International Conference on Computer Systems and Technologies - CompSysTech’15

RefUTU-Automatic Bibliography Database
Generation for Freely Formatted Reference Listings

Johannes Holvitie, Ville Leppanen

Abstract: This paper presents the RefUTU framework for automatic bibliography database generation
for freely formatted reference listings. Its three stages of reference extraction, partitioning, and formation are
explained, implemented, and trialed on test data. The results showcase detection accuracy and discuss the
possibility of using pre-existing solutions independently at each stage. It is concluded that the framework
provides an improvement over the laborious and error-prone work of manual reference handling often required
for example in the conduction of systematic literature reviews.

Keywords: software frameworks, information sciences, computational bibliometrics

INTRODUCTION

Modern research practice holds searches conducted in electronic publisher and indexer
databases as a necessary step for surveying previous research. For a majority of fields,
databases have become the primary and even sole way of accessing information [7]. The
results returned by these databases include electronic copies of articles, article reference
extractions (for articles with more restricted access), or single reference entries (in the case of
a fully restricted or non-electronic article). Often, the enquirer wants to store the—hundreds
or thousands of—returned references, for example as part of familiarizing a new research
area, a systematic literature review, or a mapping study.

Knowledge received from data is proportional to the level of structure present in it [3].
Applying this for references: in order to be informative, there needs to exist structural infor-
mation that describes what parts of the reference capture what fields—e.g. all letters up until
first semi-colon or number capture author names. This raises a problem as most encountered
references—be it search engine results or articles themselves—carry no meta-information
about the references’ structure. More precisely, the meta-information is not extractable, as
the references do follow one of many reference formats that impose a structure on to the
entries but this structure is implicitly present in the formatting.

To extract this structure one may opt to do the conversion from a formatted reference
to a structured database entry by hand. While manual reference extraction allows for any
type of reference format, it requires plenty of mechanical repetition which is tedious and
hence error-prone. That is why, especially for larger conversion undertakings, one requires
an automated approach. Two components are distinguished for an automated approach
that aims at forming a bibliography database from a freely formatted reference listing: 1)
the approach must analyse and understand the used reference format in order to impose
structure onto the data and 2) the approach must normalize the structured data (e.g. over
different accuracies) so that it may be collated to form a database. There are solutions
available that solve the issue for single components. The problem is that their interoperability,
which is scarce, is required to achieve the desired result.

Hence, as a unique solution, this article proposes the RefUTU framework for automatic
bibliography database generation for freely formatted reference listings. As a component
based framework, a separate solution can be used to solve each sub-problem. This allows

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

CompSysTech'15, June 25-26, 2015, Dublin, Ireland

Copyright is held by the owner/author(s). Publication rights licensed to ACM. ISBN 978-1-4503-3357-3/15/06...$15.00
http://dx.doi.org/10.1145/2812428.2812469

176



International Conference on Computer Systems and Technologies - CompSysTech’15

generating combinations that support desired input and output formats while retaining high
detection accuracy.

RELATED WORK

Regarding similar frameworks, Tkaczyk et al. [18] introduce a tool named CERMINE
which is capable of automatically extracting both metadata and references from “born-digital”
scientific literature. They apply k-means clustering and Conditional Random Fields (CRF) to
extract and partition references. They reach very high recall for extracted-field-correctness.
The lack of normalization however makes the method inapplicable for managing material
covering multiple different reference formats. Further, Bergmark introduces D-Lib [2] which
implements reference extraction and linking from online documents. She provides a detailed
discussion on the related problems and overcoming them. Here, it is noted that references
must be presented in HTML or plain text format in order to be analysed. Again, the D-Lib
achieves high recall, but is limited to singular reference formats.

Regarding tools, Zotero [8] and Mendeley [13] are amongst the largest electronic article
managers. While both of them are able to extract meta-data from an input PDF (Portable
Document Format) and querying Google Scholar [9] with this information, they do not provide
support for analysing the PDF reference lists. EndNote [17] is the only tool capable of this, but
only for references with DOIs (Document Object Identifiers). inSPIRE’s Reference Extractor
[5] extends this to references that either have arXiv identifiers or follow certain report numbers
or journal references, and is hence format constrained. Finally,cb2bib [6] inputs plain text
reference lists (supports their user assisted extraction from PDFs) and parses them according
to a reference format regular expression library. While cb2bib is not format constrained, it
requires pre-defining each format by hand.

