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ABSTRACT
Motivation: Full-text documents potentially hold more inform-
ation than their abstracts, but require more resources for
processing. We investigated the added value of full text over
abstracts in terms of information content and occurrences
of gene symbol—gene name combinations that can resolve
gene-symbol ambiguity.
Results: We analyzed a set of 3902 biomedical full-text art-
icles. Different keyword measures indicate that information
density is highest in abstracts, but that the information cov-
erage in full texts is much greater than in abstracts. Analysis
of five different standard sections of articles shows that the
highest information coverage is located in the results section.
Still, 30–40% of the information mentioned in each section is
unique to that section. Only 30% of the gene symbols in the
abstract are accompanied by their corresponding names, and
a further 8% of the gene names are found in the full text. In
the full text, only 18% of the gene symbols are accompanied
by their gene names.
Contact: m.schuemie@erasmusmc.nl

INTRODUCTION
The surge of scientific literature in the biomedical domain
has made it hardly possible for researchers and medical pro-
fessionals to keep track of developments in their own field
of interest, let alone any information from related fields.
Recently, many efforts to develop better information retrieval
and extraction techniques to assist users in coping with this
information overload have been suggested.

Traditionally, these techniques use the abstracts of papers,
mostly due to wide availability of abstracts in data-
bases such as MEDLINE (http://www.pubmed.gov). More
recently however, full-text documents are more avail-
able, e.g. due to initiatives, such as BioMed Central
(http://www.biomedcentral.com), Public Library of Science
(http://www.plos.org) and PubMed Central (http://www.
pubmedcentral.nih.gov).

∗To whom correspondence should be addressed.

Because full-text documents are currently more difficult
to obtain due to copyright protection, and are by defini-
tion longer, requiring more computing and storage, mining
full-text documents is less practical than mining abstracts.
When looking at the identification of gene names the prob-
lem is compounded. Identification of gene names in full text
is more prone to error as papers mention chemical and bio-
logical entities other than genes with names similar to genes,
and information can be contained in tables and figures that
are difficult to process (Tanabe and Wilbur, 2002). Addition-
ally, abstracts are assumed to contain the information most
relevant to the paper, therefore having a higher information
density than full text. Contrastingly, the full text generally
contains more information, but this could be more dispersed.
Therefore, the question arises how the information content of
full-text documents compares to that of abstracts.

Little research has been done to evaluate the beneficial
value of full-text documents compared with that of abstracts.
Friedman et al. (2001) tested a system for the extraction of
molecular pathways on one article and found that of the 19
unique molecular interactions mentioned in the text, only 7
were found in the abstract. Yu et al. (2002) used both abstracts
and full-text documents to retrieve synonyms of genes and
proteins, and found more synonyms, with a higher precision
in the full text than the abstract.

Shah et al. (2003) performed a more systematic comparison
of abstracts and full-text in Nature Genetics. In a set of 104
full-text articles that contained all the five standard sections
Abstract, Introduction, Methods, Results and Discussion,
they searched on keywords characterizing the text, assess-
ing the keyword frequency in each section. They showed that
the highest frequency of keywords occurred in the abstract.
Furthermore, the content of the different sections was highly
heterogeneous. In addition, Shah et al. (2003) investigated
the appearance of a limited list of gene names and found that
the abstract and introduction have the highest frequency of
gene names. Shah et al. (2003) selected keywords by choos-
ing single-word nouns that have a high K-value. This K-value
was calculated using µIw, a measure of the degree of inclusion
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of noun wj into noun wi · µIw(wi , wj) = |Wi ∩ Wj |/|Wi |,
where |Wi ∩Wj | is the number of times that wi and wj appear
together in a sentence and |Wi | is the number of times wi

appears in the text. The K-value for a word wi was then
defined as

Ki =
∑
j �=i

µIw(wi , wj) =

∑

i �=j

|Wi ∩ Wj |



/
|Wi |. (1)

The K-value for a word was normalized to the maximum value
found for K in that section. Keeping in mind that the nom-
inator in the right-hand side of the above equation is equal
to the number of times word i appears together with other
words in a sentence, and the denominator is the number of
sentences in which the word i appears, the highest K-values
were assigned to words that appear in the, on an average,
longest sentences (measured in nouns) in this section. How-
ever, it is unclear why words with a high K-value (i.e. words in
relatively long sentences) should be preferentially considered
keywords. Therefore, a different choice of keywords is used
in the current study.

