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Abstract

In scientometric research, the use of co-occurrence data is very common. In many

cases, a similarity measure is employed to normalize the data. However, there is no consen-

sus among researchers on which similarity measure is most appropriate for normalization

purposes. In this paper, we theoretically analyze the properties of similarity measures for

co-occurrence data, focusing in particular on four well-known measures: the association

strength, the cosine, the inclusion index, and the Jaccard index. We also study the behav-

ior of these measures empirically. Our analysis reveals that there exist two fundamentally

different types of similarity measures, namely set-theoretic measures and probabilistic mea-

sures. The association strength is a probabilistic measure, while the cosine, the inclusion

index, and the Jaccard index are set-theoretic measures. Both our theoretical and our em-

pirical results indicate that co-occurrence data can best be normalized using a probabilistic

measure. This provides strong support for the use of the association strength in scientomet-

ric research.
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1 Introduction

The use of co-occurrence data is very common in scientometric research. Co-occurrence data

can be used for a multitude of purposes. Co-citation data, for example, can be used to study

relations among authors or journals, co-authorship data can be used to study scientific cooper-

ation, and data on co-occurrences of words can be used to construct so-called co-word maps,

which are maps that provide a visual representation of the structure of a scientific field. Usually,

when co-occurrence data is used, a transformation is first applied to the data. The aim of such a

transformation is to derive similarities from the data or, more specifically, to normalize the data.

For example, when researchers study relations among authors based on co-citation data, they

typically derive similarities from the data and then analyze these similarities using multivariate

analysis techniques such as multidimensional scaling and hierarchical clustering (e.g., McCain,

1990; White and Griffith, 1981; White and McCain, 1998). Likewise, when researchers use co-

authorship data to study scientific cooperation, they typically apply a normalization to the data

and then base their analysis on the normalized data (e.g., Glänzel, 2001; Luukkonen, Persson,

and Sivertsen, 1992; Luukkonen, Tijssen, Persson, and Sivertsen, 1993).

In this paper, our focus is methodological. We study various measures for deriving similar-

ities from co-occurrence data. Basically, there are two approaches that can be taken to derive

similarities from co-occurrence data. We refer to these approaches as the direct and the indi-

rect approach, but the approaches are also known as the local and the global approach (Ahlgren,

Jarneving, and Rousseau, 2003; Jarneving, 2008). Similarity measures that implement the direct

approach are referred to as direct similarity measures in this paper, while similarity measures

that implement the indirect approach are referred to as indirect similarity measures.

The indirect approach to derive similarities from co-occurrence data relies on co-occurrence

profiles. The co-occurrence profile of an object is a vector that contains the number of co-

occurrences of the object with each other object. Indirect similarity measures determine the

similarity between two objects by comparing the co-occurrence profiles of the objects. The

indirect approach is mainly used for co-citation data (e.g., McCain, 1990, 1991; White and

Griffith, 1981; White and McCain, 1998). From a theoretical point of view, the approach is

quite well understood (Ahlgren et al., 2003; Van Eck and Waltman, 2008).

In this paper, we focus most of our attention on the direct approach to derive similarities

from co-occurrence data. Direct similarity measures determine the similarity between two ob-
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jects by taking the number of co-occurrences of the objects and adjusting this number for the

total number of occurrences or co-occurrences of each of the objects. Researchers use several

different direct similarity measures. The cosine and the Jaccard index are especially popular,

but other measures are also regularly used. However, relatively little is known about the the-

oretical properties of the various measures. Also, there is no consensus among researchers on

which measure is most appropriate for a particular purpose. In this paper, we theoretically an-

alyze some well-known direct similarity measures and we compare their properties. We also

study the behavior of the measures empirically. Usually, when a direct similarity measure is

applied to co-occurrence data, the purpose is to normalize the data, that is, to correct the data

for differences in the total number of occurrences or co-occurrences of objects. The main ques-

tion that we try to answer in this paper is therefore as follows: Which direct similarity measures

are appropriate for normalizing co-occurrence data and which are not? Interestingly, despite

their popularity, the cosine and the Jaccard index turn out not to be appropriate measures for

normalization purposes. We argue that an appropriate measure for normalizing co-occurrence

data is the association strength (Van Eck and Waltman, 2007; Van Eck, Waltman, van den

Berg, and Kaymak, 2006), also referred to as the proximity index (e.g., Peters and van Raan,

1993a; Rip and Courtial, 1984) or the probabilistic affinity index (e.g., Zitt, Bassecoulard, and

Okubo, 2000). Although this measure is somewhat less well-known, it turns out to have the

right theoretical properties for normalizing co-occurrence data.

This paper is organized as follows. We first provide an overview of the most popular direct

similarity measures. We then analyze these measures theoretically. We also look for empirical

relations among the measures. Finally, we answer the question which direct similarity measures

are appropriate for normalizing co-occurrence data and which are not.

2 Overview of direct similarity measures

In this section, we provide an overview of the most popular direct similarity measures. The

overview is based on a survey of the scientometric literature.

We first introduce some mathematical notation. Let O denote an occurrence matrix of or-

der m × n. The columns of O correspond with the objects of which we want to analyze the

co-occurrences. There are n such objects, denoted by 1, . . . , n. The objects can be, for exam-
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ple, authors (e.g., White and McCain, 1998), countries (e.g., Glänzel, 2001; Zitt et al., 2000),

documents (e.g., Gmür, 2003; Klavans and Boyack, 2006b), journals (e.g., Boyack, Klavans,

and Börner, 2005; Klavans and Boyack, 2006a), Web pages (e.g., Vaughan, 2006; Vaughan and

You, 2006), or words (e.g., Kopcsa and Schiebel, 1998). The rows of O usually correspond

with documents. m then denotes the number of documents on which the co-occurrence analysis

is based. Sometimes the rows of O do not correspond with documents. In Web co-link anal-

ysis, for example, the rows of O correspond with Web pages (e.g., Vaughan, 2006; Vaughan

and You, 2006). Throughout this paper, however, we assume for simplicity that the rows of O

always correspond with documents. Another assumption that we make is that O is a binary

matrix, that is, each element of O equals either zero or one. Let oki denote the element in the

kth row and ith column of O. oki equals one if object i occurs in the document that corresponds

with the kth row of O, and it equals zero otherwise. Let C denote the co-occurrence matrix of

the objects 1, . . . , n. C is a symmetric non-negative matrix of order n × n. Let cij denote the

element in the ith row and jth column of C. For i 6= j, cij equals the number of co-occurrences

of objects i and j. For i = j, cij equals the number of occurrences of object i. Clearly, for all i

and j, cij =
∑m

k=1 okiokj . It follows from this that C = OTO, where OT denotes the transpose

of O. Moreover, the assumption that O is a binary matrix implies that C is an integer matrix.

As we discussed in the introduction, there are two types of measures for determining simi-

larities between objects based on co-occurrence data. We refer to these two types of measures

as direct similarity measures and indirect similarity measures. Indirect similarity measures,

also known as global similarity measures (Ahlgren et al., 2003; Jarneving, 2008), determine

the similarity between two objects i and j by comparing the ith and the jth row (or column)

of the co-occurrence matrix C. The more similar the co-occurrence profiles in these two rows

(or columns) of C, the higher the similarity between i and j. Indirect similarity measures are

especially popular for author co-citation analysis (e.g., McCain, 1990; White and Griffith, 1981;

White and McCain, 1998) and journal co-citation analysis (e.g., McCain, 1991). We refer to

Ahlgren et al. (2003) and Van Eck and Waltman (2008) for a detailed discussion of the prop-

erties of various indirect similarity measures. In this paper, we focus most of our attention

on direct similarity measures, also known as local similarity measures (Ahlgren et al., 2003;

Jarneving, 2008). Direct similarity measures determine the similarity between two objects i

and j by taking the number of co-occurrences of i and j and adjusting this number for the
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total number of occurrences or co-occurrences of i and the total number of occurrences or co-

occurrences of j. We note that in some studies similarities between objects are determined by

comparing columns of the occurrence matrix O (e.g., Leydesdorff and Vaughan, 2006; Schnei-

der, Larsen, and Ingwersen, 2008). In most cases, this approach is mathematically equivalent to

the use of a direct similarity measure.1

Let si denote either the total number of occurrences of object i or the total number of co-

occurrences of object i. In the first case we have

si = cii =
m∑

k=1

oki, (1)

while in the second case we have

si =
n∑

j=1
j 6=i

cij. (2)

Both definitions are used in scientometric research (see also Leydesdorff, 2008), but the first

definition seems to be more popular. We now provide a formal definition of a direct similarity

measure.

