FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Spierer, L De Lucia, M Bernasconi, F Grivel, J Bourquin, NMP Clarke, S Murray, MM AF Spierer, Lucas De Lucia, Marzia Bernasconi, Fosco Grivel, Jeremy Bourquin, Nathalie M-P Clarke, Stephanie Murray, Micah M. TI Learning-induced plasticity in human audition: Objects, time, and space SO HEARING RESEARCH LA English DT Article ID HUMAN AUDITORY-CORTEX; TEMPORAL-ORDER JUDGMENT; TRANSCRANIAL MAGNETIC STIMULATION; PRIMATE PREFRONTAL CORTEX; MISMATCH NEGATIVITY MMN; LONG-TERM-MEMORY; SOUND-LOCALIZATION; ENVIRONMENTAL SOUNDS; HEMISPHERIC LESIONS; SPATIAL LOCATION AB The human auditory system is comprised of specialized but interacting anatomic and functional pathways encoding object, spatial, and temporal information. We review how learning-induced plasticity manifests along these pathways and to what extent there are common mechanisms subserving such plasticity. A first series of experiments establishes a temporal hierarchy along which sounds of objects are discriminated along basic to fine-grained categorical boundaries and learned representations. A widespread network of temporal and (pre)frontal brain regions contributes to object discrimination via recursive processing. Learning-induced plasticity typically manifested as repetition suppression within a common set of brain regions. A second series considered how the temporal sequence of sound sources is represented. We show that lateralized responsiveness during the initial encoding phase of pairs of auditory spatial stimuli is critical for their accurate ordered perception. Finally, we consider how spatial representations are formed and modified through training-induced learning. A population-based model of spatial processing is supported wherein temporal and parietal structures interact in the encoding of relative and absolute spatial information over the initial similar to 300 ms post-stimulus onset. Collectively, these data provide insights into the functional organization of human audition and open directions for new developments in targeted diagnostic and neurorehabilitation strategies. (C) 2010 Elsevier B.V. All rights reserved. C1 [Spierer, Lucas; Bernasconi, Fosco; Bourquin, Nathalie M-P; Clarke, Stephanie; Murray, Micah M.] CHU Vaudois, Neuropsychol & Neurorehabil Serv, Dept Clin Neurosci, CH-1011 Lausanne, Switzerland. [Spierer, Lucas; De Lucia, Marzia; Bernasconi, Fosco; Grivel, Jeremy; Bourquin, Nathalie M-P; Clarke, Stephanie; Murray, Micah M.] Univ Lausanne, Lausanne, Switzerland. [De Lucia, Marzia; Murray, Micah M.] CHU Vaudois, Ctr Biomed Imaging, CH-1011 Lausanne, Switzerland. [De Lucia, Marzia; Murray, Micah M.] CHU Vaudois, Dept Radiol, CH-1011 Lausanne, Switzerland. [Grivel, Jeremy] CHU Vaudois, Community Psychiat Serv, CH-1011 Lausanne, Switzerland. [Murray, Micah M.] Vanderbilt Univ, Dept Hearing & Speech Sci, Nashville, TN USA. RP Murray, MM (reprint author), CHU Vaudois, Neuropsychol & Neurorehabil Serv, Dept Clin Neurosci, BH08-078,Rue Bugnon 46, CH-1011 Lausanne, Switzerland. EM micah.murray@chuv.ch RI Spierer, Lucas/E-1771-2011; Centre d'imagerie Biomedicale, CIBM/B-5740-2012 OI Spierer, Lucas/0000-0003-3558-4408; FU Swiss National Science Foundation [K-33K1_122518/1, 3100A0-103895, 3100AO-118419]; Pierre Mercier Foundation for Science; Faculty of Biology and Medicine of the Centre Hospitalier Universitaire Vaudois and University of Lausanne; EEG Brain Mapping Core of the Center for Biomedical Imaging (CIBM) of Geneva and Lausanne; Center for Biomedical Imaging; University of Lausanne; Swiss Federal Institute of Technology, Lausanne; University of Geneva; University Hospital Center, Lausanne; University Hospital of Geneva; Jeantet Foundations FX This work has been supported by grants from the Swiss National Science Foundation (K-33K1_122518/1 to MDL; 3100A0-103895 to SC; 3100AO-118419 to MMM), a grant from the Pierre Mercier Foundation for Science (to IS and JG), and en inter-disciplinary grant from the Faculty of Biology and Medicine of the Centre Hospitalier Universitaire Vaudois and University of Lausanne (to IS and JG). Analyses of EEG data were performed using the Cartool software (http://brainmapping.unige.ch/cartool.htm) which is developed by Denis Brunet from the Functional Brain Mapping Laboratory, Geneva, Switzerland, and is supported by the EEG Brain Mapping Core of the Center for Biomedical Imaging (CIBM) of Geneva and Lausanne. MRI and fMRI data acquisition were supported by the Center for Biomedical Imaging (http://www.cibm.ch), The University of Lausanne; The Swiss Federal Institute of Technology, Lausanne; The University of Geneva; The University Hospital Center, Lausanne; The University Hospital of Geneva; and the Leenaards and the Jeantet Foundations. CR Alain C, 2001, P NATL ACAD SCI USA, V98, P12301, DOI 10.1073/pnas.211209098 Alain C, 2009, CEREB CORTEX, V19, P305, DOI 10.1093/cercor/bhn082 Altmann CF, 2007, CEREB CORTEX, V17, P2601, DOI 10.1093/cercor/bhl167 Anderson B, 1999, NEUROPSY NEUROPSY BE, V12, P247 Arnott SR, 2004, NEUROIMAGE, V22, P401, DOI 10.1016/j.neuroimage.2004.01.014 ASSAL G, 1981, REV NEUROL, V137, P255 Badgaiyan RD, 2001, NEUROIMAGE, V13, P272, DOI 10.1006/nimg.2000.0693 Belin P, 2006, PHILOS T R SOC B, V361, P2091, DOI 10.1098/rstb.2006.1933 Bellmann A, 2001, BRAIN, V124, P676, DOI 10.1093/brain/124.4.676 Bentin S, 2007, NAT NEUROSCI, V10, P801, DOI 10.1038/nn0707-801 Bergerbest D, 2004, J COGNITIVE NEUROSCI, V16, P966, DOI 10.1162/0898929041502760 BERNASCONI F, 2010, NEUROPSYCHO IN PRESS Bernasconi F, 2010, NEUROIMAGE, V50, P1271, DOI 10.1016/j.neuroimage.2010.01.016 Besle J, 2008, J NEUROSCI, V28, P14301, DOI 10.1523/JNEUROSCI.2875-08.2008 BISIACH E, 1984, BRAIN, V107, P37, DOI 10.1093/brain/107.1.37 Bizley JK, 2009, J NEUROSCI, V29, P2064, DOI 10.1523/JNEUROSCI.4755-08.2009 BOURQUIN N, DISTINCT NEURA UNPUB Buckner RL, 2000, BRAIN, V123, P620, DOI 10.1093/brain/123.3.620 Buonomano DV, 1998, J NEUROPHYSIOL, V80, P1765 Charest I, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-127 Chiu CYP, 2000, MEM COGNITION, V28, P1126 Clarke S, 1998, NEUROREPORT, V9, P3433, DOI 10.1097/00001756-199810260-00018 Clarke S, 2000, NEUROPSYCHOLOGIA, V38, P797, DOI 10.1016/S0028-3932(99)00141-4 Clarke S, 2002, EXP BRAIN RES, V147, P8, DOI 10.1007/s00221-002-1203-9 Cohen YE, 2007, J NEUROPHYSIOL, V97, P1470, DOI 10.1152/jn.00769.2006 Davis B, 2009, J NEUROSCI, V29, P3182, DOI 10.1523/JNEUROSCI.5793-08.2009 DELUCIA M, TEMPORAL HIERA UNPUB De Lucia M, 2009, NEUROIMAGE, V48, P475, DOI 10.1016/j.neuroimage.2009.06.041 DELUCIA M, 2009, CEREB CORTEX Deouell LY, 2007, NEURON, V55, P985, DOI 10.1016/i.neuron.2007.08.019 Deouell LY, 2006, EUR J NEUROSCI, V24, P1488, DOI 10.1111/j.1460-9568.2006.05025.x De Santis L, 2007, CEREB CORTEX, V17, P9, DOI 10.1093/cercor/bhj119 Desimone R, 1996, P NATL ACAD SCI USA, V93, P13494, DOI 10.1073/pnas.93.24.13494 Ducommun CY, 2002, NEUROIMAGE, V16, P76, DOI 10.1006/nimg.2002.1062 Eagleman DM, 2008, CURR OPIN NEUROBIOL, V18, P131, DOI 10.1016/j.conb.2008.06.002 EDELINE JM, 1993, BEHAV NEUROSCI, V107, P82, DOI 10.1037//0735-7044.107.1.82 EFRON R, 1983, BRAIN LANG, V19, P264, DOI 10.1016/0093-934X(83)90070-6 Engel LR, 2009, NEUROIMAGE, V47, P1778, DOI 10.1016/j.neuroimage.2009.05.041 Fecteau S, 2005, J NEUROPHYSIOL, V94, P2251, DOI 10.1152/jn.00329.2005 Foxton JM, 2009, NEUROIMAGE, V45, P1305, DOI 10.1016/j.neuroimage.2008.10.068 Friston KJ, 2005, PHILOS T R SOC B, V360, P815, DOI 10.1098/rstb.2005.1622 Garrido MI, 2009, NEUROIMAGE, V48, P269, DOI 10.1016/j.neuroimage.2009.06.034 Ghazanfar AA, 2009, HEARING RES, V258, P113, DOI 10.1016/j.heares.2009.04.003 Ghose GM, 2004, CURR OPIN NEUROBIOL, V14, P513, DOI 10.1016/j.conb.2004.07.003 Giard MH, 1999, J COGNITIVE NEUROSCI, V11, P473, DOI 10.1162/089892999563544 Giard MH, 2000, FRONT BIOSCI, V5, pD84, DOI 10.2741/Giard Griffiths TD, 1997, BRAIN, V120, P785, DOI 10.1093/brain/120.5.785 Griffiths TD, 1996, NATURE, V383, P425, DOI 10.1038/383425a0 Grill-Spector K, 2006, TRENDS COGN SCI, V10, P14, DOI 10.1016/j.tics.2005.11.006 Gunji A, 2003, NEUROSCI LETT, V348, P13, DOI 10.1016/S0304-3940(03)00640-2 Hackett TA, 1999, EUR J NEUROSCI, V11, P856, DOI 10.1046/j.1460-9568.1999.00492.x Hauk O, 2006, EUR J NEUROSCI, V23, P811, DOI 10.1111/j.1460-9568.2006.04586.x HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P915 Herrmann CS, 2002, NEUROSCI LETT, V334, P37, DOI 10.1016/S0304-3940(02)01063-7 Hickok G, 2007, NAT REV NEUROSCI, V8, P393, DOI 10.1038/nrn2113 HIRSH IJ, 1959, J ACOUST SOC AM, V31, P759, DOI 10.1121/1.1907782 Inui K, 2006, CEREB CORTEX, V16, P18, DOI 10.1093/cercor/bhi080 Javitt DC, 2009, SCHIZOPHRENIA BULL, V35, P1059, DOI 10.1093/schbul/sbp110 Javitt DC, 1996, P NATL ACAD SCI USA, V93, P11962, DOI 10.1073/pnas.93.21.11962 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kaiser J, 2001, NEUROSCI LETT, V314, P17, DOI 10.1016/S0304-3940(01)02248-0 Hauptmann B, 2002, COGNITIVE BRAIN RES, V13, P313, DOI 10.1016/S0926-6410(01)00124-0 Keysers C, 2003, EXP BRAIN RES, V153, P628, DOI 10.1007/s00221-003-1603-5 King AJ, 2007, HEARING RES, V229, P106, DOI 10.1016/j.heares.2007.01.001 Kisley MA, 2004, PSYCHOPHYSIOLOGY, V41, P604, DOI 10.1111/j.1469-8986.2004.00191.x Kohler E, 2002, SCIENCE, V297, P846, DOI 10.1126/science.1070311 Kraus N, 2005, TRENDS NEUROSCI, V28, P176, DOI 10.1016/j.tins.2005.02.003 Krumbholz K, 2005, CEREB CORTEX, V15, P317, DOI 10.1093/cercor/bhh133 Krumbholz K, 2007, J NEUROPHYSIOL, V97, P1649, DOI 10.1152/jn.00560.2006 Lavoie S, 2008, NEUROPSYCHOPHARMACOL, V33, P2187, DOI 10.1038/sj.npp.1301624 Legenstein R, 2005, NEURAL COMPUT, V17, P2337, DOI 10.1162/0899766054796888 Levy DA, 2001, NEUROREPORT, V12, P2653, DOI 10.1097/00001756-200108280-00013 Levy DA, 2003, PSYCHOPHYSIOLOGY, V40, P291, DOI 10.1111/1469-8986.00031 Lewald J, 2004, NEUROPSYCHOLOGIA, V42, P1598, DOI 10.1016/j.neuropsychologia.2004.04.012 Lewald J, 2004, J COGNITIVE NEUROSCI, V16, P828, DOI 10.1162/089892904970834 Lewald J, 2002, J NEUROSCI, V22 Lewis JW, 2005, J NEUROSCI, V25, P5148, DOI 10.1523/JNEUROSCI.0419-05.2005 Li RW, 2004, NAT NEUROSCI, V7, P178, DOI 10.1038/nn1183 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 Lomber SG, 2008, NAT NEUROSCI, V11, P609, DOI 10.1038/nn.2108 Luck SJ, 2000, TRENDS COGN SCI, V4, P432, DOI 10.1016/S1364-6613(00)01545-X Maeder PP, 2001, NEUROIMAGE, V14, P802, DOI 10.1006/nimg.2001.0888 Mauk MD, 2004, ANNU REV NEUROSCI, V27, P307, DOI 10.1146/annurev.neuro.27.070203.144247 May PJC, 2010, PSYCHOPHYSIOLOGY, V47, P66, DOI 10.1111/j.1469-8986.2009.00856.x Mazzoni P, 1996, J NEUROPHYSIOL, V75, P1233 McDonald JJ, 2005, NAT NEUROSCI, V8, P1197, DOI 10.1038/nn1512 Michel CM, 2004, CLIN NEUROPHYSIOL, V115, P2195, DOI 10.1016/j.clinph.2004.06.001 Middlebrooks JC, 2002, NAT NEUROSCI, V5, P824, DOI 10.1038/nn0902-824 MISHKIN M, 1982, BEHAV BRAIN RES, V6, P57, DOI 10.1016/0166-4328(82)90081-X Molholm S, 2002, COGNITIVE BRAIN RES, V14, P115, DOI 10.1016/S0926-6410(02)00066-6 Morosan P, 2001, NEUROIMAGE, V13, P684, DOI 10.1006/nimg.2000.0715 Mossbridge JA, 2008, LEARN MEMORY, V15, P13, DOI 10.1101/lm.573608 Mossbridge JA, 2006, J NEUROSCI, V26, P12708, DOI 10.1523/JNEUROSCI.2254-06.2006 Murray MM, 2006, J NEUROSCI, V26, P1293, DOI 10.1523/JNEUROSCI.4511-05.2006 Murray MM, 2008, BRAIN TOPOGR, V20, P249, DOI 10.1007/s10548-008-0054-5 Murray MM, 2009, HEARING RES, V258, P121, DOI 10.1016/j.heares.2009.04.022 Murray MM, 2008, NEUROIMAGE, V39, P847, DOI 10.1016/j.neuroimage.2007.09.002 Naatanen R, 2005, PSYCHOPHYSIOLOGY, V42, P25, DOI 10.1111/j.1469-8986.2005.00256.x Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026 Ohl FW, 2001, NATURE, V412, P733, DOI 10.1038/35089076 Ohl FW, 2005, CURR OPIN NEUROBIOL, V15, P470, DOI 10.1016/j.conb.2005.07.002 PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0 PELIZZONE M, 1987, NEUROSCI LETT, V82, P303, DOI 10.1016/0304-3940(87)90273-4 Petkov CI, 2008, NAT NEUROSCI, V11, P367, DOI 10.1038/nn2043 PINEK B, 1989, CORTEX, V25, P175 Poppel E., 1988, MINDWORKS TIME CONSC, V1st Poremba A, 2004, NATURE, V427, P448, DOI 10.1038/nature02268 Rainer G, 2004, PLOS BIOL, V2, P275, DOI 10.1371/journal.pbio.0020044 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 Rauschecker JP, 1998, CURR OPIN NEUROBIOL, V8, P516, DOI 10.1016/S0959-4388(98)80040-8 RECANZONE GH, 1993, J NEUROSCI, V13, P87 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2723 Remedios R, 2009, J NEUROSCI, V29, P1034, DOI 10.1523/JNEUROSCI.4089-08.2009 Rivier F, 1997, NEUROIMAGE, V6, P288, DOI 10.1006/nimg.1997.0304 Rizzolatti G, 2002, CURR OPIN NEUROBIOL, V12, P149, DOI 10.1016/S0959-4388(02)00308-2 Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056 Romanski LM, 2002, NAT NEUROSCI, V5, P15, DOI 10.1038/nn781 Romei V, 2007, J NEUROSCI, V27, P11465, DOI 10.1523/JNEUROSCI.2827-07.2007 Romei V, 2009, CURR BIOL, V19, P1799, DOI 10.1016/j.cub.2009.09.027 RUFF RM, 1981, NEUROPSYCHOLOGIA, V19, P435, DOI 10.1016/0028-3932(81)90073-7 Salminen NH, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007600 SANCHEZLONGO LP, 1958, NEUROLOGY, V8, P119 Schacter DL, 2004, NAT REV NEUROSCI, V5, P853, DOI 10.1038/nrn1534 Schroeder CE, 2008, TRENDS COGN SCI, V12, P106, DOI 10.1016/j.tics.2008.01.002 Silveri MC, 1997, NEUROPSYCHOLOGIA, V35, P359 Song S, 2000, NAT NEUROSCI, V3, P919 Sonnadara RR, 2006, BRAIN RES, V1076, P187, DOI 10.1016/j.brainres.2005.12.093 Spierer L, 2009, J NEUROSCI, V29, P8630, DOI 10.1523/JNEUROSCI.2111-09.2009 Spierer L, 2008, NEUROIMAGE, V41, P493, DOI 10.1016/j.neuroimage.2008.02.038 Spierer L, 2009, BRAIN, V132, P1953, DOI 10.1093/brain/awp127 Spierer L, 2007, J NEUROSCI, V27, P5474, DOI 10.1523/JNEUROSCI.0764-07.2007 Spierer L, 2009, NEUROPSYCHOLOGIA, V47, P465, DOI 10.1016/j.neuropsychologia.2008.09.022 Staeren N, 2009, CURR BIOL, V19, P498, DOI 10.1016/j.cub.2009.01.066 STECKER CC, 2005, PLOS BIOL, V3, pE78 STELMACH LB, 1991, J EXP PSYCHOL HUMAN, V17, P539, DOI 10.1037/0096-1523.17.2.539 Stricanne B, 1996, J NEUROPHYSIOL, V76, P2071 STUART GP, 1995, Q J EXP PSYCHOL-A, V48, P741 Tanaka H, 1999, J NEUROL NEUROSUR PS, V67, P481, DOI 10.1136/jnnp.67.4.481 Tardif E, 2006, BRAIN RES, V1092, P161, DOI 10.1016/j.brainres.2006.03.095 Tata MS, 2005, EXP BRAIN RES, V167, P481, DOI 10.1007/s00221-005-0183-y Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911 Titchener E. B., 1908, LECT ELEMENTARY PSYC TULVING E, 1990, SCIENCE, V247, P301, DOI 10.1126/science.2296719 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 ULRICH R, 1987, PERCEPT PSYCHOPHYS, V42, P224, DOI 10.3758/BF03203074 VALLAR G, 1995, BRAIN, V118, P467, DOI 10.1093/brain/118.2.467 Vibell J, 2007, J COGNITIVE NEUROSCI, V19, P109, DOI 10.1162/jocn.2007.19.1.109 Wallace MN, 2002, EXP BRAIN RES, V143, P499, DOI 10.1007/s00221-002-1014-z Warren JD, 2003, J NEUROSCI, V23, P5799 WARRINGTON EK, 1984, BRAIN, V107, P829, DOI 10.1093/brain/107.3.829 Weeks RA, 1999, NEUROSCI LETT, V262, P155, DOI 10.1016/S0304-3940(99)00062-2 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 Werner-Reiss U, 2008, J NEUROSCI, V28, P3747, DOI 10.1523/JNEUROSCI.5044-07.2008 Westerhausen R, 2009, CEREB CORTEX, V19, P1322, DOI 10.1093/cercor/bhn173 Wittmann M, 2004, NEUROREPORT, V15, P2401, DOI 10.1097/00001756-200410250-00020 Woods TM, 2006, J NEUROPHYSIOL, V96, P3323, DOI 10.1152/jn.00392.2006 Zaehle T, 2009, BRAIN TOPOGR, V22, P97, DOI 10.1007/s10548-009-0085-6 Zatorre RJ, 2001, J NEUROSCI, V21, P6321 Zatorre RJ, 1999, NEUROIMAGE, V10, P544, DOI 10.1006/nimg.1999.0491 Zatorre RJ, 2002, NAT NEUROSCI, V5, P905, DOI 10.1038/nn904 Zimmer U, 2003, J COGNITIVE NEUROSCI, V15, P694, DOI 10.1162/089892903322307410 NR 162 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 88 EP 102 DI 10.1016/j.heares.2010.03.086 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000009 PM 20430070 ER PT J AU Steinschneider, M Fishman, YI AF Steinschneider, Mitchell Fishman, Yonatan I. TI Enhanced physiologic discriminability of stop consonants with prolonged formant transitions in awake monkeys based on the tonotopic organization of primary auditory cortex SO HEARING RESEARCH LA English DT Article ID DIFFERENT VOWEL ENVIRONMENTS; SPECTRAL TILT CHANGE; SPEECH-PERCEPTION; LANGUAGE IMPAIRMENT; DEVELOPMENTAL DYSLEXIA; POPULATION RESPONSES; ONSET SPECTRA; ACOUSTIC INVARIANCE; LEARNING-PROBLEMS; CHILDREN AB Many children with specific language impairment (SLI) have difficulty in perceiving stop consonant-vowel syllables (e.g., /ba/, /ga/, /da/) with rapid formant transitions, but perform normally when formant transitions are extended in time. This influential observation has helped lead to the development of the auditory temporal processing hypothesis, which posits that SLI is causally related to the processing of rapidly changing sounds in aberrantly expanded windows of temporal integration. We tested a potential physiological basis for this observation by examining whether syllables varying in their consonant place of articulation (POA) with prolonged formant transitions would evoke better differentiated patterns of activation along the tonotopic axis of A1 in awake monkeys when compared to syllables with short formant transitions, especially for more prolonged windows of temporal integration. Amplitudes of multi-unit activity evoked by /ba/, /ga/, and /da/ were ranked according to predictions based on responses to tones centered at the spectral maxima of frication at syllable onset. Population responses representing consonant POA were predicted by the tone responses. Predictions were stronger for syllables with prolonged formant transitions, especially for longer windows of temporal integration. Relevance of findings to normal perception and that occurring in SLI are discussed. (C) 2010 Elsevier RV. All rights reserved. C1 [Steinschneider, Mitchell] Albert Einstein Coll Med, Dept Neurosci, Rose F Kennedy Ctr, Bronx, NY 10461 USA. [Steinschneider, Mitchell; Fishman, Yonatan I.] Albert Einstein Coll Med, Dept Neurol, Rose F Kennedy Ctr, Bronx, NY 10461 USA. RP Steinschneider, M (reprint author), Albert Einstein Coll Med, Dept Neurosci, Rose F Kennedy Ctr, Room 322,1300 Morris Pk Ave, Bronx, NY 10461 USA. EM mitchell.steinschneider@einstein.yu.edu; yonatan.fishman@einstein.yu.edu FU National Institute of Deafness and Other Communications Disorders [DC-00657] FX The authors thank Drs. Charles E. Schroeder and David H. Reser, and Ms. Jeannie Hutagalung for their invaluable technical assistance. Supported by National Institute of Deafness and Other Communications Disorders Grant DC-00657. CR Adlard A, 1998, Q J EXP PSYCHOL-A, V51, P153 Alexander JM, 2009, J SPEECH LANG HEAR R, V52, P653, DOI 10.1044/1092-4388(2008/08-0038) Alexander JM, 2008, J ACOUST SOC AM, V123, P386, DOI 10.1121/1.2817617 BANAI K, 2004, AUDIOL NEURO-OTOL, V9, P329 Benasich AA, 2002, BEHAV BRAIN RES, V136, P31, DOI 10.1016/S0166-4328(02)00098-0 BERTONCINI J, 1987, J ACOUST SOC AM, V82, P31, DOI 10.1121/1.395570 Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512 Bishop DVM, 1999, J SPEECH LANG HEAR R, V42, P1295 BLUMSTEIN SE, 1979, J ACOUST SOC AM, V66, P1001, DOI 10.1121/1.383319 BLUMSTEIN SE, 1980, J ACOUST SOC AM, V67, P648, DOI 10.1121/1.383890 Boemio A, 2005, NAT NEUROSCI, V8, P389, DOI 10.1038/nn1409 Burlingame E, 2005, J SPEECH LANG HEAR R, V48, P805, DOI 10.1044/1092-4388(2005/056) CHANG S, 1981, J ACOUST SOC AM, V70, P39, DOI 10.1121/1.386579 Corriveau K, 2007, J SPEECH LANG HEAR R, V50, P647, DOI 10.1044/1092-4388(2007/046) CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87 Cruikshank SJ, 2002, J NEUROPHYSIOL, V87, P361 ELLIOTT LL, 1989, J SPEECH HEAR RES, V32, P112 Engineer CT, 2008, NAT NEUROSCI, V11, P603, DOI 10.1038/nn.2109 Fishman YI, 2009, HEARING RES, V254, P64, DOI 10.1016/j.heares.2009.04.010 Formisano E, 2003, NEURON, V40, P859, DOI 10.1016/S0896-6273(03)00669-X FREEMAN JA, 1975, J NEUROPHYSIOL, V38, P369 Fritz JB, 2007, J NEUROPHYSIOL, V98, P2337, DOI 10.1152/jn.00552.2007 Giraud K, 2005, CEREB CORTEX, V15, P1524, DOI 10.1093/cercor/bhi031 Goswami U, 2003, TRENDS COGN SCI, V7, P534, DOI 10.1016/j.tics.2003.10.003 Habib M, 2000, BRAIN, V123, P2373, DOI 10.1093/brain/123.12.2373 Hari R, 1996, NEUROSCI LETT, V205, P138, DOI 10.1016/0304-3940(96)12393-4 Hari R, 2001, TRENDS COGN SCI, V5, P525, DOI 10.1016/S1364-6613(00)01801-5 Heath SM, 1999, J CHILD PSYCHOL PSYC, V40, P637, DOI 10.1017/S0021963099003947 Hedrick MS, 2007, J SPEECH LANG HEAR R, V50, P254, DOI 10.1044/1092-4388(2007/019) Helenius P, 1999, BRAIN, V122, P907, DOI 10.1093/brain/122.5.907 Howard MA, 1996, BRAIN RES, V724, P260, DOI 10.1016/0006-8993(96)00315-0 Karmiloff-Smith A, 1998, TRENDS COGN SCI, V2, P389, DOI 10.1016/S1364-6613(98)01230-3 KEWLEYPORT D, 1983, J ACOUST SOC AM, V73, P322, DOI 10.1121/1.388813 King WM, 2003, EAR HEARING, V24, P448, DOI 10.1097/01.AUD.0000090437.10978.1A Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 Kuhl PK, 2004, NAT REV NEUROSCI, V5, P831, DOI 10.1038/nrn1533 KUHL PK, 1986, EXP BIOL, V45, P233 KUHL PK, 1983, J ACOUST SOC AM, V73, P1003, DOI 10.1121/1.389148 Kujala T, 2001, P NATL ACAD SCI USA, V98, P10509, DOI 10.1073/pnas.181589198 Laasonen M, 2000, BRAIN LANG, V75, P66, DOI 10.1006/brln.2000.2326 LAHIRI A, 1984, J ACOUST SOC AM, V76, P391, DOI 10.1121/1.391580 Leff AP, 2008, J NEUROSCI, V28, P13209, DOI 10.1523/JNEUROSCI.2903-08.2008 LIBERMAN AM, 1985, COGNITION, V21, P1, DOI 10.1016/0010-0277(85)90021-6 LIBERMAN AM, 1967, PSYCHOL REV, V74, P431, DOI 10.1037/h0020279 Lotto AJ, 1997, J ACOUST SOC AM, V102, P1134, DOI 10.1121/1.419865 Lotto AJ, 1998, PERCEPT PSYCHOPHYS, V60, P602, DOI 10.3758/BF03206049 Mayo C, 2004, J ACOUST SOC AM, V115, P3184, DOI 10.1121/1.1738838 Merzenich MM, 1996, SCIENCE, V271, P77, DOI 10.1126/science.271.5245.77 MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 Mesgarani N, 2008, J ACOUST SOC AM, V123, P899, DOI 10.1121/1.2816572 Moisescu-Yiflach T, 2005, CLIN NEUROPHYSIOL, V116, P2632, DOI 10.1016/j.clinph.2005.08.006 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 MULLERPREUSS P, 1984, HEARING RES, V16, P133, DOI 10.1016/0378-5955(84)90003-0 Nagarajan S, 1999, P NATL ACAD SCI USA, V96, P6483, DOI 10.1073/pnas.96.11.6483 Narayan R, 2006, J NEUROPHYSIOL, V96, P252, DOI 10.1152/jn.01257.2005 NELKEN I, 1994, HEARING RES, V72, P206, DOI 10.1016/0378-5955(94)90220-8 Obleser J, 2007, CEREB CORTEX, V17, P2251, DOI 10.1093/cercor/bhl133 OHDE RN, 1983, J ACOUST SOC AM, V74, P706, DOI 10.1121/1.389856 Ohde RN, 1997, J ACOUST SOC AM, V102, P3711, DOI 10.1121/1.420135 OHDE RN, 1995, J ACOUST SOC AM, V97, P3800, DOI 10.1121/1.412395 Ohde RN, 2001, J ACOUST SOC AM, V110, P2156, DOI 10.1121/1.1399047 Petkov CI, 2005, COGNITIVE BRAIN RES, V24, P343, DOI 10.1016/j.cogbrainres.2005.02.021 Poeppel D, 2008, PHILOS T R SOC B, V363, P1071, DOI 10.1098/rstb.2007.2160 Ramus F, 2000, SCIENCE, V288, P349, DOI 10.1126/science.288.5464.349 Ramus F, 2003, BRAIN, V126, P841, DOI 10.1093/brain/awg076 Schnupp JWH, 2006, J NEUROSCI, V26, P4785, DOI 10.1523/JNEUROSCI.4330-05.2006 Scott BH, 2007, J NEUROSCI, V27, P6489, DOI 10.1523/JNEUROSCI.0016-07.2007 Sinnott JM, 2004, PERCEPT PSYCHOPHYS, V66, P1341, DOI 10.3758/BF03195002 Smits R, 1996, J ACOUST SOC AM, V100, P3852, DOI 10.1121/1.417241 Stark E, 2007, J NEUROSCI, V27, P8387, DOI 10.1523/JNEUROSCI.1321-07.2007 Stark RE, 1996, J SPEECH HEAR RES, V39, P676 STEINSCHNEIDER M, 1992, ELECTROEN CLIN NEURO, V84, P196, DOI 10.1016/0168-5597(92)90026-8 Steinschneider M, 2008, CEREB CORTEX, V18, P610, DOI 10.1093/cercor/bhm094 STEINSCHNEIDER M, 1995, BRAIN RES, V674, P147, DOI 10.1016/0006-8993(95)00008-E Steinschneider M, 2003, J ACOUST SOC AM, V114, P307, DOI 10.1121/1.1582449 Stevens C, 2006, BRAIN RES, V1111, P143, DOI 10.1016/j.brainres.2006.06.114 Stevens C, 2008, BRAIN RES, V1205, P55, DOI 10.1016/j.brainres.2007.10.108 STEVENS KN, 1978, J ACOUST SOC AM, V64, P1358, DOI 10.1121/1.382102 STEVENS KN, 1980, J ACOUST SOC AM, V68, P836, DOI 10.1121/1.384823 StuddertKennedy M, 1995, PSYCHON B REV, V2, P508, DOI 10.3758/BF03210986 Super H, 2005, PROG BRAIN RES, V147, P263, DOI 10.1016/S0079-6123(04)47020-4 TALLAL P, 1993, ANN NY ACAD SCI, V682, P27, DOI 10.1111/j.1749-6632.1993.tb22957.x Tallal P, 1996, SCIENCE, V271, P81, DOI 10.1126/science.271.5245.81 Tallal P, 1998, EXP BRAIN RES, V123, P210, DOI 10.1007/s002210050563 Tallal P, 2004, NAT REV NEUROSCI, V5, P721, DOI 10.1038/nrn1499 VANWIERINGEN A, 1995, J ACOUST SOC AM, V98, P1304, DOI 10.1121/1.413467 WALLEY AC, 1983, J ACOUST SOC AM, V73, P1011, DOI 10.1121/1.389149 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0 NR 89 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 103 EP 114 DI 10.1016/j.heares.2010.04.008 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000010 PM 20435116 ER PT J AU Recanzone, GH Engle, JR Juarez-Salinas, DL AF Recanzone, Gregg H. Engle, James R. Juarez-Salinas, Dina L. TI Spatial and temporal processing of single auditory cortical neurons and populations of neurons in the macaque monkey SO HEARING RESEARCH LA English DT Article ID SOUND-LOCALIZATION BEHAVIOR; TIME-COMPRESSED SPEECH; RHESUS-MONKEY; GAP DETECTION; INFERIOR COLLICULUS; CBA MOUSE; AZIMUTHAL SENSITIVITY; NEURAL POPULATIONS; ELDERLY LISTENERS; WORD RECOGNITION AB The auditory cortex is known to be a necessary neural structure for the perception of acoustic signals, particularly the spatial location and the temporal features of complex auditory stimuli. Previous studies have indicated that there is no topographic map of acoustic space in the auditory cortex and it has been proposed that spatial locations are represented by some sort of population code. Additionally, in spite of temporal processing deficits being one of the hallmark consequences of normal aging, the temporal coding of acoustic stimuli remains poorly understood. This report will address these two issues by discussing the results from several studies describing responses of single auditory cortical neurons in the non-human primate. First, we will review studies that have addressed potential spike-rate population codes of acoustic space in the caudal belt of auditory cortex. Second, we will present new data on the neuronal responses to gap stimuli in aged monkeys and compare them to published reports of gap detection thresholds. Together these studies indicate that the alert macaque monkey is an excellent model system to study both spatial and temporal processing in the auditory cortex at the single neuron level. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Recanzone, Gregg H.; Engle, James R.; Juarez-Salinas, Dina L.] Univ Calif Davis, Ctr Neurosci, Dept Neurobiol Physiol & Behav, Davis, CA 95616 USA. RP Recanzone, GH (reprint author), Univ Calif Davis, Ctr Neurosci, Dept Neurobiol Physiol & Behav, 1 Shields Ave, Davis, CA 95616 USA. EM ghrecanzone@ucdavis.edu FU NIH [AG024372, DC-02371, DC-00442] FX The authors would like to thank the California National Primate Research Center, R. Oates-O'Brien, and G. Martin for excellent animal care. Funding provided by NIH grants AG024372, DC-02371 and DC-00442. CR ALTSHULER M W, 1975, Journal of Auditory Research, V15, P262 BEITEL RE, 1993, J NEUROPHYSIOL, V70, P351 BENNETT CL, 1983, BEHAV NEUROSCI, V97, P602, DOI 10.1037//0735-7044.97.4.602 Blauert J., 1997, SPATIAL HEARING PSYC Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 COMALLI RE, 1976, J AUD RES, V16, P275 EISENMAN LM, 1974, BRAIN RES, V75, P203, DOI 10.1016/0006-8993(74)90742-2 Fowler CG, 2002, HEARING RES, V169, P24, DOI 10.1016/S0378-5955(02)00335-0 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Furukawa S, 2000, J NEUROSCI, V20, P1216 Gordon-Salant S, 2001, J SPEECH LANG HEAR R, V44, P709, DOI 10.1044/1092-4388(2001/056) GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 Hackett TA, 2001, J COMP NEUROL, V441, P197, DOI 10.1002/cne.1407 HAWKINS JE, 1985, BEHAV PATHOLOGY AGIN, P137 HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P915 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 Jazayeri M, 2006, NAT NEUROSCI, V9, P690, DOI 10.1038/nn1691 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 JENNINGS CR, 2001, J LARYNGOL OTOL, V115 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kazee AM, 1999, HEARING RES, V133, P98, DOI 10.1016/S0378-5955(99)00058-1 Mazelova J, 2003, EXP GERONTOL, V38, P87, DOI 10.1016/S0531-5565(02)00155-9 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 Miller LM, 2009, P NATL ACAD SCI USA, V106, P5931, DOI 10.1073/pnas.0901023106 Mrsic-Flogel TD, 2005, J NEUROPHYSIOL, V93, P3489, DOI 10.1152/jn.00748.2004 Nelson EG, 2006, LARYNGOSCOPE, V116, P1, DOI 10.1097/01.mlg.0000236089.44566.62 Ohlemiller Kevin K, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P439, DOI 10.1097/01.moo.0000134450.99615.22 Petkov CI, 2007, NEURON, V54, P153, DOI 10.1016/j.neuron.2007.02.031 Petkov CI, 2003, J NEUROSCI, V23, P9155 RAJAN R, 1990, J NEUROPHYSIOL, V64, P872 RAJAN R, 1990, J NEUROPHYSIOL, V64, P888 RAUSCHECKER IP, 1998, AUDIO NEUROOTOL, V3, P86 RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Rauschecker JP, 2004, J NEUROPHYSIOL, V91, P2578, DOI 10.1152/jn.00834.2003 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 Recanzone GH, 1998, J ACOUST SOC AM, V103, P1085, DOI 10.1121/1.421222 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315 Recanzone GH, 2000, HEARING RES, V150, P104, DOI 10.1016/S0378-5955(00)00194-5 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2723 Recanzone GH, 2004, HEARING RES, V198, P116, DOI 10.1016/j.heares.2004.07.017 Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056 Sabin AT, 2005, HEARING RES, V199, P124, DOI 10.1016/j.heares.2004.08.001 Schneider BA, 1999, J ACOUST SOC AM, V106, P371, DOI 10.1121/1.427062 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 Schwartz IR, 2002, HEARING RES, V171, P1, DOI 10.1016/S0378-5955(01)00396-3 Snell KB, 2002, J ACOUST SOC AM, V112, P720, DOI 10.1121/1.1487841 Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446 Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 Su TIK, 2001, JARO, V2, P246, DOI 10.1007/s101620010073 Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911 Tian B, 2004, J NEUROPHYSIOL, V92, P2993, DOI 10.1152/jn.00472.2003 Versfeld NJ, 2002, J ACOUST SOC AM, V111, P401, DOI 10.1121/1.1426376 Walton JP, 1998, J NEUROSCI, V18, P2764 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 Werner-Reiss U, 2009, J Neurosci, V28, P3747 Wiley TL, 1998, J SPEECH LANG HEAR R, V41, P1061 Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5 Woods TM, 2006, J NEUROPHYSIOL, V96, P3323, DOI 10.1152/jn.00392.2006 NR 61 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 115 EP 122 DI 10.1016/j.heares.2010.03.084 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000011 PM 20430079 ER PT J AU Eggermont, JJ AF Eggermont, Jos J. TI Context dependence of spectro-temporal receptive fields with implications for neural coding SO HEARING RESEARCH LA English DT Article ID PRIMARY AUDITORY-CORTEX; COCHLEAR NUCLEUS NEURONS; STIMULUS-EVENT RELATION; SINGLE-UNIT RESPONSES; REVERSE-CORRELATION; NATURAL STIMULI; SOUND DENSITY; AWAKE FERRET; GUINEA-PIG; TEMPORAL CHARACTERISTICS AB The spectro-temporal receptive field (STRF) is frequently used to characterize the Anew-frequency time filter properties of the auditory system up to the neuron recorded from. STRFs are extremely stimulus dependent, reflecting the strong non-linearities in the auditory system. Changes in the STRF with stimulus type (tonal, noise-like, vocalizations), sound level and spectro-temporal sound density are reviewed here. Effects on STRF shape of task and attention are also briefly reviewed. Models to account for these changes, potential improvements to STRF analysis, and implications for neural coding are discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Eggermont, Jos J.] Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. [Eggermont, Jos J.] Univ Calgary, Dept Physiol & Pharmacol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Psychol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM eggermon@ucalgary.ca FU Alberta Heritage Foundation for Medical Research; Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research; Campbell McLaurin Chair for Hearing Deficiencies FX This work was supported by the Alberta Heritage Foundation for Medical Research, by the Natural Sciences and Engineering Research Council, by a New Emerging Team Grant from the Canadian Institutes of Health Research, and by the Campbell McLaurin Chair for Hearing Deficiencies. Martin Pienkowski commented on a previous version. CR AERTSEN A, 1994, PHYSICA D, V75, P103, DOI 10.1016/0167-2789(94)90278-X AERTSEN AMHJ, 1981, BIOL CYBERN, V39, P195, DOI 10.1007/BF00342772 AERTSEN AMHJ, 1980, BIOL CYBERN, V38, P235, DOI 10.1007/BF00337016 AERTSEN AMHJ, 1980, BIOL CYBERN, V38, P223, DOI 10.1007/BF00337015 Ahrens MB, 2008, J NEUROSCI, V28, P1929, DOI 10.1523/JNEUROSCI.3377-07.2008 Atencio CA, 2008, NEURON, V58, P956, DOI 10.1016/j.neuron.2008.04.026 BACKOFF PM, 1991, HEARING RES, V53, P28, DOI 10.1016/0378-5955(91)90211-Q Bandyopadhyay S, 2007, J NEUROPHYSIOL, V98, P3505, DOI 10.1152/jn.00539.2007 Bar-Yosef O, 2002, J NEUROSCI, V22, P8619 Blake DT, 2002, J NEUROPHYSIOL, V88, P3409, DOI 10.1152/jn.00233.2002 Britvina T, 2008, NEUROSCIENCE, V154, P1576, DOI 10.1016/j.neuroscience.2008.04.035 Carandini M, 1997, J NEUROSCI, V17, P8621 Christianson GB, 2008, J NEUROSCI, V28, P446, DOI 10.1523/JNEUROSCI.1775-07.2007 CLOPTON BM, 1991, HEARING RES, V52, P329, DOI 10.1016/0378-5955(91)90023-3 Cohen L., 1995, TIME FREQUENCY ANAL David SV, 2009, J NEUROSCI, V29, P3374, DOI 10.1523/JNEUROSCI.5249-08.2009 deCharms RC, 1998, SCIENCE, V280, P1439, DOI 10.1126/science.280.5368.1439 Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220 DIAMOND DM, 1989, BEHAV NEUROSCI, V103, P471, DOI 10.1037/0735-7044.103.3.471 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 EGGERMONT JJ, 1990, J ACOUST SOC AM, V87, P246, DOI 10.1121/1.399291 EGGERMONT JJ, 1983, HEARING RES, V10, P191, DOI 10.1016/0378-5955(83)90053-9 EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R EGGERMONT JJ, 1983, HEARING RES, V10, P167, DOI 10.1016/0378-5955(83)90052-7 Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006 Elhilali M, 2007, J NEUROSCI, V27, P10372, DOI 10.1523/JNEUROSCI.1462-07.2007 EPPING WJM, 1985, HEARING RES, V18, P223, DOI 10.1016/0378-5955(85)90040-1 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 Fritz JB, 2007, J NEUROPHYSIOL, V98, P2337, DOI 10.1152/jn.00552.2007 Fritz JB, 2007, HEARING RES, V229, P186, DOI 10.1016/j.heares.2007.01.009 Gourevitch B, 2009, CEREB CORTEX, V19, P1448, DOI 10.1093/cercor/bhn184 Gourevitch B, 2008, EUR J NEUROSCI, V27, P3310, DOI 10.1111/j.1460-9568.2008.06265.x HERMES DJ, 1981, HEARING RES, V5, P147, DOI 10.1016/0378-5955(81)90043-5 JOHANNESMA P, 1981, HEARING RES, V5, P123, DOI 10.1016/0378-5955(81)90042-3 Kaur S, 2004, J NEUROPHYSIOL, V91, P2551, DOI 10.1152/jn.01121.2003 KIM PJ, 1994, J ACOUST SOC AM, V95, P410, DOI 10.1121/1.408335 Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183 Klein DJ, 2006, J COMPUT NEUROSCI, V20, P111, DOI 10.1007/s10827-005-3589-4 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3503 Kral A, 2007, BRAIN RES REV, V56, P259, DOI 10.1016/j.brainresrev.2007.07.021 Lesica NA, 2008, J NEUROSCI, V28, P5412, DOI 10.1523/JNEUROSCI.0073-08.2008 Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002 Machens CK, 2004, J NEUROSCI, V24, P1089, DOI 10.1523/JNEUROSCI.4445-03.2004 Nelken I, 2003, BIOL CYBERN, V89, P397, DOI 10.1007/s00422-003-0445-3 Nelken I, 1997, J NEUROPHYSIOL, V78, P800 Norena AJ, 2008, J NEUROSCI, V28, P8885, DOI 10.1523/JNEUROSCI.2693-08.2008 Oswald AMM, 2006, CURR OPIN NEUROBIOL, V16, P371, DOI 10.1016/j.conb.2006.06.015 Pienkowski M, 2009, NEUROREPORT, V20, P1198, DOI 10.1097/WNR.0b013e32832f812c Pouget A, 2003, ANNU REV NEUROSCI, V26, P381, DOI 10.1146/annurev.neuro.26.041002.131112 Reiss LAJ, 2007, J NEUROPHYSIOL, V98, P2133, DOI 10.1152/jn.01239.2006 Rutkowski RG, 2002, AUDIOL NEURO-OTOL, V7, P214, DOI 10.1159/000063738 Schnupp JWH, 2001, NATURE, V414, P200, DOI 10.1038/35102568 Sen K, 2001, J NEUROPHYSIOL, V86, P1445 Sharpee TO, 2006, NATURE, V439, P936, DOI 10.1038/nature04519 Shechter B, 2006, HEARING RES, V221, P91, DOI 10.1016/j.heares.2006.08.002 Shechter B, 2009, HEARING RES, V256, P118, DOI 10.1016/j.heares.2009.07.005 Shechter B, 2007, NEUROSCIENCE, V148, P806, DOI 10.1016/j.neuroscience.2007.06.027 Tan AYY, 2004, J NEUROPHYSIOL, V92, P630, DOI 10.1152/jn.01020.2003 Theunissen FE, 2000, J NEUROSCI, V20, P2315 Tomita M, 2005, J NEUROPHYSIOL, V93, P378, DOI 10.1152/jn.00643.2004 Valentine PA, 2004, HEARING RES, V196, P119, DOI 10.1016/j.heares.2004.05.011 VANSTOKKUM IHM, 1987, HEARING RES, V29, P223, DOI 10.1016/0378-5955(87)90169-9 Versnel H, 2009, J NEUROSCI, V29, P9725, DOI 10.1523/JNEUROSCI.5459-08.2009 Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009 WICKESBERG RE, 1984, HEARING RES, V14, P155, DOI 10.1016/0378-5955(84)90014-5 Woolley SMN, 2006, J NEUROSCI, V26, P2499, DOI 10.1523/JNEUROSCI.3731-05.2006 Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 NR 69 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 123 EP 132 DI 10.1016/j.heares.2010.01.014 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000012 PM 20123121 ER PT J AU Hackett, TA AF Hackett, Troy A. TI Information flow in the auditory cortical network SO HEARING RESEARCH LA English DT Article ID MEDIAL GENICULATE-BODY; VENTROLATERAL PREFRONTAL CORTEX; CENTRAL SEROTONERGIC NEUROTRANSMISSION; VESICULAR GLUTAMATE TRANSPORTERS; SUPERIOR TEMPORAL SULCUS; OLD-WORLD MONKEYS; RHESUS-MONKEY; FUNCTIONAL-ORGANIZATION; RESPONSE PROPERTIES; MACAQUE MONKEYS AB Auditory processing in the cerebral cortex is comprised of an interconnected network of auditory and auditory-related areas distributed throughout the forebrain. The nexus of auditory activity is located in temporal cortex among several specialized areas, or fields, that receive dense inputs from the medial geniculate complex. These areas are collectively referred to as auditory cortex. Auditory activity is extended beyond auditory cortex via connections with auditory-related areas elsewhere in the cortex. Within this network, information flows between areas to and from countless targets, but in a manner that is characterized by orderly regional, areal and laminar patterns. These patterns reflect some of the structural constraints that passively govern the flow of information at all levels of the network. In addition, the exchange of information within these circuits is dynamically regulated by intrinsic neurochemical properties of projecting neurons and their targets. This article begins with an overview of the principal circuits and how each is related to information flow along major axes of the network. The discussion then turns to a description of neurochemical gradients along these axes, highlighting recent work on glutamate transporters in the thalamocortical projections to auditory cortex. The article concludes with a brief discussion of relevant neurophysiological findings as they relate to structural gradients in the network. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hackett, Troy A.] Vanderbilt Univ, Dept Hearing & Speech Sci, Sch Med, Nashville, TN 37203 USA. [Hackett, Troy A.] Vanderbilt Univ, Dept Psychol, Nashville, TN 37203 USA. RP Hackett, TA (reprint author), Vanderbilt Univ, Dept Hearing & Speech Sci, Sch Med, 301 Wilson Hall,111 21st Ave S, Nashville, TN 37203 USA. EM troy.a.hackett@vanderbilt.edu FU NIH/NIDCD [RO1 DC04318, T32 MH075883] FX The author gratefully acknowledges the support of NIH/NIDCD Grant RO1 DC04318 to T.A. Hackett and T32 MH075883 to Vanderbilt Kennedy Center for support of the confocal microscope. We also thank Lisa de la Mothe, Corrie Camalier and the reviewers for their helpful and insightful comments. CR AGGELOPOULOS NC, 1995, J PHYSIOL-LONDON, V486, P763 Aitkin L., 1986, AUDITORY MIDBRAIN ST ALLON N, 1981, EXP BRAIN RES, V41, P222 ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312 Atencio CA, 2010, J NEUROPHYSIOL, V103, P192, DOI 10.1152/jn.00624.2009 Atzori M, 2005, NEUROSCIENCE, V134, P1153, DOI 10.1016/j.neuroscience.2005.05.005 Atzori M, 2004, HEARING RES, V189, P101, DOI 10.1016/S0378-5955(03)00301-0 Barbas H, 2007, ANN NY ACAD SCI, V1121, P10, DOI 10.1196/annals.1401.015 Bendor D, 2008, J NEUROPHYSIOL, V100, P888, DOI 10.1152/jn.00884.2007 Bieser A, 1996, EXP BRAIN RES, V108, P273 Bizley JK, 2005, CEREB CORTEX, V15, P1637, DOI 10.1093/cercor/bhi042 Brodmann K., 1909, VERGLEICHENDE LOKALI Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x Budinger E, 2009, HEARING RES, V258, P16, DOI 10.1016/j.heares.2009.04.021 BURTON H, 1976, J COMP NEUROL, V168, P249, DOI 10.1002/cne.901680204 JONES EG, 1976, J COMP NEUROL, V168, P197, DOI 10.1002/cne.901680203 CALFORD MB, 1983, J NEUROSCI, V3, P2350 CALFORD MB, 1983, J NEUROSCI, V3, P2365 CAMPBELL HW, 2005, HISTOLOGICAL STUDIES Cappe C, 2005, EUR J NEUROSCI, V22, P2886, DOI 10.1111/j.1460-9568.2005.04462.x Carrasco A, 2009, J NEUROSCI, V29, P14323, DOI 10.1523/JNEUROSCI.2905-09.2009 Carrasco A, 2009, J NEUROSCI, V29, P8350, DOI 10.1523/JNEUROSCI.6001-08.2009 Carrasco A, 2010, J NEUROSCI, V30, P1476, DOI 10.1523/JNEUROSCI.5708-09.2009 Cavada C, 2000, CEREB CORTEX, V10, P220, DOI 10.1093/cercor/10.3.220 Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732 Clasca F, 2000, CEREB CORTEX, V10, P371, DOI 10.1093/cercor/10.4.371 Cohen Yale E, 2005, Behav Cogn Neurosci Rev, V4, P218, DOI 10.1177/1534582305285861 Cohen YE, 2007, J NEUROPHYSIOL, V97, P1470, DOI 10.1152/jn.00769.2006 Cohen YE, 2004, CEREB CORTEX, V14, P1287, DOI 10.1093/cercor/bhh090 CRUM PAC, HIERARCHICAL P UNPUB de la Mothe LA, 2006, J COMP NEUROL, V496, P27, DOI 10.1002/cne.20923 de la Mothe LA, 2006, J COMP NEUROL, V496, P72, DOI 10.1002/cne.20924 Dinh L, 2009, NEUROCHEM RES, V34, P1896, DOI 10.1007/s11064-009-9966-z Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 FALCHIER A, 2009, PROJECTION VISUAL AR Falchier A, 2002, J NEUROSCI, V22, P5749 FITZPATRICK KA, 1980, J COMP NEUROL, V192, P589, DOI 10.1002/cne.901920314 GALABURDA AM, 1983, J COMP NEUROL, V221, P169, DOI 10.1002/cne.902210206 Ghashghaei HT, 2002, NEUROSCIENCE, V115, P1261, DOI 10.1016/S0306-4522(02)00446-3 Graziano A, 2008, J COMP NEUROL, V507, P1258, DOI 10.1002/cne.21592 Hackett TA, 1998, J COMP NEUROL, V394, P475, DOI 10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z Hackett TA, 2009, J CHEM NEUROANAT, V38, P106, DOI 10.1016/j.jchemneu.2009.05.002 HACKETT TA, 2007, AUDITORY EVOKED POTE, P428 Hackett TA, 2007, PERCEPTION, V36, P1419, DOI 10.1068/p5841 Hackett TA, 1999, BRAIN RES, V817, P45, DOI 10.1016/S0006-8993(98)01182-2 Hackett TA, 2007, J COMP NEUROL, V502, P924, DOI 10.1002/cne.21326 Hackett TA, 1998, J COMP NEUROL, V400, P271, DOI 10.1002/(SICI)1096-9861(19981019)400:2<271::AID-CNE8>3.0.CO;2-6 Harrington IA, 2008, HEARING RES, V240, P22, DOI 10.1016/j.heares.2008.02.004 HASHIKAWA T, 1991, BRAIN RES, V544, P335, DOI 10.1016/0006-8993(91)90076-8 HASHIKAWA T, 1995, J COMP NEUROL, V362, P195, DOI 10.1002/cne.903620204 HEGERL U, 1993, BIOL PSYCHIAT, V33, P173, DOI 10.1016/0006-3223(93)90137-3 Hsieh CY, 2000, BRAIN RES, V880, P51, DOI 10.1016/S0006-8993(00)02766-9 Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003 IMIG TJ, 1980, J COMP NEUROL, V192, P293, DOI 10.1002/cne.901920208 IMIG TJ, 1983, ANNU REV NEUROSCI, V6, P95, DOI 10.1146/annurev.ne.06.030183.000523 IMIG TJ, 1984, J COMP NEUROL, V227, P511, DOI 10.1002/cne.902270405 IMIG TJ, 1985, J NEUROPHYSIOL, V53, pB36 IMIG TJ, 1985, J NEUROPHYSIOL, V53, P309 Jones EG, 2009, ANN NY ACAD SCI, V1157, P10, DOI 10.1111/j.1749-6632.2009.04534.x Jones EG, 2007, THALAMUS Jones EG, 2003, ANN NY ACAD SCI, V999, P218, DOI 10.1196/annals.1284.033 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kaas JH, 1999, NAT NEUROSCI, V2, P1045, DOI 10.1038/15967 Kaas JH, 1998, AUDIOL NEURO-OTOL, V3, P73, DOI 10.1159/000013783 Kajikawa Y, 2008, HEARING RES, V239, P107, DOI 10.1016/j.heares.2008.01.015 Kajikawa Y, 2005, J NEUROSCI METH, V149, P90, DOI 10.1016/j.jneumeth.2005.05.011 Kajikawa Y, 2005, J NEUROPHYSIOL, V93, P22, DOI 10.1152/jn.00248.2004 Kaneko T, 2002, NEUROSCI RES, V42, P243, DOI 10.1016/S0168-0102(02)00009-3 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Kitzes LM, 1996, HEARING RES, V100, P120, DOI 10.1016/0378-5955(96)00103-7 KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1 Kosmal A, 1997, ACTA NEUROBIOL EXP, V57, P165 KOWALSKI N, 1995, J NEUROPHYSIOL, V73, P1513 Kusmierek P, 2009, J NEUROPHYSIOL, V102, P1606, DOI 10.1152/jn.00167.2009 Lakatos P, 2005, NEUROREPORT, V16, P933, DOI 10.1097/00001756-200506210-00011 Lavenex P, 2002, J COMP NEUROL, V447, P394, DOI 10.1002/cne.10243 Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006 Lee CC, 2004, NEUROSCIENCE, V128, P871, DOI 10.1016/j.neuroscience.2004.06.062 Lee CC, 2008, J COMP NEUROL, V507, P1879, DOI 10.1002/cne.21611 Lee CC, 2005, CEREB CORTEX, V15, P1804, DOI 10.1093/cercor/bhi057 Lee CC, 2008, J COMP NEUROL, V507, P1920, DOI 10.1002/cne.21613 Lewis JW, 2000, J COMP NEUROL, V428, P112, DOI 10.1002/1096-9861(20001204)428:1<112::AID-CNE8>3.0.CO;2-9 Lomber SG, 2007, HEARING RES, V229, P31, DOI 10.1016/j.heares.2007.01.013 Malhotra S, 2007, J NEUROPHYSIOL, V97, P26, DOI 10.1152/jn.00720.2006 Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003 METHERATE R, 1991, BRAIN RES, V559, P163, DOI 10.1016/0006-8993(91)90301-B Metherate R, 2004, LEARN MEMORY, V11, P50, DOI 10.1101/lm.69904 MISHKIN M, 1979, NEUROPSYCHOLOGIA, V17, P139, DOI 10.1016/0028-3932(79)90005-8 MITANI A, 1985, J COMP NEUROL, V235, P430, DOI 10.1002/cne.902350403 MITANI A, 1987, J COMP NEUROL, V257, P105, DOI 10.1002/cne.902570108 MOLINARI M, 1995, J COMP NEUROL, V362, P171, DOI 10.1002/cne.903620203 MOREL A, 1992, J COMP NEUROL, V318, P27, DOI 10.1002/cne.903180104 Petkov CI, 2008, NAT NEUROSCI, V11, P367, DOI 10.1038/nn2043 Petrides M, 2002, EUR J NEUROSCI, V16, P291, DOI 10.1046/j.1460-9568.2001.02090.x PHILLIPS DP, 1984, J NEUROPHYSIOL, V51, P147 Polley DB, 2007, J NEUROPHYSIOL, V97, P3621, DOI 10.1152/jn.01298.2006 Poremba A, 2007, HEARING RES, V229, P14, DOI 10.1016/j.heares.2007.01.003 Poremba A, 2004, NATURE, V427, P448, DOI 10.1038/nature02268 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Rauschecker JP, 2009, NAT NEUROSCI, V12, P718, DOI 10.1038/nn.2331 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 Rauschecker JP, 1998, CURR OPIN NEUROBIOL, V8, P516, DOI 10.1016/S0959-4388(98)80040-8 Rauschecker JP, 1998, AUDIOL NEURO-OTOL, V3, P86, DOI 10.1159/000013784 Razak KA, 2009, J NEUROPHYSIOL, V102, P1366, DOI 10.1152/jn.00334.2009 Read HL, 2001, P NATL ACAD SCI USA, V98, P8042, DOI 10.1073/pnas.131591898 Recanzone GH, 2000, HEARING RES, V150, P104, DOI 10.1016/S0378-5955(00)00194-5 Rockland KS, 2003, INT J PSYCHOPHYSIOL, V50, P19, DOI 10.1016/S0167-8760(03)00121-1 RODRIGUESDAGAEFF C, 1989, HEARING RES, V39, P103, DOI 10.1016/0378-5955(89)90085-3 Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056 Romanski LM, 2005, J NEUROPHYSIOL, V93, P734, DOI 10.1152/jn.00675.2004 Romanski LM, 2007, CEREB CORTEX, V17, pI61, DOI 10.1093/cercor/bhm099 Romanski LM, 2002, NAT NEUROSCI, V5, P15, DOI 10.1038/nn781 Romanski LM, 1999, J COMP NEUROL, V403, P141, DOI 10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V ROUILLER EM, 1991, EXP BRAIN RES, V86, P483 ROUILLER EM, 1989, HEARING RES, V39, P127, DOI 10.1016/0378-5955(89)90086-5 Salami M, 2003, P NATL ACAD SCI USA, V100, P6174, DOI 10.1073/pnas.0937380100 Saleem KS, 2008, J COMP NEUROL, V506, P659, DOI 10.1002/ene.21577 SCANNELL JW, 1995, J NEUROSCI, V15, P1463 SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284 SCHREINER CE, 1986, HEARING RES, V21, P227, DOI 10.1016/0378-5955(86)90221-2 Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501 Seltzer B, 1996, J COMP NEUROL, V370, P173, DOI 10.1002/(SICI)1096-9861(19960624)370:2<173::AID-CNE4>3.0.CO;2-# SELTZER B, 1994, J COMP NEUROL, V343, P445, DOI 10.1002/cne.903430308 Smiley JF, 2007, J COMP NEUROL, V502, P894, DOI 10.1002/cne.21325 Smiley JF, 2009, HEARING RES, V258, P37, DOI 10.1016/j.heares.2009.06.019 STERIADE M, 1995, J COMP NEUROL, V354, P57, DOI 10.1002/cne.903540106 STORACE CA, J COMP NEUR IN PRESS SUGIHARA I, 1993, J PHYSIOL-LONDON, V470, P243 TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 TRANEL D, 1988, EXP BRAIN RES, V70, P406 Ungerleider LG, 1982, ANAL VISUAL BEHAV, P549 Ungerleider Leslie G., 1994, Current Opinion in Neurobiology, V4, P157, DOI 10.1016/0959-4388(94)90066-3 Varoqui H, 2002, J NEUROSCI, V22, P142 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8 Winer JA, 2007, HEARING RES, V229, P3, DOI 10.1016/j.heares.2007.01.017 Winer JA, 2001, J COMP NEUROL, V430, P27 Wutzler A, 2008, NEUROPSYCHOPHARMACOL, V33, P3176, DOI 10.1038/npp.2008.42 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 NR 141 TC 81 Z9 81 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 133 EP 146 DI 10.1016/j.heares.2010.01.011 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000013 PM 20116421 ER PT J AU Huetz, C Gourevitch, B Edeline, JM AF Huetz, Chloe Gourevitch, Boris Edeline, Jean-Marc TI Neural codes in the thalamocortical auditory system: From artificial stimuli to communication sounds SO HEARING RESEARCH LA English DT Article ID SPATIOTEMPORAL FIRING PATTERNS; METRIC-SPACE ANALYSIS; CANARY HVC NEURONS; BIRDS OWN SONG; SINGLE NEURONS; NATURAL SOUNDS; SPIKE TRAINS; CONSPECIFIC VOCALIZATIONS; 1ST-SPIKE LATENCY; CORTICAL-NEURONS AB Over the last 15 years, an increasing number of studies have described the responsiveness of thalamic and cortical neurons to communication sounds. Whereas initial studies have simply looked for neurons exhibiting higher firing rate to conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determine the relative contribution of "rate coding" and "temporal coding" to the information transmitted by spike trains. In this article, we aim at reviewing the different strategies employed by thalamic and cortical neurons to encode information about acoustic stimuli, from artificial to natural sounds. Considering data obtained with simple stimuli, we first illustrate that different facets of temporal code, ranging from a strict correspondence between spike-timing and stimulus temporal features to more complex coding strategies, do already exist with artificial stimuli. We then review lines of evidence indicating that spike-timing provides an efficient code for discriminating communication sounds from thalamus, primary and non-primary auditory cortex up to frontal arms. As the neural code probably developed, and became specialized, over evolution to allow precise and reliable processing of sounds that are of survival value, we argue that spike-timing based coding strategies might set the foundations of our perceptive abilities. (C) 2010 Elsevier B.V. All rights reserved. C1 [Huetz, Chloe; Gourevitch, Boris; Edeline, Jean-Marc] Univ Paris 11, CNRS, UMR 8195, Ctr Neurosci Paris Sud, F-91405 Orsay, France. RP Edeline, JM (reprint author), Univ Paris 11, CNRS, UMR 8195, Ctr Neurosci Paris Sud, Bat 446, F-91405 Orsay, France. EM Jean-Marc.Edeline@u-psud.fr FU ANR [Neuro2006]; Federation des Recherches sur le Cerveau (FRC) FX Parts of the researches described in this review have been supported by the ANR grant Neuro2006 "Hearing Loss" and by the Federation des Recherches sur le Cerveau (FRC). We thank the reviewers for their critical and helpful comments. CR Abeles M., 1991, CORTICONICS NEURAL C ABELES M, 1988, J NEUROPHYSIOL, V60, P909 ABELES M, 1993, J NEUROPHYSIOL, V70, P1629 Abeles M., 1982, LOCAL CORTICAL CIRCU AHISSAR M, 1992, J NEUROPHYSIOL, V67, P203 Atzori M, 2001, NAT NEUROSCI, V4, P1230, DOI 10.1038/nn760 Averbeck BB, 2006, NAT REV NEUROSCI, V7, P358, DOI 10.1038/nrn1888 Baker SN, 2000, J NEUROPHYSIOL, V84, P1770 Bar-Yosef O, 2002, J NEUROSCI, V22, P8619 Bar-Yosef O, 2007, FRONT COMPUT NEUROSC, V1, DOI [10.3389/neuro.10.003.2007, 10.3389/neuro.10/003.2007] Bidet-Caulet Aurélie, 2007, Front Hum Neurosci, V1, P5, DOI 10.3389/neuro.09.005.2007 Brosch M, 2002, J NEUROPHYSIOL, V87, P2715, DOI 10.1152/jn.00583.2001 Brugge JF, 1996, J NEUROSCI, V16, P4420 Buzsaki G, 2004, NAT NEUROSCI, V7, P446, DOI 10.1038/nn1233 Chase SM, 2008, J NEUROPHYSIOL, V99, P1672, DOI 10.1152/jn.00644.2007 Chase SM, 2007, P NATL ACAD SCI USA, V104, P5175, DOI 10.1073/pnas.0610368104 Chechik G, 2006, NEURON, V51, P359, DOI 10.1016/j.neuron.2006.06.030 Cossart R, 2003, NATURE, V423, P283, DOI 10.1038/nature01614 Cotillon-Williams N, 2003, J NEUROPHYSIOL, V89, P1968, DOI 10.1152/jn.00728.2002 Cotillon-Williams N, 2004, ACTA NEUROBIOL EXP, V64, P253 CUTTING JE, 1974, PERCEPT PSYCHOPHYS, V16, P564, DOI 10.3758/BF03198588 CYNX J, 1993, J COMP PSYCHOL, V107, P395, DOI 10.1037/0735-7036.107.4.395 deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0 Del Negro C, 2005, J NEUROSCI, V25, P4952, DOI 10.1523/JNEUROSCI.4847-04.2005 DeWeese MR, 2003, J NEUROSCI, V23, P7940 DICKSON JW, 1974, J NEUROPHYSIOL, V37, P1239 Edeline JM, 2000, J NEUROPHYSIOL, V84, P934 Edeline JM, 2003, EXP BRAIN RES, V153, P554, DOI 10.1007/s00221-003-1608-0 Edeline JM, 2005, AUDITORY SIGNAL PROCESSINGP: PHYSIOLOGY, PSYCHOACOUSTICS, AND MODELS, P495 Edeline JM, 2001, EUR J NEUROSCI, V14, P1865, DOI 10.1046/j.0953-816x.2001.01821.x Edeline JM, 1999, PROG NEUROBIOL, V57, P165 Edeline JM, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P365 Eggermont JJ, 2007, HEARING RES, V229, P69, DOI 10.1016/j.heares.2007.01.008 EGGERMONT JJ, 1983, BIOL CYBERN, V47, P103, DOI 10.1007/BF00337084 EGGERMONT JJ, 1994, J NEUROPHYSIOL, V71, P246 EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2151 Eggermont JJ, 2002, J NEUROPHYSIOL, V87, P305 Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006 Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3 Elhilali M, 2004, J NEUROSCI, V24, P1159, DOI 10.1523/JNEUROSCI.3825-03.2004 EPPING WJM, 1987, J NEUROPHYSIOL, V57, P1464 ESPINOSA IE, 1988, BRAIN RES, V450, P39, DOI 10.1016/0006-8993(88)91542-9 Fishbach A, 2001, J NEUROPHYSIOL, V85, P2303 FROSTIG RD, 1983, BRAIN RES, V272, P211, DOI 10.1016/0006-8993(83)90567-X Furukawa S, 2002, J NEUROPHYSIOL, V87, P1749, DOI 10.1152/jn.00491.2001 Gerstein GL, 2004, ACTA NEUROBIOL EXP, V64, P203 Gourevitch B, 2007, J NEUROPHYSIOL, V97, P144, DOI 10.1152/jn.00807.2006 GOUREVITCH B, 2009, J COMPUT NEUROSCI Hackett TA, 2001, J COMP NEUROL, V441, P197, DOI 10.1002/cne.1407 Hackett TA, 1999, EUR J NEUROSCI, V11, P856, DOI 10.1046/j.1460-9568.1999.00492.x Hackett TA, 1998, J COMP NEUROL, V394, P475, DOI 10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z Hackett TA, 1998, J COMP NEUROL, V400, P271, DOI 10.1002/(SICI)1096-9861(19981019)400:2<271::AID-CNE8>3.0.CO;2-6 Hallock RM, 2006, NEUROSCI BIOBEHAV R, V30, P1145, DOI 10.1016/j.neubiorev.2006.07.005 HARRINGTON, 2008, HEARING RES, V240, P22 Heil P, 1996, NEUROREPORT, V7, P3073, DOI 10.1097/00001756-199611250-00056 Heil P, 1998, CEREB CORTEX, V8, P125, DOI 10.1093/cercor/8.2.125 Heil P, 2003, SPEECH COMMUN, V41, P123, DOI 10.1016/S0167-6393(02)00099-7 Heil P, 2001, AUDIOL NEURO-OTOL, V6, P167, DOI 10.1159/000046826 Heil P, 1997, J NEUROPHYSIOL, V77, P2616 Heil P, 2003, P NATL ACAD SCI USA, V100, P6151, DOI 10.1073/pnas.1030017100 Heil P, 1997, J NEUROPHYSIOL, V77, P2642 Heil P, 1997, J NEUROPHYSIOL, V78, P2438 HIND JE, 1963, J NEUROPHYSIOL, V26, P321 Hromadka T, 2008, PLOS BIOL, V6, pe16 Hsu A, 2004, J NEUROSCI, V24, P9201, DOI 10.1523/JNEUROSCI.2449-04.2004 Huetz C, 2009, J NEUROSCI, V29, P334, DOI 10.1523/JNEUROSCI.3269-08.2009 Huetz C, 2004, J PHYSIOLOGY-PARIS, V98, P395, DOI 10.1016/j.jphysparis.2005.09.011 Huetz C, 2006, EUR J NEUROSCI, V24, P1091, DOI 10.1111/j.1460-9568.2006.04967.x Jeschke M, 2008, BRAIN RES, V1220, P70, DOI 10.1016/j.brainres.2007.10.047 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Kayser C, 2009, NEURON, V61, P597, DOI 10.1016/j.neuron.2009.01.008 KITZES LM, 1978, J NEUROPHYSIOL, V41, P1165 Lesica NA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001655 LEWICKI MS, 1995, P NATL ACAD SCI USA, V92, P5582, DOI 10.1073/pnas.92.12.5582 Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001 Liu RC, 2007, PLOS BIOL, V5, P1426, DOI 10.1371/journal.pbio.0050173 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 Luczak A, 2009, NEURON, V62, P413, DOI 10.1016/j.neuron.2009.03.014 MARGOLIASH D, 1983, J NEUROSCI, V3, P1039 Massaux A, 2004, J NEUROPHYSIOL, V91, P2117, DOI 10.1152/jn.00970.2003 Mickey BJ, 2003, J NEUROSCI, V23, P8649 MIDDLEBROOKS JC, 1994, SCIENCE, V264, P842, DOI 10.1126/science.8171339 Middlebrooks JC, 1998, J NEUROPHYSIOL, V80, P863 Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7 Miller LM, 2001, J NEUROSCI, V21, P8136 Mooney R, 2000, J NEUROSCI, V20, P5420 Mrsic-Flogel TD, 2005, J NEUROPHYSIOL, V93, P3489, DOI 10.1152/jn.00748.2004 Narayan R, 2007, NAT NEUROSCI, V10, P1601, DOI 10.1038/nn2009 Narayan R, 2006, J NEUROPHYSIOL, V96, P252, DOI 10.1152/jn.01257.2005 Nelken I, 2007, HEARING RES, V229, P94, DOI 10.1016/j.heares.2007.01.012 Nelken I, 2005, J COMPUT NEUROSCI, V19, P199, DOI 10.1007/s10827-005-1739-3 Nelken I, 1999, NATURE, V397, P154, DOI 10.1038/16456 Neubauer H, 2008, BRAIN RES, V1220, P208, DOI 10.1016/j.brainres.2007.08.081 Perkel D. H., 1968, NEUROSCI RES PROGRAM, V6, P221 PERKEL DH, 1967, BIOPHYS J, V7, P419 PHILLIPS DP, 1989, HEARING RES, V40, P137, DOI 10.1016/0378-5955(89)90107-X PHILLIPS DP, 1991, HEARING RES, V53, P17, DOI 10.1016/0378-5955(91)90210-Z Quiroga RQ, 2009, NAT REV NEUROSCI, V10, P173, DOI 10.1038/nrn2578 Recanzone GH, 2008, J NEUROSCI, V28, P13184, DOI 10.1523/JNEUROSCI.3619-08.2008 Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056 Romanski LM, 2009, ANNU REV NEUROSCI, V32, P315, DOI 10.1146/annurev.neuro.051508.135431 Romanski LM, 1999, J COMP NEUROL, V403, P141, DOI 10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V Russ BE, 2008, J NEUROPHYSIOL, V99, P87, DOI 10.1152/jn.01069.2007 Schnupp JWH, 2001, NATURE, V414, P200, DOI 10.1038/35102568 Schnupp JWH, 2006, J NEUROSCI, V26, P4785, DOI 10.1523/JNEUROSCI.4330-05.2006 Schrader S, 2008, J NEUROPHYSIOL, V100, P2165, DOI 10.1152/jn.01245.2007 Sen K, 2001, J NEUROPHYSIOL, V86, P1445 Shu YS, 2003, NATURE, V423, P288, DOI 10.1038/nature01616 Stecker GC, 2003, J NEUROPHYSIOL, V89, P2889, DOI 10.1152/jn.00980.2002 THEUNISSEN F, 1995, J COMPUT NEUROSCI, V2, P149, DOI 10.1007/BF00961885 Theunissen FE, 1998, J NEUROSCI, V18, P3786 Theunissen FE, 2006, CURR OPIN NEUROBIOL, V16, P400, DOI 10.1016/j.conb.2006.07.003 Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911 van Rossum MCW, 2001, NEURAL COMPUT, V13, P751 vanSteveninck RRD, 1997, SCIENCE, V275, P1805 Victor JD, 1997, NETWORK-COMP NEURAL, V8, P127, DOI 10.1088/0954-898X/8/2/003 Victor JD, 1996, J NEUROPHYSIOL, V76, P1310 Villa AEP, 1999, P NATL ACAD SCI USA, V96, P1106, DOI 10.1073/pnas.96.3.1106 VILLA AEP, 1990, BRAIN RES, V509, P325, DOI 10.1016/0006-8993(90)90558-S Walker KMM, 2008, J COGNITIVE NEUROSCI, V20, P135, DOI 10.1162/jocn.2008.20012 Wang L, 2007, J NEUROSCI, V27, P582, DOI 10.1523/JNEUROSCI.3699-06.2007 Wang XQ, 2007, HEARING RES, V229, P81, DOI 10.1016/j.heares.2007.01.019 Wang XQ, 2003, SPEECH COMMUN, V41, P107, DOI 10.1016/S0167-6393(02)00097-3 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 Wang XQ, 2001, J NEUROPHYSIOL, V86, P2616 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 Weinberger NM, 2007, HEARING RES, V229, P54, DOI 10.1016/j.heares.2007.01.004 Yang Y, 2008, NAT NEUROSCI, V11, P1262, DOI 10.1038/nn.2211 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 Zador A, 1998, J NEUROPHYSIOL, V79, P1219 NR 131 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 147 EP 158 DI 10.1016/j.heares.2010.01.010 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000014 PM 20116422 ER PT J AU Sim, JH Lauxmann, M Chatzimichalis, M Roosli, C Eiber, A Huber, AM AF Sim, Jae Hoon Lauxmann, Michael Chatzimichalis, Michail Roeoesli, Christof Eiber, Albrecht Huber, Alexander M. TI Errors in measurement of three-dimensional motions of the stapes using a Laser Doppler Vibrometer system SO HEARING RESEARCH LA English DT Article ID HUMAN TEMPORAL BONES; HOLOGRAPHIC VIBRATION ANALYSIS; HUMAN MIDDLE-EAR; TYMPANIC MEMBRANE; TRANSMISSION; VELOCITY; COCHLEA; GERBIL; SOUND AB Previous studies have suggested complex modes of physiological stapes motions based upon various measurements. The goal of this study was to analyze the detailed errors in measurement of the complex stapes motions using Laser Doppler Vibrometer (LDV) systems, which are highly sensitive to the stimulation intensity and the exact angulations of the stapes. Stapes motions were measured with acoustic stimuli as well as mechanical stimuli using a custom-made three-axis piezoelectric actuator, and errors in the motion components were analyzed. The ratio of error in each motion component was reduced by increasing the magnitude of the stimuli, but the improvement was limited when the motion component was small relative to other components. This problem was solved with an improved reflectivity on the measurement surface. Errors in estimating the position of the stapes also caused errors on the coordinates of the measurement points and the laser beam direction relative to the stapes footplate, thus producing errors in the 3-D motion components. This effect was small when the position error of the stapes footplate did not exceed 5 degrees. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sim, Jae Hoon; Chatzimichalis, Michail; Roeoesli, Christof; Huber, Alexander M.] Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, CH-8091 Zurich, Switzerland. [Lauxmann, Michael; Eiber, Albrecht] Univ Stuttgart, Inst Engn & Computat Mech ITM, D-70569 Stuttgart, Germany. RP Sim, JH (reprint author), Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, Frauenklin Str 24, CH-8091 Zurich, Switzerland. EM JaeHoon.Sim@usz.ch; lauxmann@itm.uni-stuttgart.de RI Huber, Alexander/A-2693-2009 OI Huber, Alexander/0000-0002-8888-8483 CR Akache F, 2007, AUDIOL NEURO-OTOL, V12, P49, DOI 10.1159/000097247 BALLY GV, 1978, LARYNG RHINOL OTOL V, V57, P444 Bekesy G, 1960, EXPT HEARING Chien W, 2009, HEARING RES, V249, P54, DOI 10.1016/j.heares.2008.11.011 DANKBAAR WA, 1970, J ACOUST SOC AM, V48, P1021, DOI 10.1121/1.1912224 Decraemer WF, 2007, J ACOUST SOC AM, V121, P2774, DOI 10.1121/1.2709843 Eiber A, 2007, MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P123, DOI 10.1142/9789812708694_0016 Gan Rong Z., 2004, Otology & Neurotology, V25, P423, DOI 10.1097/00129492-200407000-00005 GILAD P, 1967, J ACOUST SOC AM, V41, P1232, DOI 10.1121/1.1910464 GOODE RL, 1993, AM J OTOL, V14, P247 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 GUNDERSEN T, 1976, ACTA OTO-LARYNGOL, V82, P16, DOI 10.3109/00016487609120858 GYO K, 1987, ACTA OTO-LARYNGOL, V103, P87, DOI 10.3109/00016488709134702 Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475 Heiland KE, 1999, AM J OTOL, V20, P81 Helms J, 1974, Acta Otorhinolaryngol Belg, V28, P581 Huber AM, 2008, OTOL NEUROTOL, V29, P1187, DOI 10.1097/MAO.0b013e31817ef49b Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022 Kirikae I., 1960, STRUCTURE FUNCTION M LOKBERG OJ, 1980, ACTA OTO-LARYNGOL, V89, P37, DOI 10.3109/00016488009127106 Merchant SN, 1996, HEARING RES, V97, P30 Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061 Sim JH, 2010, JARO-J ASSOC RES OTO, V11, P329, DOI 10.1007/s10162-010-0207-6 Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847 Sueur J, 2006, J EXP BIOL, V209, P4115, DOI 10.1242/jeb.02460 TONNDORF J, 1968, J ACOUST SOC AM, V44, P5 VLAMING MSMG, 1986, CLIN OTOLARYNGOL, V11, P353, DOI 10.1111/j.1365-2273.1986.tb00137.x Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Decraemer WF, 2000, PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON RECENT DEVELOPMENTS IN AUDITORY MECHANICS, P36 Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0 NR 30 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 4 EP 14 DI 10.1016/j.heares.2010.08.009 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200003 PM 20801206 ER PT J AU Aarnisalo, AA Green, KM O'Malley, J Makary, C Adams, J Merchant, SN Evans, JE AF Aarnisalo, Antti A. Green, Karin M. O'Malley, Jennifer Makary, Chadi Adams, Joe Merchant, Saumil N. Evans, James E. TI A method for MSE differential proteomic analysis of archival formalin-fixed celloidin-embedded human inner ear tissue SO HEARING RESEARCH LA English DT Article ID TEMPORAL BONES; CANCER-TISSUE; LC-MS/MS AB Proteomic analysis of cadaveric formalin-fixed, celloidin-embedded (FFCE) temporal bone tissue has the potential to provide new insights into inner ear disorders. We have developed a liquid chromatography -mass spectrometry (LC-MS) method for tissue sections embedded with celloidin. Q-TOF (Quadrupole-time of flight mass spectrometry) MSE (mass spectrometry where E represents collision energy) and Identity(ETM) were used in conjunction with nano-UPLC (capillary ultrahigh pressure liquid chromatography) for robust identification and quantification of a large number of proteins. Formalin-fixed paraffin-embedded (FFPE) mouse liver sections were used to evaluate formalin de-cross-linking by five different methods. Unfixed fresh mouse liver tissue was used as a control. Five different methods for preparation of FFPE tissue for MS analysis were compared, as well as four methods for celloidin removal with FFCE mouse liver tissue. The methods judged best were applied to FFCE 20 mu m sections of mouse inner ear samples, and FFCE 20 mu m human inner ear and human otic capsule bone sections. Three of the five-tissue extraction methods worked equally in detecting peptides and proteins from FFPE mouse liver tissue. The modified Liquid Tissue kit protocol was chosen for further studies. Four different celloidin removal methods were compared and the acetone removal method was chosen for further analysis. These two methods were applied to the analysis of FFCE inner ear and otic capsule sections. Proteins from all major cellular components were detected in the FFCE archival human temporal bone sections. This newly developed technique enables the use of FFCE tissues for proteomic studies. (C) 2010 Elsevier B.V. All rights reserved. C1 [Aarnisalo, Antti A.; O'Malley, Jennifer; Makary, Chadi; Adams, Joe; Merchant, Saumil N.] Harvard Univ, Massachusetts Eye & Ear Infirm, Sch Med, Boston, MA USA. [Aarnisalo, Antti A.; Green, Karin M.; Evans, James E.] Univ Massachusetts, Sch Med, Worcester, MA USA. RP Aarnisalo, AA (reprint author), Univ Helsinki, Helsinki Univ Cent Hosp, Dept Otorhinolaryngol, POB 220, Helsinki 00029, Finland. EM antti.aarnisalo@hus.fi FU NIH [U24 DC008559]; Sigrid Juselius Foundation; Academy of Finland FX Supported in part by NIH grant U24 DC008559, Sigrid Juselius Foundation (A.A.A) and Academy of Finland (A.A.A.). CR Becker KF, 2007, J PATHOL, V211, P370, DOI 10.1002/path.2107 Crockett DK, 2005, LAB INVEST, V85, P1405, DOI 10.1038/labinvest.3700343 Feng S, 2006, J PROTEOME RES, V5, P422, DOI 10.1021/pr0502727 Geromanos SJ, 2009, PROTEOMICS, V9, P1683, DOI 10.1002/pmic.200800562 Hood BL, 2006, PROTEOMICS, V6, P4106, DOI 10.1002/pmic.200600016 Hood BL, 2005, MOL CELL PROTEOMICS, V4, P1741, DOI 10.1074/mcp.M500102-MCP200 Hwang SI, 2007, ONCOGENE, V26, P65, DOI 10.1038/sj.onc.1209755 Jiang XG, 2007, J PROTEOME RES, V6, P1038, DOI 10.1021/pr0605318 KEITHLEY EM, 1995, ANN OTO RHINOL LARYN, V104, P858 MARKARYAN A, 2010, ACTA OTO-LARYNGOL, P1 Miguel-Hidalgo JJ, 1999, J NEUROSCI METH, V93, P69, DOI 10.1016/S0165-0270(99)00114-4 Nesvizhskii AI, 2005, MOL CELL PROTEOMICS, V4, P1419, DOI 10.1074/mcp.R500012-MCP200 O'Malley JT, 2009, AUDIOL NEURO-OTOL, V14, P78, DOI 10.1159/000158536 Palmer-Toy DE, 2005, J PROTEOME RES, V4, P2404, DOI 10.1021/pr050208p Pawlowski KS, 1998, ACTA OTO-LARYNGOL, V118, P505, DOI 10.1080/00016489850154630 Prieto D. A., 2005, BIOTECHNIQUES S, P32 Schuknecht HF, 1993, PATHOLOGY EAR Sone M, 1998, LARYNGOSCOPE, V108, P1474, DOI 10.1097/00005537-199810000-00010 Sone M, 1999, ANN OTO RHINOL LARYN, V108, P338 NR 19 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 15 EP 20 DI 10.1016/j.heares.2010.08.003 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200004 PM 20708670 ER PT J AU Polesskaya, O Cunningham, LL Francis, SP Luebke, AE Zhu, XX Collins, D Vasilyeva, ON Sahler, J Desmet, EA Gelbard, HA Maggirwar, SB Walton, JR Frisina, RD Dewhurst, S AF Polesskaya, Oksana Cunningham, Lisa L. Francis, Shimon P. Luebke, Anne E. Zhu, Xiaoxia Collins, David Vasilyeva, Olga N. Sahler, Julie Desmet, Emily A. Gelbard, Harris A. Maggirwar, Sanjay B. Walton, Joseph R. Frisina, Robert D., Jr. Dewhurst, Stephen TI Ablation of mixed lineage kinase 3 (MIk3) does not inhibit ototoxicity induced by acoustic trauma or aminoglycoside exposure SO HEARING RESEARCH LA English DT Article ID HAIR CELL-DEATH; HEARING-LOSS; IN-VITRO; ACTIVATION; JNK; GENTAMICIN; APOPTOSIS; PATHWAYS; FAMILY AB Jun N-terminal kinase (INK) is activated in cochlear hair cells following acoustic trauma or exposure to aminoglycoside antibiotics. Blockade of JNK activation using mixed lineage kinase (MLK) inhibitors prevents hearing loss and hair cell death following these stresses. Since current pharmacologic inhibitors of MLKs block multiple members of this kinase family, we examined the contribution of the major neuronal family member (MLK3) to stress-induced ototoxicity, usingMlk3(-/-) mice. Immunohistochemical staining revealed that MLK3 is expressed in cochlear hair cells of C57/BL6 mice (but not in MIk3(-/-)animals). After exposure to acoustic trauma there was no significant difference in DPOAE and ABR values betweenMlk3(-/-) and wild-type mice at 48 h following exposure or 2 weeks later. Susceptibility of hair cells to aminoglycoside toxicity was tested by exposing explanted utricles to gentamicin. Gentamicin-induced hair cell death was equivalent in utricles from wild-type and MIk3(-/-) mice. Blockade of JNK activation with the pharmacologic inhibitor SP600125 attenuated cell death in utricles from both wildtype and MIk3-/- mice. These data show that MLK3 ablation does not protect against hair cell death following acoustic trauma or exposure to aminoglycoside antibiotics, suggesting that MLK3 is not the major upstream regulator of JNK-mediated hair cell death following these stresses. Rather, other MLK family members such as MLK1, which is also expressed in cochlea, may have a previously unappreciated role in noise- and aminoglycoside-induced ototoxicity. (C) 2010 Elsevier B.V. All rights reserved. C1 [Dewhurst, Stephen] Univ Rochester, Med Ctr, Dept Microbiol & Immunol, Sch Med & Dent, Rochester, NY 14642 USA. [Gelbard, Harris A.] Univ Rochester, Sch Med & Dent, Ctr Neural Dev & Dis, Rochester, NY 14642 USA. [Dewhurst, Stephen] Univ Rochester, James P Wilmot Canc Ctr, Sch Med & Dent, Rochester, NY 14642 USA. [Frisina, Robert D., Jr.] Int Ctr Hearing & Speech Res, Rochester, NY 14623 USA. [Frisina, Robert D., Jr.] Rochester Inst Technol, Natl Tech Inst Deaf, Rochester, NY 14623 USA. [Cunningham, Lisa L.; Francis, Shimon P.] Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. RP Dewhurst, S (reprint author), Univ Rochester, Med Ctr, Dept Microbiol & Immunol, Sch Med & Dent, 601 Elmwood Ave,Box 672, Rochester, NY 14642 USA. EM Stephen_Dewhurst@urmc.rochester.edu FU Schmitt Program on Integrative Brain Research; NIH [T32 NS051152, R01 DC003086, P01 MH064570, P01 AG09524]; NIH/NIDCD [R01 DC007613, R01 DC007613-S1] FX We thank Dr. Roger Davis (U. Massachusetts Medical Center) for generously providing the Mlk3-/- mice, and Dr. Fu-Shing Lee (MUSC) for performing statistical analyses for this study. We also acknowledge the following grants for providing financial support for these experiments: a post-doctoral Fellowship from the Schmitt Program on Integrative Brain Research (OP), NIH T32 NS051152 (OP), NIH/NIDCD R01 DC007613 (LC), NIH/NIDCD R01 DC007613-S1 (LC), NIH R01 DC003086 (AL), NIH P01 MH064570 (OP, JS, ED, DC, HAG, SBM, SD), NIH P01 AG09524 (RF, JW, OV, XZ). CR Brancho D, 2005, MOL CELL BIOL, V25, P3670, DOI 10.1128/MCB.25.9.3670-3681.2005 Cunningham LL, 2006, BRAIN RES, V1091, P277, DOI 10.1016/j.brainres.2006.01.128 Dinh CT, 2009, AUDIOL NEURO-OTOL, V14, P383, DOI 10.1159/000241895 Eshraghi AA, 2007, HEARING RES, V226, P168, DOI 10.1016/j.heares.2006.09.008 Gallo KA, 2002, NAT REV MOL CELL BIO, V3, P663, DOI 10.1038/nrm906 Hong HY, 2007, BIOCHEM BIOPH RES CO, V362, P307, DOI 10.1016/j.bbrc.2007.07.165 Maroney AC, 2001, J BIOL CHEM, V276, P25302, DOI 10.1074/jbc.M011601200 Matsui JI, 2004, J NEUROBIOL, V61, P250, DOI 10.1002/neu.20054 Murai N, 2008, J NEUROTRAUM, V25, P72, DOI 10.1089/neu.2007.0346 Pirvola U, 2000, J NEUROSCI, V20, P43 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 Sugahara K, 2006, HEARING RES, V221, P128, DOI 10.1016/j.heares.2006.08.009 Sui Z, 2006, J IMMUNOL, V177, P702 Wang J, 2007, MOL PHARMACOL, V71, P654, DOI 10.1124/mol.106.028936 Wang J, 2003, J NEUROSCI, V23, P8596 Wang LH, 2004, ANNU REV PHARMACOL, V44, P451, DOI 10.1146/annurev.pharmtox.44.101802.121840 Xu ZH, 2001, MOL CELL BIOL, V21, P4713, DOI 10.1128/MCB.21.14.4713-4724.2001 Ylikoski J, 2002, HEARING RES, V166, P33, DOI 10.1016/S0378-5955(01)00388-4 NR 18 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 21 EP 27 DI 10.1016/j.heares.2010.10.008 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200005 PM 20971179 ER PT J AU Berenstein, CK Vanpoucke, FJ Mulder, JJS Mens, LHM AF Berenstein, Carlo K. Vanpoucke, Filiep J. Mulder, Jef J. S. Mens, Lucas H. M. TI Electrical field imaging as a means to predict the loudness of monopolar and tripolar stimuli in cochlear implant patients SO HEARING RESEARCH LA English DT Article ID ELECTRODE CONFIGURATION; MODEL; POSITIONER; PERCEPTION; LISTENERS; ARRAY AB Tripolar and other electrode configurations that use simultaneous stimulation inside the cochlea have been tested to reduce channel interactions compared to the monopolar stimulation conventionally used in cochlear implant systems. However, these "focused" configurations require increased current levels to achieve sufficient loudness. In this study, we investigate whether highly accurate recordings of the intracochlear electrical field set up by monopolar and tripolar configurations correlate to their effect on loudness. We related the intra-scalar potential distribution to behavioral loudness, by introducing a free parameter (alpha) which parameterizes the degree to which the potential field peak set up inside the scala tympani is still present at the location of the targeted neural tissue. Loudness balancing was performed on four levels between behavioral threshold and the most comfortable loudness level in a group of 10 experienced Advanced Bionics cochlear implant users. The effect of the amount of focusing on loudness was well explained by alpha per subject location along the basilar membrane. We found that alpha was unaffected by presentation level. Moreover, the ratios between the monopolar and tripolar currents, balanced for equal loudness, were approximately the same for all presentation levels. This suggests a linear loudness growth with increasing current level and that the equal peak hypothesis may predict the loudness of threshold as well as at supra-threshold levels. These results suggest that advanced electrical field imaging, complemented with limited psychophysical testing, more specifically at only one presentation level, enables estimation of the loudness growth of complex electrode configurations. (C) 2010 Elsevier B.V. All rights reserved. C1 [Berenstein, Carlo K.; Mulder, Jef J. S.; Mens, Lucas H. M.] Radboud Univ Nijmegen, Med Ctr, KNO Audiol, NL-6500 HB Nijmegen, Netherlands. [Vanpoucke, Filiep J.] Adv Bion European Res Ctr, Antwerp, Belgium. RP Berenstein, CK (reprint author), Radboud Univ Nijmegen, Med Ctr, KNO Audiol 377, POB 9101, NL-6500 HB Nijmegen, Netherlands. EM c.berenstein@kno.umcn.nl CR Berenstein CK, 2008, EAR HEARING, V29, P250 Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712 Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P1393, DOI 10.1109/10.804567 Cohen LT, 2009, HEARING RES, V248, P15, DOI 10.1016/j.heares.2008.11.008 Cohen LT, 1996, AM J OTOL, V17, P859 Cords SM, 2000, AM J OTOL, V21, P212, DOI 10.1016/S0196-0709(00)80011-3 COTTER NE, 1986, MODELING AUDITORY PR Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1 FIRSZT J, 2004, HIGH RESOLUTION SOUN Goldwyn JH, 2010, HEARING RES, V268, P93, DOI 10.1016/j.heares.2010.05.005 IFUKUBE T, 1987, IEEE T BIO-MED ENG, V34, P883, DOI 10.1109/TBME.1987.326009 Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549 Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414 MENS LHM, 1997, 1997 C IMPL AUD PROS Mens LHM, 2003, AUDIOL NEURO-OTOL, V8, P166, DOI 10.1159/000069477 Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d Miller CA, 2003, HEARING RES, V175, P200 Morris DJ, 2000, JARO, V1, P211, DOI 10.1007/s101620010022 PFINGST BE, 2009, 32 ANN MIDW RES M AS, V32, P330 Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6 RATTAY F, 1989, IEEE T BIO-MED ENG, V36, P676, DOI 10.1109/10.32099 van der Beek FB, 2005, EAR HEARING, V26, P577, DOI 10.1097/01.aud.0000188116.30954.21 Vanpoucke F, 2004, OTOL NEUROTOL, V25, P282, DOI 10.1097/00129492-200405000-00014 Vanpoucke FJ, 2004, IEEE T BIO-MED ENG, V51, P2174, DOI 10.1109/TBME.2004.836518 VONCOMPERNOLLE D, 1985, SPEECH PROCESSING ST Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005 NR 30 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 28 EP 38 DI 10.1016/j.heares.2010.10.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200006 PM 20946945 ER PT J AU Sevy, ABG Bortfeld, H Huppert, TJ Beauchamp, MS Tonini, RE Oghalai, JS AF Sevy, Alexander B. G. Bortfeld, Heather Huppert, Theodore J. Beauchamp, Michael S. Tonini, Ross E. Oghalai, John S. TI Neuroimaging with near-infrared spectroscopy demonstrates speech-evoked activity in the auditory cortex of deaf children following cochlear implantation SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; MULTISENSORY INTEGRATION; LANGUAGE LATERALIZATION; CORTICAL REORGANIZATION; ELECTRICAL-STIMULATION; FUNCTIONAL MRI; ACTIVATION; INFANTS; BRAIN; FMRI AB Cochlear implants (CI) are commonly used to treat deafness in young children. While many factors influence the ability of a deaf child who is hearing through a CI to develop speech and language skills, an important factor is that the CI has to stimulate the auditory cortex. Obtaining behavioral measurements from young children with CIs can often be unreliable. While a variety of noninvasive techniques can be used for detecting cortical activity in response to auditory stimuli, many have critical limitations when applied to the pediatric CI population. We tested the ability of near-infrared spectroscopy (NIRS) to detect cortical responses to speech stimuli in pediatric CI users. Neuronal activity leads to changes in blood oxy-and deoxy-hemoglobin concentrations that can be detected by measuring the transmission of near-infrared light through the tissue. To verify the efficacy of NIRS, we first compared auditory cortex responses measured with NIRS and fMRI in normal-hearing adults. We then examined four different participant cohorts with NIRS alone. Speech-evoked cortical activity was observed in 100% of normal-hearing adults (11 of 11), 82% of normal-hearing children (9 of 11), 78% of deaf children who have used a CI > 4 months (28 of 36), and 78% of deaf children who completed NIRS testing on the day of CI initial activation (7 of 9). Therefore, NIRS can measure cortical responses in pediatric CI users, and has the potential to be a powerful adjunct to current CI assessment tools. (C) 2010 Elsevier B.V. All rights reserved. C1 [Oghalai, John S.] Stanford Univ, Dept Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA. [Sevy, Alexander B. G.; Oghalai, John S.] Baylor Coll Med, Bobby R Alford Dept Otolaryngol Head & Neck Surg, Houston, TX 77030 USA. [Bortfeld, Heather] Univ Connecticut, Dept Psychol, Storrs, CT USA. [Bortfeld, Heather] Haskins Labs Inc, New Haven, CT 06511 USA. [Huppert, Theodore J.] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15260 USA. [Beauchamp, Michael S.] Univ Texas Hlth Sci Ctr Houston, Dept Neurobiol & Anat, Houston, TX USA. [Tonini, Ross E.; Oghalai, John S.] Texas Childrens Hosp, Hearing Ctr, Houston, TX 77030 USA. [Oghalai, John S.] Rice Univ, Dept Bioengn, Houston, TX USA. [Tonini, Ross E.] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA. RP Oghalai, JS (reprint author), Stanford Univ, Dept Otolaryngol Head & Neck Surg, 801 Welch Rd, Stanford, CA 94305 USA. EM joghalai@ohns.stanford.edu FU Dana Foundation; NIH-NIDCD [R01 DC010075, R56 DC010164, T32 DC007367]; NSF [0642532]; NIH [R01 NS065395] FX This research was funded by The Dana Foundation (to JSO and HB), NIH-NIDCD R01 DC010075 and R56 DC010164 (to JSO), NSF Cognitive Neuroscience Initiative Research Grant 0642532 and NIH R01 NS065395 (to MSB). AS was supported by NIH-NIDCD T32 DC007367. CR Abdelnour AF, 2009, NEUROIMAGE, V46, P133, DOI 10.1016/j.neuroimage.2009.01.033 Argall BD, 2006, HUM BRAIN MAPP, V27, P14, DOI 10.1002/hbm.20158 Beauchamp MS, 2004, NAT NEUROSCI, V7, P1190, DOI 10.1038/nn1333 Beauchamp MS, 2005, NEUROINFORMATICS, V3, P93, DOI 10.1385/NI:03:02:93 Beauchamp MS, 2007, J NEUROSCI, V27, P8261, DOI 10.1523/JNEUROSCI.0754-07.2007 Beauchamp MS, 2008, NEUROIMAGE, V41, P1011, DOI 10.1016/j.neuroimage.2008.03.015 Beauchamp Michael S, 2010, Front Syst Neurosci, V4, P25, DOI 10.3389/fnsys.2010.00025 Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078 Berthezene Y, 1997, INVEST RADIOL, V32, P297, DOI 10.1097/00004424-199705000-00007 Bhasin Tanya Karapurkar, 2006, Morbidity and Mortality Weekly Report, V55, P1 Boas DA, 2004, NEUROIMAGE, V23, pS275, DOI 10.1016/j.neuroimage.2004.07.011 Bortfeld H, 2007, NEUROIMAGE, V34, P407, DOI 10.1016/j.neuroimage.2006.08.010 Bortfeld H, 2009, DEV NEUROPSYCHOL, V34, P52, DOI 10.1080/87565640802564481 Coez A, 2008, J NUCL MED, V49, P60, DOI 10.2967/jnumed.107.044545 Cope M, 1988, Adv Exp Med Biol, V222, P183 Cox RW, 1996, COMPUT BIOMED RES, V29, P162, DOI 10.1006/cbmr.1996.0014 Cristobal R, 2008, ARCH DIS CHILD-FETAL, V93, P1462, DOI 10.1136/adc.2007.124214 Debener S, 2008, PSYCHOPHYSIOLOGY, V45, P20, DOI 10.1111/j.1469-8986.2007.00610.x Dehghani H, 2003, PHYS MED BIOL, V48, P2713, DOI 10.1088/0031-9155/48/16/310 Deneuve S, 2008, OTOL NEUROTOL, V29, P789, DOI 10.1097/MAO.0b013e3181825695 Fischl B, 1999, NEUROIMAGE, V9, P195, DOI 10.1006/nimg.1998.0396 Friston KJ, 2009, SCIENCE, V326, P399, DOI 10.1126/science.1174521 Gilley PM, 2006, CLIN NEUROPHYSIOL, V117, P1772, DOI 10.1016/j.clinph.2006.04.018 Gilley PM, 2008, BRAIN RES, V1239, P56, DOI 10.1016/j.brainres.2008.08.026 Giraud AL, 2000, BRAIN, V123, P1391, DOI 10.1093/brain/123.7.1391 Holland SK, 2007, INT J AUDIOL, V46, P533, DOI 10.1080/14992020701448994 Huppert TJ, 2009, APPL OPTICS, V48, pD280, DOI 10.1364/AO.48.00D280 Huppert TJ, 2006, J BIOMED OPT, V11, DOI 10.1117/1.2400910 Huppert TJ, 2009, HUM BRAIN MAPP, V30, P1548, DOI 10.1002/hbm.20628 Katzenstein JM, 2009, NEUROCASE, V15, P97, DOI 10.1080/13554790802631910 Knecht S, 1998, STROKE, V29, P1155 Kocsis L, 2006, PHYS MED BIOL, V51, pN91, DOI 10.1088/0031-9155/51/5/N02 Kral A, 2009, J NEUROSCI, V29, P811, DOI 10.1523/JNEUROSCI.2424-08.2009 Kushalnagar P, 2007, J DEAF STUD DEAF EDU, V12, P335, DOI 10.1093/deafed/enm006 Lazeyras F, 2002, NEUROIMAGE, V17, P1010, DOI 10.1006/nimg.2002.1240 Lin JW, 2010, LARYNGOSCOPE, V120, P399, DOI 10.1002/lary.20668 Lloyd-Fox S, 2010, NEUROSCI BIOBEHAV R, V34, P269, DOI 10.1016/j.neubiorev.2009.07.008 MIYAMOTO RT, 1994, LARYNGOSCOPE, V104, P1120 Mortensen MV, 2006, NEUROIMAGE, V31, P842, DOI 10.1016/j.neuroimage.2005.12.020 Neville H, 2002, PROG BRAIN RES, V138, P177, DOI 10.1016/S0079-6123(02)38078-6 Niedermeyer E, 2004, ELECTROENCEPHALOGRAP Oghalai John S, 2009, Cochlear Implants Int, V10, P1, DOI 10.1002/cii.372 Okada E, 2003, APPL OPTICS, V42, P2915, DOI 10.1364/AO.42.002915 Patel AM, 2007, ARCH OTOLARYNGOL, V133, P677, DOI 10.1001/archotol.133.7.677 Patterson RD, 2008, PHILOS T R SOC B, V363, P1023, DOI 10.1098/rstb.2007.2157 Pierson SK, 2007, LARYNGOSCOPE, V117, P1661, DOI 10.1097/MLG.0b013e3180ca7834 Ponton CW, 1996, EAR HEARING, V17, P430, DOI 10.1097/00003446-199610000-00009 Schmithorst VJ, 2005, NEUROREPORT, V16, P463, DOI 10.1097/00001756-200504040-00009 Seghier ML, 2005, CEREB CORTEX, V15, P40, DOI 10.1093/cercor/bhh106 Sharma A, 2009, J COMMUN DISORD, V42, P272, DOI 10.1016/j.jcomdis.2009.03.003 Sharp DJ, 2004, CEREB CORTEX, V14, P1, DOI 10.1093/cercor/bhg086 STRELNIKOV K, 2009, CEREB CORTEX Taga G, 2003, P NATL ACAD SCI USA, V100, P10722, DOI 10.1073/pnas.1932552100 Thai-Van H, 2010, ACTA OTO-LARYNGOL, V130, P333, DOI 10.3109/00016480903258024 Upadhyay J, 2008, J NEUROSCI, V28, P3341, DOI 10.1523/JNEUROSCI.4434-07.2008 Vincent C, 2008, EUR ARCH OTO-RHINO-L, V265, P1043, DOI 10.1007/s00405-007-0576-6 Wilcox T, 2009, NEUROPSYCHOLOGIA, V47, P657, DOI 10.1016/j.neuropsychologia.2008.11.014 Wilcox T, 2008, DEVELOPMENTAL SCI, V11, P361, DOI 10.1111/j.1467-7687.2008.00681.x Witte RJ, 2003, RADIOGRAPHICS, V23, P1185, DOI 10.1148/rg.235025046 Wong D, 2002, HEARING RES, V166, P9, DOI 10.1016/S0378-5955(02)00311-8 Wong D, 1999, HEARING RES, V132, P34, DOI 10.1016/S0378-5955(99)00028-3 NR 61 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 39 EP 47 DI 10.1016/j.heares.2010.09.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200007 PM 20888894 ER PT J AU Horner, KC Troadec, JD Blanchard, MP Dallaporta, M Pio, J AF Horner, Kathleen C. Troadec, Jean-Denis Blanchard, Marie-Pierre Dallaporta, Michel Pio, Juliette TI Receptors for leptin in the otic labyrinth and the cochlear-vestibular nerve of guinea pig are modified in hormone-induced anorexia SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; BONE-FORMATION; AUTOIMMUNE ENCEPHALOMYELITIS; MENIERES-DISEASE; MESSENGER-RNA; RAT-BRAIN; IN-VIVO; GENE-EXPRESSION; CHOROID-PLEXUS; KNOCKOUT MICE AB Metabolic syndromic inner ear pathology is a recognized condition in clinical practice but the possible causes remain controversial. We have previously reported that chronically-implanted estrogen implants in guinea pig results in hyperprolactinemia and hearing loss together with otic bone dysmorphology. The animals also present with anorexia. The hormone leptin has major roles in the regulation of satiety as well as bone metabolism and so we hypothesized that leptin might contribute to pathology of the otic labyrinth. We employed immunohistochemistry to investigate leptin receptor (ObR) expression. In control animals, ObR immunolabeling was not detected in the bone of the otic capsule but immunolabeling was observed in the cochlear-vestibular nerve. The labeling was associated with the astrocytic glial dome area, which marks the transition between central and peripheral parts of the nerve. In estrogen-treated animals, positive-ObR immunolabeling was observed in osteoblasts in new bone of the otic capsule and the ObR labeling was reduced in the cochlear-vestibular nerve compared to controls. The data provide evidence that leptin may target the labyrinth - affecting the bone and the nerve - and so could contribute to ongoing protection of the inner ear. Leptin disturbance might contribute to metabolic syndromes involving the audiovestibular system. (C) 2010 Elsevier B.V. All rights reserved. C1 [Horner, Kathleen C.; Troadec, Jean-Denis; Dallaporta, Michel; Pio, Juliette] Univ Paul Cezanne, Dept Physiol Neurovegetat, Fac Sci & Tech, CRN2M, F-13397 Marseille 20, France. [Blanchard, Marie-Pierre] IFR Jean Roche, Ctr Microscopie & Imagerie, Marseille 20, France. RP Horner, KC (reprint author), Univ Paul Cezanne, Dept Physiol Neurovegetat, Fac Sci & Tech, CRN2M, Ave Escadrille Normandie Niemen, F-13397 Marseille 20, France. EM kathleen.horner@univ-cezanne.fr CR Ahima RS, 1996, NATURE, V382, P250, DOI 10.1038/382250a0 Ahima RS, 1999, ENDOCRINOLOGY, V140, P2755, DOI 10.1210/en.140.6.2755 Ahima RS, 2000, FRONT NEUROENDOCRIN, V21, P263, DOI 10.1006/frne.2000.0197 Ahima RS, 2000, ANNU REV PHYSIOL, V62, P413, DOI 10.1146/annurev.physiol.62.1.413 Bennett PA, 1998, NEUROENDOCRINOLOGY, V67, P29, DOI 10.1159/000054295 Bjorbaek C, 1998, ENDOCRINOLOGY, V139, P3485, DOI 10.1210/en.139.8.3485 Boyle WJ, 2003, NATURE, V423, P337, DOI 10.1038/nature01658 Bray GA, 1998, RECENT PROG HORM RES, V53, P95 Burguera B, 2001, ENDOCRINOLOGY, V142, P3546, DOI 10.1210/en.142.8.3546 Chauveau C, 2008, J RECEPT SIG TRANSD, V28, P347, DOI 10.1080/10799890802239762 Clement-Lacroix P, 1999, ENDOCRINOLOGY, V140, P96, DOI 10.1210/en.140.1.96 Cornish J, 2002, J ENDOCRINOL, V175, P405, DOI 10.1677/joe.0.1750405 Dallaporta M, 2009, J NEUROENDOCRINOL, V21, P57, DOI 10.1111/j.1365-2826.2008.01799.x DELANEY AJ, 1981, J NUTR, V111, P746 Del Bigio Marc R., 2002, P341 De Rosa V, 2006, J CLIN INVEST, V116, P447, DOI 10.1172/JCI26523 Devos R, 1996, P NATL ACAD SCI USA, V93, P5668, DOI 10.1073/pnas.93.11.5668 Ducy P, 2000, CELL, V100, P197, DOI 10.1016/S0092-8674(00)81558-5 Elefteriou F, 2005, NATURE, V434, P514, DOI 10.1038/nature03398 Elmquist JK, 1998, J COMP NEUROL, V395, P535 EscobarMorreale HF, 1997, ENDOCRINOLOGY, V138, P4485, DOI 10.1210/en.138.10.4485 Flier JS, 2000, J CLIN INVEST, V105, P859, DOI 10.1172/JCI9725 FRAHER JP, 1987, J ANAT, V155, P109 Freemark M, 2001, ENDOCRINOLOGY, V142, P532, DOI 10.1210/en.142.2.532 Grill HJ, 2002, ENDOCRINOLOGY, V143, P239, DOI 10.1210/en.143.1.239 GUSSEN R, 1974, J LARYNGOL OTOL, V88, P523, DOI 10.1017/S0022215100079020 Hamrick MW, 2005, J BONE MINER RES, V20, P994, DOI 10.1359/JBMR.050103 Henderson DC, 2008, J CLIN PSYCHIAT, V69, P32 Hoggard N, 1997, P NATL ACAD SCI USA, V94, P11073, DOI 10.1073/pnas.94.20.11073 Hoggard N, 2000, BRIT J NUTR, V83, P317 Horner KC, 2009, HEARING RES, V252, P56, DOI 10.1016/j.heares.2008.12.004 Horner KC, 2007, AM J PHYSIOL-ENDOC M, V293, pE1224, DOI 10.1152/ajpendo.00279.2007 Horner KC, 2002, NEUROPSYCHOPHARMACOL, V26, P135, DOI 10.1016/S0893-133X(01)00356-6 Horner KC, 2009, NEUROBIOL DIS, V35, P201, DOI 10.1016/j.nbd.2009.04.008 Hsuchou Hung, 2009, Peptides, V30, P2275, DOI 10.1016/j.peptides.2009.08.023 Kanzaki S, 2006, BONE, V39, P414, DOI 10.1016/j.bone.2006.01.155 Karsenty G, 2006, CELL METAB, V4, P341, DOI 10.1016/j.cmet.2006.10.008 KINNEY SE, 1980, OTOLARYNG HEAD NECK, V88, P594 Knipper M, 1998, DEVELOPMENT, V125, P3709 Komori T, 2006, NEUROSCIENCE, V139, P1107, DOI 10.1016/j.neuroscience.2005.12.066 LANSER MJ, 1992, OTOLARYNG CLIN N AM, V25, P499 Lautermann J, 1995, LARYNGO RHINO OTOL, V74, P724, DOI 10.1055/s-2007-997833 Lee HS, 2008, CLIN EXP OTORHINOLAR, V1, P211, DOI 10.3342/ceo.2008.1.4.211 Lee YJ, 2002, FEBS LETT, V528, P43, DOI 10.1016/S0014-5793(02)02889-2 Lynn RB, 1996, BIOCHEM BIOPH RES CO, V219, P884, DOI 10.1006/bbrc.1996.0328 Margetic S, 2002, INT J OBESITY, V26, P1407, DOI 10.1038/sj.ijo.0802142 Matarese G, 2001, J IMMUNOL, V166, P5909 Matarese G, 2005, P NATL ACAD SCI USA, V102, P5150, DOI 10.1073/pnas.0408995102 Matarese G, 2001, EUR J IMMUNOL, V31, P1324, DOI 10.1002/1521-4141(200105)31:5<1324::AID-IMMU1324>3.0.CO;2-Y Matsuda M, 1996, LIFE SCI, V58, P1171, DOI 10.1016/0024-3205(96)00075-6 Medić-Stojanoska Milica, 2009, Med Pregl, V62 Suppl 3, P91 Meli R, 2004, ENDOCRINOLOGY, V145, P3115, DOI 10.1210/en.2004-0129 Mellanby E, 1938, J PHYSIOL-LONDON, V94, P380 Meltser I, 2008, J CLIN INVEST, V118, P1563, DOI 10.1172/JCI32796 OPPENHEIM DS, 1989, ANN INTERN MED, V111, P288 Pacifici R, 2010, ARCH BIOCHEM BIOPHYS, V503, P41, DOI 10.1016/j.abb.2010.05.027 Pan WH, 2008, ENDOCRINOLOGY, V149, P2798, DOI 10.1210/en.2007-1673 PULEC JL, 1972, LARYNGOSCOPE, V82, P1703, DOI 10.1288/00005537-197209000-00011 Reseland JE, 2001, J BONE MINER RES, V16, P1426, DOI 10.1359/jbmr.2001.16.8.1426 ROSS MD, 1971, AM J ANAT, V130, P73, DOI 10.1002/aja.1001300106 RYBAK LP, 1995, OTOLARYNG HEAD NECK, V112, P128, DOI 10.1016/S0194-5998(95)70312-8 Sherman BE, 2001, OTOL NEUROTOL, V22, P237, DOI 10.1097/00129492-200103000-00021 Sherman BE, 1999, ANN OTO RHINOL LARYN, V108, P1078 Shi Y, 2008, P NATL ACAD SCI USA, V105, P20529, DOI 10.1073/pnas.0808701106 Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011 Signore AP, 2008, J NEUROCHEM, V106, P1977, DOI 10.1111/j.1471-4159.2008.05457.x SPENCER JT, 1981, SOUTHERN MED J, V74, P1194 Spencer JT, 2007, ENT-EAR NOSE THROAT, V86, P314 Stankovic KM, 2010, HEARING RES, V265, P83, DOI 10.1016/j.heares.2010.02.006 Steppan CM, 2000, REGUL PEPTIDES, V92, P73, DOI 10.1016/S0167-0115(00)00152-X Takeda S, 2008, BONE, V42, P837, DOI 10.1016/j.bone.2008.01.005 Takeda S, 2002, CELL, V111, P305, DOI 10.1016/S0092-8674(02)01049-8 Thomas T, 1999, ENDOCRINOLOGY, V140, P1630, DOI 10.1210/en.140.4.1630 Thomas T, 2004, CURR OPIN PHARMACOL, V4, P295, DOI 10.1016/j.coph.2004.01.009 Torossian F, 1986, Monogr Atheroscler, V14, P222 UR E, 2000, NEUROENDOCRINOLOGY L Versini A, 2010, NEUROPSYCHOPHARMACOL, V35, P1818, DOI 10.1038/npp.2010.49 Young JK, 2010, NEUROSCI BIOBEHAV R, V34, P1195, DOI 10.1016/j.neubiorev.2010.01.015 Zehnder AF, 2005, LARYNGOSCOPE, V115, P172, DOI 10.1097/01.mlg.0000150702.28451.35 Zehnder AF, 2006, LARYNGOSCOPE, V116, P201, DOI 10.1097/01.mlg.0000191466.09210.9a NR 80 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 48 EP 55 DI 10.1016/j.heares.2010.09.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200008 PM 20875846 ER PT J AU McFadden, D Hsieh, MD Garcia-Sierra, A Champlin, CA AF McFadden, Dennis Hsieh, Michelle D. Garcia-Sierra, Adrian Champlin, Craig A. TI Differences by sex, ear, and sexual orientation in the time intervals between successive peaks in auditory evoked potentials SO HEARING RESEARCH LA English DT Article ID BRAIN-STEM RESPONSE; OTOACOUSTIC EMISSIONS; TRANSMISSION TIME; HEAD SIZE; LATENCY; AGE; REPLACEMENT; GENDER; AUTISM; WOMEN AB Auditory evoked potential (AEP) data from two studies originally designed for other purposes were reanalyzed. The auditory brainstem response (ABR), middle-latency response (MLR), and long-latency response (LLR) were measured. The latencies to each of several peaks were measured for each subject for each ear of click presentation, and the time intervals between successive peaks were calculated. Of interest were differences in interpeak intervals between the sexes, between people of differing sexual orientations, and between the two ears of stimulation. Most of the differences obtained were small. The largest sex differences were for interval I -> V in the ABR and interval N1 -> N2 of the LLR (effect sizes > 0.6). The largest differences between heterosexuals and nonheterosexuals were for the latency to Wave I in both sexes, for the interval Na -> Nb in females, and for intervals V -> Na and Nb -> N1 in males (effect sizes > 0.3). The largest difference for ear stimulated was for interval N1 -> N2 in heterosexual females (effect size similar to 0.5). No substantial differences were found in the AEP intervals between women using, and not using, oral contraceptives. Left/right correlations for the interpeak intervals were mostly between about 0.4 and 0.6. Correlations between the ipsilateral intervals were small; i.e., interval length early in the AEP series was not highly predictive of interval length later in the series. Interpeak intervals appear generally less informative than raw latencies about differences by sex and by sexual orientation. (C) 2010 Elsevier B.V. All rights reserved. C1 [McFadden, Dennis] Univ Texas Austin, Dept Psychol, Austin, TX 78712 USA. [McFadden, Dennis; Champlin, Craig A.] Univ Texas Austin, Ctr Perceptual Syst, Austin, TX 78712 USA. [Hsieh, Michelle D.; Champlin, Craig A.] Univ Texas Austin, Dept Commun Sci & Disorders, Austin, TX 78712 USA. [Garcia-Sierra, Adrian] Univ Washington, Inst Learning & Brain Sci, Seattle, WA 98195 USA. RP McFadden, D (reprint author), Univ Texas Austin, Dept Psychol, Seay Bldg,1 Univ Stn A8000, Austin, TX 78712 USA. EM mcfadden@psy.utexas.edu; michellehsieh@mail.utexas.edu; gasa@u.washington.edu; champlin@austin.utexas.edu FU National Institute on Deafness and other Communication Disorders (NIDCD) [RO1 DC000153] FX This work was supported by a research grant awarded to DM by the National Institute on Deafness and other Communication Disorders (NIDCD; RO1 DC000153). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDCD or the National Institutes of Health. E.G. Pasanen helped with the resampling, M.M. Maloney helped with the figures, and Diana Simmons and Lars Strother helped with early data analysis. CR Beagley H A, 1978, Br J Audiol, V12, P69, DOI 10.3109/03005367809078858 Burkard R.F., 2007, AUDITORY EVOKED POTE, P229 Caruso S, 2000, MENOPAUSE, V7, P178, DOI 10.1097/00042192-200007030-00008 COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 COLEMAN JR, 1994, HEARING RES, V80, P209, DOI 10.1016/0378-5955(94)90112-0 COWELL PE, 1994, J NEUROSCI, V14, P4748 Davis H, 1976, Ann Otol Rhinol Laryngol, V85 SUPPL 28, P1 DAVIS H, 1966, J ACOUST SOC AM, V39, P109, DOI 10.1121/1.1909858 DEMPSEY JJ, 1986, AUDIOLOGY, V25, P258 DON M, 1993, J ACOUST SOC AM, V94, P2135, DOI 10.1121/1.407485 DURRANT JD, 1990, EAR HEARING, V11, P215, DOI 10.1097/00003446-199006000-00009 EDWARDS RM, 1983, INT J NEUROSCI, V18, P59, DOI 10.3109/00207458308985878 ELBERLING C, 1987, SCAND AUDIOL, V16, P49, DOI 10.3109/01050398709042155 ELKINDHIRSCH KE, 1992, HEARING RES, V60, P143, DOI 10.1016/0378-5955(92)90016-G ELKINDHIRSCH KE, 1994, OTOLARYNG HEAD NECK, V110, P46, DOI 10.1016/S0194-5998(94)70791-X ELKINDHIRSCH KE, 1992, HEARING RES, V64, P93, DOI 10.1016/0378-5955(92)90171-I FABIANI M, 1979, ELECTROEN CLIN NEURO, V47, P483, DOI 10.1016/0013-4694(79)90164-0 GORGA MP, 1988, J SPEECH HEAR RES, V31, P87 GRIFFITHS SK, 1989, EAR HEARING, V10, P299, DOI 10.1097/00003446-198910000-00005 GRILLON C, 1989, J AUTISM DEV DISORD, V19, P255, DOI 10.1007/BF02211845 Hall J. W., 2007, NEW HDB AUDITORY EVO JERGER J, 1980, ARCH OTOLARYNGOL, V106, P387 JIRSA RE, 1990, EAR HEARING, V11, P222, DOI 10.1097/00003446-199006000-00010 McFadden D, 2009, HEARING RES, V252, P37, DOI 10.1016/j.heares.2009.01.002 McFadden D, 1999, J ACOUST SOC AM, V105, P2403, DOI 10.1121/1.426845 McFadden D, 1998, P NATL ACAD SCI USA, V95, P2709, DOI 10.1073/pnas.95.5.2709 McFadden D, 2000, JARO, V1, P89, DOI 10.1007/s101620010008 McFadden D, 2000, HEARING RES, V142, P23, DOI 10.1016/S0378-5955(00)00002-2 McFadden D, 2008, PERSPECT PSYCHOL SCI, V3, P309, DOI 10.1111/j.1745-6924.2008.00082.x McFadden D., 2002, ARCH SEX BEHAV, V31, P93 Moller A, 2007, AUDITORY EVOKED POTE, P336 Moller Aage R., 1998, Seminars in Hearing, V19, P11, DOI 10.1055/s-0028-1082955 O'Beirne GA, 1999, HEARING RES, V138, P115, DOI 10.1016/S0378-5955(99)00159-8 OZDAMAR O, 1983, AUDIOLOGY, V22, P34 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 REITE M, 1995, ARCH SEX BEHAV, V24, P585, DOI 10.1007/BF01542181 Reite M, 1995, NEUROPSYCHOLOGIA, V33, P1607, DOI 10.1016/0028-3932(95)00112-3 Rosenhall U, 2003, EAR HEARING, V24, P206, DOI 10.1097/01.AUD.0000069326.11466.7E ROSENHAMER HJ, 1980, SCAND AUDIOL, V9, P93, DOI 10.3109/01050398009076342 Sininger YS, 1998, HEARING RES, V126, P58, DOI 10.1016/S0378-5955(98)00152-X SKOFF BF, 1980, PSYCHIAT RES, V2, P157, DOI 10.1016/0165-1781(80)90072-4 STOCKARD JE, 1979, ARCH NEUROL-CHICAGO, V36, P823 STOCKARD J J, 1978, American Journal of EEG Technology, V18, P177 TRUNE DR, 1988, HEARING RES, V32, P165, DOI 10.1016/0378-5955(88)90088-3 Watson DR, 1996, AUDIOLOGY, V35, P246 NR 45 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 56 EP 64 DI 10.1016/j.heares.2010.09.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200009 PM 20875848 ER PT J AU Bloch, SL Sorensen, MS AF Bloch, Sune Land Sorensen, Mads Solvsten TI The viability and spatial distribution of osteocytes in the human labyrinthine capsule: A quantitative study using vector-based stereology SO HEARING RESEARCH LA English DT Article ID REFERENT BONE TURNOVER; OTIC CAPSULE; HEARING-LOSS; OSTEOPROTEGERIN; OTOSCLEROSIS; METABOLISM; REPAIR AB Background: Bone remodeling is highly inhibited around the labyrinthine space, most likely by the action of the anti-resorptive cytokine osteoprotegerin (OPG). Inner ear OPG may enter the bony otic capsule through the lacuno-canalicular porosity (LCP). The aim of the study was to investigate the patency of this extracellular signaling pathway by exploring the viability, age dependency and spatial distribution of capsular osteocytes. Methods: Sixty-five bulk-stained undecalcified human temporal bones were selected to span the ages from 30th gestational week to 95 years. Osteocytes within 1000 pm wide iso-concentric perilabyrinthine zones of bone were identified by 3-D vector calculations and the number of cells per unit of bone volume estimated within each zone by optical dissectors. Results: From a high initial numerical density and a centripetal distribution of viable osteocytes, the density declined over time. This effect was higher towards the inner ear space and shifted viable osteocytes into to a centrifugal distribution with age. Contrary to this, non-viable osteocytes accumulated centripetally around the inner ear space and accounted for 50% of all lacunae at 80 years of age. Nonviable osteocytes were heterogeneously distributed forming islets of varying size surrounded by the intact and viable parts of the LCP. Conclusion: The simultaneous presence of high numbers of non-viable osteocytes within a dense network of viable osteocytes is unique for the bony otic capsule. Viable osteocytes may sustain a life-long anti-resorptive signaling pathway for inner ear OPG. Clustering of non-viable osteocytes may locally impede the effect of OPG leaving the ghost regions unprotected against focal bone remodeling, as in human otosclerosis. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bloch, Sune Land; Sorensen, Mads Solvsten] Univ Copenhagen, Rigshosp, Dept Otorhinolaryngol, DK-2100 Copenhagen, Denmark. RP Bloch, SL (reprint author), Univ Copenhagen, Rigshosp, Dept Otorhinolaryngol, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. EM sunebloch@hotmail.com FU Oticon foundation FX The authors thank the Oticon foundation for supporting this study. CR Bloch SL, 2010, ACTA OTO-LARYNGOL, V130, P429, DOI 10.3109/00016480903253603 Bloch SL, 2010, ACTA OTO-LARYNGOL, V130, P532, DOI 10.3109/00016480903317465 Eckert-Mobius A, 1926, HDB SPEZIELLEN PATHO Frisch T, 2000, ANN OTO RHINOL LARYN, V109, P33 Frisch T, 1998, BONE, V22, P677, DOI 10.1016/S8756-3282(98)00050-7 FROST HM, 1960, J BONE JOINT SURG AM, V42, P138 Gundersen HJG, 1999, J MICROSC-OXFORD, V193, P199, DOI 10.1046/j.1365-2818.1999.00457.x GUNDERSEN HJG, 1986, J MICROSC-OXFORD, V143, P3 Holmbeck K, 2005, J CELL SCI, V118, P147, DOI 10.1242/jcs.01581 Horner KC, 2009, HEARING RES, V252, P56, DOI 10.1016/j.heares.2008.12.004 Inoue K, 2006, J BIOL CHEM, V281, P33814, DOI 10.1074/jbc.M607290200 KAKIZAKI I, 1971, ARCHIV OTOLARYNGOL, V94, P139 Kanzaki S, 2006, BONE, V39, P414, DOI 10.1016/j.bone.2006.01.155 MCKENNA MJ, 1986, AM J OTOL, V7, P25 Nager F, 1947, MED EAR, P237 Niedermeyer HP, 2007, ADV OTO-RHINO-LARYNG, V65, P86, DOI 10.1159/000098676 SORENSEN MS, 2006, REGISTRY, V13, P2 SORENSEN MS, 1994, ACTA OTO-LARYNGOL, P1 SORENSEN MS, 1992, ACTA OTO-LARYNGOL, V112, P968, DOI 10.3109/00016489209137497 Tate MLK, 2003, J BIOMECH, V36, P1409, DOI 10.1016/S0021-9290(03)00123-4 WEIBEL ER, 1988, SCI FORM, P1 Zehnder AF, 2005, LARYNGOSCOPE, V115, P172, DOI 10.1097/01.mlg.0000150702.28451.35 Zehnder AF, 2006, LARYNGOSCOPE, V116, P201, DOI 10.1097/01.mlg.0000191466.09210.9a NR 23 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 65 EP 70 DI 10.1016/j.heares.2010.09.007 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200010 PM 20875847 ER PT J AU Brozoski, TJ Caspary, DM Bauer, CA Richardson, BD AF Brozoski, Thomas J. Caspary, Donald M. Bauer, Carol A. Richardson, Benjamin D. TI The effect of supplemental dietary Taurine on Tinnitus and auditory discrimination in an animal model SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; BLOOD-BRAIN-BARRIER; EXTRASYNAPTIC GABA(A) RECEPTORS; MODULATES CALCIUM INFLUX; RAT INFERIOR COLLICULUS; NECROSIS-FACTOR-ALPHA; HIPPOCAMPAL-NEURONS; GLYCINE RECEPTORS; TONIC INHIBITION; CHOROID-PLEXUS AB Loss of central inhibition has been hypothesized to underpin tinnitus and impact auditory acuity. Taurine, a partial agonist at inhibitory glycine and gamma-amino butyric acid receptors, was added to the daily diet of rats to examine its effects on chronic tinnitus and normal auditory discrimination. Eight rats were unilaterally exposed once to a loud sound to induce tinnitus. The rats were trained and tested in an operant task shown to be sensitive to tinnitus. An equivalent unexposed control group was run in parallel. Months after exposure, 6 of the exposed rats showed significant evidence of chronic tinnitus. Two concentrations of taurine in drinking water were given over several weeks (attaining average daily doses of 67 mg/kg and 294 mg/kg). Water consumption was unaffected. Three main effects were obtained: (1) The high taurine dose significantly attenuated tinnitus, which returned to near pretreatment levels following washout. (2) Auditory discrimination was significantly improved in unexposed control rats at both doses. (3) As indicated by lever pressing, taurine at both doses had a significant group-equivalent stimulant effect. These results are consistent with the hypothesis that taurine attenuates tinnitus and improves auditory discrimination by increasing inhibitory tone and decreasing noise in the auditory pathway. (C) 2010 Elsevier B.V. All rights reserved. C1 [Brozoski, Thomas J.; Bauer, Carol A.] So Illinois Univ, Sch Med, Div Otolaryngol Head & Neck Surg, Springfield, IL 62794 USA. [Caspary, Donald M.; Richardson, Benjamin D.] So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. RP Brozoski, TJ (reprint author), So Illinois Univ, Sch Med, Div Otolaryngol Head & Neck Surg, 801 N Rutledge St,Rm 3205,POB 19629, Springfield, IL 62794 USA. EM tbrozoski@siumed.edu; dcaspary@siumed.edu; cbauer@siumed.edu; brichardson@siumed.edu RI Richardson, Ben/B-2922-2012 FU NIH [1RO1DC009669-01] FX Supported by NIH grant 1RO1DC009669-01 CR Aerts L, 2002, J PERINAT MED, V30, P281, DOI 10.1515/JPM.2002.040 Albrecht J, 2005, NEUROCHEM RES, V30, P1615, DOI 10.1007/s11064-005-8986-6 Atmaca G, 2004, YONSEI MED J, V45, P776 Bandyopadhyay S, 2007, J NEUROPHYSIOL, V98, P3505, DOI 10.1152/jn.00539.2007 Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699 Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 Bauer CA, 2001, JARO, V2, P54 Bauer CA, 2007, J NEUROSCI RES, V85, P1489, DOI 10.1002/jnr.21259 Belelli D, 2009, J NEUROSCI, V29, P12757, DOI 10.1523/JNEUROSCI.3340-09.2009 Birdsall T C, 1998, Altern Med Rev, V3, P128 Brickley SG, 1996, J PHYSIOL-LONDON, V497, P753 Brozoski Thomas D., 2008, Seminars in Hearing, V29, P242, DOI 10.1055/s-0028-1082031 Brozoski TJ, 2007, HEARING RES, V228, P168, DOI 10.1016/j.heares.2007.02.003 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Brozoski TJ, 2007, JARO-J ASSOC RES OTO, V8, P105, DOI 10.1007/s10162-006-0067-2 BUREAU MH, 1993, J NEUROCHEM, V61, P1479, DOI 10.1111/j.1471-4159.1993.tb13643.x Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 CASPARY DM, 2007, SOC NEUR ABSTR Chandra D, 2006, P NATL ACAD SCI USA, V103, P15230, DOI 10.1073/pnas.0604304103 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 CHUNG SJ, 1994, BBA-BIOMEMBRANES, V1193, P10, DOI 10.1016/0005-2736(94)90326-3 CONTRERAS NEIR, 1979, EXP BRAIN RES, V36, P573 Cooper J C Jr, 1994, J Am Acad Audiol, V5, P37 Cope DW, 2005, J NEUROSCI, V25, P11553, DOI 10.1523/JNEUROSCI.3362-05.2005 Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 El Idrissi A, 2008, NEUROSCI LETT, V436, P19, DOI 10.1016/j.neulet.2008.02.070 ELIDRISSI A, 2009, ADV EXPT MED BIOL, P207 Fang YZ, 2002, NUTRITION, V18, P872, DOI 10.1016/S0899-9007(02)00916-4 Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006 Franks NP, 2008, NAT REV NEUROSCI, V9, P370, DOI 10.1038/nrn2372 Friauf E, 1997, J COMP NEUROL, V385, P117, DOI 10.1002/(SICI)1096-9861(19970818)385:1<117::AID-CNE7>3.0.CO;2-5 Frosini M, 2003, BRIT J PHARMACOL, V139, P487, DOI 10.1038/sj.bjp.0705274 Gleich O, 2003, NEUROREPORT, V14, P1877, DOI 10.1097/01.wnr.0000089569.45990.74 HARDING NJ, 1993, HEARING RES, V65, P211, DOI 10.1016/0378-5955(93)90214-L Herd MB, 2009, EUR J NEUROSCI, V29, P1177, DOI 10.1111/j.1460-9568.2009.06680.x Hoffmann EK, 2009, PHYSIOL REV, V89, P193, DOI 10.1152/physrev.00037.2007 Hughes LF, 2010, HEARING RES, V264, P79, DOI 10.1016/j.heares.2009.09.005 HUXTABLE RJ, 1992, PHYSIOL REV, V72, P101 Jammoul F, 2009, ANN NEUROL, V65, P98, DOI 10.1002/ana.21526 Jia F, 2005, J NEUROPHYSIOL, V94, P4491, DOI 10.1152/jn.00421.2005 Jia F, 2008, J NEUROSCI, V28, P106, DOI 10.1523/JNEUROSCI.3996-07.2008 Joksovic PM, 2009, J NEUROSCI, V29, P1434, DOI 10.1523/JNEUROSCI.5574-08.2009 Kaltenbach JA, 2007, PROG BRAIN RES, V166, P89, DOI 10.1016/S0079-6123(07)66009-9 Kang YS, 2002, J NEUROCHEM, V83, P1188, DOI 10.1046/j.1471-4159.2002.01223.x Kim JU, 2005, LARYNGOSCOPE, V115, P1996, DOI 10.1097/01.mlg.0000180173.81034.4d Larsen M, 1998, J NEUROSURG ANESTH, V10, P166, DOI 10.1097/00008506-199807000-00007 Lee NY, 2004, BRAIN RES, V1023, P141, DOI 10.1016/j.brainres.2004.07.033 Liu HY, 2006, NEUROSCI LETT, V399, P23, DOI 10.1016/j.neulet.2006.01.070 Liu HY, 2008, PHARMACOL REP, V60, P508 Nusser Z, 2002, J NEUROPHYSIOL, V87, P2624, DOI 10.1152/jn.00866.2001 Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001 Ohtsuki S, 2004, BIOL PHARM BULL, V27, P1489, DOI 10.1248/bpb.27.1489 Oja Simo S, 2007, Proc West Pharmacol Soc, V50, P8 Pacioretty L, 2001, AMINO ACIDS, V21, P417, DOI 10.1007/s007260170006 Ramanathan VK, 1997, PHARMACEUT RES, V14, P406, DOI 10.1023/A:1012074827388 RICHARDSON BD, 2009, SOC NEUR ABSTR Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Schatteman TA, 2008, NEUROSCIENCE, V154, P329, DOI 10.1016/j.neuroscience.2008.02.025 Sgaragli G, 1996, ADV EXP MED BIOL, V403, P527 SGARAGLI G, 1981, J PHARMACOL EXP THER, V219, P778 Stell BM, 2002, J NEUROSCI, V22 STURMAN JA, 1986, ANN NY ACAD SCI, V477, P196, DOI 10.1111/j.1749-6632.1986.tb40337.x STURMAN JA, 1986, J NUTR, V116, P655 Sur C, 1999, MOL PHARMACOL, V56, P110 Sved DW, 2007, AMINO ACIDS, V32, P459, DOI 10.1007/s00726-007-0494-3 Tamai I, 1995, BIOCHEM PHARMACOL, V50, P1783, DOI 10.1016/0006-2952(95)02046-2 Tsuboyama-Kasaoka N, 2006, ENDOCRINOLOGY, V147, P3276, DOI 10.1210/en.2005-1007 Vohra Bhupinder P. S., 2000, Neural Plasticity, V7, P245, DOI 10.1155/NP.2000.245 Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026 WISDEN W, 1992, J NEUROSCI, V12, P1040 WU JY, 1990, PROG CLIN BIOL RES, V351, P147 WU JY, 1992, ADV EXP MED BIOL, V315, P263 Xu H, 2004, BRAIN RES, V1021, P232, DOI 10.1016/j.brainres.2004.07.001 Xu H, 2006, HEARING RES, V220, P95, DOI 10.1016/j.heares.2006.07.005 Yeung JYT, 2003, MOL PHARMACOL, V63, P2, DOI 10.1124/mol.63.1.2 NR 75 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 71 EP 80 DI 10.1016/j.heares.2010.09.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200011 PM 20868734 ER PT J AU Li, TH Fu, QJ AF Li, Tianhao Fu, Qian-Jie TI Effects of spectral shifting on speech perception in noise SO HEARING RESEARCH LA English DT Article ID COCHLEAR IMPLANT USERS; FUNDAMENTAL-FREQUENCY; CONCURRENT-VOWEL; ELECTRIC HEARING; CONSONANT RECOGNITION; TEMPORAL CUES; ENVELOPE CUES; INTELLIGIBILITY; ADAPTATION; RESOLUTION AB The present study used eight normal-hearing (NH) subjects, listening to acoustic cochlear implant (CI) simulations, to examine the effects of spectral shifting on speech recognition in noise. Speech recognition was measured using spectrally matched and shifted speech (vowels, consonants, and IEEE sentences), generated by 8-channel, sine-wave vocoder. Measurements were made in quiet and in noise (speech-shaped static noise and speech-babble at 5 dB signal-to-noise ratio). One spectral match condition and four spectral shift conditions were investigated: 2 mm, 3 mm, and 4 mm linear shift, and 3 mm shift with compression, in terms of cochlear distance. Results showed that speech recognition scores dropped because of noise and spectral shifting, and that the interactive effects of spectral shifting and background conditions depended on the degree/type of spectral shift, background conditions, and the speech test materials. There was no significant interaction between spectral shifting and two noise conditions for all speech test materials. However, significant interactions between linear spectral shifts and all background conditions were found in sentence recognition; significant interactions between spectral shift types and all background conditions were found in vowel recognition. Overall, the results suggest that tonotopic mismatch may affect performance of CI users in complex listening environments. (C) 2010 Elsevier B.V. All rights reserved. C1 [Li, Tianhao; Fu, Qian-Jie] House Ear Res Inst, Div Commun & Auditory Neurosci, Los Angeles, CA 90057 USA. RP Li, TH (reprint author), House Ear Res Inst, Div Commun & Auditory Neurosci, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM tianhaol@gmail.com FU NIH/NIDCD [R01DC004972] FX The authors would like to thank all subjects for their attention and time. We thank three anonymous reviewers for their valuable comments on the earlier version of the paper. NIH/NIDCD R01DC004972 supported the present project. CR ASSMANN PF, 1990, J ACOUST SOC AM, V88, P680, DOI 10.1121/1.399772 BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640 BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176 Baskent D, 2003, J ACOUST SOC AM, V113, P2064, DOI 10.1121/1.1558357 Baskent D, 2007, EAR HEARING, V28, P277 Bird J., 1998, PSYCHOPHYSICAL PHYSI Bregman AS., 1990, AUDITORY SCENE ANAL BROKX JPL, 1982, J PHONETICS, V10, P23 Carlyon RP, 1996, J ACOUST SOC AM, V99, P517, DOI 10.1121/1.414510 Cooke M, 2006, J ACOUST SOC AM, V119, P1562, DOI 10.1121/1.2166600 Dorman MF, 1997, J ACOUST SOC AM, V102, P2993, DOI 10.1121/1.420354 Dudley H, 1939, J ACOUST SOC AM, V11, P169, DOI 10.1121/1.1916020 Faulkner A, 2006, EAR HEARING, V27, P139, DOI 10.1097/01.aud.0000202357.40662.85 Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3 Fu QJ, 1999, J ACOUST SOC AM, V105, P1889, DOI 10.1121/1.426725 Fu QJ, 2005, J ACOUST SOC AM, V118, P1711, DOI 10.1121/1.1985024 Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HILLENBRAND J, 1995, J ACOUST SOC AM, V97, P3099, DOI 10.1121/1.411872 HOWARDJONES PA, 1993, J ACOUST SOC AM, V93, P2915, DOI 10.1121/1.405811 IEEE Subcommittee, 1969, IEEE T AUDIO ELECTRO, V3, P225, DOI DOI 10.1109/TAU.1969.1162058 Li N, 2007, J ACOUST SOC AM, V122, P1165, DOI 10.1121/1.2749454 Li TH, 2009, EAR HEARING, V30, P238, DOI 10.1097/AUD.0b013e31819769ac Luo X, 2009, HEARING RES, V256, P75, DOI 10.1016/j.heares.2009.07.001 Luo X, 2009, J ACOUST SOC AM, V125, P3223, DOI 10.1121/1.3106534 MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 Nie K, 2006, EAR HEARING, V27, P208, DOI 10.1097/01.aud.0000202312.31837.25 Oxenham Andrew J, 2008, Trends Amplif, V12, P316, DOI 10.1177/1084713808325881 Parikh G, 2005, J ACOUST SOC AM, V118, P3874, DOI 10.1121/1.2118407 Phatak SA, 2007, J ACOUST SOC AM, V121, P2312, DOI 10.1121/1.2642397 PICKETT JMJ, 1957, ACOUST SOC AM, V29, P613 Qin MK, 2005, EAR HEARING, V26, P451, DOI 10.1097/01.aud.0000179689.79868.06 REMEZ RE, 1981, SCIENCE, V212, P947, DOI 10.1126/science.7233191 Rosen S, 1999, J ACOUST SOC AM, V106, P3629, DOI 10.1121/1.428215 Sagi E, 2008, J ACOUST SOC AM, V123, P2848, DOI 10.1121/1.2897914 Scheffers M, 1983, THESIS GRONINGEN U Shannon RV, 1998, J ACOUST SOC AM, V104, P2467, DOI 10.1121/1.423774 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Shannon RV, 1999, J ACOUST SOC AM, V106, pL71, DOI 10.1121/1.428150 Siciliano CM, 2010, J ACOUST SOC AM, V127, P1645, DOI 10.1121/1.3293002 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Souza P, 2009, J ACOUST SOC AM, V126, P792, DOI 10.1121/1.3158835 Spitzer S, 2009, J ACOUST SOC AM, V125, pEL236, DOI 10.1121/1.3129304 Stacey PC, 2008, J SPEECH LANG HEAR R, V51, P526, DOI 10.1044/1092-4388(2008/038) Stevens KN, 2002, J ACOUST SOC AM, V111, P1872, DOI 10.1121/1.1458026 Stickney GS, 2007, J ACOUST SOC AM, V122, P1069, DOI 10.1121/1.2750159 Svirsky MA, 2004, ACTA OTO-LARYNGOL, V124, P381, DOI 10.1080/00016480310000593 VANTASELL DJ, 1987, J ACOUST SOC AM, V82, P1152, DOI 10.1121/1.395251 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 NR 50 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 81 EP 88 DI 10.1016/j.heares.2010.09.