Given the paucity of results hitherto, the goal of this study is
to assess the informational content of full-text documents as
compared with abstracts, with a focus on medical information,
and in particular information relating to genes. Additionally,
we aim to determine how the information content of the doc-
ument is distributed over different sections to identify parts
of documents that are worth more attention when extracting
information. We seek to improve on the research by Shah
et al. (2003) by using more methodologically sound meas-
ures, by including both single and multiple word terms and
a more extensive list of gene names, and by using a larger
test corpus. Finally, because ambiguity of gene symbols is
a recognized problem in information extraction (Pustejovsky
et al., 2001), we investigate the presence of full-length gene
names matching the gene-symbols, which would render the
disambiguation problem trivial.

METHODS
Document set
We used a set of 1275 full-text publications from Nature
Genetics (NG), from June 1998 (volume 19, issue 2) to
November 2001 (volume 23, issue 3)1, and all 2754 full-
text publications from BioMed Central (BMC) (retrieved on
8 September 2003) containing 89 different journals. These
included research articles as well as letters, news and view
articles. Of these articles, 127 (3.2%) were not indexed in
MEDLINE and were discarded because they mostly included
letters and corrections with little relevance to the field,
resulting in a test set containing 3902 documents.

1The dataset used by Shah et al. (2003) was a subset of this dataset.

Keyword identification
For the purpose of this study we assume that information in
the text is represented by keywords, i.e. those words in the
text that describe ‘what the text is about’. To ensure that the
keywords were relevant to the medical domain, and to simplify
matters, a first selection was performed by identifying the text
words that match the terms in a biomedical thesaurus. This
was executed using the Collexis® engine (van Mulligen et al.,
2000) (http://www.collexis.com), which normalizes text (i.e.
reduces plural to singular form and upper case to lower case)
and matches terms, possibly consisting of multiple words, to
entries in the thesaurus. If the thesaurus terms appear literally
in the text, or with small morphological variations, they are
effectively always recognized by the system.

The thesaurus was MeSH 2002 (Medical Subject Head-
ings, http://www.nlm.nih.gov/mesh/), the same thesaurus that
is used by indexers at the National Library of Medicine to
attach a list of terms to publications in the MEDLINE data-
base. These manually attached MeSH terms will subsequently
be called the ‘MeSH headings’.

We used five different techniques to identify keywords. The
first three techniques were based on MeSH terms:

(1) MeSH headings: These are the MeSH terms manu-
ally attached to a publication in MEDLINE by the
human indexer. However, headings falling under the
category Miscellaneous in the MeSH thesaurus were
removed from the headings list because they were
unlikely to appear literally in the paper (e.g. terms such
as ‘Support, U.S. gov.’, ‘Historical Biography (PT)’ or
‘Drug Evaluation, FDA Phase II’).

(2) Exploded MeSH headings: These are MeSH headings
extended with their children as defined in the thesaurus.
For instance, if ‘Parasitic Disease’ was defined as a
MeSH heading, then ‘Malaria’ would also be identified
as a keyword.

(3) TF*IDF (Term Frequency * Inverse Document
Frequency): This is a term relevance score commonly
used in information retrieval. MeSH terms with a
higher TF*IDF score are considered to be more relevant
keywords than MeSH terms with a lower TF*IDF score.
TF is the number of times the MeSH term appears in
the document, and IDF is a measure for the uniqueness
of the term in the whole document collection. We used
IDF = 2log(N/n), with N the total number of docu-
ments in the collection and n the number of documents
containing the MeSH term.

Techniques 1 and 2 utilized the terms assigned by human
indexers and were expected to yield the most informative
keywords since humans are still the only entities capable of
really understanding a text. However, because humans make
errors and are subjective, technique 3 was included as a more
objective approach.
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Additionally, we used a self-constructed thesaurus of
human gene names and symbols extracted from five
genetic databases: GDB (http://www.gdb.org), Genew
(http://www.gene.ucl.ac.uk/nomenclature), Locuslink (http://
www.ncbi.nlm.nih.gov/locuslink), OMIM (http://www.ncbi.
nlm.nih.gov/Omim) and SwissProt (http://us.expasy.org/
sprot/). The combined thesaurus contained information
regarding 25 004 genes, which were identified by 84 448 terms
(gene names and symbols, including aliases). We included a
fourth technique, using the aforementioned gene thesaurus, to
find gene names and symbols in the text.

