vertices
that adopt later as one would expect when thresholds really matter?

8.4 Critical Mass

Some diffusion processes are successful because almost everybody in
the target group adopts the innovation. For instance, the modern math
method was adopted by fifty-one of sixty-one superintendents in Al-
legheny County within a period of six years. Diffusion, however, may
also fail because too few people adopt and spread the innovation. Once
again, a biological metaphor is illuminating: a bacteria may either succeed
to overcome the resistance of the human body and develop into a disease
or does not gain the upper hand and is oppressed and finally eliminated by
antibodies. The spread of a disease has a critical limit: once it is exceeded,
the bacteria multiplies quickly.

The critical mass of a diffusion process is the minimum number of
adopters needed to sustain a diffusion process.

In the diffusion of innovations theory, a similar limit is hypothesized to
exist. It is called the critical mass of a diffusion process and it is defined as
the minimum number of adopters needed to sustain a diffusion process.
In the first stage of a diffusion process, outside help is needed (e.g., an
advertisement campaign) but once a sufficient number of opinion leaders
have adopted, social contagion fuels the process and causes a chain reac-
tion that ensures wide and rapid diffusion. Then, no more outside input
to the diffusion process is required.

The critical mass of a particular diffusion process is difficult to pinpoint,
so it is hard to prove that it exists and when it occurs. Recall that the
two-step flow model combines contagion with external events. We need
detailed information about the effects of external events, such as media
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Table 11. Adoption Rate and Acceleration in the Modern Math
Diffusion Curve

Cum% of Cum # of Adoption
Time Adopters Adopters Rate Acceleration

↓ 1
1958 (1) 2.63 1 3

↓ 4
1959 (2) 13.16 5 6

↓ 10
1960 (3) 39.47 15 2

↓ 12
1961 (4) 71.05 27 −4

↓ 8
1962 (5) 92.11 35 −5

↓ 3
1963 (6) 100.00 38 −3

↓ 0

campaigns, versus the effect of social contagion on the diffusion process
to know when critical mass is reached. Only afterwards, we may evaluate
whether a diffusion process was successful. We present some approaches
that try to overcome this problem.

There is an empirical rule of thumb that tells us something about the
number of people who will eventually adopt an innovation. In many dif-
fusion processes, a particular phenomenon occurs when the innovation
has been adopted by 16 (or 10 to 20) percent of all people who will adopt
eventually: the acceleration of the adoption rate decreases although the
adoption rate still increases in absolute numbers. This is known as the
first second-order inflection point of the S-curve.

In the modern math network, for instance, the number of new adopters
(adoption rate) rises from 1 to 4 from 1958 to 1959 (see the fourth column
in Table 11), which is three more than the number of adopters in 1958, so
there is an acceleration of 3 (see the fifth column in Table 11). Note that
adoption rates are placed between the moments because they reflect the
change between two measurements. In the next year, ten superintendents
adopt, which is an even larger acceleration, but in 1961 the acceleration
drops to 2 because the number of new adopters grows only from 10 to 12;
the number of new adopters still rises but it rises less sharply. In 1959, we
may conclude, the acceleration of the adoption rate is highest and we can
see that 13 percent of all adopters have adopted (see the column “Cum%
of adopters” in Table 11) as predicted by the rule of thumb.

Because of this empirical relation between the first second-order inflec-
tion point of the diffusion curve and the final spread of an innovation,
diffusion analysts say that critical mass is attained when the diffusion
curve reaches this inflection point. In this approach, any diffusion process
in which the adoption rate first accelerates and then declines is thought to
be driven by the chain reaction characteristic for contagion models. Social
contagion is assumed to take over the diffusion process at this point, so
we may conclude that the process has reached its critical mass.
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A similar argument has been made for the first-order inflection point of
the logistic diffusion curve, which is the period with the highest adoption
rate, that is, the largest absolute increase in new adopters. Usually, the
first-order inflection point occurs when approximately 50 percent of all
eventual adopters have adopted. In the modern math network, the highest
adoption rate is 12 and it was realized between 1960 and 1961. In this
period, the percentage of adopters rose from 39 to 71 percent.

We ought to realize that this approach completely presupposes the re-
lation between contagion and critical mass; it does not prove that critical
mass occurs, it merely assumes so. Nevertheless, it is useful for practi-
cal purposes. We may monitor the diffusion process and watch out for
the moment in which the first decline in growth acceleration occurs (but
we should ignore incidental declines). When it occurs, we may estimate
the final number of adopters at about five to ten times the number of
adopters at the time of the largest increase because about 10 to 20 per-
cent has adopted then. If this estimated number of adopters is not enough
according to our target, we can try to boost the diffusion process with ad-
ditional media campaigns and the like. If this leads to acceleration of the
diffusion, the critical mass becomes larger and the diffusion process will
probably reach more people in the end. However, we have no guarantee
that this will actually happen. After all, we are working with a simple rule
of thumb.

In another perspective, a diffusion process is assumed to attain its crit-
ical mass when the most central people have adopted. Once they have
adopted, so many actors in the network are exposed to adopters that many
individual thresholds have been reached and an avalanche of adoptions
occurs. Betweenness-centrality seems to be associated with critical mass
in particular. Targeting the actors with highest betweenness-centrality is
a good strategy for launching an innovation. In general, the position of
the first adopters in the network is relevant to the diffusion process. If the
first adopters are central and directly linked, their neighbors have higher
exposure rates, so they are more likely to adopt.

Why does critical mass boost the diffusion of an innovation? On the
one hand, the reason may be purely quantitative: once a sufficient number
of well-connected people have adopted, enough people are exposed to the
innovation to adopt, after which even more people are exposed. This is
the mechanism we described for the case that the central actors adopt.
On the other hand, reaching the critical mass has been thought of as a
qualitative change to the system, namely a sudden lowering of individual
thresholds. During the diffusion process, individual thresholds may be
lowered as a consequence of the rate of adoption in the entire social
system. People are supposed to monitor their social system. If they perceive
wide acceptance of an innovation, they feel confident or even obliged to
adopt it. Lower thresholds lead to easier adoption, so the diffusion process
strengthens itself and it will most probably not wither away.

The lowering of thresholds is expected to occur particularly when actors
are interdependent with regard to an innovation. New communication
technology products (e.g., buzzers or SMS) are a case in point. When
more people have one, their benefits and value increase. The first adopters
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can reach few people with the new communication products but the late
majority can contact many more users. This kind of innovation is called
an interactive innovation. Even in the case of noninteractive innovations,
such as the modern math method, the qualitative mechanism may be
operative. Superintendents may be persuaded to adopt the new method
because they know that most of their peers have adopted, regardless of
the number of adopters in their circle of friends.

A threshold lag is a period in which an actor does not adopt although
he or she is exposed at the level at which he or she will adopt later.

The lowering of thresholds when critical mass is attained in the diffusion
process may explain the occurrence of a threshold lag, that is, a period in
which the exposure has reached the individual threshold but the individual
does not adopt. In this case, adoption occurs after the critical mass is
reached, and the individual’s threshold is lowered. In the modern math
network, superintendents v28 and v29 reached the level of exposure at
which they would eventually adopt in 1960 because all of their friends
had adopted by that year. However, they did not adopt immediately in
1961. There is a delay of one year, which is their threshold lag. Perhaps,
the diffusion process reached its critical mass in 1961, which lowered
their thresholds and induced them to adopt in 1962.

We should note that this approach to thresholds and threshold lags
does not prove that individuals have certain thresholds and threshold
lags; it merely defines them in a particular way. In an empirical diffusion
network, we can always compute an actor’s exposure at the moment of
adoption (threshold) and how long this actor had been exposed at this
level before he or she adopted (threshold lag). But this does not rule out
the possibility that the individual threshold was actually lower and his or
her threshold lag was longer. We should also consider the possibility that
the individual’s original threshold was even higher than the exposure at
the time of adoption, so there was no threshold lag at all, namely when the
diffusion process reached a critical mass lowering individual thresholds
or when outside events (e.g., a media campaign) convinced individuals
to adopt before they reached their thresholds. The launching of Sputnik
I in October, 1957, for example, is known to have spurred a wave of
innovations in science and education in the United States.

Therefore, we need empirical data supplementing the diffusion network
data to validate the actors’ thresholds, notably, psychological information,
relevant social characteristics, or a record of past adoptions. Then we
can estimate the most likely adoption time and compare it to the actual
adoption time to determine threshold lags and critical mass effects. If
threshold lags coincide with external events, it is likely that these events
have an impact on the diffusion process. In contrast, if a media campaign
does not coincide with the end of relatively many lags, it is probably not
very influential.
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Table 12. Fragment of Table 11

Cum% of Cum # of Adoption
Time Adopters Adopters Rate Acceleration

↓ 1
1958 (1) 2.63 1 3

↓ 4
1959 (2) 13.16 5 6

↓ 10
1960 (3) 39.47 15 2

Application
Info>PartitionThe absolute adoption rates and their acceleration can be calculated from

the frequency tabulation of adoption times, discussed in Section 8.2. The
absolute growth or adoption rate is just the number of new adopters
between two moments (e.g., ten superintendents adopt the modern math
method between the end of 1959 and the end of 1960). In Table 12,
adoption rates are again placed between the moments because they reflect
the change between two measurements. The acceleration of the adoption
rate at a particular moment is the difference between the adoption rate
directly before and after this moment: subtract two successive adoption
rates. In 1959, the acceleration is 6, because ten schools adopted in the
year after the end of 1959 and four adopted in the year before. It is easy
to spot the moment in which the acceleration starts to decrease while the
absolute growth (adoption rate) is still increasing.

Net>Vector>
Centrality>

Betweenness

Net>Transform>

Arcs→Edges>
All

Info>Vector

If the critical mass is the first moment at which the most central ver-
tices have adopted, we may simply calculate the betweenness centrality
of the vertices and check at which time all or most of the central actors
have adopted (Net>Vector>Centrality>Betweenness). We advise com-
puting betweenness-centrality in the undirected network, so symmetrize
a directed network first (Net>Transform>Arcs→Edges>All, avoid mul-
tiple lines). List the most central vertices with the Info>Vector command
by entering a positive number in the dialog box captioned Highest/lowest
or interval of values. You can check their adoption time in the adop-
tion time partition or in the layered sociogram (see Section 8.1). In our
example, the most central superintendents (v8, v13, and v12) are found
among the adopters in 1960 or 1959 (v5), so critical mass was reached in
1960. Note, however, that not all central actors have adopted then: the
fifth (v36) and sixth (v32) most central superintendents adopted as late
as 1963 and 1962.

For the calculation of threshold lags, it is important to note that a vertex
reaches its threshold when all prior adopters in its neighborhood have
adopted. In the modern math network, for instance, superintendent v28
reached his threshold of 0.67 in 1960, when superintendent v8 adopted.
At the end of 1960, all prior adopters in his neighborhood had adopted
(superintendents v5 and v8). The third contact in his friendship network,
superintendent v29, is irrelevant to the threshold of v28 because he or
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she adopted at the same time as v28. The threshold lag is calculated as
the difference between the time of adoption of an actor (his or her class
number in the adoption partition) and the maximum adoption time of the
neighbors that adopted before him or her. We have to subtract 1 from the
threshold lag if we consider exposure at one moment to cause adoption
at the next moment. The threshold lag of v28 is equal to 1962–1960–1,
which is one year.

threshold
lag.mcr

In Pajek, the last contact of a vertex to adopt prior to this vertex is easily
found in the directed network that we introduced to calculate thresholds.
When all lines point from earlier to later adopters, the neighbor with the
highest adoption time on the input side of a vertex is its closest predecessor.
However, the computation of thresholds includes some tricks we do not
want to discuss here, so we prepared a macro (Threshold_lag.mcr)
you can use to obtain threshold lags from the original undirected network
and adoption time partition. When you play this macro (see Section 8.3),
some new networks, partitions, and vectors are created. The last vector
contains the threshold lags.

In the modern math network, we find threshold lags only for superinten-
dents v28 and v29 (one-year lag). This small number of lags does not sug-
gest that external events or critical mass influenced the diffusion process.
Most vertices have adopted right after one or more of their friends had
adopted, which is in line with the simple exposure and threshold model.

8.5 Summary

Innovations and infectious diseases diffuse in a particular manner that
is represented by the typical S shape of the diffusion curve. At first, few
actors adopt the innovation but the adoption rate accelerates. When 10
to 20 percent of the actors have adopted, the acceleration levels off while
the absolute number of new adopters is still increasing, causing a sharp
rise of the total number of adopters. Finally, the number of new adopters
decreases and the diffusion process slowly reaches its end.

This growth pattern is typical for a chain reaction caused by contagion.
Therefore, network models approach diffusion as a contagion process in
which personal contacts with adopters expose people to an innovation.
They learn about the innovation and their contacts persuade them to
adopt. Once exposure reaches their threshold for adopting the innovation,
which depends on their personal characteristics and on characteristics of
the innovation, they will adopt the innovation and start infecting others.
As a consequence, the network structure and the positions of the first
adopters in the network, who are usually opinion leaders, influence the
rate at which an innovation diffuses. This is a very likely mechanism but
it is difficult to prove that diffusion actually works this way.

At a particular moment in time, a successful diffusion process is hypoth-
esized to reach a critical mass, which means that the diffusion process can
sustain or even accelerate itself without help from outside (e.g., media
campaigns). Even with hindsight it is not easy to pinpoint the moment
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when critical mass is reached, but according to an empirical rule of thumb
this happens when the innovation has spread to 10 to 20 percent of the
actors who adopt eventually. This is the first second-order inflection point
of the S-shaped diffusion curve: the moment when the adoption rate no
longer accelerates although it is still increasing. Alternatively, the critical
mass may be placed at the moment when the most central actors have
adopted or when relatively many actors adopt although their exposure is
not increasing. In the latter case, the critical mass or external events are
thought to lower individual thresholds.

We are not sure whether critical mass occurs and whether it has the
hypothesized impact on the diffusion process. Ongoing research in the
diffusion of innovations tradition must clarify this matter. Nevertheless,
the concept offers some practical tools for monitoring and guiding a dif-
fusion process.

In theory, knowledge about other people’s adoption without personal
contact may count as exposure too, especially in the case of status similar-
ities. Knowing that people with similar network positions have adopted
although you are not directly linked to them may persuade you to also
adopt. In this chapter, we have presented contagion by contact only and
not by status imitation. Structural approaches to status and roles will be
introduced in Part V of this book.

8.6 Questions

1. If we use a simple contagion by contact model without individual
thresholds and one source of contamination, which vertex is the source
in diffusion curve 1 and which vertex is the source in curve 2 in the
network below?
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a. v8 is the source in curve 1 and v1 is the source in curve 2.
b. v7 is the source in curve 1 and v2 is the source in curve 2.
c. v6 is the source in curve 1 and v3 is the source in curve 2.
d. v5 is the source in curve 1 and v4 is the source in curve 2.

2. In the network of Question 1, which vertex would you choose
to introduce an innovation (e.g., a new product)? Justify your
choice.

3. In the network of Question 1, assume that the black vertices have
adopted an innovation at time one. Calculate the exposure of the re-
maining vertices by hand.

4. Take the situation of Question 3 as your starting point. At time 2,
vertices v9 and v10 adopt. What can you say about the thresholds of
vertices v10, v9, and v8?

5. Take the situation of Question 4 as your starting point. If vertices v5,
v6, and v8 adopt at time three, which vertices have threshold lags?
a. None of the three vertices.
b. Only vertex v5.
c. Vertices v5 and v6.
d. All three vertices.

6. Considering your answer to Question 5, can you identify the critical
mass of this diffusion process? Justify your answer.

7. Estimate the total number of adopters from the following data on the
start of a diffusion process.

Time 1 2 3 4 5 . . . .

Cumulative number of adopters 21 74 251 635 1176 . . . .

8.7 Assignment

In a famous study, known as the Columbia University Drug Study, the
diffusion of a new drug (gammanym) was investigated. The researchers
collected data on the first subscription of this drug by physicians in several
communities. In addition, they investigated friendship ties and discussion
links between the physicians, asking them to name three doctors they
considered to be personal friends and to nominate three doctors with
whom they would choose to discuss medical matters.

The file Galesburg.net contains a network of friendship (blue)
and discussion ties (red) between seventeen physicians who adopted
the new drug in Galesburg (Illinois) in the 1950s. The partition
Galesburg_adoptiontime.clu specifies the number of months since
the introduction of the new drug at which the physician first prescribed
the drug. This is considered to be their adoption time.

Analyze the diffusion process visually and numerically. Do you think
the innovation diffused by a simple contagion process or by a contagion
process with individual thresholds? Is it probable that external events or
a critical mass effect influenced the diffusion process?
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8.8 Further Reading

� The example is taken from R. O. Carlson, Adoption of Educa-
tional Innovations (Eugene: University of Oregon, Center for the
Advanced Study of Educational Administration, 1965). Friend-
ship choices and year of adoption are coded from the sociogram
on page 19 of the book.

� The Columbia University Drug Study was reported in J. S. Cole-
man, E. Katz, and H. Menzel, Medical Innovation: A Diffusion
Study (Indianapolis: Bobbs-Merrill, 1966). The data, however,
are taken from D. Knoke and R. S. Burt, “Prominence.” In
R. S. Burt and M. J. Minor (Eds.), Applied Network Analysis:
A Methodological Introduction (Beverly Hills: Sage, 1983, 195–
222).

� E. M. Rogers’s Diffusion of Innovations (New York: The Free
Press, 1995, 4th edition) offers a general overview of diffusion
theory and research. He uses the modern math case as an example
(see pages 65–6 and Chapter 8).

� M. Granovetter introduced the concept of threshold as the
percentage of previous adopters in a person’s ego-network in
“Threshold models of collective behavior” (American Journal
of Sociology 83 (1978), 1420–43).

� T. W. Valente’s Network Models of the Diffusion of Innovations
(Creskill, NJ: Hampton Press, 1995) presents and evaluates dif-
ferent diffusion network models.

8.9 Answers

Answers to the Exercises
I. After producing the random network, you must use the Net>k-

Neighbours>All command to obtain a partition with the distances
between the selected source vertex and all other vertices ignoring the
direction of lines. Under the current assumptions the distance to the
source vertex is the adoption time of a vertex, so this partition spec-
ifies all adoption times and a tabulation of this partition, which may
be obtained with the Info>Partition command, shows the adoption
rate at each moment (see the columns CumFreq or CumFreq%). It is
worthwhile playing around a little with central and peripheral vertices
as source vertices and with different random networks (e.g., with out-
degree fixed at one or outdegree varying from one to three or more).

II. In the sociogram below, the sizes of the vertices (Draw>Draw-Vector
command) and the numbers in brackets (Options>Mark Vertices
Using>Vector Values in the Draw screen) show the thresholds of all
vertices. If we ignore the actors without contacts to previous adopters,
which cannot have adopted by direct contagion, the thresholds seem
to increase from left to right. The mean thresholds per year (excluding
the actors without links to prior adopters) illustrate this: 0.34 (1960),
0.47 (1961), 0.86 (1962), and 1.00 (1963).
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Answers to the Questions in Section 8.6
1. Answer b is correct. Recall that the simple contagion model without

individual thresholds assumes that an adopter persuades his neigh-
bors to adopt at the next time, who transmit the innovation to their
neighbors, and so on. This means that the adoption time of a vertex
is directly related to its distance from the source of contagion. If we
assume that the source adopts at time 1, the cumulative percentage of
adopters is one of ten (the number of vertices) or 10 percent. This is
correct because both diffusion curves start at 10 percent. At time 2,
the neighbors of the source adopt. In the solid line, 50 percent or five
of ten vertices have adopted at the second moment. One of them is
the source, so there are four new adopters who are neighbors of the
source. There is only one vertex in the network with four neighbors,
namely vertex v7, so this must be the source of the diffusion process
represented by the solid curve.

From the dotted curve, we can infer that two vertices adopt at time
2, one vertex adopts at time 3, five vertices adopt at time 4, and
one vertex adopts at time 5. The source has two neighbors, so it can
be vertex v2, v4, v6, v3, v9, or v10. At distance 2, it is connected to one
vertex. This is true for vertices v2 and v4 but not for the other possible
sources. As is shown, the diffusion process is identical whether it starts
from v2 or v4, so the dotted line may represent the diffusion from both
vertices.
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2. For optimal diffusion, you must choose the most central vertex in a
network because it exposes most vertices to the innovation. Vertex v8
is most central and has the largest degree, so it is a good choice.

3. Vertices v1, v2, v4, and v6 are not directly linked to the adopters (v3
and v7) in the network, so their exposure is zero. Vertex v9 is only
linked to adopters, so its exposure is maximal: 1.00. One of v10’s
two neighbors is an adopter, so its exposure is 0.5. One of v5’s three
neighbors and two of v8’s six neighbors are adopters, so they have an
exposure of 0.33.

4. If we calculate the exposure of a vertex as the number of vertices that
adopted previously, the threshold of v9 and v10, who adopt at time 2,
is equal to their exposure to the vertices that adopted at T1. Hence, the
threshold of v9 is 1.00 and the threshold of v10 is 0.5. The exposure
of vertex v8 is 0.33 at T2 but this vertex does not adopt, so we may
conclude that its threshold is higher than 0.33.

5. Answer c is correct. At T2, vertices v9 and v10 adopt (see Question
3). This changes the exposure of vertex v8: now half of its neighbors
are adopters. The new degree of exposure may surpass its threshold,
hence v8 adopts at the next time. In contrast, the exposure of vertices
v5 and v6 does not change at T2 because neither vertex is directly
linked to v9 or v10, so they could have adopted earlier. These vertices
have threshold lags.

6. Threshold lags may be caused by critical mass. When a substantive
number of vertices adopt at a moment when their exposure does not
increase, their thresholds may be lowered due to critical mass. If we
think that two threshold lags ending at T3 is a substantive amount for
this small network, we may propose that the diffusion process reached
its critical mass at T2.

7. To estimate the total number of adopters, we need to know the number
of adopters at the first second-order inflection point of the diffusion
curve, that is, the last time that the acceleration of the adoption rate
increases. Because this moment often occurs when 10 to 20 percent of
all adopters have espoused the innovation, the total number of adopters
may be estimated as five to ten times this number.

Between successive measurements, the number of new adopters spec-
ifies the adoption rate, which increases over all five moments (see the
third row in the table below). To calculate the acceleration, we must
subtract the number of new adopters by the number of new adopters
at the previous moment. The results are presented in the fourth row.

Now, we can see that the acceleration decreases after T3, so we
assume that T3 represents the inflection point. The total number of
adopters may be estimated at five to ten times the (cumulative) number
of adopters at T3, which is five to ten times 251: 1255 to 2510 adopters.

Time → 1 → 2 → 3 → 4 → 5 . . .

Cumulative number of 21 74 251 635 1176
adopters

Adoption rate (number 21 53 177 384 541
of new adopters)

Acceleration 31 124 207 157





Part IV

Ranking

Previous chapters paid little attention to the direction of social relations.
In matters of cohesion or brokerage, it is more important to know that
a tie exists than to know who initiates it. In this part, however, direction
is central, especially asymmetry in social relations. Which choices are not
reciprocated? Asymmetry in social relations points to social prestige and
ranking.
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9

Prestige

9.1 Introduction

In directed networks, people who receive many positive choices are con-
sidered to be prestigious. Prestige becomes salient especially if positive
choices are not reciprocated, for instance, if everybody likes to play with
the most popular girl or boy in a group but he or she does not play with
all of them or, in the case of sentiments, if people tend to express positive
sentiments toward prestigious persons but receive negative sentiments in
return. In these cases, social prestige is connected to social power and the
privilege of not having to reciprocate choices.

In social network analysis, prestige is conceptualized as a particular
pattern of social ties. We discuss techniques to calculate the structural
prestige of a person from his or her social ties, notably sociometric choices.
We do not compute a prestige score for an entire network.

Structural prestige is not identical to the concept of social prestige in the
social sciences or in ordinary speech. For example, the medical profession
is thought to be prestigious, but it is difficult to consider professions as
a network in which many arcs point toward the medical profession. The
prestige of an art museum may depend on the value and origins of its col-
lection rather than on the number of art works it attracts (receives) from
other museums. However, social prestige is probably related to structural
prestige. In community studies, for example, a physician is more often
nominated in advice seeking relations than members of many other pro-
fessions, and a prestigious art museum receives more attention from art
critics than less prestigious ones.

In this chapter, we compare the structural prestige of families within a
network of visiting ties to their social prestige. As is shown, the two kinds
of prestige are related but far from identical. Therefore, be careful not
to equate structural prestige to social prestige. Instead, find out whether
structural prestige scores on a social relation match indicators of social
prestige that are measured by external variables. In a particular setting,
which social relation is connected to social prestige?
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9.2 Example

Let us have a look at the visiting ties in another village in the Turrialba
region of Costa Rica: the village of San Juan Sur containing seventy-
five haciendas (SanJuanSur.net). In Chapter 3, we analyzed cohe-
sive subgroups in the network of Attiro. Now, we concentrate on sta-
tus and prestige. Members of the San Juan Sur community who were
well informed about its population were asked to rank order all heads
of households according to their importance to the community. Social
status was computed for each family farm in this area as the average im-
portance of its inhabitants and grouped into fourteen classes (partition
SanJuanSur_status.clu). Prestige leaders were identified as those
people who received more than ten nominations within the community
on the question: Which persons would you pick to represent you and the
people of this place on a commission? In Figure 81 the prestige leaders
are black (partition SanJuanSur_leaders.clu, the data are collected
in SanJuanSur2.paj). In this chapter, we use these scores as indicators
of social prestige or status.

Figure 81 depicts the simple network of visiting ties. Note that bidirec-
tional arcs are replaced by lines for the sake of clarity. There are three
types of visiting ties, indicated by the color of arcs as well as line values in
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Figure 81. Visiting ties and prestige leaders in San Juan Sur.
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the data file: dark gray (or red) arcs (line value 2) represent visits among
kin, light gray (or blue) arcs (line value 3) are visits among families bound
by godparent or godchild ties (church relations), and other types of ties
are drawn in black arcs (line value 1). Note that the grays in Figure 81 do
not show the different types of visiting ties as clearly as the colors on your
computer screen. In this chapter, we calculate the structural prestige of the
families from these visiting relations to find out whether social prestige
(status) matches structural prestige.

9.3 Popularity and Indegree

At a first glance, this sociogram tells us little about the structural positions
of prestige leaders. The leaders are dispersed over the network. They are
situated in dense areas (e.g., family f39) as well as in the margins (families
f23, f49, and f66). We need some calculations to get a better view of
structural prestige.

The popularity or indegree of a vertex is the number of arcs it receives
in a directed network.

The simplest measure of structural prestige is called popularity and it is
measured by the number of choices a vertex receives: its indegree. Nom-
inations on a positive social relation (e.g., liking) express prestige; more
nominations indicate higher structural prestige, for example, in an elec-
tion or a popularity poll. In this example, receiving more visitors indicates
higher structural prestige. Note that the indegree of a vertex can be de-
termined only in a directed network. In undirected networks, we cannot
measure prestige; instead, we use degree as a simple measure of centrality
(see Chapter 6). In fact, several centrality measures are equal or similar
to prestige measures applied to undirected networks.

Of course, a high indegree on a relation such as “lend money to some-
one” does not reflect the popularity of an actor: it merely identifies some-
one who owes money to many persons. We should note that indegree does
reflect prestige if we transpose the arcs in such a network, that is, if we
reverse the direction of arcs. In the transposed network, arcs represent
the “owe money to” relation and someone with a large indegree has lend
money to many other people. Probably, this actor is quite rich compared
to the other actors and more prestigious.

In the original network, the direction of the arcs depends on the way
the researcher has defined the relation and worded the sociometric ques-
tion. In the analysis, it is sometimes better to change the direction of the
arcs. You are allowed to do this, because no information is lost in the
transposed network: just transpose it again and you obtain the original
network. It is interesting to note that several structural properties of a net-
work do not change when the arcs are transposed (e.g., the components

ARA
Highlight
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Table 13. Indegree Listing in Pajek

Cluster Freq Freq% CumFreq CumFreq% Representative

0 13 17.3333 13 17.3333 f1
1 17 22.6667 30 40.0000 f11
2 11 14.6667 41 54.6667 f13
3 15 20.0000 56 74.6667 f2
4 5 6.6667 61 81.3333 f3
5 6 8.0000 67 89.3333 f35
6 2 2.6667 69 92.0000 f44
7 1 1.3333 70 93.3333 f70
8 3 4.0000 73 97.3333 f39

10 1 1.3333 74 98.6667 f34
12 1 1.3333 75 100.0000 f41
sum 75 100.0000

remain unchanged) and other properties are just swapped (e.g., outdegree
becomes indegree and vice versa).

Application
Net>Partitions>

Degree>Input
In Chapter 3, you have learned to compute the indegree of ver-
tices in a directed network by means of the Input command in the
Net>Partitions>Degree submenu. This command creates a new partition
that can be displayed with Info>Partition. Table 13 shows the frequency
count of the indegree of family farms in San Juan Sur. Thirteen families
were not visited, so their indegree is zero. They have minimal structural
prestige. Family number f41 is most popular because it is visited by twelve
families (see entry of class 12 in Table 13). Note that the indegree is equal
to the number of visiting families because there are no multiple arcs. In
Figure 81, we can see the high number of visits that family f41 receives.
This simple frequency tabulation summarizes the distribution of popular-
ity better than the sociogram. The table shows that half of the families
receive two visits at most. No more than one-fifth of all families receive
five or more visits (see column CumFreq%).

File>Partition>

Edit
How about the prestige leaders? May we conclude that families contain-

ing prestige leaders are structurally prestigious? Inspecting the sociogram
or the indegree partition (use File>Partition>Edit), we note that prestige
leaders f23, f39, f47, f61, and f66 have indegree 3, 8, 1, 5, and 5, re-
spectively. All prestige leaders except for family f47 have indegree above
average and three of five families belong to the top 20 percent because they
receive five or more visits. Therefore, we conclude that the prestige lead-
ers are visited quite often, but there are other families that receive even
more visits. Structural prestige measured by indegree does not distin-
guish between prestige leaders and other frequently visited families in this
example.

Net>Transform>

Transpose
If the relation points from more to less prestigious vertices, as in the

case of “lend money to,” you should change the direction of all ties in
a network. This can simply be done by means of the Net>Transform>

Transpose command.
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9.4 Correlation

Does structural prestige indicated by indegree match social status as it
was rated by experts within the community? To answer this question, we
have to use standard statistical analysis to the results from our network
analysis, which are the structural prestige scores. Because this is not a
course in statistics, we keep it as simple as possible. It is our primary goal
to show that social network analysis and statistical analysis are two sets
of techniques that work very well together in social research.

In statistics, the association between two phenomena is usually mea-
sured by correlation coefficients. Correlation coefficients range from 1 to
−1. A positive coefficient indicates that a high score on one feature is
associated with a high score on the other (e.g., high structural prestige
occurs in families with high social status). A negative coefficient points
toward a negative or inverse relation: a high score on one characteristic
combines with a low score on the other (e.g., high structural prestige is
found predominantly with low social status families). As a rule of thumb,
we may say that there is no correlation if the absolute value of the co-
efficient is less than .05. If the absolute value of a coefficient is between
.05 and .25, association is weak, coefficients from .25 to .60 (and from
−.25 to −.60) indicate moderate association, and .60 to 1.00 (or −.60 to
−1.00) is interpreted as strong association. Usually, a coefficient of 1 or
−1 is said to display perfect association, but it is very unlikely that you
will find this unless you correlate a characteristic to itself.

In Pajek, two kinds of correlation coefficients can be computed: Spear-
man’s rank correlation and Pearson’s correlation. Spearman’s rank cor-
relation determines whether the ranking of vertices on one characteristic
(e.g., indegree) matches the ranking on another characteristic (e.g., status).
The magnitude of differences between ranks is unimportant. Of course,
both characteristics must have scores that can be ranked. Spearman’s rank
correlation is a robust measure of association provided that few cases have
equal ranks.

Pearson’s correlation coefficient uses the exact numerical scores on both
characteristics. It assumes a linear association between two characteris-
tics, which means that a unit increase in one characteristic will be asso-
ciated with a fixed increase (or decrease) in the other. In our example,
Pearson’s correlation assumes that one extra indegree of structural pres-
tige is accompanied by a fixed amount of additional social status (e.g.,
2.4 extra points of social prestige).

Pearson is more precise and more sensitive than Spearman. This can
be an advantage as well as a disadvantage. If a linear association exists
among two features of vertices in the network, Pearson’s correlation co-
efficient describes it more accurately than that of Spearman. However,
the assumption that unit change on one feature is associated with a fixed
change in another is very strict and often not met. For example, one ex-
tra indegree may involve substantial extra social status for families in the
classes with low indegree, whereas it may be associated with little extra
status for families in the middle or upper indegree classes. In this case,
Pearson’s coefficient underestimates the actual association, whereas that
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of Spearman does not. Therefore, it is important to use Pearson’s correla-
tion coefficient only if its results do not diverge too much from Spearman’s
coefficient. If results are very different, the data contain irregularities.

Application
To compute a correlation coefficient, we need two characteristics of each
vertex in the network. As learned in Chapter 2, features of vertices are
stored in partitions and vectors. A partition contains integers, a vector
is a list of numbers with decimals. Because Spearman’s rank correlation
coefficient takes only the (discrete) rank order of scores into account, it
operates on partitions. To calculate Spearman, you need two partitions.
Hence, Spearman can be found in the Partitions menu. However, Pearson’s
correlation coefficient uses the exact magnitude of scores. In Pajek,
Pearson needs two vectors as input data and the procedure is to be found
in the Vectors menu.

Partitions>First
Partition

Partitions>
Second Partition

Partitions>Info>

Spearman Rank

Social status scores are available as a partition (SanJuanSur_
status.clu) which must be opened in Pajek to compute its correla-
tion with the indegree partition. Load both partitions in the Partitions
menu by selecting the partition in the drop-down menu and clicking on
the commands First Partition and Second Partition, respectively. It does
not matter which partition is first. When both partitions are selected,
choose the command Spearman Rank on the Info submenu (see Figure
82) and Pajek computes the rank correlation coefficient. In this case, it is
.40, meaning that there is a moderate positive rank correlation between
indegree and social status. Families with larger indegree tend to be fam-
ilies with higher status. Hence, we may conclude that structural prestige
is moderately associated with status in this example.

Vectors>First
Vector

Vectors>Second
Vector

Vectors>Info

Pearson’s correlation coefficient is computed in a similar way. Select
a first and second vector in the Vectors menu and choose the Info sub-
menu, which has no options other than Pearson’s coefficient. In this ex-
ample, you may use the normalized input degree vector created by the
Network>Partitions>Degree>Input command but you have to translate
the status partition (SanJuanSur_status.clu) to a vector first with
the Partition>Make Vector command. Pearson’s correlation coefficient is
.35, which is slightly lower than Spearman’s correlation, indicating that

Figure 82. Partitions menu in Pajek.
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the association is not linear. Using the rule of thumb specified above,
however, we reach the same conclusion about the association between
indegree and social status.

Exercise I
Split the visiting relations network into three separate networks: one for
each type of visiting relation (note that the type of visiting relation is
indicated by line values). For each new network, determine the popu-
larity of the vertices and the correlation between popularity and status
(SanJuanSur_status.clu). Which type of visiting relation matches
the status hierarchy best?

9.5 Domains

Popularity is a very restricted measure of prestige because it takes only
direct choices into account. With popularity it does not matter whether
choices are received from people who are not chosen themselves or from
popular people. The overall structure of the network is disregarded.

Several efforts have been made to extend prestige to indirect choices.
The first idea that comes to mind is to count all people by whom someone
is nominated directly or indirectly, that is, without or with go-betweens.
This is the input domain of an actor, which has been called the influence
domain because structurally prestigious people are thought to influence
people who regard them as their leaders. The larger the input domain of
a person, the higher his or her structural prestige.

The input domain of a vertex in a directed network is the number or
percentage of all other vertices that are connected by a path to this
vertex.

Note that the output domain is more likely to reflect prestige in the
case of a relation such as “lend money to.” It is easy to define the output
domain of a vertex and we guess that you understand that the output
domain of a vertex is identical to the input domain of the vertex in the
transposed network. In fact, we may distinguish between three domains:
input domain, output domain, and (overall) domain, which is the union
of the input and the output domain.

Let us have a look at the visiting relations network again to understand
the concept of an input domain. Figure 83 contains the vertices in the
input domain of family f47 and the paths toward this family. The numbers
inside the vertices indicate the distance to family f47. Clearly, family f47
has zero distance to itself. This family is visited only by family f4: its
distance to family f47 is 1. Families f2, f3, and f5 visit family f4, so they
can reach family f47 via family f4 (distance 2). They are visited by three
families (distance 3), and so on. Ultimately, family f47 can be reached by
sixty-four of the remaining seventy-four families (86%) in San Juan Sur.
The input domain of family f47 equals sixty-four vertices or 86 percent.
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Figure 83. Distances to family 47 (represented by the numbers within
the vertices).

The ten families outside the input domain of family f47, which are
not drawn in Figure 83, include prestige leaders f23 and f39, and several
families from the densest part of the network (e.g., f40, f43, f44, f45, and
f48), among them family f41 with highest indegree. Family f47, which is
also a prestige leader, turns out to be unreachable for the prestige leaders
in the center of the network. This family was probably nominated as a
representative by a relatively isolated group of families, including families
f2, f3, f4, and f5. In this case, prestige leadership does not necessarily imply
high overall social or structural prestige. The prestige leader is probably
just a little more prestigious than the subgroup he or she represents.

In a well-connected network with many reciprocal ties, vertices are
reachable from most other vertices. Hence, input domain scores display
little variation. In this case, it is more interesting to capture the network
structure in a prestige index that does not consider the entire input do-
main. For example, we can count the vertices that are able to reach a
person in one or two steps: direct choices and indirect choices with one
go-between. This restricted input domain takes into account only the
direct popularity of the people by whom one is nominated. The input
domain of family f47 restricted to two steps (distance 2) is four (or 5%):
one family at distance 1 (f4), and three families at distance 2 (f2, f3, and
f5) (see Figure 83).

Application
Net>

k-Neighbours>
Input

Info>Partition

The input domain of a particular vertex can be found with the Net>k-
Neighbours>Input command, which is discussed in Chapter 6. In the first
dialog box, enter the number or label of a vertex (e.g., f47), and in the
second dialog box accept the default value (zero) to compute all distances.
Then, the command creates a partition specifying the distances of all
vertices to the selected vertex. From a frequency tabulation, created with
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Table 14. Input Domain of f47

Cluster Freq Freq% Valid% CumFreq CumFreq% CumValid% Representative

0 1 1.3333 1.5385 1 1.3333 1.5385 f47
1 1 1.3333 1.5385 2 2.6667 3.0769 f4
2 3 4.0000 4.6154 5 6.6667 7.6923 f2
3 4 5.3333 6.1538 9 12.0000 13.8462 f1
4 4 5.3333 6.1538 13 17.3333 20.0000 f19
5 6 8.0000 9.2308 19 25.3333 29.2308 f14
6 3 4.0000 4.6154 22 29.3333 33.8462 f17
7 3 4.0000 4.6154 25 33.3333 38.4615 f7
8 6 8.0000 9.2308 31 41.3333 47.6923 f8
9 7 9.3333 10.7692 38 50.6667 58.4615 f13

10 7 9.3333 10.7692 45 60.0000 69.2308 f10
11 12 16.0000 18.4615 57 76.0000 87.6923 f25
12 7 9.3333 10.7692 64 85.3333 98.4615 f22
13 1 1.3333 1.5385 65 86.6667 100.0000 f65
sum 65 86.6667 100.0000
unknown 10 13.3333
total 75 100.0000

the Info>Partition command (Table 14), you can calculate the number
of vertices (CumFreq) in the input domain of the selected vertex at a
particular maximum distance; for instance, the input domain at maximum
distance two contains four vertices: the five vertices at maximum distance
2 minus family f47 itself. The entry identified by “Unknown” in the table
shows the number of vertices that are not connected by a path to the
selected vertex: they do not belong to its input domain. In our example,
ten of seventy-four vertices (do not count the selected vertex itself!) are
outside the input domain of family f47, which is 14 percent; the remaining
86 percent of the vertices are inside its input domain. Note that you cannot
find these percentages in the table because all percentages there include
family f47.