Regarding research adopted herein, Kern & Kampfl [10] discuss loss of information
when using only plain text for reference extraction and they suggest a layout based method.
This approach is implemented in CrossRef’'s PDFEXxtract [1, 16] which is capable of extract-
ing reference lists from PDFs. The previously mentioned Conditional Random Fields (CRF)
method is implemented in the FreeCite [4] system by Brown University and it is used together
with PDFEXxtract herein. CRFs have been introduced in [12], applied to the PDF extraction
problem in [15] and to the context of Reference Partitioning in [14].

FRAMEWORK DESCRIPTION

This section describes the RefUTU framework for automatic bibliography database gen-
eration for freely formatted reference listings. The framework is depicted in Figure 1. It can be
considered as a pipeline formed from an optional pre-processing step and two components.
A subsection is dedicated for describing each step and linking it to the pipeline.

S = Em Em Em = =
4 Reference Reference Reference
1 Extraction Partitioning Formation
INPUT .| Plain | XML .| OUTPUT
(e.g. PDF) 1 Text 7| Brown NS ~| (e.g.DB)
‘\ Pre-processing Component #1 Component #2
“ e mm e o oEm oEm omm

Figure 1: The RefUTU framework

177



International Conference on Computer Systems and Technologies - CompSysTech’15

Reference Extraction

Reference extraction is required when the references are not in plain text format, which
is the only requirement for the framework’s input. Commonly, the references are part of a
larger set of data, such as an article. Possibly saved in a non-transparent format, like an
encoded page content stream in a PDF file. In these cases, reference extraction is responsi-
ble for overcoming the transparency issue by 1) extracting the data in plain text format, and
overcoming the data obfuscation issue by 2) extracting only the references from the data.

As the references can exist in a variety of input formats, it is quite possible that a number
of reference extraction components will be co-used. Here, however, the user is responsible
for data integrity, meaning that the framework is not capable of distinguishing and filtering
non-reference data prior to executing Reference Partitioning and formation.

Reference Partitioning

The Reference Partitioning component forms the first half of the framework. It is re-
sponsible for imposing structure on to the input data. In practice, the plain text reference
data is parsed using the chosen tool(s) and the expected output, for each reference, is the
reference’s data incorporated with meta-data that describes the reference’s structure—i.e.
fields like author, title, and year and their position. We assume the structural description to be
partially correct. That is, received partitioning (from one or multiple methods) must correctly
capture at least some of the reference’s fields. The Reference Formation component takes
the partial correctness into account.

The output from the Reference Partitioning is a structured list of references where the
structure tries to describe for each reference what fields are present in it and what are their
contents. Since the Reference Formation component is dependent on the output’s structure,
it must be fixed. We chose XML (Extensible Markup Language) as the structure retaining
medium and we fixed the structure’s component specifications by choosing an XML name
space defined by the Brown University for describing references [4].

Following a specific name space is beneficial for component interconnectivity. First, if
we want to use a Reference Partitioning component that is incapable of producing XML in
the Brown name space, we can provide an adapter for it by implementing a translator that
converts the component’s output to the desired XML. Similarly, as the name space describes
all fields possible to be present in the XML, we can use any Reference Formation component
incapable of accepting this XML as long as we can provide an adapter for it.

Reference Formation

The Reference Formation component forms the second half of the framework. It is
responsible for taking in structured reference data and normalizing it with respect to being
entered into the bibliographical database. This normalization means that the component
finds, for each structured reference, a uniform representation.

Entry into the database requires that the component is capable of producing an iden-
tifier that is unique with respect to the uniqueness of the publication behind the reference.
To achieve this, the component exercises a bibliography database specific search strategy.
The strategy consists from multiple search definitions, each describing a level of search ac-
curacy for that database. Each definition tells which search options are active and which
combinations of fields from the references’ structured XML representations will be used in
the query. The search is started from the most strict, and hence most accurate, definition
and the strategy will iterate over all specified definitions in a descending order of accuracy
until a match is found. The first match is used for producing the uniform bibliographical entry.