(4) Gene terms: Many gene symbols also have non-
gene meanings (e.g. ESR, which can mean Estrogen
Receptor 1 or Electronic Spin Resonance), or map
to more than one gene. Of the 84 448 terms in our
thesaurus, 3375 mapped to more than one gene. In an
attempt to reduce the number of ambiguous terms, we
required gene terms to contain at least one letter and
one digit (where the first character must be a letter), or
at least one space (i.e. gene names consisting of mul-
tiple words). A total of 66 806 gene terms conformed to
these requirements2. A total of 2014 terms still map to
more than one gene, however, we assume that the num-
ber of terms with non-gene meanings is reduced even
further because the remaining terms are often typical
gene names.

To gain more qualitative insight into the diversity of the
content within sections, we also use a fifth technique:

(5) MeSH terms per semantic type: The MeSH hierarchy
classifies terms into different semantic classes, their
so-called semantic types. We established for every
MeSH term that appears in the text its corresponding
semantic type. To reduce complexity, we focused on
three important categories within biomedical research:
Organisms, Diseases and Chemicals and Drugs.
Additionally, we included the genes from our thesaurus
as a fourth semantic type.

Information measures
Two important concepts for describing the information con-
tent of a piece of text are the information density and the
information coverage of that text. Information density refers
to the average amount of information per unit of text (e.g.
per word or sentence). Information coverage refers to the
total amount of information described in a piece of text.
We defined several specific information density and cov-
erage measures, listed below. The information coverage
measures were calculated in terms of the fraction of the
total information in a paper that was described in a part of

2Shah used a set of 539 genes whose names are comprised of three letters
followed by one digit.

that paper.

(1) Heading Density (HD): The number of instances of
MeSH headings found in the text divided by the
number of words.

(2) Exploded Heading Density (XHD): Similar to HD, but
included the children of the original MeSH headings.

(3) Weighted MeSH Term (WMT) density: The sum of
the TF*IDF scores of the MeSH terms in the text,
divided by the number of words. This measure can be
viewed as a weighed density measure, since it took
into account the weight of each term.

(4) Gene Density (GD): The number of instances of gene
names found divided by the number of words.

(5) WMT fraction: The sum of the TF*IDF scores of the
MeSH terms mentioned at least once in a section,
divided by the sum of the TF*IDF scores of the MeSH
terms mentioned at least once in the entire document.

(6) Heading Fraction (HF): The fraction of the MeSH
headings encountered at least once in the text.

(7) Exploded Heading Fraction (XHF): The fraction of the
MeSH headings mentioned at least once, or of which
one of its children was mentioned.

(8) Gene Fraction (GF): The number of unique genes
mentioned, either by symbol or name, in a section
divided by the number of unique genes mentioned in
the entire article.

(9) Exploded Heading Uniqueness (XHU): The fraction of
the MeSH headings, including children, mentioned in
a section that was not mentioned in any other section.

(10) Gene Uniqueness (GU): The fraction of genes men-
tioned in a section that were not mentioned in any other
section.

(11) Semantic Type Density (STD): The number of terms
belonging to a specific semantic type in a section,
divided by the total number of words in that section.

(12) Semantic Type Fraction (STF): The number of terms
of a specific semantic type mentioned at least once in
a section, divided by the total number of terms of that
type mentioned at least once in the entire document.

Section detection
Standard sections were detected by identifying section head-
ings that contained ‘abstract’, ‘background’, ‘introduction’,
‘method’, ‘result’, or ‘discussion’. The abstract section was
often identified by a specific mark-up tag in the source
documents.

Disambiguation information
If gene symbols are directly followed by corresponding gene
names, disambiguation of the symbols is straightforward. To
assess how often this was the case in our document set, we
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Fig. 1. (a) and (b) Information distribution between abstract and full text, for all 1834 papers (807 from NG, 1027 from BMC) with a
MEDLINE abstract and MeSH headings. (WMT density is divided by 100 for visual purposes.)

determined for each gene symbol whether it was followed by
a gene name, using the abbreviation expansion algorithm of
Schwartz and Hearst (2003). In this analysis, we used all sym-
bols from our gene thesaurus for gene–symbol identification,
including those symbols that we deemed to be too ambigu-
ous to be used for keyword identification, since we wanted to
investigate the possibility of resolving this ambiguity.