Net>Partitions>
Domain>Input

It is quite cumbersome to repeat this command for each vertex in a
network, so Pajek contains a command that calculates the size of the
input domains of all vertices in one go: Net>Partitions>Domain>Input.
Use the command Input to restrict the analysis to incoming arcs only. A
dialog box, which is similar to the one displayed by k-Neighbours, allows
you to specify a maximum distance for the input domain.

The Domain>Input command produces three new data objects: one
partition and two vectors. The partition specifies the number of vertices
within the input domain of each vertex. The vector labeled “Normalized
Size of input domain” lists the size of input domains as a proportion of all
vertices (minus the vertex itself) and the second vector gives the average
distance to a vertex from all vertices in its input domain. Of course, it is
impossible to compute average distance in the case of a vertex with an
empty input domain, that is, a vertex that is not chosen at all. In this case,
average distance is set to 999998, which represents infinity. The average
distances vector is very useful, as shown in the following section.

Table 15 lists the size of input domains in the visiting relations network.
Nine families have maximal input domains; they are reachable from all
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Table 15. Size of Input Domains in the Visiting Relations Network

Class Freq Freq% CumFreq CumFreq% Representative

0 13 17.3333 13 17.3333 f1
1 7 9.3333 20 26.6667 f12
2 2 2.6667 22 29.3333 f11
6 3 4.0000 25 33.3333 f61

12 5 6.6667 30 40.0000 f26
64 36 48.0000 66 88.0000 f2
74 9 12.0000 75 100.0000 f23
sum 75 100.0000

seventy-four other vertices. Prestige leaders f23 and f39 are among them.
As noted, the third prestige leader, family f47, is situated in the class of
families with an input domain of size 64. Inspecting the partition with
input domain sizes with the File>Partition>Edit procedure, we find that
prestige leader f66 belongs to this class too. Family f61 is the only prestige
leader that has a small input domain of size 6. We may conclude that most
prestige leaders have large input domains, but many families with equally
large input domains are not prestige leaders.

The rank correlation between structural prestige measured as the size
of the input domain and social prestige indicated by social status scores
can easily be computed (see Section 9.4). Spearman’s rank correlation
coefficient is .36, which is a little less than the rank correlation between
popularity (indegree) and social status. Nevertheless, it points to a posi-
tive, moderate association between input domain and social status: larger
input domains occur among families of higher social status.

Exercise II
Produce a sociogram such as that in Figure 83 from the network of visiting
relations in San Juan Sur. Let vertex colors indicate the distance to family
f47 in Pajek’s Draw screen. Note that this sociogram requires many steps.
You must combine several techniques that you have learned in the current
and previous chapters.

9.6 Proximity Prestige

In the previous section, we noted that the input domain of a vertex is
not a perfect measure of prestige. In a well-connected network, the input
domain of a vertex often contains all or almost all other vertices, so it
does not distinguish very well between vertices. In this case, we proposed
to limit the input domain to direct neighbors or to neighbors at maxi-
mum distance two on the assumption that nominations by close neighbors
are more important than nominations by distant neighbors. An indirect
choice contributes less to prestige if it is mediated by a longer chain of
intermediaries.

Of course, the choice of a maximum distance from neighbors within
a restricted input domain is quite arbitrary. The concept of proximity
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prestige overcomes this problem. This index of prestige considers all ver-
tices within the input domain of a vertex but it attaches more importance
to a nomination if it is expressed by a closer neighbor. In other words, a
nomination by a close neighbor contributes more to the proximity prestige
of an actor than a nomination by a distant neighbor, but many “distant
nominations” may contribute as much as one “close nomination.”

To allow direct choices to contribute more to the prestige of a vertex
than indirect choices, proximity prestige weights each choice by its path
distance to the vertex. A higher distance yields a lower contribution to
the proximity prestige of a vertex, but each choice contributes something.
In the calculation of proximity prestige, this is accomplished by dividing
the input domain of a vertex (expressed as a proportion of all vertices
that may be part of the input domain) by the average distance from all
vertices in the input domain. A larger input domain (larger numerator)
yields a higher proximity prestige because more vertices are choosing an
actor directly or indirectly. In addition, a smaller average distance (smaller
denominator) yields a higher proximity prestige score because there are
more nominations by close neighbors.

Maximum proximity prestige is achieved if a vertex is directly chosen
by all other vertices. This is the case, for example, in a star-network in
which all choices are directed to the central vertex. Then, the proportion of
vertices in the input domain is 1 and the mean distance from these vertices
is 1, so proximity prestige is 1 divided by 1. Vertices without input domain
get minimum proximity prestige by definition, which is zero.

The proximity prestige of a vertex is the proportion of all vertices
(except itself) in its input domain divided by the mean distance from
all vertices in its input domain.

In Figure 84, all vertices at the extremes of the network (v2, v4, v5, v6,
and v10) have empty input domains, hence they have a proximity score of
zero. The input domain of vertex v9 contains vertex v10 only, so its size is
1 out of 9 (.11). Average distance within the input domain of vertex v9 is
one, so the proximity prestige of vertex 9 is .11 divided by 1. You can see
that the proximity prestige of vertices increase if they have a longer “tail”
from vertex v10 to v1. Vertex v1 has a maximal input domain, because it
can be reached by all nine vertices (a proportion of 1.00). Average distance
is 2.0, so proximity prestige amounts to 1.00 divided by 2.0, which is .5.

v1
(0.50)

v2 (0.00)

v3
(0.33)

v4 (0.00)

v5 (0.00)

v6 (0.00)

v7
(0.17)

v8
(0.15)

v9
(0.11)

v10
(0.00)

Figure 84. Proximity prestige in a small network.
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Application
Net>Partitions>

Domain>Input
In the previous section, we have learned how to compute the size of input
domains and average distance from all vertices within the input domain
(command Net>Partitions>Domain>Input). Thus, we obtain the two
vectors we need to compute proximity prestige: the size of the input do-
main expressed as a proportion (“Normalized Size of input domain”) and
the average distance from vertices within the input domain (“Average dis-
tance from input domain”).

Vectors>Divide
First by Second

To calculate proximity prestige, we just divide the input domain size by
the average distance. Select the vector with the normalized size of the input
domain in the vectors drop-down menu and click command First Vector in
the Vectors menu to use it as the numerator in the division operation. Se-
lect the vector with average distances as the second vector in a similar man-
ner and click on the command Divide First by Second in the Vectors menu.
This creates a new vector containing the proximity prestige scores of all
vertices. Inspect them with the command Info>Vector or browse with
File>Vector>Edit. Proximity prestige scores must range from zero to 1. If
they do not, you probably specified the wrong vectors in the Vectors menu.

In the network of visiting ties at San Juan Sur, proximity prestige ranges
from 0.0 to .33. Family f41 has the highest proximity prestige. Three
of five prestige leaders have a proximity prestige above average (.12).
However, the proximity prestige of families f47 (.11) and f61 (.07) is below
average. We must conclude that prestige leaders are not characterized by
high proximity prestige. In Section 9.5, we noted that family f47 occupies
a special position in the network. Inspection of the average distances
confirms this: family f47 has the largest average distance (8.03). This
family is difficult to reach in the network.

Vector>Make
Partition>by

Intervals>First
Threshold and

Step

Finally, let us see whether proximity prestige is associated with social
status in San Juan Sur. Before we can compute Spearman’s rank corre-
lation, we must turn the vector with proximity prestige scores into a
partition. As learned in Chapter 2, this can be done in several ways. In
this case, the easiest way to convert the vector into a partition is to cre-
ate classes of equal width with the procedure Vector>Make Partition>by
Intervals>First Threshold and Step. Specify 0.01 as the first threshold (the
upper limit of the lowest class) and enter this number also as the step (the
class width) to obtain a partition with classes between 0 and 100.

Partitions>Info>

Spearman Rank
The newly created partition with proximity prestige scores can be

correlated to the existing partition with social status (SanJuanSur_
status.clu) in the manner described in Section 9.4. Spearman’s corre-
lation coefficient is .26, indicating a low or moderate association between
proximity prestige within the network and social status rated separately
by members of the community. In this example, social status is related
less to proximity prestige than to popularity (indegree), which has a rank
correlation of .40 (see Section 9.4).

9.7 Summary

This is the first chapter of the book to deal with asymmetry in social
networks. We present the simplest way to take the direction of ties into
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account, which is to pay attention to incoming ties only. Structural indices
that do this are called measures of prestige. Actors who receive a lot
of choices are popular provided, of course, that the choices express a
positive social relation. Popularity, which is measured as the indegree of a
vertex, is the first index of prestige we discuss. More advanced measures of
prestige also take indirect choices into account. We present two advanced
measures: the input domain of a vertex and proximity prestige.

It is important to distinguish between structural prestige and social
prestige. The indices introduced in this chapter assess structural prestige,
that is, a pattern of ties that network analysts call prestige. They are called
prestige because actors in prestigious network positions often enjoy high
social prestige. However, the example we use shows that structural pres-
tige and social prestige do not match perfectly; we find moderate associ-
ation only. We use correlation coefficients to establish the strength of the
association between structural prestige and social status scores measured
independently from the network. This is an example of an important re-
search strategy, namely using structural indices such as prestige scores in
statistical analysis.

9.8 Questions

1. In the network below, which vertex or vertices have the highest prox-
imity prestige?

v1

v2

v3 v4 v5v6

a. Vertex v2.
b. Vertex v4.
c. Vertices v2 and v4 have equal proximity prestige.
d. It is impossible to tell from this sociogram.

2. In the network below, which vertex or vertices have minimal structural
prestige?

v1 v2

v3 v4

v5

a. Vertex v5.
b. Vertices v5 and v1.
c. All vertices have equal structural prestige.
d. It is impossible to tell from this sociogram.
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3. In the network presented in Question 2, which vertex or vertices have
the highest social prestige?
a. Vertex v3.
b. Vertices v2 and v3.
c. Vertices v2, v3, and v4 have approximately equal prestige.
d. It is impossible to tell from this sociogram.

4. What is the correct interpretation of a correlation coefficient of size
−.20?
a. Weak negative association
b. Medium association
c. Medium positive association
d. No association

5. Which prestige indices take indirect ties into account?
a. Proximity prestige only
b. Proximity prestige and input domain
c. Proximity prestige and popularity
d. Input domain and popularity

6. For which of the networks below is it useless to compute structural
prestige as the full input domain of a vertex?

v1

v2

v3

v4

v5

v4

v5

v3v1

v2

network A network B

a. A
b. B
c. A and B
d. A nor B

7. In an undirected network, is proximity prestige equal to closeness cen-
trality?
a. Yes, because proximity prestige is equal to mean distance to all other

vertices in an undirected network.
b. Yes, because a prestige index applied to an undirected network is

equal to a centrality index.
c. No, unless the network is connected.
d. No, because the calculation of an input domain is meaningless in

an undirected network.

9.9 Assignment

In Chapter 8, we learned that the diffusion of innovations resembles a
contagion process because social contacts are needed to persuade people
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to adopt innovations. It is hypothesized, therefore, that prestige is associ-
ated with adoption time: less prestigious actors adopt later because they
wait for more prestigious opinion leaders to adopt first.

The file Galesburg_discussion.net contains a network of dis-
cussion ties among thirty-one physicians in Galesburg (Illinois) in the
1950s. The researchers asked each physician to name three doctors with
whom they would choose to discuss medical matters. For seventeen physi-
cians, the date that they first prescribed a new drug (gammanym) was
recorded. The partition Galesburg_adoptiontime31.clu measures
the adoption time as the number of months since the introduction of
the drug. Note that the adoption time is unknown (code 9999998) for
fourteen physicians. For most of them, the new drug was not relevant.

Investigate whether adoption time is associated with the structural pres-
tige rather than the centrality of doctors in the discussion network. Com-
pute the indices of prestige presented in this chapter (indegree, restricted
input domain with a maximum distance of 2, and proximity prestige) as
well as the corresponding centrality measures in the undirected network.
Use rank correlation and note that adoption time is higher when a doctor
adopts later.

Another hypothesis states that friendship relations are more impor-
tant than discussion relations for the adoption of a new drug because it
is easier to persuade friends than people you only know professionally.
Physicians with many direct or indirect friends would adopt sooner than
physicians with less central positions in the friendship network. The file
Galesburg_friends.net contains the friendship network between
the doctors. Is the adoption time of the new drug related to prestige or
centrality in the friendship network rather than in the discussion network?

9.10 Further Reading

� The data on San Juan Sur are taken from Charles P. Loomis, Julio
O. Morales, Roy A. Clifford, and Olen E. Leonard, Turrialba:
Social Systems and the Introduction of Change (Glencoe, Ill.:
The Free Press, 1953). Consult this book to learn more about the
research project.

� The medical innovation project is taken from James S. Cole-
man, Elihu Katz, and Herbert Menzel, Medical Innovation:
A Diffusion Study (Indianapolis: Bobbs-Merrill, 1966). David
Knoke and Ronald S. Burt reanalyzed the data in a chapter on
prominence in R. S. Burt and M. J. Minor (Eds.), Applied Net-
work Analysis: A Methodological Introduction (Beverly Hills:
Sage, 1983, pp. 195–222). This article contains the basic ar-
gument to distinguish between directed prestige and undirected
centrality.

� To learn more about prestige indices, use Chapter 5 of Stanley
Wasserman and Katherine Faust, Social Network Analysis: Meth-
ods and Applications (Cambridge: Cambridge University Press,
1994).
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9.11 Answers

Answers to the Exercises
I. Remove the lines with line values lower than 3 (with the Net>

Transform>Remove>lines with value>lower than command) to ob-
tain a network of visits among kin. Compute the indegree partition
and select it as the first partition in the Partitions menu. Select the sta-
tus partition (SanJuanSur_status.clu) as the second partition in
this menu and calculate Spearman’s rank correlation by means of the
Partitions>Info submenu. Spearman’s rank correlation between the
status partition and the indegree partition is 0.52 in this network.

In a similar way you can create a network of church relations (select
the lower than command with 2 as the limit and subsequently the
higher than command with two again as the limit) and a network
of other relations (select higher than with a threshold value of 1).
Spearman’s rank correlation between the indegree partition and the
status partition is 0.33 and 0.22, respectively.

Visits among kin seem to follow status differences best in that the
less prestigious family comes to visit the more prestigious but note that
the network contains very few lines, so we should not rely too much
on this correlation coefficient.

II. When you compute the input domain of family f47 with the
Net>k-Neighbours>Input command, as shown in Section 9.5, you
will find that the families outside the input domain are attributed
to class 9999998 in the input neighbors partition. Extract all
classes (do not forget class zero) except 9999998 from the network
(Operations>Extract from Network>Partition – see Chapter 2, Sec-
tion 2.4.3) to obtain a new network without the vertices outside f47’s
input domain. Compute the distances toward f47 again for the new
network. Now you can draw this network in layers according to the
vertices’ distances to family f47 and optimize it as you have learned in
Section 8.1 (Chapter 8).

In Figure 83, all arcs that do not point up toward f47 have been elim-
inated because they are not relevant to the shortest paths to f47. This
was achieved with the Operations>Transform>Direction>Higher
Lower command, deleting lines within clusters too. Note that the in-
put k-neighbors partition must be selected in the Partition drop-down
menu. After deleting these lines, optimize the positions of the vertices
within the layers again (see Section 8.1).

Answers to the Questions in Section 9.8
1. Answer b is correct. Vertex v4 has the largest input domain, which

contains all vertices except for v2, and paths to v4 are quite short
for all vertices in its input domain. A large numerator (size of input
domain) and a relatively small denominator (average distance) yields
high proximity prestige. Vertex v2 is second best because it has an even
lower average distance from vertices in its input domain (it is directly
chosen by both vertices in its input domain), but its input domain is a
lot smaller.
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2. Answer b is correct. Vertices v1 and v5 are not chosen. They have zero
indegree, hence no input domain and minimum proximity prestige.
Both vertices have minimal scores on all prestige indices presented in
this chapter.

3. Answer d is correct. Because structural prestige is not necessarily equal
to social prestige, we cannot tell which actor has the most social pres-
tige from this sociogram.

4. Answer a is correct. According to the rule of thumb presented, the
association is weak. The sign of the coefficient tells us that there is a
negative or inverse relation between the two characteristics.

5. Answer b is correct. Input domain counts direct choices as well as in-
direct choices of vertices at distance two or higher, so it definitely takes
indirect ties into account. Proximity prestige uses the input domain, so
it uses indirect ties too. Popularity is just the indegree of a vertex, the
direct choices it receives. Clearly, it does not use indirect ties.

6. Answer a is correct. In network A, each vertex is reachable for all other
vertices, so each vertex has an input domain of size 4. In other words,
the network is one strong component. Because there are no differences
between vertices with respect to the size of their input domain, this
prestige index is useless. Network B differs from network A in the
tie between v1 and v5. Changing the direction of this tie breaks the
strong component: v5 is no longer reachable for any other vertex and
as a consequence v1 can no longer reach v2 and v3. Now, the size of
the input domain varies between vertices; it is a useful prestige index.

7. Answer c is correct. Proximity prestige is calculated as the average
distance from all vertices in the input domain of a vertex divided by
the size of the input domain as a proportion of the maximum number
of vertices it can hold. Closeness centrality is similar to the numerator
of this fraction: average distance. In an undirected network, proximity
prestige is only equal to closeness centrality if the denominator of the
fraction is 1, which means that all other vertices are part of the input
domain. This is the case if the network is connected because each vertex
is reachable from all other vertices in a connected undirected network.
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Ranking

10.1 Introduction

In the social sciences, society is regarded as a set of social layers or strata.
Instead of ranking people, groups, or organizations on a continuous scale
of prestige, they are usually classified into a limited set of discrete ranks,
for instance, working class, lower middle class, upper middle class, and
upper class. Within a group of humans, discrete ranking also occurs, for
instance, leaders, followers, and outcasts. The stratification of art worlds
into stars, settled artists, and mediocre artists is likely another example.
In this chapter, we discuss techniques to extract discrete ranks from social
relations.

Social ranking may be formal or informal and the two types of ranking
may coexist. In a formal ranking, it is written down who commands
whom and insignia or symbols minimize the ambiguity of the ranking
and preclude any confusion about a person’s rank. The army is an obvious
example with its elaborate hierarchy. In contrast, an informal ranking is
neither written down nor expressed by official symbols. It manifests itself
in the opinions and behavior of people toward each other: respect and
acts of deference versus disrespect and dominance.

The creation and maintenance of an informal ranking is a very im-
portant social process. Social network analysis is needed to investigate it
and to assess the positions that individuals occupy within the informal
ranking. If a formal ranking exists, it is interesting to compare it to the
informal ranking because they do not need to match, just like informal
communication patterns often deviate from the official communication
structure.

The structural concept of social ranking is an extension to balance
theory presented in Chapter 4. Balance theory assigns people to clusters
that are not ranked with respect to one another. Within a cluster, people
tend to like each other but people do not like members of other clusters.
Within clusters as well as between clusters, ties are supposed to be sym-
metric: you are supposed to reciprocate the sentiment or choices that you
receive. Elaborating on this perspective, asymmetric ties, for instance, A
reports to B but B does not report to A, indicate ranking: B is ranked
over A.

204
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minister1

pminister

minister2

minister3

minister4

minister5

minister6

minister7

advisor1

advisor2

advisor3

Figure 85. Student government discussion network.

10.2 Example

Our example is a network of a discussion relation among the eleven stu-
dents who were members of the student government at the University of
Ljubljana in Slovenia (Student_government.net). The students were
asked to indicate with whom of their fellows they discussed matters con-
cerning the administration of the university informally. We suppose that
this relation indicates esteem: students will choose fellows whom they
respect. Therefore, we expect this network to display informal ranking.

Within the parliament, students have positions that convey formal rank-
ing: the prime minister, the ministers, and the advisors. In Figure 85, vertex
color indicates the formal position of a student in the parliament (parti-
tion student_government.clu). We compare the formal ranking to
the informal ranking we derive from network analysis of the discussion
relation.

10.3 Triadic Analysis

Before we can analyze the ranks in the student government discussion
network, we must discuss balance theory once more. In Chapter 4, we
learned that a balanced or clusterable network can be partitioned into
clusters such that all positive choices occur within clusters and all nega-
tive choices are found between clusters. If we replace negative choices by
absent choices, it follows that positive choices are found within clusters
but choices do not occur between clusters: people tend to choose members
from their own group instead of members from other groups. Because ab-
sent choices should not occur within a group, each positive choice must
be reciprocated.

As a consequence, we can rephrase balance theory for the type of tie be-
tween two vertices (dyads) in a simple directed network: mutual choices
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v1

v2 v3

v4

v5

v6

v7

v8

v9

v10

Figure 86. An example of a network with ranks.

indicate group membership and mutual absent or null choices indicate
membership of different groups. Of course, this presupposes that the so-
cial relation under investigation implies a positive choice and that an
absent choice is equivalent to a negative choice.

A dyad is a pair of vertices and the lines between them.

In the directed network of Figure 86, vertices v5, v7, and v8 constitute
a cluster because they are connected by mutual choices (complete dyads)
and vertices v4 and v9 constitute another cluster. The two clusters are
separated by absent lines or null dyads.

Both mutual choices and mutual absent choices are symmetric: you give
as good as you get. Symmetric dyads indicate equivalence so we assume
that vertices which are linked by symmetric ties belong to the same rank.
The third type of dyad, however, is the asymmetric dyad: one person
chooses the other but this choice is not reciprocated. Asymmetric dyads
indicate ranking. In an asymmetric dyad, it is assumed that the receiver of
the positive choice is ranked over the sender provided that being chosen
expresses esteem or appreciation: the former can afford not to reciprocate
the choice of the latter. In Figure 86, vertex v6 is ranked under v9 and v4
among others, which are ranked under v2 and v3.

To capture the structure of a directed network, we must proceed from
dyads to triads. In a simple directed network, sixteen types of triads may
occur, which are listed in Figure 87. As proposed by Davis, Holland, and
Leinhardt, triad type is identified by a M-A-N number of three digits
and, occasionally, a letter. The first digit indicates the number of mu-
tual positive dyads (M), the second digit is the number of asymmetric
dyads (A), and the third digit is the number of null dyads (N). Sometimes
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1 - 003 2 - 012 3 - 102 4 - 021D

5 - 021U 6 - 021C 7 - 111D 8 - 111U

9 - 030T 10 - 030C 11 - 201 12 - 120D

13 - 120U 14 - 120C 15 - 210 16 - 300

Figure 87. Triad types with their sequential numbers in Pajek.

a letter that refers to the direction of the asymmetric choices is added
to distinguish between triads with the same M-A-N digits: D for
down, U for Up, C for cyclic, and T for transitive (which is explained
later).

It has been shown that the overall structure of a directed network (or
a complete signed network) can be inferred from the types of triads that
occur. It is very important to understand the consequences of this discov-
ery: it suffices to analyze small subnetworks (of size 3) to understand the
structure of the overall network! We do not have to check all semicycles
to determine whether a network conforms to a balance theoretic model
as we did in incomplete signed networks (Chapter 4).

If a directed network is balanced, for example, only two of the sixteen
types of triads occur, namely, triads 300 and 102. Each cluster is a clique,
so each subset of three vertices from a cluster is a complete triad like triad
300 (e.g., vertices v5, v7, and v8 in Figure 86). If two vertices belong
to one cluster and the third belongs to the other cluster, we encounter a
triad in which two vertices are symmetrically linked because they belong
to the same clique (e.g., vertices v5 and v8 in Figure 86), but they are
not connected to the third vertex, which belongs to the other clique (e.g,
vertex v9 in Figure 86). This is represented by triad 102. There are no
other possibilities, so the two triad types identify the balance model for
the structure of the entire network. If a network contains just these two
types of triads then we know that the network consists of two cliques that
are not interrelated.
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In the course of time, four additional models for the overall structure of
a directed network have been discovered, which we present now. These
models have a very important property, namely that they progressively
allow for more types of triads to occur. In other words, each model that
we present is less restrictive than the previous one. The second model, the
model of clusterability, for instance, relaxes the demand of the balance
model that the network consists of no more than two cliques. A clusterable
network may contain three or more clusters. As a consequence, triad 003
is allowed to occur in a clusterable network because it contains vertices
which belong to three different clusters. The two balanced triads (300
and 102) are also permitted because they still refer to vertices within
one cluster or vertices of two clusters. The clusterability model is more
permissive than the balance model: it allows for one more triad type.

In a similar way, the model of ranked clusters extends the clusterability
model because it allows clusters to be spread over different ranks. Clusters
at different ranks are connected by asymmetric dyads: each vertex in a
lower cluster sends unilateral choices toward all vertices in a higher cluster.
As a consequence, five triads are permitted that contain asymmetric dyads:
120D, 120U, 021D, 021U, and 030T. In triad 120U, for instance, the
bottom two vertices belong to one cluster because they are linked by
mutual choices. The top vertex is connected to them by asymmetric ties:
it is chosen but it does not reciprocate the choices, so it must belong to a
higher rank.

If a network contains these triads in addition to balanced or clusterable
triads, the network can be partitioned into ranks and clusters according
to the criteria that mutual choices are found within clusters, asymmetric
choices point up to a higher rank, and null choices occur between clusters
within a rank. In our example of a ranked network (Figure 86), vertices
v4, v6, and v9 constitute a 120D triad and a 030T triad contains vertices
v1, v5, and v10.

There are two models that relax the criteria of the ranked clusters
model. The first model is the transitivity model. In a transitive triad, each
path of length 2 is closed by an arc from the starting vertex to the end
vertex of the path. If actor A obeys actor B, and actor B obeys actor C,
actor A also obeys actor C in a transitive triad. In a hierarchy, relations are
usually transitive but transitivity is an effect that is also found in many
other social relations, for instance, the relation “to know someone” is
often transitive.

The balanced, clusterable, and ranked clusters triads are transitive, but
the 012 triad, which contains a single asymmetric choice, is also transitive
because it does not violate the rule that an indirect choice is paralleled by
a direct choice; the 012 triad simply does not contain an indirect choice.
Under the ranked clusters model, the 012 triad would mean that the
three vertices belong to different clusters within a rank because of the
two null dyads and, at the same time, that two vertices are ranked as a
result of the asymmetric dyad. Clearly, this is a contradiction. Under the
transitivity model, however, null choices are allowed between ranks. It is
not necessary that someone at a lower rank chooses all people of higher
rank, for instance, boys and girls may have separate rank systems that are
perfect ranked clusters but boys may ignore girls and vice versa.
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Table 16. Balance-Theoretic Models

Ties within Ties between Permitted
Model a Cluster Ranks Triads

Balance Symmetric ties within
a cluster, no ties
between clusters
max. two clusters

None 102, 300

Clusterability Idem no restriction
on the number of
clusters

Idem +003

Ranked Clusters Idem Asymmetric ties
from each vertex
to all vertices on
higher ranks

+021D, 021U,
030T, 120D,
120U

Transitivity Idem Null ties may occur
between ranks

+012

Hierarchical Clusters Asymmetric ties within a
cluster allowed
provided that they are
acyclic

Idem +120C, 210

No Balance-Theoretic
Model
(“Forbidden”)

021C, 111D,
111U, 030C,
201

Note: A + sign indicates that all triads in previous rows are also permitted.

The other model that relaxes the criteria of the ranked clusters model
is the hierarchical clusters model, which is also called the hierarchical m̄-
clusters model. This model permits asymmetric dyads within a group as
long as they are acyclic. Within a cluster, asymmetric dyads are supposed
to express a mild form of ranking within a group and, like any kind of
ranking, this ranking must be acyclic. The set of vertices v1, v5, v7, and v8
(Figure 86) is an example of a hierarchical cluster. Vertex v1 is connected
to the other vertices by two 120C triads. Vertex v7 does not reciprocate
the choice by v1, who does not reciprocate v5’s choice, so these three
vertices are ranked but vertices v5 and v7 are also part of a cluster with
vertex v8 because of the symmetric dyads.

The remaining five types of triads do not occur under any of the models.
We may say that they are forbidden: they contradict all balance-theoretic
models and the assumptions about symmetric and asymmetric dyads on
which the models are based. If these triads occur often, we ought to doubt
whether we can cluster and rank the data according to balance-theoretic
principles. Table 16 summarizes the models.

Let us apply the balance-theoretic models to the example network (Fig-
ure 86). Table 17 shows the number of triads found in this network
arranged by the balance theoretic model to which they belong. Such a
distribution is known as the triad census.The models are less restrictive in
the order in which they are listed in Table 17 and it is standard practice
to characterize the overall structure of a network by the least restrictive
model that applies. After all, a less restrictive model covers all more re-
strictive models because it also permits their triads.

Unfortunately, social networks hardly ever conform perfectly to a
balance-theoretic model. Each type is likely to occur at least once, so the
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Table 17. Triad Census of the Example Network

Number of
Type Triads Expected Model

3 102 22 7.56 Balance
16 300 1 0.06

1 003 7 17.0 Clusterability

4 021D 3 7.56 Ranked
5 021U 3 7.56 Clusters
9 030T 4 5.81

12 120D 5 1.12
13 120U 2 1.12

2 012 58 39.3 Transitivity

14 120C 2 2.24 Hierarchical
15 210 0 0.86 Clusters

6 021C 7 15.12 Forbidden
7 111D 4 5.81
8 111U 2 5.81

10 030C 0 1.94
11 201 0 1.12
total 120

presence of one triad does not mean that the associated model must apply.
We must compare the triad census to the distribution of triad types which
is expected by chance. If a particular triad type occurs clearly more often
than expected by chance, the corresponding model may be said to guide or
influence the relations: there is a tendency toward balance, clusterability,
ranked clustering, transitivity, or hierarchical clusters in the network. If
the models explain network structure, the forbidden triads should occur
less frequently than predicted by chance.

Table 17 shows the triad census of the example network. The col-
umn headed “Number of triads” shows the triad counts in the exam-
ple network and the column “Expected” lists the numbers of triads that
are expected by chance in a network of this size containing this num-
ber of arcs. If the actual frequencies are close to the expected frequen-
cies, the network conforms to none of the balance-theoretic models and
we may conclude that its structure is random from the point of view
of balance theory. This, however, does not seem to be the case in our
example.

In the example network, some types of triads occur substantially more
often or less frequently than expected by chance. These frequencies are
printed in italics in the table. The example network seems to contain
relatively few clusterable triads but many balanced ones, some ranked
clustering (120D) although other ranked clusters triads occur less often
than expected (021D and 021U), and a tendency toward transitivity but
not a surprising number of hierarchical cluster triads. The forbidden triads
occur at chance level or less (021C and 111U), so we do not have to
discard all balance-theoretic models. The most appropriate model for this
network seems to be the transitivity model, which allows for clustering
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and ranking but which does not require that all ties between ranks are
asymmetric.

We should note that our expected frequencies take into account only
the number of vertices and arcs in the network. Standard statistical tests of
the triad census condition on indegree, outdegree, and number of mutual
choices, which expresses the tendency to reciprocate choices at the level
of the dyad. These statistical tests may produce different results but they
fall outside the scope of the present book.

The triad census is an example of a research strategy that concentrates
on local structure because it accounts only for ties within triads. The
implications for the overall structure of the network are usually taken
for granted and not much effort is made to assign vertices to clusters and
ranks. Triadic analysis is the basis of statistical models that test hypotheses
about the ties of individual actors: why do they establish some ties and
not others? Are their choices motivated by balance, transitivity?

Application
Info>Network>

Triadic Census
In Pajek, it is very easy to compute the triad census: simply use the Tri-
adic Census command in the Info>Network submenu. A dialog box asks
whether the models should be reported and if you choose this option, the
triad types (“Type”), their actual frequencies [“Number of triads (ni)”],
and the frequencies expected by chance [“Expected (ei)”] are reported.
In addition, the relative difference between the actual and the expected
number of triads is shown [“(ni-ei)/ei”] and a chi-square statistic testing
the hypothesis that the actual frequencies are equal to the expected fre-
quencies. This statistic is not reliable if expected frequencies are low. The
triad counts and expected frequencies are also stored in two vectors.

Table 18 contains the triad census for the student government network.
Three of the five forbidden triads appear less frequently than expected
by chance in the student government network (triads 021C, 111U, and
030C), which is also signaled by the negative value of the actual ver-
sus expected ratio, so there is some support that the underlying ideas of
symmetric and asymmetric ties apply here.

Then, which structure characterizes the network? The student govern-
ment network contains more between groups triads (triad 102) than ex-
pected by chance but the number of clusterability triads (003) is predicted
by chance, so a partition into two clusters seems to suffice. Some ranked
clusters triads appear as often as expected by chance but the number of
120D triads, which signal asymmetric choices toward mutually connected
pairs, is much higher than the expected frequency (the ratio of actual to
observed number of triads is 2.72), so we should conclude that the net-
work is ranked. Finally, the number of triads identifying the transitivity
model (012) matches the amount expected in a random network and the
hierarchical cluster triads also do not appear more often than expected
by chance.

A ranked clusters model seems to be the best choice for this data set be-
cause it permits triads 120D, 120U, and 021U, which appear substantially
more often than chance, but it also permits the triads associated to more
restrictive models (viz., the two balanced triads 300 and 102). In this way,
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Table 18. Triad Census of the Student Government Network

Number of
Type Triads (ni) Expected (ei) (ni-ei)/ei Model

3 102 20 10.65 0.88 Balance
16 300 1 0.44 1.26

1 003 10 10.05 −0.01 Clusterability

4 021D 9 10.65 −0.15 Ranked
5 021U 15 10.65 0.41 Clusters
9 030T 7 12.65 −0.45

12 120D 14 3.76 2.72
13 120U 6 3.76 0.60

2 012 37 35.84 0.03 Transitivity

14 120C 1 7.52 −0.87 Hierarchical
15 210 5 4.47 0.12 Clusters

6 021C 16 21.29 −0.25 Forbidden
7 111D 13 12.65 0.03
8 111U 6 12.65 −0.53

10 030C 1 4.22 −0.76
11 201 4 3.76 0.06

Chi-square = 55.7613∗∗∗.
Six cells (37.50%) have expected frequencies less than 5.
The minimum expected cell frequency is 0.44.

the ranked clusters model contains all types of triads that occur clearly
more often than expected by chance in the student government network.

The chi-square statistic is highly significant: the three stars indicate that
it is statistically significant at the .001 level (one star represents statistical
significance at the .05 level, and two stars signal the .01 level), so the
tendency toward ranked clustering is higher than expected by chance given
the density of the network. We should note, however, that the expected
frequency of six triads is less than five and one triad (300) is expected
to occur less than once. This casts some doubt on the reliability of the
chi-square measure.

10.4 Acyclic Networks

In directed networks, ranking is associated with asymmetry: arcs that rep-
resent an “ego obeys alter” relation point up, not down. Triadic analysis
applies this principle to triads, that is, to local structure, but it can also be
applied to the overall structure of a directed network. In a network that
perfectly reflects a hierarchy, all arcs should point up and no arc should
point down from a higher rank to a lower rank. This is called an acyclic
network. It is important to note that such a network cannot contain cycles
because a cycle would include arcs pointing up and arcs pointing down
to return to its starting point.

An acyclic network contains no cycles.
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We associate ranking with acyclic structures; for example, the soldier
is subordinate to the sergeant, who is subordinate to the captain, who is
subordinate to the colonel, and so on. An arc pointing in the wrong direc-
tion (e.g., the colonel obeys the soldier for whatever mysterious reasons)
contradicts our idea of a hierarchy. This arc creates a cycle in the network
and it may even make the whole network cyclic in the sense that in the
end everyone obeys everybody.

When acyclic structures point to ranking, cyclic structures are associ-
ated with clusters within one rank because they suggest equality among
its vertices. In the short run (e.g., in a symmetric dyad) or in the long run
(e.g., in a feedback loop that includes many vertices) a choice is recipro-
cated. From this point of view, we may partition a directed network into
ranks: cyclic subnetworks represent a cluster within a rank and acyclic
structures link ranks into a hierarchy.

Fortunately, it is easy to detect the cyclic parts of a network and you
have already mastered the technique to do it. Recall that a strong com-
ponent is a maximal subnetwork in which each vertex is reachable to
each other vertex (Chapter 3). There are paths in both directions between
all pairs of vertices within a strong component, so a strong component
is a cyclic (sub)network by definition. The arcs that are not part of a
strong component cannot belong to a cycle, so they are part of an acyclic
structure. In fact, if we shrink the strong components of a network, the
network becomes acyclic.

Figure 88 shows the strong components in the student government
discussion network (for the sake of clarity we replaced bidirectional arcs
by fat edges). There are three components and, if you look carefully, the
arcs between strong components all point in the same direction: from
the white (red) component to the gray (green) component to the black
(yellow) component. This is very clear in Figure 89, which shows the
network with shrunk strong components. Note that the prime minister is
included in the strong component in the top of the hierarchy, which is in
line with his formal position.

minister1

pminister

minister2

minister3

minister4

minister5

minister6

minister7

advisor1

advisor2

advisor3

Figure 88. Strong components in the student government discussion net-
work.
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Figure 89. Acyclic network with shrunk components.

Application
Net>

Components>
Strong

In Chapter 3, we learned to identify the strong components in a network
with the command Net>Components>Strong. This command creates a
partition with a class for each strong component. We advise to set the
minimum size of a component to one, otherwise the “red” component of
advisor2 is not recognized.

Operations>
Shrink

Network>

Partition

Chapter 2 presented the command to shrink a network. The present case
offers no complications: make sure the student government discussion
network and the strong components partition are selected in the drop-
down menus and execute the Operations>Shrink Network>Partition. In
the dialog boxes, require a minimum of one connection between clusters
and do not shrink cluster number zero or any other nonexistent cluster.
If the network is shrunk according to a strong components partition, we
obtain three vertices as shown in Figure 89.

Exercise I
Remove the arc from advisor3 to minister5 in the student government
discussion network (right-click the vertex of advisor3 in the Draw screen
and double-click the arc toward minister5 in the list). Determine the strong
components in the modified network and shrink the components. Which
new rank appears now?

10.5 Symmetric-Acyclic Decomposition

In triadic analysis (Section 10.3), clusters within a rank must be com-
plete. In many social networks, this criterion is too strict. Usually, social
networks contain a limited number of choices made by each individual
as a result of measurement techniques and social or cognitive limitations
on the part of the investigated people. Respondents who are asked to re-
call with whom they discussed a particular matter informally, for instance,
are likely to mention their most salient contacts rather than everyone with
whom they have merely touched on the subject. A network constructed
from these data will not yield complete clusters.

Conversely, the strong components do not seem to be sufficiently strict
to identify a cluster within a rank (Section 10.4). In the student govern-
ment discussion network, it would be nice if we could subdivide the black
(yellow) component, which contains a heterogeneous group of actors at
present: advisors, ministers, and the prime minister.

The symmetric-acyclic model is a suitable alternative. It uses a version
of the symmetry versus asymmetry principle that is less strict than the
balance-theoretic assumptions but stricter than the acyclic character of
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minister1

pminister

minister2

minister3

minister4

minister5

minister6

minister7

advisor1

advisor2

advisor3

Figure 90. Clusters of symmetric ties in the student government network.

strong components. It assumes that vertices that are linked by symmetric
(i.e., mutual) choices directly or indirectly belong to one cluster, hence to
one rank. Clusters that are linked by asymmetric ties only are ranked.

This model is especially less restrictive with respect to the internal struc-
ture of clusters because it allows for asymmetric and null dyads within a
cluster, for example, if vertex u is linked to vertices v and w by symmet-
ric ties, they belong to one cluster regardless of the tie between v and w,
which may be symmetric, asymmetric, or null. Balance-theoretic models
never allow null dyads within a cluster and asymmetric dyads may occur
only under special conditions in the hierarchical clusters model.

It is easy to identify clusters of vertices that are connected by mutual
choice: just delete all unilateral arcs from the network and compute com-
ponents. Each component is a cluster of vertices, which are linked by
symmetric dyads. Figure 90 shows the four clusters in the student gov-
ernment network. Note that the dark gray (blue) and black (yellow) sym-
metric clusters of Figure 90 are strong components in the overall network
(Figure 88).