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200012 PM 20868733 ER PT J AU Srinivasan, AG Landsberger, DM Shannon, RV AF Srinivasan, Arthi G. Landsberger, David M. Shannon, Robert V. TI Current focusing sharpens local peaks of excitation in cochlear implant stimulation SO HEARING RESEARCH LA English DT Article ID SPEECH-RECOGNITION; ELECTRODE CONFIGURATIONS; SPECTRAL RESOLUTION; CHANNEL INTERACTION; TEMPORAL CUES; TUNING CURVES; RECIPIENTS; USERS; PATTERNS; PERCEPTION AB Cochlear implant (CI) users' spectral resolution is limited by the number of implanted electrodes, interactions between the electrodes, and the underlying neural population. Current steering has been proposed to increase the number of spectral channels beyond the number of physical electrodes, however, electric field interactions may limit CI users' access to current-steered virtual channels (VCs). Current focusing (e.g tripolar stimulation) has been proposed to reduce current spread and thereby reduce interactions. In this study, current steering and current focusing were combined in a four-electrode stimulation pattern, i.e quadrupolar virtual channels (QPVCs). The spread of excitation was measured and compared between QPVC and Monopolar VC (MPVC) stimuli using a forward masking task. Results showed a sharper peak in the excitation pattern and reduced spread of masking for QPVC stimuli. Results from the forward masking study were compared with a previous study measuring VC discrimination ability and showed a weak relationship between spread of excitation and VC discriminability. The results suggest that CI signal processing strategies that utilize both current steering and current focusing might increase CI users' functional spectral resolution by transmitting more channels and reducing channel interactions. (C) 2010 Elsevier B.V. All rights reserved. C1 [Srinivasan, Arthi G.; Landsberger, David M.; Shannon, Robert V.] House Ear Res Inst, Dept Commun & Auditory Neurosci, Los Angeles, CA 90057 USA. [Srinivasan, Arthi G.; Shannon, Robert V.] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA. RP Srinivasan, AG (reprint author), House Ear Res Inst, Dept Commun & Auditory Neurosci, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM asrinivasan@hei.org FU NIDCD [R01-DC-001526, R03-DC-010064, F31 DC011205-01] FX This work was supported by NIDCD Grants and Fellowship Numbers: R01-DC-001526, R03-DC-010064, and F31 DC011205-01. We gratefully acknowledge the Cl subjects who participated in this study. We also thank John J. Galvin III for editorial help. CR Abbas PJ, 2004, AUDIOL NEURO-OTOL, V9, P203, DOI 10.1159/000078390 Berenstein CK, 2008, EAR HEARING, V29, P250 Bierer JA, 2010, EAR HEARING, V31, P247, DOI 10.1097/AUD.0b013e3181c7daf4 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006 Brendel M, 2008, OTOL NEUROTOL, V29, P199, DOI 10.1097/mao.0b013e31816335c6 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Busby PA, 2008, EAR HEARING, V29, P853, DOI 10.1097/AUD.0b013e318181a878 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 Chatterjee M, 2006, JARO-J ASSOC RES OTO, V7, P15, DOI 10.1007/s10162-005-0019-2 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362 Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3 Fu QJ, 2005, J ACOUST SOC AM, V118, P1711, DOI 10.1121/1.1985024 Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941 HACKER MJ, 1979, PERCEPT PSYCHOPHYS, V26, P168, DOI 10.3758/BF03208311 Hughes ML, 2008, EAR HEARING, V29, P435, DOI 10.1097/AUD.0b013e31816a0d3d Hughes ML, 2006, J ACOUST SOC AM, V119, P1527, DOI 10.1121/1.2163273 Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549 Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128 Landsberger DM, 2009, HEARING RES, V254, P34, DOI 10.1016/j.heares.2009.04.007 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414 Loizou PC, 1999, J ACOUST SOC AM, V106, P2097, DOI 10.1121/1.427954 Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d Nelson DA, 2008, J ACOUST SOC AM, V123, P1522, DOI 10.1121/1.2836786 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 Saoji AA, 2009, EAR HEARING, V30, P559, DOI 10.1097/AUD.0b013e3181ab2b6f Shannon R.V., 2004, ACTA OTO-LARYNGOL, V552, P50 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5 Spelman F A, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P131 Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Xu L, 2005, J ACOUST SOC AM, V117, P3255, DOI 10.1121/.1.1886405 NR 37 TC 21 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 89 EP 100 DI 10.1016/j.heares.2010.09.004 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200013 PM 20850513 ER PT J AU Wang, Y Ren, CY Manis, PB AF Wang, Yong Ren, Chongyu Manis, Paul B. TI Endbulb synaptic depression within the range of presynaptic spontaneous firing and its impact on the firing reliability of cochlear nucleus bushy neurons SO HEARING RESEARCH LA English DT Article ID AUDITORY BRAIN-STEM; PAIRED-PULSE DEPRESSION; NERVE FIBERS; RECEPTOR DESENSITIZATION; DEVELOPMENTAL-CHANGES; RELEASE PROBABILITY; CALCIUM CURRENT; CA2+ CHANNELS; HELD SYNAPSE; HEARING-LOSS AB The majority of auditory nerve fibers exhibit prominent spontaneous activity in the absence of sound. More than half of all auditory nerve fibers in CBA mice have spontaneous firing rates higher than 20 spikes/s, with some fibers exceeding 100 spikes/s. We tested whether and to what extent endbulb synapses are depressed by activity between 10 and 100 Hz, within the spontaneous firing rates of auditory nerve fibers. In contrast to rate-dependent depression seen at rates >100 Hz, we found that the extent of depression was essentially rate-independent (similar to 35%) between 10 and 100 Hz. Neither cyclothiazide nor gamma-D-glutamylglycine altered the rate-independent depression, arguing against receptor desensitization and/or vesicle depletion as major contributors for the depression. When endbulb synaptic transmission was more than half-blocked with the P/Q Ca(2+) channel blocker omega-agatoxin IVA, depression during 25 and 100 Hz trains was significantly attenuated, indicating P/Q Ca(2+) channel inactivation may contribute to low frequency synaptic depression. Following conditioning with a 100 Hz Poisson train, the EPSC paired-pulse ratio was increased, suggesting a reduced release probability. This in turn should reduce subsequent depletion-based synaptic depression at higher activation rates. To probe whether this conditioning of the synapse improves the reliability of postsynaptic responses, we tested the firing reliability of bushy neurons to 200 Hz stimulation after conditioning the endbulb with a 25 Hz or 100 Hz stimulus train. Although immediately following the conditioning train, bushy cells responded to minimal suprathreshold stimulation less reliably, the firing reliability eventually settled to the same level (<50%) regardless of the presence or absence of the preconditioning. However, when multiple presynaptic fibers were activated simultaneously, the postsynaptic response reliability did not drop significantly below 90%. These results suggest that single endbulb terminals do not reliably trigger action potentials in bushy cells under "normal" operating conditions. We conclude that the endbulb synapses are chronically depressed even by low rates of spontaneous activity, and are more resistant to further depression when challenged with a higher rate of activity. However, there seems to be no beneficial effect as assessed by the firing reliability of postsynaptic neurons for transmitting information about higher rates of activity. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wang, Yong; Ren, Chongyu] Univ Utah, Div Otolaryngol, Sch Med 3C120, Salt Lake City, UT 84132 USA. [Wang, Yong; Ren, Chongyu] Univ Utah, Program Neurosci, Sch Med 3C120, Salt Lake City, UT 84132 USA. [Manis, Paul B.] Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27516 USA. [Manis, Paul B.] Univ N Carolina, Dept Cell & Mol Physiol, Chapel Hill, NC 27516 USA. RP Wang, Y (reprint author), Univ Utah, Div Otolaryngol, Sch Med 3C120, 30 North,1900 East, Salt Lake City, UT 84132 USA. EM yong.wang@hsc.utah.edu FU NIDCD [R03DC008190, R01DC04551] FX Supported by NIDCD grants R03DC008190 to YW and R01DC04551 to PBM. CR BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387 Bellingham MC, 1999, NEURON, V23, P159, DOI 10.1016/S0896-6273(00)80762-X Brenowitz S, 1998, NEURON, V20, P135, DOI 10.1016/S0896-6273(00)80441-9 Brenowitz S, 2001, J NEUROSCI, V21, P1857 CAO X, 2010, J ASS RES OTOLARYNGO Chanda S, 2010, J NEUROPHYSIOL, V103, P1915, DOI 10.1152/jn.00751.2009 Chaudhuri D, 2007, J GEN PHYSIOL, V129, P385, DOI 10.1085/jgp.200709749 Farris HE, 2006, J NEUROSCI, V26, P12526, DOI 10.1523/JNEUROSCI.3569-06.2006 Forsythe ID, 1998, NEURON, V20, P797, DOI 10.1016/S0896-6273(00)81017-X Hermann J, 2007, J NEUROPHYSIOL, V98, P807, DOI 10.1152/jn.00355.2007 ISAACSON JS, 1995, NEURON, V15, P875, DOI 10.1016/0896-6273(95)90178-7 Ishikawa T, 2001, J PHYSIOL-LONDON, V533, P423, DOI 10.1111/j.1469-7793.2001.0423a.x Iwasaki S, 1998, J PHYSIOL-LONDON, V509, P419, DOI 10.1111/j.1469-7793.1998.419bn.x Joris PX, 2006, HEARING RES, V216, P19, DOI 10.1016/j.heares.2006.03.010 KACHAR B, 1985, SCIENCE, V227, P766, DOI 10.1126/science.3969565 Kiang NY-s, 1965, DISCHARGE PATTERNS S Koike-Tani M, 2008, J PHYSIOL-LONDON, V586, P2263, DOI 10.1113/jphysiol.2007.142547 Lee A, 2003, P NATL ACAD SCI USA, V100, P16059, DOI 10.1073/pnas.2237000100 Lee A, 2000, J NEUROSCI, V20, P6830 LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757 LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203 Lopez I, 2003, CELL TISSUE RES, V313, P177, DOI 10.1007/s00441-003-0759-4 Lorteije JAM, 2009, J NEUROSCI, V29, P13770, DOI 10.1523/JNEUROSCI.3285-09.2009 Nakamura T, 2008, J PHYSIOL-LONDON, V586, P2253, DOI 10.1113/jphysiol.2007.142521 OERTEL D, 1985, J ACOUST SOC AM, V78, P328, DOI 10.1121/1.392494 OERTEL D, 1983, J NEUROSCI, V3, P2043 Oleskevich S, 2000, J PHYSIOL-LONDON, V524, P513, DOI 10.1111/j.1469-7793.2000.00513.x Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821 RAMAN IM, 1992, NEURON, V9, P173, DOI 10.1016/0896-6273(92)90232-3 RAMAN IM, 1995, BIOPHYS J, V68, P137 RODIECK RW, 1962, BIOPHYS J, V2, P351 Roehm PC, 2008, MOL CELL NEUROSCI, V37, P376, DOI 10.1016/j.mcn.2007.10.014 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 Sullivan JM, 2007, J NEUROPHYSIOL, V97, P948, DOI 10.1152/jn.00554.2006 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 Taschenberger H, 2002, NEURON, V36, P1127, DOI 10.1016/S0896-6273(02)01137-6 Tsuji J, 1997, J COMP NEUROL, V381, P188 Wadiche JI, 2001, NEURON, V32, P301, DOI 10.1016/S0896-6273(01)00488-3 Wang Y, 2006, JARO-J ASSOC RES OTO, V7, P412, DOI 10.1007/s10162-006-0052-9 Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005 Wang Y, 2008, J NEUROPHYSIOL, V100, P1255, DOI 10.1152/jn.90715.2008 Wen B, 2009, J NEUROSCI, V29, P13797, DOI 10.1523/JNEUROSCI.5610-08.2009 Wu XS, 2007, J NEUROSCI, V27, P3046, DOI 10.1523/JNEUROSCI.4415-06.2007 Xu JH, 2005, NEURON, V46, P633, DOI 10.1016/j.neuron.2005.03.024 Xu JH, 2007, CURR OPIN NEUROBIOL, V17, P352, DOI 10.1016/j.conb.2007.04.005 Yang H, 2009, J NEUROPHYSIOL, V102, P1699, DOI 10.1152/jn.00072.2009 Yang H, 2008, J NEUROPHYSIOL, V99, P2510, DOI 10.1152/jn.01293.2007 NR 47 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 101 EP 109 DI 10.1016/j.heares.2010.09.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200014 PM 20850512 ER PT J AU Ishihara, K Okuyama, S Kumano, S Iida, K Hamana, H Murakoshi, M Kobayashi, T Usami, S Ikeda, K Haga, Y Tsumoto, K Nakamura, H Hirasawa, N Wada, H AF Ishihara, Kenji Okuyama, Shuhei Kumano, Shun Iida, Koji Hamana, Hiroshi Murakoshi, Michio Kobayashi, Toshimitsu Usami, Shinichi Ikeda, Katsuhisa Haga, Yoichi Tsumoto, Kohei Nakamura, Hiroyuki Hirasawa, Noriyasu Wada, Hiroshi TI Salicylate restores transport function and anion exchanger activity of missense pendrin mutations SO HEARING RESEARCH LA English DT Article ID NONSTEROIDAL ANTIINFLAMMATORY DRUGS; NONSYNDROMIC HEARING-LOSS; OUTER HAIR-CELLS; HISTONE DEACETYLASES; VESTIBULAR AQUEDUCT; IODIDE TRANSPORT; RECEPTOR MUTANTS; MOTOR PROTEIN; SYNDROME GENE; HUMAN-DISEASE AB The SLC26A4 gene encodes the transmembrane protein pendrin, which is involved in the homeostasis of the ion concentration of the endolymph of the inner ear, most likely by acting as a chloride/bicarbonate transporter. Mutations in the SLC26A4 gene cause sensorineuronal hearing loss. However, the mechanisms responsible for such loss have remained unknown. Therefore, in this study, we focused on the function of ten missense pendrin mutations (p.P123S (Pendred syndrome), p.M147V (NSEVA), p.K369E (NSEVA), p.A372V (Pendred syndrome/NSEVA), p.N392Y (Pendred syndrome), p.C565Y (NSEVA), p.S657N (NSEVA), p.S666F (NSEVA), p.T721M (NSEVA) and p.H723R (Pendred syndrome/NSEVA)) reported in Japanese patients, and analyzed their cellular localization and anion exchanger activity using HEK293 cells transfected with each mutant gene. Immunofluorescent staining of the cellular localization of the pendrin mutants revealed that p.K369E and p.C565Y, as well as wild-type pendrin, were transported to the plasma membrane, while 8 other mutants were retained in the cytoplasm. Furthermore, we analyzed whether salicylate, as a pharmacological chaperone, restores normal plasma membrane localization of 8 pendrin mutants retained in the cytoplasm to the plasma membrane. Incubation with 10 mM of salicylate of the cells transfected with the mutants induced the transport of 4 pendrin mutants (p.P123S, p.M147V, p.S657Y and p.H723R) from the cytoplasm to the plasma membrane and restored the anion exchanger activity. These findings suggest that salicylate might contribute to development of a new method of medical treatment for sensorineuronal hearing loss caused by the mutation of the deafness-related proteins, including pendrin. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ishihara, Kenji; Okuyama, Shuhei; Kumano, Shun; Iida, Koji; Hamana, Hiroshi; Murakoshi, Michio; Wada, Hiroshi] Tohoku Univ, Grad Sch Engn, Dept Bioengn & Robot, Aoba Ku, Sendai, Miyagi 9808579, Japan. [Ishihara, Kenji] Ibaraki Univ, Fac Educ, Lab Med Sci, Course Sch Nurse Teacher, Ibaraki 3108512, Japan. [Kobayashi, Toshimitsu] Tohoku Univ, Grad Sch Med, Dept Otolaryngol Head & Neck Surg, Sendai, Miyagi 9808575, Japan. [Usami, Shinichi] Shinshu Univ, Sch Med, Dept Otorhinolaryngol, Matsumoto, Nagano 3908621, Japan. [Ikeda, Katsuhisa] Juntendo Univ, Sch Med, Dept Otorhinolaryngol, Chiba 1138421, Japan. [Haga, Yoichi] Tohoku Univ, Grad Sch Biomed Engn, Dept Biomed Engn, Sendai, Miyagi 9808579, Japan. [Tsumoto, Kohei] Univ Tokyo, Grad Sch Frontier Sci, Dept Med Genome Sci, Tokyo 2778562, Japan. [Nakamura, Hiroyuki] Gakusyuin Univ, Dept Chem, Fac Sci, Tokyo 1718588, Japan. [Hirasawa, Noriyasu] Tohoku Univ, Grad Sch Pharmaceut Sci, Lab Pharmacotherapy Life Style Related Dis, Sendai, Miyagi 9808578, Japan. RP Wada, H (reprint author), Tohoku Univ, Grad Sch Engn, Dept Bioengn & Robot, Aoba Ku, 6-6-01 Aoba, Sendai, Miyagi 9808579, Japan. EM wada@cc.mech.tohoku.ac.jp RI Nakamura, Hiroyuki/E-8627-2014 OI Nakamura, Hiroyuki/0000-0002-4511-2984 FU Ministry of Education, Culture, Sports, Science and Technology of Japan [15086202, 20659263]; Japan Society for the Promotion of Science [20390439]; Human Frontier Science Program; Ministry of Health, Labor and Welfare of Japan; Iketani Science and Technology Foundation; Daiwa Securities Health Foundation; Tohoku University, Global Nano-Biomedical Engineering Education and Research Network Centre FX This work was supported by Grant-in-Aid for Scientific Research on Priority Areas 15086202 from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by Grant-in-Aid for Scientific Research (B) 20390439 from the Japan Society for the Promotion of Science, by Grant-in-Aid for Exploratory Research 20659263 from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by a grant from the Human Frontier Science Program, by a Health and Labor Science Research Grant from the Ministry of Health, Labor and Welfare of Japan, by a grant from the Iketani Science and Technology Foundation, by a grant from the Daiwa Securities Health Foundation and by Tohoku University Global COE Program "Global Nano-Biomedical Engineering Education and Research Network Centre" to H.W. CR Choi BY, 2009, HUM MUTAT, V30, P599, DOI 10.1002/humu.20884 Conn P Michael, 2002, Mol Interv, V2, P308, DOI 10.1124/mi.2.5.308 CRYER B, 1992, ARCH INTERN MED, V152, P1145, DOI 10.1001/archinte.152.6.1145 De Ruijter AJM, 2003, BIOCHEM J, V370, P737, DOI 10.1042/BJ20021321 Di Renzo F, 2008, TOXICOL SCI, V104, P397, DOI 10.1093/toxsci/kfn094 Dossena S, 2009, J MOL ENDOCRINOL, V43, P93, DOI 10.1677/JME-08-0175 Dossena S, 2006, CELL PHYSIOL BIOCHEM, V18, P67, DOI 10.1159/000095164 DuBois RN, 1996, GASTROENTEROL CLIN N, V25, P773, DOI 10.1016/S0889-8553(05)70274-0 Everett LA, 1997, NAT GENET, V17, P411, DOI 10.1038/ng1297-411 Gillam MP, 2004, J BIOL CHEM, V279, P13004, DOI 10.1074/jbc.M313648200 Ishihara K, 2005, INT ARCH ALLERGY IMM, V137, P77, DOI 10.1159/000085436 Janovick JA, 2002, J CLIN ENDOCR METAB, V87, P3255, DOI 10.1210/jc.87.7.3255 Kakehata S, 1996, J NEUROSCI, V16, P4881 Kopp P, 2008, TRENDS ENDOCRIN MET, V19, P260, DOI 10.1016/j.tem.2008.07.001 Kopp P., 1999, CURRENT OPINION ENDO, V6, P261, DOI 10.1097/00060793-199912000-00002 Kumano S, 2010, FEBS LETT, V584, P2327, DOI 10.1016/j.febslet.2010.04.010 Loo TW, 1997, J BIOL CHEM, V272, P709 Morello JP, 2000, J CLIN INVEST, V105, P887, DOI 10.1172/JCI8688 Mount DB, 2004, PFLUG ARCH EUR J PHY, V447, P710, DOI 10.1007/s00424-003-1090-3 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 Park HJ, 2005, CLIN GENET, V67, P160, DOI 10.1111/j.1399-0004.2004.00386.x REBEH IB, 2009, CLIN GENET, V78, P74, DOI DOI 10.1111/J.1399-0004.2009.01360.X Rotman-Pikielny P, 2002, HUM MOL GENET, V11, P2625, DOI 10.1093/hmg/11.21.2625 Royaux IE, 2001, P NATL ACAD SCI USA, V98, P4221, DOI 10.1073/pnas.071516798 Scott DA, 1999, NAT GENET, V21, P440 Taubes G, 1996, SCIENCE, V271, P1493, DOI 10.1126/science.271.5255.1493 THOMAS PJ, 1995, TRENDS BIOCHEM SCI, V20, P456, DOI 10.1016/S0968-0004(00)89100-8 Tsukamoto K, 2003, EUR J HUM GENET, V11, P916, DOI 10.1038/sj.ejhg.5201073 TUNSTALL MJ, 1995, J PHYSIOL-LONDON, V485, P739 Ulloa-Aguirre A, 2004, TRAFFIC, V5, P821, DOI 10.1111/j.1600-0854.2004.00232.x Wangemann P, 2007, AM J PHYSIOL-RENAL, V292, pF1345, DOI 10.1152/ajprenal.00487.2006 Welch WJ, 1996, CELL STRESS CHAPERON, V1, P109, DOI 10.1379/1466-1268(1996)001<0109:IOMACC>2.3.CO;2 Yoon JS, 2008, J MED GENET, V45, P411, DOI 10.1136/jmg.2007.054635 Yoshino T, 2004, HEARING RES, V195, P9, DOI 10.1016/j.heares.2004.05.005 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 35 TC 10 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 110 EP 118 DI 10.1016/j.heares.2010.08.015 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200015 PM 20826203 ER PT J AU Sterenborg, JC Pilati, N Sheridan, CJ Uchitel, OD Forsythe, ID Barnes-Davies, M AF Sterenborg, Jessica C. Pilati, Nadia Sheridan, Craig J. Uchitel, Osvaldo D. Forsythe, Ian D. Barnes-Davies, Margaret TI Lateral olivocochlear (LOC) neurons of the mouse LSO receive excitatory and inhibitory synaptic inputs with slower kinetics than LSO principal neurons SO HEARING RESEARCH LA English DT Article ID AUDITORY BRAIN-STEM; SUPERIOR OLIVARY NUCLEUS; INFERIOR COLLICULUS; AMPA RECEPTORS; GLUTAMATE RECEPTORS; RAT; TRANSMISSION; SUBUNIT; MEDIATE; SLICE AB We examined membrane properties and synaptic responses of neurons in the mouse lateral superior olivary nucleus (LSO). Two clear populations were identified consistent with: principal neurons which are involved in detecting interaural intensity differences (IIDs) and efferent neurons of the lateral olivocochlear (LOC) system which project to the cochlea. Principal neurons fired a short latency action potential (AP) often followed by an AP train during maintained depolarization. They possessed sustained outward K+ currents, with little or no transient K+ current (I-A) and a prominent hyperpolarization-activated non-specific cation conductance, I-H. On depolarization, LOC neurons exhibited a characteristic delay to the first AP. These neurons possessed a prominent transient outward current IA, but had no IH. Both LOC and principal neurons received glutamatergic and glycinergic synaptic inputs. LOC synaptic responses decayed more slowly than those of principal neurons; the mean decay time constant of AMPA receptor-mediated EPSCs was around 1 ms in principal neurons and 4 ms in LOC neurons. Decay time constants for glycinergic IPSCs were around 5 ms in principal neurons and 10 ms in LOC neurons. We conclude that principal cells receive fast synaptic responses appropriate for integration of IID inputs, while the LOC cells possess excitatory and inhibitory receptors with much slower kinetics. (C) 2010 Elsevier B.V. All rights reserved. C1 [Barnes-Davies, Margaret] Univ Leicester, Dept Med & Social Care Educ, Leicester LE1 9HN, Leics, England. [Sterenborg, Jessica C.; Sheridan, Craig J.; Forsythe, Ian D.; Barnes-Davies, Margaret] Univ Leicester, Dept Cell Physiol & Pharmacol, Leicester LE1 9HN, Leics, England. [Pilati, Nadia; Forsythe, Ian D.] Univ Leicester, MRC Toxicol Unit, Leicester LE1 9HN, Leics, England. [Uchitel, Osvaldo D.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, CONICET, Inst Fisiol & Biol Mol & Neurociencias, Buenos Aires, DF, Argentina. RP Barnes-Davies, M (reprint author), Univ Leicester, Dept Med & Social Care Educ, POB 138, Leicester LE1 9HN, Leics, England. EM mb27@le.ac.uk FU Wellcome Trust; The Health Foundation; Physiological Society FX This work was supported by the Wellcome Trust, the MRC and Intercalated BSc Studentships to JCS from The Health Foundation and to CJS from the Physiological Society. CR Adam TJ, 2001, J NEUROPHYSIOL, V86, P922 Adam TJ, 1999, EXP BRAIN RES, V124, P489, DOI 10.1007/s002210050645 Bal R, 2000, J NEUROPHYSIOL, V84, P806 BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387 Barnes-Davies M, 2004, EUR J NEUROSCI, V19, P325, DOI 10.1111/j.1460-9568.2003.03133.x BOWIE D, 1995, NEURON, V15, P453, DOI 10.1016/0896-6273(95)90049-7 CLOPTON BM, 1973, BRAIN RES, V56, P355, DOI 10.1016/0006-8993(73)90352-1 Cull-Candy S, 2006, CURR OPIN NEUROBIOL, V16, P288, DOI 10.1016/j.conb.2006.05.012 Darrow KN, 2006, NAT NEUROSCI, V9, P1474, DOI 10.1038/mn1807 Darrow KN, 2007, J NEUROPHYSIOL, V97, P1775, DOI 10.1152/jn.00955.2006 Fujino K, 1997, J NEUROPHYSIOL, V77, P2788 Gardner SM, 1999, J NEUROSCI, V19, P8721 Gardner SM, 2001, J NEUROSCI, V21, P7428 GEIGER JRP, 1995, NEURON, V15, P193, DOI 10.1016/0896-6273(95)90076-4 GLENDENNING KK, 1991, J COMP NEUROL, V310, P377, DOI 10.1002/cne.903100308 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 Groff JA, 2003, J NEUROPHYSIOL, V90, P3178, DOI 10.1152/jn.00537.2003 Halmos G, 2005, NEUROSCIENCE, V132, P801, DOI 10.1016/j.neuroscience.2005.01.023 Hamann M, 2003, EUR J NEUROSCI, V18, P2899, DOI 10.1046/j.1460-9568.2003.03017.x HELFERT RH, 1987, AM J ANAT, V179, P55, DOI 10.1002/aja.1001790108 HELFERT RH, 1986, J COMP NEUROL, V244, P533, DOI 10.1002/cne.902440409 Isaac JTR, 2007, NEURON, V54, P859, DOI 10.1016/j.neuron.2007.06.001 KANDLER K, 1995, J NEUROSCI, V15, P6890 Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0 Kotak VC, 1998, J NEUROSCI, V18, P4646 Magnusson AK, 2005, J PHYSIOL-LONDON, V568, P497, DOI 10.1113/jphysiol.2005.094763 MASTERTO.B, 1967, J NEUROPHYSIOL, V30, P341 RAMAN IM, 1994, J NEUROSCI, V14, P4998 Rietzel HJ, 1998, J COMP NEUROL, V390, P20 Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x SHNEIDERMAN A, 1987, J COMP NEUROL, V266, P519, DOI 10.1002/cne.902660406 Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228 TSUCHITANI C, 1988, J NEUROPHYSIOL, V59, P164 TSUCHITANI C, 1991, NEUROBIOLOGY HEARING, P163 VETTER DE, 1992, ANAT EMBRYOL, V185, P1, DOI 10.1007/BF00213596 WU SH, 1992, NEUROSCI LETT, V134, P257, DOI 10.1016/0304-3940(92)90529-G WU SH, 1995, J NEUROPHYSIOL, V73, P256 NR 38 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 119 EP 126 DI 10.1016/j.heares.2010.08.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200016 PM 20813177 ER PT J AU Baskent, D Chatterjeec, M AF Baskent, Deniz Chatterjeec, Monita TI Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; COCHLEAR IMPLANT USERS; ACOUSTIC HEARING; PERIODIC INTERRUPTIONS; PHONEMIC RESTORATION; INTELLIGIBILITY; LISTENERS; NOISE; CUES; INFORMATION AB Recognition of periodically interrupted sentences (with an interruption rate of 1.5 Hz, 50% duty cycle) was investigated under conditions of spectral degradation, implemented with a noiseband vocoder, with and without additional unprocessed low-pass filtered speech (cutoff frequency 500 Hz). Intelligibility of interrupted speech decreased with increasing spectral degradation. For all spectral degradation conditions, however, adding the unprocessed low-pass filtered speech enhanced the intelligibility. The improvement at 4 and 8 channels was higher than the improvement at 16 and 32 channels: 19% and 8%, on average, respectively. The Articulation Index predicted an improvement of 0.09, in a scale from 0 to 1. Thus, the improvement at poorest spectral degradation conditions was larger than what would be expected from additional speech information. Therefore, the results implied that the fine temporal cues from the unprocessed low-frequency speech, such as the additional voice pitch cues, helped perceptual integration of temporally interrupted and spectrally degraded speech, especially when the spectral degradations were severe. Considering the vocoder processing as a cochlear implant simulation, where implant users' performance is closest to 4 and 8-channel vocoder performance, the results support additional benefit of low-frequency acoustic input in combined electric-acoustic stimulation for perception of temporally degraded speech. (C) 2010 Elsevier B.V. All rights reserved. C1 [Baskent, Deniz] Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands. [Baskent, Deniz] Univ Groningen, Sch Behav & Cognit Neurosci, NL-9700 AB Groningen, Netherlands. [Chatterjeec, Monita] Univ Maryland, Cochlear Implants & Psychophys Lab, Dept Hearing & Speech Sci, College Pk, MD 20742 USA. RP Baskent, D (reprint author), Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands. EM d.baskent@med.umcg.nl; mchatterjee@hesp.umd.edu RI Imhof, Margarete/F-8471-2011 FU Heinsus Houbolt Foundation; University of Groningen; NIH/NIDCD [R01-DC004786] FX This work was supported by Heinsus Houbolt Foundation and by a Rosalind Franklin Fellowship from the University of Groningen the second author was supported by the NIH/NIDCD Grant no. R01-DC004786. The authors would like to thank Michal Stone for earlier comments on the design of the vocoder processor, Frits Leemhuis for help with experimental set-up, Nico Leenstra with evaluation of the participant responses, Joost Festen and Wouter Dreschler for help with the speech stimuli, William S. Woods and Hari Natarajan for help with the Articulation Index software, and the participants for all their efforts. CR *AM NAT STAND I, 1986, S351969R ANSI Arehart KH, 2011, J SPEECH LANG HEAR R, V54, P190, DOI 10.1044/1092-4388(2010/09-0145) BASHFORD JA, 1992, PERCEPT PSYCHOPHYS, V51, P211, DOI 10.3758/BF03212247 Baskent D, 2010, J ACOUST SOC AM, V128, pE169, DOI 10.1121/1.3475794 Baskent D, 2010, HEARING RES, V260, P54, DOI 10.1016/j.heares.2009.11.007 Boersma P., 2001, GLOT INT, V5, P341 Brown CA, 2009, J ACOUST SOC AM, V125, P1658, DOI 10.1121/1.3068441 Brown CA, 2009, EAR HEARING, V30, P489, DOI 10.1097/AUD.0b013e3181ab2b87 BUCHNER A, 2009, AUDIOL NEURO-OTOL S, V1, P8 Chang JE, 2006, IEEE T BIO-MED ENG, V53, P2598, DOI 10.1109/TBME.2006.883793 Chatterjee M, 2010, J ACOUST SOC AM, V127, pEL37, DOI 10.1121/1.3284544 CUSACK R, 2004, ECOLOGICAL PSYCHOACO Dudley H, 1939, J ACOUST SOC AM, V11, P169, DOI 10.1121/1.1916020 Faulkner A, 2003, J ACOUST SOC AM, V113, P1073, DOI 10.1121/1.1536928 Fletcher H, 1929, BELL SYST TECH J, V8, P806 FRENCH NR, 1947, J ACOUST SOC AM, V19, P90, DOI 10.1121/1.1916407 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3 Gilbert G, 2007, J ACOUST SOC AM, V122, P1336, DOI 10.1121/1.2756161 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Jin SH, 2010, J ACOUST SOC AM, V128, P881, DOI 10.1121/1.3458851 Kong YY, 2005, J ACOUST SOC AM, V117, P1351, DOI 10.1121/1.1857526 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538 PAVLOVIC CV, 1986, J ACOUST SOC AM, V80, P50, DOI 10.1121/1.394082 Pavlovic CV, 1991, HEARING INSTRUMENTS, V42, P20 POWERS GL, 1973, J ACOUST SOC AM, V54, P661, DOI 10.1121/1.1913646 Qin MK, 2006, J ACOUST SOC AM, V119, P2417, DOI 10.1121/1.2178719 Reiss LAJ, 2007, JARO-J ASSOC RES OTO, V8, P241, DOI 10.1007/s10162-007-0077-8 Schnotz A, 2009, FOLIA PHONIATR LOGO, V61, P263, DOI 10.1159/000235648 Shannon RV, 2002, JARO, V3, P185, DOI 10.1007/s101620020021 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 STEENEKEN HJM, 1980, J ACOUST SOC AM, V67, P318, DOI 10.1121/1.384464 Studebaker G. A., 1993, ACOUSTICAL FACTORS A Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425 Versfeld NJ, 2000, J ACOUST SOC AM, V107, P1671, DOI 10.1121/1.428451 Zhang T, 2010, EAR HEARING, V31, P63, DOI 10.1097/AUD.0b013e3181b7190c NR 38 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 127 EP 133 DI 10.1016/j.heares.2010.08.011 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200017 PM 20817081 ER PT J AU Bierer, JA Bierer, SM Middlebrooks, JC AF Bierer, Julie Arenberg Bierer, Steven M. Middlebrooks, John C. TI Partial tripolar cochlear implant stimulation: Spread of excitation and forward masking in the inferior colliculus SO HEARING RESEARCH LA English DT Article ID AUDITORY CORTICAL IMAGES; PSYCHOPHYSICAL TUNING CURVES; ELECTRODE-NEURON INTERFACE; CONFIGURATION; CHANNEL; THRESHOLD; INTRACOCHLEAR; ACTIVATION; PATTERNS; DEAFNESS AB This study examines patterns of neural activity in response to single biphasic electrical pulses, presented alone or following a forward masking pulse train, delivered by a cochlear implant. Recordings were made along the tonotopic axis of the central nucleus of the inferior colliculus (ICC) in ketamine/xylazine anesthetized guinea pigs. The partial tripolar electrode configuration was used, which provided a systematic way to vary the tonotopic extent of ICC activation between monopolar (broad) and tripolar (narrow) extremes while maintaining the same peak of activation. The forward masking paradigm consisted of a 200 ms masker pulse train (1017 pulses per second) followed 10 ms later by a single-pulse probe stimulus; the current fraction of the probe was set to 0 (monopolar), 1 (tripolar), or 0.5 (hybrid), and the fraction of the masker was fixed at 0.5. Forward masking tuning profiles were derived from the amount of masking current required to just suppress the activity produced by a fixed-level probe. These profiles were sharper for more focused probe configurations, approximating the pattern of neural activity elicited by single (non-masked) pulses. The result helps to bridge the gap between previous findings in animals and recent psychophysical data. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bierer, Julie Arenberg] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98105 USA. [Bierer, Julie Arenberg] Univ Washington, Bloedel Hearing Res Ctr, Seattle, WA 98105 USA. [Bierer, Steven M.] Univ Washington, Dept Otolaryngol, Seattle, WA 98105 USA. [Middlebrooks, John C.] Univ Calif Irvine, Dept Otolaryngol Head & Neck Surg, Irvine, CA 92717 USA. [Middlebrooks, John C.] Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92717 USA. [Middlebrooks, John C.] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92717 USA. RP Bierer, JA (reprint author), Univ Washington, Dept Speech & Hearing Sci, 1417 NE 42nd St,Box 354875, Seattle, WA 98105 USA. EM jbierer@u.washington.edu FU University of Washington; Bloedel Mini grant; Bloedel Traveling Scholar; National Institutes of Health [NIDCD- R03 DC8883, RO1-DC04312]; [P30 DC04661] FX The authors would like to thank C. El linger for his engineering expertise and E. Rubel for sharing resources. This work was supported by the University of Washington, Bloedel Mini grant (JAB) and Bloedel Traveling Scholar (JCM) and P30 DC04661, and National Institutes of Health (NIDCD- R03 DC8883 to JAB and RO1-DC04312 to JCM). CR Arenberg JG, 2000, JARO, V1, P183, DOI 10.1007/sl01620010036 Berenstein CK, 2008, EAR HEARING, V29, P250 Bierer JA, 2010, EAR HEARING, V31, P247, DOI 10.1097/AUD.0b013e3181c7daf4 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 Boex C, 2003, J ACOUST SOC AM, V114, P2058, DOI 10.1121/1.1610452 Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006 Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274 Chatterjee M, 2006, JARO-J ASSOC RES OTO, V7, P15, DOI 10.1007/s10162-005-0019-2 Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Finley CC, 2008, OTOL NEUROTOL, V29, P920, DOI 10.1097/MAO.0b013e318184f492 Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3 Goldwyn JH, 2010, HEARING RES, V268, P93, DOI 10.1016/j.heares.2010.05.005 Green D. M., 1966, SIGNAL DETECTION THE Hanekom T, 2005, MED BIOL ENG COMPUT, V43, P47, DOI 10.1007/BF02345122 HINOJOSA R, 1983, ANN NY ACAD SCI, V405, P459, DOI 10.1111/j.1749-6632.1983.tb31662.x Hughes ML, 2006, J ACOUST SOC AM, V119, P1538, DOI 10.1121/1.2164969 Kirby AE, 2010, J NEUROPHYSIOL, V103, P531, DOI 10.1152/jn.00794.2009 Kos MI, 2007, EUR ARCH OTO-RHINO-L, V264, P1369, DOI 10.1007/s00405-007-0354-5 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128 Li PMMC, 2007, ANN OTO RHINOL LARYN, V116, P731 MACMILLAN NA, 2005, OTOL NEUROTOL, V26, P957 Middlebrooks JC, 2004, J ACOUST SOC AM, V116, P452, DOI 10.1121/1.1760795 Middlebrooks JC, 2007, JARO-J ASSOC RES OTO, V8, P258, DOI 10.1007/s10162-007-0070-2 Middlebrooks JC, 2002, J NEUROPHYSIOL, V87, P493 Middlebrooks JC, 2008, HEARING RES, V242, P52, DOI 10.1016/j.heares.2008.04.001 Miller CA, 2003, HEARING RES, V175, P200 Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 Nelson DA, 2008, J ACOUST SOC AM, V123, P1522, DOI 10.1121/1.2836786 Nelson PC, 2009, J NEUROSCI, V29, P2553, DOI 10.1523/JNEUROSCI.5359-08.2009 Nie K, 2006, EAR HEARING, V27, P208, DOI 10.1097/01.aud.0000202312.31837.25 Oxenham AJ, 2000, HEARING RES, V150, P258, DOI 10.1016/S0378-5955(00)00206-9 Raggio MW, 1999, J NEUROPHYSIOL, V82, P3506 Rebscher SJ, 2001, J ACOUST SOC AM, V109, P2035, DOI 10.1121/1.1365115 SCHOENECKER M, 2009, C IMPL AUD PROSTH LA Skinner Margaret W, 2007, Ann Otol Rhinol Laryngol Suppl, V197, P2 Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5 Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 NR 41 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 134 EP 142 DI 10.1016/j.heares.2010.08.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200018 PM 20727397 ER PT J AU Dai, HP AF Dai, Huanping TI Harmonic pitch: Dependence on resolved partials, spectral edges, and combination tones SO HEARING RESEARCH LA English DT Article ID MULTIPLE-OBSERVATION TASKS; COMPLEX TONES; UNRESOLVED HARMONICS; CORRELATION-COEFFICIENTS; FUNDAMENTAL-FREQUENCY; AUDITORY PERIPHERY; PHASE SENSITIVITY; DOMINANCE REGION; COMPUTER-MODEL; VIRTUAL PITCH AB Perceptual weights were estimated in a pitch-comparison experiment to assess the relative influences of individual partial tones on listeners' pitch judgments. The stimuli were harmonic sounds (F0 = 200 Hz) with partials up to the 12th. Low-numbered partials were removed step-by-step, so that the remaining higher-numbered partials would have a better chance of showing any effect. The individual frequencies of the partials were perturbed randomly on each stimulus presentation, and weights were estimated as the correlation coefficients between the frequency perturbations and the listeners' responses. When the harmonic sounds contained all twelve partials, the listeners depended mostly on the low-numbered, resolved partials within the well-established dominance region. As the low-numbered partials were taken out of the dominance region, the listeners mostly listened to the lowest and highest partials at the spectral edges. For one listener, such an edge-listening strategy took the form of relying on nonlinear combination tones. Overall, there was no indication of any influence on pitch from unresolved partials, thus no evidence of contribution to pitch from temporal cues carried by this group of partials. The estimated patterns of weights were well described by the predictions of Goldstein's optimal-processor model. The predicted weights were inversely proportional to the amount of error for estimating the individual frequencies of the partials. The agreement between the predicted and measured weights suggests that, for harmonic sounds, partials whose frequencies are perceived with the best precision will likely have the greatest influence on perceived pitch. (C) 2010 Elsevier B.V. All rights reserved. C1 Univ Arizona, Dept Speech Language & Hearing Sci, Tucson, AZ 85721 USA. RP Dai, HP (reprint author), Univ Arizona, Dept Speech Language & Hearing Sci, 1131 E 2nd St, Tucson, AZ 85721 USA. EM hdai@email.arizona.edu FU NIH/NIDCD [R29-DC01827] FX I thank William Hartmann, Douglas Keefe, Christophe Micheyl, Andrew Oxenham, and Fan-Gang Zeng for helpful discussions, and Tom Christenson, William Hartmann, Christophe Micheyl, Brian Moore, and an anonymous reviewer for their comments and suggestions on previous versions of this paper. This research was supported by NIH/NIDCD Grant R29-DC01827. CR Ahumada AJ, 2002, J VISION, V2, P121, DOI 10.1167/2.1.8 AHUMADA A, 1971, J ACOUST SOC AM, V49, P1751, DOI 10.1121/1.1912577 BERG BG, 1989, J ACOUST SOC AM, V86, P1743, DOI 10.1121/1.398605 BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 CARLYON RP, 1994, J ACOUST SOC AM, V95, P3541, DOI 10.1121/1.409971 Chatterjee M, 1997, HEARING RES, V111, P65, DOI 10.1016/S0378-5955(97)00089-0 Ciocca V, 2002, J ACOUST SOC AM, V111, P2250, DOI 10.1121/1.1471897 COHEN MA, 1995, J ACOUST SOC AM, V98, P862, DOI 10.1121/1.413512 Dai HP, 1996, J ACOUST SOC AM, V99, P2298, DOI 10.1121/1.415417 Dai HP, 2010, J EXP PSYCHOL HUMAN, V36, P976, DOI 10.1037/a0017171 Dai HP, 2000, J ACOUST SOC AM, V107, P953, DOI 10.1121/1.428276 DEBOER E, 1956, THESIS AMSTERDAM DEBOER E, 1976, HDB SENSORY PHYSL, V5, P479 deCheveigne A, 2005, PITCH NEURAL CODING FLANAGAN JL, 1960, J ACOUST SOC AM, V32, P1308, DOI 10.1121/1.1907900 Geurts L, 2004, J ACOUST SOC AM, V115, P844, DOI 10.1121/1.1642623 Gockel H, 2005, J ACOUST SOC AM, V117, P1326, DOI 10.1121/1.1853111 Gockel HE, 2009, J ACOUST SOC AM, V125, P15, DOI 10.1121/1.3026327 GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448 Hartmann WM, 1996, J ACOUST SOC AM, V100, P3491, DOI 10.1121/1.417248 HARTMANN WM, 1988, AUDITORY FUNCTIONS HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297 LUTFI RA, 1995, J ACOUST SOC AM, V97, P1333, DOI 10.1121/1.412177 LYON R, 1997, AUDITORY COMPUTATION MEDDIS R, 1991, J ACOUST SOC AM, V89, P2883, DOI 10.1121/1.400726 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 Micheyl C, 2007, J ACOUST SOC AM, V121, P1621, DOI 10.1121/1.2431334 Moore B. C. J., 1993, HUMAN PSYCHOPHYSICS, P56 MOORE BCJ, 1984, J ACOUST SOC AM, V75, P550, DOI 10.1121/1.390527 MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1853, DOI 10.1121/1.391936 Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101 Oxenham AJ, 2009, J ACOUST SOC AM, V125, P2189, DOI 10.1121/1.3089220 PATTERSON RD, 1976, J ACOUST SOC AM, V59, P1450, DOI 10.1121/1.381034 Plack C. J., 2005, THE SENSE OF HEARING Plack C. J., 2005, PITCH NEURAL CODING PLOMP R, 1967, J ACOUST SOC AM, V41, P1526, DOI 10.1121/1.1910515 Qin MK, 2006, J ACOUST SOC AM, V119, P2417, DOI 10.1121/1.2178719 RICHARDS VM, 1994, J ACOUST SOC AM, V95, P423, DOI 10.1121/1.408336 Ritsma R. J., 1970, FREQUENCY ANAL PERIO, P250 RITSMA RJ, 1967, J ACOUST SOC AM, V42, P191, DOI 10.1121/1.1910550 SCHOUTEN JF, 1940, 5 ARTICLES PERCEPTIO SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 Shamma S, 2000, J ACOUST SOC AM, V107, P2631, DOI 10.1121/1.428649 Singh S, 2009, EAR HEARING, V30, P160, DOI 10.1097/AUD.0b013e31819342b9 SRULOVICZ P, 1983, J ACOUST SOC AM, V73, P1266, DOI 10.1121/1.389275 TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648 TERHARDT E, 1972, ACUSTICA, V26, P187 WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592 YOST WA, 1982, J ACOUST SOC AM, V72, P416, DOI 10.1121/1.388094 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 NR 51 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 143 EP 150 DI 10.1016/j.heares.2010.08.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200019 PM 20709166 ER PT J AU Anderson, S Skoe, E Chandrasekaran, B Zecker, S Kraus, N AF Anderson, Samira Skoe, Erika Chandrasekaran, Bharath Zecker, Steven Kraus, Nina TI Brainstem correlates of speech-in-noise perception in children SO HEARING RESEARCH LA English DT Article ID FREQUENCY-FOLLOWING RESPONSES; LANGUAGE-IMPAIRED CHILDREN; MUSICAL EXPERIENCE; DEVELOPMENTAL DYSLEXIA; LEARNING-PROBLEMS; SCHOOL-CHILDREN; PITCH PATTERNS; HEARING-LOSS; DEFICITS; ATTENTION AB Children often have difficulty understanding speech in challenging listening environments. In the absence of peripheral hearing loss, these speech perception difficulties may arise from dysfunction at more central levels in the auditory system, including subcortical structures. We examined brainstem encoding of pitch in a speech syllable in 38 school-age children. In children with poor speech-in-noise perception, we find impaired encoding of the fundamental frequency and the second harmonic, two important cues for pitch perception. Pitch, an essential factor in speaker identification, aids the listener in tracking a specific voice from a background of voices. These results suggest that the robustness of subcortical neural encoding of pitch features in time-varying signals is a key factor in determining success with perceiving speech in noise. (C) 2010 Elsevier B.V. All rights reserved. C1 [Anderson, Samira; Skoe, Erika; Zecker, Steven; Kraus, Nina] Northwestern Univ, Dept Commun Sci & Disorders, Evanston, IL 60208 USA. [Chandrasekaran, Bharath] Univ Texas Austin, Austin, TX 78712 USA. [Kraus, Nina] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Feinberg Sch Med, Dept Otolaryngol, Chicago, IL 60611 USA. RP Anderson, S (reprint author), Northwestern Univ, Dept Commun Sci & Disorders, 2240 Campus Dr, Evanston, IL 60208 USA. EM sba@u.northwestern.edu FU National Institutes of Health [RO1 DC01510]; Hugh Knowles Center of Northwestern University FX This work was funded by the National Institutes of Health (RO1 DC01510) and the Hugh Knowles Center of Northwestern University. We would like to thank Trent Nicol, Judy Song, Jane Hornickel, Alexandra Parbery-Clark, Jennifer Krizman, and Kyung Myun Lee for their helpful comments and suggestions regarding an earlier version of the manuscript. We would especially like to thank the children and their families who participated in the study. CR Abdo Anila Gabriela Rotger, 2010, Pro Fono, V22, P25, DOI 10.1590/S0104-56872010000100006 Ahissar M, 2006, NAT NEUROSCI, V9, P1558, DOI 10.1038/nn1800 Ahissar M, 2004, TRENDS COGN SCI, V8, P457, DOI 10.1016/j.tics.2004.08.011 Ahissar M, 2007, TRENDS COGN SCI, V11, P458, DOI 10.1016/j.tics.2007.08.015 Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004 Alain C, 2005, J COGNITIVE NEUROSCI, V17, P811, DOI 10.1162/0898929053747621 Alain C, 2001, J EXP PSYCHOL HUMAN, V27, P1072, DOI 10.1037//0096-1523.27.5.1072 ANDERSON S, TRENDS AMPL IN PRESS Anderson S, 2010, J NEUROSCI, V30, P4922, DOI 10.1523/JNEUROSCI.0107-10.2010 ANSI, 2002, S1260 ANSI Assmann P.F., 1987, J ACOUST SOC AM, V82, pS120, DOI 10.1121/1.2024632 Banai K, 2005, J NEUROSCI, V25, P9850, DOI 10.1523/JNEUROSCI.2373-05.2005 Banai K, 2009, CEREB CORTEX, V19, P2699, DOI 10.1093/cercor/bhp024 Basu M, 2010, DEVELOPMENTAL SCI, V13, P77, DOI 10.1111/j.1467-7687.2009.00849.x BAUER LO, 1990, BIOL PSYCHOL, V30, P21, DOI 10.1016/0301-0511(90)90088-E Bench J, 1979, Br J Audiol, V13, P108, DOI 10.3109/03005367909078884 Bird J., 1998, PSYCHOPHYSICAL PHYSI Bradlow AR, 2003, J SPEECH LANG HEAR R, V46, P80, DOI 10.1044/1092-4388(2003/007) Bregman AS., 1990, AUDITORY SCENE ANAL BROKX JPL, 1982, J PHONETICS, V10, P23 CHANDRASEKARAN B, 2010, MUSIC PERCEPT, V47, P297 Chandrasekaran B, 2010, PSYCHOPHYSIOLOGY, V47, P236, DOI 10.1111/j.1469-8986.2009.00928.x Chandrasekaran B, 2009, BRAIN LANG, V108, P1, DOI 10.1016/j.bandl.2008.02.001 Chandrasekaran B, 2009, NEURON, V64, P311, DOI 10.1016/j.neuron.2009.10.006 CULLING JF, 1993, J ACOUST SOC AM, V93, P3454, DOI 10.1121/1.405675 Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5 de Boer J, 2008, J NEUROSCI, V28, P4929, DOI 10.1523/JNEUROSCI.0902-08.2008 deCheveigne A, 1997, J ACOUST SOC AM, V101, P2857, DOI 10.1121/1.419480 Fellowes JM, 1997, PERCEPT PSYCHOPHYS, V59, P839, DOI 10.3758/BF03205502 Galbraith GC, 1998, NEUROREPORT, V9, P1889, DOI 10.1097/00001756-199806010-00041 Galbraith GC, 1995, NEUROREPORT, V6, P2363, DOI 10.1097/00001756-199511270-00021 Galbraith GC, 1997, ELECTROEN CLIN NEURO, V102, P46, DOI 10.1016/S0013-4694(96)96006-X Gao EQ, 2000, P NATL ACAD SCI USA, V97, P8081, DOI 10.1073/pnas.97.14.8081 Hall JW, 1997, AUDIOLOGISTS DESK RE HEINRICH A, 2007, Q J EXP PSYCHOL, V61, P735 Hill KT, 2010, CEREB CORTEX, V20, P583, DOI 10.1093/cercor/bhp124 Hornickel J, 2009, P NATL ACAD SCI USA, V106, P13022, DOI 10.1073/pnas.0901123106 JACOBSEN J., 1985, AUDITORY BRAINSTEM R Johnson JA, 2005, CEREB CORTEX, V15, P1609, DOI 10.1093/cercor/bhi039 Johnson KL, 2008, CLIN NEUROPHYSIOL, V119, P2623, DOI 10.1016/j.clinph.2008.07.277 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 Knecht Heather A, 2002, Am J Audiol, V11, P65, DOI 10.1044/1059-0889(2002/009) Kraus N, 2009, ANN NY ACAD SCI, V1169, P543, DOI 10.1111/j.1749-6632.2009.04549.x KRAUS N, 2005, PLASTICITY SIGNAL RE Kraus N, 2010, NAT REV NEUROSCI, V11, P599, DOI 10.1038/nrn2882 Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004 Krishnan A, 2009, BRAIN LANG, V110, P135, DOI 10.1016/j.bandl.2009.03.005 LAGACE J, 2010, AM J AUDIOL, V1, P1059 Lee KM, 2009, J NEUROSCI, V29, P5832, DOI 10.1523/JNEUROSCI.6133-08.2009 Lin JY, 1998, J ACOUST SOC AM, V103, P2608, DOI 10.1121/1.422781 LUKAS JH, 1981, INT J NEUROSCI, V12, P137 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1861, DOI 10.1121/1.391937 Moore DR, 2007, J COMMUN DISORD, V40, P295, DOI 10.1016/j.jcomdis.2007.03.005 Moore DR, 2005, BRAIN LANG, V94, P72, DOI 10.1016/j.bundl.2004.11.009 MOUSHEGI.G, 1973, ELECTROEN CLIN NEURO, V35, P665, DOI 10.1016/0013-4694(73)90223-X Musacchia G, 2009, EAR HEARING, V30, P505, DOI 10.1097/AUD.0b013e3181a7f5b7 Musacchia G, 2007, P NATL ACAD SCI USA, V104, P15894, DOI 10.1073/pnas.0701498104 Nahum M, 2008, PLOS BIOL, V6, P978, DOI 10.1371/journal.pbio.0060126 Oxenham Andrew J, 2008, Trends Amplif, V12, P316, DOI 10.1177/1084713808325881 Parbery-Clark A, 2009, EAR HEARING, V30, P653, DOI 10.1097/AUD.0b013e3181b412e9 Parbery-Clark A, 2009, J NEUROSCI, V29, P14100, DOI 10.1523/JNEUROSCI.3256-09.2009 Pichora-Fuller MK, 2003, INT J AUDIOL, V42, pS11 Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003 SCHEFFERS MTM, 1983, J ACOUST SOC AM, V74, P1716, DOI 10.1121/1.390280 Shield B. M., 2003, Building Acoustics, V10, DOI 10.1260/135101003768965960 Shield BM, 2008, J ACOUST SOC AM, V123, P133, DOI 10.1121/1.2812596 Shinn-Cunningham Barbara G, 2008, Trends Amplif, V12, P283, DOI 10.1177/1084713808325306 Skoe E, 2010, EAR HEARING, V31, P302, DOI 10.1097/AUD.0b013e3181cdb272 Song J., 2010, J COGNITIVE NEUROSCI, P1, DOI DOI 10.1162/JOCN.2010.21556 Song J. H., CLIN NEUROP IN PRESS Song JH, 2008, J COGNITIVE NEUROSCI, V20, P1892, DOI 10.1162/jocn.2008.20131 Song JH, 2006, AUDIOL NEURO-OTOL, V11, P233, DOI 10.1159/000093058 Sperling AJ, 2005, NAT NEUROSCI, V8, P862, DOI 10.1038/nn1474 Strait DL, 2009, EUR J NEUROSCI, V29, P661, DOI 10.1111/j.1460-9568.2009.06617.x Summers V, 1998, J SPEECH LANG HEAR R, V41, P1294 TALLAL P, 1974, NEUROPSYCHOLOGIA, V12, P83, DOI 10.1016/0028-3932(74)90030-X TALLAL P, 1981, J ACOUST SOC AM, V69, P568, DOI 10.1121/1.385431 Tzounopoulos T, 2009, NEURON, V62, P463, DOI 10.1016/j.neuron.2009.05.002 Wible B, 2004, BIOL PSYCHOL, V67, P299, DOI 10.1016/j.biopsycho.2004.02.002 Wible B, 2005, BRAIN, V128, P417, DOI 10.1093/brain/awh367 Wong PCM, 2007, NAT NEUROSCI, V10, P420, DOI 10.1038/nn1872 Woodcock R. W., 2001, WOODCOCKJOHNSON 3 TE Zhu J, 1999, WESCHLER ABBREVIATED Ziegler JC, 2005, P NATL ACAD SCI USA, V102, P14110, DOI 10.1073/pnas.0504446102 Ziegler JC, 2009, DEVELOPMENTAL SCI, V12, P732, DOI 10.1111/j.1467-7687.2009.00817.x NR 86 TC 21 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 151 EP 157 DI 10.1016/j.heares.2010.08.001 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200020 PM 20708671 ER PT J AU de La Rochefoucauld, O Kachroo, P Olson, ES AF de La Rochefoucauld, Ombeline Kachroo, Puja Olson, Elizabeth S. TI Ossicular motion related to middle ear transmission delay in gerbil SO HEARING RESEARCH LA English DT Article ID TYMPANIC-MEMBRANE PERFORATIONS; SOUND-TRANSMISSION; MALLEUS VIBRATION; MONGOLIAN GERBIL; INPUT IMPEDANCE; NETWORK MODEL; CAT EARDRUM; INNER-EAR; 100 HZ; KHZ AB The middle ear transmits sound efficiently from the air in the ear canal (EC) to the fluid filled cochlea. In gerbil, middle ear transmission produces a constant pressure gain between the EC and the cochlea of similar to 25 dB from 2 to 40 kHz, and a delay-like phase corresponding to a similar to 25-30 mu s delay. The mechanisms by which the air-born signal is collected and delivered to the cochlea are not thoroughly understood, and the source of the delay is controversial. We investigated these issues by observing ossicular motion along a single line of sight, roughly parallel to the EC and perpendicular to the stapes footplate. Measurements were made at the umbo, the long process of the manubrium, across the malleus-incus joint, at the long process of the incus, and the stapes head. While the overall delay between EC pressure and stapes velocity was fairly constant with frequency, subcomponents of the delay were frequency dependent. Up to similar to 17 kHz, most of the overall delay was between the EC and umbo with a much smaller contribution along the ossicles, whereas in the range from similar to 17 to 30 kHz, more of the overall delay was along the ossicles. (C) 2010 Elsevier B.V. All rights reserved. C1 [de La Rochefoucauld, Ombeline; Kachroo, Puja; Olson, Elizabeth S.] Columbia Univ, New York, NY 10032 USA. RP de La Rochefoucauld, O (reprint author), Columbia Univ, 630 W 168th St, New York, NY 10032 USA. EM odelarochefoucauld@gmail.com FU NIH/NIDCD [DC003130]; Emil Capita Foundation FX We thank John Rosowski and an anonymous reviewer for their helpful comments on the manuscript. We are grateful to Mike Ravicz, John Rosowski and Nigel Cooper for sharing the data of Fig. 9. We also thank Wei Dong, Shyam Khanna, Wim Decraemer, John Rosowski, Glenis Long and Mike Ravicz for many discussions on delays. This work was supported by the NIH/NIDCD (DC003130) and the Emil Capita Foundation. CR AARNISALO AA, 2010, HEARING RES, V263, P84 Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024 de La Rochefoucauld O, 2008, JARO-J ASSOC RES OTO, V9, P161, DOI 10.1007/s10162-008-0115-1 DECRAEMER WF, 1989, HEARING RES, V38, P1, DOI 10.1016/0378-5955(89)90123-8 DECRAEMER WF, 1994, HEARING RES, V72, P1, DOI 10.1016/0378-5955(94)90199-6 DECRAEMER WF, 1991, HEARING RES, V54, P305, DOI 10.1016/0378-5955(91)90124-R Decraemer WF, 1999, EOS SPIE INT S IND L DELAROCHEFOUCAU.O, 2010, HEARING RES, V263, P15 Dong W, 2006, J NEUROPHYSIOL, V95, P2951, DOI 10.1152/jn.01214.2005 Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104 Feng B, 2004, BIOMECH MODEL MECHAN, V3, P33, DOI 10.1007/s10237-004-0044-9 Funnell WRJ, 2005, JARO-J ASSOC RES OTO, V6, P9, DOI 10.1007/s10162-004-5016-3 FUNNELL WRJ, 1978, J ACOUST SOC AM, V63, P1461, DOI 10.1121/1.381892 FUNNELL WRJ, 1983, J ACOUST SOC AM, V73, P1657, DOI 10.1121/1.389386 Gan RZ, 2002, OTOL NEUROTOL, V23, P271, DOI 10.1097/00129492-200205000-00008 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 GYO K, 1987, ACTA OTO-LARYNGOL, V103, P87, DOI 10.3109/00016488709134702 HATO N, 2003, 3 MIDDL EAR MECH RES HEMILA S, 1995, HEARING RES, V85, P31, DOI 10.1016/0378-5955(95)00031-X KACHROO P, 2004, 27 ARO MIDW M ASS RE KHANNA SM, 1996, P SOC PHOTO-OPT INS, V2732, P64, DOI 10.1117/12.231687 KRINGLEBOTN M, 1988, SCAND AUDIOL, V17, P75, DOI 10.3109/01050398809070695 LAY DOUGLAS, 1972, J MORPHOL, V138, P41, DOI 10.1002/jmor.1051380103 MOLLER AR, 1961, J ACOUST SOC AM, V33, P168, DOI 10.1121/1.1908610 Nakajima H. H., 2008, JARO-J ASSOC RES OTO, V10, P23 Nakajima HH, 2005, HEARING RES, V204, P60, DOI 10.1016/j.heares.2005.01.002 NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8 Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083 Parenta P, 2007, J ACOUST SOC AM, V122, P918, DOI 10.1121/12747156 PURIA S, 2007, 30 ARO MIDW M ASS RE Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930 RABBITT RD, 1986, J ACOUST SOC AM, V80, P1716, DOI 10.1121/1.394284 Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061 Ravicz ME, 2007, J ACOUST SOC AM, V122, P2154, DOI 10.1121/1.2769625 RAVICZ ME, 1992, J ACOUST SOC AM, V92, P157, DOI 10.1121/1.404280 Rosowski JJ, 2009, HEARING RES, V253, P83, DOI 10.1016/j.heares.2009.03.010 ROSOWSKI JJ, 2003, SENSORS SENSING BIOL Rosowski JJ, 1999, AUDIOL NEURO-OTOL, V4, P129, DOI 10.1159/000013831 Ruggero MA, 2007, MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P154, DOI 10.1142/9789812708694_0020 Shaw E. A. G., 1983, MECH HEARING, P3 TONNDORF J, 1972, J ACOUST SOC AM, V52, P1221, DOI 10.1121/1.1913236 Tuck-Lee JP, 2008, J ACOUST SOC AM, V124, P348, DOI 10.1121/1.2912438 Voss SE, 2001, J ACOUST SOC AM, V110, P1432, DOI 10.1121/1.1394195 Voss SE, 2001, J ACOUST SOC AM, V110, P1445, DOI 10.1121/1.1394196 Willi UB, 2002, HEARING RES, V174, P32, DOI 10.1016/S0378-5955(02)00632-9 ZWISLOCKI J, 1962, J ACOUST SOC AM, V34, P1454 NR 46 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 158 EP 172 DI 10.1016/j.heares.2010.07.010 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200021 PM 20696229 ER PT J AU Wu, HP Guo, YLL Cheng, TJ Hsu, CJ AF Wu, Hung-Pin Guo, Yueliang Leon Cheng, Tsun-Jen Hsu, Chuan-Jen TI Chronological changes in compromised olivocochlear activity and the effect of insulin in diabetic Wistar rats SO HEARING RESEARCH LA English DT Article ID BRAIN-STEM RESPONSES; HEARING-LOSS; GUINEA-PIGS; NOISE; MELLITUS; BUNDLE; INVOLVEMENT; IMPAIRMENT; EMISSIONS; TONES AB The aims of the present study were to investigate in diabetic rats: (1) the chronological changes of compromised medial olivocochlear bundle (MOCB) activity and auditory brainstem responses (ABR) and (2) the effect of insulin on diabetes-related hearing dysfunction. Diabetes mellitus was induced by intraperitoneal injection of streptozotocin. Thirty male Wistar rats were divided into three groups: control (C), diabetes with insulin injection (DI), and diabetes without insulin injection (DM). Click-evoked ABR, distortion product otoacoustic emission (DPOAE) and the contralateral suppression (CS) of DPOAE were measured for all animals monthly. Throughout the experiment, the thresholds of click-evoked ABR did not differ among groups. Wave III was delayed and interpeak latency I-III was prolonged in the DM group at the age of 29 weeks (p < 0.05). The amplitudes of the CS of DPOAE were markedly decreased after the 25th week in the DM group, but not in the C and DI groups. Compared to the C group, the CS in the DI group was not attenuated at any frequency. Dysfunction of auditory efferent olivocochlear activity developed in diabetic rats presenting no evidence of hearing loss. The finding of a significant decrease of the CS of DPOAE could be used as an earlier indicator of diabetes-related hearing impairment than changes of ABRs. The time course of compromised MOCB is positively correlated with the duration of diabetes. Insulin could therefore protect against compromised MOCB. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hsu, Chuan-Jen] Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei 10002, Taiwan. [Guo, Yueliang Leon; Cheng, Tsun-Jen; Hsu, Chuan-Jen] Natl Taiwan Univ, Coll Med, Taipei 10002, Taiwan. [Wu, Hung-Pin; Guo, Yueliang Leon; Cheng, Tsun-Jen] Natl Taiwan Univ, Inst Occupat Med & Ind Hyg, Taipei 10764, Taiwan. [Wu, Hung-Pin] Buddhist TzuChi Gen Hosp, Taichung Branch, Dept Otolaryngol, Taichung, Taiwan. [Wu, Hung-Pin] Tzu Chi Univ, Sch Med, Hualien, Taiwan. [Guo, Yueliang Leon; Cheng, Tsun-Jen] Natl Taiwan Univ Hosp, Dept Environm & Occupat Med, Taipei 10002, Taiwan. RP Hsu, CJ (reprint author), Natl Taiwan Univ Hosp, Dept Otolaryngol, 7 Chung Shan S Rd, Taipei 10002, Taiwan. EM cjhsu@ntu.edu.tw RI Cheng, Tsun-Jen /D-3495-2012 CR Austin DF, 2009, LARYNGOSCOPE, V119, P1788, DOI 10.1002/lary.20570 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 Chen YS, 2005, HEARING RES, V203, P94, DOI 10.1016/j.heares.2004.12.006 CULLEN JR, 1993, J LARYNGOL OTOL, V107, P179, DOI 10.1017/S0022215100122571 DiLeo MAS, 1997, DIABETES CARE, V20, P824, DOI 10.2337/diacare.20.5.824 Durmus S, 2004, INT J AUDIOL, V43, P29 Elamin A, 2005, INDIAN PEDIATR, V42, P15 Frisina ST, 2006, HEARING RES, V211, P103, DOI 10.1016/j.heares.2005.09.002 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 Hienz RD, 1998, HEARING RES, V116, P10, DOI 10.1016/S0378-5955(97)00197-4 Hirose K, 2008, ANN INTERN MED, V149, P54 Hsu CJ, 1998, ORL J OTO-RHINO-LARY, V60, P314, DOI 10.1159/000027616 Huang TJ, 2003, DIABETES, V52, P2129, DOI 10.2337/diabetes.52.8.2129 HUANG YM, 1992, CHINESE MED J-PEKING, V105, P44 Jacobs RL, 1998, DIABETES, V47, P1967, DOI 10.2337/diabetes.47.12.1967 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2519 Konrad-Martin D, 2010, LARYNGOSCOPE, V120, P150, DOI 10.1002/lary.20636 Kumar UA, 2004, EAR HEARING, V25, P142, DOI 10.1097/01.AUD.0000120363.56591.E6 Lisowska G, 2001, OTOL NEUROTOL, V22, P316, DOI 10.1097/00129492-200105000-00008 Micheyl C, 1996, J ACOUST SOC AM, V99, P1604, DOI 10.1121/1.414734 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 Namyslowski G, 2001, Scand Audiol Suppl, P126 Nishikawa T, 2000, NATURE, V404, P787 Pessin AB, 2008, ANN OTO RHINOL LARYN, V117, P366 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Ren JM, 2009, ARCH MED RES, V40, P18, DOI 10.1016/j.arcmed.2008.10.003 Sasaki H, 1997, ACTA NEUROPATHOL, V93, P118 Serdaroglu I, 2005, J RECONSTR MICROSURG, V21, P51, DOI 10.1055/s-2005-862782 Stolk RP, 1999, DIABETES CARE, V22, P180, DOI 10.2337/diacare.22.1.180 Tan CT, 2001, HEARING RES, V161, P72, DOI 10.1016/S0378-5955(01)00359-8 Ugur AK, 2009, INT J PEDIATR OTORHI, V73, P555, DOI 10.1016/j.ijporl.2008.12.002 Vaughan N, 2007, J AM ACAD AUDIOL, V18, P863, DOI 10.3766/jaaa.18.10.5 WASSICK KH, 1985, ACTA OTO-LARYNGOL, V99, P35, DOI 10.3109/00016488509119143 Wu HP, 2009, LARYNGOSCOPE, V119, P1190, DOI 10.1002/lary.20221 Wu HP, 2010, HEARING RES, V267, P71, DOI 10.1016/j.heares.2010.03.082 NR 35 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC 1 PY 2010 VL 270 IS 1-2 BP 173 EP 178 DI 10.1016/j.heares.2010.07.008 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 707MH UT WOS:000286290200022 PM 20678565 ER PT J AU Zhang, Y Zhang, WK Johnston, AH Newman, TA Pyykko, I Zou, J AF Zhang, Ya Zhang, Weikai Johnston, Alexander H. Newman, Tracey. A. Pyykko, Ilmari Zou, Jing TI Improving the visualization of fluorescently tagged nanoparticles and fluorophore-labeled molecular probes by treatment with CuSO4 to quench autofluorescence in the rat inner ear SO HEARING RESEARCH LA English DT Article ID EMISSIVE POLYMERSOMES; LIPID NANOCAPSULES; IN-VIVO; LIPOFUSCIN; COCHLEA; COMMUNICATION; BINDING; PROTEIN; MRI AB Fluorescent tags and fluorophore-conjugated molecular probes have been extensively employed in histological studies to demonstrate nanoparticle distribution in inner ear cell populations. However, autofluorescence that exists in the rodent cochleae disturbs visualization of the fluorescent tags and fluorophore labeling. In the present work, we aimed to improve the visualization of fluorescently tagged nanoparticles and fluorophore-labeled molecular probes by treatment with CuSO4 to quench autofluorescence in the rat inner ear. The in vivo study was performed on eight-to nine-month-old rats using confocal laser scanning microscopy, and the in vitro study was carried out with Dil-tagged poly(ethylene glycol) and poly(capro-lactone) polymersomes and different fluorescent-labeling agents using a spectrofluorometer. The nanoparticles were intratympanically administered using either an osmotic pump or transtympanic injection. Abundant autofluorescence was detected in spiral ganglion cells (SGCs), stria marginal cells, spiral ligament fibrocytes (SL) and the subcuticular cytoplasm of inner hair cells (IHCs). Sparsely distributed faint autofluorescence was also visualized in outer hair cells (OHCs). The autofluorescence was eliminated by treatment with 1 mM CuSO4 (in 0.01 M ammonium acetate buffer) for 70-90 min, while the fluorescent tag in the nanoparticle was absolutely preserved and the labeling fluorescence signals of the molecular probes were mostly retained. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zhang, Ya; Zhang, Weikai; Pyykko, Ilmari; Zou, Jing] Univ Tampere, Dept Otolaryngol, Sch Med, Tampere 33520, Finland. [Johnston, Alexander H.; Newman, Tracey. A.] Univ Southampton, Sch Biol Sci, Southampton SO16 7PX, Hants, England. RP Zou, J (reprint author), Univ Tampere, Dept Otolaryngol, Sch Med, FM1,3rd Floor,Biokatu 6, Tampere 33520, Finland. EM jing.zou@uta.fi FU European Community [NMP4-CT-2006-026556] FX This study was supported by the European Community 6th Framework Programme on Research, Technological Development and Demonstration (Nanotechnology-based Targeted Drug Delivery. Contract number: NMP4-CT-2006-026556, Project acronym: NANOEAR). CR BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 Brehmer A, 2004, HISTOCHEM CELL BIOL, V121, P13, DOI 10.1007/s00418-003-0603-7 Christian NA, 2007, BIOCONJUGATE CHEM, V18, P31, DOI 10.1021/bc0601267 El-Hakim Hamdy, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P102 Eli P, 2006, PROTEIN SCI, V15, P2442, DOI 10.1110/ps.062239206 FEENEY L, 1978, INVEST OPHTH VIS SCI, V17, P583 GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909 Geers Ann, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P127 Ghoroghchian PP, 2007, CHEM MATER, V19, P1309, DOI 10.1021/cm062427w Gouanve F, 2007, ADV FUNCT MATER, V17, P2746, DOI 10.1002/adfm.200601056 Haralampus-Grynaviski NM, 2003, P NATL ACAD SCI USA, V100, P3179, DOI 10.1073/pnas.0630280100 HORNER KC, 1995, EUR J NEUROSCI, V7, P1305, DOI 10.1111/j.1460-9568.1995.tb01121.x IGARASHI Y, 1990, EUR ARCH OTO-RHINO-L, V247, P189 ISHII T, 1977, ARCH OTO-RHINO-LARYN, V215, P213, DOI 10.1007/BF00463059 Kania RE, 2006, J APPL PHYSIOL, V101, P1281, DOI 10.1152/japplphysiol.00113.2006 Kikugawa K, 1997, MECH AGEING DEV, V97, P93, DOI 10.1016/S0047-6374(97)00050-X Letchford K, 2007, EUR J PHARM BIOPHARM, V65, P259, DOI 10.1016/j.ejpb.2006.11.009 Lomas H, 2007, ADV MATER, V19, P4238, DOI 10.1002/adma.200700941 Osberger Mary Joe, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P62 PYYKKO I, 2009, NANOEAR 3G NANOTECHN Rajawat YS, 2009, AGEING RES REV, V8, P199, DOI 10.1016/j.arr.2009.05.001 Rask-Andersen H, 2006, EAR HEARING, V27, P457, DOI 10.1097/01.aud.0000233864.32183.81 Richmond TA, 2000, BIOCHEM BIOPH RES CO, V268, P462, DOI 10.1006/bbrc.1999.1244 Scheper V, 2009, NANOMEDICINE-UK, V4, P623, DOI [10.2217/nnm.09.41, 10.2217/NNM.09.41] Schnell SA, 1999, J HISTOCHEM CYTOCHEM, V47, P719 Walther LE, 2007, J VESTIBUL RES-EQUIL, V17, P89 Xu HP, 2008, AGING CELL, V7, P58, DOI 10.1111/j.1474-9726.2007.00351.x Zou J., 2009, EUR J NANOMED, V3, P8 Zou J, 2008, J BIOMED MATER RES B, V87B, P10, DOI 10.1002/jbm.b.31058 Zou J, 2009, ACTA OTO-LARYNGOL, V129, P22, DOI 10.1080/00016480902729850 Zou Jing, 2010, Hear Res, V259, P36, DOI 10.1016/j.heares.2009.09.015 Zou J, 2005, AUDIOL NEURO-OTOL, V10, P145, DOI 10.1159/000084024 NR 32 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 1 EP 11 DI 10.1016/j.heares.2010.07.006 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400001 PM 20659540 ER PT J AU Smit, JE Hanekom, T van Wieringen, A Wouters, J Hanekom, JJ AF Smit, Jacoba E. Hanekom, Tania van Wieringen, Astrid Wouters, Jan Hanekom, Johan J. TI Threshold predictions of different pulse shapes using a human auditory nerve fibre model containing persistent sodium and slow potassium currents SO HEARING RESEARCH LA English DT Article ID COCHLEAR IMPLANT USERS; DEPENDENT EXCITABILITY BEHAVIOR; ELECTRICALLY STIMULATED COCHLEA; ACTION-POTENTIALS; RESPONSE PROPERTIES; ELECTRODE CONFIGURATION; MONOPHASIC STIMULATION; NEURAL DEGENERATION; MEMBRANE CURRENTS; SPIRAL GANGLION AB The ability of a human auditory nerve fibre computational model to predict threshold differences for biphasic, pseudomonophasic and alternating monophasic waveforms was investigated. The effect of increasing the interphase gap, interpulse interval and pulse rate on thresholds was also simulated. Simulations were performed for both anodic-first and cathodic-first stimuli. Results indicated that the model correctly predicted threshold reductions for pseudomonophasic compared to biphasic waveforms, although reduction for alternating monophasic waveforms was underestimated. Threshold reductions were more pronounced for cathodic-first stimuli compared to anodic-first stimuli. Reversal of the phases in pseudomonophasic stimuli suggested a threshold reduction for anodic-first stimuli, but a threshold increase in cathodic-first stimuli. Inclusion of the persistent sodium and slow potassium currents in the model resulted in a reasonably accurate prediction of the non-monotonic threshold behaviour for pulse rates higher than 1000 pps. However, the model did not correctly predict the threshold changes observed for low pulse rate biphasic and alternating monophasic waveforms. It was suggested that these results could in part be explained by the difference in the refractory periods between real and simulated auditory nerve fibres, but also by the lack of representation of stochasticity observed in real auditory nerve fibres in our auditory nerve model. (C) 2010 Elsevier B.V. All rights reserved. C1 [Smit, Jacoba E.; Hanekom, Tania; Hanekom, Johan J.] Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria, South Africa. [van Wieringen, Astrid; Wouters, Jan] Katholieke Univ Leuven KULeuven, Dept Neurosci, ExpORL, B-3000 Louvain, Belgium. RP Hanekom, T (reprint author), Univ Pretoria, Dept Elect Elect & Comp Engn, Lynnwood Rd, ZA-0002 Pretoria, South Africa. EM ksmit@csir.co.za; tania.hanekom@up.ac.za; Astrid.vanWieringen@med.kuleuven.be; Jan.Wouters@med.kuleuven.be; johan.hanekom@up.ac.za RI Wouters, Jan/D-1800-2015 FU National Research Foundation (NRF) of South Africa FX This research has been supported by the National Research Foundation (NRF) of South Africa. CR Abbas PJ, 2004, AUDIOL NEURO-OTOL, V9, P203, DOI 10.1159/000078390 Arts H Alexander, 2003, Ann Otol Rhinol Laryngol Suppl, V191, P20 BLACK RC, 1983, ANN NY ACAD SCI, V405, P137, DOI 10.1111/j.1749-6632.1983.tb31626.x BLACK RC, 1980, J ACOUST SOC AM, V67, P868, DOI 10.1121/1.383966 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Briaire JJ, 2006, HEARING RES, V214, P17, DOI 10.1016/j.heares.2006.01.015 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Burke D, 2001, CLIN NEUROPHYSIOL, V112, P1575, DOI 10.1016/S1388-2457(01)00595-8 Carlyon RP, 2005, HEARING RES, V205, P210, DOI 10.1016/j.heares.2005.03.021 Chen C, 1997, HEARING RES, V110, P179, DOI 10.1016/S0378-5955(97)00078-6 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Deurloo KEI, 2001, BIOL CYBERN, V85, P281, DOI 10.1007/s004220100253 Devaux JJ, 2004, J NEUROSCI, V24, P1236, DOI 10.1523/JNEUROSCI.4512-03.2004 Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 Glueckert R, 2005, AUDIOL NEURO-OTOL, V10, P258, DOI 10.1159/000086000 Grill WM, 1997, IEEE T BIO-MED ENG, V44, P1, DOI 10.1109/10.553708 GRILL WM, 1995, IEEE ENG MED BIOL, V14, P375, DOI 10.1109/51.395310 Hanekom T, 2001, EAR HEARING, V22, P300, DOI 10.1097/00003446-200108000-00005 Hanekom T, 2005, MED BIOL ENG COMPUT, V43, P47, DOI 10.1007/BF02345122 Izhikevich E. M., 2007, DYNAMICAL SYSTEMS NE JAVEL E, 1987, ANN OTO RHINOL LARYN, V96, P26 Macherey O, 2008, JARO-J ASSOC RES OTO, V9, P241, DOI 10.1007/s10162-008-0112-4 Macherey O, 2006, JARO-J ASSOC RES OTO, V7, P253, DOI 10.1007/s10162-006-0040-0 Macherey O, 2007, JARO-J ASSOC RES OTO, V8, P84, DOI 10.1007/s10162-006-0066-3 McIntyre CC, 2002, J NEUROPHYSIOL, V87, P995, DOI 10.1152/jn.00353.2001 MCNEAL DR, 1976, IEEE T BIO-MED ENG, V23, P329, DOI 10.1109/TBME.1976.324593 Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005 Miller CA, 2003, HEARING RES, V175, P200 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9 Miller CA, 2001, JARO, V2, P216 MILLER CA, 1993, HEARING RES, V66, P130, DOI 10.1016/0378-5955(93)90134-M Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6 NADOL JB, 1990, HEARING RES, V49, P141, DOI 10.1016/0378-5955(90)90101-T Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 PFINGST BE, 1983, ANN NY ACAD SCI, V405, P224, DOI 10.1111/j.1749-6632.1983.tb31635.x RANCK JB, 1975, BRAIN RES, V98, P417, DOI 10.1016/0006-8993(75)90364-9 RATTAY F, 1987, J THEOR BIOL, V125, P339, DOI 10.1016/S0022-5193(87)80066-8 Rattay F, 1990, ELECT NERVE STIMULAT Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Rebscher SJ, 2001, J ACOUST SOC AM, V109, P2035, DOI 10.1121/1.1365115 REID G, 1993, J PHYSIOL-LONDON, V467, pP247 ROPER J, 1989, J PHYSIOL-LONDON, V416, P93 SAFRONOV BV, 1993, J PHYSIOL-LONDON, V460, P675 SCHOLZ A, 1993, J NEUROPHYSIOL, V70, P1274 Schuknecht HF, 1993, PATHOLOGY EAR Schwarz JR, 2006, J PHYSIOL-LONDON, V573, P17, DOI 10.1113/jphysiol.2006.106815 SCHWARZ JR, 1995, PFLUG ARCH EUR J PHY, V430, P283, DOI 10.1007/BF00374660 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 Smit JE, 2009, J NEUROSCI METH, V180, P363, DOI 10.1016/j.jneumeth.2009.03.024 Smit JE, 2009, BIOL CYBERN, V101, P115, DOI 10.1007/s00422-009-0324-7 Smit JE, 2009, BIOL CYBERN, V100, P49, DOI 10.1007/s00422-008-0280-7 Smit JE, 2008, S AFR J SCI, V104, P284 SPOENDLIN H, 1989, HEARING RES, V43, P25, DOI 10.1016/0378-5955(89)90056-7 TAYLOR JL, 1992, J PHYSIOL-LONDON, V453, P575 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 VANWIERINGE, 2008, HEARING RES, V242, P154 VANWIERINGE, 2005, HEARING RES, V200, P73 VANWIERINGE, 2006, HEARING RES, V220, P49 Wesselink W. A., 1999, Medical and Biological Engineering and Computing, V37, P228, DOI 10.1007/BF02513291 ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 NR 66 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 12 EP 22 DI 10.1016/j.heares.2010.08.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400002 PM 20708672 ER PT J AU Scheidt, RE Kale, S Heinz, MG AF Scheidt, Ryan E. Kale, Sushrut Heinz, Michael G. TI Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses SO HEARING RESEARCH LA English DT Article ID SHORT-TERM ADAPTATION; CHRONIC COCHLEAR PATHOLOGY; INNER HAIR CELL; GUINEA-PIG; STEREOCILIA DAMAGE; RAPID ADAPTATION; LOUDNESS RECRUITMENT; LEVEL FUNCTIONS; TUNING CURVES; SOUND LEVEL AB Auditory-nerve fibers demonstrate dynamic response properties in that they adapt to rapid changes in sound level, both at the onset and offset of a sound. These dynamic response properties affect temporal coding of stimulus modulations that are perceptually relevant for many sounds such as speech and music. Temporal dynamics have been well characterized in auditory-nerve fibers from normal-hearing animals, but little is known about the effects of sensorineural hearing loss on these dynamics. This study examined the effects of noise-induced hearing loss on the temporal dynamics in auditory-nerve fiber responses from anesthetized chinchillas. Post-stimulus-time histograms were computed from responses to 50-ms tones presented at characteristic frequency and 30 dB above fiber threshold. Several response metrics related to temporal dynamics were computed from post-stimulus-time histograms and were compared between normal-hearing and noise-exposed animals. Results indicate that noise-exposed auditory-nerve fibers show significantly reduced response latency, increased onset response and percent adaptation, faster adaptation after onset, and slower recovery after offset. The decrease in response latency only occurred in noise-exposed fibers with significantly reduced frequency selectivity. These changes in temporal dynamics have important implications for temporal envelope coding in hearing-impaired ears, as well as for the design of dynamic compression algorithms for hearing aids. (C) 2010 Elsevier B.V. All rights reserved. C1 [Heinz, Michael G.] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA. [Scheidt, Ryan E.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Kale, Sushrut; Heinz, Michael G.] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA. RP Heinz, MG (reprint author), Purdue Univ, Dept Speech Language & Hearing Sci, 500 Oval Dr, W Lafayette, IN 47907 USA. EM mheinz@purdue.edu FU National Institutes of Health (NIH)/National Institute on Deafness and Other Communication Disorders (NIDCD) [R03DC07348, R01DC009838]; Purdue University FX This research was supported by grants R03DC07348 and R01DC009838 from the National Institutes of Health (NIH)/National Institute on Deafness and Other Communication Disorders (NIDCD). Support was also provided from Purdue University through a Summer Undergraduate Research Fellowship (R.S.). The authors thank Gavin Bidelman and Elizabeth Strickland for valuable comments on previous versions of this manuscript. CR Allen JB, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P93, DOI 10.1142/9789812833785_0016 AREHOLE S, 1987, HEARING RES, V27, P193, DOI 10.1016/0378-5955(87)90001-3 Benda J, 2005, J NEUROSCI, V25, P2312, DOI 10.1523/JNEUROSCI.4795-04.2005 Beutner D, 2001, NEURON, V29, P681, DOI 10.1016/S0896-6273(01)00243-4 Bondy J, 2004, ADV NEUR IN, V16, P1409 Calandruccio L, 2007, EAR HEARING, V28, P512, DOI 10.1097/AUD.0b013e31806dc1fe CARNEY LH, 1994, HEARING RES, V76, P31, DOI 10.1016/0378-5955(94)90084-1 Cedolin L, 2007, HEARING - FROM SENSORY PROCESSING TO PERCEPTION, P61, DOI 10.1007/978-3-540-73009-5_8 CHIMENTO TC, 1991, J ACOUST SOC AM, V90, P263, DOI 10.1121/1.401296 Chintanpalli A, 2007, J ACOUST SOC AM, V122, pEL203, DOI 10.1121/1.2794880 Crumling MA, 2007, JARO-J ASSOC RES OTO, V8, P54, DOI 10.1007/s10162-006-0061-8 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P897, DOI 10.1121/1.390599 French AS, 2001, BIOL CYBERN, V85, P293, DOI 10.1007/s004220100260 Fridberger A, 1998, P NATL ACAD SCI USA, V95, P7127, DOI 10.1073/pnas.95.12.7127 Gatehouse S, 2006, INT J AUDIOL, V45, P130, DOI 10.1080/14992020500429518 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 Heil P, 1997, J NEUROPHYSIOL, V77, P2616 Heil P, 2008, HEARING RES, V238, P25, DOI 10.1016/j.heares.2007.09.014 Heil P, 2004, CURR OPIN NEUROBIOL, V14, P461, DOI 10.1016/j.conb.2004.07.002 Heil P, 1997, J NEUROPHYSIOL, V78, P2438 Heinz MG, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P621, DOI 10.1007/978-1-4419-5686-6_56 Heinz MG, 2010, SPRINGER HANDB AUDIT, V35, P177, DOI 10.1007/978-1-4419-5934-8_7 Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003 Hildebrandt KJ, 2009, J NEUROSCI, V29, P2626, DOI 10.1523/JNEUROSCI.4800-08.2009 Kale S, 2010, JARO-J ASSOC RES OTO, V11, P657, DOI 10.1007/s10162-010-0223-6 Kiang NY, 1970, SENSORINEURAL HEARIN, P241 KITZES LM, 1978, J NEUROPHYSIOL, V41, P1165 Krishna BS, 2002, J COMPUT NEUROSCI, V13, P71, DOI 10.1023/A:1020116122533 LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1 LOEB GE, 1983, BIOL CYBERN, V47, P149, DOI 10.1007/BF00337005 Maurer J, 1999, ORL J OTO-RHINO-LARY, V61, P328, DOI 10.1159/000027694 MEDDIS R, 1986, HEARING RES, V23, P287, DOI 10.1016/0378-5955(86)90118-8 Miller RL, 1997, J ACOUST SOC AM, V101, P3602, DOI 10.1121/1.418321 Moore Brian C J, 2008, Trends Amplif, V12, P103, DOI 10.1177/1084713808317819 MOORE BCJ, 1995, BRIT J AUDIOL, V29, P131, DOI 10.3109/03005369509086590 Moore BCJ, 1996, J ACOUST SOC AM, V100, P481, DOI 10.1121/1.415861 Moore BCJ, 1999, J ACOUST SOC AM, V105, P400, DOI 10.1121/1.424571 Ngan EM, 2001, HEARING RES, V156, P44, DOI 10.1016/S0378-5955(01)00264-7 Plack CJ, 2004, J ACOUST SOC AM, V115, P1684, DOI 10.1121/1.1675812 RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J Ryugo DK, 1997, J COMP NEUROL, V385, P230, DOI 10.1002/(SICI)1096-9861(19970825)385:2<230::AID-CNE4>3.0.CO;2-2 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 SALVI RJ, 1979, HEARING RES, V1, P237, DOI 10.1016/0378-5955(79)90017-0 SHAMMA SA, 1985, J ACOUST SOC AM, V78, P1612, DOI 10.1121/1.392799 Shi LF, 2006, J SPEECH LANG HEAR R, V49, P848, DOI 10.1044/1092-4388(2006/060) SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 SMITH RL, 1985, HEARING RES, V19, P89, DOI 10.1016/0378-5955(85)90101-7 SMITH RL, 1975, BIOL CYBERN, V17, P169, DOI 10.1007/BF00364166 SMITH RL, 1980, HEARING RES, V2, P123, DOI 10.1016/0378-5955(80)90034-9 Temchin AN, 2008, J NEUROPHYSIOL, V100, P2899, DOI 10.1152/jn.90639.2008 WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J WANG CY, 1972, J ACOUST SOC AM, V52, P1678, DOI 10.1121/1.1913302 Wang Y, 2008, J NEUROPHYSIOL, V100, P1255, DOI 10.1152/jn.90715.2008 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 WESTERMAN LA, 1987, J ACOUST SOC AM, V81, P680, DOI 10.1121/1.394836 Wojtczak M, 2009, J ACOUST SOC AM, V125, P270, DOI 10.1121/1.3023063 YATES GK, 1985, HEARING RES, V17, P1, DOI 10.1016/0378-5955(85)90124-8 YATES GK, 1986, HEARING RES, V23, P288 Zhang F, 2007, JARO-J ASSOC RES OTO, V8, P356, DOI 10.1007/s10162-007-0086-7 Zilany MSA, 2009, J ACOUST SOC AM, V126, P2390, DOI 10.1121/1.3238250 NR 64 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 23 EP 33 DI 10.1016/j.heares.2010.07.009 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400003 PM 20696230 ER PT J AU Cousineau, M Demany, L Meyer, B Pressnitzer, D AF Cousineau, Marion Demany, Laurent Meyer, Bernard Pressnitzer, Daniel TI What breaks a melody: Perceiving FO and intensity sequences with a cochlear implant SO HEARING RESEARCH LA English DT Article ID MUSIC PERCEPTION; PITCH DISCRIMINATION; SPEECH RECOGNITION; NORMAL-HEARING; FUNDAMENTAL-FREQUENCY; ELECTRIC HEARING; ACOUSTIC HEARING; TEMPORAL PITCH; USERS; CUES AB Pitch perception has been extensively studied using discrimination tasks on pairs of single sounds. When comparing pitch discrimination performance for normal-hearing (NH) and cochlear implant (Cl) listeners, it usually appears that Cl users have relatively poor pitch discrimination. Tasks involving pitch sequences, such as melody perception or auditory scene analysis, are also usually difficult for Cl users. However, it is unclear whether the issue with pitch sequences is a consequence of sound discriminability, or if an impairment exists for sequence processing per se. Here, we compared sequence processing abilities across stimulus dimensions (fundamental frequency and intensity) and listener groups (NH, Cl, and NH listeners presented with noise-vocoded sequences). The sequence elements were firstly matched in discriminability, for each listener and dimension. Participants were then presented with pairs of sequences, constituted by up to four elements varying on a single dimension, and they performed a same/different task. In agreement with a previous study (Cousineau et al., 2009) fundamental frequency sequences were processed more accurately than intensity sequences by NH listeners. However, this was not the case for Cl listeners, nor for NH listeners presented with noise-vocoded sequences. Intensity sequence processing was, nonetheless, equally accurate in the three groups. These results show that the reduced pitch cues received by Cl listeners do not only elevate thresholds, as previously documented, but also affect pitch sequence processing above threshold. We suggest that efficient sequence processing for pitch requires the resolution of individual harmonics in the auditory periphery, which is not achieved with the current generation of implants. (C) 2010 Elsevier B.V. All rights reserved. C1 [Cousineau, Marion; Pressnitzer, Daniel] Univ Paris 05, Lab Psychol Percept, CNRS, UMR 8158, F-75006 Paris, France. [Cousineau, Marion; Pressnitzer, Daniel] Ecole Normale Super, Dept Etud Cognit, F-75005 Paris, France. [Demany, Laurent] Univ Bordeaux, Lab Mouvement, CNRS, UMR 5227, F-33076 Bordeaux, France. [Meyer, Bernard] Hop Beaujon, APHP, Serv Otorhinolaryngol, F-92110 Clichy, France. RP Cousineau, M (reprint author), Univ Paris 05, Lab Psychol Percept, CNRS, UMR 8158, 45 Rue St Peres, F-75006 Paris, France. EM Marion.Cousineau@ens.fr; laurent.demany@u-bordeaux2.fr; bernard.meyer@sat.ap-hop-paris.fr; Daniel.Pressnitzer@ens.fr RI Pressnitzer, Daniel/F-6092-2012; Demany, Laurent/D-7984-2014 OI Demany, Laurent/0000-0001-5549-9628 CR Bernstein JG, 2003, J ACOUST SOC AM, V113, P3323, DOI 10.1121/1.1572146 Cooper WB, 2008, EAR HEARING, V29, P618, DOI 10.1097/AUD.0b013e318174e787 Cousineau M, 2009, J ACOUST SOC AM, V126, P3179, DOI 10.1121/1.3257206 de Cheveigne A, 2006, J ACOUST SOC AM, V119, P3908, DOI 10.1121/1.2195291 Demany L, 2009, J ACOUST SOC AM, V126, P1342, DOI 10.1121/1.3179675 Demany L, 2005, J ACOUST SOC AM, V117, P833, DOI 10.1121/1.1850209 Demany L, 2008, PSYCHOL SCI, V19, P85, DOI 10.1111/j.1467-9280.2008.02050.x Drennan WR, 2008, J REHABIL RES DEV, V45, P779, DOI 10.1682/JPRD.2007.08.0118 Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fujita S, 1999, ANN OTO RHINOL LARYN, V108, P634 Galvin JJ, 2007, EAR HEARING, V28, P302, DOI 10.1097/01.aud.0000261689.35445.20 Geurts L, 2001, J ACOUST SOC AM, V109, P713, DOI 10.1121/1.1340650 Gfeller Kate, 2002, Cochlear Implants Int, V3, P29, DOI 10.1002/cii.50 Green D. M., 1966, SIGNAL DETECTION THE GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127 Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567 Kong YY, 2009, J ACOUST SOC AM, V125, P1649, DOI 10.1121/1.3068457 Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F Laneau J, 2004, J ACOUST SOC AM, V116, P3606, DOI 10.1121/1.1823311 Laneau J, 2006, J ACOUST SOC AM, V119, P491, DOI 10.1121/1.2133391 Looi V, 2008, EAR HEARING, V29, P421, DOI 10.1097/AUD.0b013e31816a0d0b Looi V, 2008, INT J AUDIOL, V47, P257, DOI 10.1080/14992020801955237 Looi V, 2004, INT CONGR SER, V1273, P197, DOI 10.1016/j.ics.2004.08.038 McDermott Hugh J, 2004, Trends Amplif, V8, P49, DOI 10.1177/108471380400800203 McDermott JH, 2008, PSYCHOL SCI, V19, P1263, DOI 10.1111/j.1467-9280.2008.02235.x MCFARLAND DJ, 1992, AUDIOLOGY, V31, P342 Moore B. C. J., 2005, PITCH NEURAL CODING, P234 MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925 Murphy DR, 2000, PSYCHOL AGING, V15, P323, DOI 10.1037/0882-7974.15.2.323 PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 PIJL S, 1995, J ACOUST SOC AM, V98, P886, DOI 10.1121/1.413514 PONCETWALLET C, 2008, 115 C NAT SOC FRANC Pressnitzer D, 2005, ANN NY ACAD SCI, V1060, P343, DOI 10.1196/annals.1360.050 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Singh S, 2009, EAR HEARING, V30, P160, DOI 10.1097/AUD.0b013e31819342b9 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a SRULOVICZ P, 1983, J ACOUST SOC AM, V73, P1266, DOI 10.1121/1.389275 Sucher CM, 2007, HEARING RES, V230, P80, DOI 10.1016/j.heares.2007.05.002 Vandali AE, 2005, J ACOUST SOC AM, V117, P3126, DOI 10.1121/1.1874632 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 NR 44 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 34 EP 41 DI 10.1016/j.heares.2010.07.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400004 PM 20674733 ER PT J AU Lin, CY Wu, JL Shih, TS Tsai, PJ Sun, YM Ma, MC Guo, YLL AF Lin, Cheng-Yu Wu, Jiunn-Liang Shih, Tung-Sheng Tsai, Perng-Jy Sun, Yih-Min Ma, Mi-Chia Guo, Yueliang L. TI N-Acetyl-cysteine against noise-induced temporary threshold shift in male workers SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; GLUTATHIONE-S-TRANSFERASE; LIPID-PEROXIDATION; COCHLEAR FUNCTION; OXIDATIVE STRESS; THETA GSTT1; INNER-EAR; MICE; ACETYLCYSTEINE; ANTIOXIDANT AB Previous animal studies showed protective effects of antioxidant medicines against noise-induced hearing loss (NIHL). It is unclear whether antioxidants would protect humans from NIHL We conducted a study to determine whether N-Acetyl-cysteine (NAC) protected men against noise-induced temporary threshold shift (TTS), and whether subgroups with genetic polymorphisms of glutathione S-transferase (GST) T1 and M1 responded to NAC differently. In this prospective, double-blind, crossover study, 53 male workers were randomly assigned to receive either NAC (1200 mg/day, 14 days) during the first period and placebo during the second period, or placebo during the first period and NAC during the second period. Dosing periods were separated by a washout period of 2 weeks. The hearing threshold changes were determined before and after each dosing period. Pre-shift hearing threshold for high frequencies was 19.1 dB. Daily exposure to noise ranged from 88.4 to 89.4 dB. The noise levels of different frequencies ranged from 80.0 to 89.4 dB with a peak-value at 4 kHz. NAC significantly reduced ITS (p = 0.03). When the participants were grouped by GST M1/T1 genotypes, the NAC effect was only significant among workers with null genotypes in both GSTM1 and GSTT1 (p = 0.004). NAC may prevent noise-induced ITS among occupationally noise-exposed men. The protective effect of NAC was more prominent in subjects with both GSTM1-null and GSM-null genotypes. (clinicaltrials.gov Identifier: NCT00552786) (C) 2010 Elsevier B.V. All rights reserved. C1 [Guo, Yueliang L.] Natl Taiwan Univ, Dept Environm & Occupat Med, Coll Med, Taipei 100, Taiwan. [Guo, Yueliang L.] NTU Hosp, Taipei 100, Taiwan. [Lin, Cheng-Yu] Tainan Hosp, Dept Otolaryngol, Dept Hlth, Tainan 700, Taiwan. [Lin, Cheng-Yu; Tsai, Perng-Jy] Natl Cheng Kung Univ, Coll Med, Inst Environm & Occupat Hlth Med, Tainan 704, Taiwan. [Wu, Jiunn-Liang] Natl Cheng Kung Univ, Dept Otolaryngol, Coll Med, Tainan 704, Taiwan. [Shih, Tung-Sheng] Council Labor Affairs, Inst Occupat Safety & Hlth, Si Jhih City 221, Taipei County, Taiwan. [Shih, Tung-Sheng] China Med Univ, Coll Publ Hlth, Grad Inst Environm Hlth, Taichung 40202, Taiwan. [Sun, Yih-Min] Chung Hwa Univ Med Technol, Dept Occupat Safety & Hlth, Ren De Township 717, Tainan County, Taiwan. [Ma, Mi-Chia] Natl Cheng Kung Univ, Coll Management, Dept Stat, Tainan 701, Taiwan. RP Guo, YLL (reprint author), Natl Taiwan Univ, Dept Environm & Occupat Med, Coll Med, Room C339,17,Syujhou Rd, Taipei 100, Taiwan. EM leonguo@ntu.edu.tw FU Institute of Occupational Safety and Health (JOSH) of the Council of Labor Affairs in Taiwan FX The authors thank Miss Wen-Kuei Lin, Miss Linda J. Chang, and the staffs of the Team Best Company and the Clinico Company who participated in the study. This study was supported by a grant from the Institute of Occupational Safety and Health (JOSH) of the Council of Labor Affairs in Taiwan. CR [Anonymous], 1989, 82531 ISO Arand M, 1996, ANAL BIOCHEM, V236, P184, DOI 10.1006/abio.1996.0153 Bruhn C, 1998, BIOCHEM PHARMACOL, V56, P1189, DOI 10.1016/S0006-2952(98)00191-9 Carlsson PI, 2005, HEARING RES, V202, P87, DOI 10.1016/j.heares.2004.09.005 Cheng WH, 1997, J NUTR, V127, P1445 Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8 Cocco T, 2005, FREE RADICAL BIO MED, V38, P796, DOI 10.1016/j.freeradbiomed.2004.11.034 DECARO L, 1989, ARZNEIMITTEL-FORSCH, V39-1, P382 Fujimoto K, 2006, DRUG METAB DISPOS, V34, P1495, DOI 10.1124/dmd.106.010009 Fujimoto K, 2007, DRUG METAB DISPOS, V35, P2196, DOI 10.1124/dmd.107.017905 Halliwell B, 1999, FREE RADICALS BIOL D Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 Ho YS, 1997, J BIOL CHEM, V272, P16644, DOI 10.1074/jbc.272.26.16644 HORNIK K, 2009, R FAQ Kelly G S, 1998, Altern Med Rev, V3, P114 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x Kopke RD, 2007, HEARING RES, V226, P114, DOI 10.1016/j.heares.2006.10.008 Kramer S, 2006, J AM ACAD AUDIOL, V17, P265, DOI 10.3766/jaaa.17.4.5 LIM DJ, 1979, OTOLARYNG CLIN N AM, V12, P493 LIM DJ, 1971, ARCHIV OTOLARYNGOL, V94, P294 Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0 MEISTER A, 1991, PHARMACOL THERAPEUT, V51, P155, DOI 10.1016/0163-7258(91)90076-X Nelson DI, 2005, AM J IND MED, V48, P446, DOI 10.1002/aijm.20223 Niskar AS, 1998, JAMA-J AM MED ASSOC, V279, P1071, DOI 10.1001/jama.279.14.1071 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 PEMBLE S, 1994, BIOCHEM J, V300, P271 Penugonda S, 2005, BRAIN RES, V1056, P132, DOI 10.1016/j.brianres.2005.07.032 Perez R, 2004, HEARING RES, V192, P101, DOI 10.1016/j.heares.2004.01.018 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 Rabinowitz PM, 2002, HEARING RES, V173, P164, DOI 10.1016/S0378-5955(02)00350-7 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X Rovig GW, 2004, MIL MED, V169, P429 SEIDEGARD J, 1986, CARCINOGENESIS, V7, P751, DOI 10.1093/carcin/7.5.751 SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3 Ward W. D., 1973, MODERN DEV AUDIOLOGY, P301 Wiencke JK, 1997, CARCINOGENESIS, V18, P1431, DOI 10.1093/carcin/18.7.1431 Wu HP, 2010, HEARING RES, V267, P71, DOI 10.1016/j.heares.2010.03.082 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X Yang Miao, 2005, Wei Sheng Yan Jiu, V34, P647 NR 45 TC 28 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 42 EP 47 DI 10.1016/j.heares.2010.07.005 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400005 PM 20638463 ER PT J AU Park, SK Elmarsafawy, S Mukherjee, B Spiro, A Vokonas, PS Nie, HL Weisskopf, MG Schwartz, J Hu, H AF Park, Sung Kyun Elmarsafawy, Sahar Mukherjee, Bhramar Spiro, Avron, III Vokonas, Pantel S. Nie, Huiling Weisskopf, Marc G. Schwartz, Joel Hu, Howard TI Cumulative lead exposure and age-related hearing loss: The VA Normative Aging Study SO HEARING RESEARCH LA English DT Article ID NUTRITION EXAMINATION SURVEYS; AUDITORY-EVOKED-POTENTIALS; BLOOD LEAD; NATIONAL-HEALTH; PLASMA-MEMBRANE; UNITED-STATES; BONE LEAD; ELDERLY-MEN; NOISE; ADULTS AB Although lead has been associated with hearing loss in occupational settings and in children, little epidemiologic research has been conducted on the impact of cumulative lead exposure on age-related hearing loss in the general population. We determined whether bone lead levels, a marker of cumulative lead exposure, are associated with decreased hearing ability in 448 men from the Normative Aging Study, seen between 1962 and 1996 (2264 total observations). Air conduction hearing thresholds were measured at 0.25-8 kHz and pure-tone averages (PTA) (mean of 0.5, 1, 2 and 4 kHz) were computed. Tibia and patella lead levels were measured using K X-ray fluorescence between 1991 and 1996. In cross-sectional analyses, after adjusting for potential confounders including occupational noise, patella lead levels were significantly associated with poorer hearing thresholds at 2, 3, 4, 6 and 8 kHz and PTA. The odds of hearing loss significantly increased with patella lead levels. We also found significant positive associations between tibia lead and the rate change in hearing thresholds at 1, 2, and 8 kHz and PTA in longitudinal analyses. Our results suggest that chronic low-level lead exposure may be an important risk factor for age-related hearing loss and reduction of lead exposure could help prevent or delay development of age-related hearing loss. (C) 2010 Elsevier B.V. All rights reserved. C1 [Park, Sung Kyun; Hu, Howard] Univ Michigan, Dept Environm Hlth Sci, Sch Publ Hlth, Ann Arbor, MI 48109 USA. [Elmarsafawy, Sahar] Mansoura Univ, Fac Med, Mansoura, Egypt. [Mukherjee, Bhramar] Univ Michigan, Dept Biostat, Sch Publ Hlth, Ann Arbor, MI 48109 USA. [Spiro, Avron, III; Vokonas, Pantel S.] Vet Affairs Boston Healthcare Syst, VA Normat Aging Study, Boston, MA USA. [Spiro, Avron, III] Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA USA. [Vokonas, Pantel S.] Boston Univ, Sch Med, Dept Med, Boston, MA 02118 USA. [Nie, Huiling] Purdue Univ, Sch Hlth Sci, W Lafayette, IN 47907 USA. [Weisskopf, Marc G.; Schwartz, Joel; Hu, Howard] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA. RP Park, SK (reprint author), Univ Michigan, Dept Environm Hlth Sci, Sch Publ Hlth, 1415 Washington Hts,SPH 2-M6240, Ann Arbor, MI 48109 USA. EM sungkyun@umich.edu FU National Institute of Environment Health Sciences (NIEHS) [K01-ES016587, R01-ES05257, P42-ES05947, P30-ES00002]; Center for Occupational Health and Safety Engineering (COHSE) at the University of Michigan; Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health [2T420H008455]; VA Merit Review; Epidemiology Research and Information Center of the U.S. Department of Veterans Affairs FX This work was supported by the National Institute of Environment Health Sciences (NIEHS) grants K01-ES016587, R01-ES05257, P42-ES05947 and P30-ES00002. This research was also supported in part by a pilot project research training grant from the Center for Occupational Health and Safety Engineering (COHSE) at the University of Michigan. COHSE an Education and Research Center, is supported by Training Grant No. 2T420H008455 from the Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health. The contents are solely the responsibility of the author(s) and do not necessarily represent the official views of the National Institute for Occupational Safety and Health. Dr. Spiro was supported by a VA Merit Review. The VA Normative Aging Study is supported by the Cooperative Studies Program/Epidemiology Research and Information Center of the U.S. Department of Veterans Affairs and is a component of the Massachusetts Veterans Epidemiology Research and Information Center, Boston, Massachusetts. CR Ahamed M, 2007, CLIN CHIM ACTA, V383, P57, DOI 10.1016/j.cca.2007.04.024 AUDESIRK G, 1993, NEUROTOXICOLOGY, V14, P137 Babisch W, 2005, ENVIRON HEALTH PERSP, V113, pA14 BELL B, 1966, GERONTOLOGIST, V6, P179 BERTONI JM, 1988, NEUROTOXICOLOGY, V9, P235 Brini M, 2009, PFLUG ARCH EUR J PHY, V457, P657, DOI 10.1007/s00424-008-0505-6 Burger D E, 1990, Basic Life Sci, V55, P287 Cheng YW, 2001, AM J EPIDEMIOL, V153, P164, DOI 10.1093/aje/153.2.164 Cheng YW, 1998, AM J CARDIOL, V82, P594, DOI 10.1016/S0002-9149(98)00402-0 Chuang HY, 2007, SCI TOTAL ENVIRON, V387, P79, DOI 10.1016/j.scitotenv.2007.07.032 Coles RRA, 2000, CLIN OTOLARYNGOL, V25, P264, DOI 10.1046/j.1365-2273.2000.00368.x Counter SA, 2002, J OCCUP ENVIRON MED, V44, P30, DOI 10.1097/00043764-200201000-00006 Cruickshanks KJ, 1998, AM J EPIDEMIOL, V148, P879 DISCALZI G, 1993, INT J PSYCHOPHYSIOL, V14, P21, DOI 10.1016/0167-8760(93)90080-9 DISCALZI GL, 1992, NEUROTOXICOLOGY, V13, P207 Forst LS, 1997, J OCCUP ENVIRON MED, V39, P658, DOI 10.1097/00043764-199707000-00011 Garza A, 2006, MED SCI MONITOR, V12, pRA57 Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 Gurer H, 2000, FREE RADICAL BIO MED, V29, P927, DOI 10.1016/S0891-5849(00)00413-5 Helzner EP, 2005, J AM GERIATR SOC, V53, P2119, DOI 10.1111/j.1532-5415.2005.00525.x Hu H, 1998, ENVIRON HEALTH PERSP, V106, P961, DOI 10.2307/3434138 Hu H, 1996, JAMA-J AM MED ASSOC, V275, P1171, DOI 10.1001/jama.275.15.1171 Hu H, 2007, ENVIRON HEALTH PERSP, V115, P455, DOI 10.1289/ehp.9783 Hwang YH, 2009, SCI TOTAL ENVIRON, V408, P43, DOI 10.1016/j.scitotenv.2009.09.016 Jain NB, 2007, ENVIRON HEALTH PERSP, V115, P871, DOI 10.1289/ehp.9629 Korrick SA, 1999, AM J PUBLIC HEALTH, V89, P330, DOI 10.2105/AJPH.89.3.330 LASKY RE, 1995, NEUROTOXICOL TERATOL, V17, P633, DOI 10.1016/0892-0362(95)02006-3 Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006 Liu XZ, 2007, J PATHOL, V211, P188, DOI 10.1002/path.2102 Muntner P, 2005, ARCH INTERN MED, V165, P2155, DOI 10.1001/archinte.165.18.2155 NIOSH, 1996, PREV OCC HEAR LOSS P PIRKLE JL, 1994, JAMA-J AM MED ASSOC, V272, P284, DOI 10.1001/jama.272.4.284 Pleis JR, 2009, SUMMARY HLTH STAT US Rabinowitz PM, 2006, EAR HEARING, V27, P742, DOI 10.1097/01.aud.0000240544.79254.bc Schaumberg DA, 2004, JAMA-J AM MED ASSOC, V292, P2750, DOI 10.1001/jama.292.22.2750 Schultz JM, 2005, NEW ENGL J MED, V352, P1557, DOI 10.1056/NEJMoa043899 SCHWARTZ J, 1991, ARCH ENVIRON HEALTH, V46, P300 SCHWARTZ J, 1987, ARCH ENVIRON HEALTH, V42, P153 SCHWARTZ J, 1991, ENVIRON HEALTH PERSP, V91, P71, DOI 10.2307/3430985 SEIDMAN MD, 2004, ACTA OTO-LARYNGOL, V552, P16 Shull GE, 2003, ANN NY ACAD SCI, V986, P453 Spiden SL, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000238 Tak S, 2008, J OCCUP ENVIRON MED, V50, P46, DOI 10.1097/JOM.0b013e3181579316 Weisskopf MG, 2009, CIRCULATION, V120, P1056, DOI 10.1161/CIRCULATIONAHA.108.827121 Weisskopf MG, 2004, AM J EPIDEMIOL, V160, P1184, DOI 10.1093/aje/kwh333 Wilker EH, 2007, EPIDEMIOLOGY, V18, pS167 Wright RO, 2003, EPIDEMIOLOGY, V14, P713, DOI 10.1097/01.EDE0000081988.85964.db Wu TN, 2000, ARCH ENVIRON HEALTH, V55, P109 YAMAMURA K, 1989, FUND APPL TOXICOL, V13, P509, DOI 10.1016/0272-0590(89)90287-X NR 49 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 48 EP 55 DI 10.1016/j.heares.2010.07.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400006 PM 20638461 ER PT J AU Brittan-Powell, EE Dooling, RJ Ryals, B Gleich, O AF Brittan-Powell, Elizabeth E. Dooling, Robert J. Ryals, Brenda Gleich, Otto TI Electrophysiological and morphological development of the inner ear in Belgian Waters lager canaries SO HEARING RESEARCH LA English DT Article ID AUDITORY-BRAIN-STEM; GERBIL MERIONES-UNGUICULATUS; HAIR CELL REGENERATION; BUDGERIGARS MELOPSITTACUS-UNDULATUS; ANTEROVENTRAL COCHLEAR NUCLEUS; SENSORINEURAL HEARING-LOSS; AGE-RELATED-CHANGES; SERINUS-CANARIUS; EVOKED POTENTIALS; MONGOLIAN GERBIL AB Belgian Waterslager (BW) canaries have an inherited hearing loss due to missing and abnormal hair cells, but it is unclear whether the loss is congenital or developmental. We used auditory brainstem responses and scanning electron microscopy to describe the development of auditory sensitivity and hair cell abnormalities in BW and non-BW canaries. In both strains, adult ABR thresholds were higher than behavioral thresholds, but BW canaries exhibited higher thresholds than non-BW canaries across all frequencies. Immediately post-hatch, ABR thresholds and hair cell numbers were similar in both strains. Two weeks later, thresholds were significantly higher in BW canaries, and hair cell number progressively decreased as the birds aged. These data show that in BW canaries: the peripheral auditory system is functionally similar to non-BW canary from hatch to 2 weeks, ABR thresholds improve during this developmental period, actually becoming better than those of adults, but then worsen as the bird continues to age. Hair cell number and appearance is similar to non-BW canaries at hatch but progressively declines after 30 days of age. These data show that the hearing loss characteristic of BW canaries is, at least in part, developmental and is established by the time song learning begins. (C) 2010 Elsevier B.V. All rights reserved. C1 [Brittan-Powell, Elizabeth E.; Dooling, Robert J.] Univ Maryland, Dept Psychol, College Pk, MD 20742 USA. [Brittan-Powell, Elizabeth E.; Dooling, Robert J.] Univ Maryland, Ctr Comparat & Evolutionary Biol Hearing, College Pk, MD 20742 USA. [Ryals, Brenda] James Madison Univ, Dept Commun Sci & Disorders, Harrisonburg, VA 22807 USA. [Gleich, Otto] Univ Regensburg, ENT Dept, D-93042 Regensburg, Germany. RP Brittan-Powell, EE (reprint author), Univ Maryland, Dept Psychol, College Pk, MD 20742 USA. EM bbrittanpowell@psyc.umd.edu FU National Institute of Deafness and Communicative Disorders of the National Institutes of Health [DC-001372, P30DC004664] FX The authors would like to thank Amanda Lauer and Peter Marvit for comments on earlier drafts and Fernando Nottebohm for use of BW canaries from Rockefeller University Field Station. This work was supported in part by grant DC-001372 from the National Institute of Deafness and Communicative Disorders of the National Institutes of Health to RJD and BMR and P30DC004664. CR Aleksandrov L I, 1992, Neurosci Behav Physiol, V22, P132, DOI 10.1007/BF01192385 Beattie RC, 1996, AUDIOLOGY, V35, P194 BOETTCHER FA, 1993, HEARING RES, V71, P137, DOI 10.1016/0378-5955(93)90029-Z BORG E, 1982, ACTA PHYSL SCAND, V114 BORG E, 1983, ACTA OTO-LARYNGOL, V95, P19, DOI 10.3109/00016488309130911 Brittan-Powell EF, 2005, J ACOUST SOC AM, V118, P314, DOI 10.1121/1.1928767 Brittan-Powell EF, 2002, J ACOUST SOC AM, V112, P999, DOI 10.1121/1.1494807 Brittan-Powell EF, 2004, J ACOUST SOC AM, V115, P3092, DOI 10.1121/1.1739479 Catchpole C.K., 1995, BIRD SONG BIOL THEME COLEMAN J, 1982, DEV BRAIN RES, V4, P119, DOI 10.1016/0165-3806(82)90104-3 CONIJN EAJG, 1993, AUDIOLOGY, V32, P1 Dooling Robert J., 2008, V33, P117 ELBRADRY MM, 2007, BRAIN RES, V1134, P122 FLORENTINE M, 1988, J ACOUST SOC AM, V84, P195, DOI 10.1121/1.396964 Gardner TJ, 2005, SCIENCE, V308, P1046, DOI 10.1126/science.1108214 GLEICH O, 2004, EVOLUTION VERTEBRATE, P224 Gleich O, 1997, J COMP NEUROL, V377, P5, DOI 10.1002/(SICI)1096-9861(19970106)377:1<5::AID-CNE2>3.0.CO;2-8 GLEICH O, 1995, HEARING RES, V82, P100 GLEICH O, 1995, HNO, V43, P287 GLEICH O, 1994, J MORPHOL, V220, P1 Gleich O, 2001, HEARING RES, V151, P141, DOI 10.1016/S0378-5955(00)00221-5 Gleich O, 1997, AUDIOL NEURO-OTOL, V2, P113 GLEICH O, 1994, HEARING RES, V79, P123, DOI 10.1016/0378-5955(94)90134-1 Gleich O, 1998, AUDIOL NEURO-OTOL, V3, P1, DOI 10.1159/000013775 GUTTINGER HR, 1985, BEHAVIOUR, V94, P254, DOI 10.1163/156853985X00226 Hall J. W., 2007, NEW HDB AUDITORY EVO Hamann I, 2002, HEARING RES, V171, P82, DOI 10.1016/S0378-5955(02)00454-9 Hashisaki G T, 1989, J Comp Neurol, V283, P5 Kubke MF, 2002, HEARING RES, V164, P19, DOI 10.1016/S0378-5955(01)00387-2 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Lauer AM, 2009, J COMP PHYSIOL A, V195, P193, DOI 10.1007/s00359-008-0398-z Lauer AM, 2007, J ACOUST SOC AM, V122, P3615, DOI 10.1121/1.2799482 LAUER AM, 2006, THESIS U MARYLAND CO Liberman MC, 1997, AUDIT NEUROSCI, V3, P255 LIPPE WR, 1991, HEARING RES, V56, P203, DOI 10.1016/0378-5955(91)90171-5 Lohr B, 2004, BIOACOUSTICS, V14, P83 MARLER P, 1977, J COMP PHYSIOL PSYCH, V91, P8, DOI 10.1037/h0077303 McFadden SL, 1996, HEARING RES, V100, P68, DOI 10.1016/0378-5955(96)00108-6 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G Mundinger PC, 1999, DESIGN OF ANIMAL COMMUNICATION, P369 Ngan EM, 2001, HEARING RES, V156, P44, DOI 10.1016/S0378-5955(01)00264-7 NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203 NOTTEBOHM F, 1978, Z TIERPSYCHOL, V46, P298 OKANOYA K, 1987, J COMP PSYCHOL, V101, P213, DOI 10.1037/0735-7036.101.2.213 OKANOYA K, 1990, HEARING RES, V46, P271, DOI 10.1016/0378-5955(90)90008-D OKANOYA K, 1985, J ACOUST SOC AM, V78, P1170, DOI 10.1121/1.392885 PARKS TN, 1979, J COMP NEUROL, V183, P665, DOI 10.1002/cne.901830313 PICTON TW, 1979, J OTOLARYNGOL, V10, P1 Ryals BM, 1999, HEARING RES, V131, P71, DOI 10.1016/S0378-5955(99)00022-2 SAUNDERS JC, 1973, BRAIN RES, V63, P59, DOI 10.1016/0006-8993(73)90076-0 Sinnott JM, 1997, HEARING RES, V112, P235, DOI 10.1016/S0378-5955(97)00125-1 SOLIMAN S, 1993, EAR HEARING, V14, P235, DOI 10.1097/00003446-199308000-00002 STAPELLS DR, 1990, AUDIOLOGY, V29, P262 Stapells DR, 1997, AUDIOL NEURO-OTOL, V2, P257 Stapells DR, 2000, J SPEECH LANGUAGE PA, V42, P74 TARNOWSKI BI, 1991, HEARING RES, V54, P124 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410 WALKER GBR, 1993, COLOURED TYPE SONG C WALSH EJ, 1986, J ACOUST SOC AM, V79, P712, DOI 10.1121/1.393461 WATSON CS, 1969, J ACOUST SOC AM, V46, P989, DOI 10.1121/1.1911819 WEBSTER DB, 1988, HEARING RES, V32, P185, DOI 10.1016/0378-5955(88)90090-1 Weisleder P, 1996, J COMP NEUROL, V369, P292, DOI 10.1002/(SICI)1096-9861(19960527)369:2<292::AID-CNE9>3.0.CO;2-Z WEISLEDER P, 1994, HEARING RES, V80, P64, DOI 10.1016/0378-5955(94)90009-4 WENSTRUP JJ, 1984, J COMP PHYSIOL, V155, P91, DOI 10.1007/BF00610934 Wilkins HR, 2001, JARO-J ASSOC RES OTO, V2, P79, DOI 10.1007/101620010025 Wright TF, 2004, P ROY SOC B-BIOL SCI, V271, pS409, DOI 10.1098/rsbl.2004.0204 NR 69 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 56 EP 69 DI 10.1016/j.heares.2010.07.003 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400007 PM 20638464 ER PT J AU Songer, JE Rosowski, JJ AF Songer, Jocelyn E. Rosowski, John J. TI A superior semicircular canal dehiscence-induced air-bone gap in chinchilla SO HEARING RESEARCH LA English DT Article ID CONDUCTIVE HEARING-LOSS; MIDDLE-EAR; SOUND; ADMITTANCE; MECHANISMS; COCHLEA; VERTIGO; MODEL AB An SCD is a pathologic hole (or dehiscence) in the bone separating the superior semicircular canal from the cranial cavity that has been associated with a conductive hearing loss in patients with SCD syndrome. The conductive loss is defined by an audiometrically determined air-bone gap that results from the combination of a decrease in sensitivity to air-conducted sound and an increase in sensitivity to bone-conducted sound. Our goal is to demonstrate, through physiological measurements in an animal model, that mechanically altering the superior semicircular canal (SC) by introducing a hole (dehiscence) is sufficient to cause such an air-bone gap. We surgically introduced holes into the SC of chinchilla ears and evaluated auditory sensitivity (cochlear potential) in response to both air- and bone-conducted stimuli. The introduction of the SC hole led to a low-frequency (<2000 Hz) decrease in sensitivity to air-conducted stimuli and a low-frequency (<1000 Hz) increase in sensitivity to bone-conducted stimuli resulting in an air-bone gap. This result was consistent and reversible. The air-bone gaps in the animal results are qualitatively consistent with findings in patients with SCD syndrome. (C) 2010 Elsevier B.V. All rights reserved. C1 [Songer, Jocelyn E.; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, Boston, MA 02114 USA. [Songer, Jocelyn E.; Rosowski, John J.] Harvard MIT, Cambridge, MA 02138 USA. [Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. RP Songer, JE (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, 243 Charles St, Boston, MA 02114 USA. EM jocelyns@mit.edu FU NSF; NIH [T32-DC00038, R01-DC000194] FX This work has been supported by an NSF graduate student fellowship. NIH training grant T32-DC00038, and an additional NIH research grant R01-DC000194. S. Merchant and W. Peake, and M.E. Ravicz provided insights and suggestions. M. Wood assisted with data collection and animal surgery. CR Bekesy G., 1960, EXPT HEARING Brantberg K, 2001, ACTA OTO-LARYNGOL, V121, P68 Carey JP, 2000, ARCH OTOLARYNGOL, V126, P137 Chien W, 2007, OTOL NEUROTOL, V28, P250, DOI 10.1097/01.mao.0000244370.47320.9a Cleveland W, 1993, VISUALIZING DATA Cremer PD, 2000, NEUROLOGY, V55, P1833 Freeman S, 2000, HEARING RES, V146, P72, DOI 10.1016/S0378-5955(00)00098-8 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 Hirvonen TP, 2001, ARCH OTOLARYNGOL, V127, P1331 Limb CJ, 2006, OTOL NEUROTOL, V27, P969, DOI 10.1097/01.mao.0000235376.70492.8e Mikulec AA, 2004, OTOL NEUROTOL, V25, P121, DOI 10.1097/00129492-200403000-00007 Mikulec AA, 2005, LARYNGOSCOPE, V115, P501, DOI 10.1097/01.mlg.0000157844.48036.e7 Minor LB, 2000, AM J OTOL, V21, P9 Minor LB, 1998, ARCH OTOLARYNGOL, V124, P249 Minor LB, 2003, OTOL NEUROTOL, V24, P270, DOI 10.1097/00129492-200303000-00023 RANKE O, 1953, GEHORSTIMME SPRACHE, P3 Rosowski JJ, 2009, EAR HEARING, V30, P149 ROSOWSKI JJ, 2008, EAR HEARING, V29, P250 Rosowski JJ, 2004, OTOL NEUROTOL, V25, P323, DOI 10.1097/00129492-200405000-00021 Rosowski JJ, 2006, J COMP PHYSIOL A, V192, P1287, DOI 10.1007/s00359-006-0159-9 SHERA CA, 1992, J ACOUST SOC AM, V92, P1382, DOI 10.1121/1.403931 Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X Sohmer H, 2004, HEARING RES, V187, P105, DOI 10.1016/S0378-5955(03)00335-6 Songer JE, 2005, HEARING RES, V210, P53, DOI 10.1016/j.heares.2005.07.003 Songer JE, 2004, PROCEEDINGS OF THE 3RD SYMPOSIUM ON MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P234 Songer JE, 2006, J ACOUST SOC AM, V120, P258, DOI 10.1121/1.2204356 Songer JE, 2007, J ACOUST SOC AM, V122, P943, DOI 10.1121/1.2747158 Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847 TONNDORF J, 1972, F MODERN AUDITORY TH, V2, P197 Voss SE, 1996, J ACOUST SOC AM, V100, P1602, DOI 10.1121/1.416062 Watson SRD, 2000, NEUROLOGY, V54, P722 WEVER EG, 1950, J ACOUST SOC AM, V22, P460, DOI 10.1121/1.1906628 NR 32 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 70 EP 80 DI 10.1016/j.heares.2010.07.002 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400008 PM 20638462 ER PT J AU Gander, RE Bosnyak, DJ Roberts, LE AF Gander, R. E. Bosnyak, D. J. Roberts, L. E. TI Acoustic experience but not attention modifies neural population phase expressed in human primary auditory cortex SO HEARING RESEARCH LA English DT Article ID AMPLITUDE-MODULATED TONES; STEADY-STATE RESPONSES; EVOKED-POTENTIALS; BRAIN-STEM; MUSICAL EXPERIENCE; BASAL FOREBRAIN; NON-MUSICIANS; PLASTICITY; FREQUENCY; FIELDS AB We studied the effect of auditory training on the 40-Hz auditory steady-state response (ASSR) known to localize tonotopically to the region of primary auditory cortex (A1). The stimulus procedure was designed to minimize competitive interactions among frequency representations in A1 and delivered target events at random times in a training window, to increase the likelihood that neuroplastic changes could be detected. Experiment 1 found that repeated exposure to this stimulus advanced the phase of the ASSR (shortened the time delay between the 40-Hz response and stimulus waveforms). The phase advance appeared at the outset of the second of two sessions separated by 24-72 h, did not require active training, and was not accompanied by changes in ASSR amplitude over this time interval. Experiment 2 applied training for 10 sessions to reveal further advances in ASSR phase and also an increase in ASSR amplitude, but the amplitude effect lagged that on phase and did not correlate with perceptual performance while the phase advance did. A control group trained for a single session showed a phase advance but no amplitude enhancement when tested 6 weeks later (retention). In both experiments attention to auditory signals increased ASSR amplitude but had no effect on ASSR phase. Our results reveal a persistent form of neural plasticity expressed in the phase of ASSRs generated from the region of A1, which occurs either in A1 or in subcortical nuclei projecting to this region. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gander, R. E.; Bosnyak, D. J.; Roberts, L. E.] McMaster Univ, Dept Psychol Neurosci & Behav, Hamilton, ON L8S 4K1, Canada. RP Roberts, LE (reprint author), McMaster Univ, Dept Psychol Neurosci & Behav, 1280 Main St W, Hamilton, ON L8S 4K1, Canada. EM pgander@mcmaster.ca; bosnyak@mcmaster.ca; roberts@mcmaster.ca FU Canadian Institutes of Health Research; Natural Sciences and Engineering Research Council of Canada FX This research was supported by grants from the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada (LER). The authors contributed equally to this work. PEG, is now at the University of Nottingham (UK). CR Ahveninen J, 2002, NEUROIMAGE, V15, P153, DOI 10.1006/nimg.2001.0956 Alain C, 2007, CEREB CORTEX, V17, P1074, DOI 10.1093/cercor/bhl018 Atienza M, 2002, LEARN MEMORY, V9, P138, DOI 10.1101/lm.46502 Bidet-Caulet A, 2007, J NEUROSCI, V27, P9252, DOI 10.1523/JNEUROSCI.1402-07.2007 BIGL V, 1982, BRAIN RES BULL, V8, P727, DOI 10.1016/0361-9230(82)90101-0 Blake DT, 2002, P NATL ACAD SCI USA, V99, P10114, DOI 10.1073/pnas.092278099 BOSNYAK DJ, 2007, INT C SERIES, P29 Bosnyak DJ, 2004, CEREB CORTEX, V14, P1088, DOI 10.1093/cercor/bhh068 BOSNYAK DJ, 2001, ANAL SWEPT RATE AUDI Bramham CR, 2010, EXP BRAIN RES, V200, P125, DOI 10.1007/s00221-009-1959-2 Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056 Brugge JF, 2009, J NEUROPHYSIOL, V102, P2358, DOI 10.1152/jn.91346.2008 CAMPBELL KA, 1995, BRAIN RES, V702, P110, DOI 10.1016/0006-8993(95)01027-4 Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732 DE VILLERSSIDANI, 2008, NAT NEUROSCI, V11, P957 Dean I, 2005, NAT NEUROSCI, V8, P1684, DOI 10.1038/nn1541 DICKERSON LW, 1991, EXP NEUROL, V112, P229, DOI 10.1016/0014-4886(91)90074-M Formisano E, 2003, NEURON, V40, P859, DOI 10.1016/S0896-6273(03)00669-X FREUND TF, 1992, P NATL ACAD SCI USA, V89, P738, DOI 10.1073/pnas.89.2.738 Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 Fujioka T, 2006, BRAIN, V129, P2593, DOI 10.1093/brain/aw1247 Galvan VV, 2002, NEUROBIOL LEARN MEM, V77, P78, DOI 10.1006/nlme.2001.4044 GANDER PE, 2010, HEAR RES GANDER RE, 2007, INT C SERIES, P37 Garcia-Lazaro JA, 2007, EUR J NEUROSCI, V26, P2359, DOI 10.1111/j.1460-9568.2007.05847.x Godey B, 2001, CLIN NEUROPHYSIOL, V112, P1850, DOI 10.1016/S1388-2457(01)00636-8 Greenberg S., 1998, PSYCHOPHYSICAL PHYSL, P293 Gutschalk A, 1999, CLIN NEUROPHYSIOL, V110, P856, DOI 10.1016/S1388-2457(99)00019-X Jaaskelainen IP, 1999, NEUROSCI LETT, V259, P41, DOI 10.1016/S0304-3940(98)00893-3 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kilgard MP, 2001, J NEUROPHYSIOL, V86, P326 Kilgard MP, 2002, P NATL ACAD SCI USA, V99, P3205, DOI 10.1073/pnas.261705198 Krishnan A, 2009, NEUROREPORT, V20, P408, DOI 10.1097/WNR.0b013e3283263000 Kuriki S, 2006, J NEUROSCI, V26, P4046, DOI 10.1523/JNEUROSCI.3907-05.2006 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 Lundstrom BN, 2008, NAT NEUROSCI, V11, P1335, DOI 10.1038/nn.2212 Markram H, 1997, SCIENCE, V275, P213, DOI 10.1126/science.275.5297.213 Menning H, 2000, NEUROREPORT, V11, P817, DOI 10.1097/00001756-200003200-00032 METHERATE R, 1993, SYNAPSE, V14, P132, DOI 10.1002/syn.890140206 Musacchia G, 2008, HEARING RES, V241, P34, DOI 10.1016/j.heares.2008.04.013 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x PANTEV C, 1993, ELECTROEN CLIN NEURO, V88, P389, DOI 10.1016/0168-5597(93)90015-H Pantev C, 1996, EAR HEARING, V17, P255, DOI 10.1097/00003446-199606000-00008 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 Patel AD, 2004, CEREB CORTEX, V14, P35, DOI 10.1093/cercor/bhg089 Petkov CI, 2004, NAT NEUROSCI, V7, P658, DOI 10.1038/nn1256 Picton TW, 1999, AUDIOL NEURO-OTOL, V4, P64, DOI 10.1159/000013823 Pienkowski M, 2009, HEARING RES, V257, P24, DOI 10.1016/j.heares.2009.07.011 Poghosyan V, 2008, NEURON, V58, P802, DOI 10.1016/j.neuron.2008.04.013 RECANZONE GH, 1993, J NEUROSCI, V13, P87 Reinke KS, 2003, COGNITIVE BRAIN RES, V17, P781, DOI 10.1016/S0926-6410(03)00202-7 RIGDON GC, 1986, J NEUROSCI, V6, P2535 Ross B, 2009, HEARING RES, V248, P48, DOI 10.1016/j.heares.2008.11.012 Ross B, 2000, J ACOUST SOC AM, V108, P679, DOI 10.1121/1.429600 RUGGERO MA, 1987, J NEUROPHYSIOL, V58, P379 Sarter M, 2005, BRAIN RES REV, V48, P98, DOI 10.1016/j.brainresrev.2004.08.006 Schreiner CE, 2007, NEURON, V56, P356, DOI 10.1016/j.neuron.2007.10.013 Seitz AR, 2007, CURR OPIN NEUROBIOL, V17, P148, DOI 10.1016/j.conb.2007.02.004 Shahin A, 2004, NEUROREPORT, V15, P1917, DOI 10.1097/00001756-200408260-00017 Shahin A, 2003, J NEUROSCI, V23, P5545 Shahin AJ, 2008, NEUROIMAGE, V41, P113, DOI 10.1016/j.neuroimage.2008.01.067 SHAHIN AJ, 2007, CLIN NEUROPHYSIOL, V118 Sheehan KA, 2005, COGNITIVE BRAIN RES, V25, P547, DOI 10.1016/j.cogbrainres.2005.08.007 Song JH, 2008, J COGNITIVE NEUROSCI, V20, P1892, DOI 10.1162/jocn.2008.20131 Song S, 2000, NAT NEUROSCI, V3, P919 Stanton SG, 1996, AUDIT NEUROSCI, V2, P97 Tremblay K, 2001, EAR HEARING, V22, P79, DOI 10.1097/00003446-200104000-00001 van Wassenhove V, 2007, J NEUROSCI, V27, P2663, DOI 10.1523/JNEUROSCI.4844-06.2007 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 Weinberger NM, 2007, HEARING RES, V229, P54, DOI 10.1016/j.heares.2007.01.004 Wienbruch C, 2006, NEUROIMAGE, V33, P180, DOI 10.1016/j.neuroimage.2006.06.023 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 NR 72 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 81 EP 94 DI 10.1016/j.heares.2010.07.001 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400009 ER PT J AU Schaette, R Konig, O Hornig, D Gross, M Kempter, R AF Schaette, Roland Koenig, Ovidiu Hornig, Dirk Gross, Manfred Kempter, Richard TI Acoustic stimulation treatments against tinnitus could be most effective when tinnitus pitch is within the stimulated frequency range SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; HEARING-AID USE; COMPUTATIONAL MODEL; NEURONAL HYPERACTIVITY; SUBJECTIVE TINNITUS; ADAPTIVE PLASTICITY; BRAIN-STEM; VARIABILITY; ENVIRONMENT; PERCEPTION AB Acoustic stimulation with hearing aids or noise devices is frequently used in tinnitus therapy. However, such behind-the-ear devices are limited in their high-frequency output with an upper cut-off frequency of approximately 5-6 kHz. Theoretical modeling suggests that acoustic stimulation treatments with these devices might be most effective when the tinnitus pitch is within the stimulated frequency range. To test this hypothesis, we conducted a pilot study with 15 subjects with chronic tinnitus. Eleven subjects received hearing aids and four subjects noise devices. Perceived tinnitus loudness was measured using a visual analog scale, and tinnitus-related distress was assessed using the Tinnitus Questionnaire. After six months of device usage, reductions of perceived tinnitus loudness were seen only in subjects with a tinnitus pitch of less than 6 kHz. When subjects were grouped by tinnitus pitch, the group of patients with a tinnitus pitch of less than 6 kHz (n = 10 subjects) showed a significant reduction in perceived tinnitus loudness (from 73.4 +/- 6.1 before to 56.4 +/- 7.4 after treatment, p = 0.012), whereas in subjects with a tinnitus pitch of 6 kHz or more (n = 5 subjects) tinnitus loudness was slightly increased after six months of treatment (65.0 +/- 4.7 before and 70.6 +/- 5.9 after treatment), but the increase was not significant (p = 0.063). Likewise, tinnitus-related distress was significantly decreased in the low-pitch group (from 31.6 +/- 4.3 to 20.9 +/- 4.8, p = 0.0059), but not in the group with high-pitched tinnitus (30.2 +/- 3.3 before and 30.0 +/- 5.1 after treatment, p = 1). Overall, reductions in tinnitus-related distress in our study were less pronounced than those reported for more comprehensive treatments. However, the differences we observed between the low- and the high-pitch group show that tinnitus pitch might influence the outcome of acoustic stimulation treatments when devices with a limited frequency range are used. (C) 2010 Elsevier B.V. All rights reserved. C1 [Schaette, Roland] UCL, UCL Ear Inst, London WC1X 8EE, England. [Schaette, Roland; Kempter, Richard] Humboldt Univ, Inst Theoret Biol, D-10115 Berlin, Germany. [Schaette, Roland; Kempter, Richard] Bernstein Ctr Computat Neurosci Berlin, D-10115 Berlin, Germany. [Koenig, Ovidiu; Hornig, Dirk; Gross, Manfred] Charite, Med Fac Berlin, Dept Audiol & Phoniatr, D-13353 Berlin, Germany. [Kempter, Richard] Charite, Med Fac Berlin, Neurosci Res Ctr, D-10117 Berlin, Germany. RP Schaette, R (reprint author), UCL, UCL Ear Inst, 332 Grays Inn Rd, London WC1X 8EE, England. EM r.schaette@ucl.ac.uk FU Deutsche Forschungsgemeinschaft (DFG) [Ke 788/1-4]; Bundesministerium fur Bildung und Forschung (Bernstein Center for Computational Neuroscience Berlin) [01GQ0410, 01GQ07102]; British Tinnitus Association; [SFB 618] FX This research was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Emmy Noether Programm (Ke 788/1-4), the SFB 618 "Theoretical Biology", the Bundesministerium fur Bildung und Forschung (Bernstein Center for Computational Neuroscience Berlin, 01GQ0410; Bernstein Collaboration "Temporal Precision", 01GQ07102), and the British Tinnitus Association. CR AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 BURNS EM, 1984, AUDIOLOGY, V23, P426 Davis PB, 2008, ENT-EAR NOSE THROAT, V87, P330 Davis PB, 2007, EAR HEARING, V28, P242, DOI 10.1097/AUD.0b013e3180312619 Dominguez M, 2006, NEURAL COMPUT, V18, P2942, DOI 10.1162/neco.2006.18.12.2942 Dong S, 2009, NEUROSCIENCE, V159, P1164, DOI 10.1016/j.neuroscience.2009.01.043 Folmer RL, 2006, OTOLARYNG HEAD NECK, V134, P132, DOI 10.1016/j.otohns.2005.09.030 Formby C, 2003, J ACOUST SOC AM, V114, P55, DOI 10.1121/1.1582860 Giraud AL, 1999, NEUROREPORT, V10, P1, DOI 10.1097/00001756-199901180-00001 GOEBEL G, 1994, HNO, V42, P166 HENRY IA, 1999, P 6 INT TINN SEM, P51 Henry J. A, 2004, TINNITUS THEORY MANA, P220 Henry JA, 2005, J SPEECH LANG HEAR R, V48, P1204, DOI 10.1044/1092-4388(2005/084) Hiller W, 2005, BEHAV RES THER, V43, P595, DOI 10.1016/j.brat.2004.03.012 Hoffmann H. J., 2004, TINNITUS THEORY MANA, P16 Jastreboff P J, 2000, J Am Acad Audiol, V11, P162 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Konig O, 2006, HEARING RES, V221, P59, DOI 10.1016/j.heares.2006.07.007 Lockwood AH, 2001, NEUROLOGY, V56, P472 Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 MOFFAT G, HEAR RES Moore B. C. J., 2007, COCHLEAR HEARING LOS Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036 Munro KJ, 2009, J ACOUST SOC AM, V126, P568, DOI 10.1121/1.3161829 Nicolas-Puel Cécile, 2002, Int Tinnitus J, V8, P37 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001 Norena AJ, 2007, NEUROREPORT, V18, P1251, DOI 10.1097/WNR.0b013e3282202c35 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Olsen SO, 1999, AUDIOLOGY, V38, P202 PENNER MJ, 1983, J SPEECH HEAR RES, V26, P263 Philibert B, 2002, HEARING RES, V165, P142, DOI 10.1016/S0378-5955(02)00296-4 Pilgramm M, 1999, P 6 INT TINN SEM CAM, P64 Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9 Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x Schaette R, 2008, HEARING RES, V240, P57, DOI 10.1016/j.heares.2008.02.006 Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008 SURR RK, 1985, EAR HEARING, V6, P71, DOI 10.1097/00003446-198503000-00002 Trotrer MI, 2008, J LARYNGOL OTOL, V122, P1052, DOI 10.1017/S002221510800203X Tyler R S, 1983, Br J Audiol, V17, P101, DOI 10.3109/03005368309078916 Vinay, 2007, EAR HEARING, V28, P231 Weisz N, 2005, PLOS MED, V2, P546, DOI 10.1371/journal.pmed.0020153 Weisz N, 2007, J NEUROSCI, V27, P1479, DOI 10.1523/JNEUROSCI.3711-06.2007 Weisz N, 2006, HEARING RES, V222, P108, DOI 10.1016/j.heares.2006.09.003 NR 45 TC 35 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 95 EP 101 DI 10.1016/j.heares.2010.06.022 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400010 PM 20619332 ER PT J AU Rajguru, SM Matic, AI Robinson, AM Fishman, AJ Moreno, LE Bradley, A Vujanovic, I Breen, J Wells, JD Bendett, M Richter, CP AF Rajguru, Suhrud M. Matic, Agnella Izzo Robinson, Alan M. Fishman, Andrew J. Moreno, Laura E. Bradley, Allison Vujanovic, Irena Breen, Joe Wells, Jonathon D. Bendett, Mark Richter, Claus-Peter TI Optical cochlear implants: Evaluation of surgical approach and laser parameters in cats SO HEARING RESEARCH LA English DT Article ID AUDITORY-NERVE FIBERS; INTRACOCHLEAR ELECTRICAL-STIMULATION; INNER-EAR; SPEECH RECOGNITION; APICAL DIFFERENCES; PULSE DURATION; HEARING; CHANNELS; RECEPTOR; POTENTIALS AB Previous research has shown that neural stimulation with infrared radiation (IR) is spatially selective and illustrated the potential of IR in stimulating auditory neurons. The present work demonstrates the application of a miniaturized pulsed IR stimulator for chronic implantation in cats, quantifies its efficacy, and short-term safety in stimulating auditory neurons. IR stimulation of the neurons was achieved using an optical fiber inserted through a cochleostomy drilled in the basal turn of the cat cochlea and was characterized by measuring compound action potentials (CAPs). Neurons were stimulated with IR at various pulse durations, radiant exposures, and pulse repetition rates. Pulse durations as short as 50 us were successful in evoking CAPs in normal as well as deafened cochleae. Continual stimulation was provided at 200 pulses per second, at 200 mW per pulse, and 100 us pulse duration. Stable CAP amplitudes were observed for up to 10 h of continual IR stimulation. Combined with histological data, the results suggest that pulsed IR stimulation does not lead to detectable acute tissue damage and validate the stimulation parameters that can be used in future chronic implants based on pulsed IR. (C) 2010 Elsevier B.V. All rights reserved. C1 [Rajguru, Suhrud M.; Matic, Agnella Izzo; Robinson, Alan M.; Fishman, Andrew J.; Moreno, Laura E.; Bradley, Allison; Vujanovic, Irena; Breen, Joe; Richter, Claus-Peter] Northwestern Univ, Dept Otolaryngol Head & Neck Surg, Feinberg Sch Med, Chicago, IL 60611 USA. [Fishman, Andrew J.] Northwestern Univ, Dept Neurosurg, Feinberg Sch Med, Chicago, IL 60611 USA. [Bradley, Allison; Richter, Claus-Peter] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA. [Fishman, Andrew J.; Richter, Claus-Peter] Northwestern Univ, Hugh Knowles Ctr, Dept Commun Sci & Disorders, Evanston, IL 60208 USA. [Wells, Jonathon D.; Bendett, Mark] Lockheed Martin Aculight, Bothell, WA USA. RP Richter, CP (reprint author), Northwestern Univ, Dept Otolaryngol Head & Neck Surg, Feinberg Sch Med, Searle Bldg 12-561,303 E Chicago Ave, Chicago, IL 60611 USA. EM cri529@northwestern.edu FU National Institutes of Health [1R41DC008515-02] FX The care and use of adult cats in this study was carried out in accordance with the NIH Guide for the Care and Use of Laboratory Animals and was approved by the Animal Care and Use Committee of Northwestern University. This work was funded by National Institutes of Health grant 1R41DC008515-02. CR Balaban CD, 2003, HEARING RES, V175, P165, DOI 10.1016/S0378-5955(02)00734-7 BLACK RC, 1983, ANN NY ACAD SCI, V405, P137, DOI 10.1111/j.1749-6632.1983.tb31626.x Carson F, 1997, HISTOTECHNOLOGY SELF, V2nd Caterina MJ, 1997, NATURE, V389, P816 Dorman MF, 1998, J ACOUST SOC AM, V104, P3583, DOI 10.1121/1.423940 Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 HARTMANN R, 1990, ACTA OTO-LARYNGOL, P128 Izzo AD, 2007, J BIOMED OPT, V12, DOI 10.1117/1.2714296 Izzo AD, 2007, IEEE T BIO-MED ENG, V54, P1108, DOI 10.1109/TBME.2007.892925 Izzo AD, 2006, LASER SURG MED, V38, P745, DOI 10.1002/lsm.20358 Izzo AD, 2008, BIOPHYS J, V94, P3159, DOI 10.1529/biophysj.107.117150 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 LITTLEFIELD P, 2008, OPTICAL INTERACTIONS, V19, pF8540 OHLEMILLER KK, 1994, HEARING RES, V80, P174, DOI 10.1016/0378-5955(94)90109-0 OHLEMILLER KK, 1992, HEARING RES, V63, P79, DOI 10.1016/0378-5955(92)90076-Y OLSON JE, 1981, BRAIN RES, V204, P436, DOI 10.1016/0006-8993(81)90604-1 RAJGURU SM, 2010, 33 MIDW M ARO ASS RE RICHTER CP, 2010, 33 MIDW M ARO ASS RE Richter CP, 2008, HEARING RES, V242, P42, DOI [10.1016/j.heares.2008.01.011, 10.1016/j.heares.2008.01.01] RICHTER CP, 2010, LASER PHOTO IN PRESS ROBILLARD PN, 1979, IEEE T BIO-MED ENG, V26, P465, DOI 10.1109/TBME.1979.326572 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Takumida M, 2005, ACTA OTO-LARYNGOL, V125, P929, DOI 10.1080/00016480510038572 TOWNSHEND B, 1987, IEEE T BIO-MED ENG, V34, P891, DOI 10.1109/TBME.1987.326102 Tseeb V, 2009, HFSP J, V3, P117, DOI 10.2976/1.3073779 WALKER JB, 1985, BRAIN RES, V344, P281, DOI 10.1016/0006-8993(85)90805-4 WANG J, 2009, 31 MIDW M ASS RES OT Wells J, 2005, J BIOMED OPT, V10, DOI 10.1117/1.2121772 Wells J, 2007, BIOPHYS J, V93, P2567, DOI 10.1529/biophysj.107.104786 Zheng JF, 2003, J NEUROPHYSIOL, V90, P444, DOI 10.1152/jn.00919.2002 NR 34 TC 39 Z9 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 102 EP 111 DI 10.1016/j.heares.2010.06.021 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400011 PM 20603207 ER PT J AU Boul, A Lineton, B AF Boul, Alison Lineton, Ben TI Spontaneous otoacoustic emissions measured using an open ear-canal recording technique SO HEARING RESEARCH LA English DT Article ID OTO-ACOUSTIC EMISSIONS; MIDDLE-EAR; WAVES; PREVALENCE; REFLECTION; IMPEDANCE; AMPLITUDE; COCHLEA; SYSTEM AB Spontaneous otoacoustic emissions (SOAEs) and synchronized spontaneous otoacoustic emissions (SSOAEs) were recorded using both the standard closed-canal method of recording and a novel open-canal method which involved suspending the probe at the entrance to the ear canal with no occluding tip. In both conditions, a probe tube microphone was inserted down the ear canal to measure the acoustic pressure near the tympanic membrane. Open- and closed-canal recordings were obtained in twelve otologically normal ears, all of which exhibited SSOAEs, and 6 of which exhibited SOAEs. The results were analysed to identify any differences in response to frequency and amplitude. The different recording conditions appeared to have no significant effect on SOAE or SSOAE frequency, suggesting little effect on the SOAE generator within the cochlea. Below about 2 kHz, the amplitude for both types of emission was less for the open-canal recording when compared to the closed-canal recordings. Above 2 kHz, SSOAE amplitudes were greater in the open- than the closed-canal condition. Model stimulations of the ear canal and middle-ear acoustics are presented which were in qualitative agreement with the results shown for the effects on emission amplitudes. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved. C1 [Boul, Alison; Lineton, Ben] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO16 7PX, Hants, England. RP Boul, A (reprint author), Aston Univ, Midlands Cochlear Implant Programme, Childrens Serv, Aston Univ Day Hosp, Birmingham B4 7ET, W Midlands, England. EM alison.boul@bch.nhs.uk; bl@isvr.soton.ac.uk CR BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 BRIGHT KE, 1997, OTOACOUSTIC EMISSION, P49 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 DOLHEN P, 1991, SCAND AUDIOL, V20, P203, DOI 10.3109/01050399109074954 FRICK LR, 1988, EAR HEARING, V9, P190, DOI 10.1097/00003446-198808000-00004 Keefe DH, 1997, J ACOUST SOC AM, V102, P2849, DOI 10.1121/1.420340 KEEFE DH, 1993, J ACOUST SOC AM, V94, P2617, DOI 10.1121/1.407347 KEMP DT, 2003, OAE STORY KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Kemp D T, 1981, Ciba Found Symp, V85, P54 KEMP DT, 1990, EAR HEARING, V11, P93 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 KRINGLEBOTN M, 1988, SCAND AUDIOL, V17, P75, DOI 10.3109/01050398809070695 LONG GR, 1997, J ACOUST SOC AM, V102, P2832 Margolis RH, 1997, OTOACOUSTIC EMISSION, P130 MERRITT S, 2001, THESIS U SOUTHAMPTON MORLET T, 1995, INT J PEDIATR OTORHI, V33, P207, DOI 10.1016/0165-5876(95)01210-9 Pasanen EG, 2000, J ACOUST SOC AM, V108, P1105, DOI 10.1121/1.1287026 PENNER MJ, 1993, HEARING RES, V68, P2229 PROBST R, 1987, AM J OTOLARYNG, V8, P73, DOI 10.1016/S0196-0709(87)80027-3 PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 SCHLOTH E, 1983, HEARING RES, V11, P285, DOI 10.1016/0378-5955(83)90063-1 SHERA CA, 1993, J ACOUST SOC AM, V93, P3333, DOI 10.1121/1.405717 Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750 SHERA CA, 1991, J ACOUST SOC AM, V89, P1290, DOI 10.1121/1.400654 Talmadge C., 1993, BIOPHYSICS HAIR CELL, P25 VANDIJK P, 1998, J ACOUST SOC AM WHITEHEAD ML, 1991, HEARING RES, V53, P269, DOI 10.1016/0378-5955(91)90060-M Withnell RH, 1998, J ACOUST SOC AM, V104, P350, DOI 10.1121/1.423292 ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 ZWICKER E, 1990, HEARING RES, V47, P185, DOI 10.1016/0378-5955(90)90150-N NR 34 TC 0 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 112 EP 121 DI 10.1016/j.heares.2010.06.020 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400012 PM 20600736 ER PT J AU Liu, P Zhang, H Devaraj, R Ganesalingam, GS Smith, PF AF Liu, Ping Zhang, Hu Devaraj, Renuka Ganesalingam, Ganes S. Smith, Paul F. TI A multivariate analysis of the effects of aging on glutamate, GABA and arginine metabolites in the rat vestibular nucleus SO HEARING RESEARCH LA English DT Article ID AGE-RELATED-CHANGES; NITRIC-OXIDE SYNTHASE; VESTIBULOOCULAR REFLEX; HAIR CELL; MICROSCOPIC EVALUATION; ALZHEIMERS-DISEASE; CRISTA-AMPULLARIS; OLDER-PEOPLE; NOS ACTIVITY; GUINEA-PIG AB Aging is associated with neurochemical changes in the brain that result in impaired vestibular reflex function. We analysed the concentrations of 9 related neurochemicals (L-arginine, L-citrulline, L-ornithine, agmatine, putrescine, spermidine, spermine, glutamate and gamma-aminobutyric acid (GABA)) in the vestibular nucleus of aged (24 months old) and young (4 month old) rats; the cerebellum was analysed for comparison. The effects of the housing conditions of the rats were also investigated. Age significantly affected the concentrations of the 9 neurochemicals in both the vestibular nucleus and cerebellum (P = 0.000). Housing did not have a significant effect and the interaction between age and housing was significant only for the vestibular nucleus (P = 0.03). For both the vestibular nucleus and cerebellum, linear discriminant functions were identified that significantly predicted whether the animals were 4 or 24 months old (P = 0.000). Using multiple regression analysis, only vestibular nucleus spermidine, spermine and L-arginine could be predicted from the other neurochemical variables with an adjusted R(2) of >80%. Cluster analyses were performed to determine if the neurochemical variables formed distinct groups and whether this changed as a function of age. For the vestibular nucleus but not the cerebellum, the clusters were substantially different for the 24 month old and 4 month old animals. (C) 2010 Elsevier B.V. All rights reserved. C1 [Smith, Paul F.] Univ Otago, Dept Pharmacol & Toxicol, Dunedin, New Zealand. [Liu, Ping; Devaraj, Renuka] Univ Otago, Dept Anat & Struct Biol, Dunedin, New Zealand. [Zhang, Hu] Univ Otago, Sch Pharm, Dunedin, New Zealand. [Ganesalingam, Ganes S.] Massey Univ, Inst Fundamental Sci, Palmerston North, New Zealand. RP Smith, PF (reprint author), Univ Otago, Dept Pharmacol & Toxicol, Dunedin, New Zealand. EM paul.smith@stonebow.otago.ac.nz FU New Zealand Neurological Foundation; Lottery Health Board FX This research was supported by grants from the New Zealand Neurological Foundation and Lottery Health Board to PL CR ALIDINA A, 1990, AM J OTOLARYNG, V11, P174, DOI 10.1016/0196-0709(90)90034-S Alvarez JC, 1998, ANAT REC, V251, P431 ALVAREZ JC, 2000, MECH AGEING DEV, V114, P249 Anderson TV, 1998, BRAIN RES, V787, P311, DOI 10.1016/S0006-8993(97)01464-9 ANNIKO M, 1983, AM J OTOLARYNG, V4, P151, DOI 10.1016/S0196-0709(83)80037-4 Baloh RW, 2001, ANN NY ACAD SCI, V942, P210 Baloh RW, 2003, ARCH NEUROL-CHICAGO, V60, P835, DOI 10.1001/archneur.60.6.835 BALOH RW, 1992, J AM GERIATR SOC, V40, P713 BALOH RW, 1993, EXP BRAIN RES, V95, P509 Calabrese V, 2007, NAT REV NEUROSCI, V8, P766, DOI 10.1038/nrn2214 Cassel JC, 2005, EUR NEUROPSYCHOPHARM, V15, P163, DOI 10.1016/j.euroneuro.2004.09.006 Cransac H, 1996, HEARING RES, V100, P150, DOI 10.1016/0378-5955(96)00116-5 Deshpande N, 2007, EXP BRAIN RES, V176, P43, DOI 10.1007/s00221-006-0593-5 Feil Robert, 2008, V184, P529 Fernandez JA, 2007, HISTOL HISTOPATHOL, V22, P855 FUJII M, 1990, ANN OTO RHINOL LARYN, V99, P863 Garthwaite J, 2008, EUR J NEUROSCI, V27, P2783, DOI 10.1111/j.1460-9568.2008.06285.x Giardino L, 2002, BRAIN RES, V929, P76, DOI 10.1016/S0006-8993(01)03381-9 GLEESON M, 1987, ACTA OTO-LARYNGOL, P103 Godfrey DA, 2004, J NEUROSCI RES, V77, P603, DOI 10.1002/jnr.20179 Gupta N, 2009, NEUROSCIENCE, V161, P691, DOI 10.1016/j.neuroscience.2009.03.075 Halaris A, 2007, CNS DRUGS, V21, P885 Him A, 2010, BRAIN RES BULL, V81, P81, DOI 10.1016/j.brainresbull.2009.07.008 Him A, 2001, NEUROREPORT, V12, P3965, DOI 10.1097/00001756-200112210-00022 Holscher C, 1997, TRENDS NEUROSCI, V20, P298, DOI 10.1016/S0166-2236(97)01065-5 Horak FB, 2006, AGE AGEING, V35, P7, DOI 10.1093/ageing/afl077 Kevetter GA, 2005, J NEUROSCI RES, V80, P279, DOI 10.1002/jnr.20451 Kevetter GA, 2002, BRAIN RES, V957, P362, DOI 10.1016/S0006-8993(02)03668-5 Kim JS, 2001, J VESTIBUL RES-EQUIL, V11, P3 King J, 2002, NEUROREPORT, V13, P1541, DOI 10.1097/00001756-200208270-00011 Kuipers NT, 2003, J PHYSIOL-LONDON, V548, P955, DOI 10.1113/jphysiol.2002.033357 Law A, 2001, BRAIN RES REV, V35, P73, DOI 10.1016/S0165-0173(00)00051-5 Leonard RB, 2007, NEUROSCIENCE, V147, P794, DOI 10.1016/j.neuroscience.2007.05.001 Li H, 1994, J Vestib Res, V4, P437 Li HY, 1996, J NEUROCHEM, V66, P1550 Liu DX, 2008, THYROID, V18, P853, DOI 10.1089/thy.2007.0357 Liu P, 2003, HIPPOCAMPUS, V13, P859, DOI 10.1002/hipo.10138 Liu P, 2008, NEUROSCIENCE, V155, P789, DOI 10.1016/j.neuroscience.2008.06.033 Liu P, 2008, HIPPOCAMPUS, V18, P1094, DOI 10.1002/hipo.20482 Liu P, 2009, NEUROSCIENCE, V164, P611, DOI 10.1016/j.neuroscience.2009.08.029 Liu P, 2009, HIPPOCAMPUS, V19, P597, DOI 10.1002/hipo.20561 Liu P, 2004, EXP GERONTOL, V39, P1207, DOI 10.1016/j.exger.2004.04.008 Liu P, 2005, HIPPOCAMPUS, V15, P642, DOI 10.1002/hipo.20085 Lopez I, 1997, J VESTIBUL RES-EQUIL, V7, P77 Lopez I, 2005, J NEUROSCI RES, V82, P421, DOI 10.1002/jnr.20652 Lyon MJ, 1997, ANN OTO RHINOL LARYN, V106, P753 Malinski T, 2007, J ALZHEIMERS DIS, V11, P207 Manly BFJ., 2005, MULTIVARIATE STAT AN Marcoulides G. A., 1997, MULTIVARIATE STAT ME McCann SM, 2005, ANN NY ACAD SCI, V1057, P64, DOI 10.1196/annals.1356.004 Merchant S N, 2000, Ann Otol Rhinol Laryngol Suppl, V181, P3 Mistry SK, 2002, MECH AGEING DEV, V123, P1159, DOI 10.1016/S0047-6374(02)00003-9 Nakayama M, 1999, HEARING RES, V127, P103, DOI 10.1016/S0378-5955(98)00177-4 Olson AK, 2006, HIPPOCAMPUS, V16, P250, DOI 10.1002/hipo.20157 Oredsson SM, 2003, BIOCHEM SOC T, V31, P366, DOI 10.1042/BST0310366 Paige G D, 1992, J Vestib Res, V2, P133 Park JJ, 2001, J COMP NEUROL, V431, P437, DOI 10.1002/1096-9861(20010319)431:4<437::AID-CNE1081>3.0.CO;2-P Paterson S, 2000, BRAIN RES, V879, P148, DOI 10.1016/S0006-8993(00)02764-5 Prast H, 2001, PROG NEUROBIOL, V64, P51, DOI 10.1016/S0301-0082(00)00044-7 Quinn G.P., 2006, EXPT DESIGN DATA ANA Rauch SD, 2001, ANN NY ACAD SCI, V942, P220 Ray CA, 2002, CIRCULATION, V105, P956, DOI 10.1161/hc0802.104289 Redfern MS, 2001, GAIT POSTURE, V14, P211, DOI 10.1016/S0966-6362(01)00144-8 Reis DJ, 2000, TRENDS PHARMACOL SCI, V21, P187, DOI 10.1016/S0165-6147(00)01460-7 ROCK DM, 1995, ANNU REV PHARMACOL, V35, P463 Satriano J, 2003, ANN NY ACAD SCI, V1009, P34, DOI 10.1196/annals.1304.004 SEILER N, 1979, NEUROCHEM RES, V4, P425, DOI 10.1007/BF00964637 SEILER N, 1974, BIOCHEM J, V144, P29 Siles E, 2002, BRAIN RES, V956, P385, DOI 10.1016/S0006-8993(02)03575-8 STURROCK RR, 1989, J ANAT, V166, P227 Su HC, 2004, OTOL NEUROTOL, V25, P977, DOI 10.1097/00129492-200411000-00019 Sun YZ, 2007, J NEUROSCI RES, V85, P558, DOI 10.1002/jnr.21136 Tabachnick B., 2007, USING MULTIVARIATE S, V5th Tang Y, 2001, J VESTIBUL RES-EQUIL, V11, P357 Tian JR, 2002, EXP BRAIN RES, V145, P142, DOI 10.1007/s00221-002-1111-z Vernet D, 1998, ENDOCRINOLOGY, V139, P3254, DOI 10.1210/en.139.7.3254 Wallace HM, 2000, EUR J CLIN INVEST, V30, P1 Williams K, 1997, BIOCHEM J, V325, P289 WILLIAMS K, 1991, LIFE SCI, V48, P469, DOI 10.1016/0024-3205(91)90463-L Wolff M, 2008, HIPPOCAMPUS, V18, P996, DOI 10.1002/hipo.20457 Wu GY, 1998, BIOCHEM J, V336, P1 ZHANG H, 2007, APPS J, V9, pW4035 NR 82 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 122 EP 133 DI 10.1016/j.heares.2010.06.019 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400013 PM 20600737 ER PT J AU Greene, NT Lomakin, O Davis, KA AF Greene, Nathaniel T. Lomakin, Oleg Davis, Kevin A. TI Monaural spectral processing differs between the lateral superior olive and the inferior colliculus: Physiological evidence for an acoustic chiasm SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; LOW-FREQUENCY NEURONS; INTERAURAL TIME DIFFERENCES; SPATIAL RECEPTIVE-FIELDS; SINGLE AUDITORY UNITS; RESPONSE PROPERTIES; BINAURAL INTERACTION; DECEREBRATE CATS; S-SEGMENT; DISCRIMINATION THRESHOLDS AB Evidence suggests that the lateral superior olive (LSO) initiates an excitatory pathway specialized to process interaural level differences (ILDs), the primary cues used by mammals to localize high-frequency sounds in the horizontal plane. Type I units in the central nucleus of the inferior colliculus (ICC) of decerebrate cats exhibit monaural and binaural response properties qualitatively similar to those of LSO units, and are thus supposed to be the midbrain component of the ILD pathway. Studies have shown, however, that the responses of ICC cells do not often reflect simply the output of any single source of excitatory inputs. The goal of this study was to compare directly the monaural, spectral response properties of LSO and type I units measured in unanesthetized decerebrate cats. Compared to LSO units, type 1 units have narrower V-shaped excitatory tuning curves, higher spontaneous rates, lower maximum stimulus-evoked firing rates and more nonmonotonic rate-level curves for tones and noise. In addition, low-frequency type I units have lower thresholds to tones than corresponding LSO units. Taken together, these results suggest that the excitatory ILD pathway from LSO to ICC is mostly a high-frequency channel, and that additional inputs transform LSO influences in the ICC. (C) 2010 Elsevier B.V. All rights reserved. C1 [Greene, Nathaniel T.; Lomakin, Oleg; Davis, Kevin A.] Univ Rochester, Dept Neurobiol & Anat, Rochester, NY 14642 USA. [Greene, Nathaniel T.; Lomakin, Oleg; Davis, Kevin A.] Univ Rochester, Dept Biomed Engn, Rochester, NY 14642 USA. [Greene, Nathaniel T.; Lomakin, Oleg; Davis, Kevin A.] Univ Rochester, Ctr Nav & Commun Sci, Rochester, NY 14642 USA. RP Davis, KA (reprint author), Univ Rochester, Dept Neurobiol & Anat, 601 Elmwood Ave,Box 603, Rochester, NY 14642 USA. EM kevin_davis@urmc.rochester.edu FU National Institute of Deafness and Other Communication Disorders [DC05161] FX This work was supported by National Institute of Deafness and Other Communication Disorders grant DC05161. CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1196 Batra R, 1997, J NEUROPHYSIOL, V78, P1222 BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442 BROWNELL WE, 1979, BRAIN RES, V177, P189, DOI 10.1016/0006-8993(79)90930-2 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 Burger RM, 2001, J NEUROSCI, V21, P4830 CAIRD D, 1983, EXP BRAIN RES, V52, P385 CALHOUN BM, 1997, ABSTR SOC NEUROSCI, V28, P463 CANT NB, 1982, NEUROSCI LETT, V32, P241, DOI 10.1016/0304-3940(82)90300-7 Covey E, 1996, J NEUROSCI, V16, P3009 D'Angelo WR, 2005, J NEUROPHYSIOL, V93, P3390, DOI 10.1152/jn.00956.2004 Davis KA, 2007, J NEUROPHYSIOL, V98, P1475, DOI 10.1152/jn.00451.2007 Davis KA, 2005, JARO-J ASSOC RES OTO, V6, P280, DOI 10.1007/s10162-005-0008-5 Davis K. A., 1999, Society for Neuroscience Abstracts, V25, P667 Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001 Davis KA, 1999, J NEUROPHYSIOL, V82, P164 Ehret G, 1988, Brain Res, V472, P139 ERULKAR SD, 1972, PHYSIOL REV, V52, P237 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K FINLAYSON PG, 1991, J NEUROPHYSIOL, V65, P598 Fitzpatrick DC, 1997, NATURE, V388, P871, DOI 10.1038/42246 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 GIBSON DJ, 1982, HEARING RES, V7, P325, DOI 10.1016/0378-5955(82)90043-0 GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 GLENDENNING KK, 1983, J NEUROSCI, V3, P1521 GREENE NT, 2008, ASS RES OTOLARYNGOL, V31, P855 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 GUINAN JJ, 1972, INT J NEUROSCI, V4, P101, DOI 10.3109/00207457209147165 Ingham NJ, 2005, J NEUROSCI, V25, P6187, DOI 10.1523/JNEUROSCI.0146-05.2005 Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153 KAVANAGH GL, 1992, J NEUROPHYSIOL, V67, P1643 Kelly JB, 1997, HEARING RES, V104, P112, DOI 10.1016/S0378-5955(96)00182-7 KLUG A, 1995, J NEUROPHYSIOL, V74, P1701 KUWADA S, 1987, J NEUROPHYSIOL, V57, P1338 Kuwada S, 1997, J NEUROSCI, V17, P7565 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 LI L, 1992, J NEUROSCI, V12, P4530 LI L, 1992, HEARING RES, V61, P73, DOI 10.1016/0378-5955(92)90038-O LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 Loftus WC, 2004, J COMP NEUROL, V472, P330, DOI 10.1002/cne.20070 Malmierca MS, 2005, NEUROSCIENCE, V136, P883, DOI 10.1016/j.neuroscience.2005.04.040 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 Miller RL, 1997, J ACOUST SOC AM, V101, P3602, DOI 10.1121/1.418321 Mills A, 1972, FDN MODERN AUDITORY, P303 Oliver DL, 1997, J COMP NEUROL, V382, P215, DOI 10.1002/(SICI)1096-9861(19970602)382:2<215::AID-CNE6>3.0.CO;2-6 OSEN KK, 1972, J COMP NEUROL, V144, P355, DOI 10.1002/cne.901440307 PALMER AR, 1990, HEARING RES, V50, P71, DOI 10.1016/0378-5955(90)90034-M Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 Park TJ, 2004, J NEUROPHYSIOL, V92, P289, DOI 10.1152/jn.00961.2003 Park TJ, 1998, J NEUROPHYSIOL, V79, P2416 Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B SaintMarie RL, 1997, J COMP NEUROL, V389, P264 SAINTMARIE RL, 1989, J COMP NEUROL, V279, P382 SCHWARTZ IR, 1992, MAMMALIAN AUDITORY P, pV11 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 Spitzer MW, 1998, J NEUROPHYSIOL, V80, P3062 Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228 Tollin DJ, 2008, J NEUROSCI, V28, P4848, DOI 10.1523/JNEUROSCI.5421-07.2008 Tollin DJ, 2002, J NEUROSCI, V22, P1468 Tollin DJ, 2002, J NEUROSCI, V22, P1454 Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005 Tsai JJ, 2010, J NEUROPHYSIOL, V103, P875, DOI 10.1152/jn.00911.2009 TSUCHITA.C, 1967, J ACOUST SOC AM, V42, P794, DOI 10.1121/1.1910651 Tsuchitani C, 1997, HEARING RES, V105, P211, DOI 10.1016/S0378-5955(96)00212-2 TSUCHITA.C, 1966, J NEUROPHYSIOL, V29, P684 TSUCHITANI C, 1982, J NEUROPHYSIOL, V47, P479 TSUCHITANI C, 1977, J NEUROPHYSIOL, V40, P296 VATER M, 1992, J COMP PHYSIOL A, V171, P541 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1020 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000 YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 NR 75 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 134 EP 145 DI 10.1016/j.heares.2010.06.018 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400014 PM 20600738 ER PT J AU Undurraga, JA van Wieringen, A Carlyon, RP Macherey, O Wouters, J AF Undurraga, Jaime A. van Wieringen, Astrid Carlyon, Robert P. Macherey, Olivier Wouters, Jan TI Polarity effects on neural responses of the electrically stimulated auditory nerve at different cochlear sites SO HEARING RESEARCH LA English DT Article ID ACTION-POTENTIALS; MONOPHASIC STIMULATION; IMPLANT USERS; PULSE SHAPES; GUINEA-PIG; WAVE-FORM; SENSITIVITY; HEARING; SYSTEM; FIBER AB Three experiments studied the effect of stimulus polarity on the Electrically Evoked Compound Action Potential (ECAP) obtained with the masker-probe paradigm on different sites along the cochlea in cochlear implant users. Experiment 1 used a biphasic cathodic-1st (BIC) masker and showed that ECAP N(1) peak latencies were longer for BIC than for biphasic anodic-1st (BIA) probes on all electrodes under test. Both the latency of each probe as well as the latency difference between BIA and BIC probes increased when the phase width (PW) of the masker and probe were increased together. Experiment 2 used maskers with long inter-phase gaps (IPGs), and, by manipulating the polarity of the second phase (closest in time to the biphasic probe), showed that only an anodic phase could mask the probe response. Experiment 3 used maskers and probes with long IPGs and measured ECAPs to the first phase of the probe; ECAPs could be measured when both this phase and the second phase of the masker were anodic, but not when they were cathodic. Our results extend those of a previous study, showing that the auditory nerve in humans is preferentially activated by anodic stimulation, to different sites along the cochlea. (C) 2010 Elsevier B.V. All rights reserved. C1 [Undurraga, Jaime A.; van Wieringen, Astrid; Wouters, Jan] Katholieke Univ Leuven KULeuven, Dept Neurosci, ExpORL, B-3000 Louvain, Belgium. [Carlyon, Robert P.; Macherey, Olivier] MRC Cognit & Brain Sci Unit, Cambridge CB2 7EF, England. RP Undurraga, JA (reprint author), Katholieke Univ Leuven KULeuven, Dept Neurosci, ExpORL, Herestr 49 Bus 721, B-3000 Louvain, Belgium. EM jaime.undurraga@med.kuleuven.be RI Wouters, Jan/D-1800-2015 FU Research Council of the Katholieke Universiteit Leuven [OT/07/056] FX This research is supported by the OT grant from the Research Council of the Katholieke Universiteit Leuven (OT/07/056) and is approved by the Local Research Ethics Committee of the Katholieke Universiteit Leuven/UZ Leuven. CR Bonnet RM, 2004, ACTA OTO-LARYNGOL, V124, P371, DOI 10.1080/00016480410031084 Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 BRUMMER S, 1977, IEEE T BIOMED ENG, P59 Carlyon RP, 2005, HEARING RES, V205, P210, DOI 10.1016/j.heares.2005.03.021 Cartee L, 2004, INTRACOCHLEAR POTENT Chatterjee M, 2006, JARO-J ASSOC RES OTO, V7, P15, DOI 10.1007/s10162-005-0019-2 Cohen LT, 2009, HEARING RES, V248, P1, DOI 10.1016/j.heares.2008.11.007 Cohen LT, 2009, HEARING RES, V247, P87, DOI 10.1016/j.heares.2008.11.003 de Balthasar C, 2003, HEARING RES, V182, P77, DOI 10.1016/S0378-5955(03)00174-6 Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1 Eddington D.K., 1994, SPEECH PROCESSORS AU Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Frijns JHM, 2002, EAR HEARING, V23, P184, DOI 10.1097/00003446-200206000-00003 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 HINOJOSA R, 1983, ANN NY ACAD SCI, V405, P459, DOI 10.1111/j.1749-6632.1983.tb31662.x Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0 Klop WMC, 2004, ACTA OTO-LARYNGOL, V124, P137, DOI 10.1080/00016480310016901 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Lai WK, 2007, EAR HEARING, V28, p42S, DOI 10.1097/AUD.0b013e3180315104 Macherey O, 2010, J ACOUST SOC AM, V127, P326, DOI 10.1121/1.3257231 Macherey O, 2008, JARO-J ASSOC RES OTO, V9, P241, DOI 10.1007/s10162-008-0112-4 Macherey O, 2006, JARO-J ASSOC RES OTO, V7, P253, DOI 10.1007/s10162-006-0040-0 Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6 McIntyre CC, 2000, ANN BIOMED ENG, V28, P219, DOI 10.1114/1.262 McIntyre CC, 2002, J NEUROPHYSIOL, V88, P1592, DOI 10.1152/jn.00147.2002 McKay CM, 2003, HEARING RES, V181, P94, DOI 10.1016/S0378-5955(03)00177-1 Miller AL, 1997, HEARING RES, V109, P21, DOI 10.1016/S0378-5955(97)00037-3 Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 2001, JARO, V2, P216 Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6 Morsnowski A, 2006, AUDIOL NEURO-OTOL, V11, P389, DOI 10.1159/000095966 RANCK JB, 1975, BRAIN RES, V98, P417, DOI 10.1016/0006-8993(75)90364-9 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Rattay F, 1999, NEUROSCIENCE, V89, P335, DOI 10.1016/S0306-4522(98)00330-3 Robblee L S, 1990, NEURAL PROSTHESES FU, P25 Tsuji J, 1997, J COMP NEUROL, V381, P188 van Wieringen A, 2005, HEARING RES, V200, P73, DOI 10.1016/j.heares.2004.08.006 VANDENHONERT C, 1979, ANN BIOMED ENG, V7, P117 van Wieringen A, 2006, HEARING RES, V220, P49, DOI 10.1016/j.heares.2006.06.015 van Wieringen A, 2008, HEARING RES, V242, P154, DOI 10.1016/j.heares.2008.03.005 NR 43 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 146 EP 161 DI 10.1016/j.heares.2010.06.017 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400015 PM 20600739 ER PT J AU Drgas, S Blaszak, MA AF Drgas, Szymon Blaszak, Magdalena A. TI Perception of speech in reverberant conditions using AM-FM cochlear implant simulation SO HEARING RESEARCH LA English DT Article ID FREQUENCY-MODULATION; SYNTHETIC SPEECH; NOISE; RECOGNITION; PERFORMANCE; HEARING; TIMES; INTELLIGIBILITY; IDENTIFICATION; LISTENERS AB This study assessed the effects of speech misidentification and cognitive processing errors in normal-hearing adults listening to degraded auditory input signals simulating cochlear implants in reverberation conditions. Three variables were controlled: number of vocoder channels (six and twelve), instantaneous frequency change rate (none, 50, 400 Hz), and enclosures (different reverberation conditions). The analyses were made on the basis of: (a) nonsense word recognition scores for eight young normalhearing listeners, (b) 'ease of listening' based on the time of response, and (c) the subjective measure of difficulty. The maximum score of speech intelligibility in cochlear implant simulation was 70% for non-reverberant conditions with a 12-channel vocoder and changes of instantaneous frequency limited to 400 Hz. In the presence of reflections, word misidentification was about 10-20 percentage points higher. There was little difference between the 50 and 400 Hz frequency modulation cut-off for the 12-channel vocoder; however, in the case of six channels this difference was more significant. The results of the experiment suggest that the information other than FO, that is carried by FM, can be sufficient to improve speech intelligibility in the real-world conditions. (C) 2010 Elsevier B.V. All rights reserved. C1 [Drgas, Szymon; Blaszak, Magdalena A.] Adam Mickiewicz Univ Poznan, Inst Acoust, Fac Phys, PL-60769 Poznan, Poland. [Drgas, Szymon] Poznan Tech Univ, Chair Control & Syst Engn, Poznan, Poland. [Blaszak, Magdalena A.] Univ Warsaw, Fac Phys, Dept Biomed Phys, Warsaw, Poland. RP Drgas, S (reprint author), Adam Mickiewicz Univ Poznan, Inst Acoust, Fac Phys, Umultowska 85, PL-60769 Poznan, Poland. EM Szymon.Drgas@put.poznan.pl; blasaku@gmail.com RI Drgas, Szymon/F-7719-2014 CR [Anonymous], 33821997 ISO Apoux F, 2001, HEARING RES, V153, P123, DOI 10.1016/S0378-5955(00)00265-3 BOLT RH, 1949, J ACOUST SOC AM, V21, P577, DOI 10.1121/1.1906551 Carroll J, 2007, HEARING RES, V231, P42, DOI 10.1016/j.heares.2007.05.004 Chen HB, 2004, J ACOUST SOC AM, V116, P2269, DOI 10.1121/1.1785833 Culling JF, 2003, J ACOUST SOC AM, V114, P2871, DOI 10.1121/1.1616922 Deary IJ, 2001, INTELLIGENCE, V29, P389, DOI 10.1016/S0160-2896(01)00062-9 Delogu C, 1998, SPEECH COMMUN, V24, P153, DOI 10.1016/S0167-6393(98)00009-0 DRGAS S, J SPEECH LANG HEAR R, V52, P945 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 GATEHOUSE S J G, 1990, British Journal of Audiology, V24, P63, DOI 10.3109/03005369009077843 HECKER MHL, 1966, J ACOUST SOC AM, V39, P1188, DOI 10.1121/1.1910013 HUISMAN WHT, 1991, J ACOUST SOC AM, V90, P2664, DOI 10.1121/1.401861 IRWIN RJ, 1987, J ACOUST SOC AM, V81, P1557, DOI 10.1121/1.394508 Koch DB, 2004, AUDIOL NEURO-OTOL, V9, P214, DOI 10.1159/000078391 Lochner J.P.A., 1961, Acustica, V11 Moore BCJ, 2009, J ACOUST SOC AM, V125, P1075, DOI 10.1121/1.3056562 NABELEK AK, 1982, J ACOUST SOC AM, V71, P1242 Nie KB, 2005, IEEE T BIO-MED ENG, V52, P64, DOI 10.1109/TBME.2004.839799 NILSSON E, 2008, J ACOUST SOC AM, V123, P2971, DOI 10.1121/1.2932457 Plomp R., 1976, Acustica, V34 Poissant SF, 2006, J ACOUST SOC AM, V119, P1606, DOI 10.1121/1.2168428 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 RALSTON JV, 1991, HUM FACTORS, V33, P471 SAYLES M, 2007, HEARING SENSORY PROC SEVENSSON C, 2008, J ACOUST SOC AM, V123, P3498 SHANNON RV, 1993, PROG BRAIN RES, V97, P261 SHANNON RV, 1989, J ACOUST SOC AM, V85, P2587, DOI 10.1121/1.397753 Skinner MW, 2002, EAR HEARING, V23, p2S, DOI 10.1097/00003446-200202001-00002 Stickney GS, 2005, J ACOUST SOC AM, V118, P2412, DOI 10.1121/1.2031967 STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 Watkins AJ, 2000, ACUSTICA, V86, P532 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 NR 33 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 162 EP 168 DI 10.1016/j.heares.2010.06.016 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400016 PM 20603206 ER PT J AU Agterberg, MJH Versnel, H de Groot, JCMJ van den Broek, M Klis, SFL AF Agterberg, Martijn J. H. Versnel, Huib de Groot, John C. M. J. van den Broek, Marloes Klis, Sjaak F. L. TI Chronic electrical stimulation does not prevent spiral ganglion cell degeneration in deafened guinea pigs SO HEARING RESEARCH LA English DT Article ID FIBROBLAST-GROWTH-FACTOR; NEUROTROPHIC FACTOR; AUDITORY-NERVE; COCHLEAR IMPLANTS; INNER-EAR; NEONATAL DEAFNESS; TROPHIC SUPPORT; NEURON SURVIVAL; HAIR-CELLS; CATS AB Several studies have demonstrated that treatment with intracochlear chronic electrical stimulation (CES) protects spiral ganglion cells (SGCs) from degeneration in deafened animals. Other studies could not confirm this effect of CES. The present study examined whether CES in a mode as presented in cochlear implant users (amplitude modulated, high pulse rate) affects survival, morphology and functionality of SGCs in deafened guinea pigs. Eleven guinea pigs were implanted in the right cochlea with an electrode array to monitor the electrically evoked auditory brainstem responses (eABRs). The guinea pigs were deafened four weeks later. Two days after deafening, monopolar CES was started in five animals through three electrodes in the basal cochlear turn. CES lasted 4 hours per day, five days per week, for six weeks. SGC packing densities, perikaryal area, cell circularity, amplitudes of suprathreshold eABRs and eABR thresholds were not affected by CES. SGCs of all implanted cochleae were larger and more circular than SGCs in unimplanted cochleae, but this did not depend on CES treatment. Interestingly, an increase in eABR latencies observed after deafening, occurred faster in CES-treated than in untreated animals. In conclusion, amplitude-modulated chronic electrical stimulation with a high pulse rate does not affect survival, morphology and functionality of spiral ganglion cells with the exception of eABR latencies. (C) 2010 Elsevier B.V. All rights reserved. C1 [Agterberg, Martijn J. H.; Versnel, Huib; de Groot, John C. M. J.; van den Broek, Marloes; Klis, Sjaak F. L.] Univ Med Ctr Utrecht, Dept Otorhinolaryngol & Head & Neck Surg, Rudolf Magnus Inst Neurosci, NL-3508 GA Utrecht, Netherlands. [Agterberg, Martijn J. H.] Radboud Univ Nijmegen, Dept Biophys, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands. RP Klis, SFL (reprint author), Univ Med Ctr Utrecht, Dept Otorhinolaryngol & Head & Neck Surg, Room G-02-531,Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands. EM s.klis@umcutrecht.nl RI Agterberg, Martijn/K-2956-2012 FU Heinsius-Houbolt Foundation FX The authors would like to thank Rik Mansvelt-Beck for his excellent technical assistance, Ferry Hendriksen for assisting with histology, Rene van de Vosse for the recording and analysis software, and Victor Wiegant for his comments concerning the manuscript. Furthermore, we would like to thank Bas van Dijk and the Cochlear (TM) company for providing the electrode arrays and the implant-in-a-box. This study was supported by the Heinsius-Houbolt Foundation. CR Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004 Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2 Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Coggeshall RE, 1996, J COMP NEUROL, V364, P6, DOI 10.1002/(SICI)1096-9861(19960101)364:1<6::AID-CNE2>3.0.CO;2-9 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 Du J, 2000, J CELL BIOL, V150, P1423, DOI 10.1083/jcb.150.6.1423 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244 Gillespie LN, 2005, EUR J NEUROSCI, V22, P2123, DOI 10.1111/j.1460-9568.2005.04430.x Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2 Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HALL RD, 1990, HEARING RES, V45, P123, DOI 10.1016/0378-5955(90)90188-U HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 Hegarty JL, 1997, J NEUROSCI, V17, P1959 HYSON RL, 1989, J NEUROSCI, V9, P2835 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 Kingsbury TJ, 2003, J BIOL CHEM, V278, P40744, DOI 10.1074/jbc.M303082200 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 Kral Andrej, 2006, Adv Otorhinolaryngol, V64, P89 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X Leake PA, 2006, J COMP NEUROL, V497, P13, DOI 10.1002/cne.20968 Leake PA, 2008, HEARING RES, V242, P86, DOI 10.1016/j.heares.2008.06.002 LEFEBVRE PP, 1992, HEARING RES, V58, P185, DOI 10.1016/0378-5955(92)90127-9 Li L, 1999, HEARING RES, V133, P27, DOI 10.1016/S0378-5955(99)00043-X Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836 Miller AL, 2001, HEARING RES, V151, P1, DOI 10.1016/S0378-5955(00)00226-4 Miller AL, 2003, BRAIN RES, V966, P218, DOI 10.1016/S0006-8993(02)04170-7 Miller J M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P57 Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X PFINGST BE, 1981, ACTA OTO-LARYNGOL, V92, P1, DOI 10.3109/00016488109133232 PFINGST BE, 1983, ANN NY ACAD SCI, V405, P224, DOI 10.1111/j.1749-6632.1983.tb31635.x Richardson RT, 2005, HEARING RES, V204, P37, DOI 10.1016/j.heares.2005.01.001 Richardson RT, 2006, AUDIOL NEURO-OTOL, V11, P343, DOI 10.1159/000095896 Richardson RT, 2009, BIOMATERIALS, V30, P2614, DOI 10.1016/j.biomaterials.2009.01.015 Roehm Pamela C, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P294, DOI 10.1097/01.moo.0000180919.68812.b9 Romand R, 1984, ULTRASTRUCTURAL ATLA, P165 RYUGO DK, 1995, J COMP NEUROL, V358, P102, DOI 10.1002/cne.903580107 Ryugo DK, 2010, J COMP NEUROL, V518, P1046, DOI 10.1002/cne.22262 Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964 SHAH SB, 1995, AM J OTOL, V16, P310 SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd RK, 2001, AUDIOL NEURO-OTOL, V6, P305, DOI 10.1159/000046843 Song BN, 2009, ACTA OTO-LARYNGOL, V129, P142, DOI 10.1080/00016480802043949 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 Su GL, 2008, HEARING RES, V241, P64, DOI 10.1016/j.heares.2008.04.011 Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003 Vollmer M, 2007, J NEUROPHYSIOL, V98, P2588, DOI 10.1152/jn.00011.2007 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C NR 64 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 169 EP 179 DI 10.1016/j.heares.2010.06.015 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400017 PM 20600740 ER PT J AU Mhatre, AN Tajudeen, B Welt, EM Wartmann, C Long, GR Lalwani, AK AF Mhatre, Anand N. Tajudeen, Bobby Welt, Elena M. Wartmann, Christopher Long, Glenis R. Lalwani, Anil K. TI Temporary reduction of distortion product otoacoustic emissions (DPOAEs) immediately following auditory brainstem response (ABR) SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; SUPEROXIDE-DISMUTASE; TRANSGENIC MICE; NOISE; MUTATIONS; OVEREXPRESSION; CADHERIN-23; CDH23; SUSCEPTIBILITY; STEREOCILIA AB The hearing status of an experimental animal is typically assessed in the laboratory setting by the combined use of auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs), carried out in succession, with the former assay preceding the latter. This study reports a cautionary finding that the use of this accepted regimen yields a reduced DPOAE response. When the DPOAEs were performed after ABR testing, transient reduction of the DPOAE amplitudes was observed at all frequencies in both the inbred, C57/B6 and FVB/N, and the outbred, SW mouse strains. DPOAEs were reduced post-ABR in multiple mouse strains which suggests that this finding is not strain-specific but a general consequence of the preceding ABR analysis. The reduction in DPOAE was temporary: when re-tested at one hour, DPOAE amplitudes recovered to pre-ABR levels. In contrast to the ABR's impact on DPOAE response, ABR thresholds were not altered or reduced when preceded immediately by DPOAE measurements. The molecular alterations underlying the ABR-induced transient reduction of DPOAE remain to be determined. To investigate the potential role of reactive oxygen species in post-ABR DPOAE reduction, transgenic mice over-expressing SOD1, the cytoplasmic enzyme critical for removal of superoxide radicals were subjected to the same auditory testing regimen. Similar to their wild type littermates, the SOD1 transgenic mice also demonstrated post-ABR DPOAE reduction, and thus do not support a role for superoxide radicals in transient reduction of DPOAE. While toxic noise exposure is known to negatively impact OAE, transient decrease in DPOAE levels following standard ABR assay has not been previously described. A practical outcome from this study is a recommendation for reversal of the traditional order for carrying out auditory tests, with the OAE measurements preceding ABR assessment, thus ensuring that the DPOAE response is unaffected. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mhatre, Anand N.; Tajudeen, Bobby; Welt, Elena M.; Wartmann, Christopher] NYU, Dept Otolaryngol, Sch Med, Mol Genet Lab, New York, NY 10016 USA. [Tajudeen, Bobby; Welt, Elena M.; Wartmann, Christopher; Lalwani, Anil K.] NYU, Dept Otolaryngol, Sch Med, Lab Mol Otol, New York, NY 10016 USA. [Mhatre, Anand N.; Lalwani, Anil K.] NYU, Dept Physiol & Neurosci, Sch Med, New York, NY 10016 USA. [Lalwani, Anil K.] NYU, Dept Pediat, Sch Med, New York, NY 10016 USA. [Long, Glenis R.] CUNY, Grad Ctr, New York, NY 10016 USA. RP Mhatre, AN (reprint author), NYU, Dept Otolaryngol, Sch Med, Mol Genet Lab, 560 1st Ave,Skirball 8S, New York, NY 10016 USA. EM anand.mhatre@nyumc.org; anil.lalwani@nyumc.org FU NIDCD [DC005199]; Deafness Research Foundation FX This study was supported in part by the NIDCD (DC005199) and the Deafness Research Foundation. We thank Dr. Marcin Wroblewski for his help with statistical analysis of our data. CR Bhagat SP, 2008, INT J AUDIOL, V47, P751, DOI 10.1080/14992020802310879 Bork JM, 2001, AM J HUM GENET, V68, P26, DOI 10.1086/316954 Chen XL, 2003, MECH AGEING DEV, V124, P219, DOI 10.1016/S0047-6374(02)00161-6 Coling DE, 2003, FREE RADICAL BIO MED, V34, P873, DOI 10.1016/S0891-5849(02)01439-9 Desai A, 1999, NOISE HEALTH, V1, P58 Di Palma F, 2001, NAT GENET, V27, P103 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Korres GS, 2009, NOISE HEALTH, V11, P103, DOI 10.4103/1463-1741.50695 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 Marshall L, 2009, J ACOUST SOC AM, V125, P995, DOI 10.1121/1.3050304 Marshall L, 2001, NOISE HEALTH, V3, P43 McFadden SL, 1999, J COMP NEUROL, V413, P101 Mele J, 2006, ANTIOXID REDOX SIGN, V8, P628, DOI 10.1089/ars.2006.8.628 Mhatre AN, 2007, NEUROMOL MED, V9, P205, DOI 10.1007/s12017-007-8008-8 Miller JAL, 2006, J ACOUST SOC AM, V120, P280, DOI 10.1121/1.2204437 Miller JAL, 2004, INT J AUDIOL, V43, P307 Muller J, 2008, HEARING RES, V246, P9, DOI 10.1016/j.heares.2008.09.005 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Sha SH, 2001, AUDIOL NEURO-OTOL, V6, P117, DOI 10.1159/000046818 Shi Yong-Bing, 1997, Journal of Basic and Clinical Physiology and Pharmacology, V8, P141 Sie KCY, 1997, OTOLARYNG HEAD NECK, V116, P585, DOI 10.1016/S0194-5998(97)70232-8 Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483 Sollner C, 2004, NATURE, V428, P955, DOI 10.1038/nature02484 Wilson SM, 2001, GENOMICS, V74, P228, DOI 10.1006/geno.2001.6554 NR 29 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT 1 PY 2010 VL 269 IS 1-2 BP 180 EP 185 DI 10.1016/j.heares.2010.06.012 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 658ON UT WOS:000282499400018 PM 20600743 ER PT J AU Borkholder, DA Zhu, XX Hyatt, BT Archilla, AS Livingston, WJ Frisina, RD AF Borkholder, David A. Zhu, Xiaoxia Hyatt, Brad T. Archilla, Alfredo S. Livingston, William J., III Frisina, Robert D. TI Murine intracochlear drug delivery: Reducing concentration gradients within the cochlea SO HEARING RESEARCH LA English DT Article ID INNER-EAR; PERILYMPHATIC SCALAE; GENE-TRANSFER; GUINEA-PIG; MOUSE; COMMUNICATION; SALICYLATE; TYMPANI; FLUIDS AB Direct delivery of compounds to the mammalian inner ear is most commonly achieved by absorption or direct injection through the round window membrane (RWM), or infusion through a basal turn cochleostomy. These methods provide direct access to cochlear structures, but with a strong basal-to-apical concentration gradient consistent with a diffusion-driven distribution. This gradient limits the efficacy of therapeutic approaches for apical structures, and puts constraints on practical therapeutic dose ranges. A surgical approach involving both a basal turn cochleostomy and a posterior semicircular canal canalostomy provides opportunities for facilitated perfusion of cochlear structures to reduce concentration gradients. Infusion of fixed volumes of artificial perilymph (AP) and sodium salicylate were used to evaluate two surgical approaches in the mouse: cochleostomy-only (CO), or cochleostomy-plus-canalostomy (C+C). Cochlear function was evaluated via closed-system distortion product otoacoustic emissions (DPOAE) threshold level measurements from 8 to 49 kHz. AP infusion confirmed no surgical impact to auditory function, while shifts in DPOAE thresholds were measured during infusion of salicylate and AP (washout). Frequency dependent shifts were compared for the CO and C+C approaches. Computer simulations modeling diffusion, volume flow, interscala transport, and clearance mechanisms provided estimates of drug concentration as a function of cochlear position. Simulated concentration profiles were compared to frequency-dependent shifts in measured auditory responses using a cochlear tonotopic map. The impact of flow rate on frequency dependent DPOAE threshold shifts was also evaluated for both surgical approaches. Both the C+C approach and a flow rate increase were found to provide enhanced response for lower frequencies, with evidence suggesting the C+C approach reduces concentration gradients within the cochlea. (C) 2010 Elsevier B.V. All rights reserved. C1 [Borkholder, David A.] Rochester Inst Technol, Dept Microelect & Elect Engn, Rochester, NY 14623 USA. [Borkholder, David A.; Zhu, Xiaoxia; Hyatt, Brad T.; Archilla, Alfredo S.; Livingston, William J., III; Frisina, Robert D.] Univ Rochester, Sch Med, Dept Otolaryngol, Rochester, NY 14642 USA. [Borkholder, David A.; Frisina, Robert D.] Univ Rochester, Sch Med, Dept Biomed Engn, Rochester, NY 14642 USA. [Frisina, Robert D.] Univ Rochester, Sch Med, Dept Neurobiol & Anat, Rochester, NY 14642 USA. [Zhu, Xiaoxia; Frisina, Robert D.] Rochester Inst Technol, Natl Tech Inst Deaf, Int Ctr Hearing & Speech Res, Rochester, NY 14623 USA. RP Borkholder, DA (reprint author), Rochester Inst Technol, Dept Microelect & Elect Engn, 79 Lomb Mem Dr, Rochester, NY 14623 USA. EM david.borkholder@rit.edu FU NIH, National Institute on Deafness and other Communication Disorders [K25-DC008291, P30 DC05409]; National Institute on Aging [P01 AG09524] FX This work supported by NIH Grants from the National Institute on Deafness and other Communication Disorders (K25-DC008291 and P30 DC05409) and the National Institute on Aging (P01 AG09524). The author's would like to thank Dr. Alec Salt, Washington University School of Medicine, for his help in determining appropriate input parameters for FluidSim; Dr. Owen Brimijoin, University of Rochester Medical Center, for developing the Matlab based DPOAE thresholding program; and Dr. Steven Day and Oyuna Myagmar, Rochester Institute of Technology, for assistance with the COMSOL Multiphysics modeling of cochlear flow. CR Borkholder DA, 2008, CURR OPIN OTOLARYNGO, V16, P472, DOI 10.1097/MOO.0b013e32830e20db BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 Chen ZQ, 2005, J CONTROL RELEASE, V110, P1, DOI 10.1016/j.jconrel.2005.09.003 Chen ZQ, 2006, J NEUROSCI METH, V150, P67, DOI 10.1016/j.jeumeth.2005.05.017 Jero J, 2001, HEARING RES, V151, P106, DOI 10.1016/S0378-5955(00)00216-1 JOHNSON D, 2007, P 29 IEEE ANN ENG ME, P23 Kawamoto K, 2001, MOL THER, V4, P575, DOI 10.1006/mthe.2001.0490 KINGMA GG, 1992, J NEUROSCI METH, V45, P127, DOI 10.1016/0165-0270(92)90050-N Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 Muller M, 2003, HEARING RES, V183, P37, DOI 10.1016/S0378-5955(03)00217-X Nakagawa T, 2003, HEARING RES, V176, P122, DOI 10.1016/S0378-5955(02)00768-2 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 Plontke SK, 2008, OTOL NEUROTOL, V29, P401, DOI 10.1097/MAO.0b013e318161aaae Plontke SK, 2007, AUDIOL NEURO-OTOL, V12, P37, DOI 10.1159/000097246 Plontke SKR, 2002, OTOL NEUROTOL, V23, P967, DOI 10.1097/00129492-200211000-00026 Roehm P, 2007, HEARING RES, V230, P43, DOI 10.1016/j.heares.2007.04.005 SALT AN, 1991, HEARING RES, V56, P37, DOI 10.1016/0378-5955(91)90151-X SALT AN, 2005, GENTAMICIN UPTAKE CH Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Stover T, 2000, GENE THER, V7, P377, DOI 10.1038/sj.gt.3301108 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 Zou J, 2005, AUDIOL NEURO-OTOL, V10, P145, DOI 10.1159/000084024 NR 23 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 2 EP 11 DI 10.1016/j.heares.2010.04.014 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900002 PM 20451593 ER PT J AU Walsh, KR Pasanen, EG McFadden, D AF Walsh, Kyle R. Pasanen, Edward G. McFadden, Dennis TI Overshoot measured physiologically and psychophysically in the same human ears SO HEARING RESEARCH LA English DT Article ID FREQUENCY OTOACOUSTIC EMISSIONS; AUDITORY-NERVE FIBERS; SIMULTANEOUSLY MASKED SIGNALS; INPUT-OUTPUT FUNCTIONS; NOTCHED-NOISE MASKERS; SHORT-TERM ADAPTATION; STIMULUS-FREQUENCY; SIMULTANEOUS MASKING; OLIVOCOCHLEAR BUNDLE; ACOUSTIC EMISSIONS AB A nonlinear version of the stimulus-frequency otoacoustic emission (SFOAE) was measured using stimulus waveforms similar to those used for behavioral overshoot. Behaviorally, the seven listeners were as much as 11 dB worse at detecting a brief tonal signal (4.0 kHz, 10 ms in duration) when it occurred soon after the onset of a wideband masking noise (0.1-6.0 kHz; 400 ms in duration) than when it was delayed by about 200 ms, and the nonlinear SFOAE measure exhibited a similar effect. When either lowpass (0.1-3.8 kHz) or bandpass noise (3.8-4.2 kHz) was used instead of the wideband noise, the physiological and behavioral measures again were similar. When a highpass noise (4.2-6.0 kHz) was used, the physiological and behavioral measures both showed no overshoot-like effect for five of the subjects. The physiological response to the tone decayed slowly after the termination of the noise, much like the time course of resetting for behavioral overshoot. One subject exhibited no overshoot behaviorally even though his cochlear responses were like those of the other subjects. Overall, the evidence suggests that some basic characteristics of overshoot are obligatory consequences of cochlear function, as modulated by the olivocochlear efferent system. (C) 2010 Elsevier B.V. All rights reserved. C1 [Walsh, Kyle R.; Pasanen, Edward G.; McFadden, Dennis] Univ Texas Austin, Ctr Perceptual Syst, Dept Psychol, Austin, TX 78712 USA. RP McFadden, D (reprint author), Univ Texas Austin, Ctr Perceptual Syst, Dept Psychol, Seay Bldg,1 Univ Stn,A8000, Austin, TX 78712 USA. EM kylewalsh@mail.utexas.edu; pasanen@psy.utexas.edu; mcfadden@psy.utexas.edu FU National Institute on Deafness and other Communication Disorders (NIDCD) [NIDCD 00153] FX This work was supported by a research grant awarded to DM by the National Institute on Deafness and other Communication Disorders (NIDCD 00153). Author KPW conducted this and additional research on this topic while working on a Master's degree at The University of Texas (Walsh, 2009). Early stages of the work were reported at conferences (Walsh et al., 2008, 2009). The work profited greatly from discussions with Drs. C.A. Champlin, E.A. Strickland, M. Wojtczak, and N.F. Viemeister, who also made comments on a preliminary version of this paper. Comments by Dr. D.H. Keefe and an anonymous reviewer were extremely helpful. CR Backus BC, 2006, J ACOUST SOC AM, V119, P2889, DOI 10.1121/1.2169918 BACON SP, 1992, J ACOUST SOC AM, V91, P2865, DOI 10.1121/1.402967 Bacon SP, 2000, J ACOUST SOC AM, V108, P1811, DOI 10.1121/1.1290246 BACON SP, 1990, J ACOUST SOC AM, V88, P698, DOI 10.1121/1.399773 Bacon SP, 2002, J ACOUST SOC AM, V112, P227, DOI 10.1121/1.1485972 Bassim MK, 2003, HEARING RES, V182, P140, DOI 10.1016/S0378-5955(03)00190-4 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CARLYON RP, 1989, HEARING RES, V41, P223, DOI 10.1016/0378-5955(89)90014-2 CHAMPLIN CA, 1989, J ACOUST SOC AM, V85, P2005, DOI 10.1121/1.397853 CHURCH GT, 1984, EAR HEARING, V5, P235 DALLMAYR C, 1987, ACUSTICA, V63, P243 Dallos P., 1973, AUDITORY PERIPHERY B DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 Goodman SS, 2006, JARO-J ASSOC RES OTO, V7, P125, DOI 10.1007/s10162-006-0028-9 Goodman SS, 2003, HEARING RES, V183, P7, DOI 10.1016/S0378-5955(03)00193-X Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3 HICKS ML, 1992, HEARING RES, V64, P123, DOI 10.1016/0378-5955(92)90174-L JESTEADT W, 1982, J ACOUST SOC AM, V71, P950, DOI 10.1121/1.387576 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2519 Keefe DH, 1998, J ACOUST SOC AM, V103, P3489, DOI 10.1121/1.423057 Keefe DH, 2008, J ACOUST SOC AM, V123, P1479, DOI 10.1121/1.2828209 Keefe DH, 2009, J ACOUST SOC AM, V125, P1595, DOI 10.1121/1.3068443 KEEFE DH, 2003, ASS RES OT ABSTR, V26, P397 KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Kemp DT, 1980, PSYCHOPHYSICAL PHYSL, P34 Kim DO, 2001, JARO, V2, P31, DOI 10.1007/s101620010066 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lilaonitkul W, 2009, J NEUROPHYSIOL, V101, P1394, DOI 10.1152/jn.90925.2008 LILAONITKUL W, 2009, ASS RES OTOLARYNGOL, V10, P459 Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P15 Maison S, 2001, EAR HEARING, V22, P65, DOI 10.1097/00003446-200102000-00007 MCFADDEN D, 1989, J ACOUST SOC AM, V85, P254, DOI 10.1121/1.397732 MCFADDEN D, 1990, J ACOUST SOC AM, V87, P2634, DOI 10.1121/1.399056 MCFADDEN D, 1994, J ACOUST SOC AM, V95, P3460, DOI 10.1121/1.410022 Micheyl C, 1996, J ACOUST SOC AM, V99, P1604, DOI 10.1121/1.414734 NELSON PC, 2009, ABSTR ASS RES OTOLAR, V32, P220 Overson GJ, 1996, J ACOUST SOC AM, V99, P1059, DOI 10.1121/1.415232 Oxenham Andrew J., 2004, VVolume 17, P62 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 Schairer KS, 2006, J ACOUST SOC AM, V120, P901, DOI 10.1121/1.2214147 Schairer KS, 2005, J ACOUST SOC AM, V117, P818, DOI 10.1121/1.1850341 Schairer KS, 2007, J ACOUST SOC AM, V121, P3607, DOI 10.1121/1.2722213 Schairer KS, 2003, J ACOUST SOC AM, V114, P944, DOI 10.1121/1.1592799 SCHMIDT S, 1991, J ACOUST SOC AM, V89, P1324, DOI 10.1121/1.400656 SHANNON RV, 1976, J ACOUST SOC AM, V59, P1460, DOI 10.1121/1.381007 Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211 SMITH DW, 1987, HEARING RES, V29, P125, DOI 10.1016/0378-5955(87)90161-4 SMITH RL, 1979, J ACOUST SOC AM, V65, P166, DOI 10.1121/1.382260 SMITH RL, 1975, BIOL CYBERN, V17, P169, DOI 10.1007/BF00364166 Strickland EA, 2004, J ACOUST SOC AM, V115, P2234, DOI 10.1121/1.1691036 Strickland EA, 2005, J ACOUST SOC AM, V118, P3211, DOI 10.1121/1.2074787 Strickland EA, 2008, J ACOUST SOC AM, V123, P946, DOI 10.1121/1.2821977 Strickland EA, 2001, J ACOUST SOC AM, V109, P2062, DOI 10.1121/1.1357811 Turner CW, 1997, MODELING SENSORINEURAL HEARING LOSS, P387 VONKLITZING R, 1994, J ACOUST SOC AM, V95, P2192, DOI 10.1121/1.408679 WALSH K, 2009, ABSTR ACOUST SOC AM, V125, P2720 WALSH KP, 2009, THESIS U TEXAS AUSTI Walsh KP, 2010, J ACOUST SOC AM, V127, P955, DOI 10.1121/1.3279832 WALSH KP, 2008, TBSTR ASS RES OTOLAR, V31, P927 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 WHITEHEAD ML, 1991, HEARING RES, V53, P269, DOI 10.1016/0378-5955(91)90060-M WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 Wright BA, 1997, J ACOUST SOC AM, V101, P420, DOI 10.1121/1.417987 WRIGHT BA, 1995, J ACOUST SOC AM, V98, P2493, DOI 10.1121/1.413280 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 ZWICKER E, 1965, J ACOUST SOC AM, V37, P653, DOI 10.1121/1.1909389 ZWICKER E, 1965, J ACOUST SOC AM, V38, P132, DOI 10.1121/1.1909588 NR 71 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 22 EP 37 DI 10.1016/j.heares.2010.04.007 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900004 PM 20430072 ER PT J AU Zaske, R Schweinberger, SR Kawahara, H AF Zaeske, Romi Schweinberger, Stefan R. Kawahara, Hideki TI Voice aftereffects of adaptation to speaker identity SO HEARING RESEARCH LA English DT Article ID VISUAL-ADAPTATION; FACE RECOGNITION; FAMILIAR FACES; TEMPORAL-LOBE; PERCEPTION; SPEECH; GENDER; SOUNDS; GAZE; REPRESENTATIONS AB While adaptation to complex auditory stimuli has traditionally been reported for linguistic properties of speech, the present study demonstrates non-linguistic high-level aftereffects in the perception of voice identity, following adaptation to voices or faces of personally familiar speakers. In Exp. 1, prolonged exposure to speaker A's voice biased the perception of identity-ambiguous voice morphs between speakers A and B towards speaker B (and vice versa). Significantly biased voice identity perception was also observed in Exp. 2 when adaptors were videos of speakers' silently articulating faces, although effects were reduced in magnitude relative to those seen in Exp. 1. By contrast, adaptation to an unrelated speaker C elicited an intermediate proportion of speaker A identifications in both experiments. While crossmodal aftereffects on auditory identification (Exp. 2) dissipated rapidly, unimodal aftereffects (Exp. 1) were still measurable a few minutes after adaptation. These novel findings suggest contrastive coding of voice identity in long-term memory, with at least two perceptual mechanisms of voice identity adaptation: one related to auditory coding of voice characteristics, and another related to multimodal coding of familiar speaker identity. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zaeske, Romi; Schweinberger, Stefan R.] Univ Jena, Dept Gen Psychol & Cognit Neurosci, D-07743 Jena, Germany. [Zaeske, Romi; Schweinberger, Stefan R.] Univ Jena, DFG Res Unit Person Percept, D-07743 Jena, Germany. [Kawahara, Hideki] Wakayama Univ, Fac Syst Engn, Wakayama 6408510, Japan. RP Zaske, R (reprint author), Univ Jena, Dept Gen Psychol & Cognit Neurosci, Steiger 3,Haus 1, D-07743 Jena, Germany. EM romi.zaeske@uni-jena.de RI Hideki, Kawahara/H-6034-2011; Schweinberger, Stefan/A-1860-2009 FU Deutsche Forschungsgemeinschaft [Schw 511/10-1] FX Supported in part by the Deutsche Forschungsgemeinschaft (grant Schw 511/10-1). The authors thank Nadine Hauthal for help in data acquisition and David M.C. Robertson for advice on video editing. CR Anstis S, 1998, TRENDS COGN SCI, V2, P111, DOI 10.1016/S1364-6613(98)01142-5 BEALE JM, 1995, COGNITION, V57, P217, DOI 10.1016/0010-0277(95)00669-X Belin P, 2002, COGNITIVE BRAIN RES, V13, P17, DOI 10.1016/S0926-6410(01)00084-2 Belin P, 2004, TRENDS COGN SCI, V8, P129, DOI 10.1016/j.tics.2004.01.008 Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078 Belin P, 2003, NEUROREPORT, V14, P2105, DOI 10.1097/00001756-200311140-00019 Bertelson P, 2003, PSYCHOL SCI, V14, P592, DOI 10.1046/j.0956-7976.2003.psci_1470.x BURTON AM, 1990, BRIT J PSYCHOL, V81, P361 Calder AJ, 2008, J EXP PSYCHOL GEN, V137, P244, DOI 10.1037/0096-3445.137.2.244 Campanella S, 2007, TRENDS COGN SCI, V11, P535, DOI 10.1016/j.tics.2007.10.001 CHAREST I, 2009, BMC NEUROSCIENCE, V10 EIMAS PD, 1973, COGNITIVE PSYCHOL, V4, P99, DOI 10.1016/0010-0285(73)90006-6 Ellis HD, 1997, BRIT J PSYCHOL, V88, P143 ENDRES W, 1971, J ACOUST SOC AM, V49, P1842, DOI 10.1121/1.1912589 Fox C. J., 2008, J VISION, V8 Fox CJ, 2007, BRAIN RES, V1127, P80, DOI 10.1016/j.brainres.2006.09.104 GREEN KP, 1991, PERCEPT PSYCHOPHYS, V50, P524, DOI 10.3758/BF03207536 Huynh H., 1976, J EDUC STATIST, V1, P69, DOI DOI 10.2307/1164736 Jenkins R, 2006, PSYCHOL SCI, V17, P506, DOI 10.1111/j.1467-9280.2006.01736.x KAWAHARA H, 2003, P 2003 IEEE INT C AC, P256 Kawahara H, 1999, SPEECH COMMUN, V27, P187, DOI 10.1016/S0167-6393(98)00085-5 Kovacs G, 2006, CEREB CORTEX, V16, P742, DOI 10.1093/cercor/bhj020 Kreifelts B, 2007, NEUROIMAGE, V37, P1445, DOI 10.1016/j.neuroimage.2007.06.020 KREIMAN J, 1994, J ACOUST SOC AM, V96, P1291, DOI 10.1121/1.410277 KREIMAN J, 1992, J SPEECH HEAR RES, V35, P512 Leopold DA, 2005, P ROY SOC B-BIOL SCI, V272, P897, DOI 10.1098/rspb.2004.3022 Leopold DA, 2001, NAT NEUROSCI, V4, P89, DOI 10.1038/82947 Lewis JW, 2004, CEREB CORTEX, V14, P1008, DOI 10.1093/cercor/bhh061 MCGURK H, 1976, NATURE, V264, P746, DOI 10.1038/264746a0 Neuner F, 2000, BRAIN COGNITION, V44, P342, DOI 10.1006/brcg.1999.1196 Robertson DMC, 2010, Q J EXP PSYCHOL, V63, P23, DOI 10.1080/17470210903144376 SCHWEINBERGER SR, 2009, JOINT M EXP PSYCH SO Schweinberger SR, 2007, Q J EXP PSYCHOL, V60, P1446, DOI 10.1080/17470210601063589 Schweinberger SR, 2007, NEUROREPORT, V18, P693, DOI 10.1097/WNR.0b013e3280c1e2d2 Schweinberger SR, 1997, Q J EXP PSYCHOL-A, V50, P498, DOI 10.1080/027249897391991 Schweinberger SR, 2008, CURR BIOL, V18, P684, DOI 10.1016/j.cub.2008.04.015 Schweinberger SR, 2001, NEUROPSYCHOLOGIA, V39, P921, DOI 10.1016/S0028-3932(01)00023-9 Sheffert SM, 2004, PERCEPT PSYCHOPHYS, V66, P352, DOI 10.3758/BF03194884 Smith EL, 2007, CURR BIOL, V17, P1680, DOI 10.1016/j.cub.2007.08.043 Torre P, 2009, J COMMUN DISORD, V42, P324, DOI 10.1016/j.jcomdis.2009.03.001 VALENTINE T, 1991, Q J EXP PSYCHOL-A, V43, P161 Von Kriegstein K, 2004, NEUROIMAGE, V22, P948 von Kriegstein K, 2006, PLOS BIOL, V4, P1809, DOI 10.1371/journal.pbio.0040326 von Kriegstein K, 2005, J COGNITIVE NEUROSCI, V17, P367, DOI 10.1162/0898929053279577 von Kriegstein K, 2008, P NATL ACAD SCI USA, V105, P6747, DOI 10.1073/pnas.0710826105 WALKER S, 1995, PERCEPT PSYCHOPHYS, V57, P1124, DOI 10.3758/BF03208369 Webster MA, 2004, NATURE, V428, P557, DOI 10.1038/nature02420 Zaske R, 2009, EUR J NEUROSCI, V30, P527, DOI 10.1111/j.1460-9568.2009.06839.x NR 48 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 38 EP 45 DI 10.1016/j.heares.2010.04.011 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900005 PM 20430084 ER PT J AU Tan, J Clarke, M Barrett, G Millard, R AF Tan, Justin Clarke, Maria Barrett, G. Millard, R. TI The p75 neurotrophin receptor protects primary auditory neurons against acoustic trauma in mice SO HEARING RESEARCH LA English DT Article ID SPIRAL GANGLION NEURONS; INDUCED HEARING-LOSS; NERVE GROWTH-FACTOR; SPINAL-CORD-INJURY; INNER-EAR; TARGETED MUTATION; SENSORY NEURONS; CELL-SURVIVAL; IN-VIVO; P75(NTR) AB In the adult rodent inner ear, p75NTR is weakly expressed in primary auditory neurons (PANS) and cochlear Schwann cells. When the organ of Corti is damaged during trauma, its expression dramatically increases. It is unclear what role p75NTR plays under these conditions. Characterisation of p75NTR mutant mice reveals that altering genetic backgrounds can differentially affect the survival of PANs in mutant mice. To conclusively elucidate the physiological role of p75NTR in the cochlea, we challenged wild type (p75NTR +/+) and mutant (p75NTR -/-) mice with an acoustic trauma at 130 dB SPL, 10 kHz for 2 h. This produces a permanent auditory threshold shift >40 dB SPL, damages the organ of Corti and causes secondary degeneration of PANs. After exposure, mice were maintained for 3-9 weeks. Interestingly, survival of PANs in p75NTR -/- mice was significantly compromised in all time-points when compared to wild type mice: 15% reduction after 3 weeks (n = 6), 32% reduction after 6 weeks (n = 6) and 26% reduction after 9 weeks (n = 6-8). Therefore, our data do not support a role of p75NTR as a death inducer in PANs but show its crucial role in protecting PANs. (C) 2010 Elsevier B.V. All rights reserved. C1 [Tan, Justin] Bion Ear Inst, Melbourne, Vic 3002, Australia. [Tan, Justin; Clarke, Maria; Millard, R.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. [Barrett, G.] Univ Melbourne, Dept Physiol, Parkville, Vic 3010, Australia. RP Tan, J (reprint author), Bion Ear Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM jtan@bionicear.org FU Garnett Passe and Rodney Williams Memorial Foundation; Victorian Government FX This work is mainly supported by the Garnett Passe and Rodney Williams Memorial Foundation with other contributions from the Royal Victorian Eye and Ear Hospital and the Percy Baxter Charitable Trust (all awarded to JT). We would like to thank Dr. Simon Murray from the Howard Florey Institute for helping us obtain the p75NTR mice in B6 genetic background and Dr. James Fallon from the Bionic Ear Institute for assistance with ABRs. The Bionic Ear Institute acknowledges the support it received from the Victorian Government through its Operational Infrastructure Support Program. CR Ahituv N, 2002, TRENDS MOL MED, V8, P447, DOI 10.1016/S1471-4914(02)02388-2 Beattie MS, 2002, NEURON, V36, P375, DOI 10.1016/S0896-6273(02)01005-X Bibel M, 1999, EMBO J, V18, P616, DOI 10.1093/emboj/18.3.616 Brors D, 2008, AUDIOL NEURO-OTOL, V13, P388, DOI 10.1159/000148202 Chu GKT, 2007, NEUROSCIENCE, V148, P668, DOI 10.1016/j.neuroscience.2007.05.028 Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 Dechant G, 2002, NAT NEUROSCI, V5, P1131, DOI 10.1038/nn1102-1131 Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040 Epa WR, 2004, J NEUROCHEM, V89, P344, DOI 10.1111/j.1471-4159.2004.02344.x ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 Esposito D, 2001, J BIOL CHEM, V276, P32687, DOI 10.1074/jbc.M011674200 Fritzsch B, 1998, INT J DEV NEUROSCI, V16, P493, DOI 10.1016/S0736-5748(98)00043-4 Fritzsch B, 1997, J NEUROSCI, V17, P6213 Gestwa G, 1999, J COMP NEUROL, V414, P33, DOI 10.1002/(SICI)1096-9861(19991108)414:1<33::AID-CNE3>3.0.CO;2-M Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Hamanoue M, 1999, MOL CELL NEUROSCI, V14, P28, DOI 10.1006/mcne.1999.0770 Harrington AW, 2004, P NATL ACAD SCI USA, V101, P6226, DOI 10.1073/pnas.0305755101 Hempstead BL, 2002, CURR OPIN NEUROBIOL, V12, P260, DOI 10.1016/S0959-4388(02)00321-5 Holme RH, 2004, JARO-J ASSOC RES OTO, V5, P66, DOI 10.1007/s10162-003-4021-2 Huang EJ, 2003, ANNU REV BIOCHEM, V72, P609, DOI 10.1146/annurev.biochem.72.121801.161629 Johnson KR, 2006, BRAIN RES, V1091, P79, DOI 10.1016/j.brainres.2006.02.021 Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4 Lang HN, 2006, J NEUROSCI, V26, P3541, DOI 10.1523/JNEUROSCI.2488-05.2006 LEE KF, 1992, CELL, V69, P737, DOI 10.1016/0092-8674(92)90286-L Lee R, 2001, SCIENCE, V294, P1945, DOI 10.1126/science.1065057 Mowla SJ, 2001, J BIOL CHEM, V276, P12660, DOI 10.1074/jbc.M008104200 MUFSON EJ, 1992, P NATL ACAD SCI USA, V89, P569, DOI 10.1073/pnas.89.2.569 Murray SS, 2003, CLIN EXP PHARMACOL P, V30, P217, DOI 10.1046/j.1440-1681.2003.03827.x Naumann T, 2002, J NEUROSCI, V22, P2409 NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Oestreicher E, 2000, EUR J NEUROSCI, V12, P1584, DOI 10.1046/j.1460-9568.2000.00049.x Sato T, 2006, BRAIN RES, V1091, P224, DOI 10.1016/j.brainres.2005.12.104 Schimmang T, 2003, DEVELOPMENT, V130, P4741, DOI 10.1242/dev.00676 SCHIMMANG T, 1995, DEVELOPMENT, V121, P3381 Segal RA, 2003, ANNU REV NEUROSCI, V26, P299, DOI 10.1146/annurev.neuro.26.041002.131421 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Stankovic K, 2004, J NEUROSCI, V24, P8651, DOI 10.1523/JNEUROSCI.0733-04.2004 Tan J, 2006, AM J PATHOL, V169, P528, DOI 10.2353/ajpath.2006.060122 Teng HK, 2005, J NEUROSCI, V25, P5455, DOI 10.1523/JNEUROSCI.5123-04.2005 Wiechers B, 1999, J NEUROSCI, V19, P3033 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C NR 42 TC 5 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 46 EP 59 DI 10.1016/j.heares.2010.04.013 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900006 PM 20466052 ER PT J AU Krishnan, A Bidelman, GM Gandour, JT AF Krishnan, Ananthanarayan Bidelman, Gavin M. Gandour, Jackson T. TI Neural representation of pitch salience in the human brainstem revealed by psychophysical and electrophysiological indices SO HEARING RESEARCH LA English DT Article ID ITERATED RIPPLED NOISE; FREQUENCY-FOLLOWING RESPONSES; HUMAN AUDITORY BRAIN; VENTRAL COCHLEAR NUCLEUS; COMPLEX TONES; TEMPORAL REPRESENTATION; UNRESOLVED HARMONICS; HESCHLS GYRUS; SINGLE UNITS; STRENGTH AB Acoustically, pitch is related to the temporal regularity or periodicity of a sound. Perceptual and electrophysiologic studies have revealed that pitch salience grows systematically with increasing stimulus periodicity. The aim of this study is to show that information relevant to pitch salience is already encoded in the phase-locked neural activity of brainstem neurons in order to demonstrate that the neural manifestation of pitch salience emerges well before cortical involvement. Brainstem frequency following responses (FFRs) were recorded from participants in response to linguistic tones, which varied only in their degree of pitch salience. Neural pitch strength was computed from FFRs using autocorrelation algorithms. In addition, behavioral frequency difference limens (F0 DLs) were measured from each participant to obtain a perceptual estimate related to pitch salience. Brainstem neural pitch strength increased systematically with increasing temporal regularity in stimulus periodicity, indicating more robust encoding for salient pitch. F0 DLs decreased with increasing stimulus periodicity revealing better pitch change detection for more salient stimuli. FFR neural pitch strength and behavioral F0 DLs were negatively correlated suggesting that subcortical processing can, in part, predict an individual's behavioral judgments of pitch salience. These data imply that changes to the acoustic periodicity of a stimulus directly influence brainstem encoding and the corresponding behavioral responses to pitch. We infer that information related to pitch salience may emerge early along the auditory pathway and is likely rooted in pre-attentive, sensory-level processing. (C) 2010 Elsevier B.V. All rights reserved. C1 [Krishnan, Ananthanarayan; Bidelman, Gavin M.; Gandour, Jackson T.] Purdue Univ, Dept Speech Language Hearing Sci, W Lafayette, IN 47907 USA. RP Krishnan, A (reprint author), Purdue Univ, Dept Speech Language Hearing Sci, 1353 Heavilon Hall,500 Oval Dr, W Lafayette, IN 47907 USA. EM rkrish@purdue.edu; gbidelma@purdue.edu; gandour@purdue.edu FU NIH [R01 DC008549, T32 DC 00030] FX Research supported by NIH R01 DC008549 (A.K.) and T32 DC 00030 NIDCD predoctoral traineeship (G.B.). Thanks to Jin Xia for her assistance with statistical analysis (Department of Statistics) and Dr. Chris Plack (University of Manchester) for supplying the MATLAB scripts for the behavioral task. We would also like to thank the anonymous reviewers for their insightful comments to improve this manuscript. Reprint requests should be addressed to Ananthanarayan Krishnan, Department of Speech Language Hearing Sciences, Purdue University, West Lafayette, IN 47907-2038, USA, or via email: rkrish@purdue.edu. CR Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004 Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 Bernstein JG, 2003, J ACOUST SOC AM, V113, P3323, DOI 10.1121/1.1572146 Bidelman GM, 2009, J NEUROSCI, V29, P13165, DOI 10.1523/JNEUROSCI.3900-09.2009 BILSEN FA, 1966, ACUSTICA, V17, P295 BILSEN FA, 1975, J ACOUST SOC AM, V58, P858, DOI 10.1121/1.380734 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 CARLYON RP, 1994, J ACOUST SOC AM, V95, P3541, DOI 10.1121/1.409971 Denham S, 2005, BIOSYSTEMS, V79, P199, DOI 10.1016/j.biosystems.2004.09.008 FASTL H, 1979, HEARING RES, V1, P293, DOI 10.1016/0378-5955(79)90002-9 FAY RR, 1983, HEARING RES, V12, P31, DOI 10.1016/0378-5955(83)90117-X GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0 GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9 Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459 Griffiths TD, 1998, NAT NEUROSCI, V1, P422, DOI 10.1038/1637 Hall DA, 2009, CEREB CORTEX, V19, P576, DOI 10.1093/cercor/bhn108 HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297 Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004 Krishnan A, 2004, HEARING RES, V189, P1, DOI 10.1016/S0378-5955(03)00402-7 Krishnan A, 2009, BRAIN LANG, V110, P135, DOI 10.1016/j.bandl.2009.03.005 Krishnan A, 2010, J NEUROLINGUIST, V23, P81, DOI 10.1016/j.jneuroling.2009.09.001 Krishnan A, 2009, J COGNITIVE NEUROSCI, V21, P1092, DOI 10.1162/jocn.2009.21077 Krishnan A, 2000, AUDIOL NEURO-OTOL, V5, P312, DOI 10.1159/000013897 Krishnan A, 1999, AUDIOL NEURO-OTOL, V4, P95, DOI 10.1159/000013826 Krishnan A, 2009, NEUROREPORT, V20, P408, DOI 10.1097/WNR.0b013e3283263000 Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1 Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Li P, 2006, BEHAV RES METHODS, V38, P202, DOI 10.3758/BF03192770 MARSH JT, 1974, ELECTROEN CLIN NEURO, V36, P415, DOI 10.1016/0013-4694(74)90192-8 Patterson RD, 1996, J ACOUST SOC AM, V100, P3286, DOI 10.1121/1.417212 Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004 Sayles M, 2007, BRAIN RES, V1171, P52, DOI 10.1016/j.brainres.2007.06.098 Schonwiesner M, 2008, EXP BRAIN RES, V187, P97, DOI 10.1007/s00221-008-1286-z SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 Shofner WP, 1999, J NEUROPHYSIOL, V81, P2662 SHOFNER WP, 1991, J ACOUST SOC AM, V90, P2450, DOI 10.1121/1.402049 Shofner WP, 2002, PERCEPT PSYCHOPHYS, V64, P437, DOI 10.3758/BF03194716 SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4 Soeta Y, 2005, HEARING RES, V205, P256, DOI 10.1016/j.heares.2005.03.026 Swaminathan J, 2008, IEEE T BIO-MED ENG, V55, P281, DOI 10.1109/TBME.2007.896592 Swaminathan J, 2008, NEUROREPORT, V19, P1163, DOI 10.1097/WNR.0b013e3283088d31 TENKATE JH, 1988, J ACOUST SOC AM, V84, P2092, DOI 10.1121/1.397054 Winter IM, 2001, J PHYSIOL-LONDON, V537, P553, DOI 10.1111/j.1469-7793.2001.00553.x WORDEN FG, 1968, ELECTROEN CLIN NEURO, V25, P42, DOI 10.1016/0013-4694(68)90085-0 Xu Y, 1997, J PHONETICS, V25, P61, DOI 10.1006/jpho.1996.0034 Yip M, 2003, TONE YOST WA, 1978, J ACOUST SOC AM, V64, P485, DOI 10.1121/1.382021 YOST WA, 1979, J ACOUST SOC AM, V66, P400, DOI 10.1121/1.382942 Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873 NR 52 TC 23 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 60 EP 66 DI 10.1016/j.heares.2010.04.016 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900007 PM 20457239 ER PT J AU Dingle, RN Hall, SE Phillips, DP AF Dingle, Rachel N. Hall, Susan E. Phillips, Dennis P. TI A midline azimuthal channel in human spatial hearing SO HEARING RESEARCH LA English DT Article ID PRIMARY AUDITORY-CORTEX; INTERAURAL TIME DIFFERENCES; CAT CEREBRAL-CORTEX; DEFINED AREA AI; SOUND-LOCALIZATION; SINGLE NEURONS; SENSITIVITY; FREQUENCY; RESPONSES; LOCATION AB Neurophysiological and psychophysical evidence has driven the formulation of a hemifield model of mammalian sound localization in which the perceived location of a stimulus is based on the relative activity of two hemifield-tuned azimuthal channels that are broadly responsive to contralateral auditory space and have overlapping medial borders. However, neurophysiological work in mammals has consistently found neurons selective for sound sources at the midline, which may indicate the existence of a third, 'midline', perceptual channel. In three experiments, the existence of three (left, right, midline) perceptual channels for azimuth in man was examined using auditory selective adaptation paradigms. If no midline channel exists, exposure to highly lateralized, symmetrical adaptator frequencies should not result in a shift in the perceived intracranial location of subsequent test tones away from the adaptors because the relative activation of the two hemifield channels will remain the same. Rather, our results indicate a shift in perceived test tones towards the azimuthal midline. This result can best be explained by a perceptual/neural channel tuned to sounds located along the midline. The present study gives the first psychophysical evidence of a midline channel serving human auditory localization, adding to the earlier evidence on the same point from animal neurophysiological studies. (C) 2010 Elsevier B.V. All rights reserved. C1 [Dingle, Rachel N.; Hall, Susan E.; Phillips, Dennis P.] Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada. [Phillips, Dennis P.] Dalhousie Univ, Dept Surg, Halifax, NS B3H 4J1, Canada. RP Dingle, RN (reprint author), Dalhousie Univ, Dept Psychol, Hearing Res Lab, 1355 Oxford St, Halifax, NS B3H 4J1, Canada. EM rdingle@dal.ca RI Phillips, Dennis/A-6496-2011 FU NSERC of Canada; Killam Trust FX This research was supported by grants from NSERC of Canada and the Killam Trust to DPP. RND was supported by a post-graduate scholarship from NSERC. Thanks also to Dr. M. V. Trotter for her help finalizing the figures, and to two anonymous reviewers for helpful comments on a previous version of this manuscript. CR Boehnke SE, 1999, J ACOUST SOC AM, V106, P1948, DOI 10.1121/1.428037 Brugge JF, 1996, J NEUROSCI, V16, P4420 CALFORD MB, 1985, J COMP PHYSIOL A, V157, P149, DOI 10.1007/BF01350024 Carlile S, 2001, J ACOUST SOC AM, V110, P416, DOI 10.1121/1.1375843 Heffner HE, 1997, ACTA OTO-LARYNGOL, P22 IMIG TJ, 1977, BRAIN RES, V138, P241, DOI 10.1016/0006-8993(77)90743-0 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 Kashino M, 1998, J ACOUST SOC AM, V103, P3597, DOI 10.1121/1.423064 KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746 KELLY JB, 1991, HEARING RES, V55, P39, DOI 10.1016/0378-5955(91)90089-R KITZES LM, 1980, J COMP NEUROL, V192, P455, DOI 10.1002/cne.901920306 KNUDSEN EI, 1978, SCIENCE, V200, P795, DOI 10.1126/science.644324 KNUDSEN EI, 1981, SCI AM, V245, P112 KONISHI M, 1993, SCI AM, V268, P66 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 MIDDLEBROOKS JC, 1980, BRAIN RES, V181, P31, DOI 10.1016/0006-8993(80)91257-3 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 ORMAN SS, 1984, J NEUROPHYSIOL, V51, P1028 Phillips D P, 2003, J Am Acad Audiol, V14, P518, DOI 10.3766/jaaa.14.9.7 PHILLIPS DP, 1981, HEARING RES, V4, P299, DOI 10.1016/0378-5955(81)90014-9 Phillips DP, 2006, HEARING RES, V211, P96, DOI 10.1016/j.heares.2005.10.005 PHILLIPS DP, 1985, ANNU REV PSYCHOL, V36, P245 PHILLIPS DP, 1983, J NEUROPHYSIOL, V49, P383 Phillips DP, 2008, HEARING RES, V238, P124, DOI 10.1016/j.heares.2007.09.007 Phillips DP, 2005, HEARING RES, V202, P188, DOI [10.1016/j.heares.2004.11.001, 10.1016/j.heres.2004.11.001] RAJAN R, 1990, J NEUROPHYSIOL, V64, P872 Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748 Vigneault-MacLean BK, 2007, HEARING RES, V224, P93, DOI 10.1016/j.heares.2006.12.001 VOLMAN SF, 1989, J NEUROSCI, V9, P3083 Zhang JP, 2004, J NEUROPHYSIOL, V91, P101, DOI 10.1152/jn.00166.2003 NR 34 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 67 EP 74 DI 10.1016/j.heares.2010.04.017 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900008 PM 20457238 ER PT J AU Schoffelen, RLM Segenhout, JM van Dijk, P AF Schoffelen, Richard L. M. Segenhout, Johannes M. van Dijk, Pim TI Input-output characteristics of the tectorial membrane in the frog basilar papilla SO HEARING RESEARCH LA English DT Article ID AUDITORY-NERVE FIBERS; HAIR-CELLS; RANA-CATESBEIANA; BULLFROG; EAR; FREQUENCY; RESPONSES AB The basilar papilla (BP) in the frog inner ear is a relatively simple auditory receptor. Its hair cells are embedded in a stiff support structure, with the stereovilli connecting to a flexible tectorial membrane (TM). Acoustic energy passing the papilla presumably causes displacement of the TM, which in turn deflects the stereovilli and stimulates the hair cells. In this paper we present optical measurements of the mechanical response of the TM to various stimulus levels. Results were obtained from 3 specimens (4 ears). The phase of the displaced area of the TM was constant across stimulus levels. Phase differences between the orthogonal spatial motion components were either close to 0 degrees or 180 degrees. These findings were consistent with a TM motion along the epithelium surface. The TM response was linear for stimulus levels up to -30 dB (re. 1 mu m) at the operculum. This amplitude was estimated to exceed that at which neural responses saturate. Apparently, saturation of the neural response in the frog inner ear is not based on saturation of the mechanical response of the tectorial membrane. (C) 2010 Elsevier B.V. All rights reserved. C1 [Schoffelen, Richard L. M.; Segenhout, Johannes M.; van Dijk, Pim] Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands. [Schoffelen, Richard L. M.; Segenhout, Johannes M.; van Dijk, Pim] Univ Groningen, Sch Behav & Cognit Neurosci, Fac Med Sci, NL-9700 AB Groningen, Netherlands. RP van Dijk, P (reprint author), Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30001, NL-9700 RB Groningen, Netherlands. EM p.van.dijk@med.umcg.nl RI Van Dijk, Pim/E-8019-2010 OI Van Dijk, Pim/0000-0002-8023-7571 FU Heinsius Houbolt Foundation; Netherlands Organisation for Scientific Research FX This study was supported by the Heinsius Houbolt Foundation and the Netherlands Organisation for Scientific Research. CR Davis CQ, 1998, OPT ENG, V37, P1299, DOI 10.1117/1.601967 EATOCK RA, 1981, J COMP PHYSIOL, V142, P203 FRISHKOP.LS, 1974, ACTA OTO-LARYNGOL, V77, P176, DOI 10.3109/00016487409124615 Hudspeth AJ, 1997, CURR OPIN NEUROBIOL, V7, P480, DOI 10.1016/S0959-4388(97)80026-8 LEWIS ER, 1975, BRAIN RES, V83, P35, DOI 10.1016/0006-8993(75)90856-2 LEWIS ER, 1999, COMP HEARING FISH AM, V11, P101 Lewis ER, 1985, VERTEBRATE INNER EAR Manley G. A., 1990, PERIPHERAL HEARING M MANLEY GA, 1990, J COMP PHYSIOL A, V167, P89, DOI 10.1007/BF00192409 Mason MJ, 2002, J EXP BIOL, V205, P3167 Muller M, 1999, HEARING RES, V131, P153, DOI 10.1016/S0378-5955(99)00029-5 NARINS PM, 1980, BRAIN BEHAV EVOLUT, V17, P48, DOI 10.1159/000121790 RONKEN DA, 1991, J ACOUST SOC AM, V90, P2428, DOI 10.1121/1.402047 RONKEN DA, 1990, HEARING RES, V47, P63, DOI 10.1016/0378-5955(90)90167-N SACHS MB, 1978, FED PROC, V37, P2329 Schoffelen RLM, 2008, J COMP PHYSIOL A, V194, P417, DOI 10.1007/s00359-008-0327-1 Schoffelen RLM, 2009, JARO-J ASSOC RES OTO, V10, P309, DOI 10.1007/s10162-009-0167-x SHOFNER WP, 1981, J EXP BIOL, V93, P181 Smotherman MS, 1999, J NEUROSCI, V19, P5275 van Dijk P, 2003, J ACOUST SOC AM, V114, P2044, DOI 10.1121/1.1608957 VANDIJK P, HEARING RES, DOI DOI 10.1016/J.HEARES.2010.02.004 Wever EG, 1985, AMPHIBIAN EAR NR 22 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 75 EP 84 DI 10.1016/j.heares.2010.04.018 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900009 PM 20457241 ER PT J AU Johnson, KR Yu, HP Ding, DL Jiang, HY Gagnon, LH Salvi, RJ AF Johnson, Kenneth R. Yu, Heping Ding, Dalian Jiang, Haiyan Gagnon, Leona H. Salvi, Richard J. TI Separate and combined effects of Sod1 and Cdh23 mutations on age-related hearing loss and cochlear pathology in C57BL/6J mice SO HEARING RESEARCH LA English DT Article ID HAIR CELL LOSS; CU/ZN-SUPEROXIDE-DISMUTASE; INNER-EAR; OXIDATIVE STRESS; INBRED STRAINS; WALTZER MICE; MOUSE; SUSCEPTIBILITY; CADHERIN-23; DEAFNESS AB Both the ahl allele of Cdh23 and the null mutation of Sod1 have been shown to contribute to age-related hearing loss (AHL) in mice, but mixed strain backgrounds have confounded analyses of their individual and combined effects. To test for the effects of Sod1 deficiency independently from those of Cdh23(ahl), we produced mice with four digenic genotypes: Sod1(+/+) Cdh23(ahl/ahl), Sod1(+/+) Cdh23(+/+), Sod1(-/-) Cdh23(ahl/ahl), and Sod1(-/-) Cdh23(+/+), all on a uniform C57BL/6J strain background. We assessed hearing loss by ABR threshold measurements and evaluated cochlear pathologies in age-matched mice of each digenic combination. ABR analysis showed that Sod1(+/+) Cdh23(+/+) mice retain normal hearing up to 15 months of age and that hearing loss of Sod1(+/+) Cdh23(ahl/ahl) mice is more age and frequency dependent than that of Sod1(-/-) Cdh23(+/+) mice. ABR results also showed that mice with both gene mutations (Sod1(-/-) Cdh23(ahl/ahl)) exhibit the earliest onset and most severe hearing loss, greater than predicted for strictly additive effects. Histological analysis of cochleas showed that hair cell lesions are most severe in Sod1(-/-) Cdh23(ahl/ahl) mice followed closely by Sod1(+/+) cdh23(ahl/ahl) mice and much smaller in Sod1(-/-) Cdh23(+/+) and Sod1(+/+) Cdh23(+/+) mice. Despite extensive damage to cochlear hair cells, vestibular hair cells appeared remarkably normal in all strains. Although both Sod1(-/-) and Cdh23(ahl/ahl) genotypes had strong effects on hearing loss, the Cdh23(ahl/ahl) genotype was primarily responsible for the increase in hair cell loss, suggesting that the two mutations have different underlying mechanisms of pathology. (C) 2010 Elsevier B.V. All rights reserved. C1 [Johnson, Kenneth R.; Yu, Heping; Gagnon, Leona H.] Jackson Lab, Bar Harbor, ME 04609 USA. [Ding, Dalian; Jiang, Haiyan; Salvi, Richard J.] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Johnson, KR (reprint author), Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA. EM ken.johnson@jax.org FU National Institutes of Health (NIH), National Institute on Deafness and Other Communication Disorders [DC005827, DC006630]; NIH National Cancer Institute [CA34196] FX We thank Patsy Nishina and David Bergstrom for critical review of this manuscript. We also thank Sandra Gray for her skilled husbandry and management of inbred strain mice. This research was supported by R01 grants DC005827 (KRJ) and DC006630 (RJS) from the National Institutes of Health (NIH), National Institute on Deafness and Other Communication Disorders. The Jackson Laboratory institutional shared services are supported by NIH National Cancer Institute support grant CA34196. CR Chen GD, 2009, HEARING RES, V248, P39, DOI 10.1016/j.heares.2008.11.010 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 Dalton DS, 2003, GERONTOLOGIST, V43, P661 Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 DeStefano AL, 2003, ARCH OTOLARYNGOL, V129, P285 Ding DL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P189, DOI 10.1201/9781420038736.ch13 Ficarella R, 2007, P NATL ACAD SCI USA, V104, P1516, DOI 10.1073/pnas.0609775104 Fridberger A, 1998, P NATL ACAD SCI USA, V95, P7127, DOI 10.1073/pnas.95.12.7127 Friedman RA, 2009, HUM MOL GENET, V18, P785, DOI 10.1093/hmg/ddn402 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 HENRY KR, 1980, AUDIOLOGY, V19, P369 Hequembourg S, 2001, JARO, V2, P118 Jiang H, 2007, NEUROBIOL AGING, V28, P1605, DOI 10.1016/j.neurobiolaging.2006.06.025 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Kazmierczak P, 2007, NATURE, V449, P87, DOI 10.1038/nature06091 Keithley EM, 2005, HEARING RES, V209, P76, DOI 10.1016/j.heares.2005.06.009 Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4 Kharkovets T, 2006, EMBO J, V25, P642, DOI 10.1038/sj.emboj.7600951 Lagziel A, 2005, DEV BIOL, V280, P295, DOI 10.1016/j.ydbio.2005.01.015 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 McFadden SL, 2001, AUDIOLOGY, V40, P313 McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 McFadden SL, 1999, J COMP NEUROL, V413, P101 Mikaelian D.O., 1979, LARYNGOSCOPE, V34, P1 Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Purdy SC, 2002, EAR HEARING, V23, P358, DOI 10.1097/01.AUD.0000027433.32822.3E Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9 Schwander M, 2009, P NATL ACAD SCI USA, V106, P5252, DOI 10.1073/pnas.0900691106 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Shen HY, 2007, HEARING RES, V226, P52, DOI 10.1016/j.heares.2006.12.011 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593 Tiede L, 2009, BRAIN RES, V1277, P37, DOI 10.1016/j.brainres.2009.02.052 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 Usami S, 1996, BRAIN RES, V743, P337, DOI 10.1016/S0006-8993(96)01090-6 Vicente-Torres MA, 2006, J NEUROSCI RES, V83, P1564, DOI 10.1002/jnr.20832 Wang J, 2008, NEUROBIOL AGING Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 Wilson SM, 2001, GENOMICS, V74, P228, DOI 10.1006/geno.2001.6554 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 Zheng QY, 2009, NEUROBIOL AGING, V30, P1693, DOI 10.1016/j.neurobiolaging.2007.12.011 NR 46 TC 9 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 85 EP 92 DI 10.1016/j.heares.2010.05.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900010 PM 20470874 ER PT J AU Goldwyn, JH Bierer, SM Bierer, JA AF Goldwyn, Joshua H. Bierer, Steven M. Bierer, Julie Arenberg TI Modeling the electrode-neuron interface of cochlear implants: Effects of neural survival, electrode placement, and the partial tripolar configuration SO HEARING RESEARCH LA English DT Article ID INTRACOCHLEAR POSITION; SPEECH RECOGNITION; ELECTRICAL-FIELD; INSERTION TRAUMA; LOUDNESS GROWTH; TEMPORAL BONE; TUNING CURVES; STIMULATION; PERCEPTION; MONOPOLAR AB The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bierer, Julie Arenberg] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98195 USA. [Goldwyn, Joshua H.] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA. [Bierer, Steven M.] Univ Washington, Dept Otolaryngol, Seattle, WA 98195 USA. [Bierer, Julie Arenberg] Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. RP Bierer, JA (reprint author), Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98195 USA. EM jgoldwyn@uw.edu; sbierer@uw.edu; jbierer@uw.edu FU National Science Foundation; National Institute on Deafness and Other Communication Disorders [F31 DC010306, R03 DC008883]; University of Washington [3652] FX The authors thank J. Nathan Kutz and two reviewers for providing comments on previous versions of this manuscript. This research has been supported by a National Science Foundation VIGRE Fellowship (JHG), National Institute on Deafness and Other Communication Disorders (F31 DC010306 - JHG) and (R03 DC008883 - JAB), and by the University of Washington Royalty Research Fund (#3652 - JAB). CR Berenstein CK, 2008, EAR HEARING, V29, P250 Bierer JA, 2010, EAR HEARING, V31, P247, DOI 10.1097/AUD.0b013e3181c7daf4 Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006 Briaire JJ, 2006, HEARING RES, V214, P17, DOI 10.1016/j.heares.2006.01.015 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P617, DOI 10.1109/10.764938 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P1393, DOI 10.1109/10.804567 Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274 Cohen L T, 1996, Audiol Neurootol, V1, P278 Cohen LT, 2009, HEARING RES, V248, P15, DOI 10.1016/j.heares.2008.11.008 Cohen LT, 1996, AM J OTOL, V17, P859 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 FAULKNER K, 2009, AM AUD SOC ANN M Finley CC, 2008, OTOL NEUROTOL, V29, P920, DOI 10.1097/MAO.0b013e318184f492 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 Hanekom T, 2005, MED BIOL ENG COMPUT, V43, P47, DOI 10.1007/BF02345122 HAYT W, 2004, ENG ELECTROMAGNETICS Imennov NS, 2009, IEEE T BIO-MED ENG, V56, P2493, DOI 10.1109/TBME.2009.2016667 Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549 Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313 Ketten D R, 1998, Ann Otol Rhinol Laryngol Suppl, V175, P1 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414 Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d Miller CA, 2008, HEARING RES, V242, P184, DOI 10.1016/j.heares.2008.04.005 Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 Morris DJ, 2000, JARO, V1, P211, DOI 10.1007/s101620010022 Nelson DA, 2008, J ACOUST SOC AM, V123, P1522, DOI 10.1121/1.2836786 NYE A, 2009, C IMPL PROSTH PESKOFF A, 1974, J MATH PHYS, V15, P2112, DOI 10.1063/1.1666591 Pfingst BE, 2004, JARO-J ASSOC RES OTO, V5, P11, DOI 10.1007/s10162-003-3051-0 Pfingst BE, 2008, HEARING RES, V242, P172, DOI 10.1016/j.heares.2007.11.007 Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4 Rattay F, 1999, NEUROSCIENCE, V89, P335, DOI 10.1016/S0306-4522(98)00330-3 RODENHISER KL, 1995, IEEE T BIO-MED ENG, V42, P337, DOI 10.1109/10.376127 RUBINSTEIN JT, 1988, THESIS U WASHINGTON Saunders E, 2002, EAR HEARING, V23, p28S Skinner MW, 2002, JARO-J ASSOC RES OTO, V3, P332, DOI 10.1007/s101620020013 Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5 Somdas MA, 2007, AUDIOL NEURO-OTOL, V12, P277, DOI 10.1159/000103208 Spelman F A, 1982, Ann Otol Rhinol Laryngol Suppl, V98, P3 Spoendlin H, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P76 TERAYAMA Y, 1979, ACTA OTO-LARYNGOL, V88, P27, DOI 10.3109/00016487909137136 van den Honert C, 2007, J ACOUST SOC AM, V121, P3703, DOI 10.1121/1.2722047 Vanpoucke F, 2004, OTOL NEUROTOL, V25, P282, DOI 10.1097/00129492-200405000-00014 Wardrop P, 2005, HEARING RES, V203, P68, DOI 10.1016/j.heares.2004.11.007 Wardrop P, 2005, HEARING RES, V203, P54, DOI 10.1016/j.heares.2004.11.006 Watson G.N., 1952, TREATISE THEORY BESS WHITEN D, 2006, THESIS HARVARD MIT Woo J, 2009, IEEE T BIO-MED ENG, V56, P1348, DOI 10.1109/TBME.2008.2005782 NR 54 TC 22 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 93 EP 104 DI 10.1016/j.heares.2010.05.005 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900011 PM 20580801 ER PT J AU Kopelovich, JC Eisen, MD Franck, KH AF Kopelovich, Jonathan C. Eisen, Marc D. Franck, Kevin H. TI Frequency and electrode discrimination in children with cochlear implants SO HEARING RESEARCH LA English DT Article ID SPEECH-PERCEPTION; YOUNG-CHILDREN; RECOGNITION; LEVEL AB The objective of this study was to develop reliable pediatric psychophysical methodologies in order to address the limits of frequency and electrode discrimination in children with cochlear implants. Discrimination was measured with a two-alternative, adaptive, forced choice design using a video game graphical user interface. Implanted children were compared to normal-hearing children in the same age ranges. Twenty-nine implanted children and 68 children with normal-hearing performed frequency discrimination studies at varying frequencies. Electrode discrimination was assessed in thirty-four implanted children at varying electrode locations and stimulation intensities. Older children had better frequency discrimination than younger children, both for implanted and hearing subjects. Implanted children had worse frequency discrimination overall and exhibited learning effects at older ages than hearing children. Frequency discrimination Weber fractions were smallest in low frequencies. Electrode discrimination improved with stimulus intensity level for older but not younger children at all electrode locations. These results support the premise that developmental changes in signal processing contribute to discrimination of simple acoustic stimuli. For implanted children, auditory discrimination improved at lower frequencies and with electrodes at higher intensity. These findings imply that spatial separation may not be the key determinant in creating discriminable electrical stimuli for this population. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kopelovich, Jonathan C.] Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. [Eisen, Marc D.] Univ Connecticut, Hartford, CT 06112 USA. [Franck, Kevin H.] Childrens Hosp Philadelphia, Philadelphia, PA 19104 USA. [Franck, Kevin H.] Univ Penn, Philadelphia, PA 19104 USA. RP Kopelovich, JC (reprint author), Univ Iowa, Dept Otolaryngol Head & Neck Surg, 200 Hawkins Dr, Iowa City, IA 52242 USA. EM jokopelo@gmail.com FU Deafness Research Foundation; Emil Capita Foundation FX Sources of support: Deafness Research Foundation, Emil Capita Foundation. CR ALLEN P, 1989, J SPEECH HEAR RES, V32, P317 BUSBY PA, 1993, J ACOUST SOC AM, V93, P1058, DOI 10.1121/1.405554 Busby PA, 2000, EAR HEARING, V21, P291, DOI 10.1097/00003446-200008000-00004 Busby PA, 1996, AUDIOLOGY, V35, P8 Collins LM, 1997, J ACOUST SOC AM, V101, P440, DOI 10.1121/1.417989 Cranford J L, 1997, J Am Acad Audiol, V8, P137 Dawson PW, 2000, EAR HEARING, V21, P597, DOI 10.1097/00003446-200012000-00007 Eisen MD, 2005, JARO-J ASSOC RES OTO, V6, P160, DOI 10.1007/s10162-005-5057-2 ELLIOTT LL, 1989, PERCEPT PSYCHOPHYS, V46, P181, DOI 10.3758/BF03204981 Franck KH, 2002, ANN OTO RHINOL LARYN, V111, P1128 Hartley DEH, 2000, J SPEECH LANG HEAR R, V43, P1402 Henry BA, 2000, J ACOUST SOC AM, V108, P1269, DOI 10.1121/1.1287711 IRWIN RJ, 1986, J EXP CHILD PSYCHOL, V41, P429, DOI 10.1016/0022-0965(86)90003-2 Laneau J, 2005, J NEUROSCI METH, V142, P131, DOI 10.1016/j.jneumeth.2004.08.015 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Moore DR, 2009, PHILOS T R SOC B, V364, P409, DOI 10.1098/rstb.2008.0187 Moore DR, 2005, BRAIN LANG, V94, P72, DOI 10.1016/j.bundl.2004.11.009 MOORE DR, 2007, HEARING RES, V238, P147 Pfingst BE, 1999, HEARING RES, V134, P105, DOI 10.1016/S0378-5955(99)00079-9 Thompson NC, 1999, J SPEECH LANG HEAR R, V42, P1061 Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275 Wei Chao-gang, 2004, Zhonghua Er Bi Yan Hou Ke Za Zhi, V39, P73 WIER CC, 1977, J ACOUST SOC AM, V61, P178, DOI 10.1121/1.381251 Yost W. A., 1994, FUNDAMENTALS HEARING ZENG FG, 1992, HEARING RES, V60, P231, DOI 10.1016/0378-5955(92)90024-H Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401 NR 26 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 105 EP 113 DI 10.1016/j.heares.2010.05.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900012 PM 20553829 ER PT J AU Al-Mana, D Ceranic, B Djahanbakhch, O Luxon, LM AF Al-Mana, Deena Ceranic, Borka Djahanbakhch, Ovrang Luxon, Linda M. TI Alteration in auditory function during the ovarian cycle SO HEARING RESEARCH LA English DT Article ID SPONTANEOUS OTOACOUSTIC EMISSIONS; BRAIN-STEM RESPONSE; MENSTRUAL-CYCLE; ESTROGEN-RECEPTORS; ORAL-CONTRACEPTIVES; HEARING-LOSS; INNER-EAR; FREQUENCY; HORMONES; WOMEN AB This study investigates whether physiological variations in ovarian hormones during the ovarian cycle (OC) are associated with changes in auditory function. Sixteen women with normal hearing underwent auditory tests and simultaneous measurements of the hormone levels four times during OC. The auditory tests included recording of otoacoustic emissions (OAEs), the medial olivocochlear (MOC) suppression and auditory brainstem responses (ABRs). The OC was defined by oestradiol and progesterone serum levels and menstrual cycle dating. A significant spontaneous OAE frequency shift [F(3,114.6) = 15.8, p < 0.001], with the greatest shift in the late follicular phase (highest oestrogen levels), was observed. Transient evoked OAE levels showed a consistent tendency in an increase in all frequency bands in the late follicular/early luteal stage and a decrease in the late follicular stage: TEOAE inter-session comparison indicated very small statistical differences. The MOC suppression changed significantly during OC [F(3.33.8) = 3.2, p = 0.036], with significant inter-session difference, lower in session 2 than in session 1 (p = 0.019) and lower in session 4 than in session 1 (p = 0.007). The ABR wave V absolute latency changed significantly during OC [F(3,33) = 3.3, p = 0.03], longer in the late follicular phase. There was also a significant positive correlation of TEOAEs and ABR (wave V latency and III-V interval) and significant negative correlation of MOC suppression with oestradiol levels in the follicular phase. The results of this study reflect very small changes in auditory function during OC, and they are suggestive of an increased hearing sensitivity around the time of ovulation. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ceranic, Borka] Univ London St Georges Hosp, Dept Audiol, London SW17 0QT, England. [Al-Mana, Deena; Luxon, Linda M.] Natl Hosp Neurol & Neurosurg, Dept Neurootol, London WC1N 3BG, England. [Djahanbakhch, Ovrang] Newham Univ Hosp, Acad Dept Obstet & Gynaecol, London E13 8SL, England. [Djahanbakhch, Ovrang] St Bartholomews Hosp, Reprod Med Unit, London EC1A 7BE, England. [Al-Mana, Deena; Luxon, Linda M.] UCL, Ear Inst, London WC1X 8EE, England. [Al-Mana, Deena] King Saud Univ, Coll Med, Acad Dept Otolaryngol & Head & Neck Surg, Riyadh 1141, Saudi Arabia. RP Ceranic, B (reprint author), Univ London St Georges Hosp, Dept Audiol, Lanesborough Wing,Blackshaw Rd, London SW17 0QT, England. EM borka.ceranic@stgeorges.nhs.uk CR Al-Mana D, 2008, NEUROSCIENCE, V153, P881, DOI 10.1016/j.neuroscience.2008.02.077 ALTSCHULER RA, 1986, NEUROBIOLOGY HEARING, P383 AMIT G, 2004, INDIAN J OTOL, V10, P24 Arch VS, 2009, HEARING RES, V252, P15, DOI 10.1016/j.heares.2009.01.001 Bajaj P, 2001, EUR J PAIN, V5, P135, DOI 10.1053/eujp.2001.0236 Baulieu EE, 1998, PSYCHONEUROENDOCRINO, V23, P963, DOI 10.1016/S0306-4530(98)00071-7 Behl C, 2000, Novartis Found Symp, V230, P221, DOI 10.1002/0470870818.ch16 BELL A, 1992, HEARING RES, V58, P91, DOI 10.1016/0378-5955(92)90012-C Bernardi F, 2003, GYNECOL ENDOCRINOL, V17, P65, DOI 10.1080/713603176 BONFILS P, 1989, LARYNGOSCOPE, V99, P752 British Society of Audiology, 1992, BRIT J AUDIOL, V26, P255 British Society of Audiology, 2004, REC PROC PUR TON AIR Caruso S, 2003, HUM REPROD, V18, P85, DOI 10.1093/humrep/deg003 Ceranic B, 2003, TXB AUDIOLOGICAL MED, P259 Ceranic BJ, 1998, J NEUROL NEUROSUR PS, V65, P523, DOI 10.1136/jnnp.65.4.523 Charitidi K, 2009, HEARING RES, V252, P71, DOI 10.1016/j.heares.2008.12.009 COX JR, 1980, EAR HEARING, V1, P219, DOI 10.1097/00003446-198007000-00008 Disney A, 2001, J NEUROPHYSIOL, V86, P1052 DJAHANBAKHCH O, 1981, LANCET, V2, P1164 Eisner A, 2004, VISUAL NEUROSCI, V21, P513, DOI 10.1017/S0952523804214031 ELKINDHIRSCH KE, 1992, HEARING RES, V60, P143, DOI 10.1016/0378-5955(92)90016-G FAGAN PL, 1986, AUDIOLOGY, V25, P321 Fehring RJ, 2006, JOGNN-J OBST GYN NEO, V35, P376, DOI 10.1111/j.1552-6909.2006.00051.x Follesa P, 2001, BRAIN RES REV, V37, P81, DOI 10.1016/S0165-0173(01)00125-4 Garson G. D., 2009, LINEAR MIXED MODELS Giuffre G, 2007, OPHTHALMOLOGICA, V221, P47, DOI 10.1159/000096522 Grillo C, 2001, ANN OTO RHINOL LARYN, V110, P785 Guimaraes P, 2006, P NATL ACAD SCI USA, V103, P14246, DOI 10.1073/pnas.0606891103 HAGGERTY HS, 1993, HEARING RES, V70, P31, DOI 10.1016/0378-5955(93)90050-B Hampson E., 2002, BEHAV ENDOCRINOLOGY, P579 KATZENELLENBOGE.BS, 2000, J SOC GYNECOL INVEST, V7, P33, DOI 10.1016/S1071-5576(99)00058-1 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2533 KEMP DT, 1990, EAR HEARING, V11, P93 LANG I, 1990, CANCER, V66, P1949, DOI 10.1002/1097-0142(19901101)66:9<1949::AID-CNCR2820660917>3.0.CO;2-E LAUGEL GR, 1987, HEARING RES, V31, P245, DOI 10.1016/0378-5955(87)90194-8 Lee JH, 2001, HEARING RES, V158, P123, DOI 10.1016/S0378-5955(01)00316-1 LENTON EA, 1984, BRIT J OBSTET GYNAEC, V91, P681, DOI 10.1111/j.1471-0528.1984.tb04830.x Lynch KS, 2008, BRAIN BEHAV EVOLUT, V71, P143, DOI 10.1159/000111460 MAJEWSKA MD, 1986, SCIENCE, V232, P1004, DOI 10.1126/science.2422758 Maney DL, 2006, EUR J NEUROSCI, V23, P1523, DOI 10.1111/j.1460-9568.2006.04673.x Maney DL, 2008, J COMP NEUROL, V511, P173, DOI 10.1002/cne.21830 Manley GA, 2004, J NEUROPHYSIOL, V92, P2685, DOI 10.1152/jn.00267.2004 McCulloch Charles E., 2001, GEN LINEAR MIXED MOD Meltser I, 2008, J CLIN INVEST, V118, P1563, DOI 10.1172/JCI32796 MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 Nathan CAO, 1999, ACTA OTO-LARYNGOL, V119, P853 Nielsen MS, 2001, FERTIL STERIL, V76, P384, DOI 10.1016/S0015-0282(01)01881-7 PENNER MJ, 1995, EAR HEARING, V16, P428, DOI 10.1097/00003446-199508000-00009 PLINKERT PK, 1993, EUR ARCH OTO-RHINO-L, V250, P351 Price K, 2009, HEARING RES, V252, P29, DOI 10.1016/j.heares.2009.02.010 PROBST R, 1987, AM J OTOLARYNG, V8, P73, DOI 10.1016/S0196-0709(87)80027-3 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 Serra A, 2003, ANN OTO RHINOL LARYN, V112, P549 Sisneros JA, 2003, J NEUROSCI, V23, P1049 Sisneros JA, 2004, SCIENCE, V305, P404, DOI 10.1126/science.1097218 Smith MJ, 2002, ANN NEUROL, V51, P599, DOI 10.1002/ana.10180 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5 Stomati M, 2002, MATURITAS, V43, P195, DOI 10.1016/S0378-5122(02)00205-0 Suga N, 2000, P NATL ACAD SCI USA, V97, P11807, DOI 10.1073/pnas.97.22.11807 SWANSON SJ, 1988, J SPEECH HEAR RES, V31, P569 Tadros SF, 2005, HEARING RES, V209, P10, DOI 10.1016/j.heares.2005.05.009 Tasman A, 1999, BIOL PSYCHIAT, V45, P1516, DOI 10.1016/S0006-3223(98)00196-6 Trune DR, 2000, LARYNGOSCOPE, V110, P1902, DOI 10.1097/00005537-200011000-00025 Walpurger V, 2004, HORM BEHAV, V46, P600, DOI 10.1016/j.yhbeh.2004.07.002 WIEDERHOLD ML, 1986, NEUROBIOLOGY HEARING, P349 Wilcox AJ, 2000, BRIT MED J, V321, P1259, DOI 10.1136/bmj.321.7271.1259 Woolley CS, 1997, J NEUROSCI, V17, P1848 Yadav Asha, 2002, Indian J Physiol Pharmacol, V46, P449 Yellin M W, 1999, J Am Acad Audiol, V10, P400 NR 70 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 114 EP 122 DI 10.1016/j.heares.2010.05.