Data analysis
Differences between groups and between dependent meas-
urements were assessed with ANOVA tests. All statistical
analyses were performed using SPSS 11.

RESULTS
Document structures
Of the 3902 analyzed NG and BMC publications, 2458
(63.0%) articles contained all five standard sections:
Abstract (A), Introduction (I), Methods (M), Results (R) and
Discussion (D). These articles were significantly longer than
the other articles (P < 0.001), with a mean (SD) number of
words of 3624 (1688) versus 1960 (1535) for the rest of the
collection.

MEDLINE contained an abstract for 3500 (89.7%) publica-
tions, and a first comparison showed that these abstracts are
always identical to the abstracts in the full text. A total of
1735 (44.5%) MEDLINE abstracts had no MeSH headings
attached, and most of these were recent papers from the
BioMed Central dataset. An average of 16.0 MeSH headings
was assigned to the MEDLINE-indexed papers.

Abstract versus full text
Figure 1 shows the average scores of the information metrics
for the abstract and for the full text of those documents with an
abstract in MEDLINE. As was expected, the keyword density

in the abstract is higher than in the full text, but the coverage
of assigned MeSH headings in the full-text was significantly
larger. (Note that the WMT fraction for the full text is 1 by
definition). An ANOVA for repeated measurements showed
that all effects are highly significant (P < 0.001).

Interestingly, not all attached MeSH headings are actually
found in the text, even when children are included. This is not
a problem for the information measures if the missed headings
are missing in equal degrees from the abstract and the full text.
To test this assumption, we determined whether the proportion
between the exploded heading density in the abstract and the
exploded heading density in the full text is different for docu-
ments with varying percentages of retrieved MeSH headings.
The difference was not statistically significant3, suggesting
that the effect of missed MeSH headings is equally large in
abstracts and full texts.

The average number of unique gene names found in the set
of abstracts was 0.61 versus 2.35 in the full texts. Again, the
difference was highly significant (P < 0.001).

Standard document sections
Figure 2 shows the distribution of information over the five
standard sections for the 1050 documents that contained all
these sections and had MeSH headings assigned. The keyword
density was highest in the Abstract and lowest in the Methods
and Discussion sections, whilst the keyword fraction was
highest in the Results section. An ANOVA for repeated
measurements indicated that all effects were highly signi-
ficant (P < 0.001), except for HF (P = 0.065) and XHF
(P = 0.165). A post hoc least significant distance (LSD)

3 Pearson Correlation between (XHDabstract/XHDfull text) and XHFfull text is
−0.037, P = 0.115.
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Fig. 2. (a) and (b) Information distribution over the different standard sections. (WMT Density is divided by 100 for visual purposes.) Based
on all 1050 papers (114 from NG, 936 from BMC) to which MeSH headings have been assigned and containing all five standard sections.
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Fig. 3. Distribution of gene names over the different sections (Gene
Density is multiplied by 100 for visual purposes). Based on all 1165
papers (106 from NG, 1059 from BMC) containing all five standard
sections in which at least one gene name was found.

pairwise comparison between sections showed that most4 of
the differences between these sections were significant at the
0.05 level.

Figure 3 shows the distribution of gene names for the 1165
documents with at least one gene name and containing all five
sections, indicating that the highest gene fraction was found
in the Methods and Results sections. An ANOVA for repeated
measurements indicated that all differences were highly sig-
nificant (P < 0.001). A post hoc LSD pairwise comparison
showed that most5 of the differences between sections were

4 Not significant for WMT density, between I and R; for WMT fraction,
between I and D; for HF, between A and I, between A and M and between I
and M; for XHF, between A and I, between A and M and between I and M.
5 Not significant for GF, between M and R; for GD, between A and R.
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Fig. 4. Fraction of the MeSH headings (including children) and
genes mentioned in a section that are not mentioned in any other
section. Based on the 599 papers (106 from NG, 493 from BMC)
to which MeSH headings have been assigned, with one or more
occurrence of a gene name, and containing all five standard sections.

also significant at the 0.05 level. Note that the actual gene
name density could be higher than shown, as we ignored gene
symbols that could be ambiguous, and because our thesaurus
may have been incomplete.

Figure 4 shows the number of Exploded Headings and
gene names that were uniquely found in a single section.
Neither Exploded Headings Uniqueness nor Gene Unique-
ness differed significantly between sections. A post hoc LSD
pairwise comparison showed however that most6 differences
were significant at the 0.05 level.