The largest strong component of the original network, however, com-
bines two symmetric clusters: the cluster of minister4 and minister5 with
the cluster of the prime minister. The two symmetric clusters are linked
into one strong component because the arcs between these clusters do not
point in the same direction. In Figure 91, we can see that the symmetric
cluster of minister4 and minister5 predominantly sends asymmetric ties
to the cluster of the prime minister but they receive one asymmetric choice
from that cluster [viz., the arc from advisor3 to minister5 (check Figure
88)]. When we ignore this arc, we obtain smaller strong components that
match the symmetric clusters perfectly.

Clusters of vertices which are reachable through symmetric ties are
preferable over strong components because mutual choice is a clear indi-
cation of group membership and equality with respect to ranking. We
therefore recommend to pay close attention to strong components in
which not all vertices are linked by paths of mutual choices. Elimina-
tion of a single arc may split this component into smaller clusters which
are asymmetrically ordered.
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2#minister1

#pminister#minister4

advisor2

Figure 91. Discussion network shrunk according to symmetric clusters.

A stricter interpretation of the symmetric-acyclic model forbids all
asymmetric ties inside clusters. In other words, vertices within a clus-
ter are either tied by a symmetric tie or no tie at all (a null tie) and all
asymmetric choices are situated between clusters. In the largest cluster
of the student government network, which contains the prime minister,
three asymmetric ties are found and all of them involve the advisors. The
ministers and the prime minister are linked by symmetric ties only. If we
would delete advisor3, who is offending the ranking between two sym-
metric clusters and who is also involved in an asymmetric tie within the
top cluster, and we ignore the arc from minister6 to advisor1, we obtain a
decomposition that satisfies the strictest criteria of the symmetric-acyclic
model (see Figure 92).

Note that this decomposition nicely reflects the formal positions of the
students: the advisors are on the lower ranks, the prime minister is on the
highest rank, and the ministers are in the middle or top ranks. If the prime
minister had not chosen minister7, he would have had the top rank for
himself or herself. In this case, the informal ranking is more differentiated
than the formal ranking because the ministers are spread over three ranks.

Figure 92 illustrates an important characteristic of the symmetric-
acyclic model. Often, the order of the symmetric clusters is not completely
determined. Advisor1, for example, must be ranked below the black

minister1

pminister

minister2

minister3

minister4

minister5

minister6

minister7advisor1

advisor2

Figure 92. Symmetric components in the (modified) student government
discussion network.
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cluster containing the prime minister. It is unclear, however, whether this
advisor should be ranked with advisor2, minister2, or minister5 or whe-
ther it occupies a rank of its own. There is no path of asymmetric ties bet-
ween advisor1 and advisor2, minister2, or minister5 that defines his or her
position with respect to them. This is called a partial order: we know the
order of some pairs of vertices but not of all pairs. As a result, the classi-
fication of vertices according to rank does not necessarily yield a single re-
sult. In Figure 92, advisor2 could have been drawn at several other levels.

Application
Net>
Hierarchical
Decomposition>

Symmetric-
Acyclic

Pajek contains a command to find clusters of symmetrically linked vertices
and ranks: Net>Hierarchical Decomposition>Symmetric-Acyclic. This
command follows the logic outlined above.

First, the command finds the components of symmetrically linked ver-
tices. It produces a new network with edges instead of bidirected arcs like
Figure 88. Then it creates a network without the remaining (unilateral)
arcs and it computes a partition of weak components. Each weak com-
ponent is a cluster of vertices that are reachable through symmetric ties.
When you draw the network and partition, you obtain Figure 90.

Second, the procedure shrinks the clusters of symmetrically linked ver-
tices. The shrunk network is very convenient for finding symmetric clus-
ters that are linked by asymmetric ties in both directions. If you draw
this network, you obtain a sociogram that is similar to that in Figure
91. In this drawing, you may detect symmetric clusters that are nearly
asymmetrically linked, such as the #minister4 and #pminister clusters.

Finally, the procedure repeats the first and second steps until it does not
encounter any symmetrically linked vertices or clusters. Then, all strong
components have been shrunk and the network is acyclic by definition.
After the first shrinking of the student government discussion network
(see Figure 91), the #pminister and #minister4 clusters are connected by
a bidirectional arc: they are symmetrically linked. In the next step, they
are concatenated into one new symmetric cluster and shrunk. In the re-
sulting network, no vertices or clusters are symmetrically linked, so the
procedure stops. Note that in this example the last network created by
the Symmetric-Acyclic command contains no lines. You should select the
last shrunk network (labeled something like “Shrinking N5 according to
C3”) as the final result of the analysis.

Net>Transform>

Remove>loops

Net>Partitions>
Depth>Acyclic

The shrunk network that results from the symmetric-acyclic decom-
position is acyclic, so we may determine the order of the ranks with the
Depth>Acyclic command from the Net>Partitions submenu provided
that you delete the loops first (Net>Transform>Remove>loops), which
are created when the network is being shrunk. Draw the shrunk network
and its depth partition according to layers (Layers>In y direction) to
obtain a graphical representation of the ranks. It will look like Figure
93: advisor2 advises the symmetric cluster of minister1, who advise the
symmetric cluster of the prime minister. When you move the gray vertex
manually in the Draw screen, you will see that there is also a direct arc
from the advisor to the cluster of the prime minister.

Net>
Components>
Strong

If you want to draw the original network in layers that represent the
ranks, you have to expand the depth partition to the original network.
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#minister1

##pminister

advisor2

Figure 93. The order of symmetric clusters acording to the depth parti-
tion (acyclic).

Because the shrunk vertices in the acyclic network are the strong compo-
nents (size one and larger) in the original network, you can use a strong
components partition of the original network to expand the depth parti-
tion. Create this partition with the Net>Components>Strong command
making sure that the original network is selected in the Network drop-
down menu.

Partitions>
Expand>First

according to
Second (Shrink)

Net>Transform>

Arcs→Edges>
Bidirected only

Now, you can expand the depth partition of the shrunk network to
the original network. Select the depth partition of the shrunk network
as the first partition in the Partitions menu and select the strong compo-
nents partition as the second partition. Then choose the First according to
Second (Shrink) command from the Partitions>Expand submenu. Pajek
asks which class in the strong components partition was not shrunk (zero
or a number that does not occur in the strong components partition will
do) and it creates a new partition that assigns each vertex in the original
network to its depth in the symmetric-acyclic decomposition. You may
draw this partition in layers and move vertices within each layer to obtain
an image of the ranking. In Figure 94, we replaced all bidirected arcs by
edges (Net>Transform>Arcs→Edges>Bidirected only) and we rotated
the layout ([Draw] Options>Transform>Rotate 2D), so the ranks incre-
ment from left to right. Note that we cannot see all arcs within the white
rank but it is clear that all arcs between ranks point in the same direction
(right).

[Draw]
Options>

Transform>

Rotate 2D

minister1 pminister

minister2

minister3

minister4

minister5

minister6

minister7

advisor1

advisor2

advisor3

Figure 94. Ranks in the student government discussion network.
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In the symmetric-acyclic decomposition, the resulting strong compo-
nents are not necessarily symmetric clusters. In the student government
network, for example, a strong component combines the two symmetric
clusters #pminister and #minister4 (Figure 91). We have found a decom-
position that satisfies the weak version of the symmetric-acyclic model. Operations>

Transform>

Remove
Lines>Between
Clusters

The stronger version of this model does not allow asymmetric ties
within clusters, so we have to inspect the ties within each cluster to find
out whether the stronger model applies. Because the strong components
are the clusters, we may simply remove all lines between strong compo-
nents and check whether the resulting network contains bidirected arcs
only. Select the original network and the strong components partition to
this network and remove the lines between components with the Opera-
tions>Transform>Remove Lines>Between Clusters command. Now,
replace bidirected arcs by edges (command Net>Transform>Arcs→
Edges>Bidirected only) and check the number of arcs in the network
(Info>Network>General). If there are no arcs, all strong components
are symmetric clusters. Strong components containing arcs, however, are
not symmetric clusters, so they do not satisfy the stronger version of the
symmetric-acyclic model. In our example, the strong component contain-
ing the prime minister contains several unilateral arcs. This network does
not satisfy the requirements of the strong symmetric-acyclic model.

Exercise II
In Exercise I, you removed the arc from advisor3 to minister5. In this net-
work, do the symmetric clusters conform to the weak or strong symmetric-
acyclic model?

10.6 Summary

Society and, in more detail, the human group is characterized by clustering
and ranking. Like-minded people cluster into cohesive groups on the basis
of mutual positive ties. Rivalry between groups is expressed by negative
or absent ties. In addition, social groups are usually ranked such that
dominant groups occupy higher ranks or strata. Asymmetric ties indicate
ranking: a positive choice received from a lower ranked group is not
reciprocated.

Society and the social group are generally considered to contain a lim-
ited number of discrete ranks. In this chapter, we present structural models
of discrete ranks that have evolved from balance theory. The first two
balance-theoretic models – balance and clusterability (see Chapter 4) –
are confined to the clustering of social entities; they tacitly assume that
there is no ranking, so asymmetric ties and unclusterable semicycles are
not allowed. A third model, the ranked clusters model, regards a social
system as a set of ranks where each rank contains one or more clusters.
Positive arcs connect entities within a cluster but no arcs connect different
clusters at one level, as in the clusterability model. In addition, asymmetric
dyads connect clusters at different ranks, where arcs point from lower to
higher levels.
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The ranked clusters model represents a simple hierarchy in which each
pair of clusters or vertices is unambiguously ranked. Often, social systems
are more complicated, containing incomplete hierarchies or even different
hierarchies that are not compatible. The social cleavage between girls and
boys is a simple example. There is a hierarchy of boys and a hierarchy of
girls but nobody is interested in the members of the other gender regardless
of their ranking. This phenomenon is captured in the fourth balance-
theoretic model, which is known as the transitivity model. A fifth model,
called the hierarchical clusters model, is even more permissive because it
allows for ranking within a group. Asymmetric dyads within a cluster of
otherwise symmetrically connected people indicate ranking in this model.

In a simple directed network, a balance-theoretic model is identified by
the types of triads that it permits, so we may count the number of times
each triad type occurs in the network – this is called the triad census – and
find the appropriate model. Unfortunately, social networks seldom fit a
balance-theoretic model perfectly, so we need statistical tests to determine
which triad types and models occur more often than expected by chance.
Triadic analysis is the basis for statistical modeling rather than exploring
the structure of clusters and ranks.

By definition, ranking is acyclic, so cyclic parts of the network either
represent clustering within a rank or they contain complicated or imper-
fect ranking. Recall that a strong component contains vertices that are
connected by paths in both directions, so strong components are cyclic
subnetworks. If we shrink the strong components, the resulting network
is acyclic and can be partitioned into ranks. Next, we inspect each strong
component for clusters and complicated or imperfect ranking. In a simple
directed network, mutual (positive) choices are the backbones of clusters,
so we look for clusters of vertices that are directly or indirectly linked by
symmetric ties. The ties between the clusters tell us whether they belong
to one rank or to different ranks.

This is an exploratory procedure for detecting the clusters and ranks
that best fit a network but it does not tell us whether the fit is satisfactory.
With enough effort and modification, we can probably find clusters and
ranks that even fit a random network. As elsewhere in this book, we must
make sense of our results. The clusters and ranks should be meaningful
with respect to other information that we have about the social entities
in the network.

10.7 Questions

1. How many dyads does the network depicted below contain and how
many types of dyads?

v1 v2

v3v4
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a. Six dyads and one type
b. Six dyads and two types
c. Eleven dyads and one type
d. Eleven dyads and two types

2. Assemble the triad census (type of triad and frequency of occurrence)
of the network shown above by hand.

3. Which balance-theoretic model characterizes the network of Ques-
tion 1?
a. The balance model
b. The hierarchical clusters model
c. The balance and hierarchical clusters models
d. No balance-theoretic model fits this network

4. The table below shows the triad census of a directed network. Choose
the appropriate balance-theoretic model for this network and justify
your choice.

Number of
No. Type Triads (ni) Expected (ei) (ni-ei)/ei Model

3 102 41 10.7 2.83 Balance
16 300 2 0.1 15.63

1 003 8 19.4 −0.59 Clusterability

4 021D 0 10.7 −1.00 Ranked
5 021U 3 10.7 −0.72 Clusters
9 030T 7 9.2 −0.24

12 120D 14 2.0 6.13
13 120U 6 2.0 2.05

2 012 77 49.9 0.54 Transitivity

14 120C 0 3.9 −1.00 Hierarchical
15 210 0 1.7 −1.00 Clusters

6 021C 2 21.4 −0.91 Forbidden
7 111D 3 9.2 −0.67
8 111U 2 9.2 −0.78

10 030C 0 3.1 −1.00
11 201 0 2.0 −1.00

5. Explain why triad 201 is not allowed under the hierarchical clusters
model.

6. Assign the vertices of the network depicted below to clusters and ranks.
Vertex colors indicate strong components. Does your decomposition
satisfy the weak or the strong symmetric-acyclic model?

v2

v3

v5

v6

v7

v4

v1
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7. Which of the following statements about symmetric-acyclic decompo-
sition is correct?
a. In the strong symmetric-acyclic model, clusters do not contain asym-

metric dyads.
b. In the strong symmetric-acyclic model, vertices in different ranks

are always connected by asymmetric dyads.
c. In the weak symmetric-acyclic model, clusters contain mutual or

null dyads only.
d. In the weak symmetric-acyclic model, all asymmetric dyads point

from a lower rank to a higher rank.

10.8 Assignment

In 1976, a literary critic published an essay about contemporary Dutch
prose. In his essay, he distinguished among four trends or movements: nar-
rators, including the authors Donkers, Kooiman, Matsier, and Meijsing;
alienators, including Van Marissing, Robberechts, and Vogelaar; petty re-
alism, including Hart, Hiddema, Luijters, Meinkema, Plomp, and Sijtsma;
and decadence, including Siebelink and Joyce & Co. Find out whether this
classification matches the ranks and clusters in the networks of critical at-
tention in 1976. The simple directed network literature_1976.net
contains an arc between two people if the first has paid attention to the
second in an interview or review. Hint: create a partition reflecting the
classification of the authors according to literary movement.

10.9 Further Reading

� Chapters 6 and 14 of S. Wasserman and K. Faust’s Social Net-
work Analysis: Methods and Applications (Cambridge: Cam-
bridge University Press, 1994) provide an excellent overview over
balance-theoretic models and the analysis of triads. An overview
over the work of Davis, Holland, and Leinhardt on triads can
be found in J. A. Davis’ article “The Davis/Holland/Leinhardt
Studies: An Overview.” In P. W. Holland and S. Leinhardt (Eds.),
Perspectives on Social Network Research. New York: Academic
Press, 1979.” C. Flament, in Applications of Graph Theory to
Group Structure (Englewood Cliffs, N.J.: Prentice Hall, 1963),
proved that triads suffice for detecting balance in complete signed
graphs and Davis [“Clustering and structural balance in graphs.”
In: Human Relations, 20 (1967), pp. 181–7] did this for clus-
terability. For more information on the hierarchical m̄-clusters
model, see E. C. Johnsen, “Network macrostructure models for
the Davis-Leinhardt set of empirical sociomatrices” [in Social
Networks 7 (1985), 203–24].

� For more information on the student government data, con-
sult V. Hlebec, “Recall versus recognition: comparison of two
alternative procedures for collecting social network data.” In
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A. Ferligoj and A. Kramberger (Eds.), Developments in Statistics
and Methodology. (Ljubljana: FDV, 1993). Results of an analysis
of the Dutch literary criticism data are reported in W. de Nooy,
“A literary playground. Literary criticism and balance theory.”
In: Poetics 26 (1999), 385–404.

10.10 Answers

Answers to the Exercises
I. When the arc from advisor3 to minister5 has been removed, four

strong components are found. Now, minister4 and minister5 consti-
tute a strong component on their own, which is separated from the
component containing the prime minister. This may be regarded as a
new rank in the student government discussion network, between the
rank of minister1 and minister2, who send arcs to minister4 and min-
ister5, and the rank including the prime minister, three ministers, and
two advisors, who receive only arcs from them. The arc from advisor3
to minister5 created a cycle containing minister4 and minister5 in the
original network.

II. Without the arc from advisor3 to minister5, you obtained four strong
components. When you remove the lines between clusters with the
Operations>Transform>Remove Lines>Between Clusters command
in the Main screen and change the bidirectional arcs into edges
(Net>Transform>Arcs→Edges>Bidirected only), you can easily see
that three components contain edges only, but the largest component
(including the prime minister) still contains three arcs (see the figure
below). All arcs involve ties between a minister and an advisor. We
must conclude that the weak symmetric-acyclic model applies.

minister1 pminister

minister2

minister3

minister4

minister5

minister6

minister7

advisor1

advisor2

advisor3

Answers to the Questions in Section 10.7
1. Answer b is correct. A dyad is a pair of vertices and the lines among

them. In a network with four vertices, such as the example, there are six
different pairs of vertices, so there are six dyads. In a simple directed
network, a dyad is mutual (arcs in both directions), asymmetric (an
arc in one direction), or null (no arcs). In the example, five dyads are



224 Exploratory Network Analysis with Pajek

mutual and the sixth (v2 and v4) is asymmetric, so there are two types
of dyad.

2. The table below shows the triad census.

Number
No. Type of Triads Model

3 102 0 Balance
16 300 2

1 003 0 Clusterability

4 021D 0 Ranked
5 021U 0 Clusters
9 030T 0

12 120D 0
13 120U 0

2 012 0 Transitivity

14 120C 0 Hierarchical
15 210 2 Clusters

6 021C 0 “Forbidden”
7 111D 0
8 111U 0

10 030C 0
11 201 0
total 4

3. Answer b is correct. In Question 2, you have found two balanced
triads (300) and two hierarchical cluster triads (210). The hierarchical
clusters model allows for balanced triads but the reverse is not true.
Therefore, the hierarchical clusters model is the appropriate model for
this network.

4. The transitivity model is appropriate here. The forbidden triads do not
occur (030C and 201) or occur less often than in random networks,
so a balance-theoretic model characterizes this network. The hierar-
chical cluster triads do not occur, but the network contains far more
transitivity triads (012) than expected by chance. Two ranked clusters
triads (120D and 120U) and both balanced triads appear more often
than expected by chance, but they are also permitted by the transitivity
model, so we may conclude that the transitivity model characterizes
this network.

5. Triad 201 contains two symmetric choices and one null dyad. In the
hierarchical clusters model, vertices connected by symmetric ties be-
long to one (hierarchical) cluster. A null dyad means that two vertices
belong to different clusters. Therefore, two vertices belong to different
clusters because of the null dyad and to the same cluster because of the
path of symmetric choices at the same time. This is a contradiction, so
this triad is not allowed.

6. Arcs between strong components point from the white to the gray com-
ponent and from the gray to the black component. Clearly, there are
three ranks, the black rank is the top rank and the white rank is at the
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bottom. The vertices in the white and gray component are connected
by mutual arcs but two black vertices (v1 and v5) are connected by
an asymmetric tie, so the decomposition does not satisfy the criteria of
the strong symmetric-acyclic model for all strong components.

7. Statement a is correct. In the strong symmetric-acyclic model, clusters
contain no asymmetric dyads, hence all asymmetric dyads are found be-
tween ranks. This is not the case in the weak symmetric-acyclic model,
where asymmetric dyads may occur within clusters (answers c and d).
Answer b is not correct because vertices at different ranks can also be
connected by null dyads.
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Genealogies and Citations

11.1 Introduction

Time is responsible for a special kind of asymmetry in social relations,
because it orders events and generations in an irreversible way. Social
identity and position is partially founded on common ancestors, whether
in a biological sense (birth) or in an intellectual manner: citations by
scientists or references to predecessors by artists. This is social cohesion
by common descent, which is slightly different from cohesion by direct
ties (see Part II). Social communities and intellectual traditions can be
defined by a common set of ancestors, by structural relinking (families
which intermarry repeatedly), or by long-lasting cocitation of papers.

Pedigree is also important for the retrospective attribution of prestige
to ancestors. For example, in citation analysis the number of descendants
(citations) is used to assign importance and influence to precursors. Ge-
nealogy is the basic frame of reference here, so we discuss the analysis of
genealogies first.

11.2 Example I: Genealogy of the Ragusan Nobility

Ragusa, which is now known as Dubrovnik (Croatia), was settled on the
coast of the Adriatic Sea in the seventh century. For a time, it was under
Byzantine protection, becoming a free commune as early as the twelfth
century. Napoleon, having destroyed the Venetian Republic in 1797, put
an end to the Republic of Ragusa in 1806. It came under Austrian control
until the fall of the Austro-Hungarian monarchy in 1918.

In Ragusa, all political power was in the hands of male nobles older
than eighteen years. They were members of the Great Council (Consilium
majus) who had the legislative authority. Every year, eleven members of
the Small Council (Consilium minus) were elected. Together with a duke,
the Small Council had both executive and representative authority. The
main power was in the hands of the Senate (Consilium rogatorum), which
contained forty-five members elected for one year. This organization pre-
vented any single family, such as the Medici in Florence, from prevailing.
Nevertheless historians agree that the Sorgo family was among the most
influential.

226
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The Ragusan nobility evolved from the twelfth century to the fourteenth
century and was finally established by statute in 1332. After 1332, no new
family were accepted until the large earthquake in 1667. A major problem
facing the Ragusan noble families was that, because of their decreasing
numbers and the lack of noble families in the neighboring areas, which
were under Turkish control, they became more and more closely related –
marriages between third and fourth removed relatives were frequent. It is
interesting to analyze how families of a privileged social class organized
their relations by marriage and how they coped with the limited number
of potential spouses for their children.

The file Ragusan.ged contains the members of the Ragusan nobil-
ity from the twelfth to the sixteenth centuries, their kinship relations
(parent–child), their marriages, and their (known) years of birth, mar-
riage and death. Note that this is not an ordinary network file, because
it contains attributes and ties of vertices. The extension .ged indicates
that it is a GEDCOM-file, which is the standard format for genealogical
data as explained in the next section. The genealogy is large, it contains
5,999 persons. For illustrative purposes, we selected the descendants of
one nobleman, Petrus Gondola, in the file Gondola_Petrus.ged (336
persons).

11.3 Family Trees

Across the world, many people are assembling their family trees. They
visit archives to collect information about their ancestors in registers of
births, deaths, and marriages. Because in most Western societies family
names are the usual entries in these registers and family names are the
father’s surname, a patrilineal genealogy is reconstructed, in which father–
child relations rather than mother–child relations connect generations. In
addition, marriages are included in the family tree.

Figure 95 shows a part of the Gondola family tree, which includes
three generations of descendants to Petrus Gondola, who was born in
1356. Note that children born to a Gondola father are included because
they receive the Gondola surname. Children of a Gondola mother are
not included because their surname assigns them to another family in
this historiography of a family name. An exception would be a Gondola
mother who married a Gondola father, but, as shown in Figure 95, this
does not occur among the descendants.

In principle, genealogies contain persons as units and two types of re-
lations among persons: birth and marriage. A person may belong to two
nuclear families: a family in which it is a child and a family in which
it is a parent. The former is called the family of child or orientation
(FAMC) and the latter is the family of spouse or procreation (FAMS).
Petrus Gondola’s family of procreation, for example, contains his wife
and eight children and it is identical to the family of orientation of each
of his children. A husband and wife have the same family of procreation,
but they have different families of orientation unless they are brother and
sister.
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Michiel Mence

Anucla Gondola

Pasqual Sorgo

Jelussa Gondola (1423)

Rade Goce

Benedictus (Benko) Gondola
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Blasius Gondola
(1476)

Federicus Gondola
(1468)

Margarita Gondola
(1497)

Orsula Georgio

Federicus Gondola (1399)

Figure 95. Three generations of descendants to Petrus Gondola (years
of birth).

The standard data format for genealogies (GEDCOM) uses the double
coding according to family of orientation and family of procreation. In
addition, it has facilities to store all sorts of information about the persons
and events (e.g., about their marriage) so we advise using this data format
for the collection and storage of genealogical data. On the Internet, excel-
lent free software and several databases of genealogical data are available
(see Further Reading).

In a representation of a genealogy as a network, family codes are trans-
lated to arcs between parents and children. In a sociogram of kinship ties
that is known as the Ore graph (Figure 96) men are represented by tri-
angles, women by ellipses, marriages by (double) lines, and parent–child
ties by arcs. Note that the arcs point from parent to child following the
flow of time.

In contrast to the family tree, fathers and mothers are connected to
their children in an Ore graph. This greatly simplifies the calculation of
kinship relations because the length and the direction of the shortest semi-
path between two individuals defines their kinship tie, for instance, my
grandparents are the vertices two steps up from me in the Ore graph. They
are relatives in the second remove because two births are included in this
path. In a patrilineal family tree, relatives from my mother’s side (e.g.,
her parents and brother) are not included so it is impossible to establish
my kinship tie with them. In the Ore graph, it is possible to distinguish
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son daughter

father
motherstepmother

stepsister

grandfather-f grandmother-f

uncle

grandfather-m grandmother-m
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son-in-lawdaughter-in-law

aunt

cousin
(female)

Figure 96. Ore graph.

between blood relations and marriage relations, so we may calculate the
remove in a strict sense, that is, ignoring marital relations, or in a loose
sense, including them and considering them relations with zero distance.

In the standard display of a kinship network, marriages and siblings
are drawn at the same layer and layers are either top-down (Figure 96)
or ordered from left to right (Figure 95). A layer contains a genealogical
generation: grandparents versus parents, uncles and aunts versus children,
nieces, and nephews. Such are the generations that we experience during
our lives. From a social point of view, however, we define generations as
birth cohorts (e.g., the generation of 1945–1960). In contemporary West-
ern societies, social generations contain people who were born within a
period of approximately fifteen years. Genealogical generations overlap
with social generations to a limited extent. For four or more generations,
genealogical generations may group people of very different ages as a re-
sult of early marriage and childbearing in one branch of the family and late
marriage in another branch. The birth years of the great-grandchildren of
Petrus Gondola, for instance, range from 1455 (Paucho) to 1497 (Mar-
garita, see Figure 95). Biologically, the former could have been the latter’s
grandfather. As a consequence, Paucho’s grandson could have married
Margarita, causing a generation jump in the genealogy because it would
connect a third-degree descendant of Petrus Gondola (viz., Margarita) to
a fifth-degree descendant (Paucho’s grandson).

The Ore graph is a very useful instrument for finding an individual’s
ancestors (pedigree) and descendants from both the father’s side and the
mother’s side. In addition, it is easy to count siblings and trace the closest
common ancestor of two individuals.

Application
[Main]
Options>
Read/Write>
GEDCOM -
Pgraph,
Ore: 1-Male,
2-Female links

Genealogical data in GEDCOM format can be read directly by Pajek. To
obtain the Ore graph, make sure that the option GEDCOM - Pgraph in
the Options>Read/Write submenu is not selected before you open the
GEDCOM file. When you check the option Ore: 1-Male, 2-Female links,
marriages receive line value zero (drawn as double lines), father–child
ties have a line value of 1 (solid lines), and mother–child ties have a
value of 2 (dotted lines). This is particularly useful if you want to extract
patrilineal ties from the Ore graph. In all other cases, it is better not to
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check this option, so all parent–child ties have line a value of 1. Then,
open a GEDCOM file in the usual way with the File>Network>Read
command, but select the option Gedcom files ( ∗.ged) in the File Type
drop-down menu of the Read dialog screen.

Info>Vector Reading the GEDCOM file, Pajek translates family numbers to parent–
child ties and it creates a partition and four vectors. The partition identifies
vertices that are brothers and sisters, that is, children born to the same
father and mother. Stepbrothers and stepsisters from a parent’s remar-
riage are grouped separately and vertices without parents in the network
are collected in class zero. The vectors contain each person’s sequential
number in the GEDCOM file and his or her year of birth, marriage, and
death. Unknown dates are represented by vector value 9999998. You may
inspect the dates with the Info>Vector procedure in the usual way (see
Section 2.5 in Chapter 2).

Net>Partitions>
Depth>

Genealogical

Layers>In y
direction

Layers>
Optimize layers

in x direction

Layers>
Averaging x

coordinate

The genealogical generations of the Ore graph can be obtained with
the command Genealogical from the Net>Partitions>Depth submenu.
An acyclic depth partition is not possible because the marriage edges are
cyclic: a husband is married to his wife and a wife is married to her
husband at the same time. Draw the network in layers according to the
genealogical depth partition (Layers>In y direction in the Draw screen)
and optimize it in the usual way (Layers>Optimize layers in x direction).
To focus on the distinct branches in the genealogy rather than the vertices,
use the Averaging x coordinate command from the Layers menu. Usually,
the Forward option works well but you may have to apply it more than
once to clearly separate distinct branches as in Figure 97.

[Main]
Options>

Read/Write>
Ore: 1-Male,

2-Female links

The length of the shortest semipath in a symmetrized Ore graph is
the remove or degree of a family relation, provided that all parent–child
ties have a line value of 1 and marriage lines have a line value of zero.
Therefore, you must open the GEDCOM file with the option Ore: 1-Male,
2-Female links not checked in the Option>Read/Write submenu.

Net>Transform>

Remove>all
edges

Net>Transform>

Arcs→Edges>
All

Net>Paths
between 2

vertices>All
Shortest

First, decide whether you want to include marital relations in the cal-
culation. If not, remove the edges from the network (Net>Transform>

Remove>all edges). Then, symmetrize the Ore graph (Net>Transform>

Arcs→Edges>All and do not remove multiple lines) and use the Paths be-
tween 2 vertices>All Shortest command to obtain the geodesics between
two individuals in the network. When asked, do not ignore (forget) the
values of the lines, because a marriage link should not contribute to the
length of the semipath and hence to the remove of the relation. The length
of the shortest paths, which is the distance between the vertices in the
symmetrized network, is printed in the Report screen. Among the descen-
dants of Petrus Gondola (Figure 95), for instance, Paucho Gondola (born
in 1455) is a relative of Margarita Gondola (born in 1497) in the sixth
remove.

Pajek creates a new network of the geodesics it has found and a par-
tition that identifies the vertices on the geodesics in the original network
provided that you requested this in one of the dialog boxes. If we extract
these vertices from the original directed network (Operations>Extract
from Network>Partition and choose class 1) and relocate the vertices,
we obtain that shown in Figure 98. Note the triangles containing two
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Ana GocePetrus Gondola

Pervula GondolaNalcus Proculo Maria
Gondola

Nicola Poca

Figure 97. Descendants of Petrus Gondola and Ana Goce.

parents and one child. The direct path from child to father is just as long
as the indirect path via the child’s mother because a marriage line counts
as zero distance. If we had ignored line values, the shortest paths would
not have included the mothers (except for Ana Goce) in this example.

11

1 11 1

1 1

11 1 1

0
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0

0 0

Rade Goce Benedictus
(Benko)
Gondola

Ana GocePetrus Gondola

Petrus
Gondola

Gondola Gondola

Paucho Gondola

Marinus
Gondola

Mirussa Bincola

Margarita Gondola

Orsula Georgio
Federicus

Gondola

Figure 98. Shortest paths between Paucho and Margarita Gondola.
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In Figure 98, it is easy to see that Petrus Gondola and his wife Anna
Goce are the closest common ancestors of Paucho and Margarita. Of
course, we could already see that in the original family tree (Figure 95),
but we need the shortest paths command in large networks such as the
genealogy of the entire Ragusan nobility, because this is too complicated
to analyze by eyeballing.

Net>k-
Neighbours

The ancestors (pedigree) or descendants of a person are easily found
with the k-Neighbours procedure in the Ore graph. Ancestors are con-
nected by paths toward an individual, so they are its input neighbors.
Descendants are reachable from the individual: they are output neigh-
bors in the Ore graph. You may restrict the selection of ancestors to a
limited number of generations in the Maximal distance dialog box of the
k-Neighbours procedure. Note that the number of generations that you
select is one more than the largest distance that you specify because the
selected person, who also represents a generation, is placed in class zero.
For example, the family tree in Figure 95 contains a number of output
neighbors (descendants) of Petrus Gondola at maximum distance of 3.

The Ore graph is most suited for finding brothers and sisters and for
counting the size of sibling groups in a genealogical network. Pajek auto-
matically creates a brothers/sisters partition, which identifies children of
the same parental couple. Each class is a sibling group, except for class
zero, so the number of vertices within a brothers and sisters class repre-
sents the size of a sibling group. Unfortunately, it is not easy to obtain a
frequency distribution of the size of sibling groups from this partition in
Pajek because the Info>Partition command lists each sibling group (class)
separately.

Info>Partition

It is possible, however, to obtain a frequency distribution of the size of
sibling groups that have the same father or the same mother. In the Ore
graph, the outdegree of a vertex is equal to the number of its children
provided that marriage lines are disregarded. Ideally, every child has a
father and a mother in the genealogical network, so we may count the
number of children for each father or mother. In the case of a single
marriage, the father and mother have the same number of children but
these numbers may differ in the case of remarriages. In the little example
(Figure 96), my father remarried: he has three children (my stepsister,
sister, and me), whereas my mother has only two children (my sister and
me). Therefore, we must look at the outdegree of fathers or mothers, not
at both.

Net>Transform>

Remove>all
edges

Net>Partitions>
Degree>Output

This is achieved in the following way. First, remove the marriage lines
(Net>Transform>Remove>all edges) from the Ore graph. Now, the out-
degree of a vertex is equal to an actor’s number of children, so create an
outdegree partition with the Net>Partition>Degree>Output command
and select it as the first partition in the Partitions menu.

Net>Partitions>
Vertex Shapes

Partitions>
Extract Second

from First

Next, create a partition on vertex shape (Net>Partitions>Vertex
Shapes). Recall that in the Ore graph men are represented by triangles
and women by ellipses. In the vertex shape partition, one class contains
the men and another contains the women. Inspect this partition (e.g., edit
it) to find out which class represents the men or the women. Finally, se-
lect the partition according to vertex shape as the second partition in the
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Table 19. Number of Children of Petrus Gondola and His Male
Descendants

Cluster Freq Freq% CumFreq CumFreq% Representative

0 131 67.5258 131 67.5258 4
1 14 7.2165 145 74.7423 15
2 15 7.7320 160 82.4742 3
3 11 5.6701 171 88.1443 1
4 7 3.6082 178 91.7526 2
5 4 2.0619 182 93.8144 29
6 1 0.5155 183 94.3299 120
7 3 1.5464 186 95.8763 23
8 4 2.0619 190 97.9381 13
9 1 0.5155 191 98.4536 114

11 2 1.0309 193 99.4845 85
12 1 0.5155 194 100.0000 171
sum 194 100.0000

Partitions menu and execute the command Extract Second from First. In
the dialog boxes, choose the class identifying the gender that you want
to select and Pajek will create a new partition with the outdegree of the
selected vertices (viz., the men).

Info>PartitionThe Info>Partition command will produce the desired frequency tabu-
lation (see Table 19). Among Petrus Gondola’s descendants, one man had
twelve children and the others had fewer. Two-thirds (67.5%) of the men
did not have children. Note, however, that they include the youngest men
of the genealogy, who may have had children who were not included in
the data set.

Exercise I
From the genealogical data in Gondola_Petrus.ged, construct a net-
work containing Petrus Gondola (born in 1356) and all his descendants
who received the Gondola surname at birth. In other words, create a
patrilineal genealogy for Petrus Gondola’s offspring.

11.4 Social Research on Genealogies

Kinship is a fundamental social relation that is extensively studied by an-
thropologists and historians. In contrast to people who assemble their
private family trees, social scientists are primarily interested in the ge-
nealogies of entire communities, such as the nobility of Ragusa.

These genealogies, which are usually very large, enable the study of
overall patterns of kinship ties which, for instance, reflect cultural norms
for marriage: who are allowed to marry? Property is handed over from
one generation to the next along family lines, so marriages may serve to
protect or enlarge the wealth of a family; family ties parallel economic
exchange. Demographic data on birth, marriage, and death reflect eco-
nomic and ecological conditions (e.g., a famine or deadly disease causes
high mortality rates).
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Table 20. Size of Sibling Groups∗ in 1200–1250 and
1300–1350

Size of Sibling Group 1200–50 1300–50

0 (no children) 18 16.4% 386 54.5%
1 22 20.0% 87 12.3%
2 18 16.4% 73 10.3%
3 19 17.3% 53 7.5%
4 11 10.0% 38 5.4%
5 10 9.1% 29 4.1%
6–10 12 10.9% 40 5.6%
11–21 — — 2 0.3%
total (# sibling groups) 110 100% 708 100%

∗ The number of children from one father.

The number of marriages and the age of the marital couple, the size of
sibling groups, nuclear families, or extended families are determined and
compared across different societies or different periods. Differences are
related to external conditions and internal systems of norms or rules.

Table 20 compares the number of children of Ragusan noblemen across
two periods: men born in 1200–1250 and 1300–1350. Unfortunately,
many birth dates are unknown, so we added the parents’ children and the
children’s in-laws from the kinship network assuming that they belong to
the same generation. In the Ore graph, the simple outdegree of a vertex
specifies the number of children of a person. Table 20 summarizes the
output degree frequencies. In the first half of the fourteenth century and
in comparison to the previous century, a large proportion of the noblemen
had no children. Perhaps fewer men got married because no new families
were admitted to the nobility as of 1332. Conversely, some men may have
died young as a consequence of the black death epidemic, which struck
the town in 1348.

This type of research may use network analysis but it can also be done
by database counts, for instance, calculations on a GEDCOM genealogy
database. A second type of research, however, is inherently relational and
must use network analysis as a tool. It focuses on structural relinking
between families and the economic, social, and cultural reasons or rules
for structural relinking. Structural relinking refers to the phenomenon that
families intermarry more than once in the course of time. Intermarriage
or endogamy is an indicator of social cohesion within a genealogy. If
families are linked by more kinship ties, they are more likely to act as a
clan: sharing cultural norms, entertaining tight relations, and restricting
ties to families outside the clan.

There are two types of structural relinking: blood marriages and non-
blood relinking. A blood marriage is the marriage of people with a close
common ancestor, for instance, a marriage between a brother and sister
or between a granddaughter and a grandson. The occurrence of this type
of relinking tells us which types of intermarriages are culturally allowed
and which are not. In the Ragusan nobility, a grandson of Benko Gondola
(Benedictus Gondola) married a granddaughter (Anucla Bona), who was
a fourth-degree relative (see Figure 99). Blood marriages between closer
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Figure 99. Structural relinking in an Ore graph.

relatives – a son who married a daughter, a child who married a grand-
child – did not occur among the Ragusan nobility. Apparently, these mar-
riages were not allowed.

Nonblood relinking refers to multiple marriages between families with-
out a close common ancestor. This type of relinking often serves economic
goals, namely to keep the wealth and power within selected families.
Figure 99 shows nonblood interlinking between the Gondola and Sorgo
families: two granddaughters of Petrus Gondola and Ana Goce (Jelussa
and Decussa) marry brothers from the Sorgo family (Pasqual and Dami-
anus), who were acknowledged to be the most influential family among
the Ragusan nobility.

Structural relinking produces semicycles within a genealogical net-
work, for instance, the blood marriage between Benedictus Gondola and
Anucla Bona closes the paths from Benko Gondola to his granddaugh-
ter Anucla and his grandson Benedictus (Figure 99). The nonblood re-
linking between the Gondola and Sorgo families also yields a semicycle
(Petrus Gondola–Benko–Jelussa Gondola–Pasqual Sorgo–Jele–Damianus
Sorgo–Decussa Proculo–Pervula Gondola–Petrus Gondola, among other
semicycles).

However, in the Ore graph not all semicycles represent structural relink-
ing. A father, mother, and child also create a semicycle (e.g., Ana Goce–
Petrus Gondola–Pervula Gondola in Figure 99). In addition, parents and
two or more children create larger semicycles (e.g., Ana Goce–Pervula
Gondola Petrus Gondola–Benko Gondola–Ana Goce). Remarriages yield
even more complicated semicycles that do not point to structural
relinking.