Definition 2.1. A direct similarity measure is defined as a function S(cij, si, sj) that has the

following three properties:

• The domain of S(cij, si, sj) equals

DS =
{
(cij, si, sj) ∈ R3

∣∣0 ≤ cij ≤ min(si, sj) and si, sj > 0
}
. (3)

• The range of S(cij, si, sj) is a subset of R.

• S(cij, si, sj) is symmetric in si and sj , that is, S(cij, si, sj) = S(cij, sj, si) for all (cij, si, sj) ∈
DS .

Based on this definition, a number of observations can be made. First, the definition does not

require that cij , si, and sj have integer values. Allowing for non-integer values of cij , si, and sj

simplifies the mathematical analysis of direct similarity measures. Second, even though most

1Leydesdorff and Vaughan (2006) and Schneider et al. (2008) use the Pearson correlation to compare columns

of the occurrence matrix O. As shown by Guilford (1973), applying the Pearson correlation to a binary occurrence

matrix is mathematically equivalent to applying the so-called phi coefficient to the corresponding co-occurrence

matrix.
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direct similarity measures take values between zero and one, the definition allows measures to

have a different range. And third, because the definition requires direct similarity measures

to be symmetric in si and sj , it does not cover asymmetric similarity measures such as those

discussed by Egghe and Michel (2002, 2003). As a final observation, we note that Definition 2.1

is quite general. More specific definitions for special classes of direct similarity measures will

be provided later on in this paper. We now define the notion of monotonic relatedness of direct

similarity measures.

Definition 2.2. Two direct similarity measures S1(cij, si, sj) and S2(cij, si, sj) are said to be

monotonically related if and only if

S1(cij, si, sj) < S1(c
′
ij, s

′
i, s

′
j) ⇔ S2(cij, si, sj) < S2(c

′
ij, s

′
i, s

′
j) (4)

for all (cij, si, sj), (c
′
ij, s

′
i, s

′
j) ∈ DS .

Monotonic relatedness of direct similarity measures is important because certain multivariate

analysis techniques that are frequently used in scientometric research are insensitive to mono-

tonic transformations of similarities. This is for example the case for ordinal or non-metric

multidimensional scaling (e.g., Borg and Groenen, 2005) and for single linkage and complete

linkage hierarchical clustering (e.g., Anderberg, 1973).

Based on a survey of the literature, we have identified the most popular direct similarity

measures in the field of scientometrics. These measures are defined as

SA(cij, si, sj) =
cij

sisj

, (5)

SC(cij, si, sj) =
cij√
sisj

, (6)

SI(cij, si, sj) =
cij

min(si, sj)
, (7)

SJ(cij, si, sj) =
cij

si + sj − cij

. (8)

We refer to these measures as, respectively, the association strength, the cosine, the inclusion

index, and the Jaccard index. Assuming that cij is an integer, each of the measures takes values

between zero and one. Moreover, it is not difficult to see that the measures satisfy

SA(cij, si, sj) ≤ SJ(cij, si, sj) ≤ SC(cij, si, sj) ≤ SI(cij, si, sj). (9)

We now discuss each of the measures.
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The association strength defined in (5) is used by Van Eck and Waltman (2007) and Van Eck

et al. (2006).2 Under various names, the measure is also used in a number of other studies. Hinze

(1994), Leclerc and Gagné (1994), Peters and van Raan (1993a), and Rip and Courtial (1984)

refer to the measure as the proximity index, while Leydesdorff (2008) and Zitt et al. (2000) refer

to it as the probabilistic affinity (or activity) index. The measure is also employed by Luukkonen

et al. (1992, 1993), but in their work it does not have a name. The association strength is

proportional to the ratio between on the one hand the observed number of co-occurrences of

objects i and j and on the other hand the expected number of co-occurrences of objects i and

j under the assumption that occurrences of i and j are statistically independent. We will come

back to this interpretation later on in this paper. The association strength corresponds with the

pseudo-cosine measure discussed by Jones and Furnas (1987) and is monotonically related to

the (pointwise) mutual information measure used in the field of computational linguistics (e.g.,

Church and Hanks, 1990; Manning and Schütze, 1999). Measures equivalent to the association

strength sometimes also appear outside the field of scientometrics (Cox and Cox, 2001, 2008;

Hubálek, 1982).

The cosine defined in (6) equals the ratio between on the one hand the number of times

that objects i and j are observed together and on the other hand the geometric mean of the

number of times that object i is observed and the number of times that object j is observed.

The measure can be interpreted as the cosine of the angle between the ith and the jth column of

the occurrence matrix O, where the columns of O are regarded as vectors in an m-dimensional

space (e.g., Salton and McGill, 1983). The cosine seems to be the most popular direct similarity

measure in the field of scientometrics. Frequently cited studies in which the measure is used

include Braam, Moed, and van Raan (1991a,b), Klavans and Boyack (2006a), Leydesdorff

(1989), Peters and van Raan (1993b), Peters, Braam, and van Raan (1995), Small (1994), Small

and Sweeney (1985), and Small, Sweeney, and Greenlee (1985). The popularity of the cosine

is largely due to the work of Salton in the field of information retrieval (e.g., Salton, 1963;

Salton and McGill, 1983). The cosine is therefore sometimes referred to as Salton’s measure

(e.g., Glänzel, 2001; Glänzel, Schubert, and Czerwon, 1999; Luukkonen et al., 1993; Schubert

2The definition of the association strength used in these papers differs slightly from the definition provided in

(5). However, since the two definitions are proportional to each other, the difference between them is not important.

Throughout this section, direct similarity measures that are proportional to each other will simply be regarded as

equivalent.
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and Braun, 1990) or as the Salton index (e.g., Morillo, Bordons, and Gómez, 2003). In some

studies, a measure called the equivalence index is used (e.g., Callon, Courtial, and Laville,

1991; Kostoff, Eberhart, and Toothman, 1999; Law and Whittaker, 1992; Palmer, 1999). This

measure equals the square of the cosine. Outside the fields of scientometrics and information

retrieval, the cosine is also known as the Ochiai coefficient (e.g., Cox and Cox, 2001, 2008;

Hubálek, 1982; Sokal and Sneath, 1963).

Examples of the use of the inclusion index defined in (7) can be found in the work of Kostoff,

del Rı́o, Humenik, Garcı́a, and Ramı́rez (2001), McCain (1995), Peters and van Raan (1993a),

Rip and Courtial (1984), Tijssen (1992, 1993), and Tijssen and van Raan (1989). We note that

a measure somewhat different from the one defined in (7) is sometimes also called the inclusion

index (e.g., Braam et al., 1991a; Kostoff et al., 1999; Peters et al., 1995; Qin, 2000). In the field

of information retrieval, the inclusion index is referred to as the overlap measure (e.g., Jones and

Furnas, 1987; Rorvig, 1999; Salton and McGill, 1983). More in general, the inclusion index is

sometimes called the Simpson coefficient (e.g., Cox and Cox, 2001, 2008; Hubálek, 1982).

The Jaccard index defined in (8) equals the ratio between on the one hand the number of

times that objects i and j are observed together and on the other hand the number of times that

at least one of the two objects is observed. Small uses the Jaccard index in his early work on co-

citation analysis (e.g., Small, 1973, 1981; Small and Greenlee, 1980). Other work in which the

Jaccard index is used includes Heimeriks, Hörlesberger, and van den Besselaar (2003), Kopcsa

and Schiebel (1998), Peters and van Raan (1993a), Peters et al. (1995), Rip and Courtial (1984),

Van Raan and Tijssen (1993), Vaughan (2006), and Vaughan and You (2006). As shown by

Anderberg (1973), the Jaccard index is monotonically related to the Dice coefficient, which

is a well-known measure in information retrieval (e.g., Jones and Furnas, 1987; Rorvig, 1999;

Salton and McGill, 1983) and other fields (e.g., Cox and Cox, 2001, 2008; Hubálek, 1982; Sokal

and Sneath, 1963).