6 Not significant for XHU, between A and I; for GU, between A and M,
between A and D, between I and D, between M and D.
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(114 from NG, 2344 from BMC) containing all five standard sections.

Table 1. Average number of gene symbols found in the abstract and full text, and the percentage for which a matching Long-form (LF) gene name was found

Gene symbol
found

Long-form found
(%)

LF found in full-text
only (%)

LF found only in
abbreviation section (%)

All symbols
Abstract 1.35 30 8
Full text 9.69 18 2

Ambiguous symbols
Abstract 0.12 53 12
Full text 1.08 27 3

Based on all 3500 papers (809 from NG, 2591 from BMC) for which a MEDLINE abstract was found. The rightmost column shows, for the 610 papers (0 from NG, 610 from BMC)
in which an abbreviations section was found, the percentage of short-forms in the full text for which a matching long-form was found only in the abbreviations section.

Figure 5a and b show the Semantic Type Density and
Semantic Type Coverage for the four selected semantic types.
It can be seen that the semantic types Diseases and Genes
were found in relatively low density in the Methods section.
Pairwise comparison with the other sections showed these dif-
ferences to be highly significant (P < 0.001). In contrast, the
widest variety of Chemicals and Drugs was discussed in the
Methods section. Pairwise comparison between coverage in
sections showed this difference also to be highly significant
(P < 0.001).

Gene symbol—gene name alignment
Table 1 shows the average number of gene symbols that were
found in abstract or full text (including the Abstract), and
the percentage of these gene symbols that had a correspond-
ing gene name. A matching gene name was found for only a
small percentage of gene symbols in the abstract, even when
searching the full text. For gene symbols found in the full
text, the problem was even worse. The addition of an abbre-
viations section, found in 17% of the publications, increased
the number of disambiguated gene symbols by only a small
percentage.

We repeated our analysis for the subset of gene symbols
that were assigned to more than one gene in the thesaurus
(n = 609). We hypothesized that authors would be more
prone to include the gene names of abbreviations that were
ambiguous in their own research field. Although the results
confirm this hypothesis, still only half of the gene symbols in
the abstract were accompanied by a gene name.

DISCUSSION
Our results show that the information density is highest in
abstracts. In contrast, the coverage of information in terms of
biomedical and gene keywords is substantially higher in full
text when compared with abstracts. Almost twice as many
biomedical concepts were mentioned in the full text, and on
averagenearly four timesasmanygenes. When lookingat indi-
vidual sections, the highest information coverage was detected
in the Results section, whereas the density was lowest in the
Methods section. This, therefore, would argue for placing par-
ticular emphasis on mining information-rich sections such as
the Results, although one should keep in mind that a substan-
tial part of the information mentioned in any section appears
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to be unique to that section. The uniqueness of gene names
in a section, however, could also be due to the fact that these
genes were not related to the main topic of the article, but for
instance to the method used as described in a Methods section.

The investigation into occurrences of relevant semantic
types showed that the Methods section was richest in informa-
tion on Chemicals and Drugs, whilst Diseases and Genes
were mentioned less frequently in the Methods section than
in other sections. Since named-entity extraction algorithms
are reported to have difficulties in distinguishing between
gene names and chemical entities (Tanabe and Wilbur, 2002),
not applying these algorithms to the Methods section might
improve their performance.

Remarkably, only ∼62% of the MeSH headings manually
assigned to a paper could actually be retrieved from the full
text, even when the children of those headings were included.
In contrast Shah et al. (2003) reported that they could find
∼72% (an average of 4.91 of 6.80 headings) of all MeSH
headings assigned to the documents in their collection, even
without children. The difference between these results can be
explained by taking into consideration the fact that Shah only
used single word terms, thus ignoring the 60.6% of all MeSH
headings that consist of more than one word which are often
more specific and less likely to be found.

The reason that not all terms were found could be that the
granularity of MeSH is insufficient for this task. For instance,
there were papers with the heading ‘Nuclear Proteins’ that
did not have the explicit term ‘nuclear protein’ in the text, but
specific nuclear proteins were mentioned in several instances,
none of which however were part of MeSH. Because the
exploded heading density in the abstract relative to the full text
is not different for documents with a low or high percentage of
retrieved MeSH headings, we assume that this effect is equal
for the different sections of a paper and that the MeSH head-
ings can therefore be used in our measures for identification
of relevant information.

