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ABSTRACT
We present VizioMetrix, a platform that extracts visual in-
formation from the scientific literature and makes it avail-
able for use in new information retrieval applications and
for studies that look at patterns of visual information across
millions of papers. New ideas are conveyed visually in the
scientific literature through figures — diagrams, photos, vi-
sualizations, tables — but these visual elements remain en-
sconced in the surrounding paper and difficult to use directly
to facilitate information discovery tasks or longitudinal an-
alytics. Very few applications in information retrieval, aca-
demic search, or bibliometrics make direct use of the figures,
and none attempt to recognize and exploit the type of fig-
ure, which can be used to augment interactions with a large
corpus of scholarly literature.

The VizioMetrix platform processes a corpus of docu-
ments, classifies the figures, organizes the results into a cloud-
hosted databases, and drives three distinct applications to
support bibliometric analysis and information retrieval. The
first application supports information retrieval tasks by al-
lowing rapid browsing of classified figures. The second ap-
plication supports longitudinal analysis of visual patterns in
the literature and facilitates data mining of these figures.
The third application supports crowdsourced tagging of fig-
ures to improve classification, augment search, and facilitate
new kinds of analyses. Our initial corpus is the entirety of
PubMed Central (PMC), and will be released to the public
alongside this paper; we welcome other researchers to make
use of these resources.
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1. INTRODUCTION
Scientific results are communicated visually in the scien-

tific literature, but visual information is underused in aca-
demic search tools. We explore how visual information can
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be used to facilitate search tasks and design a new inter-
face to support this exploration. Search tasks typically in-
volve accessing a superset of relevant papers and manually
scanning their contents for relevance. The text-based lay-
out is not necessarily conducive for this ”scan for relevance”
task, and as a result the anecdotal algorithm is to ”skim
the figures.” In all fields, key experimental results are pre-
sented in plots, complex scientific concepts are visualized by
graphics with text, and photographs provide evidence and
insight. Reviewing these figures can help users quickly un-
derstand the style of article or the methods used (e.g. sta-
tistical analysis, experimental demonstration, survey). In
many fields like Cell Biology, a figure can be worth a thou-
sand words that summarizes the entirety of the paper [6].
Using a particular style of schematics, plots, or photos can
be indicative of a particular type of paper. For example, a
phylogenetic tree indicates a phylogenetic analysis has been
performed. The visual information can carry details that are
insufficiently described in the text. Our hypothesis is that
reviewing these figures as first class artifacts during search
can help users rapidly identify relevant articles, draw asso-
ciations between related articles, and focus attention on key
results rather than overarching topics.

Others have observed this need for figure-oriented retrieval
and built tools to support the corresponding tasks1. Struc-
tured Literature Image Finder system [1] proposed by Carnegie
Melon University researchers focus their interest in micro-
scope images. DiagramFlyer [3], proposed by University of
Michigan researchers, facilitates search over figures in the lit-
erature, but focuses on keyword search over extracted text
rather than classification of the figure type itself. A research
team from Pennsylvania State University engages in mining
data-driven visualizations [10, 2]. Our approach is to classify
figures based on their type, then organize a search and anal-
ysis interface that uses these classified images as the primary
unit of interaction.

VizioMetrix is designed to be an initial suite of tools in
support of Viziometrics, an emerging field pertaining to the
analysis of visual information in the scientific literature [8].
The term is intended to convey shared goals with bibilomet-
rics and scientometrics while indicating our focus on the vi-
sual information. VizioMetrix (the platform) includes func-
tionality for three groups of users: (1) academic users per-
forming search tasks, (2) researchers who specialize in com-
puter vision for document understanding, and (3) scientome-
tricians interested in understanding general communication
patterns across the literature. For group (1), VizioMetrix

1Zanran, D8taplex
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Figure 1: Screenshot of search engine interface (viziometrics.org). We use different colors to highlight different
figure types (e.g., red indicates diagrams) (A) shows the grid layout, which is designed for reviewing many
images (B) shows the alternative layout, which bundles figures from the same paper and related papers.
Related papers are selected based on out and in-citations and then ranked by the ALEF score. This is made
to look more like a paper, whereas the grid layout provides a general overview on a particular topic. (c)
is the page showing figure and paper details. A simple crowdsourced labelling interface is embedded in the
page to gather human labels.