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900013 PM 20685243 ER PT J AU Rao, A Zhang, Y Miller, S AF Rao, Aparna Zhang, Yang Miller, Sharon TI Selective listening of concurrent auditory stimuli: An event-related potential study SO HEARING RESEARCH LA English DT Article ID SPECTROTEMPORAL RECEPTIVE-FIELDS; EVOKED-POTENTIALS; SPEECH-PERCEPTION; BRAIN POTENTIALS; ATTENTION; CORTEX; MODULATION; ERP; REORGANIZATION; INFORMATION AB This study employed behavioral and electrophysiological measures to examine selective listening of concurrent auditory stimuli. Stimuli consisted of four compound sounds, each created by mixing a pure tone with filtered noise bands at a signal-to-noise ratio of +15 dB. The pure tones and filtered noise bands each contained two levels of pitch. Two separate conditions were created; the background stimuli varied randomly or were held constant. In separate blocks, participants were asked to judge the pitch of tones or the pitch of filtered noise in the compound stimuli. Behavioral data consistently showed lower sensitivity and longer response times for classification of filtered noise when compared with classification of tones. However, differential effects were observed in the peak components of auditory event-related potentials (ERPs). Relative to tone classification, the P1 and N1 amplitudes were enhanced during the more difficult noise classification task in both test conditions, but the peak latencies were shorter for P1 and longer for N1 during noise classification. Moreover, a significant interaction between condition and task was seen for the P2. The results suggest that the essential ERP components for the same compound auditory stimuli are modulated by listeners' focus on specific aspects of information in the stimuli. Published by Elsevier B.V. C1 [Rao, Aparna; Zhang, Yang; Miller, Sharon] Univ Minnesota, Dept Speech Language Hearing Sci, Minneapolis, MN 55455 USA. [Zhang, Yang] Univ Minnesota, Ctr Neurobehav Dev, Minneapolis, MN 55455 USA. RP Rao, A (reprint author), Univ Minnesota, Dept Speech Language Hearing Sci, 115 Shevlin Hall,164 Pillsbury Dr SE, Minneapolis, MN 55455 USA. EM raoxx098@umn.edu; zhang470@umn.edu; mill1979@umn.edu FU American Speech-Language-Hearing Foundation; University of Minnesota; CLA Associate FX We would like to thank Liz Tusler, Tess Koerner, Asher Miller, Kayla Kelsey, Jason Sumontha and Dr. Edward Carney for their assistance in data collection. Thanks to Dr. Robert D. Melara and two anonymous reviewers for providing invaluable suggestions to improve this manuscript. Rao gratefully acknowledges financial support from the American Speech-Language-Hearing Foundation and the University of Minnesota. Zhang acknowledges lab startup funds from the University of Minnesota, Brain Imaging Research Awards (2008 and 2009) from the College of Liberal Arts, and support from CLA Associate Dean, Dr. Jo-Ida Hansen. CR Alain C., 2000, FRONT BIOSCI, V5, P202, DOI 10.2741/Alain Alho K, 2006, BRAIN RES, V1075, P142, DOI 10.1016/j.brainres.2005.11.103 ALHO K, 1992, PSYCHOPHYSIOLOGY, V29, P247, DOI 10.1111/j.1469-8986.1992.tb01695.x Bonte M, 2009, J NEUROSCI, V29, P1699, DOI 10.1523/JNEUROSCI.3694-08.2009 CORBETTA M, 1990, SCIENCE, V248, P1556, DOI 10.1126/science.2360050 Creelman C. D., 1991, DETECTION THEORY USE Crowley KE, 2004, CLIN NEUROPHYSIOL, V115, P732, DOI 10.1016/j.clinph.2003.11.021 Eggermont JJ, 1997, ACTA OTO-LARYNGOL, V117, P161, DOI 10.3109/00016489709117760 EGGERMONT JJ, 1988, ELECTROEN CLIN NEURO, V70, P293, DOI 10.1016/0013-4694(88)90048-X Erwin R J, 1987, Electroencephalogr Clin Neurophysiol Suppl, V40, P461 Escera C, 1998, J COGNITIVE NEUROSCI, V10, P590, DOI 10.1162/089892998562997 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 Fritz JB, 2007, CURR OPIN NEUROBIOL, V17, P437, DOI 10.1016/j.conb.2007.07.011 GARCIALARREA L, 1992, NEUROPSYCHOLOGIA, V30, P723, DOI 10.1016/0028-3932(92)90042-K Garner W. R., 1974, PROCESSING INFORM ST Giard M. H., 2000, FRONT BIOSCI, V5, P84 Godey B, 2001, CLIN NEUROPHYSIOL, V112, P1850, DOI 10.1016/S1388-2457(01)00636-8 HILLYARD SA, 1983, ANNU REV PSYCHOL, V34, P33, DOI 10.1146/annurev.ps.34.020183.000341 HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177 HUBEL DH, 1959, SCIENCE, V129, P1279, DOI 10.1126/science.129.3358.1279 Hugdahl K, 2003, BRAIN LANG, V85, P37, DOI 10.1016/S0093-934X(02)00500-X Jamison HL, 2006, CEREB CORTEX, V16, P1266, DOI 10.1093/cercor/bhj068 Kaganovich N, 2006, BRAIN RES, V1114, P161, DOI 10.1016/j.brainres.2006.07.049 LEHMANN D, 1984, PROG NEUROBIOL, V23, P227, DOI 10.1016/0301-0082(84)90003-0 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 Luck S. J., 2005, EVENT RELATED POTENT MACLEOD CM, 1991, PSYCHOL BULL, V109, P163, DOI 10.1037//0033-2909.109.2.163 MANGUN GR, 1990, PERCEPT PSYCHOPHYS, V47, P532, DOI 10.3758/BF03203106 Martin BA, 2008, EAR HEARING, V29, P285, DOI 10.1097/AUD.0b013e3181662c0e Melara RD, 2003, PSYCHOL REV, V110, P422, DOI 10.1037/0033-295X.110.3.422 MELARA RD, 1993, MEM COGNITION, V21, P627, DOI 10.3758/BF03197195 Melara RD, 2002, J EXP PSYCHOL HUMAN, V28, P279, DOI 10.1037//0096-1523.28.2.279 Naatanen R., 1992, ATTENTION BRAIN FUNC NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NAATANEN R, 1992, NEUROREPORT, V3, P493 NAATANEN R, 1988, BIOL PSYCHOL, V26, P117, DOI 10.1016/0301-0511(88)90017-8 NAATANEN R, 1982, PSYCHOL BULL, V92, P605 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006 Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9 Posner M I, 1992, Curr Opin Neurobiol, V2, P165, DOI 10.1016/0959-4388(92)90006-7 RIF J, 1991, ELECTROEN CLIN NEURO, V79, P464, DOI 10.1016/0013-4694(91)90166-2 Sabri M, 2008, NEUROIMAGE, V39, P1444, DOI 10.1016/j.neuroimage.2007.09.052 SPITZER H, 1988, SCIENCE, V240, P338, DOI 10.1126/science.3353728 Tervaniemi M, 2003, BRAIN RES REV, V43, P231, DOI 10.1016/j.brainresrev.2003.08.004 Tong YX, 2007, BRAIN RES, V1166, P110, DOI 10.1016/j.brainres.2007.06.061 Vanhatalo S, 2008, CLIN NEUROPHYSIOL, V119, P439, DOI 10.1016/j.clinph.2007.10.008 Von Kriegstein K, 2004, NEUROIMAGE, V22, P948 von Kriegstein K, 2003, COGNITIVE BRAIN RES, V17, P48, DOI 10.1016/S0926-6410(03)00079-X WOLDORFF MG, 1991, ELECTROEN CLIN NEURO, V79, P170, DOI 10.1016/0013-4694(91)90136-R Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946 Zhang Y, 2009, NEUROIMAGE, V46, P226, DOI 10.1016/j.neuroimage.2009.01.028 Zhang Y, 2005, NEUROIMAGE, V26, P703, DOI 10.1016/j.neuroimage.2005.02.040 NR 54 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 123 EP 132 DI 10.1016/j.heares.2010.05.013 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900014 PM 20595021 ER PT J AU Dugue, P Le Bouquin-Jeannes, R Edeline, JM Faucon, G AF Dugue, Pierre Le Bouquin-Jeannes, Regine Edeline, Jean-Marc Faucon, Gerard TI A physiologically based model for temporal envelope encoding in human primary auditory cortex SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; TONE-EVOKED OSCILLATIONS; BROAD-BAND NOISE; AMPLITUDE-MODULATION; INFERIOR COLLICULUS; FREQUENCY-SELECTIVITY; RECURRENT NETWORKS; RETICULAR NUCLEUS; COMPUTER-MODEL; RESPONSES AB Communication sounds exhibit temporal envelope fluctuations in the low frequency range (<70 Hz) and human speech has prominent 2-16 Hz modulations with a maximum at 3-4 Hz. Here, we propose a new phenomenological model of the human auditory pathway (from cochlea to primary auditory cortex) to simulate responses to amplitude-modulated white noise. To validate the model, performance was estimated by quantifying temporal modulation transfer functions (TMTFs). Previous models considered either the lower stages of the auditory system (up to the inferior colliculus) or only the thalamocortical loop. The present model, divided in two stages, is based on anatomical and physiological findings and includes the entire auditory pathway. The first stage, from the outer ear to the colliculus, incorporates inhibitory interneurons in the cochlear nucleus to increase performance at high stimuli levels. The second stage takes into account the anatomical connections of the thalamocortical system and includes the fast and slow excitatory and inhibitory currents. After optimizing the parameters of the model to reproduce the diversity of TMTFs obtained from human subjects, a patient-specific model was derived and the parameters were optimized to effectively reproduce both spontaneous activity and the oscillatory part of the evoked response. (C) 2010 Elsevier B.V. All rights reserved. C1 [Dugue, Pierre; Le Bouquin-Jeannes, Regine; Faucon, Gerard] INSERM, U642, F-35000 Rennes, France. [Dugue, Pierre; Le Bouquin-Jeannes, Regine; Faucon, Gerard] Univ Rennes 1, LTSI, F-35000 Rennes, France. [Edeline, Jean-Marc] CNPS, CNRS, UMR 8195, F-91405 Orsay, France. [Edeline, Jean-Marc] Univ Paris 11, F-91405 Orsay, France. RP Le Bouquin-Jeannes, R (reprint author), Univ Rennes 1, Lab Traitement Signal & Image, Campus Beaulieu, F-35042 Rennes, France. EM regine.le-bouquin-jeannes@univ-rennes1.fr CR Ardoint M, 2008, J ACOUST SOC AM, V123, P1591, DOI 10.1121/1.2836782 Arnott RH, 2004, JARO-J ASSOC RES OTO, V5, P153, DOI 10.1007/s10162-003-4036-8 Bao SW, 2004, NAT NEUROSCI, V7, P974, DOI 10.1038/nn1293 Bartlett EL, 1999, J NEUROPHYSIOL, V81, P1999 Caporale N, 2008, ANNU REV NEUROSCI, V31, P25, DOI 10.1146/annurev.neuro.31.060407.125639 Chi TS, 1999, J ACOUST SOC AM, V106, P2719, DOI 10.1121/1.428100 Clerc M., 2005, OPTIMISATION ESSAIMS Coath M, 2008, BIOSYSTEMS, V94, P60, DOI 10.1016/j.biosystems.2008.05.011 Cotillon N, 2000, HEARING RES, V142, P113, DOI 10.1016/S0378-5955(00)00016-2 Cotillon N, 2000, EUR J NEUROSCI, V12, P3637, DOI 10.1046/j.1460-9568.2000.00254.x Cotillon-Williams N, 2003, J NEUROPHYSIOL, V89, P1968, DOI 10.1152/jn.00728.2002 Cotillon-Williams N, 2004, ACTA NEUROBIOL EXP, V64, P253 Dau T, 1996, J ACOUST SOC AM, V99, P3615, DOI 10.1121/1.414959 DECURTIS M, 1989, NEUROSCIENCE, V33, P275, DOI 10.1016/0306-4522(89)90207-8 Denham SL, 2001, NATO SCI S A LIF SCI, V312, P281 DESCHENES M, 1990, EUR J NEUROSCI, V2, P140, DOI 10.1111/j.1460-9568.1990.tb00406.x DUGUE P, 2007, P 15 EUR SIGN PROC C, P2306 DUGUE P, 2006, MODELISATION CORTEX Dugue P, 2007, P ANN INT IEEE EMBS, P1286, DOI 10.1109/IEMBS.2007.4352532 DUGUE P, 2008, THESIS RENNES U Fishbach A, 2003, J NEUROPHYSIOL, V90, P3663, DOI 10.1152/jn.00654.2003 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588 Godey B, 2001, CLIN NEUROPHYSIOL, V112, P1850, DOI 10.1016/S1388-2457(01)00636-8 Golomb D, 1996, J NEUROPHYSIOL, V75, P750 GOODE RL, 1994, AM J OTOL, V15, P145 GOUREVITCH B, 2004, P EUSIPCO VIENN AUST, P2191 Gourevitch B, 2008, HEARING RES, V237, P1, DOI 10.1016/j.heares.2007.12.003 Grimault N, 2002, J ACOUST SOC AM, V111, P1340, DOI 10.1121/1.1452740 Gueguin M, 2007, CEREB CORTEX, V17, P304, DOI 10.1093/cercor/bhj148 Guerin A, 2006, HEARING RES, V211, P54, DOI 10.1016/j.heares.2005.10.001 GUERIN A, 2004, 7 C FRANC AC 30 DTSC, P389 Gutschalk A, 2004, NEUROIMAGE, V22, P755, DOI 10.1016/j.neuroimage.2004.01.025 HEWITT MJ, 1992, J ACOUST SOC AM, V91, P2096, DOI 10.1121/1.403696 HEWITT MJ, 1994, J ACOUST SOC AM, V95, P2145, DOI 10.1121/1.408676 HU B, 1994, J PHYSIOL-LONDON, V479, P217 JANSEN BH, 1995, BIOL CYBERN, V73, P357, DOI 10.1007/BF00199471 Jones EG, 1998, J COMP NEUROL, V397, P371, DOI 10.1002/(SICI)1096-9861(19980803)397:3<371::AID-CNE5>3.0.CO;2-# Jones EG, 2002, PHILOS T R SOC B, V357, P1659, DOI 10.1098/rstb.2002.1168 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Joris PX, 1998, J NEUROSCI, V18, P10157 Kennedy J., 1995, P IEEE INT C NEUR NE, V4, P1942, DOI DOI 10.1109/ICNN.1995.488968 Kerr CC, 2008, BIOL CYBERN, V98, P171, DOI 10.1007/s00422-007-0201-1 Kim U, 1997, SCIENCE, V278, P130, DOI 10.1126/science.278.5335.130 Liegeois-Chauvel C, 2004, CEREB CORTEX, V14, P731, DOI 10.1093/cercor/bhh033 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 Liu CP, 2002, P ANN INT IEEE EMBS, P234 Liu XB, 1999, J COMP NEUROL, V414, P67 Loebel Alex, 2007, Front Neurosci, V1, P197, DOI 10.3389/neuro.01.1.1.015.2007 Loebel A, 2002, J COMPUT NEUROSCI, V13, P111, DOI 10.1023/A:1020110223441 Lopez-Poveda EA, 2003, J ACOUST SOC AM, V114, P2112, DOI 10.1121/1.1605389 Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197 LORENZI C, 1995, HEARING RES, V90, P219, DOI 10.1016/0378-5955(95)00169-9 MAY PJC, 2004, NEUROL CLIN NEUROPHY, V19, P1 McCormick DA, 1997, ANNU REV NEUROSCI, V20, P185, DOI 10.1146/annurev.neuro.20.1.185 MCGREGOR RJ, 1987, NEURAL BRAIN MODELIN Meddis R, 2001, J ACOUST SOC AM, V109, P2852, DOI 10.1121/1.1370357 Meddis R, 2006, J ACOUST SOC AM, V120, P3861, DOI 10.1121/1.2372595 METHERATE R, 1994, J PHYSIOL-LONDON, V481, P331 NELKEN I, 1994, J NEUROPHYSIOL, V71, P2446 Nelson PC, 2004, J ACOUST SOC AM, V116, P2173, DOI 10.1121/1.1784442 PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 Pralong D, 1996, J ACOUST SOC AM, V100, P3785, DOI 10.1121/1.417337 REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851 Rennie CJ, 2002, BIOL CYBERN, V86, P457, DOI 10.1007/s00422-002-0310-9 Rose HJ, 2005, J NEUROPHYSIOL, V94, P2019, DOI 10.1152/jn.00860.2004 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 Saeb S, 2007, J THEOR BIOL, V248, P1, DOI 10.1016/j.jtbi.2007.03.025 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a STERIADE M, 1993, SCIENCE, V262, P679, DOI 10.1126/science.8235588 Steriade M, 1997, CEREB CORTEX, V7, P583, DOI 10.1093/cercor/7.6.583 Steriade M, 2000, NEUROSCIENCE, V101, P243, DOI 10.1016/S0306-4522(00)00353-5 Sumner CJ, 2002, J ACOUST SOC AM, V111, P2178, DOI 10.1121/1.1453451 Tsodyks M, 2000, J NEUROSCI, V20 Wang XQ, 2003, SPEECH COMMUN, V41, P107, DOI 10.1016/S0167-6393(02)00097-3 Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009 Winer JA, 1992, MAMMALIAN AUDITORY P, P222 WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007 NR 81 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 133 EP 144 DI 10.1016/j.heares.2010.05.014 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900015 PM 20685388 ER PT J AU Zheng, YW Stiles, L Hamilton, E Smith, PF Darlington, CL AF Zheng, Yiwen Stiles, Lucy Hamilton, Emma Smith, Paul F. Darlington, Cynthia L. TI The effects of the synthetic cannabinoid receptor agonists, WIN55,212-2 and CP55,940, on salicylate-induced tinnitus in rats SO HEARING RESEARCH LA English DT Article ID ANIMAL-MODEL; ENDOCANNABINOID SYSTEM; BRAIN-STEM; BEHAVIORAL PARADIGM; COCHLEAR NUCLEUS; DOWN-REGULATION; LOCALIZATION; OTOTOXICITY; HIPPOCAMPUS; ACTIVATION AB Previous studies in animals and humans have shown that, in some cases at least, anti-epileptic drugs can reduce the severity of tinnitus. Given that cannabinoid receptor agonists have been shown to exert anti-epileptic effects in some circumstances, we investigated whether two synthetic CB(1)/CB(2) receptor agonists, WIN55,212-2, and CP55,940, could inhibit the behavioural manifestations of salicylate-induced tinnitus in rats in a conditioned suppression task. We found that neither WIN55,212-2 (3.0 mg/kg s.c) nor CP55,940 (0.1 or 0.3 mg/kg s.c), significantly reduced conditioned behaviour associated with tinnitus. However, both 3 mg/kg WIN55,212-2 and 0.3 mg/kg CP55,940 did significantly increase tinnitus-related behaviour compared to the vehicle control groups. These results suggest that cannabinoid receptor agonists may not be useful in the treatment of salicylate-induced tinnitus and that at certain doses, they could actually exacerbate the condition. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zheng, Yiwen; Stiles, Lucy; Hamilton, Emma; Smith, Paul F.; Darlington, Cynthia L.] Univ Otago, Sch Med, Sch Med Sci, Dept Pharmacol & Toxicol, Dunedin, New Zealand. RP Zheng, YW (reprint author), Univ Otago, Sch Med, Sch Med Sci, Dept Pharmacol & Toxicol, POB 913, Dunedin, New Zealand. EM yiwen.zheng@stonebow.otago.ac.nz FU Garnett Passe Rodney Williams Foundation of Australia; Jean Cathie Estate; National Deafness Foundation of New Zealand; University of Otago Division of Health Sciences FX This research was supported by grants from the Garnett Passe Rodney Williams Foundation of Australia, the Jean Cathie Estate, the National Deafness Foundation of New Zealand and a University of Otago Division of Health Sciences grant. We thank Dr. Chisako Masumura for her contributions to preliminary studies used in designing these experiments. CR Baek JH, 2008, ACTA OTO-LARYNGOL, V128, P961, DOI 10.1080/00016480701796944 Bauer CA, 2001, JARO, V2, P54 Bauer CA, 2003, OTOLARYNG CLIN N AM, V36, P267, DOI 10.1016/S0030-6665(02)00171-8 Brozoski TJ, 2007, JARO-J ASSOC RES OTO, V8, P105, DOI 10.1007/s10162-006-0067-2 CRIFO S, 1975, ORL J OTO-RHINO-LARY, V37, P27 Davis A, 2000, TINNITUS HDB, P1 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Goble TJ, 2009, HEARING RES, V253, P52, DOI 10.1016/j.heares.2009.03.002 Gong JP, 2006, BRAIN RES, V1071, P10, DOI 10.1016/j.brainres.2005.11.035 Guitton MJ, 2003, J NEUROSCI, V23, P3944 HAAB L, 2009, C P IEEE ENG MED BIO, P4234 Han B, 2010, ANN EPIDEMIOL, V20, P289, DOI 10.1016/j.annepidem.2010.01.003 HERKENHAM M, 1991, J NEUROSCI, V11, P563 Jarbe TUC, 2008, PHARMACOL BIOCHEM BE, V91, P84, DOI 10.1016/j.pbb.2008.06.014 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 KAY IS, 1993, EUR ARCH OTO-RHINO-L, V250, P51 Kizawa K, 2010, NEUROSCIENCE, V165, P1323, DOI 10.1016/j.neuroscience.2009.11.048 KUSTER JE, 1993, J PHARMACOL EXP THER, V264, P1352 Lambert DM, 2001, EPILEPSIA, V42, P321, DOI 10.1046/j.1528-1157.2001.41499.x LANDGREBE M, 2009, NEUROIMAGE, V246, P213 Lanting CP, 2009, HEARING RES, V255, P1, DOI 10.1016/j.heares.2009.06.009 Lobarinas E, 2004, HEARING RES, V190, P109, DOI 10.1016/S0378-5955(04)00019-X Ludanyi A, 2008, J NEUROSCI, V28, P2976, DOI 10.1523/JNEUROSCI.4465-07.2008 Luszczki JJ, 2006, EUR J PHARMACOL, V547, P65, DOI 10.1016/j.ejphar.2006.07.037 Lutz B, 2004, BIOCHEM PHARMACOL, V68, P1691, DOI 10.1016/j.bcp.2004.07.007 MARSICANO G, 2003, SCIENCE, V302, P65 MCFADDEN D, 1984, HEARING RES, V16, P251, DOI 10.1016/0378-5955(84)90114-X McGregor IS, 1996, PHARMACOL BIOCHEM BE, V53, P657, DOI 10.1016/0091-3057(95)02066-7 Moller A R, 2000, J Am Acad Audiol, V11, P115 Muhlau M, 2006, CEREB CORTEX, V16, P1283, DOI 10.1093/cercor/bhj070 Rice J. A., 2007, MATH STAT DATA ANAL Romero EM, 2002, DEV BRAIN RES, V136, P85, DOI 10.1016/S0165-3806(02)00306-1 Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3 Smith Paul F, 2005, Curr Opin Investig Drugs, V6, P680 Tzounopoulos T, 2007, NEURON, V54, P291, DOI 10.1016/j.neuron.2007.03.026 URIGUEN L, 2010, J PSYCHOPHARMACOL Wade DT, 2006, MULT SCLER, V12, P639, DOI 10.1177/135248505070618 Wallace MJ, 2002, EUR J PHARMACOL, V452, P295, DOI 10.1016/S0014-2999(02)02331-2 Wallace MJ, 2003, J PHARMACOL EXP THER, V307, P129, DOI 10.1124/jpet.103.051920 WILEY JL, 1995, NEUROPHARMACOLOGY, V34, P669, DOI 10.1016/0028-3908(95)00027-4 Zhao YJ, 2009, J NEUROPHYSIOL, V101, P2434, DOI 10.1152/jn.00047.2009 ZHENG Y, 2008, ACTA OTO-LARYNGOL, V125, P48 Zheng Y, 2007, HEARING RES, V228, P105, DOI 10.1016/j.heares.2007.01.028 Zheng YW, 2006, BRAIN RES, V1123, P201, DOI 10.1016/j.brainres.2006.09.045 Zheng YW, 2010, J ETHNOPHARMACOL, V128, P545, DOI 10.1016/j.jep.2010.01.053 NR 45 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 145 EP 150 DI 10.1016/j.heares.2010.05.015 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900016 PM 20630477 ER PT J AU Pienkowski, M Eggermont, JJ AF Pienkowski, Martin Eggermont, Jos J. TI Passive exposure of adult cats to moderate-level tone pip ensembles differentially decreases AI and AII responsiveness in the exposure frequency range SO HEARING RESEARCH LA English DT Article ID PRIMARY AUDITORY-CORTEX; ACOUSTIC ENVIRONMENT; CORTICAL FIELDS; NOISE TRAUMA; ORGANIZATION; REPRESENTATION; PLASTICITY; CONNECTIONS; HABITUATION; INTENSITY AB Passive exposure of adult animals to a random ensemble of tone pips band limited between 4 and 20 kHz has been shown to suppress neural activity in primary auditory cortex (AI) to sounds in the exposure frequency range. In the long-term (>3 months), the suppressed neurons can be reactivated by frequencies above and below the exposure range, i.e., tonotopic map reorganization occurs. The suppression can be at least partially reversed after a long period of quiet recovery, as the moderate-level exposure does not impair peripheral hearing. Here we exposed adult cats, for 7-13 weeks without interruption, to two different moderate-level tone pip ensembles, in separate experiments. One exposure stimulus consisted of an octave-wide 2-4 kHz band, which overlaps substantially with the cat vocalization range; the other consisted of a pair of third-octave bands centered at 4 and 16 kHz. We again report a decrease in AI responsiveness in the exposure frequency range, irrespective of the exposure stimulus bandwidth or center frequency, and a slow, partial recovery over a 12-week post-exposure window. In contrast to our previous studies, the suppression in both of the present experiments extended well beyond the exposure frequency range. In particular, following the 4 and 16 kHz experimental acoustic environment, AI activity was strongly suppressed not only in response to frequencies close to the two exposure bands, but also in response to frequencies between the bands, i.e., the results resembled those to a single broadband stimulus spanning the 3-18 kHz range. On the other hand, responses in secondary auditory cortex (All) were suppressed predominantly around 4 and 16 kHz, with little or no suppression in between. (C) 2010 Elsevier B.V. All rights reserved. C1 [Eggermont, Jos J.] Univ Calgary, Dept Physiol & Pharmacol, Calgary, AB T2N 1N4, Canada. Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Physiol & Pharmacol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM eggermon@ucalgary.ca FU Alberta Heritage Foundation for Medical Research; Natural Sciences and Engineering Research Council; Campbell McLaurin Chair of Hearing Deficiencies FX This work was supported by the Alberta Heritage Foundation for Medical Research, by the Natural Sciences and Engineering Research Council, and by the Campbell McLaurin Chair of Hearing Deficiencies. Greg Shaw provided programming support. CR ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312 Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003 Carrasco A, 2010, J NEUROSCI, V30, P1476, DOI 10.1523/JNEUROSCI.5708-09.2009 CONDON CD, 1991, BEHAV NEUROSCI, V105, P416 COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007 de Villers-Sidani E, 2008, NAT NEUROSCI, V11, P957, DOI 10.1038/nn.2144 Eggermont JJ, 1990, CORRELATIVE BRAIN TH Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 EVANS EF, 1982, J PHYSIOL-LONDON, V331, P409 GARDNER MJ, 1986, BRIT MED J, V292, P746 Han YK, 2007, NAT NEUROSCI, V10, P1191, DOI 10.1038/nn1941 He HY, 2007, NAT NEUROSCI, V10, P1134, DOI 10.1038/nn1965 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Kiang NY-s, 1965, DISCHARGE PATTERNS S Lee CC, 2008, J COMP NEUROL, V507, P1879, DOI 10.1002/cne.21611 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Norena AJ, 2006, NAT NEUROSCI, V9, P932, DOI 10.1038/nn1720 Norena AJ, 2008, J NEUROSCI, V28, P8885, DOI 10.1523/JNEUROSCI.2693-08.2008 PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48 Pienkowski M, 2010, HEARING RES, V261, P30, DOI 10.1016/j.heares.2009.12.025 Pienkowski M, 2009, HEARING RES, V257, P24, DOI 10.1016/j.heares.2009.07.011 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284 Stanton SG, 1996, AUDIT NEUROSCI, V2, P97 Sutter ML, 2003, J NEUROPHYSIOL, V90, P2629, DOI 10.1152/jn.00722.2002 THOMPSON RF, 1966, PSYCHOL REV, V73, P16, DOI 10.1037/h0022681 Volkov IO, 1998, NEUROSCIENCE, V82, P499 WEINBERGER NM, 1987, PROG NEUROBIOL, V129, P1 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 Zhang YF, 2008, CEREB CORTEX, V18, P1521, DOI 10.1093/cercor/bhm188 NR 35 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 151 EP 162 DI 10.1016/j.heares.2010.05.016 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900017 PM 20630476 ER PT J AU Ramunno-Johnson, D Strimbu, CE Kao, A Hemsing, LF Bozovic, D AF Ramunno-Johnson, D. Strimbu, C. E. Kao, A. Hemsing, L. Fredrickson Bozovic, D. TI Effects of the somatic ion channels upon spontaneous mechanical oscillations in hair bundles of the inner ear SO HEARING RESEARCH LA English DT Article ID CELL TRANSDUCTION CHANNELS; MECHANOELECTRICAL TRANSDUCTION; BULLFROGS SACCULUS; RANA-CATESBEIANA; FAST ADAPTATION; ACTIVE PROCESS; BULL-FROG; CALCIUM; MECHANOTRANSDUCTION; AMPLIFICATION AB Decoupled hair bundles of the bullfrog (Litho bates catesbeianus) sacculus exhibit spontaneous oscillations in vitro. We examine the effect of the somatic electrical circuit upon active hair bundle motility. We found that innate bundle movements exhibit a complex profile with multiple periodicities. Inhibition of somatic ion channels using targeted neurotoxins and modified physiological solutions strongly affects the bundles' mechanical behavior, modifying the amplitude and the temporal characteristics of the oscillation profile. Published by Elsevier B.V. C1 [Ramunno-Johnson, D.; Strimbu, C. E.; Kao, A.; Hemsing, L. Fredrickson; Bozovic, D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Bozovic, D (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, 475 Portola Plaza, Los Angeles, CA 90095 USA. EM bozovic@physics.ucla.edu CR Armstrong CE, 2001, J PHYSIOL-LONDON, V536, P49, DOI 10.1111/j.1469-7793.2001.00049.x Armstrong CE, 1998, J NEUROSCI, V18, P2962 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X Benser ME, 1996, J NEUROSCI, V16, P5629 Blanchet C, 1996, J NEUROSCI, V16, P2574 Bozovic D, 2003, P NATL ACAD SCI USA, V100, P958, DOI 10.1073/pnas.0337433100 Camalet S, 2000, P NATL ACAD SCI USA, V97, P3183, DOI 10.1073/pnas.97.7.3183 Chan DK, 2005, NAT NEUROSCI, V8, P149, DOI 10.1038/nn1385 Cheung ELM, 2006, BIOPHYS J, V90, P124, DOI 10.1529/biophysj.105.061226 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 DENK W, 1992, HEARING RES, V60, P89, DOI 10.1016/0378-5955(92)90062-R Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285 Fettiplace R, 2003, CURR OPIN NEUROBIOL, V13, P446, DOI 10.1016/S0959-4388(03)00094-1 Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 Fettiplace R, 2006, NAT REV NEUROSCI, V7, P19, DOI 10.1038/nrn1828 Gillespie PG, 2001, NATURE, V413, P194, DOI 10.1038/35093011 Gillespie PG, 2009, CELL, V139, P33, DOI 10.1016/j.cell.2009.09.010 Gillespie PG, 2004, ANNU REV PHYSIOL, V66, P521, DOI 10.1146/annurev.physiol.66.032102.112842 Goodman MB, 2004, J NEUROSCI, V24, P9220, DOI 10.1523/JNEUROSCI.3342-04.2004 HACOHEN N, 1989, J NEUROSCI, V9, P3988 HAN L, 2010, PHYS REV E, V81, P1 Holt JR, 2002, CELL, V108, P371, DOI 10.1016/S0092-8674(02)00629-3 Holt JR, 2000, P NATL ACAD SCI USA, V97, P11730, DOI 10.1073/pnas.97.22.11730 HOWARD J, 1987, P NATL ACAD SCI USA, V84, P3064, DOI 10.1073/pnas.84.9.3064 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P275 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P237 Hudspeth AJ, 2008, NEURON, V59, P530, DOI 10.1016/j.neuron.2008.07.012 Jaramillo F, 1995, NEURON, V15, P1227, DOI 10.1016/0896-6273(95)90003-9 Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336 Kennedy HJ, 2003, NAT NEUROSCI, V6, P832, DOI 10.1038/nn1089 Kozlov AS, 2007, NAT NEUROSCI, V10, P87, DOI 10.1038/nn1818 Le Goff L, 2005, P NATL ACAD SCI USA, V102, P16996, DOI 10.1073/pnas.0508731102 LeMasurier M, 2005, NEURON, V48, P403, DOI 10.1016/j.neuron.2005.10.017 LEWIS ER, 1988, BIOPHYS J, V53, P441 Manley GA, 2001, J NEUROPHYSIOL, V86, P541 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 Martin P, 1999, P NATL ACAD SCI USA, V96, P14306, DOI 10.1073/pnas.96.25.14306 Martin P, 2001, P NATL ACAD SCI USA, V98, P14386, DOI 10.1073/pnas.251530498 Martin P, 2003, J NEUROSCI, V23, P4533 Martin P, 2001, P NATL ACAD SCI USA, V98, P14380, DOI 10.1073/pnas.251530598 Martin P, 2000, P NATL ACAD SCI USA, V97, P12026, DOI 10.1073/pnas.210389497 Nadrowski B, 2004, P NATL ACAD SCI USA, V101, P12195, DOI 10.1073/pnas.0403020101 Nicolson T, 2005, TRENDS NEUROSCI, V28, P140, DOI 10.1016/j.tins.2004.12.008 Ospeck M, 2001, BIOPHYS J, V80, P2597 PICKLES JO, 1992, TRENDS NEUROSCI, V15, P254, DOI 10.1016/0166-2236(92)90066-H Ramunno-Johnson D, 2009, BIOPHYS J, V96, P1159, DOI 10.1016/j.bpj.2008.09.060 Ren T, 2007, CURR OPIN NEUROBIOL, V17, P498, DOI 10.1016/j.conb.2007.07.013 Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x Rodriguez-Contreras A, 2001, J PHYSIOL-LONDON, V534, P669, DOI 10.1111/j.1469-7793.2001.00669.x Rutherford MA, 2009, J NEUROSCI, V29, P10025, DOI 10.1523/JNEUROSCI.1798-09.2009 Santos-Sacchi J, 2003, CURR OPIN NEUROBIOL, V13, P459, DOI 10.1016/S0959-4388(03)00100-4 Silverman B., 1986, DENSITY ESTIMATION S Smotherman MS, 2000, J EXP BIOL, V203, P2237 Stauffer EA, 2005, NEURON, V47, P541, DOI 10.1016/j.neuron.2005.07.024 Tinevez JY, 2007, BIOPHYS J, V93, P4053, DOI 10.1529/biophysj.107.108498 Vollrath MA, 2007, ANNU REV NEUROSCI, V30, P339, DOI 10.1146/annurev.neuro.29.051605.112917 NR 58 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 163 EP 171 DI 10.1016/j.heares.2010.05.017 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900018 PM 20566385 ER PT J AU Lu, WF Zhou, D Freeman, JJ Thalmann, I Ornitz, DM Thalmann, R AF Lu, Wenfu Zhou, Dan Freeman, John J. Thalmann, Isolde Ornitz, David M. Thalmann, Ruediger TI In vitro effects of recombinant otoconin 90 upon calcite crystal growth. Significance of tertiary structure SO HEARING RESEARCH LA English DT Article ID PROTEIN SECONDARY STRUCTURE; GOOSE EGGSHELL MATRIX; ACID-RICH PROTEIN; INNER-EAR; CIRCULAR-DICHROISM; PHOSPHOLIPASE A(2); ENDOLYMPHATIC SAC; ORGANIC MATRIX; MAJOR PROTEIN; BIOMINERALIZATION AB Otoconia are biomineral particles of microscopic size essential for perception of gravity and maintenance of balance. Millions of older Americans are affected in their mobility, quality of life and in their health by progressive demineralization of otoconia. Currently, no effective means to prevent or counteract this process are available. Because of prohibitive anatomical and biological constraints, otoconial research is lagging far behind other systems such as bone and teeth. We have overcome these obstacles by generating otoconial matrix proteins by recombinant techniques. In the present study, we evaluated the effects of recombinant Otoconin 90 (OC90), the principal soluble matrix protein upon calcite crystal growth patterns in vitro. Our findings highlight multiple effects, including facilitation of nucleation, and inhibition of crystal growth in a concentration-dependent manner. Moreover, OC90 induces morphologic changes characteristic of native otoconia. OC90 is considerably less acidic than the prototypical invertebrate CaCO(3) - associated protein, but is nevertheless an effective modulator of calcite crystal growth. Based on homology modeling of the sPLA2-like domains of OC90, we propose that the lower density of acidic residues of the primary sequence is compensated by formation of major anionic surface clusters upon folding into tertiary conformation. (C) 2010 Elsevier B.V. All rights reserved. C1 [Lu, Wenfu; Thalmann, Isolde; Thalmann, Ruediger] Washington Univ, Sch Med St Louis, Dept Otolaryngol Head & Neck Surg, St Louis, MO 63110 USA. [Zhou, Dan] Univ Missouri, Ctr Nanosci, St Louis, MO 63121 USA. [Freeman, John J.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Ornitz, David M.] Washington Univ, Sch Med St Louis, Dept Dev Biol, St Louis, MO 63110 USA. RP Thalmann, R (reprint author), Washington Univ, Sch Med St Louis, Dept Otolaryngol Head & Neck Surg, Campus Box 8115,660 S Euclid Ave, St Louis, MO 63110 USA. EM luwenfu@gmail.com; zhouda@umsl.edu; johnjfreeman@wustl.edu; thalmann_i@ent.wustl.edu; dornitz@wustl.edu; thalmannr@ent.wustl.edu FU National Institute on Deafness and other Communication Disorders, NIH [DC 009320, DC02236] FX We thank Dr. Lijuan Zhang for prediction of the chondroitin sulfate site; Dr. Jianbo Wang for providing the mammalian expression vector pcDNA3.1 (+) neomycin; Dr. Carl Frieden for valuable discussion on CD; Dr. Thomas Brett for technical assistance with CD and DLS, and discussion of DLS data. This study was supported by DC 009320 (RT) and DC02236 (DMO) from the National Institute on Deafness and other Communication Disorders, NIH. CR ADDADI L, 1985, P NATL ACAD SCI USA, V82, P4110, DOI 10.1073/pnas.82.12.4110 Addadi L., 1989, Connective Tissue Research, V21, P127, DOI 10.3109/03008208909050003 Aizenberg J, 2003, CONNECT TISSUE RES, V44, P20, DOI 10.1080/03008200390152034 ALBECK S, 1993, J AM CHEM SOC, V115, P11691, DOI 10.1021/ja00078a005 Baker BR, 2004, FARADAY DISCUSS, V126, P209, DOI 10.1039/b305291e Baker NA, 2001, P NATL ACAD SCI USA, V98, P10037, DOI 10.1073/pnas.181342398 Bertrand JA, 1996, EMBO J, V15, P2678 BRAHMS S, 1980, J MOL BIOL, V138, P149, DOI 10.1016/0022-2836(80)90282-X Chivian D, 2005, PROTEINS, V61, P157, DOI 10.1002/prot.20733 Colfen H, 2003, ANGEW CHEM INT EDIT, V42, P2350, DOI 10.1002/anie.200200562 Colfen H, 2008, ANGEW CHEM INT EDIT, V47, P2351, DOI 10.1002/anie.200800418 Collino S, 2007, BIOMACROMOLECULES, V8, P1686, DOI 10.1021/bm0700183 De Yoreo JJ, 2004, SCIENCE, V306, P1301, DOI 10.1126/science.1100889 De Yoreo JJ, 2007, CRYSTENGCOMM, V9, P1144, DOI 10.1039/b713006f De Yoreo JJ, 2003, REV MINERAL GEOCHEM, V54, P57, DOI 10.2113/0540057 Dolinsky TJ, 2004, NUCLEIC ACIDS RES, V32, P665 Elhadj S, 2006, P NATL ACAD SCI USA, V103, P19237, DOI 10.1073/pnas.0605748103 ERWAY L C, 1986, Scanning Electron Microscopy, P1681 Evans JS, 2003, REV MINERAL GEOCHEM, V54, P31, DOI 10.2113/0540031 Friddle RW, 2010, P NATL ACAD SCI USA, V107, P11, DOI 10.1073/pnas.0908205107 Fu G, 2005, ADV MATER, V17, P2678, DOI 10.1002/adma.200500633 Fu G, 2005, BIOMACROMOLECULES, V6, P1289, DOI 10.1021/bm049314v Gotliv BA, 2005, CHEMBIOCHEM, V6, P304, DOI 10.1002/cbic.200400221 Hornemann S, 2004, EMBO REP, V5, P1159, DOI 10.1038/sj.embor.7400297 Hughes I, 2006, BRAIN RES, V1091, P58, DOI 10.1016/j.brainres.2006.01.074 Hughes I, 2007, P NATL ACAD SCI USA, V104, P12023, DOI 10.1073/pnas.0705182104 Hurle B, 2003, HUM MOL GENET, V12, P777, DOI 10.1093/hmg/ddg087 Ignatova EG, 2004, HEARING RES, V194, P65, DOI 10.1016/j.heares.2004.03.019 KAWAMATA S, 1995, ANAT REC, V242, P259, DOI 10.1002/ar.1092420216 Kim D.E., 2004, NUCLEIC ACIDS RES, V32, P526 Kiss PJ, 2006, CURR BIOL, V16, P208, DOI 10.1016/j.cub.2005.12.025 Lakshminarayanan R, 2003, J BIOL CHEM, V278, P2928, DOI 10.1074/jbc.M201518200 Lakshminarayanan R, 2005, BIOMACROMOLECULES, V6, P741, DOI 10.1021/bm049423+ Lakshminarayanan R, 2002, P NATL ACAD SCI USA, V99, P5155, DOI 10.1073/pnas.072658899 LASKOWSKI RA, 1993, J MOL BIOL, V231, P1049, DOI 10.1006/jmbi.1993.1351 Lok SM, 2005, FEBS J, V272, P1211, DOI 10.1111/j.1742-4658.2005.04547.x Mann S., 2001, BIOMINERALIZATION PR MANN S, 1983, PROC R SOC SER B-BIO, V218, P415, DOI 10.1098/rspb.1983.0048 Marin F, 2005, J BIOL CHEM, V280, P33895, DOI 10.1074/jbc.M506526200 McGuffin LJ, 2000, BIOINFORMATICS, V16, P404, DOI 10.1093/bioinformatics/16.4.404 Murayama E, 2005, MECH DEVELOP, V122, P791, DOI 10.1016/j.mod.2005.03.002 Murayama E, 2002, EUR J BIOCHEM, V269, P688, DOI 10.1046/j.0014-2956.2001.02701.x Nakano Y, 2008, J CLIN INVEST, V118, P1176, DOI 10.1172/JCI33835 Niederberger M, 2006, PHYS CHEM CHEM PHYS, V8, P3271, DOI 10.1039/b604589h Notredame C, 2000, J MOL BIOL, V302, P205, DOI 10.1006/jmbi.2000.4042 Orme CA, 2001, NATURE, V411, P775, DOI 10.1038/35081034 Paffenholz R, 2004, GENE DEV, V18, P486, DOI 10.1101/gad.1172504 Pan YH, 2002, J BIOL CHEM, V277, P29086, DOI 10.1074/jbc.M202531200 Petko JA, 2008, DEV NEUROBIOL, V68, P209, DOI 10.1002/dneu.20587 Politi Y, 2008, P NATL ACAD SCI USA, V105, P17362, DOI 10.1073/pnas.0806604105 Politi Y, 2007, CRYSTENGCOMM, V9, P1171, DOI 10.1039/b709749b Politi Y, 2004, SCIENCE, V306, P1161, DOI 10.1126/science.1102289 POTE KG, 1991, COMP BIOCHEM PHYS B, V98, P287, DOI 10.1016/0305-0491(91)90181-C POTE KG, 1993, BIOCHEMISTRY-US, V32, P5017, DOI 10.1021/bi00070a007 SALT AN, 1989, AM J OTOLARYNG, V10, P371, DOI 10.1016/0196-0709(89)90030-6 Schafer C, 2003, J CLIN INVEST, V112, P357, DOI 10.1172/JCI200317202 Schwede T, 2003, NUCLEIC ACIDS RES, V31, P3381, DOI 10.1093/nar/gkg520 Simons KT, 1997, J MOL BIOL, V268, P209, DOI 10.1006/jmbi.1997.0959 SIPPL MJ, 1993, PROTEINS, V17, P355, DOI 10.1002/prot.340170404 Sreerama N, 2000, ANAL BIOCHEM, V287, P252, DOI 10.1006/abio.2000.4880 SUZUKI H, 1995, HEARING RES, V90, P212, DOI 10.1016/0378-5955(95)00168-7 Takeuchi K, 2003, J BIOL CHEM, V278, P47416, DOI 10.1074/jbc.M309415200 Thalmann I, 2006, ELECTROPHORESIS, V27, P1598, DOI 10.1002/elps.200500768 Thalmann R, 2001, ANN NY ACAD SCI, V942, P162 TOMSON MB, 1978, SCIENCE, V200, P1059, DOI 10.1126/science.200.4345.1059 Veis A, 2003, REV MINERAL GEOCHEM, V54, P249, DOI 10.2113/0540249 Verpy E, 1999, P NATL ACAD SCI USA, V96, P529, DOI 10.1073/pnas.96.2.529 WALL RS, 1988, ANAL BIOCHEM, V175, P298, DOI 10.1016/0003-2697(88)90392-2 Wang YX, 1998, P NATL ACAD SCI USA, V95, P15345, DOI 10.1073/pnas.95.26.15345 Wiederstein M, 2007, NUCLEIC ACIDS RES, V35, P407, DOI DOI 10.1093/NAR/GKM290 Wilkins DK, 1999, BIOCHEMISTRY-US, V38, P16424, DOI 10.1021/bi991765q Zhao X, 2007, DEV BIOL, V304, P508, DOI 10.1016/j.ydbio.2007.01.013 NR 72 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 172 EP 183 DI 10.1016/j.heares.2010.05.019 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900019 PM 20595020 ER PT J AU Muller, M Hoidis, S Smolders, JWT AF Mueller, Marcus Hoidis, Silvi Smolders, Jean W. T. TI A physiological frequency-position map of the chinchilla cochlea SO HEARING RESEARCH LA English DT Article ID BASILAR-MEMBRANE VIBRATIONS; AUDITORY-NERVE FIBERS; GUINEA-PIG; ACOUSTIC TRAUMA; TUNING CURVES; RAT COCHLEA; CELL LOSS; THRESHOLD; REPRESENTATION; MECHANICS AB Accumulating evidence indicates that mammalian cochlear frequency-position maps (location of maximum vibration of the basilar membrane as a function of frequency) depend on the physiological condition of the inner ear. Cochlear damage desensitizes the ear, after the damage the original location of maximum vibration is tuned to a lower sound frequency. This suggests that frequency-position maps, derived from such desensitized ears, are shifted to lower frequencies, corresponding to a shift of the basilar membrane vibration pattern towards the base for a given stimulus frequency. To test this hypothesis, we re-mapped the cochlear frequency-position map in the chinchilla. We collected frequency-position data from chinchillas in normal physiological condition ("physiological map") and compared these to data previously established from sound overexposed ears ("anatomical map"). The characteristic frequency (CF) of neurons in the cochlear nucleus was determined. Horse-radish peroxidase (HRP) or biocytin (BCT) were injected iontophoretically to trace auditory nerve fibers towards their innervation site in the organ of Corti. The relationship between distance from the base (d, percent) and frequency (f, kHz) was described best by a simple exponential function: d = 61.2 - 42.2 x log(f). The slope of the function was 2.55 mm/octave. Compared to the "anatomical map", the "physiological map" was shifted by about 0.3 octaves to higher frequencies corresponding to a shift of the basilar membrane vibration pattern of 0.8 mm towards the apex for a given stimulus frequency. Our findings affirm that frequency-position maps in the mammalian cochlea depend on the condition of the inner ear. Damage-induced desensitization in mammalian inner ears results in similar shifts of CF (about 0.5 octaves) but different shifts of the maximum of the vibration pattern towards the base at given frequencies, dependent on the mapping constant of the species, longer basilar membranes showing a larger basal shift. Furthermore, the results substantiate the notion that "crowding" at lower frequencies appears to be a specialization rather than a general feature. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mueller, Marcus; Hoidis, Silvi; Smolders, Jean W. T.] Goethe Univ Frankfurt, Dept Neurophysiol, Ctr Neurosci, D-60590 Frankfurt, Germany. RP Smolders, JWT (reprint author), Goethe Univ Frankfurt, Dept Neurophysiol, Ctr Neurosci, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. EM m.mueller@em.uni-frankfurt.de; hoidis@em.uni-frankfurt.de; jean.smolders@em.uni-frankfurt.de FU Deutsche Forschungsgemeinschaft [SFB 269] FX We thank Desiree Biedenkapp and Manuel Groth for technical assistance and Prof. Jochen Roeper for support and encouragement. We thank Peter Melzer for critical comments on an earlier version of the manuscript and an anonymous reviewer of the revised version for his careful reading and insightful suggestions. The work was supported by a grant from the Deutsche Forschungsgemeinschaft, SFB 269, B1. CR Abaamrane L, 2009, HEARING RES, V247, P137, DOI 10.1016/j.heares.2008.11.005 Beisel KW, 2005, J NEUROSCI, V25, P9285, DOI 10.1523/JNEUROSCI.2110-05.2005 Bekesy G., 1960, EXPT HEARING BOHNE BA, 1986, J ACOUST SOC AM, V80, P1729, DOI 10.1121/1.394285 BOHNE BA, 1979, J ACOUST SOC AM, V66, P411, DOI 10.1121/1.383092 CODY AR, 1980, HEARING RES, V3, P3, DOI 10.1016/0378-5955(80)90004-0 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 Johnstone BM, 1967, SCIENCE, V158, P390 KHANNA SM, 1986, HEARING RES, V23, P37, DOI 10.1016/0378-5955(86)90174-7 LePage EL, 2003, J ACOUST SOC AM, V114, P896, DOI 10.1121/1.1587150 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 MAST TE, 1970, J ACOUST SOC AM, V48, P505, DOI 10.1121/1.1912165 MULLER M, 1991, HEARING RES, V56, P1, DOI 10.1016/0378-5955(91)90147-2 Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 MULLER M, 1990, EXP BRAIN RES, V81, P140 Muller M, 2005, NEUROREPORT, V16, P1183 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 NARAYAN SS, 2000, WORLD SCI, P95 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 Recio A, 2000, J ACOUST SOC AM, V108, P2281, DOI 10.1121/1.1318898 Rhode WS, 1996, AUDIT NEUROSCI, V3, P101 Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404 ROBERTSON D, 1980, HEARING RES, V3, P167, DOI 10.1016/0378-5955(80)90044-1 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Robles L, 2001, PHYSIOL REV, V81, P1305 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Ruggero MA, 1996, AUDIT NEUROSCI, V2, P329 SALVI RJ, 1978, EXP BRAIN RES, V32, P301 SATO T, 2009, ACTA OTO-LARYNGOL, V562, P2 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 Tadros SF, 2010, HISTOCHEM CELL BIOL, V133, P137, DOI 10.1007/s00418-009-0653-6 Temchin AN, 2008, J NEUROPHYSIOL, V100, P2899, DOI 10.1152/jn.90639.2008 Temchin AN, 2008, J NEUROPHYSIOL, V100, P2889, DOI 10.1152/jn.90637.2008 Tsuji J, 1997, J COMP NEUROL, V381, P188 Viberg A, 2004, HEARING RES, V197, P1, DOI 10.1016/j.heares.2004.04.016 von Bekesy G., 1952, ACTA OTO-LARYNGOL, V42, P197 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 WILSON JP, 1975, J ACOUST SOC AM, V57, P705, DOI 10.1121/1.380472 NR 42 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 184 EP 193 DI 10.1016/j.heares.2010.05.021 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900020 PM 20685384 ER PT J AU Altman, JA Vaitulevich, SP Shestopalova, LB Petropavlovskaia, EA AF Altman, J. A. Vaitulevich, S. Ph. Shestopalova, L. B. Petropavlovskaia, E. A. TI How does mismatch negativity reflect auditory motion? SO HEARING RESEARCH LA English DT Article ID RIGHT-HEMISPHERE DOMINANCE; HUMAN BRAIN; TEMPORAL INTEGRATION; SENSORY MEMORY; STIMULUS DEVIANCE; SPATIAL LOCATION; INTERAURAL TIME; SOUND LOCATION; INFORMATION; MOVEMENT AB Recent studies have shown that the mismatch negativity (MMN), a change-specific component of the auditory event-related potential (ERP), is accurately tracking the spatial location of the stationary sound source. The aim of the present study was to estimate the parameters of MMNs evoked by auditory motion and to compare the motion discrimination measured by MMN in normally hearing subjects with the psychophysical data obtained in the same group of subjects. The auditory motion was simulated by introducing variable interaural time differences (ITDs) into the deviant stimuli. The ERPs were recorded for frequently occurring stationary midline standards and for infrequent deviant sounds moving horizontally at different velocities. It was established that all the deviant stimuli elicited significant MMNs. The MMN increased monotonically in amplitude with growing angular distances travelled by the deviant stimuli. The deviants that travelled over the same angular distances at different velocities caused MMNs that agreed in magnitude but differed in latency. These results indicated that the angular distance rather than sound image velocity was the most essential cue involved in the MMN generation. To test the psychophysical performance, a two-interval forced-choice task was employed, in which the ITD was the main dependent variable. The deviants that evoked significant MMNs at the minimal ITDs were not discriminated behaviorally, indicating that the motion discrimination of the hearing system may be better at a preattentive level. (C) 2010 Elsevier B.V. All rights reserved. C1 [Altman, J. A.; Vaitulevich, S. Ph.; Shestopalova, L. B.; Petropavlovskaia, E. A.] Russian Acad Sci, IP Pavlov Physiol Inst, St Petersburg 199034, Russia. RP Shestopalova, LB (reprint author), Russian Acad Sci, IP Pavlov Physiol Inst, Nab Makarova 6, St Petersburg 199034, Russia. EM shestolido@mail.ru FU Russian Foundation for Fundamental Research [08-04-00006]; Committee for Leading Scientific Schools [SC-3866.2008.4] FX This study was supported by the Russian Foundation for Fundamental Research 08-04-00006 and by the Committee for Leading Scientific Schools (SC-3866.2008.4). CR ALAIN C, 1994, NEUROREPORT, V6, P140, DOI 10.1097/00001756-199412300-00036 Alain C, 1998, BRAIN RES, V812, P23, DOI 10.1016/S0006-8993(98)00851-8 ALTMAN JA, 2004, HUM PHYSL, V30, P61, DOI 10.1023/B:HUMP.0000013766.08507.5a Altman JA, 2005, NEUROSCI LETT, V384, P330, DOI 10.1016/j.neulet.2005.05.002 Baumgart F, 1999, NATURE, V400, P724, DOI 10.1038/23390 BLAUERT J, 1983, HEARING PSYCHOPHYSIC Deouell LY, 1998, PSYCHOPHYSIOLOGY, V35, P355, DOI 10.1017/S0048577298970287 Deouell LY, 2006, EUR J NEUROSCI, V24, P1488, DOI 10.1111/j.1460-9568.2006.05025.x Doeller CF, 2003, NEUROIMAGE, V20, P1270, DOI 10.1016/S1053-8119(03)00389-6 GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x Grantham DW, 1997, BINAURAL SPATIAL HEA, P295 GRANTHAM DW, 1986, J ACOUST SOC AM, V79, P1939, DOI 10.1121/1.393201 Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276 GRIFFITHS TD, 1994, CURR BIOL, V4, P892, DOI 10.1016/S0960-9822(00)00198-6 Griffiths TD, 2000, HUM BRAIN MAPP, V9, P72, DOI 10.1002/(SICI)1097-0193(200002)9:2<72::AID-HBM2>3.0.CO;2-9 Horvath J, 2008, PSYCHOPHYSIOLOGY, V45, P60, DOI 10.1111/j.1469-8986.2007.00599.x Kaiser J, 2000, J NEUROSCI, V20, P6631 Krumbholz K, 2005, CEREB CORTEX, V15, P317, DOI 10.1093/cercor/bhh133 Krumbholz K, 2007, J NEUROPHYSIOL, V97, P1649, DOI 10.1152/jn.00560.2006 Levanen S, 1996, CEREB CORTEX, V6, P288, DOI 10.1093/cercor/6.2.288 Naatanen R, 1997, AUDIOL NEURO-OTOL, V2, P341 Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026 Nager W, 2003, NEUROSCI LETT, V344, P181, DOI 10.1016/S0304-3940(03)00439-7 PAAVILAINEN P, 1991, ELECTROEN CLIN NEURO, V78, P466, DOI 10.1016/0013-4694(91)90064-B PAAVILAINEN P, 1989, ELECTROEN CLIN NEURO, V73, P129, DOI 10.1016/0013-4694(89)90192-2 Pakarinen S, 2007, CLIN NEUROPHYSIOL, V118, P177, DOI 10.1016/j.clinph.2006.09.001 Richter N, 2009, NEUROPSYCHOLOGIA, V47, P2652, DOI 10.1016/j.neuropsychologia.2009.05.017 Roeber U, 2003, COGNITIVE BRAIN RES, V17, P347, DOI 10.1016/S0926-6410(03)00136-8 Schroger E, 1996, HEARING RES, V96, P191, DOI 10.1016/0378-5955(96)00066-4 Schroger E, 1996, NEUROREPORT, V7, P3005, DOI 10.1097/00001756-199611250-00041 Shestopalova L B, 2005, Neurosci Behav Physiol, V35, P855, DOI 10.1007/s11055-005-0135-9 Sonnadara RR, 2006, BRAIN RES, V1071, P175, DOI 10.1016/j.brainres.2005.11.088 Sussman E, 1999, NEUROSCI LETT, V264, P161, DOI 10.1016/S0304-3940(99)00214-1 Takegata R, 2001, NEUROREPORT, V12, P525, DOI 10.1097/00001756-200103050-00019 Tata MS, 2005, EXP BRAIN RES, V167, P481, DOI 10.1007/s00221-005-0183-y TERVANIEMI M, 1994, BIOL PSYCHOL, V38, P157, DOI 10.1016/0301-0511(94)90036-1 Winkler I, 1998, NEUROREPORT, V9, P495, DOI 10.1097/00001756-199802160-00025 Winkler I, 1998, NEUROSCI LETT, V242, P49, DOI 10.1016/S0304-3940(98)00022-6 Xiang J, 2002, CLIN NEUROPHYSIOL, V113, P1, DOI 10.1016/S1388-2457(01)00709-X Yabe H, 2001, BRAIN RES, V897, P222, DOI 10.1016/S0006-8993(01)02224-7 Yabe H, 1998, PSYCHOPHYSIOLOGY, V35, P615, DOI 10.1017/S0048577298000183 Yost W.A., 1987, DIRECTIONAL HEARING, P49 NR 42 TC 5 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 194 EP 201 DI 10.1016/j.heares.2010.06.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900021 PM 20542103 ER PT J AU Stecker, GC AF Stecker, G. Christopher TI Trading of interaural differences in high-rate Gabor click trains SO HEARING RESEARCH LA English DT Article ID LATERAL SUPERIOR OLIVE; LOW-FREQUENCY NEURONS; SOUND LOCALIZATION; INTENSITY DIFFERENCES; BINAURAL INTERACTION; INFERIOR COLLICULUS; INTERCLICK INTERVAL; LEVEL DIFFERENCES; TIME DIFFERENCES; GUINEA-PIG AB In this study, combinations of interaural time differences (ITD) and interaural level differences (ILD) were applied to trains of 4000 Hz Gabor clicks (Gaussian-filtered impulses) and presented to listeners over headphones. ITD/ILD equivalence functions, or "trading ratios" (TR) were estimated using two different procedures: a "closed-loop" procedure in which subjects adjusted (via head-turn) the ILD of a target click train to counteract the effects of an imposed ITD, and an "open-loop" procedure in which subjects indicated (also via head-turn) the lateral position of click trains containing independent combinations of ITD and ILD. For both tasks, TR values increasingly favored ILD over ITD as inter-click interval (ICI) decreased from 10 to 2 ms. Subsequent analysis confirmed that this change reflected a loss of sensitivity to envelope ITD at short ICI rather than a gain in sensitivity to ILD, consistent with prior studies demonstrating rate-limited processing of ongoing envelope ITD. Significant intersubject differences in the data included two subjects whose TR values obtained under both procedures were consistently lower (greater influence of ITD) than other subjects', and did not vary with ICI. Such differences suggest that multiple mechanisms of ITD/ILD combination may be utilized to varying degrees by individual listeners. By at least one of those mechanisms, ITD sensitivity (but not ILD sensitivity) is limited to low modulation rates. (C) 2010 Elsevier B.V. All rights reserved. C1 Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98105 USA. RP Stecker, GC (reprint author), Univ Washington, Dept Speech & Hearing Sci, 1417 NE 42nd St, Seattle, WA 98105 USA. EM cstecker@uw.edu FU National Institute On Deafness And Other Communication Disorders (NIDCD) [R03-DC009482] FX The author thanks Andrew Brown and Shiboney Dumo for assistance with data collection. Andrew Brown and two anonymous reviewers provided helpful feedback on earlier versions of the manuscript. This study was supported by Grant Number R03-DC009482 from the National Institute On Deafness And Other Communication Disorders (NIDCD). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDCD or the National Institutes of Health. Portions of this work were previously presented in abstract form (Stecker, 2008). CR Akeroyd M., 2001, BINAURAL CROSS CORRE Akeroyd MA, 2001, J ACOUST SOC AM, V110, P2516, DOI 10.1121/1.1412442 Bernstein LR, 2002, J ACOUST SOC AM, V112, P1026, DOI 10.1121/1.1497620 BLAUERT J, 1971, J ACOUST SOC AM, V50, P466, DOI 10.1121/1.1912663 BROWN AD, J ACOUST SO IN PRESS, V128 BURNS E, 1977, J ACOUST SOC AM, V62, pS97, DOI 10.1121/1.2016480 CROW G, 1978, J ACOUST SOC AM, V64, P493, DOI 10.1121/1.381999 DAVID EE, 1959, J ACOUST SOC AM, V31, P774, DOI 10.1121/1.1907784 DEATHERAGE BH, 1959, J ACOUST SOC AM, V31, P486, DOI 10.1121/1.1907740 DEATHERAGE BH, 1959, J ACOUST SOC AM, V31, P479, DOI 10.1121/1.1907739 DURLACH NI, 1969, J ACOUST SOC AM, V46, P372, DOI 10.1121/1.1911699 FEDDERSEN UE, 1957, J ACOUST SOC AM, V29, P988 Freyman RL, 1997, J ACOUST SOC AM, V101, P1649, DOI 10.1121/1.418149 FREYMAN RL, 1991, J ACOUST SOC AM, V90, P874, DOI 10.1121/1.401955 Furukawa S, 2006, HEARING RES, V212, P48, DOI 10.1016/j.heares.2005.10.009 Furukawa S, 2008, J ACOUST SOC AM, V123, P1602, DOI 10.1121/1.2835226 Grothe B, 2003, NAT REV NEUROSCI, V4, P540, DOI 10.1038/nrn1136 Gulick W. L., 1989, HEARING PHYSL ACOUST HAFTER ER, 1968, J ACOUST SOC AM, V44, P563, DOI 10.1121/1.1911121 HAFTER ER, 1988, AUDITORY FUNCTION, P647 HAFTER ER, 1990, J ACOUST SOC AM, V88, P806, DOI 10.1121/1.399730 HAFTER ER, 1983, J ACOUST SOC AM, V73, P1708, DOI 10.1121/1.389394 HAFTER ER, 1983, J ACOUST SOC AM, V73, P644, DOI 10.1121/1.388956 HARRIS GG, 1960, J ACOUST SOC AM, V32, P685, DOI 10.1121/1.1908181 Hartmann WM, 2002, J ACOUST SOC AM, V112, P1037, DOI 10.1121/1.1500759 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 Joris PX, 2008, HEARING RES, V238, P49, DOI 10.1016/j.heares.2007.11.011 JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 Kiang NYS, 1965, RES MONOGRAPHS, V35 KUWADA S, 1983, J NEUROPHYSIOL, V50, P981 Lang AG, 2008, J ACOUST SOC AM, V124, P3120, DOI 10.1121/1.2981041 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 Litovsky RY, 1997, J NEUROPHYSIOL, V77, P2223 McAlpine D, 1998, J NEUROSCI, V18, P6026 MCFADDEN D, 1977, J ACOUST SOC AM, V61, P1604, DOI 10.1121/1.381473 MIDDLEBROOKS JC, 1980, BRAIN RES, V181, P31, DOI 10.1016/0006-8993(80)91257-3 MOUSHEGIAN G, 1959, J ACOUST SOC AM, V31, P1441, DOI 10.1121/1.1907647 NUETZEL JM, 1976, J ACOUST SOC AM, V60, P1339, DOI 10.1121/1.381227 Park TJ, 1996, J NEUROSCI, V16, P6554 Payton Mark E, 2003, J Insect Sci, V3, P34 POLLAK GD, 1988, HEARING RES, V36, P107, DOI 10.1016/0378-5955(88)90054-8 RAKERD B, 1985, J ACOUST SOC AM, V78, P524, DOI 10.1121/1.392474 Saberi K, 1996, PERCEPT PSYCHOPHYS, V58, P1037, DOI 10.3758/BF03206831 Saberi K, 2003, J ACOUST SOC AM, V114, P420, DOI 10.1121/1.1578079 Saberi K, 2004, HEARING RES, V191, P1, DOI 10.1016/j.heares.2004.01.003 Schroger E, 1996, HEARING RES, V96, P191, DOI 10.1016/0378-5955(96)00066-4 SHAW EAG, 1974, J ACOUST SOC AM, V56, P1848, DOI 10.1121/1.1903522 Shaxby J.H., 1932, MED RES COUNC BRIT S, V166, P1 STECKER GC, 2010, ASS RES OT ABS, V33, P831 Stecker GC, 2002, J ACOUST SOC AM, V112, P1046, DOI 10.1121/1.1497366 STECKER GC, 2008, ASS RES OT ABS, V31, P302 STECKER GC, 2010, ASS RES OT ABS, V33, P828 Stecker GC, 2009, J ACOUST SOC AM, V125, P3914, DOI 10.1121/1.3124776 Stecker GC, 2010, J ACOUST SOC AM, V127, P3092, DOI 10.1121/1.3377088 Strutt J. W, 1907, PHILOS MAG, V13, P214, DOI 10.1080/14786440709463595 Tardif E, 2006, BRAIN RES, V1092, P161, DOI 10.1016/j.brainres.2006.03.095 Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005 TOOLE FE, 1970, J ACOUST SOC AM, V48, P943, DOI 10.1121/1.1912233 TRAHIOTIS C, 1978, J ACOUST SOC AM, V64, P1041, DOI 10.1121/1.382087 Ungan P, 2001, CLIN NEUROPHYSIOL, V112, P485, DOI 10.1016/S1388-2457(00)00550-2 van Hoesel RJM, 2008, J ACOUST SOC AM, V124, P3861, DOI 10.1121/1.2998974 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 WHITWORTH R, 1961, J ACOUST SOC AM, V33, P925, DOI 10.1121/1.1908849 Yamada K, 1996, HEARING RES, V101, P173, DOI 10.1016/S0378-5955(96)00144-X YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YOUNG LL, 1977, J ACOUST SOC AM, V61, P607, DOI 10.1121/1.381307 NR 67 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 202 EP 212 DI 10.1016/j.heares.2010.06.002 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900022 PM 20547218 ER PT J AU Gander, PE Bosnyak, DJ Roberts, LE AF Gander, P. E. Bosnyak, D. J. Roberts, L. E. TI Evidence for modality-specific but not frequency-specific modulation of human primary auditory cortex by attention SO HEARING RESEARCH LA English DT Article ID STEADY-STATE RESPONSES; SELECTIVE ATTENTION; TONOTOPIC ORGANIZATION; EVOKED-POTENTIALS; VISUAL CORTICES; BASAL FOREBRAIN; FIELDS; PROJECTIONS; STIMULI; STREAMS AB We used the stimulus-driven 40-Hz auditory steady-state response (ASSR) that localizes tonotopically to the region of primary auditory cortex (A1) to study modulation of this region by top down attention. Experiment 1 presented amplitude modulated (AM) auditory and visual stimuli simultaneously (AM at 40 Hz and 16 Hz, respectively) while participants responded to targets in one modality or the other. ASSR amplitude increased from an unattended passive baseline during auditory but not visual attention demonstrating modality-specific auditory attention, when attention was required for brief (1 s) but not long (2 min) time intervals. Modality-specific visual attention occurred at both time intervals. Experiment 2 asked whether attention directed to one or the other of two simultaneous auditory streams (carrier frequencies of 250 and 4100 Hz AM at 37 and 41 Hz respectively, counterbalanced) increased ASSR amplitude for the attended stream (frequency-specific auditory attention). Behaviour was strongly controlled by carrier frequency (overall target rate 1.7 Hz), and the cortical sources of the two carriers were resolved by inverse modeling. Despite these conditions favourable to frequency specificity, frequency-specific modulation of ASSR amplitude was not found at either time interval. Frequency-specific modulation of A1 may require re-entrant feedback to the auditory core from auditory percepts that possess distinct spectral attributes and are attended in higher regions of the auditory system. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gander, P. E.; Bosnyak, D. J.; Roberts, L. E.] McMaster Univ, Dept Psychol Neurosci & Behav, Hamilton, ON L8S 4K1, Canada. RP Roberts, LE (reprint author), McMaster Univ, Dept Psychol Neurosci & Behav, 1280 Main St W, Hamilton, ON L8S 4K1, Canada. EM pgander@mcmaster.ca; bosnyak@mcmaster.ca; roberts@mcmaster.ca FU Canadian Institutes of Health Research; Natural Sciences and Engineering Research Council of Canada FX This research was supported by grants from the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada (L.E.R.). The authors contributed equally to this work. P.E.G. is now at the University of Nottingham (UK). CR Alho K, 1999, COGNITIVE BRAIN RES, V7, P335, DOI 10.1016/S0926-6410(98)00036-6 Bidet-Caulet A, 2007, J NEUROSCI, V27, P9252, DOI 10.1523/JNEUROSCI.1402-07.2007 BIGL V, 1982, BRAIN RES BULL, V8, P727, DOI 10.1016/0361-9230(82)90101-0 BOSNYAK DJ, 2001, ANAL SWEPTRATE AUDIT Brugge JF, 2009, J NEUROPHYSIOL, V102, P2358, DOI 10.1152/jn.91346.2008 Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732 Di Russo F, 2007, HUM BRAIN MAPP, V28, P323, DOI 10.1002/hbm.20276 Eckert MA, 2008, HUM BRAIN MAPP, V29, P848, DOI 10.1002/hbm.20560 Enns JT, 2000, TRENDS COGN SCI, V4, P345, DOI 10.1016/S1364-6613(00)01520-5 Falchier A, 2002, J NEUROSCI, V22, P5749 Formisano E, 2003, NEURON, V40, P859, DOI 10.1016/S0896-6273(03)00669-X FREUND TF, 1992, P NATL ACAD SCI USA, V89, P738, DOI 10.1073/pnas.89.2.738 Fritz JB, 2007, HEARING RES, V229, P186, DOI 10.1016/j.heares.2007.01.009 GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643 GANDER PE, 2007, NEW FRONTIERS BIOMAG, P37 GANDER RE, ACOUSTIC EXPER UNPUB Godey B, 2001, CLIN NEUROPHYSIOL, V112, P1850, DOI 10.1016/S1388-2457(01)00636-8 Grady CL, 1997, NEUROREPORT, V8, P2511, DOI 10.1097/00001756-199707280-00019 Greenberg S., 1998, PSYCHOPHYSICAL PHYSL, P293 Gutschalk A, 1999, CLIN NEUROPHYSIOL, V110, P856, DOI 10.1016/S1388-2457(99)00019-X Hall DA, 2000, HUM BRAIN MAPP, V10, P107, DOI 10.1002/1097-0193(200007)10:3<107::AID-HBM20>3.0.CO;2-8 HARI R, 1989, EXP BRAIN RES, V74, P463 Jancke L, 1999, NEUROSCI LETT, V266, P125, DOI 10.1016/S0304-3940(99)00288-8 JANCKE L, 2003, EXPT COGN BRAIN RES, V16, P257 Johnson JA, 2006, NEUROIMAGE, V31, P1673, DOI 10.1016/j.neuroimage.2006.02.026 Johnson JA, 2005, CEREB CORTEX, V15, P1609, DOI 10.1093/cercor/bhi039 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kilgard MP, 2001, J NEUROPHYSIOL, V86, P326 Laurienti PJ, 2002, J COGNITIVE NEUROSCI, V14, P420, DOI 10.1162/089892902317361930 LINDEN RD, 1987, ELECTROEN CLIN NEURO, V66, P145 MAKEIG SD, 1982, EEG PSYCHOPHARMACOL, V18, P55 Muller N, 2009, FRONT HUM NEUROSCI, V3, DOI 10.3389/neuro.09.001.2009 Paltoglou AE, 2009, HEARING RES, V257, P106, DOI 10.1016/j.heares.2009.08.007 PANTEV C, 1993, ELECTROEN CLIN NEURO, V88, P389, DOI 10.1016/0168-5597(93)90015-H Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 Petkov CI, 2004, NAT NEUROSCI, V7, P658, DOI 10.1038/nn1256 Poghosyan V, 2008, NEURON, V58, P802, DOI 10.1016/j.neuron.2008.04.013 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Regan D., 1989, HUMAN ELECTROPHYSIOL ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770 Ross B, 2004, NEUROL CLIN NEUROPHY, V22 Ross B, 2005, J NEUROPHYSIOL, V94, P4082, DOI 10.1152/jn.00469.2005 Ross B, 2003, HEARING RES, V186, P57, DOI 10.1016/S0378-5955(03)00299-5 Ross B, 2000, J ACOUST SOC AM, V108, P679, DOI 10.1121/1.429600 SANTARELLI R, 1995, HEARING RES, V83, P9, DOI 10.1016/0378-5955(94)00185-S Sarter M, 2005, BRAIN RES REV, V48, P98, DOI 10.1016/j.brainresrev.2004.08.006 Saupe K, 2009, PSYCHOPHYSIOLOGY, V46, P321, DOI 10.1111/j.1469-8986.2008.00765.x Schreiner CE, 2007, NEURON, V56, P356, DOI 10.1016/j.neuron.2007.10.013 Talavage TM, 2004, J NEUROPHYSIOL, V91, P1282, DOI 10.1152/jn.01125.2002 Tzourio N, 1997, NEUROIMAGE, V5, P63, DOI 10.1006/nimg.1996.0252 Wienbruch C, 2006, NEUROIMAGE, V33, P180, DOI 10.1016/j.neuroimage.2006.06.023 WOLDORFF MG, 1993, P NATL ACAD SCI USA, V90, P8722, DOI 10.1073/pnas.90.18.8722 Woodruff PWR, 1996, NEUROREPORT, V7, P1909, DOI 10.1097/00001756-199608120-00007 NR 53 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 213 EP 226 DI 10.1016/j.heares.2010.06.003 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900023 PM 20547217 ER PT J AU Ries, DT Hamilton, TR Grossmann, AJ AF Ries, Dennis T. Hamilton, Traci R. Grossmann, Aurora J. TI The effects of intervening interference on working memory for sound location as a function of inter-comparison interval SO HEARING RESEARCH LA English DT Article ID MINIMUM AUDIBLE ANGLE; RECOGNITION MEMORY; TIME DIFFERENCES; ABSOLUTE PITCH; LOCALIZATION; DISCRIMINATION; FREQUENCY; TONES; CUES; THRESHOLDS AB This study examined the effects of inter-comparison interval duration and intervening interference on auditory working memory (AWM) for auditory location. Interaural phase differences were used to produce localization cues for tonal stimuli and the difference limen for interaural phase difference (DL-IPD) specified as the equivalent angle of incidence between two sound sources was measured in five different conditions. These conditions consisted of three different inter-comparison intervals [300 ms (short), 5000 ms (medium), and 15,000 ms (long)], the medium and long of which were presented both in the presence and absence of intervening tones. The presence of intervening stimuli within the medium and long inter-comparison intervals produced a significant increase in the DL-IPD compared to the medium and long inter-comparison intervals condition without intervening tones. The result obtained in the condition with a short inter-comparison interval was roughly equivalent to that obtained for the medium inter-comparison interval without intervening tones. These results suggest that the ability to retain information about the location of a sound within AWM decays slowly; however, the presence of intervening sounds readily disrupts the retention process. Overall, the results suggest that the temporal decay of information within AWM regarding the location of a sound from a listener's environment is so gradual that it can be maintained in trace memory for tens of seconds in the absence of intervening acoustic signals. Conversely, the presence of intervening sounds within the retention interval may facilitate the use of context memory, even for shorter retention intervals, resulting in a less detailed, but relevant representation of the location that is resistant to further degradation. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ries, Dennis T.; Hamilton, Traci R.; Grossmann, Aurora J.] Ohio Univ, Sch Hearing Speech & Language Sci, Auditory Percept Lab, Grover Ctr W241, Athens, OH 45701 USA. RP Ries, DT (reprint author), Ohio Univ, Sch Hearing Speech & Language Sci, Auditory Percept Lab, Grover Ctr W241, Athens, OH 45701 USA. EM ries@ohio.edu; th206704@ohio.edu; ag303003@ohio.edu CR Anourova I, 1999, NEUROREPORT, V10, P3543, DOI 10.1097/00001756-199911260-00015 Baddeley A, 2003, NAT REV NEUROSCI, V4, P829, DOI 10.1038/nrn1201 Baddeley AD, 2007, Q J EXP PSYCHOL, V60, P497, DOI 10.1080/17470210601147572 Bayliss DM, 2005, DEV PSYCHOL, V41, P579, DOI 10.1037/0012-1649.41.4.579 Clement S, 1999, J ACOUST SOC AM, V106, P2805, DOI 10.1121/1.428106 Cowan N, 2005, COGNITIVE PSYCHOL, V51, P42, DOI 10.1016/j.cogpsych.2004.12.001 COWAN N, 1984, PSYCHOL BULL, V96, P341, DOI 10.1037/0033-2909.96.2.341 Demany L, 2005, J ACOUST SOC AM, V117, P833, DOI 10.1121/1.1850209 Demany L, 2008, PSYCHOL SCI, V19, P85, DOI 10.1111/j.1467-9280.2008.02050.x DEUTSCH D, 1972, J EXP PSYCHOL, V93, P156, DOI 10.1037/h0032496 DEUTSCH D, 1972, SCIENCE, V175, P1020, DOI 10.1126/science.175.4025.1020 DEUTSCH D, 1978, J EXP PSYCHOL, V30, P283 DEUTSCH D, 1970, SCIENCE, V168, P1604, DOI 10.1126/science.168.3939.1604 DURLACH NI, 1969, J ACOUST SOC AM, V46, P372, DOI 10.1121/1.1911699 GRANTHAM DW, 1985, J ACOUST SOC AM, V77, pS50, DOI 10.1121/1.2022378 Grantham DW, 1997, BINAURAL SPATIAL HEA, P295 GRANTHAM DW, 1986, J ACOUST SOC AM, V79, P1939, DOI 10.1121/1.393201 HARRIS JD, 1952, J EXP PSYCHOL, V43, P96, DOI 10.1037/h0057373 Hartmann WH, 1999, PHYS TODAY, V52, P24, DOI 10.1063/1.882727 HARTMANN WM, 1989, J ACOUST SOC AM, V85, P2031, DOI 10.1121/1.397855 Jump RL, 2008, HEARING RES, V240, P112, DOI 10.1016/j.heares.2008.04.004 KONIG E, 1957, J ACOUST SOC AM, V29, P606 KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498 LITOVSKY RY, 1994, J ACOUST SOC AM, V96, P752, DOI 10.1121/1.411390 Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898 Martinkauppi S, 2000, CEREB CORTEX, V10, P889, DOI 10.1093/cercor/10.9.889 MASSARO DW, 1970, J EXP PSYCHOL, V83, P32, DOI 10.1037/h0028566 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 MILLS AW, 1960, J ACOUST SOC AM, V32, P132, DOI 10.1121/1.1907864 PERROTT DR, 1989, J ACOUST SOC AM, V85, P1773, DOI 10.1121/1.397968 PERROTT DR, 1989, J ACOUST SOC AM, V85, P2669, DOI 10.1121/1.397764 Repovs G, 2006, NEUROSCIENCE, V139, P5, DOI 10.1016/j.neuroscience.2005.12.061 Ries DT, 2007, HEARING RES, V230, P64, DOI 10.1016/j.heares.2007.04.003 Ross DA, 2004, J ACOUST SOC AM, V116, P1793, DOI 10.1121/1.1758973 Ross DA, 2003, ANN NY ACAD SCI, V999, P522, DOI 10.1196/annals.1284.065 RYAN TA, 1959, PSYCHOL BULL, V56, P394, DOI 10.1037/h0041280 SANDEL TT, 1955, J ACOUST SOC AM, V27, P842, DOI 10.1121/1.1908052 STEWART JM, 1984, HEARING DISORDERS, P267 TURNER CW, 1989, J ACOUST SOC AM, V86, P109, DOI 10.1121/1.398329 Vuontela V, 2003, LEARN MEMORY, V10, P74, DOI 10.1101/lm.53503 WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445 Winkler I, 2002, PSYCHOPHYSIOLOGY, V39, P530, DOI 10.1017/S0048577201393186 Wright BA, 2001, P NATL ACAD SCI USA, V98, P12307, DOI 10.1073/pnas.211220498 YOST WA, 1974, J ACOUST SOC AM, V55, P1299, DOI 10.1121/1.1914701 YOST WA, 1988, J ACOUST SOC AM, V83, P1846, DOI 10.1121/1.396520 NR 46 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 227 EP 233 DI 10.1016/j.heares.2010.06.004 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900024 PM 20547219 ER PT J AU Dehmel, S Kopp-Scheinpflug, C Weick, M Dorrscheidt, GJ Rubsamen, R AF Dehmel, Susanne Kopp-Scheinpflug, Cornelia Weick, Michael Doerrscheidt, Gerd J. Ruebsamen, Rudolf TI Transmission of phase-coupling accuracy from the auditory nerve to spherical bushy cells in the Mongolian gerbil SO HEARING RESEARCH LA English DT Article ID ANTEROVENTRAL COCHLEAR NUCLEUS; SUPERIOR OLIVARY COMPLEX; INTERAURAL TEMPORAL DISPARITIES; HIGH-FREQUENCY NEURONS; GUINEA-PIG; BRAIN-STEM; NEURAL SYNCHRONIZATION; COINCIDENCE DETECTION; RESPONSE PROPERTIES; MERIONES-UNGUICULATUS AB The phase of low-frequency sinusoids is encoded in phase-coupled discharges of spherical bushy cells (SBCs) of the anteroventral cochlear nucleus and transmitted to the medial superior olive, where binaural input-coincidence is used for processing of sound source localization. SBCs are innervated by auditory nerve fibers through large, excitatory synapses (endbulbs of Held) and by inhibitory inputs, which effectively reduce SBC discharge rates. Here we monitor presynaptic potentials of endbulb-terminals and postsynaptic spikes of SBCs in extracellular single unit recordings in vivo. We compare postsynaptic phase-coupling of SBCs and their presynaptic immediate auditory nerve input. In all but one SBC discharge rates at the characteristic frequency were reduced pre-to-postsynaptically and phase-coupling accuracy was increased in one-third of them. We investigated the contribution of systemic inhibition on spike timing in SBCs by iontophoretic application of glycine- and GABA-receptor antagonists (strychnine, bicuculline). Discharge rate increased in one-third of the units during antagonist application, which was accompanied by a deterioration of phase-coupling accuracy in half of those units. These results suggest that the phase-coupling accuracy is improved in a subpopulation of SBCs during transmission from the auditory nerve to the SBCs by reduction of spike rates. (C) 2010 Elsevier B.V. All rights reserved. C1 [Dehmel, Susanne; Kopp-Scheinpflug, Cornelia; Ruebsamen, Rudolf] Univ Leipzig, Fac Biosci Pharm & Psychol, D-04103 Leipzig, Germany. [Weick, Michael] Univ Leipzig, Paul Flechsig Inst Brain Res, D-04109 Leipzig, Germany. [Doerrscheidt, Gerd J.] Tiefurth Mill, Weimar, Germany. RP Rubsamen, R (reprint author), Univ Leipzig, Fac Biosci Pharm & Psychol, Talstr 33, D-04103 Leipzig, Germany. EM rueb@rz.uni-leipzig.de FU DFG [GRK 1097, Ru 390/18-2] FX This work was supported by DFG GRK 1097 'InterNeuro' and DFG Ru 390/18-2. CR ABELES M, 1977, P IEEE, V65, P762, DOI 10.1109/PROC.1977.10559 ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 ANDERSON DJ, 1971, J ACOUST SOC AM, V49, P1131, DOI 10.1121/1.1912474 Backoff PM, 1997, HEARING RES, V110, P155, DOI 10.1016/S0378-5955(97)00081-6 Batra R, 1997, J NEUROPHYSIOL, V78, P1237 Batra R, 1997, J NEUROPHYSIOL, V78, P1222 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406 Brenowitz S, 1998, NEURON, V20, P135, DOI 10.1016/S0896-6273(00)80441-9 Brenowitz S, 2001, J NEUROSCI, V21, P1857 CAIRD D, 1983, EXP BRAIN RES, V52, P385 Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 CANT NB, 1986, J COMP NEUROL, V247, P457, DOI 10.1002/cne.902470406 CARNEY LH, 1990, J NEUROPHYSIOL, V64, P437 Carney LH, 1998, J NEUROSCI, V18, P1096 CASPARY DM, 1994, J NEUROPHYSIOL, V72, P2124 CASPARY DM, 1993, MAMMALIAN COCHLEAR N CASPARY DM, 1979, BRAIN RES, V172, P179, DOI 10.1016/0006-8993(79)90909-0 DEHMEL S, 2003, MINDW M ASS RES OT S DEHMEL S, 2000, MIND M ASS RES OT ST EBERT U, 1995, EXP BRAIN RES, V104, P310 ENGLITZ B, 2009, PLOS ONE FINLAYSON PG, 1991, J NEUROPHYSIOL, V65, P598 Fukui I, 2006, J NEUROPHYSIOL, V96, P633, DOI 10.1152/jn.00916.2005 Gai Y, 2008, J NEUROPHYSIOL, V99, P1077, DOI 10.1152/jn.00708.2007 Glaser E. M., 1976, PRINCIPLES NEUROBIOL GODFREY DA, 1993, NATO RES WORKSH MAMM, P267 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 Gomez-Nieto R, 2009, J COMP NEUROL, V516, P241, DOI 10.1002/cne.22139 GREENWOOD JA, 1955, ANN MATH STAT, V26, P233, DOI 10.1214/aoms/1177728540 HAVEY DC, 1980, CLIN NEUROPHYSIOL, V48, P249 HEFFNER RS, 1988, BEHAV NEUROSCI, V102, P422, DOI 10.1037/0735-7044.102.3.422 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 Joris PX, 2008, NEUROSCIENCE, V154, P65, DOI 10.1016/j.neuroscience.2008.03.002 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1037 Joris PX, 1998, NEURON, V21, P1235, DOI 10.1016/S0896-6273(00)80643-1 JUIZ JM, 1994, BRAIN RES, V639, P193, DOI 10.1016/0006-8993(94)91730-2 Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G KIL J, 1995, J COMP NEUROL, V353, P317, DOI 10.1002/cne.903530302 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H KNIPSCHILD M, 1992, HEARING RES, V57, P216, DOI 10.1016/0378-5955(92)90153-E KOLSTON J, 1992, ANAT EMBRYOL, V186, P443 Koppl C, 1997, J NEUROSCI, V17, P3312 Kopp-Scheinpflug C, 2002, J NEUROSCI, V22, P11004 KOSSL M, 1989, J NEUROSCI, V9, P4169 KROMER LF, 1980, ANAT EMBRYOL, V158, P227, DOI 10.1007/BF00315908 LAVINE RA, 1971, J NEUROPHYSIOL, V34, P467 LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205 Lim R, 2000, J PHYSIOL-LONDON, V525, P447, DOI 10.1111/j.1469-7793.2000.t01-1-00447.x Lujan R, 2004, J COMP NEUROL, V475, P36, DOI 10.1002/cne.20160 Mahendrasingam S, 2004, EUR J NEUROSCI, V19, P993, DOI 10.1111/j.1460-9568.2004.03193.x Milenkovic I, 2009, J NEUROPHYSIOL, V102, P1821, DOI 10.1152/jn.00186.2009 Milenkovic I, 2007, J NEUROPHYSIOL, V98, P1634, DOI 10.1152/jn.01150.2006 Monsivais P, 2000, J NEUROSCI, V20, P2954 MOORE JK, 1987, J COMP NEUROL, V260, P157, DOI 10.1002/cne.902600202 MOREST DK, 1990, J COMP NEUROL, V300, P230, DOI 10.1002/cne.903000207 MOUNTAIN DC, 2001, MINDW M ASS RES OT D Nicol MJ, 2002, J PHYSIOL-LONDON, V539, P713, DOI 10.1013/jphysiol.2001.012972 Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497 OSEN KK, 1984, ARCH ITAL BIOL, V122, P169 OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103 Paolini AG, 2001, HEARING RES, V159, P101, DOI 10.1016/S0378-5955(01)00327-6 Petralia RS, 2000, HEARING RES, V147, P59, DOI 10.1016/S0378-5955(00)00120-9 PFEIFFER RR, 1966, SCIENCE, V154, P667, DOI 10.1126/science.154.3749.667 Rabiner L. R., 1975, THEORY APPL DIGITAL Rothman JS, 1996, AUDIT NEUROSCI, V2, P47 ROTHMAN JS, 1993, J NEUROPHYSIOL, V70, P2562 ROUILLER EM, 1984, J COMP NEUROL, V225, P167, DOI 10.1002/cne.902250203 RYUGO DK, 1991, J COMP NEUROL, V305, P35, DOI 10.1002/cne.903050105 SAINTMARIE RL, 1989, HEARING RES, V42, P97 SCHWARTZ AM, 1978, AM J ANAT, V153, P489, DOI 10.1002/aja.1001530402 SHAMMA SA, 1985, J ACOUST SOC AM, V78, P1612, DOI 10.1121/1.392799 SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8 SHESKIN DJ, 1997, HDB PARAMETRIC NONPA, P33 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 Siegel S., 1988, NONPARAMETRIC STAT B SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 SMITH PH, 1987, J COMP NEUROL, V266, P360, DOI 10.1002/cne.902660305 SMITH PH, 1991, J COMP NEUROL, V304, P387, DOI 10.1002/cne.903040305 SOTELO C, 1976, NEUROSCIENCE, V1, P5, DOI 10.1016/0306-4522(76)90041-5 Spangler K., 1991, NEUROBIOLOGY HEARING, P27 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 SULLIVAN WE, 1984, J NEUROSCI, V4, P1787 Thompson AM, 2003, J COMP NEUROL, V457, P374, DOI 10.1002/cne.10540 Thompson AM, 2003, EXP BRAIN RES, V153, P486, DOI 10.1007/s00221-003-1681-4 Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228 Typlt M, 2010, EUR J NEUROSCI, V31, P1574, DOI 10.1111/j.1460-9568.2010.07188.x VETTER DE, 1993, NATO RES WORKSH MAMM, P279 Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0 Wenthold RJ, 1991, NEUROBIOLOGY HEARING, P121 Wiener MC, 1999, J NEUROPHYSIOL, V82, P2861 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E WINTER IM, 1990, HEARING RES, V44, P161, DOI 10.1016/0378-5955(90)90078-4 WOODHULL AM, 1973, J GEN PHYSIOL, V61, P687, DOI 10.1085/jgp.61.6.687 Yang LC, 1999, J NEUROSCI, V19, P2313 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 NR 98 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 234 EP 249 DI 10.1016/j.heares.2010.06.005 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900025 PM 20561574 ER PT J AU Wang, Q Kachelmeier, A Steyger, PS AF Wang, Qi Kachelmeier, Allan Steyger, P. S. TI Competitive antagonism of fluorescent gentamicin uptake in the cochlea SO HEARING RESEARCH LA English DT Article ID SENSORY HAIR-CELLS; GUINEA-PIG COCHLEA; STRIA VASCULARIS; AMINOGLYCOSIDE ANTIBIOTICS; INNER-EAR; PHARMACOKINETICS; PHARMACOLOGY; CAPILLARIES; OTOTOXICITY; ENDOCYTOSIS AB Aminoglycosides enter inner ear hair cells via apical endocytosis, or mechanoelectrical transduction channels, implying that, in vivo, aminoglycosides enter hair cells from endolymph prior to exerting their cytotoxic effect. If so, circulating aminoglycosides likely cross the strial blood-labyrinth barrier and enter marginal cells prior to clearance into endolymph. We characterized the competitive antagonism of unconjugated aminoglycosides on the uptake of fluorescent gentamicin (GM) in the stria vascularis and kidney cells at an early time point. In mice, uptake of GTTR by kidney proximal tubule cells was competitively antagonized by gentamicin at all doses, but only weakly by kanamycin (mimicking in vitro data). GM fluorescence was similar to 100-fold greater in proximal tubule cells than in the stria vascularis. Furthermore, only high molar ratios of aminoglycosides significantly reduced strial uptake of GTTR. Thus, gentamicin antagonism of GTTR uptake is more efficacious in proximal tubules than in the stria vascularis. Competitive antagonism of CM uptake is indicative of specific cell-regulatable uptake mechanisms (e.g., ion channels, transporters) in the kidney. Strial uptake mechanisms have lower specific affinity for gentamicin, and/or density (compared to the kidney), yet may be critical to transport gentamicin across the strial blood-labyrinth barrier into marginal cells. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wang, Qi; Kachelmeier, Allan; Steyger, P. S.] Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA. RP Steyger, PS (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM steygerp@ohsu.edu FU National Institute of Deafness and other Communication Disorders, NIH [DC 04555, P30 DC 05983] FX Funded by DC 04555 and P30 DC 05983 grants from the National Institute of Deafness and other Communication Disorders, NIH. We thank Anthony Ricci, Ph.D. of Stanford for discussion on the manuscript. CR Aran JM, 1999, ANN NY ACAD SCI, V884, P60, DOI 10.1111/j.1749-6632.1999.tb08636.x Asheim P, 2008, ACTA ANAESTH SCAND, V52, P243, DOI 10.1111/j.1399-6576.2007.01535.x Cohen-Salmon M, 2007, P NATL ACAD SCI USA, V104, P6229, DOI 10.1073/pnas.0605108104 Dai CF, 2008, HEARING RES, V235, P114, DOI 10.1016/j.heares.2007.10.010 Dai CF, 2006, HEARING RES, V213, P64, DOI 10.1016/j.heares.2005.11.011 ERICSSON CD, 1978, ANN SURG, V188, P66, DOI 10.1097/00000658-197807000-00011 Flessner MF, 2005, AM J PHYSIOL-RENAL, V288, pF433, DOI 10.1152/ajprenal.00313.2004 FORGE A, 1976, CLIN OTOLARYNGOL, V1, P211, DOI 10.1111/j.1365-2273.1976.tb00879.x Gale JE, 2001, J NEUROSCI, V21, P7013 Goodyear RJ, 2008, J NEUROSCI, V28, P9939, DOI 10.1523/JNEUROSCI.1124-08.2008 Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6 HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8 Jacquet P, 1996, Cancer Treat Res, V82, P53 Karasawa T, 2008, J CELL SCI, V121, P2871, DOI 10.1242/jcs.023705 KENAKIN TP, 2008, CURR PROTOC PHARM, V42 Koo JW, 2006, CEPHALALGIA, V26, P1310, DOI 10.1111/j.1468-2982.2006.01208.x LUK L, 2010, ARO MIDW M, V33, P710 Magdesian KG, 1998, J AM VET MED ASSOC, V213, P1007 Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951 Myrdal SE, 2005, HEARING RES, V204, P170, DOI 10.1016/j.heares.2005.02.005 Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002 Neubig RR, 2003, PHARMACOL REV, V55, P597, DOI 10.1124/pr.55.4.4 NEWMAN DJ, 1992, ANN CLIN BIOCHEM, V29, P22 ORSINI JA, 1985, J VET PHARMACOL THER, V8, P194, DOI 10.1111/j.1365-2885.1985.tb00944.x SAKAGAMI M, 1982, CELL TISSUE RES, V226, P511 SAKAGAMI M, 1987, ACTA OTO-LARYNGOL, V103, P189, DOI 10.3109/00016488709107783 Sandoval R, 1998, J AM SOC NEPHROL, V9, P167 STEYGER RS, 2008, COMMUNICATIVE INTEGR, V1, P140 TAKADA A, 1985, HEARING RES, V19, P245, DOI 10.1016/0378-5955(85)90144-3 VANWAY CW, 1985, ANN SURG, V201, P333, DOI 10.1097/00000658-198503000-00013 Wang Q, 2009, JARO-J ASSOC RES OTO, V10, P205, DOI 10.1007/s10162-009-0160-4 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 NR 33 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 250 EP 259 DI 10.1016/j.heares.2010.06.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900026 PM 20561573 ER PT J AU Cheng, CH Hsu, WY Shih, YH Lin, HC Liao, KK Wu, ZA Lin, YY AF Cheng, Chia-Hsiung Hsu, Wan-Yu Shih, Yang-Hsin Lin, Hsuan-Chun Liao, Kwong-Kum Wu, Zin-An Lin, Yung-Yang TI Differential cerebral reactivity to shortest and longer tones: Neuromagnetic and behavioral evidence SO HEARING RESEARCH LA English DT Article ID MISMATCH NEGATIVITY MMN; HUMAN AUDITORY-CORTEX; SOUND DURATION; VOWEL DURATION; LANGUAGE EXPERIENCE; NATIVE-SPEAKERS; PITCH CHANGES; HUMAN BRAIN; DISCRIMINATION; MEMORY AB Detecting a change in sound duration is important in language processing. The cerebral reactivity to a duration deviant in oddball paradigm has been reflected as a mismatch negativity (MMN). This study aimed to see cerebral responses to several duration-varying sounds presented with equal probability. Magnetoencephalographic (MEG) and behavior responses to equi-probable sounds (25-50-75-100-125 ms or 50-75-100-125-150 ms tones) were recorded in 10 healthy adult volunteers. By subtracting the average of the responses to 4 longer tones from the response to the shortest tone, a clear deflection peaking at 100-200 ms from stimulus onset was identified. This activity was called as substandard MMNm, and its amplitude tended to increase with the increment of duration deviance within a stimulation paradigm. The source of sub-standard MMNm was localized in superior temporal area, with 5-6 mm more anterior to the generator of N100m response. Behavioral tests also showed best performance in the recognition of the shortest tone than longer tones. In conclusion, the preferential response to the shortest tone in an equiprobable paradigm suggests an asymmetrical processing in the auditory cortex for duration-varying sounds. (C) 2010 Elsevier B.V. All rights reserved. C1 [Cheng, Chia-Hsiung; Hsu, Wan-Yu; Lin, Hsuan-Chun; Lin, Yung-Yang] Natl Yang Ming Univ, Inst Brain Sci, Taipei 112, Taiwan. [Shih, Yang-Hsin; Liao, Kwong-Kum; Wu, Zin-An; Lin, Yung-Yang] Natl Yang Ming Univ, Dept Neurol, Taipei 112, Taiwan. [Lin, Yung-Yang] Natl Yang Ming Univ, Inst Physiol, Taipei 112, Taiwan. [Lin, Yung-Yang] Natl Yang Ming Univ, Inst Clin Med, Taipei 112, Taiwan. [Cheng, Chia-Hsiung; Hsu, Wan-Yu; Lin, Hsuan-Chun; Lin, Yung-Yang] Taipei Vet Gen Hosp, Neurophysiol Lab, Integrated Brain Res Lab, Taipei 112, Taiwan. [Shih, Yang-Hsin; Liao, Kwong-Kum; Wu, Zin-An; Lin, Yung-Yang] Taipei Vet Gen Hosp, Neurol Inst, Taipei 112, Taiwan. RP Lin, YY (reprint author), Natl Yang Ming Univ, Inst Brain Sci, 201,Sec 2,Shih Pai Rd, Taipei 112, Taiwan. EM yylin@vghtpe.gov.tw FU Taipei Veterans General Hospital [V95ER3-006, V96ER3-008, V97ER3-006, VGHUST97-P6-24, V97C1-034, V98ER3-002, VGH-S4-98-018, VGH-S4-98-001, VGH-ER3-99-006]; National Science Council, Taipei, Taiwan [NSC-95-2314-B-010-030-MY3, NSC-96-2628-B-010-030-MY3, NSC98-2321-B-010-007] FX This study was supported in part by research grants from Taipei Veterans General Hospital (V95ER3-006, V96ER3-008, V97ER3-006, VGHUST97-P6-24, V97C1-034; V98ER3-002; VGH-S4-98-018; VGH-S4-98-001; VGH-ER3-99-006) and from the National Science Council (NSC-95-2314-B-010-030-MY3, NSC-96-2628-B-010-030-MY3; NSC98-2321-B-010-007), Taipei, Taiwan. We thank Dr. Ming-Wei Lin for her invaluable assistance in our statistical analysis. CR Alain C, 1998, BRAIN RES, V812, P23, DOI 10.1016/S0006-8993(98)00851-8 Alho K, 1996, PSYCHOPHYSIOLOGY, V33, P369, DOI 10.1111/j.1469-8986.1996.tb01061.x ALHO K, 1995, EAR HEARING, V16, P38, DOI 10.1097/00003446-199502000-00004 Alho K, 1998, PSYCHOPHYSIOLOGY, V35, P211, DOI 10.1017/S004857729800211X Colin C, 2009, CLIN NEUROPHYSIOL, V120, P51, DOI 10.1016/j.clinph.2008.10.002 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 HARI R, 1992, ELECTROEN CLIN NEURO, V82, P152, DOI 10.1016/0013-4694(92)90159-F HARI R, 1984, NEUROSCI LETT, V50, P127, DOI 10.1016/0304-3940(84)90474-9 Hickok G, 2000, TRENDS COGN SCI, V4, P131, DOI 10.1016/S1364-6613(00)01463-7 Horvath J, 2008, PSYCHOPHYSIOLOGY, V45, P60, DOI 10.1111/j.1469-8986.2007.00599.x Howard MF, 2009, HEARING RES, V257, P41, DOI 10.1016/j.heares.2009.07.010 Hsiao FJ, 2009, BIOL PSYCHOL, V81, P58, DOI 10.1016/j.biopsycho.2009.01.007 Inouchi M, 2004, NEUROSCI LETT, V366, P342, DOI 10.1016/j.neulet.2004.05.065 Inouchi M, 2003, NEUROSCI LETT, V353, P165, DOI 10.1016/j.neulet.2003.09.047 Jacobsen T, 2001, PSYCHOPHYSIOLOGY, V38, P723, DOI 10.1017/S0048577201000993 Jacobsen T, 2003, CLIN NEUROPHYSIOL, V114, P1133, DOI 10.1016/S1388-2457(03)00043-9 Jaramillo M, 2000, NEUROSCI LETT, V290, P101, DOI 10.1016/S0304-3940(00)01344-6 JAVITT DC, 1992, ELECTROEN CLIN NEURO, V83, P87, DOI 10.1016/0013-4694(92)90137-7 Joutsiniemi SL, 1998, EVOKED POTENTIAL, V108, P154, DOI 10.1016/S0168-5597(97)00082-8 KAUKORANTA E, 1989, HEARING RES, V41, P15, DOI 10.1016/0378-5955(89)90174-3 Kirmse U, 2008, INT J PSYCHOPHYSIOL, V67, P131, DOI 10.1016/j.ijpsycho.2007.10.012 Kushnerenko E, 2001, NEUROREPORT, V12, P3777, DOI 10.1097/00001756-200112040-00035 Levanen S, 1996, CEREB CORTEX, V6, P288, DOI 10.1093/cercor/6.2.288 LEVANEN S, 1993, EXP BRAIN RES, V97, P177 Lin YY, 2003, SEIZURE-EUR J EPILEP, V12, P220, DOI 10.1016/S1059-1311(02)00264-9 Lin YY, 2007, CEREB CORTEX, V17, P2516, DOI 10.1093/cercor/bM157 Maess B, 2007, NEUROIMAGE, V37, P561, DOI 10.1016/j.neuroimage.2007.05.040 MCEVOY L, 1993, HEARING RES, V67, P98, DOI 10.1016/0378-5955(93)90237-U Molholm S, 2005, CEREB CORTEX, V15, P545, DOI 10.1093/cercor/bhh155 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Naatanen R, 2005, PSYCHOPHYSIOLOGY, V42, P25, DOI 10.1111/j.1469-8986.2005.00256.x Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026 Naatanen R, 2004, CLIN NEUROPHYSIOL, V115, P140, DOI 10.1016/j.clinph.2003.04.001 Nenonen S, 2005, BRAIN LANG, V92, P26, DOI 10.1016/j.bandl.2004.05.005 Nenonen S, 2003, COGNITIVE BRAIN RES, V16, P492, DOI 10.1016/S0926-6410(03)00055-7 Okazaki S, 2006, NEUROREPORT, V17, P395, DOI 10.1097/01.wnr.0000204979.91253.7a Okazaki S, 2010, HEARING RES, V259, P107, DOI 10.1016/j.heares.2009.10.011 PAAVILAINEN P, 1991, ELECTROEN CLIN NEURO, V78, P466, DOI 10.1016/0013-4694(91)90064-B Pakarinen S, 2007, CLIN NEUROPHYSIOL, V118, P177, DOI 10.1016/j.clinph.2006.09.001 PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P186, DOI 10.1016/0013-4694(78)90003-2 POSNER MI, 1984, J NEUROSCI, V4, P1863 Renvall H, 2003, ANN NEUROL, V53, P551, DOI 10.1002/ana.10504 Sams M, 1991, Ann N Y Acad Sci, V620, P102, DOI 10.1111/j.1749-6632.1991.tb51577.x SAMS M, 1983, BIOL PSYCHOL, V17, P41, DOI 10.1016/0301-0511(83)90065-0 SAMS M, 1984, PSYCHOPHYSIOLOGY, V21, P434, DOI 10.1111/j.1469-8986.1984.tb00223.x Schroger E, 1996, NEUROREPORT, V7, P3005, DOI 10.1097/00001756-199611250-00041 Takegata R, 2008, CLIN NEUROPHYSIOL, V119, P1515, DOI 10.1016/j.clinph.2008.03.025 Tervaniemi M, 2006, EUR J NEUROSCI, V23, P2538, DOI 10.1111/j.1460-9568.2006.04752.x Thonnessen H, 2008, BIOL PSYCHOL, V77, P205, DOI 10.1016/j.biopsycho.2007.10.009 TIITINEN H, 1993, PSYCHOPHYSIOLOGY, V30, P537, DOI 10.1111/j.1469-8986.1993.tb02078.x Vainio M., 2001, ARTIFICIAL NEURAL NE WINKLER I, 1990, PSYCHOPHYSIOLOGY, V27, P228, DOI 10.1111/j.1469-8986.1990.tb00374.x Ylinen S, 2006, BRAIN RES, V1072, P175, DOI 10.1016/j.brainres.2005.12.004 ZATORRE RJ, 1991, BRAIN, V114, P2403, DOI 10.1093/brain/114.6.2403 ZATORRE RJ, 1985, NEUROPSYCHOLOGIA, V23, P31, DOI 10.1016/0028-3932(85)90041-7 NR 56 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 260 EP 270 DI 10.1016/j.heares.2010.06.009 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900027 PM 20600746 ER PT J AU Zhang, HM Kelly, JB AF Zhang, Huiming Kelly, Jack B. TI Time dependence of binaural responses in the rat's central nucleus of the inferior colliculus SO HEARING RESEARCH LA English DT Article ID PRIMARY AUDITORY-CORTEX; INTERAURAL INTENSITY DIFFERENCES; SOUND PRESSURE LEVEL; ALBINO-RAT; NMDA RECEPTORS; MEDIATED INHIBITION; LATERAL LEMNISCUS; COCHLEAR NUCLEUS; NEURAL RESPONSES; SUPERIOR OLIVE AB Recordings were made from single neurons in the rat's central nucleus of the inferior colliculus. Excitatory/inhibitory binaural interactions and interaural-level difference curves were determined for responses to 100 ms dichotic tone bursts presented to the left and right ears simultaneously. Most neurons with sustained responses to tone bursts had the same binaural response type throughout the 100 ms stimulus period. However, some neurons (39% of our sample) showed qualitatively different binaural response types during the early and late parts of the stimulus (the first 20 ms versus the last 80 ms of the tone burst). Also, for many neurons with consistent early and late binaural response patterns, the strength of binaural interaction was different during the early and late periods. For example, for neurons excited by the contralateral ear and inhibited by the ipsilateral ear during the entire 100 ms period (the most common binaural response type), the degree of inhibition was generally greater during the later part of a stimulus. This change in the strength and/or quality of binaural interaction during dichotic stimulation likely reflects a complex pattern of converging excitatory and inhibitory inputs to the inferior colliculus from lower brainstem structures as well as the time course of local synaptic events. The temporal properties of binaural interaction may influence how sound source location is represented in the central auditory system. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zhang, Huiming] Univ Windsor, Dept Biol Sci, Windsor, ON N9B 3P4, Canada. [Kelly, Jack B.] Carleton Univ, Dept Psychol, Ottawa, ON K1S 5B6, Canada. RP Zhang, HM (reprint author), Univ Windsor, Dept Biol Sci, Windsor, ON N9B 3P4, Canada. EM hzhang@uwindsor.ca FU Natural Sciences and Engineering Research Council (NSERC) of Canada; Hearing Foundation of Canada; University of Windsor FX This research was supported by grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada to HZ and JBK, The Hearing Foundation of Canada, and the University of Windsor. CR Bauer EE, 2000, HEARING RES, V141, P80, DOI 10.1016/S0378-5955(99)00206-3 BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 Blauert J., 1996, SPATIAL HEARING PSYC Casseday J. H., 2002, INTEGRATIVE FUNCTION, P238 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 DRUGA R, 1984, PHYSIOL BOHEMOSLOV, V33, P31 FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 Finlayson PG, 1997, HEARING RES, V103, P1, DOI 10.1016/S0378-5955(96)00158-X FLAMMINO F, 1975, J ACOUST SOC AM, V57, P692, DOI 10.1121/1.380494 Gaza WC, 1997, BRAIN RES, V774, P175, DOI 10.1016/S0006-8993(97)81701-5 HEFFNER RS, 1988, HEARING RES, V36, P221, DOI 10.1016/0378-5955(88)90064-0 Irvine DRF, 1996, J NEUROPHYSIOL, V75, P75 Ito M, 1996, J NEUROPHYSIOL, V76, P3493 Joris P, 2007, TRENDS NEUROSCI, V30, P70, DOI 10.1016/j.tins.2006.12.004 KAVANAGH GL, 1986, BEHAV NEUROSCI, V100, P200, DOI 10.1037//0735-7044.100.2.200 Kelly JB, 2005, INFERIOR COLLICULUS, P248, DOI 10.1007/0-387-27083-3_9 Kelly JB, 2009, J COMP NEUROL, V512, P573, DOI 10.1002/cne.21929 KELLY JB, 1996, BEHAV NEUROSCI, V110, P145 KELLY JB, 1991, HEARING RES, V56, P273, DOI 10.1016/0378-5955(91)90177-B Kelly JB, 2002, HEARING RES, V168, P35, DOI 10.1016/S0378-5955(02)00372-6 KELLY JB, 1985, J NEUROPHYSIOL, V53, P361 KLUG A, 1995, J NEUROPHYSIOL, V74, P1701 Koka K, 2008, J ACOUST SOC AM, V123, P4297, DOI 10.1121/1.2916587 Konishi M, 2003, ANNU REV NEUROSCI, V26, P31, DOI 10.1146/annurev.neuro.26.041002.131123 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 Ma CL, 2002, HEARING RES, V168, P25, DOI 10.1016/S0378-5955(02)00370-2 MARKOVITZ NS, 1994, HEARING RES, V73, P121, DOI 10.1016/0378-5955(94)90290-9 MILBRANDT JC, 1994, NEUROBIOL AGING, V15, P699, DOI 10.1016/0197-4580(94)90051-5 MOORE DR, 1991, AUDIOLOGY, V30, P125 Nataraj K, 2006, J NEUROPHYSIOL, V95, P2179, DOI 10.1152/jn.01148.2005 Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 Palmer AR, 2005, INFERIOR COLLICULUS, P377, DOI 10.1007/0-387-27083-3_13 PARK TJ, 1993, J NEUROSCI, V13, P2050 Park TJ, 1996, J NEUROSCI, V16, P6554 POLLACK I, 1967, PERCEPT PSYCHOPHYS, V2, P591, DOI 10.3758/BF03210274 Pollak GD, 2002, HEARING RES, V168, P60, DOI 10.1016/S0378-5955(02)00362-3 Saldana E, 2005, INFERIOR COLLICULUS, P155, DOI 10.1007/0-387-27083-3_5 Sanchez JT, 2007, J NEUROSCI, V27, P1954, DOI 10.1523/JNEUROSCI.2894-06.2007 Schofield BR, 2005, INFERIOR COLLICULUS, P132, DOI 10.1007/0-387-27083-3_4 SEMPLE MN, 1993, J NEUROPHYSIOL, V69, P462 SILVERMAN MS, 1977, J NEUROPHYSIOL, V40, P1266 Stabler SE, 1996, J NEUROPHYSIOL, V76, P1667 Sun H, 2006, NEUROSCI LETT, V399, P151, DOI 10.1016/j.neulet.2006.01.049 TOBIAS JV, 1959, J ACOUST SOC AM, V31, P1591, DOI 10.1121/1.1907664 VATER M, 1992, J COMP PHYSIOL A, V171, P541 WAGNER H, 1990, EUR J NEUROSCI, V2, P949, DOI 10.1111/j.1460-9568.1990.tb00007.x Wesolek CM, 2010, HEARING RES, V265, P54, DOI 10.1016/j.heares.2010.02.011 Winer JA, 2006, HEARING RES, V212, P1, DOI 10.1016/j.heares.2005.06.014 Wu SH, 2004, J NEUROSCI, V24, P4625, DOI 10.1523/JNEUROSCI.0318-04.2004 Yin T. C. T, 2002, INTEGRATIVE FUNCTION, P99 Zhang H, 1999, J COMP PHYSIOL A, V184, P85, DOI 10.1007/s003590050308 Zhang HM, 2003, J NEUROPHYSIOL, V90, P477, DOI 10.1152/jn.01084.2002 Zhang HM, 2001, J NEUROPHYSIOL, V86, P871 Zhang JP, 2004, J NEUROPHYSIOL, V91, P101, DOI 10.1152/jn.00166.2003 NR 56 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP 1 PY 2010 VL 268 IS 1-2 BP 271 EP 280 DI 10.1016/j.heares.2010.06.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645YA UT WOS:000281500900028 PM 20600745 ER PT J AU Edmondson-Jones, AM Irving, S Moore, DR Hall, DA AF Edmondson-Jones, A. Mark Irving, Samuel Moore, David R. Hall, Deborah A. TI Planar localisation analyses: A novel application of a centre of mass approach SO HEARING RESEARCH LA English DT Article ID RELEARNING SOUND LOCALIZATION; BINAURAL HEARING; HUMAN LISTENERS; FERRETS; CUES AB Sound localisation is one of the key roles for listening, and measuring localisation performance is a mainstay of the hearing research laboratory. Such measurements may consider both accuracy and, for incorrect trials, the size of the error. In terms of error analysis, localisation studies have frequently used general purpose univariate techniques in conjunction with either mean signed or unsigned error measurements. This approach can make inappropriate distributional assumptions and so more suitable alternatives based on directional statistics have also been used. Here we investigate the use of a variety of methods, assess their performance, and comment on their use and availability. We also describe a novel use of a 'centre of mass' approach for describing localisation data jointly in terms of accuracy and size of error. This spatial method offers powerful, yet flexible, statistical analysis using standard multivariate analysis of variance (MANOVA). (C) 2010 Elsevier B.V. All rights reserved. C1 [Edmondson-Jones, A. Mark; Irving, Samuel; Moore, David R.; Hall, Deborah A.] MRC Inst Hearing Res, Nottingham NG7 2RD, England. [Edmondson-Jones, A. Mark] E Midlands Publ Hlth Observ, Mansfield NG19 8RL, England. [Hall, Deborah A.] Nottingham Trent Univ, Sch Social Sci, Div Psychol, Nottingham NG1 4BU, England. RP Edmondson-Jones, AM (reprint author), MRC Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. EM mark.edmondson-jones@empho.nhs.uk CR Abel SM, 2004, APPL ACOUST, V65, P229, DOI 10.1016/j.apacoust.2003.10.003 BERENS P, 2009, 184 M PLANCK I BUUNEN TJF, 1978, J ACOUST SOC AM, V64, P772, DOI 10.1121/1.382042 Carlile S, 1997, HEARING RES, V114, P179, DOI 10.1016/S0378-5955(97)00161-5 Fisher N. I., 1995, STAT ANAL CIRCULAR D GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 HINE JE, 1994, BEHAV NEUROSCI, V108, P196, DOI 10.1037//0735-7044.108.1.196 Hofman PM, 2002, J NEUROSCI METH, V113, P167, DOI 10.1016/S0165-0270(01)00490-3 Hofman PM, 1998, NAT NEUROSCI, V1, P417, DOI 10.1038/1633 KACELNIK O, 2006, PLOS BIOL, V4 Keuroghlian AS, 2007, PROG NEUROBIOL, V82, P109, DOI 10.1016/j.pneurobio.2007.03.005 Leong P, 1998, J NEUROSCI METH, V80, P191, DOI 10.1016/S0165-0270(97)00201-X Mardia K, 2000, DIRECTIONAL STAT McAlpine D, 2005, J PHYSIOL-LONDON, V566, P21, DOI 10.1113/jphysiol.2005.083113 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 Moore DR, 1999, CURR BIOL, V9, pR361, DOI 10.1016/S0960-9822(99)80227-9 OLSON CL, 1974, J AM STAT ASSOC, V69, P894, DOI 10.2307/2286159 Parsons CH, 1999, J NEUROPHYSIOL, V82, P2294 *R DEV COR TEAM, 2007, R LANG ENV STAT CCOM Rao JS, 2001, TOPICS CIRCULAR STAT Van Wanrooij MM, 2007, J NEUROPHYSIOL, V97, P715, DOI 10.1152/jn.00260.2006 Van Wanrooij MM, 2005, J NEUROSCI, V25, P5413, DOI 10.1523/JNEUROSCI.0850-05.2005 Wright BA, 2006, INT J AUDIOL, V45, pS92, DOI 10.1080/14992020600783004 Zahorik P, 2006, J ACOUST SOC AM, V120, P343, DOI 10.1121/1.2208429 NR 24 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 4 EP 11 DI 10.1016/j.heares.2010.04.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700002 PM 20438824 ER PT J AU Brown, DJ Patuzzi, RB AF Brown, Daniel J. Patuzzi, Robert B. TI Evidence that the compound action potential (CAP) from the auditory nerve is a stationary potential generated across dura mater SO HEARING RESEARCH LA English DT Article ID BRAIN-STEM RESPONSE; GUINEA-PIG COCHLEA; ROUND-WINDOW; SUMMATING POTENTIALS; ACOUSTIC NEUROMA; FAR-FIELDS; NUCLEUS; ELECTROCOCHLEOGRAPHY; ORIGIN; RECORDINGS AB We have investigated the generation of the compound action potential (CAP) from the auditory nerve of guinea pigs. Responses to acoustic tone-bursts were recorded from the round window (RW), throughout the cochlear fluids, from the surface of the cochlear nucleus, from the central end of the auditory nerve after removal of the cochlear nucleus, from the scalp vertex, and from the contralateral ear. Responses were compared before, during and after experimental manipulations including pharmacological blockade of the auditory nerve, section of the auditory nerve, section of the efferent nerves, removal of the cochlear nucleus, and focal cooling of the cochlear nerve and/or cochlear nucleus. Regardless of the waveform changes occurring with these manipulations, the responses were similar in waveform but inverted polarity across the internal auditory meatus. The CAP waveforms were very similar before and after removal of the cochlear nucleus, apart from transient changes that could last many minutes. This suggests that the main CAP components are generated entirely by the eighth nerve. Based on previous studies and a clear understanding of the generation of extracellular potentials, we suggest that the early components in the responses recorded from the round window, from the cochlear fluids, from the surface of the cochlear nucleus, or from the scalp are a far-field or stationary potential, generated when the circulating action currents associated with each auditory neurone encounters a high extracellular resistance as it passes through the dura mater. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved. C1 [Brown, Daniel J.] Univ Sydney, Sydney Med Sch, Brain & Mind Res Inst, Camperdown, NSW 2050, Australia. [Brown, Daniel J.; Patuzzi, Robert B.] Univ Western Australia, Sch Biomed Biomol & Chem Sci, Auditory Lab, Crawley 6009, Australia. RP Brown, DJ (reprint author), Univ Sydney, Sydney Med Sch, Brain & Mind Res Inst, 100 Mallett St, Camperdown, NSW 2050, Australia. EM danielbrown@med.usyd.edu.au; rpatuzzi@cyllene.uwa.edu.au CR BEAGLEY HA, 1976, DISORDERS AUDITORY F, P119 BRACKMANN DE, 1976, ELECTROCOCHLEOGRAPHY, P315 BROWN DJ, 2007, THESIS U W AUSTR Brown DJ, 2004, HEARING RES, V190, P60, DOI 10.1016/S0378-5955(03)00404-0 Chertoff ME, 2004, J ACOUST SOC AM, V116, P3022, DOI 10.1121/1.1791911 CHIU SY, 1981, J PHYSIOL-LONDON, V313, P415 CODY AR, 1980, ACTA OTO-LARYNGOL, V89, P440, DOI 10.3109/00016488009127160 DAIGNEAU.EA, 1974, ACTA OTO-LARYNGOL, V77, P405, DOI 10.3109/00016487409124642 Dallos P, 1973, AUDITORY PERIPHERY de Boer E, 1975, J Acoust Soc Am, V58, P1030, DOI 10.1121/1.380762 EGGERMON.JJ, 1974, ACTA OTO-LARYNGOL, P39 Elberling C, 1976, ELECTROCOCHLEOGRAPHY, P151 ENG DL, 1988, J NEUROPHYSIOL, V60, P2168 Ferraro J. A., 2002, HDB CLIN AUDIOLOGY, P249 Fishman HM, 2003, NEWS PHYSIOL SCI, V18, P115, DOI 10.1152/nips.01429.2002 Fraher J, 2002, J ANAT, V200, P415, DOI 10.1046/j.1469-7580.2002.00037.x GIBSON WPR, 1976, J LARYNGOL OTOL, V90, P127, DOI 10.1017/S0022215100081883 GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497 HERMANN L, 1905, LEHRBUCH PHYSL HODGKIN AL, 1952, J PHYSIOL-LONDON, V116, P473 Hodgkin AL, 1937, J PHYSIOL-LONDON, V90, P183 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 HUXLEY AF, 1959, ANN NY ACAD SCI, V81, P221, DOI 10.1111/j.1749-6632.1959.tb49311.x HUXLEY AF, 1951, J PHYSIOL-LONDON, V112, P476 JEWETT DL, 1989, ELECTROEN CLIN NEURO, V72, P439, DOI 10.1016/0013-4694(89)90049-7 JEWETT DL, 1971, BRAIN, V94, P681, DOI 10.1093/brain/94.4.681 Kiang NYS, 1976, ELECTROCOCHLEOGRAPHY, P95 LEGOUIX JP, 1974, J ACOUST SOC AM, V56, P1222, DOI 10.1121/1.1903411 LEWIS ER, 1989, HEARING RES, V39, P209, DOI 10.1016/0378-5955(89)90092-0 LING G, 1949, J CELL COMPAR PHYSL, V34, P383, DOI 10.1002/jcp.1030340304 Liu GB, 2001, AUDIOL NEURO-OTOL, V6, P140, DOI 10.1159/000046821 MARTIN WH, 1995, EVOKED POTENTIAL, V96, P357, DOI 10.1016/0168-5597(94)00326-A McMahon CM, 2008, EAR HEARING, V29, P314, DOI 10.1097/AUD.0b013e3181662c2a McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2 McMahon CM, 2004, HEARING RES, V190, P75, DOI 10.1016/S0378-5955(03)00403-9 MOLLER AR, 1983, EXP NEUROL, V80, P633, DOI 10.1016/0014-4886(83)90313-8 Moller A.R., 2000, HEARING ITS PHYSL PA MOUSHEGIAN G, 1962, J NEUROPHYSIOL, V25, P515 Noguchi Y, 1999, AUDIOLOGY, V38, P135 Ohashi T, 2001, HEARING RES, V154, P26, DOI 10.1016/S0378-5955(00)00267-7 OZDAMAR O, 1976, J ACOUST SOC AM, V59, P143 ROBERTSON D, 1975, THESIS MCGILL U MONT RUDELL AP, 1991, BIOPHYS J, V60, P556 SATO S, 2008, CLIN NEUROPHYSIOL, V120, P329 Schofield BR, 2005, HEARING RES, V199, P89, DOI 10.1016/j.heares.2004.08.003 Sellick P, 2003, HEARING RES, V176, P42, DOI 10.1016/S0378-5955(02)00716-5 STAMPFLI R, 1954, EXPERIENTIA, V10, P508, DOI 10.1007/BF02166189 Stegeman DF, 1997, J CLIN NEUROPHYSIOL, V14, P429, DOI 10.1097/00004691-199709000-00009 STYS PK, 1995, AXON STRUCTURE FUNCT TASAKI I, 1954, J ACOUST SOC AM, V26, P765, DOI 10.1121/1.1907415 TEAS DONALD C, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1438, DOI 10.1121/1.1918366 vanEmst MG, 1996, HEARING RES, V102, P70, DOI 10.1016/S0378-5955(96)00149-9 VERSNEL H, 1992, HEARING RES, V59, P138, DOI 10.1016/0378-5955(92)90111-Y Wang B, 1979, THESIS MIT CAMBRIDGE Zappia JJ, 1996, OTOLARYNG HEAD NECK, V115, P98, DOI 10.1016/S0194-5998(96)70144-4 NR 55 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 12 EP 26 DI 10.1016/j.heares.2010.03.091 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700003 PM 20430085 ER PT J AU Tonnaer, ELGM Peters, TA Curfs, JHAJ AF Tonnaer, Edith L. G. M. Peters, Theo A. Curfs, Jo H. A. J. TI Neurofilament localization and phosphorylation in the developing inner ear of the rat SO HEARING RESEARCH LA English DT Article ID MARIE-TOOTH-DISEASE; INTERMEDIATE-FILAMENT PROTEINS; PRIMARY AUDITORY NEURONS; AXONAL-TRANSPORT; SPIRAL GANGLION; LEAD-EXPOSURE; COCHLEAR INNERVATION; ANTIGEN RETRIEVAL; TRIPLET PROTEINS; GUINEA-PIG AB Detailed understanding of neurofilament protein distribution in the inner ear can shed light on regulatory mechanisms involved in neuronal development of this tissue. We assessed the spatio-temporal changes in the distribution of neurofilaments in the developing rat inner ear between embryonic day 12 and 30 days after birth, using antibodies against phosphorylated as well as non-phosphorylated light (NFL), medium (NFM) and heavy (NFH) neurofilament subunits. Our results show that during development, the onset of neurofilament expression in the rat inner ear is on embryonic day 12, earlier than previously shown. We demonstrate that neurofilament subunits of different molecular weight emerge in a developmental stage-dependent order. In addition, we determined that neurofilaments of the vestibular nerve mature earlier than neurofilaments of the cochlear nerve. Cochlear neurofilament maturation progresses in a gradient from base to apex, and from inner to outer hair cells. The sequential pattern of neurofilament expression we describe may help understand the consequences of certain mutations, and contribute to develop therapeutic strategies. (C) 2010 Elsevier B.V. All rights reserved. C1 [Tonnaer, Edith L. G. M.; Peters, Theo A.; Curfs, Jo H. A. J.] Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, Donders Inst Brain Cognit & Behav,Ctr Neurosci, NL-6500 HB Nijmegen, Netherlands. RP Tonnaer, ELGM (reprint author), Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, Donders Inst Brain Cognit & Behav,Ctr Neurosci, Philips van Leydenlaan 15,POB 9101, NL-6500 HB Nijmegen, Netherlands. EM E.Tonnaer@kno.umcn.nl; T.Peters@kno.umcn.nl; J.Curfs@kno.umcn.nl CR ANNIKO M, 1995, ORL J OTO-RHINO-LARY, V57, P68 BAUWENS LJJM, 1992, ANN OTO RHINOL LARYN, V101, P479 Boettger T, 2003, EMBO J, V22, P5422, DOI 10.1093/emboj/cdg519 Braissant O, 2007, NEW RES NEUROFILAMEN, P25 BROWN MC, 2001, PHYSL EAR, P529 Brownlees J, 2002, HUM MOL GENET, V11, P2837, DOI 10.1093/hmg/11.23.2837 Bruce LL, 2000, J COMP NEUROL, V423, P532, DOI 10.1002/1096-9861(20000731)423:3<532::AID-CNE14>3.0.CO;2-T Butinar D, 2008, CLIN NEUROPHYSIOL, V119, P367, DOI 10.1016/j.clinph.2007.10.004 Collin RWJ, 2008, AM J HUM GENET, V82, P125, DOI 10.1016/j.ajhg.2007.09.008 DECHESNE CJ, 1994, J NEUROCYTOL, V23, P631, DOI 10.1007/BF01191557 DESPRES G, 1994, ACTA OTO-LARYNGOL, V114, P377, DOI 10.3109/00016489409126073 Ezaki T, 2000, MICRON, V31, P639, DOI 10.1016/S0968-4328(99)00064-5 Fabrizi GM, 2007, BRAIN, V130, P394, DOI 10.1093/brain/awl284 Fiumelli H, 2008, CELL MOTIL CYTOSKEL, V65, P495, DOI 10.1002/cm.20278 FRANKE FE, 1991, AM J PATHOL, V139, P67 Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244 Garcia SJ, 2003, ENVIRON HEALTH PERSP, V111, P297, DOI 10.1289/ehp.5791 Gotow Takahiro, 2000, Medical Electron Microscopy, V33, P173, DOI 10.1007/s007950000019 Grant P, 2000, J NEUROCYTOL, V29, P843, DOI 10.1023/A:1010999509251 HAFIDI A, 1990, J COMP NEUROL, V300, P153, DOI 10.1002/cne.903000202 HAFIDI A, 1989, DEV BRAIN RES, V48, P143, DOI 10.1016/0165-3806(89)90098-9 Hens J, 1998, CELL TISSUE RES, V292, P229, DOI 10.1007/s004410051054 Hirokawa N, 1998, J CELL BIOL, V143, P1, DOI 10.1083/jcb.143.1.1 Janmey PA, 2003, CURR OPIN COLLOID IN, V8, P40, DOI 10.1016/S1359-0294(03)00010-4 Jones LG, 2008, J COMP NEUROL, V506, P1003, DOI 10.1002/ene.21563 Jordanova A, 2003, BRAIN, V126, P590, DOI 10.1093/brain/awg059 KELLEY MW, 1992, DEV AUDITORY VESTIBU, V2, P139 KUIJPERS W, 1991, HEARING RES, V52, P133, DOI 10.1016/0378-5955(91)90193-D LEE MK, 1993, J CELL BIOL, V122, P1337, DOI 10.1083/jcb.122.6.1337 Lee MK, 1996, ANNU REV NEUROSCI, V19, P187 Liu Q, 2004, CELL MOL LIFE SCI, V61, P3057, DOI 10.1007/s00018-004-4268-8 Martin R, 1999, NEUROSCIENCE, V88, P327, DOI 10.1016/S0306-4522(98)00244-9 Millecamps S, 2006, J NEUROCHEM, V98, P926, DOI 10.1111/j.1471-4159.2006.03932.x Miller CCJ, 2002, CELL MOL LIFE SCI, V59, P323, DOI 10.1007/s00018-002-8425-7 Nakamura M, 1999, J CEREBR BLOOD F MET, V19, P762 Nalini A, 2008, J NEUROL SCI, V269, P65, DOI 10.1016/j.jns.2007.12.026 NISHIZAKI K, 1995, ORL J OTO-RHINO-LARY, V57, P177 NIXON RA, 1991, TRENDS NEUROSCI, V14, P501, DOI 10.1016/0166-2236(91)90062-Y Omary MB, 2006, TRENDS BIOCHEM SCI, V31, P383, DOI 10.1016/j.tibs.2006.05.008 Osman K, 1999, ENVIRON RES, V80, P1, DOI 10.1006/enrs.1998.3886 Petzold A, 2005, J NEUROL SCI, V233, P183, DOI 10.1016/j.jns.2005.03.015 PIRVOLA U, 1991, HEARING RES, V52, P345, DOI 10.1016/0378-5955(91)90024-4 Rao MV, 2003, J CELL BIOL, V163, P1021, DOI 10.1083/jcb.200308076 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Rubens O, 2001, J NEUROL NEUROSUR PS, V71, P200, DOI 10.1136/jnnp.71.2.200 Seoane A, 2003, ACTA NEUROPATHOL, V106, P458, DOI 10.1007/s00401-003-0744-8 SHAW G, 1984, EUR J CELL BIOL, V34, P130 Shea TB, 2003, TRENDS NEUROSCI, V26, P397, DOI 10.1016/S0166-2236(03)00199-1 SHI SR, 1991, J HISTOCHEM CYTOCHEM, V39, P741 Sihag RK, 2007, EXP CELL RES, V313, P2098, DOI 10.1016/j.yexcr.2007.04.010 Sobkowicz HM, 1992, DEV AUDITORY VESTIBU, V2, P59 Tarsa L, 2002, P NATL ACAD SCI USA, V99, P1012, DOI 10.1073/pnas.022575999 TONNAER EL, 1990, J HISTOCHEM CYTOCHEM, V38, P1223 Trigueiros-Cunha N, 2003, EUR J NEUROSCI, V18, P2653, DOI 10.1046/j.1460-9568.2003.02989.x Tritsch NX, 2007, NATURE, V450, P50, DOI 10.1038/nature06233 VANDERVEN PFM, 1995, J ANDROL, V16, P242 WHITSON JS, 1995, BRAIN RES, V694, P213, DOI 10.1016/0006-8993(95)00745-C Yang K, 1996, MOL BRAIN RES, V43, P13, DOI 10.1016/S0169-328X(96)00142-8 Yates DM, 2009, EUR J CELL BIOL, V88, P193, DOI 10.1016/j.ejcb.2008.11.004 YLIKOSKI J, 1993, ACTA OTO-LARYNGOL, P121 Yuan AD, 2006, J NEUROSCI, V26, P10006, DOI 10.1523/JNEUROSCI.2580-06.2006 NR 61 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 27 EP 35 DI 10.1016/j.heares.2010.03.090 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700004 PM 20430081 ER PT J AU Francis, NA Guinan, JJ AF Francis, Nikolas A. Guinan, John J., Jr. TI Acoustic stimulation of human medial olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic emission delays: Implications for cochlear filter bandwidths SO HEARING RESEARCH LA English DT Article ID SUPERIOR OLIVARY COMPLEX; AUDITORY-NERVE RESPONSES; TUNING CURVES; CONTRALATERAL SUPPRESSION; WAVELET ANALYSIS; REFLEX; DEPENDENCE; PHASE; MODEL; SOUND AB Filter theory indicates that changes in cochlear filter bandwidths are accompanied by changes in cochlear response latencies. Previous reports indicate that otoacoustic emission (OAE) delays are reduced by exciting medial olivocochlear (MOC) efferents with contralateral broad-band noise (CBBN). These delay reductions are consistent with MOC-induced widening of cochlear filters. We quantified the MOC-induced changes in human cochlear filter-related delays using stimulus-frequency and click-evoked OAEs (SFOAE and CEOAEs), recorded with and without MOC activity elicited by 60 dB SPL CBBN. MOC-induced delay changes were measured from the slopes of SFOAE phase functions and from cross-correlation of 500 Hz-wide CEOAE frequency-band waveform magnitudes. The delay changes measured from CEOAEs and SFOAEs were statistically indistinguishable. Both showed greater delay reductions at lower frequencies (a 5% decrease in the 0.5-2 kHz frequency region). These data indicate that cochlear filters are widened 5% by the MOC activity from moderate-level CBBN. Psychophysically, the large changes in cochlear response latencies, implied by the 0.5 ms change in OAE delay at low frequencies, would have a profound effect on binaural localization if they were not balanced in the central nervous system, or by the MOC system producing similar changes in both ears. (C) 2010 Elsevier B.V. All rights reserved. C1 [Francis, Nikolas A.; Guinan, John J., Jr.] Harvard MIT Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol, Cambridge, MA 02139 USA. [Francis, Nikolas A.; Guinan, John J., Jr.] Massachusetts Eye & Ear Infirm, Eaton Peabody Labs Auditory Physiol, Dept Otolaryngol, Boston, MA 02114 USA. [Guinan, John J., Jr.] Harvard Univ, Dept Otol & Laryngol, Sch Med, Boston, MA 02115 USA. RP Francis, NA (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM nfu@mit.edu FU NIH NIDCD [RO1 DC005977, P30 DC005209, T32 DC00038] FX We thank Radha Kalluri, Jeffery Lichtenhan and Christopher Shera for comments on the manuscript. Supported by NIH NIDCD RO1 DC005977, P30 DC005209 and T32 DC00038. CR Backus BC, 2006, J ACOUST SOC AM, V119, P2889, DOI 10.1121/1.2169918 Backus BC, 2007, JARO-J ASSOC RES OTO, V8, P484, DOI 10.1007/s10162-007-0100-0 BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S Berlin C.I., 1995, HEARING RES, V87, P6 BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 BROWN MC, 1988, J COMP NEUROL, V278, P591, DOI 10.1002/cne.902780410 CARNEY LH, 1992, PHILOS T ROY SOC B, V336, P403, DOI 10.1098/rstb.1992.0075 Cedolin L, 2005, J NEUROPHYSIOL, V94, P347, DOI 10.1152/jn.01114.2004 Cooper NP, 2006, J PHYSIOL-LONDON, V576, P49, DOI 10.1113/jphysiol.2006.114991 deBoer E, 1997, J ACOUST SOC AM, V102, P3810, DOI 10.1121/1.420356 DEBOER E, 1979, SCAND AUDIOL S, V9, P17 DEBOER E, 1996, ASS RES OT MIDW M SE Dolan DF, 1997, J ACOUST SOC AM, V102, P3587, DOI 10.1121/1.421008 FISCH U, 1970, ADV OTO-RHINO-LARYNG, V17, P203 Giraud AL, 1997, J ACOUST SOC AM, V102, P2219, DOI 10.1121/1.419635 Giraud AL, 1996, HEARING RES, V94, P54, DOI 10.1016/0378-5955(96)00002-0 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 Guinan JJ, 2008, J ACOUST SOC AM, V124, P1080, DOI 10.1121/1.2949435 GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103 GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5 Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3 Guinan JJ, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P245, DOI 10.1142/9789812704931_0035 Guinan Jr J.J., 1996, COCHLEA, P435 Hood LJ, 1996, HEARING RES, V101, P113, DOI 10.1016/S0378-5955(96)00138-4 Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597 Kalluri R, 2007, J ACOUST SOC AM, V121, P2097, DOI 10.1121/1.2435981 Kawase T, 2000, HEARING RES, V142, P63, DOI 10.1016/S0378-5955(00)00010-1 Lilaonitkul W, 2009, J NEUROPHYSIOL, V101, P1394, DOI 10.1152/jn.90925.2008 Lilaonitkul W, 2009, JARO-J ASSOC RES OTO, V10, P459, DOI 10.1007/s10162-009-0163-1 Maison SF, 2003, J COMP NEUROL, V455, P406, DOI 10.1002/cne.10490 Morand N, 2000, HEARING RES, V145, P52, DOI 10.1016/S0378-5955(00)00069-1 Murugasu E, 1996, J NEUROSCI, V16, P325 Oppenheim A. V., 1997, SIGNALS SYSTEMS, V2nd Oppenheim A. V., 1999, DISCRETE TIME SIGNAL Patuzzi R., 1996, COCHLEA, P186 Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930 Quaranta N, 2005, ACTA OTO-LARYNGOL, V125, P520, DOI 10.1080/00016480510026214 Ruggero MA, 2007, JARO-J ASSOC RES OTO, V8, P153, DOI 10.1007/s10162-007-0081-z Ruggero MA, 2005, P NATL ACAD SCI USA, V102, P18614, DOI 10.1073/pnas.0509323102 RYAN S, 1991, British Journal of Audiology, V25, P391, DOI 10.3109/03005369109076614 SHAMMA SA, 1985, J ACOUST SOC AM, V78, P1622, DOI 10.1121/1.392800 SHERA CA, 1993, J ACOUST SOC AM, V93, P3333, DOI 10.1121/1.405717 Shera CA, 2000, J ACOUST SOC AM, V108, P2933, DOI 10.1121/1.1323234 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Sisto R, 2007, J ACOUST SOC AM, V122, P3554, DOI 10.1121/1.2799498 Strelcyk O, 2009, J ACOUST SOC AM, V126, P1878, DOI 10.1121/1.3203310 Temchin AN, 2008, J NEUROPHYSIOL, V100, P2889, DOI 10.1152/jn.90637.2008 Tognola G, 1998, Technol Health Care, V6, P159 Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5 Torrence C, 1998, B AM METEOROL SOC, V79, P61, DOI 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 Veuillet E, 1996, HEARING RES, V93, P128, DOI 10.1016/0378-5955(95)00212-X VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 VINAY MBCJ, 2008, HEARING RES, V240, P93 WANG G, 2009, ASS RES OT MIDW M SE WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WARREN EH, 1989, HEARING RES, V37, P105, DOI 10.1016/0378-5955(89)90033-6 WIT HP, 1994, HEARING RES, V73, P141, DOI 10.1016/0378-5955(94)90228-3 Withnell RH, 2008, J ACOUST SOC AM, V123, P212, DOI 10.1121/1.2804635 Zhang XD, 2001, J ACOUST SOC AM, V109, P648, DOI 10.1121/1.1336503 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 NR 62 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 36 EP 45 DI 10.1016/j.heares.2010.04.009 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700005 PM 20430088 ER PT J AU Martinez-Galan, JR Perez-Martinez, FC Juiz, JM AF Martinez-Galan, Juan R. Perez-Martinez, Francisco C. Juiz, Jose M. TI Differences in glutamate-mediated calcium responses in the ventral cochlear nucleus and inferior colliculus of the developing rat SO HEARING RESEARCH LA English DT Article ID AUDITORY BRAIN-STEM; SYNAPTIC-TRANSMISSION; AMPA RECEPTORS; DEVELOPMENTAL-CHANGES; CA2+ PERMEABILITY; KAINATE RECEPTOR; ENDBULB SYNAPSES; NMDA RECEPTORS; GUINEA-PIG; NEURONS AB Using optical recordings of neuronal [Ca(2+)]i in brain slices from young rats (P9-P11), we report distinct regulation of Ca(2+) signalling mediated by the activity of glutamate receptors in the ventral cochlear nucleus (VCN) and the central nucleus of the inferior colliculus (CIC) in the midbrain. [Ca(2+)]i increases were recorded after bath-stimulation of slices with glutamate agonists of both ionotropic (AMPA/kainate or NMDA) and group I metabotropic glutamate receptors (mGluRs). NMDA-induced [Ca(2+)]i responses were similar in both auditory nuclei. Kainate-induced [Ca(2+)]i increases recorded in the VCN were over two-fold larger than those in the CIC. Blockade of kainate-induced [Ca(2+)]i responses in VCN neurons with 1-naphtylacetyl spermine (NAS) demonstrated that Ca(2+)-permeable AMPA receptors predominated in the VCN. In contrast, abundant Ca(2+)-impermeable AMPA receptors were found in the CIC. Both mGluR1 and mGluR5 subtypes of group I mGluRs were present in the CIC and the VCN. However, Group I mGluR [Ca(2+)]i responses elicited by DHPG were two fold higher in CIC than in VCN neurons. Therefore, our findings suggest that Ca(2+) signalling in auditory neurons may be differentially regulated at different levels of the auditory pathway through preferential activation of different classes of glutamate receptors, which may have implications for hierarchical auditory signal processing and plasticity, at least during the early developmental stages of hearing. (C) 2010 Elsevier BM. All rights reserved. C1 [Martinez-Galan, Juan R.; Perez-Martinez, Francisco C.; Juiz, Jose M.] Univ Castilla La Mancha, Ctr Reg Invest Biomed, Dpto Ciencias Med, Inst Invest Discapacidades Neurol,Fac Med, Albacete 02006, Spain. RP Juiz, JM (reprint author), Univ Castilla La Mancha, Ctr Reg Invest Biomed, Dpto Ciencias Med, Inst Invest Discapacidades Neurol,Fac Med, C Almansa 14, Albacete 02006, Spain. EM JoseManuel.Juiz@uclm.es FU MICINN [BFU2006-19374/BFI, BFU2009-13974/BFI]; Consejeria de Sanidad JCCM [SAN06-009, GCS-2006-C/15]; Consejeria de Educacion JCCM [PEII09-0152-6233, PII1I09-0056-7896] FX The authors want to thanks Jose J Cabanes and Maria J Simarro for technical assistance. Support was provided by Support was provided by Spain's MICINN grants (BFU2006-19374/BFI and BFU2009-13974/BFI), Consejeria de Sanidad JCCM (SAN06-009 and GCS-2006-C/15) and Consejeria de Educacion JCCM (PEII09-0152-6233) grants to JMJ and by Consejeria de Educacion JCCM (PII1I09-0056-7896) grant to JRMG. CR ALTSCHULER RA, 1981, P NATL ACAD SCI-BIOL, V78, P6553, DOI 10.1073/pnas.78.10.6553 ALTSCHULER RA, 1986, AM J OTOLARYNG, V7, P100, DOI 10.1016/S0196-0709(86)80038-2 Bilak SR, 1998, SYNAPSE, V28, P251 Bordi F, 1999, PROG NEUROBIOL, V59, P55, DOI 10.1016/S0301-0082(98)00095-1 Caicedo A, 1999, EUR J NEUROSCI, V11, P51, DOI 10.1046/j.1460-9568.1999.00410.x Chapman AG, 1999, EUR J PHARMACOL, V368, P17, DOI 10.1016/S0014-2999(99)00014-X Chapman AG, 2000, NEUROPHARMACOLOGY, V39, P1567, DOI 10.1016/S0028-3908(99)00242-7 Conn PJ, 1997, ANNU REV PHARMACOL, V37, P205, DOI 10.1146/annurev.pharmtox.37.1.205 Coutinho V, 2002, NEUROSCIENTIST, V8, P551, DOI 10.1177/1073858402238514 Diaz C, 2009, EUR J NEUROSCI, V29, P213, DOI 10.1111/j.1460-9568.2008.06578.x Dingledine R, 1999, PHARMACOL REV, V51, P7 Doherty AJ, 1997, NEUROPHARMACOLOGY, V36, P265, DOI 10.1016/S0028-3908(97)00001-4 Ene FA, 2003, J NEUROPHYSIOL, V90, P2581, DOI 10.1152/jn.00238.2003 Gardner SM, 2001, J NEUROSCI, V21, P7428 GRYNKIEWICZ G, 1985, J BIOL CHEM, V260, P3440 HUNTER C, 1993, J NEUROSCI, V13, P1932 ISAACSON JS, 1995, J NEUROPHYSIOL, V73, P964 JONAS P, 1994, NEURON, V12, P1281, DOI 10.1016/0896-6273(94)90444-8 JUIZ JM, 1993, NATO ADV SCI INST SE, V239, P167 JUIZ JM, 2010, ASS RES OT ABSTR, V33, P10 Kelly JB, 2002, HEARING RES, V168, P35, DOI 10.1016/S0378-5955(02)00372-6 Koike M, 1997, NEUROSCI RES, V29, P27, DOI 10.1016/S0168-0102(97)00067-9 KOTAK VC, 1995, J NEUROPHYSIOL, V74, P1611 Kushmerick C, 2004, J NEUROSCI, V24, P5955, DOI 10.1523/JNEUROSCI.0768-04.2004 Lawrence JJ, 2000, J NEUROSCI, V20, P4864 Lu T, 2007, J NEUROSCI, V27, P808, DOI 10.1523/JNEUROSCI.4871-06.2007 Lujan R, 2008, NEUROSCIENCE, V154, P315, DOI 10.1016/j.neuroscience.2008.03.027 Malmierca M.S., 2004, RAT NERVOUS SYSTEM, P997 Malmierca MS, 2003, INT REV NEUROBIOL, V56, P147, DOI 10.1016/S0074-7742(03)56005-6 Malmierca MS, 2009, J COMP NEUROL, V514, P226, DOI 10.1002/cne.21997 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MALVA JO, 1995, NEUROSCI LETT, V185, P83, DOI 10.1016/0304-3940(94)11230-G Mano I, 1998, NEUROREPORT, V9, P327, DOI 10.1097/00001756-199801260-00027 Martinez-Galan JR, 2001, EUR J NEUROSCI, V13, P1147, DOI 10.1046/j.0953-816x.2001.01494.x Molitor SC, 1997, J NEUROPHYSIOL, V77, P1889 OLIVER DL, 1991, J COMP NEUROL, V303, P75, DOI 10.1002/cne.903030108 OTIS TS, 1995, J PHYSIOL-LONDON, V482, P309 Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2 Petralia RS, 2000, HEARING RES, V147, P59, DOI 10.1016/S0378-5955(00)00120-9 Petralia RS, 1996, J COMP NEUROL, V372, P356 Ren H, 2003, J BIOL CHEM, V278, P276, DOI 10.1074/jbc.M209486200 Rosenmund C, 1998, SCIENCE, V280, P1596, DOI 10.1126/science.280.5369.1596 SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308 Sanes DH, 1998, J NEUROPHYSIOL, V80, P209 Schmid S, 2001, J COMP NEUROL, V430, P160, DOI 10.1002/1096-9861(20010205)430:2<160::AID-CNE1022>3.3.CO;2-V Tang E, 1997, EUR J PHARMACOL, V327, P109, DOI 10.1016/S0014-2999(97)89649-5 Toms NJ, 1999, NEUROPHARMACOLOGY, V38, P1511, DOI 10.1016/S0028-3908(99)00090-8 Wang YX, 1998, J NEUROSCI, V18, P1148 WICKESBERG RE, 1989, BRAIN RES, V486, P39, DOI 10.1016/0006-8993(89)91275-4 Winer JA, 2006, HEARING RES, V212, P1, DOI 10.1016/j.heares.2005.06.014 Wu SH, 2004, J NEUROSCI, V24, P4625, DOI 10.1523/JNEUROSCI.0318-04.2004 Wu SH, 2002, HEARING RES, V168, P43, DOI 10.1016/S0378-5955(02)00375-1 Zhang HM, 2003, J NEUROPHYSIOL, V90, P477, DOI 10.1152/jn.01084.2002 Zhang Y, 2000, HEARING RES, V147, P92, DOI 10.1016/S0378-5955(00)00123-4 ZHOU N, 1992, DEV BRAIN RES, V67, P145, DOI 10.1016/0165-3806(92)90215-I Zirpel L, 1998, J NEUROPHYSIOL, V79, P2288 ZIRPEL L, 1995, J NEUROSCI, V15, P214 Zirpel L, 2000, J COMP NEUROL, V421, P95 NR 58 TC 5 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 46 EP 53 DI 10.1016/j.heares.2010.03.089 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700006 PM 20430074 ER PT J AU Wei, L Ding, DL Sun, W Xu-Friedman, MA Salvi, R AF Wei, Lei Ding, Dalian Sun, Wei Xu-Friedman, Matthew A. Salvi, Richard TI Effects of sodium salicylate on spontaneous and evoked spike rate in the dorsal cochlear nucleus SO HEARING RESEARCH LA English DT Article ID SPONTANEOUS NEURAL ACTIVITY; INHIBITORY POSTSYNAPTIC CURRENTS; HAIR CELL LOSS; INFERIOR COLLICULUS; INDUCED TINNITUS; AUDITORY-CORTEX; INTENSE SOUND; INDUCED HYPERACTIVITY; LIMBIC SYSTEM; BRAIN-SLICES AB Spontaneous hyperactivity in the dorsal cochlear nucleus (DCN), particularly in fusiform cells, has been proposed as a neural generator of tinnitus. To determine if sodium salicylate, a reliable tinnitus inducer, could evoke hyperactivity in the DCN, we measured the spontaneous and depolarization-evoked spike rate in fusiform and cartwheel cells during salicylate superfusion. Five minute treatment with 1.4 mM salicylate suppressed spontaneous and evoked firing in fusiform cells; this decrease partially recovered after salicylate washout. Less suppression and greater recovery occurred with 3 min treatment using 1.4 mM salicylate. In contrast, salicylate had no effect on the spontaneous or evoked firing of cartwheel cells indicating that salicylate's suppressive effects are specific to fusiform cells. To determine if salicylate's suppressive effects were a consequence of increased synaptic inhibition, spontaneous inhibitory postsynaptic currents (IPSC) were measured during salicylate treatment. Salicylate unexpectedly reduced IPSC thereby ruling out increased inhibition as a mechanism to explain the depressed firing rates in fusiform cells. The salicylate-induced suppression of fusiform spike rate apparently arises from unidentified changes in the cell's intrinsic excitability. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wei, Lei; Ding, Dalian; Sun, Wei; Salvi, Richard] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. [Xu-Friedman, Matthew A.] SUNY Buffalo, Dept Biol Sci, Buffalo, NY 14214 USA. RP Salvi, R (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall, Buffalo, NY 14214 USA. EM lweiub@gmail.com; dding@buffalo.edu; weisun@buffalo.edu; mx@buffalo.edu; salvi@buffalo.edu FU NIH [R01DC009091, R01DC009219]; Graduate Student Association at the University at Buffalo, The State University of New York FX Research supported in part by grants from NIH (R01DC009091; R01DC009219) and The Mark Diamond Research Fund of the Graduate Student Association at the University at Buffalo, The State University of New York. CR AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 Backoff PM, 1997, HEARING RES, V110, P155, DOI 10.1016/S0378-5955(97)00081-6 Basta D, 2008, HEARING RES, V240, P42, DOI 10.1016/j.heares.2008.02.005 Basta D, 2004, NEUROSCI RES, V50, P237, DOI 10.1016/j.neures.2004.07.003 Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 BOETTCHER FA, 1990, ARCH OTOLARYNGOL, V116, P681 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013 Brozoski TJ, 2007, JARO-J ASSOC RES OTO, V8, P105, DOI 10.1007/s10162-006-0067-2 Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Coad ML, 2001, OTOL NEUROTOL, V22, P650, DOI 10.1097/00129492-200109000-00016 Coles R R, 1984, J Laryngol Otol Suppl, V9, P7 Davis A, 2000, TINNITUS HDB, P1 Dobie RA, 2004, TINNITUS THEORY MANA, P266 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454 Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006 Golding NL, 1997, J NEUROPHYSIOL, V78, P248 Henry JA, 2005, J SPEECH LANG HEAR R, V48, P1204, DOI 10.1044/1092-4388(2005/084) Hoffmann H. J., 2004, TINNITUS THEORY MANA, P16 Imig TJ, 2005, J COMP NEUROL, V490, P391, DOI 10.1002/cne.20674 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 Jastreboff PJ, 1997, AUDIOL NEURO-OTOL, V2, P197 JASTREBOFF PJ, 1986, ARCH OTOLARYNGOL, V112, P1050 Juiz JM, 1996, J BRAIN RES, V37, P561 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 Kaltenbach JA, 2007, PROG BRAIN RES, V166, P89, DOI 10.1016/S0079-6123(07)66009-9 Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004) Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 Kaltenbach JA, 2007, HEARING RES, V226, P232, DOI 10.1016/j.heares.2006.07.001 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kenmochi M, 1997, HEARING RES, V113, P110, DOI 10.1016/S0378-5955(97)00137-8 Leske M C, 1981, ASHA, V23, P229 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X Liu DL, 2005, LIPIDS, V40, P839, DOI 10.1007/s11745-005-1446-5 Liu YX, 2004, HEARING RES, V193, P68, DOI 10.1016/j.heares.2004.03.006 Liu YX, 2005, HEARING RES, V205, P271, DOI 10.1016/j.heares.2005.03.028 Llinas RR, 1999, P NATL ACAD SCI USA, V96, P15222, DOI 10.1073/pnas.96.26.15222 Lobarinas E, 2004, HEARING RES, V190, P109, DOI 10.1016/S0378-5955(04)00019-X Lobarinas E, 2006, Acta Otolaryngol Suppl, P13 Lockwood AH, 1998, NEUROLOGY, V50, P114 Lu YG, 2009, BRIT J PHARMACOL, V157, P1514, DOI 10.1111/j.1476-5381.2009.00321.x Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 Mahlke C, 2004, HEARING RES, V195, P17, DOI 10.1016/j.heares.2004.03.005 MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208 Melamed SB, 2000, AUDIOLOGY, V39, P24 MILTON S, 2009, P BR PHARM SOC, P139 Moore JK, 1996, J COMP NEUROL, V369, P497 MUGNAINI E, 1985, J COMP NEUROL, V235, P61, DOI 10.1002/cne.902350106 Muller M, 2003, HEARING RES, V183, P37, DOI 10.1016/S0378-5955(03)00217-X MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483 Nondahl David M, 2002, J Am Acad Audiol, V13, P323 Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001 Peng BG, 2003, NEUROSCI LETT, V343, P21, DOI 10.1016/S0304-3940(03)00296-9 Rachel JD, 2002, HEARING RES, V164, P206, DOI 10.1016/S0378-5955(02)00287-3 Rubio ME, 2004, J COMP NEUROL, V477, P253, DOI 10.1002/cne.20249 Ruel J, 2008, J NEUROSCI, V28, P7313, DOI 10.1523/JNEUROSCI.5335-07.2008 Salvi R, 2009, DRUG FUTURE, V34, P381, DOI 10.1358/dof.2009.34.5.1362442 Shore S, 2007, PROG BRAIN RES, V166, P107, DOI 10.1016/S0079-6123(07)66010-5 SNOW JB, 1995, P 5 INT TINN SEM AM, P11 Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024 *SURV OOPCA, 1983, GHS831 SURV OOPCA Wang HT, 2008, HEARING RES, V236, P42, DOI 10.1016/j.heares.2007.11.015 Wang HT, 2006, HEARING RES, V215, P77, DOI 10.1016/j.heares.2006.03.004 Weisz N, 2007, J NEUROSCI, V27, P1479, DOI 10.1523/JNEUROSCI.3711-06.2007 Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 Zhang JS, 2003, EXP BRAIN RES, V153, P655, DOI 10.1007/s00221-003-1612-4 ZHANG S, 1994, J NEUROPHYSIOL, V71, P914 ZHANG S, 1993, J NEUROPHYSIOL, V69, P1384 NR 74 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 54 EP 60 DI 10.1016/j.heares.2010.03.088 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700007 PM 20430089 ER PT J AU Wang, GP Chatterjee, I Batts, SA Wong, HT Gong, TW Gong, SS Raphael, Y AF Wang, Guo-Peng Chatterjee, Ishani Batts, Shelley A. Wong, Hiu Tung Gong, Tzy-Wen Gong, Shu-Sheng Raphael, Yehoash TI Notch signaling and Atoh1 expression during hair cell regeneration in the mouse utricle SO HEARING RESEARCH LA English DT Article ID CHINCHILLA CRISTA-AMPULLARIS; AVIAN AUDITORY EPITHELIUM; INNER-EAR; SENSORY EPITHELIA; MORPHOLOGICAL EVIDENCE; GENTAMICIN TREATMENT; SUPPORTING CELL; ACOUSTIC TRAUMA; MATH1; FATE AB The mammalian vestibular epithelium has a limited capacity for spontaneous hair cell regeneration. The mechanism underlying the regeneration is not well understood. Because the Notch signaling pathway mediates the formation of the sensory epithelial mosaic patterning during ear development, it may also play a role in hair cell regeneration in the mature mammalian vestibular epithelium after a lesion. To investigate the process of spontaneous regeneration in the vestibular epithelium vis-a-vis changes in Notch signaling, we induced a unilateral lesion by infusing streptomycin into the mouse posterior semicircular canal, and examined Notch signaling molecules and their mRNA expression levels by immunohistochemistry and quantitative real-time polymerase chain reaction (qRTPCR), respectively. We detected Jagged1 in supporting cells in both normal and lesioned utricles. Atoh1, a marker for early developing hair cells, was absent in the intact mature tissue, but re-appeared after the lesion. Many cells were either positive for both Atoh1 and myosin Vila, or for one of them. qRTPCR data showed a post trauma decrease of Hes5 and an increase in Atoh1. Atoh1 up-regulation may either be a result of Hes5 down-regulation or mediated by another signaling pathway. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wang, Guo-Peng; Chatterjee, Ishani; Batts, Shelley A.; Wong, Hiu Tung; Gong, Tzy-Wen; Raphael, Yehoash] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. [Wang, Guo-Peng; Gong, Shu-Sheng] Huazhong Univ Sci & Technol, Union Hosp, Dept Otolaryngol, Tongji Med Coll, Wuhan 430022, Hubei, Peoples R China. [Batts, Shelley A.] Stanford Univ, Dept Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA. [Gong, Shu-Sheng] Capital Med Univ, Dept Otolaryngol Head & Neck Surg, Beijing Tongren Hosp,Ministry Educ, Key Lab Otolaryngol Head & Neck Surg, Beijing 100730, Peoples R China. RP Raphael, Y (reprint author), MSRB 3,Rm 9301,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM yoash@umich.edu FU A. Alfred Taubman Medical Research Institute; NIH-NIDCD [R01-DC01634, P30-DC05188]; China Scholarship Council [2008616087]; Natural Science Foundation of Beijing [7082024]; Science Development Program of Beijing Municipal Education Commission [KM200810025004] FX We thank Dr. Jane Johnson for the anti-Atoh1 antibody, and Lisa Beyer and Donald Swiderski for technical assistance. This work was supported by the A. Alfred Taubman Medical Research Institute and NIH-NIDCD Grants R01-DC01634 and P30-DC05188. Guo-Peng Wang received support from the China Scholarship Council (No. 2008616087), Natural Science Foundation of Beijing (No. 7082024), and Science Development Program of Beijing Municipal Education Commission (No. KM200810025004). CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 Baron M, 2003, SEMIN CELL DEV BIOL, V14, P113, DOI 10.1016/S1084-9521(02)00179-9 Batts SA, 2009, HEARING RES, V249, P15, DOI 10.1016/j.heares.2008.12.008 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Cafaro J, 2007, DEV DYNAM, V236, P156, DOI 10.1002/dvdy.21023 Chen P, 2002, DEVELOPMENT, V129, P2495 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 Daudet N, 2009, DEV BIOL, V326, P86, DOI 10.1016/j.ydbio.2008.10.033 Doetzlhofer A, 2009, DEV CELL, V16, P58, DOI 10.1016/j.devcel.2008.11.008 Eddison M, 2000, P NATL ACAD SCI USA, V97, P11692, DOI 10.1073/pnas.97.22.11692 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 GONG TW, 2006, J ASS RES OTOLARYNGO Hartman BH, 2009, JARO-J ASSOC RES OTO, V10, P321, DOI 10.1007/s10162-009-0162-2 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 Helms AW, 1998, DEVELOPMENT, V125, P919 Hori R, 2007, NEUROREPORT, V18, P1911 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Kawamoto K, 2009, HEARING RES, V247, P17, DOI 10.1016/j.heares.2008.08.010 Kelley MW, 2006, NAT REV NEUROSCI, V7, P837, DOI 10.1038/nrn1987 Lai EC, 2004, DEVELOPMENT, V131, P965, DOI 10.1242/dev.01074 Lanford Pamela J., 2000, JARO Journal of the Association for Research in Otolaryngology, V1, P161, DOI 10.1007/s101620010023 Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 Li L, 1997, INT J DEV NEUROSCI, V15, P433, DOI 10.1016/S0736-5748(96)00102-5 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lopez I, 1998, OTOLARYNG HEAD NECK, V119, P255, DOI 10.1016/S0194-5998(98)70060-9 Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7 Ma EY, 2008, J NEUROSCI, V28, P2261, DOI 10.1523/JNEUROSCI.4372-07.2008 MEITELES LZ, 1994, HEARING RES, V79, P26, DOI 10.1016/0378-5955(94)90124-4 Murata J, 2006, J COMP NEUROL, V497, P502, DOI 10.1002/cne.20997 Oesterle EC, 2008, JARO-J ASSOC RES OTO, V9, P65, DOI 10.1007/s10162-007-0106-7 Roberson DW, 1996, AUDIT NEUROSCI, V2, P195 RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 SATO K, 1983, INT J CLIN PHARM TH, V21, P109 Schweisguth F, 2004, CURR BIOL, V14, P129 Shailam R, 1999, J NEUROCYTOL, V28, P809, DOI 10.1023/A:1007009803095 Staecker H, 2007, OTOL NEUROTOL, V28, P223, DOI 10.1097/MAO.0b013e31802b3225 Stone JS, 2007, INT J DEV BIOL, V51, P633, DOI 10.1387/ijdb.072408js Stone JS, 1999, DEVELOPMENT, V126, P961 Taylor RR, 2005, J COMP NEUROL, V484, P105, DOI 10.1002/cne.20450 Tsuchiya K, 2007, GASTROENTEROLOGY, V132, P208, DOI 10.1053/j.gastro.2006.10.031 Yamamoto N, 2006, J MOL MED-JMM, V84, P37, DOI 10.1007/s00109-005-0706-9 Zheng JL, 2000, NAT NEUROSCI, V3, P580 Zheng JL, 1999, J NEUROSCI, V19, P2161 NR 44 TC 19 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 61 EP 70 DI 10.1016/j.heares.2010.03.085 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700008 PM 20433915 ER PT J AU Wu, HP Hsu, CJ Cheng, TJ Guo, YL AF Wu, Hung-Pin Hsu, Chuan-Jen Cheng, Tsun-Jen Guo, Yueliang Leon TI N-acetylcysteine attenuates noise-induced permanent hearing loss in diabetic rats SO HEARING RESEARCH LA English DT Article ID NUTRITION EXAMINATION SURVEY; 3RD NATIONAL-HEALTH; HAIR CELL LOSS; OXIDATIVE STRESS; THRESHOLD SHIFTS; CARBON-MONOXIDE; ACOUSTIC TRAUMA; GUINEA-PIG; CHILDREN 6; INNER-EAR AB The purpose of this study is to investigate whether repeated noise exposure aggravates the level of permanent noise-induced hearing loss (NIHL) in diabetic rats and whether N-acetylcysteine (NAC), a precursor of glutathione, attenuates the level of noise-induced permanent hearing loss in diabetic rats. Fifty male Wistar rats were divided into four groups: 12 non-diabetic control rats with saline injection (Control-Saline), 11 non-diabetic control rats with NAC injection (Control-NAC), 13 streptozotocin-induced diabetic rats with saline injection (Diabetes-Saline) and 14 streptozotocin-induced diabetic rats with NAC injection (Diabetes-NAC). NAC (325 mg/kg) was given by intraperitoneal injection twice per day (bid.) for 14 days starting 2 days before noise exposure. All rats were exposed to noise for 8 hours per day for 10 consecutive days to develop noise-induced permanent hearing loss. The hearing status of all animals was evaluated with auditory brainstem responses (ABR) evoked by clicks and tone bursts. ABRs were measured before and at 1 hour, 1 week, 2 weeks and 4 weeks after noise exposure. After a recovery time of 4 weeks, animals were decapitated, and the loss of hair cells was assessed microscopically. In all groups, ABR thresholds failed to return to pre-exposure values throughout the experimental period. The ABR threshold to clicks was markedly elevated in the Diabetes-Saline group (36.9 +/- 2.3 dB SPL), less elevated in the Control-Saline and Diabetes-NAC groups and least in the Control-NAC group (19.5 +/- 2.0 dB SPL) at 4 weeks after noise exposure. Diabetes caused increased susceptibility to noise-induced hearing loss, and NAC treatment reduced the loss in both control and diabetic rats. Cochleograms revealed no gross destruction of hair cells in the non-diabetic groups or the Diabetes-NAC group; however, a significant number of outer hair cells (OHCs) were lost in the Diabetes-Saline group. This study demonstrated that diabetics were prone to developing more severe NIHL than non-diabetics and that NAC could preserve most OHCs and attenuate the permanent noise-induced hearing loss in both groups. (C) 2010 Elsevier B.V. All rights reserved. C1 [Cheng, Tsun-Jen; Guo, Yueliang Leon] Natl Taiwan Univ Hosp, Dept Environm & Occupat Med, Taipei 100, Taiwan. [Hsu, Chuan-Jen; Cheng, Tsun-Jen; Guo, Yueliang Leon] Natl Taiwan Univ, Coll Med, Taipei 10764, Taiwan. [Wu, Hung-Pin; Cheng, Tsun-Jen; Guo, Yueliang Leon] Natl Taiwan Univ, Inst Occupat Med & Ind Hyg, Taipei 10764, Taiwan. [Wu, Hung-Pin] Buddhist Tzuchi Gen Hosp, Dept Otolaryngol, Taipei Branch, Taipei, Taiwan. [Wu, Hung-Pin] Buddhist Tzuchi Gen Hosp, Dept Otolaryngol, Taichung Branch, Taipei, Taiwan. [Wu, Hung-Pin] Tzuchi Univ, Sch Med, Hualien, Taiwan. [Hsu, Chuan-Jen] Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei 100, Taiwan. RP Guo, YL (reprint author), Natl Taiwan Univ Hosp, Dept Environm & Occupat Med, 17,Syujhou Rd, Taipei 100, Taiwan. EM leonguo@ntu.edu.tw RI Cheng, Tsun-Jen /D-3495-2012 CR Bielefeld EC, 2007, ACTA OTO-LARYNGOL, V127, P914, DOI 10.1080/00016480601110188 BORG E, 1989, J ACOUST SOC AM, V86, P1776, DOI 10.1121/1.398609 Brownlee M, 2001, NATURE, V414, P813, DOI 10.1038/414813a Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X Chen GD, 2000, HEARING RES, V145, P91, DOI 10.1016/S0378-5955(00)00076-9 Chen YS, 2005, HEARING RES, V203, P94, DOI 10.1016/j.heares.2004.12.006 Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8 Coleman JKM, 2007, HEARING RES, V226, P104, DOI 10.1016/j.heares.2006.08.008 Daniel E, 2007, J SCHOOL HEALTH, V77, P225, DOI 10.1111/j.1746-1561.2007.00197.x Engström B, 1983, Acta Otolaryngol Suppl, V402, P5 Fechter LD, 1997, TOXICOL APPL PHARM, V142, P47, DOI 10.1006/taap.1996.8027 FECHTER LD, 1988, HEARING RES, V34, P39, DOI 10.1016/0378-5955(88)90049-4 Fukushima H, 2005, OTOLARYNG HEAD NECK, V133, P100, DOI 10.1016/j.otohns.2005.02.004 HODGSON MJ, 1987, J OCCUP ENVIRON MED, V29, P576 Hsu CJ, 1998, ORL J OTO-RHINO-LARY, V60, P314, DOI 10.1159/000027616 ISHII EK, 1992, SCI TOTAL ENVIRON, V127, P155, DOI 10.1016/0048-9697(92)90474-7 King H, 1998, DIABETES CARE, V21, P1414, DOI 10.2337/diacare.21.9.1414 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 Kopke RD, 2007, HEARING RES, V226, P114, DOI 10.1016/j.heares.2006.10.008 Lataye R, 1997, NEUROTOXICOL TERATOL, V19, P373, DOI 10.1016/S0892-0362(97)00049-4 Lin CD, 2008, ACTA OTO-LARYNGOL, V128, P1280, DOI 10.1080/00016480801935541 Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0 MANDEL JH, 1988, J OCCUP ENVIRON MED, V30, P271 Medina-Navarro R, 2004, HUM EXP TOXICOL, V23, P101, DOI 10.1191/0960327104ht416oa Mokdad AH, 2003, JAMA-J AM MED ASSOC, V289, P76, DOI 10.1001/jama.289.1.76 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 Niskar AS, 1998, JAMA-J AM MED ASSOC, V279, P1071, DOI 10.1001/jama.279.14.1071 Niskar AS, 2001, PEDIATRICS, V108, P40, DOI 10.1542/peds.108.1.40 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Rahman Q, 1999, CRIT REV TOXICOL, V29, P543, DOI 10.1080/10408449991349276 Santos MS, 2001, DIABETES METAB RES, V17, P223, DOI 10.1002/dmrr.200 Shin AH, 2006, ARCH PHARM RES, V29, P577, DOI 10.1007/BF02969268 SMITH TL, 1995, LARYNGOSCOPE, V105, P236, DOI 10.1288/00005537-199503000-00002 Tan Adeline L Y, 2007, Semin Nephrol, V27, P130, DOI 10.1016/j.semnephrol.2007.01.006 Vincent AM, 2007, ENDOCRINOLOGY, V148, P548, DOI 10.1210/en.2006-0073 Vincent AM, 2004, ENDOCR REV, V25, P612, DOI 10.1210/er.2003-0019 Vincent AM, 2004, DIABETES, V53, P726, DOI 10.2337/diabetes.53.3.726 Vincent AM, 2008, CURR DRUG TARGETS, V9, P94, DOI 10.2174/138945008783431754 Von Korff M, 2005, DIABETES CARE, V28, P1326, DOI 10.2337/diacare.28.6.1326 WASSICK KH, 1985, ACTA OTO-LARYNGOL, V99, P35, DOI 10.3109/00016488509119143 Wild S, 2004, DIABETES CARE, V27, P1047, DOI 10.2337/diacare.27.5.1047 Wu HP, 2009, LARYNGOSCOPE, V119, P1190, DOI 10.1002/lary.20221 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 NR 44 TC 12 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 71 EP 77 DI 10.1016/j.heares.2010.03.082 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700009 PM 20430080 ER PT J AU Lanting, CP de Kleine, E Eppinga, RN van Dijk, P AF Lanting, C. P. de Kleine, E. Eppinga, R. N. van Dijk, P. TI Neural correlates of human somatosensory integration in tinnitus SO HEARING RESEARCH LA English DT Article ID PRIMARY AUDITORY-CORTEX; GAZE-EVOKED TINNITUS; SUPERIOR TEMPORAL PLANE; INDUCED HEARING-LOSS; COCHLEAR NUCLEUS; MULTISENSORY CONVERGENCE; ASSOCIATION CORTEX; CEREBELLAR VERMIS; GUINEA-PIG; FMRI AB Possible neural correlates of somatosensory modulation of tinnitus were assessed. Functional magnetic resonance imaging (fMRI) was used to investigate differences in neural activity between subjects that can modulate their tinnitus by jaw protrusion and normal hearing controls. We measured responses to bilateral sound and responses to jaw protrusion. Additionally we studied multimodal integration of somatosensory jaw protrusion and sound. The auditory system responded to both sound and jaw protrusion. Jaw responses were enhanced in the cochlear nucleus (CN) and the inferior colliculus (IC) in tinnitus patients. The responses of the auditory brain areas to jaw protrusion presumable account for the modulation of tinnitus as described by the patients. The somatosensory system responded to jaw protrusion and not to sound. These responses occurred both in subjects with tinnitus and controls. Unexpectedly, the cerebellum responded to sound in normal hearing subjects, but not in tinnitus patients. Together, these results provide a neurophysiological basis for the effect of jaw protrusion on tinnitus. (C) 2010 Elsevier B.V. All rights reserved. C1 [Lanting, C. P.; de Kleine, E.; Eppinga, R. N.; van Dijk, P.] Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, Groningen, Netherlands. [Lanting, C. P.; de Kleine, E.; Eppinga, R. N.; van Dijk, P.] Univ Groningen, Fac Med Sci, Sch Behav & Cognit Neurosci, NL-9700 AB Groningen, Netherlands. RP Lanting, CP (reprint author), MRC Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. EM cris@ihr.mrc.ac.uk; e.de.kleine@med.umcg.nl; p.van.dijk@med.umcg.nl RI Van Dijk, Pim/E-8019-2010; de Kleine, Emile/P-2350-2014 OI Van Dijk, Pim/0000-0002-8023-7571; FU Heinsius Houbolt Foundation; Netherlands Organization for Scientific Research (NWO) FX This work was supported by the Heinsius Houbolt Foundation and the Netherlands Organization for Scientific Research (NWO). The study is part of the research program of our department: Communication through Hearing and Speech. CR Abel MD, 2004, CRANIO, V22, P181 AITKIN LM, 1975, J NEUROPHYSIOL, V38, P418 Albuquerque W, 2004, J NEUROL NEUROSUR PS, V75, P1363, DOI 10.1136/jnnp.2003.030577 Allman BL, 2009, BRAIN TOPOGR, V21, P157, DOI 10.1007/s10548-009-0088-3 Baguley DM, 2006, OTOL NEUROTOL, V27, P220, DOI 10.1097/01.mao.0000172412.87778.28 Baumgart F, 1998, MED PHYS, V25, P2068, DOI 10.1118/1.598368 Beauchamp MS, 2008, NEUROIMAGE, V41, P1011, DOI 10.1016/j.neuroimage.2008.03.015 CACACE AT, 1994, AUDIOLOGY, V33, P291 Cacace AT, 1999, AUDIOL NEURO-OTOL, V4, P247, DOI 10.1159/000013848 Cacace AT, 1999, AUDIOL NEURO-OTOL, V4, P258, DOI 10.1159/000013849 CACACE AT, 1994, HEARING RES, V81, P22, DOI 10.1016/0378-5955(94)90149-X Calvert GA, 2001, NEUROIMAGE, V14, P427, DOI 10.1006/nimg.2001.0812 Calvert GA, 1999, NEUROREPORT, V10, P2619, DOI 10.1097/00001756-199908200-00033 Calvert GA, 2001, CEREB CORTEX, V11, P1110, DOI 10.1093/cercor/11.12.1110 CHOLE RA, 1992, ARCH OTOLARYNGOL, V118, P817 Coad ML, 2001, OTOL NEUROTOL, V22, P650, DOI 10.1097/00129492-200109000-00016 Cullington H, 2001, NEUROLOGY, V56, P978 Dehmel S, 2008, AM J AUDIOL, V17, pS193, DOI 10.1044/1059-0889(2008/07-0045) Eggermont J. J., 2006, ACTA OTO-LARYNGOL, V556, P9 Eickhoff SB, 2005, NEUROIMAGE, V25, P1325, DOI 10.1016/j.neuroimage.2004.12.034 Eickhoff SB, 2007, NEUROIMAGE, V36, P511, DOI 10.1016/j.neuroimage.2007.03.060 Foxe JJ, 2000, COGNITIVE BRAIN RES, V10, P77, DOI 10.1016/S0926-6410(00)00024-0 Foxe JJ, 2002, J NEUROPHYSIOL, V88, P540, DOI 10.1152/jn.00694.2001 Giraud AL, 1999, NEUROREPORT, V10, P1, DOI 10.1097/00001756-199901180-00001 Hackett TA, 2007, PERCEPTION, V36, P1419, DOI 10.1068/p5841 Hackett TA, 2007, J COMP NEUROL, V502, P924, DOI 10.1002/cne.21326 Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N Hall DA, 2009, CEREB CORTEX, V19, P576, DOI 10.1093/cercor/bhn108 Herráiz C, 2003, Acta Otorrinolaringol Esp, V54, P329 HUANG C, 1990, EXP BRAIN RES, V81, P377 Jousmaki V., 1998, CURR BIOL, V8, P190 Kayser C, 2005, NEURON, V48, P373, DOI 10.1016/j.neuron.2005.09.018 Kriegeskorte N, 2009, NAT NEUROSCI, V12, P535, DOI 10.1038/nn.2303 Langers DRM, 2005, MAGNET RESON MED, V53, P49, DOI 10.1002/mrm.20315 Langers DRM, 2003, NEUROIMAGE, V20, P265, DOI 10.1016/S1053-8119(03)00258-1 Lanting CP, 2008, ACTA OTO-LARYNGOL, V128, P415, DOI 10.1080/00016480701793743 LANTING CP, UNILATERAL TIN UNPUB Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1 Levine Robert Aaron, 2008, Trends Amplif, V12, P242, DOI 10.1177/1084713808321185 Levine RA, 2003, EXP BRAIN RES, V153, P643, DOI 10.1007/s00221-003-1747-3 Lockwood AH, 2001, NEUROLOGY, V56, P472 Lockwood AH, 1998, NEUROLOGY, V50, P114 Martin JH, 2003, NEUROANATOMY Meredith MA, 2009, NEUROREPORT, V20, P126, DOI 10.1097/WNR.0b013e32831d7bb6 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 Moller AR, 2002, NEUROSCI LETT, V319, P41, DOI 10.1016/S0304-3940(01)02516-2 Morosan P, 2001, NEUROIMAGE, V13, P684, DOI 10.1006/nimg.2000.0715 Neumann J, 2003, NEUROIMAGE, V19, P784, DOI 10.1016/S1053-8119(03)00177-0 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Pekkola J, 2005, NEUROREPORT, V16, P125, DOI 10.1097/00001756-200502080-00010 Petacchi A, 2005, HUM BRAIN MAPP, V25, P118, DOI 10.1002/hbm.20137 Pinchoff RJ, 1998, AM J OTOL, V19, P785 Rademacher J, 2001, NEUROIMAGE, V13, P669, DOI 10.1006/nimg.2000.0714 Rubinstein B, 1993, Swed Dent J Suppl, V95, P1 Ruytjens L, 2007, AUDIOL NEURO-OTOL, V12, P371, DOI 10.1159/000106480 Ruytjens L, 2006, ACTA OTO-LARYNGOL, V126, P1236, DOI 10.1080/00016480600801373 Schroeder CE, 2001, J NEUROPHYSIOL, V85, P1322 Schurmann M, 2006, NEUROIMAGE, V30, P1325, DOI 10.1016/j.neuroimage.2005.11.020 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x Smiley JF, 2007, J COMP NEUROL, V502, P894, DOI 10.1002/cne.21325 Stein B. E., 1993, MERGING SENSES Thirion B, 2007, NEUROIMAGE, V35, P105, DOI 10.1016/j.neuroimage.2006.11.054 Woolsey T. A., 2003, BRAIN ATLAS VISUAL G Zeng CH, 2009, J NEUROSCI, V29, P4210, DOI 10.1523/JNEUROSCI.0208-09.2009 Zhou JX, 2004, J NEUROSCI RES, V78, P901, DOI 10.1002/jnr.20343 Zhou JX, 2006, J COMP NEUROL, V495, P100, DOI 10.1002/cne.20863 NR 67 TC 15 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 78 EP 88 DI 10.1016/j.heares.2010.04.006 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700010 PM 20430086 ER PT J AU Ito, K Chihara, Y Iwasaki, S Komuta, Y Sugasawa, M Sahara, Y AF Ito, Ken Chihara, Yasuhiro Iwasaki, Shinichi Komuta, Yukari Sugasawa, Masashi Sahara, Yoshinori TI Functional ligand-gated purinergic receptors (P2X) in rat vestibular ganglion neurons SO HEARING RESEARCH LA English DT Article ID MODULATES COCHLEAR MECHANICS; PHARMACOLOGICAL EVIDENCE; MOLECULAR PHYSIOLOGY; GUINEA-PIG; ATP; CELLS; ADENOSINE; CHANNELS; CURRENTS; SUBUNIT AB The expression of purinergic receptors (P2X) on rat vestibular ganglion neurons (VGNs) was examined using whole-cell patch-clamp recordings. An application of adenosine 5'-triphosphate (ATP: 100 mu M) evoked inward currents in VGNs at a holding potential of -60 mV. The decay time constant of the ATP-evoked currents was 2-4 s, which is in between the values for rapidly desensitizing subgroups (P2X1 and P2X3) and slowly desensitizing subgroups (P2X2, P2X4, etc.), suggesting the heterogeneous expression of P2X receptors. A dose-response experiment showed an EC(50) of 11.0 mu M and a Hill's coefficient of 0.82. Suramin (100 mu M) reversibly inhibited the ATP-evoked inward currents. Alpha, beta-methylene ATP (100 mu M), a P2X-specific agonist, also evoked inward currents but less extensively than ATP. An application of adenosine 5'-dihosphate (ADP; 100 mu M) evoked similar, but much smaller, currents. The current-voltage relationship of the ATP-evoked conductance showed pronounced inward rectification with a reversal potential more positive than 0 mV, suggesting non-selective cation conductance. However, the channel was not permeable to a large cation (N-methyl-D-glucamine) and acidification (pH 6.3) had little effect on the ATP-evoked conductance. RT-PCR confirmed the expression of five subtypes (P2X2-P2X6) in VGNs. The physiological role of P2X receptors includes the modulation of excitability at the synapses between hair cells and dendrites and/or trophic support (or also neuro-modulation) from supporting cells surrounding the VGNs. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ito, Ken] Teikyo Univ, Dept Otolaryngol, Fac Med, Itabashi Ku, Tokyo 1738605, Japan. [Ito, Ken; Chihara, Yasuhiro; Iwasaki, Shinichi] Univ Tokyo, Dept Otolaryngol, Fac Med, Tokyo 113, Japan. [Komuta, Yukari; Sahara, Yoshinori] Natl Ctr Neurol & Psychiat, Natl Inst Neurosci, Div Biochem & Cellular Biol, Kodaira, Tokyo 187, Japan. [Sugasawa, Masashi] Saitama Med Coll, Dept Otolaryngol, Moroyama, Saitama, Japan. [Sahara, Yoshinori] Tsurumi Univ, Dept Physiol, Sch Dent Med, Yokohama, Kanagawa, Japan. RP Ito, K (reprint author), Teikyo Univ, Dept Otolaryngol, Fac Med, Itabashi Ku, 2-11-1 Kaga, Tokyo 1738605, Japan. EM itoken-tky@umin.ac.jp FU Japanese Ministry of Education, Science, Sports and Culture [C-17591778, C-18791190] FX The first and second authors contributed equally to this article. This work was supported by grants from the Japanese Ministry of Education, Science, Sports and Culture (C-17591778 and C-18791190). This study was presented at the 43rd Inner Ear Biology Workshop, Sep 17-20, 2006, Montpellier, France, and at the 31st Annual Mid Winter Meeting of the Association for Research in Otolaryngology. Feb 16-21, 2008, Phoenix, AZ, USA. CR Armstrong CE, 1998, J NEUROSCI, V18, P2962 Burnstock G, 2006, TRENDS PHARMACOL SCI, V27, P166, DOI 10.1016/j.tips.2006.01.005 Burnstock G, 2006, BRIT J PHARMACOL, V147, pS172, DOI 10.1038/sj.bjp.0706429 Chen C, 1998, HEARING RES, V118, P47, DOI 10.1016/S0378-5955(98)00019-7 Cho H, 1997, ACTA OTO-LARYNGOL, V117, P545, DOI 10.3109/00016489709113435 Di Virgilio F, 2006, NOVART FDN SYMP, V276, P259 Di Virgilio Francesco, 2006, Novartis Found Symp, V276, P253 Di Virgilio F, 2006, NOVART FDN SYMP, V276, P275 Franke H, 2006, PFLUG ARCH EUR J PHY, V452, P622, DOI 10.1007/s00424-006-0071-8 Fredholm BB, 2005, ANNU REV PHARMACOL, V45, P385, DOI 10.1146/annurev.pharmtox.45.120403.095731 Greenwood D, 2007, DEVELOPMENT, V134, P1407, DOI 10.1242/dev.002279 Housley GD, 1999, J NEUROSCI, V19, P8377 Ito K, 2002, AM J PHYSIOL-CELL PH, V282, pC1121, DOI 10.1152/ajpcell.00364.2001 Kanjhan R, 2003, AUDIOL NEURO-OTOL, V8, P115, DOI 10.1159/000069478 Khakh BS, 1999, NAT NEUROSCI, V2, P322, DOI 10.1038/7233 Khakh BS, 2001, NAT REV NEUROSCI, V2, P165, DOI 10.1038/35058521 King BF, 1996, BRIT J PHARMACOL, V117, P1371 Kreindler JL, 2001, ANN OTO RHINOL LARYN, V110, P277 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 Nagata M, 2000, ACTA OTO-LARYNGOL, V120, P704, DOI 10.1080/000164800750000216 North RA, 2002, PHYSIOL REV, V82, P1013, DOI 10.1152/physrev.00015.2002 Pankratov Y, 2006, PFLUG ARCH EUR J PHY, V452, P589, DOI 10.1007/s00424-006-0061-x Ralevic V, 1998, PHARMACOL REV, V50, P413 Rathbone MP, 1999, PROG NEUROBIOL, V59, P663, DOI 10.1016/S0301-0082(99)00017-9 SAHARA Y, 1993, J NEUROSCI, V13, P3041 Salih SG, 2002, NEUROPHARMACOLOGY, V42, P386, DOI 10.1016/S0028-3908(01)00184-8 Salih SG, 1998, NEUROREPORT, V9, P279, DOI 10.1097/00001756-199801260-00019 Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2 Stoop R, 1997, J NEUROPHYSIOL, V78, P1837 Taschenberger H, 1999, J NEUROSCI, V19, P3353 Tritsch NX, 2007, NATURE, V450, P50, DOI 10.1038/nature06233 Virginio C, 1999, NAT NEUROSCI, V2, P315 Xiang ZH, 1999, HEARING RES, V128, P190, DOI 10.1016/S0378-5955(98)00208-1 Zimmermann H, 2006, PFLUG ARCH EUR J PHY, V452, P573, DOI 10.1007/s00424-006-0067-4 NR 34 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 89 EP 95 DI 10.1016/j.heares.2010.03.081 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700011 PM 20430087 ER PT J AU Brimijoin, WO O'Neill, WE AF Brimijoin, W. Owen O'Neill, William E. TI Patterned tone sequences reveal non-linear interactions in auditory spectrotemporal receptive fields in the inferior colliculus SO HEARING RESEARCH LA English DT Article ID COMBINATION-SENSITIVE NEURONS; FREQUENCY-MODULATED STIMULI; SHORT-TERM ADAPTATION; MOUSTACHED BAT; NATURAL SOUNDS; MUSTACHE BAT; BIOSONAR SIGNALS; CORTICAL-NEURONS; COCHLEAR NUCLEUS; TUNED NEURONS AB Linear measures of auditory receptive fields do not always fully account for a neuron's response to spectrotemporally-complex signals such as frequency-modulated sweeps (FM) and communication sounds. A possible source of this discrepancy is cross-frequency interactions, common response properties which may be missed by linear receptive fields but captured using two-tone masking. Using a patterned tonal sequence that included a balanced set of all possible tone-to-tone transitions, we have here combined the spectrotemporal receptive field with two-tone masking to measure spectrotemporal response maps (STRM). Recording from single units in the mustached bat inferior colliculus, we found significant non-linear interactions between sequential tones in all sampled units. In particular, tone-pair STRMs revealed three common features not visible in linear single-tone STRMs: 1) two-tone facilitative interactions, 2) frequency-specific suppression, and 3) post-stimulatory suppression in the absence of spiking. We also found a correlative relationship between these nonlinear receptive field features and sensitivity for different rates and directions of FM sweeps, dynamic features found in many vocalizations, including speech. The overwhelming prevalence of cross-frequency interactions revealed by this technique provides further evidence of the central auditory system's role as a pattern-detector, and underscores the need to include nonlinearity in measures of the receptive field. (C) 2010 Elsevier B.V. All rights reserved. C1 [Brimijoin, W. Owen; O'Neill, William E.] Univ Rochester, Dept Brain & Cognit Sci, Coll Arts Sci & Engn, Rochester, NY 14627 USA. [O'Neill, William E.] Univ Rochester, Dept Neurobiol & Anat, Ctr Nav & Commun Sci, Sch Med & Dent, Rochester, NY 14642 USA. RP Brimijoin, WO (reprint author), Glasgow Royal Infirm, MRC Inst Hearing Res, Scottish Sect, Queen Elizabeth Bldg,16 Alexandra Parade, Glasgow G31 2ER, Lanark, Scotland. EM owen@ihr.gla.ac.uk FU National Institute for Deafness and Communicative Disorders (NIDCD) [R01-DC03717]; National Institute of Mental Health [5 T32 MH19942-07] FX This research was supported by a grant from the National Institute for Deafness and Communicative Disorders (NIDCD R01-DC03717) and from a National Institute of Mental Health Training Grant (5 T32 MH19942-07). We thank William Vaughn for generating a pseudo-random sequence and Editor Dan Sanes and two anonymous reviewers for invaluable comments. CR AERTSEN AMHJ, 1980, BIOL CYBERN, V38, P235, DOI 10.1007/BF00337016 Ahrens MB, 2008, J NEUROSCI, V28, P1929, DOI 10.1523/JNEUROSCI.3377-07.2008 Andoni S, 2007, J NEUROSCI, V27, P4882, DOI 10.1523/JNEUROSCI.4342-06.2007 Atencio CA, 2007, J NEUROPHYSIOL, V98, P2182, DOI 10.1152/jn.00394.2007 Barbour DL, 2003, J NEUROSCI, V23, P7194 Bar-Yosef O, 2002, J NEUROSCI, V22, P8619 Brand A, 2000, J NEUROPHYSIOL, V84, P1790 Brimijoin WO, 2005, HEARING RES, V210, P63, DOI 10.1016/j.heares.2005.07.005 BRITT R, 1976, J NEUROPHYSIOL, V39, P179 Brosch M, 1997, J NEUROPHYSIOL, V77, P923 Brosch M, 2000, CEREB CORTEX, V10, P1155, DOI 10.1093/cercor/10.12.1155 CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Christianson GB, 2008, J NEUROSCI, V28, P446, DOI 10.1523/JNEUROSCI.1775-07.2007 Covey E, 1996, J NEUROSCI, V16, P3009 de Bruijn NG, 1946, KONINKLIJKE NEDERLAN, V49, P758 deCharms RC, 1998, SCIENCE, V280, P1439, DOI 10.1126/science.280.5368.1439 Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220 EGGERMONT JJ, 1981, HEARING RES, V5, P109, DOI 10.1016/0378-5955(81)90030-7 Escabi MA, 2002, J NEUROSCI, V22, P4114 Faure PA, 2003, J NEUROSCI, V23, P3052 FITZPATRICK DC, 1993, J NEUROSCI, V13, P931 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005 FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 Fuzessery ZM, 2006, J NEUROPHYSIOL, V96, P1320, DOI 10.1152/jn.00021.2006 Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 Heil P, 1998, J NEUROPHYSIOL, V79, P3041 HEIL P, 1992, HEARING RES, V63, P108, DOI 10.1016/0378-5955(92)90080-7 Kaltenbach J. A., 1992, Society for Neuroscience Abstracts, V18, P149 KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273 Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3503 Kvale MN, 2004, J NEUROPHYSIOL, V91, P604, DOI 10.1152/jn.00484.2003 Leroy SA, 2000, J NEUROSCI, V20, P8533 Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002 Machens CK, 2004, J NEUROSCI, V24, P1089, DOI 10.1523/JNEUROSCI.4445-03.2004 MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6 Miller LM, 2002, J NEUROPHYSIOL, V87, P516 MITTMANN DH, 1995, HEARING RES, V90, P185, DOI 10.1016/0378-5955(95)00164-X Nataraj K, 2006, J NEUROPHYSIOL, V95, P2179, DOI 10.1152/jn.01148.2005 O'Neill W. E., 1995, HEARING BATS, P416 OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1254 ONEILL WE, 1979, SCIENCE, V203, P69, DOI 10.1126/science.758681 Peterson DC, 2008, J NEUROPHYSIOL, V100, P629, DOI 10.1152/jn.90390.2008 Plack CJ, 2006, J NEUROSCI, V26, P8767, DOI 10.1523/JNEUROSCI.1134-06.2006 Portfors CV, 2001, JARO, V2, P104, DOI 10.1007/s101620010057 Portfors CV, 2002, HEARING RES, V168, P131, DOI 10.1016/S0378-5955(02)00376-3 Portfors CV, 1999, J NEUROPHYSIOL, V82, P1326 Rall W., 1964, NEURAL THEORY MODELI, P73 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 Rieke F, 1995, P ROY SOC B-BIOL SCI, V262, P259, DOI 10.1098/rspb.1995.0204 ROVERUD RC, 1993, J NEUROSCI, V13, P2306 Rutkowski RG, 2002, AUDIOL NEURO-OTOL, V7, P214, DOI 10.1159/000063738 Sanchez JT, 2008, J NEUROSCI, V28, P80, DOI 10.1523/JNEUROSCI.3572-07.2008 SCHULLER G, 1986, J NEUROSCI METH, V18, P339, DOI 10.1016/0165-0270(86)90022-1 Segev I, 1998, TRENDS NEUROSCI, V21, P453, DOI 10.1016/S0166-2236(98)01327-7 Sen K, 2001, J NEUROPHYSIOL, V86, P1445 SHANNONHARTMAN S, 1992, HEARING RES, V61, P179, DOI 10.1016/0378-5955(92)90049-S Shechter B, 2007, NEUROSCIENCE, V148, P806, DOI 10.1016/j.neuroscience.2007.06.027 Singh NC, 2003, J ACOUST SOC AM, V114, P3394, DOI 10.1121/1.1624067 SUGA N, 1965, J PHYSIOL-LONDON, V179, P26 SUGA N, 1979, SCIENCE, V206, P351, DOI 10.1126/science.482944 SUGA N, 1978, SCIENCE, V200, P778, DOI 10.1126/science.644320 SUGA N, 1974, J EXP BIOL, V61, P379 SUGA N, 1973, J ACOUST SOC AM, V54, P174, DOI 10.1121/1.1913561 SUGA N, 1983, J NEUROPHYSIOL, V49, P1573 Sutter ML, 1999, J NEUROPHYSIOL, V82, P2358 Theunissen FE, 2004, ANN NY ACAD SCI, V1016, P187, DOI 10.1196/annals.1298.020 Theunissen FE, 2000, J NEUROSCI, V20, P2315 Valentine PA, 2004, HEARING RES, V196, P119, DOI 10.1016/j.heares.2004.05.011 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 WARREN S, 1986, J NEUROPHYSIOL, V56, P598 Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 WICKESBERG RE, 1990, J NEUROSCI, V10, P1762 Woolley SMN, 2006, J NEUROSCI, V26, P2499, DOI 10.1523/JNEUROSCI.3731-05.2006 NR 79 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 96 EP 110 DI 10.1016/j.heares.2010.04.005 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700012 PM 20430078 ER PT J AU Li, SF Li, HW Wang, ZM AF Li, Shufeng Li, Huawei Wang, Zhengmin TI Orientation of spiral ganglion neurite extension in electrical fields of charge-balanced biphasic pulses and direct current in vitro SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; SENSORY AXON REGENERATION; GROWTH CONE GUIDANCE; DEAFENED GUINEA-PIG; AUDITORY-NERVE; COCHLEAR IMPLANTATION; SPINAL-CORD; STIMULATION; SURVIVAL; NEURONS AB Cochlear implants function by stimulating residual spiral ganglion neurons (SGNs) with electric current. Promoting the neurites of SGNs to grow towards an electrode array could improve the outcome of cochlear implantation. Several studies have suggested that DC electrical fields (EFs) can affect the direction of neurite extension. To investigate the impact of steady DC EFs, pulsed DC EFs and charge-balanced biphasic pulsed EFs on the direction of SON neurite extension, we established an SON culturing and imaging system. SGN explants of newborn Sprague-Dawley rats were cultured on slides. Slides were positioned into the monitoring system with neurite terminals in a certain orientation and location, while the migration of SON growth cones was monitored by taking serial photos. Deflection angles of neurites at a certain period were measured. In steady or pulsed DC EFs, neurites on laminin-coated slides turned towards the cathode, while those on PDL-coated slides turned towards the anode. The neurites in charge-balanced biphasic pulsed EFs had an obvious orientation of turning away from the electrode rings. This orientation diminished with increasing distance from the electrode rings and followed the nonuniform characteristics of charge-balanced biphasic pulsed EFs. (C) 2010 Elsevier B.V. All rights reserved. C1 [Li, Shufeng; Li, Huawei; Wang, Zhengmin] Fudan Univ, Eye & ENT Hosp, Dept Otolaryngol, Shanghai 200031, Peoples R China. RP Wang, ZM (reprint author), Fudan Univ, Eye & ENT Hosp, Dept Otolaryngol, 83 Fenyang Rd, Shanghai 200031, Peoples R China. EM lisf@fudan.edu.cn; hwli@shmu.edu.cn; fjswzm@gmail.com CR Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012 Brushart TM, 2005, EXP NEUROL, V194, P221, DOI 10.1016/j.expneuro.2005.02.007 Cormie P, 2007, NEUROSCI LETT, V411, P128, DOI 10.1016/j.neulet.2006.10.030 English AW, 2007, DEV NEUROBIOL, V67, P158, DOI 10.1002/neu.20339 Evans AR, 2007, DEV NEUROBIOL, V67, P1721, DOI 10.1002/dneu.20540 Geremia NM, 2007, EXP NEUROL, V205, P347, DOI 10.1016/j.expneurol.2007.01.040 Gillespie LN, 2005, EUR J NEUROSCI, V22, P2123, DOI 10.1111/j.1460-9568.2005.04430.x Giniger E, 2002, DIFFERENTIATION, V70, P385, DOI 10.1046/j.1432-0436.2002.700801.x Gordon T, 2009, MOTOR CONTROL, V13, P412 Hamid S, 2008, EUR SPINE J, V17, P1256, DOI 10.1007/s00586-008-0729-3 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 Hegarty JL, 1997, J NEUROSCI, V17, P1959 HURLBERT RJ, 1993, J NEUROSURG, V79, P905, DOI 10.3171/jns.1993.79.6.0905 Kerr A, 1968, Acta Otolaryngol, V65, P586, DOI 10.3109/00016486809121002 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X Li L, 1999, HEARING RES, V133, P27, DOI 10.1016/S0378-5955(99)00043-X McCaig CD, 2002, TRENDS NEUROSCI, V25, P354 McCaig CD, 2005, PHYSIOL REV, V85, P943, DOI 10.1152/physrev.00020.2004 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 Panescu D, 2008, IEEE ENG MED BIOL, V27, P100, DOI 10.1109/MEMB.2008.928457 Rajnicek AM, 2006, J CELL SCI, V119, P1723, DOI 10.1242/jcs.02896 Rajnicek AM, 1998, DEV BIOL, V203, P412, DOI 10.1006/dbio.1998.9039 Rajnicek AM, 2006, J CELL SCI, V119, P1736, DOI 10.1242/jcs.02897 Roehm PC, 2008, MOL CELL NEUROSCI, V37, P376, DOI 10.1016/j.mcn.2007.10.014 Rubinstein Jay T, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P444, DOI 10.1097/01.moo.0000134452.24819.c0 SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd RK, 1999, ACTA OTO-LARYNGOL, V119, P674, DOI 10.1080/00016489950180621 Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x Vivo M, 2008, EXP NEUROL, V211, P180, DOI 10.1016/j.expneurol.2008.01.020 Wood M, 2006, BIOELECTROMAGNETICS, V27, P328, DOI 10.1002/bem.20214 NR 36 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 111 EP 118 DI 10.1016/j.heares.2010.04.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700013 PM 20430073 ER PT J AU Mellott, JG Van der Gucht, E Lee, CC Carrasco, A Winer, JA Lomber, SG AF Mellott, Jeffrey G. Van der Gucht, Estel Lee, Charles C. Carrasco, Andres Winer, Jeffery A. Lomber, Stephen G. TI Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32 SO HEARING RESEARCH LA English DT Article ID ANTERIOR ECTOSYLVIAN SULCUS; LATERAL GENICULATE-NUCLEUS; PRIMARY VISUAL-CORTEX; ECHIDNA TACHYGLOSSUS-ACULEATUS; CALCIUM-BINDING PROTEINS; PYRAMIDAL NEURONS; CEREBRAL-CORTEX; MACAQUE MONKEY; ARCHITECTONIC SUBDIVISIONS; PARAHIPPOCAMPAL CORTICES AB The monoclonal antibody SMI-32 was used to characterize and distinguish individual areas of cat auditory cortex. SMI-32 labels non-phosphorylated epitopes on the high- and medium-molecular weight subunits of neurofilament proteins in cortical pyramidal cells and dendritic trees with the most robust immunoreactivity in layers III and V. Auditory areas with unique patterns of immunoreactivity included: primary auditory cortex (AI), second auditory cortex (AII), dorsal zone (DZ), posterior auditory field (PAF), ventral posterior auditory field (VPAF), ventral auditory field (VAF), temporal cortex (T), insular cortex (IN), anterior auditory field (AAF), and the auditory field of the anterior ectosylvian sulcus (fAES). Unique patterns of labeling intensity, soma shape, soma size, layers of immunoreactivity, laminar distribution of dendritic arbors, and labeled cell density were identified. Features that were consistent in all areas included: layers I and IV neurons are immunonegative: nearly all immunoreactive cells are pyramidal: and immunoreactive neurons are always present in layer V. To quantify the results, the numbers of labeled cells and dendrites, as well as cell diameter, were collected and used as tools for identifying and differentiating areas. Quantification of the labeling patterns also established profiles for ten auditory areas/layers and their degree of immunoreactivity. Areal borders delineated by SMI-32 were highly correlated with tonotopically-defined areal boundaries. Overall, SMI-32 immunoreactivity can delineate ten areas of cat auditory cortex and demarcate topographic borders. The ability to distinguish auditory areas with SMI-32 is valuable for the identification of auditory cerebral areas in electrophysiological, anatomical, and/or behavioral investigations. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mellott, Jeffrey G.; Carrasco, Andres; Lomber, Stephen G.] Univ Western Ontario, Ctr Brain & Mind, Dept Physiol & Pharmacol, Schulich Sch Med & Dent, London, ON N6A 5C1, Canada. [Mellott, Jeffrey G.] Univ Texas Dallas, Sch Behav & Brain Sci, Richardson, TX 75083 USA. [Van der Gucht, Estel] Katholieke Univ Leuven, Lab Neuroplast & Neuroprote, Louvain, Belgium. [Lee, Charles C.] Univ Chicago, Dept Neurobiol, Chicago, IL 60637 USA. [Winer, Jeffery A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Mellott, Jeffrey G.; Carrasco, Andres; Lomber, Stephen G.] Univ Western Ontario, Dept Psychol, Cerebral Syst Lab, London, ON, Canada. RP Lomber, SG (reprint author), Univ Western Ontario, Ctr Brain & Mind, Dept Physiol & Pharmacol, Schulich Sch Med & Dent, Med Sci Bldg,Room 216,1151 Richmond St N, London, ON N6A 5C1, Canada. EM steve.lomber@uwo.ca RI Lomber, Stephen/B-6820-2015 OI Lomber, Stephen/0000-0002-3001-7909 FU Canadian Institutes of Health Research; Natural Sciences and Engineering Research Council of Canada; National Institute on Deafness and Other Communication Disorders FX We thank Sang Keun (Sam) Yi for assistance in the histological preparation of tissue and Amee J. Hall with assistance in preparing the manuscript. This work was supported by grants from the Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, and the National Institute on Deafness and Other Communication Disorders. CR Ashwell KWS, 2005, BRAIN BEHAV EVOLUT, V66, P114, DOI 10.1159/000086230 Beaver BV, 2001, J AM VET MED ASSOC, V218, P669 BALDAUF ZB, 2005, NEUROSCI LETT, V383, P1 Beneyto M, 1998, J COMP NEUROL, V401, P329 Bickford ME, 1998, J NEUROSCI, V18, P6549 Boire D, 2005, J CHEM NEUROANAT, V29, P193, DOI 10.1016/j.jchemneu.2005.01.003 BOWMAN EM, 1988, J COMP NEUROL, V272, P30, DOI 10.1002/cne.902720104 BOWMAN EM, 1988, J COMP NEUROL, V272, P15, DOI 10.1002/cne.902720103 Brodmann K., 1909, VERGLEICHENDE LOKALI Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x CAMPBELL MJ, 1989, J COMP NEUROL, V282, P191, DOI 10.1002/cne.902820204 Carrasco A, 2009, J NEUROSCI, V29, P14323, DOI 10.1523/JNEUROSCI.2905-09.2009 Carrasco A, 2009, J NEUROSCI, V29, P8350, DOI 10.1523/JNEUROSCI.6001-08.2009 Chaudhuri A, 1996, BRAIN RES, V709, P17, DOI 10.1016/0006-8993(95)01217-6 Cheung SW, 2001, HEARING RES, V156, P115, DOI 10.1016/S0378-5955(01)00272-6 CLAREY JC, 1986, BRAIN RES, V386, P12, DOI 10.1016/0006-8993(86)90136-8 Clasca F, 2000, CEREB CORTEX, V10, P371, DOI 10.1093/cercor/10.4.371 Clasca F, 1997, J COMP NEUROL, V384, P456, DOI 10.1002/(SICI)1096-9861(19970804)384:3<456::AID-CNE10>3.0.CO;2-H CUSICK CG, 1995, J COMP NEUROL, V360, P513, DOI 10.1002/cne.903600312 DELRIO MR, 1994, J COMP NEUROL, V342, P389, DOI 10.1002/cne.903420307 deRibaupierre F, 1997, CENTRAL AUDITORY SYS, P317 Duffy KR, 2003, CEREB CORTEX, V13, P722, DOI 10.1093/cercor/13.7.722 Fuentes-Santamaria V, 2006, NEUROSCIENCE, V138, P55, DOI 10.1016/j.neuroscience.2005.11.045 Hassiotis M, 2004, J COMP NEUROL, V475, P493, DOI 10.1002/cne.20193 Hassiotis M, 2005, J COMP NEUROL, V482, P94, DOI 10.1002/cne.20353 HAYES T L, 1992, Cerebral Cortex, V2, P56, DOI 10.1093/cercor/2.1.56 HOF PR, 1995, J COMP NEUROL, V352, P161, DOI 10.1002/cne.903520202 Hof Patrick R., 1992, Cerebral Cortex, V2, P456, DOI 10.1093/cercor/2.6.456 HOF PR, 1990, J COMP NEUROL, V301, P55, DOI 10.1002/cne.903010106 HOF PR, 1995, J COMP NEUROL, V359, P48, DOI 10.1002/cne.903590105 HOF PR, 1992, NEUROSCI LETT, V146, P91, DOI 10.1016/0304-3940(92)90180-F HOF PR, 1990, J COMP NEUROL, V301, P44, DOI 10.1002/cne.903010105 HOF PR, 1995, J COMP NEUROL, V362, P109, DOI 10.1002/cne.903620107 Hof PR, 1996, J CHEM NEUROANAT, V11, P81, DOI 10.1016/0891-0618(96)00126-3 Horsley V, 1908, BRAIN, V31, P45, DOI 10.1093/brain/31.1.45 Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003 IMIG TJ, 1982, CORTICAL SENSORY ORG, V3, P1 IMIG TJ, 1983, ANNU REV NEUROSCI, V6, P95, DOI 10.1146/annurev.ne.06.030183.000523 IMIG TJ, 1980, J COMP NEUROL, V192, P292 JEBB AH, 1977, STAIN TECHNOL, V52, P315 KANEKO T, 1994, J COMP NEUROL, V345, P172, DOI 10.1002/cne.903450203 KELLY JB, 1971, J NEUROPHYSIOL, V34, P802 KELLY JP, 1981, BRAIN RES, V212, P1, DOI 10.1016/0006-8993(81)90027-5 KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1 Lee CC, 2008, J COMP NEUROL, V507, P1901, DOI 10.1002/cne.21614 Lee CC, 2008, J COMP NEUROL, V507, P1879, DOI 10.1002/cne.21611 Lee CC, 2008, J COMP NEUROL, V507, P1920, DOI 10.1002/cne.21613 Lewis JW, 2000, J COMP NEUROL, V428, P79, DOI 10.1002/1096-9861(20001204)428:1<79::AID-CNE7>3.0.CO;2-Q LIEM RKH, 1978, J CELL BIOL, V79, P637, DOI 10.1083/jcb.79.3.637 Lomber SG, 2007, HEARING RES, V229, P31, DOI 10.1016/j.heares.2007.01.013 Lomber SG, 2008, NAT NEUROSCI, V11, P609, DOI 10.1038/nn.2108 Luppino G, 2005, EUR J NEUROSCI, V21, P3056, DOI 10.1111/j.1460-9568.2005.04149.x Malhotra S, 2007, J NEUROPHYSIOL, V97, P26, DOI 10.1152/jn.00720.2006 Malhotra S, 2008, J NEUROPHYSIOL, V99, P1628, DOI 10.1152/jn.01228.2007 MELLOTT J, 2005, DISTINGUISHING CAT A MEREDITH MA, 1989, J COMP NEUROL, V289, P687 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 MIDDLEBROOKS JC, 1983, J NEUROSCI, V3, P203 MOREL A, 1987, J COMP NEUROL, V265, P119, DOI 10.1002/cne.902650109 Mori A, 1996, NEUROREPORT, V7, P2385, DOI 10.1097/00001756-199610020-00021 MUCKE L, 1982, EXP BRAIN RES, V46, P1 Neff W. D., 1975, HDB SENSORY PHYSL, V2, P307 Niimi K, 1979, Adv Anat Embryol Cell Biol, V57, P1 Nimchinsky EA, 1996, J COMP NEUROL, V374, P136 Olfert E.D., 1993, GUIDE CARE USE EXPT OLSON CR, 1987, J COMP NEUROL, V261, P277, DOI 10.1002/cne.902610209 OLSON CR, 1983, PROG BRAIN RES, V58, P239, DOI 10.1016/S0079-6123(08)60025-4 PALMER LA, 1978, J COMP NEUROL, V177, P237, DOI 10.1002/cne.901770205 PAULABARBOSA MM, 1975, EXP BRAIN RES, V23, P535 Payne BR, 1996, VISUAL NEUROSCI, V13, P805 PHILLIPS DP, 1982, BRAIN RES, V248, P237, DOI 10.1016/0006-8993(82)90581-9 PHILLIPS DP, 1984, J NEUROPHYSIOL, V51, P147 Preuss TM, 1997, BRAIN RES, V767, P148, DOI 10.1016/S0006-8993(97)00704-X RAUSCHECKER JP, 1993, J NEUROSCI, V13, P4538 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 Riederer BM, 1996, J COMP NEUROL, V364, P704, DOI 10.1002/(SICI)1096-9861(19960122)364:4<704::AID-CNE8>3.0.CO;2-7 ROSE JE, 1949, J COMP NEUROL, V91, P409, DOI 10.1002/cne.900910305 Rosenquist A. C., 1985, CEREB CORTEX, V3, P81 Saleem KS, 2007, J COMP NEUROL, V500, P973, DOI 10.1002/cne.21141 Sanides F, 1969, J Hirnforsch, V11, P79 Soares JG, 2008, J COMP NEUROL, V508, P605, DOI 10.1002/cne.21718 SOUSA-PINTO A, 1973, Archives Italiennes de Biologie, V111, P112 STERNBERGER LA, 1983, P NATL ACAD SCI-BIOL, V80, P6126, DOI 10.1073/pnas.80.19.6126 STROMING.NL, 1969, EXP NEUROL, V24, P348, DOI 10.1016/0014-4886(69)90141-1 Suzuki WA, 2003, J COMP NEUROL, V463, P67, DOI 10.1002/cne.10744 UPDYKE BV, 1986, J COMP NEUROL, V246, P265, DOI 10.1002/cne.902460210 Van der Gucht E, 2005, BRAIN RES, V1035, P60, DOI 10.1016/j.brainres.2004.11.062 Van der Gucht E, 2001, J COMP NEUROL, V441, P345, DOI 10.1002/cne.1416 Vogt BA, 2001, J COMP NEUROL, V438, P353, DOI 10.1002/cne.1320 Winer JA, 2001, J COMP NEUROL, V434, P379, DOI 10.1002/cne.1183 Winer JA, 1992, MAMMALIAN AUDITORY P, P222 WINER JA, 1984, J COMP NEUROL, V229, P476, DOI 10.1002/cne.902290404 Wong PY, 2008, ANAT REC, V291, P1301, DOI 10.1002/ar.20758 Wong PY, 2009, ANAT REC, V292, P994, DOI 10.1002/ar.20916 WONGRILEY M, 1979, BRAIN RES, V171, P11, DOI 10.1016/0006-8993(79)90728-5 Woolsey C. N., 1960, NEURAL MECH AUDITORY, P165 NR 97 TC 24 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 119 EP 136 DI 10.1016/j.heares.2010.04.003 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700014 PM 20430082 ER PT J AU Schulz-Mirbach, T Ladich, F Riesch, R Plath, M AF Schulz-Mirbach, Tanja Ladich, Friedrich Riesch, Ruediger Plath, Martin TI Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana (Teleostei: Poeciliidae) SO HEARING RESEARCH LA English DT Article ID INNER-EAR; ASTYANAX-FASCIATUS; SOUND PRODUCTION; VATERITE; FISH; POPULATIONS; ARAGONITE; FORM; AUDIOGRAMS; PHYSIOLOGY AB Cave fish have rarely been investigated with regard to their inner ear morphology, hearing abilities, and acoustic communication. Based on a previous study that revealed morphological differences in the saccular otolith between a cave and two surface populations of Poecilia mexicana, we checked for additional differences in utricular and lagenar otoliths and tested whether different populations have similar hearing sensitivities. We found pronounced differences in the shape of all three otoliths. Otoliths of the saccule and lagena from cave fish differed from those of surface fish in the features of the face oriented towards the sensory epithelium. In addition, otoliths of the utricle and lagena were significantly heavier in cave fish. Auditory sensitivities were measured between 100 and 1500 Hz, utilizing the auditory evoked potential recording technique. We found similar hearing abilities in cave and surface fish, with greatest sensitivity between 200 and 300 Hz. An acoustic survey revealed that neither ecotype produced species-specific sounds. Our data indicate that cave dwelling altered the otolith morphology in Atlantic mollies, probably due to metabolic differences. Different otolith morphology, however, did not affect general auditory sensitivity or acoustic behavior. (C) 2010 Elsevier B.V. All rights reserved. C1 [Schulz-Mirbach, Tanja] Univ Munich, Dept Earth & Environm Sci, D-80333 Munich, Germany. [Ladich, Friedrich] Univ Vienna, Dept Behav Biol, A-1090 Vienna, Austria. [Riesch, Ruediger] Univ Oklahoma, Dept Zool, Norman, OK 73019 USA. [Plath, Martin] Goethe Univ Frankfurt, Dept Ecol & Evolut, D-60054 Frankfurt, Germany. RP Schulz-Mirbach, T (reprint author), Univ Munich, Dept Earth & Environm Sci, Richard Wagner Str 10, D-80333 Munich, Germany. EM t.schulz-mirbach@lrz.uni-muenchen.de; friedrich.ladich@univie.ac.at; ruedigerriesch@ou.edu; mplath@bio.uni-frankfurt.de RI Riesch, Rudiger/A-5787-2008 FU University of Bavaria; Austrian Science Fund [FWF 22319]; Graduate College of the University of Oklahoma; DFG [PL 470/1-2] FX We wish to thank W. Lechner, L E. Wysocki, and S. Papes for assistance during auditory measurements, R. Melzer for providing access to the SEM at the Zoological State Collection (Munich) and M. Stachowitsch for professional scientific English proofreading. For constructive comments on the manuscript we thank two anonymous reviewers. This study was funded by a postdoctoral fellowship of the University of Bavaria e.V. ('Bayerische Eliteforderung'; T. Schulz-Mirbach), the Austrian Science Fund (FWF 22319 to FL) and by a Robberson Research Grant from the Graduate College of the University of Oklahoma (R. Riesch). M. Plath acknowledges financial support from DFG ('Deutsche Forschungsgemeinschaft', PL 470/1-2). CR Allemand Denis, 2007, P291, DOI 10.1002/9783527619443.ch17 Amorim M.C.P., 2006, COMMUNICATION FISHES, VI, P71 [Anonymous], 1983, 1683 ISO Assis CA, 2003, J FISH BIOL, V62, P1268, DOI 10.1046/j.1095-8649.2003.00106.x Bang A, 2005, MAR BIOL, V147, P1419, DOI 10.1007/s00227-005-0037-y Casper BM, 2006, ENVIRON BIOL FISH, V76, P101, DOI 10.1007/s10641-006-9012-9 Corwin J.T., 1981, HEARING SOUND COMMUN, P81 Crampton J.S., 1996, I GEOLOGICAL NUCL SC, V96, P1 De Perera TB, 2004, ANIM BEHAV, V68, P291 Falini G, 2005, EUR J INORG CHEM, P162, DOI 10.1002/ejic.200400419 GAULDIE RW, 1993, J MORPHOL, V218, P1, DOI 10.1002/jmor.1052180102 Gordon M. S., 1962, COPEIA, V1962, P360, DOI DOI 10.2307/1440903 Haines AJ, 2000, PALAEONTOLOGY, V43, P765, DOI 10.1111/1475-4983.00148 Hammer O., 2001, PALAEONTOL ELECTRON, V4, P1 Horodysky AZ, 2008, J EXP BIOL, V211, P1504, DOI 10.1242/jeb.016196 JACKSON DA, 1993, ECOLOGY, V74, P2204, DOI 10.2307/1939574 Johnson DL, 2000, ENVIRON BIOL FISH, V59, P341, DOI 10.1023/A:1007670530361 Kenyon TN, 1998, J COMP PHYSIOL A, V182, P307, DOI 10.1007/s003590050181 Ladich F, 2009, COMP BIOCHEM PHYS A, V154, P341, DOI 10.1016/j.cbpa.2009.07.004 Ladich F., 2006, COMMUNICATION FISHES, VI, P121 LYCHAKOV DV, 1992, J EVOL BIOCHEM PHYS, V28, P707 Miller RR, 2005, FRESHWATER FISHES ME Montgomery JC, 2001, ENVIRON BIOL FISH, V62, P87, DOI 10.1023/A:1011873111454 Myrberg Jr A. A., 2006, COMMUNICATION FISHES, VI, P149 Nicoletto PF, 2008, ENVIRON BIOL FISH, V81, P15, DOI 10.1007/s10641-007-9189-6 Nolf D., 1985, HDB PALEOICHTHYOLOGY, V10, P145 Oliveira AM, 1996, NATURWISSENSCHAFTEN, V83, P133 Oxman DS, 2007, CAN J FISH AQUAT SCI, V64, P1469, DOI 10.1139/F07-106 Parmentier E., 2006, COMMUNICATION FISHES, VI, P45 Parzefall J, 2001, ENVIRON BIOL FISH, V62, P263, DOI 10.1023/A:1011899817764 PARZEFAL.J, 1970, Z MORPHOL TIERE, V68, P323, DOI 10.1007/BF00376005 Pati AK, 2002, CURR SCI INDIA, V83, P1112 Plath M, 2008, BEHAVIOUR, V145, P73, DOI 10.1163/156853908782687241 Popper Arthur N., 2008, V32, P17 Popper AN, 2000, FISH RES, V46, P15, DOI 10.1016/S0165-7836(00)00129-6 POPPER A N, 1970, Animal Behaviour, V18, P552, DOI 10.1016/0003-3472(70)90052-7 POPPER AN, HEAR RES IN PRESS Popper AN, 2005, MAR FRESHWATER RES, V56, P497, DOI 10.1071/MF04267 POULSON THOMAS L., 1963, AMER MIDLAND NAT, V70, P257, DOI 10.2307/2423056 Ramcharitar JU, 2004, J COMP NEUROL, V475, P531, DOI 10.1002/cne.20192 RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.2307/2409177 Rohlf FJ, 2004, TPSDIG VER 2 0 Schulz-Mirbach T, 2008, EVOL ECOL RES, V10, P537 SOLLNER C, 2004, BIOMINERALIZATION PR, P229, DOI 10.1002/3527604138.ch14 *SPSS INC, 2009, SPSS VER 17 0 US GUI Sweeting RM, 2004, REV FISH BIOL FISHER, V14, P361, DOI 10.1007/s11160-005-3793-3 Tobler M, 2006, EXTREMOPHILES, V10, P577, DOI 10.1007/s00792-006-0531-2 Tobler M, 2009, EVOL ECOL RES, V11, P935 Tobler M, 2008, EVOLUTION, V62, P2643, DOI 10.1111/j.1558-5646.2008.00466.x Tomas J, 2003, J FISH BIOL, V63, P1383, DOI 10.1046/j.1095-8649.2003.00145.x WRIGHT PJ, 1991, J FISH BIOL, V38, P929, DOI 10.1111/j.1095-8649.1991.tb03632.x Wysocki L. E., 2006, COMMUNICATION FISHES, V1, P177 Wysocki LE, 2009, J ACOUST SOC AM, V126, P2100, DOI 10.1121/1.3203562 Wysocki Lidia E., 2002, Bioacoustics, V12, P183 Wysocki LE, 2005, JARO-J ASSOC RES OTO, V6, P28, DOI 10.1007/s10162-004-4043-4 Wysocki LE, 2005, HEARING RES, V201, P27, DOI 10.1016/j.heares.2004.08.015 NR 56 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 1 PY 2010 VL 267 IS 1-2 BP 137 EP 148 DI 10.1016/j.heares.2010.04.001 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 631MO UT WOS:000280351700015 PM 20430090 ER PT J AU Demeester, K van Wieringen, A Hendrickx, JJ Topsakal, V Huyghe, J Fransen, E Van Laer, L Van Camp, G Van de Heyning, P AF Demeester, Kelly van Wieringen, Astrid Hendrickx, Jan-jaap Topsakal, Vedat Huyghe, Jeroen Fransen, Erik Van Laer, Lut Van Camp, Guy Van de Heyning, Paul TI Heritability of audiometric shape parameters and familial aggregation of presbycusis in an elderly Flemish population SO HEARING RESEARCH LA English DT Article DE Audiometric configuration; Presbycusis; Heritability; Familial aggregation; Epidemiology; Age-related hearing impairment ID HEARING-LOSS; ENVIRONMENTAL-INFLUENCES; ODDS-RATIO; IMPAIRMENT; NOISE; MODELS; RISK AB This study describes the heritability of audiometric shape parameters and the familial aggregation of different types of presbycusis in a healthy, otologically screened population between 50 and 75 years old. About 342 siblings of 64 families (average family-size: 5.3) were recruited through population registries. Audiometric shape was mathematically quantified by objective parameters developed to measure size, slope, concavity, percentage of frequency-dependent and frequency-independent hearing loss and Bulge Depth. The heritability of each parameter was calculated using a variance components model. Logistic regression models were used to estimate the odds ratios (ORs). Estimates of sibling recurrence risk ratios (lambda(s)) are also provided. Heritability estimates were generally higher compared to previous studies. ORs and lambda(s) for the parameters Total Hearing Loss (size), Uniform Hearing Loss (percentage of frequency-dependent hearing loss) and Bulge Depth suggest a higher heredity for severe types of presbycusis compared to moderate or mild types. Our results suggest that the separation of the parameter 'Total Hearing Loss' into the two parameters 'Uniform Hearing Loss' and 'Non-uniform Hearing Loss' could lead to the discovery of different genetic subtypes of presbycusis. The parameter 'Bulge Depth', instead of 'Concavity', seemed to be an important parameter for classifying subjects into 'susceptible' or 'resistant' to societal or intensive environmental exposure. (C) 2010 Elsevier B.V. All rights reserved. C1 [Demeester, Kelly; Topsakal, Vedat; Van de Heyning, Paul] Univ Hosp Antwerp UZA, B-2650 Edegem, Belgium. [Demeester, Kelly; Topsakal, Vedat; Van de Heyning, Paul] Univ UA, Dept Otolaryngol, B-2650 Edegem, Belgium. [Demeester, Kelly; van Wieringen, Astrid] Katholieke Univ Leuven, Dept Neurosci, B-3000 Louvain, Belgium. [Hendrickx, Jan-jaap; Huyghe, Jeroen; Fransen, Erik; Van Laer, Lut; Van Camp, Guy] Univ Antwerp UA, Dept Med Genet, B-2650 Antwerp, Belgium. [Fransen, Erik] Univ Antwerp, StatUA Stat Ctr, B-2000 Antwerp, Belgium. RP Demeester, K (reprint author), Univ Antwerp Hosp, Dept Otolaryngol, Wilrijkstr 10, B-2650 Antwerp, Belgium. EM kelly.demeester@ua.ac.be; Astrid.vanWierin-gen@med.kuleuven.be; Jan-jaap.hendrickx@ua.ac.be; lazvedat@gmail.com; jeroen.Huyghe@ua.ac.be; erik.fransen@ua.ac.be; lut.vanlaer@ugent.be; guy.vancam-p@ua.ac.be; paul.van.de.heyning@telenet.be RI Van Camp, Guy/F-3386-2013; Fransen, Erik/C-4102-2015 OI Van Camp, Guy/0000-0001-5105-9000; Fransen, Erik/0000-0001-7785-4790 FU British Royal National Institute for the Deaf (RNID); EU [QLRT-2001-00331]; FWO-Vlaanderen [G.0131.04]; University of Antwerp FX The authors would like to thank all participants for their voluntary cooperation. Pieter Baekeland is gratefully acknowledged for the mathematical support and guidance during the development process of all the parameters in this study as well as for the implementation of the algorithms in an Excel query for the automatic calculation of all individual parameters. This study is supported by Grants of the British Royal National Institute for the Deaf (RNID), the EU 5th Framework Quality of Life Programme (QLRT-2001-00331), the FWO-Vlaanderen (G.0131.04) and the University of Antwerp (TOP Grant). CR Age-related Hearing Impairment project, 2007, AGE RELATED HEARING [Anonymous], 1989, 82531 ISO [Anonymous], 1990, 1999 ISO [Anonymous], 2000, 7029 ISO BELAL A, 1987, J LARYNGOL OTOL, V101, P1131, DOI 10.1017/S0022215100103378 Christensen K, 2001, J AM GERIATR SOC, V49, P1512, DOI 10.1046/j.1532-5415.2001.4911245.x Coles RRA, 2000, CLIN OTOLARYNGOL, V25, P264, DOI 10.1046/j.1365-2273.2000.00368.x Cruickshanks KJ, 1998, AM J EPIDEMIOL, V148, P879 DAVIS A, 1995, HEARING ADULTS, P43 De Leenheer EMR, 2002, ADV OTO-RHINO-LARYNG, V61, P73 De Leenheer EMR, 2002, ADV OTO-RHINO-LARYNG, V61, P41 Demeester K, 2009, INT J AUDIOL, V48, P222, DOI 10.1080/14992020802441799 Dobie RA, 2005, EAR HEARING, V26, P630, DOI 10.1097/01.aud.0000188120.14321.76 Fieuws S, 2006, BIOMETRICS, V62, P424, DOI 10.1111/j.1541-0420.2006.00507.x Fransen E, 2008, JARO-J ASSOC RES OTO, V9, P264, DOI 10.1007/s10162-008-0123-1 Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654 GOYCOOLEA MV, 1986, LARYNGOSCOPE, V96, P1391 Guo SW, 2002, AM J HUM GENET, V70, P818, DOI 10.1086/339369 HENDERSON D, 2006, INT WORKSH HLTH EFF Huyghe JR, 2008, AM J HUM GENET, V83, P401, DOI 10.1016/j.ajhg.2008.08.002 Karlsson KK, 1997, EAR HEARING, V18, P114, DOI 10.1097/00003446-199704000-00003 LIANG KY, 1991, GENET EPIDEMIOL, V8, P361, DOI 10.1002/gepi.1370080602 Margolis RH, 2008, EAR HEARING, V29, P524, DOI 10.1097/AUD.0b013e3181731e2e McMahon CM, 2008, EAR HEARING, V29, P578, DOI 10.1097/AUD.0b013e31817349d6 Nelson EG, 2006, LARYNGOSCOPE, V116, P1, DOI 10.1097/01.mlg.0000236089.44566.62 Ohlemiller KK, 2009, BRAIN RES, V1277, P70, DOI 10.1016/j.brainres.2009.02.079 Parving A, 1995, J AUDIOL MED, V4, pii PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 Raynor LA, 2009, AM J AUDIOL, V18, P114, DOI 10.1044/1059-0889(2009/08-0035) SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SHOCK NW, 1984, NORMAL HUMAN AGING B, V84, P2450 SILL AM, 1994, AM J MED GENET, V54, P149, DOI 10.1002/ajmg.1320540211 Sindhusake D, 2001, INT J EPIDEMIOL, V30, P1371, DOI 10.1093/ije/30.6.1371 Sliwinska-Kowalska M, 2004, J OCCUP ENVIRON MED, V46, P30, DOI 10.1097/01.jom.0000105912.29242.5b Van Eyken E, 2007, AUDIOL NEURO-OTOL, V12, P345, DOI 10.1159/000106478 Van Eyken E, 2007, J MED GENET, V44, DOI 10.1136/jmg.2007.049205 Viljanen A, 2007, J GERONTOL A-BIOL, V62, P447 Wiley T L, 2001, J Am Acad Audiol, V12, P337 Wojciechowski R, 2005, INVEST OPHTH VIS SCI, V46, P1588, DOI 10.1167/iovs.04-0740 Zhang J, 1998, JAMA-J AM MED ASSOC, V280, P1690, DOI 10.1001/jama.280.19.1690 NR 40 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 1 EP 10 DI 10.1016/j.heares.2010.03.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000001 PM 20303401 ER PT J AU Marcusohn, Y Ar, A Dirckx, JJJ AF Marcusohn, Yael Ar, Amos Dirckx, Joris J. J. TI Perfusion and diffusion limitations in middle ear gas exchange: The exchange of CO2 as a test case SO HEARING RESEARCH LA English DT Article ID MASTOID PNEUMATIZATION; MUCOSA; PRESSURE; PERMEABILITY; ABSORPTION; POCKETS; MONKEYS; VOLUME; RAT AB A long standing debate on perfusion/diffusion limitations in the context of middle ear (ME) gas exchange was revisited using data obtained from previous iso-pressure gas-exchange measurements in different mammals. We tried to determine whether the exchange of CO2 in the ME is limited by perfusion or by diffusion by comparing the mass specific cardiac output (ms(Q)over dot) and the mass specific initial CO2 flow rate into air-washed MEs (ms(V)over dot(1)CO(2)) of rabbits and rats. Based on previously published allometry at rest, the ms(Q)over dot was 0.154 mL/(min g) in rabbits (mean body weight: 2800 g) and 0.259 mL/(min g) in rats (mean body weight: 179.1 g); ms(V)over dot(1)CO(2) (Delta t = 0) was 0.109 +/- 0.047 mu L/(h g) in rabbits (n = 16) and 0.170 +/- 0.094 mu L/(h g) in rats (n = 9). Similar ratios were found when an allometric comparison was made between the ratio of ms(V)over dot(1)CO(2) (Delta t = 0) (similar to 0.64), and the ratio of ms(Q)over dot s (similar to 0.59) in rabbits and rats. If the active mucosal surface areas of MEs of rabbits and rats are directly proportional to their masses as are the masses of their hearts and if their ms(Q)over dots are proportional to the rates of blood flows in the ME mucosa, these results support the assumption that the exchange of CO2 in the ME of mammals is mainly perfusion (and not diffusion) dependent. (C) 2010 Elsevier B.V. All rights reserved. C1 [Marcusohn, Yael; Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium. [Ar, Amos] Tel Aviv Univ, Fac Life Sci, Dept Zool, IL-69978 Tel Aviv, Israel. RP Dirckx, JJJ (reprint author), Univ Antwerp, Lab Biomed Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. EM Joris.Dirckx@ua.ac.be FU University of Antwerp [BOF/44750]; Fund for Scientific Research (FWO); Nicholas and Elizabeth Shlezak Super Center for Cardiology and Biomedical Engineering, Tel Aviv University [940110] FX The study in rabbits was supported by a Grant from the University of Antwerp (NOI Project No. BOF/44750) and by Grants from the Fund for Scientific Research (FWO). One of the authors (A.A.) was partially supported by the Nicholas and Elizabeth Shlezak Super Center for Cardiology and Biomedical Engineering, Tel Aviv University (No. 940110). The authors thank Fred Wiese and William Deblauwe for their technical assistance. CR Aoki K, 1998, LARYNGOSCOPE, V108, P1840, DOI 10.1097/00005537-199812000-00014 Ar A, 2007, RESP PHYSIOL NEUROBI, V155, P167, DOI 10.1016/j.resp.2006.04.011 DALE WA, 1952, AM J PHYSIOL, V170, P606 DIRCKX JJJ, 2007, REV SCI INSTRUM, V78 Doyle W J, 1999, Auris Nasus Larynx, V26, P5, DOI 10.1016/S0385-8146(98)00060-1 DOYLE WJ, 1994, ANN OTO RHINOL LARYN, V103, P636 DOYLE WJ, 1995, ARCH OTOLARYNGOL, V121, P887 ELNER A, 1977, ACTA OTO-LARYNGOL, V83, P25, DOI 10.3109/00016487709128807 Fink N, 2003, ACTA PHYSIOL SCAND, V177, P493, DOI 10.1046/j.1365-201X.2003.01096.x Hamada Y, 2002, INT J PEDIATR OTORHI, V64, P41, DOI 10.1016/S0165-5876(02)00040-X HONJO I, 1983, ARCH OTO-RHINO-LARYN, V238, P63, DOI 10.1007/BF00453742 Kania R, 2004, ACTA OTO-LARYNGOL, V124, P408, DOI 10.1080/00016480310000683 Kania RE, 2006, J APPL PHYSIOL, V101, P1281, DOI 10.1152/japplphysiol.00113.2006 Kusakari J, 1985, Auris Nasus Larynx, V12 Suppl 1, pS114 Loring SH, 2011, HDB PHYSL 3, V4, P283 Luntz M, 2001, ANN OTO RHINOL LARYN, V110, P486 MARCUSOHN Y, 2003, THESIS TEL AVIV U Marcusohn Y, 2006, JARO-J ASSOC RES OTO, V7, P236, DOI 10.1007/s10162-006-0038-7 Matanda R, 2006, ACTA OTO-LARYNGOL, V126, P905, DOI 10.1080/00016480600606616 Mondain M, 1997, LARYNGOSCOPE, V107, P1414, DOI 10.1097/00005537-199710000-00022 Mover-Lev H, 1998, RESP PHYSIOL, V114, P143, DOI 10.1016/S0034-5687(98)00059-0 Nagy JA, 2008, ANGIOGENESIS, V11, P109, DOI 10.1007/s10456-008-9099-z PIIPER J, 1962, J APPL PHYSIOL, V17, P268 Sade J, 1997, OTOLARYNG HEAD NECK, V116, P499, DOI 10.1016/S0194-5998(97)70302-4 STAHL WR, 1967, J APPL PHYSIOL, V22, P453 Uchimizu H, 2007, ACTA OTO-LARYNGOL, V127, P1031, DOI 10.1080/00016480701200228 VANLIEW HD, 1962, AM J PHYSIOL, V202, P53 NR 27 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 11 EP 14 DI 10.1016/j.heares.2010.03.078 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000002 PM 20338231 ER PT J AU Schmidt, E Wolski, TP Kulesza, RJ AF Schmidt, Elise Wolski, Thomas P., Jr. Kulesza, Randy J., Jr. TI Distribution of perineuronal nets in the human superior olivary complex SO HEARING RESEARCH LA English DT Article ID CHONDROITIN SULFATE PROTEOGLYCANS; CENTRAL-NERVOUS-SYSTEM; LATERAL GENICULATE-NUCLEUS; CALCIUM-BINDING PROTEINS; VENTRAL COCHLEAR NUCLEUS; AUDITORY BRAIN-STEM; EXTRACELLULAR-MATRIX; RAT-BRAIN; TRAPEZOID BODY; MEDIAL NUCLEUS AB Perineuronal nets (PNNs) are specialized assemblies of chondroitin sulfate proteoglycans (CSPGs) in the central nervous system that form a lattice-like covering over the cell body, primary dendrites and initial axon segment of select neuronal populations. PNNs appear to play significant roles in development of the central nervous system, neuronal protection, synaptic plasticity and local ion homeostasis. In seven human brainstems (average age = 81 years), we have utilized Wisteria floribunda (WFA) histochemistry and immunocytochemistry for CSPG to map the distribution of PNNs within the nuclei of the human superior olivary complex (SOC). Within the SOC, the majority of net-bearing neurons are situated in the most medially situated nuclei, especially the superior paraolivary nucleus and medial nucleus of the trapezoid body. Net-bearing neurons are consistently found in the ventral nucleus of the trapezoid body and posterior periolivary nucleus, but to a lesser extent in the lateral nucleus of the trapezoid body. Finally, perineuronal nets are typically absent from the lateral and medial superior olives. (C) 2010 Elsevier B.V. All rights reserved. C1 [Schmidt, Elise; Wolski, Thomas P., Jr.; Kulesza, Randy J., Jr.] Lake Erie Coll Osteopath Med, Auditory Res Ctr, Erie, PA 16509 USA. RP Kulesza, RJ (reprint author), Lake Erie Coll Osteopath Med, Auditory Res Ctr, 1858 W Grandview Blvd, Erie, PA 16509 USA. EM rkulesza@lecom.edu FU LECOM Research Collective; Deafness Research Foundation FX This work was supported by the LECOM Research Collective and a grant from the Deafness Research Foundation. The author would like to thank Nell Cant for providing the WFA cat slides and to the two anonymous reviewers for their many helpful comments. CR ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 Atoji Y, 1997, HEARING RES, V110, P200, DOI 10.1016/S0378-5955(97)00079-8 ATOJI Y, 1989, J NEUROCYTOL, V18, P599, DOI 10.1007/BF01187081 ATOJI Y, 1992, BRAIN RES, V585, P287, DOI 10.1016/0006-8993(92)91220-9 ATOJI Y, 1990, ACTA ANAT, V139, P151 ATOJI Y, 1995, NEUROSCI LETT, V189, P39, DOI 10.1016/0304-3940(95)11447-5 BRUCKNER G, 1993, GLIA, V8, P183, DOI 10.1002/glia.440080306 Cant NB, 2006, HEARING RES, V216, P64, DOI 10.1016/j.heares.2006.01.008 Celio MR, 1998, TRENDS NEUROSCI, V21, P510, DOI 10.1016/S0166-2236(98)01298-3 CELIO MR, 1994, BRAIN RES REV, V19, P128, DOI 10.1016/0165-0173(94)90006-X Deepa SS, 2006, J BIOL CHEM, V281, P17789, DOI 10.1074/jbc.M600544200 Dityatev A, 2003, NAT REV NEUROSCI, V4, P456, DOI 10.1038/nrn1115 Dityatev A, 2007, DEV NEUROBIOL, V67, P570, DOI 10.1002/dneu.20361 Fiedler A, 2007, NUCL INSTRUM METH B, V260, P153, DOI 10.1016/j.nimb.2007.02.069 FRIAUF E, 1988, EXP BRAIN RES, V73, P263 Friauf E, 2000, AUDIOL NEURO-OTOL, V5, P251, DOI 10.1159/000013889 Galtrey CM, 2007, BRAIN RES REV, V54, P1, DOI 10.1016/j.brainresrev.2006.09.006 Gogolla N, 2009, SCIENCE, V325, P1258, DOI 10.1126/science.1174146 GUIMARAES A, 1990, J NEUROSCI, V10, P3014 Hagihara K, 1999, J COMP NEUROL, V410, P256 HARTIG W, 1995, BRAIN RES, V698, P265, DOI 10.1016/0006-8993(95)01016-O Hartig W, 2001, BRAIN RES, V899, P123, DOI 10.1016/S0006-8993(01)02211-9 Hartig W, 1999, BRAIN RES, V842, P15, DOI 10.1016/S0006-8993(99)01784-9 HEFFNER RS, 1990, COMP PERCEPTION BASI HELFERT RH, 1991, NEUROBIOLOGY HEARING Hilbig H, 1999, ANAT EMBRYOL, V200, P103, DOI 10.1007/s004290050264 Hilbig H, 2007, J ANAT, V210, P507, DOI 10.1111/j.1469-7580.2007.00713.x HOCKFIELD S, 1993, SYNAPTIC PLASTICITY HOCKFIELD S, 1990, COLD SH Q B, V55, P505 HOCKFIELD S, 1983, P NATL ACAD SCI-BIOL, V80, P5758, DOI 10.1073/pnas.80.18.5758 Horn AK, 2003, J COMP NEUROL, V455, P341, DOI 10.1002/cne.10495 Koppe G, 1997, CELL TISSUE RES, V288, P33, DOI 10.1007/s004410050790 Kulesza RJ, 2007, HEARING RES, V225, P80, DOI 10.1016/j.heares.2006.12.006 Kulesza RJ, 2008, HEARING RES, V241, P52, DOI 10.1016/j.heares.2008.04.010 KUWABARA N, 1991, J COMP NEUROL, V314, P684, DOI 10.1002/cne.903140405 Kwok JCF, 2008, RESTOR NEUROL NEUROS, V26, P131 Lurie DI, 1997, J COMP NEUROL, V380, P319, DOI 10.1002/(SICI)1096-9861(19970414)380:3<319::AID-CNE3>3.0.CO;2-5 Matthews RT, 2002, J NEUROSCI, V22, P7536 McRae PA, 2007, J NEUROSCI, V27, P5405, DOI 10.1523/JNEUROSCI.5425-06.2007 Miyata S, 2007, BRAIN RES, V1150, P200, DOI 10.1016/j.brainres.2007.02.066 MORAWSKI M, 2009, NEUROSCIENCE Morris NP, 2000, EUR J NEUROSCI, V12, P828, DOI 10.1046/j.1460-9568.2000.00970.x Murakami T, 2003, ARCH HISTOL CYTOL, V66, P195, DOI 10.1679/aohc.66.195 NAKAGAWA F, 1986, J COMP NEUROL, V243, P280, DOI 10.1002/cne.902430210 Oliver DL, 2000, MICROSC RES TECHNIQ, V51, P355, DOI 10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J Pantazopoulos H, 2008, BRAIN RES, V1207, P84, DOI 10.1016/j.brainres.2008.02.036 Pizzorusso T, 2002, SCIENCE, V298, P1248, DOI 10.1126/science.1072699 Rauch U, 2004, CELL MOL LIFE SCI, V61, P2031, DOI 10.1007/s00018-004-4043-x Reinert T, 2003, NUCL INSTRUM METH B, V210, P395, DOI 10.1016/S0168-583X(03)01041-3 RICHTER EA, 1983, AM J ANAT, V168, P157, DOI 10.1002/aja.1001680205 SCHOFIELD BR, 1995, J COMP NEUROL, V360, P135, DOI 10.1002/cne.903600110 Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 SEEGER G, 1994, NEUROSCIENCE, V58, P371, DOI 10.1016/0306-4522(94)90044-2 Simonetti T, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006780 Smith PH, 2005, J COMP NEUROL, V482, P349, DOI 10.1002/cne.20407 SMITH PH, 1991, J COMP NEUROL, V304, P387, DOI 10.1002/cne.903040305 SNOW DM, 1994, DEV BIOL, V166, P87, DOI 10.1006/dbio.1994.1298 SPANGLER K, 1991, DESCENDING AUDITORY STANDRING S, 2008, ANATOMICAL NOMENCLAT SUR M, 1988, J NEUROSCI, V8, P874 Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X Viapiano MS, 2006, TRENDS MOL MED, V12, P488, DOI 10.1016/j.molmed.2006.08.007 VIRGINTINO D, 2009, J CELL MOL MED Wagoner JL, 2009, HEARING RES, V254, P42, DOI 10.1016/j.heares.2009.04.008 Wintergerst ES, 1996, INT J DEV NEUROSCI, V14, P249, DOI 10.1016/0736-5748(96)00011-1 Yamaguchi Y, 2000, CELL MOL LIFE SCI, V57, P276, DOI 10.1007/PL00000690 YAMAMOTO M, 1988, NEUROSCI RES, V5, P273, DOI 10.1016/0168-0102(88)90031-4 YIN TCT, 1990, J COMP NEUROL, V295, P438, DOI 10.1002/cne.902950308 Yin Z, 2006, MOL VIS, V12, P858 NR 69 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 15 EP 24 DI 10.1016/j.heares.2010.03.077 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000003 PM 20307636 ER PT J AU Eastwood, H Chang, A Kel, G Sly, D Richardson, R O'Leary, SJ AF Eastwood, Hayden Chang, Andrew Kel, Gordana Sly, David Richardson, Rachael O'Leary, Stephen J. TI Round window delivery of dexamethasone ameliorates local and remote hearing loss produced by cochlear implantation into the second turn of the guinea pig cochlea SO HEARING RESEARCH LA English DT Article ID DRUG-DELIVERY; INNER-EAR; CONSERVES HEARING; RESIDUAL HEARING; PERILYMPH; PRESERVATION; GADOLINIUM; FREQUENCY; SURGERY; THERAPY AB Application of dexamethasone to the round window has been shown to ameliorate high frequency hearing loss resulting from the trauma of cochlear implantation in experimental animals, but elucidation of the factors influencing protection of the high frequencies has been confounded by the local trauma from electrode array insertion. In this experiment, a second turn cochleostomy and implantation was performed on guinea pigs, to examine protection in the basal turn without the confounding effect of local trauma, as well as to test the efficacy of hearing protection in the second cochlear turn. The implantation resulted in an increase in hearing thresholds across all frequencies examined (2-32 kHz). Local delivery of dexamethasone to the round window prior to implantation protected hearing across frequencies from 2 to 32 kHz. Auditory thresholds improved over the first week after surgery, and then remained stable for the month of the experiment. The protection of hearing in the basal turn increased with longer periods of drug application prior to implantation. The level of hearing protection in the second turn was similar irrespective of the time that the drug was applied, but was greater when a higher steroid concentration was used. It was concluded that steroids protect hearing in the basal turn of the cochlea even when there was no local trauma. The level of hearing protection in the second turn exceeded that expected from models of steroid diffusion through the cochlea, suggesting that inner ear surgery alters the distribution of dexamethasone within the cochlea. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved. C1 [O'Leary, Stephen J.] Univ Melbourne, Dept Otolaryngol, Royal Victorian Eye & Ear Hosp, Melbourne E, Vic 3002, Australia. [Eastwood, Hayden; Chang, Andrew; Kel, Gordana; Sly, David; Richardson, Rachael; O'Leary, Stephen J.] Univ Melbourne, Dept Otolaryngol, Melbourne E, Vic 3002, Australia. [Richardson, Rachael; O'Leary, Stephen J.] Bion Ear Inst, Melbourne, Australia. RP O'Leary, SJ (reprint author), Univ Melbourne, Dept Otolaryngol, Royal Victorian Eye & Ear Hosp, Melbourne E, Vic 3002, Australia. EM sjoleary@unimelb.edu.au FU Rodney Williams and Garnett Passe Memorial Foundation; NHMRC; NIDCD [HHS-N-263-2007-00053-C;] FX The authors wish to acknowledge the generous assistance of the Rodney Williams and Garnett Passe Memorial Foundation and NHMRC project grant for funding this project, The Royal Victorian Eye and Ear Hospital for providing facilities, Maria Clarke and Prudence Nielsen for preparation of histological slides, Associate Professor John L. Slavin (MBBS, FRCPA) and the St. Vincent's Hospital Melbourne, Anatomical Pathology Department for reviewing the histology, Dr. James Fallon for providing the ABR analysis program (NIDCD Contract HHS-N-263-2007-00053-C; PI: R.K. Shepherd) and Helen Feng for manufacturing the electrode arrays. CR Chang A, 2009, HEARING RES, V255, P67, DOI 10.1016/j.heares.2009.05.010 Duan M, 2004, NEUROREPORT, V15, P1927, DOI 10.1097/00001756-200408260-00019 Eshraghi AA, 2007, OTOL NEUROTOL, V28, P842, DOI 10.1097/MAO.0b013e31805778fc Gantz BJ, 2005, LARYNGOSCOPE, V115, P796, DOI 10.1097/01.MLG.0000157695.07536.D2 Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4 GSTOETTNER WK, 2008, ACTA OTO-LARYNGOL, P1 Gstoettner Wolfgang K, 2006, Audiol Neurootol, V11 Suppl 1, P49, DOI 10.1159/000095614 Hargunani CA, 2006, OTOL NEUROTOL, V27, P564, DOI 10.1097/00129492-200606000-00021 James DP, 2008, AUDIOL NEURO-OTOL, V13, P86, DOI 10.1159/000111780 Jolly C, 2010, ADV OTO-RHINO-LARYNG, V67, P28, DOI 10.1159/000262594 Maini S, 2009, AUDIOL NEURO-OTOL, V14, P402, DOI 10.1159/000241897 Mikulec AA, 2009, OTOL NEUROTOL, V30, P131, DOI 10.1097/MAO.0b013e318191bff8 Palmer AR, 2009, JARO-J ASSOC RES OTO, V10, P233, DOI 10.1007/s10162-008-0151-x Salt AN, 2009, AUDIOL NEURO-OTOL, V14, P350, DOI 10.1159/000241892 Salt AN, 2005, DRUG DISCOV TODAY, V10, P1299, DOI 10.1016/S1359-6446(05)03574-9 Salt AN, 2003, HEARING RES, V182, P24, DOI 10.1016/S0378-5955(03)00137-0 Salt AN, 2002, ADV OTO-RHINO-LARYNG, V59, P140 Vivero RJ, 2008, LARYNGOSCOPE, V118, P2028, DOI 10.1097/MLG.0b013e31818173ec Woodson EA, 2010, ADV OTO-RHINO-LARYNG, V67, P125, DOI 10.1159/000262604 Zou J, 2003, ACTA OTO-LARYNGOL, V123, P910, DOI 10.1080/00016480310000548 NR 20 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 25 EP 29 DI 10.1016/j.heares.2010.03.006 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000004 PM 20303400 ER PT J AU Deike, S Scheich, H Brechmann, A AF Deike, Susann Scheich, Henning Brechmann, Andre TI Active stream segregation specifically involves the left human auditory cortex SO HEARING RESEARCH LA English DT Article ID PERCEPTUAL ORGANIZATION; TONE SEQUENCES; SONGBIRD FOREBRAIN; TEMPORAL STRUCTURE; DECISION-PROCESSES; PLANUM TEMPORALE; HESCHLS GYRUS; HUMAN BRAIN; PITCH; REPRESENTATION AB An important aspect of auditory scene analysis is the sequential grouping of similar sounds into one "auditory stream" while keeping competing streams separate. In the present low-noise fMRI study we presented sequences of alternating high-pitch (A) and low-pitch (B) complex harmonic tones using acoustic parameters that allow the perception of either two separate streams or one alternating stream. However, the subjects were instructed to actively and continuously segregate the A from the B stream. This was controlled by the additional instruction to listen for rare level deviants only in the low-pitch stream. Compared to the control condition in which only one non-separable stream was presented the active segregation of the A from the B stream led to a selective increase of activation in the left auditory cortex (AC). Together with a similar finding from a previous study using a different acoustic cue for streaming, namely timbre, this suggests that the left auditory cortex plays a dominant role in active sequential stream segregation. However, we found cue differences within the left AC: Whereas in the posterior areas, including the planum temporale, activation increased for both acoustic cues, the anterior areas, including Heschl's gyrus, are only involved in stream segregation based on pitch. (C) 2010 Elsevier B.V. All rights reserved. C1 [Deike, Susann; Scheich, Henning; Brechmann, Andre] Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany. RP Deike, S (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany. EM sdeike@ifn-magdeburg.de FU Deutsche Forschungsgemeinschaft [SFB/TRR31] FX This work was supported by the "Deutsche Forschungsgemeinschaft" [SFB/TRR31]. CR Baumgart F, 1998, MED PHYS, V25, P2068, DOI 10.1118/1.598368 Bee MA, 2004, J NEUROPHYSIOL, V92, P1088, DOI 10.1152/jn.00884.2003 Bee MA, 2005, BRAIN BEHAV EVOLUT, V66, P197, DOI 10.1159/000087854 Behne N, 2005, J NEUROPHYSIOL, V93, P414, DOI 10.1152/jn.00568.2004 Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 Bethmann A, 2007, BRAIN RES, V1133, P145, DOI 10.1016/j.brainres.2006.11.057 Binder JR, 2004, NAT NEUROSCI, V7, P295, DOI 10.1038/nn1198 Binder JR, 1996, BRAIN, V119, P1239, DOI 10.1093/brain/119.4.1239 Brechmann A, 2002, J NEUROPHYSIOL, V87, P423 Brechmann A, 2005, CEREB CORTEX, V15, P578, DOI 10.1093/cercor/bhh159 Brechmann A, 2007, CEREB CORTEX, V17, P2544, DOI 10.1093/cercor/bhl160 Bregman AS., 1990, AUDITORY SCENE ANAL Carlyon RP, 2004, TRENDS COGN SCI, V8, P465, DOI 10.1016/j.tics.2004.08.008 Cusack R, 2005, J COGNITIVE NEUROSCI, V17, P641, DOI 10.1162/0898929053467541 Deike S, 2004, NEUROREPORT, V15, P1511, DOI 10.1097/01.wnr.0000132919.12990.34 Denham SL, 2006, J PHYSIOLOGY-PARIS, V100, P154, DOI 10.1016/j.jphysparis.2006.09.012 EFRON R, 1963, BRAIN, V86, P261, DOI 10.1093/brain/86.2.261 EFRON R, 1963, BRAIN, V86, P403, DOI 10.1093/brain/86.3.403 Elhilali M, 2009, NEURON, V61, P317, DOI 10.1016/j.neuron.2008.12.005 Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0 Fishman YI, 2004, J ACOUST SOC AM, V116, P1656, DOI 10.1121/1.1778903 Formisano E, 2003, NEURON, V40, P859, DOI 10.1016/S0896-6273(03)00669-X GASCHLER B, 1996, COMPSTAT 1996 P COMP, P57 Griffiths TD, 2002, TRENDS NEUROSCI, V25, P348, DOI 10.1016/S0166-2236(02)02191-4 Griffiths TD, 1998, NAT NEUROSCI, V1, P422, DOI 10.1038/1637 Gutschalk A, 2007, J NEUROSCI, V27, P13074, DOI 10.1523/JNEUROSCI.2299-07.2007 Gutschalk A, 2005, J NEUROSCI, V25, P5382, DOI 10.1523/JNEUROSCI.0374-05.2005 Hackett TA, 2001, J COMP NEUROL, V441, P197, DOI 10.1002/cne.1407 Hall DA, 2005, J NEUROPHYSIOL, V94, P3181, DOI 10.1152/jn.00271.2005 HALPERIN Y, 1973, J ACOUST SOC AM, V53, P46, DOI 10.1121/1.1913326 Hashimoto R, 2000, NEUROIMAGE, V12, P147, DOI 10.1006/nimg.2000.0603 Kaas JH, 1998, AUDIOL NEURO-OTOL, V3, P73, DOI 10.1159/000013783 Kanwal JS, 2003, NETWORK-COMP NEURAL, V14, P413, DOI 10.1088/0954-898X/14/3/303 Kondo HM, 2009, J NEUROSCI, V29, P12695, DOI 10.1523/JNEUROSCI.1549-09.2009 KRUMHANSL CL, 1992, J EXP PSYCHOL HUMAN, V18, P739, DOI 10.1037//0096-1523.18.3.739 Leonard CM, 1998, CEREB CORTEX, V8, P397, DOI 10.1093/cercor/8.5.397 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 Liegeois-Chauvel C, 1999, CEREB CORTEX, V9, P484, DOI 10.1093/cercor/9.5.484 LPAS Van Noorden, 1975, TEMPORAL COHERENCE P Menon V, 2002, NEUROIMAGE, V17, P1742, DOI 10.1006/nimg.2002.1295 MICHEYL C, 2004, AUDITORY SIGNAL PROC, P203 Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039 Micheyl C, 2007, HEARING RES, V229, P116, DOI 10.1016/j.heares.2007.01.007 Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 MOROSAN P, 2005, AUDITORY CORTEX SYNT, V3 Morosan P, 2001, NEUROIMAGE, V13, P684, DOI 10.1006/nimg.2000.0715 Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7 Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004 Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661 Platel H, 1997, BRAIN, V120, P229, DOI 10.1093/brain/120.2.229 Pressnitzer D, 2008, CURR BIOL, V18, P1124, DOI 10.1016/j.cub.2008.06.053 Rahne T, 2007, BRAIN RES, V1144, P127, DOI 10.1016/j.brainres.2007.01.074 Rahne T, 2008, BRAIN RES, V1220, P118, DOI 10.1016/j.brainres.2007.08.011 Rivier F, 1997, NEUROIMAGE, V6, P288, DOI 10.1006/nimg.1997.0304 Scheich H, 1998, EUR J NEUROSCI, V10, P803, DOI 10.1046/j.1460-9568.1998.00086.x Schneider P, 2005, NAT NEUROSCI, V8, P1241, DOI 10.1038/nn1530 SINGH PG, 1987, J ACOUST SOC AM, V82, P886, DOI 10.1121/1.395287 Snyder JS, 2007, PSYCHOL BULL, V133, P780, DOI 10.1037/0033-2909.133.5.780 Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021 Sussman E, 1998, BRAIN RES, V789, P130, DOI 10.1016/S0006-8993(97)01443-1 Sussman E, 2006, BRAIN RES, V1075, P165, DOI 10.1016/j.brainres.2005.12.074 SWETS JA, 1961, PSYCHOL REV, V68, P301, DOI 10.1037/0033-295X.68.5.301 Tregellas JR, 2006, NEUROIMAGE, V32, P307, DOI 10.1016/j.neuroimage.2006.02.036 Wallace MN, 2002, EXP BRAIN RES, V143, P499, DOI 10.1007/s00221-002-1014-z Warren JD, 2003, J NEUROSCI, V23, P5799 Wetzel W, 2008, P NATL ACAD SCI USA, V105, P6753, DOI 10.1073/pnas.0707844105 Wilson EC, 2007, J NEUROPHYSIOL, V97, P2230, DOI 10.1152/jn.00788.2006 Woods RP, 1998, J COMPUT ASSIST TOMO, V22, P139, DOI 10.1097/00004728-199801000-00027 Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7 NR 70 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 30 EP 37 DI 10.1016/j.heares.2010.03.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000005 PM 20233603 ER PT J AU Strimbu, CE Kao, A Tokuda, J Ramunno-Johnson, D Bozovic, D AF Strimbu, C. E. Kao, A. Tokuda, J. Ramunno-Johnson, D. Bozovic, D. TI Dynamic state and evoked motility in coupled hair bundles of the bullfrog sacculus SO HEARING RESEARCH LA English DT Article ID SPONTANEOUS OTOACOUSTIC EMISSIONS; GUINEA-PIG COCHLEA; MECHANOELECTRICAL TRANSDUCTION; OTOLITHIC-MEMBRANE; SPONTANEOUS OSCILLATIONS; MECHANICAL TRANSDUCTION; ACTIVE PROCESS; TIP LINKS; CELLS; ADAPTATION AB Spontaneous oscillations, one of the signatures of the active process in non-mammalian hair cells, have been shown to occur in individual hair bundles that have been fully decoupled from the overlying membrane. Here we use semi-intact preparations of the bullfrog sacculus to demonstrate that under more natural loading conditions, innate oscillations are suppressed by the presence of the overlying otolithic membrane, indicating that hair bundles lie in the quiescent rather than the unstable regime. Transepithelial electrical stimulation was then used to test the effect of evoking entrained hair bundle movement with an external stimulus. Firstly, we used a preparation in which the otolithic membrane has been partially detached, coupling only hair bundles of comparable orientations. Secondly, we deposited artificial polymer membranes on top of the epithelium so as to connect to only 10-20 cells. In both of these systems, hair bundle motion phase-locked by the electrical signal was found to induce movement in the overlying structures. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bozovic, D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. Calif NanoSyst Inst, Los Angeles, CA 90095 USA. RP Bozovic, D (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, 475 Portola Plaza, Los Angeles, CA 90095 USA. EM strimbu@physics.ucla.edu; alkao@physics.ucla.edu; josht75580@aim.com; dameinrj@physics.ucla.edu; bozovic@physics.ucla.edu FU NSF [IOS-0920696]; Julian Schwinger Foundation [JS08080000] FX We thank Prof. Katsushi Arisaka on the use of and consultation regarding the Photron CMOS camera. Lea Fredrickson provided extensive comments on the manuscript, and Van Mai contributed to the preparation of the PAMs. This work was funded in part by NSF Grant IOS-0920696 and in part by the Julian Schwinger Foundation Grant JS08080000. CR Ashmore J, 2000, CURR BIOL, V10, pR325, DOI 10.1016/S0960-9822(00)00457-7 Auer M, 2008, JARO-J ASSOC RES OTO, V9, P215, DOI 10.1007/s10162-008-0114-2 BENSER ME, 1993, HEARING RES, V68, P243, DOI 10.1016/0378-5955(93)90128-N Benser ME, 1996, J NEUROSCI, V16, P5629 Bozovic D, 2003, P NATL ACAD SCI USA, V100, P958, DOI 10.1073/pnas.0337433100 Camalet S, 2000, P NATL ACAD SCI USA, V97, P3183, DOI 10.1073/pnas.97.7.3183 Chen L, 2001, HEARING RES, V161, P54, DOI 10.1016/S0378-5955(01)00353-7 Cheung ELM, 2006, BIOPHYS J, V90, P124, DOI 10.1529/biophysj.105.061226 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 Dallos P, 1991, Curr Opin Neurobiol, V1, P215, DOI 10.1016/0959-4388(91)90081-H DENK W, 1992, HEARING RES, V60, P89, DOI 10.1016/0378-5955(92)90062-R Dierkes K, 2008, P NATL ACAD SCI USA, V105, P18669, DOI 10.1073/pnas.0805752105 Duke T, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.158101 Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285 Eguiluz VM, 2000, PHYS REV LETT, V84, P5232, DOI 10.1103/PhysRevLett.84.5232 Fettiplace R, 2001, TRENDS NEUROSCI, V24, P169, DOI 10.1016/S0166-2236(00)01740-9 Fettiplace R, 2003, CURR OPIN NEUROBIOL, V13, P446, DOI 10.1016/S0959-4388(03)00094-1 Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 Fettiplace R, 2006, NAT REV NEUROSCI, V7, P19, DOI 10.1038/nrn1828 Gillespie PG, 2001, NATURE, V413, P194, DOI 10.1038/35093011 Gillespie PG, 2004, ANNU REV PHYSIOL, V66, P521, DOI 10.1146/annurev.physiol.66.032102.112842 HACOHEN N, 1989, J NEUROSCI, V9, P3988 HOWARD J, 1987, P NATL ACAD SCI USA, V84, P3064, DOI 10.1073/pnas.84.9.3064 Hudspeth A. J, 2000, PRINCIPLES NEURAL SC, P590 Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765 Jaramillo F, 1995, NEURON, V15, P1227, DOI 10.1016/0896-6273(95)90003-9 KACHAR B, 1990, HEARING RES, V45, P179, DOI 10.1016/0378-5955(90)90119-A Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336 Kirk DL, 1996, J ACOUST SOC AM, V100, P3714, DOI 10.1121/1.417335 Kondrachuk AV, 2002, HEARING RES, V166, P96, DOI 10.1016/S0378-5955(02)00302-7 Le Goff L, 2005, P NATL ACAD SCI USA, V102, P16996, DOI 10.1073/pnas.0508731102 LeMasurier M, 2005, NEURON, V48, P403, DOI 10.1016/j.neuron.2005.10.017 LIU H, 2006, ENCY BIOMATERIALS BI Manley GA, 2001, J NEUROPHYSIOL, V86, P541 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 Manley GA, 2002, JARO, V3, P200, DOI 10.1007/s101620020027 Martin P, 1999, P NATL ACAD SCI USA, V96, P14306, DOI 10.1073/pnas.96.25.14306 Martin P, 2003, J NEUROSCI, V23, P4533 Martin P, 2001, P NATL ACAD SCI USA, V98, P14380, DOI 10.1073/pnas.251530598 Martin P, 2000, P NATL ACAD SCI USA, V97, P12026, DOI 10.1073/pnas.210389497 Meyer J, 2005, HEARING RES, V202, P97, DOI 10.1016/j.heares.2004.11.013 Michel V, 2005, DEV BIOL, V280, P281, DOI 10.1016/j.ydbio.2005.01.014 Nadrowski B, 2004, P NATL ACAD SCI USA, V101, P12195, DOI 10.1073/pnas.0403020101 Nicolson T, 2005, TRENDS NEUROSCI, V28, P140, DOI 10.1016/j.tins.2004.12.008 Nuttall AL, 2001, HEARING RES, V152, P77, DOI 10.1016/S0378-5955(00)00238-0 PICKLES JO, 1992, TRENDS NEUROSCI, V15, P254, DOI 10.1016/0166-2236(92)90066-H Ramunno-Johnson D, 2009, BIOPHYS J, V96, P1159, DOI 10.1016/j.bpj.2008.09.060 Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x RUSSELL IJ, 1992, P ROY SOC B-BIOL SCI, V250, P217, DOI 10.1098/rspb.1992.0152 Santos-Sacchi J, 2003, CURR OPIN NEUROBIOL, V13, P459, DOI 10.1016/S0959-4388(03)00100-4 Smotherman MS, 2000, J EXP BIOL, V203, P2237 Strimbu CE, 2009, HEARING RES, V256, P58, DOI 10.1016/j.heares.2009.06.015 Tinevez JY, 2007, BIOPHYS J, V93, P4053, DOI 10.1529/biophysj.107.108498 vanDijk P, 1996, HEARING RES, V101, P102 Vollrath MA, 2007, ANNU REV NEUROSCI, V30, P339, DOI 10.1146/annurev.neuro.29.051605.112917 Yates GK, 1998, J NEUROSCI, V18, P1996 NR 57 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 38 EP 45 DI 10.1016/j.heares.2010.03.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000006 PM 20227476 ER PT J AU Gnansia, D Pressnitzer, D Pean, V Meyer, B Lorenzi, C AF Gnansia, Dan Pressnitzer, Daniel Pean, Vincent Meyer, Bernard Lorenzi, Christian TI Intelligibility of interrupted and interleaved speech for normal-hearing listeners and cochlear implantees SO HEARING RESEARCH LA English DT Article ID TEMPORAL FINE-STRUCTURE; MASKING RELEASE; RECOGNITION; PERCEPTION; NOISE; USERS; MODEL; INTERFERENCE; ORGANIZATION; MASKERS AB Speech intelligibility is degraded in the presence of a competing talker for cochlear implantees, presumably because of impaired tracking and integration of speech segments glimpsed in the masker valleys. This hypothesis was tested by assessing the intelligibility of periodically-interrupted bisyllables produced by a male and female talker, for normal-hearing listeners and implantees. A 4-Hz square-wave modulator with random phase was used to interrupt bisyllables from each talker. Stimuli were either presented alone (Experiment I) or interleaved (Experiment II: the two talkers were alternated). In Experiment I. the mean identification score for each voice was 88% for normal-hearing listeners and 35% for implantees. In Experiment II, the mean score corresponding to correct identification of both voices was 50% for normal-hearing listeners and 5% for implantees. lmplantees identified at least one bisyllable among the two well above chance level but showed difficulties assigning it to the correct talker. This suggests that implantees can make use of partial information, but cannot track and integrate the non-adjacent components of interleaved speech as well as normal-hearing listeners. Additional results obtained with normal-hearing listeners tested with tone-vocoded syllables suggest that impaired tracking/integration for implantees stems from limited reception of spectral and temporal fine structure cues. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gnansia, Dan; Pressnitzer, Daniel; Lorenzi, Christian] Ecole Normale Super, Dept Etud Cognit, F-75005 Paris, France. [Gnansia, Dan; Pressnitzer, Daniel; Lorenzi, Christian] Univ Paris 05, CNRS, UMR 8158, Lab Psychol Percept, F-75006 Paris, France. [Gnansia, Dan; Pressnitzer, Daniel; Lorenzi, Christian] Ecole Normale Super, F-75006 Paris, France. [Gnansia, Dan; Pressnitzer, Daniel; Pean, Vincent; Meyer, Bernard; Lorenzi, Christian] Ecole Normale Super, GRAEC, CNRS 2967, GDR, F-75005 Paris, France. [Gnansia, Dan; Pean, Vincent] MXM Neurelec France, F-06224 Vallauris, France. [Meyer, Bernard] Univ Paris 06, Hop Beaujon, AP HP, F-75252 Paris 05, France. RP Gnansia, D (reprint author), Ecole Normale Super, Dept Etud Cognit, 29 Rue Ulm, F-75005 Paris, France. EM dan.gnansia@ens.fr RI Lorenzi, Christian/F-5310-2012; Pressnitzer, Daniel/F-6092-2012 FU CIFRE MXM-Neurelec; GDR CNRS GRAEC [2967] FX This research was supported by a CIFRE MXM-Neurelec grant to D. Gnansia, and GDR CNRS GRAEC #2967. The authors wish to thank two anonymous reviewers for valuable comments and suggestions on a previous version of this manuscript. CR ASSMANN PF, 1990, J ACOUST SOC AM, V88, P680, DOI 10.1121/1.399772 BASHFORD JA, 1992, PERCEPT PSYCHOPHYS, V51, P211, DOI 10.3758/BF03212247 Binns C, 2007, J ACOUST SOC AM, V122, P1765, DOI 10.1121/1.2751394 Bregman AS., 1990, AUDITORY SCENE ANAL Cooke M, 2003, J PHONETICS, V31, P579, DOI 10.1016/S0095-4470(03)00013-5 Cooke M, 2001, SPEECH COMMUN, V34, P267, DOI 10.1016/S0167-6393(00)00034-0 Cooke M, 2001, SPEECH COMMUN, V35, P141, DOI 10.1016/S0167-6393(00)00078-9 Cooke M, 2006, J ACOUST SOC AM, V119, P1562, DOI 10.1121/1.2166600 de Cheveigne A, 2002, J ACOUST SOC AM, V111, P1917, DOI 10.1121/1.1458024 Fearn R. A., 2001, THESIS U NEW S WALES Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3 Fu QJ, 2000, J ACOUST SOC AM, V107, P589, DOI 10.1121/1.428325 Gilbert G, 2007, J ACOUST SOC AM, V122, P1336, DOI 10.1121/1.2756161 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Gnansia D, 2008, HEARING RES, V239, P60, DOI 10.1016/j.heares.2008.01.012 Gnansia D, 2009, J ACOUST SOC AM, V125, P4023, DOI 10.1121/1.3126344 Hohmann V, 2002, ACTA ACUST UNITED AC, V88, P433 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 Moore B. C. J., 1995, HDB PERCEPTION COGNI, V6, P387 MOORE BCJ, 2005, PITCH NEURAL CODING Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538 PATTERSON RD, 1987, J ACOUST SOC AM, V82, P1560, DOI 10.1121/1.395146 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Stevens KN, 2002, J ACOUST SOC AM, V111, P1872, DOI 10.1121/1.1458026 Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399 STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 Summerfield Q., 2004, SPRINGER HDB AUDITOR, V18, P231, DOI 10.1007/0-387-21575-1_5 WARREN RM, 1990, PERCEPT PSYCHOPHYS, V47, P423, DOI 10.3758/BF03208175 Warren RM, 1997, PERCEPT PSYCHOPHYS, V59, P275, DOI 10.3758/BF03211895 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 ZENG FG, 2008, J ACOUST SOC AM, V123, P3710, DOI 10.1121/1.2935141 ZENG FG, 2009, MIDW ARO M BALT US, V32, P4 NR 34 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 46 EP 53 DI 10.1016/j.heares.2010.02.012 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000007 PM 20197084 ER PT J AU Wesolek, CM Koay, G Heffner, RS Heffner, HE AF Wesolek, Christina M. Koay, Gimseong Heffner, Rickye S. Heffner, Henry E. TI Laboratory rats (Rattus norvegicus) do not use binaural phase differences to localize sound SO HEARING RESEARCH LA English DT Article DE Sound localization; Evolution; Binaural cues; Interaural time difference; Onset cue ID INTERAURAL TIME DIFFERENCES; AUDITORY CORTICAL-LESIONS; FERRET MUSTELA-PUTORIUS; ALBINO-RAT; INFERIOR COLLICULUS; LATERAL LEMNISCUS; DORSAL NUCLEUS; CORTEX; CUES; TRANSIENTS AB The ability of Norway rats to use binaural time- and intensity-difference cues to localize sound was investigated by determining their ability to localize pure tones from 500 Hz to 32 kHz. In addition, their ability to use the binaural time cues present in the envelope of a signal was determined by presenting them with a 1-kHz tone that was amplitude modulated at either 250 or 500 Hz. Although the animals were easily able to localize tones above 2 kHz, indicating that they could use the binaural intensity-difference cue, they were virtually unable to localize the lower-frequency stimuli, indicating that they could not use the binaural phase (time) cue. Although some animals showed a residual ability to localize low-frequency tones, control tests indicated that they were using the transient interaural intensity difference in the onset of a sound that exists after it reaches the near ear but before it reaches the far ear. Thus, in contrast to earlier studies, we conclude that the Norway rat is unable to use the ongoing time cues available in low-frequency tones to localize sound, raising the possibility that the rat may not use interaural time differences to localize sound. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wesolek, Christina M.; Koay, Gimseong; Heffner, Rickye S.; Heffner, Henry E.] Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. RP Heffner, HE (reprint author), Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. EM hheffne@pop3.utoledo.edu CR MASTERSON RB, 1964, J NEUROPHYSIOL, V27, P15 ELFNER LF, 1968, J ACOUST SOC AM, V43, P746, DOI 10.1121/1.1910891 Grothe B, 2003, NAT REV NEUROSCI, V4, P1 Grothe B, 2000, J COMP PHYSIOL A, V186, P413, DOI 10.1007/s003590050441 HEFFNER H, 1978, RECENT ADV PRIMATOL, V1, P735 HEFFNER H, 1981, J ACOUST SOC AM, V69, pS12, DOI 10.1121/1.386434 Heffner H. E., 1995, METHODS COMP PSYCHOA, P49 Heffner H.E., 2003, HDB RES METHODS EXPT, P413, DOI 10.1002/9780470756973.ch19 HEFFNER HE, 1994, HEARING RES, V73, P244, DOI 10.1016/0378-5955(94)90240-2 HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P915 HEFFNER RS, 2010, J COMP PSYC IN PRESS HEFFNER RS, 1987, BEHAV NEUROSCI, V101, P701, DOI 10.1037/0735-7044.101.5.701 HEFFNER RS, 1988, HEARING RES, V36, P221, DOI 10.1016/0378-5955(88)90064-0 Heffner RS, 2001, J ACOUST SOC AM, V109, P412, DOI 10.1121/1.1329620 Heil P, 1997, J NEUROPHYSIOL, V78, P2438 HOUBEN D, 1979, J ACOUST SOC AM, V66, P1057, DOI 10.1121/1.383377 INBODY SB, 1981, BRAIN RES, V210, P361, DOI 10.1016/0006-8993(81)90910-0 Kapfer C, 2002, NAT NEUROSCI, V5, P247, DOI 10.1038/mm810 KAVANAGH GL, 1986, BEHAV NEUROSCI, V100, P200, DOI 10.1037//0735-7044.100.2.200 KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 KELLY JB, 1986, BEHAV NEUROSCI, V100, P569, DOI 10.1037/0735-7044.100.4.569 Kelly JB, 2000, J NEUROPHYSIOL, V83, P1403 KELLY JB, 1980, J NEUROPHYSIOL, V44, P1161 KELLY JB, 1991, HEARING RES, V55, P39, DOI 10.1016/0378-5955(91)90089-R KELLY JB, 1986, HEARING RES, V24, P269, DOI 10.1016/0378-5955(86)90025-0 KELLY JB, 1974, J ACOUST SOC AM, V55, P1277, DOI 10.1121/1.1914697 Kidd SA, 1996, J NEUROSCI, V16, P7390 Koka K, 2008, J ACOUST SOC AM, V123, P4297, DOI 10.1121/1.2916587 KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498 MASTERTON B, 1975, J COMP PHYSIOL PSYCH, V89, P379, DOI 10.1037/h0077034 Mills A. W., 1972, FOUNDATIONS MODERN A, V2, P303 Paolini AG, 2001, HEARING RES, V159, P101, DOI 10.1016/S0378-5955(01)00327-6 PERROTT DR, 1969, J ACOUST SOC AM, V45, P436, DOI 10.1121/1.1911392 Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 Zhang PXY, 2006, J ACOUST SOC AM, V120, P3471, DOI 10.1121/1.2372456 NR 37 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 54 EP 62 DI 10.1016/j.heares.2010.02.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000008 PM 20184949 ER PT J AU Chen, GD Kermany, MH D'Elia, A Ralli, M Tanaka, C Bielefeld, EC Ding, D Henderson, D Salvi, R AF Chen, Guang-Di Kermany, Mohammad Habiby D'Elia, Alessandra Ralli, Massimo Tanaka, Chiemi Bielefeld, Eric C. Ding, Dalian Henderson, Donald Salvi, Richard TI Too much of a good thing: Long-term treatment with salicylate strengthens outer hair cell function but impairs auditory neural activity SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; NONSTEROIDAL ANTIINFLAMMATORY DRUGS; C6 GLIOMA-CELLS; SODIUM-SALICYLATE; INDUCED OTOTOXICITY; PRESTIN EXPRESSION; GUINEA-PIG; ASPIRIN; NOISE; ACTIVATION AB Aspirin has been extensively used in clinical settings. Its side effects on auditory function, including hearing loss and tinnitus, are considered as temporary. A recent promising finding is that chronic treatment with high-dose salicylate (the active ingredient of aspirin) for several weeks enhances expression of the outer hair cell (OHC) motor protein (prestin), resulting in strengthened OHC electromotility and enhanced distortion product otoacoustic emissions (DPOAE). To follow up on these observations, we carried out two studies, one planned study of age-related hearing loss restoration and a second unrelated study of salicylate-induced tinnitus. Rats of different strains and ages were injected with salicylate at a dose of 200 mg/kg/day for 5 days per week for 3 weeks or at higher dose levels (250-350 mg/kg/day) for 4 days per week for 2 weeks. Unexpectedly, while an enhanced or sustained DPOAE was seen, permanent reductions in the amplitude of the cochlear compound action potential (CAP) and the auditory brainstem response (ABR) were often observed after the chronic salicylate treatment. The mechanisms underlying these unexpected, permanent salicylate-induced reductions in neural activity are discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Chen, Guang-Di; Kermany, Mohammad Habiby; D'Elia, Alessandra; Ralli, Massimo; Tanaka, Chiemi; Bielefeld, Eric C.; Ding, Dalian; Henderson, Donald; Salvi, Richard] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14260 USA. [D'Elia, Alessandra] Univ Bari, Bari, Italy. [Ralli, Massimo] Univ Cattolica Sacro Cuore, I-00168 Rome, Italy. RP Chen, GD (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14260 USA. EM gchen7@buffalo.edu RI Bielefeld, Eric/D-2015-2012; Ralli, Massimo/D-8641-2013 FU NIH [R01DC006862, R01DC006630, R01DC009091, R01DC009219]; NIOSH [R01OH008113]; Tinnitus Research Initiative FX Research supported in part by grants from NIH (R01DC006862, DH; R01DC006630, R01DC009091, and R01DC009219, RS), NIOSH (R01OH008113, DH), and Tinnitus Research Initiative (RS). CR ALTHAUS JS, 1993, MOL CHEM NEUROPATHOL, V20, P147 BANCROFT BR, 1991, HEARING RES, V54, P20, DOI 10.1016/0378-5955(91)90132-S Bellosillo B, 1998, BLOOD, V92, P1406 BERGMAN GE, 1976, J PEDIATR-US, V88, P501, DOI 10.1016/S0022-3476(76)80279-X Bernstein J M, 1967, J Laryngol Otol, V81, P915, DOI 10.1017/S0022215100067852 Bjorklund L, 2009, INT J CLIN PRACT, V63, P468, DOI 10.1111/j.1742-1241.2008.01908.x Bosetti C, 2002, EUR J CANCER PREV, V11, P535, DOI 10.1097/00008469-200212000-00005 Brandt CT, 2006, NEUROBIOL DIS, V23, P300, DOI 10.1016/j.nbd.2006.03.006 Butinar D, 2000, PFLUG ARCH EUR J PHY, V439, pR204, DOI 10.1007/s004240000146 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 CAZALS Y, 1988, HEARING RES, V36, P89, DOI 10.1016/0378-5955(88)90139-6 Chen GD, 2009, HEARING RES, V248, P39, DOI 10.1016/j.heares.2008.11.010 Chen Y, 2007, HEARING RES, V226, P178, DOI 10.1016/j.heares.2006.05.008 DANESE CA, 1971, THROMB DIATH HAEMOST, V25, P288 DAY RO, 1989, BRIT J CLIN PHARMACO, V28, P695 DEMOURA LFP, 1968, ARCH OTOLARYNGOL, V87, P368 de Weck AL, 2006, CURR PHARM DESIGN, V12, P3347, DOI 10.2174/138161206778193971 DIDIER A, 1993, HEARING RES, V69, P199, DOI 10.1016/0378-5955(93)90108-D Falbe-Hansen J., 1941, ACTA OTO-LARYNGOL, V44, P1 Gao WQ, 1999, ANN NY ACAD SCI, V884, P312, DOI 10.1111/j.1749-6632.1999.tb08651.x GIBSON C D Jr, 1956, J Med Assoc Ga, V45, P366 GOLD A, 1966, LARYNGOSCOPE, V76, P674 Guitton MJ, 2003, J NEUROSCI, V23, P3944 GUNTHER T, 1988, BIOL TRACE ELEM RES, V16, P43, DOI 10.1007/BF02795332 GUNTHER T, 1989, J TRACE ELEM ELECT H, V3, P51 Huang ZW, 2005, J NEUROPHYSIOL, V93, P2053, DOI 10.1152/jn.00959.2004 Jacobs EJ, 2005, J NATL CANCER I, V97, P975, DOI 10.1093/inci/dji173 JAGER BV, 1946, AM J MED SCI, V211, P273, DOI 10.1097/00000441-194603000-00004 Janssen T, 2000, J ACOUST SOC AM, V107, P1790, DOI 10.1121/1.428578 JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280 JASTREBOFF PJ, 1988, ARCH OTOLARYNGOL, V114, P186 JASTREBOFF PJ, 1986, ARCH OTOLARYNGOL, V112, P1050 JOHNSEN NJ, 1982, SCAND AUDIOL, V11, P3, DOI 10.3109/01050398209076194 Kojda G, 2004, CARDIOVASC RES, V64, P192, DOI 10.1016/j.cardiores.2004.07.008 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 LAMBERT PR, 1986, ARCH OTOLARYNGOL, V112, P1043 LASKA EM, 1982, J CLIN PHARMACOL, V22, P531 Lee EJ, 2003, INT J ONCOL, V23, P503 Li GM, 2002, LAB INVEST, V82, P585, DOI 10.1038/labinvest.3780453 MCCABE PA, 1965, ANN OTO RHINOL LARYN, V74, P312 MCFADDEN D, 1984, HEARING RES, V16, P251, DOI 10.1016/0378-5955(84)90114-X MCFADDEN D, 1984, AM J OTOLARYNG, V5, P235, DOI 10.1016/S0196-0709(84)80033-2 MITCHELL C, 1973, ARCH OTOLARYNGOL, V98, P297 MYERS EN, 1965, NEW ENGL J MED, V273, P587, DOI 10.1056/NEJM196509092731104 MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483 NUNEZ L, 1984, ANN THORAC SURG, V37, P84 Oh KW, 2003, TOXICOL SCI, V73, P44, DOI 10.1093/toxsci/kfg045 Oh SY, 2005, INT J MOL MED, V16, P833 Oliveira J A, 1976, Rev Laryngol Otol Rhinol (Bord), V97, P17 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 OUDOT J, 1979, AUDIOPHONOL CHIR MAX, V28, P687 PERLMAN LV, 1966, NEW ENGL J MED, V274, P164 RAMSDEN RT, 1985, J LARYNGOL OTOL, V99, P1269, DOI 10.1017/S0022215100098510 Ruel J, 2008, J NEUROSCI, V28, P7313, DOI 10.1523/JNEUROSCI.5335-07.2008 RUPP DJ, 1983, ARCH INTERN MED, V143, P1237, DOI 10.1001/archinte.143.6.1237 SALTZMAN DA, 1976, AM J DIG DIS, V21, P815, DOI 10.1007/BF01073038 SCHUKNEC.HF, 1971, ARCHIV OTOLARYNGOL, V93, P541 SCHUKNECHT HF, 1994, OTOLARYNG HEAD NECK, V110, P530 Schwenger P, 1997, P NATL ACAD SCI USA, V94, P2869, DOI 10.1073/pnas.94.7.2869 Seo MS, 2005, INT J MOL MED, V16, P841 Sha SH, 2006, NEW ENGL J MED, V354, P1856, DOI 10.1056/NEJMc053428 Sha SH, 1999, LAB INVEST, V79, P807 SILVERST.H, 1967, ANN OTO RHINOL LARYN, V76, P118 SKJELBRED P, 1984, BRIT J CLIN PHARMACO, V17, P379 Speir E, 1998, CIRC RES, V83, P210 SPONGR VP, 1992, ARCH OTOLARYNGOL, V118, P157 Starr A, 1996, BRAIN, V119, P741, DOI 10.1093/brain/119.3.741 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E THALMANN R, 1973, AUDIOLOGY, V12, P364 Thomas J, 2002, AM J GASTROENTEROL, V97, P2215, DOI 10.1111/j.1572-0241.2002.05974.x TIGERSTEDT I, 1981, ACTA ANAESTH SCAND, V25, P543 WALTNER J G, 1955, Ann Otol Rhinol Laryngol, V64, P617 Wecker H, 2004, HNO, V52, P347, DOI 10.1007/s00106-004-1065-5 Wei L, 2009, DEGENERATION COCHLEA WOODFORD CM, 1978, ANN OTO RHINOL LARYN, V87, P117 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 Yang K, 2009, INT J AUDIOL, V48, P18, DOI 10.1080/14992020802327998 Yiannakopoulou EC, 2009, J APPL MICROBIOL, V106, P903, DOI 10.1111/j.1365-2672.2008.04061.x Yu N, 2008, CELL MOL LIFE SCI, V65, P2407, DOI 10.1007/s00018-008-8195-y ZUCKER P, 1975, AM J DIS CHILD, V129, P1433 NR 81 TC 27 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 63 EP 69 DI 10.1016/j.heares.2010.02.010 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000009 PM 20214971 ER PT J AU Palmgren, B Jin, Z Ma, HM Jiao, Y Olivius, P AF Palmgren, Bjorn Jin, Zhe Ma, Hongmin Jiao, Yu Olivius, Petri TI beta-Bungarotoxin application to the round window: An in vivo deafferentation model of the inner ear SO HEARING RESEARCH LA English DT Article ID COCHLEAR NEURONAL DEGENERATION; SPIRAL GANGLION NEURONS; HAIR CELL LOSS; AUDITORY-NERVE; HEARING-LOSS; GUINEA-PIG; STEM-CELLS; SCALA TYMPANI; NEUROPATHY; MECHANISMS AB Hearing impairment can be caused by a primary lesion to the spiral ganglion neurons (SGNs) with the hair cells kept intact, for example via tumours, trauma or auditory neuropathy. To mimic these conditions in animal models various methods of inflicting damage to the inner ear have been used. However, only a few methods have a selective effect on the SGNs, which is of importance since it might be clinically more relevant to study hearing impairment with the hair cells undamaged. beta-Bungarotoxin is a venom of the Taiwan banded krait, which in vitro has been shown to induce apoptosis in neurons, leaving remaining cochlear cells intact. We wanted to create an in vivo rat model of selective damage to primary auditory neurons. Under deep anaesthesia, 41 rats received beta-Bungarotoxin or saline to the round window niche. At postoperative intervals between days 3 and 21 auditory brainstem response (ABR) measurement, immunohistochemistry, SGN quantification and cochlear surface preparation were performed. The results in the beta-Bungarotoxin-treated ears, as compared with sham-operated ears, show significantly increased ABR thresholds at all postoperative intervals, illustrating a severe to profound hearing loss at all tested frequencies (3.5, 7, 16 and 28 kHz). Quantification of the SGNs showed no obvious reduction in neuronal numbers until 14 days postoperatively. Between days 14 and 21 a significant reduction in SGN numbers was observed. Cochlear surface preparation and immunohistochemistry showed that the hair cells were intact. Our results illustrate that in vivo application of beta-Bungarotoxin to the round window niche is a feasible way of deafening rats by SGN reduction while the hair cells are kept intact. (C) 2010 Elsevier B.V. All rights reserved. C1 [Palmgren, Bjorn; Olivius, Petri] Karolinska Univ Hosp, Karolinska Inst, Sect Otorhinolaryngol, Dept Clin Neurosci, S-17176 Stockholm, Sweden. [Palmgren, Bjorn; Ma, Hongmin; Jiao, Yu; Olivius, Petri] Karolinska Univ Hosp, Ctr Hearing & Commun Res, S-17176 Stockholm, Sweden. [Jin, Zhe] Uppsala Univ, Dept Neurosci, S-75124 Uppsala, Sweden. RP Palmgren, B (reprint author), Karolinska Univ Hosp, Karolinska Inst, Sect Otorhinolaryngol, Dept Clin Neurosci, S-17176 Stockholm, Sweden. EM bjorn.palmgren@karolinska.se FU Swedish Scientific Research Council; Marianne and Marcus Wallenberg Foundation; Foundation Tysta Skolan; Organization for Hard of Hearing People FX This work was supported by the Swedish Scientific Research Council, The Marianne and Marcus Wallenberg Foundation, The Foundation Tysta Skolan and the Organization for Hard of Hearing People. CR Beisel K, 2008, CELL TISSUE RES, V333, P373, DOI 10.1007/s00441-008-0639-z BICHLER E, 1983, ARCH OTO-RHINO-LARYN, V237, P201, DOI 10.1007/BF00453725 Borkholder DA, 2008, CURR OPIN OTOLARYNGO, V16, P472, DOI 10.1097/MOO.0b013e32830e20db Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x Dixon RW, 1999, AM J PATHOL, V154, P447, DOI 10.1016/S0002-9440(10)65291-1 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 Farinas I, 2001, J NEUROSCI, V21, P6170 Hamada M, 1999, ACTA OTO-LARYNGOL, V119, P778 Harrison RV, 1998, EAR HEARING, V19, P355, DOI 10.1097/00003446-199810000-00002 Hildebrand MS, 2008, MOL THER, V16, P224, DOI 10.1038/sj.mt.6300351 HIROKAWA N, 1977, J CELL BIOL, V73, P27, DOI 10.1083/jcb.73.1.27 Hu ZQ, 2004, EXP NEUROL, V185, P7, DOI 10.1016/j.expneurol.2003.09.012 Hu ZQ, 2004, BRAIN RES, V1026, P68, DOI 10.1016/j.brainres.2004.08.013 Iguchi Fukuichiro, 2004, Acta Otolaryngol Suppl, P43 Ito J, 2005, ORL J OTO-RHINO-LARY, V67, P272, DOI 10.1159/000089407 JUHN SK, 1981, ACTA OTO-LARYNGOL, V91, P529, DOI 10.3109/00016488109138538 KEITHLEY EM, 1990, HEARING RES, V49, P168 Kusunoki T, 2004, OTOLARYNG HEAD NECK, V131, P897, DOI 10.1016/j.otohns.2004.05.022 Lang H, 2005, JARO-J ASSOC RES OTO, V6, P63, DOI 10.1007/s10162-004-5021-6 Li HW, 2004, TRENDS MOL MED, V10, P309, DOI 10.1016/j.molmed.2004.05.008 Liu WH, 2009, TOXICON, V53, P262, DOI 10.1016/j.toxicon.2008.11.012 Lubka M, 2008, CELL PHYSIOL BIOCHEM, V21, P437, DOI 10.1159/000129636 Martinez-Moneder R, 2007, INT J DEV BIOL, V51, P655, DOI 10.1387/ijdb.072372rm Martinez-Monedero R, 2006, J NEUROBIOL, V66, P319, DOI 10.1002/neu.20232 Matsumoto M, 2008, EXP NEUROL, V210, P248, DOI 10.1016/j.expneurol.2007.11.006 McFadden SL, 2004, BRAIN RES, V997, P40, DOI 10.1016/j.brainres.2003.10.031 Megerian CA, 2008, HEARING RES, V237, P90, DOI 10.1016/j.heares.2008.01.002 Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Montecucco C, 2000, TRENDS BIOCHEM SCI, V25, P266, DOI 10.1016/S0968-0004(00)01556-5 Plontke SK, 2008, OTOL NEUROTOL, V29, P401, DOI 10.1097/MAO.0b013e318161aaae Plontke SK, 2007, LARYNGOSCOPE, V117, P1191, DOI 10.1097/MLG.0b013e318058a06b Rask-Andersen H, 2005, HEARING RES, V203, P180, DOI 10.1016/j.heares.2004.12.005 Rybak LP, 2007, HEARING RES, V226, P157, DOI 10.1016/j.heares.2006.09.015 Saber A, 2009, EAR HEARING, V30, P81, DOI 10.1097/AUD.0b013e31818ff98e Schmiedt RA, 2002, JARO, V3, P223, DOI 10.1007/s1016200220017 Sekiya T, 2000, EXP NEUROL, V161, P490, DOI 10.1006/exnr.1999.7280 Sekiya T, 2006, EXP NEUROL, V198, P12, DOI 10.1016/j.expneurol.2005.11.006 Shakhman O, 2003, J NEUROCHEM, V87, P598, DOI 10.1046/j.1471-4159.2003.02035.x SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 Starr A, 1996, BRAIN, V119, P741, DOI 10.1093/brain/119.3.741 Starr A., 2000, Journal of Basic and Clinical Physiology and Pharmacology, V11, P215 SUZUKA Y, 1988, ACTA OTO-LARYNGOL, P1 Takahashi K, 1999, ACTA OTO-LARYNGOL, V119, P767, DOI 10.1080/00016489950180405 Yamagata T, 2004, J NEUROSCI RES, V78, P75, DOI 10.1002/jnr.20239 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x NR 46 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 70 EP 76 DI 10.1016/j.heares.2010.02.009 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000010 PM 20184947 ER PT J AU Wang, WH Yang, JJ Lin, YC Yang, JT Li, SY AF Wang, Wen-Hung Yang, Jiann-Jou Lin, Yen-Chun Yang, Jen-Tsung Li, Shuan-Yow TI Novel expression patterns of connexin 30.3 in adult rat cochlea SO HEARING RESEARCH LA English DT Article DE Cx30.3; Immunohistochemistry; Laser capture microdissection; Cochlea ID NONSYNDROMIC HEARING-LOSS; MOUSE INNER-EAR; GAP-JUNCTIONS; STRIA VASCULARIS; ERYTHROKERATODERMIA VARIABILIS; MOLECULAR-CLONING; MUTATIONS; CELLS; GENE; DEAFNESS AB Mutations of the GJB4 gene, encoding connexin 30.3 (CX30.3), are associated with skin disorders. Recently, this gene was also detected in deaf individuals without skin disorders. However, the functional roles of CX30.3 in the cochlea remain unclear. A primary step toward understanding the role of CX30.3 in hearing and its dysfunction is the documentation of its cellular and sub-cellular locations within the cochlea. In the present study, we located and determined the cellular expression of Cx30.3 within the rat cochlea by using a polyclonal anti-Cx30.3 antibody. Expression of the Cx30.3 protein was detected in the spiral limbus, spiral ligament, spiral ganglion, and stria vascularis by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analyses. Our results indicate the presence and localization of Cx30.3 in the rat cochlea. Knowledge of the spatial distribution of Cx30.3 will provide important insights into its role in the cochleae and normal auditory function. (C) 2010 Elsevier B.V. All rights reserved. C1 [Yang, Jiann-Jou; Li, Shuan-Yow] Chung Shan Med Univ, Genet Lab, Taichung, Taiwan. [Yang, Jiann-Jou; Li, Shuan-Yow] Chung Shan Med Univ, Dept Biomed Sci, Taichung, Taiwan. [Yang, Jiann-Jou; Li, Shuan-Yow] Chung Shan Med Univ Hosp, Dept Med Res, Taichung, Taiwan. [Yang, Jen-Tsung] Chang Gung Mem Hosp, Dept Neurosurg, Chiayi, Taiwan. [Wang, Wen-Hung; Lin, Yen-Chun] Chang Gung Mem Hosp, Dept Otolaryngol, Chiayi, Taiwan. RP Li, SY (reprint author), Chung Shan Med Univ, Genet Lab, Taichung, Taiwan. EM syl@csmu.edu.tw RI Yang, Jen-Tsung/C-3187-2011 FU Chang Gung Memorial Hospital; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine [CMRPG650171, CMRPG660041] FX This work was supported by the Chang Gung Memorial Hospital and the Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine (CMRPG650171 and CMRPG660041). CR Ahmad S, 2003, BIOCHEM BIOPH RES CO, V307, P362, DOI 10.1016/S0006-291X(03)01166-5 Beltramello M, 2005, NAT CELL BIOL, V7, P63, DOI 10.1038/ncb1205 Bibas A., 2006, Folia Morphologica, V65, P140 Bruzzone R, 1996, EUR J BIOCHEM, V238, P1, DOI 10.1111/j.1432-1033.1996.0001q.x Buniello A, 2004, GENOMICS, V83, P812, DOI 10.1016/j.ygeno.2003.10.011 Cohen-Salmon M, 2004, CELL TISSUE RES, V316, P15, DOI 10.1007/s00441-004-0861-2 Dahl E, 1996, J BIOL CHEM, V271, P17903 Forge A, 2003, J COMP NEUROL, V467, P207, DOI 10.1002/cne.10916 Gow A, 2004, J NEUROSCI, V24, P7051, DOI 10.1523/JNEUROSCI.1640-04.2004 HENNEMANN H, 1992, J BIOL CHEM, V267, P17225 Kelley PM, 1999, GENOMICS, V62, P172, DOI 10.1006/geno.1999.6002 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KUIJPERS W, 1969, THESIS U NIJMEGEN NI Lautermann J, 1998, CELL TISSUE RES, V294, P415, DOI 10.1007/s004410051192 Liu XZ, 2001, HUM MOL GENET, V10, P2945, DOI 10.1093/hmg/10.25.2945 Lopez-Bigas N, 2002, HUM MUTAT, V19, DOI 10.1002/humu.9023 Macari F, 2000, AM J HUM GENET, V67, P1296 Matsunami T, 2006, CELL COMMUN ADHES, V13, P93, DOI 10.1080/15419060600631805 Phelan P, 2005, BBA-BIOMEMBRANES, V1711, P225, DOI 10.1016/j.bbamem.2004.10.004 Rabionet R, 2002, TRENDS MOL MED, V8, P205, DOI 10.1016/S1471-4914(02)02327-4 Richard G, 1998, NAT GENET, V20, P366, DOI 10.1038/3840 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 Sohl G, 2003, CELL COMMUN ADHES, V10, P173, DOI 10.1080/15419060390262877 Spicer SS, 1998, HEARING RES, V118, P1, DOI 10.1016/S0378-5955(98)00006-9 Steel KP, 2001, NAT GENET, V27, P143, DOI 10.1038/84758 Sun J., 2005, AM J PHYSIOL-CELL PH, V288, P613 Takeuchi S, 2000, BIOPHYS J, V79, P2572 Tang WX, 2006, J NEUROSCI, V26, P1991, DOI 10.1523/JNEUROSCI.5055-05.2006 Wang WH, 2010, AUDIOL NEURO-OTOL, V15, P81, DOI 10.1159/000231633 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 Xia AP, 2000, NEUROREPORT, V11, P2449, DOI 10.1097/00001756-200008030-00022 Yang JJ, 2007, AUDIOL NEURO-OTOL, V12, P198, DOI 10.1159/000099024 Yang JJ, 2005, BIOCHEM BIOPH RES CO, V338, P723, DOI 10.1016/j.bbrc.2005.09.013 Zheng-Fischhofer Q, 2007, EUR J CELL BIOL, V86, P683, DOI 10.1016/j.ejeb.2007.01.005 NR 36 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 77 EP 82 DI 10.1016/j.heares.2010.02.008 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000011 PM 20184948 ER PT J AU Stankovic, KM Adachi, O Tsuji, K Kristiansen, AG Adams, JC Rosen, V McKenna, MJ AF Stankovic, Konstantina M. Adachi, Osamu Tsuji, Kunikazu Kristiansen, Arthur G. Adams, Joe C. Rosen, Vicki McKenna, Michael J. TI Differences in gene expression between the otic capsule and other bones SO HEARING RESEARCH LA English DT Article DE Otic capsule; opg; Bmpr1b; Otosclerosis ID CHICKEN INNER-EAR; MORPHOGENETIC PROTEINS; CLASS DISCOVERY; MESSENGER-RNA; MOUSE LIMB; OTOSCLEROSIS; ASSOCIATION; PATTERNS; COL1A1; NOGGIN AB Our long term goal is to understand the molecular pathology of otosclerosis and to develop better forms of therapy. Toward this goal, the current study focused on characterizing the molecular factors responsible for the unique biological features of the otic capsule: its minimal rate of remodeling, and lack of healing capacity when fractured. We compared expression levels of 62 genes involved in bone metabolism between the adult murine otic capsule and the tibia and parietal bones; the latter exemplify bones formed by endochondral and intramembranous ossification, respectively. Gene expression levels were measured using real-time quantitative RT-PCR and analyzed using tools of bioinformatics. Expression patterns of key genes were verified with in situ hybridization. The molecular profile of the otic capsule was distinctly different from that of the tibia and parietal bone. Genes found to be most characteristic of the otic capsule were: osteoprotegerin (opg), bone morphogenetic protein receptor 1b (bmpr1b) and bone morphogenetic protein 3 (bmp3). Expression levels were high for opg and bmpr1b, and minimal for bmp3 within the otic capsule. We concluded that opg and bmpr1b likely play important roles in inhibition of remodeling within the otic capsule. (C) 2010 Elsevier B.V. All rights reserved. C1 [Stankovic, Konstantina M.; Adachi, Osamu; Kristiansen, Arthur G.; Adams, Joe C.; McKenna, Michael J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Stankovic, Konstantina M.; Adachi, Osamu; Kristiansen, Arthur G.; Adams, Joe C.; McKenna, Michael J.