We note that, in addition to the four direct similarity measures discussed above, many more

direct similarity measures have been used in scientometric research. However, the above four

measures are by far the most popular ones, and we therefore focus most of our attention on

them in this paper. The relations among various direct similarity measures are summarized in

Table 1.

In the field of scientometrics, a number of studies have been performed in which different
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Table 1: Relations among various direct similarity measures.

Measure Alternative names Monotonically related measures

association strength probabilistic affinity index (pointwise) mutual information

proximity index

pseudo-cosine

cosine Ochiai coefficient equivalence index

Salton’s index/measure

inclusion index overlap measure

Simpson coefficient

Jaccard index Dice coefficient

direct similarity measures are compared with each other. Boyack et al. (2005), Gmür (2003),

Klavans and Boyack (2006a), Leydesdorff (2008), Luukkonen et al. (1993), and Peters and

van Raan (1993a) report results of empirical comparisons of different measures. Theoretical

analyses of relations between different measures can be found in the work of Egghe (2008) and

Hamers et al. (1989). Properties of various measures are also studied theoretically by Egghe

and Rousseau (2006). An extensive discussion of the issue of comparing different measures

is provided by Schneider and Borlund (2007a,b). Other work that might be of interest has

been done in the field of information retrieval. In the information retrieval literature, empirical

comparisons of different direct similarity measures are discussed by Chung and Lee (2001)

and Rorvig (1999) and a theoretical comparison is presented by Jones and Furnas (1987).3 We

further note that general overviews of a large number of direct similarity measures and their

properties can be found in the statistical literature (Anderberg, 1973; Cox and Cox, 2001, 2008;

Gower, 1985; Gower and Legendre, 1986) and also in the biological literature (Hubálek, 1982;

Sokal and Sneath, 1963).
3The results reported by Jones and Furnas are probably not very relevant to scientometric research. This is

because Jones and Furnas focus on the effect of term weights on similarity measures. In scientometric research,

there is no natural analogue to the term weights used in information retrieval. The reason for this is that the

occurrence matrices used in scientometric research contain elements that are usually restricted to zero and one,

while the document-term matrices used in information retrieval contain term weights that often do not have this

restriction.
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3 Set-theoretic similarity measures

In this section and in the next one, we are concerned with two special classes of direct similarity

measures. We discuss the class of set-theoretic similarity measures in this section and the class

of probabilistic similarity measures in the next section. It turns out that there is a fundamental

difference between the cosine, the inclusion index, and the Jaccard index on the one hand and

the association strength on the other hand. The first three measures all belong to the class of

set-theoretic similarity measures, while the last measure belongs to the class of probabilistic

similarity measures. We assume from now on that si denotes the total number of occurrences

of object i, that is, we assume that the definition of si in (1) is adopted. From a theoretical point

of view, this definition is more convenient than the definition of si in (2). We note that proofs

of the theoretical results that we present in this section and in the next one are provided in the

appendix.

Each column of an occurrence matrix can be seen as a representation of a set, namely the

set of all documents in which a certain object occurs (cf Egghe and Rousseau, 2006). Con-

sequently, a natural approach to determine the similarity between two objects i and j seems

to be to determine the similarity between on the one hand the set of all documents in which

i occurs and on the other hand the set of all documents in which j occurs. We refer to direct

similarity measures that take this approach as set-theoretic similarity measures. In other words,

set-theoretic similarity measures are direct similarity measures that are based on the notion of

similarity between sets. In this section, we theoretically analyze the properties of set-theoretic

similarity measures. We note that these properties are also studied theoretically by Baulieu

(1989, 1997), Egghe and Michel (2002, 2003), Egghe and Rousseau (2006), and Janson and

Vegelius (1981).

There are a number of properties of which we believe that it is natural to expect that any set-

theoretic similarity measure S(cij, si, sj) has them. Three of these properties are given below.

Property 3.1. If cij = 0, then S(cij, si, sj) takes its minimum value.

Property 3.2. For all α > 0, S(αcij, αsi, αsj) = S(cij, si, sj).

Property 3.3. If s′i > si and cij > 0, then S(cij, s
′
i, sj) < S(cij, si, sj).

Property 3.1 is based on the idea that the similarity between two sets should be minimal if the

sets are disjoint, that is, if they have no elements in common. Property 3.2 is based on the
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idea that the similarity between two sets should remain unchanged in the case of a proportional

increase or decrease in both the number of elements of each of the sets and the number of ele-

ments of the intersection of the sets. Egghe and Rousseau (2006) refer to this idea as replication

invariance. It underlies the notion of Lorenz similarity that is studied by Egghe and Rousseau.

A similar idea is also used by Janson and Vegelius (1981), who call it homogeneity. Property 3.3

is based on the idea that the similarity between two sets should decrease if an element is added

to one of the sets and this element does not belong to the other set. A similar idea is used by

Baulieu (1989, 1997). It is not difficult to see that Properties 3.1, 3.2, and 3.3 are independent of

each other, that is, none of the properties is implied by the others. We regard Properties 3.1, 3.2,

and 3.3 as the characterizing properties of set-theoretic similarity measures. This is formally

stated in the following definition.

Definition 3.1. A set-theoretic similarity measure is defined as a direct similarity measure

S(cij, si, sj) that has Properties 3.1, 3.2, and 3.3.

This definition implies that the cosine defined in (6) and the Jaccard index defined in (8) are

set-theoretic similarity measures. The association strength defined in (5) does not have Prop-

erty 3.2 and is therefore not a set-theoretic similarity measure. The inclusion index defined in

(7) is also not a set-theoretic similarity measure. This is because the inclusion index does not

have Property 3.3. However, the inclusion index does have the following property, which is a

weakened version of Property 3.3.

Property 3.4. If s′i > si and cij > 0, then S(cij, s
′
i, sj) ≤ S(cij, si, sj).

This property naturally leads to the following definition.

Definition 3.2. A weak set-theoretic similarity measure is defined as a direct similarity measure

S(cij, si, sj) that has Properties 3.1, 3.2, and 3.4.

It follows from this definition that the inclusion index is a weak set-theoretic similarity measure.

We note that our definition of a set-theoretic similarity measure seems to be more restrictive than

the definition of a Lorenz similarity function that is provided by Egghe and Rousseau (2006).

This is because a Lorenz similarity function need not have Properties 3.1 and 3.3.

In addition to Properties 3.1, 3.2, and 3.3, there are some other properties that we consider

indispensable for any set-theoretic similarity measure S(cij, si, sj). Four of these properties are

given below.
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Property 3.5. If S(cij, si, sj) takes its minimum value, then cij = 0.

Property 3.6. If cij = si = sj , then S(cij, si, sj) takes its maximum value.

Property 3.7. If S(cij, si, sj) takes its maximum value, then cij = si = sj .

Property 3.8. For all α > 0, if cij < si or cij < sj , then S(cij+α, si+α, sj+α) > S(cij, si, sj).

Properties 3.5, 3.6, and 3.7 are based on the idea that the similarity between two sets should

be minimal only if the sets are disjoint and that it should be maximal if and only if the sets are

equal. Property 3.8 is based on the idea that the similarity between two sets should increase

if the same element is added to both sets. It turns out that Properties 3.5, 3.6, 3.7, and 3.8 are

implied by Properties 3.1, 3.2, and 3.3. This is stated by the following proposition.

Proposition 3.1. All set-theoretic similarity measures S(cij, si, sj) have Properties 3.5, 3.6,

3.7, and 3.8.

We note that weak set-theoretic similarity measures need not have Properties 3.5, 3.7, and 3.8.

They do have Property 3.6.

We now consider the following two properties.