provides a figure-centric search service that allows brows-
ing and filtering by figure types. The figure labels are de-
termined by our classification process, but the labels can
be edited directly through the interface to improve accu-
racy over time. For group (2), VizioMetrix provides an effi-
cient bulk-labeling interface to produce better training data
for figure type classification and related viziometric analysis
tasks. For group (3), VizioMetrix provides a longitudinal
analysis interface that allows aggregate analysis of the pat-
terns of visual information in the literature.

These three interfaces are powered by a figure-processing
pipeline that extracts features and classifies the figures us-
ing patch-oriented techniques in computer vision and ma-
chine learning [12]. Our current corpus consists of 8.9 mil-
lion images extracted from 680K papers freely accessed from
PubMed Central (PMC) (see [8] for more details). In the
remainder of the paper, we will describe how the user inter-
acts with the applications (Section 2), briefly walk through
the system architecture (Section 3), report the future work
(Section 4), and give a brief summary (Section 5).

2. APPLICATION INTERFACE
VizioMetrix includes a suite of three web applications tar-

geting three different categories of users: a visual search
application for researchers, an analytics interface for vizio-

metricians, and a crowdsourced interface for efficient bulk
figure-labelling by those contributing to the project.

Visual Search Engine Figure 1 shows the user interface
for the visual search application. At a basic level, users
search for figures associated with a given keyword query.
Each figure can be clicked to see metadata about the paper
that contains it. This “inversion” of the search to emphasize
figures before papers represents an important shift, even on
its own, one that is shared by other recent tools, such as
DiagramFlyer. In particular, the figures are more closely re-
lated to specific results, and are therefore, we hypothesize,
more closely related to the intent of the user’s search.

At a more advanced level, users can search for figures from
a scientific domain or subdomain. To identify the fields,
we use the mapequation [11], and to identify the important
articles, we use the article-level Eigenfactor (ALEF) score, a
variant of PageRank designed specifically for time-directed,
article-level networks. The benefits of the ALEF score for
ranking was recently shown in a competition against other
article-level ranking algorithms in the WSDM data challenge
[14]. We find (through informal conversations with users)
that the images in this view are useful for gathering field-
level information — particularly useful for new scholars to
a field or for reminding experts of the common findings and
models resident in the field.
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Figure 2: Screenshot of the bulk-labelling interface. (A) Instructions for using the interface. (B) Indicator
for the type of figure the user is asked to label (e.g., photos). (C) The total number figures that have been
labelled by the user. (D) Controls to allow users to label all figures directly. (E) Controls to allow users to
refresh the pool of figures. (F) submits the result. (G) Zoom control to afford fluid inspection of figures and
groups of figures.

The search performs a free-text match on the caption text
extracted from the pdf (and eventually, like DiagramFlyer,
the extracted text from the image itself) and returns rele-
vant figures via a free-text index on the underlying database
that incorporates stemming and tolerance for spelling errors.
The returned figures are ordered by the ALEF score as an
estimate of impact. To facilitate browsing and prevent cer-
tain figures from dominating the experience, the user can
shift to random order by clicking a button near the search
box.

The returned figures are arranged in a grid layout (Figure
1(a)) to make better use of screen real estate and account for
the widely varying shapes and sizes of figures. We color the
figure border to indicate the type of the figure identified by
the classifier; the legend for these colors appears at the top
of the screen (described in Section 3.1). Users can retrieve
additional figures by scrolling down to the bottom of the
page.