Because it is troublesome to distinguish between semicycles that repre-
sent structural relinking and semicycles that do not, D. R. White and P.
Jorion developed a special kind of genealogical network: the parentage
graph or P-graph. In the P-graph, couples and unmarried individuals are
the vertices and arcs point from children to parents. The type of arc shows
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daughter-in-law
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Figure 100. P-graph.

whether the descendant is male (full arc) or female (dotted arc). In Figure
100, for instance, my son and his wife are connected by a full arc to me and
my spouse; my daughter and her husband are connected by a dotted arc.

The P-graph has several advantages. It contains fewer vertices but the
path distance in a symmetrized P-graph still shows the remove of a rela-
tion, although it is not possible to exclude marital ties from the calculation.
The main advantage of the P-graph, however, is the fact that it is acyclic –
there are no edges between married people – and there are no separate
arcs from mother and father to child. As a result, every semicycle and bi-
component indicates structural relinking, which is either a blood marriage
or another type of relinking. Figure 101 shows the P-graph associated
with the Ore graph of Figure 99. The two semicycles represent structural
relinking: the blood marriage of Benedictus Gondola and Anucla Bona
and the nonblood relinking between the Gondola and Sorgo families.

Apart from specific cases of relinking, social network analysts are in-
terested in the amount of relinking in a genealogy. In a P-graph, this is
measured by the relinking index. To understand this index, we must in-
troduce the concept of a tree in graph theory: a connected graph that
contains no semicycles. A tree has several interesting properties but for
our purposes the fact that it does not contain cycles and semicycles is most
important.

A tree is a connected graph that contains no semicycles.
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Pasqual Sorgo

Jelussa Gondola

Benko Gondola

Pervula Gondola
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Anucla Bona

Juncho Sorgo
& Jele

Damianus (Damiano) Sorgo
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& Jelussa Gondola

Benko Gondola
& Rade Goce

Petrus Gondola
& Ana Goce

Nalcus Proculo
& Pervula Gondola

Petrus Gondola
& Gondola Gondola

Symoneto Bona & Madussa Gondola

Benedictus Gondola
& Anucla Bona

Figure 101. Structual relinking in a P-graph.
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In a P-graph, every semicycle indicates structural relinking because the
people or couples on the semicycle are linked by (at least) two chains of
family ties (e.g., common grandparents on the father’s side and on the
mother’s side). As a consequence, a P-graph which is a tree or a set of
distinct trees (a forest) has no relinking and its relinking index is zero.
Given the number of people and the assumption that a marriage links
exactly one man and one woman, the maximum amount of relinking
within the P-graph of a genealogy can be computed so the actual number
of relinking can be expressed as a proportion of this maximum. This is
the relinking index, which is 1 in a genealogy with maximum relinking
and zero in a genealogy without relinking.

We advise calculating the relinking index on bi-components within the
P-graph rather than on the entire P-graph. Genealogies have no natural
borders; kinship ties extend beyond the boundaries of the data collected
by the researcher, but boundary setting is important to the result of the
relinking index. The largest bi-component within a genealogy is a sensible
boundary because it demarcates families that are integrated into a system
by at least one instance of relinking. In general, structural relinking may
be used to bound the field of study, which means that you limit your
analyses to the families within the largest bi-component of a genealogy.

Let us calculate the amount of structural relinking among the Ragusan
nobility in the period 1200–1350, in which new families were admitted to
the nobility, and 1350–1500, when the nobility was chartered and no new
families were admitted. Because we lack birth dates, we add the parents’
children and children’s in-laws to the couples in which at least one spouse
is known to be born in the selected period. Between 1200 and 1350, a
small number of the couples (137 of 1412 vertices or 9.7 percent) were
connected by two or more family ties, so the relinking index is low for
the network in this period (0.02). Within this bi-component, the relinking
index is higher (0.24), so there is a small core of families, the Sorgo family
among them, who are tightly related by intermarriages.

In the period 1350–1500, the bi-component is larger, containing 476
couples (23.7 percent) and featuring many members of the Goce, Bodacia,
and Sorgo families. The relinking index of the entire network is 0.20 and
within the bi-component the proportion of relinking is 0.69. Both values
are much larger than in the period before 1350, which shows increased
endogamy among the Ragusan nobility.

In the P-graph, each person is represented by one arc except in the case
of multiple marriages: remarriages and polygamy. Because each marriage
is a separate vertex (e.g., my father and mother or my father and step-
mother in Figure 100), men and women who remarry are represented by
two or more arcs. In the P-graph, it is impossible to distinguish between
a married uncle and a remarriage of a father or between stepsisters and
(female) cousins. This problem is solved in the bipartite P-graph, which
has vertices for individuals and vertices for married couples. However,
the bipartite P-graph has the drawback of containing considerably more
vertices and lines than the P-graph and path distance does not correspond
to the remove of a kinship relation. We do not use bipartite P-graphs in
this book.
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Application
Options>Read/

Write>
GEDCOM-

Pgraph

Options>Read/
Write>

Bipartite Pgraph

Options>Read/
Write>

Pgraph+labels

The format of a genealogy that is read from a GEDCOM data file depends
on the options checked in the Options>Read/Write menu. As noted, Pa-
jek transforms a GEDCOM data file into an Ore graph if the option
GEDCOM-Pgraph is not checked. A regular P-graph is created if this
option is checked but the option Bipartite Pgraph is not. If the option
Pgraph + labels is also checked, the name of a person is used as the label
of an arc. All P-graphs have a line value of 1 for male lines and a value of
2 for female lines.

Pajek does not create a brothers and sisters partition in conjunction
with a P-graph because siblings can easily be identified as the input neigh-
bors (remember: arcs point from children to parents!) of a vertex repre-
senting a married couple or an unmarried mother or father. It stores the
years of birth of men and women in separate vectors because a couple
has two birth dates. This also applies to the years of death. In addition,
Pajek lists the year of marriage (9999998 for unmarried individuals), the
family of spouse number (FAMS) for each couple, the family of child num-
bers (FAMC), and the sequential number (INDI) for the men and women
separately.

We advise opening the entire Ragusan nobility genealogy
(Ragusan.ged) as a P-graph (check option GEDCOM-Pgraph in
the Options>Read/Write submenu) and making sure that names are used
as labels of the arcs (also check the option Pgraph + labels). Note that
reading the arc labels takes more time and uses more computer memory,
so you may want to omit them if your network is very large and you do
not really need the labels.

Info>Network>

Indices
The relinking index is calculated by the Info>Network>Indices com-

mand and it is printed in the Report screen. Note that the index is valid
only for P-graphs. On request, Pajek will compute it for any network,
but then its value is meaningless. In the P-graph with the entire Ragusan
nobility, the relinking index is 0.23.

Net>
Components>

Bi-Components

File>Hierarchy>

Edit

If you want to calculate the relinking index for the largest bi-component
in this P-graph, you have to identify the bi-components and extract the
largest bi-component first. The Net>Components>Bi-Components com-
mand, introduced in Chapter 7, identifies the bi-components. Make sure
that the minimum size of a bi-component is set to 3 in the dialog box is-
sued by this command. As you have learned in Chapter 7, bi-components
are stored as a hierarchy, so inspect the hierarchy (File>Hierarchy>Edit)
to find the sequential number and size of the largest bi-component. In the
Ragusan nobility genealogy, we find two bi-components: the first contains
five vertices and the second 1446.

Hierarchy>

Extract Cluster

Operations>
Extract from

Network>

Cluster

Info>Network>

Indices

Extract the second bi-component from the network in the following
way: translate the required class of the hierarchy into a cluster with the
Hierarchy>Extract Cluster command, specifying the sequential number
of the bi-component in the hierarchy, and execute the Extract from
Network>Cluster command from the Operations menu. Finally, calcu-
late the relinking index with the Info>Network>Indices command. The
relinking index is 0.74, which is quite high. If you would like to draw this
bi-component in layers, remember that the arcs point from children to
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parents in a P-graph, so the oldest generations are drawn at the bottom
of the Draw screen.

Nets>Fragment
(1 in 2)>
Options>
Induced

Nets>Fragment
(1 in 2)>Find

Particular types of relinking can be found with the Fragments com-
mands in the Nets menu, which we also used to trace complete subnet-
works (Chapter 3). Create a network that represents the relinking struc-
ture that you want to find (e.g., a marriage between two grandchildren
of the same grandparents) (see Figure 102), with the Net>Random Net-
work command and manual editing in the Draw screen. This fragment
is also available in the file relinking grandchildren.net. Select
this fragment as the first network in the Nets menu and select the P-
graph of the Ragusan nobility genealogy as the second network. In the
Nets>Fragment (1 in 2)>Options dialog box, make sure that Induced is
not checked because additional lines among the vertices in the fragment
are allowed now. Finally, find the fragments with the Nets>Fragment (1
in 2)>Find command. Pajek encounters three instances of this fragment,
among which the marriage of the two grandchildren of Benko Gondola
and Rade Goce.

Nets>Fragment
(1 in 2)>
Options>Check
values of lines

If you want to find a fragment with a particular pattern of male and
female lines, make sure that the lines have the right values in the fragment
(1 for male and 2 for female; the female lines do not have to be dotted)
and select the Check values of lines option in the Nets>Fragment (1 in
2)>Options menu. In the Ragusan network, there are only two instances
of a marriage among grandchildren to the same grandparents where the
grandson is a descendant along patrilineal lines and the granddaughter
descended along matrilineal lines as in the fragment of Figure 102.

When you want to restrict your analysis to a particular birth cohort,
you need a network with a selection of the genealogical data. Because
the vertices of a P-graph may represent couples, you have to take into
account the years of birth of the men and women, which are stored in
separate vectors. You may decide either that both husband and wife must
be born in the selected period or that at least one of them must be in
that period. We should note, however, that vertices may also represent
unmarried individuals, in which case husband or wife is irrelevant. In
addition, missing birth dates, which are to be expected in historical data,
may cause problems if you demand that both husband and spouse are
known to be born in the selected period. Given these complexities, we

1 2

1 2

his parents

relinking grandchildren

her parents

grandparents

Figure 102. Fragment of relinking grandchildren.
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advise to select the right period in your genealogical database software,
produce a separate GEDCOM data file, and have Pajek translate it into
a P-graph. Then, skip the remainder of this section.

Vector>Make
Partition>by

Intervals>
Selected

Thresholds

If this is not possible, however, you may extract the subnetwork in
Pajek by combining information from different vectors. First, translate
the vectors with birth dates of men and women to partitions with the
Vector>Make Partition>by Intervals>Selected Thresholds command. In
the dialog box, enter the limits of the required period (e.g., 1349 and 1500
if you are interested in the people born in 1350 up to and including 1500).
Note that each threshold is included as the upper limit of the interval. In
addition, include the threshold 9999997 to obtain a separate class with the
9999998 code, which represents either unknown or irrelevant birth dates
(e.g., the male birth date in the case of an unmarried woman). Separate
the thresholds by a blank.

Info>Partition If we execute the command, Pajek creates a partition with four classes.
If we inspect the partition with male birth dates (Info>Partition), we see
that 1,025 men were born before 1350, 1,493 were born between 1350
and 1500, and 46 were born after 1500 and we have no information on
1,812 couples or individuals. The partition with female birth dates shows
that 401 women are known to be born between 1350 and 1500.

Partitions>Info>

Cramer’s
V/Rajski

The four classes in the men and women partitions yield sixteen com-
binations, which are listed in Table 21. This table is part of the output
produced by the Partitions>Info>Cramer’s V/Rajski command after se-
lecting the male birth dates partition as the first partition and the female
birth dates partition as the second partition in this menu. Note that the
men are in the rows and the women in the columns and that the second
class represents the period 1350–1500, whereas the fourth class contains
the unknown and irrelevant birth dates.

In Table 21, the second row contains the men who were born between
1350 and 1500 (1,493 in total) and the second column shows the (401)
women born in this period. Only 83 couples are known to consist of
a husband and wife born in the selected period. In a majority of cases,
we deal with unmarried men or unknown birth date of the wife (1,407
cases) and unmarried women or unknown birth date of the husband (317
cases). In very few cases, one spouse is known to be born in the right
period, whereas the other is born in another period, namely before 1350

Table 21. Birth Cohorts among Men and Women

Rows: 10. From Vector 1 [1349 1500 9999997] (4376)
Columns: 11. From Vector 2 [1349 1500 9999997] (4376)

Crosstabs

1 2 3 4 Total

1 51 1 0 973 1025
2 3 83 0 1407 1493
3 0 0 0 46 46
4 268 317 19 1208 1812
total 322 401 19 3634 4376
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(period 1): in one case the husband was born before 1350 and in three
cases the wife was born before 1350.

Partition>

Binarize
It seems reasonable to select all vertices in which either the man or the

woman was born in the right period. This can be done if we create a new
partition identifying the vertices for which the male birth date and/or
the female birth date is coded as class 2. First we have to binarize the
two birth dates partitions such that the period 1350–1500 (class 2 in
these partitions) becomes class 1 in the new partitions, whereas all other
classes become zero. Simply execute the Partition>Binarize command on
each of the birth dates partitions and select class 2 in the dialog boxes.
Do this for both partitions: male and female birth dates.

Partitions>First
Partition, Second
Partition

Partitions>Add
Partitions

Operations>
Extract from
Network>

Partition

Then select the two binarized partitions as first and second partition
in the Partitions menu and sum them (Partitions>Add Partitions). The
resulting partition has three classes: class zero containing (2,565) indi-
viduals or couples without known birth between 1350 and 1500, class
1 containing (1,728) individuals and couples containing a husband or
wife born in this period, and class 2 with (83) couples with both spouses
known to be born between 1350 and 1500. Now we can extract the de-
sired subnetwork from the Ragusan nobility genealogy by executing the
Operations>Extract from Network>Partition command, selecting clus-
ters from one to two in the dialog boxes. This subnetwork contains 1,811
vertices.

Macro>PlayIn the Ragusan nobility genealogy, many birth dates are missing. As-
suming that all children of the same parents and all parents and in-laws
of children belong approximately to the same birth cohort, we may add
them to the people we know were born in the required period. We need
these indirect neighbors to preserve the structure of the genealogical net-
work. The procedure is stored in the macro expand_generation.mcr,
which can be executed with the Macro>Play command. A genealogical
network (Ore graph or P-graph) must be selected in the Network drop-
down menu and a binary partition identifying the selected birth cohort
must be selected in the Partition drop-down menu. Note that the partition
that we used to extract the birth cohort is not binary, because it contains
classes zero, 1, and 2. We must first binarize it such that all selected couples
and individuals are in class 1. Execute the Partition>Binarize command
and select classes 1 and 2 in the dialog boxes if you want to expand this
birth cohort. The macro creates a new partition with the extended birth
cohort in class 1: in our example 2,007 bachelors and couples.

Vector>Extract
Subvector

Info>Vector

The macro can be executed several times to increase the number of
selected vertices but generation jumps may extend the range of birth dates
enormously. We advise applying the macro only once and checking the
range of known birth years among the selected vertices afterwards. To
this end, extract the vertices selected in the expanded partition from the
year of birth vector(s): make sure the expanded birth cohort partition is
selected in the Partition drop-down menu and a year of birth vector in
the Vector drop-down menu and execute the Vector>Extract Subvector
command (select class 1 only). You may inspect the extracted years with
the Info>Vector command, which reports the lowest and highest values:
there should not be years that fall widely outside the selected period. In
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the case of a P-graph, you must check the birth dates of men and women
separately. With the men, the known birth dates range from 1280, which
is seventy years before the selected period, to 1500. The women were
born between 1298 and 1498. Even in its first step, the expansion macro
lengthens the range of birth dates considerably.

Exercise II
What kind of structural relinking does the small bi-component in the
Ragusan nobility genealogy represent: a blood marriage or nonblood re-
linking? Extract this bi-component from the network and draw it to find
the answer to this question.

11.5 Example II: Citations among Papers on
Network Centrality

In several social domains, genealogical terminology is used as a metaphor
for nonbiological affinity. Artists who were trained by the same master
or who are influenced by the same predecessors are considered to belong
to the same family or tradition. A work of art has a pedigree: a list of
former owners. In a similar way, scientists are classified according to their
intellectual pedigree: the theories and theorists they use as a frame of
reference in their work.

In science, citations make explicit this frame of reference, so they are a
valuable source of data for the study of scientific development and scien-
tific communities in scientometrics, history, and the sociology of science.
They reveal the impact of articles and their authors on later scientific
work and they signal scientific communities or specialties which share
knowledge.

In this chapter, we analyze the citations among articles that discuss the
topic of network centrality. In 1979, Linton Freeman published an arti-
cle that defined several kinds of centrality. His typology has become the
standard for network analysis, so we used it in Chapter 6 of this book.
Freeman, however, was not the first to publish on centrality in networks.
His article is part of a discussion that dates back to the 1940s. The net-
work depicted in Figure 103 (centrality_literature.net) shows
the articles that discuss network centrality and their cross-references until
1979. Arcs represent citations; they point from the cited article to the
citing article.

In principle, articles can cite only articles that appeared earlier, so the
network is acyclic. Arcs never point back to older articles just as par-
ents cannot be younger than their children. However, there are usually
some exceptions in a citation network: articles that cite one another (e.g.,
articles appearing at about the same time and written by one author).
We eliminate these exceptions by removing arcs that are going against
time or by shrinking the articles by an author that are connected by
cyclic citations. In the centrality literature network, we used the latter
approach (e.g., two publications by Gilch denoted by #GilchSW-54 in
Figure 103).
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Figure 103. Centrality literature network in layers according to year of
publication.

There are important differences between genealogical data and citation
data. A citation network contains one relation, whereas genealogical data
concern two relations: parenthood and marriage. In addition, an article
may cite all previous articles notwithstanding their distance in time. In
a genealogical network, children have two (biological) parents and par-
enthood ties always link two successive generations. The concept of a
generation is not very useful in the context of a citation network, so we
order the articles by publication date. In Figure 103, layers represent the
year of publication (the centrality_literature_year.clu parti-
tion), which is also indicated by the last two digits in the label of a vertex.

11.6 Citations

Nowadays, citations are being used to assess the scientific importance of
papers, authors, and journals. In general, an item receiving more citations
is deemed more important. Databases of citations, for instance, the Sci-
ence Citation Index and the Social Science Citation Index compiled by the
Institute for Scientific Information (ISI) list the citations in a large number
of journals. Simple calculations yield indices of scientific standing, for in-
stance, the impact factor of a journal (the average number of citations to
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papers in this journal) and the immediacy index (the average number of
citations of the papers in a journal during the year of its publication). In
each year, journals are ranked by their scores on these indices. Compared
over longer periods, these indices show differences between scientific dis-
ciplines. In the liberal arts, for instance, it is rare for authors to cite recent
publications, whereas this is very common in the natural sciences.

Citation analysis is not exclusively interested in the assessment of sci-
entific standing. It also focuses on the identification of specialties, the
evolution of research traditions, and changing paradigms. Researchers
operating within a particular subject area or scientific specialty tend to
cite each other and common precursors. Citation analysis reveals such co-
hesive subgroups and it studies their institutional or paradigmatic back-
ground. Scientific knowledge is assumed to increment over time: previous
knowledge is used and expanded in new research projects. Articles that
introduce important new insights are cited until new results modify or
contradict them. Citation analysis, therefore, may spot the articles that
influence the research for some time and link them into a research tra-
dition that is the backbone of a specialty. Scientific revolutions, that is,
sudden paradigmatic changes resulting from new insights, are reflected
by abrupt changes in the citation network.

Network analysis is the preferred technique for extracting specialties
and research traditions from citations. Basically, specialties are cohesive
subgroups in the citation network, so they can be detected with the usual
techniques. Weak components identify isolated scientific communities
that are not aware of each other or who see no substantial overlap be-
tween their research domains. Within a weak component, a bi-component
identifies sections where different lines of citations emanating from a com-
mon source text meet again. This is similar to the concept of relinking in
genealogical research.

In most citation networks, however, these criteria are not strong enough
because almost all articles are linked into one bi-component. k-Cores
(Chapter 3) offer a more penetrating view. The centrality literature net-
work, for example, contains one large weak component and eleven iso-
lates. There is one large bi-component and twelve vertices are connected
by one citation. The network contains a 10-core of twenty-nine papers
that is the central summit of this network (the black vertices in Figure
104). Each of the articles in this core is connected to at least ten other
articles by citations but we do not know which are cited often and cite
others often.

The cohesion concept (as discussed in Chapters 3–5) does not take time
into account. It does not reflect the incremental development of knowl-
edge, nor does it identify the articles that were vital to this development.
Therefore, a special technique for citation analysis was developed that
explicitly focuses on the flow of time. It was proposed by N. Hummon
and colleagues and it is called main path analysis.

Let us think of a citation network as a system of channels which trans-
port scientific knowledge or information. An article that integrates infor-
mation from several previous articles and adds substantial new knowl-
edge receives many citations and it will make citations to previous articles
more or less redundant. As a consequence, it is an important junction of
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Figure 104. k-Cores in the centrality literature network (without
isolates).

channels and a great deal of knowledge flows through it. If knowledge
flows through citations, a citation that is needed in paths between many
articles is more crucial than a citation that is hardly needed for linking
articles. The most important citations constitute one or more main paths,
which are the backbones of a research tradition.

Main path analysis calculates the extent to which a particular citation
or article is needed for linking articles, which is called the traversal count
or traversal weight of a citation or article. First, the procedure counts all
paths from each source (an article that is not citing within the data set)
to each sink (an article that is not cited within the data set) and it counts
the number of paths that include a particular citation. Next, it divides the
number of paths that use a citation by the total number of paths between
source and sink vertices in the network. This proportion is the traversal
weight of a citation. In a similar way, you can obtain the traversal weight
of each article.

In an acyclic network, a source vertex is a vertex with zero indegree.

In an acyclic network, a sink vertex is a vertex with zero outdegree.

The traversal weight of an arc or vertex is the proportion of all paths
between source and sink vertices that contain this arc or vertex.
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Figure 105. Traversal weights in a citation network.

For example, Figure 105 shows a citation network of six articles ordered
in time from left to right. There are two sources (v1 and v5) and two sinks
(v3 and v4). One path connects source v1 and sink v3 but there is no path
from v5 to v3. Four paths reach v4 from v1 and three paths from v5. In
sum, there are eight paths from sources to sinks. The citation of article v1
by article v3 is included in one of the eight paths, so its traversal weight
is 0.125. The citation of v2 in article v4 is contained in exactly half of all
paths. The traversal weights of the vertices, which are reported between
brackets, are calculated in a similar way.

Now that we have defined and calculated the traversal weights of cita-
tions, we may extract the paths or components with the highest traversal
counts on the lines, the main paths or main path components, which are
hypothesized to identify the main stream of a literature. We can analyze
their evolution over time and search for patterns that reflect the integra-
tion, fragmentation, or specialization of a scientific community.

In a citation network, a main path is the path from a source vertex to a
sink vertex with the highest traversal weights on its arcs. Several methods
have been proposed to extract main paths from the network of traversal
weights. The method we follow here consists of choosing the source vertex
(or vertices) incident with the arc(s) with the highest weight, selecting the
arc(s) and the head(s)of the arc(s), and repeating this step until a sink
vertex is reached. In the example of Figure 105, the main paths start with
vertex v1 and vertex v5 because both source vertices are incident with an
arc carrying a traversal weight of 0.25. Both arcs point toward vertex v6,
which is the next vertex on the main paths. Then, the paths proceed either
to vertex v2 and on to vertex v4 or directly from vertex v6 to vertex v4.
We find several main paths, but they lead to the same sink, so we conclude
that the network represents one research tradition.

A main path component is extracted in a way which is similar to the
slicing procedure used for m-slices (Chapter 5). Choose a cutoff value
between zero and 1, and remove all arcs from the network with traversal
weights below this value. The components in the extracted networks are
called main path components. Usually, we look for the lowest cutoff value
that yields a component that connects at least one source vertex to one
sink vertex. This value is equal to the lowest traversal weight on the main
paths. In our example, this cutoff value is 0.25 and we obtain a main path
component that includes all articles except v3, which is a marginal article
in the research tradition represented by this data set.

ARA
Underline

ARA
Underline

ARA
Underline

ARA
Underline



Genealogies and Citations 247

Of course, article v3 may be very important in another research tra-
dition. The choice of the articles to be included in the data set restricts
the number and size of research traditions that can be found. Like a ge-
nealogy, a citation network is virtually endless so it cannot be captured
entirely in a research project. The researcher has to set limits to the data
collection, but this should be based on sound substantive arguments.

Application
Net>Partitions>
Core>All

In Chapters 3 and 7, we discussed the commands for detecting compo-
nents, bi-components, and k-cores, which identify cohesive subgroups in
a network. In principle, a citation network is directed and acyclic, so you
should search weak components instead of strong components and find k-
cores on input and output ties (command All in the Net>Partitions>Core
submenu).

Net>Citation
Weights

Main path analysis is very easy in Pajek. The commands in the Net>
Citation Weights submenu compute the traversal weights for lines and
vertices in an acyclic network. There are three commands: Search Path
Count (SPC), Search Path Link Count (SPLC), and Search Path Node
Pair (SPNP). The Search Path Count (SPC) command counts the paths
between all source and sink vertices as explained above. The Search Path
Link Count (SPLC) command traces paths from all vertices to the sink
vertices. In the latter procedure, citations of early articles receive lower
weights because they cannot be part of paths emanating from later articles,
so we advise to use it only in special cases where early articles are relatively
unimportant. In the Search Path Node Pair (SPNP) command, each vertex
is considered as a source and as a sink. As a result, vertices and edges in
the middle will receive higher traversal weights.

Net>Citation
Weights>
Normalization of
Weights

There are several ways of normalizing the traversal weights of lines
and vertices in a citation network. Above, we discussed the normal-
ization according to flow (Net>Citation Weights>Normalization of
Weights>Normalize–Flow) for the Search Path Count method: the num-
ber of paths that include a line or vertex divided by the total number of
paths between sources and sinks. This normalization yields the percent-
age of all paths between sinks and sources that include a vertex or line
and it is the recommended normalization. Other options include dividing
the number of paths containing a vertex or line by the maximum found
among the vertices or lines (option Normalize–Max), which is useful when
all traversal weights according to flow are low, and taking the logarithm
of the number of paths containing a vertex or line before dividing it by
the highest (log) score found (option Logarithmic Weights), which is use-
ful when the variation among traversal weights are very high. Finally, it
is possible not to normalize the raw counts (option Without Normaliza-
tion). Note, however, that normalization does not affect the main paths
that are retrieved from the citation network. It merely changes the range
and variation among transversal weights.

Info>Network>

Line Values
The traversal weights of the papers (the original vertices) are stored in

a vector and the weights of the citations (lines) are saved as line values in
a new network (labeled “Citation weights”), which can be inspected with
the Info>Network>Line Values command.
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Table 22. Traversal Weights in the Centrality Literature
Network

Line Values Frequency Freq% CumFreq CumFreq%

( . . . . 0.0000] 90 14.68 90 14.68
(0.0000 . . . . 0.0515] 465 75.86 555 90.54
(0.0515 . . . . 0.1030] 45 7.34 600 97.88
(0.1030 . . . . 0.1545] 8 1.31 608 99.18
(0.1545 . . . . 0.2059] 2 0.33 610 99.51
(0.2059 . . . . 0.2574] 2 0.33 612 99.84
(0.2574 . . . . 0.3089] 0 0.00 612 99.84
(0.3089 . . . . 0.3604] 0 0.00 612 99.84
(0.3604 . . . . 0.4118] 1 0.16 613 100.00
total 613 100.00

When we apply the Search Path Count (SPC) command to the centrality
literature network, about 90 percent of the lines have a traversal weight
of 0.05 or less and thirteen lines have a value exceeding 0.103 (Table
22: be sure the network labeled “Citation weights (SPC)” is selected in
the drop-down menu when you execute the Info>Network>Line Values
command and request #9 clusters). Clearly, one citation is very important
to the development of the centrality literature: it has an extremely high
traversal weight of 0.41. This is the citation of Bavelas’ 1948 article by
Leavitt in 1951. Bavelas (1948) and Leavitt (1951), as well as Freeman
(1979) and Flament (1963) are the vertices with the highest traversal
weights. These are the crucial articles in the centrality literature.

The Citation Weights commands automatically identify the main paths
in the citation network. The commands create a partition identifying the
vertices on the main paths (cluster one) in the original citation network
and they produce a new network that contains the main paths (labeled
“Main path”). In the centrality literature, the main paths start with Bave-
las (1948), proceed to Leavitt (1951), and, finally, end with Freeman (1977
and 1979), see Figure 106.

Net>Transform>

Remove>
lines with value>

lower than

The lowest traversal weight of the arcs in the main path is 0.05, but it
is interesting to use a slightly lower cutoff value to obtain the main path
component here. Let us delete all arcs with traversal weights lower than
0.03. This can be done with the Remove>lines with value>lower than
command in the Net>Transform submenu. Now, determine the weak
components of minimum size 2 with the Net>Components>Weak com-
mand. The network contains two weak components, one large component

0.41 0.14
0.10

0.06

0.09

0.07

0.15

0.15

0.18

0.22
0.111

0.06

0.06

0.06

0.06

0.06

0.06

0.22

0.06

0.06

0.06Bavelas-48

Leavitt-51
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Figure 106. A main path in the centrality literature network.
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Mulder.A60
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CohenBW-62 Flament-63
Cohen.-C64 Cohen..A64

Beaucha-65

Sabidus-66
Cohen..-67
CohenF.-68
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Figure 107. Main path component of the centrality literature network
(not all names are shown here).

with forty-six articles and a small component with three articles by Law-
son and Burgess and eighty isolated vertices.

Operations>
Extract from
Network>

Partition

Partitions>
Extract Second
from First

Let us concentrate on the largest component and extract it with the
Operations>Extract from Network>Partition command, using the ci-
tation network with lines of minimum value 0.03 and the partition ac-
cording to weak components. If we also extract the publication years
of the forty-six articles in this component from the publication years
partition (centrality_literature_year.clu) – select this parti-
tion as the first partition and the weak components partition as the sec-
ond partition in the Partitions menu, and extract the first weak component
(class 1) with the Partitions>Extract Second from First command – we
can draw this component into layers.

Layers>
Averaging x
coordinate

The resulting sociogram may look like Figure 107 if we optimize it with
the Layers>Averaging x coordinate command (Forward or Backward).
This figure reveals that the literature on network centrality was split
into two lines between 1957 and 1979. One line was dominated by Co-
hen and the other by Flament and Nieminen. In 1979, Freeman integrated
both lines in his classic article.

Operations>
Transform>

Direction>

Lower→Higher

Mutual references among articles appearing at approximately the same
time (e.g., two 1954 articles by Gilch in the original centrality network)
or erroneous references to later articles by mistakes during data collection
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and coding may prevent the citation network from being acyclic. Then,
the Citation Weights commands issue a warning and stop; the network
must first be made acyclic. References to later publications can be removed
with the Operations>Transform>Direction>Lower→Higher command
(do not delete lines within clusters) provided that the partition according
to publication dates was selected in the Partition drop-down menu.

Net>
Components>

Strong

Operations>
Shrink

Network>

Partition

Net>Transform>

Remove>loops

In the centrality literature network, however, this solution did not
work because both articles by Gilch appeared in 1954. In this case,
we had to merge the articles. We computed the strong components of
minimum size 2 (Net>Components>Strong) because they contain cycli-
cally connected vertices in a directed network (see Chapter 10). We
shrank each strong component to one vertex in a new network with
the Operations>Shrink Network>Partition command selecting zero as
the class that should not be shrunk because that class contained the
vertices outside the strong components. We removed the loops with the
Net>Transform>Remove>loops command to obtain an acyclic network
that allows the computation of citation weights.

11.7 Summary

This was the last chapter that presented methods that cope with the dy-
namics of time in network analysis. Over time, social relations branch off
into a gamut of independent strands. Kinship relations, for instance, create
family trees that expand rapidly over generations. Sometimes, however,
these strands merge after some time, for instance, people with common
ancestors marry. This is called structural relinking, which is a measure of
social cohesion over time. A social system with much relinking is rela-
tively cohesive because relinking shows that people are oriented toward
members of their own group or family.

In a genealogy, the amount of structural relinking can be assessed pro-
vided that we use a special kind of network: the P-graph. In contrast to
an Ore graph, which represents each person by a vertex, parenthood by
arcs, and marriage by (double) lines, couples and bachelors are vertices
and individuals are arcs in a P-graph. Because symmetric marriages and
parallel mother–child and father–child arcs are not represented by lines
in the P-graph, each bi-component is an instance of structural relinking.

Methods for analyzing citation networks handle the time factor in a
slightly different way. Here, we want to identify the publications that are
the crucial links in the literature on a particular topic. Scientific articles
contain knowledge, and citations indicate how knowledge flows through
a scientific community. Each flow follows a path of citations and citations
that occur in many paths are important to the transmission of knowledge:
they have high traversal weights. Citations with high traversal weights are
linked into main paths, which represent the main lines of development in
a research area. The articles and authors connected by citations of some
minimum traversal weight constitute main path components, which are
hypothesized to identify scientific specialties or subspecialties.
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11.8 Questions

1. The Ore graph depicted below shows part of the family ties of Louis
XIII, king of France (1601–43). Calculate the remove of his relation
with Henrietta Anne Stuart.

Henrietta Maria

Felipe II,SKing

Henrietta
Anne Stuart

Philippe

Louis XIII,FKing

Marguerite

Jeanne

Antony

Henry IV,FKing

Marie
de MedicisFrancesco I

Elizabeth

Christina

Gaston

Anne

Felipe III,SKing

Felipe IV,SKing

Elizabeth Charlotte

Philip

Louis XIV,FKing

Maria Therese

Louis

Maria

Balthasar Carlos

Maria Anne

Margareta

Philip

Carlos II,SKing

Margarita

Ana

Ana

Marie Louise

Anna Maria

Joanna

Charles Stuart

2. Which people constitute the family of orientation of Louis XIII and
what is his family of procreation?

3. What is a generation jump? Indicate one in the Ore graph of Question
1.

4. Draw a P-graph that contains the same information as the Ore graph
of Question 1.

5. How can we distinguish between a blood marriage and a relinking
nonblood marriage in a P-graph? Give an example of both types of
relinking in the genealogy of Louis XIII.

6. Explain why the relinking index of a tree is zero.
7. List all paths from sources to sinks in Figure 105 and show that the

citation weight of the arc from v2 to v4 is correct.
8. Identify the source and sink vertices, the paths between them, and the

traversal weight of the arcs in the citation network depicted below.
What is the main path?
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v1

v2

v3v4

v5

v6 v7

v8

11.9 Assignment 1

The GEDCOM file Isle_of_Man.ged contains the combined genealo-
gies of approximately twenty families from the British Isle of Man. De-
scribe the overall structure of this network and the sections with structural
relinking. Which types of relinking do occur?

11.10 Assignment 2

Publications and citations pass on scientific knowledge and traditions, so
do advisors to their students. The file PhD.net contains the ties between
Ph.D. students and their advisors in theoretical computer science; each
arc points from an advisor to a student. The partition PhD_year.clu
contains the (estimated) year in which the Ph.D. was obtained. Search
for separate research traditions in this network and describe how they
evolve.

11.11 Further Reading

� The genealogical data of the Ragusan nobility example were
coded from the Ph.D. thesis of Irmgard Mahnken (1960): Das
Ragusanische Patriziat des XIV. Jahrhunderts. For an analysis of
a part of the genealogy, see V. Batagelj, “Ragusan families mar-
riage networks” [in: A. Ferligoj and A. Kramberger (Eds.), Devel-
opments in Data Analysis (Ljubljana: FDV, 1996, 217–28)] and
P. Doreian, V. Batagelj, A. Ferligoj, “Symmetric-acyclic decom-
positions of networks” [in Journal of Classification 17 (2000),
3–28].

� For the collection and storage of genealogical data, we advise
to use the GEDCOM 5.5 standard (http://www.gendex.com/
gedcom55/55gcint.htm). Good free software is the Genealogi-
cal Information Manager, available at http://www.mindspring.
com/∼dblaine/gimhome.html, and Personal Ancestral File, which
is produced and distributed by the Church of Jesus Christ
of Latter-day Saints (www.familysearch.org). This organization
compiles a large database of genealogical information from
which downloads can be made. The genealogies from the Isle
of Man (Assignment 1) were downloaded from http://www.isle-
of-man.com/interests/genealogy/gedcom/index.htm.
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� The P-graph was presented by D. R. White and P. Jorion in “Rep-

resenting and analyzing kinship: A network approach” [in: Cur-
rent Anthropology 33 (1992), 454–62] and in “Kinship networks
and discrete structure theory: Applications and implications” [in
Social Networks 18 (1996), 267–314].

� For additional reading on the analysis of kinship relations in the
social sciences, we refer to T. Schweizer and D. R. White, Kin-
ship, Networks, and Exchange (Cambridge: Cambridge Univer-
sity Press, 1998).

� The centrality literature example was taken from N. P. Hum-
mon, P. Doreian, and L. C. Freeman, “Analyzing the structure
of the centrality-productivity literature created between 1948
and 1979”. In: Knowledge-Creation Diffusion Utilization 11
(1990), 459–80. The different types of main path analysis stem
from N. P. Hummon and P. Doreian, “Connectivity in a ci-
tation network: The development of DNA theory.” In: Social
Networks 11(1989), 39–63. E. Garfield’s Citation Indexing:
Its Theory and Application in Science, Technology, and Hu-
manities (New York: Wiley, 1979) is a classic text on citation
analysis.

11.12 Answers

Answers to the Exercises
I. You should realize that a surname was passed on from father to

child in Ragusa. Mother–child ties and marriages do not matter
(we are only concerned with the name given at birth). Therefore,
you should eliminate all marriages and mother–child ties from the
Gondola_Petrus.ged data. This can be done easily if you open the
GEDCOM file with the option Options>Read/Write>Ore: 1-male, 2-
Female links selected. In this network, you can remove the marriages
by deleting all lines (Net>Transform>Remove>all edges) and you can
delete all mother–child ties by removing lines with a value of 2 (choose
Net>Transform>Remove>lines with value>higher than and enter 1
as the upper limit).

In the resulting network, the descendants of Petrus Gondola are
all people who received his surname. Identify them with the k-Neigh-
bours>Output command (Petrus Gondola has a vertex number of
94) and extract them from the network with the Operations>
Extract from Network>Partition command (in the dialog boxes en-
ter 0 and 3, respectively), making sure that the k-neighbors partition
is selected in the partition drop-down menu. If you determine the
genealogical depth partition of the new network (Net>Partitions>
Depth>Genealogical), draw it in layers (Layers>In y direction), opti-
mize it (Layers>Optimize layers in x direction>Forward), and rotate
it 90 degrees ([Draw] Options>Transform>Rotate 2D) it should look
like the sociogram that follows.
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Anucla Gondola

Jelussa Gondola

Benedictus (Benko) Gondola

Petrus Gondola

Petrus Gondola

Pervula Gondola

Pervula Gondola

Bielce Gondola

Nicolaus Gondola

Marinus Gondola

Couan Gondola

Maria Gondola

Petrus Gondola

Madussa Gondola

Benedicta Gondola

Benedictus Gondola

Paucho Gondola

Bielava Gondola

Johannes Gondola

Marinus Gondola

Stephanus Gondola

Federico Gondola

Marinus Gondola

Marinco Gondola

Blasius Gondola

Federicus Gondola

Margarita Gondola

Orsula Gondola

Federicus Gondola

II. In the Application part of Section 11.4, you learned how to deter-
mine the bi-components in a P-graph (command: Net>Components>
Bi-Components), how to create a cluster from a bi-component in the
hierarchy of bi-components (Hierarchy>Extract Cluster), and how
to extract this component from the original P-graph (Extract from
Network>Cluster). In this way, you can obtain the subnetwork of
the small bi-component in the Ragusan nobility genealogy consisting
of five vertices. With the vertices relocated, this network may look
like the sociogram depicted below. From this layout, it is clear that
the marriages closing the semicycle are not blood marriages. Neither
Pasqua Merguncho nor Maria Proculo have a close common ancestor,
nor have Gregorius Proculo and Stana Merguncho. This structural re-
linking is an instance of repeated mariages between two families: the
Proculo and Mernuch/Merguncho families swap a son.

