
A Visual-Analytic Toolkit for Dynamic Interaction Graphs

Xintian Yang
Department of Computer

Science
Ohio State University
Columbus, OH 43210
yangxin@cse.ohio-

state.edu

Sitaram Asur
Department of Computer

Science
Ohio State University
Columbus, OH 43210

asur@cse.ohio-state.edu

Srinivasan
Parthasarathy

∗

Department of Computer
Science

Ohio State University
Columbus, OH 43210

srini@cse.ohio-state.edu
S. Mehta

IBM India Research Lab
New Delhi, India 110070

sameepmehta@in.ibm.com

ABSTRACT
In this article we describe a visual-analytic tool for the inter-
rogation of evolving interaction network data such as those
found in social, bibliometric, WWW and biological appli-
cations. The tool we have developed incorporates common
visualization paradigms such as zooming, coarsening and fil-
tering while naturally integrating information extracted by a
previously described event-driven framework for character-
izing the evolution of such networks. The visual front-end
provides features that are specifically useful in the analysis of
interaction networks, capturing the dynamic nature of both
individual entities as well as interactions among them. The
tool provides the user with the option of selecting multiple
views, designed to capture different aspects of the evolving
graph from the perspective of a node, a community or a
subset of nodes of interest. Standard visual templates and
cues are used to highlight critical changes that have occurred
during the evolution of the network. A key challenge we
address in this work is that of scalability – handling large
graphs both in terms of the efficiency of the back-end, and
in terms of the efficiency of the visual layout and rendering.
Two case studies based on bibliometric and Wikipedia data
are presented to demonstrate the utility of the toolkit for
visual knowledge discovery.
Categories and Subject Descriptors: H.2.8 Database
Management: Database Applications - Data Mining
General Terms: Algorithms, Measurement
Keywords: Graph Visualization, Visual Analytics, Dy-
namic Interaction networks

∗Contact Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

1. INTRODUCTION
In many scientific domains, visual aids and interactivity

are often key to forming important insights, particularly
when targeting hard problems. Given the nature of the
knowledge discovery process with a human-in-the-loop, a
visual analytic interactive front-end is extremely beneficial
for effective information synthesis.

In this article, we present such a visual analytic toolkit tar-
geted toward the analysis of dynamic interaction networks.
Many real world problems can be modeled as complex in-
teraction networks where nodes represent entities of inter-
est and edges mimic the relationships among them. Fueled
by technological advances and inspired by empirical anal-
ysis, the number of such problems and the diversity of do-
mains from which they arise – physics, sociology, technology,
biology, chemistry, metabolism and nutrition – is growing
steadily. In a large number of such domains the networks
governing interactions are known to evolve or change – bib-
liometric data, social network data, epidemiology data, bi-
ological networks, and the World Wide Web to name a few
examples.

In such networks, the addition and deletion of edges and
nodes can be used to represent changes in the interactions
among the modeled entities. The challenge is to identify
and localize the portions of the network that are changing to
help characterize the type of change and its potential causes,
visually. A related challenge is to facilitate interactive in-
terrogation, i.e., the user needs to be able to interactively
select and zoom down to clusters, entities of interest, as well
as specific dynamic interactions and events that govern the
evolution of interaction networks over time.

To address these challenges, we introduce a visual toolkit
specifically designed to analyze dynamic graphs. Figure 1
provides a schematic representation of the components of our
proposed visual analysis toolkit. The back-end of our toolkit
leverages a previously developed event-detection framework
for analyzing dynamic interaction networks [2]. This frame-
work presents a methodology to detect critical events af-
fecting nodes and communities in such networks and of-
fers a principled way to characterize their evolution through
the composition of various incrementally computable behav-
ioral indices such as stability, sociability and influence. As
shown in Figure 1, this information is tightly integrated with

1016



Figure 1: Overview of proposed toolkit

our front-end providing a highly interactive interface for the
user.

To facilitate visual analysis, the front-end of the toolkit
presents the user with the option of multiple views - a graph

view which is a cumulative snapshot representation of the
graph at different points in time, a community view which
represents the cluster arrangements of the snapshot graphs,
an event view which demonstrates the transformations that
have occurred over time, and a node view which details the
evolutionary behavior of individual entities. We allow the
user to pick the intervals of interest and drill down onto
the corresponding events and behavioral measures within
that time-frame. We use a weighting function to associate
different behavioral characteristics such as influence and so-
ciability with nodes and importance and recency (temporal
stability) with edges. These weights are then mapped onto
effective visual cues to localize features of interest. Overall,
the front-end conforms to the popular mantra – overview,

zoom, filter and details on demand [6].
For exploratory visual analysis, timeliness of the compu-

tation and presentation is important, particularly when con-
sidering large real-world graphs such as social networks like
Myspace and Flickr. Even simple layout and plotting tools
suffer when the size of the graph is very large. For our
toolkit, we make use of key optimizations to speed up com-
putation in the back-end, and leverage the use of coarsening
mechanisms to provide scalable performance in the front-end
to squeeze relevant information in the available pixel space.