Property 3.9. If s′is
′
j > sisj and cij > 0, then S(cij, s

′
i, s

′
j) < S(cij, si, sj). If s′is

′
j = sisj , then

S(cij, s
′
i, s

′
j) = S(cij, si, sj).

Property 3.10. If s′i + s′j > si + sj and cij > 0, then S(cij, s
′
i, s

′
j) < S(cij, si, sj). If s′i + s′j =

si + sj , then S(cij, s
′
i, s

′
j) = S(cij, si, sj).

It is easy to see that these properties both imply Property 3.3. Hence, Properties 3.9 and 3.10 are

both stronger than Property 3.3. It can further be seen that the cosine has Property 3.9 and that

the Jaccard index has Property 3.10. The following two propositions indicate the importance of

Properties 3.9 and 3.10.

Proposition 3.2. All set-theoretic similarity measures S(cij, si, sj) that have Property 3.9 are

monotonically related to the cosine defined in (6).

Proposition 3.3. All set-theoretic similarity measures S(cij, si, sj) that have Property 3.10 are

monotonically related to the Jaccard index defined in (8).

12



Table 2: Summary of the properties of a number of direct similarity measures. If a measure has

a certain property, this is indicated using a × symbol.

Property

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 4.1 4.2

Association strength × × × × × × × ×
Cosine × × × × × × × × × ×
Inclusion index × × × × × × ×
Jaccard index × × × × × × × × ×

It follows from Proposition 3.2 that Properties 3.1, 3.2, and 3.9 characterize the class of all set-

theoretic similarity measures that are monotonically related to the cosine. Likewise, it follows

from Proposition 3.3 that Properties 3.1, 3.2, and 3.10 characterize the class of all set-theoretic

similarity measures that are monotonically related to the Jaccard index. We now apply a similar

idea to the inclusion index. The inclusion index has the following property.

Property 3.11. If min(s′i, s
′
j) > min(si, sj) and cij > 0, then S(cij, s

′
i, s

′
j) < S(cij, si, sj). If

min(s′i, s
′
j) = min(si, sj), then S(cij, s

′
i, s

′
j) = S(cij, si, sj).

This property implies Property 3.4. Together with Properties 3.1 and 3.2, Property 3.11 charac-

terizes the class of all weak set-theoretic similarity measures that are monotonically related to

the inclusion index. This is an immediate consequence of the following proposition.

Proposition 3.4. All weak set-theoretic similarity measures S(cij, si, sj) that have Property 3.11

are monotonically related to the inclusion index defined in (7).

In the above discussion, we have introduced a large number of properties that a direct simi-

larity measure may or may not have. For convenience, in Table 2 we summarize for the associ-

ation strength, the cosine, the inclusion index, and the Jaccard index which of these properties

they have and which they do not have. We note that the last two properties in the table will be

introduced in the next section.

In order to provide some additional insight into the relations among various (weak and

non-weak) set-theoretic similarity measures, we now introduce what we call the generalized

similarity index (for a similar idea, see Warrens, 2008).
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Definition 3.3. The generalized similarity index is defined as a direct similarity measure that is

given by

SG(cij, si, sj; p) =
21/pcij

(sp
i + sp

j)
1/p

, (10)

where p denotes a parameter that takes values in R \ {0}.

For all values of the parameter p, the generalized similarity index takes values between zero and

one. The index equals the ratio between on the one hand the number of times that objects i and

j are observed together and on the other hand a power mean of the number of times that object

i is observed and the number of times that object j is observed. (Power means, also known as

generalized means or Hölder means, are a generalization of arithmetic, geometric, and harmonic

means.) An interesting property of the generalized similarity index is that, for various values

of p, the index reduces to a well-known (weak or non-weak) set-theoretic similarity measure.

More specifically, it can be seen that

lim
p→−∞

SG(cij, si, sj; p) =
cij

min(si, sj)
, (11)

SG(cij, si, sj;−1) =
1

2

(
cij

si

+
cij

sj

)
, (12)

lim
p→0

SG(cij, si, sj; p) =
cij√
sisj

, (13)

SG(cij, si, sj; 1) =
2cij

si + sj

, (14)

SG(cij, si, sj; 2) =

√
2cij√

s2
i + s2

j

, (15)

lim
p→∞

SG(cij, si, sj; p) =
cij

max(si, sj)
, (16)

where (11), (13), and (16) follow from the properties of power means as discussed by, for

example, Hardy, Littlewood, and Pólya (1952). Equations (11) and (12) indicate that for p →
−∞ the generalized similarity index equals the inclusion index and that for p = −1 it equals

the so-called joint conditional probability measure that is used by McCain (1995). The latter

measure is more generally known as one of the Kulczynski coefficients (e.g., Cox and Cox,

2001, 2008; Hubálek, 1982; Sokal and Sneath, 1963). It is easy to see that this measure is a set-

theoretic similarity measure.4 Equations (13) and (14) indicate that for p → 0 the generalized

4This contrasts with Janson and Vegelius (1981), who argue that the measure in (12) does not have completely

satisfactory properties.
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similarity index equals the cosine and that for p = 1 it equals the Dice coefficient. It follows

from (8) and (14) that

SG(cij, si, sj; 1) =
2SJ(cij, si, sj)

SJ(cij, si, sj) + 1
, (17)

which implies that for p = 1 the generalized similarity index is monotonically related to the

Jaccard index. Equations (15) and (16) indicate that for p = 2 and p → ∞ the generalized

similarity index equals, respectively, the measures N and O2 that are studied by Egghe and

Michel (2002, 2003) and Egghe and Rousseau (2006). It is clear that N is a set-theoretic

similarity measure and that O2 is a weak set-theoretic similarity measure. Measures equivalent

to (16) are also discussed by Cox and Cox (2001, 2008) and Hubálek (1982).

The following proposition points out an important property of the generalized similarity

index.

Proposition 3.5. For all finite values of the parameter p, the generalized similarity index defined

in (10) is a set-theoretic similarity measure.

This proposition states that the generalized similarity index describes an entire class of set-

theoretic similarity measures. Each member of this class corresponds with a particular value

of p. Only in the limit case in which p → ±∞, the generalized similarity index is not a

set-theoretic similarity measure. In this limit case, the generalized similarity index is a weak

set-theoretic similarity measure.

4 Probabilistic similarity measures

In the previous section, we discussed the class of set-theoretic similarity measures. The cosine,

the inclusion index, and the Jaccard index turned out to be (weak or non-weak) set-theoretic

similarity measures. The association strength, however, turned out not to belong to the class of

set-theoretic similarity measures. In this section, we discuss the class of probabilistic similarity

measures. This is the class to which the association strength turns out to belong.

We are interested in direct similarity measures S(cij, si, sj) that have the following two

properties.

Property 4.1. If s1 = s2 = . . . = sn, then S(cij, si, sj) = αcij for all i 6= j and for some

α > 0.
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Property 4.2. For all α > 0, S(αcij, αsi, sj) = S(cij, si, sj).

Property 4.1 requires that, if all objects occur equally frequently, the similarity between two

objects is proportional to the number of co-occurrences of the objects. Property 4.2 requires

that the similarity between two objects remains unchanged in the case of a proportional increase

or decrease in on the one hand the number of co-occurrences of the objects and on the other

hand the number of occurrences of one of the objects. (Notice the difference between this

property and Property 3.2.) We regard Properties 4.1 and 4.2 as the characterizing properties of

probabilistic similarity measures. This results in the following definition.

Definition 4.1. A probabilistic similarity measure is defined as a direct similarity measure

S(cij, si, sj) that has Properties 4.1 and 4.2.

The cosine, the inclusion index, and the Jaccard index do not have Property 4.2 and therefore

are not probabilistic similarity measures. The association strength, on the other hand, is a

probabilistic similarity measure, since it has both Property 4.1 and Property 4.2. In this respect,

the association strength is quite unique, as the following proposition indicates.

Proposition 4.1. All probabilistic similarity measures are proportional to the association strength

defined in (5).

This proposition states that the class of probabilistic similarity measures consists only of the

association strength and of measures that are proportional to the association strength. There are

no other measures that belong to the class of probabilistic similarity measures. The following

result is an immediate consequence of Proposition 4.1.