Vita Proculo Maria Proculo

Pasqua Merguncho

Stana Merguncho

Gregorius Proculo

Vita Proculo
Pasqua Merguncho

& Maria Proculo

Klimento Mernuch & Elena
Gregorius Proculo & Stana Merguncho

Proculo Donato
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Answers to the Questions in Section 11.8
1. Louis XIII is the uncle (mother’s brother) of Henrietta Anne Stuart,

so she is a relative in the third degree if we restrict ourselves to blood
relations. Louis XIII is also her stepfather, so the degree is 1 if we
include marital ties.

2. The family of orientation of Louis XIII include his parents Henry IV
and Marie de Medicis, his brother Gaston, and his sisters Elizabeth,
Christina, and Henrietta Maria. Marguerite, the other wife of Henry
IV, may or may not belong to the family of orientation. His family of
procreation contains his wife Anne and their children Louis XIV and
Philippe.

3. A generation jump in a genealogy refers to a relinking marriage that
connects people of different genealogical generations, which are calcu-
lated from the point of view of their common ancestor. The marriage
between Carlos II and Marie Louise creates a generation jump, because
Carlos is a grandson of Felipe III and Margarita (second remove) and
Marie Louise is the granddaughter of the daughter (Anne) of Felipe III
and Margarita (third remove).

4. The P-graph should look like the following figure. Do not forget to
draw different arcs for men and women and to reverse the direction of
arcs.

Maria

Charles Stuart
& Henrietta Maria

Henry IV,FKing & Marie de Medicis

Felipe II,SKing & Ana

Philippe & Henrietta Anne Stuart

Philippe & Elizabeth Charlotte
Louis XIII,FKing
& Anne

Antony & Jeanne

Francesco I & Joanna

Felipe IV,SKing
& Elizabeth

Christina

Gaston

Felipe III,SKing & Margarita

Felipe IV,SKing
& Maria Anne

Philip

Louis XIV,FKing
& Maria Therese

Louis & Ana

Charles II,SKing
& Marie Louise

Anna Maria

Henry IV,FKing & Marguerite

Margareta

Philip

Balthasar Carlos

5. In a P-graph, the husband and wife involved in a blood marriage share
at least one ancestor: there are two paths from the blood marriage
to an ancestor, for instance, from Philippe and Henrietta Anne Stuart
to Henry IV, king of France, and his spouse Marie de Medicis. Both
Philippe and Henriette Anne Stuart are their grandchildren. A relinking
nonblood marriage is a marriage between descendents of families that
are already linked by intermarriage, for example, the Spanish king
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Felipe III and the French king Henry IV are linked by two marriages
among their children: Felipe IV and Elizabeth, Louis, XIII, and Anne.
In a P-graph, this type of relinking is characterized by two semipaths
(or one path and one semipath) between couples.

6. Structural relinking involves semicycles: vertices are connected by two
paths or semipaths. Because trees contain no semicycles by definition,
there is no relinking and the relinking index is zero.

7. The eight paths are as follows: (1) v1 → v3, (2) v1 → v4, (3) v1 →
v2 → v4, (4) v1 → v6 → v4, (5) v1 → v6 → v2 → v4, (6) v5 → v6
→ v4, (7) v5 → v6 → v2 → v4, and (8) v5 → v2 → v4. Four paths
include the arc v2 → v4 (viz., paths 3, 5, 7, and 8), which is half of all
paths, so the traversal weight of this arc is 0.5.

8. The source vertices are v4, v8, and v5; v2, v3, and v1 are sink vertices.
There are six paths from sources to sinks as follows: (1) v4 → v2, (2)
v4 → v6 → v3, (3) v4 → v6 → v7 → v1, (4) v8 → v6 → v3, (5) v8 →
v6 → v7 → v1, and (6) v5 → v1. The arcs v4 → v2 and v5 → v1 are
included in one of these paths, so their traversal weight is 1 divided by
6 as follows: 0.167. The other arcs are included in two paths, so their
traversal weights are 0.333. There are four main paths: (1) from v4 to
v3, (2) from v4 to v1, (3) from v8 to v3, and (4) from v8 to v1.



Part V

Roles

Cohesion, brokerage, and ranking are connected to social roles: being
a member of a group, being a mediator, or being a superior. Each of
these roles is associated with a particular pattern of ties. A blockmodel
describes the social roles and associated patterns of ties in the network at
large. Blockmodels offer a different perspective on the concepts discussed
in previous chapters.
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Blockmodels

12.1 Introduction

In previous parts of this book, we have presented a wide range of tech-
niques for analyzing social networks. We have discovered that one struc-
tural concept can often be measured in several ways (e.g., centrality). We
have not encountered the reverse, that is, a single technique that is able to
detect different kinds of structures (e.g., cohesion and centrality). In this
final chapter, we present such a technique, which is called blockmodeling.

Blockmodeling is a flexible method for analyzing social networks. Sev-
eral network concepts are sensitive to exceptions, for instance, a single arc
may turn a ranking into a rankless cluster (Chapter 10). Empirical data
are seldom perfect, so we need a tool for checking the structural features
of a social network that allows for exceptions or error. Blockmodeling
and hierarchical clustering, which are closely related, are such tools.

Although blockmodeling is a technique capable of detecting cohesion,
core-periphery structures, and ranking, it does not replace the techniques
presented in previous chapters. At present, blockmodeling is feasible and
effective only for small dense networks, whereas the other techniques
work better on large or sparse networks. In addition, blockmodeling
is grounded on different structural concepts: equivalence and positions,
which are related to the theoretical concepts of social role and role sets.
Blockmodels group vertices into clusters and determine the relations be-
tween these clusters (e.g., one cluster is the center and another the periph-
ery). In contrast, the techniques discussed in previous chapters, such as
the measures of centrality, compute the structural position of each vertex
individually.

Blockmodeling uses matrices as computational tools and for the visu-
alization of results. Therefore, we introduce the matrix as a means for
representing social networks before we will proceed to the concept of
equivalence and the technique of blockmodeling.

12.2 Matrices and Permutation

In social network analysis, matrices have been used in addition to so-
ciograms for a long time. A matrix is an efficient tool for representing a

259



260 Exploratory Network Analysis with Pajek

Xavier - 1
Utrecht - 2

Frank - 3
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Norm - 5
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Figure 108. Communication lines among striking employees.

small social network and for computing results on its structure. In ad-
dition, matrices offer visual clues on the structure of small and dense
networks, which is what we use them for in the present section.

A matrix is a two-way table containing rows and columns. The inter-
section of a row and a column is called a cell of the matrix. Figure 108
displays the matrix of the communication network of striking employees
in a wood-processing facility (see Chapter 7). In this matrix, each row
and column represent one vertex of the network, for instance, the first
(highest) row and the first (left) column feature Xavier. The cells in this
row or column show Xavier’s ties. In Figure 108, a black cell indicates
that Xavier communicates with another employee (or with himself) and
a white (empty) cell means that there is no communication. Note that a
matrix usually contains numbers, for instance, 1 for the presence of a tie
and 0 if there is no tie. In Figure 108, we replaced the numbers by black
or white squares to highlight the pattern of communication ties.

This type of matrix is called an adjacency matrix because we can tell
from it which vertices are neighbors (adjacent) in the network, for in-
stance, the black cells in the first row mean that Xavier (vertex 1) com-
municates with Wendle (vertex 11) and Sam (vertex 15). To be more
precise, these black cells indicate that there is a tie from Xavier to Wendle
and Sam. The row entry contains the sender of the tie and the column
entry its recipient, so the first row contains ties from Xavier and the first
column shows the ties to Xavier (e.g., from Wendle and Sam). It is not
a coincidence that Xavier has the same neighbors in his row and col-
umn: the network is undirected, so Xavier’s communication with Wendle
implies that Wendle communicates with Xavier, and so on. An edge is
equivalent to a bidirectional arc, so an edge is represented by two arcs in
an adjacency matrix. In general, the adjacency matrix of an undirected
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network is symmetric around the diagonal running from the top left to
the bottom right of the matrix, which is usually referred to as the diagonal
of the matrix.

The adjacency matrix of Figure 108 contains no black cells on the
diagonal because these cells represent the relation of a vertex to itself and
the employees were not considered to communicate with themselves. Cells
on the diagonal of an adjacency matrix often receive special treatment
because they feature loops.

Because the same vertices define the rows and columns of an adja-
cency matrix, the adjacency matrix is square by definition. In contrast,
a two-mode network such as the network of multiple directors in Scot-
land (Chapter 5), is represented by a matrix that is rectangular but not
necessarily square. We can place the firms in the rows and the directors
in the columns and still include all ties in the cells of this matrix because
firms can only be directly related to directors. Such a matrix is called an
incidence matrix. In an incidence matrix, diagonal cells do not represent
loops.

The pattern of black cells in a matrix offers visual clues on the structure
of the network because we see which lines are present (black) or absent
(white). Just like a sociogram, however, a matrix discloses network struc-
ture only if its vertices are carefully placed. Figure 108, for instance, shows
a seemingly random pattern of black cells. It does not reveal the structure
of the network because the employees are listed in an arbitrary order. If we
order them by their language (English or Spanish) and age (below or over
thirty years), the black cells display a much more regular pattern (Figure
109). Now, it is easy to see that lines occur predominantly within the

Frank - 1
Hal - 2
Gill - 3
Ike - 4

Mike - 5
John - 6

Lanny - 7
Karl - 8
Bob - 9

Carlos - 10
Eduardo - 11

Domingo - 12
Alejandro - 13

Quint - 14
Russ - 15

Utrecht - 16
Ted - 17

Ozzie - 18
Vern - 19
Paul - 20

Norm - 21
Xavier - 22

Wendle - 23
Sam - 24

1 2 3 4 5 6 7 8 9 10 11 12 13 1514 16 1817 19 2120 22 23 24

English-young Hispanic English-old

Figure 109. The matrix of the strike network sorted by ethnic and age
group.



262 Exploratory Network Analysis with Pajek

1

4

3

2

1

2

3

4

1

4

3

2

1 432

1

2

3

4

1 2 3 4

A B

Figure 110. A network and a permutation.

ethnic and age groups: no more than three lines (Karl–Ozzie, Bob–Norm,
and Bob–Alejandro) exist between the groups.

A reordering or sorting of vertices is called a permutation of the net-
work. Essentially, a permutation is a list with an entry for each vertex in
the network, specifying its new vertex number. In other words, a permu-
tation is a renumbering of the vertices in the network.

A permutation of a network is a renumbering of its vertices.

If we assign new numbers to the vertices, the structure of the network
does not change. Compare, for example, networks A and B in Figure 110.
We exchanged the numbers of vertices 2 and 4, but this does not affect the
structure of the network: networks A and B are isomorphic; that is, they
have the same structure. In the matrix, we exchanged vertex numbers
in the rows and the columns and we reordered the matrix obtaining a
different matrix for the same structure.

The matrices look different but they describe the same structure. This
means that we can represent the same network by a number of different
matrices, just as we can draw many different sociograms for one network.
A permutation rearranges a matrix just like an energy command redraws a
sociogram. Therefore, we can use permutations to find matrices that reveal
the structure of a network. Subsequent sections show how to do this.

The strike network permuted by ethnic and age groups (Figure 109)
shows the pattern that characterizes cohesive subgroups: the black
(nonempty) entries cluster around the diagonal of the matrix, where they
form clumps. The clumps identify subgroups of actors who maintain ties
predominantly within their groups. In our example, the clumps nicely
reflect the ethnic and age groups.

Application
Because a matrix can represent a network, it is possible to store network
data in matrix format. For small networks, a matrix is a traditional and
useful alternative to the lists of arcs and edges that we have used so far as



Blockmodels 263

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

----------------------------------------------------------------
Xavier 1. . . . . . . . . . . # . . . # . . . . . . . . .
Utrecht 2. . . . . # . # . . # . . . . # . . . . . . . . .
Frank 3. . . . . . . . . . . . . . . . . # . . . . . . .
Domingo 4. . . . . . . . . . . . . . . . . . . . # # . # .
Norm 5. . # . . . . . . # . . # . . # # . . . . . # . .

Figure 111. Partial listing of the strike network as a binary matrix.

our format for network data files. Pajek can read data in matrix format,
see Appendix 1, Sections 1.2 and 1.3, for details, which also discuss some
disadvantages of the matrix format.

Network
drop-down menu

In Pajek, you can display the matrix of a network by double-clicking its
name in the Network drop-down menu. In the dialog box that appears,
enter a 1 if you want to display a binary matrix, that is, a matrix that tells
only whether a line is present (#) or absent (.). Figure 111 shows part of the
original strike network (included in the Pajek project file strike.paj)
displayed as a binary matrix. Note that the listing consists of raw unfor-
matted text, so it should be displayed in a fixed wide type font such as
Courier. If you want to display the line values in the adjacency matrix,
type a 2 in the dialog box to obtain a valued matrix. In a valued matrix,
an absent line is represented by a 0 in the cell.

In Pajek, networks of 100 vertices or more cannot be displayed in
this way, because they yield enormous matrices. Therefore, the options
“binary” and “valued” are not available for larger networks, which are
automatically reported as lists of arcs and edges. In these lists, each line
represents a vertex, which is identified by its number and label followed
by the numbers of all vertices which receive a line from it. This type of
listing is also the third option (“Lists”) for displaying small networks.

File>Network>

Export Matrix to
EPS>Original

The raw text matrices are not suited for high-quality printing. To this
end, the matrix can be saved with the command File>Network>Export
Matrix to EPS>Original in PostScript format. Line values are automati-
cally translated to the darkness of cells, as in Figure 108 and Figure 109.
Larger networks can be exported in this way, but large matrices are usually
not very helpful visualizations for detecting the structure of a network.

Partition>Make
Permutation

As we have argued, a matrix is usually more informative if it is re-
ordered. In the example of the strike network, we must reorder the ver-
tices according to their membership of the ethnic and age groups, which
is available to us as a partition (strike_groups.clu included in the
project file strike.paj). It is easy to derive a permutation from a parti-
tion such that vertices in the same class receive consecutive numbers: se-
lect the partition in the Partition drop-down menu and execute the Make
Permutation command, which is located in the Partition menu. Pajek cre-
ates a new permutation assigning the lowest vertex numbers to the vertices
in the first class of the partition, and so on.

Permutation
drop-down menu

The permutation is displayed in the Permutation drop-down menu of
Pajek’s main screen. You may inspect and edit a permutation in the usual
ways. When you edit a permutation, you will see one line for each ver-
tex containing two numbers. The first number is the new vertex number
and the second number is the original vertex number. If a compatible
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Domingo
Carlos

Alejandro
Eduardo

Frank
Hal
Karl
Bob
Ike
Gill

Lanny
Mike
John

Xavier
Utrecht

Norm
Russ
Quint

Wendle
Ozzie

Ted
Sam
Vern
Paul

Figure 112. The strike network permuted according to ethnic and age
groups.

network is active in the Network drop-down menu, the vertex label is
also displayed.

File>Network>

Export Matrix to
EPS>Using

Permutation

When the network, the partition, and the permutation are selected in
their respective drop-down menus, you can export the adjacency matrix to
an Encapsulated PostScript file with the command File>Network>Export
Matrix to EPS>Using Permutation. A dialog box prompts for a name of
the file in which the matrix must be saved and another dialog box asks
whether (blue) lines should be drawn between classes according to the
active partition. In a viewer capable of reading PostScript (see Appendix
2), the result should look like that in Figure 112.

Operations>
Reorder>
Network

Operations>
Reorder>
Partition

The permutation of ethnic and age groups can also be used to reorder
the network itself. If the network and permutation are selected in their
drop-down menus, the Operations>Reorder>Network command creates
a new permuted network. Display the reordered network as a binary ma-
trix by double-clicking its name in the drop list and you will see that the
four Hispanic employees have received vertex numbers from 1 to 4 (Fig-
ure 113). Note that the original partition according to ethnicity and age is

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

----------------------------------------------------------------
Domingo 1. . # # # . . . . . . . . . . . . . . . . . . . .
Carlos 2. # . # # . . . . . . . . . . . . . . . . . . . .
Alejandro 3. # # . # . . . # . . . . . . . . . . . . . . . .
Eduardo 4. # # # . . . . . . . . . . . . . . . . . . . . .
Frank 5. . . . . . . . . . # . . . . . . . . . . . . . .

Figure 113. Part of the permuted strike network displayed as a binary
network.
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not compatible with the permuted network but it can also be reordered:
make sure that the original partition and permutation are active in their
drop-down menus and execute the command Operations>Reorder>
Partition.

12.3 Roles and Positions: Equivalence

In social theory, positions and roles are important and related theoretical
concepts. A position, for instance, the position of being an instructor at a
university, is usually connected to a social role or a role set, namely tutor-
ing students and conferring with colleagues. It is hypothesized that this
role or role set involves a particular pattern of ties and relations toward
students, colleagues, and superiors. Sociologists, social psychologists, and
other social scientists investigate the nature of social roles and role sets
by observing interactions and by interviewing people about their motives
and their perceptions of the roles they play.

In social network analysis, we concentrate on the patterns of ties. We
want to identify actors that have similar patterns of ties to find whether
they are associated with a particular role or role set, or we want to check
whether people with similar role sets are involved in characteristic patterns
of ties. In social network analysis, a position is equated to a particular
pattern of ties. Actors with similar patterns of ties are said to be relation-
ally equivalent, to constitute an equivalence class, or to occupy equivalent
positions in the network.

Figure 114 offers a simple example illustrating these ideas. Two in-
structors (i1 and i2) within one department supervise three students (s1
to s3). They contact the students and they are contacted by the students.
The instructors interact, so they are a cohesive subgroup and their inter-
action may cause them to behave in a similar way. The three students,
however, do not necessarily interact. Nevertheless, they are in the same
position with respect to the supervisors, hence they may act similarly
toward them. They are relationally equivalent although they are not a co-
hesive subgroup. It is important to note that the external ties to members
of other positions are just as important to the concept of equivalence as
internal ties within a position.

Figure 114 is an example of a small core-periphery structure in which
the two instructors constitute the core (one position) and the students the
periphery (the other position). Ties occur predominantly within the core

i1

i2

s1

s2

s3

i1 i2 s1 s2 s3

periphery

core

Figure 114. Hypothetical ties among two instructors (i) and three stu-
dents (s).
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and between the core and the periphery, so we see a horizontal and a
vertical strip of ties in the permuted matrix.

So far, we have loosely described the concept of equivalence. Now let
us define one type of equivalence formally, namely structural equivalence:
two vertices are structural equivalent if they have identical ties with them-
selves, each other, and all other vertices. This definition implies that struc-
tural equivalent vertices can be exchanged with no consequences to the
structure of the network.

Two vertices are structural equivalent if they have identical ties with
themselves, each other, and all other vertices.

In our example, in which arcs are either present or absent, let us com-
pare the two vertices in the core (instructors i1 and i2). Clearly, the two
instructors have identical ties to themselves and to each other: none of
them communicates with himself or herself (no loops), and the tie among
them is symmetric. In addition, their ties with vertices in the other posi-
tion – the students – are also identical. If instructor i1 is connected to a
student (e.g., student s2), then the other instructor is also connected to
this student. As a consequence, the rows of the two instructors are identi-
cal, except for the cells on the diagonal because they are not supposed to
contact themselves. The same is true for their columns, which represent
the ties received by the instructors. We may exchange the two instructors
without changing the structure of the network.

In general, we can say that vertices that are structural equivalent have
identical rows and columns (except for the cells on the diagonal) in the
adjacency matrix. With this in mind, it is easy to see that the three students
in the periphery (s1, s2, and s3) are not completely structural equivalent
because vertex s2 is related to vertex s1 but the reverse is not true, so they
have no identical ties to each other. Student s3 is not related to s1, so he
or she is not structural equivalent to s2.

Structural equivalence is based on the similarity or dissimilarity be-
tween vertices with respect to the profile of their rows and columns in
the adjacency matrix. The dissimilarity of two vertices can be calculated
and expressed by an index that ranges from zero (completely similar) to
1 (completely different). In Figure 114, the row and column of instructor
i1 is perfectly similar to the row and column of instructor i2, so their
dissimilarity score is zero (see Table 23). Students s1, s2, and s3 are not

Table 23. Dissimilarity Scores in the Example Network

i1 i2 s1 s2 s3

i1 0.0000 0.0000 0.1875 0.1875 0.2500
i2 0.0000 0.0000 0.1875 0.1875 0.2500
s1 0.1875 0.1875 0.0000 0.1250 0.0625
s2 0.1875 0.1875 0.1250 0.0000 0.0625
s3 0.2500 0.2500 0.0625 0.0625 0.0000
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s1

s3

s2

i1

i2

Figure 115. A dendrogram of similarities.

completely similar in this respect, so their dissimilarity score is larger than
zero (ranging from 0.0625 to 0.125) but they are more similar to each
other than to the instructors in the core (dissimilarities of 0.1875 or 0.25).

Knowing the dissimilarities between all pairs of vertices, how can we
cluster vertices which are (nearly) structural equivalent into positions?
This can be achieved with a well-known statistical technique, which is
called hierarchical clustering. First, this technique groups vertices that are
most similar. In our example, instructors s1 and s2, who are completely
similar with respect to their ties, are merged into a cluster. Then, hierar-
chical clustering groups the next pair of vertices or clusters that are most
similar and it continues until all vertices have been joined.

Figure 115, which is called a dendrogram, visualizes the clustering pro-
cess. You must read it from left to right. First, instructors i1 and i2 are
joined because they are perfectly similar: their dissimilarity is zero. Then,
students s1 and s3 are joined (at dissimilarity level 0.06, see Table 23). In
the third step, student s2 is added to the cluster of s1 and s3. Finally, this
cluster is merged with the cluster of core vertices (i1 and i2) in the last
step of the clustering process.

In the dendrogram, the length of a horizontal branch represents the
dissimilarity between two vertices or clusters at the moment when they
are joined, so you can see that the last step merges two very different
clusters. If you want to partition the vertices into two clusters, you should
separate instructors i1 and i2 from the students. In general, a hierarchy
of clusters is split at the place or places where the branches make large
jumps. In this way, you can detect clusters of vertices that are structural
equivalent or nearly structural equivalent.

Application
Operations>
Extract from
Network>

Partition

Let us apply the concept of structural equivalence to the world trade
network, which we introduced in Chapter 2. The Pajek project file
world_trade.paj contains the network and a partition identifying
world system positions in 1980. Figure 116 shows the matrix con-
taining the countries with known world system position in 1980 (we
extracted classes 1 to 4 of the partition from the network with the
Operations>Extract from Network>Partition command). Line values in-
dicate the gross value of imports of miscellaneous manufactures of metal;
they are represented by the color of the cells in the PostScript matrix:
higher values are represented by darker cells. The distribution of gross
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core strong semiperiphery weak semiperiphery periphery

Figure 116. Imports of miscellaneous manufactures of metal and world
system position in 1980.

imports is highly skewed because a couple of countries trade very high
volumes of goods. We changed all imports over 1 billion U.S.$ to 1 billion
to obtain slightly darker cells for trade ties with lower gross value. Note
that these adjustments are made only for a better display of the matrix.
We use the original trade network in the remainder of this section.

The network is directed, so the matrix is not symmetric although the
values of imports are often in the same range as the values of exports.
The matrix reveals some characteristics of a core-periphery structure that
we have noted before: many and strong ties within the core and between
the core and the semiperiphery but few and weak ties within the semipe-
riphery and the periphery. As a result, the ties concentrate in the horizontal
and vertical strip which is associated with the core countries.

Cluster>Create
Complete

Cluster

Now, let us calculate the dissimilarity of the rows and columns of the
countries in the original trade network. First, we must make a preliminary
step. The dissimilarity method is computationally complex, so it should be
used for small networks or for a small part of a large network. Therefore,
the method requires that we indicate which vertices it should use. We
must identify them in a special data object, which is called a cluster. In our
example, we want to include all countries, so we create a cluster containing
all vertices with the Cluster>Create Complete Cluster command. The
total number of vertices in the network is shown by default in the dialog
box issued by this command, so you may simply press the OK button.
The cluster created by this command is listed in the Cluster drop-down
menu and it can be edited in the usual way.
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Partition>Make
Cluster

If you want to restrict your analysis to a part of the network, however,
identify the vertices for which you want to compute dissimilarities in a
partition and translate the desired class or classes from this partition into
a cluster with the Partition>Make Cluster command. Dialog boxes will
prompt you for the class number or range of class numbers of the parti-
tion that must be selected. For example, you may restrict the calculation
of dissimilarities to the core countries of 1980 by translating class 1 of
the world system positions partition to a cluster. In this case, the Dissimi-
larities command, which we discuss next, calculates dissimilarities for the
core countries only but it takes into account the ties of the core countries
to noncore countries.

Operations>
Dissimilarity>

d1>All

Operations>
Dissimilarity>

Options>
Report Matrix

Because we need a network and a cluster to compute dissimilarities in
Pajek, the Dissimilarity commands are located in the Operations menu.
There are several dissimilarity indices but we present and use only the
index d1. Consult a handbook on numerical taxonomy to learn more
about the other indices (see Further Reading). The dissimilarity d1 of two
vertices is simply the number of neighbors that they do not share (normal-
ized to the interval 0–1). This index may be restricted to input neighbors
(Input; the columns are compared) or output neighbors (Output; the rows
are compared), or it may consider both input and output neighbors (All).
Choose the All command unless you have good reasons for concentrating
on input or output neighbors.

The d1 dissimilarity index examines the neighborhoods of vertices, so
it does not consider the values of lines. If you want the dissimilarity scores
to reflect line values, you should select the Euclidean or Manhattan dis-
tance indices (d5 and d6). In the world trade example, using Euclidean
or Manhattan distance would require structural equivalent countries not
merely to export to and import from the same countries but, on top of
that, have trade ties of comparable intensity. This, however, might be too
harsh a criterion because the value of imports vary dramatically among
countries. We therefore recommend the d1 index here.

Now execute the Operations>Dissimilarity>d1>All command. Pajek
calculates the dissimilarities and reports them in the Report screen if
the option Operations>Dissimilarity>Options>Report Matrix has pre-
viously been selected (note: do not select the other options in this sub-
menu). The command stores the dissimilarities as line values in a new
network, which you may list or print in the usual ways (see Section 12.2).
Note that this network is directed and very dense because each pair of
vertices that are not completely similar (hence: have a dissimilarity larger
than zero) are connected by a pair of arcs. As a rule, do not attempt to
draw and energize this network.

While executing a dissimilarities command, Pajek automatically tries
to apply hierarchical clustering to the newly created network of dissim-
ilarities. It prompts the user to specify the name of a file in which the
dendrogram of the clustering is stored. The dendrogram is saved and not
shown because it is in Encapsulated PostScript format. You can view it
(Figure 117) with a PostScript interpreter (see Appendix 2) or print it on
a PostScript printer. In addition, the results of the hierarchical clustering
are saved as a permutation and a hierarchy.
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Figure 117. Hierarchical clustering of the world trade network.
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Figure 118. Hierarchical clustering of countries in the Hierarchy Edit
screen.

The dendrogram of the world trade network, which is depicted in
Figure 117, shows two very dissimilar clusters of countries in the world
trade network: ten Western European countries, the United States, Japan,
and China are clearly separated from the remaining sixty-seven countries,
most of which are poorer countries.

Net>
Hierarchical
Decomposition>

Clustering>

Options

Hierarchy Edit
screen

This can also be inferred from the hierarchy created as a result of
the Dissimilarity command, which is labeled “Hierarchical Clustering
[Ward].” Note that “Ward” refers to the default hierarchical clustering
method in Pajek. Other methods are accessible from the Net>Hierarchical
Decomposition>Clustering>Options dialog screen. Open the hierarchy
in an Edit screen (click on the button with the writing hand at the left
of the Hierarchy drop-down menu) and expand the root as well as the
next layer of clusters by clicking on them to obtain the listing depicted
in Figure 118. The root unites the two principal clusters. The figures in
square brackets tell you the dissimilarity of the clusters or vertices that are
joined; a larger value means that they are more dissimilar. The cluster of
thirteen countries is internally more similar (0.64) than the larger cluster
(0.84), which corresponds to the fact that the first split within the larger
group is more to the right than the split within the smaller group in the
dendrogram (Figure 117).

[Hierarchy Edit
screen]
Edit>Show
Subtree

How do we know which countries belong to a particular cluster? We
can find the names of the countries in the Hierarchy Edit screen in the fol-
lowing way, provided that a compatible network is active in the Network
drop-down menu. First, make sure that the option Show Subtree is selected
in the Edit menu of the hierarchy’s Edit screen. Otherwise, Pajek displays
only the names of the vertices that were added to the cluster in the present
step of hierarchical clustering. Second, select a cluster in the Edit screen
by left-clicking it and right-clicking it subsequently. In a new window, the
numbers and labels of the vertices in this cluster and all of its subclusters
are listed. If you apply this to the cluster labeled “100071,” for example,
you will see that it contains Austria, Switzerland, Belgium/Luxembourg,
The Netherlands, Sweden, and Spain.

Hierarchical clustering gradually merges vertices into clusters and small
clusters into larger clusters. Which clusters represent structural equiva-
lence classes and which do not? Under a strict approach to structural
equivalence, vertices with zero dissimilarity are structural equivalents. In
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real social networks, however, such vertices are seldom found, so we con-
sider clusters of vertices that are not very dissimilar to represent structural
equivalence classes.

Which vertices are not very dissimilar? There is no general answer to
this question. It is up to you to decide on the number of equivalence
classes that you want, that is, how many times you want to cut up the
dendrogram, but you should always cut it from “right to left”: separate
the most dissimilar clusters first. In the world trade example, you should
separate the thirteen rich countries from the other countries first. Then,
you could make a subdivision within the latter cluster because these coun-
tries are more dissimilar (0.84) than the thirteen rich countries (0.64), and
so on, until you reach the desired number of equivalence classes or further
subdivisions seem to be arbitrary or meaningless.

Let us divide the trade network into four structural equivalence classes,
because we have a partition into four world system positions (core, strong
semiperiphery, weak semiperiphery, and periphery). We split the cluster
of sixty-seven countries (dissimilarity is 0.84) and its largest subcluster
(dissimilarity is 0.78). Now, we can create a partition from the hierarchy
that identifies these four clusters. This is done in two steps.

[Hierarchy Edit
screen] Edit>
Change Type

First, we must close the clusters in the hierarchy that we want to split no
further. Select a cluster by left-clicking it in the Hierarchy Edit screen and
select Change Type from the Edit menu of the Hierarchy Edit screen or
press Ctrl-t. Now, the message (close) appears behind the selected cluster.
Repeat this for the other clusters that must be closed but do not apply it
to any cluster that must be subdivided.

Hierarchy>Make
Partition

Second, execute the Make Partition command from the Hierarchy menu
in the Main screen. This command creates a partition in which each closed
cluster is represented by a class. When you draw this partition in the
original world trade network, you will notice that the equivalence classes
represent a mixture of trade position and geography; the core countries,
which are Western European countries, the United States, Japan, and
China, are delineated from three regional positions: the Americas, Asia
with Oceania, and Europe (including former colonies) with the Middle
East.

File>Network>

Export Matrix to
EPS>Using

Permutation

So far, we have discussed the dendrogram and the hierarchy created by
the Dissimilarities command but not the permutation. The permutation is
labeled “Hierarchical Clustering Permutation [Ward]” and it identifies the
order of the vertices as represented in the dendrogram. When you want
to print the matrix reordered by the results of hierarchical clustering, you
can use this permutation. It is compatible with the partition that you
created from the hierarchy, so you can obtain a matrix with blue lines
indicating the splits that you have made in the hierarchy of clusters (see
Section 12.2).

Exercise I
Apply hierarchical clustering to the strike network (Pajek project file
strike.paj) and delineate the most likely clusters. To what extent do
these clusters reflect the groups according to age and ethnicity?
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Figure 119. An ideal core-periphery structure.

12.4 Blockmodeling

In previous sections, we have drawn adjacency matrices with (blue) lines
demarcating classes of vertices, for example, ethnic/age groups among
the striking employees (Section 12.2), advisors versus students in a small
example network, and world system positions of countries in the trade
network (Section 12.3). By now, we should note that these lines divide the
adjacency matrix into rectangles and these rectangles are called blocks.

A block contains the cells of an adjacency matrix that belong to the
cross section of one or two classes.

We can describe the structure of the network (within and between posi-
tions) by analyzing the blocks of the adjacency matrix. The blocks along
the diagonal express the ties within a position. In an ideal core-periphery
structure (e.g., Figure 119), vertices are linked within the core (vertices i1
and i2), whereas the peripheral vertices (s1 through s3) are not directly
linked. The blocks off the diagonal represent the relations between classes,
namely the relations between the core and periphery. The students derive
their identity from their dependence on the instructors but not from their
internal ties (instead, their identity is based on the absence of internalties).

12.4.1 Blockmodel

Adjacency matrices of networks containing structural equivalence classes
have a very remarkable feature, namely their blocks are either complete
or empty (null blocks), if we disregard cells on the diagonal. This results
from the criterion of structural equivalence that equivalent vertices have
identical rows and columns.

To understand this, imagine that there is one tie among the students
of Figure 119, for instance from s2 to s1. Structural equivalent vertices
must have identical ties to each other, so s1 must also be connected to s2.
If all students are structural equivalent, s3 must have identical ties as s1
and s2, so it must be linked with s1 and s2. Now, the block is complete,
except for the diagonal. This is also true for ties between positions.

Now that we know that the adjacency matrix of a network with struc-
tural equivalence classes contains only complete and null blocks, we may
simplify the adjacency matrix by shrinking each class of vertices to one
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core

periphery

core

core

periphery

periphery

com

com

com

- (null)

Figure 120. Image matrix and shrunk network.

new vertex (entry in the matrix) and mark the block type of each cell in
the new matrix, which is either complete (com) or empty (– or null) in the
case of structural equivalence. This shrunken matrix is called an image
matrix and it contains all information that was present in the original
adjacency matrix. Figure 120 shows the image matrix of a simple core-
periphery structure and a graphical representation of the relations within
and between equivalence classes (positions) in which an arc indicates a
complete block and the absence of an arc signifies a null block.

A blockmodel assigns the vertices of a network to classes and it specifies
the permitted type(s) of relation within and between classes.

The image matrix is the last ingredient we need to define a blockmodel.
A blockmodel for a network consists of a partition and an image matrix.
The partition assigns vertices to equivalence classes and it divides the
adjacency matrix of the network into blocks. The image matrix specifies
the types of relations within and between the classes because it says which
kinds of blocks are allowed and where they may occur. The blockmodel
of the core-periphery structure of Figure 119, for instance, consists of a
partition which assigns instructors i1 and i2 to one class and the three
students (s1, s2, and s3) to another class and the image matrix specifying
the relations between the blocks shown in Figure 120.

A blockmodel describes the overall structure of a network and the posi-
tion of each vertex within this structure. In the example of the instructors
and students, the image matrix shows the type of equivalence that applies
to the network. This network contains structural equivalence classes be-
cause there are only complete and empty blocks. In addition, the image
matrix reveals the core-periphery structure of the network because the
complete blocks are arranged within one horizontal strip and one vertical
strip. Class 1 represents the core, which is internally linked, and class 2
identifies the periphery. Finally, the partition tells us which actors are part
of the core (the two instructors, who constitute class 1) and which actors
belong to the periphery (the three students in class 2). A blockmodel is an
efficient devise for characterizing the overall structure of a network and
the positions of individual vertices.

12.4.2 Blockmodeling

Until now, we have assumed that we knew the blockmodel of a network,
that is, the partition of vertices into classes and the image matrix specifying
the permitted types of blocks. In a research project, naturally, we work the
other way around: we have a network and we want to find the blockmodel
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that captures the structure of the network. The technique to obtain this
blockmodel is called blockmodeling.

In general, blockmodeling consists of three steps. In the first step, we
specify the number of classes in the network, for instance, two classes
or positions if we hypothesize a simple core-periphery structure. In the
second step, we choose the types of blocks that are permitted to occur and,
optionally, the locations in the image matrix where they may occur. In the
case of structural equivalence, for instance, we permit only complete and
empty blocks to occur and we expect one complete block (the core) and
one empty block (the periphery) along the diagonal. Finally, the computer
partitions the vertices into the specified number of classes according to
the conditions specified by the model and, if necessary, it chooses the
final image matrix for the model. In this third step, the blockmodel is
completed.

The first two steps define the image matrix: we fix the number of classes
and the types of blocks (relations) but we do not yet know which vertices
belong to a particular class and sometimes we do not know exactly which
block type will be found in which part of the image matrix. That is settled
in the third step. It goes without saying that we must have some knowledge
or expectations about the network to choose an appropriate number of
classes and to specify types of relations among classes that make sense.
We should have reasons or clues for expecting a core-periphery structure
and structural equivalence in the example of contacts between instructors
and students.

Empirical networks, however, seldom match the ideal represented by
the image matrix. Errors occur but they can be checked easily. Suppose
you know which vertices belong to each class, then you can check whether
each block of the adjacency matrix is of the right type according to the
image matrix. In fact, you compare an ideal matrix (Figure 119) to the real
matrix (Figure 114). In the case of structural equivalence, count the miss-
ing lines within the blocks that should be complete (none in this example)
and count the number of lines that occur in the blocks that should be
empty (one error: the arc from student s1 to student s2, see Figure 121)
to obtain an error score that indicates how well the ideal matrix fits the
real network.

In this approach, the third step of blockmodeling boils down to finding
the partition of vertices into equivalence classes that yields the lowest error
score, that is, that fits the ideal matrix best. First, the computer assigns
vertices at random to the specified number of classes. Then, it calculates
the error score of this solution by comparing the actual matrix to an ideal
matrix represented by the image matrix. Next, it tries to decrease the

i1

i2

s1

s2

s3

i1 i2 s1 s2 s3

periphery

core

X

Figure 121. Error in the imperfect core-periphery matrix.
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error score by moving a randomly selected vertex from one to another
cluster or by interchanging two vertices in different clusters. It continues
this process until it can no longer improve the error score.

This optimization approach to blockmodeling has the advantages and
disadvantages of all optimization techniques (e.g., the Balance command)
namely, if applied repeatedly, it is likely to find the optimal solution but
most of the time you cannot be sure that no better solution exists. In
addition, you must be aware that another number of classes or other
permitted types of blocks may yield blockmodels that fit better. Usu-
ally, it is worthwhile to apply several slightly different blockmodels to
the data set, namely with another number of classes or other constraints
on the relations within or between blocks. This underlines the impor-
tance of careful considerations on the part of the researcher concern-
ing the image matrix that is hypothesized. Moreover, trees are trouble-
some in exploratory blockmodeling because they contain many vertices
that may be exchanged between classes without much impact on the
error score, so apply blockmodeling only to rather dense (sections of)
networks.

In this optimization technique, errors can be weighted and line values
can be used. We do not go into details here, but it should be noted that
lower error scores indicate better fit and an error score of zero always
represents a perfect fit.

Application
As noted, blockmodeling consists of three steps. In the first two steps, the
image matrix is specified: the number of classes and the types of blocks
or relations within and between classes that are allowed. Then, the com-
puter completes the blockmodel by searching the partition of vertices into
classes that match the hypothesized image matrix best. If several image
matrices are possible, it chooses the one which fits best. The error score
shows how well the selected image matrix fits the network.

The blockmodeling commands of Pajek reflect these three steps. Before
we discuss these commands, however, we must warn you that the method,
like all optimization techniques, is time-consuming, so it should not be
applied to networks with more than some hundreds of vertices, in which
case the computer may need a full day to execute the command. For this
reason the command is marked by a star in the menu.