In short, the challenges that we address in our work are:

1. Identifying, tracking and representing interesting be-

havioral properties of interactions among nodes and

communities such as stability, popularity, frequency etc.

2. Analysis and visualization of communities over time

to discovers key events depicting changes that occur

with respect to other nodes and communities. Also, we

target the incorporation of semantic content to rank

and evaluate interesting events.

3. Analysis and visualization of the relationships of a node

with its neighbors to discover trends in its importance.

4. Ensure scalability to large graphs and facilitate inter-

active exploratory visual analysis.

We present two case studies on real evolving graph datasets
to underline some of the benefits of our toolkit for visual
analysis.

2. RELATED WORK
Recently, there has been considerable interest in analyzing

dynamic interaction graphs. Leskovec et al [15] studied the
evolution of graphs based on various topological properties,
such as the degree distribution and small-world properties of
large networks and proposed the Forest-Fire graph genera-
tion model. Backstrom et al [3] studied formation of groups
and the ways they grow and evolve over time. Chakrabarti
et al [7] introduced evolutionary clustering which involves
incrementally obtaining high-quality clusters for a set of ob-
jects. In the context of event-based feature analysis Sam-
taney et al [20] described an approach for extracting coher-
ent regions from 2-dimensional and 3-dimensional scalar and
vector fields for tracking purposes. To study the evolution
of these regions over time, they present certain evolution-
ary events for objects. Event-based methods have also been
applied on spatial data [22].

There has been considerable amount of work in visualiza-
tion of social networks. Heer and Boyd [10] have developed
the Vizster tool for visualizing online social networks. The
authors use a graph representation for visualizing data col-
lected from the Friendster online community. The toolkit
can be used to explore communities, linkage and supports
keyword search. Perer and Schneiderman [17] have pre-
sented a general social network visualization toolkit. The
toolkit supports ranking of nodes based on various proper-
ties of the graph like centrality, cut-points etc. Abello and
others [1] have presented a graph visualization toolkit called
ASK–GraphView. The toolkit uses a clustering algorithm
to construct a hierarchy which is easy to browse. Henry and
Fekete [11] have presented a dual representation for visual-
izing social networks. The proposed toolkit MatrixExplorer

uses a synchronized graph and matrix representation of the
network for visualization. A key difference separating our
work from the above methods is that they are designed to
operate primarily on static interaction graphs.

Gloor and Zhao [9, 8] have developed iQuest, a visual
toolkit to understand topics of discussion among actors in
a semantic web. Kumar and Garland [14] have presented
algorithms to visualize a graph in hierarchical fashion by
exploiting existing correlations. Time-varying graphs are
handled by producing animations composed of static snap-
shots. Qeli et al. [18] have proposed algorithms to visualize
time-varying matrices. The matrices used in the article rep-
resent clustering results. The authors generate a cumulative
matrix and use colors to denote changes in memberships.
The toolkit can also be used to find a group of elements
which are part of the same cluster for an extended period
of time. The community view presented in our work serves
a similar purpose. We also provide views showing changes
to nodes, neighborhoods and communities across time. The
tight integration of our event detection back-end is a key
difference from the above methods.

3. BACKGROUND: EVENT DETECTION
This section provides the reader with a synopsis of our

previous work in order that this document be self contained.
Additional details can be found elsewhere [2]. We define a
temporal snapshot Si = (Vi, Ei) of a graph G = (V, E) to
be a graph representing only entities and interactions active
in a particular time interval [Tsi

, Tei
], called the snapshot

interval.

1017



As the graph evolves, its dynamic behavior over time can
be represented as a set of S non-overlapping temporal snap-
shots. We use clusters of the graph to represent its structure
at different snapshots. We believe that studying the evolu-
tion of these clusters, in particular their formation, tran-
sitions and dissolution, can be extremely useful for effec-
tively characterizing the corresponding changes to the net-
work over time. Let Ci and Ci+1 denote the set of clusters
over two consecutive time intervals respectively. The critical
events we define are:
1) Continue: A cluster Cj

i+1 is marked as a continuation

of Ck
i if V j

i+1 is the same as V k
i (i.e their vertex sets are the

same). Note that we do not impose the constraint that the
edge sets should be the same.

Continue(Ck
i , Cj

i+1) = 1 iff V k
i = V j

i+1

2) κ-Merge: Two different clusters Ck
i and Cl

i are marked
as merged if there exists a cluster in the next timestamp
that contains at least κ% of the nodes belonging to these
two clusters. The essential condition for a merge is :
Merge(Ck

i , Cl
i , κ) = 1 iff ∃Cj

i+1 such that

|(V k
i ∪ V l

i ) ∩ V j
i+1|

Max(|V k
i ∪ V l

i |, |V
j

i+1|)
> κ%

and |V k
i ∩ V j

i+1| >
|Ck

i
|

2
and |V l

i ∩ V j
i+1| >

|Cl

i
|

2
. This condi-

tion will only hold if there exist edges between V k
i and V l

i

in timestamp i + 1. We allow the user the option of varying
the κ parameter in the visual interface.