Corollary 4.2. A direct similarity measure cannot be both a (weak or non-weak) set-theoretic

similarity measure and a probabilistic similarity measure.

This result makes clear that there is a fundamental difference between set-theoretic similarity

measures and probabilistic similarity measures. In other words, there is a fundamental differ-

ence between measures such as the cosine, the inclusion index, and the Jaccard index on the

one hand and the association strength on the other hand. We will come back to this difference

later on in this paper.

We now explain the rationale for Properties 4.1 and 4.2. To do so, we first discuss why

direct similarity measures are applied to co-occurrence data. The number of co-occurrences of
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two objects can be seen as the result of two independent effects. We refer to these effects as the

similarity effect and the size effect.5 The similarity effect is the effect that, other things being

equal, more similar objects have more co-occurrences. The size effect is the effect that, other

things being equal, an object that occurs more frequently has more co-occurrences with other

objects. If one is interested in the similarity between two objects, the number of co-occurrences

of the objects is in general not an appropriate measure. This is because, due to the size effect,

the number of co-occurrences is likely to give a distorted picture of the similarity between the

objects (see also Waltman and van Eck, 2007). Two frequently occurring objects, for example,

may have a large number of co-occurrences and may therefore look very similar. However,

it is quite well possible that the large number of co-occurrences of the objects is completely

due to their high frequency of occurrence (i.e., the size effect) and has nothing to do with their

similarity. Usually, when a direct similarity measure is applied to co-occurrence data, the aim

is to correct the data for the size effect.

Based on the above discussion, the idea underlying Property 4.1 can be explained as follows.

Property 4.1 is concerned with the behavior of a direct similarity measure in the special case

in which all objects occur equally frequently. In this special case, the size effect is equally

strong for all objects, which means that, unlike in the more general case, the number of co-

occurrences of two objects is an appropriate measure of the similarity between the objects.

Taking this into account, it is natural to expect that in the special case considered by Property 4.1

a direct similarity measure does not transform the co-occurrence frequencies of objects in any

significant way. Property 4.1 implements this idea by requiring that, if all objects occur equally

frequently, the similarity between two objects is proportional to the number of co-occurrences

of the objects.

We now consider Property 4.2. The idea underlying this property can best be clarified by

means of an example. Consider an arbitrary object i, and suppose that the total number of

occurrences of i doubles. It can then be expected that the total number of co-occurrences of

i also doubles, at least approximately. Suppose that the total number of co-occurrences of

i indeed doubles and that the new co-occurrences of i are distributed over the other objects

in the same way as the old co-occurrences of i. This simply means that the number of co-

5The similarity effect and the size effect can be seen as analogous to what statisticians call, respectively, inter-

action effects and main effects.
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occurrences of i with each other object doubles. We believe that this increase in the number of

occurrences and co-occurrences of i should not have any influence on the similarities between

i and the other objects. This is because the number of occurrences of i and the number of co-

occurrences of i with each other object have all increased proportionally, namely by a factor of

two. Hence, relatively speaking, the frequency with which i co-occurs with each other object

has not changed. This means that the increase in the number of co-occurrences of i with each

other object is completely due to the size effect and has not been caused by the similarity effect.

Taking this into account, it is natural to expect that the similarities between i and the other

objects remain unchanged. Property 4.2 implements this idea. It does so not only for the case in

which the number of occurrences and co-occurrences of an object doubles but more generally

for any proportional increase or decrease in the number of occurrences and co-occurrences of

an object. We note that the idea underlying Property 4.2 is not new. Ahlgren et al. (2003)

and Van Eck and Waltman (2008) study properties of indirect similarity measures. A property

that turns out to be particularly important is the so-called property of coordinate-wise scale

invariance. Interestingly, this property relies on exactly the same idea as Property 4.2. Hence,

direct similarity measures that have Property 4.2 and indirect similarity measures that have the

property of coordinate-wise scale invariance are based on similar principles.

Finally, we discuss the probabilistic interpretation of probabilistic similarity measures (see

also Leclerc and Gagné, 1994; Luukkonen et al., 1992, 1993; Zitt et al., 2000). Let pi denote

the probability that object i occurs in a randomly chosen document. It is clear that pi = si/m.

If two objects i and j occur independently of each other, the probability that they co-occur in

a randomly chosen document equals pij = pipj . The expected number of co-occurrences of i

and j then equals eij = mpij = mpipj = sisj/m. A natural way to measure the similarity

between i and j is to calculate the ratio between on the one hand the observed number of co-

occurrences of i and j and on the other hand the expected number of co-occurrences of i and

j under the assumption that i and j occur independently of each other (for a similar argument

in a more general context, see De Solla Price, 1981). This results in a measure that equals

cij/eij . This measure has a straightforward probabilistic interpretation. If cij/eij > 1, i and j

co-occur more frequently than would be expected by chance. If, on the other hand, cij/eij <

1, i and j co-occur less frequently than would be expected by chance. It is easy to see that

cij/eij = mSA(cij, si, sj). Hence, the measure cij/eij is proportional to the association strength
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and, consequently, belongs to the class of probabilistic similarity measures. Since probabilistic

similarity measures are all proportional to each other (this follows from Proposition 4.1), they

all have a similar probabilistic interpretation as the measure cij/eij .

5 Empirical comparison

In the previous two sections, the differences between a number of well-known direct similarity

measures were analyzed theoretically. It turned out that some measures have fundamentally

different properties than others. An obvious question now is whether in practical applications

there is much difference between the various measures. This is the question with which we are

concerned in this section.

Leydesdorff (2008) reports the results of an empirical comparison of a number of direct and

indirect similarity measures (for a theoretical explanation for some of the results, see Egghe,

2008). The measures are applied to a data set consisting of the co-citation frequencies of 24

authors, 12 from the field of information retrieval and 12 from the field of scientometrics.6

It turns out that the direct similarity measures are strongly correlated with each other. The

Spearman rank correlations between the association strength (referred to as the probabilistic

affinity or activity index), the cosine, and the Jaccard index are all above 0.98. Hence, for the

particular data set studied by Leydesdorff, there does not seem to be much difference between

various direct similarity measures.

In this section, we examine whether the results reported by Leydesdorff hold more gener-

ally. To do so, we study three data sets, one consisting of co-citation frequencies of authors, one

consisting of co-citation frequencies of journals, and one consisting of co-occurrence frequen-

cies of terms. We refer to these data sets as, respectively, the author data set, the journal data set,

and the term data set. The author data set consists of the co-citation frequencies of 100 authors

in the field of information science in the period 1988–1995. The data set is studied extensively

in a well-known paper by White and McCain (1998), and it is also used in one of our earlier

papers (Van Eck and Waltman, 2008). The journal data set has not been studied before. The

data set consists of the co-citation frequencies of 389 journals belonging to at least one of the

following five subject categories of Thomson Reuters: Business, Business-Finance, Economics,

6The same data set is also studied by Ahlgren et al. (2003), Leydesdorff and Vaughan (2006), and Waltman and

van Eck (2007).
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Table 3: Main characteristics of the author data set, the journal data set, and the term data set.

Author Journal Term

data set data set data set

# objects 100 389 332

# documents 5 463 24 106 6 235

# occurrences 7 768 32 697 26 211

# co-occurrences 22 520 13 378 60 640

% zeros in co-occurrence matrix 26% 93% 74%

Management, and Operations Research & Management Science. The co-citation frequencies of

the journals were determined based on citations in articles published between 2005 and 2007

to articles published in 2005. The term data set consists of the co-occurrence frequencies of

332 terms in the field of computational intelligence in the period 1996–2000. Co-occurrences

of terms were counted in abstracts of articles published in important journals and conference

proceedings in the computational intelligence field. For a more detailed description of the term

data set, we refer to an earlier paper (Van Eck and Waltman, 2007). In Table 3, we summarize

the main characteristics of the three data sets that we study.