The most important feature in our approach is that users
can restrict the search to figures of specific types by us-
ing the checkboxes just under the search box: photographs,
tables, visualizations, diagrams, or equation. This faceted
search feature is simple. In order to support figure type fil-
tering, we developed a new classifier to properly label the
figures. We posit that this categorization of figures based
on their semantics (as opposed to just their embedded or
surrounding text) fundamentally changes the way users can
interact with the literature. For instance, a clinical software
engineer in a cancer lab may search for papers describing a
cloud architecture for electronic health records that they can
use to inform the design of their own system. Searching for

“cloud” and “EHR” may return figures from relevant papers,
but the precision will be low since the task is to find specific
architectures. With this interface, filtering figure types to
diagrams only can improve precision. An alternative layout
is bundling the figures from the same paper together and
listing the papers (Figure 1(b)). This mode is designed for
users who are looking for particular papers, but who may
recall a memorable figure from the paper if not the title or
author. Viewing article titles together with figures may help
them narrow the scope. For figures with dense information
such as composite figures, users can shift the slider to zoom
in for close inspection or click the figure to review the figure
caption, the source paper details, and other figures from re-
lated papers associated by the citation network. We bring
the crowdsourced labelling function in this page showing the
figure and paper details. We simplified the labelling inter-
face (Figure 1(c)) to a quick click if the machine-label type
is correct. For an incorrect case, it needs an extra move of
modifying the figure-type in the drop-down menu. For fu-
ture work, we plan to allow users to tag keywords of a figure.

Crowdsourced Labelling The viziometrics analysis tasks
we aim to support rely strongly on the availability of human-
labeled data. We hand-labeled thousands of images when
training our dismantling algorithm for separating compos-
ite images [9] and our classification algorithm [8]. Going
forward, additional labels for figure sub-types, content tags,
and information extraction techniques will require even more
human-labeled data for training. For example, a line chart
in oceanography may be a “depth chart,” while a line chart
in machine learning could be an ROC curve. The level of ex-
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pertise needed now and in the future motivated an efficient,
intuitive, and expert-oriented interface for bulk-labeling of
figures.

Due to the expertise required, these labelling tasks are
not directly appropriate for Mechanical Turk. We therefore
include the labelling interface as part of the core system in
the interest of enticing our (expert) users to contribute to
the labelling task directly. Figure 2 shows the interface for
bulk-labelling. Labelers are shown an instructional page as
a first step, and can access the instructions at any time by
clicking the “Need Help?” button. In each round, a user
is asked to select figures of a certain type (e.g. Diagram)
chosen randomly. Figure can be included or excluded in the
selection by clicking.

We hypothesize that an approach of “one label, many
images” will allow the user to quickly become efficient at
recognizing a specific type rather than spending too much
time considering a specific figure. The decision to make on
each figure is binary, and “difficult” figures can simply be
ignored. We suspect that this approach will produce high
accuracy labels, with a possible downside that difficult-to-
classify images will be consistently ignored, perhaps compli-
cating training tasks.

Clicking the “Next” button will submit the choice and go
to the next round. The figures that were not chosen will
stay in the new round. We expect the unchosen figures
will eventually meet their categories if the user stays for
enough rounds. We feed 20 figures in each round to help pre-
vent unconscious mistakes caused by repetitive tasks. Since
we group the candidate figures according to their machine-
labels, the user’s task is often confirmatory. In this case,
using the “Label All” button can save time. Although this
approach may lead to confirmation bias in the human labels,
but we find anecdotally that mistakes in the machine labels
stand out and attract attention. When the user is satisfied
that each figure in the set is labeled correctly or ignored,
clicking the “Fresh” button can retrieve a new pool of unla-
beled images. We don’t set the end of round so the user can
stop in any round.

Open-data Platform — We have argued previously that
the study of the visual information in the literature can lead
to new insights into scientific communication [8]. For in-
stance, we found the top 5% papers ranked by ALEF in
PMC tend to have higher diagram density (total number
of diagrams per total number of pages) and plot density
(Figure 3), perhaps suggesting that important papers carry
ideas that are easier to express visually. In related work,
Early, Fawcett et al. [4] used their own data to show the
heavy use of equations can impede communication among
biologists. These two studies show a new direction in scien-
tometrics by analyzing the use of scholarly figures. To aid in
these investigations, we include a tool for aggregate, longi-
tudinal, online analysis of the patterns of visual information
for use by social scientists. In addition to the interface, the
human-labeled figures will be released for research use. We
hope it can incubate new findings of visual patterns from
our audience and stimulate users to pursue innovative ideas
in viziometrics.