3) κ-Split: A single cluster Cj
i is marked as split if κ% of

nodes from this cluster are present in 2 different clusters in
the next timestamp. The essential condition is that:

Split(Cj
i , κ) = 1 iff ∃Ck

i+1, C
l
i+1 such that

|(V k
i+1 ∪ V l

i+1) ∩ V j
i |

Max(|V k
i+1 ∪ V l

i+1|, |V
j

i |)
> κ%

and |V k
i+1 ∩ V j

i | >
|Ck

i+1|

2
, |V l

i+1 ∩ V j
i | >

|Cl

i+1|

2
.

4) Form: A new cluster Ck
i+1 is said to have been formed

if none of the nodes in the cluster were grouped together at
the previous time interval i.e. no 2 nodes in V k

i+1 existed in
the same cluster at time period i.

Form(Ck
i+1) = 1 iff ∃ no Cj

i such that V k
i+1 ∩ V j

i > 1
Intuitively, a form indicates the creation of a new commu-
nity or new collaboration.

5) Dissolve: A single cluster Ck
i is said to have dissolved

if none of the vertices in the cluster are in the same cluster
in the next timestamp i.e. no two entities in the original
cluster have an interaction between them in the current time
interval.

Dissolve(Ck
i ) = 1 iff ∃ no Cj

i+1 such that V k
i ∩ V j

i+1 > 1
Intuitively, a dissolve indicates the lack of contact or inter-

actions between a group of nodes in a particular time period.

6)Join: A node is said to join cluster Cj
i if it exists in the

cluster at timestamp i and it was not present in a similar
cluster in the previous timestamp.
Join(v, Cj

i ) = 1 iff ∃Cj
i and Ck

i−1 such that Ck
i−1 ∩ Cj

i >
|Ck

i−1|

2
and v /∈ V k

i−1 and v ∈ V j
i

The cluster similarity condition ensures that Cj
i is not a

newly formed cluster.
7)Leave: A node is said to leave cluster Ck

i−1 if it no longer
is present in a cluster with most of the nodes in V k

i−1.

Leave(v,Cj
i ) = 1 iff ∃Cj

i and Ck
i−1 such that Ck

i−1 ∩ Cj
i >

|Ck

i−1|

2
and v ∈ V k

i−1 and v /∈ V j
i

The similarity constraint between the two clusters is used to
maintain cluster correspondence.

Behavioral Analysis:.
We use the Join and Leave events, described above, to

define four behavioral measures that can be incrementally

computed at each time interval using the events discovered
in the current interval.
Stability Index: The Stability index measures the ten-
dency of a node to have interactions with the same nodes
over a period of time. Let cli(x) represent the cluster that
node x belongs to in the ith time interval. The Stability
Index (SI) for node x over T timestamps is measured incre-
mentally as:

SI(x, T ) =
T

X

i=1

|cli(x)|
PVi

j=1
(Leave(j, cli(x)) + Join(j, cli(x)))

Sociability Index: A related measure is the Sociability
Index, which is a measure of the number of different inter-
actions that a node participates in. Let cli(x) be the cluster
that node x belongs to at time i. Then, the Sociability Index
is defined as:

SoI(x) =

PT−1

i=1
(Join(x, cli+1(x)) + Leave(x, cli(x)))

|Activity(x)|

and |Activity(x)| > Min activity

where Activity(x) =
PT

i=1
(x ∈ Vi) indicates the number

of intervals that node x is active. The measure gives high
scores to nodes that are involved in interactions with dif-
ferent groups. The threshold Min activity corresponds to
the minimum number of active intervals for a node to be
considered sociable. 1

Influence Index: The influence index of a node is a mea-
sure of the influence this node has on others. The intuition
is that, if a large number of nodes leave or join a cluster
with high frequency when a certain node x does, it suggests
that node x has a certain positive influence on the move-
ment of the others. Let Companions(x) represent all nodes
over all timestamps that join or leave clusters with node x.
The Influence for node x is given by:

Inf(x) =
|Companions(x)|

|Moves(x)|

Here Moves(x) represents the number of Join and Leave
events x participates in. Note that, this definition by itself,
does not measure influence, since nodes that interact and
move along with highly influential nodes will have high In-
fluence score values as well. Such nodes are down-weighted
accordingly as described previously[2].

1We used a Min activity value of 1/2 the number of time
intervals, for our experiments.

1018



Popularity Index: The Popularity Index of a cluster at
time interval [i, i + 1] is a measure of the number of nodes
that are attracted to it during that interval. It is defined as:

PI(Cj
i ) = (

Vi
X

x=1

Join(x, Cj
i )) − (

Vi
X

x=1

Leave(x,Cj
i ))

4. DATASETS
DBLP Dataset: We used a subset of the DBLP bibliogra-
phy 2 to generate a co-authorship network representing au-
thors publishing in several important conferences in the field
of AI, databases and data mining. We chose all papers over
a 10 year period (1997-2006) that appeared in 28 key con-
ferences spanning mainly these three areas. We converted
this data into a co-authorship graph, where each author is
represented as a node and an edge between two authors cor-
responds to a joint publication by these two authors. We
chose the snapshot interval to be a year, resulting in 10 con-
secutive snapshot graphs, containing 23136 nodes and 54989
edges. It has been shown that collaboration networks dis-
play many of the structural features of social networks[13,
16]. Hence, this is a good representative dataset for this
study.