In order to examine how the association strength, the cosine, the inclusion index, and the

Jaccard index are empirically related to each other, we analyzed each of the three data sets

as follows. We first calculated for each combination of two objects the value of each of the

four similarity measures. For each combination of two similarity measures, we then drew a

scatter plot that shows how the values of the two measures are related to each other. The

scatter plots obtained for the author data set and the term data set are shown in Figures 1 and 2,

respectively. The scatter plots obtained for the journal data set look very similar to the ones

obtained for the term data set and are therefore not shown. After drawing the scatter plots,

we determined for each combination of two similarity measures how strongly the values of

the measures are correlated with each other. We calculated both the Pearson correlation and

the Spearman correlation. The Pearson correlation was used to measure the degree to which the

values of two measures are linearly related, while the Spearman correlation was used to measure

the degree to which the values of two measures are monotonically related. When calculating

the Pearson and Spearman correlations between the values of two measures, we only took into
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account values above zero.7 The correlations obtained for the three data sets are reported in

Tables 4, 5, and 6. In each table, the values in the upper right part are Pearson correlations

while the values in the lower left part are Spearman correlations.

The scatter plots in Figures 1 and 2 clearly show that in practical applications there can be

substantial differences between different direct similarity measures. This is confirmed by the

correlations in Tables 4, 5, and 6. These results differ from the ones reported by Leydesdorff

(2008), who finds no substantial differences between different direct similarity measures. The

difference between our results and the results of Leydesdorff is probably due to the unusual

nature of the data set studied in Leydesdorff, in particular the small number of objects in the

data set (24 authors) and the division of the objects into two strongly separated groups (the

information retrieval researchers and the scientometricians). When looking in more detail at the

scatter plots in Figures 1 and 2, it can be seen that the similarity measures that are strongest

related to each other are the cosine and the Jaccard index. The same observation can be made in

Tables 4, 5, and 6. The relatively strong relation between the cosine and the Jaccard index has

been observed before and is discussed by Egghe (2008), Hamers et al. (1989), and Leydesdorff

(2008). Apart from the relation between the cosine and the Jaccard index, the relations between

the different similarity measures are quite weak. This is especially the case for the relations

between the association strength and the other three measures. Consider, for example, how the

association strength and the inclusion index are related to each other in the term data set. As

can be seen in Figure 2, a low value of the association strength sometimes corresponds with a

high value of the inclusion index and, the other way around, a low value of the inclusion index

sometimes corresponds with a high value of the association strength. This clearly indicates that

the relation between the two measures is rather weak, which is confirmed by the correlations

in Table 6. It is further interesting to compare our empirical results with the theoretical results

presented by Egghe (2008). Egghe mathematically studies relations between various (weak and

non-weak) set-theoretic similarity measures under the simplifying assumption that the ratio of

7If two objects have zero co-occurrences, all four similarity measures have a value of zero. Co-occurrence

matrices usually contain a large number of zeros (see Table 3). This leads to high correlations (close to one)

between the values of the four similarity measures. We regard these high correlations as problematic because they

do not properly reflect how the similarity measures are related to each other in the case of objects with a non-zero

number of co-occurrences. To avoid the problem of the high correlations, we only took into account values above

zero when calculating correlations between the values of the four similarity measures.
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Figure 1: Scatter plots obtained for the author data set. In each plot, the lower left corner

corresponds with the origin. The scales used for the different similarity measures are not the

same.
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Figure 2: Scatter plots obtained for the term data set. In each plot, the lower left corner corre-

sponds with the origin. The scales used for the different similarity measures are not the same.
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Table 4: Correlations obtained for the author data set.

Association Cosine Inclusion Jaccard

strength index index

Association strength 0.824 0.721 0.823

Cosine 0.913 0.929 0.987

Inclusion index 0.847 0.964 0.866

Jaccard index 0.920 0.994 0.931

Table 5: Correlations obtained for the journal data set.

Association Cosine Inclusion Jaccard

strength index index

Association strength 0.602 0.556 0.554

Cosine 0.892 0.800 0.971

Inclusion index 0.808 0.881 0.644

Jaccard index 0.832 0.952 0.708

Table 6: Correlations obtained for the term data set.

Association Cosine Inclusion Jaccard

strength index index

Association strength 0.653 0.347 0.688

Cosine 0.786 0.736 0.950

Inclusion index 0.562 0.799 0.511

Jaccard index 0.776 0.916 0.520
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the number of occurrences of two objects is fixed. He proves that, under this assumption, there

exist simple monotonic (often linear) relations between many measures. However, especially

for the inclusion index, the scatter plots in Figures 1 and 2 do not show such relations. Our

empirical results therefore seem to indicate that the practical relevance of the theoretical results

presented by Egghe might be somewhat limited.

The general conclusion that can be drawn from our empirical analysis is that there are quite

significant differences between various direct similarity measures and, hence, that in practical

applications it is important to use the measure that is most appropriate for ones purposes. In the

next section, we discuss how an appropriate similarity measure can be chosen based on sound

theoretical considerations. We focus in particular on the case in which a similarity measure is

used for normalization purposes.

6 How to normalize co-occurrence data?

As we discussed in the previous sections, there are various ways in which similarities between

objects can be determined based on co-occurrence data. The different types of similarity mea-

sures that can be used are shown in Figure 3. The first decision that one has to make is whether

to use a direct or an indirect similarity measure. If one decides to use a direct similarity measure,

one then has to decide whether to use a probabilistic or a set-theoretic similarity measure.

We first briefly discuss the use of indirect similarity measures. As pointed out by Schneider

and Borlund (2007a), from a statistical perspective the use of an indirect similarity measure is a

quite unconventional approach.8 However, despite being unconventional, we do not believe that

the approach has any fundamental statistical problems. Appropriate indirect similarity mea-

sures include the Bhattacharyya distance, the cosine,9 and the Jensen-Shannon distance. These

measures are known to have good theoretical properties (Van Eck and Waltman, 2008). A

very popular indirect similarity measure, especially for author co-citation analysis (e.g., Mc-

8A similar approach is sometimes taken in psychological research (e.g., Rosenberg and Jones, 1972; Rosenberg,

Nelson, and Vivekananthan, 1968). In the psychological literature, there is some discussion about the advantages

and disadvantages of this approach (Drasgow and Jones, 1979; Simmen, 1996; Van der Kloot and van Herk, 1991).
9There are two different similarity measures, a direct and an indirect one, that are both referred to as the cosine.

Here we mean the cosine as discussed by, for example, Ahlgren et al. (2003) and Van Eck and Waltman (2008).

This is a different measure than the one defined in (6).
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Figure 3: Different types of similarity measures.

Cain, 1990; White and Griffith, 1981; White and McCain, 1998), is the Pearson correlation.

However, this measure does not have good theoretical properties and should therefore not be

used (Ahlgren et al., 2003; Van Eck and Waltman, 2008). The chi-squared distance, which is

proposed as an indirect similarity measure by Ahlgren et al. (2003), also does not have all the

theoretical properties that we believe an appropriate indirect similarity measure should have

(Van Eck and Waltman, 2008). We note that theoretical studies of indirect similarity measures

can also be found in the psychometric literature (e.g., Zegers and ten Berge, 1985). In this

literature, the cosine is referred to as Tucker’s congruence coefficient.

In the rest of this section, we focus our attention on the use of direct similarity measures.

Direct similarity measures determine the similarity between two objects by taking the number

of co-occurrences of the objects and adjusting this number for the total number of occurrences

of each of the objects. In scientometric research, when a direct similarity measure is applied

to co-occurrence data, the aim usually is to normalize the data, that is, to correct the data for

differences in the number of occurrences of objects. This brings us to the main question of this

paper: How should co-occurrence data be normalized? Or, in other words, which direct similar-

ity measures are appropriate for normalizing co-occurrence data and which are not? We argue

that co-occurrence data should always be normalized using a probabilistic similarity measure.

Other direct similarity measures are not appropriate for normalization purposes. In particular,
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set-theoretic similarity measures should not be used to normalize co-occurrence data.