3. ARCHITECTURE
VizioMetrix’s architecture proceeds in two sub-systems.

The offline data backend extracts visual information from a

Figure 3: Scholarly impact versus figure density [8].
We rank PMC papers by ALEF and group them
into 4 tiers: top 5%, 5th to 25th percentile, 25th
to 50th percentile, and the bottom 50%. Any two
papers with ALEF difference within 1E-12 are re-
garded as having equal impact and forced to be in
the same bin. Hence, the boundary between 2nd
tier and 3rd tier shifts to 23th percentile (papers in
23th to 25 percentile have equal ALEF) and the last
bin increases to 55% (papers in bottom 55% have
ALEF of zero), where are the closest positions to
25th and 50% respectively. For each tier, we aver-
age the densities (total number of figure per paper
page) of 4 figure categories: table, photo, plot, and
diagram. We ignore equations here because they are
text. The top 5% paper tend to have statistically
higher densities of plots and diagrams.

corpus and stores them in a database used to power the on-
line system. The online system includes three applications
for different audiences (researchers searching the literature
using figures as the central facet and researchers mining fig-
ures from the literature). Figure 4 shows the system archi-
tecture. Our design goal is to offer a reusable platform to
support viziometrics applications.

3.1 Data Backend
We extracted all papers from PubMed Central (PMC)

repository, an archive of biomedical and life science liter-
ature. It offers free access to approximately 1 million arti-
cles. Every article is packaged with its PDF files, meta data
file, and figure images. We extracted the figure images and
dumped them in Amazon S3 server. We parsed the meta
data to get paper titles, abstracts, citations, etc and stored
this information in our database. The figures are then fed
into figure processing pipeline (Figure 4) for classification.
The citations are then used to calculate ALEF scores.

Image Processing We found that 66% of article files had
image files and extracted 8.9 million source images from
these files. The majority of images were in JPEG format.
There are few images in GIF, TIF, TIFF, and PNG. We fil-
tered all GIF images out since they are duplicate copies of
images in other formats. Moreover, TIF and TIFF images
can be extremely large and cannot be rendered by common
browsers. Thus, we resized TIF and TIFF images to 1280
pixels corresponding to the longer side without modifying
aspect ratios and then converted them into JPEF format.
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Figure 4: VizioMetrix’s Architecture. The gray
box illustrates the processing system on which
VizioMetrix is based. This includes a data pipeline,
which parses articles files, classifies figures, and cal-
culates the article influence. The data pipeline then
pushes the results into the VizioMetrix database.
The blue box lists the three applications powered
by the database.

We ended up with 4,986,302 images that are extracted from
680,494 papers. All file resources are stored in our Amazon
S3 server so that all sub-systems can access them via Ama-
zon AWS API. We also make these images available to other
researchers interested in mining these figures.

We fed the images into the figure processing pipeline as
shown in Figure 4. The composite figures (an image with
multiple figures) are separated from singleton figures (an im-
age with one figure). The composite figures were dismantled
into several single figures using a method we developed in a
previous paper [9]. Then all the single figures were classi-
fied into five categories: equation, diagram, photo, plot, and
table. Each category can be described in terms of represen-
tative examples:

• Equation: embedded mathematics, Greek and Latin
characters

• Diagram: schematics, conceptual diagrams, flow charts,
model explanations, phylogenetic graphs

• Photo: microscopy images, diagnostic images, radiol-
ogy images, fluorescence imaging, etc

• Table: tables

• Plot: numeric data visualization, bar charts, scatter
plots, line charts, etc

We run figure processing in parallel. The final results
are pushed into the VizioMetrix database (currently imple-
mented in MySQL) together with figure information such as
the figure id, the file path on S3, the image size, etc. More
detail about the figure processing pipeline can be found in
[8]. We join the publication table with the image table, and
materialize the result for performance reasons. Due to the

limitation of full-text search in MySQL, we integrate Solr
with MySQL as a free-text indexing solution to achieve re-
liable performance.