Wikipedia Dataset: The Wikipedia online encyclopedia
is a large collection of webpages providing comprehensive in-
formation concerning various topics. The dataset we employ
represents the Wikipedia revision history and was obtained
from Berberich [4]. It consists of a set of webpages as well
as links among them. It comprises of the editing history
from January 2001 to December 2005. The temporal infor-
mation for the creation and deletion of nodes (pages) and
edges (links) are also provided. We chose a large subset of
the provided dataset, consisting of 779005 nodes (webpages)
and 32.5 M edges. We constructed snapshots of 3 month in-
tervals, and considered the first 6 snapshots for our analysis.

5. OPTIMIZATIONS FOR FAST EVENT
DETECTION

The event detection proceeds in an iterative manner, with
every two successive snapshots analyzed to compute events
among them. So, at each stage, we analyze the respective
clusters of Ti and Ti+1 and compute events between them.
First, it is important to note that, since we will be consider-
ing only a pair of timestamps at a time, we do not need to
consider all N nodes, since many of the nodes may not be
active over the time period. Hence, for event detection be-
tween Ti and Ti+1, we need to examine only the nodes active
over either of the two timestamps. This greatly reduces the
complexity of the event detection algorithm. Table 2 gives
the percentage of active nodes, for both datasets. It can be
observed that the percentage of active nodes for a pair of
snapshots never increases beyond 40% of the total number
of nodes.

To facilitate exploratory visual analysis, we need to en-
sure that event detection can be performed quickly, as the
events need to be shown to the user for further analysis.
Our detection algorithm relies on finding intersections and
unions of the cluster sets, as evident from the formulae pre-
sented in the previous section. When the number of clusters

2http://www.informatik.uni-trier.de/˜ley/db/

Time # of clusters # of clusters
Stamp (DBLP) (Wikipedia)

1 869 297
2 950 1620
3 955 4783
4 865 9830
5 1057 12085
6 805 18318
7 1112
8 1166
9 1434
10 1080

Table 1: Number of clusters.

is large, finding these intersections and unions can be ex-
pensive even with the bit matrix operations we described
in our earlier work[2]. Finding the intersection between ki

clusters of Ti and ki+1 clusters of Ti+1 has time complex-
ity O(ki ∗ ki+1); For most real-world graphs, the number of
communities can be quite large (ki*ki+1>N). The number
of clusters obtained for each timestamp of the DBLP and
Wikipedia graphs are shown in Table 1.

To enhance the performance of the back-end, particularly
when scaling to datasets like the Wikipedia data, we develop
an optimization to calculate the cluster intersection matrix
I in O(M) time, where M is the number of nodes active in
either Ti or Ti+1 (M<=N). The idea is as follows. We first
construct two cluster vectors (for the two timestamps con-
sidered), to represent the clusters (community) that a node
belongs to in a timestamp. We then traverse these vectors
sequentially and update the cluster intersection matrix I, as
shown in Algorithm 1.

Algorithm 1 Intersection(Ci, Ci+1)

Input: Set of M active nodes
for m = 1 to M do

clusteri[m]=cluster id that node m belongs to in times-
tamp Ti

clusteri+1[m]=cluster id that node m belongs to in
timestamp Ti+1

end for
// We then traverse these cluster vectors from left to right.
for m = 1 to M do

if m is active in Ti and Ti+1 then
I[clusteri[m]][clusteri+1[m]] + +;

end if
end for

The cluster unions can be computed easily by taking the
sum of the cluster sizes and subtracting the intersection ob-
tained from I.

Note that all the behavioral measures described above can
be computed incrementally. We maintain a vector in mem-
ory for each of the behavioral indices. As the increments are
computed for each timestamp, the corresponding values are
updated. Thus, at any given time point, one can obtain the
Index values in a straightforward manner. These measures
are displayed to the user as part of the node view, which
will be described in the next section.

The timing results for the event detection and index com-
putation are given in Table 2. To emphasize the savings,
we also present the performance of our earlier implementa-
tion[2] on the Wikipedia dataset, without the above men-
tioned optimizations (see Table 3). In a nutshell the opti-
mizations are very effective and ensure that the back-end is

1019



DBLP Wikipedia
Time Active Nodes Time Active Nodes Time

stamps (secs) (secs)
1-2 0.23 0.088 0.03 0.12
2-3 0.25 0.094 0.07 0.5
3-4 0.24 0.087 0.13 1.7
4-5 0.26 0.099 0.19 4.5
5-6 0.27 0.091 0.22 11.15
6-7 0.29 0.096
7-8 0.34 0.12
8-9 0.41 0.14
9-10 0.40 0.14

Table 2: Computation Times for the Back End.

Time Old[2] Optimized
stamps (secs) (secs)

1-2 10.25 0.12
2-3 90.92 0.5
3-4 704.93 1.7
4-5 2256.34 4.5
5-6 5016.52 11.15

Table 3: Computation Time Comparison.

significantly faster than before and is within very reasonable
limits given the scale of the data being operated on.