If we recall that the Reference Partitioning component is not expected to fully under-
stand the reference format and hence to not be able to produce a perfect XML partitioning,

178



International Conference on Computer Systems and Technologies - CompSysTech’15

we understand why a search strategy defining a descending order of search accuracy is
required. In the best case scenario, the XML partitions contain correct data for each of
the reference’s fields and the most strict search strategy yields a match for it—given that
the queried database contains an entry for this reference. In the worst case scenario, the
XML partitioning has managed to extract only one field from the reference correctly. Now,
the search strategy must be executed until only the correct field is considered alone and a
match is found for it. In the latter case, this the only way to produce an entry for the reference
that can be considered field-wise as uniform and complete as the best case scenario.

The unique identifiers and the special case of a search strategy failing to produce a
single match for a reference are considered. In general, the unique identifier for a reference
is formed as a combination of the fields in the reference. The framework follows the Google
Scholar BIB-identifier schema [9]: [1%% author surname]<year><1% title word>.
The identifier “brown2010managing” in Figure 4 is an example of an identifier constructed
this way. In cases where the search strategy fails the fallback plan for this reference is to
build the identifier from the fields present in the XML.

Having executed the search strategy or the fallback strategy for each reference, the
Reference Formation component has generated an entry for each reference. Disregarding
possible fallbacks, these entries are uniform in terms of their identifiers and fields present
and they are ready to be entered into the database. While the database is separate from the
framework, for purposes of retaining from storing duplicate information—i.e. references with
identical identifiers—and for example generating cross-reference graphs, relational databases
are considered a viable option.

CASE-STUDY

This section documents a case-study with the RefUTU framework. We describe the
concretization of the framework via an example conversion. At each stage of the framework,
we describe the pre-existing solution fitted for the purpose and its function on the example
input. Finally, we discuss results when the attained framework is applied to a large data set.

ou Em o Em Em Em o Em Em B Em R BN R BN Em Em Em B B Em o B Em E m,

Reference Extraction

! 1 \

S N e )

' - [ 2220 Al Y
[1]IT. Alves, €. ¥pma, and 1. Visser. Deriving metric T. Alves, C. Ypma, and J. Visser. Deriving metric thresholds from benchmark
l - |Hu'HbuId:: from hHu.')um:rit dam In 26th Int. Conf. data. In 26th Int. Conf. on Software Maintenance. IEEE, 2010.

B 2' : n. K. u.
n . In Proc. of the ;mm.—m nal
INPUT | Workshop on Softwar: Quality and Mai
(e.g. PDF) Jseacig e T T
~ @D i Py,
- Maste i 11 =
PR B
‘ k
\ Y ¥

\ Pre-processing
v !

R. Baggen, K. Schill, and J. Visser. code quality
forimproving software maintainability. In Proc. of the 4th Intemational
Workshop on Software Quality and Maintainability (SQM'10), 2010.

D. Bijlsma. Indicators of issue handling efficiency. Master's thesis, University
of Amsterdam, 2010

\ 4

N.Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A
MacComack, R. Nord, I. Ozkaya, et al. Managing technical debt in software-
reliant systems. In Proceedings of the FSE/SDP workshop on Future of
software engineering research, pages 47-52. ACM, 2010

CAST. CAST worldwide apllication software quality study: Summary of key

findings, 2010. J

Ve e e e oEm oEm E Em Em Em Em Em Em Em Em Em Em Em mm Em mm mm mm

Figure 2: The Reference Extraction pre-processing stage

Reference Extraction
The example input for our framework is a scientific article that is distributed electronically
as a PDF file. At the end of this scientific article is a reference list—that follows the /EEE
Transactions reference format—which we are interested in obtaining. In order to apply the
framework for it, it must be converted to plain text format. This requires that we execute the
pre-processing step of Reference Extraction on it.
179



International Conference on Computer Systems and Technologies - CompSysTech’15

There are a number of tools intended for extracting elements from a PDF file. These
tools function differently. Some mine the raw text data in order to distinguish partitions from
it, while others analyze the layout of the file in order to reach the same result. As discussed,
the latter is a viable approach when trying to distinguish reference lists from PDFs and the
PDFEXxtract [16] supports this.

Figure 2 showcases the functionality of the pre-processing stage. Here, a tool like
PDFEXxtract is applied to the PDF in order to distinguish and extract a list of references from
the paper. The resulting output for this stage is expected to be a plain text listing, where
each line represents a single reference. Note, that the references still follow their own for-
matting. Only the context specific reference data—like paper-specific reference list number-
ing—should be excluded.