Furthermore, the results of our different keyword measures
were consistent and can therefore be assumed to be reliable.
Even though we used different keyword measures, extended
our scope to include multiple word terms, and used a sub-
stantially larger number of gene names and documents than
Shah et al. (2003), our results concur on several points, most
importantly on the fact that the highest information density in
terms of generic keywords and genes is found in the abstract.
However, the most significant difference was between the
information coverage, which according to Shah’s results was
highest in the Introduction and Methods and lowest in the
Results section, whilst our results showed it to be highest
in the Results section. This difference is most likely due to
differences between the keyword measure used by Shah and
our measures.

Our inventory of gene symbol—gene name combinations
showed that many gene symbols do not have a corresponding
gene name in the abstract nor the full text. Even gene symbols

that were known to be ambiguous in the biomedical domain
were often not accompanied by their long-form. However,
one should keep in mind that not all gene symbol—gene
name combinations were found by the algorithm. But even
when taking into account the 82% recall level reported
by Schwartz and Hearst (2003), many ambiguous symbols
remain. Therefore, homonymy in biomedical publications still
remains a very serious problem to be considered in text-mining
efforts and additional methods will have to be developed to
disambiguate homonymous gene symbols in the literature and
other information resources.

CONCLUSIONS
The overall density of information appears to be lower in full
text when compared with abstracts. However, when using an
information extraction tool that is capable of dismissing irrel-
evant data, this should not be a problem. The fact that the
information content of full text was much greater strongly
argues for using full text instead of abstracts when extract-
ing information from literature. Within a single article, there
were sections that contained more information than others, but
a substantial part of the information in any section appeared
to be unique to that section. Extraction from more text leads
to more information. Conclusion: ‘More is better.’

The restriction of using only abstracts in information
retrieval and extraction, frequently triggered by performance
issues, introduces the danger of serious information-loss. Pro-
cessing the corresponding full text of millions of MEDLINE
records, and other text repositories is not a trivial task. How-
ever, it would be desirable or even a future requirement for
optimal literature-based knowledge extraction and discovery
tools.

The ambiguity in MEDLINE abstracts relating to gene and
protein symbols cannot be resolved automatically by search-
ing for corresponding gene names in the abstract or full text.
In fact, since more potential gene names appeared in the full
text, the ambiguity problem here was even more aggravated.
For further disambiguation, other knowledge sources, such as
the context in which ambiguous symbols appear, will have to
be employed.

ACKNOWLEDGEMENT
This research was supported in part by the European Commis-
sion under the ORIEL project, contract no. IST-2001-32688.

REFERENCES
Friedman,C., Kra,P., Yu,H., Krauthammer,M. and Rzhetsky,A.

(2001) GENIES: a natural-language processing system for the
extraction of molecular pathways from journal articles. Bioinform-
atics, 17(suppl. 1), 74–82.

Schwartz,A.S. and Hearst,M.A. (2003) A simple algorithm for identi-
fying abbreviation definitions in biomedical text. Proceedings
of the Pacific Symposium on Biocomputing (PSB 2003), Kauai,
pp. 451–263. http://helix-web.stanford.edu/psb03/

2603

 at N
ational Institute of T

echnology R
ourkela on June 9, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://helix-web.stanford.edu/psb03/
http://bioinformatics.oxfordjournals.org/


M.J.Schuemie et al.

Shah,P.K., Perez-Iratxeta,C., Bork,P. and Andrade,M.A. (2003)
Information extraction from full text scientific articles: where are
the keywords? BMC Bioinformatics, 4, 20.

Tanabe,L.K. and Wilbur,W.J. (2002) Tagging gene and protein names
in full text articles. Bioinformatics, 18, 1124–1132.

van Mulligen,E.M., Diwersy,M., Schmidt,M., Buurman,H.
and Mons,B. (2000) Facilitating networks of information.

Proceedings of the American Medical Informatics Associ-
ation Symposium. Philadelphia, PA. Harley and Belfus. Inc,
pp. 868–872.

Yu,H., Hatzivassiloglou,V., Friedman,C., Rzhetsky,A. and
Wilbur,W.J. (2002) Automatic extraction of gene and protein
synonyms from MEDLINE and journal articles. Proceedings of
the AMIA Symposium 2002, pp. 919–923.

2604

 at N
ational Institute of T

echnology R
ourkela on June 9, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/