6. VISUAL ANALYSIS
In this section, we highlight the key components of the in-

terface along with associated user interaction features. We
also motivate the benefits of these components with respect
to the overall goal of knowledge extraction from evolving
graphs. The key components of the toolkit are:

Data Loader: This component is used for reading the in-
put data and label files. The data to be read is in the form
of temporal snapshot graphs, as we described in Section 3.
Each graph corresponds to one time step and is stored in an
edge file format. Additionally, a label file is read which as-
sociates each node in the graph with a unique identifier and
name, if available. If clusters are already available, then
we provide an option to read in the cluster file as well. If
not, clustering can be performed online. We provide options
for kMetis or MCL clustering. Once the data is read, pre-
processing is done to create the cluster vectors (described in
the previous section) for the first two timestamps.

View Mode Selector: Once the data is ready, the user
selects one of the four supported views and the relevant parts
of the interface get activated. Before detailing the views, we
describe our hierarchical representation.

Coarsening: To visualize large graphs on the screen, we
choose to coarsen the graphs, using the cluster information
to construct multi-level hierarchies of nodes. This facilitates
easy visual interpretation, since it provides the user the abil-
ity to identify and drill down to sections of interest in the
graph. The graph is initially clustered to produce base clus-

ters 3. These clusters are then further clustered internally
by our coarsening algorithm into multiple levels. The kMetis
algorithm is used for performing clustering. Each level con-
sists of a graph of supernodes, each of which represents a
cluster of lower-level nodes. At the lowest level in the hi-
erarchy, we have the nodes and edges of the graph. Before
coarsening, a new edge file is created by transferring edges
between nodes of different clusters to the corresponding su-

3If cluster file is already present, we use it

Figure 2: Illustration of coarsened high-level view. A

region can be selected to drill down.

pernodes, representing these clusters. This edge file is used
by kMetis to obtain the higher level supernodes. The user is
initially provided with a high level view in the form of con-
nected supernodes, representing different regions, as shown
in Fig 2. The physical sizes of the supernodes in the inter-
face reflect the sizes of the cluster they represent. Clusters
that contain a large number of nodes can thus be differenti-
ated from singleton clusters with ease. Dynamic behavioral
information about the nodes and clusters are also provided,
as we will describe below. At any level, the user can se-
lect one or a group of interesting supernodes to drill down
and visualize the corresponding section of the original graph.

Graph View– In this view, the entire dynamic network
is displayed as a graph. As mentioned above, the graph is
presented as a multi-level hierarchy. The bottom-most level
represents the graph itself in the form of nodes and edges.
The level immediately above represents supernodes, where
each node is a cluster of the lowest-level nodes. Each su-
pernode in this level is labeled with the Popularity Index

value of the cluster it corresponds to. It is also color-coded
to reflect the strength of the Popularity Index values. The
user can select an interesting set of clusters, and descend to
the lower level to visualize the nodes in question. In our
implementation, the sequence of colors for nodes (from low
weight to high weight) is Dark Yellow, Light Yellow, Light

Green, Dark Green. Similarly, for edges the sequence is Dark

Red, Light Red, Light Blue, Dark Blue. The progression of
colors for nodes and edges is shown in the bottom right cor-
ner of the visual interface. At the lowest level, properties
of nodes - sociability, stability and influence are computed
as described in Section 3 to assign a weight. Finally, the
weights are normalized between [0,1] and are mapped to a
color which is then used to render the graphs. We also pro-
vide a facility for multi-weighting a node, where we compute
the weight taking into account two of these behavioral mea-
sures. This is beneficial for discovering correlations among
properties of nodes. The relative importance of each edge
is primarily captured by its temporal stability, i.e., for how
many consecutive time steps that particular edge is ob-
served. Note that, the importance of an edge (interaction)
in terms of these measures can be determined based on the
nodes involved. For instance, the stability of the edge can

1020



Figure 3: Event View for Wikipedia

be represented as the product of the stability indices of the
two nodes i.e SI(x, y, T ) = SI(x, T ) ∗ SI(y, T ). Moreover,
to give less importance to old edges (which are not observed
recently), we use different line styles. For example, if an
edge also occurred in the previous time stamp, we use a
dashed line to represent temporal stability. Edges that were
not observed recently are represented by a straight line.

Community View– This view displays various clusters or
communities present in the network. Once the user selects
this view, the system presents the user with the clusters
that the nodes belong to. The membership of nodes to the
clusters are taken into account by using the same color and
same marker for rendering.