For removing context specific reference data, a library of regular expressions can be
used. For example, a risk free (in terms of not matching fields within the reference) regular
expression to match /[EEE-formatted reference list numbers is “*\ [\d+\]\s+” (matches a
number in brackets if it is the first characters after a new line and followed by a white space
character). A library of these expressions can be accumulated and ran on each reference
as a pre-processing phase as long as their match-safety is ensured (see cb2bib [6]).

Reference Partitioning

After attaining the references in plain text format, they can be input into the framework.
The first half of the framework is the Reference Partitioning component which is responsible
for analysing the reference, identifying fields from it, and delivering this information as XML
output which follows the Brown University naming scheme.

Again, a number of tools exist which try to identify fields from singular references. As
the framework must provide support for all plain text entries, the discussed Brown University
FreeCite parser [4] is used. FreeCite uses the CRF++ (Conditional Random Fields) [12]
machine learning library and comes pre-trained with a number of reference formats. Due to
this approach, FreeCite can be trained and modified to learn and hence to better partition

new reference formats on the fly.
Reference Partitioning /\

Plain Text \ f Brown FreeCite \ f XML \

N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, N Brown Y Cai Y Guo R Kazman M Kim <rit:atitle " ical debt in softwa
P. Kruchten, E. Lim, A. MacCormack, R. Nord, I. P Kruchten E Lim A MacCormack R Nord reliant systems

Ozkaya, Managing technical debt in software- | Ozkaya Managing technical debt in software- </rft:atitle>

reliant systems. In Proceedings of the FSE/SDP reliant systems In Proceedings of the FSE/SDP <rft:au>N Brown

workshop on Future of software engineering workshop on Future of software engineerin tau>

research, pages 47-52. ACM, 2010. | research ACM 47552 2010 > it date>2010

</rft:.date>
<rft:btitle>In Proceedings of the FSE/SDP workshop

Key: Authors Title Journal Booktitle Editor on Future of software engineering

Volume Publisher Institution Location Number research
K j Ees Year Tech Noté j <rit:btitle> j

\ Component #1 \j

Figure 3: The Reference Partitioning component

From Figure 3 we see that the library is quite successful in distinguishing and partition-
ing fields from the input reference. As discussed, some errors could still be present at this
stage—e.g. the title field could partially contain the name of the conference. Hence, we can
not expect a perfect identification and we must be ready to work with partially erroneous data.
To accommodate this, we implement the search strategy in the next section.

180



International Conference on Computer Systems and Technologies - CompSysTech’15

Reference Formation

The second half of the framework is implemented by the Reference Formation compo-
nent which is responsible for the normalization of reference data so as to form bibliographical
database entries. The normalization is concerned with field accuracy and field uniformity. As
we expect the XML partitioning to possibly be erroneous, the field accuracy pursues complet-
ing the incorrect or missing fields based on the correct ones. Field uniformity is interested in
retaining a shared filling pattern throughout all fields in all references. This ensures that for
example if two references are made to the same article but with differing formats the imposed
uniformity will reveal the target article to be the same for both references.

Use of the Reference Formation component makes the framework a non-stand-alone
application as we make queries to external databases. There is a wide variety of reference
databases, some are implemented by publishing bodies to organize access to their own
material, while some are implemented by third parties to collate and index them. Google
Scholar [9] is an example of the latter and due to its multi-disciplinary nature we wanted to
access it in the Reference Formation component. Direct access to these databases is often
not offered as most of the orchestrators fund their operations via offering library services.
There however exists a third party one for the Google Scholar in the form of an open-source
project called scholar.py [11]. Hence, the Reference Formation component becomes one
that executes the search strategy via this project.