Operations>
Extract from

Network>

Partition

Partitions>
Extract Second

from First

In Pajek, there are two blockmodeling methods: one searches for the
best fitting partition from scratch (Random Start), whereas the other only
tries to improve an existing partition (Optimize Partition). Let us start
with the latter method and apply it to the world trade network, using the
world system positions in 1980 as the starting partition. Both files are
available in the Pajek project file world_trade.paj. Delete the coun-
tries with unknown world system position in 1980 (Operations>Extract
from Network>Partition classes 1–4, see Section 12.3) and remove them
from the world system partition (selecting this partition as the first and
second partition in the Partitions menu and extracting classes 1–4 with
the Extract Second from First command). Thus, we have selected fifty-two
of eighty countries.
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Figure 122. Optimize Partition dialog box.

Operations>
Blockmodeling>

Optimize
Partition

When you select the Optimize Partition command from the Opera-
tions>Blockmodeling submenu, the active partition specifies the number
of equivalence classes you are looking for, which is the first step of block-
modeling. On selection of the command, a dialog box opens (Figure 122).
The selection box shows the last selected type of equivalence. We want
to apply structural equivalence so select this type of equivalence if the
list box does not yet read “Structural Equivalence.” Change none of the
other options, just press the Run button to execute the command.

Pajek lists the initial settings in the Report screen, as well as the initial
image matrix, the initial error matrix, and the error score of the initial
partition. In our example, 366 initial errors are reported: in 366 (of the
52 × 51 = 2652) cells, imports are absent where they should be present
and vice versa. By default, Pajek does not take into consideration line
values, so it pays no attention to the value of imports here. Next, Pajek
tries to improve the partition and creates the best fitting partition it has
found and reports the final image matrix, the final error matrix, and the
associated error score (see Figure 123). The optimal partition fits a little
bit better than the world system positions in 1980 because the error score
has decreased from 366 to 339. However, we do not know whether this
is a small or large error score for a network like this and maybe another
number of classes or other permitted block types would yield a better
solution.
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Image Matrix:

1 2 3 4
1 com com com com
2 - - - -
3 - - - -
4 - - - -

Error Matrix:

1 2 3 4
1 7 28 32 39
2 36 50 55 28
3 6 13 17 14
4 0 0 1 13

Final error = 339.000

Figure 123. Output of the Optimize Partition procedure.

Note that the final image matrix has a very clear structure: the cells
in the first row are all complete, whereas all other cells are empty. This
means that every core country (class 1) exports miscellaneous manufac-
tures of metal to all other countries but no other country exports these
products in the blockmodel: their rows only contain empty (null) cells.
The error score indicates that some of these countries do export miscella-
neous manufactures of metal, but the blockmodel assumes that they are
not.

Partitions>First
Partition

Partitions>
Second Partition

Partitions>
Info>Cramer’s V,

Rajski

The best fitting partition is equal to the initial world system partition
except for one country that has been moved from the core to the strong
periphery. You may check this by selecting the initial partition and the new
partition as first and second partition in the Partitions menu and execute
the Partitions>Info>Cramer’s V, Rajski command. Table 24 shows the
cross-tabulation of the original (rows) and optimized partition (columns).
Almost all countries are on the diagonal, indicating that they remain in
their original class. Just one country moves from the first row (core) to
the second column (strong semiperiphery).

Operations>
Blockmodeling>

Random Start

The second method searches for the best fitting partition without tak-
ing into account an initial partition provided by the user of the pro-
gram. Therefore, no initial partition is needed for the Random Start com-
mand. The dialog box displayed by this command offers the possibility to
specify the number of classes (step 1), the kind of equivalence or block-
model (step 2), and the number of repetitions (see Figure 124). Each rep-
etition uses a new, random partition as a starting point to avoid settling
on a local optimum. Change these choices by clicking on the buttons and

Table 24. Cross-Tabulation of Initial (Rows) and Optimal
Partition (Columns)

1 2 3 4 Total

1 (core) 10 1 0 0 11
2 (strong semiperiphery) 0 17 0 0 17
3 (weak semiperiphery) 0 0 15 0 15
4 (periphery) 0 0 0 9 9
total 10 18 15 9 52
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Figure 124. Random Start dialog box.

entering the required numbers, for instance, change the number of clus-
ters to 4 (core, strong semiperiphery, weak semiperiphery, and periphery)
and the number of repetitions to 100.

Applied to the fifty-two classified countries in the world trade network,
looking for four clusters and structural equivalence, the Random Start
command finds a partition with 281 errors. This is quite an improvement
in comparison to the solution with the world system positions in 1980
as equivalence classes. Now, the procedure does not settle on the image
matrix fitting the initial partition best (Figure 123) but it finds another
image matrix (Table 25, note that you may get a permutation of this image
matrix) in which countries of class 1 export miscellaneous manufactures
of metal to all other countries except for the countries in class 3, whereas
class two countries export to all other countries. Countries of classes 3

Table 25. Final Image Matrix of the World
Trade Network

1 2 3 4

1 com com — com
2 com com com com
3 — — — —
4 — — — —
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and 4 are just importing and not exporting miscellaneous manufactures
of metal.

Exercise II
Draw the image matrix that you expect to fit the strike network
(strike.paj), using structural equivalence. Then, check your expec-
tations by fitting a structural equivalence blockmodel to this network.

12.4.3 Regular Equivalence

Structural equivalence requires that equivalent actors have the same neigh-
bors. In several applications of social network analysis, this criterion is
too strict because it does not cluster actors who fulfill the same role in dif-
ferent locations, for instance, teachers at different universities, who have
different students, so they have ties with similar people but not with the
same people.

For these situations, another type of equivalence has been defined: reg-
ular equivalence. Vertices that are regular equivalent do not have to be
connected to the same vertices, but they have to be connected to vertices
in the same classes. This sounds like a circular argument but it is not. In
the student government discussion network (Chapter 10), for instance,
all advisors are expected to choose ministers for discussing student pol-
itics because they are supposed to advise the ministers. However, they
do not have to advise the same ministers and they do not have to advise
all ministers (e.g., advisor2 chooses minister1 to minister4 but advisor3
selects minister5 and minister7) (Figure 125). In reverse, each minister is
supposed to use the services of at least one advisor but he or she is not
obliged to take advice from all advisors. This is also true for ties within
a class: if one minister selects another minister, each minister must select
a peer and must be selected by a peer. One peer, however, suffices: they
do not have to be related to all peers, so their block is not necessarily
complete.

pminister

ministers

minister2

minister3

minister4

minister5

minister6

minister7

advisor1

advisor2

advisor3

pminister advisors

minister1

X

X

X
X

X

X

X

X
1 2 3 4 5 6 7 1 2 3

Figure 125. Matrix of the student government network.
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We can detect regular equivalence by means of blockmodeling because
there is a special block type associated with regular equivalence, which is
called a regular block. A regular block contains at least one arc in each
row (everyone selects at least one actor) and in each column (everyone
is selected at least once). Regular equivalence allows regular blocks and
null blocks. Note that a complete block is always a regular block, so
structural equivalence is a special kind of regular equivalence or, in other
words, regular equivalence is more general than structural equivalence.

A regular block contains at least one arc in each row and in each
column.

In the student government network with three classes (one class for each
formal position – see Figure 125), two blocks are regular: the choices of
advisors among ministers and the choices among ministers. The block
containing choices from ministers to the prime minister would have been
complete (thus, regular) if ministers three and six had also chosen the
prime minister. The two missing choices are represented by black crosses
in Figure 125; they contribute two units to the error score of the regular
equivalence model for this network.

In Figure 125, two blocks are empty: the choices from advisors to the
prime minister and vice versa. The social distance between these two
classes seems to be too large to be spanned by direct consultation. The
remaining three blocks are neither null nor regular, so they contain at
least one violation against the regular equivalence model. The number
of errors is minimal if we assume these blocks to be empty, so all six
choices in these blocks are errors (white crosses) and we assume that the
ideal matrix contains null blocks here. In our image matrix, we merely
specified that all blocks should be empty or regular. While evaluating the
error score, we discover that it is least erroneous to expect empty blocks
here. Thus, we fix the type of these blocks to null blocks.

Figure 126 shows the image matrix and the number of errors in each
block (the error matrix), which summarize the results. Class 1 contains
the prime minister, class 2 contains the ministers, and the advisors are
grouped in class 3.

The student government discussion network is an example of a ranked
structure that entails a particular location of block types. In a ranked
structure, actors are supposed to choose up. If the ranks are ordered such
that the highest rank is in the first rows (and columns) and the lowest rank
occupies the last rows (and columns), we should not encounter choices

image matrix error matrix
1 2 3 1 2 3

1 - (null) - (null) - (null) 1 0 1 0
2 com reg - (null) 2 2 0 3
3 - (null) reg - (null) 3 0 0 2

Figure 126. Image matrix and error matrix for the student government
network.
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in the blocks above the diagonal of the matrix because they would point
from a higher rank (rows) toward a lower rank (columns). Indeed, we
find empty (null) blocks only above the diagonal in the image matrix of
the student government network, which is a general property of a ranked
structure.

Instead of using a particular type of equivalence to define the block
types which are allowed, we may use any combination of permitted block
types to characterize a network by specifying the type(s) allowed for each
individual block, for instance, a complete block for the ministers to prime
minister block, a regular block for the ministers themselves, and an empty
block for the ministers to advisors block. This is known as generalized
blockmodeling. Note that there are more block types than the three pre-
sented here. Some patterns of block types are known to contain classes
of networks, namely core-periphery models and models of ranks. These
classes have a particular substantive meaning, so it is easy to interpret
them. In the near future further applications to empirical social networks
will probably reveal more classes of blockmodels.

In exploratory social network analysis, we are mainly interested in de-
tecting the blockmodel that fits a particular network. The blockmodel
tells us the general structure of the network and the equivalence classes
that we find can be used as a variable in further statistical analysis. But
we should issue a warning here. We will always find a best fitting block-
model, even on a random network that is not supposed to contain a
regular pattern. Therefore, we should restrict ourselves to blockmodels
that are supported by theory or previous results. We should start out
with a motivated hypothesis about the number and types of blocks in the
network. As in other cases of exploratory network analysis, we should
try to validate the result, e.g., by linking the equivalence classes to ex-
ternal data, such as actor attributes. If equivalence classes of actors have
different properties, tasks, or attitudes, this corroborates the interpreta-
tion that the blockmodel identifies social roles or role sets.

Application
Operations>

Blockmodeling>

Random Start

In Pajek, a blockmodel satisfying regular equivalence is found in the
same way as a structural equivalence blockmodel (see the previous sec-
tion): just replace structural equivalence by regular equivalence in the
equivalence type drop-down menu (see Figure 122 and Figure 124).
If we apply the Random Start blockmodeling procedure to the stu-
dent government discussion network (available in the Pajek project file
student_government.paj), we find eight solutions with seven errors
(under regular equivalence with three classes and hundreds of repetitions).
This is a minimal improvement in comparison to the solution with the for-
mal roles as equivalence classes, discussed above, and it has the disadvan-
tage that a choice must be made among seven alternative solutions. None
of the solutions matches the formal roles but the image matrix resembles
the image matrix in Figure 126 or one of its permutations.

Note that another number of classes and another type of equivalence
may yield even better solutions, for example, we find four errors in regular
equivalence solutions with two classes but the interpretation is difficult:
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Figure 127. Assembling a blockmodel in Pajek.

in one solution advisor2 is separated from the rest of the network, which
seems to be a trivial solution, and in the other solution, advisor1 and
advisor2 are joined by minister4. Therefore, we prefer the original classi-
fication according to formal role within the student government.

In blockmodeling, the option Structural Equivalence tells Pajek that
each block must be either complete (com) or empty (null). In regular
equivalence, each block must be either complete, empty, or regular. The
user has no control over the location of complete, empty, and regular
blocks in the image matrix. In contrast, generalized blockmodeling offers
the possibility of specifying (and fixing) the equivalence type of each block
in the image matrix. For example, we may want to test whether a regular
equivalence blockmodel matches the student government discussion net-
work with three classes in which each class advices higher classes (if any)
and all except the lowest class advice members in their own class.

The required image matrix is depicted in Figure 127 and it is shown
underneath the “Save as MDL File” button if the User Defined option is
picked in the selection box. If you click on one of the cells (blocks) of this
matrix, a list is opened showing thirteen kinds of equivalence. In this list,
you can select one or more (press the Alt key to add another choice) types
of equivalence that you prescribe for the selected cell. In the example, five
cells are forced to be regular equivalent and the remaining four cells must
be empty. In addition, you may raise or lower the penalty of an error in the
selected cell if you think that errors in one cell are more or less important
than errors in another cell. Just click on the number after “Penalty” and
enter a new number.

When you have defined your own blockmodel, you may save it for
future use. Press the “Save as MDL File” button and enter a name for the
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file in which the model must be stored. By default, Pajek gives these files
the extension.mdl (model) and we strongly advise using this file name
extension. In another blockmodeling session, you can open this file by
picking the Load MDL File option in the selection box. After loading
the model, you can inspect it by selecting the User Defined option again.
Finally, you can run the blockmodeling command.

The number of blockmodels that you can try to fit to a network is
immense, especially when you design your own generalized blockmod-
els. Therefore, we advise the following strategy for exploratory block-
modeling: (1) use the results of other analyses and theoretical considera-
tions to assemble an image matrix, (2) try stricter blockmodels and block
types first (structural equivalence is more strict than regular equivalence),
and (3) try a smaller number of classes first. Select the blockmodel with
the lowest error score, but if a model with a slightly higher error score
yields a single solution which is easy to interpret, you should prefer the
latter.

Exercise III
Apply the generalized blockmodel described above to the student govern-
ment discussion network and evaluate the results.

12.5 Summary

With this chapter, we conclude our book on social network analysis. The
families of networks presented in previous parts of this book were re-
viewed once more: cohesive subgroups, core-periphery structures (broker-
age), and systems of ranks. We presented a technique capable of detecting
each of these structures, namely blockmodeling.

In the case of blockmodeling, we need a new representation for net-
works: the matrix. The adjacency matrix of a network contains its struc-
ture: each vertex is represented by a row and a column and arcs are located
in the cells of the matrix: the first row and column belong to the first ver-
tex, the second row and column to the second vertex, and so on. When
sorted in the right way, the adjacency matrix offers visual clues on the
structure of the network. Such a sorting is called a permutation of the
network, which is actually a renumbering of the vertices.

Blockmodeling is not an easy technique to understand. Basically, this
technique compares a social network to an ideal social network with
particular structural features: a model. The researcher must suggest the
model and the computer checks how well this model fits the actual data.

The model, which is called a blockmodel, contains two parts: a parti-
tion and an image matrix. The partition assigns the vertices of the network
to classes, which are also called equivalence classes or positions. In the
adjacency matrix of the network, the classes demarcate blocks: rectan-
gles of cells. Blocks along the diagonal of the adjacency matrix contain
ties within classes, whereas off-diagonal blocks represent relations be-
tween classes.

In the image matrix, which is the second part of a blockmodel, each cell
represents a block of the adjacency matrix. It is a shrunk and simplified
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model of the adjacency matrix. If the vertices within a class are structurally
similar – equivalent, we say – the blocks in the adjacency matrix have
particular features: they are empty, complete, or regular, which means
that there is at least one tie from and to each vertex in a block. More
types of blocks exist but we do not present them here.

The image matrix shows which block types are allowed and, possi-
bly, where to expect them. In addition, the distribution of nonempty
blocks in the image matrix reveals the overall structure of the network.
If the network contains cohesive groups, the nonempty blocks are found
along the diagonal of the image matrix. If the network is dominated by a
core-periphery structure, we find all nonempty blocks in one horizontal
and one vertical strip in the image matrix. Finally, if there is a system
of ranked clusters and the vertices are sorted according to their ranks,
we find the nonempty blocks in the lower or upper half of the image
matrix.

In exploratory blockmodeling, we search for the partition and image
matrix that fit a social network best. Empirical social networks seldom
match a blockmodel perfectly: arcs that should be present are absent or
some absent arcs should be present. The number of errors expresses how
well a blockmodel fits the network. This error score is used to evaluate
different blockmodels for the same network.

Blockmodeling is a powerful technique for analyzing rather dense net-
works but it needs the right input from the researcher to produce inter-
esting results. The number of blockmodels that may be fitted to a social
network is large, so it is not sensible to embark on blockmodeling without
clear conceptions of and expectations on the overall structure of the net-
work. A researcher needs an informed hypothesis about network structure
for a fruitful application of blockmodeling. In this sense, blockmodeling
is used for hypothesis testing rather than exploration. Here, we reach the
limits of the domain we want to cover in this book.

12.6 Questions

1. Below, one adjacency matrix and three sociograms are presented.
Which adjacency matrix belongs to the sociogram?

1

2 3

4

56

A B C

a. Matrix A.
b. Matrix B.
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c. Matrix C.
d. Each matrix.

2. Which of the following statements is correct?
a. An adjacency matrix may contain more rows than columns.
b. An adjacency matrix is always symmetric with respect to the diag-

onal.
c. An incidence matrix may contain more columns than rows.
d. An incidence matrix is always symmetric with respect to the diago-

nal.
3. Of the three adjacency matrices in Question 1, which are isomorphic?

It may help to draw the sociograms of the matrices.
a. Matrices A and B.
b. Matrices A and C.
c. Matrices B and C.
d. All three matrices are isomorphic.

4. Write down the permutation that reorders one matrix of Question 1
into another matrix of that question.

5. According to the adjacency matrix below, which vertices are structural
equivalent?

1

2

3

4

5

6

7

8

6. The dendrogram below displays the results of hierarchical clustering.
Which equivalence classes would you make?

v3

v4

v5

v1

v2

v6

v7

v8

7. Which statement is correct?
a. Regular equivalence allows for regular and empty blocks, but not

complete blocks.
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b. Structural equivalence allows for complete and empty blocks, but
no kind of regular blocks.

c. Regular equivalence is a special case of structural equivalence.
d. Structural equivalence is a special case of regular equivalence.

8. Assign the vertices of the adjacency matrix depicted below to a mini-
mum number of regular equivalence classes.

v1

v2

v3

v4

v5

v6

v7

v8

9. What kind of structure does the adjacency matrix of Question 8 repre-
sent?
a. No particular structure
b. Cohesive subgroups
c. A core-periphery structure
d. A system of ranks

12.7 Assignment

In Mexico throughout most of the twentieth century, political power has
been in the hands of a relatively small set of people who are connected
by business relations, family ties, friendship, and membership of political
institutions. A striking case in point is the succession of presidents, espe-
cially the nomination of the candidates for the presidential election. Since
1929, each new president was a secretary in the previous cabinet, which
means that he worked closely together with the previous president. More-
over, the candidates always entertained close ties with former presidents
and their closest collaborators. In this way, a political elite has maintained
control over the country.

The network mexican_power.net contains the core of this political
elite: the presidents and their closest collaborators. In this network, edges
represent significant political, kinship, friendship, or business ties.

Notwithstanding the fact that one political party (the Partido Revolu-
cionario Institucional) won all elections in the period under consideration,
two (or more) groups within this party have been competing for power.
The main opposition seems to be situated between civilians and mem-
bers of the military (mexican_military.clu: the military in class 1
and civilians in class 2). After the revolution, the political elite was dom-
inated by the military but gradually the civilians have assumed power.
The partition mexican_year.clu specifies the first year (minus 1900)
in which the actor occupied a significant governmental position. All data
are available in the project file mexican_power.paj.
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Draw the network into layers according to the year of “accession to
power” and use it to see when the civilians assume power. Use hierarchical
clustering and blockmodeling to assess whether the political network con-
sists of two (or more) cohesive subgroups and check whether these sub-
groups match the distinction between military and civilians or whether
they cover a particular period.

12.8 Further Reading

� For an introduction to matrices, see Chapter 3 in J. Scott, Social
Network Analysis: A Handbook (London: Sage, 1991), Chap-
ter 3 in A. Degenne and M. Forsé, Introducing Social Networks
(London: Sage, 1999), and Section 4.9 in S. Wasserman and
K. Faust, Social Network Analysis: Methods and Applications
(Cambridge: Cambridge University Press, 1994).

� M. S. Aldenderfer and R. K. Blashfield’s, Cluster Analysis (Lon-
don: Sage, 1984) offers a helpful introduction to hierarchical clus-
tering. A comprehensive overview of (dis-)similarity measures can
be found in P. Sneath and R. Sokal, Numerical Taxonomy (San
Francisco: Freeman, 1973).

� Blockmodeling is explained in Chapters 9, 10, and 12 in S.
Wasserman and K. Faust (see earlier reference) and in Chapter 4
of A. Degenne and M. Forsé (see earlier reference). For general-
ized blockmodeling, consult Doreian, Batagelj, and A. Ferligoj,
Generalized Blockmodeling (Cambridge: Cambridge University
Press, in press).

� The example analyzed in the assignment is taken from J. Gil-
Mendieta and S. Schmidt, “The political network in Mexico.”
In: Social Networks 18 (1996), 355–81.

12.9 Answers

Answers to the Exercises
I. Create a complete cluster (Cluster>Create Complete Cluster) and

determine the dissimilarities in the strike network (Operations>
Dissimilarity>d1>all). The dendrogram is depicted below; inspect
the hierarchy in the Hierarchy Edit screen if you have no PostScript
viewer for the dendrogram. The largest split distinguishes between
the eleven older English-speaking employees (Russ to Sam, cluster
100021 in the hierarchy) and the other employees (cluster 100022).
The latter cluster is internally more heterogeneous than the former,
according to their values in the hierarchy (3.58 versus 1.62). There-
fore, the next great split occurs in the first cluster and it separates
the young English-speakers (cluster 100020) from the Hispanic em-
ployees (cluster 100005). These two splits exactly yield the three age–
ethnic groups. Further splits occur at a far lower level (more to the
left in the dendrogram) and may be ignored.
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Frank

Hal

Gill

Ike

Mike

Karl

Lanny

John

Bob

Domingo

Carlos

Eduardo

Alejandro

Russ

Quint

Utrecht

Paul

Ozzie

Vern

Ted

Norm

Xavier

Wendle

Sam

II. In previous analyses, we found three cohesive groups according to
age and ethnicity in the strike network, so we may assume that there
are three equivalence classes in the blockmodel. In addition, we may
expect a cohesive group to be a complete block: everyone is connected
rather than not connected to everyone else within the group. Links
between groups are sparse, so we may expect off-diagonal blocks
to be empty (null) rather than complete in the image matrix. The
hypothesized image matrix is depicted below.

1 2 3

1 com — —
2 — com —
3 — — com

Now, execute the Operations>Blockmodeling>Random Start com-
mand, choosing structural equivalence, three clusters, and a suffi-
ciently large number of repetitions (some hundreds). Pajek finds two
partitions with an error score of 56. Both are saved as a partition but
none of them nicely delineates the three groups according to age and
ethnicity. The final image matrix resembles the hypothesized image
matrix except for the fact that the third equivalence class is internally
not connected (null block) rather than completely connected. In the
error matrix, we can see that most mistakes (thirty-eight of fifty-eight)
occur here. The young and older English-speaking employees are sim-
ply connected too loosely to be recognized as a complete subnetwork
(clique).
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III. Following the steps outlined in the application part of Section 12.4.3,
the special ranked generalized blockmodel can be constructed. Run
this model many times on the student government discussion network
and you will obtain two optimal partitions with seven errors each.
The model fits the network just as well as the regular equivalence
model computed in Section 12.4.3 but now there are just two optimal
partitions compared to eight under the regular equivalence model.
That is a step forward. Drawing the network and the partitions, we
see that two advisors are placed in the third equivalence class, and the
first class contains the prime minister and ministers three and seven.
The results suggest a split among the ministers.

Answers to the Questions in Section 12.6
1. By convention, the first (top) row and the first (left) column represents

the vertex with number 1. Vertex 2 is identified by the second row and
column, and so on. The sociogram contains an arc from vertex 2 to
vertex 3, so the cell at the intersection of the second row and the third
column must contain an arc. In adjacency matrix B, this is the case so
this is the only matrix which may represent the sociogram. Check the
remaining arcs and black cells: they match. Answer b is correct.

2. Answer c is correct. In an incidence matrix, the rows represent ac-
tors and the columns contain the events to which the actors can be
affiliated. The number of actors (rows) is not necessarily equal to the
number of events (columns), so the number of columns may be larger
than the number of rows (and vice versa). In an adjacency matrix, the
rows as well as the columns represent all vertices in the network, so
their numbers must be equal (answer a is not correct). The adjacency
matrix of an undirected network is always symmetric with respect to
the diagonal, but this is not necessarily so in the case of a directed
network (answer b is incorrect). Finally, it is a coincidence and not a
necessity if for each actor u who is affiliated to event v, there would be
an actor v who is affiliated to event u. Incidence matrices are seldom
symmetric (answer d is incorrect).

3. In matrices A and B, three vertices do not send arcs (their rows are
empty), one vertex sends one arc, and two vertices send two arcs. These
matrices may describe isomorphic networks. The vertices of matrix C,

1

2 3

4

56

5

2 4

1

36

A B

however, have different outdegree: one vertex has zero outdegrees and
the remaining five have one outdegree. The network of matrix C cannot
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be isomorphic to the networks of matrices A and B. Are the networks
of matrices A and B isomorphic? If we draw them, we can see that their
structures are identical. Answer a is correct.

4. The permutation that transforms matrix A into matrix B can be read
from the sociograms drawn in the answer to Question 3 (clockwise):
vertex 2 remains vertex 2, 4 becomes 3, 1 becomes 4, 3 becomes 5, 6
remains 6, and 5 becomes 1.

5. Vertices with identical rows and columns are structurally equivalent.
In the adjacency matrix, vertices 1and 7 are structurally equivalent,
because their rows are empty and their columns contain six arcs send
by the remaining six vertices. Vertices 2, 4, and 6 are also structurally
equivalent, and this is also true for vertices 3, 5, and 8.

6. In the first step, vertices v6, v7, and v8 must be separated from the rest.
Then, vertices v1 and v2 can be split from vertices v3, v4, and v5. At
this stage, the dissimilarities between vertices within a cluster are low,
so it is not sensible to further subdivide the three equivalence classes.

7. Answer d is correct. A complete block is also a regular block because
each row and each column contains at least one entry (arc) within the
block. Structural equivalence is a special type of regular equivalence
(answer d). The reverse is not true (answer c is incorrect). Therefore,
complete blocks are allowed under regular equivalence (answer a is
incorrect) and a special type of regular block, namely the complete
block, is allowed under structural equivalence (answer b is incorrect).

8. A regular equivalence block is regular (at least one arc in each row
and column) or empty. The rows of vertices v1, v2, and v3 are empty,
so their horizontal blocks are null blocks. No other vertex has an
empty row, so we cannot add a vertex to this cluster because we would
get blocks in the rows of these vertices that are not empty and not
regular because not every row contains an arc. For similar reasons,
we may cluster vertices v6, v7, and v8: they have empty columns. If
we cluster the remaining vertices v4 and v5, we obtain a solution with
three regular equivalence classes: (1) v1, v2, and v3, (2) v4 and v5, and
(3) v6, v7, and v8. In the adjacency matrix with gray lines separating
classes, we can easily check that each block is either empty or regular.

v1

v2

v3

v4

v5

v6

v7

v8

9. Answer d is correct because all entries are situated at one side of the
diagonal, which means that vertices consistently choose up (or down).
It is clearly not a structure of cohesive subgroups or a core-periphery
structure because the blocks on the diagonal are empty.



Appendix 1

Getting Started with Pajek

A1.1 Installation

Pajek software for network analysis can be installed on all computers
operating under Windows 95, 98, 2000, NT, or XP. The software can
be installed on the computer’s hard disk: double-click the file named
Pajek.be.exe (Pajek book edition) and follow the instructions.

Pajek can be started by double-clicking the file Pajek.exe, which you
will find in the directory where you installed the program. The subdirec-
tory Doc contains additional information about the software in several
hypertext files (.htm), which can be opened in an Internet browser, and
Portable Document Files (.pdf), which can be read with (Adobe) Acrobat
Reader.

A1.2 Network Data Formats

File>Network
>Read

Pajek can read network data in several plain text formats, that is, files
containing unformatted text (ASCII). We briefly discuss them in the order
in which they appear on the dialog box issued by the File>Network>Read
command (Figure 128).

The first two data formats are indigenous Pajek formats: Pajek networks
and Pajek matrices. The Pajek network format (the filename extension
is.net) is explained in Chapter 1 (Section 1.3.1) and additional features
for longitudinal networks are discussed in Chapter 4 (Section 4.5). Basi-
cally, it is a list of vertices followed by a list of arcs and edges. It is the
most flexible format because it allows for multiple lines and many (layout)
properties of the vertices and lines can be specified, which are explained
in the file DrawEPS.htm on the book’s Web site. The Pajek network for-
mat is in line with the logic of relational databases. See Section A1.3.3
for more information on organizing your network data as a relational
database and exporting from database software to Pajek. There are three
network formats: Arcs/Edges, ArcsList/EdgesList, and ArcsList/EdgesList
(min). In Section A1.3, we discuss only the first type (Arcs/Edges) because
it is most flexible.

The Pajek matrix format (with the filename extension.mat) is slightly
different. The list of vertices is the same as in the Pajek network format
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Figure 128. Read Network dialog box.

but the list of edges and arcs is replaced by a matrix consisting of integers
or real numbers, which are separated by blanks (Figure 129). This is an or-
dinary adjacency matrix (see Chapter 12, Section 12.2). The Pajek matrix
format is useful for importing network data in matrix format.

The third data format is the Vega format devised by Pisanski. The fourth
format, GEDCOM, is the standard data format for genealogical data,
which is discussed in Chapter 11 (Section 11.3, see also Further Reading).
The fourth format, UCINET DL files, is the raw data format of another
widely used program for network analysis: UCINET. Both UCINET and
Pajek can read networks exported in this format, so this is the format for
exchanging data between the two software packages. For more informa-
tion about UCINET, consult the Web site http://www.analytictech.com/.

The last three data formats (Ball and Stick, Mac Molecule, and MDL
MOL) were developed for chemistry. These formats are not widely used
in social network analysis.

*Vertices 6
1 "Ada" 0.1646 0.2144 0.5000
2 "Cora" 0.0481 0.3869 0.5000
3 "Louise" 0.3472 0.1913 0.5000
4 "Jean" 0.1063 0.5935 0.5000
5 "Helen" 0.2892 0.6688 0.5000
6 "Martha" 0.4630 0.5179 0.5000

*Matrix
0.000 1.000 1.000 0.000 0.000 0.000
1.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

Figure 129. A network in Pajek matrix format.



294 Exploratory Network Analysis with Pajek

A1.3 Creating Network Files for Pajek

There are several ways to create data files that can be read by Pajek. We
distinguish between three methods: creating data files manually within
Pajek, creating them in a word processor, and exporting them from a
relational database. We present the methods in this order, from the simple
and inflexible to the complicated and versatile.

A1.3.1 Within Pajek

Net>Random
Network>Total

No. of Arcs

In Pajek, you can create new networks, partitions, and vectors manually
by means of a number of commands and tricks, which have been presented
in the chapters of this book. Let us start with creating a new network.
We suppose that you have the data on the vertices and lines at hand (e.g.,
on paper). Start Pajek and use the Net>Random Network>Total No.
of Arcs command to create a new network (see Chapter 1, Section 1.4).
Enter the desired number of vertices in the first dialog box and request
zero arcs in the second dialog box because you are going to add the lines
manually.

Partition>Create
Null Partition

File>Partition>

Edit

As a first step, add labels to the vertices so they can be identified more
easily. Here, the trick is to create a new partition with the Partition>Create
Null Partition command (see Chapter 2, Section 2.3) and then open it in
an Edit screen (the File>Partition>Edit command, see Chapter 2, Section
2.3). The result may look like that in Figure 130. In this screen, you can
manually edit the labels of the vertices. Now you have defined the labels
of the vertices.

File>Network>

Edit

Editing Network
screen

As a next step, you must add lines to the network. This can be done
in the Editing Network screen (Figure 131), which can be opened either
from the Main screen with the File>Network>Edit command specifying
a vertex number or label or from the Draw screen by right-clicking a
vertex. Double-click the word Newline to add an edge (enter the number
of the vertex that must be connected to the selected vertex) or an arc
[enter the vertex number preceded by a plus sign (arc toward the selected
vertex) or a minus sign (arc from the selected vertex)]. This is discussed
in more detail in Chapter 1, Section 1.4.

Figure 130. Editing vertex labels.
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Figure 131. Edit Network screen.

File>Partition>

Edit

Draw>Draw-
SelectAll

Change the class
number of
vertices

If you have a discrete characteristic of the vertices (e.g., the sex of per-
sons), you can store this in a new partition. Create a new empty partition
and open it in an Edit screen as discussed above. Then give each person
(vertex) the appropriate sex code in the Edit Partition screen. Just enter
the right code in the “Val” column (see Figure 130 and Chapter 2, Sec-
tion 2.3). Note that Pajek accepts only numerical codes. As an alternative,
you can draw the network with a new empty partition by executing the
Draw>Draw-SelectAll command (see Chapter 2, Section 2.3). Now, you
can respectively raise and lower the class associated with a vertex by left-
clicking the vertex while pressing the Shift key, which is equivalent to
clicking with the middle mouse button, or left-clicking it while holding
down the Alt key (see Chapter 2, Section 2.3).

Vector>Create
Identity Vector

File>Vector>
Edit

Vectors, which specify continuous characteristics of vertices, may be
created in a similar way. Create a new vector with the Vector>Create
Identity Vector command and edit it manually in the Editing Vector screen,
which opens on execution of the File>Vector>Edit command. Initially,
all vertices have one as their vector value. You can manually change it to
the desired number.

File>Network>

Save

File>
Partition>Save

File>Vector>
Save

Don’t forget to save the data files before you exit from Pajek, otherwise
your work will be lost. Pajek does not save data files automatically. Save
the data files by means of the diskette button to the left of the drop-down
menus or with the Save command in the appropriate submenu of the File
menu: Network, Partition, or Vector. You can save the network in any of
Pajek’s formats as well as in UCINET’s DL format.

A1.3.2 Word Processor

Net>Random
Network>Total
No. of Arcs

It is possible to create a network data file in Pajek, but adding lines by
means of the Editing Network screen (Figure 131) is quite tedious. Usually,
it is more efficient to create a network with the right number of vertices
but without lines in Pajek with the Net>Random Network>Total No.
of Arcs command and to change vertex labels and add lines in a word
processor. Note: never use tabs!

Figure 132 shows an empty network consisting of six vertices, which
was created with the Net>Random Network>Total No. of Arcs com-
mand and saved from Pajek as a Pajek Arcs/Edges network file. It is a
plain text file so it can be opened in any word processor (e.g., NotePad
and WordPad). Its first line specifies the number of vertices. This number
may never be lower than the highest vertex number in the network.
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*Vertices 6
1 "v1" 0.1000 0.5000 0.5000
2 "v2" 0.3000 0.1536 0.5000
3 "v3" 0.7000 0.1536 0.5000
4 "v4" 0.9000 0.5000 0.5000
5 "v5" 0.7000 0.8464 0.5000
6 "v6" 0.3000 0.8464 0.5000

*Arcs

Figure 132. An empty network in Pajek Arcs/Edges format.

The first line is followed by the list of vertices: each vertex has one line
containing the vertex number (here: 1 to 6), the vertex label, which is the
letter V followed by a number by default, and the x, y, and z coordinates
of the vertex in a layout. In a word processor, you can easily change these
properties of the vertices but it is wise not to meddle with the vertex
numbers even though Pajek allows vertices to be out of order or some
vertex numbers to be absent in the list. Empty lines, however, are not
allowed in the list of vertices.

In Figure 132, the last line reads *Arcs, which signals the start of
the list of arcs. In this example, the list is still empty. You may add arcs
manually, using one line for each arc. First, specify the number of the
sending vertex. Next, add one or more spaces and the number of the
receiving vertex. Optionally, you can add the line value after one or more
spaces. If you do not specify the line value, it is considered to be 1 (e.g.,
the arc from vertex one to vertex two in Figure 133). For undirected lines,
first add the line *Edges and then use a line for each edge just like the
arcs. The only difference is that it does not matter which vertex is specified
first. There is no limit to the number of arcs or edges, and multiple arcs
and edges are allowed. The order of the lines does not matter.

If you prefer to enter the data as a matrix, as in Figure 129, replace
the line *Arcs with *Matrix and type in a square matrix, that is, a
matrix with as many rows as columns. Use one line for each row and
at least one space between the cells in different columns. You may use
any number of spaces between two numbers within a row. Now, the
network data file may look like that in Figure 134: there is an arc from
vertex 1 to vertex 2 (second number or cell in the first row of the matrix)
with a line value of 1. Line values may have decimal places and negative
signs.

*Vertices 6
1 "v1" 0.1000 0.5000 0.5000
2 "v2" 0.3000 0.1536 0.5000
3 "v3" 0.7000 0.1536 0.5000
4 "v4" 0.9000 0.5000 0.5000
5 "v5" 0.7000 0.8464 0.5000
6 "v6" 0.3000 0.8464 0.5000

*Arcs
1 2
2 5 2.5
4 5
*Edges
3 4 -1
5 6

Figure 133. A network in the Pajek Arcs/Edges format.
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*Vertices 6
1 "v1" 0.1000 0.5000 0.5000
2 "v2" 0.3000 0.1536 0.5000
3 "v3" 0.7000 0.1536 0.5000
4 "v4" 0.9000 0.5000 0.5000
5 "v5" 0.7000 0.8464 0.5000
6 "v6" 0.3000 0.8464 0.5000

*Matrix
0 1 0 0 0 0
0 0 0 0 2.5 0
0 0 0 -1 0 0
0 0 -1 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0

Figure 134. A network in the Pajek matrix format.

[Main]
Options>Read/
Write>Threshold

There are some disadvantages to the matrix data format. First of all,
Pajek cannot distinguish between an edge and a bidirectional arc. There-
fore, a matrix read by Pajek only contains arcs. Second, Pajek cannot
distinguish between a line with a value of zero and an absent line, so
Pajek replaces all zeros with arcs with a line value of zero unless it is
instructed to ignore lines with a value of zero in the Threshold field of
the Options>Read/Write dialog box. The threshold must be set to zero
before a network is opened. Note that the threshold applies to absolute
values: negative line values (e.g., −1 in Figure 134) are not eliminated
if the threshold is zero. Finally, it is impossible to have multiple lines in
matrix format.

Until now, we have considered only one-mode networks. Section 5.3 in
Chapter 5, however, introduced two-mode networks: networks consisting
of two sets of vertices such that all lines are found between the sets (e.g.,
affiliations of people to organizations). Pajek network data files have a
special arrangement for two-mode networks. You can split the list of
vertices into two sets or modes in the *Vertices statement by specifying
the total number of vertices followed by one or more spaces and the
number of vertices in the first mode. This requires that the list of vertices
is sorted such that the vertices in the first mode have the lowest vertex
numbers and the vertices in the second mode have the highest numbers.
Figure 135 shows the data file of a two-mode network consisting of two
organizations and four persons. Note that Pajek will issue a warning if it
encounters lines within a mode, which should not occur in a two-mode
network.

*Vertices 6 2
1 "org1" 0.1000 0.5000 0.5000
2 "org2" 0.3000 0.1536 0.5000
3 "person1" 0.7000 0.1536 0.5000
4 "person2" 0.9000 0.5000 0.5000
5 "person3" 0.7000 0.8464 0.5000
6 "person4" 0.3000 0.8464 0.5000

*Arcs
1 3
2 5 2.5
1 4
*Edges
2 4 -1
1 6

Figure 135. A two-mode network in the Pajek Arcs/Edges format.
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Figure 136. Four tables in the world trade database (MS Access 97).

A1.3.3 Relational Database

Data on large networks are optimally stored as relational databases. In a
relational database, two tables can represent a one-mode network (Figure
136): one table contains the vertices of the network (e.g., countries) and
another table stores the lines between the vertices (e.g., trade relations
such as imports). This matches the basic structure of the Pajek Arcs/Edges
network format: a list of vertices and a list of lines.