Event View– The event view is designed to provide infor-
mation regarding transformations that occur in the graph
over time. This view displays a set of all critical events that
occur between the current and previous intervals. The user
can choose different time intervals and observe the events
that transpire among them. Figure 3 shows the set of events
between clusters of timestamps 2 and 3. At the top of the
GUI, there are three bars a, b and k which correspond to
the α,β and κ parameters for the event detection algorithm
described earlier. The user can vary these parameters and
examine the critical events obtained. In the middle of the
screen, the GUI provides a list of all critical events observed.
The user can select one of these events, which provides de-
tails on the nodes and clusters involved. We present an
example of a Merge and a Split event in the Case Study sec-
tion. The detailed representation of the event is visualized
on the screen giving the user a representation of the nodes
involved and the change that has occurred. For the Merge
and Split events in the Event View, we also provide a Se-

mantic Similarity ranking. This is of use for graphs that
have associated category or term hierarchy information. To
begin with, the Information Content (IC) of a term (cate-
gory or keyword-set), using Resnik’s definition [19], is given
as:

IC(ki) = −ln
F (ki)

F (root)

where ki represents a term and F (ki) is the frequency of
encountering that particular term over all the entire corpus.
Here, F (root) is the frequency of the root term of the hi-

erarchy. Note that frequency count of a term includes the
frequency counts of all subsumed terms in an is-a hierar-
chy. Also note that terms with smaller frequency counts
will therefore have higher information content values (i.e.
more informative). Using the above definition, the Seman-
tic Similarity (SS) between two terms (categories) can be
computed as follows:

SS(ki, kj) = IC(lcs(ki, kj))

where lcs(ki, kj) refers to the lowest common subsumer of
terms ki and kj . To define the semantic similarity between
two clusters, one can employ an information theoretic mu-
tual information measure. Given probabilities of terms m
and n occurring in a cluster as p(m) and p(n) respectively,
and their co-occurrence probability p(mn), the Semantic
Mutual Information (SMI) between the two clusters Ca

i and
Cb

j can be given as:

SMI(Ca
i , Cb

i ) =
ka

X

m=1

kb

X

n=1

SS(m, n) ∗ p(mn) ∗ logka∗kb

p(mn)

p(m) ∗ p(n)

However, while this measure accurately captures similari-
ties, it is not very scalable for graphs with large category
hierarchies, due to the amount of computation required and
memory consumed. In these cases, the semantic similarity
between two clusters can be computed as:

Inter SS(Ca
i , Cb

i ) =

Pm=1

ka

Pn=1

kb SS(m, n)

ka ∗ kb

Note that, the semantic similarity values between terms are
pre-computed, while computing the Inter SS() of clusters or
local neighborhoods is scalable. 4 Clusters with high values
of Inter SS(), can be expected to contain authors or web-
pages with similar topics and thus merge events that com-
prise of such clusters are semantically meaningful (Semantic
Merges). Hence, the Merge events are ranked in decreasing
order of the Inter SS() of the merging clusters. For the Split
events, we compute the Inter SS() of the split clusters. We
will illustrate both types of Semantic events in the next sec-
tion. Note that our toolkit can output Semantic Similarity
scores for clusters (not shown).

Node View– All the above-mentioned views deal with global
properties of the network. The node view presents the user
with localized information. Once the user chooses node
view, the toolkit provides a list of nodes ranked in decreas-
ing order of the properties available (sociability, stability and
influence). The user can then select a node from the node
list for further observation. This prompts the correspond-
ing neighborhood graphs of that particular node over time
to be displayed to the user. The displayed graphs includes
the chosen node and its neighborhoods over time. One can
gain insight into changes occurring in the neighborhoods of
the selected node. For instance, in the case of influence, one
can identify spheres of influence for a node over time. We
will demonstrate the benefits of the node view in the case
studies in the next section.
Zoom Filters: As the name suggests, this feature is used to
zoom into certain sections of the graph. The user can select
the area of interest by drawing a rectangle using the mouse.

4Also, note that these operations are performed only on
merge and split events detected.

1021



The selected part is then zoomed into and displayed. It is
also possible to zoom out to a lower resolution. Figure 4(a)-
(b) demonstrates the zoom feature on the DBLP dataset.
The zoom feature can be used multiple times to increase the
resolution.
Time Browser: This functionality is used to observe the
network across time. This provides the user the capability
to detect time instants when graph topology has changed
considerably. The Back and Forward buttons at the bottom
of the GUI can be used by the user to control the time,
moving through the different time intervals.
Keyword Search: In many cases, one is interested in
searching for particular nodes [12] and their evolution over
time. As we described above, we use a multi-level hierarchy
of supernodes to visualize sections of the graph. We also
store a multi-level index that allows the querying and ex-
traction of specific nodes of interest. If one is interested in
a particular node and its behavior, we can extract the exact
location of the node and visualize the corresponding section
of the graph.

Evolution of Neighborhoods: We also provide the option
of visualizing the evolution of node neighborhoods. When
the user is presented with a view of a region of the graph,
she has the option of selecting a particular set of nodes or
communities and viewing the evolution of the neighborhoods
of these nodes over time. Once a region is chosen, we track
the neighborhoods of all nodes in that region over time.