/ Reference Formation /\

f XML \ f Search \ ( Bibliographic Entry \

<rft:atitte>Managing technical debt in software- @inproceedings{brown2010managing,
reliant systems title-{Managing technical debt in

</rft:atitle> 3
<rft:au>N Brown . ;—) software-reliant systems},

</rft:au> author-{Brown, Nanette and Cai,
- _) _) ; Yuanfang .and b
<rft:date>2010 booktitle-{Proceedings of the

</rft:date>
<rit:btitle>In Proceedings of the FSE/SDP workshop RIS ALy

on Future of software engineering pages-{47--52},
research year-{2010},
</rit:btitle> organization-{ACM}

AN J

\ Component #2 \/

Figure 4: The Reference Formation component

4

Figure 4 depicts the conversion from the partially accurate XML partitioning into a com-
plete and correct bibliographical entry. The entry can then be served to a database provider
or in this case output directly into a file in BibTeX format. The conversion is the end result of
the component executing the search strategy. Figure 1 depicts the search strategy composed
for querying the Google Scholar database, while Figure 5 captures the state machine repre-
senting the query execution logic. In the search strategy example, the fields “title”, “author”
and “year” are fetched from the input XML structure. In the Brown University name space,
these correspond to the values presentin the reference’s XML components <rft:atitle>,
<rft:au>, and <rft:date>. Functionality of the state machine is straightforward: after
receiving the XML input, it starts executing the search strategy. If no match is received for
the query, the next most accurate query is used. In case of a match, a database entry is pre-
pared from the match’s fields. In case of no matches for the entire strategy, a fallback plan
must be used, in which case a database entry is constructed directly from the XML fields.

Results
We applied the aforedescribed framework to a set of references discovered as part of
systematic literature review. In this review, we started with an initial set of 97 papers from
181



International Conference on Computer Systems and Technologies - CompSysTech’15

IF no match
ACC =ACC +1

P

IF no match AND
last ACC

Accuracy (ACC) Query (title, year, author)

Wait for Try strategy
input at[ACC]

IF match

1 --phrase "title" --after "year" --author "author" .

--phrase "title" --after "year"

--title-only --all "title" --after "year" --author "author"

--title-only --all "title" --after "year"

gl s~ ON

--title-only --some ...

Generate
output

Use fallback

Table 1: Google Scholar search strategy Figure 5: The RefUTU Query Logic

which we wanted to extract references for further inspection. We had access to PDF versions
of all the initial papers and hence we could input all of them directly into the Reference
Extraction stage. After the pre-processing step, we were left with 1590 raw references.

For the Reference Partitioning component, a worst case performance can be defined
as the output XML indicating only one field for a reference—comprising the full entry. This
is possible for example in the case of referencing URLs (Universal Resource Locator) with
no accompanying information. In these problematic cases, all identified fields are cycled as
title-fields, so that the search strategy is still applicable to them.

The Reference Formation component ran on the 1590 input XML structures, each de-
scribing a reference. While the XML transformation took 22 seconds to complete, this com-
ponent took 12 minutes and 15 seconds. This is purely because we needed to query Google
Scholar whilst keeping their anti-spam measures in mind. In practice, this meant waiting a
couple of seconds between each query and in cases where further queries where refused,
wait a longer period of time before retrying. From each query, the first match was taken, as
per decreasing accuracy expected from the search strategy. Table 2 documents the results.

Table 2: Identification results

. No. of papers (PDF) 97
Input (Pre-processing) Formats encountered | ~25
References found 1590
Output (Comp. #1: XML) Time taken ~97sec
References matches 996 (Recall 0.626)
Time taken ~12min 15sec
Output (Comp. #2: Scholar) | Incorrect matches 594
non-existing 157
identification failures | 437 (Recall 0.725)

Reviewing Table 2 we see that the initial recall is 63% which leaves 594 papers for
manual reprocessing. Closer look at thenon-identified papers reveals that 157 of them are
“non-existing” references. That is, they are references for which we can not expect to find
a match from most databases—e.g. the previously described URLs. This makes the actual
recall for this particular implementation of the framework 73%. Considering that [2] reported
83% for the non-querying and format-constrained framework, this a very promising first result.

CONCLUSIONS AND FUTURE WORK

This paper introduced the RefUTU framework for automatic bibliography database gen-
eration for freely formatted reference listings. It consists of an optional pre-processing phase
called Reference Extraction and two components: Reference Partitioning and Reference
Formation. Reference Extraction is responsible for taking the original source for the refer-
ences and extracting them in a plain text format. Reference Partitioning takes in the plain
text references and tries to identify and partition fields for them. This information is delivered
in an XML format to the final component of Reference Formation. Here, a database-specific
search strategy is executed for the identified fields in order to complete and normalize the

182



International Conference on Computer Systems and Technologies - CompSysTech’15

references so that they may be entered into a bibliographical database.