This book’s Web site contains a Microsoft Access database with the
world trade data of Chapter 2 (see Section 2.10 for the data sources):
world_trade_94.mdb. The database is made with MS Access version
97, so you have to convert the database if you open it in a newer ver-
sion of this software. The Countries table is the heart of the database,
containing one record (row) for each country (Figure 137). Each country
has a numerical code, which is its vertex number in the network. In addi-
tion to the country’s name, several properties are listed, including its GDP,
geographic location, and population growth. The table provides the data
for the list of vertices in a network data file and the data for partitions

Figure 137. Contents of the Countries table (partial).
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Figure 138. A Lookup to the Countries table.

and vectors (e.g., GDP and population size of the countries). In principle,
any relevant characteristic of the countries can be added to this table. For
instance, we added the coordinates of the country in a map (fields x and
y), which we used to create the geographical layout of the trade network
in Figure 10 (see Chapter 2).

The network lines are stored in separate tables. We collected the in-
formation on two kinds of trade: imports of miscellaneous manufactures
of metal (table Imports: Manufactures) and imports of cereals (table Im-
ports: Cereals). Both tables contain one record for each trade tie with the
code of the exporting country (field tail) and the code of the importing
country (field head). The value of imports (in 1,000 U.S.$) and the share
in a country’s total imports of this commodity have been registered. These
tables are very similar to the arcs list in a Pajek network file. In addition,
we created a table of undirected ties (viz., countries that share a border
(table Neighbors). This table contains a record for each pair of neigh-
boring countries and it is the source of a list of edges in a network data
file.

The Imports: Cereals table exemplifies a feature of relational database
software that is very useful for efficient data entry. Once the table of
vertices has been created and filled with data, references to this table can
be made from another table. In a table containing lines between vertices,
you can look up the (vertex) number of a country directly. In MS Access,
for example, the countries can be displayed as a list, from which you
can easily pick the right country: start typing the country’s name and the
software will lead you to the country you are looking for (Figure 138).
When you pick a country from this list – press Enter when the country is
found – the country’s (vertex) number is added to the table of ties although
its name is displayed. This helps avoiding data entry errors.

Once all data have been entered into the database, Pajek network data
files can be created. This boils down to combining the table of the vertices
(Countries) with one or more tables of ties (e.g., Imports: Manufactures
and Neighbors) in the right layout. In Microsoft Access, the Report util-
ity is most suited for that. If you open the list of reports in the example
database, you will see several reports (Figure 139). For exporting a one-
mode network, two reports are needed. The first report (List of vertices)
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Figure 139. Export a report to plain text.

lists the vertices in the right layout and adds the *Vertices line. The sec-
ond report (List of arcs) contains the formatted list of arcs with the *Arcs
line. In the case of an undirected relation, a report is needed starting with
*Edges instead of *Arcs (report List of edges). The two reports (or three
reports in case there are arcs and edges simultaneously) are combined in
a master report (Export network to Pajek: just arcs, Export network to
Pajek: just edges, and Export network to Pajek: arcs and edges), which
merely concatenates the partial reports.

The master report must be exported to plain text: text without special
layout characters. Unfortunately, Microsoft Access is a little uncooper-
ative at this point. It is possible to export the report in plain text for-
mat. Right-click the report in the report list (Figure 139) and select Save
As/Export and subsequently To an External File or Database and finally
save it with Text Files selected as the Save as type. Sometimes, however, the
saved file has an empty line every four lines, which renders it unreadable
to Pajek.

As an alternative, the report can be exported to Microsoft Word (in
Rich Text format) with the Tools>Office Links>Publish It with MS Word
command. Now Access adds page breaks, which must be deleted before
the file is saved in plain text format. The Rich Text format file is automat-
ically opened in MS Word, where you can delete the page breaks with the
command Replace (or Ctrl h). Enter ∧m, which denotes a page break, in
the Find what: line and replace it with nothing (leave the Replace with:
line empty). Finally, use the command File>Save As and select the Plain
text ( ∗.txt) type to save the network data file. Give it the .net extension
so Pajek can recognize it as a network data file.

Exporting partitions and vectors is less complicated but more sensitive
to errors. Partitions and vectors are simply sorted lists of numbers, one
number for each vertex on a separate line, preceded by a *Vertices
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statement. A simple report listing the sorted contents of a field in the
table of vertices is all you need to create a partition or vector data file;
the reports Export a partition and Export a vector do this. They can be
exported to plain text files in the manner just described. Use the.clu and
.vec extensions to enhance recognition by Pajek.

However, the user should be careful. The report can export nonnumeric
fields but Pajek cannot handle these. This will be apparent when you try
to open a nonnumeric partition or vector in Pajek. There is an even more
important limitation. The report lists just the values sorted by vertex
number. The value attached to the lowest vertex number is stored in the
first line after the *Vertices statement. Reading the partition or vector,
Pajek will assume that this value belongs to vertex 1. Therefore, vertex
numbers in the database must start with 1 for a partition or vector to
match the network. For the same reason, no vertex numbers may be
missing in the exported network, so vertex numbers must range from 1
to the number of vertices.

This is required for a partition or vector exported from the database to
match a network exported from the same database. Otherwise, the parti-
tion or vector will contain fewer vertices than the network, so you cannot
combine them in Pajek. If you want to export only some of the vertices
in the database, you should either renumber the remaining vertices in the
database (in the vertices table as well as in the relations tables!) or ex-
port the entire network, partitions, and vectors and remove the unwanted
vertices from the network, partitions, and vectors in Pajek (see Chapter
2).

As a final note on exporting vectors (and coordinates in the list of
vertices), we want to draw your attention to the language and regional
settings of Windows. If decimal places are not separated by a point, Pajek
will not be able to read the numbers. You must either adjust your regional
settings or replace your local decimal separator by a point by means of a
word processor in your data files.

Exporting a two-mode network such as corporate interlocks is more
complicated. In a relational database, one would probably store the ver-
tices in two tables: one containing the first mode, for instance, the compa-
nies (table Company in Figure 140), and the second mode, for instance,

Figure 140. Tables and relations in the database of Scottish companies.
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the directors, in another table (table Director in Figure 140). Ties connect
vertices from one table of vertices to the other (table Affiliations in Figure
140). In Pajek, the vertex numbers of the two modes should not overlap.
One should number the vertices in the first mode (the firms) from 1 to
the number of vertices. The numbering of the other mode (the directors)
should start with 1 plus the number of vertices in the first mode. If this
precaution is taken (in the example database, queries automatically per-
form this task), a two-mode network can be exported to Pajek along the
lines sketched above, with the additional trick of merging the two tables
of vertices into one list.

The example database Scotland.mdb contains the data from John
Scott’s study of interlocking directorates (the example of Chapter 5) and
a report for exporting a two-mode network (Export two-mode network
to Pajek). In this example, special queries ensure that the vertex numbers
of directors and companies do not overlap.

In the Pajek Web site, we included an empty MS Access (97) database
(network.mdb) that you can use as a starting point for your own data
collection. The database contains the tables, queries, and reports you need
to create Pajek data files for one-mode and two-mode networks. The
tables contain a minimum of sample data, which can easily be replaced
by your own data. Note that vertex numbers are automatically assigned
to vertices in the tables. Do not delete a vertex and its number because
that number cannot be used afterwards. Furthermore, do not change the
names of the reports, tables, and fields within the tables unless you know
very well what you are doing. Renaming may affect the reports and the
links between tables. To make the most of the relational database, learn
more about the database software or find someone who can advise you.

A1.4 Limitations

Pajek can handle networks up to 9,999,997 vertices. In general, draw-
ings of networks should contain no more than a few thousand vertices
because for very large networks the drawing procedure is time consum-
ing and the drawing is visually unattractive. By default, Pajek will not
draw networks larger than 5,000 vertices but you can change this limit
in the Options>Read/Write menu. Available resources on the computer
may pose additional limitations.

A1.5 Updates of Pajek

Updates of Pajek can be downloaded from http://vlado.fmf.uni-lj.si/
pub/networks/pajek/default.htm. Due to modifications, newer versions
of Pajek may not match the illustrations, command names, and output
described in this book exactly.



Appendix 2

Exporting Visualizations

[Draw] ExportIn Chapter 1, several options for exporting graphical output were briefly
discussed. We provide more details in this appendix. In Section A2.1, we
discuss the graphical formats that Pajek exports to. Next we discuss the
options to adjust the layout of the exported image (Section A2.2).

A2.1 Export Formats

Pajek can save a sociogram in six different graphical formats. In most
cases, viewers and plug-ins must be installed on your computer before
you can display the exported layout. We now discuss each graphic format,
how it is exported from Pajek, and how it can be viewed and edited. Note
that all references to software and Web sites are made to the year 2004;
software updates may have changed and Web sites may have disappeared
since then.

A2.1.1 Bitmap

Export>BitmapA bitmap exported from Pajek with the Export>Bitmap command is
merely a screen shot of the Draw screen in its current state, which is saved
to a file. Because the bitmap is a very general graphical format, it can be
viewed and embedded in most Windows software. A bitmap can be edited
in any Windows paint program but editing is cumbersome because you
have to edit each pixel (screen point) separately. It is not possible to move
entire vertices, lines, or labels. The bitmap format is useful mainly for a
quick presentation of a sociogram. For quality images, use Encapsulated
PostScript or Scalable Vector Graphics.

A2.1.2 Encapsulated PostScript

Encapsulated PostScript (and ordinary PostScript) produces two-
dimensional vector drawings: each vertex, line, and label is defined as
a separate shape with a particular location in the plane. These formats
have been developed for quality printing. The drawing or any part of it can
be enlarged or reduced without loss of quality. All figures in this book,
except for the screenshots, are based on Encapsulated PostScript from
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Pajek. Note that partition cluster numbers, which are displayed within
vertex labels in the Draw screen, are automatically replaced by numbers
inside the vertices in PostScript output (e.g., see Figure 31 in Chapter 3).

Export>EPS/PS If you export a network layout in Encapsulated PostScript or PostScript
formats (the Export>EPS/PS command), you can choose among several
file types in the Save As dialog box. On the one hand, you can choose
between Encapsulated PostScript (EPS) and ordinary PostScript (PS). We
advise using Encapsulated PostScript always; ordinary PostScript cannot
be directly viewed or printed.

On the other hand, you can choose between What You See Is What
You Get (WYSIWYG), Clip, and NoClip. This choice affects the size and
boundary of the exported drawing. In the WYSIWYG export, a vertex
or label located outside the boundaries of the Draw screen will not be
visible in the drawing (although it is defined in the drawing and it will be
visible if the bounding box is adjusted) and the drawing may not fit on the
standard A4 paper size. The NoClip export adjusts the size of the drawing
so it can be printed on A4 paper (portrait), and the Clip file adjusts the
boundaries of the drawing so all vertices and labels are included and there
is more or less the same white margin everywhere. We recommend the Clip
format.

Most Windows applications cannot show Encapsulated PostScript fig-
ures, so you have to use a special viewer or translate the drawing
into another format. GhostScript and GhostView software is a free
viewer for (Encapsulated) PostScript, which can be downloaded from
http://www.cs.wisc.edu/∼ghost/. Install both programs on your com-
puter and you can view (Encapsulated) PostScript drawings by open-
ing the.eps or.ps file (File>Open command) in GhostView. From
GhostView, you can print the drawing on any printer and export it in
several graphical formats (including Windows MetaFile if you also install
pstoedit.exe, which is freely available at http://www.pstoedit.net/).
With Acrobat Distiller, which is part of the Adobe Acrobat software pack-
age (not free; check http://www.adobe.com/products/acrobat/main.html),
you can translate Encapsulated PostScript to a Portable Document For-
mat (PDF), which can be viewed with the free Adobe Acrobat Reader
(http://www.adobe.com/ products/acrobat/readstep2.html).

Pajek offers many options for customizing its Encapsulated PostScript
export, which we present in Section A2.2. For onscreen editing Encap-
sulated PostScript drawings, however, you need dedicated drawing soft-
ware such as CorelDraw. In CorelDraw, you can import Encapsulated
PostScript files (File>Import command in CorelDraw) and translate it
to the vector format of CorelDraw (select the file type “PostScript In-
terpreted PS,PRN,EPS”). If you ungroup the imported drawing, you can
change each element individually. Thus, you can completely customize
the sociogram. In Figure 10 in Chapter 2, for instance, we combined the
sociogram of world trade in miscellaneous manufactures of metal with a
line drawing of the continents (available as outline.wmf). In addition,
drawing software such as CorelDraw can export the drawing to a format
that can be embedded and viewed in most Windows text processors. We
advise using the Windows MetaFile (WMF) format, which is also vector
based.



Exporting Visualizations 305

A2.1.3 Scalable Vector Graphics

Export>SVGWhat PostScript is to printing Scalable Vector Graphics (SVG) is to pub-
lishing on the Web. Just as with PostScript, SVG defines each distinct
shape and assembles the drawing at the moment it is viewed, so it pro-
duces optimal quality in every resolution. In addition, SVG pictures can
be changed interactively on the Web. As a consequence, there are several
commands for exporting SVG in Pajek’s Export>SVG submenu, each of
which adds a specific type of interaction to the drawing.

Export>SVG>

General

Export>SVG>

Labels/Arcs/
Edges

The most basic way of exporting a network as SVG is provided by
the Export>SVG>General command, which produces an image of the
network as it is shown in the Draw screen, without interactivity. In the
Save As dialog box, enter a filename, which will be used for both the SVG
file and the HTML file (Web page) within which the drawing will be
displayed. Note that you need both files (in the same directory) to view the
drawing. The second SVG export command, Labels/Arcs/Edges, exports
the drawing with checkboxes, which enable the user to toggle the display
of arcs, edges, arc labels, edge labels, and vertex labels.

Export>SVG>

Partition>

Classes

Export>SVG>

Partition>

Classes with
Semi-Lines

Export>SVG>

Partition>

Nested Classes

When the network is drawn with a partition, the Export>SVG>Parti-
tion submenu contains options for interactively manipulating the classes
of the partition. The Classes command produces checkboxes with which
vertices belonging to a class can be hidden (or displayed), including the
lines among them. The lines between different classes can be hidden sepa-
rately. The Classes with semi-lines command produces similar output but
lines incident with vertices that are hidden are changed to semi-lines (half
lines) and semi-lines are hidden on removal of the vertices with which they
are incident. The Nested Classes command adds a checkbox for each class
in the partition but toggling one checkbox automatically toggles the value
of all lower classes. This is very useful for displaying nested classes, such
as m-slices (Chapter 5) and k-cores (Chapter 3). Note that it is possible
to display two partitions in the SVG export. If two partitions are se-
lected in the Partitions menu of the Main screen, the first partition defines
the classes that can be selected by means of the checkboxes, whereas
the second partition determines the colors of the vertices in the SVG
drawing.

Export>SVG>

Line Values>
Classes

Export>SVG>

Line Values>
Nested Classes

If the network contains lines with different values, the SVG export can
create checkboxes for showing or hiding lines with particular values. The
Export>SVG>Line Values submenu contains commands for exporting
ordinary classes (Classes) and nested classes (Nested Classes). Line val-
ues must be grouped into classes, so a dialog box appears asking for the
number of classes or the class boundaries. In addition, the submenu con-
tains options for the appearance of lines (Export>SVG>Line Values>
Options), which can receive different colors (Different Colors option) or
grays (GrayScale option), or the line width can be made to represent the
class of line values (Different Widths option).

[Draw]Options>
Previous/Next>
Apply to

Finally, it is possible to create a series of SVG images, all linked by
previous and next buttons, for a list of networks, partitions, or vec-
tors. First, make sure that the right data objects are selected in the
Options>Previous/Next>Apply to submenu of the Draw screen. If you
have only a sequence of networks to display, the Network option should
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Export>SVG>

Current and all
Subsequent

be selected only, but if you have a sequence of networks and a sequence
of partitions, both Network and Partition should be selected. Then se-
lect the first network, partition, or vector that you want to export in the
drop-down menus of the Main screen, draw the network and, if appli-
cable, partition and vector. Finally, select the Export>SVG>Current and
all Subsequent option and execute one of the Export>SVG commands
discussed above.

SVG drawings are viewed in an Internet browser. As mentioned,
the SVG drawing is inserted in an HTML page, which is read by
a Web browser. Recent browsers such as Microsoft Internet Explorer
version 6.0 and higher can display SVG images directly. For older
browsers, you need to install a plug in, which can be downloaded from
http://www.adobe.com/svg/viewer/install/.

Onscreen editing of SVG images can be done with several soft-
ware packages, among them Webdraw (http://www.jasc.com/products/
webdraw/) and Adobe Illustrator (http://www.adobe.com/products/
illustrator/main.html).

A2.1.4 Virtual Reality Modeling Language

Layout>Energy
>Fruchterman
Reingold>3D

Virtual Reality Modeling Language (VRML) is a standard language for
defining three-dimensional objects that can be published on the Web. In
a Web browser, VRML models (e.g., a three-dimensional model of a so-
cial network) can be rotated, walked through, and so on. You may opti-
mize the network’s layout in three dimensions with the Layout>Energy>

Fruchterman Reingold>3D command before you export a VRML model
from Pajek.

Export>VRML With the Export>VRML command, Pajek exports the network to
VRML 1.0. A dialog box prompts for a file name in which to store
the model. We advise using the default extension.wrl, which stands
for world, so Internet browsers can correctly identify the file type. If the
network was drawn with a partition, the spheres in the model, which rep-
resent the vertices, have the right colors. Vertex labels will be transformed
to anchor names.

For displaying a VRML world in a Web browser, you need a plug
in, for instance, Cosmo player (http://www.ca.com/cosmo/home.htm)
or Cortona VRML Client (http://www.parallelgraphics.com/products/
downloads). Some plug-ins can read only newer VRML models (VRML
2.0 or 97). If so, you need a converter such as the Cortona VRML 1.0
converter or the MS-DOS program VRML1TOVRML2.EXE, which must
be run from the MS-DOS prompt with the command VRML1TOVRML2
followed by the names of the VRML 1.0 file and the new VRML 2.0 file
separated by spaces. Maybe the original vertex names, which are anchor
names in the VRML model, may cause problems; if this happens, open
the the VRML file in a plain text editor and adjust or remove the anchor
names. Do not forget to save the changed file to plain text.

Some layout properties of VRML models can be set in Pajek (see Sec-
tion A2.2). If you want to edit a VRML model onscreen, you need special
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software. Consult http://www.web3d.org/x3d/vrml/tools/authoring/ for
VRML design and editing software.

If you want to include an image of a three-dimensional model in a doc-
ument, it is a good idea to ray-trace it. Ray-tracing is a technique that
renders very realistic images from three-dimensional models by calculat-
ing (tracing) the trajectory of light from the virtual light sources and the
reflection of this light on the surfaces in the model. In Chapter 1 Figure
14 provides an example. POVRay is a good and free software package for
ray-tracing (http://www.povray.org/). However, it does not understand the
Virtual Reality Modeling language directly, so you must first transform
the VRML 2.0 model to the POVRay language, which can be done with
the MS-DOS program vrml2pov.exe. In the MS-DOS prompt, issue
the command vrml2pov followed by the names of the VRML 2.0 file
and the new POVRay file, separated by spaces. For the POVRay file, use
the extension.pov. You can open the newly created file in POVRay and
render it. The rendered image is automatically saved in the format spec-
ified in POVRay’s INI file. Enjoy, but realize that it may take quite some
time before you master the software and achieve satisfactory results.

A2.1.5 MDL MOL and Kinemages

Export>MDL
MOLfile

Molecular structures can be modeled as networks, so the software devel-
oped by scientists to visualize molecules can be used for the display of
social networks. Pajek can export to two molecule model formats: MDL
MOL and Kinemages. MDL MOL models are three-dimensional and they
are viewed in a Web browser using a special plug-in (Chime, which can
be downloaded from http://www.mdli.com/). This format does not offer
real advantages over VRML, so we do not discuss it in detail.

In contrast, the other format – Kinemages – does have special features
that need to be mentioned. This format is designed to present sequences
of three-dimensional images. In principle, this can also be done in VRML
but in Kinemages, it is very easy to add text to each image and to in-
clude questions. This software is excellent for teaching purposes and for
electronic publishing in the case of undirected networks. For directed or
signed networks, Kinemage is less useful because it does not display the
direction of arcs or the signs of lines.

Export>
Kinemages>
Current and all
Subsequent

[Draw]
Options>
Previous/Next>
Apply to

Pajek can produce these sequences with the Export>Kinemages>Cur-
rent and all Subsequent command. Just like SVG export, you must select
the data objects (network, partition, vector) that you want to export in the
Options>Previous/Next>Apply to submenu of the Draw screen and you
must select the first network (partition, vector) that you want to export in
the droplists of the Main screen. With the Export>Kinemages>Current
and all Subsequent command, Pajek creates one Kinemage file (default
extension is.kin) containing the series of networks. In the Save as
Type selection box of the Save As dialog box, you can choose whether
you want the vertices represented by spheres or by vertex labels in the
Kinemage.

You need special software for viewing Kinemages, which is called Mage
(http://kinemage.biochem.duke.edu/kinemage/kinemage.php). Open the
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Figure 141. The Options screen.

Kinemage created by Pajek in Mage and step through the sequence of
images with the KINEMAGE/Next (or Ctrl-n) command in Mage.

A2.2 Layout Options

[Draw]
Export>Options

PostScript, SVG, and VRML visualizations need additional information
about the size, placement, and colors of vertices, lines, labels, and back-
ground. This information can be supplied either with the Options com-
mand in the Export menu of the Draw screen or in the network data
file. The Export>Options (Figure 141) define layout properties of all ver-
tices and lines, whereas the parameters in the network data file define
the layout of each individual vertex or line. Layout parameters speci-
fied in the network data file override the settings in the Export>Options
dialog screen. If, for instance, the color of vertices is specified in the
network data file, entering a color in the Options window has no
effect.

The Export>Options command opens a window that is divided into
five frames, two on the left and three on the right (Figure 141). We discuss
each frame separately and, where appropriate, we mention the layout
parameter that defines the layout feature in the network data file. Note
that you should type the layout parameters at the end of the line defining
a vertex, edge, or arc in the network data file and you must separate the
parameters and their values by one or more blanks. Consult the document
DrawEPS.htm (on the book’s Web site) for a description of all layout
parameters in the network data file.

[Main] Options>
Ini File>Save

[Main] Options>
Ini File>Load

If you want to save the settings of a particular layout, use the Options>
Ini File>Save command in the Main screen. This command saves all
present settings to a file, which can be loaded (command Options>Ini
File>Load) to restore the settings.
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V1

0 (label position: angle)

0 (label angle)

border

label position: radius

interior

Figure 142. Layout of a vertex and its label.

A2.2.1 Top Frame on the Left – EPS/SVG Vertex Default

This frame defines how vertices are drawn when you export 2D layouts
to (Encapsulated) PostScript and Scalable Vector Graphics. Figure 142
shows some important properties of the layout of a vertex and its label.

[Draw] Export>
Options>
Interior Color

[Draw] Export>
Options>
Border Color

[Draw] Export>
Options>
Border Width

[Draw] Export>
Options>Shape

[Draw] Export>
Options>x/y
ratio

In the top frame, the color of the interior (Interior Color) and bor-
der (Border Color) of the vertices can be specified. Enter one of the colors
that are listed in Table 26 (the colors are shown in the file Crayola.pdf,
which is included in the documentation accompanying Pajek) and make
sure you use upper- and lowercase letters as specified there. The width
of the border (Border Width; parameter bw followed by a number in the
network data file) and the shape of the vertex (Shape; just type ellipse,
box, diamond, cross, or empty in the network data file – this pa-
rameter must precede all other layout parameters except for the vertex’s
coordinates) can be defined. The user may choose among the predefined
shapes ellipse, box, and diamond and he or she may squeeze or stretch
the shape horizontally by adjusting the x/y ratio (x/y Ratio; parameter
x_fact followed by a number). If this ratio is smaller than 1, the shape of
the vertex is squeezed; if it is larger than 1, it is stretched. In Figure 143, the
horizontal diameter of the vertex on the left is half the vertical diameter,

Table 26. Names of Colors in Pajek

Apricot Fuchsia MidnightBlue RoyalPurple
Aquamarine Goldenrod Mulberry RubineRed
Bittersweet Gray NavyBlue Salmon
Black Green OliveGreen SeaGreen
Blue GreenYellow Orange Sepia
BlueGreen JungleGreen OrangeRed SkyBlue
BlueViolet Lavender Orchid SpringGreen
BrickRed LFadedGreen Peach Tan
Brown LightCyan Periwinkle TealBlue
BurntOrange LightGreen PineGreen Thistle
CadetBlue LightMagenta Pink Turquoise
Canary LightOrange Plum Violet
CarnationPink LightPurple ProcessBlue VioletRed
Cerulean LightYellow Purple White
CornflowerBlue LimeGreen RawSienna WildStrawberry
Cyan LSkyBlue Red Yellow
Dandelion Magenta RedOrange YellowGreen
DarkOrchid Mahogany RedViolet YellowOrange
Emerald Maroon Rhodamine
ForestGreen Melon RoyalBlue
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x/y ratio: 1.50.5

Figure 143. The x/y ratio of a vertex.

so its x/y ratio is 0.5. The horizontal diameter of the other vertex is 50
percent longer than the vertical diameter.

[Draw] Export>
Options>Label

Color

[Draw] Export>
Options>Font

Size

[Draw] Export>
Options>Label

Angle

The color (Label Color; parameter lc followed by a color name) and
font size (Font Size; parameter fos followed by a number) of the label
can also be adjusted in this frame. Again, use names of colors as listed
in Table 26. In addition, the orientation of the vertex label (Label Angle;
la followed by a number indicating the degree) can be changed relative
to a horizontal line. Zero degrees is usually the best choice because this
will display the labels horizontally. Label angles from 360 to 720 degrees
position the label relative to the center of the layout, which can be useful
when all vertices are drawn in concentric circles.

[Draw] Export>
Options>Label

Position:
Radius/Angle

The most complicated part, however, is the position of the label with
respect to the vertex. The position of the label is defined by its distance to
the center of the vertex (the radius) and by the angle from the horizontal
line starting at this center, ranging from 0 to 360 degrees (Label Position:
Radius/Angle; parameters lr followed by a number and lphi followed
by a degree respectively). If the angle of the label position is zero, the label
is resting on this horizontal line at the right of the vertex. If the radius
is zero, the label is placed in the center of the vertex. With short labels
and large vertices (see Section A2.2.3) or a high x/y ratio, the label may
fit inside the vertex. To place labels outside but near their vertices, enter a
positive number in the Label Position: Radius field. It is difficult to give a
general rule for a good size of the radius, because it depends on the size of
the vertex and the size of the label’s type font. Most figures of this book
used the sizes shown in Figure 141.

A2.2.2 Bottom Frame on the Left – EPS/SVG Line Default

This frame defines the way the lines are drawn when 2D layouts are
exported to (Encapsulated) PostScript and Scalable Vector Graphics. It
contains fields defining the appearance of lines and line values or line
labels as well as fields that specify the orientation of labels and their
location with respect to the lines to which they belong.

[Draw] Export>
Options>Edge

Color, Arc Color,
Label Color,

Pattern, Edge
Width, Arc

Width, Arrow
Size, Font Size,
Arrow Position

The colors of edges and arcs (Edge Color and Arc Color; parameter c
followed by a color name) and labels (Label Color; lc followed by a color
name) can be changed by entering names of colors as they appear in Table
26. Note that arcs and edges may receive different colors. You may draw
all lines as dotted lines by selecting Dots in the Pattern field (parameter p
followed by Solid or Dots). The width of edges and arcs (Edge Width
and Arc Width;w followed by a number) may also differ; it is good practice
to draw edges a bit wider than arcs. The size of the arrowhead (Arrow
Size; s followed by a number) is specified independently of the arc’s width.
The size of the labels is defined by their font size (Fontsize; fos followed
by a number), which should be smaller than the font size of the vertex
labels for pleasant results.
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1.6

0 (label position: angle)

0 (label angle relative to line)
label position: radius

terminal vertex

360 (label angle relative to page)

label position

Figure 144. The position and orientation of a line label.

You may decide where to place the arrowhead on the line (Arrow Posi-
tion; ap followed by a number). A number between 0 and 1 is interpreted
as a proportion expressing the relative distance from the end to the be-
ginning of the arc; for example, 0 will place the arrowhead at the end of
the arc near the terminal vertex and 0.5 will situate the arrowhead in the
middle of the arc. A distance larger than 1 is interpreted as an absolute
distance from the terminal vertex. This is useful if you want to have all
arcs on the same distance from the terminal vertex, regardless of the arc’s
length. You have to experiment a little to find a nice distance.

[Draw] Export>
Options>Label
Position

The remaining fields concern the orientation and position of the line
label (e.g., its value) with respect to the line. Figure 144 illustrates the
relevant parameters. First, choose the position on the line (edge or arc) to
which the line label is attached (Label Position; lp followed by a number).
This is similar to the position of the arrowhead: numbers between 0 and 1
are proportions, that is, relative distances from the end to the beginning of
the line, and numbers above 1 are absolute distances from the end of the
line. In Figure 144, the label position is 0.67, so it is located at two-thirds
of the arc, measured from its end. Note that edges do not have a start and
an end, so it is most appropriate to position the edge labels halfway.

[Draw] Export>
Options>Label
Position: Radius

[Draw] Export>
Options>Label
Position: Angle

Next, the location of the center of the label with respect to the position
on the line is defined by two properties that are similar to the location of
vertex labels: radius and angle. The radius (Label Position: Radius; lr
followed by a number) is the distance between the position on the line and
the center of the line label that is measured at the specified angle (Label
Position: Angle; lphi followed by a number of degrees) from the line. In
Figure 144, the angle is 270 degrees.

[Draw] Export>
Options>Label
Angle

Finally, the orientation of the line label is defined in the Label Angle
field (parameter la followed by a number of degrees). An angle smaller
than 360 degrees is measured relative to the direction of the line, where
zero degrees is parallel to the line. Angles of 360 degrees and more are
relative to a horizontal line. For easy reading, an angle of 360 degrees is
optimal because it displays line labels horizontally.

A2.2.3 Top Frame on the Right

[Draw] Export>
Options>EPS,

This frame defines additional defaults when we export layouts to Virtual
Reality Modeling Language (VRML). The field EPS, SVG, VRML Size of



312 Exploratory Network Analysis with Pajek

SVG, VRML
Size of Vertices

[Draw] Export>
Options>

VRML Size of
Lines

Vertices (parameter s_size followed by a number) specifies the default
size of vertices when exporting to VRML but also to EPS and SVG. The
diameter of lines in VRML can be changed in the VRML Size of Lines
(no layout parameter for the network data file) field. It is difficult to
give general rules about optimal settings for these fields; you have to
experiment.

[Draw] Export>
Options>VRML

Bckg. Color

In the VRML Bckg. Color field (no layout parameter for the network
data file), you can choose a background color for the layout in VRML:
just enter one of the color names listed in Table 26.

A2.2.4 Middle Frame on the Right

[Draw] Export>
Options>

Add. Border

This frame defines additional properties of the network layout when we
export layouts to Encapsulated PostScript and Scalable Vector Graphic
(there are no layout parameters for the network data file). Most fields
relate to a border around the layout. With the four fields Right, Left,
Top, and Bottom, you can add additional space to the right, left, and so
on of the picture. This is effective for SVG exports and for EPS exports
when the EPS Clip format is selected.

[Draw] Export>
Options>

Border Color

[Draw] Export>
Options>Bckg.

Color

The color of the border (Border Color) as well as the background (Bckg.
Color) can be picked from the color names listed in Table 26. Enter the
word No in these fields if you do not want a border or background color.
The shape of the borderline is characterized by the fields Border Radius
and Border Width. If the radius of the border is zero, the border is a
rectangle. Higher values (e.g., 10, 50, or 100) round off the corners. A
border width of one unit produces a rather thin borderline and higher
values yield fatter borderlines.

[Draw] Export>
Options>

Border Radius

[Draw] Export>
Options>

Border Width

Finally, this window contains a field in which a file can be selected
with custom shapes for vertices. The default is the file shapes.cfg.
Defining your own custom shapes demands knowledge of the PostScript
language.

A2.2.5 Bottom Frame on the Right – SVG Default

[Draw] Export>
Options>Bckg.

Color 2

The last frame contains additional options for exporting Scalable Vector
Graphics (again, there are no layout parameters for the network data file).

Figure 145. Gradients in SVG export: linear (left) and radial (right).
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[Draw] Export>
Options>Bckg.
Color 3

[Draw] Export>
Options>
Gradients

[Draw] Export>
Options>3D
Effect on
Vertices

These layouts can handle gradient colors: an area in which one color
gradually blends into another color. You can specify three colors. The
first color is the background color defined in the middle frame (see Section
A2.2.4). The second color can be selected in the Bckg. Color 2 field. Use
the color names of Table 26 and enter the word No if you do not want to
use a second color and hence no gradient. If you like, you can select a third
color in the Bckg. Color 3 field. The type of blend can be selected in the
Gradients field: Linear or Radial (see Figure 141). In a linear gradient,
the original background color is at the top of the area and blends into the
second and third colors on its way down. In a radial gradient the middle
of the drawing is colored with the original background color. Figure 145
also shows the effects of the 3D Effect on Vertices option.
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Shortcut Key Combinations

The following tables list the shortcut key combinations and the commands
they replace. Some shortcuts are accessible from one screen, whereas
others are accessible from several screens.

Main Screen

Shortcut Description and Command

Ctrl-a Draw the network with all vertices in class 0 of a new empty partition
(Draw>Draw-SelectAll)

Ctrl-g Draw the network (Draw>Draw)
Ctrl-p Draw the network and the active partition (Draw>Draw-Partition)
Ctrl-q Draw the network, the active partition, and the active vector

(Draw>Draw-Partition-Vector)
Ctrl-u Draw the network and the active vector (Draw>Draw-Vector)
Ctrl-s Repeat session (File>Repeat session)
Ctrl-v Create a new vector holding the values of the active partition

(Partition>Create Vector)
Ctrl-x Create a new network with the x coordinates of the vertices from the active

vector (Operations>Vector>Put Coordinate>x)
Ctrl-y Create a new network with the y coordinates of the vertices from the active

vector (Operations>Vector>Put Coordinate>y)
Ctrl-z Create a new network with the z coordinates of the vertices from the active

vector (Operations>Vector>Put Coordinate>z)

Hierarchy Edit Screen

Shortcut Description and Command

Ctrl-t Change the type of a cluster from unlabeled to Close to Cut to Border in the
hierarchy (Edit>Change Type)

Ctrl-n Change the label of a cluster in the hierarchy (Edit>Change Name)
Ctrl-s Toggle the option to show the members of the cluster or all members of the

cluster and its subclusters when double-clicking a cluster in the hierarchy
(Edit>Show Subtree)
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Draw Screen

Shortcut Description and Command

Ctrl-a Draw the network with all vertices in class 0 of a new empty partition
([Main] Draw>Draw-SelectAll)

Ctrl-g Draw the network ([Main] Draw>Draw)
Ctrl-p Draw the network and the active partition ([Main] Draw>Draw-Partition)
Ctrl-q Draw the network, the active partition, and the active vector ([Main]

Draw>Draw-Partition-Vector)
Ctrl-u Draw the network and the active vector ([Main] Draw>Draw-Vector)
Ctrl-b Show the labels of the lines (Options>Lines>Mark Lines>with Labels)
Ctrl-o Do not show the values or labels of the lines (Options>Lines>Mark

Lines>No)
Ctrl-v Show the values of the lines (Options>Lines>Mark Lines>with Values)
Ctrl-l Show the labels of the vertices (Options>Mark Vertices Using>Labels)
Ctrl-n Show the numbers of the vertices (Options>Mark Vertices

Using>Numbers)
Ctrl-d Do not show labels or numbers of the vertices (Options>Mark Vertices

Using>No)
Ctrl-r Toggle real sizes of vertices (Options>Mark Vertices Using>Real sizes

On/Off)
S Spin around the normal in one direction
s Spin around the normal in the opposite direction
X Spin around the x axis, the bottom approaching the viewer
x Spin around the x axis, the top approaching the viewer
Y Spin around the y axis, the left approaching the viewer
y Spin around the y axis, the right approaching the viewer
Z Spin around the z axis clockwise
z Spin around the z axis counterclockwise





Glossary

The book’s important structural concepts are listed and explained be-
low in alphabetical order. Numbers refer to the sections presenting the
concepts.

Concept Description Section

Actor Actor refers to a person, organization, or nation that is
involved in a social relation. Hence, an actor is a
vertex in a social network.

1.3

Acyclic network An acyclic network does not contain cycles. 10.4
Adjacency

matrix
An adjacency matrix is a square matrix with one row

and one column for each vertex in a network. The
content of a cell in the matrix indicates the presence
and possibly the sign or value of a tie from the vertex
represented by the row to the vertex represented by
the column.

12.2

Adjacent Two vertices are adjacent if they are connected by a line. 3.3
Adoption

category
Adoption categories classify people according to their

adoption time relative to all other adopters.
8.3

Adoption rate The adoption rate is the number or percentage of new
adopters at a particular moment.

8.2

Aggregate
constraint

The aggregate constraint on a vertex is the sum of the
dyadic constraint on all of its ties.

7.4

Arc An arc is a directed line. Formally, an arc is an ordered
pair of vertices.

1.3.1

Articulation
point

See: Cut-vertex 7.3

Asymmetric
dyad

An asymmetric dyad is a pair of vertices connected by
unilateral arc(s).

10.3

Attribute An attribute is a characteristic of a vertex measured
independently of the network.

2.3

Balance model The balance model applies to an unsigned directed
network if it consists of two cliques that are not
interrelated.

10.3

Balanced
(semi-)cycle

In a signed graph, a (semi-)cycle is balanced if it does
not contain an uneven number of negative arcs.

4.2

Balanced signed
graph

A signed graph is balanced if all of its (semi-)cycles are
balanced. A signed graph is balanced if it can be
partitioned into two clusters such that all positive ties

4.2

(continued )

317



318 Glossary

(continued )
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are contained within the clusters and all negative ties
are situated between the clusters.

Betweenness
centrality

The betweenness centrality of a vertex is the proportion
of all geodesics between pairs of other vertices that
include this vertex.

6.4

Betweenness
centralization

Betweenness centralization is the variation in the
betweenness centrality of vertices divided by the
maximum variation in betweenness centrality scores
possible in a network of the same size.

6.4

Bi-component A bi-component is a component of a minimum size of 3
that does not contain a cut-vertex.

7.3

Bipartite
network

See: Two-mode network 5.3

Block A block contains the cells of an adjacency matrix that
belong to the cross section of one or two classes.

12.4

Blockmodel A blockmodel assigns the vertices of a network to
classes and it specifies the permitted type(s) of
relation within and between classes.

12.4.1

Blockmodeling The technique to obtain a blockmodel is called
blockmodeling.

12.4.2

Blood marriage A blood marriage is the marriage of people with a close
common ancestor.

11.4

Bridge A bridge is a line whose removal increases the number
of components in the network.

7.3

Brokerage role A brokerage role of a vertex is a particular pattern of
ties and group affiliations.

7.5

Cell A cell of a matrix is the intersection of a row and a
column.

12.2

Clique A clique is a maximal complete subnetwork containing
three vertices or more.

3.6

Closeness
centrality

The closeness centrality of a vertex is the number of
other vertices divided by the sum of all distances
between the vertex and all others.

6.3

Closeness
centralization

Closeness centralization is the variation in the closeness
centrality of vertices divided by the maximum
variation in closeness centrality scores possible in a
network of the same size.

6.3

Clusterability
model

The clusterability model applies to an unsigned directed
network if it consists of two or more cliques that are
not interrelated.

10.3

Clusterable
(semi-)cycle

A cycle or semicycle is clusterable if it does not contain
exactly one negative arc.

4.2

Clusterable
signed graph

A signed graph is clusterable if it can be partitioned
into clusters such that all positive ties are contained
within clusters and all negative ties are situated
between clusters.

4.2

Complete
network

A complete network is a network with maximum
density: all possible lines occur.

3.3

Component A (weak) component is a maximal (weakly) connected
subnetwork.

3.4

Contextual view In a contextual view of a network, vertices in all but
one class are shrunk.

2.4.3

Coordinator
role

A vertex is a coordinator if it is situated on a path
between two vertices within its own class (group)
that are not directly connected.

7.5
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Critical mass The critical mass of a diffusion process is the minimum
number of adopters needed to sustain a diffusion
process.