Community-driven Layout: An integral component of
our visual framework is the layout component. Once we
have a set of nodes and edges to render on the screen, we
need to map them to suitable coordinates that represent
the relationships that exist among them. As a first step
we leveraged the Graphviz(http://www.graphviz.org/) lay-
out tool to obtain coordinates. However, since the graph
is dynamically evolving, we observed that directly employ-
ing Graphviz led to a loss in visual correspondence of nodes
and more importantly communities across timesteps. Re-
solving this problem is not straightforward since nodes and
edges may not be active at all time points. To handle this
correspondence problem, we compute a novel community-

driven layout scheme. The central idea is to ensure that
communities that overlap across time steps are laid out in
corresponding regions in consecutive time steps, thus main-
taining relatively stable coordinates over time. The heuris-
tic procedure we adopt involves identifying the most stable
communities (using the Continue and Stability computa-
tions described earlier) and suitably ensuring that global
coordinates for such communities from their formation un-
til they change drastically, remain consistent. This leads to
the desirable property of visual correspondence across time
stamps. Note however that individual nodes that join or
leave communities are moved around based on their behav-
ior, as are communities that change significantly.

7. CASE STUDIES : VISUAL ANALYSIS

7.1 DBLP Bibliography Dataset
In this case study, we demonstrate the effectiveness of our

toolkit for visual data analysis on the DBLP dataset. Our
tool provides us with a list of authors ranked by behavioral
attributes such as Sociability and Influence, as described

previously. Our tool also allows one to combine informa-
tion from multiple metrics by specifying an affine combi-
nation of these values (menu-driven option not shown). For
this study, we chose Dr Rakesh Agrawal, who unsurprisingly
ranks highly on both sociability and influence (see Fig 5).
We equally weighted the contribution of each index.
Upon inspection, one can see that the neighborhoods for
Dr Agrawal differ significantly between successive snapshots
From 1997 to 2002, one can make out the progression in his
sociability and influence index, as conveyed by the grada-
tion of the color of the node representing him 5. After 2002,
however, many of his neighbors (collaborators) remain fairly
consistent, the sociability index is lower but the influence, of
collecting more neighbors in the cluster he is in balances this
out very nicely. This correlates with his interests shifting to
the focused area of privacy preserving data mining and trust
and security applications of databases. His collaborators in
the last few timestamps shown are primarily from this area
and this area has also taken off very nicely since Agrawal
and Srikant’s seminal paper in the area in 2001.

Also, one can readily see that 3 nodes in particular ap-
pear quite frequently, namely R. Srikant, R. Bayardo and
J Kiernan (after 2001) represented by dashed edges. These
are some of Agrawal’s frequent collaborators. Another inter-
esting trend is that the graph also identifies quite naturally
collaborators of Agrawal’s who have a high sociability and
influence index (i.e. Christos Faloutsos, Gerhard Weikum,
Dimitrios Gunopulos, Johannes Gehrke, Prabhakar Ragha-
van, and Surajit Chaudhary).

7.2 Wikipedia webgraph
In the next case study, we analyze the Wikipedia web-

graph. In particular, we demonstrate the use of Semantic
analysis with event detection. In the event view, the toolkit
provides us with a list of different events. As we mentioned
in the previous section, we have the facility of ranking the
Merge and Split events in terms of semantic meaningfulness.
First, we will consider a Semantic Merge event, that had the
highest Semantic Similarity, shown in in Figure 6(a). In the
first snapshot, there are 2 clusters of size 5 and 11, that have
considerable semantic similarity, as can be ascertained from
the labels. The clusters deal with Logic and Philosophy and
the Merge event is thus justifiably meaningful. The merged
cluster is shown on the right.
For a Split event, one would expect the two split clusters to
be semantically dissimilar. While, this is mostly true, there
can be occurrences where interesting minute differences can
cause clusters to split up. These kind of Split events can in-
dicate subtle changes across snapshots, where a cluster splits
into two parts due to a small semantic difference among the
associated categories. These splits can be interesting as they
can reveal differences that may not be obvious. This can be
considered akin to drilling down a hierarchy to discover sub-
tle specializations of a category. We can find such interesting
occurrences by considering split clusters with low Inter SS().
An example of such a Split event is shown in Figure 6(b).
As can be observed, the original cluster which deals with
the Berlin Wall, splits into two clusters on East and West
Berlin respectively. Understandably, these two split clusters
had reasonably high Semantic Similarity values.

5In 1997 this value is low simply because this is the first data
point in the dataset we use – an artifact of the experiment.

1022



Figure 4: Zoom feature

Figure 5: Node View : Neighborhood of R. Agrawal (weighted by Sociability & Influence Index)

Figure 6: Examples of a) Merge Event b) Split Event

1023



8. CONCLUSIONS
We have presented a toolkit for visualizing and analyzing

dynamic interaction graphs. Our toolkit provides multiple
views of the data and is designed to incorporate features for
multi-scale and multi-resolution analysis and supports the
overview, zoom, filter and details–on–demand paradigm.

We have shown how the toolkit can be employed for esti-
mating interesting behavioral properties of nodes and com-
munities in the graph, such as stability and influence. The
node view also allows one to visualize trends in these prop-
erties over time. Additionally, the graph and event views
permit us to discover and characterize specific changes that
occur, with respect to other nodes and communities. We
have shown how the incorporation of semantic content can
aid evaluation and ranking of events discovered. Our novel
community-driven layout component can aid exploratory anal-
ysis and handle the correspondence problem in plotting trends
of nodes and communities over time.