The framework allows different solutions to be fitted for each stage so that desired input
and output formats as well as search engines and accuracies can be supported. As there
is a multitude of excellent solutions to overcome each of these phases, we introduce this
framework to enable their interoperation to produce higher quality results whilst decreasing
the amount of manual, mechanical, and error-prone labor.

We foresee a number of improvements for the framework. Firstly, an improved user
interface is under construction. Also, an on-memory database will be included for easy ma-
nipulation of results—especially for cross-referencing incorrect matches. Further, we intend
to define adapter interfaces for each stage so that integration of new solutions becomes eas-
ier but also to allow multiple solutions to be co-executed at each stage. Finally, we invite the
reader to follow our progress, to contribute, and most importantly to use our tool by visiting
the RefUTU homepage at http://soft.utu.fi/refutu/.

REFERENCES

[1] @ RBerg, S Oepen, and J Read. Towards high-quality text stream extraction from pdf. In Proceedings of
the ACL-2012 Special Workshop on Rediscovering, volume 50, pages 98-103, 2012.

[21 D Bergmark. Automatic extraction of reference linking information from onlinedocuments. Technical report,
Cornell University, 2000.

[3] MR Berthold, C Borgelt, F Hoppner, and F Klawonn. Guide to intelligent data analysis: how to intelligently
make sense of real data, volume 42. Springer Science & Business Media, 2010.

[4] Brown University and Public Display. Freecite citation parser. URL: http.//freecite.library.brown.edu/, 2015.

[5] CERN, DESY, Fermilab, and SLAC. inSPIRE. URL: https://inspirehep.net/textmining/, 2015.

[6] P Constans. cb2bib Reference Extractor. URL: http://www.molspaces.com/d_cb2bib-overview.php, 2015.

[71 C Creaser, Y Hamblin, and Eric D J. An assessment of potential efficiency gains through online content
use. Program, 40(2):178-189, 2006.

[8] Roy Rosenzweig Center for History and New Media. Zotero reference manager. URL:
https://www.zotero.org/, 2015.

[9] Google Inc. Google scholar - scholarly literature database. URL: https://scholar.google.com/, 2015.

[10] R Kern and S Kampfl. Extraction of references using layout and formatting information from scientific
articles. D-Lib Magazine, 19(9):2, 2013.

[11] C Kreibich. scholar.py, google scholar parser. URL: https://github.com/ckreibich/scholar.py, 2015.

[12] J Lafferty, A McCallum, and F CN Pereira. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. 2001.

[13] Mendeley Ltd. Mendeley reference manager. URL: https.//www.mendeley.com/, 2015.

[14] M Ohta, D Arauchi, A Takasu, and J Adachi. Crf-based bibliography extraction from reference strings fo-
cusing on various token granularities. In Document Analysis Systems (DAS), 2012 10th IAPR International
Workshop on, pages 276-281. IEEE, 2012.

[15] F Peng and A McCallum. Information extraction from research papers using conditional random fields.
Information processing & management, 42(4):963-979, 2006.

[16] Inc. (PILA) Publishers International Linking Association. Crossref labs pdfextract. URL: http://labs.cross-
ref.org/pdfextract/, 2015.

[17] Thomson Reuters. Endnote x7, reference manager. URL: http://endnote.com/, 2015.

[18] D Tkaczyk, P Szostek, P J Dendek, M Fedoryszak, and L Bolikowski. Cermine—automatic extraction of
metadata and references from scientific literature. In Document Analysis Systems (DAS), 2014 11th IAPR
International Workshop on, pages 217-221. IEEE, 2014.

ABOUT THE AUTHOR

Johannes Holvitie and Ville Leppanen, TUCS - Turku Centre for Computer Science,
Software Development Laboratory (SwDev) and Department of Information Technology, Uni-
versity of Turku, {jjholv, ville.leppanen}@utu.fi

ACKNOWLEDGEMENTS

J. Holvitie is supported by the Nokia Foundation Scholarship and the Finnish Foun-
dation for Technology Promotion, the Ulla Tuominen Foundation, and the Finnish Science
Foundation for Economics and Technology grants.

183