3.2 Visual Search Engine
The application backend is responsible for data ingestion.

Whenever a client sends a GET request with search key-
words, the backend system will query the database to find
the literature containing the keywords in title, abstract and
figure captions. A list of figure information from matched lit-
erature will be return in JSON format. Since the figure files
are stored in Amazon AWS S3, we store urls only and use
S3 to deliver the images to the client. The frontend fetches
the returned JSON and renders the layout in the user’s de-
sired mode (a grid or a conventional list). We return only
the first 100 figures ordered by paper impact in descending
order to achieve reliable performance. When the user scrolls
to the end of the set of figures, a new GET request will be
issued to retrieve the next 100 figures. When a user clicks
a figure to get further information, another GET request is
sent to retrieve relevant figures from associate papers. The
current system returns the figures from the papers that cite
and have been cited by the paper containing the selected
figure. We plan to employ scholarly article recommendation
techniques to provide more accurate results[13].

3.3 Backend for crowdsourced Labelling
The crowdsourced labelling backend responds to GET and

POST requests. Whenever a GET request is received, it
returns 20 figure image URLs. The 20 figures are in the same
category randomly selected by the system. In the future,
we plan on providing additional options for the user. For
example, users may want images from the top conference
papers or they may want to label papers from a particular
time period. When the user returns the labelling result, the
system will push the user’s IP address, the figure id, and
the given label into the database. The ground-truth type
of a figure will be determined via voting. Since we have
a very large image inventory and is growing continuously,
one figure is likely to be labelled once and never be selected
as a candidate again, which affects the credibility of the
ground-truth data. Hence, we increase the probability of
selecting images that have been labelled previously. The
crowdsourced labelling data will be used offline to improve
our machine learning models and will be open to the public
for academic use via our open-data platform.

3.4 Open-data Platform
We provide access to our labeled image corpus and the

derived viziometrics data. We also plan on expanding our
dataset to include other large scholarly databases, including
JSTOR, SSRN, arXiv, DBLP, etc. The image corpus that
we used to train our classifiers and our raw data on from the
PMC archive. The image corpus contains 782 photos, 436
tables, 394 equations, 890 visualizations, and 769 diagrams.
We plan to enlarge this corpus to 20,000 images in each
category. Second, the raw data was used to discover visual
patterns (see Figure 3) [8]. It includes paper and figure meta
data, machine-labels, and ALEF scores. We also plan to
build a gateway for Tableau users so that they can connect
to our data directly. For researchers with a background in
statistics and programming, we will open our database via
REST APIs.
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4. FUTURE WORK
We have many future directions. We plan to expand our

data to include other archives (arXiv, JSTOR, SSRN, etc).
We will continue to grow the corpus of labelled images and
will continue to improve our classifiers using cutting-edge
deep learning models [5, 7]. Moreover, we plan to utilize
natural language processing (NLP) to analyze figure cap-
tions that describe the images we are classifying. Extract-
ing keywords in a caption can improve the searching quality
and help us determine the most important figure in an ar-
ticle. We also aim to extract axes labels and quantitative
data from plots using methods from one of our colleagues
[12]. For the search engine, we plan to import scholarly ar-
ticle recommenders to improve the related figure results, and
we plan to build a user-centric interface for browsing these
relations. For crowdsourced labelling, we would like to intro-
duce tag functionality and utilize these results for improving
document retrieval, support NLP models and derive other
applications. The Open-data platform is also under con-
struction. We also plan on improving the faceted search.

5. CONCLUSIONS
We present VizioMetrix, a platform for mining millions of

figures from the biomedical sciences. Our hope is that the
platform will catalyze future research for improving schol-
arly search and facilitating large-scale analysis of these fig-
ures and new figure-centric applications. VizioMetrix pro-
vides a figure-oriented search service for general academic
users and an open data resource for researches interested
in mining scholarly figures. We provide a data processing
pipeline that extracts the metadata from scholarly papers,
extracts the figures and classifies them into different types.
We also develop a crowdsourced labelling application for fur-
ther labeling and subsequent improvement of our machine
learning methods and methods of others. This platform is
needed since mechanical turkers do not usually have the do-
main knowledge for labeling figure types2. We plan to as-
sign a Document Object Identifier (DOI) to our dataset and
making it freely available to the general public. We hope
this platform reduces the activation energy needed to ana-
lyze scholarly figures at scale and provokes new and exciting
questions.
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