To ensure scalability to large graphs, we have presented
optimizations that can provide speedup and facilitate inter-
active visual analysis. The toolkit also supports visualizing
the cumulative graphs with different scoring mechanisms to
assign color to each edge and node. The coloring scheme cap-
tures behavioral properties and provides useful visual cues
to discover important and interesting parts of the graph. We
have shown how the toolkit can perform visual analysis by
taking into account the evolution of nodes and communities
as well as key events over time. Using illustrations on the
DBLP and Wikipedia datasets, we have shown how the in-
teractive features aid the user in answering common queries
about dynamic networks in an effective and efficient manner.

As part of ongoing work we are currently investigating the
use of pivot-based algorithms[21] to further enhance the vi-
sual correspondence of communities across timesteps, while
also improving the scalability of the layout process. We
are also looking to incorporate the dense subgraph visu-
alization algorithms from our above-mentioned work into
the toolkit. To further improve scalability of the semantic
similarity computations, we will leverage min-wise hashing
methods [5].

9. ACKNOWLEDGEMENTS
This work is supported in part by the DOE Early Career

Principal Investigator Award No. DE-FG02-04ER25611, NSF
CAREER Grant IIS-0347662 and NSF SGER Grant IIS-
0742999. We would like to thank Klaus Berberich and Ev-
geniy Gabrilovich for providing us with the Wikipedia dataset
and the category hierarchy respectively.

10. REFERENCES
[1] J. Abello, F. van Ham, and N. Krishnan.

Ask-graphview: A large scale graph visualization
system. IEEE Trans. Vis. Comput. Graph.,
12(5):669–676, 2006.

[2] S. Asur, S. Parthasarathy, and D. Ucar. An
event-based framework for characterizing the
evolutionary behavior of interaction graphs. SIGKDD,
pages 913–921, 2007.

[3] L. Backstrom, D. P. Huttenlocher, and J. M.
Kleinberg. Group formation in large social networks:
membership, growth, and evolution. SIGKDD, 2006.

[4] K. Berberich, S. Bedathur, T. Neumann, and
G. Weikum. A time machine for text search. In SIGIR,
pages 519–526, New York, NY, USA, 2007. ACM.

[5] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations. Journal of Computer and System

Sciences, 60(3):630–659, 2000.

[6] S. K. Card, J. D. Mackinlay, and B. Shneiderman.
Readings in information visualization: using vision to

think. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1999.

[7] D. Chakrabarti, R. Kumar, and A. Tomkins.
Evolutionary clustering. SIGKDD, 2006.

[8] P. A. Gloor, R. Laubacher, S. B. C. Dynes, and
Y. Zhao. Visualization of communication patterns in
collaborative innovation networks - analysis of some
w3c working groups. In CIKM, pages 56–60, 2003.

[9] P. A. Gloor and Y. Zhao. Analyzing actors and their
discussion topics by semantic social network analysis.
In InfoVis, pages 130–135, 2006.

[10] J. Heer and D. Boyd. Vizster: Visualizing online social
networks. In InfoVis, page 5, 2005.

[11] N. Henry and J.-D. Fekete. Matrixexplorer: a
dual-representation system to explore social networks.
IEEE Trans. Vis. Comput. Graph., 12(5):677–684,
2006.

[12] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional
expansion for keyword search on graph databases. In
VLDB, pages 505–516. VLDB Endowment, 2005.

[13] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network.
SIGKDD, 2003.

[14] G. Kumar and M. Garland. Visual exploration of
complex time-varying graphs. IEEE Trans. Vis.

Comput. Graph., 12(5):805–812, 2006.

[15] J. Leskovec, J. M. Kleinberg, and C. Faloutsos.
Graphs over time: densification laws, shrinking
diameters and possible explanations. SIGKDD, 2005.

[16] M. Newman. Clustering and preferential attachment
in growing networks. Phys. Rev. E, 64, 2001.

[17] A. Perer and B. Shneiderman. Balancing systematic
and flexible exploration of social networks. IEEE

Trans. Vis. Comput. Graph., 12(5):693–700, 2006.

[18] E. Qeli, W. Wiechert, and B. Freisleben. Visual
exploration of time-varying matrices. In IV, pages
889–895, 2005.

[19] P. Resnik. Semantic similarity in a taxonomy: An
information-based measure and its application to
problems of ambiguity in natural language. Journal of

Artifical Intelligence Research, 11:95–130, 1999.

[20] R. Samtaney, D. Silver, N. Zabusky, and J. Cao.
Visualizing features and tracking their evolution.
IEEE Computer, 27(7):20–27, 1994.

[21] N. Wan, S. Parthasarathy, K. Tan, and A. K. Tung.
Csv: Visualizing and mining cohesive subgraphs.
SIGMOD, 2008.

[22] H. Yang, S. Parthasarathy, and S. Mehta. Mining
spatial object patterns in scientific data. Proc. 9th

Intl. Joint Conf. on Artificial Intelligence, 2005.

1024