8.4

Cut-vertex A cut-vertex is a vertex whose deletion increases the
number of components in the network.

7.3

Cycle A cycle is a closed path. 4.2
Degree The degree of a vertex is the number of lines incident

with it.
3.3

Degree
centrality

The degree centrality of a vertex is its degree. 6.3

Degree
centralization

Degree centralization of a network is the variation in
the degrees of vertices divided by the maximum
degree variation that is possible in a network of the
same size.

6.3

Delete a vertex Deleting a vertex from a network means that the vertex
and all lines incident with this vertex are removed
from the network.

7.3

Dendrogram A dendrogram is a chart visualizing the results of
hierarchical clustering.

12.3

Density Density is the number of lines in a simple network,
expressed as a proportion of the maximum possible
number of lines.

3.3

Diffusion curve A diffusion curve displays the prevalence of an
innovation in the course of time.

8.2

Digraph A digraph or directed graph is a graph containing one
or more arcs.

1.3.1

Dimension of a
partition

The number of entries (vertices) of a partition. 4.4

Distance The distance from vertex u to vertex v is the length of
the geodesic from u to v.

6.3

Domain In a directed network, the (input, output) domain of a
vertex is the number or percentage of all other
vertices that are connected by a path to this
vertex.

9.5

Dyad A dyad is a pair of vertices and the lines between them. 10.3
Dyadic

constraint
The dyadic constraint on vertex u exercised by a tie

between vertices u and v is the extent to which u has
more and stronger ties with neighbors that are
strongly connected with vertex v.

7.4

Edge An edge is an undirected line. Formally, an edge is an
unordered pair of vertices.

1.3.1

Ego-centered
approach

An ego-centered approach to a network considers the
structural characteristics of individual vertices.

6.1

Egocentric
density

Egocentric density is the density of the ego-network
without ego.

7.4

Ego-network The ego-network of a vertex contains this vertex, its
neighbors, and all lines among the selected vertices.

7.4

Endogamy Endogamy or intermarriage means that families are
linked by several kinship ties.

11.4

Equivalent
(class,
position)

Actors with similar patterns of ties are said to be
relationally equivalent, to constitute an equivalence
class, or to occupy equivalent positions in the
network.

12.3

Event An event is a happening, context, or organization
where actors may gather.

5.3

(continued)
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Exposure The exposure of a vertex in a network at a particular
moment is the proportion of its neighbors that have
adopted before that moment.

8.3

Extract a
subnetwork

To extract a subnetwork from a network, select a
subset of its vertices and all lines that are incident
only with the selected vertices.

2.4.1

Family of child A person’s family of child or orientation (FAMC) is the 11.3
or orientation family in which this person is a child.

Family of spouse
or procreation

A person’s family of spouse or procreation (FAMS) is
the family in which this person is a parent.

11.3

Forest A forest is a graph consisting of two or more distinct
(unconnected) trees.

11.4

Gatekeeper A vertex is a gatekeeper if it is situated on a path from
a vertex of another class (group) toward a vertex of
its own class, provided that these vertices are not
directly connected.

7.5

Genealogical
generation

A genealogical generation is a set of people connected
to a (close) common ancestor at the same remove.

11.3

Generalized
blockmodeling

In generalized blockmodeling, the permitted block
types are specified for each individual block.

12.4.3

Generation jump In a genealogy, a generation jump occurs when people
marry who are connected to a common ancestor at
different removes.

11.3

Geodesic A geodesic is the shortest path between two vertices. 6.3
Global view A global view is a sociogram of a network in which all

classes are shrunk.
2.4.2

Graph A graph is a set of vertices and a set of lines between
pairs of vertices.

1.3.1

Hierarchical
clustering

Hierarchical clustering is a statistical technique for
subdividing units into increasingly more
homogeneous subsets.

12.3

Hierarchical
clusters model

The hierarchical clusters model applies to an unsigned
directed network if it consists of connected clusters
such that clusters within ranks are not related and
clusters between ranks are related by null dyads or
asymmetric dyads pointing toward the higher rank
with the additional provision that a cluster contains
no cycles of asymmetric dyads.

10.3

Hierarchy A hierarchy is a data object for classifying vertices if a
vertex may belong to several classes. It is especially
suited for a hierarchical clustering of vertices, where
units are subdivided into more and more
homogeneous subsets.

3.6

Homophily Homophily is the phenomenon that similar people
interact a lot, at least more often than with
dissimilar people.

3.1

Image matrix An image matrix is a simplification of an adjacency
matrix by shrinking each block to one new cell
indicating the block type.

12.4.1

Immediacy index The immediacy index is the average number of
citations of the articles in a journal during the year
of its publication.

11.6
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Impact factor The impact factor of a journal is the average number of
citations to articles in this journal.

11.6

Incidence matrix An incidence matrix is a rectangular matrix with one
row for each vertex from one mode (subset) and one
column for each vertex from the other mode (subset)
in a two-mode network. The content of a cell in the
matrix indicates the presence and possibly the sign or
value of a tie from the vertex represented by the row
to the vertex represented by the
column.

12.2

Incident A line is defined by its two endpoints, which are the
two vertices that are incident with the line.

1.3.1

Indegree The indegree of a vertex is the number of arcs it
receives.

3.3

Induced
subnetwork

A subset of vertices from a network and all lines that
are incident only with these vertices is called an
induced subnetwork.

2.4.1

Isomorphic Two networks are isomorphic, that is, they have the
same structure, if a permutation of the vertices in one
network produces the other network.

12.2

Itinerant broker A vertex is an itinerant broker if it is situated on a path
between two vertices from the same class to which
the brokering vertex does not belong, that are not
connected directly.

7.5

k-Connected
component

A k-connected component is a maximal subnetwork in
which each pair of vertices is connected by at least k
distinct (noncrossing) semipaths or paths.

3.4

k-Core A k-core is a maximal subnetwork in which each vertex
has at least degree k within the subnetwork.

3.5

Liaison A vertex is a liaison if it is situated on a path between
two vertices in different classes (groups), which are
different from its own class that are not connected
directly.

7.5

Line A line is a tie between two vertices in a network: either
an arc or an edge.

1.3.1

Local view A sociogram of an induced subnetwork offers a local
view.

2.4.1

Loop A loop is a line that connects a vertex to itself. 1.3.1
Main path In an acyclic network, a main path is a path from a

source vertex to a sink vertex with the highest
traversal weights on its arcs.

11.6

Main path
component

In an acyclic network, a main path component is a
component in the network after removal of all arcs
with traversal weights below a particular value
(usually the lowest traversal weight on the network’s
main paths).

11.6

Matrix A matrix is a two-way table containing rows and
columns.

12.2

m-Slice An m-slice is a maximal subnetwork containing the
lines with a multiplicity equal to or greater than m
and the vertices incident with these lines.

5.4

Multiple lines If a particular arc or edge, that is, a particular ordered
or unordered pair of vertices, occurs more than once,
there are multiple lines.

1.3.1

(continued)
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Multiplicity Line multiplicity is the number of times a specific line
(ordered or unordered pair of vertices) occurs in a
network.

5.3

Neighbor A vertex that is adjacent to another vertex is its
neighbor.

3.3

Nested Subnetworks are said to be nested if one subnetwork is
a subset from the other.

3.5

Network A network consists of a graph and additional
information on the vertices or the lines of the graph.

1.3.1

Nonblood
relinking

Nonblood relinking refers to multiple marriages
between families where no couple has a close
common ancestor.

11.4

Null dyad A null dyad is a pair of vertices that are not connected
by lines.

10.3

One-mode
network

In a one-mode network, each vertex can be related to
each other vertex.

5.3

Optimization
technique

An analytic technique searching for the best solution
according to a criterion function by repetition is
called an optimization technique.

4.4

Ore graph The Ore graph is a sociogram of kinship ties in which
men are represented by triangles, women by ellipses,
marriages by (double) lines, and parent–child ties by
arcs pointing from parent to child.

11.3

Outdegree The outdegree of a vertex is the number of arcs it sends. 3.3
Partial order In a partial order, some but not all pairs of units (e.g.,

vertices) are ordered.
10.5

Partition A partition of a network is a classification or clustering
of the vertices in the network such that each vertex is
assigned to exactly one class or cluster.

2.3

Path A path is a walk in which no vertex in between the first
and last vertex of the walk occurs more than once.

3.4

Pedigree The pedigree of a person is the set of his or her
ancestors.

11.3

Permutation A permutation of a network is a renumbering of its
vertices.

12.2

P-graph The P-graph or parentage graph is a genealogical
network, in which couples and unmarried individuals
are the vertices and arcs, representing individuals,
point from children to parents.

11.4

Popularity The popularity or indegree of a vertex is the number of
arcs it receives in a directed network.

9.3

Position A position is a particular pattern of ties. 12.3
Prevalence The prevalence of an innovation is the cumulative

percentage of adopters at a particular time.
8.2

Proportional
strength

The proportional strength of a tie with respect to all
ties of a person is the value of the line(s) representing
a tie, divided by the sum of the values of all lines
incident with a person.

7.4

Proximity
prestige

The proximity prestige of a vertex is the proportion of
all vertices (except itself) in its input domain divided
by the mean distance from all vertices in its input
domain.

9.6

Ranked clusters
model

The ranked clusters model applies to an unsigned
directed network if it consists of cliques and ranks

10.3

such that cliques within ranks are not related and
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cliques between ranks are related by asymmetric
dyads pointing toward the higher rank.

Rate of
participation

In a two-mode network, the degree of a vertex is called
the rate of participation of an actor if the vertex
refers to an actor.

5.3

Reachable We say that a vertex is reachable from another vertex if
there is a path from the latter to the former.

6.3

Regular block A regular block is a block containing at least one arc in
each row and in each column.

12.4.3

Regular
equivalence

Vertices that are regular equivalent do not have to be
connected to the same vertices, but they have to be
connected to vertices in the same classes.

12.4.3

Relinking index The relinking index measures the amount of relinking
in a P-graph.

11.4

Representative A vertex is a representative if it is situated on a path
from a vertex of its own class (group) toward a
vertex of another class, provided that these vertices
are not directly connected.

7.5

Restricted
domain

The restricted (input, output) domain of a vertex in a
directed network is the number or percentage of all
other vertices that are connected by a path of a
selected maximum length to or from this vertex.

9.5

Secondary
structural
hole

In the ego-network of a vertex, a secondary structural
hole exists if there is a vertex outside the ego-network
that is at least as central as a vertex in the
ego-network but not directly linked to this vertex. In
this case, ego can replace the tie with the neighbor by
a tie to the vertex outside the ego-network.

7.5

Semicycle A semicycle is a closed semipath. 4.2
Semipath A semipath is a semiwalk in which no vertex in

between the first and last vertex of the semiwalk
occurs more than once.

3.4

Semiwalk
A semiwalk from vertex u to vertex v is a sequence of

lines such that the end vertex of one line is the
starting vertex of the next line and the sequence
starts at vertex u and ends at vertex v.

3.4

Shrink a
network

To shrink a network, replace a subset (class) of its
vertices by one new vertex which is incident to all
lines that were incident with the vertices of the subset
in the original network.

2.4.2

Signed graph A signed graph is a graph in which each line carries
either a positive or a negative sign.

4.2

Simple graph A simple undirected graph contains neither multiple
edges nor loops. A simple directed graph does not
contain multiple arcs.

1.3.1

Sink vertex In an acyclic network, a sink vertex is a vertex with a
zero outdegree.

11.6

Size of an event In a two-mode network, the degree of a vertex is known
as the size of an event if the vertex refers to an event.

5.3

Social capital The number and intensity of a person’s social ties is
called his or her social capital or sociability.

6.3

Social contagion Social contagion is the diffusion of behavior or
information via social ties.

8.2

Social
generation

A social generation is the set of people who are born in
the same period: a birth cohort.

11.3

(continued)
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Sociocentered
approach

A sociocentered approach to a network considers the
structural characteristics of the entire network.

6.1

Source vertex In an acyclic network, a source vertex is a vertex with
zero indegree.

11.6

Star-network A star-network is a network in which one vertex is
connected to all other vertices but these vertices are
not connected among themselves.

6.3

Strong
component

A strong component is a maximal strongly connected
subnetwork.

3.4

Strongly
connected

A network is strongly connected if each pair of vertices
is connected by a path.

3.4

Structural
equivalence

Two vertices are structural equivalent if they have
identical ties with themselves, each other, and all
other vertices.

12.3

Structural hole There is a structural hole in the ego-network of a vertex
if two of its neighbors are not directly connected.

7.4

Structural
property

A structural property is a characteristic (value) of a
vertex that is a result of network analysis.

2.3

Structural
relinking

Structural relinking occurs when families intermarry
more than once in the course of time.

11.4

Symmetric-
acyclic
model

The symmetric-acyclic model applies to a directed
network if it consists of clusters of vertices that are
linked by symmetric ties directly or indirectly and if

10.5

the ties among the clusters produce an acyclic
network (when the clusters are shrunk).

Symmetrize To symmetrize a directed network is to replace
unilateral and bidirectional arcs by edges.

3.3

Threshold The threshold of a vertex is its exposure at the time of
adoption. It is equal to the proportion of its
neighbors that have adopted earlier than this vertex.

8.3

Threshold
category

A threshold category is a set of vertices with similar
thresholds.

8.3

Threshold lag A threshold lag is a period in which an actor does not
adopt although he or she is exposed at the level at
which he or she will adopt later.

8.4

Transitive triad In a transitive triad, each path of length two is closed
by an arc from the starting vertex to the end vertex
of the path.

10.3

Transitivity
model

The transitivity model applies to an unsigned directed
network if it consists of cliques such that cliques
within ranks are not related and cliques between
ranks are related by null dyads or asymmetric dyads
pointing toward the higher rank.

10.3

Transposed
network

A transposed network is a network in which the
direction of all arcs is reversed.

9.3

Traversal weight The traversal weight of an arc or vertex is the
proportion of all paths between source and sink
vertices that contain this arc or vertex.

11.6

Tree A tree is a connected graph that contains no semicycles. 11.4
Triad A triad is a (sub-)network consisting of three vertices. 3.6
Triad census The triad census of a directed network is the frequency

distribution of the sixteen types of triads in this
network.

10.3
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Two-mode
network

In a two-mode network, vertices are divided into two
sets and vertices can be related only to vertices in the
other set.

5.3

Undirected
graph

An undirected graph contains no arcs: all of its lines are
edges.

1.3.1

Valued network A valued network is a network in which lines have
(variable) values.

5.3

Vector A vector is a data object assigning a numerical value to
each vertex in a network.

2.5

Vertex (vertices) A vertex (singular of vertices) is the smallest unit in a
network

1.3.1

Walk A walk is a semiwalk with the additional condition that
none of its lines is an arc of which the end vertex is
the arc’s tail. One might say that you always follow
the direction of arcs in a walk.

3.4

Weakly
connected

A network is weakly connected if each pair of vertices
is connected by a semipath.

3.4





Index of Pajek Commands

The index is arranged by the screen from which commands are available: the Draw screen,
Editing Network screen, Hierarchy screen, Main screen, and Report screen. Commands are
listed alphabetically within each screen and subcommands are nested within commands. If
a subcommand or option is not listed, inspect the higher level (sub)command.

Draw Screen
[Draw] Draw screen, 15
[Draw] Change the class number of

vertices, 36, 295
[Draw] Export, 20, 303
[Draw] Export>Bitmap, 20, 303
[Draw] Export>EPS/PS, 21, 304
[Draw] Export>Kinemages>Current and

all Subsequent, 307
[Draw] Export>MDL MOLfile, 307
[Draw] Export>Options, 21, 307–308

>3D Effect on Vertices, 313
>Add.Border

>Bottom, 312
>Left, 312
>Right, 312
>Top, 312

>Arc Color, 310
>Arc Width, 310
>Arrow Position, 311
>Arrow Size, 310
>Bckg. Color, 312
>Bckg. Color 2, 313
>Bckg. Color 3, 313
>Border Color, 309, 312
>Border Radius, 312
>Border Width, 309, 312
>Edge Color, 310
>Edge Width, 310
>EPS, SVG, VRML Size of Vertices,

311
>Font Size, 310
>Gradients, 313
>Interior Color, 309
>Label Angle, 310, 311
>Label Color, 310
>Label Position, 311

>Angle, 310, 311
>Radius, 310, 311

>Pattern, 310
>Shape, 309
>VRML Bckg. Color, 312

>VRML Size of Lines, 312
>x/y ratio, 309

[Draw] Export>SVG, 21, 305
>Current and all Subsequent, 306
>General, 305
>Labels/Arcs/Edges, 305
>Line Values

>Classes, 305
>Nested Classes, 113, 305
>Options, 305

> Partition, 305
>Classes, 305
>Classes with semi-lines, 305
>Nested Classes, 305

[Draw] Export>VRML, 116, 306
[Draw] GraphOnly, 18
[Draw] Info>All Properties, 19
[Draw] Info>Closest Vertices, 18–19
[Draw] Layers>Averaging x coordinate,

230, 249
[Draw] Layers>In y direction, 163, 217,

230
[Draw] Layers>In z direction, 115
[Draw] Layers>Optimize layers in x

direction, 163, 230
[Draw] Layers>Type of Layout, 115

>3D, 115
[Draw] Layout>Energy, 16

>Fruchterman Reingold, 17
>2D, 17
>3D, 17, 116, 306
>Factor, 17

>Kamada-Kawai, 17
>Fix first and last, 17
>Fix one in the middle, 17
>Fix selected vertices, 36
>Free, 17, 34

>Starting positions, 16
>circular, 16
>Given xy, 16
>Given z, 16
>random, 16

327
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[Draw] Move>Circles, 18, 34
[Draw] Move>Fix, 18

>Radius, 18
>y, 163

[Draw] Move>Grid, 18
[Draw] Next, 18, 94
[Draw] Options>Colors>Partition Colors,

34–35
[Draw] Options>Layout, 18
[Draw] Options>Lines>Mark Lines>with

Values, 15–16, 41
[Draw] Options>Mark Vertices Using, 18

>Partition Clusters, 35
>Vector Values, 46

[Draw] Options>Previous/Next
> Optimize Layouts, 94
>Apply to, 18, 94, 305–306, 307–308

[Draw] Options>Scrollbar On/Off, 115
[Draw] Options>Size>of Vertices, 46, 113,

149
[Draw] Options>Transform, 18

>Fit Area, 48
>Rotate 2D, 163, 218

[Draw] Options>Values of
Lines>Similarities, 90, 149

[Draw] Previous, 18, 94
[Draw] Redraw, 18
[Draw] Spin menu, 115–116

Edit Hierarchy Screen
[Editing Hierarchy] Hierarchy Edit screen,

271
[Editing Hierarchy] Edit>Change Type,

272
[Editing Hierarchy] Edit>Show Subtree,

271

Editing Network Screen
[Editing Network] Editing Network

Screen, 22, 294
[Editing Network] Newline, 23

Editing Partition Screen
[Editing Partition] Editing Partition Screen,

33

Main Screen
[Main] Main Screen, 9
[Main] Cluster>Create Complete Cluster,

268
[Main] Draw>Draw-Partition, 34, 70, 163
[Main] Draw>Draw-Partition-Vector, 46,

111–113
[Main] Draw>Draw-SelectAll, 36, 295
[Main] Draw>Draw-Vector, 46
[Main] File>Hierarchy>Edit, 75, 144, 238
[Main] File>Network

>Edit, 22, 294
>Export Matrix to EPS

>Original, 263
>Using Permutation, 264, 272

>Read, 9, 292–293
>Save, 20, 23–24, 64–65, 295

[Main] File>Pajek Project File, 33

[Main] File>Partition
>Edit, 33, 40, 190, 294, 295
>Read, 32
>Save, 32, 295

[Main] File>Show Report Window, 12
[Main] File>Vector, 44

>Edit, 295
>Save, 295

[Main] Hierarchy drop-down menu, 75
[Main] Hierarchy>Make Cluster, 238
[Main] Hierarchy>Make Partition, 272
[Main] Info>Network

>General, 13–14, 64, 149, 219
>Indices, 238
>Line Values, 107, 247–248
>Triadic Census, 211–212

[Main] Info>Partition, 33–34, 65, 76, 153,
166, 177, 194–195, 232, 233, 240

[Main] Info>Vector, 44–45, 66, 149, 177,
230, 241

[Main] Macro>Add message, 171
[Main] Macro>Play, 171, 241
[Main] Macro>Record, 171
[Main] Net>Citation Weights, 247

>Normalization of Weights, 247
[Main] Net>Components

>Bi-Components, 143–144, 238
>Strong, 70, 73, 214, 217–218,

250
>Weak, 70, 111, 248

[Main] Net>Hierarchical Decomposition
>Clustering>Options, 271
>Symmetric-Acyclic, 217

[Main] Net>k-Neighbours, 129, 232
>All, 129, 149
>From Cluster, 129
>Input, 129, 194
>Output, 129

[Main] Net>Partitions
>Core

>All, 72, 247
>Input, 72
>Output, 72

>Degree, 65, 128
>Input, 107, 173, 190
>Output, 232

>Depth
>Acyclic, 217
>Genealogical, 230

>Domain>Input, 195, 198
>Valued Core, 111

>First Threshold and Step, 111
>Use max instead of sum, 111

>Vertex Shapes, 232
[Main] Net>Paths between 2 vertices>All

Shortest, 130, 230
[Main] Net>Random Network

>Total No. of Arcs, 22, 294, 295
>Vertices Output Degree, 166

[Main] Net>Transform
>2-Mode to 1-Mode

>Columns, 106
>Include Loops, 106–107
>Multiple lines, 106–107
>Rows, 106
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>Arcs→Edges
>All, 64–65, 74, 170, 177, 230
>Bidirected only, 218, 219
>Bidirected only>Sum Values, 11

>Edges→Arcs, 128
>Generate in Time, 94
>Remove

>all edges, 230, 232
>lines with value>higher than, 12
>lines with value>lower than, 40,

42–43, 111, 248
>lines with value>within interval, 95
>loops, 128, 217, 250
>multiple lines, 128

>Transpose, 190
[Main] Net>Vector

>Centrality
>Betweenness, 132–135, 177
>Closeness, 130

>Clustering Coefficients>CC1, 149–150
>Get coordinate, 48
>Structural Holes, 148, 153

[Main] Nets>First Network, 74
[Main] Nets>Fragment (1 in 2)

>Find, 75, 239
>Options, 75

>Check values of lines, 239
>Induced, 239

[Main] Nets>Second Network, 74
[Main] Network drop-down menu, 9–10,

263
[Main] Operations>Balance, 90–92
[Main] Operations>Blockmodeling

>Optimize Partition, 277
>Random Start, 278–280, 282–284

>Load MDL File, 284
>User Defined, 283

[Main] Operations>Brokerage Roles, 153
[Main] Operations>Dissimilarity

>d1>All, 269
>d5 – Corrected Euclidean, 269
>d6 – Corrected Manhattan, 269
>Options>Report Matrix, 269

[Main] Operations>Extract from Network
>Cluster, 238
>Partition, 37–38, 73, 111, 149, 241,

249, 267, 276
[Main] Operations>Reorder

>Network, 264
>Partition, 265

[Main] Operations>Shrink Network>

Partition, 40, 42, 214, 250
[Main] Operations>Transform

>Direction, 172–173
>Lower→Higher, 172, 249–250

>Remove Lines
>Between Clusters, 152–153, 219
>Inside Clusters, 43

[Main] Operations>Vector
>Put coordinate, 48
>Summing up Neighbours, 170

[Main] Options>Blockmodel-Shrink, 41
[Main] Options>Ini File

>Load, 308
>Save, 308

[Main] Options>Read/Write
>0/0, 171
>Bipartite Pgraph, 238
>GEDCOM – Pgraph, 229, 238
>Max. vertices to draw, 302
>Ore: 1-Male, 2-Female links, 229–230
>Pgraph + labels, 238
>Threshold, 297

[Main] Partition, 36
[Main] Partition drop-down menu, 32
[Main] Partition>Binarize, 170, 241
[Main] Partition>Create Null Partition,

35–36, 294
[Main] Partition>Create Random

Partition, 90
[Main] Partition>Make Cluster, 269
[Main] Partition>Make Permutation,

263
[Main] Partition>Make Vector, 45, 65–66,

170
[Main] Partitions, 36
[Main] Partitions>Add Partitions, 241
[Main] Partitions>Expand>First according

to Second (Shrink), 218
[Main] Partitions>Extract Second from

First, 38, 76, 108, 111–113,
232–233, 249, 276

[Main] Partitions>First Partition, 38, 49,
192, 241, 278

[Main] Partitions>Info
>Cramer’s V/Rajski, 49–51, 240, 278
>Spearman Rank, 192, 198

[Main] Partitions>Second Partition, 38,
49, 192, 241, 278

[Main] Permutation drop-down menu,
263–264

[Main] Vector>Create Identity Vector,
295

[Main] Vector>Extract Subvector, 47,
111–113, 241

[Main] Vector>Make Partition
>by Intervals

>First Threshold and Step, 46, 198
>Selected Thresholds, 46, 240

>by Truncating (Abs), 45–46
[Main] Vector>Shrink Vector, 47–48
[Main] Vector>Transform>Multiply by,

149
[Main] Vectors>Divide First by Second,

170–171, 173, 198
[Main] Vectors>First Vector, 170, 192
[Main] Vectors>Info, 192–193
[Main] Vectors>Second Vector, 170–171,

192

Report Screen
[Report] Report screen, 12
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actor, 5, 317
in a two mode network, 103

acyclic network, 212, 242, 317
adjacency matrix, 260–261, 293, 317
adjacent vertices, 63–64, 317
adoption category, 167, 317
adoption rate, 166, 317
affective relations, 84
affiliations, 101, 102. See also group

affiliation
aggregate constraint, 148, 317
Aldenderfer, Mark S., 288
alpha (in blockmodeling), 90, 92, 95
ancestor. See pedigree

closest common, 229
arc, 7, 317
articulation point. See cut-vertex
asymmetric dyad, 206, 317
Attiro data, 61–62
attribute, 31–32, 317
attribution, 86

balance model, 207, 317
balance theory, 84, 92, 204, 205. See also

structural balance
balanced network. See signed graph,

balanced
Batagelj, Vladimir, 252, 288
betweenness centrality, 131, 175, 318
betweenness centralization, 131, 318
bi-component, 70, 141, 143, 237, 318
bi-directional arc, 7
bipartite network. See two-mode network
Blashfield, Roger K., 288
block, 273, 318

complete, 273
null, 273

blockmodel, 274, 318. See also
blockmodeling

blockmodeling, xxiv, 259, 275–276, 318
generalized, 282, 320

blood marriage, 234, 318
blood relation, 229
Bornschier, Volker, 53
boundary specification, 6, 237
Breiger, Ronald, 118
bridge, 140, 143, 318

brokerage, 145
brokerage role, 151, 318. See also

coordinator role; gatekeeper; itinerant
broker; liaison; representative

Burt, Ronald S., 158, 181, 201

Carlson, Richard O., 181
Cartwright, Dorwin, 84, 86, 98
cell (of a matrix), 260, 318
centrality, 123. See also betweenness

centrality, closeness centrality, degree
centrality

centrality literature data, 242–243
centralization, 123, 124, 125, 126. See also

betweenness centralization, closeness
centralization, degree centralization

chi-square statistic, 212
citation, 242, 243

analysis, 244
Clifford, Roy A., 82, 201
clique, 73, 156, 318

overlapping, 74
size, 73

closeness centrality, 127, 318
closeness centralization, 127, 318
cluster (Pajek data object), 268
clusterability model, 87–90, 208, 318. See

also cycle, clusterable; signed graph,
clusterable

clusterable network. See signed graph,
clusterable

clustering. See hierarchical clustering
cohesive subgroups, 61, 262
Coleman, James S., 181, 201
Columbia University drug study data, 180
column (matrix), 260

profile, 266
communication network, 123, 125, 131
complete dyad, 206
complete network, 63, 318
component, 68, 318. See also

bi-component; strong component;
weak component

connected network, 67–68. See also
strongly connected network; weakly
connected network

connectedness, 68, 140

330
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constraint, 146. See also dyadic constraint;
aggregate constraint

contagion. See social contagion
contextual view, 42, 318
continuous property
contours, 109, 113
coordinates (of vertices), 9, 43–44,

115
coordinator role, 151, 318
core-periphery structure, 265–266, 268,

274, 275
correlation coefficient, 191. See also

Pearson’s correlation coefficient;
Spearman’s rank correlation

critical mass, 173, 319
cross-sectional network, 94
cut-vertex, 140–141, 143, 319
cycle, 85, 212, 319

balanced, 85, 317
clusterable, 87, 318

data collection techniques, 21
free recall, 21
fixed choice, 22
observation, 22
paired comparison, 22
ranking, 22
roster, 21

Davis, James A., 98, 206, 222
de Nooy, Wouter, 223
Degenne, Alain, 135, 157, 288
degree, 63, 125, 319

average, 63–64
degree (of a family relation). See remove
degree centrality, 125, 126, 319
degree centralization, 126, 319
deleting a vertex, 141, 319
dendrogram, 267, 269, 319. See also

hierarchical clustering
density, 62–63, 319

of a two-mode network, 104
of an ego-network. See egocentric

density
descendant, 229, 232
diffusion

curve, 164–165, 319
of information, 140
process, 161

digraph. See directed graph
dimension of a partition, 90, 319
dining-table partners data, 4
directed

graph, 7, 319
line. See arc

discrete property (vertex), 31
dissimilarity, 266–267
distance, 127, 319
divide et impera (divide and rule) strategy,

145, 150
domain, 193, 319. See also restricted

domain
input, 193
output, 193

Doreian, Patrick, 98, 252, 253, 288
Dutch literary criticism data, 222

dyad, 206, 319. See also asymmetric dyad;
complete dyad; null dyad; symmetric
dyad

dyadic constraint, 146–148, 319

edge, 7, 319
ego-centered approach, 123, 144, 319
ego-network, 144, 145, 319

density. See egocentric density
egocentric density, 148, 319
endogamy, 234, 237, 319
energize a network, 16–17, 90, 94

in three dimensions, 114
equivalence, 265, 319. See also regular

equivalence; structural equivalence
class, 265
equivalent position. See position

error matrix, 277, 281
error score (of a blockmodel), 89, 277
estimation techniques. See sample, network
event, 103, 319

size of, 104, 107, 323
exploratory social network analysis,

xxv–xxvi, 5
exposure, 168, 320
extracting a subnetwork, 37, 320

family of child (FAMC), 227, 320
family of orientation. See family of child
family of procreation. See family of spouse
family of spouse or procreation (FAMS),

227, 320
Faulkner, Robert R., 119
Faust, Katherine, 26, 82, 98, 119, 135,

201, 222, 288
Fennema, Meindert, 118
Ferligoj, Anuška, 252, 288
Fernandez, Roberto M., 158
first order inflection point, 175
Flament, Claude, 222
flying teams data, 97
forest, 237, 320
Forsé, Michel, 135, 157, 288
Freeman, Linton C., 242, 253

Galesburg drug study data, 201
Garfield, Eugene, 253
gatekeeper role, 151, 320
GEDCOM (genealogical data format),

228, 234, 252, 293
genealogical generation, 229, 230, 320
genealogy, 227. See also patrilineal

genealogy
generation jump, 229, 241, 320
generation. See genealogical generation;

social generation
geodesic, 127, 130, 320
Gil-Mendieta, Jorge, 288
global view, 39, 320
Gould, Roger V., 158
Granovetter, Mark, 158, 181
graph, 6, 320. See also directed graph; Ore

graph; P-graph; signed graph; simple
graph; undirected graph; valued graph

graph drawing esthetics, 14
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graph theory, 6, 236
group affiliation, 150

Hage, Per, 98
Harary, Frank, xxvi, 84, 86, 98
head (of an arc), 7
Heider, Fritz, 84, 86, 98
hierarchical clustering, 267, 269, 320
hierarchical clusters model, 209, 320
hierarchy, 320
hi-tech unionization data, 156–157
Hlebec, Valentina, 222
Holland, Paul W., 206, 222
Hollywood composers data, 118
homophily, 61, 139, 320
Hughes, Michael, 118
Hummon, Norman P., 244, 253
hypothesis testing, xxv–xxvi, 5

image matrix, 274, 275, 320
immediacy index, 244, 320
impact factor, 243, 321
incidence, 6, 321
incidence matrix, 261, 321
indegree, 64, 321
induced subnetwork, 37, 321
innovativeness, 169
interactive innovation, 176
interlocking directorate, 102
intermarriage. See endogamy
Isle of Man genealogical data, 252
isomorphic, 262, 321
itinerant broker role, 151, 321

Johnsen, Eugene C., 222
Jorion, Paul, 235, 253

k-connected component, 70, 321
k-core, 70–71, 244, 321
Kadushin, Charles, 118
Katz, Elihu, 181, 201
Kick, E., 53
Kincaid, D. Lawrence, 134, 135
Kinemages, 307–308
Knoke, David, 181, 201
Korea family planning data, 132–135
Krackhardt, David, 158

layout, network, 14
Leinhardt, Samuel, 206, 222
Leonard, Olen E., 82, 201
liaison role, 151, 321
Lin, Nan, 158
line, 6, 321. See also arc; edge; loop

multiplicity, 105, 107
values, 7, 63

line-network, 125
local view, 37, 321
longitudinal network, 93, 94
Loomis, Charles P., 82, 201
loop, 6, 321

m-core. See m-slice
m-slice, 109–110, 113–114, 321
Mahnken, Irmgard, 252

main path, 246, 321
analysis, 244–245
component, 246, 321

marriage relation, 229
Massey, J. G., 135
matrilineal line, 239
matrix, xxvi, 259–260, 321. See also

adjacency matrix; error matrix; image
matrix; incidence matrix

maximal subnetwork, 68, 71
Menzel, Herbert, 181, 201
Mexican political elite data, 287
Michael, Judd H., 135, 157
Milgram, Stanley, 26
modern math diffusion data, 161–162
Monte Carlo simulations, xxv
Morales, Julio O., 82, 201
Moreno, J. L., 3, 26, 98
Mrvar, Andrej, 98
multiple director, 101, 102
multiple lines, 7, 63, 321
multiplicity, 322

neighbor, 64, 125, 322
nested subnetworks, 72, 109, 322
network 3, 7, 322. See also acyclic

network; communication network;
complete network; one-mode network;
star-network; transaction network;
two-mode network; valued network

network data. See Pajek network data file
New Guinea data, 97, 98
non-blood relinking, 235, 322
Norman, Robert Z., 98
null dyad, 206, 322

one-mode network, 103, 322
derived from a two-mode network,

104–106
optimization technique, 89–90, 276, 322
Ore graph, 228, 322
outdegree, 64, 322

P-graph, 235–236, 322
bipartite, 237

Pajek, xxiii, xxvi, 8
active network, 10
data objects, 8
macro, 171
blockmodel (MDL) file, 283–284
matrix data format, 292–293, 296
missing value (9999998), 50, 129, 143,

230, 238, 240
network data file, 8–9, 94, 292,

295–296, 298–300
two-mode network data file, 106, 297,

301–302
Vega data format, 288

partial order, 217, 322
partition, 31, 322

creating, 295, 300–301
path, 67, 322

shortest. See geodesic
patrilineal genealogy, 227
patrilineal line, 239
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Pearson’s correlation coefficient, 191
pedigree, 226, 229, 232, 242, 322
periphery. See core-periphery structure
permutation, 262, 322
PhD students in computer science data, 252
polarization, 86
polygamy, 237
popularity, 189, 322
position, 265, 322
PostScript (PS), 21

Encapsulated (EPS), 21, 303
prestige, xxiv. See also proximity prestige;

social prestige; structural prestige
prevalence of an innovation, 164, 322
profile. See column profile; row profile
proportional strength, 146–147, 322
proximity prestige, 196–197, 322

Ragusan nobility data, 226–227
random structure, 210
ranked clusters model, 208, 322
ranked structure (blockmodel), 281–282
ranking, social, xxiv, 204

formal, 204
informal, 204

rate of participation, 104, 107, 323
ray tracing, 307
reachable, 127, 323
Read, K., 98
receiver. See head (of an arc)
regular block, 280–281, 323
regular equivalence, 280–281, 323
relinking index, 236, 323
remarriage, 237
remove (genealogy), 228, 230
representative role, 151, 323
restricted domain, 194, 323
Roberts, Fred S., 98
Rogers, Everett M., 134, 135, 181
rotation, 115–116

positive, 115
row (matrix), 260

profile, 266

Sabidussi, G., 135
sample, network, 5
Sampson monastery data, 87–88
Sampson, Samuel F., 87, 89, 92, 93, 98
San Juan Sur data, 66, 81, 116, 188–189
sawmill communication data, 123, 124
Scalable Vector Graphics (SVG), 21, 113,

305
Schijf, Huibert, 118
Schmidt, Samuel, 288
Schweitzer, Thomas, 253
Scott, John, 26, 82, 109, 118, 119, 135,

288
Scottish capital data, 102–103, 261, 302
second order inflection point, 174
semicycle, 85, 323

balanced. See cycle, balanced
clusterable. See cycle, clusterable

semipath, 67, 85, 323
semiwalk, 67, 323
sender. See tail (of an arc)

shrinking a network, 39, 213, 323
sibling, 229
sibling group, 232
signed graph, 85, 323

balanced, 86, 205, 317
clusterable, 86–99, 205, 318

signed network 4. See also signed graph
similarity. See dissimilarity
Simmel, Georg, 101, 118, 144, 157
simple graph, 7, 323
sink vertex, 245, 323
Small World problem, 6
Smith, David A., 30, 49, 53
Sneath, Peter H. A., 288
Snyder, D., 53
sociability. See social capital
social capital, 123, 125, 138, 140, 323
social circles, 101–102
social cleavage, 220
social contagion, 164, 323
social generation, 229, 323
social prestige, 187
socio-centered approach, 123, 144, 324
sociogram, 4–5
sociometric choice, 3
sociometry, 3
Sokal, Robert R., 288
source vertex, 245, 324
Spearman’s rank correlation, 191
spring embedder, 16
star-network, 125, 324
statistical models, xxv
statistics, 48–49, 191
stratification, xxiv
strength of weak ties hypothesis, 142
strike discussion data, 138–140, 260
strong component, 68, 213, 324
strongly connected network, 67–68, 324
structural balance, 86, 88–90. See also

cycle, balanced; signed graph,
balanced

structural equivalence, 266, 273, 275, 324
structural hole, 145, 324

secondary, 150–151, 152, 323
structural prestige, 187
structural property, 31, 324
structural relinking, 234, 236, 324. See also

blood marriage; non-blood relinking
student government data, 205, 280, 282
symmetric cluster, 215
symmetric dyad, 213
symmetric-acyclic model, 214–217, 324
symmetrizing a network, 64, 324

tail (of an arc), 7
tertius (gaudens) strategy, 145, 148
threshold, 169, 171, 324

category, 167, 324
lag, 176, 178, 324

ties
asymmetric, 204
strong, 138
weak, 138, 142

transaction network, 151
transitive triad, 208, 324
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transitivity model, 208–209, 324
transposed network, 189–190, 324
traversal weight, 245, 324
tree, 236, 324
Trezzini, Bruno, 53
triad, 144, 151, 206, 324

complete, 73, 145
triad census, 209, 324
triple, 85, 89

unclusterable, 92
two-mode network, 103, 325
two-step flow diffusion model, 163, 173

Ucinet, 293
dl file format, 293

undirected
graph, 7, 325
line. See edge

Valente, Tom W., 181
valued network, xxiv, 105–106, 325

vector, 43, 325
creating, 295, 300–301

vertex, 6, 325
label, 294

vertices. See vertex
Virtual Reality Markup Language

(VRML), 116, 306

walk, 67, 325
Wallerstein, Immanuel, 29, 53
Wasserman, Stanley, 26, 82, 90, 98, 119,

135, 201, 222, 288
weak component. See component
weakly connected network, 325
White, Douglas R., 30, 49, 53, 235, 253
White, Harrison C., 157
Wilson, R. J., xxvi
World System, 29–30
world trade data, 30, 267–268, 276, 298

Zeleny, Leslie D., 97
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