To see why probabilistic similarity measures have the right properties for normalizing co-

occurrence data, recall from Section 4 that the number of co-occurrences of two objects can

be seen as the result of two independent effects, the similarity effect and the size effect. As

we discussed in Section 4, probabilistic similarity measures correct for the size effect. This

follows from Property 4.2. Set-theoretic similarity measures do not have this property, and

they therefore do not properly correct for the size effect. As a consequence, set-theoretic sim-

ilarity measures have, on average, higher values for objects that occur more frequently (see

also Luukkonen et al., 1993; Zitt et al., 2000). The values of probabilistic similarity measures,

on the other hand, do not depend on how frequently objects occur. This difference between

set-theoretic and probabilistic similarity measures can easily be demonstrated empirically. In

Figure 4, this is done for the term data set discussed in the previous section. (The author data

set and the journal data set yield similar results.) The figure shows the relation between on

the one hand the number of occurrences of a term and on the other hand the average similarity

of a term with other terms. In the left panel of the figure, similarities are determined using

a probabilistic similarity measure, namely the association strength. In this panel, there is no

substantial correlation between the number of occurrences of a term and the average similarity

of a term (r = −0.069, ρ = −0.029). This is very different in the right panel, in which similar-

ities are determined using a set-theoretic similarity measure, namely the cosine. (The inclusion

index and the Jaccard index yield similar results.) In the right panel, there is a strong positive

correlation between the number of occurrences of a term and the average similarity of a term

(r = 0.839, ρ = 0.882). Results such as those shown in the right panel clearly indicate that

set-theoretic similarity measures do not properly correct for the size effect and, consequently,

do not properly normalize co-occurrence data. It follows from this observation that one should

be very careful with the interpretation of similarities that have been derived from co-occurrence

data using a set-theoretic similarity measure (see also Luukkonen et al., 1993; Zitt et al., 2000).

Moreover, when such similarities are analyzed using multivariate analysis techniques such as

multidimensional scaling or hierarchical clustering, one should pay special attention to possible

artifacts in the results of the analysis. When using multidimensional scaling, for example, it

is our experience that frequently occurring objects tend to cluster together in the center of a

solution.
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Figure 4: Relation between on the one hand the number of occurrences of a term and on the

other hand the average similarity of a term with other terms. In the left panel, similarities are

determined using the association strength. In the right panel, similarities are determined using

the cosine.

To provide some additional insight why probabilistic similarity measures are more appro-

priate for normalization purposes than set-theoretic similarity measures, we now compare the

main ideas underlying these two types of measures. Suppose that we are performing a co-word

analysis and that we want to determine the similarity between two words, word i and word j.

We consider two hypothetical scenarios, to which we refer as scenario 1 and scenario 2. The

scenarios are summarized in Table 7, and they are illustrated graphically in the left and right

panels of Figure 5. In each panel of the figure, the light gray rectangle represents the set of all

documents used in the co-word analysis, the dark gray circle represents the set of all documents

in which word i occurs, and the striped circle represents the set of all documents in which word

j occurs. The area of a rectangle or circle is proportional to the number of documents in the

corresponding set.

As can be seen in Table 7 and Figure 5, in scenario 1 words i and j both occur quite fre-

quently, while in scenario 2 they both occur relatively infrequently. In both scenarios, however,

the relative overlap of the set of documents in which word i occurs and the set of documents

in which word j occurs is the same. That is, in both scenarios word i occurs in 30% of the

documents in which word j occurs and, the other way around, word j occurs in 30% of the doc-

uments in which word i occurs. Because the relative overlap is the same, set-theoretic similarity

measures, such as the cosine, the inclusion index, and the Jaccard index, yield the same similar-

ity between words i and j in both scenarios (see Table 7). This is a consequence of Property 3.2
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Table 7: Summary of two hypothetical scenarios in a co-word analysis.

Scenario 1 Scenario 2

m 1 000 1 000

si 300 20

sj 300 20

cij 90 6

Association strength 0.001 0.015

Cosine 0.300 0.300

Inclusion index 0.300 0.300

Jaccard index 0.176 0.176

Figure 5: Graphical illustration of two hypothetical scenarios in a co-word analysis. Scenario 1

is shown in the left panel. Scenario 2 is shown in the right panel.
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discussed in Section 3. At first sight, it might seem a natural result to have the same similarity

between words i and j in both scenarios. However, we argue that this result is far from natural,

at least for normalization purposes.

We first consider scenario 1 in more detail. In this scenario, words i and j each occur in 30%

of all documents. If there is no special relation between words i and j and if, as a consequence,

occurrences of the two words are statistically independent, one would expect the two words to

co-occur in approximately 30% × 30% = 9% of all documents. As can be seen in Table 7,

words i and j co-occur in exactly 9% of all documents. Hence, occurrences of words i and j

seem to be statistically independent, at least approximately, and there seems to be no strong

relation between the two words.

We now consider scenario 2. In this scenario, words i and j each occur in 2% of all doc-

uments. If occurrences of words i and j are statistically independent, one would expect the

two words to co-occur in approximately 0.04% of all documents. However, words i and j co-

occur in 0.6% of all documents, that is, they co-occur 15 times more frequently than would be

expected under the assumption of statistical independence. Hence, there seems to be a quite

strong relation between words i and j, definitely much stronger than in scenario 1.

It is clear that set-theoretic similarity measures yield results that do not properly reflect the

difference between scenario 1 and scenario 2. This is because set-theoretic similarity measures

are based on the idea of measuring the relative overlap of sets instead of the idea of measur-

ing the deviation from statistical independence. Probabilistic similarity measures, such as the

association strength, are based on the latter idea, and they therefore yield results that do prop-

erly reflect the difference between scenario 1 and scenario 2. As can be seen in Table 7, the

association strength indicates that in scenario 2 the similarity between words i and j is 15 times

higher than in scenario 1. This reflects that in scenario 2 the co-occurrence frequency of words

i and j is 15 times higher than would be expected under the assumption of statistical indepen-

dence while in scenario 1 the co-occurrence frequency of the two words equals the expected

co-occurrence frequency under the independence assumption.
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7 Conclusions

We have studied the application of direct similarity measures to co-occurrence data. Our survey

of the scientometric literature has indicated that the most popular direct similarity measures are

the association strength, the cosine, the inclusion index, and the Jaccard index. We have there-

fore focused most of our attention on these four measures. To make a well-considered decision

which measure is most appropriate for ones purposes, we believe it to be indispensable to have

a good theoretical understanding of the properties of the various measures. In this paper, we

have analyzed these properties in considerable detail. Our analysis has revealed that there are

two fundamentally different types of direct similarity measures. On the one hand, there are

set-theoretic similarity measures, which can be interpreted as measures of the relative overlap

of two sets. On the other hand, there are probabilistic similarity measures, which can be in-

terpreted as measures of the deviation of observed co-occurrence frequencies from expected

co-occurrence frequencies under an independence assumption. The cosine, the inclusion index,

and the Jaccard index are examples of set-theoretic similarity measures, while the association

strength is an example of a probabilistic similarity measure. Set-theoretic and probabilistic

similarity measures serve different purposes, and it therefore makes no sense to argue that one

measure is always better than another. In scientometric research, however, similarity measures

are usually used for normalization purposes, and we have argued that in that specific case prob-

abilistic similarity measures are much more appropriate than set-theoretic ones. Consequently,

for most applications of direct similarity measures in scientometric research, we advise against

the use of set-theoretic similarity measures and we recommend the use of a probabilistic simi-

larity measure.

In addition to our theoretical analysis, we have also performed an empirical analysis of

the behavior of various direct similarity measures. The analysis has shown that in practical

applications the differences between various direct similarity measures can be quite large. This

indicates that the issue of choosing an appropriate similarity measure is not only of theoretical

interest but also has a high practical relevance. Another empirical observation that we have

made is that set-theoretic similarity measures yield systematically higher values for frequently

occurring objects than for objects that occur only a limited number of times. This confirms our

theoretical finding that set-theoretic similarity measures do not properly correct for size effects.

Probabilistic similarity measures do not have this problem.
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There is one final comment that we would like to make. Above, we have argued in favor

of the use of probabilistic similarity measures in scientometric research. Since probabilistic

similarity measures are all proportional to each other, it does not really matter which proba-

bilistic similarity measure one uses. In this paper, we have focused most of our attention on

one particular probabilistic similarity measure, namely the association strength defined in (5).

This measure shares with many other direct similarity measures the property that it takes values

between zero and one. For practical purposes, however, it may be convenient not to use the mea-

sure in (5) directly but instead to multiply this measure by the number of documents m (e.g.,

Van Eck and Waltman, 2007; Van Eck et al., 2006). This results in a slight variant of the asso-

ciation strength. As discussed in Section 4, this variant has the appealing property that it equals

one if the observed co-occurrence frequency of two objects equals the co-occurrence frequency

that would be expected under the assumption that occurrences of the objects are statistically

independent. It takes a value above or below one if the observed co-occurrence frequency is, re-

spectively, higher or lower than the expected co-occurrence frequency under the independence

assumption.

Appendix

In this appendix, we prove the theoretical results presented in the paper.

Proof of Proposition 3.1. We prove each property separately.

(Property 3.5) This property follows from Property 3.3. Property 3.3 implies that, if cij > 0,

S(cij, si, sj) > S(cij, si + 1, sj). Hence, if cij > 0, S(cij, si, sj) cannot take its minimum

value. This means that S(cij, si, sj) can take its minimum value only if cij = 0. This proves

Property 3.5.

(Property 3.6) This property follows from Properties 3.1, 3.2, and 3.3. Suppose that cij =

si = sj . For all (c′ij, s
′
i, s

′
j) ∈ DS such that c′ij = 0, Property 3.1 implies that S(c′ij, s

′
i, s

′
j) ≤

S(cij, si, sj). For all (c′ij, s
′
i, s

′
j) ∈ DS such that c′ij > 0, Property 3.3 implies that S(c′ij, s

′
i, s

′
j) ≤

S(c′ij, c
′
ij, c

′
ij) and Property 3.2 implies that S(c′ij, c

′
ij, c

′
ij) = S(cij, si, sj). Hence, for all (c′ij, s

′
i, s

′
j) ∈

DS , S(c′ij, s
′
i, s

′
j) ≤ S(cij, si, sj). This means that, if cij = si = sj , S(cij, si, sj) takes its maxi-

mum value. This proves Property 3.6.

(Property 3.7) This property follows from Properties 3.1, 3.3, and 3.5. Properties 3.1 and 3.5
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imply that, if cij = 0, S(cij, si, sj) cannot take its maximum value. Property 3.3 implies that,

if 0 < cij < si or 0 < cij < sj , S(cij, si, sj) < S(cij, cij, cij). Hence, if 0 < cij < si or

0 < cij < sj , S(cij, si, sj) cannot take its maximum value. It now follows that S(cij, si, sj) can

take its maximum value only if cij = si = sj . This proves Property 3.7.

(Property 3.8) This property follows from Properties 3.1, 3.2, 3.3, and 3.5. If cij = 0, the

property follows trivially from Properties 3.1 and 3.5. We therefore focus on the case in which

cij > 0. Suppose, without loss of generality, that 0 < cij < si. Consider an arbitrary constant

α > 0, and let β = (cij + α)/cij . Property 3.2 implies that S(βcij, βsi, βsj) = S(cij, si, sj).

Moreover, because βcij = cij + α, βsi > si + α, and βsj ≥ sj + α, Property 3.3 implies that

S(βcij, βsi, βsj) < S(cij + α, si + α, sj + α). It now follows that S(cij + α, si + α, sj + α) >

S(cij, si, sj). This proves Property 3.8.

Proof of Proposition 3.2. Let S(cij, si, sj) denote an arbitrary set-theoretic similarity measure

that has Property 3.9. We start by showing that for all (cij, si, sj), (c
′
ij, s

′
i, s

′
j) ∈ DS the prop-

erties of set-theoretic similarity measures together with Property 3.9 are sufficient to determine

whether S(cij, si, sj) is greater than, less than, or equal to S(c′ij, s
′
i, s

′
j). Suppose first that

cij, c
′
ij > 0. Let α = cij/c

′
ij . Property 3.2 implies that S(αc′ij, αs′i, αs′j) = S(c′ij, s

′
i, s

′
j). More-

over, taking into account that cij = αc′ij , it can be seen that Property 3.9 determines whether

S(cij, si, sj) is greater than, less than, or equal to S(αc′ij, αs′i, αs′j). Hence, if cij, c
′
ij > 0,

Properties 3.2 and 3.9 are sufficient to determine whether S(cij, si, sj) is greater than, less than,

or equal to S(c′ij, s
′
i, s

′
j). Suppose next that cij = 0 or c′ij = 0. Property 3.1 implies that

S(cij, si, sj) = S(c′ij, s
′
i, s

′
j) if cij = c′ij = 0. Furthermore, Properties 3.1 and 3.5 imply that

S(cij, si, sj) > S(c′ij, s
′
i, s

′
j) if cij > c′ij = 0 and, conversely, that S(cij, si, sj) < S(c′ij, s

′
i, s

′
j)

if c′ij > cij = 0. Hence, if cij = 0 or c′ij = 0, Properties 3.1 and 3.5 are sufficient to determine

whether S(cij, si, sj) is greater than, less than, or equal to S(c′ij, s
′
i, s

′
j). It now follows that for

all (cij, si, sj), (c
′
ij, s

′
i, s

′
j) ∈ DS the properties of set-theoretic similarity measures together with

Property 3.9 are sufficient to determine whether S(cij, si, sj) is greater than, less than, or equal

to S(c′ij, s
′
i, s

′
j). This implies that all set-theoretic similarity measures that have Property 3.9

are monotonically related to each other. One of these measures is the cosine defined in (6).

Hence, all set-theoretic similarity measures that have Property 3.9 are monotonically related to

the cosine. This completes the proof of the proposition.

Proof of Proposition 3.3. The proof is analogous to the proof of Proposition 3.2 provided above.
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Proof of Proposition 3.4. Let S(cij, si, sj) denote an arbitrary weak set-theoretic similarity mea-

sure that has Property 3.11. Property 3.11 implies that, if cij > 0, S(cij, si, sj) > S(cij, si +

1, sj + 1). Hence, if cij > 0, S(cij, si, sj) cannot take its minimum value. This means that

S(cij, si, sj) can take its minimum value only if cij = 0. In other words, S(cij, si, sj) has

Property 3.5. This shows that all weak set-theoretic similarity measures S(cij, si, sj) that have

Property 3.11 also have Property 3.5. The rest of the proof is now analogous to the proof of

Proposition 3.2 provided above.

Proof of Proposition 3.5. It is easy to see that for all finite values of the parameter p the gener-

alized similarity index defined in (10) has Properties 3.1, 3.2, and 3.3. Hence, it follows from

Definition 3.1 that for all finite values of the parameter p the generalized similarity index is a

set-theoretic similarity measure. This completes the proof of the proposition.

Proof of Proposition 4.1. Let S(cij, si, sj) denote an arbitrary probabilistic similarity measure.

Furthermore, let c′ij = cij/(sisj) for all i 6= j, and let s′i = 1 for all i. It follows from

Property 4.2 that S(cij, si, sj) = S(c′ij, s
′
i, s

′
j) for all i 6= j, and it follows from Property 4.1

that S(c′ij, s
′
i, s

′
j) = αc′ij for all i 6= j and for some α > 0. Hence, for all i 6= j and for some

α > 0, S(cij, si, sj) = S(c′ij, s
′
i, s

′
j) = αc′ij = αcij/(sisj) = αSA(cij, si, sj). In other words,

S(cij, si, sj) is proportional to the association strength defined in (5). This completes the proof

of the proposition.

Proof of Corollary 4.2. The association strength defined in (5) does not have Property 3.2 and

is therefore not a (weak or non-weak) set-theoretic similarity measure. The same is true for

all measures that are proportional to the association strength. Consequently, it follows from

Proposition 4.1 that a probabilistic similarity measure cannot also be a (weak or non-weak)

set-theoretic similarity measure. This completes the proof of the corollary.
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