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA. [Stankovic, Konstantina M.; Adachi, Osamu; Adams, Joe C.; McKenna, Michael J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Tsuji, Kunikazu; Rosen, Vicki] Harvard Univ, Sch Dent Med, Boston, MA 02115 USA. RP Stankovic, KM (reprint author), Massachusetts Eye & Ear Infirm Otolaryngol, 243 Charles St, Boston, MA 02114 USA. EM konstantina_stankovic@meei.harvard.edu; osamu_adachi@meei.harvard.edu; kunikazu_tsuji@hsdm.harvard.edu; kris@epl.meei.harvard.edu; jca@meei.harvard.edu; vicki_rosen@hsdm.harvard.edu; michael_mckenna@meei.harvard.edu FU NIDCD [5RO1 DCO3401-06]; American Otological Association; Massachusetts Life Sciences Center FX We thank Dr. Saumil Merchant for helpful comments on earlier versions of the manuscript. This work was supported by NIDCD Grant 5RO1 DCO3401-06 (M.J.M.), American Otological Association (K.M.S.), Massachusetts Life Sciences Center (K.M.S.) and Mr. Lakshmi Mittal (M.J.M.). CR Bast T. H., 1949, TEMPORAL BONE EAR Baur ST, 2000, DEVELOPMENT, V127, P605 Blobe GC, 2000, NEW ENGL J MED, V342, P1350, DOI 10.1056/NEJM200005043421807 BRODIE HA, 2004, LABYRINTHITIS OSSIFI Chang W, 2002, DEV BIOL, V251, P380, DOI 10.1006/dbio.2002.0822 Chang WS, 1999, DEV BIOL, V216, P369, DOI 10.1006/dbio.1999.9457 Chen D, 2004, GROWTH FACTORS, V22, P233, DOI 10.1080/08977190412331279890 Daluiski A, 2001, NAT GENET, V27, P84 Demirhan O, 2005, J MED GENET, V42, P314, DOI 10.1136/jmg.2004.023564 EALY M, 2009, HEAR RES Eisen MB, 1998, P NATL ACAD SCI USA, V95, P14863, DOI 10.1073/pnas.95.25.14863 FRENZ DA, 2001, EINSTEIN Q J BIOL ME, V18, P7 Frisch T, 1998, BONE, V22, P677, DOI 10.1016/S8756-3282(98)00050-7 Gamer LW, 2009, DEV DYNAM, V238, P2374, DOI 10.1002/dvdy.22048 Gerlach LM, 2000, DEVELOPMENT, V127, P45 GILBERT SF, 2000, DEV BIOL 3, V3, pCH14 Goldring SR, 2003, CALCIFIED TISSUE INT, V73, P97, DOI 10.1007/s00223-002-1049-y Golub TR, 1999, SCIENCE, V286, P531, DOI 10.1126/science.286.5439.531 HARRIS JP, 1993, AM J OTOL, V14, P109 Hartnick CJ, 2001, ARCH OTOLARYNGOL, V127, P180 Heinrich J, 2005, ARCH ORAL BIOL, V50, P897, DOI 10.1016/j.archalbio.2005.02.007 Imauchi Y, 2008, OTOL NEUROTOL, V29, P295 ISHIBE T, 1990, AM J OTOL, V11, P33 Lehmann K, 2003, P NATL ACAD SCI USA, V100, P12277, DOI 10.1073/pnas.2133476100 LILLIE RD, 1965, HISTOLOGIC TECHNIC P Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 McKenna MJ, 1998, AM J OTOL, V19, P604 Monti S, 2003, MACH LEARN, V52, P91, DOI 10.1023/A:1023949509487 Namiki M, 1997, J BIOL CHEM, V272, P22046, DOI 10.1074/jbc.272.35.22046 Perlman HB, 1939, ARCHIV OTOLARYNGOL, V29, P287 Reno C, 1997, BIOTECHNIQUES, V22, P1082 Rodriguez L, 2004, AM J MED GENET A, V128A, P19, DOI 10.1002/ajmg.a.30074 SASSOON D, 1993, METHOD ENZYMOL, V225, P384 SCHRAUWEN I, 2009, HUM GENET Schrauwen I, 2008, J BONE MINER RES, V23, P507, DOI 10.1359/JBMR.071112 Schrauwen I, 2009, AM J HUM GENET, V84, P328, DOI 10.1016/j.ajhg.2009.01.023 Schuknecht HF, 1993, PATHOLOGY EAR, P672 SORENSEN MS, 1990, ACTA OTO-LARYNGOL, V110, P217, DOI 10.3109/00016489009122540 Sørensen M S, 1992, Acta Otolaryngol Suppl, V496, P1 Stankovic KM, 2003, HEARING RES, V185, P97, DOI 10.1016/S0378-5955(03)00298-3 Tamayo P, 1999, P NATL ACAD SCI USA, V96, P2907, DOI 10.1073/pnas.96.6.2907 Terenghi G, 1998, METH MOL B, V86, P137 Thys M, 2007, HUM MOL GENET, V16, P2021, DOI 10.1093/hmg/ddm150 Thys M, 2009, ANN HUM GENET, V73, P171, DOI 10.1111/j.1469-1809.2009.00505.x Trepicchio WL, 1998, ANN NY ACAD SCI, V856, P12, DOI 10.1111/j.1749-6632.1998.tb08308.x Wozney JM, 1998, CLIN ORTHOP RELAT R, P26 Yi SE, 2000, DEVELOPMENT, V127, P621 Zehnder AF, 2005, LARYNGOSCOPE, V115, P172, DOI 10.1097/01.mlg.0000150702.28451.35 Zehnder AF, 2006, LARYNGOSCOPE, V116, P201, DOI 10.1097/01.mlg.0000191466.09210.9a Zhang Wen, 2004, J Biol, V3, P21, DOI 10.1186/jbiol16 Zhao M, 2002, J CELL BIOL, V157, P1049, DOI 10.1083/jcb.200109012 GENEPATTERN NR 52 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 83 EP 89 DI 10.1016/j.heares.2010.02.006 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000012 PM 20146935 ER PT J AU Ikeda, R Nakaya, K Yamazaki, M Oshima, T Kawase, T Kobayashi, T AF Ikeda, Ryoukichi Nakaya, Kazuhiro Yamazaki, Muneharu Oshima, Takeshi Kawase, Tetsuaki Kobayashi, Toshimitsu TI Effect of vestibular labyrinth destruction on endocochlear potential and potassium concentration of the cochlea SO HEARING RESEARCH LA English DT Article DE Endocochlear potential; Semicircular canal; Potassium; Labyrinthectomy ID SEMICIRCULAR CANAL OCCLUSION; FROG RANA-ESCULENTA; GUINEA-PIGS; TRANSLABYRINTHINE APPROACH; HEARING PRESERVATION; ION-TRANSPORT; DARK CELLS; CHANNEL; FLUID; TRANSECTION AB Partial labyrinthectomy can result in maintenance of hearing under certain circumstances, and the mechanism of the hearing impairment caused by labyrinthectomy is unclear. We hypothesized that disruption of the membranous labyrinth results in electrical leakage and electrolyte imbalance. This study investigated the change in cochlear function by measurement of endocochlear potential (EP) and potassium concentration ([K(+)]) caused by vestibular labyrinth destruction in the acute phase. Hartley guinea pigs underwent lateral semicircular canal (LSCC) transection with suctioning of the perilymph, ampullectomy, or destruction of the LSCC, superior SCC, and lateral part of the vestibule. The EP and [K(+)] were monitored using double-barreled ion-selective microelectrodes in the second turn of cochlea. The EP showed little to mild change after LSCC transectioning or ampullectomy, but declined variously and drastically after vestibulotomy. The EP did not recover but [K(+)] partially recovered after vestibulotomy. Disturbance of the mechanism of cochlear function caused by vestibular labyrinth destruction may involve reduction in the [K(+)] concentration in the endolymph. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ikeda, Ryoukichi; Nakaya, Kazuhiro; Yamazaki, Muneharu; Oshima, Takeshi; Kawase, Tetsuaki; Kobayashi, Toshimitsu] Tohoku Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Aoba Ku, Sendai, Miyagi 9808574, Japan. RP Ikeda, R (reprint author), Tohoku Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Aoba Ku, 1-1 Seiryo Machi, Sendai, Miyagi 9808574, Japan. EM ryoukich@hotmail.com FU Ministry of Education, Science and Culture [21390457] FX This study was supported by a grant from the Ministry of Education, Science and Culture [Grant-in-Aid for Scientific Research (B) 21390457]. CR BERNARD C, 1986, J PHYSIOL-LONDON, V371, P17 CAWTHORNE T, 1948, ACTA OTOLARYNGOL S S, V78, P145 GRIGUER C, 1993, PFLUG ARCH EUR J PHY, V422, P407, DOI 10.1007/BF00374300 Hibino H, 1997, J NEUROSCI, V17, P4711 HIRSCH BE, 1993, AM J OTOL, V14, P533 KOBAYASHI T, 1995, ARCH OTOLARYNGOL, V121, P469 KOBAYASHI T, 1991, ARCH OTOLARYNGOL, V117, P1292 KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P22, DOI 10.3109/00016487809124717 KRISTENSEN H K, 1952, J Laryngol Otol, V66, P259, DOI 10.1017/S0022215100047629 KRISTENSEN H K, 1959, J Laryngol Otol, V73, P699, DOI 10.1017/S0022215100055936 Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403 MCELVEEN JT, 1993, OTOLARYNG HEAD NECK, V108, P671 MCELVEEN JT, 1991, J LARYNGOL OTOL, V105, P34, DOI 10.1017/S0022215100114768 MOSCOVIT.DH, 1973, ANN OTO RHINOL LARYN, V82, P53 Nakaya K, 2007, AM J PHYSIOL-RENAL, V292, pF1314, DOI 10.1152/ajpreanl.00432.2006 Nam BH, 1997, ANN OTO RHINOL LARYN, V106, P1082 Nam BH, 2002, ANN OTO RHINOL LARYN, V111, P402 OUDAR O, 1988, ANAT REC, V220, P328, DOI 10.1002/ar.1092200316 PALVA T, 1976, ARCH OTOLARYNGOL, V102, P137 PARNES LS, 1985, J OTOLARYNGOL, V14, P145 PARNES LS, 1990, ANN OTO RHINOL LARYN, V99, P330 RASKANDERSEN H, 1977, ANN OTOL RHINOL LA S, V42, P1 Salt AN, 2001, ANN NY ACAD SCI, V942, P306 SCHUKNECHT HF, 1975, J LARYNGOL OTOL, V89, P985, DOI 10.1017/S0022215100081305 Smouha EE, 1999, AM J OTOL, V20, P632 Smouha EE, 1996, OTOLARYNG HEAD NECK, V114, P777, DOI 10.1016/S0194-5998(96)70101-8 Wangemann P, 2006, J PHYSIOL-LONDON, V576, P11, DOI 10.1113/jphysiol.2006.112888 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 Wangemann P, 1996, HEARING RES, V100, P201, DOI 10.1016/0378-5955(96)00127-X Yin S, 2008, ACTA OTO-LARYNGOL, V128, P739, DOI 10.1080/00016480701730000 NR 30 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 14 PY 2010 VL 265 IS 1-2 BP 90 EP 95 DI 10.1016/j.heares.2009.12.027 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 614XB UT WOS:000279092000013 PM 20045046 ER PT J AU Cruickshanks, KJ Nondahl, DM Tweed, TS Wiley, TL Klein, BEK Klein, R Chappell, R Dalton, DS Nash, SD AF Cruickshanks, Karen J. Nondahl, David M. Tweed, Ted S. Wiley, Terry L. Klein, Barbara E. K. Klein, Ronald Chappell, Rick Dalton, Dayna S. Nash, Scott D. TI Education, occupation, noise exposure history and the 10-yr cumulative incidence of hearing impairment in older adults SO HEARING RESEARCH LA English DT Article DE Presbyacusis; Socioeconomic status; Incidence; Hearing impairment; Hearing loss; Aging ID HIGH BLOOD-PRESSURE; BEAVER DAM EYE; CARDIOVASCULAR-DISEASE; SEX-DIFFERENCES; EPIDEMIOLOGY; PREVALENCE; HEALTH; AGE; THRESHOLDS; MICE AB The purpose of this study was to determine the 10-yr cumulative incidence of hearing impairment and associations of education, occupation and noise exposure history with the incidence of hearing impairment in a population-based cohort study of 3753 adults ages 48-92 yr at the baseline examinations during 1993-1995 in Beaver Dam, WI. Hearing thresholds were measured at baseline, 2.5 yr-, 5 yr-, and 10-yr follow-up examinations. Hearing impairment was defined as a pure-tone average (PTA) > 25 dB HL at 500, 1000, 2000, and 4000 Hz. Demographic characteristics and occupational histories were obtained by questionnaire. The 10-yr cumulative incidence of hearing impairment was 37.2%. Age (5 yr; Hazard Ratio (HR) = 1.81), sex (M vs W; HR = 2.29), occupation based on longest held job (production/operations/farming vs others; HR = 1.34), marital status (unmarried vs married; HR = 1.29) and education (<16 vs 16 + yr; HR = 1.40) were associated with the 10 yr incidence. History of noisy jobs was not associated with the 10-yr incidence of hearing impairment. The risk of hearing impairment was high, with women experiencing a slightly later onset. Markers of socioeconomic status were associated with hearing impairment, suggesting that hearing impairment in older adults may be associated with modifiable lifestyle and environmental factors, and therefore, at least partially preventable. (C) 2009 Elsevier B.V. All rights reserved. C1 [Cruickshanks, Karen J.; Nondahl, David M.; Tweed, Ted S.; Klein, Barbara E. K.; Klein, Ronald; Dalton, Dayna S.] Univ Wisconsin, Dept Ophthalmol & Visual Sci, Madison, WI 53705 USA. [Cruickshanks, Karen J.; Nash, Scott D.] Univ Wisconsin, Dept Populat Hlth Sci, Madison, WI 53705 USA. [Tweed, Ted S.; Wiley, Terry L.] Univ Wisconsin, Dept Commun Disorders, Madison, WI 53705 USA. [Chappell, Rick] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53705 USA. [Chappell, Rick] Univ Wisconsin, Dept Stat, Madison, WI 53705 USA. RP Cruickshanks, KJ (reprint author), Univ Wisconsin, Dept Ophthalmol & Visual Sci, Sch Med & Publ Hlth, 610 Walnut St,10th Floor WARF, Madison, WI 53726 USA. EM cruickshanks@episense.wisc.edu; nondah-l@episense.wisc.edu; tedt@tds.net; terry.wiley@asu.e-du; kleinb@epi.ophth.wisc.edu; kleinr@epi.ophth.wisc.edu; chappell@stat.wisc.edu; dalton@episense.wisc.edu; nash@episense.wisc.edu FU National Institutes of Health [AG11099, EY06592] FX This research is supported by National Institutes of Health Grant AG11099 (K.J. Cruickshanks) and EY06592 (R. Klein). CR Agrawal Y, 2008, ARCH INTERN MED, V168, P1522, DOI 10.1001/archinte.168.14.1522 *AHSA, 1987, GUID MAN PUR TON THR, V20, P297 American National Standards Institute (ANSI), 1999, S311999 ANSI American National Standards Institute (ANSI), 1996, S361996 ANSI American National Standards Institute (ANSI), 1991, S311991 ANSI, P1 ANSI, 2004, S362004 ANSI BOETTCHER FA, 1992, HEARING RES, V62, P217, DOI 10.1016/0378-5955(92)90189-T Brant L J, 1996, J Am Acad Audiol, V7, P152 Chen Y, 2007, HEARING RES, V226, P178, DOI 10.1016/j.heares.2006.05.008 Cox D, 1984, ANAL SURVIVAL DATA Cox DR, 1972, J R STAT SOC B, V187, P220 Cruickshanks KJ, 2003, ARCH OTOLARYNGOL, V129, P1041, DOI 10.1001/archotol.129.10.1041 Cruickshanks KJ, 1998, AM J EPIDEMIOL, V148, P879 Cruickshanks KJ, 1998, JAMA-J AM MED ASSOC, V279, P1715, DOI 10.1001/jama.279.21.1715 Cruickshanks KJ, 2010, SPRINGER HANDB AUDIT, V34, P259, DOI 10.1007/978-1-4419-0993-0_9 Dalstra JAA, 2005, INT J EPIDEMIOL, V34, P316, DOI 10.1093/ije/dyh386 Dalton DS, 2003, GERONTOLOGIST, V43, P661 GATES GA, 1991, ACTA OTO-LARYNGOL, V111, P240, DOI 10.3109/00016489109137382 Gates GA, 2000, HEARING RES, V141, P220, DOI 10.1016/S0378-5955(99)00223-3 Guimaraes P, 2004, HEARING RES, V192, P83, DOI 10.1016/j.heares.2004.01.013 Guimaraes P, 2006, P NATL ACAD SCI USA, V103, P14246, DOI 10.1073/pnas.0606891103 HEDERSTIERNA C, HEARIN IN PRESS 0923 Helzner EP, 2005, J AM GERIATR SOC, V53, P2119, DOI 10.1111/j.1532-5415.2005.00525.x KAPLAN EL, 1958, JAMA-J AM MED ASSOC, V457, P481 KAPLAN GA, 1993, CIRCULATION, V88, P1973 Klein R, 2001, OPHTHALMOLOGY, V108, P1757, DOI 10.1016/S0161-6420(01)00769-2 Landis RJ, 1978, INT STAT REV, V46, P237 Larson VD, 2002, EAR HEARING, V23, P269, DOI 10.1097/01.AUD.0000027409.90397.E4 Lee FS, 2005, EAR HEARING, V26, P1, DOI 10.1097/00003446-200502000-00001 LINTON KLP, 1991, AM J EPIDEMIOL, V134, P1438 Mantel N., 1963, J AM STAT ASSOC, V58, P690, DOI 10.2307/2282717 MARMOT MG, 1991, LANCET, V337, P1387 MILLER GE, 2009, P NATL ACAD SCI, V14 Nondahl D M, 1996, J Am Acad Audiol, V7, P251 Nondahl DA, 2009, EAR HEARING, V30, P696, DOI 10.1097/AUD.0b013e3181b1d418 Popelka MM, 2000, J AM GERIATR SOC, V48, P1273 Popelka MM, 1998, J AM GERIATR SOC, V46, P1075 Power C, 2008, J EPIDEMIOL COMMUN H, V62, P1030, DOI 10.1136/jech.2007.068817 Price K, 2009, HEARING RES, V252, P29, DOI 10.1016/j.heares.2009.02.010 SUBRAMANIAM M, 1991, HEARING RES, V52, P181, DOI 10.1016/0378-5955(91)90197-H TALBOTT E, 1985, AM J EPIDEMIOL, V121, P501 TALBOTT EO, 1990, J OCCUP ENVIRON MED, V32, P690 TANAKA C, 2009, HEARING RES, P10 Torre P, 2005, J SPEECH LANG HEAR R, V48, P473, DOI 10.1044/1092-4388(2005/032) *US PSTK, 2009, SCREEN HEAR IMP OLD WEINSTEIN BE, 1982, J SPEECH HEAR RES, V25, P593 Wiley TL, 2008, J AM ACAD AUDIOL, V19, P281, DOI 10.3766/jaaa.19.4.2 NR 47 TC 37 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 3 EP 9 DI 10.1016/j.heares.2009.10.008 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100002 PM 19853647 ER PT J AU Allen, PD Eddins, DA AF Allen, Paul D. Eddins, David A. TI Presbycusis phenotypes form a heterogeneous continuum when ordered by degree and configuration of hearing loss SO HEARING RESEARCH LA English DT Article DE Presbycusis; Age-related hearing loss; Audiometric configuration; ISO 7029; ANSI S3.44 ID OTOACOUSTIC EMISSION RESPONSES; AUDITORY BRAIN-STEM; HUMAN TEMPORAL BONE; AUDIOMETRIC PATTERNS; SPEECH RECOGNITION; AGE; INDIVIDUALS; THRESHOLDS; GERBIL; POPULATION AB Many reports have documented age-by-frequency increases in average auditory thresholds in various human populations. Despite this, the prevalence of different patterns of hearing loss in presbycusis remains uncertain. We examined 'presbycusis phenotypes' in a database of 960 subjects (552 female, 408 male, 18-92 years) that each had 30 measures of peripheral hearing sensitivity: pure tone audio-grams for left and right ears from 0.25 to 8 kHz and DPOAE for each ear with F(mean) = 1-6.4 kHz. Surprisingly, the hearing phenotypes did not naturally separate into discrete classes of presbycusis. Principal component (PC) analysis revealed that two principal components account for 74% of the variance among the 30 measures of hearing. The two components represent the overall degree (PC1) and configuration of loss (Flat vs. Sloping; PC2) and the phenotypes form a continuum when plotted against them. A heuristic partitioning of this continuum produced classes of presbycusis that vary in their degree of Sloping or Flat hearing loss, suggesting that the previously reported sub-types of presbycusis arise from the categorical segregation of a continuous and heterogeneous distribution. Further, most phenotypes lie intermediate to the extremes of either Flat or Sloping loss, indicating that if audiometric configuration does predict presbycusis etiology, then a mixed origin is the most prevalent. (C) 2010 Elsevier B.V. All rights reserved. C1 [Allen, Paul D.] Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA. [Eddins, David A.] Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA. [Eddins, David A.] Rochester Inst Technol, Natl Tech Inst Deaf, Int Ctr Hearing & Speech Res, Rochester, NY 14623 USA. RP Allen, PD (reprint author), Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, 601 Elmwood Ave,Box 603, Rochester, NY 14642 USA. EM paul_allen@urmc.rochester.edu; david_eddins@urmc.rochester.edu FU USPHS [AG009524, DC005409] FX We thank Prof. James R. Ison for helpful conversations and comments on this manuscript and two anonymous reviewers for their insightful critiques. This research was supported by USPHS Grants AG009524 and DC005409. Portions of this work were previously presented at the 32nd Annual Midwinter Research Meeting of the Association for Research in Otolaryngology, February 14-19 2009. CR ALLEN PD, 2009, ASS RES OT ABSTR, V32, P140 American National Standards Institute, 2004, AM NAT STAND SPEC AU American National Standards Institute, 1996, S3441996 ANSI [Anonymous], 2000, 7029 ISO BRANT LJ, 1990, J ACOUST SOC AM, V88, P813, DOI 10.1121/1.399731 Cilento BW, 2003, OTOLARYNG HEAD NECK, V129, P382, DOI 10.1016/S0194-5998(03)00637-5 Cruickshanks KJ, 1998, AM J EPIDEMIOL, V148, P879 Demeester K, 2009, INT J AUDIOL, V48, P222, DOI 10.1080/14992020802441799 Divenyi PL, 2005, J ACOUST SOC AM, V118, P1089, DOI 10.1121/1.1953207 Dobie RA, 2006, EAR HEARING, V27, P526, DOI 10.1097/01.aud.0000233863.39603.f5 Dubno JR, 2008, J ACOUST SOC AM, V123, P462, DOI 10.1121/1.2817362 Friedland DR, 2009, LARYNGOSCOPE, V119, P473, DOI 10.1002/lary.20130 Gates GA, 2002, HEARING RES, V163, P53, DOI 10.1016/S0378-5955(01)00377-X Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 GLORIG A, 1962, Laryngoscope, V72, P1596 Humes LE, 2005, EAR HEARING, V26, P109, DOI 10.1097/00003446-200504000-00001 Jerger J, 1973, Adv Otorhinolaryngol, V20, P115 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006 LONSBURYMARTIN BL, 1991, J ACOUST SOC AM, V89, P1749, DOI 10.1121/1.401009 McBride DI, 2001, OCCUP ENVIRON MED, V58, P46, DOI 10.1136/oem.58.1.46 Mills DM, 2006, EAR HEARING, V27, P508, DOI 10.1097/01.aud.0000233885.02706.ad Mills DM, 2004, JARO-J ASSOC RES OTO, V5, P1, DOI 10.1007/s10162-4004-3 Mills DM, 2007, EAR HEARING, V28, P778 Mills DM, 2003, J ACOUST SOC AM, V113, P914, DOI 10.1121/1.1535942 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 Nelson EG, 2003, LARYNGOSCOPE, V113, P1672, DOI 10.1097/00005537-200310000-00006 Nelson EG, 2006, LARYNGOSCOPE, V116, P1, DOI 10.1097/01.mlg.0000236089.44566.62 Oeken J, 2000, ACTA OTO-LARYNGOL, V120, P396 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 PAVLOVIC CV, 1986, J ACOUST SOC AM, V80, P50, DOI 10.1121/1.394082 RAMADAN HH, 1989, OTOLARYNG HEAD NECK, V100, P30 ROBINSON D W, 1988, British Journal of Audiology, V22, P5, DOI 10.3109/03005368809077793 ROBINSON DW, 1979, AUDIOLOGY, V18, P320 ROOSA DBS, 1885, T AM OTOL SOC, V3, P449 Schmiedt RA, 1996, HEARING RES, V102, P125, DOI 10.1016/S0378-5955(96)00154-2 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Urben SL, 1999, OTOLARYNG HEAD NECK, V120, P809, DOI 10.1016/S0194-5998(99)70318-9 NR 38 TC 10 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 10 EP 20 DI 10.1016/j.heares.2010.02.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100003 PM 20144701 ER PT J AU Harris, KC Eckert, MA Ahlstrom, JB Dubno, JR AF Harris, Kelly C. Eckert, Mark A. Ahlstrom, Jayne B. Dubno, Judy R. TI Age-related differences in gap detection: Effects of task difficulty and cognitive ability SO HEARING RESEARCH LA English DT Article DE Aging; Auditory temporal processing; Gap detection; Processing speed; Workload; Cognitive ID CORTICAL EVOKED-POTENTIALS; DOWN SUPPRESSION DEFICIT; MENTAL-STATE-EXAMINATION; HEARING-LOSS; DURATION DISCRIMINATION; SPEECH RECOGNITION; TEMPORAL GAPS; OLDER-ADULTS; INTENSITY DISCRIMINATION; INFERIOR COLLICULUS AB Differences in gap detection for younger and older adults have been shown to vary with the complexity of the task or stimuli, but the factors that contribute to these differences remain unknown. To address this question, we examined the extent to which age-related differences in processing speed and workload predicted age-related differences in gap detection. Gap detection thresholds were measured for 10 younger and 11 older adults in two conditions that varied in task complexity but used identical stimuli: (1) gap location fixed at the beginning, middle, or end of a noise burst and (2) gap location varied randomly from trial to trial from the beginning, middle, or end of the noise. We hypothesized that gap location uncertainty would place increased demands on cognitive and attentional resources and result in significantly higher gap detection thresholds for older but not younger adults. Overall, gap detection thresholds were lower for the middle location as compared to beginning and end locations and were lower for the fixed than the random condition. In general, larger age-related differences in gap detection were observed for more challenging conditions. That is, gap detection thresholds for older adults were significantly larger for the random condition than for the fixed condition when the gap was at the beginning and end locations but not the middle. In contrast, gap detection thresholds for younger adults were not significantly different for the random and fixed condition at any location. Subjective ratings of workload indicated that older adults found the gap detection task more mentally demanding than younger adults. Consistent with these findings, results of the Purdue Pegboard and Connections tests revealed age-related slowing of processing speed. Moreover, age group differences in workload and processing speed predicted gap detection in younger and older adults when gap location varied from trial to trial; these associations were not observed when gap location remained constant across trials. Taken together, these results suggest that age-related differences in complex measures of auditory temporal processing may be explained, in part, by age-related deficits in processing speed and attention. (C) 2009 Elsevier B.V. All rights reserved. C1 [Harris, Kelly C.; Eckert, Mark A.; Ahlstrom, Jayne B.; Dubno, Judy R.] Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. RP Harris, KC (reprint author), Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, 135 Rutledge Ave,MSC 550, Charleston, SC 29425 USA. EM harriskc@musc.edu FU NIDCD [P50 DC00422, K23 DC008787]; National Center for Research Resources, National Institutes of Health [C06 RR14516] FX We thank the participants of this study and Ning-Ji He for her assistance with stimulus generation. This work was supported (in part) by grants from the NIDCD (P50 DC00422 and K23 DC008787). This investigation was conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR14516 from the National Center for Research Resources, National Institutes of Health. CR ABEL SM, 1990, SCAND AUDIOL, V19, P43, DOI 10.3109/01050399009070751 Alain C, 2004, PSYCHOL AGING, V19, P125, DOI 10.1037/0882-7974.19.1.125 *AM NAT STAND I, 2004, S32004 ANSI American Psychological Association, 1998, PROFESSIONAL PSYCHOL, V29, P413 Bertoli S, 2002, CLIN NEUROPHYSIOL, V113, P396, DOI 10.1016/S1388-2457(02)00013-5 Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 Dubno JR, 2001, J ACOUST SOC AM, V110, P2108, DOI 10.1121/1.1403699 Dubno JR, 2003, J ACOUST SOC AM, V113, P2084, DOI 10.1121/1.1555611 Dubno JR, 1997, J SPEECH LANG HEAR R, V40, P444 Eckert MA, 2008, JARO-J ASSOC RES OTO, V9, P252, DOI 10.1007/s10162-008-0113-3 FITZGIBBONS PJ, 1994, J SPEECH HEAR RES, V37, P662 Florentine M, 2001, J Am Acad Audiol, V12, P113 Florentine M, 2000, AUDIOLOGY, V39, P161 FOLSTEIN MF, 1983, ARCH GEN PSYCHIAT, V40, P812 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859 Gazzaley A, 2005, NAT NEUROSCI, V8, P1298, DOI 10.1038/nn1543 Gazzaley A, 2008, P NATL ACAD SCI USA, V105, P13122, DOI 10.1073/pnas.0806074105 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 GREEN DM, 1985, J ACOUST SOC AM, V77, P1155, DOI 10.1121/1.392179 GREEN DM, 1993, J ACOUST SOC AM, V93, P2096, DOI 10.1121/1.406696 GREEN DM, 1987, J ACOUST SOC AM, V81, P692, DOI 10.1121/1.394837 GREEN DM, 1989, J ACOUST SOC AM, V86, P961, DOI 10.1121/1.398731 Grose JH, 2001, JARO, V2, P388, DOI 10.1007/s101620010067 Haga S, 2002, JPN PSYCHOL RES, V44, P134, DOI 10.1111/1468-5884.00016 Harris KC, 2008, HEARING RES, V243, P47, DOI 10.1016/j.heares.2008.05.005 Harris KC, 2007, HEARING RES, V228, P58, DOI 10.1016/j.heares.2007.01.021 Harris KC, 2009, J NEUROSCI, V29, P6078, DOI 10.1523/JNEUROSCI.0412-09.2009 Hart S.C., 1988, HUMAN MENTAL WORKLOA He NJ, 1999, J ACOUST SOC AM, V106, P966, DOI 10.1121/1.427109 He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127 HUMES LE, 1991, J SPEECH HEAR RES, V34, P686 Humes LE, 2005, EAR HEARING, V26, P109, DOI 10.1097/00003446-200504000-00001 Humes LE, 2009, ATTEN PERCEPT PSYCHO, V71, P860, DOI 10.3758/APP.71.4.860 Lister J, 2002, J ACOUST SOC AM, V111, P2793, DOI 10.1121/1.1476685 Lister J, 2004, J SPEECH LANG HEAR R, V47, P257, DOI 10.1044/1092-4388(2004/021) Lister JJ, 2000, EAR HEARING, V21, P141, DOI 10.1097/00003446-200004000-00008 Lister JJ, 2005, J SPEECH LANG HEAR R, V48, P482, DOI 10.1044/1092-4388(2005/033) McDowd Joan M, 2007, J Neurol Phys Ther, V31, P98 Mesulam M, 2000, BRAIN COGNITION, V42, P4, DOI 10.1006/brcg.1999.1145 MOORE BCJ, 1992, J ACOUST SOC AM, V92, P1923, DOI 10.1121/1.405240 NAATANEN R, 1993, PSYCHOPHYSIOLOGY, V30, P436, DOI 10.1111/j.1469-8986.1993.tb02067.x PENNER MJ, 1977, J ACOUST SOC AM, V61, P552, DOI 10.1121/1.381297 Phillips S L, 1994, J Am Acad Audiol, V5, P210 Pichora-Fuller M Kathleen, 2006, Trends Amplif, V10, P29, DOI 10.1177/108471380601000103 Pichora-Fuller MK, 2006, J ACOUST SOC AM, V119, P1143, DOI 10.1121/1.2149837 REITAN RM, 1992, J CLIN PSYCHOL, V48, P521, DOI 10.1002/1097-4679(199207)48:4<521::AID-JCLP2270480414>3.0.CO;2-C Roberts RA, 2004, J SPEECH LANG HEAR R, V47, P965, DOI 10.1044/1092-4388(2004/071) ROLAND PE, 1982, J NEUROPHYSIOL, V48, P1059 Salthouse TA, 2003, PSYCHOL AGING, V18, P91, DOI 10.1037/0882-7974.18.1.91 Salthouse TA, 2000, BIOL PSYCHOL, V54, P35, DOI 10.1016/S0301-0511(00)00052-1 Schneider B, 1998, CAN J EXP PSYCHOL, V52, P184, DOI 10.1037/h0087291 Schneider BA, 1999, J ACOUST SOC AM, V106, P371, DOI 10.1121/1.427062 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 Singh G, 2008, J ACOUST SOC AM, V124, P1294, DOI 10.1121/1.2949399 Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 Snell KB, 1999, J ACOUST SOC AM, V106, P3571, DOI 10.1121/1.428210 Spreen O., 1998, COMPENDIUM NEUROPSYC Strenge H, 2002, PERCEPT MOTOR SKILL, V95, P507, DOI 10.2466/PMS.95.6.507-514 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 Tiffin J, 1948, J APPL PSYCHOL, V32, P234, DOI 10.1037/h0061266 TOMBAUGH TN, 1992, J AM GERIATR SOC, V40, P922 TRAINOR LJ, 1989, PERCEPT PSYCHOPHYS, V45, P417, DOI 10.3758/BF03210715 Verhaeghen P, 1997, PSYCHOL BULL, V122, P231, DOI 10.1037/0033-2909.122.3.231 Vingerhoets FJG, 1997, ANN NEUROL, V41, P58, DOI 10.1002/ana.410410111 Walton JP, 2002, J NEUROPHYSIOL, V88, P565, DOI 10.1152/jn.00945.2001 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 Wilder-Willis KE, 2001, BIPOLAR DISORD, V3, P58, DOI 10.1034/j.1399-5618.2001.030202.x YEH YY, 1988, HUM FACTORS, V30, P111 Young Gloria, 2008, J Perianesth Nurs, V23, P102, DOI 10.1016/j.jopan.2008.01.008 NR 70 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 21 EP 29 DI 10.1016/j.heares.2009.09.017 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100004 PM 19800958 ER PT J AU Humes, LE Kewley-Port, D Fogerty, D Kinney, D AF Humes, Larry E. Kewley-Port, Diane Fogerty, Daniel Kinney, Dana TI Measures of hearing threshold and temporal processing across the adult lifespan SO HEARING RESEARCH LA English DT Article DE Aging; Hearing loss; Temporal processing; Individual differences ID AGE-RELATED DIFFERENCES; GAP DETECTION; BACKWARD-MASKING; ELDERLY LISTENERS; AUDITORY-SYSTEM; OLDER-ADULTS; RECOGNITION; DISCRIMINATION; YOUNGER; SPEECH AB Psychophysical data on hearing sensitivity and various measures of supra-threshold auditory temporal processing are presented for large groups of young (18-35 y), middle-aged (40-55 y) and older (6089 y) adults. Hearing thresholds were measured at 500,1414 and 4000 Hz. Measures of temporal processing included gap-detection thresholds for bands of noise centered at 1000 and 3500 Hz, stimulus onset asynchronies for monaural and dichotic temporal-order identification for brief vowels, and stimulus onset/offset asynchronies for the monaural temporal masking of vowel identification. For all temporal-processing measures, the impact of high-frequency hearing loss in older adults was minimized by a combination of low-pass filtering the stimuli and use of high presentation levels. The performance of the older adults was worse than that of the young adults on all measures except gap-detection threshold at 1000 Hz. Middle-aged adults performed significantly worse than the young adults on measures of threshold sensitivity and three of the four measures of temporal-order identification, but not for any of the measures of temporal masking. Individual differences are also examined among a group of 124 older adults. Cognition and age were found to be significant predictors, although only 10-27% of the variance could be accounted for by these predictors. (C) 2009 Published by Elsevier B.V. C1 [Humes, Larry E.; Kewley-Port, Diane; Fogerty, Daniel; Kinney, Dana] Indiana Univ, Dept Speech & Hearing Sci, Bloomington, IN 47405 USA. RP Humes, LE (reprint author), Indiana Univ, Dept Speech & Hearing Sci, Bloomington, IN 47405 USA. EM humes@indiana.edu FU National Institute on Aging [R01 AG022334] FX The authors thank Leah Barlow, Devan Haulk, Liz Moller, Kate Wagner and Xin Wang for their assistance with data collection and Bill Mills and Noah Silbert for their assistance with MATLAB programming. We also thank the hundreds of participants for giving so generously of their time. This work was supported, in part, by a research grant from the National Institute on Aging (R01 AG022334). CR American National Standards Institute, 2003, S311999 ANSI American National Standards Institute, 2004, S362004 ANSI Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 COBB FE, 1993, AUDIOLOGY, V32, P260 CRUICKSHANKS KJ, SPRINGER HD IN PRESS, V33 DORMAN MF, 1977, Q J EXP PSYCHOL, V29, P483, DOI 10.1080/14640747708400624 Fitzgibbons PJ, 1998, J SPEECH LANG HEAR R, V41, P1052 Fitzgibbons PJ, 2006, J ACOUST SOC AM, V120, P991, DOI 10.1121/1.2214463 Fitzgibbons PJ, 2004, J ACOUST SOC AM, V116, P1126, DOI 10.1121/1.1765192 FOGERTY D, J ACOUST SO IN PRESS Folstein MF, 1975, J PSYCHIATR RES, V12, P198 FRANK T, 1991, EAR HEARING, V12, P221, DOI 10.1097/00003446-199106000-00010 Gehr SE, 1999, J ACOUST SOC AM, V106, P2793, DOI 10.1121/1.428104 Gorsuch R. L., 1983, FACTOR ANAL Grose JH, 2006, J ACOUST SOC AM, V119, P2305, DOI 10.1121/1.2172169 Halling DC, 2000, J SPEECH LANG HEAR R, V43, P414 He NJ, 1999, J ACOUST SOC AM, V106, P966, DOI 10.1121/1.427109 HUMES LE, 1991, J SPEECH HEAR RES, V34, P686 Humes LE, 2009, ATTEN PERCEPT PSYCHO, V71, P860, DOI 10.3758/APP.71.4.860 International Organization for Standardization, 2000, ISO7029 Kawahara H, 1999, SPEECH COMMUN, V27, P187, DOI 10.1016/S0167-6393(98)00085-5 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MOORE BCJ, 1992, J ACOUST SOC AM, V92, P1923, DOI 10.1121/1.405240 NEWMAN CW, 1983, AUDIOLOGY, V22, P241 RAZ N, 1990, PSYCHOL AGING, V5, P475, DOI 10.1037//0882-7974.5.4.475 Salthouse T. A., 2000, MODELS COGNITIVE AGI, P19 Salthouse TA, 1985, THEORY COGNITIVE AGI Schneider BA, 1999, J ACOUST SOC AM, V106, P371, DOI 10.1121/1.427062 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 Shrivastav MN, 2008, J ACOUST SOC AM, V124, P462, DOI 10.1121/1.2932089 Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 Snell KB, 1999, J ACOUST SOC AM, V106, P3571, DOI 10.1121/1.428210 Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446 SOMMERS MS, 1993, J ACOUST SOC AM, V93, P2903, DOI 10.1121/1.405810 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 TRAINOR LJ, 1989, PERCEPT PSYCHOPHYS, V45, P417, DOI 10.3758/BF03210715 Verhaeghen P, 1998, PSYCHOL AGING, V13, P120, DOI 10.1037/0882-7974.13.1.120 VERHAEGHEN P, 1998, PSYCHOL AGING, V13, P1 Walton J, 1999, HEARING RES, V127, P86, DOI 10.1016/S0378-5955(98)00175-0 Walton JP, 1998, J NEUROSCI, V18, P2764 Wechsler D, 1997, WECHSLER ADULT INTEL, V3rd ZWICKER E, 1982, AUDIOLOGY, V21, P474 NR 43 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 30 EP 40 DI 10.1016/j.heares.2009.09.010 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100005 PM 19786083 ER PT J AU Fitzgibbons, PJ Gordon-Salant, S AF Fitzgibbons, Peter J. Gordon-Salant, Sandra TI Age-related differences in discrimination of temporal intervals in accented tone sequences SO HEARING RESEARCH LA English DT Article DE Aging; Temporal discrimination; Tone sequences; Accent ID GAP DETECTION; DURATION DISCRIMINATION; AUDITORY SEQUENCES; SPEECH; LISTENERS; THRESHOLDS; PATTERNS; YOUNGER; ADULTS; NOISE AB The study measured listener sensitivity to increments of a target inter-onset interval (101) embedded within isochronous tone sequences that featured a single accented tonal component. The sequences consisted of six 1000-Hz tone bursts separated by silent intervals to establish equal tonal 101s of 200 ms within the sequence. Tone burst durations within the sequences were 50 ms, except one tone had a longer duration of 100 ms to produce a perception of accent. Duration DLs in ms for increments of a single sequence 101 were measured adaptively by adjusting the duration of the silent interval between two tones. Sequence position of the target 101 differed across conditions. Listeners included young normal-hearing adults and older adults with and without hearing loss. Discrimination performance of the two older listener groups was equivalent and significantly poorer than that of the younger listeners in each discrimination condition. The age-related discrimination deficits were independent of sequence locations of both the target interval and the accented tonal component. Comparative DLs collected for target intervals in unaccented tone sequences with equal tone durations revealed that the detrimental effects of accent on temporal discrimination were primarily restricted to the older listeners. (C) 2009 Elsevier B.V. All rights reserved. C1 [Fitzgibbons, Peter J.] Gallaudet Univ, Dept Hearing Speech & Language Sci, Washington, DC 20002 USA. [Gordon-Salant, Sandra] Univ Maryland, Dept Hearing & Speech Sci, Dept Speech & Hearing Sci, College Pk, MD 20742 USA. RP Fitzgibbons, PJ (reprint author), Gallaudet Univ, Dept Hearing Speech & Language Sci, Washington, DC 20002 USA. EM peter.fitzgibbons@gallaudet.edu FU National Institute Aging [R37AG09191] FX This research was supported by Grant R37AG09191 from the National Institute Aging. The authors are grateful to Helen Hwang and Keena James for their assistance in data collection and analysis. CR ABEL SM, 1990, SCAND AUDIOL, V19, P43, DOI 10.3109/01050399009070751 ANSI, 2004, S362004 ANSI Burda AN, 2003, PERCEPT MOTOR SKILL, V97, P11, DOI 10.2466/PMS.97.4.11-20 Fitzgibbons PJ, 1995, J ACOUST SOC AM, V98, P3140, DOI 10.1121/1.413803 Fitzgibbons PJ, 1998, J SPEECH LANG HEAR R, V41, P1052 FITZGIBBONS PJ, 1994, J SPEECH HEAR RES, V37, P662 Fitzgibbons PJ, 2001, J ACOUST SOC AM, V109, P2955, DOI 10.1121/1.1371760 Fitzgibbons PJ, 2004, J ACOUST SOC AM, V116, P1126, DOI 10.1121/1.1765192 Fitzgibbons PJ, 2007, J ACOUST SOC AM, V122, P458, DOI 10.1121/1.2739409 GELFAND SA, 1990, J SPEECH HEAR DISORD, V55, P198 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 Grose JH, 2006, J ACOUST SOC AM, V119, P2305, DOI 10.1121/1.2172169 HIRSH IJ, 1990, PERCEPT PSYCHOPHYS, V47, P215, DOI 10.3758/BF03204997 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 FANT G, 1991, J PHONETICS, V19, P351 PFEIFFER E, 1975, J AM GERIATR SOC, V23, P433 Pickett J. M, 1999, ACOUSTICS SPEECH COM, P75 Schneider BA, 1999, J ACOUST SOC AM, V106, P371, DOI 10.1121/1.427062 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 SHRIVASTAV MN, 2008, J ACOUST SOC AM, V124 Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 TRAINOR LJ, 1989, PERCEPT PSYCHOPHYS, V45, P417, DOI 10.3758/BF03210715 Tun PA, 1998, PSYCHOL AGING, V13, P424, DOI 10.1037//0882-7974.13.3.424 WINGFIELD A, 1985, J GERONTOL, V40, P579 NR 24 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 41 EP 47 DI 10.1016/j.heares.2009.11.008 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100006 PM 19931608 ER PT J AU Clinard, CG Tremblay, KL Krishnan, AR AF Clinard, Christopher G. Tremblay, Kelly L. Krishnan, Ananthanarayan R. TI Aging alters the perception and physiological representation of frequency: Evidence from human frequency-following response recordings SO HEARING RESEARCH LA English DT Article DE Aging; Frequency discrimination; Frequency-following response; FFR; Auditory evoked potentials; Auditory brainstem ID BRAIN-STEM RESPONSES; ENVELOPE-FOLLOWING RESPONSES; HEARING-IMPAIRED LISTENERS; AUDITORY-EVOKED-POTENTIALS; TEMPORAL FINE-STRUCTURE; STEADY-STATE RESPONSES; AGE-RELATED-CHANGES; NEURAL REPRESENTATION; OLDER LISTENERS; INTENSITY DISCRIMINATION AB Older adults, even with clinically normal hearing sensitivity, have auditory perceptual deficits relative to their younger counterparts. This difficulty may in part, be related to a decline in the neural representation of frequency. The purpose of this study was to examine the effect of age on behavioral and physiological measures of frequency representation. Thirty two adults (ages 22-77), with hearing thresholds <= 25 dB HL at octave frequencies 0.25-8.0 kHz, participated in this experiment. Frequency discrimination difference limens (FDLs) were obtained at 500 and 1000 Hz using a two-interval, two-alternative forced choice procedure. Linear regression analyses showed significant declines in FDLs at both frequencies as age increased. Frequency-following responses (FFRs) were elicited by 500 and 1000 Hz tonebursts, as well as at frequencies within and outside those FDLs. Linear regression of FFR phase coherence and FFR amplitude at frequencies at and slightly below 1000 Hz showed significant decreases as age increased. Therefore, pitch discrimination, as measured by FDLs, and neural representation of frequency, as reflected by FFR, declined as age increased. Although perception and neural representation concurrently declined, one was not predictive of the other. (C) 2009 Elsevier B.V. All rights reserved. C1 [Clinard, Christopher G.; Tremblay, Kelly L.] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98105 USA. [Krishnan, Ananthanarayan R.] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA. RP Clinard, CG (reprint author), Univ Washington, Dept Speech & Hearing Sci, 1417 NE 42nd St,Box 354875, Seattle, WA 98105 USA. EM cclinard@uw.edu; tremblay@uw.edu FU National Institutes of Health [R01-DC007705, T32-DC00033, P30-DC04661, R01 DC008549]; UW Virginia Merrill Bloedel Scholar Program FX This work was supported by the National Institutes of Health R01-DC007705 (KT), T32-DC00033 (CC), P30-DC04661, and R01 DC008549 (ARK). Funding for KT from the UW Virginia Merrill Bloedel Scholar Program is also acknowledged. Thanks to Sasha John, Terry Picton, and G. Christopher Stecker for their programming assistance, as well as Jordan Cannon for his assistance with data collection. CR ABEL SM, 1990, SCAND AUDIOL, V19, P43, DOI 10.3109/01050399009070751 Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004 BATRA R, 1986, HEARING RES, V21, P167, DOI 10.1016/0378-5955(86)90037-7 Caspary DM, 2005, J NEUROSCI, V25, P10952, DOI 10.1523/JNEUROSCI.2451-05.2005 DAVIS H, 1976, AUDIOLOGY, V15, P181 DOBIE RA, 1989, EAR HEARING, V10, P2 Dobie RA, 1996, J ACOUST SOC AM, V100, P2236, DOI 10.1121/1.417933 Drennan VR, 2007, JARO-J ASSOC RES OTO, V8, P373, DOI 10.1007/s10162-007-0074-y DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011 Elhilali M, 2004, J NEUROSCI, V24, P1159, DOI 10.1523/JNEUROSCI.3825-03.2004 Espinoza-Varas B, 2006, EXP AGING RES, V32, P209, DOI 10.1080/03610730600554008 Fisher N. I., 1993, STAT ANAL CIRCULAR D Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Frisina RD, 2006, HEARING RES, V216, P216, DOI 10.1016/j.heares.2006.02.003 Gordon-Salant S, 1999, J SPEECH LANG HEAR R, V42, P300 Harkrider AW, 2005, CLIN NEUROPHYSIOL, V116, P2153, DOI 10.1016/j.clinph.2005.05.016 Harris KC, 2008, HEARING RES, V243, P47, DOI 10.1016/j.heares.2008.05.005 Harris KC, 2007, HEARING RES, V228, P58, DOI 10.1016/j.heares.2007.01.021 HE N, 2008, JASA, V124, P3481 He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127 He NJ, 2007, J ACOUST SOC AM, V122, P467, DOI 10.1121/1.2741208 Heinz MG, 2001, NEURAL COMPUT, V13, P2273, DOI 10.1162/089976601750541804 Hopkins K, 2008, J ACOUST SOC AM, V123, P1140, DOI 10.1121/1.2824018 Humes L E, 1996, J Am Acad Audiol, V7, P161 John MS, 1998, AUDIOLOGY, V37, P59 KONIG E, 1957, ACTA OTO-LARYNGOL, V48, P474 Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004 Krishnan A, 2004, HEARING RES, V189, P1, DOI 10.1016/S0378-5955(03)00402-7 Krishnan A, 2000, AUDIOL NEURO-OTOL, V5, P312, DOI 10.1159/000013897 Krishnan A, 1999, AUDIOL NEURO-OTOL, V4, P95, DOI 10.1159/000013826 Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1 Leek MR, 2001, J ACOUST SOC AM, V109, P2944, DOI 10.1121/1.1371761 Leigh-Paffenroth ED, 2006, J AM ACAD AUDIOL, V17, P582, DOI 10.3766/jaaa.17.8.5 LEVI EC, 1995, HEARING RES, V89, P21, DOI 10.1016/0378-5955(95)00118-3 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Micheyl C, 2006, HEARING RES, V219, P36, DOI 10.1016/j.heares.2006.05.004 Mills John H., 2006, Seminars in Hearing, V27, P228, DOI 10.1055/s-2006-954849 MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925 Moser T, 2006, J PHYSIOL-LONDON, V576, P55, DOI 10.1113/jphysiol.2006.114835 MOUSHEGI.G, 1973, ELECTROEN CLIN NEURO, V35, P665, DOI 10.1016/0013-4694(73)90223-X OLSHO LW, 1988, INFANT BEHAV DEV, V11, P205, DOI 10.1016/S0163-6383(88)80006-7 Ostroff JM, 2003, HEARING RES, V181, P1, DOI 10.1016/S0378-5955(03)00113-8 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X PFEFFERBAUM A, 1980, ELECTROEN CLIN NEURO, V49, P266, DOI 10.1016/0013-4694(80)90221-7 PICHORAFULLER MK, 1992, J ACOUST SOC AM, V91, P2129, DOI 10.1121/1.403673 PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 Pichora-Fuller MK, 2007, HEARING RES, V223, P114, DOI 10.1016/j.heares.2006.10.009 Plyler P N, 2001, J Am Acad Audiol, V12, P523 Poth EA, 2001, HEARING RES, V161, P81, DOI 10.1016/S0378-5955(01)00352-5 Purcell DW, 2004, J ACOUST SOC AM, V116, P3581, DOI 10.1121/1.1798354 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 Ross B, 2007, J NEUROSCI, V27, P11172, DOI 10.1523/JNEUROSCI.1813-07.2007 Ross B, 2009, HEARING RES, V248, P48, DOI 10.1016/j.heares.2008.11.012 Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 Schneider BA, 1999, J ACOUST SOC AM, V106, P371, DOI 10.1121/1.427062 SOHMER H, 1977, ELECTROEN CLIN NEURO, V42, P656, DOI 10.1016/0013-4694(77)90282-6 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 Swaminathan J, 2008, IEEE T BIO-MED ENG, V55, P281, DOI 10.1109/TBME.2007.896592 Tremblay K. L., 2007, AUDITORY EVOKED POTE, P403 Tremblay KL, 2002, NEUROREPORT, V13, P1865, DOI 10.1097/00001756-200210280-00007 Tremblay Kelly L, 2004, J Am Acad Audiol, V15, P226, DOI 10.3766/jaaa.15.3.5 Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7 Walton JP, 1998, J NEUROSCI, V18, P2764 WINTER IM, 2005, PITCH NEURAL CODING, P364 Wong PCM, 2007, NAT NEUROSCI, V10, P420, DOI 10.1038/nn1872 WORDEN FG, 1968, ELECTROEN CLIN NEURO, V25, P42, DOI 10.1016/0013-4694(68)90085-0 ZUREK PM, 1992, EAR HEARING, V13, P207 NR 68 TC 39 Z9 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 48 EP 55 DI 10.1016/j.heares.2009.11.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100007 PM 19944140 ER PT J AU Sommers, MS Gehr, SE AF Sommers, Mitchell S. Gehr, Sara E. TI Two-tone auditory suppression in younger and older normal-hearing adults and its relationship to speech perception in noise SO HEARING RESEARCH LA English DT Article DE Auditory suppression; Speech perception in noise; Aging ID GAP DETECTION; DURATION DISCRIMINATION; PSYCHOPHYSICAL MEASURES; FREQUENCY-SELECTIVITY; SIMULTANEOUS MASKING; AGE; STIMULI; EXCITATION; LISTENERS; CONTEXT AB One approach for establishing how age affects psychoacoustic abilities is to compare the performance of young and older adults with normal auditory sensitivity. The present study used this approach to determine if age affects two-tone suppression - a reduction in masked thresholds (henceforth, unmasking) following the introduction of a second (suppressing) tone to a masker-plus-signal stimulus complex. A secondary goal of the study was to assess whether individual differences in suppression would predict identification scores for words presented in a forward masking noise. Unmasking was measured by comparing forward-masked thresholds for a 2000 Hz signal with a tonal (2000 Hz) masker alone or the tonal masker plus a 2300 Hz tonal suppressor. Speech perception in noise was assessed by obtaining forward-masked speech reception thresholds (SRTs) for isolated words presented with speech-shaped noise. Young, but not older, normal-hearing adults exhibited significant amounts of unmasking. Nineteen of the 20 young adults tested exhibited unmasking, whereas less that half of the 25 older participants exhibited any unmasking. The correlation between suppression as indexed by unmasking and SRTs in young adults was approximately -0.6, suggesting that more suppression was associated with lower SRTs. The findings suggest that auditory suppression is one of the few psychoacoustic abilities that demonstrate significant changes with age even for older adults with minimal hearing loss. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sommers, Mitchell S.; Gehr, Sara E.] Washington Univ, Dept Psychol, St Louis, MO 63130 USA. RP Sommers, MS (reprint author), Washington Univ, Dept Psychol, Campus Box 1125, St Louis, MO 63130 USA. EM MSommers@wustl.edu FU National Institute for Aging [R03 AG033009-01]; Brookdale Foundation FX The authors would like to thank Stephanie Danielson and Adam Weinberg for assistance with data collection. Portions of these data were collected as part of the second author's Doctoral Dissertation. Support for the research was provided by the National Institute for Aging (R03 AG033009-01) and by the Brookdale Foundation. CR *AM NAT STAND I, 1998, S361989 ANSI BILGER RC, 1984, J SPEECH HEAR RES, V27, P32 Committee on Hearing Bioacoustics and Biomechanics (CHABA), 1988, J ACOUST SOC AM, V83, P859 Dubno JR, 2001, J ACOUST SOC AM, V110, P1049, DOI 10.1121/1.1381023 Dubno JR, 2001, J ACOUST SOC AM, V110, P2108, DOI 10.1121/1.1403699 Dubno JR, 2000, J ACOUST SOC AM, V107, P538, DOI 10.1121/1.428322 Dubno JR, 2001, J ACOUST SOC AM, V110, P1058, DOI 10.1121/1.1381024 DUIFHUIS H, 1980, J ACOUST SOC AM, V67, P914, DOI 10.1121/1.383971 Fitzgibbons PJ, 1995, J ACOUST SOC AM, V98, P3140, DOI 10.1121/1.413803 Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183 FITZGIBBONS PJ, 1994, J SPEECH HEAR RES, V37, P662 Gehr SE, 1999, J ACOUST SOC AM, V106, P2793, DOI 10.1121/1.428104 Gifford RH, 2005, J ACOUST SOC AM, V118, P3823, DOI 10.1121/1.2126933 Gifford RH, 2000, J ACOUST SOC AM, V107, P2188, DOI 10.1121/1.428499 He NJ, 1999, J ACOUST SOC AM, V106, P966, DOI 10.1121/1.427109 Hicks ML, 1999, J ACOUST SOC AM, V106, P1436, DOI 10.1121/1.427146 Hicks ML, 1999, J ACOUST SOC AM, V105, P326, DOI 10.1121/1.424526 HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048 HUMES LE, 1983, J ACOUST SOC AM, V73, P930, DOI 10.1121/1.389018 Humes L E, 1980, J Acoust Soc Am, V67, P1751 HUMES LE, 1980, J ACOUST SOC AM, V67, P2073, DOI 10.1121/1.384451 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lister J, 2004, J SPEECH LANG HEAR R, V47, P257, DOI 10.1044/1092-4388(2004/021) Lister JJ, 2005, J SPEECH LANG HEAR R, V48, P482, DOI 10.1044/1092-4388(2005/033) MILLS JH, 1982, NEW PERSPECTIVES NOI Moore B. C., 2004, INTRO PSYCHOL HEARIN MOORE BCJ, 1992, J ACOUST SOC AM, V92, P1923, DOI 10.1121/1.405240 MOORE BCJ, 1982, J ACOUST SOC AM, V72, P1374, DOI 10.1121/1.388441 MOORE BCJ, 1982, J ACOUST SOC AM, V71, P942, DOI 10.1121/1.387574 Moore BCJ, 1997, J ACOUST SOC AM, V102, P2284, DOI 10.1121/1.419638 Morrell CH, 1996, J ACOUST SOC AM, V100, P1949, DOI 10.1121/1.417906 NEFF DL, 1986, J ACOUST SOC AM, V79, P1519, DOI 10.1121/1.393678 SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 SHANNON RV, 1976, J ACOUST SOC AM, V59, P1460, DOI 10.1121/1.381007 Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 Sommers MS, 1999, PSYCHOL AGING, V14, P458, DOI 10.1037/0882-7974.14.3.458 Sommers MS, 1998, J ACOUST SOC AM, V103, P1067, DOI 10.1121/1.421220 SOMMERS MS, 1993, J ACOUST SOC AM, V93, P2903, DOI 10.1121/1.405810 NR 39 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 56 EP 62 DI 10.1016/j.heares.2009.12.020 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100008 PM 20006694 ER PT J AU Walton, JP AF Walton, Joseph P. TI Timing is everything: Temporal processing deficits in the aged auditory brainstem SO HEARING RESEARCH LA English DT Article DE Aging; Temporal resolution; Neural correlates; Animal models ID DORSAL COCHLEAR NUCLEUS; RAT INFERIOR COLLICULUS; AMPLITUDE-MODULATED SOUNDS; MEDIAL GENICULATE-NUCLEUS; GAP DETECTION; HEARING-LOSS; SPEECH RECOGNITION; ELDERLY LISTENERS; RECEPTOR-BINDING; NERVE FIBERS AB This summary article reviews the literature on neural correlates of age-related changes in temporal processing in the auditory brainstem. Two types of temporal processing dimensions are considered, (i) static, which can be measured using a gap detection or forward masking paradigms, and (ii) dynamic, which can be measured using amplitude and frequency modulation. Corresponding data from physiological studies comparing neural responses from young and old animals using acoustic stimuli as silent gaps-in-noise, amplitude modulation, and frequency modulation are considered in relation to speech perception. Evidence from numerous investigations indicates an age-related decline in encoding of temporal sound features which may be a contributing factor to the deficits observed in speech recognition in many elderly listeners. (C) 2010 Elsevier B.V. All rights reserved. C1 [Walton, Joseph P.] Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA. [Walton, Joseph P.] Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA. RP Walton, JP (reprint author), Univ Rochester, Sch Med & Dent, Dept Otolaryngol, 601 Elmwood Ave, Rochester, NY 14642 USA. EM joseph_walton@URMC.rochester.edu CR AITKIN L, 1994, EXP BRAIN RES, V98, P53 AITKIN LM, 1985, J NEUROPHYSIOL, V53, P43 AITKIN LM, 1984, J NEUROPHYSIOL, V52, P1 Backoff PM, 1997, HEARING RES, V110, P155, DOI 10.1016/S0378-5955(97)00081-6 Backoff PM, 1999, HEARING RES, V134, P77, DOI 10.1016/S0378-5955(99)00071-4 Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8 Buss E, 2004, EAR HEARING, V25, P242, DOI 10.1097/01.AUD.0000130796.93809.09 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 Davis KA, 2007, J NEUROPHYSIOL, V98, P1475, DOI 10.1152/jn.00451.2007 Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001 Dubno JR, 2003, J ACOUST SOC AM, V113, P2084, DOI 10.1121/1.1555611 Eggermont JJ, 1999, J NEUROPHYSIOL, V81, P2570 Finlayson PG, 2002, JARO, V3, P321, DOI 10.1007/s101620020038 Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183 FOZARD JL, 2001, HANDB PSYCHOL AGING, V241, P266 FRISINA DR, 2001, FUNCT NEUROBIOL AGIN, V565, P579 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y GLASBERG BR, 1987, J ACOUST SOC AM, V81, P1546, DOI 10.1121/1.394507 GORDONSALANT S, 1995, J SPEECH HEAR RES, V38, P1150 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 Green T, 2004, J ACOUST SOC AM, V116, P2298, DOI 10.1121/1.1785611 Grimault N, 2002, J ACOUST SOC AM, V111, P1340, DOI 10.1121/1.1452740 Hage SR, 2003, EUR J NEUROSCI, V18, P2301, DOI 10.1046/j.1460-9568.2003.02945.x HELFERT RH, 1999, J COMP NEUROL, V406 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Joris PX, 1998, J NEUROSCI, V18, P10157 KLUMP GM, 1991, J COMP PHYSIOL A, V168, P469, DOI 10.1007/BF00199606 Krishna BS, 2000, J NEUROPHYSIOL, V84, P255 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 Lee HJ, 2002, HEARING RES, V174, P64, DOI 10.1016/S0378-5955(02)00639-1 LEONG UC, 2009, NEUROBIOL AGING, DOI DOI 10.1016/J.NEUROBIOAGING.2009.01.006 Lui B, 2003, EXP BRAIN RES, V153, P550, DOI 10.1007/s00221-003-1618-y Mendelson JR, 2004, HEARING RES, V191, P21, DOI 10.1016/j.heares.2004.01.010 MILBRANDT JC, 1994, NEUROBIOL AGING, V15, P699, DOI 10.1016/0197-4580(94)90051-5 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Milbrandt JC, 1996, NEUROSCIENCE, V73, P449, DOI 10.1016/0306-4522(96)00050-4 MOORE BCJ, 1992, J ACOUST SOC AM, V92, P1923, DOI 10.1121/1.405240 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1093, DOI 10.1121/1.396054 Oertel D, 2000, P NATL ACAD SCI USA, V97, P11773, DOI 10.1073/pnas.97.22.11773 POLLAK GD, 1981, J NEUROPHYSIOL, V46, P605 REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 REES A, 1997, INFLUENCE INTRINSIC ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 SALVI RJ, 1985, J ACOUST SOC AM, V77, P1173, DOI 10.1121/1.392181 Schatteman TA, 2008, NEUROSCIENCE, V154, P329, DOI 10.1016/j.neuroscience.2008.02.025 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823 SEMPLE MN, 1983, HEARING RES, V10, P203, DOI 10.1016/0378-5955(83)90054-0 Palombi PS, 2001, HEARING RES, V153, P174, DOI 10.1016/S0378-5955(00)00264-1 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446 Sutherland DP, 1998, HEARING RES, V120, P86, DOI 10.1016/S0378-5955(98)00056-2 Trussell LO, 2002, CURR OPIN NEUROBIOL, V12, P400, DOI 10.1016/S0959-4388(02)00335-5 Walton JP, 2002, J NEUROPHYSIOL, V88, P565, DOI 10.1152/jn.00945.2001 Walton JP, 1998, J NEUROSCI, V18, P2764 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 Wang H, 2009, NEUROSCIENCE, V160, P227, DOI 10.1016/j.neuroscience.2009.01.079 Winer J.A., 2005, INFERIOR COLLICULUS ZHANG W, 1990, HEARING RES, V46, P181, DOI 10.1016/0378-5955(90)90001-6 NR 61 TC 29 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 63 EP 69 DI 10.1016/j.heares.2010.03.002 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100009 PM 20303402 ER PT J AU Syka, J AF Syka, Josef TI The Fischer 344 rat as a model of presbycusis SO HEARING RESEARCH LA English DT Article DE Rat; Fischer 344; Presbycusis; Aging; Model ID AGE-RELATED-CHANGES; CENTRAL AUDITORY-SYSTEM; GLUTAMIC-ACID DECARBOXYLASE; CONTRALATERAL MONAURAL STIMULI; INFERIOR COLLICULUS RESPONSES; RECEPTOR SUBUNIT COMPOSITION; CNS STRUCTURAL ELEMENTS; BRAIN-STEM RESPONSES; OUTER HAIR CELL; COCHLEAR-NUCLEUS AB Due to the rising number of the aged human population all over the world, presbycusis is a phenomenon that deserves the increasing attention of the medical community as regards to prevention and treatment. This requires finding appropriate animal models for human presbycusis that will be useful in future experiments. Among the available rat strains, the Fischer 344 (F344) strain promises to serve as a model producing prompt and profound presbycusis. Hearing thresholds begin to increase in this strain during the first year of life; toward the end of the second year, the thresholds are very high. The threshold shifts progress independently in both ears. The rapid deterioration of distortion product otoacoustic emissions, with the majority of outer hair cells (OHC) being present and morphologically intact, is apparently produced by the disruption of prestin. The age-related changes within inner ear function are accompanied by deterioration of acoustical signal processing within central auditory system, mainly due to impaired GABA inhibition. The loss of GABA inhibition in old animals is expressed primarily in the inferior colliculus but is also present in the cochlear nuclei and the auditory cortex. Sound-evoked behavioral reactions are also impaired in old F344 rats. Taken together, the described characteristics of the aging F344 rat auditory system supports the idea that this strain may serve as a suitable model for studying the mechanisms of presbycusis, its prevention and treatment. (C) 2009 Elsevier B.V. All rights reserved. C1 Acad Sci Czech Republic, Inst Expt Med, Prague 14220, Czech Republic. RP Syka, J (reprint author), Acad Sci Czech Republic, Inst Expt Med, Prague 14220, Czech Republic. EM syka@biomed.cas.cz RI Syka, Josef/H-3103-2014 CR BACKOFF PM, 1994, HEARING RES, V73, P163, DOI 10.1016/0378-5955(94)90231-3 BANAYSCHWARTZ M, 1989, NEUROCHEM RES, V14, P555, DOI 10.1007/BF00964918 BANAYSCHWARTZ M, 1989, NEUROCHEM RES, V14, P563, DOI 10.1007/BF00964919 Bielefeld EC, 2008, HEARING RES, V241, P26, DOI 10.1016/j.heares.2008.04.006 Bizon JL, 2009, NEUROBIOL AGING, V30, P646, DOI 10.1016/j.neurobiolaging.2007.08.004 Buckiova D, 2007, EXP GERONTOL, V42, P629, DOI 10.1016/j.exger.2007.02.007 Buckiova D, 2006, EXP GERONTOL, V41, P296, DOI 10.1016/j.exger.2005.11.010 Burianova J, 2009, EXP GERONTOL, V44, P161, DOI 10.1016/j.exger.2008.09.012 CASEY MA, 1990, NEUROBIOL AGING, V11, P391, DOI 10.1016/0197-4580(90)90004-J Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 CASPARY DM, 1990, J NEUROSCI, V10, P2363 Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 Chen GD, 2009, HEARING RES, V248, P39, DOI 10.1016/j.heares.2008.11.010 COOPER WA, 1990, HEARING RES, V43, P171, DOI 10.1016/0378-5955(90)90226-F DEFELIPE J, 1992, EUR J NEUROSCI, V4, P46, DOI 10.1111/j.1460-9568.1992.tb00108.x FINLAYSON PG, 1993, NEUROBIOL AGING, V14, P127, DOI 10.1016/0197-4580(93)90088-S Frisina R. D., 2001, FUNCTIONAL NEUROBIOL, P531, DOI 10.1016/B978-012351830-9/50039-1 GUTIERREZ A, 1994, J NEUROSCI, V14, P7469 Helfert RH, 1999, J COMP NEUROL, V406, P285 Helfert RH, 2003, HEARING RES, V183, P18, DOI 10.1016/S0378-5955(03)00194-1 Helfert RH, 2002, HEARING RES, V170, P155, DOI 10.1016/S0378-5955(02)00487-2 Hof P. R., 2001, FUNCTIONAL NEUROBIOL, P605, DOI 10.1016/B978-012351830-9/50044-5 Hu BH, 2008, HEARING RES, V245, P48, DOI 10.1016/j.heares.2008.08.006 Kawaguchi Y, 1998, NEUROSCIENCE, V85, P677, DOI 10.1016/S0306-4522(97)00685-4 KEITHLEY EM, 1990, HEARING RES, V49, P169, DOI 10.1016/0378-5955(90)90103-V KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 KOSAKA T, 1987, BRAIN RES, V419, P119, DOI 10.1016/0006-8993(87)90575-0 Krenning J, 1998, LARYNGOSCOPE, V108, P26, DOI 10.1097/00005537-199801000-00005 LaSarge CL, 2007, NEUROBIOL AGING, V28, P928, DOI 10.1016/j.neurobiolaging.2006.04.010 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Ling LL, 2005, NEUROSCIENCE, V132, P1103, DOI 10.1016/j.neuroscience.2004.12.043 Mei Y, 1999, HEARING RES, V135, P169, DOI 10.1016/S0378-5955(99)00103-3 MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T MILBRANDT JC, 1994, NEUROBIOL AGING, V15, P699, DOI 10.1016/0197-4580(94)90051-5 Ouda L, 2008, EXP GERONTOL, V43, P782, DOI 10.1016/j.exger.2008.04.001 Palombi PS, 1996, HEARING RES, V100, P41, DOI 10.1016/0378-5955(96)00115-3 Palombi PS, 1996, J NEUROPHYSIOL, V76, P3114 Popelar J, 2006, NEUROBIOL AGING, V27, P490, DOI 10.1016/j.neurobiolaging.2005.03.001 Popelar J, 2003, HEARING RES, V186, P75, DOI 10.1016/S0378-5955(03)00329-0 RAZA A, 1994, HEARING RES, V77, P221, DOI 10.1016/0378-5955(94)90270-4 REBERT CS, 1983, NEUROBEH TOXICOL TER, V5, P59 SALVI RJ, 2001, FUNCTIONAL NEUROBIOL, P549, DOI 10.1016/B978-012351830-9/50040-8 SASS B, 1975, J NATL CANCER I, V54, P1449 Sato T, 2001, NEUROSCIENCE, V103, P695, DOI 10.1016/S0306-4522(01)00022-7 Shetty AK, 1998, J COMP NEUROL, V394, P252 SIMPSON GV, 1985, BRAIN RES, V348, P28, DOI 10.1016/0006-8993(85)90355-5 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Tanaka C, 2009, LARYNGOSCOPE, V119, P1374, DOI 10.1002/lary.20244 Turner JG, 2005, PLASTICITY AND SIGNAL REPRESENTATION IN THE AUDITORY SYSTEM, P217, DOI 10.1007/0-387-23181-1_19 Turner JG, 2005, J NEUROPHYSIOL, V94, P2738, DOI 10.1152/jn.00362.2005 Varty GB, 1998, NEUROBIOL AGING, V19, P243, DOI 10.1016/S0197-4580(98)00053-0 Villarreal JS, 2004, BEHAV NEUROSCI, V118, P1166, DOI 10.1037/0735-7044.118.6.1106 Wang H, 2009, NEUROSCIENCE, V160, P227, DOI 10.1016/j.neuroscience.2009.01.079 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 56 TC 26 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 70 EP 78 DI 10.1016/j.heares.2009.11.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100010 PM 19903514 ER PT J AU Hughes, LF Turner, JG Parrish, JL Caspary, DM AF Hughes, Larry F. Turner, Jeremy G. Parrish, Jennifer L. Caspary, Donald M. TI Processing of broadband stimuli across A1 layers in young and aged rats SO HEARING RESEARCH LA English DT Article DE Aging; Inhibition; Noise; Rats; Auditory cortex; Auditory; Cortex; Age; Physiology; Broadband noise; Response properties; GABA ID PRIMARY AUDITORY-CORTEX; INFERIOR COLLICULUS NEURONS; VISUAL CORTICAL-CELLS; GABAERGIC INHIBITION; RECEPTIVE-FIELDS; SPEECH RECOGNITION; HEARING IMPAIRMENT; MONGOLIAN GERBIL; COCHLEAR NUCLEUS; SINGLE NEURONS AB Presbycusis can be considered a slow age-related peripheral and central deterioration of auditory function which manifests itself as deficits in speech comprehension, especially in noisy environments. The present study examined neural correlates of a simple broadband noise stimulus in primary auditory cortex (A1) of young and aged Fischer-Brown Norway (FBN) rats. Age-related changes in unit responses to broadband noise bursts and spontaneous activity were simultaneously recorded across A1 layers using a single shank, 16-channel electrode. Noise bursts were presented contralateral to the left A1 at 80 dB SPL. Aged A1 units displayed increased spontaneous (29%), peak (24%), and steady state response rates (38%) than did young A1 units. This was true across all A1 layers, although age-related differences were significantly greater for layers I-Ill (43% vs 18%) than lower layers. There was a significant age-related difference in the depth and duration of post-onset suppression between young and aged upper layer A1 units. The present functional differences across layers were consistent with studies showing greatest losses of gamma-aminobutyric acid (GABA) markers in superficial layers of A1 and with anatomic studies showing highest levels of inhibitory neurons located in superficial cortical layers. The present findings were also consistent with aging studies suggesting loss of functional inhibition in other cortical sensory systems. (C) 2009 Elsevier B.V. All rights reserved. C1 [Hughes, Larry F.; Turner, Jeremy G.; Parrish, Jennifer L.] So Illinois Univ, Sch Med, Dept Surg, Div Otolaryngol, Springfield, IL 62794 USA. [Turner, Jeremy G.] Illinois Coll, Dept Psychol, Jacksonville, IL USA. [Caspary, Donald M.] So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. RP Hughes, LF (reprint author), So Illinois Univ, Sch Med, Dept Surg, Div Otolaryngol, Springfield, IL 62794 USA. EM lhughes@siumed.edu FU SIU Excellence in Academic Medicine [NIH DC00151, NIH AG023910] FX Supported in part by Grants (SIU Excellence in Academic Medicine grant to L.F.H., NIH DC00151 to D.M.C., NIH AG023910 to J.G.T.). The authors wish to express their sincere thanks to Loren Zuiderveld and Andrew K. James for their help with spike sorting. CR Atencio CA, 2008, J NEUROSCI, V28, P3897, DOI 10.1523/JNEUROSCI.5366-07.2008 Barbour DL, 2008, J NEUROSCI, V28, P11174, DOI 10.1523/JNEUROSCI.2093-08.2008 Betts LR, 2007, VISION RES, V47, P1769, DOI 10.1016/j.visres.2007.02.016 BRUGGE JF, 1969, J NEUROPHYSIOL, V32, P1005 Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 CASPARY DM, 1990, J NEUROSCI, V10, P2363 Chen QC, 2000, HEARING RES, V150, P161, DOI 10.1016/S0378-5955(00)00197-0 Chimoto S, 2002, BRAIN RES, V934, P34, DOI 10.1016/S0006-8993(02)02316-8 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 FAYELUND H, 1985, ANAT EMBRYOL, V173, P53, DOI 10.1007/BF00707304 Foeller E, 2001, JARO, V2, P279 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0 Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 Hara K, 2002, ANESTH ANALG, V94, P313, DOI 10.1097/00000539-200202000-00015 HAYES D, 1979, ARCH OTOLARYNGOL, V105, P9 Hefti BJ, 2000, J NEUROPHYSIOL, V83, P2626 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 Horikawa J, 1996, J PHYSIOL-LONDON, V497, P629 Hua TM, 2006, NEUROBIOL AGING, V27, P155, DOI 10.1016/j.neurobiolaging.2004.12.012 JONES DA, 1984, J EPIDEMIOL COMMUN H, V38, P75, DOI 10.1136/jech.38.1.75 Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1 LEDOUX JE, 1985, J COMP NEUROL, V242, P182, DOI 10.1002/cne.902420204 Leventhal AG, 2003, SCIENCE, V300, P812, DOI 10.1126/science.1082874 Ling LL, 2005, NEUROSCIENCE, V132, P1103, DOI 10.1016/j.neuroscience.2004.12.043 LUTMAN ME, 1991, ACTA OTO-LARYNGOL, P239 MAGGI CA, 1986, EXPERIENTIA, V42, P531, DOI 10.1007/BF01946692 Mendelson JR, 2001, HEARING RES, V158, P84, DOI 10.1016/S0378-5955(01)00294-5 MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 MULROW CD, 1990, ANN INTERN MED, V113, P188 Palombi PS, 1996, HEARING RES, V100, P59, DOI 10.1016/0378-5955(96)00113-X Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 Palombi PS, 1996, HEARING RES, V100, P41, DOI 10.1016/0378-5955(96)00115-3 Paxinos G., 1998, RAT BRAIN STEREOTAXI Pernberg J, 1998, EUR J NEUROSCI, V10, P3596, DOI 10.1046/j.1460-9568.1998.00364.x PFINGST BE, 1981, J NEUROPHYSIOL, V45, P16 PHILLIPS DP, 1987, EXP BRAIN RES, V67, P479 PHILLIPS DP, 1990, J ACOUST SOC AM, V88, P1403, DOI 10.1121/1.399718 PHILLIPS DP, 1991, HEARING RES, V53, P17, DOI 10.1016/0378-5955(91)90210-Z PRIETO JJ, 1994, J COMP NEUROL, V344, P349, DOI 10.1002/cne.903440304 RIQUIMAROUX H, 1992, J NEUROPHYSIOL, V68, P1613 ROGER M, 1989, J COMP NEUROL, V287, P339, DOI 10.1002/cne.902870306 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 Schmolesky MT, 2000, NAT NEUROSCI, V3, P384 Schulze H, 1997, ACTA OTO-LARYNGOL, P89 Schulze H, 1997, J COMP PHYSIOL A, V181, P651, DOI 10.1007/s003590050147 Shevelev IA, 1998, NEUROREPORT, V9, P3153, DOI 10.1097/00001756-199810050-00006 Simon H, 2004, J ACOUST SOC AM, V116, P469, DOI 10.1121/1.1760796 SOROS P, 2009, BMC NEUROSCI, V7, P10 SUGA N, 1977, SCIENCE, V196, P64, DOI 10.1126/science.190681 Tan AYY, 2004, J NEUROPHYSIOL, V92, P630, DOI 10.1152/jn.01020.2003 Thomas A, 1980, Br J Audiol, V14, P76, DOI 10.3109/03005368009078906 Tremblay KL, 2002, NEUROREPORT, V13, P1865, DOI 10.1097/00001756-200210280-00007 Turner JG, 2005, J NEUROPHYSIOL, V94, P2738, DOI 10.1152/jn.00362.2005 Turner JG, 2005, HEARING RES, V202, P129, DOI 10.1016/j.heares.2004.09.011 Wang H, 2009, NEUROSCIENCE, V160, P227, DOI 10.1016/j.neuroscience.2009.01.079 Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 Webster William R., 1995, P797 Weedman DL, 1996, J COMP NEUROL, V371, P311 WEINSTEIN BE, 1982, J SPEECH HEAR RES, V25, P593 Willott J. F., 1991, AGING AUDITORY SYSTE Winer J.A., 1992, Springer Handbook of Auditory Research, V1, P222 WINER JA, 1989, NEUROSCIENCE, V33, P499, DOI 10.1016/0306-4522(89)90402-8 Zilles Karl, 1995, P649 Zilles K., 1985, CORTEX RAT STEREOTAX NR 70 TC 21 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 79 EP 85 DI 10.1016/j.heares.2009.09.005 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100011 PM 19772906 ER PT J AU Sha, SH Chen, FQ Schacht, J AF Sha, Su-Hua Chen, Fu-Quan Schacht, Jochen TI PTEN attenuates PIP3/Akt signaling in the cochlea of the aging CBA/J mouse SO HEARING RESEARCH LA English DT Article DE Outer hair cells; PTEN; PIP3; Akt; Aging cochlea ID INNER-EAR; APOPTOSIS; PATHWAY; INHIBITION; ACTIVATION; PROTEIN; PHOSPHATASE; EXPRESSION; INSIGHTS; PKB/AKT AB We have previously reported the activation of cell death pathways in the sensory cells of the aging cochlea. Here we investigate age-associated changes in survival mechanisms focusing on phosphatidylinositol 3,4,5-trisphosphate (PIP3)/Akt signaling. The animal model is the CBA/J mouse of 18 months of age prior to the onset of major functional loss (ABR thresholds, 26 +/- 8 dB SPL) which is compared to young animals of 3 months of age (ABR thresholds, 19 +/- 7 dB SPL). Immunostaining on cochlear cryosections revealed a wide-spread distribution of PIP3 in the cochlea which was markedly attenuated in old animals in inner and outer hair cells, Deiters cells and pillar cells. Protein levels of the lipid phosphatase PTEN which regulates PIP3 increased in those cells with aging while its mRNA did not, suggesting an age-related reduction of PTEN degradation. Furthermore, staining intensity of phosphorylated PTEN (ser380) and its nuclear localization increased. Consistent with a reduction of PIP3, the phosphorylation of the downstream target Akt at threonine 308 significantly decreased in outer hair cells. The results suggest a decline of the survival capacity of aging outer hair cells due to a decrease in PIP3/Akt signaling caused by an increase of PTEN. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sha, Su-Hua; Chen, Fu-Quan; Schacht, Jochen] Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Chen, Fu-Quan] Fourth Mil Med Univ, Dept Otolaryngol, Xian 710032, Peoples R China. RP Sha, SH (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM shasha@umich.edu FU National Institute of Aging [AG-025164]; National Institute on Deafness and Other Communication Disorders, NIH [P30 DC-05188] FX This study was supported by program project Grant AG-025164 from the National Institute of Aging and core Grant P30 DC-05188 from the National Institute on Deafness and Other Communication Disorders, NIH. CR Berra E, 1998, J BIOL CHEM, V273, P10792, DOI 10.1074/jbc.273.17.10792 Cerezo A, 1998, MOL BIOL CELL, V9, P3107 Chan T. O., 2001, SCI STKE, V2001, ppe1 Chang CJ, 2008, MOL CELL BIOL, V28, P3281, DOI 10.1128/MCB.00310-08 Denley A, 2009, MOL CANCER RES, V7, P1132, DOI 10.1158/1541-7786.MCR-09-0068 Elghazi L, 2009, TRENDS ENDOCRIN MET, V20, P243, DOI 10.1016/j.tem.2009.03.002 Franke TF, 2008, ONCOGENE, V27, P6473, DOI 10.1038/onc.2008.313 Gericke A, 2006, GENE, V374, P1, DOI 10.1016/j.gene.2006.02.024 Goto S, 2001, ANN NY ACAD SCI, V928, P54 Irvine RF, 2003, NAT REV MOL CELL BIO, V4, P349, DOI 10.1038/nrm1100 Jiang H, 2007, NEUROBIOL AGING, V28, P1605, DOI 10.1016/j.neurobiolaging.2006.06.025 Jiang H, 2006, J NEUROCHEM, V99, P269, DOI 10.1111/j.1471-4159.2006.04117.x Jung T, 2009, MOL ASPECTS MED, V30, P191, DOI 10.1016/j.mam.2009.04.001 Keller JN, 2000, J NEUROSCI RES, V61, P436, DOI 10.1002/1097-4547(20000815)61:4<436::AID-JNR10>3.0.CO;2-Z Leslie NR, 2003, EMBO J, V22, P5501, DOI 10.1093/emboj/cdg513 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Misra UK, 2008, CELL SIGNAL, V20, P1459, DOI 10.1016/j.cellsig.2008.04.002 Paez Juan, 2003, Cancer Treat Res, V115, P145 Parker RJ, 2004, BIOCHEM CELL BIOL, V82, P694, DOI 10.1139/O04-119 Perandones C, 2004, MOL BRAIN RES, V128, P8, DOI 10.1016/j.molbrainres.2004.05.021 Podsypanina K, 1999, P NATL ACAD SCI USA, V96, P1563, DOI 10.1073/pnas.96.4.1563 Qiu JH, 2000, J NEUROSCI, V20, P259 Ramaswamy S, 1999, P NATL ACAD SCI USA, V96, P2110, DOI 10.1073/pnas.96.5.2110 Sansal I, 2004, J CLIN ONCOL, V22, P2954, DOI 10.1200/jco.2004.02.141 Scheid MP, 2001, NAT REV MOL CELL BIO, V2, P760, DOI 10.1038/35096067 Sha SH, 2009, HEARING RES, V254, P92, DOI 10.1016/j.heares.2009.04.019 Sha SH, 2008, HEARING RES, V243, P87, DOI 10.1016/j.heares.2008.06.001 Shen WH, 2007, CELL, V128, P157, DOI 10.1016/j.cell.2006.11.042 Stambolic V, 1998, CELL, V95, P29, DOI 10.1016/S0092-8674(00)81780-8 Tamguney T, 2007, J CELL SCI, V120, P4071, DOI 10.1242/jcs.015230 Woodgett JR, 2005, CURR OPIN CELL BIOL, V17, P150, DOI 10.1016/j.ceb.2005.02.010 Wu H, 2003, ONCOGENE, V22, P3113, DOI 10.1038/sj.onc.1206451 Zhu Y, 2006, APOPTOSIS, V11, P197, DOI 10.1007/s10495-006-3714-5 NR 33 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 86 EP 92 DI 10.1016/j.heares.2009.09.002 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100012 PM 19761823 ER PT J AU Bao, JX Ohlemiller, KK AF Bao, Jianxin Ohlemiller, Kevin K. TI Age-related loss of spiral ganglion neurons SO HEARING RESEARCH LA English DT Article DE Spiral ganglion neuron; Hair cell; Neural presbycusis; Aging; Glucocorticoid; Caloric restriction; Calcium ID HAIR CELL LOSS; DIETARY RESTRICTION; HEARING-LOSS; INNER-EAR; LIFE-SPAN; COCHLEAR DEGENERATION; MITOCHONDRIAL-DNA; MICE LACKING; C-ELEGANS; SUPEROXIDE-DISMUTASE AB Spiral ganglion neurons (SGNs) are the relay station for auditory information between hair cells and central nervous system. Age-related decline of auditory function due to SGN loss can not be ameliorated by hearing aids or cochlear implants. Recent findings clearly indicate that survival of SGNs during aging depends on genetic and environmental interactions, which can be demonstrated at the systemic, tissue, cellular, and molecular levels. At the systemic level, both insulin/insulin-like growth factor-1 and lipophilic/steroid hormone pathways influence SGN survival during aging. At the level of organ of the Corti, it is difficult to determine whether age-related SGN loss is primary or secondary degeneration. However, a late stage of SGN degeneration may be independent of age-related loss of hair cells. At the cellular and molecular level, several pathways, particularly free radical and calcium signaling pathways, can influence age-related SGN loss, and further studies should determine how these pathways contribute to SGN loss, such as whether they directly or indirectly act on SGNs. With the advancement of recent genetic and pharmacologic tools, we should not only understand how SGNs die during aging, but also find ways to delay this loss. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bao, Jianxin; Ohlemiller, Kevin K.] Washington Univ, Sch Med, Dept Otolaryngol, Fay & Carl Simmons Ctr Biol Hearing & Deafness, St Louis, MO 63110 USA. RP Bao, JX (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Ctr Aging, POB 8115,660 S Euclid Ave, St Louis, MO 63110 USA. EM jbao@wustl.edu FU National Organization for Hearing Research Foundation [NIH R21 DC010489, NIH R01 AG024250, R01 DC008321, P30 DC04665] FX We would like thank Ms. Joyce Ji for comments on the manuscript. Supported by the National Organization for Hearing Research Foundation (J.B.), NIH R21 DC010489 (J.B.), NIH R01 AG024250 (J.B.), R01 DC008321 (K.K.O.), and P30 DC04665 (R. Chole). CR Adams JC, 1997, HEARING RES, V104, P101, DOI 10.1016/S0378-5955(96)00184-0 Alam SA, 2001, LARYNGOSCOPE, V111, P528, DOI 10.1097/00005537-200103000-00026 Bai U, 1997, AM J OTOL, V18, P449 Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005 Bartke A, 2006, EXP GERONTOL, V41, P1217, DOI 10.1016/j.exger.2006.09.001 Ben-Sasson S. A., 1995, CELL DEATH DIFFER, P29 BERG BN, 1965, CAN MED ASSOC J, V93, P911 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004 Broue F, 2007, AGING CELL, V6, P87, DOI 10.1111/j.1474-9726.2006.00268.x Choi DW, 1996, CURR OPIN NEUROBIOL, V6, P667, DOI 10.1016/S0959-4388(96)80101-2 Coggan JS, 2004, J NEUROBIOL, V60, P214, DOI 10.1002/neu.20022 COHEN GM, 1992, BIOCHEM J, V286, P331 Cowen T, 2002, AUTON NEUROSCI-BASIC, V96, P20, DOI 10.1016/S1566-0702(01)00376-9 Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006 Dazert S, 1996, HEARING RES, V100, P101, DOI 10.1016/0378-5955(96)00100-1 Deckwerth TL, 1996, NEURON, V17, P401, DOI 10.1016/S0896-6273(00)80173-7 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 Feuers RJ, 1998, ANN NY ACAD SCI, V854, P192, DOI 10.1111/j.1749-6632.1998.tb09902.x Fritzsch B, 1997, SEMIN CELL DEV BIOL, V8, P277, DOI 10.1006/scdb.1997.0144 Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 Giannakou ME, 2007, TRENDS BIOCHEM SCI, V32, P180, DOI 10.1016/j.tibs.2007.02.007 GUARANTE L, 2000, NATURE, V408, P225 HENGARTNER MO, 1994, CELL, V76, P665, DOI 10.1016/0092-8674(94)90506-1 HENRY KR, 1986, AUDIOLOGY, V25, P329 Hequembourg S, 2001, JARO, V2, P118 Jin DX, 2009, BRAIN RES, V1277, P3, DOI 10.1016/j.brainres.2009.02.017 Jokay I, 1998, HEARING RES, V117, P131, DOI 10.1016/S0378-5955(97)00215-3 Keithley EM, 2005, HEARING RES, V209, P76, DOI 10.1016/j.heares.2005.06.009 KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33 KRESSEL M, 1994, CELL TISSUE RES, V278, P549 Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006 Landfield PW, 2007, CURR ALZHEIMER RES, V4, P205, DOI 10.2174/156720507780362083 Lang HN, 2006, J NEUROSCI, V26, P3541, DOI 10.1523/JNEUROSCI.2488-05.2006 Linthicum FH, 2009, OTOL NEUROTOL, V30, P418, DOI 10.1097/MAO.0b013e31819a8827 Mair W, 2008, ANNU REV BIOCHEM, V77, P727, DOI 10.1146/annurev.biochem.77.061206.171059 Mattson MP, 2002, PHYSIOL REV, V82, P637, DOI 10.1152/physrev.00004.2002 McCay CM, 1935, J NUTR, V10, P63 McEwen BS, 2005, METABOLISM, V54, P20, DOI 10.1016/j.metabol.2005.01.008 McEwen BS, 2008, EUR J PHARMACOL, V583, P174, DOI [10.1016/j.ejphar.2007.11.071, 10.1016/j.ejphar.2007.11.07t] McEwen BS, 1992, BR J PSYCHIAT S, V15, P18 McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 Metzstein MM, 1998, TRENDS GENET, V14, P410, DOI 10.1016/S0168-9525(98)01573-X Miller DB, 2005, AGEING RES REV, V4, P123, DOI 10.1016/j.arr.2005.03.002 Morrison JH, 2007, INT REV NEUROBIOL, V81, P41, DOI 10.1016/S0074-7742(06)81004-4 Mostafapour SP, 2002, J NEUROSCI, V22, P4670 Nelson RF, 2007, J NEUROSCI, V27, P5163, DOI 10.1523/JNEUROSCI.0206-07.2007 Nevado J, 2006, ACTA OTO-LARYNGOL, V126, P1134, DOI 10.1080/00016480600672592 Nishizaki K, 1999, HEARING RES, V130, P131, DOI 10.1016/S0378-5955(99)00002-7 Niu X, 2007, EXP CELL RES, V313, P3924, DOI 10.1016/j.yexcr.2007.05.029 Ohlemiller KK, 2004, J COMP NEUROL, V479, P103, DOI 10.1002/cne.20326 Ohlemiller Kevin K., 2008, V31, P145 Ohlemiller Kevin K, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P439, DOI 10.1097/01.moo.0000134450.99615.22 PARK JC, 1990, HEARING RES, V48, P275, DOI 10.1016/0378-5955(90)90067-Y PAULER M, 1986, ARCH OTO-RHINO-LARYN, V243, P200, DOI 10.1007/BF00470622 Pickles JO, 2004, AUDIOL NEURO-OTOL, V9, P23, DOI 10.1159/000074184 Pinelo-Nava M. T., 2007, NEURAL PLAST, V2007, P1, DOI DOI 10.1055/2007/78970 Pollack M, 2001, J GERONTOL A-BIOL, V56, pB475 Rapp PR, 1996, P NATL ACAD SCI USA, V93, P9926, DOI 10.1073/pnas.93.18.9926 Rattner A, 2006, NAT REV NEUROSCI, V7, P860, DOI 10.1038/nrn2007 Roehm Pamela C, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P294, DOI 10.1097/01.moo.0000180919.68812.b9 Russell SJ, 2007, NAT REV MOL CELL BIO, V8, P681, DOI 10.1038/nrm2234 RYALS BM, 1988, HEARING RES, V36, P1, DOI 10.1016/0378-5955(88)90133-5 SAPOLSKY RM, 1986, ENDOCR REV, V7, P284 Sastry PS, 2000, J NEUROCHEM, V74, P1, DOI 10.1046/j.1471-4159.2000.0740001.x Schacht J, 2005, AUDIOL NEURO-OTOL, V10, P243, DOI 10.1159/000086524 Scheff SW, 2003, NEUROBIOL AGING, V24, P1029, DOI 10.1016/j.neurobiolaging.2003.08.002 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003 Sha SH, 2008, HEARING RES, V243, P87, DOI 10.1016/j.heares.2008.06.001 Shi L, 2002, BRAIN RES, V931, P32, DOI 10.1016/S0006-8993(02)02249-7 Shimada A, 1998, J VET MED SCI, V60, P41, DOI 10.1292/jvms.60.41 Someya S, 2007, NEUROBIOL AGING, V28, P1613, DOI 10.1016/j.neurobiolaging.2006.06.024 Stamataki S, 2006, HEARING RES, V221, P104, DOI 10.1016/j.heares.2006.07.014 Sun W, 2003, MOL CELL NEUROSCI, V24, P875, DOI 10.1016/S1044-7431(03)00219-7 SUZUKA Y, 1988, ACTA OTO-LARYNGOL, P1 SWEET RJ, 1988, AUDIOLOGY, V27, P305 Tadros SF, 2005, HEARING RES, V209, P10, DOI 10.1016/j.heares.2005.05.009 Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 Takahashi K, 2001, BRAIN RES, V894, P359, DOI 10.1016/S0006-8993(01)02123-0 Takeno S, 1998, AUDIOL NEURO-OTOL, V3, P281, DOI 10.1159/000013800 Thrasivoulou C, 2006, AGING CELL, V5, P247, DOI 10.1111/j.1474-9726.2006.00214.x Torre P, 2004, NEUROBIOL AGING, V25, P945, DOI 10.1016/j.neurobiolaging.2003.09.006 Usami S, 1997, BRAIN RES, V747, P147, DOI 10.1016/S0006-8993(96)01243-7 WEINDRUCH R, 1982, SCIENCE, V215, P1415, DOI 10.1126/science.7063854 White FA, 1998, J NEUROSCI, V18, P1428 White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F WOOD KA, 1993, NEURON, V11, P621, DOI 10.1016/0896-6273(93)90074-2 Yamasoba T, 2007, HEARING RES, V226, P185, DOI 10.1016/j.heares.2006.06.004 Yuan Christine M, 2004, MMWR Morb Mortal Wkly Rep, V53 Suppl, P56 Yuan J, 2003, NEURON, V40, P401, DOI 10.1016/S0896-6273(03)00601-9 YUAN JY, 1993, CELL, V75, P641, DOI 10.1016/0092-8674(93)90485-9 Zoli M, 1999, EMBO J, V18, P1235, DOI 10.1093/emboj/18.5.1235 NR 97 TC 21 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 93 EP 97 DI 10.1016/j.heares.2009.10.009 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100013 PM 19854255 ER PT J AU Bielefeld, EC Tanaka, C Chen, GD Henderson, D AF Bielefeld, Eric C. Tanaka, Chiemi Chen, Guang-di Henderson, Donald TI Age-related hearing loss: Is it a preventable condition? SO HEARING RESEARCH LA English DT Article DE Presbycusis; Fischer 344 rat; Age-related hearing loss; Antioxidant ID AUGMENTED ACOUSTIC ENVIRONMENT; ANTEROVENTRAL COCHLEAR NUCLEUS; EXPOSING DBA/2J MICE; ACETYL-L-CYSTEINE; AGING INNER-EAR; HAIR CELL LOSS; CALORIE RESTRICTION; DIETARY RESTRICTION; C57BL/6J MICE; SUPEROXIDE-DISMUTASE AB Numerous techniques have been tested to attempt to prevent the onset or progression of age-related hearing loss (ARHL): raising the animals in an augmented acoustic environment (used successfully in mouse and rat models), enhancing the antioxidant defenses with exogenous antioxidant treatments (used with mixed results in mouse and rat models), raising the animals with a calorie restricted diet (used successfully in mouse and rat models), restoring lost endocochlear potential voltage with exogenous electrical stimulation (used successfully in the Mongolian gerbil model), and hypothetical enhancement of outer hair cell electromotility with salicylate therapy. Studies of human ARHL have revealed a set of unique hearing loss configurations with unique underlying pathologies. Animal research has developed models for the different forms of age-related peripheral pathology. Using the animal models, different techniques for prevention of ARHL have been developed and tested. The current review discusses ARHL patterns in humans and animal models, followed by discussions of the different prevention techniques. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bielefeld, Eric C.; Tanaka, Chiemi; Chen, Guang-di; Henderson, Donald] SUNY Buffalo, Ctr Hearing & Deafness, Dept Commun Disorders & Sci, Buffalo, NY 14214 USA. RP Bielefeld, EC (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, Dept Commun Disorders & Sci, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM ecb2@buffalo.edu RI Bielefeld, Eric/D-2015-2012 CR Aggarwal BB, 2004, EXPERT OPIN INV DRUG, V13, P1327, DOI 10.1517/13543784.13.10.1327 Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005 Barger JL, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002264 Baur JA, 2006, NATURE, V444, P337, DOI 10.1038/nature05354 Bielefeld Eric C, 2008, J Negat Results Biomed, V7, P4, DOI 10.1186/1477-5751-7-4 Bielefeld EC, 2007, ACTA OTO-LARYNGOL, V127, P914, DOI 10.1080/00016480601110188 Bielefeld EC, 2008, HEARING RES, V241, P26, DOI 10.1016/j.heares.2008.04.006 BOETTCHER FA, 1991, AM J OTOLARYNG, V12, P33, DOI 10.1016/0196-0709(91)90071-M BRIEN JA, 1993, DRUG SAFETY, V9, P143, DOI 10.2165/00002018-199309020-00006 Buckiova D, 2007, EXP GERONTOL, V42, P629, DOI 10.1016/j.exger.2007.02.007 Buckiova D, 2006, EXP GERONTOL, V41, P296, DOI 10.1016/j.exger.2005.11.010 Burns J, 2002, J AGR FOOD CHEM, V50, P3337, DOI 10.1021/jf0112973 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 Chen GD, 2009, HEARING RES, V248, P39, DOI 10.1016/j.heares.2008.11.010 Chen Y, 2007, HEARING RES, V226, P178, DOI 10.1016/j.heares.2006.05.008 CHESKY J A, 1976, Experimental Aging Research, V2, P399, DOI 10.1080/03610737608257998 Coling DE, 2003, FREE RADICAL BIO MED, V34, P873, DOI 10.1016/S0891-5849(02)01439-9 Davis RR, 2007, HEARING RES, V226, P203, DOI 10.1016/j.heares.2006.07.003 Dazert S, 1996, HEARING RES, V100, P101, DOI 10.1016/0378-5955(96)00100-1 Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005 Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654 GOYCOOLEA MV, 1986, LARYNGOSCOPE, V96, P1391 GRATTON MA, 1995, HEARING RES, V82, P44 Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8 Guarente L, 2007, COLD SPRING HARB SYM, V72, P483, DOI 10.1101/sqb.2007.72.024 HARMAN D, 1972, AM J CLIN NUTR, V25, P839 Helzner EP, 2005, J AM GERIATR SOC, V53, P2119, DOI 10.1111/j.1532-5415.2005.00525.x Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 HOFFMAN DW, 1987, HEARING RES, V31, P217, DOI 10.1016/0378-5955(87)90190-0 HOFFMAN DW, 1988, ANN OTO RHINOL LARYN, V97, P36 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 HURSTING SD, 1994, P NATL ACAD SCI USA, V91, P7036, DOI 10.1073/pnas.91.15.7036 Ingram DK, 2004, ANN NY ACAD SCI, V1019, P412, DOI 10.1196/annals.1297.074 *INT ORG STAND, 1990, ISO1999 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Jiang H, 2007, NEUROBIOL AGING, V28, P1605, DOI 10.1016/j.neurobiolaging.2006.06.025 Keithley EM, 2005, HEARING RES, V209, P76, DOI 10.1016/j.heares.2005.06.009 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 Kopke RD, 2007, HEARING RES, V226, P114, DOI 10.1016/j.heares.2006.10.008 Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006 Lagouge M, 2006, CELL, V127, P1109, DOI 10.1016/j.cell.2006.11.013 Lane MA, 1999, TOXICOL SCI, V52, P41, DOI 10.1093/toxsci/52.suppl_1.41 Lang HN, 2006, J NEUROSCI, V26, P3541, DOI 10.1523/JNEUROSCI.2488-05.2006 Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8 Le T, 2007, HEARING RES, V226, P194, DOI 10.1016/j.heares.2006.04.003 LI HS, 1994, J OTORHINOLARYNGOL R, V56, P61 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 Luo JY, 2001, CELL, V107, P137, DOI 10.1016/S0092-8674(01)00524-4 Mattson MP, 2000, EXP GERONTOL, V35, P489, DOI 10.1016/S0531-5565(00)00115-7 McFadden SL, 2001, AUDIOLOGY, V40, P313 McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 Minamiyama Y, 2007, J PHARMACOL EXP THER, V320, P535, DOI 10.1124/jpet.106.110460 Niu XZ, 2004, AUDIOL NEURO-OTOL, V9, P265, DOI 10.1159/000080226 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Ohlemiller KK, 2009, HEARING RES, V249, P1, DOI 10.1016/j.heares.2008.12.005 Ohlemiller Kevin K., 2004, Journal of Comparative Neurology, V469, P377, DOI 10.1002/cne.11011 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Ohlemiller KK, 2006, HEARING RES, V220, P10, DOI 10.1016/j.heares.2006.06.012 Pallas M., 2008, CNS DRUG DISCOV, V3, P61 Popelar J, 2006, NEUROBIOL AGING, V27, P490, DOI 10.1016/j.neurobiolaging.2005.03.001 Rao G.N., 1990, PATHOLOGY FISCHER RA, P5 ROSEN S, 1962, ANN OTO RHINOL LARYN, V71, P727 Rybak LP, 1999, LARYNGOSCOPE, V109, P1740, DOI 10.1097/00005537-199911000-00003 SAITOH Y, 1994, HEARING RES, V75, P27, DOI 10.1016/0378-5955(94)90052-3 SCHMIEDT RA, 1993, SENSORY RESEARCH MULTIMODAL PERSPECTIVES, P91 SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Seidman M, 2003, OTOLARYNG HEAD NECK, V129, P463, DOI 10.1016/S0194-5998(03)01586-9 Seidman MD, 2002, OTOLARYNG HEAD NECK, V127, P138, DOI 10.1067/mhn.2002.127627 Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003 Seidman MD, 2000, AM J OTOL, V21, P161, DOI 10.1016/S0196-0709(00)80003-4 Sha SH, 2006, NEW ENGL J MED, V354, P1856, DOI 10.1056/NEJMc053428 Sha SH, 1999, LAB INVEST, V79, P807 Sinclair DA, 2005, MECH AGEING DEV, V126, P987, DOI 10.1016/j.mad.2005.03.019 Spicer SS, 2005, HEARING RES, V205, P225, DOI 10.1016/j.heares.2005.03.022 Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593 SWEET RJ, 1988, AUDIOLOGY, V27, P305 Tanaka C, 2009, LARYNGOSCOPE, V119, P1374, DOI 10.1002/lary.20244 Tang BL, 2008, MOL ASPECTS MED, V29, P187, DOI 10.1016/j.mam.2007.02.001 Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4 Turner JG, 1998, HEARING RES, V118, P101, DOI 10.1016/S0378-5955(98)00024-0 Vaziri H, 2001, CELL, V107, P149, DOI 10.1016/S0092-8674(01)00527-X Weindruch R, 1997, NEW ENGL J MED, V337, P986 Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5 Willott JF, 2005, JARO-J ASSOC RES OTO, V6, P234, DOI 10.1007/s10162-005-0004-9 Willott JF, 2006, HEARING RES, V216, P138, DOI 10.1016/j.heares.2006.01.010 Willott JF, 2009, HEARING RES, V252, P89, DOI 10.1016/j.heares.2008.12.002 Willott JF, 2004, J COMP NEUROL, V472, P358, DOI 10.1002/cne.20065 WILLOTT JF, 1982, NEUROSCI LETT, V34, P13, DOI 10.1016/0304-3940(82)90085-4 WILLOTT JF, 1981, J NEUROPHYSIOL, V45, P35 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F Wood JG, 2004, NATURE, V430, P686, DOI 10.1038/nature02789 Yang K, 2009, INT J AUDIOL, V48, P18, DOI 10.1080/14992020802327998 Yu N, 2008, CELL MOL LIFE SCI, V65, P2407, DOI 10.1007/s00018-008-8195-y Zheng J, 2002, AUDIOL NEURO-OTOL, V7, P9, DOI 10.1159/000046855 NR 106 TC 23 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 1 PY 2010 VL 264 IS 1-2 SI SI BP 98 EP 107 DI 10.1016/j.heares.2009.09.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 609YG UT WOS:000278694100014 PM 19735708 ER PT J AU Manley, GA AF Manley, Geoffrey A. TI An evolutionary perspective on middle ears SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Middle ear; Evolution; Ossicles; Columella; Stapes; Tympanum; Sound localization; Hearing; Tympanic middle ear; Amniote audition ID ECHIDNA TACHYGLOSSUS-ACULEATUS; INNER-EAR; TETRAPOD; HEARING; VERTEBRATES; AFFINITIES; PERCEPTION; MONOTREME; FISH AB The traditional view that a tympanic middle ear developed only once, when vertebrates made the transition from fish in water to land-living animals, has been shown to be incorrect. Middle ears with a tympanum connected by one or more ossicles to the cochlea developed very much later in evolutionary history and independently in many amniote vertebrate lineages - most now extinct. The mammalian middle ear is unique but it is not simply an "improved" single-ossicle middle ear. It is a radical and fortuitous new development that owes its origin more to changes in feeding patterns than to hearing. It happened to transmit higher-frequency sounds better than single-ossicle middle ears and enabled the evolution of the high upper-frequency hearing limits of most mammals. Parallel to the development of a tympanic middle ear in therian mammals, the brain increased in size and a secondary palate developed, resulting in the ancestral pressure-gradient middle ear being replaced by a purely pressure system. Sound localization then became almost completely dependent on neural computation and this was the most important factor driving up the upper frequency limits of early mammals. This paper presents an historical perspective on these remarkably simple and yet highly effective structures. (C) 2009 Elsevier B.V. All rights reserved. C1 [Manley, Geoffrey A.] Tech Univ Munich, Lehrstuhl Zool, D-85350 Freising Weihenstephan, Germany. [Manley, Geoffrey A.] Univ Sydney, Dept Physiol, Sydney, NSW 2006, Australia. RP Manley, GA (reprint author), Tech Univ Munich, Lehrstuhl Zool, Hochfeldweg 2, D-85350 Freising Weihenstephan, Germany. EM Geoffrey.manley@wzw.tum.de CR AITKIN LM, 1972, J EXP ZOOL, V180, P245, DOI 10.1002/jez.1401800210 ALLIN EF, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P587 Brazeau MD, 2006, NATURE, V439, P318, DOI 10.1038/nature04196 CARROLL RL, 1988, VERTEBRATE PALAEONTO Christensen-Dalsgaard J, 2008, JARO-J ASSOC RES OTO, V9, P407, DOI 10.1007/s10162-008-0130-2 Clack J. A., 1997, Brain Behavior and Evolution, V50, P198, DOI 10.1159/000113334 Clack JA, 2002, J NEUROBIOL, V53, P251, DOI 10.1002/neu.10129 CLACK JA, 1989, NATURE, V342, P425, DOI 10.1038/342425a0 Clack JA, 2003, NATURE, V425, P65, DOI 10.1038/nature01904 COATES MI, 1990, NATURE, V347, P66, DOI 10.1038/347066a0 Feng AS, 2006, NATURE, V440, P333, DOI 10.1038/nature04416 FRITZSCH B, 1987, NATURE, V327, P153, DOI 10.1038/327153a0 GATES GR, 1974, J ACOUST SOC AM, V56, P152, DOI 10.1121/1.1903246 Gleich O, 2005, NATURWISSENSCHAFTEN, V92, P595, DOI 10.1007/s00114-005-0050-5 Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2 Koppl C, 2009, CURR BIOL, V19, pR635, DOI 10.1016/j.cub.2009.05.035 Ladich F., 2004, EVOLUTION VERTEBRATE, P95 Luo ZX, 2007, NATURE, V450, P1011, DOI 10.1038/nature06277 MAIER W, 1990, NETH J ZOOL, V40, P55 Manley G. A., 1990, PERIPHERAL HEARING M MANLEY GA, 1971, NATURE, V230, P506, DOI 10.1038/230506a0 Manley G. A., 2004, EVOLUTION VERTEBRATE, P1 Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0 MANLEY GA, 1972, J COMP PHYSIOL, V81, P251, DOI 10.1007/BF00693630 Manley G. A., 1973, EVOLUTION, V26, P608, DOI DOI 10.2307/2407057 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 MANLEY GA, 2004, EVOLUTION VERTEBRATE, P360 MASTERTO.B, 1969, J ACOUST SOC AM, V45, P966, DOI 10.1121/1.1911574 MENG J, 1995, NATURE, V377, P141, DOI 10.1038/377141a0 Mills DM, 2001, JARO-J ASSOC RES OTO, V2, P130, DOI 10.1007/s101620010059 Muller J, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000889 NOVACEK MJ, 1977, MAMMAL REV, V7, P131, DOI 10.1111/j.1365-2907.1977.tb00366.x Rich TH, 2005, SCIENCE, V307, P910, DOI 10.1126/science.1105717 Rowe T, 1996, SCIENCE, V273, P651, DOI 10.1126/science.273.5275.651 Ruf I, 2009, J ANAT, V214, P679, DOI 10.1111/j.1469-7580.2009.01059.x Ruggero MA, 2002, P NATL ACAD SCI USA, V99, P13206, DOI 10.1073/pnas.202492699 SMOTHERMAN M, 2004, EVOLUTION VERTEBRATE, P164 Vater M., 2004, EVOLUTION VERTEBRATE, P256 NR 38 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 3 EP 8 DI 10.1016/j.heares.2009.09.004 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700002 PM 19786082 ER PT J AU de La Rochefoucauld, O Olson, ES AF de La Rochefoucauld, Ombeline Olson, Elizabeth S. TI A sum of simple and complex motions on the eardrum and manubrium in gerbil SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Motion; Manubrium; Tympanic membrane; Gerbil; Middle ear ID TYMPANIC-MEMBRANE VIBRATIONS; TIME-AVERAGED HOLOGRAPHY; FINITE-ELEMENT MODEL; MIDDLE-EAR; FREQUENCY-RESPONSE; MALLEUS VIBRATION; SOUND CONDUCTION; CAT EARDRUM; IMPEDANCE AB Based on comparisons of ear canal and scala vestibuli pressures the gerbil middle ear transmits sound with a gain of similar to 25 dB that is almost flat from 2 to 40 kHz, and with a delay-like phase corresponding to a 25-30 mu s delay. How the middle ear is able to transmit sound with such high temporal and amplitude fidelity is not known, and is particularly mysterious given the complex motion the ossicles and tympanic membrane (TM) are known to undergo. To explore this question, we looked at the velocities of the manubrium and along a line on the TM. The TM motion was complex, and could be approximated as the combination of a wave-like motion and an in-and-out piston-like motion. The manubrium underwent bending at some stimulus frequencies and therefore its motion was not like a rigid body. It had a complex motion with frequency fine structure that seemed likely to be derived from resonances on the drum-like TM. (C) 2009 Elsevier B.V. All rights reserved. C1 [de La Rochefoucauld, Ombeline] Columbia Univ, Dept Otolaryngol Head & Neck Surg, New York, NY 10032 USA. [Olson, Elizabeth S.] Columbia Univ, Dept Otolaryngol, New York, NY 10032 USA. [Olson, Elizabeth S.] Columbia Univ, Dept Head & Neck Surg, New York, NY 10032 USA. [Olson, Elizabeth S.] Columbia Univ, Dept Biomed Engn, New York, NY 10032 USA. RP de La Rochefoucauld, O (reprint author), Columbia Univ, Dept Otolaryngol Head & Neck Surg, 630 W 168th St, New York, NY 10032 USA. EM odelarochefoucauld@gmail.com; eao2004@columbia.edu CR AARNISALO AA, 2009, MIDDLE EAR MECH RES CHENG JT, 2009, MIDDLE EAR MECH RES de La Rochefoucauld O, 2008, JARO-J ASSOC RES OTO, V9, P161, DOI 10.1007/s10162-008-0115-1 DECRAEMER WF, 1989, HEARING RES, V38, P1, DOI 10.1016/0378-5955(89)90123-8 DECRAEMER WF, 1990, HEARING RES, V47, P205, DOI 10.1016/0378-5955(90)90152-F DECRAEMER WF, 1994, HEARING RES, V72, P1, DOI 10.1016/0378-5955(94)90199-6 DECRAEMER WF, 1991, HEARING RES, V54, P305, DOI 10.1016/0378-5955(91)90124-R Decraemer WF, 1999, EOS SPIE INT S IND L Dong W, 2006, J NEUROPHYSIOL, V95, P2951, DOI 10.1152/jn.01214.2005 Fay J, 2005, J BIOMECH, V38, P1807, DOI 10.1016/j.jbiomech.2004.08.022 Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104 FUNNELL WR, 1997, 20 ARO MIDW M ASS RE FUNNELL WRJ, 1992, J ACOUST SOC AM, V91, P2082, DOI 10.1121/1.403694 FUNNELL WRJ, 1987, J ACOUST SOC AM, V81, P1851, DOI 10.1121/1.394749 HALL DE, 1993, BASIC ACOUSTICS KACHROO P, 2004, 27 ARO MIDW M ASS RE KHANNA SM, 1972, J ACOUST SOC AM, V51, P1904, DOI 10.1121/1.1913050 KHANNA SM, 1996, SPIE, V2732, P64 NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8 O'Connor KN, 2008, LARYNGOSCOPE, V118, P483, DOI 10.1097/MLG.0b013e31815b0d9f Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083 Parenta P, 2007, J ACOUST SOC AM, V122, P918, DOI 10.1121/12747156 Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930 Ravicz ME, 2007, J ACOUST SOC AM, V122, P2154, DOI 10.1121/1.2769625 Ravicz ME, 1996, J ACOUST SOC AM, V99, P3044, DOI 10.1121/1.414793 ROSOWSKI JJ, COMPUTER AS IN PRESS, V253, P83 SLAMA M, 2008, MEAS MIDDL EAR PRESS Teoh SW, 1997, HEARING RES, V106, P39, DOI 10.1016/S0378-5955(97)00002-6 TONNDORF J, 1972, J ACOUST SOC AM, V52, P1221, DOI 10.1121/1.1913236 NR 29 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 9 EP 15 DI 10.1016/j.heares.2009.10.014 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700003 PM 19878713 ER PT J AU Ravicz, ME Slama, MCC Rosowski, JJ AF Ravicz, Michael E. Slama, Michael C. C. Rosowski, John J. TI Middle-ear pressure gain and cochlear partition differential pressure in chinchilla SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Middle-ear sound transmission; Intracochlear sound pressure; Middle-ear gain; Cochlear impedance; Chinchilla ID STAPES VELOCITY; SOUND; TRANSMISSION; GERBIL; CAT; ADMITTANCE; MECHANICS; MEMBRANE; HEARING; BASE AB An important step to describe the effects of inner-ear impedance and pathologies on middle- and inner-ear mechanics is to quantify middle- and inner-ear function in the normal ear. We present middle-ear pressure gain G(MEP) and trans-cochlear-partition differential sound pressure Delta P(CP) in chinchilla from 100 Hz to 30 kHz derived from measurements of intracochlear sound pressures in scala vestibuli P(SV) and scala tympani P(ST) and ear-canal sound pressure near the tympanic membrane P(TM). These measurements span the chinchilla's auditory range. G(MEP) had constant magnitude of about 20 dB between 300 Hz and 20 kHz and phase that implies a 40-mu s delay, values with some similarities to previous measurements in chinchilla and other species. Delta P(CP) was similar to G(MEP) below about 10 kHz and lower in magnitude at higher frequencies, decreasing to 0 dB at 20 kHz. The high-frequency rolloff correlates with the audiogram and supports the idea that middle-ear transmission limits high-frequency hearing, providing a stronger link between inner-ear macromechanics and hearing. We estimate the cochlear partition impedance Z(CP). from these and previous data. The chinchilla may be a useful animal model for exploring the effects of non-acoustic inner-ear stimulation such as "bone conduction" on cochlear mechanics. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ravicz, Michael E.; Slama, Michael C. C.; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Dept Otolaryngol, Boston, MA 02114 USA. [Ravicz, Michael E.; Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Slama, Michael C. C.; Rosowski, John J.] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA. RP Ravicz, ME (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Dept Otolaryngol, 243 Charles St, Boston, MA 02114 USA. EM Mike_Ravicz@meei.harvard.edu CR Beranek L.L., 1986, ACOUSTICS DALLOS P, 1970, J ACOUST SOC AM, V48, P489, DOI 10.1121/1.1912163 DANCER A, 1980, HEARING RES, V2, P191, DOI 10.1016/0378-5955(80)90057-X de La Rochefoucauld O, 2007, BIOPHYS J, V93, P3434, DOI 10.1529/biophysj.107.109744 DECORY L, 1990, LECT NOTES BIOMATH, V87, P270 Decory L., 1989, THESIS U BORDEAUX FR Decraemer WF, 2007, J ACOUST SOC AM, V121, P2774, DOI 10.1121/1.2709843 Dong W, 2006, J NEUROPHYSIOL, V95, P2951, DOI 10.1152/jn.01214.2005 DRESCHER DG, 1974, J ACOUST SOC AM, V56, P929, DOI 10.1121/1.1903350 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 FLEISCHER G, 1973, Saeugetierkundliche Mitteilungen, V21, P131 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081 LYNCH TJ, 1982, J ACOUST SOC AM, V72, P108, DOI 10.1121/1.387995 Nakajima HH, 2009, JARO-J ASSOC RES OTO, V10, P23, DOI 10.1007/s10162-008-0150-y Nakajima HH, 2005, HEARING RES, V204, P60, DOI 10.1016/j.heares.2005.01.002 NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200 Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083 Olson ES, 2001, J ACOUST SOC AM, V110, P349, DOI 10.1121/1.1369098 PEAKE WT, 1992, HEARING RES, V57, P245, DOI 10.1016/0378-5955(92)90155-G Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563 Ravicz ME, 2007, J ACOUST SOC AM, V122, P2154, DOI 10.1121/1.2769625 Rosowski JJ, 2009, HEARING RES, V253, P83, DOI 10.1016/j.heares.2009.03.010 Rosowski JJ, 2006, J COMP PHYSIOL A, V192, P1287, DOI 10.1007/s00359-006-0159-9 ROSOWSKI JJ, 1991, J ACOUST SOC AM, V90, P124, DOI 10.1121/1.401306 Rosowski J.J., 1994, COMP HEARING MAMMALS, P172 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409 SCHLOSS F, 1962, J ACOUST SOC AM, V34, P958, DOI 10.1121/1.1918228 SHERA CA, 1992, J ACOUST SOC AM, V92, P1356, DOI 10.1121/1.403929 Slama MCC, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P9, DOI 10.1142/9789812833785_0002 SLAMA MCC, J ACOUST SO IN PRESS SLAMA MCC, 2008, THESIS MIT CAMBRIDGE SONGER JE, 2006, THESIS MIT CAMBRIDGE Songer JE, 2006, J ACOUST SOC AM, V120, P258, DOI 10.1121/1.2204356 Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847 VRETTAKOS PA, 1988, AM J OTOLARYNG, V9, P58, DOI 10.1016/S0196-0709(88)80009-7 NR 37 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 16 EP 25 DI 10.1016/j.heares.2009.11.014 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700004 PM 19945521 ER PT J AU Aerts, JRM Dirckx, JJJ AF Aerts, J. R. M. Dirckx, J. J. J. TI Nonlinearity in eardrum vibration as a function of frequency and sound pressure SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Middle ear; Nonlinear distortions; Heterodyne vibrometry ID HUMAN TYMPANIC MEMBRANE; HUMAN MIDDLE-EAR; STATIC PRESSURE; DISPLACEMENT; DEFORMATION; EMISSIONS; GERBIL; SYSTEM AB It is generally accepted that the middle ear acts mainly as a linear system for sound pressures up to 130 dB SPL in the auditory frequency range. However, at quasi-static pressure loads a strong nonlinear response has been demonstrated. Consequently, small nonlinear distortions may also be present in the middle ear response in the auditory frequency range. A new measurement method was developed to quickly determine vibration response, nonlinear distortions and noise level of acoustically driven biomechanical systems. Specially designed multisines are used for the excitation of the test system. The method is applied on a gerbil eardrum for sound pressures ranging from 90 to 120 dB SPL and for frequencies ranging from 125 Hz to 16 kHz. The experiments show that nonlinear distortions rise above noise level at a sound pressure of 96 dB SPL, and they grow as sound pressure increases. Post-mortem changes in the middle ear influence the nonlinear distortions rapidly until a stabilization occurs after approximately 3 h. (C) 2009 Elsevier B.V. All rights reserved. C1 [Aerts, J. R. M.; Dirckx, J. J. J.] Univ Antwerp, Lab BioMed Phys, B-2020 Antwerp, Belgium. RP Aerts, JRM (reprint author), Univ Antwerp, Lab BioMed Phys, B-2020 Antwerp, Belgium. EM johan.aerts@ua.ac.be; joris.dirckx@ua.ac.be RI Aerts, Johan/E-9259-2010 CR AERTS J, 2008, MEASUREMENT SCI TECH, V19, P10 Aerts JRM, 2007, MEAS SCI TECHNOL, V18, P3344, DOI 10.1088/0957-0233/18/11/013 DIRCKX JJJ, 1992, HEARING RES, V62, P99, DOI 10.1016/0378-5955(92)90206-3 Dirckx JJJ, 2001, HEARING RES, V157, P124, DOI 10.1016/S0378-5955(01)00290-8 DIRCKX JJJ, 1991, HEARING RES, V51, P93, DOI 10.1016/0378-5955(91)90009-X Dong W, 2006, J NEUROPHYSIOL, V95, P2951, DOI 10.1152/jn.01214.2005 GOODE RL, 1994, AM J OTOL, V15, P145 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200 Pintelon R., 2001, SYSTEM IDENTIFICATIO Pintelon R, 2004, IEEE T INSTRUM MEAS, V53, P854, DOI 10.1109/TIM.2004.827094 Rhodea WS, 2007, J ACOUST SOC AM, V122, P2725, DOI 10.1121/1.2785034 VONUNGE M, 1995, HEARING RES, V82, P184, DOI 10.1016/0378-5955(94)00017-K Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 NR 15 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 26 EP 32 DI 10.1016/j.heares.2009.12.022 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700005 PM 20026266 ER PT J AU Soons, JAM Aernouts, J Dirckx, JJJ AF Soons, Joris A. M. Aernouts, Jef Dirckx, Joris J. J. TI Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE ME ossicles; Micro-indentation; Biomechanics; Young's modulus; FE modelling ID FINITE-ELEMENT-METHOD; EARDRUM; DISPLACEMENT; FREQUENCY; PRESSURE AB For the purpose of creating a finite element model of the middle ear, the ossicles can be modelled as rigid bodies or as linear elastic materials. The general elasticity parameters used are usually measured on lager bones like the femur. In order to obtain a highly realistic model, the actual elastic modulus (Young's modulus) of the ossicles themselves is needed. We developed a novel 2-needle indentation method of determining the Young's modulus of small samples based on Sneddon's solution. We introduce the second needle in such a way that small specimens can be clamped between the two needles and a symmetry plane is obtained, so that geometry-dependent sample deformations are avoided. A finite element calculated correction factor is used to compensate for the small thickness of the samples. The system was tested on several materials with known parameters in order to validate the technique, and was then used to determine the elasticity parameters of incus and malleus in rabbit. No significant differences between measurement locations were found, and we found an average Young's modulus of 16 +/- 3 GPa. (C) 2009 Elsevier B.V. All rights reserved. C1 [Soons, Joris A. M.; Aernouts, Jef; Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium. RP Soons, JAM (reprint author), Univ Antwerp, Lab Biomed Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. EM joris.soons@ua.ac.be RI Soons, Joris/G-1552-2010 CR [Anonymous], 2008, ANN BOOK ASTM STAND BUYTAERT JAN, 2009, MEMRO 2009 M CHOI K, 1990, J BIOMECH, V23, P1103, DOI 10.1016/0021-9290(90)90003-L DECRAEMER WF, 1991, HEARING RES, V54, P305, DOI 10.1016/0378-5955(91)90124-R DELAROCHEFOUCAU.O, 2009, MEMRO 2009 M DEMPSTER WT, 1952, AM J ANAT, V91, P331, DOI 10.1002/aja.1000910302 Didyk LA, 2007, HEARING RES, V223, P20, DOI 10.1016/j.heares.2006.09.009 DIRCKX JJJ, 1992, HEARING RES, V62, P99, DOI 10.1016/0378-5955(92)90206-3 Dirckx JJJ, 2006, JARO-J ASSOC RES OTO, V7, P339, DOI 10.1007/s10162-006-0048-5 Dirckx JJJ, 2001, HEARING RES, V157, P124, DOI 10.1016/S0378-5955(01)00290-8 Elkhouri N, 2006, JARO-J ASSOC RES OTO, V7, P399, DOI 10.1007/s10162-006-0055-6 Evans FG, 1973, MECH PROPERTIES BONE FUNNELL WRJ, 1992, J ACOUST SOC AM, V91, P2082, DOI 10.1121/1.403694 HAYES WC, 1972, J BIOMECH, V5, P541, DOI 10.1016/0021-9290(72)90010-3 Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073 Lee C. F., 2006, BIOMED ENG-APP BAS C, V18, P214 Mikhael CS, 2004, P 28 ANN C CAN MED B, P126 OLIVER WC, 1992, J MATER RES, V7, P1564, DOI 10.1557/JMR.1992.1564 Prendergast PJ, 1999, AUDIOL NEURO-OTOL, V4, P185, DOI 10.1159/000013839 Riccardi B, 2004, MAT SCI ENG A-STRUCT, V381, P281, DOI 10.1016/j.msea.2004.04.041 Scholz I, 2008, J COMP PHYSIOL A, V194, P373, DOI 10.1007/s00359-008-0314-6 Sneddon I. N., 1965, INT J ENG SCI, V3, P47, DOI DOI 10.1016/0020-7225(65)90019-4 Speirs AD, 1999, J BIOMECH, V32, P485, DOI 10.1016/S0021-9290(99)00012-3 Sun Q, 2002, BIOMECH MODEL MECHAN, V1, P109, DOI 10.1007/s10237-002-0014-z NR 24 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 33 EP 37 DI 10.1016/j.heares.2009.10.001 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700006 PM 19818840 ER PT J AU Sim, JH Chatzimichalis, M Huber, AM AF Sim, Jae Hoon Chatzimichalis, Michail Huber, Alexander M. TI The influence of postoperative tissue formation on sound transmission after stapes surgery SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Air-bone gap (ABG); Incus; Laser Doppler interferometry (LDI); Mucosa; Mucosa ongrowth; Otosclerosis; Prosthesis; Revision; Sound transmission loss (STL); Stapes; Stapes surgery ID OTOSCLEROSIS SURGERY AB In the surgical treatment of otosclerosis, the coupling between the stapes prosthesis and the long process of the incus is critical. After surgery, connective tissue and mucosa may grow over the coupling area and thereby influence the sound transmission properties of the incus-prosthesis interface. It was the hypothesis of this study that tissue ongrowth in the incus-prosthesis interface has little influence on sound transmission following stapes surgery. The goals of the study were to: (1) investigate the extent of postoperative tissue ongrowth over the stapes prosthesis: (2) objectively evaluate intra- and postoperative sound transmission properties of revision stapes surgery and compare the findings to those from primary surgery; (3) quantify the influence of ongrown tissue on sound transmission after stapes surgery. A group of 10 patients undergoing revision stapes surgery was investigated with audiological evaluations and intraoperative laser Doppler interferometry, and with scanning electron microscopy of the explanted incus with its adherent prosthesis in 6 patients. Results were compared to a group of patients undergoing primary otosclerosis surgery and temporal bone experiments. Results indicated that tissue grows over the prosthesis, as identified in all specimens. Sound transmission properties were evaluated intraoperatively (i.e., incus mobility and prosthesis-fixation quality), and found to correlate well with the functional hearing results. Ongrowing mucosa in the incus-prosthesis interface had only a minimal effect on sound transmission properties and cannot compensate adequately for insufficient prosthesis fixation. Therefore, it is essential that the stapes prosthesis is properly fixed during primary otosclerosis surgery. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sim, Jae Hoon] Univ Spital Zurich, ORL Klin, CH-8091 Zurich, Switzerland. RP Sim, JH (reprint author), Univ Spital Zurich, ORL Klin, Frauenklin Str 24, CH-8091 Zurich, Switzerland. EM JaeHoon.Sim@usz.ch RI Huber, Alexander/A-2693-2009 OI Huber, Alexander/0000-0002-8888-8483 CR Eiber A, 2000, FUNCTION AND MECHANICS OF NORMAL, DISEASED AND RECONSTRUCTED MIDDLE EARS, P297 Fisch U, 2001, OTOL NEUROTOL, V22, P776, DOI 10.1097/00129492-200111000-00011 Han WW, 1997, LARYNGOSCOPE, V107, P1185, DOI 10.1097/00005537-199709000-00006 Huber A, 2001, ANN OTO RHINOL LARYN, V110, P31 Huber AM, 2008, OTOL NEUROTOL, V29, P893, DOI 10.1097/MAO.0b013e318184f4f0 Huber AM, 2003, LARYNGOSCOPE, V113, P853, DOI 10.1097/00005537-200305000-00015 HUTTENBRINK KB, 1988, ACTA OTO-LARYNGOL, P1 MONSELL EM, 1995, OTOLARYNG HEAD NECK, V113, P186 NR 8 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 38 EP 42 DI 10.1016/j.heares.2009.08.012 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700007 PM 19766180 ER PT J AU Voss, SE Adegoke, MF Horton, NJ Sheth, KN Rosand, J Shera, CA AF Voss, Susan E. Adegoke, Modupe F. Horton, Nicholas J. Sheth, Kevin N. Rosand, Jonathan Shera, Christopher A. TI Posture systematically alters ear-canal reflectance and DPOAE properties SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ ID PRODUCT OTOACOUSTIC EMISSIONS; INTRACRANIAL-PRESSURE CHANGES; TYMPANIC MEMBRANE DISPLACEMENT; DISTORTION-PRODUCT; MIDDLE-EAR; IMPEDANCE; BEHAVIOR; ADULTS; REPEATABILITY; TRANSMISSION AB Several studies have demonstrated that the auditory system is sensitive to changes in posture, presumably through changes in intracranial pressure (ICP) that in turn alter the intracochlear pressure, which affects the stiffness of the middle-ear system. This observation has led to efforts to develop an ear-canal based noninvasive diagnostic measure for monitoring ICP, which is currently monitored invasively via access through the skull or spine. Here, we demonstrate the effects of postural changes, and presumably ICP changes, on distortion product otoacoustic emissions (DPOAE) magnitude, DPOAE angle, and power reflectance. Measurements were made on 12 normal-hearing subjects in two postural positions: upright at 90 degrees and tilted at -45 degrees to the horizontal. Measurements on each subject were repeated five times across five separate measurement sessions. All three measures showed significant changes (p < 0.001) between upright and tilted for frequencies between 500 and 2000 Hz, and DPOAE angle changes were significant at all measured frequencies (500-4000 Hz). Intra-subject variability, assessed via standard deviations for each subject's multiple measurements, were generally smaller in the upright position relative to the tilted position. (C) 2010 Elsevier B.V. All rights reserved. C1 [Voss, Susan E.; Adegoke, Modupe F.] Smith Coll, Picker Engn Program, Northampton, MA 01063 USA. [Horton, Nicholas J.] Smith Coll, Dept Math & Stat, Northampton, MA 01063 USA. [Sheth, Kevin N.] Univ Maryland, Sch Med, Dept Neurol, Div Stroke & Neurocrit Care, Baltimore, MD 21201 USA. [Rosand, Jonathan] Massachusetts Gen Hosp, Ctr Human Genet Res, Boston, MA 02114 USA. [Shera, Christopher A.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, Boston, MA USA. RP Voss, SE (reprint author), Smith Coll, Picker Engn Program, 51 Coll Lane, Northampton, MA 01063 USA. EM svoss@smith.edu; madegoke@smith.edu; nhorton@smith.edu; kshethmd@gmail.com; rosand@chgr.mgh.harvard.edu; shera@epl.meei.harvard.edu CR Beattie RC, 2003, INT J AUDIOL, V42, P348, DOI 10.3109/14992020309101328 Buki B, 2002, HEARING RES, V167, P180, DOI 10.1016/S0378-5955(02)00392-1 Buki B, 2009, HEARING RES, V251, P51, DOI 10.1016/j.heares.2009.02.004 Buki B, 1996, HEARING RES, V94, P125, DOI 10.1016/0378-5955(96)00015-9 Buki B, 2000, HEARING RES, V140, P202, DOI 10.1016/S0378-5955(99)00202-6 CHAPMAN PH, 1990, NEUROSURGERY, V26, P181 de Kleine E, 2000, J ACOUST SOC AM, V107, P3308, DOI 10.1121/1.429403 de Kleine E, 2001, J ACOUST SOC AM, V110, P973, DOI 10.1121/1.1381025 Efron B., 1993, INTRO BOOTSTRAP Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P901, DOI 10.1044/1092-4388(2003/070) FELDMAN HA, 1988, J APPL PHYSIOL, V64, P1721 Fitzmaurice GM, 2004, APPL LONGITUDINAL AN Frank AM, 2000, ZBL NEUROCHIR, V61, P177, DOI 10.1055/s-2000-15597 FRANKLIN DJ, 1992, EAR HEARING, V13, P417 HAUSER R, 1993, HEARING RES, V69, P133, DOI 10.1016/0378-5955(93)90101-6 HUTTENBRINK KB, 1988, ACTA OTO-LARYNGOL, P1 KANTER RK, 1985, CRIT CARE MED, V13, P837, DOI 10.1097/00003246-198510000-00012 Keefe DH, 1996, EAR HEARING, V17, P361, DOI 10.1097/00003446-199610000-00002 KEEFE DH, 1993, J ACOUST SOC AM, V94, P2617, DOI 10.1121/1.407347 LAIRD NM, 1982, BIOMETRICS, V38, P963, DOI 10.2307/2529876 LIAU J, 1999, THESIS STANFORD U Little RJA, 2002, STAT ANAL MISSING DA, V2nd LIU YW, 2008, J ACOUST SOC AM, P3708 MAGNANO M, 1994, AUDIOLOGY, V33, P237 MANIKER AH, 2006, NEUROSURGERY, P419 MARCHBANKS RJ, 1984, ACTA OTO-LARYNGOL, V98, P119, DOI 10.3109/00016488409107543 Margolis RH, 1999, J ACOUST SOC AM, V106, P265, DOI 10.1121/1.427055 Mom T, 2009, HEARING RES, V250, P38, DOI 10.1016/j.heares.2009.01.008 OSTERHAMMEL PA, 1993, SCAND AUDIOL, V22, P111, DOI 10.3109/01050399309046026 PLINKERT PK, 1994, EUR ARCH OTO-RHINO-L, V251, P95 ROEDE J, 1993, AUDIOLOGY, V32, P273 Rosingh HJ, 1998, AUDIOLOGY, V37, P1 Salt AN, 2007, HEARING RES, V224, P117, DOI 10.1016/j.heares.2006.10.002 SCHEITHAUER S, 2009, J NEUROL NEUROSUR PS, P1381 Shimbles S, 2005, PHYSIOL MEAS, V26, P1085, DOI 10.1088/0967-3334/26/6/017 SUN XM, 2009, EAR HEARING, V22, P191 Voss SE, 2004, J ACOUST SOC AM, V116, P2187, DOI 10.1021/1.1785832 Voss SE, 2006, NEUROCRIT CARE, V4, P251, DOI 10.1385/Neurocrit.Care2006;04:251-257 VOSS SE, 1994, J ACOUST SOC AM, V95, P372, DOI 10.1121/1.408329 Wagner WG, 2008, EAR HEARING, V29, P378, DOI 10.1097/AUD.0b013e31816906e7 WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X WOLFE TJ, 2009, CURR NEUROL NEUROSCI, P477 Zhao F, 1999, SCAND AUDIOL, V28, P171, DOI 10.1080/010503999424743 NR 43 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 43 EP 51 DI 10.1016/j.heares.2010.03.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700008 PM 20227475 ER PT J AU Keefe, DH Fitzpatrick, D Liu, YW Sanford, CA Gorga, MP AF Keefe, Douglas H. Fitzpatrick, Denis Liu, Yi-Wen Sanford, Chris A. Gorga, Michael P. TI Wideband acoustic-reflex test in a test battery to predict middle-ear dysfunction SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Acoustic reflex; Middle-ear muscle; Medial olivocochlear efferent; Newborn hearing screening ID FREQUENCY OTOACOUSTIC EMISSIONS; FINITE-ELEMENT MODEL; STAPEDIAL REFLEX; REFLECTANCE; ADULTS; THRESHOLDS; ADMITTANCE; INFANTS; HEARING; TYMPANOMETRY AB A wideband (WB) aural acoustical test battery of middle-ear status, including acoustic-reflex thresholds (ARTs) and acoustic-transfer functions (ATFs, i.e., absorbance and admittance) was hypothesized to be more accurate than 1-kHz tympanometry in classifying ears that pass or refer on a newborn hearing screening (NHS) protocol based on otoacoustic emissions. Assessment of middle-ear status may improve NHS programs by identifying conductive dysfunction and cases in which auditory neuropathy exists. Ipsi-lateral ARTs were assessed with a stimulus including four broadband-noise or tonal activator pulses alternating with five clicks presented before, between and after the pulses. The reflex shift was defined as the difference between final and initial click responses. ARTs were measured using maximum likelihood both at low frequencies (0.8-2.8 kHz) and high (2.8-8 kHz). The median low-frequency ART was elevated by 24 dB in NHS refers compared to passes. An optimal combination of ATF and ART tests performed better than either test alone in predicting NHS outcomes, and WB tests performed better than 1-kHz tympanometry. Medial olivocochlear efferent shifts in cochlear function may influence ARs, but their presence would also be consistent with normal conductive function. Baseline clinical and WB ARTs were also compared in ipsilateral and contralateral measurements in adults. (C) 2009 Elsevier B.V. All rights reserved. C1 [Keefe, Douglas H.; Fitzpatrick, Denis; Liu, Yi-Wen; Sanford, Chris A.; Gorga, Michael P.] Boys Town Natl Res Hosp, Omaha, NE 68131 USA. RP Keefe, DH (reprint author), Boys Town Natl Res Hosp, 555 N 30th St, Omaha, NE 68131 USA. EM keefe@boystown.org; fitzpatrickd@boystown.org; liuy@boystown.org; sanfchri@isu.edu; gorga@boystown.org CR Abdala C, 2006, J ACOUST SOC AM, V120, P3832, DOI 10.1121/1.2359237 Busa J, 2007, PEDIATRICS, V120, P898, DOI 10.1542/peds.2007-2333 BENNETT MJ, 1982, J SPEECH HEAR RES, V25, P383 Berlin Charles I, 2005, J Am Acad Audiol, V16, P546, DOI 10.3766/jaaa.16.8.3 Ellison JC, 2005, EAR HEARING, V26, P487, DOI 10.1097/01.aud.0000179692.81851.3b Feeney M Patrick, 2005, J Am Acad Audiol, V16, P278 Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P128, DOI 10.1044/1092-4388(2003/010) Feeney MP, 2001, EAR HEARING, V22, P316, DOI 10.1097/00003446-200108000-00006 Feeney MP, 2004, EAR HEARING, V25, P421, DOI 10.1097/01.aud.0000145110.60657.73 Feeney MP, 1999, J SPEECH LANG HEAR R, V42, P1029 GEDDES NK, 1987, INT J PEDIATR OTORHI, V13, P293, DOI 10.1016/0165-5876(87)90110-8 Gelfand S. A., 2009, HDB CLIN AUDIOLOGY, P189 GREEN DM, 1993, J ACOUST SOC AM, V93, P2096, DOI 10.1121/1.406696 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 HIRSCH JE, 1992, EAR HEARING, V13, P181, DOI 10.1097/00003446-199206000-00007 HOLTE L, 1990, J PEDIATR-US, V117, P77, DOI 10.1016/S0022-3476(05)82448-5 Hunter LL, 1999, EAR HEARING, V20, P506, DOI 10.1097/00003446-199912000-00006 Keefe DH, 2007, J ACOUST SOC AM, V121, P978, DOI 10.1121/1.2427128 Keefe DH, 2009, J ACOUST SOC AM, V125, P1595, DOI 10.1121/1.3068443 KEEFE DH, 1993, J ACOUST SOC AM, V94, P2617, DOI 10.1121/1.407347 Liu YW, 2008, J ACOUST SOC AM, V124, P3708, DOI 10.1121/1.3001712 MARGOLIS RH, 1993, EAR HEARING, V14, P3, DOI 10.1097/00003446-199302000-00002 Mazlan R, 2009, EAR HEARING, V30, P295, DOI 10.1097/AUD.0b013e31819c3ea0 MCMILLAN PM, 1985, EAR HEARING, V6, P320, DOI 10.1097/00003446-198511000-00008 Morse P.M, 1968, THEORETICAL ACOUSTIC Muller-Wehlau M, 2005, J ACOUST SOC AM, V117, P3016, DOI 10.1121/1.1867932 Neumann J, 1996, Audiol Neurootol, V1, P359 PANG XD, 1985, MECH HEARING WORKSHO Qi L, 2006, J ACOUST SOC AM, V120, P3789, DOI 10.1121/1.2363944 Qi L, 2008, J ACOUST SOC AM, V124, P337, DOI 10.1121/1.2920956 RABBITT RD, 1990, J ACOUST SOC AM, V87, P2566, DOI 10.1121/1.399050 Rabinowitz WM, 1977, THESIS MIT CAMBRIDGE Sanford CA, 2009, EAR HEARING, V30, P635, DOI 10.1097/AUD.0b013e3181b61cdc Schairer KS, 2007, J ACOUST SOC AM, V121, P3607, DOI 10.1121/1.2722213 SPRAGUE BH, 1985, J SPEECH HEAR RES, V28, P265 Starr A, 1996, BRAIN, V119, P741, DOI 10.1093/brain/119.3.741 Stephenson H, 1997, EAR HEARING, V18, P62, DOI 10.1097/00003446-199702000-00006 WEATHERBY LA, 1980, SCAND AUDIOL, V9, P103, DOI 10.3109/01050398009076343 NR 38 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 52 EP 65 DI 10.1016/j.heares.2009.09.008 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700009 PM 19772907 ER PT J AU Cheng, JT Aarnisalo, AA Harrington, E Hernandez-Montes, MD Furlong, C Merchant, SN Rosowski, JJ AF Cheng, Jeffrey Tao Aarnisalo, Antti A. Harrington, Ellery Hernandez-Montes, Maria del Socorro Furlong, Cosme Merchant, Saumil N. Rosowski, John J. TI Motion of the surface of the human tympanic membrane measured with stroboscopic holography SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Tympanic membrane; Wave motion; Stroboscopic holography; Middle ear mechanics ID TIME-AVERAGED HOLOGRAPHY; MIDDLE-EAR TRANSMISSION; FINITE-ELEMENT METHOD; VIBRATION MEASUREMENT; SOUND-TRANSMISSION; CAT EARDRUM; MODEL; GERBIL; KHZ AB Sound-induced motion of the surface of the human tympanic membrane (TM) was studied by stroboscopic holographic interferometery, which measures the amplitude and phase of the displacement at each of about 40,000 points on the surface of the TM. Measurements were made with tonal stimuli of 0.5, 1, 4 and 8 kHz. The magnitude and phase of the sinusoidal displacement of the TM at each driven frequency were derived from the fundamental Fourier component of the raw displacement data computed from stroboscopic holograms of the TM recorded at eight stimulus phases. The correlation between the Fourier estimates and measured motion data was generally above 0.9 over the entire TM surface. We used three data presentations: (i) plots of the phasic displacements along a single chord across the surface of the TM, (ii) phasic surface maps of the displacement of the entire TM surface, and (iii) plots of the Fourier derived amplitude and phase-angle of the surface displacement along four diameter lines that define and bisect each of the four quadrants of the TM. These displays led to some common conclusions: at 0.5 and 1 kHz, the entire TM moved roughly in-phase with some small phase delay apparent between local areas of maximal displacement in the posterior half of the TM. At 4 and 8 kHz, the motion of the TM became more complicated with multiple local displacement maxima arranged in rings around the manubrium. The displacements at most of these maxima were roughly in-phase, while some moved out-of-phase. Superposed on this in- and out-of-phase behavior were significant cyclic variations in-phase with location of less than 0.2 cycles or occasionally rapid half-cycle step-like changes in-phase. The high frequency displacement amplitude and phase maps discovered in this study can not be explained by any single wave motion, but are consistent with a combination of low and higher order modal motions plus some small traveling-wave-like components. The observations of the dynamics of TM surface motion from this study will help us better understand the sound-receiving function of the TM and how it couples sound to the ossicular chain and inner ear. (C) 2009 Elsevier B.V. All rights reserved. C1 [Cheng, Jeffrey Tao; Aarnisalo, Antti A.; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Cheng, Jeffrey Tao; Aarnisalo, Antti A.; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Rosowski, John J.] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Bioscience & Technol Program, Cambridge, MA 02139 USA. [Harrington, Ellery; Hernandez-Montes, Maria del Socorro; Furlong, Cosme] Worcester Polytech Inst, Ctr Holog Studies & Laser MicromechaTron, Worcester, MA 01609 USA. [Hernandez-Montes, Maria del Socorro; Furlong, Cosme] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA. RP Cheng, JT (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM Tao_Cheng@meei.harvard.edu CR DECRAEMER WF, 1989, HEARING RES, V38, P1, DOI 10.1016/0378-5955(89)90123-8 DECRAEMER WF, 1999, EOS SPIE INT S MUNCH Fay J, 2005, J BIOMECH, V38, P1807, DOI 10.1016/j.jbiomech.2004.08.022 Fletcher NJC, 1992, ACOUSTIC SYSTEMS BIO FUNNELL WRJ, 1978, J ACOUST SOC AM, V63, P1461, DOI 10.1121/1.381892 FUNNELL WRJ, 1987, J ACOUST SOC AM, V81, P1851, DOI 10.1121/1.394749 Furlong C, 2009, STRAIN, V45, P301, DOI 10.1111/j.1475-1305.2008.00490.x Furlong C, 1998, OPT ENG, V37, P1448, DOI 10.1117/1.601679 Furlong C, 2003, OPT ENG, V42, P1223, DOI 10.1117/1.1566776 Gan Rong Z., 2004, Otology & Neurotology, V25, P423, DOI 10.1097/00129492-200407000-00005 Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53 Goode RL, 1996, AM J OTOL, V17, P813 GOODE RL, 1994, AM J OTOL, V15, P145 GOODE RL, 1993, AM J OTOL, V14, P247 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 Hernandez-Montes MDS, 2009, J BIOMED OPT, V14, DOI 10.1117/1.3153898 KHANNA SM, 1972, J ACOUST SOC AM, V51, P1904, DOI 10.1121/1.1913050 Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073 KONRADSSON KS, 1987, SCAND AUDIOL, V16, P159, DOI 10.3109/01050398709042171 LOKBERG OJ, 1979, APPL OPTICS, V18, P763, DOI 10.1364/AO.18.000763 Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083 Overstreet EH, 2002, J ACOUST SOC AM, V111, P261, DOI 10.1121/1.1420382 Parenta P, 2007, J ACOUST SOC AM, V122, P918, DOI 10.1121/12747156 Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930 RABBITT RD, 1986, J ACOUST SOC AM, V80, P1716, DOI 10.1121/1.394284 Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061 Rosowski JJ, 2009, HEARING RES, V253, P83, DOI 10.1016/j.heares.2009.03.010 Rosowski JJ, 2008, EAR HEARING, V29, P3 TONNDORF J, 1972, J ACOUST SOC AM, V52, P1221, DOI 10.1121/1.1913236 TONNDORF J, 1970, ANN OTO RHINOL LARYN, V79, P743 Wada H, 2002, J ACOUST SOC AM, V111, P2189, DOI 10.1121/1.1467671 NR 31 TC 47 Z9 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 66 EP 77 DI 10.1016/j.heares.2009.12.024 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700010 PM 20034549 ER PT J AU Aarnisalo, AA Cheng, JT Ravicz, ME Furlong, C Merchant, SN Rosowski, JJ AF Aarnisalo, Antti A. Cheng, Jeffrey T. Ravicz, Michael E. Furlong, Cosme Merchant, Saumil N. Rosowski, John J. TI Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Tympanic membrane; Tympanoplasty; Stroboscopic holography ID FINITE-ELEMENT-ANALYSIS; HUMAN EAR; IMPEDANCE; RECONSTRUCTION; MYRINGOPLASTY; TRANSMISSION; OPTIMIZATION; REFLECTANCE; VIBRATION; EARDRUM AB Stroboscopic holography was used to quantify dynamic deformations of the tympanic membrane (TM) of the entire surface of the TM before and after cartilage tympanoplasty of the posterior or posterior-superior part of the TM. Cartilage is widely used in tympanoplasties to provide mechanical stability for the TM. Three human cadaveric temporal bones were used. A 6 mm x 3 mm oval cartilage graft was placed through the widely opened facial recess onto the medial surface of the posterior or posterior-superior part of the TM. The graft was either in contact with the bony tympanic rim and manubrium or not. Graft thickness was either 0.5 or 1.0 mm. Stroboscopic holography produced displacement amplitude and phase maps of the TM surface in response to stimulus sound. Sound stimuli were 0.5, 1, 4 and 7 (or 8) kHz tones. Middle-ear impedance was measured from the motion of the entire TM. Cartilage placement generally produced reductions in the motion of the TM apposed to the cartilage, especially at 4 kHz and 7 or 8 kHz. Some parts of the TM showed altered motion compared to the control in all three cases. In general, middle-ear impedance was either unchanged or increased somewhat after cartilage reconstruction both at low (0.5 and 1 kHz) and high (4 and 7 kHz) frequencies. At 4 kHz, with the 1.0 mm thick graft that was in contact with the bony tympanic rim, the impedance slightly decreased. While our earlier work with time-averaged holography allowed us to observe differences in the pattern of TM motion caused by application of cartilage to the TM, stroboscopic holography is more sensitive to TM motions and allowed us to quantify the magnitude and phase of motion of each point on the TM surface. Nonetheless, our results are similar to those of our earlier work: The placement of cartilage on the medial surface of TM reduces the motion of the TM that apposes the cartilage. These obvious local changes occur even though the cartilage had little effect on the sound-induced motion of the stapes. (C) 2009 Elsevier B.V. All rights reserved. C1 [Aarnisalo, Antti A.; Cheng, Jeffrey T.; Ravicz, Michael E.; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Aarnisalo, Antti A.; Cheng, Jeffrey T.; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Furlong, Cosme] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA. [Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.] Harvard Univ, MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA. RP Aarnisalo, AA (reprint author), Univ Helsinki, Cent Hosp, Dept Otorhinolaryngol, POB 220, Hus Helsinki 00029, Finland. EM antti.aarnisalo@helsinki.fi CR AARNISALO AA, 2009, OTOL NEUROTOL CHENG JT, HEAR RES IN PRESS Chien WD, 2006, AUDIOL NEURO-OTOL, V11, P183, DOI 10.1159/000091815 DECRAEMER WF, 1999, EOS SPIE INT S MUNCH DELAROCHEFOUCAU.O, IN PRESS, V263, P9 Furlong C, 2009, STRAIN, V45, P301, DOI 10.1111/j.1475-1305.2008.00490.x Furlong C, 1998, OPT ENG, V37, P1448, DOI 10.1117/1.601679 GOODE RL, 1993, AM J OTOL, V14, P247 Hernandez-Montes MDS, 2009, J BIOMED OPT, V14, DOI 10.1117/1.3153898 HUDDE H, 1983, J ACOUST SOC AM, V73, P242, DOI 10.1121/1.388855 KEEFE DH, 1993, J ACOUST SOC AM, V94, P2617, DOI 10.1121/1.407347 Lee CF, 2006, AUDIOL NEURO-OTOL, V11, P380, DOI 10.1159/000095900 Lee CF, 2007, LARYNGOSCOPE, V117, P725, DOI 10.1097/mlg.0b013e318031f0e7 Murbe D, 2002, LARYNGOSCOPE, V112, P1769 Nakajima HH, 2005, HEARING RES, V204, P60, DOI 10.1016/j.heares.2005.01.002 RABINOWITZ WM, 1981, J ACOUST SOC AM, V70, P1025, DOI 10.1121/1.386953 Rosowski JJ, 2008, EAR HEARING, V29, P3 SCHULNECHT H, 1968, Archives of Otolaryngology, V87, P129 Shaw E. A. G., 1983, MECH HEARING, P3 STINSON MR, 1982, J ACOUST SOC AM, V72, P766, DOI 10.1121/1.388257 TONNDORF J, 1971, ACTA OTO-LARYNGOL, V71, P177, DOI 10.3109/00016487109125347 TONNDORF J, 1970, ANN OTO RHINOL LARYN, V79, P743 Tos M, 2008, OTOLARYNG HEAD NECK, V139, P747, DOI 10.1016/j.otohns.2008.09.021 Voss SE, 2001, ACTA OTO-LARYNGOL, V121, P169 VOSS SE, 1994, J ACOUST SOC AM, V95, P372, DOI 10.1121/1.408329 Wada H, 2002, J ACOUST SOC AM, V111, P2189, DOI 10.1121/1.1467671 Yung M, 2008, J LARYNGOL OTOL, V122, P663, DOI 10.1017/S0022215108001813 Zahnert T, 2000, AM J OTOL, V21, P322, DOI 10.1016/S0196-0709(00)80039-3 NR 28 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 78 EP 84 DI 10.1016/j.heares.2009.11.005 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700011 PM 19909803 ER PT J AU Popelka, GR Telukuntla, G Puria, S AF Popelka, Gerald R. Telukuntla, Goutham Puria, Sunil TI Middle-ear function at high frequencies quantified with advanced bone-conduction measures SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE High frequency; Bone conduction; Air conduction; Magnetostrictive transducer; Conductive mechanism; Sensorineural mechanism ID TYMPANIC MEMBRANE; HEARING; SPEECH AB Auditory thresholds with standardized clinical procedures are obtained over a much narrower frequency range by bone conduction than by air conduction. As a result, diagnostic information for both sensorineural and conductive-mechanism function is incomplete for high frequencies. A new magnetostrictive bone-conduction transducer that has the potential for improved output in the high-frequency rang was evaluated in the laboratory and in a variety of subjects with normal hearing (N = 11) or sensorineural hearing loss (N = 9). Laboratory results indicated that harmonic distortion and acoustic radiation were both sufficiently low to allow accurate threshold measurements. Auditory thresholds obtained with this magnetostrictive bone-conduction transducer can be measured accurately under conventional clinical conditions for frequencies up to 16 kHz and levels up to 85 dB HL These measures can be used to accurately characterize sensorineural hearing sensitivity for high frequencies and, when combined with standard air-conduction measures for high frequencies, to accurately characterize conductive-mechanism function for frequencies higher than possible with current diagnostic bone-conduction technology. (C) 2009 Elsevier B.V. All rights reserved. C1 [Popelka, Gerald R.; Telukuntla, Goutham; Puria, Sunil] Stanford Univ, Dept Otolaryngol, Stanford, CA 94305 USA. [Puria, Sunil] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. RP Popelka, GR (reprint author), Stanford Univ, Dept Otolaryngol, 801 Welch Rd, Stanford, CA 94305 USA. EM gpopelka@stanford.edu; gtelukuntla@stanfordmed.edu; puria@stanford.edu CR [Anonymous], 2004, S36 ANSI Best V, 2005, J ACOUST SOC AM, V118, P353, DOI 10.1121/1.1926107 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 Colbert E H, 1991, EVOLUTION VERTEBRATE Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104 FUNNELL WRJ, 1982, ORL J OTO-RHINO-LARY, V44, P181 HAKANSSON BEV, 2003, J ACOUST SOC AM, V113, P819 Horwitz AR, 2008, J SPEECH LANG HEAR R, V51, P798, DOI 10.1044/1092-4388(2008/057) LIM DJ, 1970, ACTA OTO-LARYNGOL, V70, P176 Moore BCJ, 2008, EAR HEARING, V29, P907, DOI 10.1097/AUD.0b013e31818246f6 O'Connor KN, 2008, LARYNGOSCOPE, V118, P483, DOI 10.1097/MLG.0b013e31815b0d9f PURIA S, 2008, SPRING COSM M ORL FL PURIA S, 2009, MEMRO M STANF CA Reinfeldt S, 2007, J ACOUST SOC AM, V121, P1576, DOI 10.1121/1.2434762 Ruggero MA, 2002, P NATL ACAD SCI USA, V99, P13206, DOI 10.1073/pnas.202492699 Sakai Y, 2006, ACTA OTO-LARYNGOL, V126, P926, DOI 10.1080/00016480500536871 Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977 Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606 NR 18 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 85 EP 92 DI 10.1016/j.heares.2009.11.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700012 PM 19900526 ER PT J AU Qin, ZB Wood, M Rosowski, JJ AF Qin, Zhaobing Wood, Melissa Rosowski, John J. TI Measurement of conductive hearing loss in mice SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Middle-ear pathology; Distortion-product otoacoustic emissions; Auditory brainstem responses; Umbo velocity; Mouse ID PRODUCT OTOACOUSTIC EMISSIONS; MIDDLE-EAR FUNCTION; TYMPANIC-MEMBRANE; THRESHOLD ESTIMATION; COCHLEAR DISORDERS; UMBO VELOCITY; GUINEA-PIGS; TRANSMISSION; DIFFERENTIATION; PERFORATION AB In order to discriminate conductive hearing loss from sensorineural impairment, quantitative measurements were used to evaluate the effect of artificial conductive pathology on distortion-product otoacoustic emissions (DPOAEs), auditory brainstem responses (ABRs) and laser-Doppler vibrometry (LDV) in mice. The conductive manipulations were created by perforating the pars flaccida of the tympanic membrane, filling or partially filling the middle-ear cavity with saline, fixing the ossicular chain, and interrupting the incudo-stapedial joint. In the saline-filled and ossicular-fixation groups, averaged DPOAE thresholds increased relative to the control state by 20-36 and 25-39 dB, respectively with the largest threshold shifts occurring at frequencies less than 20 kHz, while averaged ABR thresholds increased 12-19 and 12-25 dB, respectively without the predominant low-frequency effect. Both DPOAE and ABR thresholds were elevated by less than 10 dB in the half-filled saline condition; no significant change was observed after pars flaccida perforation. Conductive pathology generally produced a change in DPOAE threshold in dB that was 1.5-2.5 times larger than the ABR threshold change at frequencies less than 30 kHz; the changes in the two thresholds were nearly equal at the highest frequencies. While mild conductive pathology (ABR threshold shifts of <10 dB) produced parallel shifts in DPOAE growth with level functions, manipulations that produced larger conductive hearing losses (ABR threshold shifts >10 dB) were associated with significant deceases in DPOAE growth rate. Our LDV measurements are consistent with others and suggest that measurements of umbo velocity are not an accurate indicator of conductive hearing loss produced by ossicular lesions in mice. (C) 2009 Elsevier B.V. All rights reserved. C1 [Qin, Zhaobing; Wood, Melissa; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Qin, Zhaobing] Zhengzhou Univ, Teaching Hosp 1, Zhengzhou 450052, Henan, Peoples R China. RP Rosowski, JJ (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM john_Rosowski@meei.harvard.edu CR Allen J. B., 1986, PERIPHERAL AUDITORY, P44 Allen JB, 2005, J REHABIL RES DEV, V42, P63, DOI 10.1682/JRRD.2005.04.0064 Avan P, 2000, HEARING RES, V140, P189, DOI 10.1016/S0378-5955(99)00201-4 Bekesy G., 1960, EXPT HEARING Bigelow DC, 1996, LARYNGOSCOPE, V106, P71, DOI 10.1097/00005537-199601000-00014 Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 Dai C, 2008, HEARING RES, V236, P22, DOI 10.1016/j.heares.2007.11.005 Dai C, 2008, HEARING RES, V243, P78, DOI 10.1016/j.heares.2008.05.010 Dalhoff E, 2007, P NATL ACAD SCI USA, V104, P1546, DOI 10.1073/pnas.0610185103 DOAN DE, 1994, J COMP PHYSIOL A, V174, P103 Fay R. R., 1988, HEARING VERTEBRATES Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P901, DOI 10.1044/1092-4388(2003/070) Gan RZ, 2006, J ACOUST SOC AM, V120, P3799, DOI 10.1121/1.2372451 Gehr DD, 2004, HEARING RES, V193, P9, DOI 10.1016/j.heares.2004.03.018 Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022 Janssen T, 2005, J ACOUST SOC AM, V117, P2969, DOI 10.1121/1.1853101 Kanzaki S, 2006, BONE, V39, P414, DOI 10.1016/j.bone.2006.01.155 KOHLLOFFEL LUE, 1984, HEARING RES, V13, P83, DOI 10.1016/0378-5955(84)90098-4 Kujawa SG, 1999, J NEUROPHYSIOL, V82, P863 Maison SF, 2006, J NEUROSCI, V26, P10315, DOI 10.1523/JNEUROSCI.2395-06.2006 Margolis RH, 1985, HDB CLIN AUDIOLOGY, P438 MERCHANT SN, 2003, SURG EAR, P59 MOLLER A R, 1965, Acta Otolaryngol, V60, P129, DOI 10.3109/00016486509126996 Nakajima HH, 2005, LARYNGOSCOPE, V115, P147, DOI 10.1097/01.mlg.0000150692.23506.b7 Parham K, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P37 PEAKE WT, 1992, HEARING RES, V57, P245, DOI 10.1016/0378-5955(92)90155-G PINSKER OT, 1972, HDB CLIN AUDIOLOGY, P36 RAVICZ ME, 2004, HEARING RES, V195, P105 ROSOWSKI JJ, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P615 Rosowski John J., 1994, Springer Handbook of Auditory Research, V4, P172 Rosowski JJ, 2008, EAR HEARING, V29, P3 Rosowski JJ, 2003, JARO, V4, P371, DOI 10.1007/s10162-002-3047-1 ROSOWSKI JJ, 1984, HEARING RES, V13, P141, DOI 10.1016/0378-5955(84)90105-9 Samadi DS, 2005, HEARING RES, V199, P11, DOI 10.1016/j.heares.2004.07.013 SAUNDERS JC, 1982, J COMP PHYSIOL, V146, P517 Shera CA, 2005, J ACOUST SOC AM, V118, P287, DOI 10.1121/1.1895025 STEEL KP, 1987, HEARING RES, V28, P227, DOI 10.1016/0378-5955(87)90051-7 TONNDORF J, 1962, ANN OTO RHINOL LARYN, V71, P5 TONNDORF J, 1966, ACTA OTO-LARYNGOL, P39 Turcanu D, 2007, HNO, V55, P930, DOI 10.1007/s00106-007-1582-0 Turcanu D, 2009, HEARING RES, V251, P17, DOI 10.1016/j.heares.2009.02.005 Ueda H, 1998, HEARING RES, V122, P41, DOI 10.1016/S0378-5955(98)00084-7 Voss SE, 2001, ACTA OTO-LARYNGOL, V121, P169 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 Zehnder AF, 2006, LARYNGOSCOPE, V116, P201, DOI 10.1097/01.mlg.0000191466.09210.9a ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 46 TC 21 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 93 EP 103 DI 10.1016/j.heares.2009.10.002 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700013 PM 19835942 ER PT J AU Perkins, R Fay, JP Rucker, P Rosen, M Olson, L Puria, S AF Perkins, Rodney Fay, Jonathan P. Rucker, Paul Rosen, Micha Olson, Lisa Puria, Sunil TI The EarLens system: New sound transduction methods SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Hearing aid; Tympanic membrane; Transducers; Electromagnetic hearing; Photonic hearing; Speech in noise; Sound processing ID HIGH-FREQUENCIES; TYMPANIC MEMBRANE; PRESSURE LEVELS; SPECTRAL CUES; DEAD REGIONS; EXTERNAL-EAR; HEARING-AIDS; MIDDLE-EAR; SPEECH; LOCALIZATION AB The hypothesis is tested that an open-canal hearing device, with a microphone in the ear canal, can be designed to provide amplification over a wide bandwidth and without acoustic feedback. In the design under consideration, a transducer consisting of a thin silicone platform with an embedded magnet is placed directly on the tympanic membrane. Sound picked up by a microphone in the ear canal, including sound-localization cues thought to be useful for speech perception in noisy environments, is processed and amplified, and then used to drive a coil near the tympanic-membrane transducer. The perception of sound results from the vibration of the transducer in response the electromagnetic field produced by the coil. Sixteen subjects (ranging from normal-hearing to moderately hearing-impaired) wore this transducer for up to a 10-month period, and were monitored for any adverse reactions. Three key functional characteristics were measured: (1) the maximum equivalent pressure output (MEPO) of the transducer; (2) the feedback gain margin (GM), which describes the maximum allowable gain before feedback occurs: and (3) the tympanic-membrane damping effect (D(TM)), which describes the change in hearing level due to placement of the transducer on the eardrum. Results indicate that the tympanic-membrane transducer remains in place and is well tolerated. The system can produce sufficient output to reach threshold for those with as much as 60 dBHL of hearing impairment for up to 8 kHz in 86% of the study population, and up to 11.2 kHz in 50% of the population. The feedback gain margin is on average 30 dB except at the ear-canal resonance frequencies of 3 and 9 kHz, where the average was reduced to 12 dB and 23 dB, respectively. The average value of D(TM) is close to 0 dB everywhere except in the 2-4 kHz range, where it peaks at 8 dB. A new alternative system that uses photonic energy to transmit both the signal and power to a photodiode and micro-actuator on an EarLens platform is also described. (C) 2010 Elsevier B.V. All rights reserved. C1 [Perkins, Rodney; Fay, Jonathan P.; Rucker, Paul; Rosen, Micha; Olson, Lisa; Puria, Sunil] EarLens Corp, Redwood City, CA 94063 USA. [Puria, Sunil] Stanford Univ, Dept Mech Engn, Mech & Computat Div, Stanford, CA 94305 USA. RP Puria, S (reprint author), EarLens Corp, 200 Chesapeake Dr, Redwood City, CA 94063 USA. EM spuria@earlenscorp.com CR ABEL E, 2007, Patent No. 7289639 Baer T, 2002, J ACOUST SOC AM, V112, P1133, DOI 10.1121/1.1498853 Best V, 2005, J ACOUST SOC AM, V118, P353, DOI 10.1121/1.1926107 Blauert J., 1997, SPATIAL HEARING PSYC BOEDTS D, 1978, ACTA OTO-LARYNGOL, V85, P248, DOI 10.3109/00016487809111932 CARLILE S, 2006, AUD ENG SOC CONV PAR, P353 Chi HF, 2003, SPEECH COMMUN, V39, P147, DOI 10.1016/S0167-6393(02)00064-X Cord Mary T, 2004, J Am Acad Audiol, V15, P353, DOI 10.3766/jaaa.15.5.3 FAY J, 2008, Patent No. 60977605 Fletcher H., 1995, ASA EDITION SPEECH H Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211 Freyman RL, 2001, J ACOUST SOC AM, V109, P2112, DOI 10.1121/1.1354984 Goode R L, 1970, Trans Am Acad Ophthalmol Otolaryngol, V74, P128 KILLION MC, 1982, J SPEECH HEAR RES, V25, P15 KILLION MC, 1978, J ACOUST SOC AM, V63, P1501, DOI 10.1121/1.381844 Kochkin S., 2009, HEARING REV, V16, P12 KOCHKIN S, 2002, MARKETRAK 6 HEARING Lee CF, 2008, J BIOMECH, V41, P3515, DOI 10.1016/j.jbiomech.2008.09.015 MIDDLEBROOKS JC, 1989, J ACOUST SOC AM, V86, P89, DOI 10.1121/1.398224 Moore BCJ, 2003, J ACOUST SOC AM, V114, P408, DOI 10.1121/1.1577552 Moore BCJ, 2008, EAR HEARING, V29, P907, DOI 10.1097/AUD.0b013e31818246f6 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 MUSICANT AD, 1984, J ACOUST SOC AM, V75, P1195, DOI 10.1121/1.390770 Perkins R, 1996, OTOLARYNG HEAD NECK, V114, P720, DOI 10.1016/S0194-5998(96)70092-X PERKINS RC, 1993, Patent No. 5259032 PERKINS RC, 2005, Patent No. 20070100197 PERKINS RC, 2008, Patent No. 7421087 PLESTER D, 1978, Patent No. 2044870 PLUVINAGE V, 2005, Patent No. 20060189841 Preminger Jill E, 2005, J Am Acad Audiol, V16, P600, DOI 10.3766/jaaa.16.8.9 PURIA S, 2008, SPRING COSM M ORL FL Puria S, 2003, J ACOUST SOC AM, V113, P2773, DOI 10.1121/1.1564018 PURIA S, 2005, Patent No. 11121517 REIJNEN CJH, 1971, ACTA OTO-LARYNGOL, P1 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 Ricketts Todd A, 2005, J Am Acad Audiol, V16, P270, DOI 10.3766/jaaa.16.5.2 RUTSCHMANN J, 1959, IRE T MED ELECTRON, V6, P22 SHAW EAG, 1969, J ACOUST SOC AM, V46, P1502, DOI 10.1121/1.1911894 SHAW EAG, 1968, J ACOUST SOC AM, V44, P240, DOI 10.1121/1.1911059 Vickers DA, 2001, J ACOUST SOC AM, V110, P1164, DOI 10.1121/1.1381534 Walden Brian E, 2004, J Am Acad Audiol, V15, P365, DOI 10.3766/jaaa.15.5.4 Wang Zhigang, 2005, Conf Proc IEEE Eng Med Biol Soc, V6, P6233 Wilska A, 1959, MIDDLE EAR, P76 Zenner HP, 2004, ACTA OTO-LARYNGOL, V124, P155, DOI 10.1080/00016480310016055 NR 44 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 104 EP 113 DI 10.1016/j.heares.2010.01.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700014 PM 20116419 ER PT J AU Nakajima, HH Merchant, SN Rosowski, JJ AF Nakajima, Hideko Heidi Merchant, Saumil N. Rosowski, John J. TI Performance considerations of prosthetic actuators for round-window stimulation SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Round window; Middle ear; Cochlea; Scala vestibuli; Scala tympani; Prosthesis ID SOUND PRESSURE MEASUREMENTS; MIDDLE-EAR IMPLANT; VIBRANT SOUNDBRIDGE; COCHLEA; RECONSTRUCTION; OVAL AB Round-window (RW) stimulation has improved speech perception in patients with mixed hearing loss. In cadaveric temporal bones, we recently showed that RW stimulation with an active prosthesis produced differential pressure across the cochlear partition (a measure related to cochlear transduction) similar to normal forward sound stimulation above 1 kHz, when contact area between the prosthesis and RW is secured. However, there is large variability in the hearing improvement in patients implanted with existing modified prosthesis. This is likely because the middle-ear prosthesis used for RW stimulation was designed for a very different application. In this paper, we utilize recently developed experimental techniques that allow for the calculation of performance specifications for a RW actuator. In cadaveric human temporal bones (N = 3), we simultaneously measure scala vestibuli and scala tympani intracochlear pressures, as well as stapes velocity and ear-canal pressure, during normal forward sound stimulation as well as reverse RW stimulation. We then calculate specifications such as the impedance the actuator will need to oppose at the RW, the force with which it must push against the RW, and the velocity and distance by which it must move the RW to obtain cochlear stimulation equivalent to that of specific levels of ear-canal pressure under normal sound stimulation. This information is essential for adapting existing prostheses and for designing new actuators specifically for RW stimulation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Nakajima, Hideko Heidi; Merchant, Saumil N.; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Nakajima, Hideko Heidi; Merchant, Saumil N.; Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Merchant, Saumil N.; Rosowski, John J.] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Bioscience & Technol Program, Cambridge, MA 02139 USA. RP Nakajima, HH (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM heidi_nakajima@meei.harvard.edu; saumil_-merchant@meei.harvard.edu; john_rosowski@meei.harvard.edu CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 Bekesy G., 1960, EXPT HEARING Beltrame AM, 2009, OTOL NEUROTOL, V30, P194, DOI 10.1097/MAO.0b013e318180a495 Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903 DANCER A, 1980, HEARING RES, V2, P191, DOI 10.1016/0378-5955(80)90057-X DUMON T, 1995, OTOLARYNG CLIN N AM, V28, P173 Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282 Linder T, 2009, OTOL NEUROTOL, V30, P41, DOI 10.1097/MAO.0b013e31818be812 Nakajima HH, 2009, JARO-J ASSOC RES OTO, V10, P23, DOI 10.1007/s10162-008-0150-y NAKAJIMA HH, OTOL N IN PRESS 1016 NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200 Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083 PROCTOR B, 1986, ANN OTO RHINOL LARYN, V95, P444 Puria S, 2003, J ACOUST SOC AM, V113, P2773, DOI 10.1121/1.1564018 SPINDEL JH, 1995, OTOLARYNG CLIN N AM, V28, P189 Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903 Voss SE, 1996, J ACOUST SOC AM, V100, P1602, DOI 10.1121/1.416062 WEVER EG, 1950, J ACOUST SOC AM, V22, P460, DOI 10.1121/1.1906628 Wollenberg B, 2007, HNO, V55, P349, DOI 10.1007/s00106-007-1540-x NR 19 TC 10 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 114 EP 119 DI 10.1016/j.heares.2009.11.009 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700015 PM 19941946 ER PT J AU Arnold, A Kompis, M Candreia, C Pfiffner, F Hausler, R Stieger, C AF Arnold, Andreas Kompis, Martin Candreia, Claudia Pfiffner, Flurin Haeusler, Rudolf Stieger, Christof TI The floating mass transducer at the round window: Direct transmission or bone conduction? SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Floating mass transducer (FMT); Vibrant Soundbridge (VSB); Round window; Promontory; Laser Doppler vibrometry; Bone anchored hearing aid (BAHA); Bone conduction ID HUMAN TEMPORAL BONES; MIXED HEARING-LOSS; MIDDLE-EAR; VIBRANT SOUNDBRIDGE; SOUND; AID; THRESHOLDS; FEASIBILITY; STIMULATION; VIBRATIONS AB The round window placement of a floating mass transducer (FMT) is a new approach for coupling an implantable hearing system to the cochlea. We evaluated the vibration transfer to the cochlear fluids of an FMT placed at the round window (rwFMT) with special attention to the role of bone conduction. A posterior tympanotomy was performed on eleven ears of seven human whole head specimens. Several rwFMT setups were examined using laser Doppler vibrometry measurements at the stapes and the promontory. In three ears, the vibrations of a bone anchored hearing aid (BAHA) and an FMT fixed to the promontory (pFMT) were compared to explore the role of bone conduction. Vibration transmission to the measuring point at the stapes was best when the rwFMT was perpendicularly placed in the round window and underlayed with connective tissue. Fixation of the rwFMT to the round window exhibited significantly lower vibration transmission. Although measurable, bone conduction from the pFMT was much lower than that of the BAHA. Our results suggest that the rwFMT does not act as a small bone anchored hearing aid, but instead, acts as a direct vibratory stimulator of the round window membrane. (C) 2009 Elsevier B.V. All rights reserved. C1 [Arnold, Andreas; Kompis, Martin; Candreia, Claudia; Pfiffner, Flurin; Haeusler, Rudolf; Stieger, Christof] Univ Bern, Inselspital, Univ Dept ENT Head & Neck Surg, CH-3012 Bern, Switzerland. [Stieger, Christof] Univ Bern, ARTORG Ctr Biomed Engn, CH-3012 Bern, Switzerland. RP Arnold, A (reprint author), Univ Bern, Inselspital, Univ Dept ENT Head & Neck Surg, CH-3012 Bern, Switzerland. EM andreas.arnold@insel.ch; martin.kompis@insel.ch; claudia.candreia@insel.ch; flurin.pfiffner@dkf.unibe.ch; rudolf.haeusler@insel.ch; christof.stieger@artorg.unibe.ch RI Arnold, Andreas/H-2749-2012 CR AMBETT R, 2009, 5 INT S MIDDL EAR ME Arnold A, 2009, OTOL NEUROTOL, V31, P122 BALL GR, 1999, SYMPHONIX DEVICE Beltrame AM, 2009, OTOL NEUROTOL, V30, P194, DOI 10.1097/MAO.0b013e318180a495 Bregy A, 2008, J NEUROSURG, V108, P567, DOI 10.3171/JNS/2008/108/3/0567 Chien WD, 2006, AUDIOL NEURO-OTOL, V11, P183, DOI 10.1159/000091815 Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903 Eeg-Olofsson M, 2008, INT J AUDIOL, V47, P761, DOI 10.1080/14992020802311216 Frenzel H, 2009, LARYNGOSCOPE, V119, P67, DOI 10.1002/lary.20036 Gan R Z, 1997, Ear Nose Throat J, V76, P297 HAKANSSON B, 1984, SCAND AUDIOL, V13, P3, DOI 10.3109/01050398409076252 Häusler Rudolf, 2008, Audiol Neurootol, V13, P247, DOI 10.1159/000115434 Huber AM, 2006, OTOL NEUROTOL, V27, P1104, DOI 10.1097/01.mao.0000244352.49824.e6 Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282 Linder T, 2009, OTOL NEUROTOL, V30, P41, DOI 10.1097/MAO.0b013e31818be812 LITTLER TS, 1952, P ROY SOC MED, V45, P783 Lukashkin AN, 2005, J NEUROSCI METH, V148, P122, DOI 10.1016/j.jneumeth.2005.04.014 Nakajima HH, 2010, OTOL NEUROTOL, V31, P506, DOI 10.1097/MAO.0b013e3181c0ea9f NAKAJIMA HH, 2009, 5 INT S MIDDL EAR ME Nakajima HH, 2009, JARO-J ASSOC RES OTO, V10, P23, DOI 10.1007/s10162-008-0150-y Pfiffner F, 2009, OTOL NEUROTOL, V30, P884, DOI 10.1097/MAO.0b013e3181b4e8eb Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474 SPINDEL JH, 1995, OTOLARYNG CLIN N AM, V28, P189 Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977 Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5 Stenfelt S, 2006, J ACOUST SOC AM, V119, P2848, DOI 10.1121/1.2184225 Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847 Stieger C, 2007, J REHABIL RES DEV, V44, P407, DOI 10.1682/JRRD.2006.09.0114 THIEL W, 1992, ANN ANAT, V174, P185 TJELLSTROM A, 1995, OTOLARYNG CLIN N AM, V28, P53 TONNDORF J, 1968, ARCH OTOLARYNGOL, V87, P595 Verhaegen VJO, 2008, LARYNGOSCOPE, V118, P1645, DOI 10.1097/MLG.0b013e31817b013a Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Winter M, 2002, Biomed Tech (Berl), V47 Suppl 1 Pt 2, P726, DOI 10.1515/bmte.2002.47.s1b.726 Wolff KD, 2008, MICROSURG, V28, P273, DOI 10.1002/micr.20484 ZAHNERT T, 2009, 5 INT S MIDDL EAR ME NR 36 TC 16 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 120 EP 127 DI 10.1016/j.heares.2009.12.019 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700016 PM 20005939 ER PT J AU Koka, K Holland, NJ Lupo, JE Jenkins, HA Tollin, DJ AF Koka, Kanthaiah Holland, N. Julian Lupo, J. Eric Jenkins, Herman A. Tollin, Daniel J. TI Electrocochleographic and mechanical assessment of round window stimulation with an active middle ear prosthesis SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Cochlear microphonic; RW stimulation; Active middle ear prosthesis ID IMPLANTABLE HEARING DEVICE; CHINCHILLA; RECONSTRUCTION; ADMITTANCE; COCHLEA AB Mechanical stimulation of the round window (RW) with an active middle ear prosthesis (AMEP) has shown functional benefit in clinical reports in patients with mixed hearing loss (MHL). Further objective physiological data on the efficacy of RW stimulation is needed, however, to demonstrate that RW stimulation with an AMEP can generate input to the inner ear comparable to acoustic input. Cochlear microphonic (CM) and mechanical (stapes velocity) responses to sinusoidal stimuli were measured by electrode and laser Doppler vibrometry in eight chinchillas in response to normal acoustic stimulation via sealed calibrated insert earphones and to AMEP stimulation (Otologics MET, Boulder, CO, USA) of the RW with and without lateral ossicular chain disarticulation. CM thresholds for acoustic stimulation were frequency dependent and ranged from 16 to 50 dB SPL. CM thresholds measured with RW stimulation ranged from -14 to 35 dB mV with an intact middle ear chain and from -7 to 36 dB mV after lateral ossicular chain disarticulation. Acoustically, stapes velocity maxima was observed at similar to 700 Hz and minima at similar to 2.65 kHz. With application of the AMEP to the RW, peak stapes velocity was observed at 2-3 kHz. The equivalent ear canal sound pressure level (L(Emax) dB SPL) evoked by RW stimulation with the AMEP was 60-105 dB SPL for the intact middle ear and 70-100 dB SPL after ossicular chain disarticulation. Stimulating the inner ear through the RW with an AMEP produces evoked responses (CM) comparable to normal acoustic input. When adjusted for threshold (due to unit differences, dB SPL or dB mV), the sensitivity of the CM (slope) for acoustic was comparable to sensitivities obtained by AMEP stimulation of the RW. Mechanical stimulation of the RW with an AMEP produces cochlear responses (CMs) and stapes velocities that are functionally equivalent to acoustic stimulation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Koka, Kanthaiah; Lupo, J. Eric; Tollin, Daniel J.] Univ Colorado Denver, Dept Physiol & Biophys, Aurora, CO 80045 USA. [Holland, N. Julian; Jenkins, Herman A.; Tollin, Daniel J.] Univ Colorado Denver, Dept Otolaryngol, Aurora, CO 80045 USA. RP Koka, K (reprint author), Univ Colorado Denver, Dept Physiol & Biophys, Mail Stop 8307,POB 6511,12800 E 19th Ave, Aurora, CO 80045 USA. EM kanthaiah.koka@ucdenver.edu CR *ASTM INT, 2005, F250405 ASTM INT Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903 DUMON T, 1995, OTOLARYNG CLIN N AM, V28, P173 Fredrickson JM, 1996, ADV OTOLARYNGOL, V2, P189 House JW, 2007, OTOL NEUROTOL, V28, P213, DOI 10.1097/MAO.0b013e31802c74c4 Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282 Lefebvre PP, 2009, AUDIOL NEURO-OTOL, V14, P172, DOI 10.1159/000171479 Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474 Rosowski JJ, 2006, J COMP PHYSIOL A, V192, P1287, DOI 10.1007/s00359-006-0159-9 RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409 Songer JE, 2006, J ACOUST SOC AM, V120, P258, DOI 10.1121/1.2204356 SPINDEL JH, 1995, OTOLARYNG CLIN N AM, V28, P189 SPINDEL JH, 1991, ANN INT C IEEE ENG M, V13, P1891 TRINGALI S, 2008, ACTA OTO-LARYNGOL, V1, P1 Tringali S, 2008, INT J PEDIATR OTORHI, V72, P513, DOI 10.1016/j.ijporl.2007.12.002 Verhaegen VJO, 2008, LARYNGOSCOPE, V118, P1645, DOI 10.1097/MLG.0b013e31817b013a Voss SE, 1996, J ACOUST SOC AM, V100, P1602, DOI 10.1121/1.416062 VRETTAKOS PA, 1988, AM J OTOLARYNG, V9, P58, DOI 10.1016/S0196-0709(88)80009-7 WEVER EG, 1950, J ACOUST SOC AM, V22, P460, DOI 10.1121/1.1906628 WEVER EG, 1948, ARCH OTOLARYNGOL, V48, P19 Wollenberg B, 2007, HNO, V55, P349, DOI 10.1007/s00106-007-1540-x ZENNARO O, 1992, P ANN INT C IEEE, V4, P1316 NR 22 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 128 EP 137 DI 10.1016/j.heares.2009.08.009 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700017 PM 19720125 ER PT J AU Gan, RZ Dai, CK Wang, XL Nakmali, D Wood, MW AF Gan, Rong Z. Dai, Chenkai Wang, Xuelin Nakmali, Don Wood, Mark W. TI A totally implantable hearing system - Design and function characterization in 3D computational model and temporal bones SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Middle ear; Implantable device; Biomechanics; Finite element model ID SOUND-TRANSMISSION; CLINICAL-TRIAL; EAR; DEVICE; TRANSDUCER; MET AB Implantable middle ear hearing devices are emerging as an effective technology for patients with mild to moderately severe sensorineural hearing loss. Several devices with electromagnetic or piezoelectric transducers have been investigated or developed in the US and Europe since 1990. This paper reports a totally implantable hearing system (TIHS) currently under investigation in Oklahoma. The TIHS consists of implant transducer (magnet), implantable coil and microphone, DSP-audio signal processor, rechargeable battery, and remote control unit. The design of TINS is based on a 3D finite element model of the human ear and the analysis of electromagnetic coupling of the transducer. Function of the TIHS is characterized over the auditory frequency range in three aspects: (1) mass loading effect on residual hearing with a passive implant, (2) efficiency of electromagnetic coupling between the implanted coil and magnet, and (3) functional gain of whole unit in response to acoustic input across the human skin. This paper focuses on mass loading effect and the efficiency of electromagnetic coupling of TIHS determined from the FE model of the human ear and the cadaver ears or temporal bones. Some preliminary data of whole unit function are also presented in the paper. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gan, Rong Z.] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA. [Nakmali, Don; Wood, Mark W.] Hough Ear Inst, Oklahoma City, OK 73112 USA. RP Gan, RZ (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, 865 Asp Ave,Room 200, Norman, OK 73019 USA. EM rgan@ou.edu CR *ASTM INT, 2005, F250405 ASTM INT Chen DA, 2004, OTOLARYNG HEAD NECK, V131, P904, DOI 10.1016/j.otohns.2004.05.027 CHENG T, 2003, P BIOM ENG SOC 2003 Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903 COUNTER P, 2008, P I MECH ENG H, V226, P837 Cremers CWRJ, 2008, OTOL NEUROTOL, V30, P76 ETHIRAJ R, 2002, P JOINT IEEE EMBS BM, V2, P1762, DOI 10.1109/IEMBS.2002.1106640 Frenzel H, 2009, LARYNGOSCOPE, V119, P67, DOI 10.1002/lary.20036 Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53 GAN RZ, 2001, ANN BIOMED ENG S, V29 GAN RZ, 2008, ASS RES OT ARO MIDW, V31, P506 Gan RZ, 2007, J ACOUST SOC AM, V122, P3527, DOI 10.1121/1.2793699 Gan RZ, 2001, ANN OTO RHINOL LARYN, V110, P478 Gan RZ, 2002, OTOL NEUROTOL, V23, P271, DOI 10.1097/00129492-200205000-00008 Hough JVD, 2001, LARYNGOSCOPE, V111, P1, DOI 10.1097/00005537-200101000-00001 Hough JVD, 2002, OTOL NEUROTOL, V23, P895, DOI 10.1097/00129492-200211000-00015 Jenkins HA, 2007, OTOLARYNG HEAD NECK, V137, P206, DOI 10.1016/j.otohns.2007.03.012 Jorge JR, 2006, LARYNGOSCOPE, V116, P473, DOI 10.1097/01.MLG.0000199889.61483.8F Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474 Shinners MJ, 2008, CURR OPIN OTOLARYNGO, V16, P416, DOI 10.1097/MOO.0b013e32830a49f0 Zenner HP, 2000, AM J OTOL, V21, P196, DOI 10.1016/S0196-0709(00)80009-5 ZENNER HP, 1998, LANCET, V352 NR 22 TC 8 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 138 EP 144 DI 10.1016/j.heares.2009.09.003 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700018 PM 19772909 ER PT J AU Bornitz, M Hardtke, HJ Zahnert, T AF Bornitz, Matthias Hardtke, Hans-Juergen Zahnert, Thomas TI Evaluation of implantable actuators by means of a middle ear simulation model SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Middle ear; Implantable hearing aids; Finite element model; Actuator ID SENSORINEURAL HEARING-LOSS; HUMAN TEMPORAL BONES; DEVICE; TRANSDUCER; CRYSTAL; SYSTEMS AB The extension of indication of implantable hearing aids to cases of conductive hearing loss pushed the development of these devices. There is now a great variety of devices available with different actuator concepts and different attachment points to the middle ear or inner ear fluid. But there is little comparative data available about the devices to provide an insight into advantages and disadvantages of different types of actuators and attachment points at the ossicular chain. This paper investigates two principle (idealized) types of actuators in respect of attachments points at the ossicular chain and direction of excitation. Other parts of implantable hearing aids like microphone, amplifier and signal processing electronics were not incorporated into this study. Investigations were performed by means of a mathematical simulation model of the middle ear (finite element model). Actuator performance and theoretical gain were calculated by harmonic analysis in the frequency range of 100-6000 Hz and were compared for the different situations. The stapes head proofed to be an ideal attachment point for actuators of both types as this position is very insensitive to changes in the direction of excitation. The implantable actuators showed higher ratio of equivalent sound pressure to radiated sound pressure compared to an open hearing aid transducer and should therefore allow for more functional gain. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bornitz, Matthias; Zahnert, Thomas] Tech Univ Dresden, Dept Med, Clin Otolaryngol, D-01307 Dresden, Germany. [Hardtke, Hans-Juergen] Tech Univ Dresden, Dept Mech Engn, Inst Solid Mech, D-01307 Dresden, Germany. RP Bornitz, M (reprint author), Tech Univ Dresden, Dept Med, Clin Otolaryngol, Fetscherstr 74, D-01307 Dresden, Germany. EM matthias.bornitz@tu-dresden.de CR Bornitz M, 2007, MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P222, DOI 10.1142/9789812708694_0030 Bornitz M, 1999, AUDIOL NEURO-OTOL, V4, P163, DOI 10.1159/000013836 Chen DA, 2004, OTOLARYNG HEAD NECK, V131, P904, DOI 10.1016/j.otohns.2004.05.027 DECRAEMER WF, 1991, HEARING RES, V54, P305, DOI 10.1016/0378-5955(91)90124-R Häusler Rudolf, 2008, Audiol Neurootol, V13, P247, DOI 10.1159/000115434 Huber AM, 2006, OTOL NEUROTOL, V27, P1104, DOI 10.1097/01.mao.0000244352.49824.e6 Hudde H, 1998, ACUSTICA, V84, P1091 HUMES LE, 1988, EAR HEARING, V9, P108, DOI 10.1097/00003446-198806000-00002 Hüttenbrink Karl-Bernd, 2008, Otol Neurotol, V29, P965, DOI 10.1097/MAO.0b013e318185fad8 Jenkins HA, 2004, ACTA OTO-LARYNGOL, V124, P391, DOI 10.1080/00016480410016298 KOIKE T, 2004, 3 INT S MIDDL EAR ME, P68 Maurer J, 2009, HNO, V57, P199, DOI 10.1007/s00106-008-1852-5 Mills RP, 2001, J LARYNGOL OTOL, V115, P359 Perkins R, 1996, OTOLARYNG HEAD NECK, V114, P720, DOI 10.1016/S0194-5998(96)70092-X Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474 Spindel Jonathan H, 2002, Am J Audiol, V11, P104, DOI 10.1044/1059-0889(2002/019) Stieger C, 2007, J REHABIL RES DEV, V44, P407, DOI 10.1682/JRRD.2006.09.0114 Stieger C, 2004, COMPUT BIOL MED, V34, P141, DOI 10.1016/S0010-4825(03)00042-8 Tisch M, 2009, HNO, V57, P196, DOI 10.1007/s00106-008-1854-3 Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Yanagihara N, 2001, OTOLARYNG CLIN N AM, V34, P389, DOI 10.1016/S0030-6665(05)70338-8 Yin JH, 2000, IEEE T ULTRASON FERR, V47, P285, DOI 10.1109/58.818772 Zenner HP, 2000, AM J OTOL, V21, P196, DOI 10.1016/S0196-0709(00)80009-5 NR 23 TC 15 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 145 EP 151 DI 10.1016/j.heares.2010.02.007 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700019 PM 20156543 ER PT J AU Parent, P Allen, JB AF Parent, Pierre Allen, Jont B. TI Time-domain "wave" model of the human tympanic membrane SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Middle ear; Model; Time domain; Impedance; Reflectance; Human ID HUMAN MIDDLE-EAR; CAT EARDRUM; ENERGY REFLECTANCE; INPUT IMPEDANCE; SOUND-LEVEL; INNER-EAR; IN-SITU; PRESSURE; CALIBRATION; INTENSITY AB Middle ear models have been successfully developed for many years. Most of those are implemented in the frequency domain, where physical equations are more easily derived. This is problematic, however, when it comes to model non-linear phenomena, especially in the cochlea, and because a frequency-domain implementation may be less intuitive. This research explores a different approach, based on a time-domain implementation, fitted to impedance data. It is adapted from a previous work for the cat and focuses here on the human ear: volume velocity samples are distributed uniformly in space and updated periodically to simulate the propagation of the sound wave in the ear. The modeling approach is simple, yet it can quantitatively reproduce the major characteristics of the human middle ear transmission, and can qualitatively capture forward and reverse power transmission - a key feature of this time-domain implementation. These results suggest that complex, multi-modal propagation observed on the TM may not be critical to proper sound transmission along the ear. Besides, model predictions reveal that impedance and velocimetry measurements may be inconsistent with each other, hypothetically because velocimetry protocols could alter the middle ear. (C) 2009 Elsevier B.V. All rights reserved. C1 [Parent, Pierre] Mimosa Acoust Inc, Champaign, IL 61820 USA. [Allen, Jont B.] Univ Illinois, Dept Elect & Comp Engn, Beckman Inst, Urbana, IL 61801 USA. RP Parent, P (reprint author), Mimosa Acoust Inc, 335 Fremont St, Champaign, IL 61820 USA. EM pierre@mimosaacoustics.com; jontalle@uiuc.edu CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 Allen J. B., 1986, PERIPHERAL AUDITORY, P44 Allen JB, 2005, J REHABIL RES DEV, V42, P63, DOI 10.1682/JRRD.2005.04.0064 BEKESY GV, 1951, HDB EXPT PSYCHOL CHENG JT, 2009, MEMRO S STANF U CA DELAROCHEFOUCAU.O, 2009, MEMRO S STANF U CA Farmer-Fedor BL, 2002, J ACOUST SOC AM, V112, P600, DOI 10.1121/1.1494445 FAY JP, 2001, THESIS STANFORD U FAY JP, 2002, CALL FESTSCHR Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P901, DOI 10.1044/1092-4388(2003/070) Fletcher H, 1933, J ACOUST SOC AM, V5, P82, DOI 10.1121/1.1915637 Funnell WRJ, 1996, J ACOUST SOC AM, V100, P925, DOI 10.1121/1.416252 FUNNELL WRJ, 1978, J ACOUST SOC AM, V63, P1461, DOI 10.1121/1.381892 FUNNELL WRJ, 1987, J ACOUST SOC AM, V81, P1851, DOI 10.1121/1.394749 GIGUERE C, 1994, J ACOUST SOC AM, V95, P331 GRAVEL J, 1999, ACOUSTICAL POWER FLO GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 Huber A, 2001, ANN OTO RHINOL LARYN, V110, P31 HUDDE H, 1983, J ACOUST SOC AM, V73, P242, DOI 10.1121/1.388855 Hunter LL, 2008, J AM ACAD AUDIOL, V19, P309, DOI 10.3766/jaaa.19.4.4 KEEFE DH, 1984, J ACOUST SOC AM, V75, P58, DOI 10.1121/1.390300 KELLY JL, 1963, P 4 INT C AC, P1 LYNCH TJ, 1982, J ACOUST SOC AM, V72, P108, DOI 10.1121/1.387995 NEELY S, 2009, P 10 MECH HEAR WORKS, P62 Neely ST, 1998, J ACOUST SOC AM, V104, P2925, DOI 10.1121/1.423876 O'Connor KN, 2008, J ACOUST SOC AM, V123, P197, DOI 10.1121/1.2817358 O'Connor KN, 2008, LARYNGOSCOPE, V118, P483, DOI 10.1097/MLG.0b013e31815b0d9f O'Connor KN, 2006, J ACOUST SOC AM, V120, P1517, DOI 10.1121/1.2221414 Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083 Parenta P, 2007, J ACOUST SOC AM, V122, P918, DOI 10.1121/12747156 Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930 RABBITT RD, 1986, J ACOUST SOC AM, V80, P1716, DOI 10.1121/1.394284 Scheperle RA, 2008, J ACOUST SOC AM, V124, P288, DOI 10.1121/1.2931953 SEN D, 2006, ACOUST AUST, V34, P43 Shaw E. A. G., 1981, J ACOUST SOC AM S1, V69, pS43, DOI 10.1121/1.386273 SHAW EAG, 1977, J ACOUST SOC AM S1, V62, pS102 STINSON MR, 1982, J ACOUST SOC AM, V72, P766, DOI 10.1121/1.388257 STINSON MR, 1985, J ACOUST SOC AM, V78, P1596, DOI 10.1121/1.392797 Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 VOSS SE, 1994, J ACOUST SOC AM, V95, P372, DOI 10.1121/1.408329 Wegel RL, 1924, PHYS REV, V23, P266, DOI 10.1103/PhysRev.23.266 Withnell RH, 2009, J ACOUST SOC AM, V125, P1605, DOI 10.1121/1.3075551 ZWISLOCKI J, 1957, J ACOUST SOC AM, V29, P1312, DOI 10.1121/1.1908776 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 44 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 152 EP 167 DI 10.1016/j.heares.2009.12.015 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700020 PM 20004714 ER PT J AU Hesabgar, SM Marshall, H Agrawal, SK Samani, A Ladak, HM AF Hesabgar, S. Mohammad Marshall, Harry Agrawal, Sumit K. Samani, Abbas Ladak, Hanif M. TI Measuring the quasi-static Young's modulus of the eardrum using an indentation technique SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Eardrum; Young's modulus; Indentation; Finite element method; Optimization ID FINITE-ELEMENT MODEL; HUMAN MIDDLE-EAR; HUMAN TYMPANIC MEMBRANE; CAT EARDRUM; ELASTIC-MODULUS; BEHAVIOR; TISSUES; SAMPLES AB Accurate estimation of the quasi-static Young's modulus of the eardrum is important for finite-element modeling. In this study, we adapted a tissue indentation technique and inverse finite-element analysis to estimate the Young's modulus of the eardrum. A custom-built indentation apparatus was used to perform indentation testing on seven rat eardrums in situ after immobilizing the malleus. Testing was done in most cases on the posterior pars tensa. The unloaded shape of each eardrum was measured and used to construct finite-element models with subject-specific geometries to simulate the indentation experiment. The Young's modulus of each specimen was then estimated by numerically optimizing the Young's modulus of each model so that simulation results matched corresponding experimental data. Using an estimated value of 12 mu m for the thickness of each model eardrum, the estimated average Young's modulus for the pars tensa was found to be 21.7 +/- 1.2 MPa. The estimated average Young's modulus is within the range reported in some of the literature. The estimation technique is sensitive to the thickness of the pars tensa used in the model but is not sensitive to relatively large variations in the stiffness of the pars flaccida and manubrium or to the pars tensa/pars flaccida separation conditions. (C) 2010 Elsevier B.V. All rights reserved. C1 [Marshall, Harry; Samani, Abbas; Ladak, Hanif M.] Univ Western Ontario, Dept Med Biophys, London, ON N6A 5C1, Canada. [Agrawal, Sumit K.; Ladak, Hanif M.] Univ Western Ontario, Dept Otolaryngol, London, ON N6A 5C1, Canada. [Ladak, Hanif M.] Univ Western Ontario, Natl Ctr Audiol, London, ON N6A 1H1, Canada. [Hesabgar, S. Mohammad; Samani, Abbas; Ladak, Hanif M.] Univ Western Ontario, Dept Elect & Comp Engn, London, ON N6A 5B9, Canada. RP Ladak, HM (reprint author), Univ Western Ontario, Dept Med Biophys, Med Sci Bldg, London, ON N6A 5C1, Canada. EM shesabga@uwo.ca; hmarsha4@uwo.ca; sagrawa5@uwo.ca; asamani@uwo.ca; hladak@uwo.ca CR Beer HJ, 1999, AUDIOL NEURO-OTOL, V4, P156, DOI 10.1159/000013835 BEKESY CV, 1960, EXPT HEARING Cheng T, 2007, ANN BIOMED ENG, V35, P305, DOI 10.1007/s10439-006-9227-0 Daniel SJ, 2001, J OTOLARYNGOL, V30, P340, DOI 10.2310/7070.2001.19393 Daphalapurkar NR, 2009, J MECH BEHAV BIOMED, V2, P82, DOI 10.1016/j.jmbbm.2008.05.008 DECRAEMER WF, 1980, J BIOMECH, V13, P463, DOI 10.1016/0021-9290(80)90338-3 Eiber A, 1999, AUDIOL NEURO-OTOL, V4, P170, DOI 10.1159/000013837 Elkhouri N, 2006, JARO-J ASSOC RES OTO, V7, P399, DOI 10.1007/s10162-006-0055-6 Ethier CR, 2007, CAMB TEXT BIOMED ENG, P1, DOI 10.2277/ 0521841127 Fay J, 2005, J BIOMECH, V38, P1807, DOI 10.1016/j.jbiomech.2004.08.022 *FDA, 2001, SUMM SAF EFF DAT LOT Ferris P, 2000, J BIOMECH, V33, P581, DOI 10.1016/S0021-9290(99)00213-4 Fung Y.C., 1993, BIOMECHANICS MECH PR Funnell WRJ, 1996, J ACOUST SOC AM, V100, P925, DOI 10.1121/1.416252 FUNNELL WRJ, 1992, J ACOUST SOC AM, V91, P2082, DOI 10.1121/1.403694 FUNNELL WRJ, 1978, J ACOUST SOC AM, V63, P1461, DOI 10.1121/1.381892 FUNNELL WRJ, 1987, J ACOUST SOC AM, V81, P1851, DOI 10.1121/1.394749 Gaihede M, 2007, PHYS MED BIOL, V52, P803, DOI 10.1088/0031-9155/52/3/019 Gan RZ, 2006, MED ENG PHYS, V28, P395, DOI 10.1016/j.medengphy.2005.07.018 Huang G, 2008, J BIOMECH ENG-T ASME, V130, DOI 10.1115/1.2838034 Kirikae I., 1960, STRUCTURE FUNCTION M Knupp P.M., 1993, FUNDAMENTALS GRID GE Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073 Kuypers LC, 2005, HEARING RES, V209, P42, DOI 10.1016/j.heares.2005.06.003 Ladak HM, 2006, J ACOUST SOC AM, V119, P2859, DOI 10.1121/1.188370 Ladak HM, 2004, J ACOUST SOC AM, V116, P3008, DOI 10.1121/1.1802673 LESSER THJ, 1988, J LARYNGOL OTOL, V102, P209, DOI 10.1017/S0022215100104542 Luo H., 2009, INT J EXP COMP BIOME, V1, P1 Mow VC, 2005, BASIC ORTHOPAEDIC BI, V3rd O'Hagan JJ, 2008, PHYS MED BIOL, V53, P7087, DOI 10.1088/0031-9155/53/24/006 Press W.H, 1992, NUMERICAL RECIPES FO, V77 ROSOWSKI JJ, 1990, ANN OTO RHINOL LARYN, V99, P403 Ross G., 2005, BCLA 29 CLIN C EXH B Samani A, 2003, PHYS MED BIOL, V48, P2183, DOI 10.1088/0031-9155/48/14/310 Samani A, 2007, PHYS MED BIOL, V52, P1565, DOI 10.1088/0031-9155/52/6/002 Tuck-Lee JP, 2008, J ACOUST SOC AM, V124, P348, DOI 10.1121/1.2912438 NR 36 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 168 EP 176 DI 10.1016/j.heares.2010.02.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700021 PM 20146934 ER PT J AU Aernouts, J Soons, JAM Dirckx, JJJ AF Aernouts, Jef Soons, Joris A. M. Dirckx, Joris J. J. TI Quantification of tympanic membrane elasticity parameters from in situ point indentation measurements: Validation and preliminary study SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Tympanic membrane elasticity; Point indentation; Inverse modeling ID HUMAN MIDDLE-EAR; BEHAVIOR AB Correct quantitative parameters to describe tympanic membrane elasticity are an important input for realistic modeling of middle ear mechanics. In the past, several attempts have been made to determine tympanic membrane elasticity from tensile experiments on cut-out strips. The strains and stresses in such experiments may be far out of the physiologically relevant range and the elasticity parameters are only partially determined. We developed a setup to determine tympanic membrane elasticity in situ, using a combination of point micro-indentation and Moire profilometry. The measuring method was tested on latex phantom models of the tympanic membrane, and our results show that the correct parameters can be determined. These parameters were calculated by finite element simulation of the indentation experiment and parameter optimization routines. When the apparatus was used for rabbit tympanic membranes, Moire profilometry showed that there is no measurable displacement of the manubrium during the small indentations. This result greatly simplifies boundary conditions, as we may regard both the annulus and the manubrium as fixed without having to rely on fixation interventions. The technique allows us to determine linear elastic material parameters of a tympanic membrane in situ. In this way our method takes into account the complex geometry of the membrane, and parameters are obtained in a physiologically relevant range of strain. (C) 2009 Elsevier B.V. All rights reserved. C1 [Aernouts, Jef; Soons, Joris A. M.; Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium. RP Aernouts, J (reprint author), Univ Antwerp, Lab Biomed Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. EM jef.aernouts@ua.ac.be RI Soons, Joris/G-1552-2010 CR Bekesy G, 1960, EXPT HEARING Bradley GL, 2001, J APPL POLYM SCI, V81, P837, DOI 10.1002/app.1503 Buytaert JAN, 2008, OPT EXPRESS, V16, P179, DOI 10.1364/OE.16.000179 Cheng T, 2007, ANN BIOMED ENG, V35, P305, DOI 10.1007/s10439-006-9227-0 Daphalapurkar NR, 2009, J MECH BEHAV BIOMED, V2, P82, DOI 10.1016/j.jmbbm.2008.05.008 Decraemer W, 2008, ANATOMICAL MECH PROP DECRAEMER WF, 1980, J BIOMECH, V13, P559, DOI 10.1016/0021-9290(80)90056-1 DIRCKX JJJ, 1989, REV SCI INSTRUM, V60, P3698, DOI 10.1063/1.1140477 Dirckx JJJ, 2001, HEARING RES, V157, P124, DOI 10.1016/S0378-5955(01)00290-8 EIBER A, 2006, P 4 INT S MIDDL EAR, P246 Eiber A, 1999, AUDIOL NEURO-OTOL, V4, P170, DOI 10.1159/000013837 Elkhouri N, 2006, JARO-J ASSOC RES OTO, V7, P399, DOI 10.1007/s10162-006-0055-6 Fay J, 2005, J BIOMECH, V38, P1807, DOI 10.1016/j.jbiomech.2004.08.022 FUMAGALLI Z, 1949, ARCH ITALIANO OTOLOG, V60 Gan RZ, 2006, MED ENG PHYS, V28, P395, DOI 10.1016/j.medengphy.2005.07.018 Gorissen D, 2009, NEURAL COMPUT APPL, V18, P485, DOI 10.1007/s00521-008-0223-1 HUANG G, 2008, J BIOMECHANICAL ENG, V130 Jones DR, 1998, J GLOBAL OPTIM, V13, P455, DOI 10.1023/A:1008306431147 Kirikae I., 1960, STRUCTURE FUNCTION M Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073 KUYPERS L, 2006, JARO-J ASSOC RES OTO, V6, P223 Kuypers L., 2005, OTOL NEUROTOL, V27, P256 Luo H., 2009, J BIOMECHANICAL ENG, V131 SCHIMANSKI G, 2006, P 4 INT S MIDDL EAR, P237 Sun Q, 2002, BIOMECH MODEL MECHAN, V1, P109, DOI 10.1007/s10237-002-0014-z Treloar L., 1975, PHYS RUBBER ELASTICI NR 26 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 177 EP 182 DI 10.1016/j.heares.2009.09.007 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700022 PM 19778595 ER PT J AU Puria, S Steele, C AF Puria, Sunil Steele, Charles TI Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Middle ear; Malleus-incus complex; Ossicles; Tympanic membrane; Moment of inertia; Rotational motion; High-frequency hearing; Co-adaptation; Micro-CT ID MIDDLE-EAR; GUINEA-PIG; MODEL; CAT; JOINT; EVOLUTION AB The development of the unique capacity for high-frequency hearing in many mammals was due in part to changes in the middle ear, such as the evolution of three distinct middle-ear bones and distinct radial and circumferential collagen fiber layers in the eardrum. Ossicular moment(s) of inertia (MOI) and principal rotational axes, as well as eardrum surface areas, were calculated from micro-CT-based 3-D reconstructions of human, cat, chinchilla, and guinea pig temporal bones. For guinea pig and chinchilla, the fused malleus-incus complex rotates about an anterior-posterior axis, due to the relatively lightweight ossicles and bilateral symmetry of the eardrum. For human and cat, however, the MOI calculated for the unfused malleus are 5-6 times smaller for rotations about an inferior-superior axis than for rotations about the other two orthogonal axes. It is argued that these preferred motions, along with the presence of a mobile malleus-incus joint and asymmetric eardrum, enable efficient high-frequency sound transmission in spite of the relatively large ossicular masses of these species. This work argues that the upper-frequency hearing limit of a given mammalian species can in part be understood in terms of morphological co-adaptations of the eardrum and ossicular chain. (C) 2009 Elsevier B.V. All rights reserved. C1 [Puria, Sunil; Steele, Charles] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Puria, Sunil] Dept Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA. [Puria, Sunil] Palo Alto Vet Adm, Palo Alto, CA 94304 USA. RP Puria, S (reprint author), 496 Lomita Mall,Durand Bldg, Stanford, CA 94305 USA. EM puria@stanford.edu CR Amin S, 2006, DEV DYNAM, V235, P1326, DOI 10.1002/dvdy.20666 Bekesy G., 1960, EXPT HEARING BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Colbert E H, 1991, EVOLUTION VERTEBRATE Dallos P., 1973, AUDITORY PERIPHERY B Decraemer W., 1995, Acta Oto-Rhino-Laryngologica Belgica, V49, P139 DECRAEMER WF, 1994, HEARING RES, V77, P19, DOI 10.1016/0378-5955(94)90250-X Dooling R. J., 2000, COMP HEARING BIRDS R, P308 DORAN AHG, 1879, T LINNEAN SOC, V2, P371 Fay J, 2005, J BIOMECH, V38, P1807, DOI 10.1016/j.jbiomech.2004.08.022 Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104 Fay R. R., 1988, HEARING VERTEBRATES FUNNELL WRJ, 1982, ORL J OTO-RHINO-LARY, V44, P181 HEFFNER HE, 2008, AUDITION, P55 HEFFNER RS, 1998, COMP PSYCHOL HDB, P290 HELMHOLTZ HLF, 1873, MECH OSSICLES EAR ME, P1 HEMILA S, 1995, HEARING RES, V85, P31, DOI 10.1016/0378-5955(95)00031-X JACKSON RP, 2009, HEAR RES LIM DJ, 1970, ACTA OTO-LARYNGOL, V70, P176 Lim D J, 1968, Acta Otolaryngol, V66, P181, DOI 10.3109/00016486809126286 MANLEY GA, 1971, NATURE, V230, P506, DOI 10.1038/230506a0 MANLEY GA, 2009, HEAR, V263, P3 MANLEY GA, 1974, J ACOUST SOC AM, V56, P571, DOI 10.1121/1.1903292 MARQUET J, 1981, J LARYNGOL OTOL, V95, P543, DOI 10.1017/S0022215100091118 MASTERTO.B, 1969, J ACOUST SOC AM, V45, P966, DOI 10.1121/1.1911574 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 *NOLK, 2000, CROSS HEL GEARS NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8 O'Connor KN, 2008, J ACOUST SOC AM, V123, P197, DOI 10.1121/1.2817358 Parenta P, 2007, J ACOUST SOC AM, V122, P918, DOI 10.1121/12747156 Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930 PURIA S, 2007, MICROCT IMAGING MIDD PURIA S, 2008, MECHANO ACOUSTICAL T, P165 Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563 PURIA S, 2006, MIDDLE EAR MECH RES RABBITT RD, 1986, J ACOUST SOC AM, V80, P1716, DOI 10.1121/1.394284 ROSOWSKI JJ, 1995, AM J OTOL, V16, P486 Ruggero MA, 2002, P NATL ACAD SCI USA, V99, P13206, DOI 10.1073/pnas.202492699 Schmelzle T, 2005, ANN CARNEGIE MUS, V74, P189, DOI 10.2992/0097-4463(2005)74[189:PTOTEO]2.0.CO;2 SHAW EAG, 1966, J ACOUST SOC AM, V39, P465, DOI 10.1121/1.1909913 Sim JH, 2007, J MECH MATER STRUCT, V2, P1515, DOI 10.2140/jomms.2007.2.1515 SIM JH, 2003, MIDDLE EAR MECH RES Sim JH, 2008, JARO-J ASSOC RES OTO, V9, P5, DOI 10.1007/s10162-007-0103-x VRETTAKOS PA, 1988, AM J OTOLARYNG, V9, P58, DOI 10.1016/S0196-0709(88)80009-7 Wever EG, 1954, PHYSL ACOUSTICS Willi UB, 2002, HEARING RES, V174, P32, DOI 10.1016/S0378-5955(02)00632-9 Young ED, 1996, J ACOUST SOC AM, V99, P3064, DOI 10.1121/1.414883 NR 47 TC 26 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 183 EP 190 DI 10.1016/j.heares.2009.10.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700023 PM 19878714 ER PT J AU Offergeld, C Kromeier, J Merchant, SN Lasurashvili, N Neudert, M Bornitz, M Laszig, R Zahnert, T AF Offergeld, Christian Kromeier, Jan Merchant, Saumil N. Lasurashvili, Nicoloz Neudert, Marcus Bornitz, Matthias Laszig, Roland Zahnert, Thomas TI Experimental investigation of rotational tomography in reconstructed middle ears with clinical implications SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Rotational tomography; Middle ear; Transfer function; Prostheses; Imaging; Inclination angle ID OSSICULAR CHAIN RECONSTRUCTION; TO-STAPES-HEAD; VIRTUAL ENDOSCOPY; TEMPORAL BONE; SPIRAL CT; PROSTHESES; TITANIUM; OSSICULOPLASTY; IMPLANTATION; MECHANICS AB A large air-bone-gap after ossiculoplasty may be due to a malpositioned or displaced prosthesis. Rotational tomography (RT) has the potential to provide high-resolution images of implants without artifacts and with less radiation dosage than CT scan. Twenty-seven temporal bone specimens underwent measurements of middle ear transfer function using Laser-Doppler-Vibrometry (LDV) before and after placement of ossicular replacement prostheses (PORPs, TORPs) made of titanium. RT was performed on all specimens. RT allowed 3-dimensional viewing of the temporal bone, accurate localization of implants within the reconstructed middle ear and determination of angles between the inserted prostheses and the tympanic membrane (TM) and/or the malleus handle (MH). Presence or absence of contact between the implant and the TM, malleus or stapes could be clearly visualized. Displaced prostheses were readily identified. The functional LDV-measurements for TORPs showed a trend favoring coupling to the malleus handle, while for PORPs, coupling to the TM was favored. For PORPs, sound transmission was worse with increasing angles between the PORP and stapes superstructure (p < 0.05). Following our experimental results RT is an innovative, relevant and useful imaging technique to obtain immediate postoperative feedback after ossicular reconstruction and to precisely determine the position of middle ear implants. (C) 2009 Elsevier B.V. All rights reserved. C1 [Offergeld, Christian; Laszig, Roland] Univ Freiburg, HNS, Dept ORL, D-79106 Freiburg, Germany. [Kromeier, Jan] St Josefs Hosp, Dept Radiol, D-79104 Freiburg, Germany. [Merchant, Saumil N.] Harvard Univ, Sch Med, Dept Otol & Laryngol, MEEI, Boston, MA 02114 USA. [Lasurashvili, Nicoloz; Neudert, Marcus; Bornitz, Matthias; Zahnert, Thomas] Univ Dresden, Dept ORL, HNS, D-01307 Dresden, Germany. RP Offergeld, C (reprint author), Univ Freiburg, HNS, Dept ORL, Killianstr 5, D-79106 Freiburg, Germany. EM christian.offergeld@uniklinik-freiburg.de; jan.kromeier@rkk-sjk.de; saumil_merchant@meei.harvard.edu; nico.lasurashvili@uniklinikum-dresden.de; marcus.neudert@uniklinikum-dresden.de; matthias.bornitz@uniklinikum-dresden.de; roland.laszig@uniklinik-freiburg.de; thomas.zahnert@uniklinikum-dresden.de CR Asai M, 1999, ACTA OTO-LARYNGOL, V119, P356 Aschendorff A, 2004, ACTA OTO-LARYNGOL, V552, P46 Ayache D, 2003, OTOL NEUROTOL, V24, P519, DOI 10.1097/00129492-200305000-00027 Bance M, 2004, OTOL NEUROTOL, V25, P903, DOI 10.1097/00129492-200411000-00008 Bernal-Sprekelsen M, 2003, OTOL NEUROTOL, V24, P38, DOI 10.1097/00129492-200301000-00009 De Vos C, 2007, OTOL NEUROTOL, V28, P61, DOI 10.1097/01.mao.0000231598.33585.8f Fisch U, 2004, OTOL NEUROTOL, V25, P891, DOI 10.1097/00129492-200411000-00007 HIRSCH BE, 1994, OTOLARYNG HEAD NECK, V111, P494 Huttenbrink KB, 2004, OTOL NEUROTOL, V25, P436 Klingebiel R, 2001, OTOL NEUROTOL, V22, P803, DOI 10.1097/00129492-200111000-00015 Martin C, 2004, OTOL NEUROTOL, V25, P215, DOI 10.1097/00129492-200405000-00002 Merchant SN, 1997, AM J OTOL, V18, P139 Morris DP, 2004, LARYNGOSCOPE, V114, P305, DOI 10.1097/00005537-200402000-00024 MUKHERJI SK, 1994, AM J ROENTGENOL, V163, P1467 Murugasu E, 2005, OTOL NEUROTOL, V26, P572, DOI 10.1097/01.mao.0000178151.44505.1b NISHIHARA S, 1994, AM J OTOL, V15, P485 Offergeld C, 2007, EUR ARCH OTO-RHINO-L, V264, P345, DOI 10.1007/s00405-006-0180-1 Offergeld C, 2007, LARYNGO RHINO OTOL, V86, P501, DOI 10.1055/s-2006-945077 Offergeld C, 2000, LARYNGO RHINO OTOL, V79, P225 Puria Sunil, 2005, Otology & Neurotology, V26, P368, DOI 10.1097/01.mao.0000169788.07460.4a Rodt T, 2002, EUR RADIOL, V12, P1684, DOI 10.1007/s00330-002-1313-6 ROSOWSKI JJ, 1995, AM J OTOL, V16, P486 Schubert O, 1996, NEURORADIOLOGY, V38, P663 Schwager K, 1998, AM J OTOL, V19, P569 Seemann MD, 1999, EUR RADIOL, V9, P1851, DOI 10.1007/s003300050934 Stone JA, 2000, RADIOGRAPHICS, V20, P593 SWARTZ JD, 1986, IMAGING TEMPORAL BON, P77 Kobayashi T, 2002, AM J OTOLARYNG, V23, P222, DOI 10.1053/ajot.2002.124191 Vassbotn FS, 2007, EUR ARCH OTO-RHINO-L, V264, P21, DOI 10.1007/s00405-006-0149-0 VLAMING MSMG, 1986, CLIN OTOLARYNGOL, V11, P411, DOI 10.1111/j.1365-2273.1986.tb00145.x Watanabé N, 1995, Rev Laryngol Otol Rhinol (Bord), V116, P23 Yung M, 2005, OTOL NEUROTOL, V27, P20 Zahnert T, 2005, HNO, V53, P89, DOI 10.1007/s00106-004-1168-z NR 33 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 191 EP 197 DI 10.1016/j.heares.2009.12.003 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700024 PM 19969056 ER PT J AU Lee, DH Chan, S Salisbury, C Kim, N Salisbury, K Puria, S Blevins, NH AF Lee, Dong H. Chan, Sonny Salisbury, Curt Kim, Namkeun Salisbury, Kenneth Puria, Sunil Blevins, Nikolas H. TI Reconstruction and exploration of virtual middle-ear models derived from micro-CT datasets SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Microct; Middle ear; Otolaryngology; Volume rendering; Haptics; Otology ID MALLEUS-INCUS COMPLEX; OSSICULAR CHAIN; ENDOSCOPY; IMAGES; BONE AB Background: Middle-ear anatomy is integrally linked to both its normal function and its response to disease processes. Micro-CT imaging provides an opportunity to capture high-resolution anatomical data in a relatively quick and non-destructive manner. However, to optimally extract functionally relevant details, an intuitive means of reconstructing and interacting with these data is needed. Materials and methods: A micro-CT scanner was used to obtain high-resolution scans of freshly explanted human temporal bones. An advanced volume renderer was adapted to enable real-time reconstruction, display, and manipulation of these volumetric datasets. A custom-designed user interface provided for semi-automated threshold segmentation. A 6-degrees-of-freedom navigation device was designed and fabricated to enable exploration of the 3D space in a manner intuitive to those comfortable with the use of a surgical microscope. Standard haptic devices were also incorporated to assist in navigation and exploration. Results: Our visualization workstation could be adapted to allow for the effective exploration of middle-ear micro-CT datasets. Functionally significant anatomical details could be recognized and objective data could be extracted. Conclusions: We have developed an intuitive, rapid, and effective means of exploring otological micro-CT datasets. This system may provide a foundation for additional work based on middle-ear anatomical data. (C) 2010 Elsevier B.V. All rights reserved. C1 [Lee, Dong H.; Puria, Sunil; Blevins, Nikolas H.] Stanford Univ, Dept Otolaryngol HNS, Stanford, CA 94305 USA. [Salisbury, Curt; Kim, Namkeun; Puria, Sunil] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Chan, Sonny; Salisbury, Kenneth] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA. [Salisbury, Kenneth] Stanford Univ, Dept Gen Surg, Stanford, CA 94305 USA. [Kim, Namkeun; Puria, Sunil] Palo Alto Vet Adm, Palo Alto, CA 94305 USA. [Lee, Dong H.] Washington Univ, Sch Med, St Louis, MO 63130 USA. RP Lee, DH (reprint author), Stanford Univ, Dept Otolaryngol HNS, Stanford, CA 94305 USA. EM dhoonlee.biz+elsevier@gmail.com CR Baek JD, 2008, P SOC PHOTO-OPT INS, V6842, pC8421, DOI 10.1117/12.774354 Decraemer WF, 2003, JARO, V4, P250, DOI 10.1007/s10162-002-3030-x Hadwiger M, 2005, COMPUT GRAPH FORUM, V24, P303, DOI 10.1111/j.1467-8659.2005.00855.x Handzel O, 2009, AUDIOL NEURO-OTOL, V14, P308, DOI 10.1159/000212110 Jun BC, 2005, J LARYNGOL OTOL, V119, P693 Kniss J, 2002, IEEE T VIS COMPUT GR, V8, P270, DOI 10.1109/TVCG.2002.1021579 Martin C, 2004, OTOL NEUROTOL, V25, P215, DOI 10.1097/00129492-200405000-00002 Morris D, 2006, IEEE COMPUT GRAPH, V26, P48, DOI 10.1109/MCG.2006.140 Neri E, 2001, EUR RADIOL, V11, P41, DOI 10.1007/s003300000612 Pandey AK, 2009, EUR RADIOL, V19, P1408, DOI 10.1007/s00330-008-1282-5 Rodt T, 2002, NEURORADIOLOGY, V44, P783, DOI 10.1007/s00234-002-0784-0 SALISBURY K, 1997, S HAPT INT VIRT ENV, V61, P68 Seemann MD, 1999, EUR RADIOL, V9, P1851, DOI 10.1007/s003300050934 Sim JH, 2007, J MECH MATER STRUCT, V2, P1515, DOI 10.2140/jomms.2007.2.1515 Sim JH, 2008, JARO-J ASSOC RES OTO, V9, P5, DOI 10.1007/s10162-007-0103-x Vrabec JT, 2002, OTOLARYNG HEAD NECK, V127, P145, DOI 10.1067/mhn.2002.127413 Wang HB, 2007, ORL J OTO-RHINO-LARY, V69, P63, DOI 10.1159/000097369 NR 17 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 198 EP 203 DI 10.1016/j.heares.2010.01.007 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700025 PM 20100558 ER PT J AU Homma, K Shimizu, Y Kim, N Du, Y Puria, S AF Homma, Kenji Shimizu, Yoshitaka Kim, Namkeun Du, Yu Puria, Sunil TI Effects of ear-canal pressurization on middle-ear bone- and air-conduction responses SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ DE Bone conduction; Hearing protection; Middle-ear response; Middle-ear dynamics; Ear-canal air pressure; Auditory biomechanics ID SOUND FIELD; PRESSURE; HEARING; TRANSMISSION; THRESHOLDS; PARAMETERS; MECHANICS; BEHAVIOR; MODEL AB In extremely loud noise environments, it is important to not only protect one's hearing against noise transmitted through the air-conduction (AC) pathway, but also through the bone-conduction (BC) pathways. Much of the energy transmitted through the BC pathways is concentrated in the mid-frequency range around 1.5-2 kHz, which is likely due to the structural resonance of the middle ear. One potential approach for mitigating this mid-frequency BC noise transmission is to introduce a positive or negative static pressure in the ear canal, which is known to reduce BC as well as AC hearing sensitivity. In the present study, middle-ear ossicular velocities at the umbo and stapes were measured using human cadaver temporal bones in response to both BC and AC excitations, while static air pressures of +/- 400 mm H(2)O were applied in the ear canal. For the maximum negative pressure of -400 mm H(2)O, mean BC stapes-velocity reductions of about 5-8 dB were observed in the frequency range from 0.8 to 2.5 kHz, with a peak reduction of 8.6(+/- 4.7) dB at 1.6 kHz. Finite-element analysis indicates that the peak BC-response reduction tends to be in the mid-frequency range because the middle-ear BC resonance, which is typically around 1.5-2 kHz, is suppressed by the pressure-induced stiffening of the middle-ear structure. The measured data also show that the BC responses are reduced more for negative static pressures than for positive static pressures. This may be attributable to a difference in the distribution of the stiffening among the middle-ear components depending on the polarity of the static pressure. The characteristics of the BC-response reductions are found to be largely consistent with the available psychoacoustic data, and are therefore indicative of the relative importance of the middle-ear mechanism in BC hearing. (C) 2009 Elsevier B.V. All rights reserved. C1 [Homma, Kenji; Du, Yu] Adapt Technol Inc, Blacksburg, VA 24060 USA. [Kim, Namkeun; Puria, Sunil] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Shimizu, Yoshitaka; Puria, Sunil] Stanford Univ, Dept Otolaryngol HNS, Stanford, CA 94305 USA. [Shimizu, Yoshitaka; Puria, Sunil] Palo Alto Vet Adm, Palo Alto, CA 94305 USA. RP Homma, K (reprint author), Adapt Technol Inc, 2020 Kraft Dr,Suite 3040, Blacksburg, VA 24060 USA. EM kenji@adaptivetechinc.com CR Aazh H, 2005, INT J AUDIOL, V44, P302, DOI 10.1080/14992020500060669 Berger EH, 2003, J ACOUST SOC AM, V114, P1955, DOI 10.1121/1.1605415 CARHART R, 1971, HEARING MEASUREMENT, P116 Gan RZ, 2006, J ACOUST SOC AM, V120, P3799, DOI 10.1121/1.2372451 Homma K, 2009, J ACOUST SOC AM, V125, P968, DOI 10.1121/1.3056564 HUMES LE, 1979, AUDIOLOGY, V18, P24 HUTTENBRINK KB, 1988, ACTA OTO-LARYNGOL, P1 KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081 KYLE JJ, 1907, MANUAL DIS EAR NOSE, P117 Ladak HM, 2006, J ACOUST SOC AM, V119, P2859, DOI 10.1121/1.188370 Linstrom CJ, 2001, ANN OTO RHINOL LARYN, V110, P437 Murakami S, 1997, ACTA OTO-LARYNGOL, V117, P390, DOI 10.3109/00016489709113411 Nakajima HH, 2005, HEARING RES, V204, P60, DOI 10.1016/j.heares.2005.01.002 O'Connor KN, 2008, J ACOUST SOC AM, V123, P197, DOI 10.1121/1.2817358 Reinfeldt S, 2007, J ACOUST SOC AM, V121, P1576, DOI 10.1121/1.2434762 Silman S., 1991, AUDITORY DIAGNOSIS, P79 Sim JH, 2008, JARO-J ASSOC RES OTO, V9, P5, DOI 10.1007/s10162-007-0103-x Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977 TONNDORF J, 1972, F MODERN AUDITORY TH, V2, P197 Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Wang XL, 2007, J ACOUST SOC AM, V122, P906, DOI 10.1121/1.2749417 Willi UB, 2002, HEARING RES, V174, P32, DOI 10.1016/S0378-5955(02)00632-9 ZWISLOCKI J, 1957, J ACOUST SOC AM, V29, P795, DOI 10.1121/1.1909058 NR 23 TC 13 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 204 EP 215 DI 10.1016/j.heares.2009.11.013 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700026 PM 19944139 ER PT J AU Weece, R Allen, J AF Weece, Reggie Allen, Jont TI A method for calibration of bone driver transducers to measure the mastoid impedance SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ AB When using bone vibrator transducers for clinical measurements, the transfer of energy from the bone driver depends on the impedance match between the driver and the load (human mastoid or otherwise) to which the driver will be applied. Current clinical calibration methods are incapable of quantifying this impedance mismatch, hence they fail to account for inter-subject variations of the energy transferred from the driver to the load. This study proposes a straightforward method for determining an absolute field calibration of a Radio Ear B71 bone driver, found by measuring the electrical input impedance of the transducer loaded by known masses. This absolute calibration is based upon a circuit model of the driver, describing it with three frequency-dependent parameters. Once these three parameters are known, measurements of the driver input voltage and current may be used to determine arbitrary mechanical load impedances (such as the in situ mastoid impedance), and thus the frequency dependence of the transmitted energy. The results of the proposed calibration method are validated by comparison with direct mechanical measurements using specialized equipment not available in the clinic, and a refined bone driver circuit model is proposed to better capture the observed behaviors. (C) 2010 Elsevier B.V. All rights reserved. C1 [Weece, Reggie] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Allen, Jont] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. RP Allen, J (reprint author), 2061 Beckman Inst, 405 N Mathews, Urbana, IL 61801 USA. EM jontalle@illinois.edu CR Allen J. B., 1986, PERIPHERAL AUDITORY, P44 [Anonymous], 1994, 3893 ISO Beranek L. L., 1988, ACOUSTICAL MEASUREME Boas R. P, 1987, INVITATION COMPLEX A *BRUEL KJAER, 1995, BK4930 CORTES D, 2002, SE41296 CHALM U TECH FLOTTORP G, 1976, J ACOUST SOC AM, V59, P899, DOI 10.1121/1.380949 HAKANSSON B, 1986, J ACOUST SOC AM, V80, P1065 Haughton P M, 1982, Br J Audiol, V16, P1, DOI 10.3109/03005368209081502 Hunt F.V., 1954, ELECTROACOUSTICS ANA MCMILLAN EM, 1946, J ACOUST SOC AM, V18, P344, DOI 10.1121/1.1916372 Van Valkenburg M., 1964, NETWORK ANAL VANDERKOOY J, 1989, J AUDIO ENG SOC, V37, P119 WARREN DM, 2006, J ACOUST SOC AM, P3377 NR 14 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 216 EP 223 DI 10.1016/j.heares.2010.02.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700027 PM 20193750 ER PT J AU Clavier, OH Norris, JA Dietz, AJ AF Clavier, O. H. Norris, J. A. Dietz, A. J. TI A comparison of the nonlinear response of the ear to air and to bone-conducted sound SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO 2009) CY JUN 24-28, 2009 CL Stanford, CA HO Stanford Univ ID PRODUCT OTOACOUSTIC EMISSION; INPUT/OUTPUT FUNCTIONS; HEARING PROTECTION; CANCELLATION; CALIBRATION; ATTENUATION; LOUDNESS AB The nonlinear response of the ear to air-conducted sound has been studied to some depth. However, the nonlinear response of the ear to bone-conducted sound has received less attention. A comparison of the nonlinear response of humans to air and bone-conducted sound is presented. Two different human subject test techniques were combined in this investigation. The first was a psychoacoustic investigation measuring the perceived cancellation of a bone-conducted sound stimulus with another air-conducted sound stimulus. The measurement was accomplished through a loudness-matching technique. The second investigation used distortion product otoacoustic emissions (DPOAEs) to make objective measurements of the response of the ear to both air-conducted sound and bone-conducted sound. The results were compared to determine whether the measured compression effects were similar for the different types of stimuli. Results show that both the measured psychoacoustic response and the measured objective response of the ear to air-conducted sound and to bone-conducted sound were similar at 2 and 4 kHz. (C) 2010 Elsevier B.V. All rights reserved. C1 [Clavier, O. H.; Norris, J. A.; Dietz, A. J.] Creare Res & Dev Inc, Hanover, NH 03755 USA. RP Clavier, OH (reprint author), Creare Res & Dev Inc, POB 71, Hanover, NH 03755 USA. EM ohc@creare.com CR Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1 Bekesy G., 1960, EXPT HEARING Berger EH, 2003, J ACOUST SOC AM, V114, P1955, DOI 10.1121/1.1605415 BERGER EH, 1986, J ACOUST SOC AM, V79, P1655, DOI 10.1121/1.393228 BRUNGART DA, 2003, AVIAT SPACE ENV MED, V74 DALLOS P, 1992, J NEUROSCI, V12, P4575 DEMPSEY JJ, 1990, EAR HEARING, V11, P271, DOI 10.1097/00003446-199008000-00004 DIETZ AJ, 2005, NATO HUM FACT MED PA Dorn PA, 2001, J ACOUST SOC AM, V110, P3119, DOI 10.1121/1.1417524 Fletcher H., 1933, J ACOUST SOC AM, V9, P1 Hakansson B, 1996, J ACOUST SOC AM, V99, P2239 HAZELBAKER J, 2004, THESIS OHIO STATE U, P102 KAPTEYN TS, 1983, J ACOUST SOC AM, V74, P1297, DOI 10.1121/1.390048 KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081 Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 Lowy K, 1942, J ACOUST SOC AM, V14, P156, DOI 10.1121/1.1916212 MCKINNEY ROSS, 2009, AFRLRHWPTR20090061 A, p[1, 3] Muller J, 2004, J ACOUST SOC AM, V115, P3081, DOI 10.1121/1.1736292 Neely ST, 2003, J ACOUST SOC AM, V114, P1499, DOI 10.1121/1.1604122 NIXON CW, 1959, J ACOUST SOC AM, V31, P1121, DOI 10.1121/1.1907837 Purcell D, 1999, EAR HEARING, V20, P375, DOI 10.1097/00003446-199910000-00001 Stenfelt S, 2002, HEARING RES, V167, P1, DOI 10.1016/S0378-5955(01)00407-5 Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5 Stenfelt S, 2007, INT J AUDIOL, V46, P595, DOI 10.1090/14992020701545880 Stenfelt S, 2007, HEARING RES, V225, P105, DOI 10.1016/j.heares.2006.12.009 Tonndorf J., 1966, ACTA OTO-LARYNGOL, V213, P1 TONNDORF J, 1962, J ACOUST SOC AM, V34, P1127, DOI 10.1121/1.1918259 TONNDORF J, 1972, BONE CONDUCTION FDN, P197 von Bekesy G, 1932, ANN PHYS-BERLIN, V13, P111 Wagner WG, 2008, EAR HEARING, V29, P378, DOI 10.1097/AUD.0b013e31816906e7 Wever EG, 1954, PHYSL ACOUSTICS NR 31 TC 2 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2010 VL 263 IS 1-2 SI SI BP 224 EP 232 DI 10.1016/j.heares.2010.03.004 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 608KU UT WOS:000278583700028 PM 20227477 ER PT J AU Drennan, WR Won, JH Nie, KB Jameyson, E Rubinstein, JT AF Drennan, Ward R. Won, Jong Ho Nie, Kaibao Jameyson, Elyse Rubinstein, Jay T. TI Sensitivity of psychophysical measures to signal processor modifications in cochlear implant users SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Current steering; Spectral resolution; HiResolution; Fidelity 120 ID NORMAL-HEARING; SPEECH RECOGNITION; HARMONIC COMPLEXES; RESOLUTION; LISTENERS; DISCRIMINATION; NOISE; PITCH AB Experienced users of the Clarion cochlear implant were tested acutely with the HiResolution (HiRes) and HiRes Fidelity120 (F120) processing strategies. Three psychophysically-based tests were used including spectral-ripple discrimination, Schroeder-phase discrimination and temporal modulation detection. Three clinical outcome measures were used including consonant-nucleus-consonant (CNC) word recognition in quiet, word recognition in noise and the clinical assessment of music perception (CAMP). Listener's spectral-ripple discrimination ability improved with F120, but Schroeder-phase discrimination was worse with F120 than with HiRes. Listeners who had better than average acuity showed the biggest effects. There were no significant effects of the processing strategy on any of the clinical abilities nor on temporal modulation detection. Additionally, the listeners' day-to-day clinical strategy did not appear to influence the result suggesting that experience with the strategies did not play a significant role. The results underscore the value of acoustic psychophysical measures through the sound processor as a tool in clinical research, because these measures are more sensitive to changes in the processing strategies than traditional clinical measures, e.g. speech understanding. The measures allow for the evaluation of sensitivity to specific acoustic attributes revealing the extent to which different processing strategies affect these basic abilities and could thus improve the efficiency of the development of processing strategies. (C) 2010 Elsevier B.V. All rights reserved. C1 [Drennan, Ward R.; Won, Jong Ho; Nie, Kaibao; Jameyson, Elyse; Rubinstein, Jay T.] Univ Washington, Dept Otolaryngol, VM Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. [Won, Jong Ho; Rubinstein, Jay T.] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA. RP Drennan, WR (reprint author), Univ Washington, Dept Otolaryngol, VM Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA. EM drennan@u.washington.edu FU NIH [R01-DC007525, F31-DC009755, P30-DC004661]; Advanced Bionics Corporation FX The authors are grateful for the dedicated efforts and sacrifice of all of our listeners, for the helpful comments from three anonymous reviewers and for the support of NIH grants R01-DC007525, F31-DC009755, and P30-DC004661 and the Advanced Bionics Corporation. We also thank Carlo Berenstein for providing some of his stimuli for analysis. CR ANDERSON ESC, 2009, 2009 C IMPL AUD PROS BACON SP, 1985, AUDIOLOGY, V24, P117 Berenstein CK, 2008, EAR HEARING, V29, P250 Brendel M, 2008, OTOL NEUROTOL, V29, P199, DOI 10.1097/mao.0b013e31816335c6 Buechner A, 2008, OTOL NEUROTOL, V29, P203, DOI 10.1097/mao.0b013e318163746 BYRNE D, 1994, J ACOUST SOC AM, V96, P2108, DOI 10.1121/1.410152 Dooling RJ, 2002, J ACOUST SOC AM, V112, P748, DOI 10.1121/1.1494447 Drennan WR, 2008, JARO-J ASSOC RES OTO, V9, P138, DOI 10.1007/s10162-007-0107-6 Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc Firszt JB, 2009, OTOL NEUROTOL, V30, P146, DOI 10.1097/MAO.0b013e3181924ff8 Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013 Green T, 2004, J ACOUST SOC AM, V116, P2298, DOI 10.1121/1.1785611 Handel Stpehen, 1995, P425, DOI 10.1016/B978-012505626-7/50014-5 Harris R. W., 1991, SPEECH AUDIOMETRY MA Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567 Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900 Kang R, 2009, EAR HEARING, V30, P411, DOI 10.1097/AUD.0b013e3181a61bc0 Koch DB, 2007, EAR HEARING, V28, p38S, DOI 10.1097/AUD.0b013e31803150de LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Licklider J. C. R., 1956, INFORMATION THEORY, P253 LITVAK LM, 2003, METHOD SYSTEM CONVEY, P17 Nimmons G. L., 2007, OTOL NUEROTOL, V29, P149, DOI [10.1097/mao.0b013e3181 2f7244, DOI 10.1097/MAO.0B013E31812F7244] NOGUEIRA W, EURASIP J A IN PRESS PETERSON GE, 1962, J SPEECH HEAR DISORD, V27, P62 Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425 WILSON BS, 1993, 3 NIH NEUR PROSTH PR Wilson B.S., 2006, COCHLEAR IMPLANTS, P48 Won JH, 2007, JARO-J ASSOC RES OTO, V8, P384, DOI 10.1007/s10162-007-0085-8 NR 28 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2010 VL 262 IS 1-2 BP 1 EP 8 DI 10.1016/j.heares.2010.02.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 582IM UT WOS:000276590400001 PM 20144699 ER PT J AU Hsieh, IH Saberi, K AF Hsieh, I-Hui Saberi, Kourosh TI Detection of sinusoidal amplitude modulation in logarithmic frequency sweeps across wide regions of the spectrum SO HEARING RESEARCH LA English DT Article DE Psychoacoustics; Frequency sweep; FM; Modulation; Psychophysics ID AUDITORY-CORTEX; MIXED MODULATION; SPEECH; DISCRIMINATION; SELECTIVITY; PERCEPTION; SOUNDS; NOISE; LATERALIZATION; SENSITIVITY AB Many natural sounds such as speech contain concurrent amplitude and frequency modulation (AM and FM), with the FM components often in the form of directional frequency sweeps or glides. Most studies of modulation coding, however, have employed one modulation type in stationary carriers, and in cases where mixed-modulation sounds have been used, the FM component has typically been confined to an extremely narrow range within a critical band. The current study examined the ability to detect AM signals carried by broad logarithmic frequency sweeps using a 2-alternative forced-choice adaptive psychophysical design. AM-detection thresholds were measured as a function of signal modulation rate and carrier sweep frequency region. Thresholds for detection of AM in a sweep carrier ranged from 8 dB for an AM rate of 8 Hz to -30 dB at 128 Hz. Compared to thresholds obtained for stationary carriers (pure tones and filtered Gaussian noise), detection of AM carried by frequency sweeps substantially declined at low (12 dB at 8 Hz) but not high modulation rates. Several trends in the data, including sweep- versus stationary-carrier threshold patterns and effects of frequency region were predicted from a modulation filterbank model with an envelope-correlation decision statistic. (C) 2010 Elsevier B.V. All rights reserved. C1 [Saberi, Kourosh] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA. [Saberi, Kourosh] Univ Calif Irvine, Ctr Cognit Neurosci, Irvine, CA 92697 USA. [Hsieh, I-Hui] Natl Cent Univ, Inst Cognit Neurosci, Jhongli, Taiwan. RP Saberi, K (reprint author), Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA. EM saberi@uci.edu FU National Science Council, Taiwan [NSC 98-2410-H-008-081-MY3]; NSF [BCS0477984]; NIH [R01DC009659] FX We thank Bruce G. Berg, Virginia Richards, Brian C. J. Moore, and two anonymous reviewers for helpful comments. Work supported by grants from the National Science Council, Taiwan NSC 98-2410-H-008-081-MY3, NSF BCS0477984, and NIH R01DC009659. CR Andoni S, 2007, J NEUROSCI, V27, P4882, DOI 10.1523/JNEUROSCI.4342-06.2007 BLAUERT J, 1981, J ACOUST SOC AM, V70, P694, DOI 10.1121/1.386932 Bregman A., 1994, AUDITORY SCENE ANAL Chi TS, 1999, J ACOUST SOC AM, V106, P2719, DOI 10.1121/1.428100 COLOMBO J, 1986, CHILD DEV, V57, P287, DOI 10.1111/j.1467-8624.1986.tb00027.x COSCIA E M, 1991, Bioacoustics, V3, P275 Crum PAC, 2008, J ACOUST SOC AM, V124, P1116, DOI 10.1121/1.2945117 d'Alessandro C, 1998, J ACOUST SOC AM, V104, P2339, DOI 10.1121/1.423745 Dankiewicz LA, 2002, J ACOUST SOC AM, V112, P1702, DOI 10.1121/1.1504856 Dau T, 1996, J ACOUST SOC AM, V99, P3615, DOI 10.1121/1.414959 Dau T, 1997, J ACOUST SOC AM, V102, P2906, DOI 10.1121/1.420345 DEAR SP, 1993, NATURE, V364, P620, DOI 10.1038/364620a0 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836 EDDINS DA, 1993, J ACOUST SOC AM, V93, P470, DOI 10.1121/1.405627 Eddins DA, 1999, J ACOUST SOC AM, V105, P829, DOI 10.1121/1.426272 Eddins DA, 2001, J ACOUST SOC AM, V109, P1550, DOI 10.1121/1.1356024 Ewert SD, 2000, J ACOUST SOC AM, V108, P1181, DOI 10.1121/1.1288665 Fant G., 1970, ACOUSTIC THEORY SPEE FORREST TG, 1987, J ACOUST SOC AM, V82, P1933, DOI 10.1121/1.395689 Gittelman JX, 2009, J NEUROSCI, V29, P13030, DOI 10.1523/JNEUROSCI.2477-09.2009 Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2 Green D. M., 1966, SIGNAL DETECTION THE HOLDSWORTH J, 1988, 2341 APU AUD FILT A Howie John M., 1976, ACOUSTICAL STUDIES M Hsieh IH, 2009, ATTEN PERCEPT PSYCHO, V71, P1876, DOI 10.3758/APP.71.8.1876 HUBER F, 1985, SCI AM, V253, P60 KAY RH, 1982, PHYSIOL REV, V62, P894 KLUMP GM, 1992, ADV BIOSCI, V83, P353 LEE JM, 1994, J ACOUST SOC AM, V96, P2140, DOI 10.1121/1.410156 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LIBERMAN AM, 1956, J EXP PSYCHOL, V52, P127, DOI 10.1037/h0041240 Luo H, 2007, HEARING RES, V224, P75, DOI 10.1016/j.heares.2006.11.007 Luo H, 2007, J NEUROPHYSIOL, V98, P3473, DOI 10.1152/jn.00342.2007 McNemar Q, 1969, PSYCHOL STAT, V4 MEDDIS R, 1990, J ACOUST SOC AM, V87, P1813, DOI 10.1121/1.399379 MOORE BCJ, 1994, J ACOUST SOC AM, V96, P741, DOI 10.1121/1.410312 MOORE BCJ, 1992, J ACOUST SOC AM, V92, P3119, DOI 10.1121/1.404208 OZIMEK E, 1987, J ACOUST SOC AM, V82, P1598, DOI 10.1121/1.395149 Pickett J. M., 1980, SOUNDS SPEECH COMMUN Poeppel D, 2004, NEUROPSYCHOLOGIA, V42, P183, DOI 10.1016/j.neuropsychologia.2003.07.010 RICHARDS VM, 1987, J ACOUST SOC AM, V82, P1621, DOI 10.1121/1.395153 Riesz RR, 1928, PHYS REV, V31, P0867, DOI 10.1103/PhysRev.31.867 RYAN MJ, 1988, SCIENCE, V240, P1786, DOI 10.1126/science.240.4860.1786 SABERI K, 1995, NATURE, V374, P537, DOI 10.1038/374537a0 Saberi K, 1998, J ACOUST SOC AM, V103, P2551, DOI 10.1121/1.422776 Saberi K, 1999, NATURE, V398, P760, DOI 10.1038/19652 Saberi K, 1995, J ACOUST SOC AM, V98, P3146, DOI 10.1121/1.413804 Sabourin P, 2008, J ACOUST SOC AM, V123, P2910, DOI 10.1121/1.2897025 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Slaney M., 1998, 1998010 INT RES CORP STAGRAY JR, 1992, J SPEECH HEAR RES, V35, P1406 Stellmack MA, 2006, J ACOUST SOC AM, V119, P37, DOI 10.1121/1.2133576 Strickland EA, 2000, J ACOUST SOC AM, V107, P942, DOI 10.1121/1.428275 Tallal P, 1996, SCIENCE, V271, P81, DOI 10.1126/science.271.5245.81 WETHERILL GB, 1965, BRIT J MATH STAT PSY, V18, P1 Woolley SMN, 2005, J NEUROPHYSIOL, V94, P1143, DOI 10.1152/jn.01064.2004 Yost WA, 1997, AUDIT NEUROSCI, V3, P401 Zwicker E., 1952, ACUSTICA S3, V2, P125 NR 58 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2010 VL 262 IS 1-2 BP 9 EP 18 DI 10.1016/j.heares.2010.02.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 582IM UT WOS:000276590400002 PM 20144700 ER PT J AU Gabriel, DN Munoz, DP Boehnke, SE AF Gabriel, Denise N. Munoz, Douglas P. Boehnke, Susan E. TI The eccentricity effect for auditory saccadic reaction times is independent of target frequency SO HEARING RESEARCH LA English DT Article DE Auditory saccade; Frequency; Eccentricity; Accuracy; Visual saccade ID PRIMATE SUPERIOR COLLICULUS; FRONTAL EYE FIELDS; SOUND-PRESSURE LEVEL; HEAD GAZE SHIFTS; RECEPTIVE-FIELDS; HORIZONTAL PLANE; GUIDED SACCADES; HUMAN LISTENERS; LOCALIZATION; MOVEMENTS AB Although much is understood about the stimulus properties affecting the latency of saccadic eye movements to visual targets, relatively little is known about the properties affecting saccades to auditory targets. This study examined the effect of three primary acoustic features-frequency, intensity, and spatial location-on auditory saccade characteristics in humans, and compared them to visual saccades. Saccade targets were presented from an azimuthal array of speakers and LEDs spanning +/- 36 degrees. There was an 'eccentricity effect' for auditory saccades such that latencies decreased by up to 70 ms with eccentricity. This was observed for all frequencies and intensities tested. There was a smaller effect in the opposite direction effect for visual saccades. Auditory saccades had similar latencies to visual saccades (within 5 ms) for near midline locations, but were up to 90 ms faster at eccentric locations (+/- 36 degrees). Overall, saccadic latencies were shortest for wideband noise and narrowband noises with center frequencies falling within the human speech range. Examination of saccade accuracy showed decreasing accuracy with increasing eccentricity, and a negative correlation between accuracy and latency for auditory stimuli. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gabriel, Denise N.; Munoz, Douglas P.; Boehnke, Susan E.] Queens Univ, Ctr Neurosci Studies, Kingston, ON K7L 3N6, Canada. [Munoz, Douglas P.] Queens Univ, Dept Physiol, Kingston, ON K7L 3N6, Canada. [Munoz, Douglas P.] Queens Univ, Dept Psychol, Kingston, ON K7L 3N6, Canada. [Munoz, Douglas P.] Queens Univ, Dept Med, Kingston, ON K7L 3N6, Canada. RP Boehnke, SE (reprint author), Queens Univ, Ctr Neurosci Studies, Kingston, ON K7L 3N6, Canada. EM doug_munoz@biomed.queensu.ca; susan@bio-med.queensu.ca FU Canadian Institutes of Health Research; Canada Research Chair Program FX The authors thank Brian Liu, Donald Brien, Fred Paquin, and Sean Hickman for technical assistance and the participants for their time. This research was supported by the Canadian Institutes of Health Research (D. P. Munoz) and the Canada Research Chair Program (D. P. Munoz). CR Belin P, 2006, PHILOS T R SOC B, V361, P2091, DOI 10.1098/rstb.2006.1933 Bell AH, 2006, EXP BRAIN RES, V174, P53, DOI 10.1007/s00221-006-0420-z BRUCE CJ, 1985, J NEUROPHYSIOL, V54, P714 BRUCE CJ, 1985, J NEUROPHYSIOL, V53, P603 Campbell RAA, 2006, J NEUROPHYSIOL, V95, P3742, DOI 10.1152/jn.01155.2005 COHEN ME, 1977, J EXP CHILD PSYCHOL, V23, P539, DOI 10.1016/0022-0965(77)90044-3 Cohen YE, 1999, TRENDS NEUROSCI, V22, P128, DOI 10.1016/S0166-2236(98)01295-8 Corneil BD, 1996, J NEUROSCI, V16, P8193 Corneil BD, 2002, J NEUROPHYSIOL, V88, P438, DOI 10.1152/jn.00699.2001 CYNADER M, 1972, J NEUROPHYSIOL, V35, P187 Dorris MC, 2002, J COGNITIVE NEUROSCI, V14, P1256, DOI 10.1162/089892902760807249 DRAGER UC, 1975, J NEUROPHYSIOL, V38, P690 DRAGER UC, 1976, J NEUROPHYSIOL, V39, P91 FRENS MA, 1995, EXP BRAIN RES, V107, P103 Goldring JE, 1996, EXP BRAIN RES, V111, P68 GORDON B, 1973, J NEUROPHYSIOL, V36, P157 GREENHOUSE SW, 1959, PSYCHOMETRIKA, V24, P95, DOI 10.1007/BF02289823 Hays AV, 1982, WESCON C P, V2, P1 JAY MF, 1984, NATURE, V309, P345, DOI 10.1038/309345a0 JAY MF, 1990, COMP PERCEPTION, V1, P351 KALESNYKAS RP, 1994, VISION RES, V34, P517, DOI 10.1016/0042-6989(94)90165-1 Li XB, 2008, J NEUROSCI, V28, P4561, DOI 10.1523/JNEUROSCI.5683-07.2008 LUECK CJ, 1990, EXP BRAIN RES, V82, P149 Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898 MAKOUS JC, 1990, J ACOUST SOC AM, V87, P2188, DOI 10.1121/1.399186 Marino RA, 2009, EXP BRAIN RES, V197, P321, DOI 10.1007/s00221-009-1919-x MEREDITH MA, 1986, J NEUROPHYSIOL, V56, P640 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 MILLS AW, 1960, J ACOUST SOC AM, V32, P132, DOI 10.1121/1.1907864 MONDOR TA, 1995, J EXP PSYCHOL HUMAN, V21, P387, DOI 10.1037//0096-1523.21.2.387 MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861 Munoz DP, 2000, CAN J PHYSIOL PHARM, V78, P934, DOI 10.1139/cjpp-78-11-934 OLDFIELD SR, 1984, PERCEPTION, V13, P601, DOI 10.1068/p130601 Perrett S, 1997, PERCEPT PSYCHOPHYS, V59, P1018, DOI 10.3758/BF03205517 Perrett S, 1997, J ACOUST SOC AM, V102, P2325, DOI 10.1121/1.419642 POLLACK JG, 1979, J COMP NEUROL, V185, P587, DOI 10.1002/cne.901850402 Populin LC, 2008, EXP BRAIN RES, V190, P11, DOI 10.1007/s00221-008-1445-2 Populin LC, 2006, J NEUROSCI, V26, P9820, DOI 10.1523/JNEUROSCI.3061-06.2006 Recanzone GH, 2000, P NATL ACAD SCI USA, V97, P11829, DOI 10.1073/pnas.97.22.11829 RUSSO GS, 1994, J NEUROPHYSIOL, V71, P1250 SCHALL JD, 1991, J NEUROPHYSIOL, V66, P559 Schall JD, 2004, VISION RES, V44, P1453, DOI 10.1016/j.visres.2003.10.025 SHAW EAG, 1974, J ACOUST SOC AM, V56, P1848, DOI 10.1121/1.1903522 SHAW EAG, 1985, J ACOUST SOC AM, V78, P1120, DOI 10.1121/1.393035 SPARKS DL, 1987, TRENDS NEUROSCI, V10, P312, DOI 10.1016/0166-2236(87)90085-3 SPARKS DL, 1986, PHYSIOL REV, V66, P118 SPENCE CJ, 1994, J EXP PSYCHOL HUMAN, V20, P555, DOI 10.1037//0096-1523.20.3.555 Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748 Tollin DJ, 2005, J NEUROPHYSIOL, V93, P1223, DOI 10.1152/jn.00747.2004 Vliegen J, 2004, J NEUROSCI, V24, P9291, DOI 10.1523/JNEUROSCI.2671-04.2004 VONNOORDEN GK, 1958, AM J OPHTHALMOL, V46, P68 Wallach H, 1940, J EXP PSYCHOL, V27, P339, DOI 10.1037/h0054629 Wang XQ, 2000, P NATL ACAD SCI USA, V97, P11843, DOI 10.1073/pnas.97.22.11843 WHITE CT, 1962, J OPT SOC AM, V52, P210, DOI 10.1364/JOSA.52.000210 Wightman FL, 1999, J ACOUST SOC AM, V105, P2841, DOI 10.1121/1.426899 WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445 WOODS DL, 1993, PERCEPT PSYCHOPHYS, V53, P391, DOI 10.3758/BF03206782 Yao LJ, 1997, EXP BRAIN RES, V115, P25, DOI 10.1007/PL00005682 Yost WA, 1993, HUMAN PSYCHOPHYSICS, P193 ZAHN JR, 1978, SENS PROCESS, V2, P32 ZAHN JR, 1979, SENS PROCESS, V3, P60 Zambarbieri D, 2002, PROG BRAIN RES, V140, P51 ZAMBARBIERI D, 1982, EXP BRAIN RES, V47, P417 ZAMBARBIERI D, 1995, VISION RES, V35, P3305, DOI 10.1016/0042-6989(95)00065-M NR 65 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2010 VL 262 IS 1-2 BP 19 EP 25 DI 10.1016/j.heares.2010.01.016 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 582IM UT WOS:000276590400003 PM 20138978 ER PT J AU Sayles, M Winter, IM AF Sayles, Mark Winter, Ian M. TI Equivalent-rectangular bandwidth of single units in the anaesthetized guinea-pig ventral cochlear nucleus SO HEARING RESEARCH LA English DT Article DE Primary-like; Chopper; Onset; Cochlear nucleus; Guinea pig; Single unit; Frequency-tuning; Equivalent-rectangular bandwidth ID AUDITORY-NERVE FIBERS; CORTICAL RECEPTIVE-FIELDS; CROSSED OLIVOCOCHLEAR BUNDLE; COMODULATION MASKING RELEASE; ITERATED RIPPLED NOISE; OUTER HAIR-CELLS; BASILAR-MEMBRANE; TEMPORAL REPRESENTATION; CORTICOFUGAL MODULATION; BACKGROUND-NOISE AB Frequency-tuning is a fundamental property of auditory neurons. The filter bandwidth of peripheral auditory neurons determines the frequency resolution of an animal's auditory system. Behavioural studies in animals and humans have defined frequency-tuning in terms of the "equivalent-rectangular bandwidth" (ERB) of peripheral filters. In contrast, most physiological studies report the Q[best frequency/bandwidth] of frequency-tuning curves. This study aims to accurately describe the ERB of primary-like and chopper units in the ventral cochlear nucleus, the first brainstem processing station of the central auditory system. Recordings were made from 1020 isolated single units in the ventral cochlear nucleus of anesthetized guinea pigs in response to pure-tone stimuli which varied in frequency and in sound level. Frequency-threshold tuning curves were constructed for each unit and estimates of the ERB determined using methods previously described for auditory-nerve-fibre data in the same species. Primary-like, primary-notch, and sustained- and transient-chopper units showed frequency selectivity almost identical to that recorded in the auditory nerve. Their tuning at pure-tone threshold can be described as a function of best frequency (BF) by ERB = 0.31 * BF(0.5). (C) 2010 Elsevier B.V. All rights reserved. C1 [Sayles, Mark; Winter, Ian M.] Univ Cambridge, Physiol Lab, Ctr Neural Basis Hearing, Cambridge CB2 3EG, England. RP Sayles, M (reprint author), Univ Cambridge, Physiol Lab, Ctr Neural Basis Hearing, Downing St, Cambridge CB2 3EG, England. EM sayles.m@gmail.com FU Biotechnology and Biological Sciences Research Council; Frank Edward Elmore fund; Leatherseller's Company, London FX This work was funded by Grants to I.M.W. from the Biotechnology and Biological Sciences Research Council. M.S. received financial support from the Frank Edward Elmore fund of the Cambridge MB/PhD programme and from the Leatherseller's Company, London. CR Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006 Atiani S, 2009, NEURON, V61, P467, DOI 10.1016/j.neuron.2008.12.027 Bahmer A, 2009, BIOL CYBERN, V100, P21, DOI 10.1007/s00422-008-0276-3 Bernstein JG, 2003, J ACOUST SOC AM, V113, P3323, DOI 10.1121/1.1572146 Bitterman Y, 2008, NATURE, V451, P197, DOI 10.1038/nature06476 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 Bleeck S, 2006, HEARING RES, V212, P176, DOI 10.1016/j.heares.2005.12.005 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CARNEY LH, 1988, J NEUROPHYSIOL, V60, P1653 Cedolin L, 2007, HEARING - FROM SENSORY PROCESSING TO PERCEPTION, P61, DOI 10.1007/978-3-540-73009-5_8 CEDOLIN L, 2006, THESIS MIT CAMBRIDGE Cedolin L, 2005, J NEUROPHYSIOL, V94, P347, DOI 10.1152/jn.01114.2004 Dallos P, 2008, CURR OPIN NEUROBIOL, V18, P370, DOI 10.1016/j.conb.2008.08.016 DECHEVEIGNE A, 2008, OXFORD HDB AUDITORY DELGUTTE B, 1984, J ACOUST SOC AM, V75, P908, DOI 10.1121/1.390537 Elhilali M, 2007, J NEUROSCI, V27, P10372, DOI 10.1523/JNEUROSCI.1462-07.2007 Evans E F, 2001, PHYSL PSYCHOPHYSICAL, P382 EVANS EF, 1973, EXP BRAIN RES, V17, P402 EVANS EF, 1992, ADV BIOSCI, V83, P159 EVANS EF, 1972, J PHYSIOL-LONDON, V226, P263 Fay R. R., 1994, SPRINGER HDB AUDITOR Ferragamo MJ, 1998, J NEUROPHYSIOL, V79, P51 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 Fletcher H, 1938, J ACOUST SOC AM, V9, P275, DOI 10.1121/1.1915935 Fritz JB, 2007, J NEUROPHYSIOL, V98, P2337, DOI 10.1152/jn.00552.2007 GEISLER CD, 1991, J ACOUST SOC AM, V90, P3140, DOI 10.1121/1.401422 GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Glasberg BR, 2000, J ACOUST SOC AM, V108, P2318, DOI 10.1121/1.1315291 GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448 HARTMANN WM, 1997, SIGNALS SOUND SENSAT HEFFNER R, 1971, J ACOUST SOC AM, V49, P1888, DOI 10.1121/1.1912596 Holmes SD, 2004, J ACOUST SOC AM, V116, P3534, DOI 10.1121/1.1815111 Ingham NJ, 2006, EUR J NEUROSCI, V24, P2515, DOI 10.1111/j.1460-9568.2006.05134.x Jiang D, 1996, J NEUROPHYSIOL, V75, P380 Julicher F, 2001, P NATL ACAD SCI USA, V98, P9080, DOI 10.1073/pnas.151257898 KIANG NYS, 1967, J ACOUST SOC AM, V42, P1341, DOI 10.1121/1.1910723 KIM DO, 1991, HEARING RES, V52, P167, DOI 10.1016/0378-5955(91)90196-G LLOYD MEA, 2002, INT J AUDIOL, V41, P263 May BJ, 1998, J NEUROPHYSIOL, V79, P1755 Meddis R, 2006, J ACOUST SOC AM, V120, P3861, DOI 10.1121/1.2372595 Meddis R, 2005, J ACOUST SOC AM, V117, P3787, DOI 10.1121/1.1893426 MERRILL EG, 1972, MED BIOL ENG, V10, P662, DOI 10.1007/BF02476084 Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039 Micheyl C, 2007, HEARING RES, V229, P116, DOI 10.1016/j.heares.2007.01.007 Moore BC., 2003, INTRO PSYCHOL HEARIN Mulheran M, 1999, HEARING RES, V134, P145, DOI 10.1016/S0378-5955(99)00076-3 Nakamoto KT, 2008, J NEUROPHYSIOL, V99, P2347, DOI 10.1152/jn.01326.2007 Narayan SS, 1998, SCIENCE, V282, P1882, DOI 10.1126/science.282.5395.1882 Neuert V, 2004, J NEUROSCI, V24, P5789, DOI 10.1523/JNEUROSCI.0450-04.2004 OMARD L, 2009, ARO MIDW M, V32, P1180 Oxenham AJ, 2003, JARO-J ASSOC RES OTO, V4, P541, DOI 10.1007/s10162-002-3058-y PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 PATUZZI R, 1982, J ACOUST SOC AM, V72, P1064, DOI 10.1121/1.388214 Pecka M, 2007, J NEUROSCI, V27, P1782, DOI 10.1523/JNEUROSCI.5335-06.2007 PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256 Pressnitzer D, 2001, J NEUROSCI, V21, P6377 Pressnitzer D, 2008, CURR BIOL, V18, P1124, DOI 10.1016/j.cub.2008.06.053 PROSEN CA, 1978, J ACOUST SOC AM, V63, P559, DOI 10.1121/1.381754 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 Robles L, 2001, PHYSIOL REV, V81, P1305 ROSEN S, 1998, J ACOUST SEC AM, V103, P2359 Ruggero M. A., 1992, MAMMALIAN AUDITORY P, P34 Ruggero MA, 2000, P NATL ACAD SCI USA, V97, P11744, DOI 10.1073/pnas.97.22.11744 Ruggero MA, 2007, JARO-J ASSOC RES OTO, V8, P153, DOI 10.1007/s10162-007-0081-z Ruggero MA, 2005, P NATL ACAD SCI USA, V102, P18614, DOI 10.1073/pnas.0509323102 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 SACHS MB, 1983, J NEUROPHYSIOL, V50, P27 Sayles M, 2007, BRAIN RES, V1171, P52, DOI 10.1016/j.brainres.2007.06.098 Sayles M, 2008, NEURON, V58, P789, DOI 10.1016/j.neuron.2008.03.029 Sayles M, 2008, J NEUROSCI, V28, P11925, DOI 10.1523/JNEUROSCI.3137-08.2008 Schofield BR, 2005, HEARING RES, V199, P89, DOI 10.1016/j.heares.2004.08.003 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 Shamma S, 2000, J ACOUST SOC AM, V107, P2631, DOI 10.1121/1.428649 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 Suga N, 2000, P NATL ACAD SCI USA, V97, P11807, DOI 10.1073/pnas.97.22.11807 Sumner CJ, 2003, J ACOUST SOC AM, V113, P3264, DOI 10.1121/1.1568946 TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648 Verhey JL, 2003, EXP BRAIN RES, V153, P405, DOI 10.1007/s00221-003-1607-1 Wiegrebe L, 2004, J ACOUST SOC AM, V115, P1207, DOI 10.1121/1.1643359 WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592 WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5 WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 Yan J, 2005, J NEUROPHYSIOL, V93, P71, DOI 10.1152/jn.00348.2004 Yan J, 1999, J NEUROPHYSIOL, V81, P817 Yan J, 1996, SCIENCE, V273, P1100, DOI 10.1126/science.273.5278.1100 Yan J, 1996, HEARING RES, V93, P102, DOI 10.1016/0378-5955(95)00209-X YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 Zhou XM, 2005, HEARING RES, V203, P201, DOI 10.1016/j.heares.2004.12.008 Zilany MSA, 2006, J ACOUST SOC AM, V120, P1446, DOI 10.1121/1.2225512 NR 93 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2010 VL 262 IS 1-2 BP 26 EP 33 DI 10.1016/j.heares.2010.01.015 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 582IM UT WOS:000276590400004 PM 20123119 ER PT J AU Pratt, H Starr, A Michalewski, HJ Dimitrijevic, A Bleich, N Mittelman, N AF Pratt, Hillel Starr, Arnold Michalewski, Henry J. Dimitrijevic, Andrew Bleich, Naomi Mittelman, Nomi TI A comparison of auditory evoked potentials to acoustic beats and to binaural beats SO HEARING RESEARCH LA English DT Article DE Event-related potentials; Steady-state; Hearing; Functional imaging ID STEADY-STATE RESPONSES; RESOLUTION ELECTROMAGNETIC TOMOGRAPHY; SUPERIOR OLIVARY COMPLEX; MIDDLE-LATENCY; BRAIN-STEM; INFERIOR COLLICULUS; INTERACTION COMPONENTS; GUINEA-PIG; STIMULI; NEURONS AB The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pratt, Hillel; Bleich, Naomi; Mittelman, Nomi] Technion Israel Inst Technol, Evoked Potentials Lab, IL-32000 Haifa, Israel. [Starr, Arnold; Michalewski, Henry J.; Dimitrijevic, Andrew] Univ Calif Irvine, Neurol Res Lab, Irvine, CA 92697 USA. RP Pratt, H (reprint author), Technion Israel Inst Technol, Evoked Potentials Lab, Gutwirth Bldg, IL-32000 Haifa, Israel. EM hillel@tx.technion.ac.il FU U.S.-Israel Binational Science Foundation; National Institutes of Health [DC 02618]; Rappaport Family Institute FX This study was partially supported by the U.S.-Israel Binational Science Foundation, by Grant DC 02618 from the National Institutes of Health and by the Rappaport Family Institute for Research in the Medical Sciences. The authors thank Shi Pratt, a professional dancer who drew our attention to the occurrence of binaural beats on stage. CR ATTIAS J, 1993, HEARING RES, V71, P106, DOI 10.1016/0378-5955(93)90026-W BARR DF, 1977, ARCH OTOLARYNGOL, V103, P192 DAVIS H, 1966, ELECTROEN CLIN NEURO, V21, P105, DOI 10.1016/0013-4694(66)90118-0 DEBRUYNE F, 1984, SCAND AUDIOL, V13, P293, DOI 10.3109/01050398409042139 Dierks T, 1999, NEURON, V22, P615, DOI 10.1016/S0896-6273(00)80715-1 DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2 Dolphin WF, 1997, HEARING RES, V110, P1, DOI 10.1016/S0378-5955(97)00056-7 Draganova R, 2008, CEREB CORTEX, V18, P1193, DOI 10.1093/cercor/bhm153 Fischer CE, 2004, PSYCHIAT CLIN NEUROS, V58, P96 GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643 Gilley PM, 2005, CLIN NEUROPHYSIOL, V116, P648, DOI 10.1016/j.clinph.2004.09.009 GOLDBERG JM, 1964, J NEUROPHYSIOL, V27, P706 GOLDBERG JM, 1973, BRAIN RES, V64, P35, DOI 10.1016/0006-8993(73)90169-8 Haiman G, 2008, J NEUROL SCI, V271, P137, DOI 10.1016/j.jns.2008.04.017 HARI R, 1982, ELECTROEN CLIN NEURO, V54, P561, DOI 10.1016/0013-4694(82)90041-4 HASHIMOTO I, 1982, ELECTROEN CLIN NEURO, V53, P652, DOI 10.1016/0013-4694(82)90141-9 Herdman AT, 2002, BRAIN TOPOGR, V15, P69, DOI 10.1023/A:1021470822922 Hogan RE, 2004, EPILEPSIA, V45, P834, DOI 10.1111/j.0013-9580.2004.63303.x JAVEL E, 1988, HEARING RES, V34, P275, DOI 10.1016/0378-5955(88)90008-1 Johnsrude IS, 1997, NEUROREPORT, V8, P1761 Karino S, 2006, J NEUROPHYSIOL, V96, P1927, DOI 10.1152/jn.00859.2005 Kiang NY, 1973, BASIC MECHANISMS HEA, P455 KILENY P, 1986, J SPEECH HEAR RES, V29, P20 KUWADA S, 1979, SCIENCE, V206, P586, DOI 10.1126/science.493964 Lane JD, 1998, PHYSIOL BEHAV, V63, P249 Laufer I, 2003, CLIN NEUROPHYSIOL, V114, P1316, DOI 10.1016/S1388-2457(03)00083-X LEE YS, 1984, BRAIN, V107, P115, DOI 10.1093/brain/107.1.115 LICKLIDER JCR, 1950, J ACOUST SOC AM, V22, P468, DOI 10.1121/1.1906629 McAlpine D, 1996, HEARING RES, V97, P136 McAlpine D, 1998, J NEUROSCI, V18, P6026 MCGEE T, 1992, HEARING RES, V61, P147, DOI 10.1016/0378-5955(92)90045-O MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z MOLLER AR, 1973, BASIC MECH HEARING, P593 Moore BCJ, 1997, INTRO PSYCHOL HEARIN Mori T, 2006, EUR ARCH PSY CLIN N, V256, P236, DOI 10.1007/s00406-005-0631-5 MOUSHEGI.G, 1973, ELECTROEN CLIN NEURO, V35, P665, DOI 10.1016/0013-4694(73)90223-X Nichols TE, 2002, HUM BRAIN MAPP, V15, P1, DOI 10.1002/hbm.1058 OZSARAC M, J EMERG MED IN PRESS PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X Pascual-Marqui RD, 2002, METHOD FIND EXP CLIN, V24, P5 PASCUALMARQUI RD, 1994, INT J PSYCHOPHYSIOL, V18, P49, DOI 10.1016/0167-8760(84)90014-X Picton Terence W, 2005, J Am Acad Audiol, V16, P140, DOI 10.3766/jaaa.16.3.3 Picton TW, 2003, INT J AUDIOL, V42, P177, DOI 10.3109/14992020309101316 Plourde G, 2006, Best Pract Res Clin Anaesthesiol, V20, P129, DOI 10.1016/j.bpa.2005.07.012 POLYAKOV A, 1995, HEARING RES, V82, P205, DOI 10.1016/0378-5955(94)00178-S Pratt H, 2007, CLIN NEUROPHYSIOL, V118, P1078, DOI 10.1016/j.clinph.2007.01.005 Pratt H, 2009, CLIN NEUROPHYSIOL, V120, P1514, DOI 10.1016/j.clinph.2009.06.014 REALE RA, 1990, J NEUROPHYSIOL, V64, P1247 ROSE JE, 1968, HEARING MECH VERTEBR Schwarz DWF, 2005, CLIN NEUROPHYSIOL, V116, P658, DOI 10.1016/j.clinph.2004.09.014 Shergill SS, 2000, ARCH GEN PSYCHIAT, V57, P1033, DOI 10.1001/archpsyc.57.11.1033 Sinai A, 2003, CLIN NEUROPHYSIOL, V114, P1181, DOI [10.1016/S1388-2457(03)00087-7, 10.1016/S388-2457(03)000087-7] Spitzer MW, 1998, J NEUROPHYSIOL, V80, P3062 STARR A, 1991, BRAIN, V114, P1157, DOI 10.1093/brain/114.3.1157 Sussman E, 2008, HEARING RES, V236, P61, DOI 10.1016/j.heares.2007.12.001 Talairach J., 1988, COPLANAR STEREOTAXIC WERNICK JS, 1968, J NEUROPHYSIOL, V31, P428 WOODS DL, 1985, ELECTROEN CLIN NEURO, V60, P122, DOI 10.1016/0013-4694(85)90018-5 WREGE KS, 1981, ARCH NEUROL-CHICAGO, V38, P572 Zaaroor M, 2003, EAR HEARING, V24, P248, DOI 10.1097/01.AUD.0000070162.03279.79 ZATORRE RJ, 2001, CEREB CORTEX, P11946 ZATORRE RJ, 1988, J ACOUST SOC AM, V84, P566, DOI 10.1121/1.396834 NR 62 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2010 VL 262 IS 1-2 BP 34 EP 44 DI 10.1016/j.heares.2010.01.013 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 582IM UT WOS:000276590400005 PM 20123120 ER PT J AU Edds-Walton, PL Holstein, GR Fay, RR AF Edds-Walton, Peggy L. Holstein, Gay R. Fay, Richard R. TI Gamma-aminobutyric acid is a neurotransmitter in the auditory pathway of oyster toadfish, Opsanus tau SO HEARING RESEARCH LA English DT Article DE Auditory processing; Descending octaval nucleus; Inhibition; Directional hearing; Secondary octaval nucleus ID DESCENDING OCTAVAL NUCLEUS; LATERAL-LINE LOBE; GABA-IMMUNOREACTIVE NEURONS; INTERAURAL TIME DIFFERENCES; COMMON-MODE REJECTION; BRAIN-STEM; GABAERGIC INHIBITION; INFERIOR COLLICULUS; DORSAL NUCLEUS; RAJA-ERINACEA AB Binaural computations involving the convergence of excitatory and inhibitory inputs have been proposed to explain directional sharpening and frequency tuning documented in the brainstem of a teleost fish, the oyster toadfish (Opsanus tau). To assess the presence of inhibitory neurons in the ascending auditory circuit, we used a monoclonal antibody to GABA to evaluate immunoreactivity at three levels of the circuit: the first order descending octaval nucleus (DON), the secondary octaval population (dorsal division), and the midbrain torus semicircularis. We observed a subset of immunoreactive (IR) cells and puncta distributed throughout the neuropil at all three locations. To assess whether contralateral inhibition is present, fluorescent dextran crystals were inserted into dorsal DON to fill contralateral, commissural inputs retrogradely prior to GABA immunohistochemistry. GABA-IR somata and puncta co-occurred with retrogradely filled, GABA-negative auditory projection cells. GABA-IR projection cells were more common in the dorsolateral DON than in the dorsomedial DON, but GABA-IR puncta were common in both dorsolateral and dorsomedial divisions. Our findings demonstrate that GABA is present in the ascending auditory circuit in the brainstem of the toadfish, indicating that GABA-mediated inhibition participates in shaping auditory response characteristics in a teleost fish as in other vertebrates. (C) 2010 Elsevier B.V. All rights reserved. C1 [Edds-Walton, Peggy L.; Holstein, Gay R.; Fay, Richard R.] Marine Biol Lab, Inst Neurosci, Woods Hole, MA 02543 USA. [Edds-Walton, Peggy L.; Fay, Richard R.] Loyola Univ, Parmly Hearing Inst, Chicago, IL 60626 USA. [Holstein, Gay R.] Mt Sinai Sch Med, Dept Neurol, New York, NY 10029 USA. [Holstein, Gay R.] Mt Sinai Sch Med, Dept Neurosci, New York, NY 10029 USA. RP Edds-Walton, PL (reprint author), Marine Biol Lab, Inst Neurosci, 7 MBL St, Woods Hole, MA 02543 USA. EM plewalton@yahoo.com FU National Institute for Deafness and Other Communication Disorders [DC006677, DC006215] FX Louie Kerr and Blair Rossetti provided instruction on the use of the Zeiss Axiolmager (Z1), and Becky MacDonald provided instruction in photographing fluorescent images on the Z1 (at the Marine Biological Laboratory). Rudi Rottenfusser obtained appropriate filters for the Z1 for use with the fluorophores chosen for this project. Jeff Johnson (and members of the Federicci Lab) at UC Riverside graciously allowed PLEW to use the Leica fluorescent microscope for tissue review and photography. Dr. Ewa Kukielka and Rosemary Lang in the Martinelli-Holstein Lab provided technical assistance in the initial experiments that produced the successful protocol for the GABA immunohistochemistry. As has been the case throughout the 14+ years of our research at the MBL, the toadfish were obtained through the efforts of the excellent staff at the Marine Resources Center. We also thank the colleagues who read and contributed comments on an earlier version of this manuscript. This work was funded by Grants from the National Institute for Deafness and Other Communication Disorders: DC006677 (G.R.H.) and DC006215 (R.R.F.). CR Bass AH, 2001, BRAIN BEHAV EVOLUT, V57, P63, DOI 10.1159/000047226 Bass AH, 2000, J COMP NEUROL, V419, P505, DOI 10.1002/(SICI)1096-9861(20000417)419:4<505::AID-CNE7>3.0.CO;2-3 Berman NJ, 1998, J NEUROPHYSIOL, V80, P3173 BODZNICK D, 1992, J EXP BIOL, V171, P127 Bruckner S, 1998, EUR J NEUROSCI, V10, P3438, DOI 10.1046/j.1460-9568.1998.00353.x Cant NB, 1992, MAMMALIAN AUDITORY P, P66 CARR CE, 1989, J COMP NEUROL, V286, P190, DOI 10.1002/cne.902860205 Carr CE, 2008, SENSES COMPREHENSIVE, V3, P499 Doucet JR, 1997, J COMP NEUROL, V385, P245 Duman CH, 1997, BRAIN BEHAV EVOLUT, V49, P99, DOI 10.1159/000112984 Duman CH, 1996, J COMP PHYSIOL A, V179, P797 Edds-Walton PL, 2008, J COMP PHYSIOL A, V194, P1013, DOI 10.1007/s00359-008-0373-8 Edds-Walton PL, 1999, J COMP NEUROL, V411, P212, DOI 10.1002/(SICI)1096-9861(19990823)411:2<212::AID-CNE4>3.0.CO;2-X Edds-Walton PL, 1998, BIOL BULL, V195, P191, DOI 10.2307/1542832 Edds-Walton PL, 2003, J COMP PHYSIOL A, V189, P527, DOI 10.1007/s00359-003-0428-9 Edds-Walton PL, 1998, HEARING RES, V123, P41, DOI 10.1016/S0378-5955(98)00097-5 EDDSWALTON PL, 1995, ACTA ZOOL-STOCKHOLM, V76, P257 Edds-Walton PL, 2005, BRAIN BEHAV EVOLUT, V66, P73, DOI 10.1159/000085928 Edds-Walton PL, 2005, J COMP PHYSIOL A, V191, P1079, DOI 10.1007/s00359-005-0051-z Edds-Walton PL, 2009, J EXP BIOL, V212, P1483, DOI 10.1242/jeb.026898 EKSTROM P, 1987, CELL TISSUE RES, V250, P87, DOI 10.1007/BF00214658 Fay RR, 2005, SPR HDB AUD, V25, P36, DOI 10.1007/0-387-28863-5_3 Fay RR, 1999, BIOL BULL, V197, P240, DOI 10.2307/1542625 Fay RR, 1997, HEARING RES, V111, P1, DOI 10.1016/S0378-5955(97)00083-X Feng AS, 1996, J COMP NEUROL, V366, P320 Fish J. F., 1972, BEHAV MARINE ANIMALS, P386 Funabiki K, 1998, J PHYSIOL-LONDON, V508, P851, DOI 10.1111/j.1469-7793.1998.851bp.x GRAY GA, 1961, ECOLOGY, V42, P274, DOI 10.2307/1932079 GROTHE B, 2004, EVOLUTION VERTEBRATE, P289 Grothe B, 2000, PROG NEUROBIOL, V61, P581, DOI 10.1016/S0301-0082(99)00068-4 HANCOCK MB, 1982, NEUROSCI LETT, V31, P247, DOI 10.1016/0304-3940(82)90028-3 HIGHSTEIN SM, 1992, J COMP NEUROL, V319, P501, DOI 10.1002/cne.903190404 Hollis DM, 2005, BRAIN BEHAV EVOLUT, V65, P127, DOI 10.1159/000082981 Holstein GR, 2004, P NATL ACAD SCI USA, V101, P15766, DOI 10.1073/pnas.0402824101 Holstein GR, 2004, J COMP NEUROL, V471, P1, DOI 10.1002/cne.11025 HORNER K, 1980, J EXP BIOL, V85, P323 Hyson RL, 2005, PHYSIOL BEHAV, V86, P297, DOI 10.1016/j.physbeh.2005.08.003 HYSON RL, 1995, BRAIN RES, V677, P117, DOI 10.1016/0006-8993(95)00130-I KLUG A, 1995, J NEUROPHYSIOL, V74, P1701 Konishi M, 2003, ANNU REV NEUROSCI, V26, P31, DOI 10.1146/annurev.neuro.26.041002.131123 Koppl C, 1997, J COMP NEUROL, V378, P265 MALER L, 1994, J COMP NEUROL, V345, P224, DOI 10.1002/cne.903450206 McCormick C.A., 1999, COMP HEARING FISH AM, P155 MEDINA M, 1994, ANAT EMBRYOL, V189, P25 Mensinger AF, 1997, J COMP NEUROL, V384, P71, DOI 10.1002/(SICI)1096-9861(19970721)384:1<71::AID-CNE5>3.0.CO;2-I MONTGOMERY JC, 1993, J EXP BIOL, V183, P203 MULLER CM, 1987, NEUROSCI LETT, V77, P272, DOI 10.1016/0304-3940(87)90511-8 PARK TJ, 1993, J NEUROSCI, V13, P2050 PARK TJ, 1994, J NEUROPHYSIOL, V72, P1080 Pollak GD, 2003, TRENDS NEUROSCI, V26, P33, DOI 10.1016/S0166-2236(02)00009-7 Pollak GD, 2002, HEARING RES, V168, P60, DOI 10.1016/S0378-5955(02)00362-3 Popper A.N., 1999, COMP HEARING FISH AM, P43 Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 SHUMWAY CA, 1989, J COMP PHYSIOL A, V164, P391, DOI 10.1007/BF00612998 Soares D, 2001, J COMP NEUROL, V429, P192, DOI 10.1002/1096-9861(20000108)429:2<192::AID-CNE2>3.0.CO;2-5 Wightman F. L., 1993, HUMAN PSYCHOPHYSICS, P155 WINN HE, 1967, MARINE BIOACOUSTICS, V2, P15 NR 57 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2010 VL 262 IS 1-2 BP 45 EP 55 DI 10.1016/j.heares.2010.01.008 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 582IM UT WOS:000276590400006 PM 20097279 ER PT J AU Schebesch, G Lingner, A Firzlaff, U Wiegrebe, L Grothe, B AF Schebesch, Gabriele Lingner, Andrea Firzlaff, Uwe Wiegrebe, Lutz Grothe, Benedikt TI Perception and neural representation of size-variant human vowels in the Mongolian gerbil (Meriones unguiculatus) SO HEARING RESEARCH LA English DT Article DE Auditory-object recognition; Spectral processing; Superior olive; Auditory midbrain; Auditory cortex; Speech; Vocal tract ID PRIMARY AUDITORY-CORTEX; INFERIOR COLLICULUS; SPECTRAL INTEGRATION; VOCAL-TRACT; CORTICAL RESPONSES; RECEPTIVE-FIELDS; SOUNDS; SELECTIVITY; INHIBITION; CHINCHILLA AB Humans reliably recognize spoken vowels despite the variability of the sounds caused by the across-subject variability of the speakers' vocal tract. The vocal tract serves as a resonator which imprints a spectral envelope onto the sounds generated by the vocal folds. This spectral envelope contains not only information about the type of vocalization but also about the size of the speaker: The larger the speaker, the lower the formant frequencies of the spoken vowels. In a combined psychophysical and electrophysiological study in the Mongolian gerbil (Meriones unguiculatus), we investigated the perception and neural representation of human vowels spoken by speakers of different sizes. Gerbils trained to discriminate two standard vowels, correctly assigned vowels spoken from different-sized human speakers. Complementary electrophysiological recordings from neurons in the auditory brainstem, midbrain, and primary auditory cortex show that the auditory brainstem retains a truthful representation of the frequency content of the presented vowel sounds. A small percentage of neurons in the midbrain and auditory cortex, however, showed selectivity for a certain vowel type or vocal tract length which is not related to the pure-tone, frequency response area, indicative of a preprocessing stage for auditory segregation of size and structure information. (C) 2009 Elsevier B.V. All rights reserved. C1 [Schebesch, Gabriele; Lingner, Andrea; Firzlaff, Uwe; Wiegrebe, Lutz; Grothe, Benedikt] Univ Munich, Div Neurobiol, Dept Biol 2, D-82152 Planegg Martinsried, Germany. RP Grothe, B (reprint author), Univ Munich, Div Neurobiol, Dept Biol 2, Grosshadernerstr 2, D-82152 Planegg Martinsried, Germany. EM schebesch@zi.biologie.uni-muenchen.de; ling-ner@zi.biologie.uni-muenchen.de; firzlaff@zi.biologie.uni-muenchen.de; wiegrebe@zi.biologie.uni-muenchen.de; grothe@lmu.de RI Grothe, Benedikt/A-7877-2010 FU Volkswagenstiftung [179/780, 179/782] FX We thank Roy Patterson and David Smith for the provision of the psychophysical and electrophysiological stimuli and many fruitful discussions on the topic of auditory-object normalization. This work was supported by a joint-project grant from the 'Volkswagenstiftung', 179/780 (to L.W.) and 179/782 (to B.G.). CR Andoni S, 2007, J NEUROSCI, V27, P4882, DOI 10.1523/JNEUROSCI.4342-06.2007 Biebel UW, 2002, HEARING RES, V169, P151, DOI 10.1016/S0378-5955(02)00459-8 BURKI C, 1993, ORL J OTO-RHINO-LARY, V55, P3 Escabi MA, 2002, J NEUROSCI, V22, P4114 Felix RA, 2007, HEARING RES, V228, P212, DOI 10.1016/j.heares.2007.02.009 Firzlaff U, 2007, PLOS BIOL, V5, P1174, DOI 10.1371/journal.pbio.0050100 Firzlaff U, 2007, EUR J NEUROSCI, V26, P2747, DOI 10.1111/j.1460-9568.2007.05930.x Fitch WT, 1999, J ACOUST SOC AM, V106, P1511, DOI 10.1121/1.427148 Gaese BH, 2001, J NEUROPHYSIOL, V86, P1062 Ghazanfar AA, 2007, CURR BIOL, V17, P425, DOI 10.1016/j.cub.2007.01.029 Grassi M, 2005, PERCEPT PSYCHOPHYS, V67, P274, DOI 10.3758/BF03206491 Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538 Irino T, 2001, J ACOUST SOC AM, V109, P2008, DOI 10.1121/1.1367253 Kawahara H, 1999, SPEECH COMMUN, V27, P187, DOI 10.1016/S0167-6393(98)00085-5 Kittel M, 2002, HEARING RES, V164, P69, DOI 10.1016/S0378-5955(01)00411-7 Klug A, 2002, J NEUROPHYSIOL, V88, P1941, DOI 10.1152/jn.00260.2002 KUHL PK, 1975, SCIENCE, V190, P69, DOI 10.1126/science.1166301 Leroy SA, 2000, J NEUROSCI, V20, P8533 Loskota WJ, 1974, STEREOTAXIC ATLAS MO MCPHERSON LM, 1994, PERCEPT PSYCHOPHYS, V55, P269, DOI 10.3758/BF03207598 Mesgarani N, 2008, J ACOUST SOC AM, V123, P899, DOI 10.1121/1.2816572 Nelken I, 2004, CURR OPIN NEUROBIOL, V14, P474, DOI 10.1016/j.conb.2004.06.005 Portfors CV, 2001, JARO, V2, P104, DOI 10.1007/s101620010057 Reby D, 2005, P ROY SOC B-BIOL SCI, V272, P941, DOI 10.1098/rspb.2004.2954 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SCHULLER G, 1986, J NEUROSCI METH, V18, P339, DOI 10.1016/0165-0270(86)90022-1 Schulze H, 1999, J COMP PHYSIOL A, V185, P493, DOI 10.1007/s003590050410 Smith DRR, 2005, J ACOUST SOC AM, V117, P305, DOI 10.1121/1.1828637 Smith DRR, 2005, J ACOUST SOC AM, V118, P3177, DOI 10.1121/1.2047107 Ter-Mikaelian M, 2007, J NEUROSCI, V27, P6091, DOI 10.1523/JNEUROSCI.4848-06-2007 von Kriegstein K, 2007, CURR BIOL, V17, P1123, DOI 10.1016/j.cub.2007.05.061 Wenstrup JJ, 2001, J NEUROSCI, V21 NR 32 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2010 VL 261 IS 1-2 BP 1 EP 8 DI 10.1016/j.heares.2009.12.016 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 577AV UT WOS:000276193200001 PM 20004713 ER PT J AU Gross, J Stute, K Moller, R Fuchs, J Amarjargal, N Pohl, EE Angerstein, M Smorodchenko, A Mazurek, B AF Gross, Johann Stute, Kerstin Moller, Renate Fuchs, Julia Amarjargal, Nyamaa Pohl, Elena E. Angerstein, Maximilian Smorodchenko, Alina Mazurek, Birgit TI Expression of prestin and Gata-3,-2,-1 mRNA in the rat organ of Corti during the postnatal period and in culture SO HEARING RESEARCH LA English DT Article DE Cochlea; Development; Gene expression; Prestin; GATA; Thyroid hormone ID OUTER HAIR-CELLS; ACTIVATED-RECEPTOR-ALPHA; TRANSCRIPTION FACTOR; MOTOR PROTEIN; GENE-EXPRESSION; INNER-EAR; GATA3 HAPLOINSUFFICIENCY; THYROID-HORMONE; HDR SYNDROME; DNA-BINDING AB Based on observations that mutations of GATA-3 are responsible for the HDR-syndrome (hypoparathyroidism, deafness, renal defects) and that GATA-transcription factors have an important role to play in inner ear development, we hypothesized that these transcription factors may be involved in regulatory changes of prestin transcription. To prove this, we examined in parallel the expression of mRNA of prestin and Gata-3, -2 and Gata-1 in the organ of Corti during early postnatal development of rats and in organotypic cultures. Remarkable relations are observed between prestin and Gata-3, -2 expression in organ of Corti preparations in vivo and in vitro: (i) Gata-3, -2 expression display similar apical-basal gradients as prestin mRNA levels. (ii) The prestin expression increases between postnatal day two and postnatal day eight by a factor of about four in the apical and middle segments and by a factor of two in the basal part. Highly significant Pearson correlation coefficients were observed between Gata-3, -2 mRNA and prestin levels when the data were evaluated by regression analyses. (iii) Parallel changes of prestin mRNA and Gata-3, -2 mRNA levels were observed in response to thyroid hormone and to gemfibrozil application. These observations suggest a regulatory role played by the Gata-3, -2 transcription factors in prestin expression. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gross, Johann; Stute, Kerstin; Moller, Renate; Fuchs, Julia; Amarjargal, Nyamaa; Pohl, Elena E.; Angerstein, Maximilian; Smorodchenko, Alina; Mazurek, Birgit] Charite, Mol Biol Res Lab, Dept Otorhinolaryngol, Inst Cell & Neurobiol, D-10117 Berlin, Germany. RP Gross, J (reprint author), Charite, Mol Biol Res Lab, Dept Otorhinolaryngol, Inst Cell & Neurobiol, Charitepl 1, D-10117 Berlin, Germany. EM johann.gross@charite.de; KerstinStute@web.de; renate.moller@charite.de; julia.fuchs@charite.de; nyamaa.amra@charite.de; Elena.pohl@charite.de; maximilian.angerstein@charite.de; Alina.smorodchaenko@charite.de; Birgit.mazurek@charite.de RI Pohl, Elena/A-4025-2009; Smorodchenko, Alina/D-1880-2010; Duncan, Jeremy/K-7230-2013 OI Pohl, Elena/0000-0002-0604-5950; Duncan, Jeremy/0000-0002-5555-3273 FU University Hospital Charite; Sonnenfeld Stiftung FX The data are part of the doctoral thesis of Kerstin Stute. The authors thank Astrid Machulik for RT-PCR optimization. We also thank the University Hospital Charite and the Sonnenfeld Stiftung (Prof. Dr.-Ing. Hansjurgen Frhr. von Villiez, Berlin) for their financial support. CR Abe T, 2007, J MEMBRANE BIOL, V215, P49, DOI 10.1007/s00232-007-9004-5 Adler HJ, 2003, HEARING RES, V184, P27, DOI 10.1016/S0378-5955(03)00192-8 Ali A, 2007, HUM MOL GENET, V16, P265, DOI 10.1093/hmg/ddl454 Arendt T, 2005, PROG BRAIN RES, V147, P355, DOI 10.1016/S0079-6123(04)47025-3 Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006 Belyantseva I.A., 2000, J NEUROSCI, V20, P1 Cartharius K, 2005, BIOINFORMATICS, V21, P2933, DOI 10.1093/bioinformatics/bti473 Cheatham MA, 2005, J PHYSIOL-LONDON, V569, P229, DOI 10.1113/jphysiol.2005.093518 Chen XL, 2008, METABOLISM, V57, P1516, DOI 10.1016/j.metabol.2008.06.005 Crawford SE, 2002, J BIOL CHEM, V277, P3585, DOI 10.1074/jbc.M107995200 Ferreira R, 2007, BLOOD, V109, P5481, DOI 10.1182/blood-2006-11-060491 Forrest D, 1996, NAT GENET, V13, P354, DOI 10.1038/ng0796-354 Gocke AR, 2009, J IMMUNOL, V182, P4479, DOI 10.4049/jimmunol.0713927 Gross J, 2007, BRAIN RES, V1162, P56, DOI 10.1016/j.brainres.2007.05.061 Gross J, 2005, HEARING RES, V204, P183, DOI 10.1016/j.heares.2005.02.001 Hildebrand MS, 2007, HEARING RES, V225, P1, DOI 10.1016/j.heares.2007.01.015 Hong SJ, 2006, J NEUROCHEM, V98, P773, DOI 10.1111/j.1471-4159.2006.03924.x Judice TN, 2002, BRAIN RES PROTOC, V9, P65, DOI 10.1016/S1385-299X(01)00138-6 Jung SY, 2007, J TURBUL, V8, P1, DOI 10.1080/14685240701233400 Karis A, 2001, J COMP NEUROL, V429, P615, DOI 10.1002/1096-9861(20010122)429:4<615::AID-CNE8>3.0.CO;2-F KO LJ, 1993, MOL CELL BIOL, V13, P4011 Lagarde MMM, 2008, CURR BIOL, V18, P200, DOI 10.1016/j.cub.2008.01.006 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Lillevali K, 2007, DEV DYNAM, V236, P306, DOI 10.1002/dvdy.21011 Lowenheim H, 1999, HEARING RES, V128, P16, DOI 10.1016/S0378-5955(98)00181-6 Mazurek B, 2007, HEARING RES, V231, P73, DOI 10.1016/j.heares.2007.05.008 Mazurek B, 2003, HEARING RES, V182, P2, DOI 10.1016/S0378-5955(03)00134-5 Moriguchi T, 2006, DEVELOPMENT, V133, P3871, DOI 10.1242/dev.02553 Muroya K, 2001, J MED GENET, V38, P374, DOI 10.1136/jmg.38.6.374 Murphy KM, 2002, NAT REV IMMUNOL, V2, P933, DOI 10.1038/nri954 Mustapha M, 2009, J NEUROSCI, V29, P1212, DOI 10.1523/JNEUROSCI.4957-08.2009 Nygard AB, 2007, BMC MOL BIOL, V8, DOI 10.1186/1471-2199-8-67 Oliver D, 1999, J PHYSIOL-LONDON, V519, P791, DOI 10.1111/j.1469-7793.1999.0791n.x Organ LE, 2009, JARO-J ASSOC RES OTO, V10, P383, DOI 10.1007/s10162-009-0171-1 Pfaffl MW, 2001, NUCLEIC ACIDS RES, V92, P2002, DOI DOI 10.1093/NAR/29.9.E45 Pfaffl M.W., 2002, NUCLEIC ACIDS RES, V30, P1 Reisinger E, 2005, MOL CELL NEUROSCI, V28, P106, DOI 10.1016/j.mcn.2004.08.018 Rivolta MN, 1998, J NEUROCYTOL, V27, P637, DOI 10.1023/A:1006951813063 ROONMOM WM, 2005, NEUROSCIENCE, V133, P863 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 Santos-Sacchi J, 2008, CURR BIOL, V18, pR304, DOI 10.1016/j.cub.2008.02.019 Sato M, 1999, HEARING RES, V127, P1, DOI 10.1016/S0378-5955(98)00143-9 SOBKOWICZ HM, 1993, ACTA OTO-LARYNGOL S, P5023 Souter M, 1995, HEARING RES, V91, P43, DOI 10.1016/0378-5955(95)00163-8 Steenbergen RDM, 2002, AM J PATHOL, V160, P1945, DOI 10.1016/S0002-9440(10)61143-1 Tamura TA, 1996, NEUROCHEM INT, V29, P573, DOI 10.1016/S0197-0186(96)00048-4 Tong Q, 2005, MOL CELL BIOL, V25, P706, DOI 10.1128/MCB.25.2.706-715.2005 van der Wees J, 2004, NEUROBIOL DIS, V16, P169, DOI 10.1016/j.nbd.2004.02.004 Van Esch H, 2001, CELL MOL LIFE SCI, V58, P1296, DOI 10.1007/PL00000940 van Looij MAJ, 2005, NEUROBIOL DIS, V20, P890, DOI 10.1016/j.nbd.2005.05.025 Weber T, 2002, P NATL ACAD SCI USA, V99, P2901, DOI 10.1073/pnas.052609899 Woerly G, 2003, J EXP MED, V198, P411, DOI 10.1084/jem.20021384 Xia A, 2008, JARO-J ASSOC RES OTO, V9, P307, DOI 10.1007/s10162-008-0121-3 Yamane H, 2005, J EXP MED, V202, P793, DOI 10.1084/jem.20051304 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zheng J, 2003, MAMM GENOME, V14, P87, DOI 10.1007/s00335-002-2227-y Zheng J, 2006, BLOOD, V107, P520, DOI 10.1182/blood-2005-04-1385 NR 57 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2010 VL 261 IS 1-2 BP 9 EP 21 DI 10.1016/j.heares.2009.12.017 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 577AV UT WOS:000276193200002 PM 20006695 ER PT J AU Strait, DL Kraus, N Parbery-Clark, A Ashley, R AF Strait, Dana L. Kraus, Nina Parbery-Clark, Alexandra Ashley, Richard TI Musical experience shapes top-down auditory mechanisms: Evidence from masking and auditory attention performance SO HEARING RESEARCH LA English DT Article DE Musicians; Auditory; Backward masking; Perception; Brain; Corticofugal ID SPEECH-IN-NOISE; BRAIN-STEM; NON-MUSICIANS; PROCESSING DISORDERS; PITCH DISCRIMINATION; LANGUAGE IMPAIRMENT; TIMING DEFICITS; VERBAL MEMORY; CHILDREN; NONMUSICIANS AB A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. (C) 2009 Elsevier B.V. All rights reserved. C1 [Strait, Dana L.; Kraus, Nina; Parbery-Clark, Alexandra] Northwestern Univ, Auditory Neurosci Lab, Evanston, IL 60208 USA. [Strait, Dana L.; Ashley, Richard] Northwestern Univ, Bienen Sch Mus, Evanston, IL 60208 USA. [Kraus, Nina; Parbery-Clark, Alexandra] Northwestern Univ, Dept Commun Sci, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Dept Otolaryngol, Evanston, IL 60208 USA. [Ashley, Richard] Northwestern Univ, Program Cognit Sci, Evanston, IL 60208 USA. RP Strait, DL (reprint author), Northwestern Univ, Auditory Neurosci Lab, Frances Searle Bldg,2240 Campus Dr, Evanston, IL 60208 USA. EM Dana.Strait@u.northwestern.edu; nkraus@northwestern.edu; apc@northwestern.edu; r-ashley@northwestern.edu RI Parbery-Clark, Alexandra/G-2966-2012 FU National Science Foundation [0544846]; Medical Research Council FX This research was funded by the National Science Foundation Grant 0544846. The IMAP was developed by the Institute for Hearing Research with a grant from the Medical Research Council.The authors thank Carolyn Hsu for volunteering her assistance with data collection and subject recruitment. We also thank David Moore, Erika Skoe, Trent Nicol and Frederic Marmel for their contributions to the paper in its final stages of preparation. CR Ahissar M, 2004, TRENDS COGN SCI, V8, P457, DOI 10.1016/j.tics.2004.08.011 Ahissar M, 2009, PHILOS T R SOC B, V364, P285, DOI 10.1098/rstb.2008.0253 Allen J, 2000, PERCEPT PSYCHOPHYS, V62, P1383, DOI 10.3758/BF03212140 Amitay S, 2006, J ACOUST SOC AM, V119, P1616, DOI 10.1121/1.2164988 Anvari SH, 2002, J EXP CHILD PSYCHOL, V83, P111, DOI 10.1016/S0022-0965(02)00124-8 Banai K, 2009, CEREB CORTEX, V19, P2699, DOI 10.1093/cercor/bhp024 Benasich AA, 2002, BEHAV BRAIN RES, V136, P31, DOI 10.1016/S0166-4328(02)00098-0 Blood AJ, 2001, P NATL ACAD SCI USA, V98, P11818, DOI 10.1073/pnas.191355898 Burland K., 2002, MUSIC EDUC RES, V4, P121, DOI 10.1080/14613800220119813 BURNS EM, 1978, J ACOUST SOC AM, V63, P456, DOI 10.1121/1.381737 Chan AS, 1998, NATURE, V396, P128, DOI 10.1038/24075 CHANDRASEKARAN B, MUSIC PERCE IN PRESS Chermak G, 1997, CENTRAL AUDITORY PRO Chermak GD, 2002, OTOLARYNG CLIN N AM, V35, P733, DOI 10.1016/S0030-6665(02)00056-7 Conlon E, 2004, NEUROPSYCHOLOGIA, V42, P142, DOI 10.1016/j.neuropsychologia.2003.07.004 Davidson JW, 1998, J RES MUSIC EDUC, V46, P141, DOI 10.2307/3345766 Dosher BA, 1999, VISION RES, V39, P3197, DOI 10.1016/S0042-6989(99)00059-0 Dosher BA, 2006, VISION RES, V46, P1996, DOI 10.1016/j.visres.2005.11.025 Dosher BA, 1998, P NATL ACAD SCI USA, V95, P13988, DOI 10.1073/pnas.95.23.13988 FITZGIBBONS PJ, 1994, J SPEECH HEAR RES, V37, P662 Forgeard M, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003566 Franklin MS, 2008, PSYCHOL MUSIC, V36, P353, DOI 10.1177/0305735607086044 Gaab N, 2003, NEUROREPORT, V14, P2291, DOI 10.1097/01.wnr.0000093587.33576.f7 Gaab N, 2005, ANN NY ACAD SCI, V1060, P82, DOI 10.1196/annals.1360.040 Gaab N, 2007, RESTOR NEUROL NEUROS, V25, P295 Gaab N, 2003, ANN NY ACAD SCI, V999, P385, DOI 10.1196/annals.1284.048 Gaser C, 2003, J NEUROSCI, V23, P9240 Gold J, 1999, NATURE, V402, P176 Hari R, 1996, NEUROSCI LETT, V205, P138, DOI 10.1016/0304-3940(96)12393-4 HARTLEY DE, 2003, INT J PEDIAT OTOR S1, V67, P137 Hartley DEH, 2002, J ACOUST SOC AM, V112, P2962, DOI 10.1121/1.1512701 Ho YC, 2003, NEUROPSYCHOLOGY, V17, P439, DOI 10.1037/0894-4105.17.3.439 Hornickel J, 2009, P NATL ACAD SCI USA, V106, P13022, DOI 10.1073/pnas.0901123106 Hutchinson S, 2003, CEREB CORTEX, V13, P943, DOI 10.1093/cercor/13.9.943 Jakobson LS, 2008, MUSIC PERCEPT, V26, P41, DOI 10.1525/MP.2008.26.1.41 Johnson KL, 2007, J COGNITIVE NEUROSCI, V19, P376, DOI 10.1162/jocn.2007.19.3.376 Kauramaki J, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000909 Kishon-Rabin Liat, 2001, Journal of Basic and Clinical Physiology and Pharmacology, V12, P125 Kral A, 2007, BRAIN RES REV, V56, P259, DOI 10.1016/j.brainresrev.2007.07.021 Kraus N, 2009, ANN NY ACAD SCI, V1169, P543, DOI 10.1111/j.1749-6632.2009.04549.x Lee KM, 2009, J NEUROSCI, V29, P5832, DOI 10.1523/JNEUROSCI.6133-08.2009 LOCKE S, 1973, Cortex, V9, P355 Marler JA, 2001, AM J SPEECH-LANG PAT, V10, P258, DOI 10.1044/1058-0360(2001/023) Marques C, 2007, J COGNITIVE NEUROSCI, V19, P1453, DOI 10.1162/jocn.2007.19.9.1453 Menon V, 2005, NEUROIMAGE, V28, P175, DOI 10.1016/j.neuroimage.2005.05.053 Merzenich MM, 1996, SCIENCE, V271, P77, DOI 10.1126/science.271.5245.77 Micheyl C, 2006, HEARING RES, V219, P36, DOI 10.1016/j.heares.2006.05.004 Montgomery CR, 2005, BRAIN LANG, V95, P450, DOI 10.1016/j.bandl.2005.03.006 Moore DG, 2003, BRIT J PSYCHOL, V94, P529, DOI 10.1348/000712603322503088 Moore DR, 2007, J COMMUN DISORD, V40, P295, DOI 10.1016/j.jcomdis.2007.03.005 Moore DR, 2009, PHILOS T R SOC B, V364, P409, DOI 10.1098/rstb.2008.0187 Moore DR, 2002, BRIT MED BULL, V63, P171, DOI 10.1093/bmb/63.1.171 Moore DR, 2005, BRAIN LANG, V94, P72, DOI 10.1016/j.bundl.2004.11.009 Moore DR, 2008, HEARING RES, V238, P147, DOI 10.1016/j.heares.2007.11.013 Moreno S, 2009, CEREB CORTEX, V19, P712, DOI 10.1093/cercor/bhn120 MUNZER S, 2002, PSYCHOL BEITR, V44, P187 Musacchia G, 2008, HEARING RES, V241, P34, DOI 10.1016/j.heares.2008.04.013 Musacchia G, 2007, P NATL ACAD SCI USA, V104, P15894, DOI 10.1073/pnas.0701498104 Nahum M, 2008, PLOS BIOL, V6, P978, DOI 10.1371/journal.pbio.0060126 Norton A, 2005, BRAIN COGNITION, V59, P124, DOI 10.1016/j.bandc.2005.05.009 Ohnishi T, 2001, CEREB CORTEX, V11, P754, DOI 10.1093/cercor/11.8.754 Overy K, 2003, DYSLEXIA, V9, P18, DOI 10.1002/dys.233 Overy K, 2003, ANN NY ACAD SCI, V999, P497, DOI 10.1196/annals.1284.060 Oxenham AJ, 2003, JARO-J ASSOC RES OTO, V4, P541, DOI 10.1007/s10162-002-3058-y Parbery-Clark A, 2009, EAR HEARING, V30, P653, DOI 10.1097/AUD.0b013e3181b412e9 Parbery-Clark A, 2009, J NEUROSCI, V29, P14100, DOI 10.1523/JNEUROSCI.3256-09.2009 Perrot X, 1999, NEUROSCI LETT, V262, P167, DOI 10.1016/S0304-3940(99)00044-0 Phillips S L, 1994, J Am Acad Audiol, V5, P210 Rammsayer T, 2006, MUSIC PERCEPT, V24, P37, DOI 10.1525/mp.2006.24.1.37 Rammsayer T. H., 2003, PSYCHOL MUSIC, V31, P123, DOI [10.1177/0305735603031002290, DOI 10.1177/0305735603031002290] Rosen S, 2001, J SPEECH LANG HEAR R, V44, P720, DOI 10.1044/1092-4388(2001/057) Rosen S, 2009, J SPEECH LANG HEAR R, V52, P396, DOI 10.1044/1092-4388(2009/08-0114) Schlaug G, 2005, ANN NY ACAD SCI, V1060, P219, DOI 10.1196/annals.1360.015 Schon D, 2004, PSYCHOPHYSIOLOGY, V41, P341, DOI 10.1111/1469-8986.00172.x Schon D, 2008, COGNITION, V106, P975, DOI 10.1016/j.cognition.2007.03.005 SIEGEL JA, 1977, PERCEPT PSYCHOPHYS, V21, P143, DOI 10.3758/BF03198717 Strait DL, 2009, ANN NY ACAD SCI, V1169, P209, DOI 10.1111/j.1749-6632.2009.04864.x Strait DL, 2009, EUR J NEUROSCI, V29, P661, DOI 10.1111/j.1460-9568.2009.06617.x Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 Suga N, 2008, J COMP PHYSIOL A, V194, P169, DOI 10.1007/s00359-007-0274-2 Suga N, 2000, P NATL ACAD SCI USA, V97, P11807, DOI 10.1073/pnas.97.22.11807 Tallal P, 2006, TRENDS NEUROSCI, V29, P382, DOI 10.1016/j.tins.2006.06.003 TALLAL P, 1993, ANN NY ACAD SCI, V682, P27, DOI 10.1111/j.1749-6632.1993.tb22957.x Temple E, 2000, P NATL ACAD SCI USA, V97, P13907, DOI 10.1073/pnas.240461697 Tervaniemi M, 2005, EXP BRAIN RES, V161, P1, DOI 10.1007/s00221-004-2044-5 Tervaniemi M, 2001, LEARN MEMORY, V8, P295, DOI 10.1101/lm.39501 TORGESON JK, 1991, LEARNING DISABILITIE Tzounopoulos T, 2009, NEURON, V62, P463, DOI 10.1016/j.neuron.2009.05.002 Walker KMM, 2006, BRAIN RES, V1124, P126, DOI 10.1016/j.brainres.2006.09.080 Wong PCM, 2007, NAT NEUROSCI, V10, P420, DOI 10.1038/nn1872 Wright B. A., 1998, PSYCHOPHYSICAL PHYSL, P604 Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0 Wright BA, 2001, AUDIOL NEURO-OTOL, V6, P207, DOI 10.1159/000046834 YEE W, 1994, PERCEPT PSYCHOPHYS, V56, P461, DOI 10.3758/BF03206737 Zimmermann P, 2002, APPLIED NEUROPSYCHOLOGY OF ATTENTION: THEORY DIAGNOSIS AND REHABILITATION, P110 NR 95 TC 79 Z9 81 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2010 VL 261 IS 1-2 BP 22 EP 29 DI 10.1016/j.heares.2009.12.021 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 577AV UT WOS:000276193200003 PM 20018234 ER PT J AU Pienkowski, M Eggermont, JJ AF Pienkowski, Martin Eggermont, Jos J. TI Intermittent exposure with moderate-level sound impairs central auditory function of mature animals without concomitant hearing loss SO HEARING RESEARCH LA English DT Article DE Auditory cortex; Plasticity; Passive sound exposure; Extracellular recording; Single-unit activity; Local field potential; Receptive field; Tonotopic map ID RECEPTIVE-FIELDS; FREQUENCY REPRESENTATION; CORTEX; PLASTICITY; ORGANIZATION; PERIOD; DISCRIMINATION; ENVIRONMENT; CATS; REORGANIZATION AB Long-term, passive, continuous exposure of mature animals to moderate-level, band-limited sounds can profoundly decrease neural activity in primary auditory cortex (AI) to sounds in the exposure frequency range, and increase activity to sounds outside the exposure range. The resulting reorganization of the AI tonotopic map resembles that following a restricted lesion of the cochlear epithelium. Here we show qualitatively similar effects of passive exposure when it is limited to 12 h/day, simulating a noisy-work/quiet-living environment, albeit at substantially lower intensity levels (68 dB SPL) than are considered harmful to hearing. Compared to continuous exposure at the same SPL and over a similar duration (6-12 weeks), this intermittent exposure produced a smaller decrease in AI spike and LFP (local field potential) activity in response to sound frequencies in the exposure range, and an increase in activity only for frequencies above the exposure range. As expected at these exposure levels, cortical changes occurred in the absence of concomitant hearing loss (i.e., absolute threshold shifts). Our results have implications for occupational noise exposure standards, which presently may not prevent changes in central auditory function that cannot be detected on the standard behavioral audiogram. (C) 2009 Elsevier B.V. All rights reserved. C1 [Eggermont, Jos J.] Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. Univ Calgary, Dept Pharmacol, Calgary, AB T2N 1N4, Canada. Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Psychol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM eggermon@ucalgary.ca CR BAO S, 2003, J NEUROSCI, V23, P1065 Blake DT, 2002, J NEUROPHYSIOL, V88, P3409, DOI 10.1152/jn.00233.2002 Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003 Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056 Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 CONDON CD, 1991, BEHAV NEUROSCI, V105, P416 de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007 de Villers-Sidani E, 2008, NAT NEUROSCI, V11, P957, DOI 10.1038/nn.2144 Eggermont JJ, 1990, CORRELATIVE BRAIN TH Engineer ND, 2004, J NEUROPHYSIOL, V92, P73, DOI 10.1152/jn.00059.2004 Formby C, 2003, J ACOUST SOC AM, V114, P55, DOI 10.1121/1.1582860 GARDNER MJ, 1986, BRIT MED J, V292, P746 Han YK, 2007, NAT NEUROSCI, V10, P1191, DOI 10.1038/nn1941 Hooks BM, 2007, NEURON, V56, P312, DOI 10.1016/j.neuron.2007.10.003 HUBEL DH, 1970, J PHYSIOL-LONDON, V206, P419 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 KAAS JH, 1990, SCIENCE, V248, P229, DOI 10.1126/science.2326637 Kadia SC, 2003, J NEUROPHYSIOL, V89, P1603, DOI 10.1152/jn.00271.2001 Kamke MR, 2005, NEURON, V48, P675, DOI 10.1016/j.neuron.2005.09.014 KNUDSEN EI, 1985, J NEUROSCI, V5, P3094 KRYTER KD, 1966, J ACOUST SOC AM, V39, P451, DOI 10.1121/1.1909912 May JJ, 2000, AM J IND MED, V37, P112, DOI 10.1002/(SICI)1097-0274(200001)37:1<112::AID-AJIM9>3.0.CO;2-# MERZENICH MM, 1984, J COMP NEUROL, V224, P591, DOI 10.1002/cne.902240408 Norena AJ, 2007, NEUROREPORT, V18, P1251, DOI 10.1097/WNR.0b013e3282202c35 Norena AJ, 2006, NAT NEUROSCI, V9, P932, DOI 10.1038/nn1720 Norena AJ, 2008, J NEUROSCI, V28, P8885, DOI 10.1523/JNEUROSCI.2693-08.2008 *OSHA, 192652 OSHA US DEP L Pienkowski M, 2009, HEARING RES, V257, P24, DOI 10.1016/j.heares.2009.07.011 Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RECANZONE GH, 1993, J NEUROSCI, V13, P87 Stanton SG, 1996, AUDIT NEUROSCI, V2, P97 Turrigiano GG, 1999, TRENDS NEUROSCI, V22, P221, DOI 10.1016/S0166-2236(98)01341-1 Valentine PA, 2004, HEARING RES, V196, P119, DOI 10.1016/j.heares.2004.05.011 WEINBERGER NM, 1993, P NATL ACAD SCI USA, V90, P2394, DOI 10.1073/pnas.90.6.2394 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 NR 36 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2010 VL 261 IS 1-2 BP 30 EP 35 DI 10.1016/j.heares.2009.12.025 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 577AV UT WOS:000276193200004 PM 20036723 ER PT J AU Willott, JF VandenBosche, J Shimizu, T AF Willott, James F. VandenBosche, Justine Shimizu, Toru TI Effects of a high-frequency augmented acoustic environment on parvalbumin immunolabeling in the anteroventral cochlear nucleus of DBA/2J and C57BL/6J mice SO HEARING RESEARCH LA English DT Article DE Mice; Sensorineural hearing loss; Augmented acoustic environment; Cochlear nucleus; Parvalbumin ID AUDITORY BRAIN-STEM; BINDING PROTEIN IMMUNOREACTIVITY; SENSORINEURAL HEARING-LOSS; INFERIOR COLLICULUS; PREPULSE INHIBITION; RESPONSE THRESHOLDS; PROLONGED EXPOSURE; GONADAL-HORMONES; MOUSE; NEURONS AB Neurons in the anteroventral cochlear nucleus (AVCN) of DBA/2J (D2) and C57BL/6J (B6) mice were immunohistochemically labeled for the calcium binding protein parvalbumin (PV). Prior to this, mice were treated for 12 h nightly with a "high-frequency" augmented acoustic environment (HAAE: repetitive bursts of a 70 dB sound pressure level, half-octave noise band centered at 20 kHz). This was done during the period that hearing loss occurs: pre-weaning to 55 days in D2 mice and weaning to 9 months in B6 mice. After HAAE treatment in D2 mice, high-frequency hearing loss was ameliorated and fewer PV-labeled neurons were found in the AVCN compared to untreated controls. HAAE treatment in B6 mice exacerbated high-frequency hearing loss, yet the number of PV-labeled AVCN neurons in treated mice did not differ significantly from that of control mice. The findings suggest that HAAE treatment provides relief from physiological stress caused by deprivation of auditory input from the impaired cochlea. (C) 2010 Elsevier B.V. All rights reserved. C1 [Willott, James F.; VandenBosche, Justine; Shimizu, Toru] Univ S Florida, Dept Psychol, Tampa, FL 33620 USA. RP Willott, JF (reprint author), Univ S Florida, Dept Psychol, 4202 E Fowler Ave,PCD4118G, Tampa, FL 33620 USA. EM jimw@niu.edu FU National Institute on Aging [R01 AG07554] FX This research was supported by R01 AG07554 (J.F.W.). Thanks to Drs. Sandra McFadden and Francisco Gonzales-Lima for helpful comments. I have now retired, and this is the last research paper I will publish. I am grateful to Hearing Research for publishing so many of my papers (27) over the years, to a host of students and colleagues I collaborated with, and to the National Institute on Aging, which has supported my work for 29 years. It's been great! CR Bazwinsky I, 2008, J CHEM NEUROANAT, V35, P158, DOI 10.1016/j.jchemneu.2007.10.003 Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8 Caicedo A, 1996, ANAT EMBRYOL, V194, P465 Cruikshank SJ, 2001, NEUROSCIENCE, V105, P553, DOI 10.1016/S0306-4522(01)00226-3 Forster CR, 2000, J COMP NEUROL, V416, P173, DOI 10.1002/(SICI)1096-9861(20000110)416:2<173::AID-CNE4>3.0.CO;2-V Fuentes-Santamaria V, 2005, J COMP NEUROL, V483, P458, DOI 10.1002/cne.20437 Fuentes-Santamaria V, 2005, EPILEPSIA, V46, P1027, DOI 10.1111/j.1528-1167.2005.68104.x Henry K. R., 1983, AUDITORY PSYCHOBIOLO, P470 Husband SA, 1999, J COMP NEUROL, V406, P329 Idrizbegovic E, 2003, HEARING RES, V179, P33, DOI 10.1016/S0378-5955(03)00076-5 Idrizbegovic E, 2004, NEUROBIOL AGING, V25, P1085, DOI 10.1016/j.neuroimaging.2003.11.004 Idrizbegovic E, 2006, HEARING RES, V216, P198, DOI 10.1016/j.heares.2006.01.009 Jeskey JE, 2000, BEHAV NEUROSCI, V114, P991, DOI 10.1037//0735-7044.114.5.991 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E PARHAM K, 1997, ASS RES OT ABSTR, V20, P194 Por A, 2005, BRAIN RES, V1039, P63, DOI 10.1016/j.brainres.2005.01.057 RALLS K, 1967, ANIM BEHAV, V15, P123, DOI 10.1016/S0003-3472(67)80022-8 RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0 SLOVITER RS, 1989, J COMP NEUROL, V280, P183, DOI 10.1002/cne.902800203 Turner JG, 1998, HEARING RES, V118, P101, DOI 10.1016/S0378-5955(98)00024-0 VATER M, 1994, J COMP NEUROL, V341, P534, DOI 10.1002/cne.903410409 WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U WILLOTT JF, 2005, JARO-J ASSOC RES OTO, V28, P1 WILLOTT JF, 1996, ILSI MONOGRAPHS PATH, P179 Willott JF, 2006, HEARING RES, V221, P73, DOI 10.1016/j.heares.2006.07.016 Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5 Willott JF, 2006, HEARING RES, V216, P138, DOI 10.1016/j.heares.2006.01.010 Willott JF, 2009, HEARING RES, V252, P89, DOI 10.1016/j.heares.2008.12.002 Willott JF, 2000, HEARING RES, V142, P79, DOI 10.1016/S0378-5955(00)00014-9 Willott JF, 2004, J COMP NEUROL, V472, P358, DOI 10.1002/cne.20065 WILLOTT JF, 1982, NEUROSCI LETT, V34, P13, DOI 10.1016/0304-3940(82)90085-4 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 WILLOTT JF, 1981, J NEUROPHYSIOL, V45, P35 Willott JF, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P205 Willott JF, 2008, HEARING RES, V235, P60, DOI 10.1016/j.heares.2007.10.006 Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 Willott JF, 2000, HEARING RES, V147, P275, DOI 10.1016/S0378-5955(00)00137-4 NR 38 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2010 VL 261 IS 1-2 BP 36 EP 41 DI 10.1016/j.heares.2009.12.029 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 577AV UT WOS:000276193200005 PM 20060461 ER PT J AU Van Trump, WJ Coombs, S Duncan, K McHenry, MJ AF Van Trump, William J. Coombs, Sheryl Duncan, Kyle McHenry, Matthew J. TI Gentamicin is ototoxic to all hair cells in the fish lateral line system SO HEARING RESEARCH LA English DT Article DE Aminoglycoside antibiotics; DASPEI; FM1-43 ID BLIND CAVE FISH; ZEBRAFISH DANIO-RERIO; ANOPTICHTHYS-JORDANI CHARACIDAE; ANEMONE REPAIR PROTEINS; AMINOGLYCOSIDE ANTIBIOTICS; POSTEMBRYONIC DEVELOPMENT; STATIONARY OBJECTS; RAINBOW-TROUT; SENSORY CELLS; DEATH AB Hair cells of the lateral line system in fish may differ in their susceptibility to damage by aminoglycoside antibiotics. Gentamicin has been reported to damage hair cells within canal neuromasts, but not those within superficial neuromasts. This finding, based on SEM imaging, indicates a distinction in the physiology of hair cells between the two classes of neuromast. Studies concerned with the individual roles of canal and superficial neuromasts in behavior have taken advantage of this effect in an attempt to selectively disable canal neuromasts without affecting superficial neuromast function. Here we present an experimental test of the hypothesis that canal neuromasts are more vulnerable to gentamicin than superficial neuromasts. We measured the effect of gentamicin exposure on hair cells using vital stains (DASPEI and FM1-43) in the neuromasts of Mexican blind cave fish (Astyanax fasciatus) and zebrafish (Danio rerio). Contrary to the findings of prior studies that used SEM, gentamicin significantly reduced dye uptake by hair cells of both canal and superficial neuromasts in both species. Therefore, lateral line hair cells of both neuromast types are vulnerable to gentamicin ototoxicity. These findings argue for a re-evaluation of the results of studies that have used gentamicin to differentiate the roles of the two classes of neuromast in fish behavior. Published by Elsevier B.V. C1 [Van Trump, William J.; McHenry, Matthew J.] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA. [Coombs, Sheryl; Duncan, Kyle] Bowling Green State Univ, Dept Biol Sci, JP Scott Ctr Neurosci Mind & Behav, Bowling Green, OH 43403 USA. RP Van Trump, WJ (reprint author), Univ Calif Irvine, Dept Ecol & Evolutionary Biol, 321 Steinhaus Hall, Irvine, CA 92697 USA. EM wvantrum@uci.edu FU NSF [IOS-0723288, IOB-0509740] FX We thank Dr. E. Rubel and his research group for advice, Tristan Ula and Ashley Hammer for support with animal care, and Dr. A.P. Summers for lending equipment. MJM's research was supported by grants from the NSF (IOS-0723288 and IOB-0509740). CR Baker CF, 1999, POLAR BIOL, V21, P305, DOI 10.1007/s003000050366 Baker CF, 1999, J COMP PHYSIOL A, V184, P519, DOI 10.1007/s003590050351 Berg A, 2002, HEARING RES, V174, P296, DOI 10.1016/S0378-5955(02)00705-0 Bleckmann H, 2008, J COMP PHYSIOL A, V194, P145, DOI 10.1007/s00359-007-0282-2 Chiu LL, 2008, JARO-J ASSOC RES OTO, V9, P178, DOI 10.1007/s10162-008-0118-y Coffin AB, 2009, HEARING RES, V253, P42, DOI 10.1016/j.heares.2009.03.004 Coombs S, 2000, PHILOS T ROY SOC B, V355, P1111 Coombs S, 2006, FISH PHYSIOL, V23, P103, DOI 10.1016/S1546-5098(05)23004-2 Coombs S., 1999, COMP HEARING FISH AM, P319 Dai CF, 2006, HEARING RES, V213, P64, DOI 10.1016/j.heares.2005.11.011 DIJKGRAAF S, 1963, BIOL REV, V38, P51, DOI 10.1111/j.1469-185X.1963.tb00654.x ERNST A, 1994, BRAIN RES, V636, P153, DOI 10.1016/0006-8993(94)90191-0 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FORGE A, 1989, HEARING RES, V37, P129, DOI 10.1016/0378-5955(89)90035-X Ghysen A, 2004, CURR OPIN NEUROBIOL, V14, P67, DOI 10.1016/j.conb.2004.01.012 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x Hashino E, 1996, BRAIN RES, V720, P172, DOI 10.1016/0006-8993(95)01467-5 Higgs Dennis M., 2006, P389 Janssen J, 2004, SENSES OF FISH: ADAPTATIONS FOR THE RECEPTION OF NATURAL STIMULI, P231 KARLSEN HE, 1987, J EXP BIOL, V133, P249 KAUS S, 1987, ACTA OTO-LARYNGOL, V103, P291, DOI 10.3109/00016488709107796 KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 KROESE ABA, 1982, HEARING RES, V6, P183, DOI 10.1016/0378-5955(82)90053-3 Liao JC, 2006, J EXP BIOL, V209, P4077, DOI 10.1242/jeb.02487 LINDEMAN HH, 1969, ACTA OTO-LARYNGOL, V67, P177, DOI 10.3109/00016486909125441 Lopez-Schier H, 2005, P NATL ACAD SCI USA, V102, P1496, DOI 10.1073/pnas.0409361102 Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951 Meyers JR, 2003, J NEUROSCI, V23, P4054 MOCZYDLOWSKI E, 1985, J MEMBRANE BIOL, V83, P273, DOI 10.1007/BF01868701 Montgomery JC, 2003, P ROY SOC B-BIOL SCI, V270, pS195, DOI 10.1098/rsbl.2003.0052 Montgomery JC, 2002, BRAIN BEHAV EVOLUT, V59, P190, DOI 10.1159/000064906 Montgomery JC, 1997, NATURE, V389, P960, DOI 10.1038/40135 Munz H., 1989, P285 Murakami SL, 2003, HEARING RES, V186, P47, DOI 10.1016/S0378-5955(03)00259-4 Nunez VA, 2009, EVOL DEV, V11, P391, DOI 10.1111/j.1525-142X.2009.00346.x Owens KN, 2009, HEARING RES, V253, P32, DOI 10.1016/j.heares.2009.03.001 Owens KN, 2007, J COMP NEUROL, V502, P522, DOI 10.1002/cne.21345 Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K Repass JJ, 2001, HEARING RES, V154, P98, DOI 10.1016/S0378-5955(01)00226-X Santos F, 2006, HEARING RES, V213, P25, DOI 10.1016/j.heares.2005.12.009 Sharma S, 2009, J COMP PHYSIOL A, V195, P225, DOI 10.1007/s00359-008-0400-9 Sokal R, 1995, BIOMETRY, V3rd Song JK, 1995, HEARING RES, V91, P63, DOI 10.1016/0378-5955(95)00170-0 TYKE T, 1990, BRAIN BEHAV EVOLUT, V35, P23 VONCAMPENHAUSEN C, 1981, J COMP PHYSIOL, V143, P369 Webb JF, 2003, DEV DYNAM, V228, P370, DOI 10.1002/dvdy.10385 WEISSERT R, 1981, J COMP PHYSIOL, V143, P375 WERSALL J, 1960, ACTA OTO-LARYNGOL, V163, P25 WILLIAMS SE, 1987, HEARING RES, V30, P11, DOI 10.1016/0378-5955(87)90177-8 YAN HY, 1991, P ROY SOC B-BIOL SCI, V245, P133, DOI 10.1098/rspb.1991.0099 NR 50 TC 27 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2010 VL 261 IS 1-2 BP 42 EP 50 DI 10.1016/j.heares.2010.01.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 577AV UT WOS:000276193200006 PM 20060460 ER PT J AU Moore, BCJ Vinay Sandhya AF Moore, Brian C. J. Vinay Sandhya TI The relationship between tinnitus pitch and the edge frequency of the audiogram in individuals with hearing impairment and tonal tinnitus SO HEARING RESEARCH LA English DT Article DE Tinnitus; Pitch; Edge frequency ID AUDITORY-CORTEX; DEAD REGIONS; LOUDNESS; COCHLEA; PLASTICITY; MECHANISMS; DIAGNOSIS; ADULT AB Some theories of mechanisms of tinnitus generation lead to the prediction that the pitch associated with tonal tinnitus should be related to the "edge frequency" of the audiogram, f(e), the frequency at which hearing loss worsens relatively abruptly. However, previous studies testing this prediction have provided little or no support for it. Here, we reexamined the relationship between tinnitus pitch and f(e), using 11 subjects selected to have mild-to-moderate hearing loss and tonal tinnitus. Subjects were asked to compare the pitch of their tinnitus to that of a sinusoidal tone whose frequency and level were adjusted by the experimenter. Prior to testing in the main experiment, subjects were given specific training to help them to avoid octave errors in their pitch matches. Pitch matches made after this training were generally lower in frequency than matches made before such training, often by one or two octaves. The matches following training were highly reproducible. A clear relationship was found between the values of f(e) and the mean pitch matches following training; the correlation was 0.94. Generally, the pitch matches were close in value to the values of f(e). (C) 2010 Elsevier B.V. All rights reserved. C1 [Moore, Brian C. J.] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. [Vinay; Sandhya] All India Inst Speech & Hearing, Mysore 570006, Karnataka, India. RP Moore, BCJ (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. EM bcjm@cam.ac.uk RI Moore, Brian/I-5541-2012 CR Aazh H., 2007, J AM ACAD AUDIOL, V18, P96 Baguley DM, 2002, BRIT MED BULL, V63, P195, DOI 10.1093/bmb/63.1.195 CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330 CARTERET.EC, 1969, J SPEECH HEAR RES, V12, P497 COPE T, LOUDNESS TINNI UNPUB Eggermont J. J., 2006, ACTA OTO-LARYNGOL, V556, P9 Eggermont JJ, 2008, EAR HEARING, V29, P819, DOI 10.1097/AUD.0b013e3181853030 FOWLER EP, 1940, ARCH OTOLARYNGOL, V39, P498 Fowler E.P., 1941, ANN OTO RHINOL LARYN, V50, P139 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GRAHAM JT, 1962, ARCHIV OTOLARYNGOL, V75, P162 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Konig O, 2006, HEARING RES, V221, P59, DOI 10.1016/j.heares.2006.07.007 Moore B. C. J., 2007, COCHLEAR HEARING LOS Moore BC., 2003, INTRO PSYCHOL HEARIN Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2 Moore BCJ, 2004, EAR HEARING, V25, P478, DOI 10.1097/01.aud.0000145992.31135.89 Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Pan T, 2009, INT J AUDIOL, V48, P277, DOI 10.1080/14992020802581974 PENNER MJ, 1986, J SPEECH HEAR RES, V29, P407 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 REED G F, 1960, AMA Arch Otolaryngol, V71, P84 Robles L, 2001, PHYSIOL REV, V81, P1305 Tyler R, 2000, TINNITUS HDB, P149 TYLER RS, 1983, J SPEECH HEAR RES, V26, P59 Tyler R. S., 2006, TINNITUS TREATMENT C, P1 VERNON J, 1976, HEAR SPEECH ACTION, V44, P17 Vinay, 2007, Int J Audiol, V46, P39 Vinay, 2007, EAR HEARING, V28, P231 NR 31 TC 26 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2010 VL 261 IS 1-2 BP 51 EP 56 DI 10.1016/j.heares.2010.01.003 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 577AV UT WOS:000276193200007 PM 20103482 ER PT J AU Kimitsuki, T Komune, N Noda, T Takaiwa, K Ohashi, M Komune, S AF Kimitsuki, Takashi Komune, Noritaka Noda, Teppei Takaiwa, Kazutaka Ohashi, Mitsuru Komune, Shizuo TI Property of I-K,I-n in inner hair cells isolated from guinea-pig cochlea SO HEARING RESEARCH LA English DT Article DE Cochlea; Inner hair cell; Potassium currents; KCNQ-channel; Linopirdine; XE991 ID HEARING-LOSS; POTASSIUM CURRENTS; DOMINANT DEAFNESS; MOUSE COCHLEA; KCNQ4 GENE; CHANNEL; EXPRESSION; SUBUNITS; FAMILY; MICE AB One of the potassium currents, I-K,I-n, is already activated at the resting potential of the cell and thus determines the membrane potential. KCNQ4 channel has been identified as the molecular correlate of I-K,I-n. In the present study, we measured I-K,I-n in acutely isolated IHCs of guinea-pig cochlea using the whole-cell voltage-clamp techniques, and investigated the properties of the currents. I-K,I-n was 70% activated around the resting potential of -60 mV and deactivated on hyperpolarization. I-K,I-n was blocked by the KCNQ-channel blockers, linopirdine (100 mu M) and XE991 (10 mu M), but was insensitive to both I-K,I-f blocker, tetraethylammonium (TEA), and I-K,I-s blocker, 4-aminopyridine (4-AP). There was no significant difference in the size of I-K,I-n between the apical and basal turn IHCs. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kimitsuki, Takashi; Komune, Noritaka; Noda, Teppei; Takaiwa, Kazutaka; Ohashi, Mitsuru; Komune, Shizuo] Kyushu Univ, Dept Otolaryngol, Grad Sch Med Sci, Fac Med,Higashi Ku, Fukuoka 8128582, Japan. RP Kimitsuki, T (reprint author), Kyushu Univ, Dept Otolaryngol, Grad Sch Med Sci, Fac Med,Higashi Ku, 3-1-1 Maidashi, Fukuoka 8128582, Japan. EM kimitaka@qentmed.kyushu-u.ac.jp FU Ministry of Education, Culture, Sports, Science and Technology of Japan [9591978, 21592160]; Research Fund of Institute of Kampo Medicine (Japan) FX This work was supported by a Grant-in-Aid for Scientific Research 9591978, 21592160 from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Research Fund of Institute of Kampo Medicine (Japan). CR Beisel KW, 2005, J NEUROSCI, V25, P9285, DOI 10.1523/JNEUROSCI.2110-05.2005 Beisel KW, 2000, MOL BRAIN RES, V82, P137 De Leenheer EMR, 2002, ANN OTO RHINOL LARYN, V111, P267 He DZZ, 2000, HEARING RES, V145, P156, DOI 10.1016/S0378-5955(00)00084-8 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 Jentsch TJ, 2000, NAT REV NEUROSCI, V1, P21, DOI 10.1038/35036198 Kharkovets T, 2006, EMBO J, V25, P642, DOI 10.1038/sj.emboj.7600951 Kharkovets T, 2000, P NATL ACAD SCI USA, V97, P4333, DOI 10.1073/pnas.97.8.4333 Kimitsuki T, 2009, AURIS NASUS LARYNX, V36, P152, DOI 10.1016/j.anl.2008.05.005 Kimitsuki T, 2005, HEARING RES, V199, P135, DOI 10.1016/j.heares.2004.08.020 KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263 Kros CJ, 1998, NATURE, V394, P281, DOI 10.1038/28401 KROS CJ, 1992, P ROY SOC B-BIOL SCI, V249, P185, DOI 10.1098/rspb.1992.0102 Kubisch C, 1999, CELL, V96, P437, DOI 10.1016/S0092-8674(00)80556-5 Lerche C, 2000, J BIOL CHEM, V275, P22395, DOI 10.1074/jbc.M002378200 Marcotti W, 2003, J PHYSIOL-LONDON, V548, P383, DOI 10.1113/jphysiol.2002.034801 Marcotti W, 1999, J PHYSIOL-LONDON, V520, P653, DOI 10.1111/j.1469-7793.1999.00653.x Marres H, 1997, ARCH OTOLARYNGOL, V123, P573 NAKAGAWA T, 1994, BRAIN RES, V661, P293, DOI 10.1016/0006-8993(94)91207-6 Nouvian R, 2003, EUR J NEUROSCI, V17, P2553, DOI 10.1046/j.1460-9568.2003.02715.x Oliver D, 2003, J NEUROSCI, V23, P2141 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 Schroeder BC, 2000, J BIOL CHEM, V275, P24089, DOI 10.1074/jbc.M003245200 Talebizadeh Z, 1999, HUM MUTAT, V14, P493, DOI 10.1002/(SICI)1098-1004(199912)14:6<493::AID-HUMU8>3.0.CO;2-P Van Camp G, 2002, HUM MUTAT, V20, P15, DOI 10.1002/humu.10096 Van Hauwe P, 2000, AM J MED GENET, V93, P184, DOI 10.1002/1096-8628(20000731)93:3<184::AID-AJMG4>3.0.CO;2-5 Wang HS, 1998, SCIENCE, V282, P1890, DOI 10.1126/science.282.5395.1890 Yang SM, 2002, ORL J OTO-RHINO-LARY, V64, P1, DOI 10.1159/000049078 Zhang Z, 2009, J GEN PHYSIOL, V133, P263, DOI 10.1085/jgp.200810079 NR 29 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2010 VL 261 IS 1-2 BP 57 EP 62 DI 10.1016/j.heares.2010.01.002 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 577AV UT WOS:000276193200008 PM 20060884 ER PT J AU MacDonald, EN Pichora-Fuller, MK Schneider, BA AF MacDonald, Ewen N. Pichora-Fuller, M. Kathleen Schneider, Bruce A. TI Effects on speech intelligibility of temporal jittering and spectral smearing of the high-frequency components of speech SO HEARING RESEARCH LA English DT Article DE Temporal jitter; Spectral smearing; Speech intelligibility; Word identification ID FINE-STRUCTURE CUES; AUDITORY-PERCEPTION; HEARING-LOSS; ENVELOPE; TRANSFORM; RECEPTION; SENTENCES; MASKING; NOISE AB In a previous study, we demonstrated that word recognition performance was reduced when the low-frequency components of speech (0-1.2 kHz)were distorted by temporal uttering, but not when they were distorted by spectral smearing (Pichora-Fuller et al., 2007). Temporal uttering distorts the fine structure of the speech signal with negligible alteration of either its long-term spectral or amplitude envelope characteristics. Spectral smearing simulates the effects of broadened auditory filters that occur with cochlear hearing loss (Baer and Moore, 1993). In the present study, the high-frequency components of speech (1.2-7 kHz) were distorted with uttering and smearing. Word recognition in noise for both distortion conditions was poorer than in the intact condition. However, unlike our previous study, no significant difference was found in word recognition performance in the two distorted conditions. Whereas temporal distortion seems to have a deleterious effect that cannot be attributed to spectral distortion when only the lower frequencies are distorted, when the higher frequencies are distorted both temporal and spectral distortion reduce speech intelligibility. (C) 2010 Elsevier B.V. All rights reserved. C1 [MacDonald, Ewen N.] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada. [MacDonald, Ewen N.] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada. [MacDonald, Ewen N.; Pichora-Fuller, M. Kathleen] Toronto Rehabil Inst, Toronto, ON M5G 2A2, Canada. [Pichora-Fuller, M. Kathleen; Schneider, Bruce A.] Univ Toronto, Dept Psychology, Mississauga, ON L5L 1C6, Canada. RP MacDonald, EN (reprint author), Queens Univ, Dept Psychol, Humphrey Hall,62 Arch St, Kingston, ON K7L 3N6, Canada. EM ewen.macdonald@utoronto.ca; k.pichora.fuller@utoronto.ca RI MacDonald, Ewen/B-8841-2013 FU Natural Sciences and Engineering Research Council of Canada [RGPIN 138572-05]; Canadian Institutes of Health Research [MOP-15359] FX This research was funded by the Natural Sciences and Engineering Research Council of Canada (RGPIN 138572-05; Pichora-Fuller) and the Canadian Institutes of Health Research(MOP-15359; Schneider and Pichora-Fuller). The authors thank Lesley Filmer and Christine DeLuca for assistance in conducting the experiment. CR ALLEN JB, 1977, IEEE T ACOUST SPEECH, V25, P235, DOI 10.1109/TASSP.1977.1162950 BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640 BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176 BILGER RC, 1984, J SPEECH HEAR RES, V27, P32 Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 DRULLMAN R, 1995, J ACOUST SOC AM, V97, P585, DOI 10.1121/1.413112 Gnansia D, 2009, J ACOUST SOC AM, V125, P4023, DOI 10.1121/1.3126344 Hopkins K, 2008, J ACOUST SOC AM, V123, P1140, DOI 10.1121/1.2824018 Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103 Mills John H., 2006, Seminars in Hearing, V27, P228, DOI 10.1055/s-2006-954849 Moore BC., 2003, INTRO PSYCHOL HEARIN Moore BCJ, 2003, J PHONETICS, V31, P563, DOI 10.1016/S0095-4470(03)00011-1 Moore BCJ, 2008, JARO-J ASSOC RES OTO, V9, P399, DOI 10.1007/s10162-008-0143-x Pichora-Fuller M. K., 2008, AUDITORY SIGNAL PROC, P297 Pichora-Fuller MK, 2007, HEARING RES, V223, P114, DOI 10.1016/j.heares.2006.10.009 Reed Charlotte M, 2009, Trends Amplif, V13, P4, DOI 10.1177/1084713808325412 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 SUMMERS IR, 1991, BIOINSTRUMENTATION B, P589 TERKEURS M, 1992, J ACOUST SOC AM, V91, P2872, DOI 10.1121/1.402950 TERKEURS M, 1993, J ACOUST SOC AM, V93, P1547, DOI 10.1121/1.406813 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 Zeng FG, 1999, NEUROREPORT, V10, P3429, DOI 10.1097/00001756-199911080-00031 Zeng FG, 2004, J ACOUST SOC AM, V116, P1351, DOI 10.1121/1.1777938 Zeng FG, 2005, J NEUROPHYSIOL, V93, P3050, DOI 10.1152/jn.00985.2004 NR 25 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2010 VL 261 IS 1-2 BP 63 EP 66 DI 10.1016/j.heares.2010.01.005 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 577AV UT WOS:000276193200009 PM 20093174 ER PT J AU Nakamagoe, M Tabuchi, K Uemaetomari, I Nishimura, B Hara, A AF Nakamagoe, Mariko Tabuchi, Keiji Uemaetomari, Isao Nishimura, Bungo Hara, Akira TI Estradiol protects the cochlea against gentamicin ototoxicity through inhibition of the JNK pathway SO HEARING RESEARCH LA English DT Article DE Gentamicin; c-jun N-terminal kinase (JNK); 17 beta-Estradiol (E2); Hair cell; Organ of Corti ID DEVELOPING PURKINJE-CELL; HAIR-CELLS; AMINOGLYCOSIDE ANTIBIOTICS; OTOACOUSTIC EMISSIONS; DENDRITIC GROWTH; ACOUSTIC TRAUMA; IN-VITRO; ESTROGEN; ORGAN; DAMAGE AB Gentamicin induces outer hair cell death through the apoptotic pathway. It has been reported that this death pathway of outer hair cells is mediated by specific apoptotic enzymes including c-jun N-terminal kinase (JNK) and caspases. 17 beta-Estradiol (E2), the most potent estrogen, is known to function as an antiapoptotic agent to prevent the death of various cell types. The purpose of the present study was to examine the effects of E2 on gentamicin-induced apoptotic cell death in outer hair cells. The basal turn organ of Corti explants from p3 or p4 rats were maintained in a tissue culture and exposed to 100 mu M gentamicin for 48 h. The effects of E2 on gentamicin-induced outer hair cell loss, JNK activation, and staining for terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end labeling (TUNEL) were examined. E2 significantly decreased gentamicin-induced outer hair cell loss in a dose-dependent manner. JNK activation and TUNEL staining were observed in organ of Corti explants exposed to gentamicin, and staining levels were significantly decreased by E2 treatment. The results indicate that, through the inhibition of JNK and subsequent apoptotic reactions, E2 decreases outer hair cell loss induced by gentamicin ototoxicity. (C) 2010 Elsevier B.V. All rights reserved. C1 [Nakamagoe, Mariko; Tabuchi, Keiji; Uemaetomari, Isao; Nishimura, Bungo; Hara, Akira] Univ Tsukuba, Dept Otolaryngol, Grad Sch Comprehens Human Sci, Tsukuba, Ibaraki 3058575, Japan. RP Tabuchi, K (reprint author), Univ Tsukuba, Dept Otolaryngol, Grad Sch Comprehens Human Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan. EM ktabuchi@md.tsukuba.ac.jp FU Japan's the Ministry of Education, Culture, Sports, Science, and Technology [20591969] FX This work was supported by a Grant-in-aid for Scientific Research (C) 20591969 from Japan's the Ministry of Education, Culture, Sports, Science, and Technology. CR Bicknell RJ, 1998, CURR OPIN NEUROL, V11, P667, DOI 10.1097/00019052-199812000-00010 Choung YH, 2009, NEUROSCIENCE, V161, P214, DOI 10.1016/j.neuroscience.2009.02.085 COLEMAN JR, 1994, HEARING RES, V80, P209, DOI 10.1016/0378-5955(94)90112-0 Davis R J, 1999, Biochem Soc Symp, V64, P1 Dhandapani KM, 2007, EXP GERONTOL, V42, P70, DOI 10.1016/j.exger.2006.06.032 Dubey RK, 2001, J APPL PHYSIOL, V91, P1868 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Guimaraes P, 2004, HEARING RES, V192, P83, DOI 10.1016/j.heares.2004.01.013 Guimaraes P, 2006, P NATL ACAD SCI USA, V103, P14246, DOI 10.1073/pnas.0606891103 Haggard M, 1978, Br J Audiol, V12, P105, DOI 10.3109/03005367809078862 Hamden K, 2007, J PHYSIOL BIOCHEM, V63, P195 Hellgren M, 2009, MATURITAS, V62, P287, DOI 10.1016/j.maturitas.2009.01.004 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392 KANEKO Y, 1970, ARCHIV OTOLARYNGOL, V92, P457 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 McFadden D, 2000, HEARING RES, V142, P23, DOI 10.1016/S0378-5955(00)00002-2 Meltser I, 2008, J CLIN INVEST, V118, P1563, DOI 10.1172/JCI32796 Moskowitz D, 2006, ALTERN MED REV, V11, P208 Moss RL, 1999, STEROIDS, V64, P14, DOI 10.1016/S0039-128X(98)00092-0 Persky AM, 2000, P SOC EXP BIOL MED, V223, P59, DOI 10.1046/j.1525-1373.2000.22308.x Ramirez VD, 1996, FRONT NEUROENDOCRIN, V17, P402, DOI 10.1006/frne.1996.0011 Sakamoto H, 2003, ENDOCRINOLOGY, V144, P4466, DOI 10.1210/en.2003-0307 Sasahara K, 2007, J NEUROSCI, V27, P7408, DOI 10.1523/JNEUROSCI.0710-07.2007 SOBKOWICZ HM, 1993, ACTA OTO-LARYNGOL, P3 Suzuki S, 2006, ENDOCRINE, V29, P209, DOI 10.1385/ENDO:29:2:209 Tabuchi K, 2007, NEUROSCIENCE, V149, P213, DOI 10.1016/j.neuroscience.2007.06.061 Takaoka M, 2002, CLIN SCI, V103, p434S THEOPOLD HM, 1977, ACTA OTO-LARYNGOL, V84, P57, DOI 10.3109/00016487709123942 Tsutsui K, 2006, CEREBELLUM, V5, P89, DOI 10.1080/14734220600697211 VANDEWAT.T, 1974, ANN OTO RHINOL LARYN, V83, P1 Wang J, 2003, J NEUROSCI, V23, P8596 WRIGHT A, 1987, ACTA OTO-LARYNGOL, P1 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X NR 37 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2010 VL 261 IS 1-2 BP 67 EP 74 DI 10.1016/j.heares.2010.01.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 577AV UT WOS:000276193200010 PM 20074632 ER PT J AU Fowler, CG Chiasson, KB Leslie, TH Thomas, D Beasley, TM Kemnitz, JW Weindruch, R AF Fowler, Cynthia G. Chiasson, Kirstin Beach Leslie, Tami Hanson Thomas, Denise Beasley, T. Mark Kemnitz, Joseph W. Weindruch, Richard TI Auditory function in rhesus monkeys: Effects of aging and caloric restriction in the Wisconsin monkeys five years later SO HEARING RESEARCH LA English DT Article DE Hearing; Aging; Presbycusis; Age-related hearing loss; Monkeys; Otoacoustic emissions (OAE); Caloric restriction (diet restriction); Auditory brainstem response (ABR) ID PRODUCT OTOACOUSTIC EMISSIONS; UNIVERSITY-OF-WISCONSIN; DIETARY RESTRICTION; MACACA-MULATTA; HEARING-LOSS; COCHLEAR PATHOLOGY; EVOKED-RESPONSE; AGE; PRESBYCUSIS; THRESHOLDS AB Caloric restriction (CR) slows aging in many species and protects some animals from age-related hearing loss (ARHL), but the effect on humans is not yet known. Because rhesus monkeys are long-lived primates that are phylogenically closer to humans than other research animals are, they provide a better model for studying the effects of CR in aging and ARHL Subjects were from the pool of 55 rhesus monkeys aged 15-28 years who had been in the Wisconsin study on CR and aging for 8-13.5 years. Distortion product otoacoustic emissions (DPOAE) with 12 frequencies from 2211 to 8837 Hz and auditory brainstem response (ABR) thresholds from clicks and 8, 16, and 32 kHz tone bursts were obtained. DPOAE levels declined linearly at approximately 1 dB/year, but that rate doubled for the highest frequencies in the oldest monkeys. There were no interactions for diet condition or sex. ABR thresholds to clicks and tone bursts showed increases with aging. Borderline significance was shown for diet in the thresholds at 8 kHz stimuli, with monkeys on caloric restriction having lower thresholds. Because the rhesus monkeys have a maximum longevity of 40 years, the full benefits of CR may not yet be realized. (C) 2010 Elsevier B.V. All rights reserved. C1 [Fowler, Cynthia G.] Univ Wisconsin, Dept Commun Disorders, Madison, WI 53706 USA. [Chiasson, Kirstin Beach] Nationwide Childrens Hosp, Columbus, OH 43205 USA. [Leslie, Tami Hanson] Greater Milwaukee Otolaryngol LLC, Greenfield, WI 53220 USA. [Thomas, Denise] Childrens Mem Hosp, Chicago, IL 60614 USA. [Beasley, T. Mark] Univ Alabama, Dept Biostat, Sch Publ Hlth, Birmingham, AL 35294 USA. [Kemnitz, Joseph W.] Univ Wisconsin, Wisconsin Natl Primate Res Ctr, Dept Physiol, Madison, WI 53715 USA. [Weindruch, Richard] Univ Wisconsin, Dept Med, William S Middleton Mem Vet Hosp, Madison, WI 53705 USA. RP Fowler, CG (reprint author), Univ Wisconsin, Dept Commun Disorders, 1975 Willow Dr, Madison, WI 53706 USA. EM cgfowler@wisc.edu; Kirstin.Chiasson@nationwidechildrens.org; tamil@gmodocs.com; DThomas@childrensmemorial.org; mbeasley@ms.soph.uab.edu; kemnitz@primate.wisc.edu; rhweindr@wisc.edu FU NIH [P01 AG11915]; National Primate Research Center [RR000167] FX This work was supported in part by NIH P01 AG11915. The Wisconsin National Primate Research Center is supported in part by NIH Grant RR000167. The authors would like to thank Scott Baum for assistance with the animals, and two anonymous reviewers for comments on an earlier version of this paper. Portions of these data were presented at the International Evoked Response Audiometry Study Group, Havana, Cuba, 2005. CR American National Standards Institute, 1987, S3391987 ANSI Anderson RM, 2006, EXP GERONTOL, V41, P1247, DOI 10.1016/j.exger.2006.10.019 Anderson RM, 2009, TOXICOL PATHOL, V37, P47, DOI 10.1177/0192623308329476 BEHAR I, 1965, J COMP PHYSIOL PSYCH, V59, P426, DOI 10.1037/h0022047 BENNETT CL, 1983, BEHAV NEUROSCI, V97, P602, DOI 10.1037//0735-7044.97.4.602 BESS FH, 1989, J AM GERIATR SOC, V37, P123 COLEMAN RJ, 2008, J GERONTOL A-BIOL, V63, P556 Coleman RJ, 2009, SCIENCE, V325, P201 Dalton DS, 1998, DIABETES CARE, V21, P1540, DOI 10.2337/diacare.21.9.1540 Dorn Patricia A., 1998, Journal of the Acoustical Society of America, V104, P964, DOI 10.1121/1.423339 Fowler CG, 2002, HEARING RES, V169, P24, DOI 10.1016/S0378-5955(02)00335-0 Fowler CG, 2008, INT J AUDIOL, V47, P209, DOI 10.1080/14992020701851882 Frisina RD, 2006, HEARING RES, V216, P216, DOI 10.1016/j.heares.2006.02.003 Frisina ST, 2006, HEARING RES, V211, P103, DOI 10.1016/j.heares.2005.09.002 INGRAM DK, 1990, J GERONTOL, V45, pB148 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 KEMNITZ JW, 1993, J GERONTOL, V48, pB17 LANE MA, 1992, ANN NY ACAD SCI, V673, P36, DOI 10.1111/j.1749-6632.1992.tb27434.x LASKY RE, 2002, AUDIOLOGY, V39, P61 LASKY RE, 1995, NEUROTOXICOL TERATOL, V17, P633, DOI 10.1016/0892-0362(95)02006-3 Lasky RE, 1999, HEARING RES, V136, P35, DOI 10.1016/S0378-5955(99)00100-8 LONSBURYMARTIN BL, 1991, J ACOUST SOC AM, V89, P1749, DOI 10.1121/1.401009 Meyer TE, 2006, J AM COLL CARDIOL, V47, P398, DOI 10.1016/j.jacc.2005.08.069 Mills DM, 2007, J ACOUST SOC AM, V122, P2203, DOI 10.1121/1.2770543 PARK JC, 1990, HEARING RES, V48, P275, DOI 10.1016/0378-5955(90)90067-Y PFINGST BE, 1978, HEARING RES, V1, P43, DOI 10.1016/0378-5955(78)90008-4 Ramsey JJ, 2000, EXP GERONTOL, V35, P1131, DOI 10.1016/S0531-5565(00)00166-2 ROSEN S, 1965, B NEW YORK ACAD MED, V41, P1052 Roth GS, 2004, SCIENCE, V305, P1423, DOI 10.1126/science.1102541 ROWE MJ, 1978, ELECTROEN CLIN NEURO, V44, P459, DOI 10.1016/0013-4694(78)90030-5 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Someya S, 2007, NEUROBIOL AGING, V28, P1613, DOI 10.1016/j.neurobiolaging.2006.06.024 SWEET RJ, 1988, AUDIOLOGY, V27, P305 TIGGES J, 1988, AM J PRIMATOL, V15, P263, DOI 10.1002/ajp.1350150308 Torre P, 2004, NEUROBIOL AGING, V25, P945, DOI 10.1016/j.neurobiolaging.2003.09.006 Torre P, 2000, AUDIOLOGY, V39, P300 Torre P, 2000, HEARING RES, V142, P131, DOI 10.1016/S0378-5955(00)00025-3 Uchida Y, 2008, EAR HEARING, V29, P176 Weindruch R., 1988, RETARDATION AGING DI WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F NR 40 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2010 VL 261 IS 1-2 BP 75 EP 81 DI 10.1016/j.heares.2010.01.006 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 577AV UT WOS:000276193200011 PM 20079820 ER PT J AU Seeber, BU Kerber, S Hafter, ER AF Seeber, Bernhard U. Kerber, Stefan Hafter, Ervin R. TI A system to simulate and reproduce audio-visual environments for spatial hearing research SO HEARING RESEARCH LA English DT Article DE Binaural hearing; Virtual acoustics; Auralization; Audio-visual interaction; Hearing impairment; Room simulation ID BILATERAL COCHLEAR IMPLANTS; BOX LOUDSPEAKER SYSTEMS; LOCALIZATION; MODEL AB The article reports the experience gained from two implementations of the "Simulated Open-Field Environment" (SOFE), a setup that allows sounds to be played at calibrated levels over a wide frequency range from multiple loudspeakers in an anechoic chamber. Playing sounds from loudspeakers in the free-field has the advantage that each participant listens with their own ears, and individual characteristics of the ears are captured in the sound they hear. This makes an easy and accurate comparison between various listeners with and without hearing devices possible. The SOFE uses custom calibration software to assure individual equalization of each loudspeaker. Room simulation software creates the spatio-temporal reflection pattern of sound sources in rooms which is played via the SOFE loudspeakers. The sound playback system is complemented by a video projection facility which can be used to collect or give feedback or to study auditory-visual interaction. The article discusses acoustical and technical requirements for accurate sound playback against the specific needs in hearing research. An introduction to software concepts is given which allow easy, high-level control of the setup and thus fast experimental development, turning the SOFE into a "Swiss army knife" tool for auditory, spatial hearing and audio-visual research. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved. C1 [Seeber, Bernhard U.; Kerber, Stefan] MRC Inst Hearing Res, Nottingham NG7 2RD, England. [Seeber, Bernhard U.; Hafter, Ervin R.] Univ Calif Berkeley, Dept Psychol, Auditory Percept Lab, Berkeley, CA 94530 USA. RP Seeber, BU (reprint author), MRC Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. EM seeber@ihr.mrc.ac.uk; stefan@ihr.mrc.ac.uk; hafter@berkeley.edu FU NIH NIDCD [00087]; Medical Research Council (UK, Nottingham) FX We would like to thank the many who helped creating the two setups. These are the members of the electrical workshop of the Psychology Department at the University Berkeley: Ted Crum, Steve Lones, Eric Eichorn and of the mechanical workshop: Edward Claire. At the MRC Institute of Hearing Research these are: Dave Bullock, John Chambers, Marc Reeve, Cameron Shaw, Mike Kasili, Dr. Andrew Sidwell, Andrew Lavens from the electrical, mechanical and computer workshops and Dr. Victor Chilekwa and Damon McCartney for help with programming the visual environment.This work was supported by NIH NIDCD 00087 (Berkeley) and by the intramural programme of the Medical Research Council (UK, Nottingham). CR BERKHOUT AJ, 1993, J ACOUST SOC AM, V93, P2764, DOI 10.1121/1.405852 Blauert J., 1997, SPATIAL HEARING BOLT RH, 1950, J ACOUST SOC AM, V22, P328, DOI 10.1121/1.1906608 Brungart DS, 1999, J ACOUST SOC AM, V106, P1465, DOI 10.1121/1.427180 DEANE GB, 1994, J ACOUST SOC AM, V96, P2897, DOI 10.1121/1.411299 Djelani T, 2001, ACUSTICA, V87, P253 GERZON MA, 1973, J AUDIO ENG SOC, V21, P2 HAFTER E, 2004, P 18 INT C AC KY JAP, V5, P3751 *ISO, 2003, 37452003 EN ISO DTSC KIRSZENSTEIN J, 1984, APPL ACOUST, V17, P275, DOI 10.1016/0003-682X(84)90011-2 KLEINER M, 1993, J AUDIO ENG SOC, V41, P861 KNOWLES HS, 1954, ACUSTICA, V4, P80 KREBBER W, 1998, FORTSCHRITTE AKUSTIK, P136 Kuttruff H., 2007, ACOUSTICS INTRO LEE H, 1988, APPL ACOUST, V24, P87, DOI 10.1016/0003-682X(88)90033-3 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 Moore B. C. J., 2007, COCHLEAR HEARING LOS Pulkki V, 1997, J AUDIO ENG SOC, V45, P456 RIFE DD, 1989, J AUDIO ENG SOC, V37, P419 SEEBER B, 2008, J ACOUST SOC AM, V123, P3169, DOI 10.1121/1.2933233 SEEBER B, 2007, FORTSCHRITTE AKUSTIK, P375 Seeber B, 2002, ACTA ACUST UNITED AC, V88, P446 Seeber BU, 2007, HEARING - FROM SENSORY PROCESSING TO PERCEPTION, P475, DOI 10.1007/978-3-540-73009-5_51 Seeber B. U., 2003, P 9 INT C AUD DISPL, P259 Seeber BU, 2004, J ACOUST SOC AM, V116, P1698, DOI 10.1121/1.1776192 Seeber BU, 2008, J ACOUST SOC AM, V123, P1030, DOI 10.1121/1.2821965 SHELTON BR, 1980, PERCEPT PSYCHOPHYS, V28, P589, DOI 10.3758/BF03198830 SMALL RH, 1972, J AUDIO ENG SOC, V20, P798 SMALL RH, 1973, J AUDIO ENG SOC, V21, P11 Stecker GC, 2002, J ACOUST SOC AM, V112, P1046, DOI 10.1121/1.1497366 Vorlander M, 2008, RWTHEDITION, P1 WEGEL RL, 1924, PHYS REV, V23, P43 Zwicker E, 1999, PSYCHOACOUSTICS FACT NR 33 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2010 VL 260 IS 1-2 BP 1 EP 10 DI 10.1016/j.heares.2009.11.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559RR UT WOS:000274844400001 PM 19909802 ER PT J AU Nishioka, R Takeda, T Kakigi, A Okada, T Takebayashi, S Taguchi, D Nishimura, M Hyodo, M AF Nishioka, R. Takeda, T. Kakigi, A. Okada, T. Takebayashi, S. Taguchi, D. Nishimura, M. Hyodo, M. TI Expression of aquaporins and vasopressin type 2 receptor in the stria vascularis of the cochlea SO HEARING RESEARCH LA English DT Article DE AQPs; V2-R; Water homeostasis; Stria vascularis; Gap junction; Na-K-CI cotransporter ID K-CL COTRANSPORTER; RAT INNER-EAR; WATER CHANNEL PROTEIN; ENDOLYMPHATIC SAC; GUINEA-PIG; IMMUNOHISTOCHEMICAL LOCALIZATION; TRANSPORT; IMMUNOLOCALIZATION; PERMEABILITY; HOMEOSTASIS AB Recently, considerable evidence has been accumulated to support the novel view that water homeostasis in the inner ear is regulated via the vasopressin-aquaporin 2 (VP-AQP2) system in the same fashion as in the kidney. Indeed, multiple subtypes of AQPs including AQP-2 are reported to be expressed in the cochlea. However, the mechanism that underlies VP-AQP-2 mediated water homeostasis remains to be elucidated. In the present study, the localizations of AQP-1, -2,-3,-4, -5, -7, -8, -9, and vasopressin type 2 receptor (V2-R) in the stria vascularis (SV) were molecular biologically and immunohistochemically examined to evaluate the role of the AQP water channel system in water homeostasis of the SV. A RTPCR study revealed that AQPs and V2-R mRNA are expressed in the cochlea. As for their immunohistochemical localization, the AQP-2 protein is expressed on the basal side of the basal cells of the SV, and proteins of AQP-3 and V2-R are expressed on the apical side of the basal cells. AQP-7 and -9 proteins are expressed on the apical side of marginal cells. AQP-4, -5, and -8 protein expressions could not be detected in the lateral wall of the cochlea. From the present results, water flux in the SV is thought to be regulated at the level of the basal cells by vasopressin. Furthermore, such a distribution of AQP-2, 3, and V2-R suggests that VP-AQP-2 mediated water transport might work actively in the basal cells from perilymph towards endolymph containing AQP-1, -7 and -9. (C) 2009 Elsevier B.V. All rights reserved. C1 [Nishioka, R.; Takeda, T.; Kakigi, A.; Hyodo, M.] Kochi Med Sch, Dept Otolaryngol Head & Neck Surg, Kochi 7838505, Japan. [Okada, T.] Kochi Med Sch, Dept Anat, Kochi 7838505, Japan. [Takebayashi, S.] Japanese Red Cross Wakayama Med Ctr, Dept Otolaryngol, Wakayama, Japan. [Taguchi, D.] Tottori Univ, Div Otolaryngol Head & Neck Surg, Tottori 680, Japan. [Nishimura, M.] Osaka Univ, Dept Otolaryngol, Grad Sch Med, Osaka, Japan. RP Nishioka, R (reprint author), Kochi Med Sch, Dept Otolaryngol, Nanko Ku, Oko Cho, Kochi 7838505, Japan. EM rnishioka@kochi-u.ac.jp FU Ministry of Education, Culture, Sports, and Technology of Japan [20591987]; Ministry of Health, Labor, and Welfare of Japan FX We thank Ms. Aya Uchida for her technical assistant. This study was supported by a Grant-in Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, and Technology of Japan (No. 20591987), and a Health and Labor Science Research Grant for Research on Specific Disease (Vestibular Disorders) from the Ministry of Health, Labor, and Welfare of Japan (2007). CR AGRE P, 1993, AM J PHYSIOL, V265, pF461 Beitz E, 1999, HEARING RES, V132, P76, DOI 10.1016/S0378-5955(99)00036-2 Burgoyne RD, 2003, PHYSIOL REV, V83, P581, DOI 10.1152/physrev.00031.2002 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 Ferri D, 2003, HEPATOLOGY, V38, P947, DOI 10.1053/jhep.2003.50397 Fukushima K, 2005, ORL J OTO-RHINO-LARY, V67, P282, DOI 10.1159/000089409 Fukushima M, 2002, ACTA OTO-LARYNGOL, V122, P600, DOI 10.1080/000164802320396268 Higashiyama K, 2003, HEARING RES, V186, P1, DOI 10.1016/S0378-5955(03)00226-0 Huang DL, 2002, HEARING RES, V165, P85, DOI 10.1016/S0378-5955(02)00288-5 KONISHI T, 1984, HEARING RES, V15, P51, DOI 10.1016/0378-5955(84)90224-7 Kumagami H, 1998, PFLUG ARCH EUR J PHY, V436, P970, DOI 10.1007/s004240050731 Loo DDF, 1996, P NATL ACAD SCI USA, V93, P13367, DOI 10.1073/pnas.93.23.13367 Lopez IA, 2007, CELL TISSUE RES, V328, P453, DOI 10.1007/s00441-007-0380-z Lowenheim H, 2004, HNO, V52, P673, DOI 10.1007/s00106-004-1128-7 Macaulay N, 2004, NEUROSCIENCE, V129, P1031, DOI 10.1016/j.neuroscience.2004.06.045 Merves M, 2000, LARYNGOSCOPE, V110, P1925, DOI 10.1097/00005537-200011000-00030 Mhatre AN, 2002, HEARING RES, V170, P59, DOI 10.1016/S0378-5955(02)00452-5 Mhatre AN, 1999, BIOCHEM BIOPH RES CO, V264, P157, DOI 10.1006/bbrc.1999.1323 Minami Y, 1998, ACTA OTO-LARYNGOL, P19 Mizuta K, 1997, HEARING RES, V106, P154, DOI 10.1016/S0378-5955(97)00010-5 Nielsen S, 2002, PHYSIOL REV, V82, P205 Nielsen S, 1999, J AM SOC NEPHROL, V10, P647 NISHIMURA M, 2008, ACTA OTO-LARYNGOL, V3, P1 Orce G, 2004, CAN J PHYSIOL PHARM, V82, P417, DOI 10.1139/Y04-037 Pace AJ, 2000, J CLIN INVEST, V105, P441, DOI 10.1172/JCI8553 Parisi M, 1997, BIOPHYS CHEM, V68, P255, DOI 10.1016/S0301-4622(97)00069-0 Robben JH, 2004, MOL BIOL CELL, V15, P5693, DOI 10.1091/mbc.E04-04-0337 Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7 Sawada S, 2002, NEUROREPORT, V13, P1127, DOI 10.1097/00001756-200207020-00011 Sawada S, 2003, HEARING RES, V181, P15, DOI 10.1016/S0378-5955(03)00131-X Smith JK, 1999, J INTERF CYTOK RES, V19, P929, DOI 10.1089/107999099313479 Stankovic KM, 1995, AM J PHYSIOL-CELL PH, V269, pC1450 STERKERS O, 1988, PHYSIOL REV, V68, P1083 STERKERS O, 1984, AM J PHYSIOL, V247, pF602 Strange K, 2004, ADV PHYSIOL EDUC, V28, P155, DOI 10.1152/advan.00034.2004 SZIKLAI I, 1987, HEARING RES, V29, P245, DOI 10.1016/0378-5955(87)90171-7 Taguchi D, 2008, ACTA OTO-LARYNGOL, V128, P832, DOI 10.1080/00016480701765691 Takeda T, 2003, HEARING RES, V182, P9, DOI 10.1016/S0378-5955(03)00135-7 Takumi Y, 1998, EUR J NEUROSCI, V10, P3584, DOI 10.1046/j.1460-9568.1998.00360.x VERSELIS V, 1986, BIOPHYS J, V50, P1003 Wangemann P., 1996, COCHLEA, P130 Yasui M, 1999, P NATL ACAD SCI USA, V96, P5808, DOI 10.1073/pnas.96.10.5808 Zeuthen T, 2002, INT REV CYTOL, V215, P259 ZHAO HB, 2006, J MEMBRANE BIOL, V209, P1 Zhong SX, 2003, ORL J OTO-RHINO-LARY, V65, P284, DOI 10.1159/000075227 NR 45 TC 11 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2010 VL 260 IS 1-2 BP 11 EP 19 DI 10.1016/j.heares.2009.09.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559RR UT WOS:000274844400002 PM 19796672 ER PT J AU Stronks, HC Aarts, MCJ Klis, SFL AF Stronks, H. Christiaan Aarts, Mark C. J. Klis, Sjaak F. L. TI Effects of isoflurane on auditory evoked potentials in the cochlea and brainstem of guinea pigs SO HEARING RESEARCH LA English DT Article DE Isoflurane; Guinea pig; Compound action potential; Cochlear microphonics; Auditory brainstem response ID MIDDLE-EAR PRESSURE; NITROUS-OXIDE ANESTHESIA; ELECTROPHYSIOLOGICAL EVIDENCE; SYNAPTIC-TRANSMISSION; NOXIOUS-STIMULATION; NMDA RECEPTORS; RESPONSES; PROPOFOL; HUMANS; NERVE AB Electrophysiological recordings of the auditory system are commonly performed in deeply anesthetized animals. This study evaluated the effects of various concentrations of the volatile anesthetic isoflurane (1-3%) on the compound action potential (CAP), cochlear microphonic (CM) and auditory brainstem response (ABR). Recordings were initiated in the awake, lightly restrained animal. Anesthesia was induced with a single dose of Hypnorm (R) (fentanyl and fluanisone). After tracheostomy increasing isoflurane concentrations were applied in N(2)O/O(2) Via controlled ventilation. Data were compared to recordings in the awake animal using repeated measures ANOVA and Dunnett's post hoc test. On average, isoflurane dose-dependently suppressed the amplitude and increased the latency of the CAP. CM amplitude was suppressed. These effects were most profound at high frequencies and were typically significant at isoflurane concentrations of 2.5% and 3%. Amplitude and latency of the second negative peak of the CAP (N(2)) were affected to a greater extent compared to the first peak (N(1)). On average, isoflurane dose-dependently reduced the amplitude and increased the latency of the ABR. These effects were typically significant at an isoflurane concentration of 2%. Effects on peak IV and V were more pronounced compared to the early peaks I and III. (C) 2009 Elsevier B.V. All rights reserved. C1 [Stronks, H. Christiaan; Aarts, Mark C. J.; Klis, Sjaak F. L.] Univ Med Ctr Utrecht, Dept Otorhinolaryngol, Rudolf Magnus Inst Neurosci, NL-3508 GA Utrecht, Netherlands. RP Klis, SFL (reprint author), Univ Med Ctr Utrecht, Dept Otorhinolaryngol, Rudolf Magnus Inst Neurosci, Heidelberglaan 100,Room G-02-531,POB 85500, NL-3584 CX Utrecht, Netherlands. EM c.stronks@umcutrecht.nl; m.aarts2@umcu-trecht.nl; s.Klis@umcutrecht.nl FU Heinsius-Houbolt fund, Wassenaar, The Netherlands FX This work was funded by the Heinsius-Houbolt fund, Wassenaar, The Netherlands.The authors wish to thank Rik Mansvelt-Beck and Josine Verhaal for technical assistance and are grateful to Rene van de Vosse for data acquisition and analysis software and technical assistance. CR BERGJOHNSEN J, 1990, BRAIN RES, V507, P28, DOI 10.1016/0006-8993(90)90517-F BROWN MC, 1983, HEARING RES, V10, P345, DOI 10.1016/0378-5955(83)90097-7 CAZALS Y, 1980, HEARING RES, V2, P95, DOI 10.1016/0378-5955(80)90031-3 Chinn K, 1997, LARYNGOSCOPE, V107, P357, DOI 10.1097/00005537-199703000-00015 CHURCH MW, 1987, BRAIN RES, V403, P72, DOI 10.1016/0006-8993(87)90124-7 CHURCH MW, 1987, ELECTROEN CLIN NEURO, V67, P570, DOI 10.1016/0013-4694(87)90060-5 DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 Ozturk O, 2007, INT J PEDIATR OTORHI, V71, P1439, DOI 10.1016/j.ijport.2007.05.022 deSauvage RC, 1996, HEARING RES, V102, P15, DOI 10.1016/S0378-5955(96)00137-2 Doyle WJ, 2003, J APPL PHYSIOL, V94, P199, DOI 10.1152/japplphysiol.00634.2002 DRUMMOND JC, 1985, ANESTHESIOLOGY, V63, P249, DOI 10.1097/00000542-198509000-00002 DUBOIS MY, 1982, ANESTH ANALG, V61, P898 Dutton RC, 1999, ANESTHESIOLOGY, V91, P1209, DOI 10.1097/00000542-199911000-00010 Eger EI, 2004, AM J HEALTH-SYST PH, V61, pS3 Ferber-Viart C, 1998, HEARING RES, V121, P53, DOI 10.1016/S0378-5955(98)00064-1 Grasshoff Christian, 2005, Curr Opin Anaesthesiol, V18, P386, DOI 10.1097/01.aco.0000174961.90135.dc Hauser Daniela S., 2005, Journal of Pharmacological and Toxicological Methods, V52, P106, DOI 10.1016/j.vascn.2005.03.003 Jia F, 2008, J PHARMACOL EXP THER, V324, P1127, DOI 10.1124/jpet.107.134569 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7 Kochs E, 2001, ANESTHESIOLOGY, V95, P1141, DOI 10.1097/00000542-200111000-00018 Kochs E, 1999, ANESTH ANALG, V88, P1412, DOI 10.1097/00000539-199906000-00039 Legatt AD, 2002, J CLIN NEUROPHYSIOL, V19, P396, DOI 10.1097/00004691-200210000-00003 Leistritz L, 2002, CLIN NEUROPHYSIOL, V113, P930, DOI 10.1016/S1388-2457(02)00064-0 LLOYDTHOMAS AR, 1990, BRIT J ANAESTH, V65, P306, DOI 10.1093/bja/65.3.306 MacIver MB, 1996, ANESTHESIOLOGY, V85, P823, DOI 10.1097/00000542-199610000-00018 MANNINEN PH, 1985, ANESTH ANALG, V64, P43 MARSH RR, 1984, ELECTROEN CLIN NEURO, V57, P289, DOI 10.1016/0013-4694(84)90130-5 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X MOLLER AR, 1983, EXP NEUROL, V80, P633, DOI 10.1016/0014-4886(83)90313-8 Nishikawa K, 2000, ANESTHESIOLOGY, V92, P228, DOI 10.1097/00000542-200001000-00035 Ozturk O, 2006, INT J PEDIATR OTORHI, V70, P1231, DOI 10.1016/j.ijporl.2005.12.020 PERREAULT L, 1982, CAN ANAESTH SOC J, V29, P428 PUEL JL, 1991, HEARING RES, V51, P255, DOI 10.1016/0378-5955(91)90042-8 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 Ries CR, 1999, J NEUROPHYSIOL, V81, P1802 SAHLEY TL, 1991, HEARING RES, V55, P133, DOI 10.1016/0378-5955(91)90099-U SAINZ M, 1987, ACTA OTO-LARYNGOL, V103, P613 SAMARA M, 1981, HEARING RES, V5, P337, DOI 10.1016/0378-5955(81)90056-3 SAMRA SK, 1984, ANESTHESIOLOGY, V61, P261, DOI 10.1097/00000542-198409000-00005 SAMRA SK, 1985, ANESTHESIOLOGY, V62, P437, DOI 10.1097/00000542-198504000-00011 Santarelli R, 2003, ACTA OTO-LARYNGOL, V123, P176, DOI 10.1080/0036554021000028108 Schwender D, 1997, ANESTH ANALG, V85, P164, DOI 10.1097/00000539-199707000-00030 SEBEL PS, 1986, BRIT J ANAESTH, V58, P580, DOI 10.1093/bja/58.6.580 SEIFEN AB, 1989, LAB ANIM SCI, V39, P579 SHAPIRO SM, 1984, ELECTROEN CLIN NEURO, V58, P266, DOI 10.1016/0013-4694(84)90112-3 Sharpe RM, 1997, BRIT J ANAESTH, V78, P282 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 TASAKI I, 1952, J NEUROPHYSIOL, V15, P497 TEAS DC, 1962, J ACOUST SOC AM, V34 THORNTON C, 1989, BRIT J ANAESTH, V63, P113, DOI 10.1093/bja/63.1.113 THORNTON C, 1992, BRIT J ANAESTH, V68, P508, DOI 10.1093/bja/68.5.508 VELLUTI R, 1986, ELECTROEN CLIN NEURO, V64, P556, DOI 10.1016/0013-4694(86)90194-X Verbny YI, 2005, ANESTHESIOLOGY, V102, P962, DOI 10.1097/00000542-200505000-00015 Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003 WILLISTON JS, 1982, AUDIOLOGY, V21, P457 Wolfensohn S., 1994, HDB LAB ANIMAL MANAG NR 57 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2010 VL 260 IS 1-2 BP 20 EP 29 DI 10.1016/j.heares.2009.10.015 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559RR UT WOS:000274844400003 PM 19878711 ER PT J AU Zhang, PX Hartmann, WM AF Zhang, Peter Xinya Hartmann, William M. TI On the ability of human listeners to distinguish between front and back SO HEARING RESEARCH LA English DT Article DE Localization; Front/back; Human; Simulation; Transaural; Localization bands ID HUMAN SOUND LOCALIZATION; MEDIAN PLANE LOCALIZATION; DORSAL COCHLEAR NUCLEUS; MONAURAL SPECTRAL CUES; HEADPHONE SIMULATION; SAGITTAL PLANE; VERTICAL-PLANE; LATERAL ANGLE; NARROW-BAND; PINNA CUES AB In order to determine whether a sound source is in front or in back, listeners can use location-dependent spectral cues caused by diffraction from their anatomy. This capability was studied using a precise virtual reality technique (VRX) based on a transaural technology. Presented with a virtual baseline simulation accurate up to 16 kHz, listeners could not distinguish between the simulation and a real source. Experiments requiring listeners to discriminate between front and back locations were performed using controlled modifications of the baseline simulation to test hypotheses about the important spectral cues. The experiments concluded: (1) Front/back cues were not confined to any particular 1/3rd or 2/3rd octave frequency region. Often adequate cues were available in any of several disjoint frequency regions. (2) Spectral dips were more important than spectral peaks. (3) Neither monaural cues nor interaural spectral level difference cues were adequate. (4) Replacing baseline spectra by sharpened spectra had minimal effect on discrimination performance. (5) When presented with an interaural time difference less than 200 mu s, which pulled the image to the side, listeners still successfully discriminated between front and back, suggesting that front/back discrimination is independent of azimuthal localization within certain limits. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, Peter Xinya] Columbia Coll Chicago, Dept Audio Arts & Acoust, Chicago, IL 60605 USA. [Zhang, Peter Xinya; Hartmann, William M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Zhang, PX (reprint author), Columbia Coll Chicago, Dept Audio Arts & Acoust, Chicago, IL 60605 USA. EM pzhang@colum.edu; hartmann@pa.msu.edu FU NIDCD [DC00181] FX Dr. Brad Rakerd provided important technical help in early stages of this work and suggested Experiment 8. We are also grateful to Dr. John Middlebrooks, and Dr. Ewan Macpherson for helpful discussions. This work was supported by the NIDCD Grant DC00181. CR Algazi VR, 2001, J ACOUST SOC AM, V109, P1110, DOI 10.1121/1.1349185 ASANO F, 1990, J ACOUST SOC AM, V88, P159, DOI 10.1121/1.399963 BLAUERT J, 1969, ACUSTICA, V22, P205 Blauert J., 1983, SPATIAL HEARING PSYC BLOOM PJ, 1977, J ACOUST SOC AM, V61, P820, DOI 10.1121/1.381346 BLOOM PJ, 1977, J AUDIO ENG SOC, V25, P560 COOPER DH, 1989, J AUDIO ENG SOC, V37, P3 Duda R.O., 1997, BINAURAL SPATIAL HEA, P49 GARDNER MB, 1973, J ACOUST SOC AM, V54, P1489, DOI 10.1121/1.1914447 HARTMANN WM, 1993, J ACOUST SOC AM, V94, P2083, DOI 10.1121/1.407481 Hartmann WM, 1996, J ACOUST SOC AM, V99, P3678, DOI 10.1121/1.414965 HEBRANK J, 1974, J ACOUST SOC AM, V56, P935, DOI 10.1121/1.1903351 HEBRANK J, 1974, J ACOUST SOC AM, V56, P1829, DOI 10.1121/1.1903520 Hofman PM, 2003, EXP BRAIN RES, V148, P458, DOI 10.1007/s00221-002-1320-5 Hofman PM, 1998, NAT NEUROSCI, V1, P417, DOI 10.1038/1633 HUMANSKI RA, 1988, J ACOUST SOC AM, V83, P2300, DOI 10.1121/1.396361 Jin C, 2004, J ACOUST SOC AM, V115, P3124, DOI 10.1121/1/1.1736649 Kulkarni A, 2000, J ACOUST SOC AM, V107, P1071, DOI 10.1121/1.428571 Langendijk EHA, 2002, J ACOUST SOC AM, V112, P1583, DOI 10.1121/1.1501901 MACPHERSON EA, 1999, ASS RES OT ABSTR Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898 Macpherson EA, 2003, J ACOUST SOC AM, V114, P430, DOI 10.1121/1.1582174 Macpherson EA, 2007, J ACOUST SOC AM, V121, P3677, DOI 10.1121/1.2722048 Macpherson EA, 2000, J ACOUST SOC AM, V108, P1834, DOI 10.1121/1.1310196 Martin RL, 2004, JARO-J ASSOC RES OTO, V5, P80, DOI 10.1007/s10162-003-3003-8 MELLERT V, 1971, THESIS GOTTINGEN MIDDLEBROOKS JC, 1992, J ACOUST SOC AM, V92, P2607, DOI 10.1121/1.404400 Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1480, DOI 10.1121/1.427176 Morimoto M, 2001, J ACOUST SOC AM, V109, P1596, DOI 10.1121/1.1352084 Morimoto M., 1980, Journal of the Acoustical Society of Japan (E), V1 MUSICANT AD, 1984, J ACOUST SOC AM, V75, P1195, DOI 10.1121/1.390770 NELKEN I, 1994, J NEUROPHYSIOL, V71, P2446 OLDFIELD SR, 1984, PERCEPTION, V13, P601, DOI 10.1068/p130601 Parsons JE, 2001, ANN BIOMED ENG, V29, P887, DOI 10.1114/1.1408924 SABIN AT, 2005, ASS RES OT ABSTR SCHROEDE.MR, 1970, IEEE T INFORM THEORY, V16, P85, DOI 10.1109/TIT.1970.1054411 Schroeder M.R., 1963, IEEE International Convention Record, V11 SHAW EAG, 1968, J ACOUST SOC AM, V44, P240, DOI 10.1121/1.1911059 SMITH BK, 1986, J ACOUST SOC AM, V80, P1631, DOI 10.1121/1.394327 Vliegen J, 2004, J ACOUST SOC AM, V115, P1705, DOI 10.1121/1.1687423 WATKINS AJ, 1978, J ACOUST SOC AM, V63, P1152, DOI 10.1121/1.381823 Wightman F. L., 1997, BINAURAL SPATIAL HEA, P1 WIGHTMAN FL, 1990, J ACOUST SOC AM, V105, P1162 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557 WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P868, DOI 10.1121/1.397558 Zahorik P, 2006, J ACOUST SOC AM, V120, P343, DOI 10.1121/1.2208429 ZAKARAUSKAS P, 1993, J ACOUST SOC AM, V94, P1323, DOI 10.1121/1.408160 ZHANG PX, 2006, THESIS MICHIGAN STAT NR 49 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2010 VL 260 IS 1-2 BP 30 EP 46 DI 10.1016/j.heares.2009.11.001 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559RR UT WOS:000274844400004 PM 19900525 ER PT J AU Ohlemiller, KK Rosen, AD Gagnon, PM AF Ohlemiller, Kevin K. Rosen, Allyson D. Gagnon, Patricia M. TI A major effect QTL on chromosome 18 for noise injury to the mouse cochlear lateral wall SO HEARING RESEARCH LA English DT Article DE Stria vascularis; Spiral ligament; Spiral limbus; Endocochlear potential; Fibrocytes; C57BL/6; CBA/J; Nirep ID INDUCED HEARING-LOSS; MITOCHONDRIAL DYSFUNCTION; ACOUSTIC TRAUMA; MICE; AGE; SUSCEPTIBILITY; STRAINS; MECHANISMS; GENOTYPE; MODELS AB We recently demonstrated a striking difference among inbred mouse strains in the effects of a single noise exposure, whereby CBA/J and CBA/CaJ (CBA) mice show moderate reversible reduction in the endocochlear potential (EP) while C57BL/6J (B6) mice do not (Ohlemiller, K.K., Gagnon, P.M., 2007. Genetic dependence of cochlear cells and structures injured by noise. Hear. Res. 224, 34-50). Acute EP reduction in CBA was reliably associated with characteristic pathology of the spiral ligament and stria vascularis, both immediately after noise and 8 weeks later. Analysis of B6 x CBA F1 hybrid mice indicated that EP reduction and its anatomic correlates are co-inherited in an autosomal dominant manner. Further analysis of N2 mice resulting from the backcross of F1 hybrids to B6 mice led us to suggest that the EP reduction phenotype principally reflects the influence of a small number of quantitative trait loci (QTLs). Here we report the results of QTL mapping of the EP reduction phenotype in CBA/J using 106 N2 mice from a (CBA x B6) x B6 backcross. Correlation of acute post-noise EP with 135 markers distributed throughout the genome revealed a single major effect QTL on chromosome 18 (12.5 cM, LOD 3.57) (Nirep, for noise-induced reduction in EP QTL, and two marginally significant QTLs on chromosomes 5 and 16 (LOD 1.43 and 1.73, respectively). Our results underscore that fact that different cochlear structures may possess different susceptibilities to noise through the influence of non-overlapping genes. While Nirep and similar-acting QTLs do not appear to influence the extent of permanent hearing loss from a single noise exposure, they could reduce the homeostatic 'reserve' of the lateral wall in protracted or continual exposures, and thereby influence long term threshold stability. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ohlemiller, Kevin K.; Gagnon, Patricia M.] Washington Univ, Fay & Carl Simons Ctr Biol Hearing & Deafness, Dept Otolaryngol, Sch Med, St Louis, MO 63110 USA. [Ohlemiller, Kevin K.; Rosen, Allyson D.] Washington Univ, Sch Med, Program Audiol & Commun Sci, St Louis, MO 63110 USA. RP Ohlemiller, KK (reprint author), Washington Univ, Fay & Carl Simons Ctr Biol Hearing & Deafness, Dept Otolaryngol, Sch Med, 660 S Euclid, St Louis, MO 63110 USA. EM kohlemiller@wustl.edu FU NIH [R01 DC03454, DC08321, P30 DC04665]; Washington University Department of Otolaryngology FX Thanks to Dr. K.R. Johnson for comments on the manuscript, Supported by NIH R01 DC03454, DC08321 (K.K.O.), P30 DC04665 (R. Chole), and Washington University Department of Otolaryngology. CR Ahmad M, 2003, HEARING RES, V175, P82, DOI 10.1016/S0378-5955(02)00713-X BORG E, 1982, HEARING RES, V8, P117, DOI 10.1016/0378-5955(82)90070-3 Bray PJ, 2003, HUM MUTAT, V21, P557, DOI 10.1002/humu.10213 Broman KW, 2003, BIOINFORMATICS, V19, P889, DOI 10.1093/bioinformatics/btg112 Canlon B, 2007, HEARING RES, V226, P61, DOI 10.1016/j.heares.2006.05.009 Davis RR, 1999, HEARING RES, V134, P9, DOI 10.1016/S0378-5955(99)00060-X Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 Dixon MJ, 1999, HUM MOL GENET, V8, P1579, DOI 10.1093/hmg/8.8.1579 Doerge RW, 1996, GENETICS, V142, P285 Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X Gagnon PM, 2007, HEARING RES, V226, P79, DOI 10.1016/j.heares.2006.09.006 Harding GW, 2005, HEARING RES, V204, P90, DOI 10.1016/j.heares.2005.01.004 HENRY KR, 1982, BEHAV GENET, V12, P563, DOI 10.1007/BF01070410 Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 Hoya N, 2004, NEUROREPORT, V15, P1597, DOI 10.1097/01.wnr.0000133226.94662.80 Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006 LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496 Li J, 2001, J BIOL CHEM, V276, P31233, DOI 10.1074/jbc.M104368200 Liberman MC, 1982, NEW PERSPECTIVES NOI, P105 Lucero HA, 2006, CELL MOL LIFE SCI, V63, P2304, DOI 10.1007/s00018-006-6149-9 Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X Ohlemiller KK, 2007, HEARING RES, V224, P34, DOI 10.1016/j.heares.2006.11.005 Ohlemiller KK, 2008, HEARING RES, V245, P5, DOI 10.1016/j.heares.2008.08.007 OHLEMILLER KK, 2009, ASS RES OTOLARYNGOL, V32, P45 Ohlemiller KK, 2009, BRAIN RES, V1277, P70, DOI 10.1016/j.brainres.2009.02.079 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Okamoto Y, 2005, AUDIOL NEURO-OTOL, V10, P220, DOI 10.1159/000084843 Pace AJ, 2001, HEARING RES, V156, P17, DOI 10.1016/S0378-5955(01)00263-5 SAUNDERS JC, 1980, NEW PERSPECTIVES NOI, P229 Schmiedt RA, 2002, J NEUROSCI, V22, P9643 Sen S, 2001, GENETICS, V159, P371 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Wangemann P, 2006, J PHYSIOL-LONDON, V576, P11, DOI 10.1113/jphysiol.2006.112888 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 White CH, 2009, MAMM GENOME, V20, P207, DOI 10.1007/s00335-009-9178-5 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 NR 36 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2010 VL 260 IS 1-2 BP 47 EP 53 DI 10.1016/j.heares.2009.11.006 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559RR UT WOS:000274844400005 PM 19913606 ER PT J AU Baskent, D Eiler, CL Edwards, B AF Baskent, Deniz Eiler, Cheryl L. Edwards, Brent TI Phonemic restoration by hearing-impaired listeners with mild to moderate sensorineural hearing loss SO HEARING RESEARCH LA English DT Article DE Phonemic restoration; Auditory scene analysis; Top-down processing; Bottom-up processing; Hearing impairment; Aging ID SPEECH-RECEPTION THRESHOLD; AUDITORY SCENE ANALYSIS; PERCEPTUAL RESTORATION; STREAM SEGREGATION; BOTTOM-UP; SENTENCE INTELLIGIBILITY; FREQUENCY-SELECTIVITY; CONTINUITY ILLUSION; ELDERLY LISTENERS; INTERVENING NOISE AB The auditory system is capable of perceptually restoring inaudible portions of speech. This restoration may be compromised as a result of hearing impairment, particularly if it is combined with advanced age, because of degradations in the bottom-up and top-down processes. To test this hypothesis, phonemic restoration was quantitatively measured with hearing-impaired listeners of varying ages and degrees of hearing impairment, as well as with a normal hearing control group. The results showed that the restoration benefit was negatively correlated with both hearing impairment and age, supporting the original hypothesis. Group data showed that listeners with mild hearing loss were able to perceptually restore the missing speech segments as well as listeners with normal hearing. By contrast, the moderately-impaired listeners showed no evidence of perceptual restoration. Further analysis using the articulation index showed that listeners with mild hearing loss were able to increase phonemic restoration with audibility. Moderately-impaired listeners, on the other hand, were unable to do so, even when the articulation index was high. The overall findings suggest that, in addition to insufficient audibility, degradations in the bottom-up and/or top-down mechanisms as a result of hearing loss may limit or entirely prevent phonemic restoration. (C) 2009 Elsevier B.V. All rights reserved. C1 [Baskent, Deniz; Eiler, Cheryl L.; Edwards, Brent] Starkey Hearing Res Ctr, Berkeley, CA 94704 USA. RP Baskent, D (reprint author), Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30001, NL-9700 RB Groningen, Netherlands. EM d.baskent@med.umcg.nl; cheryl_eiler@starkey.com; brent_edwards@starkey.com CR Akeroyd M, 2008, INT J AUDIOL, V47, pS53, DOI 10.1080/14992020802301142 Alain C, 2001, J EXP PSYCHOL HUMAN, V27, P1072, DOI 10.1037//0096-1523.27.5.1072 [Anonymous], S351997 ANSI Bacon SP, 1998, J SPEECH LANG HEAR R, V41, P549 BASHFORD JA, 1992, PERCEPT PSYCHOPHYS, V51, P211, DOI 10.3758/BF03212247 BASHFORD JA, 1979, SPEECH COMM PAPER SS, V6, P423 Baskent D, 2006, J ACOUST SOC AM, V120, P2908, DOI 10.1121/1.2354017 Baskent D, 2009, J ACOUST SOC AM, V125, P3995, DOI 10.1121/1.3125329 BASKENT D, 2007, INT S AUD AUD RES IS BERGMAN M, 1976, J GERONTOL, V31, P533 Bregman AS, 1999, PERCEPT PSYCHOPHYS, V61, P195, DOI 10.3758/BF03206882 Bregman AS., 1990, AUDITORY SCENE ANAL Buehler M., 2005, EURASIP J APPL SIG P, V18, P2991 Carlyon RP, 2002, ACTA ACUST UNITED AC, V88, P408 CHERRY C, 1967, NATURE, V214, P1164, DOI 10.1038/2141164a0 Cooke M, 2001, SPEECH COMMUN, V35, P141, DOI 10.1016/S0167-6393(00)00078-9 Cusack R, 2004, J EXP PSYCHOL HUMAN, V30, P643, DOI 10.1037/0096-1523.30.4.643 Darwin C. J., 1995, P387, DOI 10.1016/B978-012505626-7/50013-3 Darwin CJ, 2008, PHILOS T R SOC B, V363, P1011, DOI 10.1098/rstb.2007.2156 Darwin CJ, 2005, PERCEPT PSYCHOPHYS, V67, P1384, DOI 10.3758/BF03193643 Davis MH, 2007, HEARING RES, V229, P132, DOI 10.1016/j.heares.2007.01.014 DIVENYI PL, 2005, FOR AC 2005 BUD HUNG Divenyi PL, 1997, EAR HEARING, V18, P100, DOI 10.1097/00003446-199704000-00002 DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011 Dubno JR, 2008, J ACOUST SOC AM, V123, P462, DOI 10.1121/1.2817362 Dubno JR, 2003, J ACOUST SOC AM, V113, P2084, DOI 10.1121/1.1555611 Edwards B., 2004, SPEECH PROCESSING AU ELMAN JL, 1988, J MEM LANG, V27, P143, DOI 10.1016/0749-596X(88)90071-X FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247 FLORENTINE M, 1980, J SPEECH HEAR RES, V23, P646 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Gaudrain E, 2007, HEARING RES, V231, P32, DOI 10.1016/j.heares.2007.05.001 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 Grimault N, 2001, BRIT J AUDIOL, V35, P173 Grimault N, 2006, Current Topics in Acoustical Research, V4 Husain FT, 2005, J COGNITIVE NEUROSCI, V17, P1275, DOI 10.1162/0898929055002472 *I EL EL ENG, 1969, IEEE REC PRACT SPEEC JERGER J, 1991, EAR HEARING, V12, P103 Kahneman D., 1973, ATTENTION EFFORT Kashino M., 1992, Journal of the Acoustical Society of Japan, V48 Kashino M., 2006, Acoustical Science and Technology, V27, DOI 10.1250/ast.27.318 KATES JM, 1995, J ACOUST SOC AM, V97, P461, DOI 10.1121/1.412274 Katz J, 2002, HDB CLIN AUDIOLOGY Kewley-Port D, 2007, J ACOUST SOC AM, V122, P2365, DOI 10.1121/1.2773986 Killion Mead C., 2002, Seminars in Hearing, V23, P57, DOI 10.1055/s-2002-24976 LEE LW, 1993, J ACOUST SOC AM, V67, P971 Lybarger S., 1963, SIMPLIFIED FITTING S LYBARGER SF, 1944, Patent No. 543278 Mackersie CL, 2001, J SPEECH LANG HEAR R, V44, P19, DOI 10.1044/1092-4388(2001/002) MADIX SG, 2005, AM AC AUD ANN C WASH MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 Moore BCJ, 1999, J ACOUST SOC AM, V105, P400, DOI 10.1121/1.424571 Moore BCJ, 1996, EAR HEARING, V17, P133, DOI 10.1097/00003446-199604000-00007 NELSON DA, 1987, J ACOUST SOC AM, V81, P709, DOI 10.1121/1.395131 NELSON DA, 1991, J SPEECH HEAR RES, V34, P1233 NELSON P, 2009, J ACOUST SOC AM, V125, P2659 Nordqvist P, 2004, J ACOUST SOC AM, V115, P3033, DOI 10.1121/1.1710877 Oppenheim A. V., 1999, DISCRETE TIME SIGNAL Pavlovic CV, 1991, HEARING INSTRUMENTS, V42, P20 PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 Pichora-Fuller MK, 2008, INT J AUDIOL, V47, pS72, DOI 10.1080/14992020802307404 PLOMP R, 1978, J ACOUST SOC AM, V63, P533, DOI 10.1121/1.381753 PLOMP R, 1979, J ACOUST SOC AM, V66, P1333, DOI 10.1121/1.383554 PLOMP R, 1986, J SPEECH HEAR RES, V29, P146 POWERS GL, 1977, J ACOUST SOC AM, V61, P195, DOI 10.1121/1.381255 Rabbitt P., 1968, PSYCHON SCI, V6, P383 Rajan R, 2008, NEUROSCIENCE, V154, P784, DOI 10.1016/j.neuroscience.2008.03.067 REPP BH, 1992, PERCEPT PSYCHOPHYS, V51, P14, DOI 10.3758/BF03205070 Roch MA, 2007, PATTERN RECOGN LETT, V28, P1351, DOI 10.1016/j.patrec.2007.03.002 Rossi-Katz JA, 2005, J ACOUST SOC AM, V118, P2588, DOI 10.1121/1.2031975 SAMUEL AG, 1981, J EXP PSYCHOL GEN, V110, P474, DOI 10.1037/0096-3445.110.4.474 SAMUEL AG, 1981, J EXP PSYCHOL HUMAN, V7, P1124, DOI 10.1037/0096-1523.7.5.1124 Schneider BA, 2000, PSYCHOL AGING, V15, P110, DOI 10.1037//0882-7974.15.1.110 Schneider BA, 2007, J AM ACAD AUDIOL, V18, P559, DOI 10.3766/jaaa.18.7.4 Schneider BA, 2000, HDB AGING COGNITION, P155 Schum D J, 1992, J Am Acad Audiol, V3, P303 Shinn-Cunningham Barbara G, 2008, Trends Amplif, V12, P283, DOI 10.1177/1084713808325306 SHINNCUNNINGHAM BG, 2007, INT S AUD AUD RES IS Shinn-Cunningham BG, 2008, J ACOUST SOC AM, V123, P295, DOI 10.1121/1.2804701 Sommers MS, 1996, PSYCHOL AGING, V11, P333, DOI 10.1037/0882-7974.11.2.333 Srinivasan S, 2005, SPEECH COMMUN, V45, P63, DOI 10.1016/j.specom.2004.09.002 Sussman E, 2002, COGNITIVE BRAIN RES, V13, P393, DOI 10.1016/S0926-6410(01)00131-8 TROUT JD, 1990, LANG SPEECH, V33, P121 Tun PA, 1999, J GERONTOL B-PSYCHOL, V54, pP317 Tun PA, 1998, PSYCHOL AGING, V13, P424, DOI 10.1037//0882-7974.13.3.424 Valentine S, 2008, J SPEECH LANG HEAR R, V51, P1341, DOI 10.1044/1092-4388(2008/07-0193) VERSCHUURE J, 1983, PERCEPT PSYCHOPHYS, V33, P232, DOI 10.3758/BF03202859 Wang D., 2008, TRENDS AMPLIF, V12, P332 WARREN RM, 1984, PSYCHOL BULL, V96, P371 WARREN RM, 1974, PERCEPT PSYCHOPHYS, V16, P150, DOI 10.3758/BF03203268 WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392 WARREN RM, 1983, J AUDIO ENG SOC, V31, P623 WARREN RM, 1971, PERCEPT PSYCHOPHYS, V9, P358, DOI 10.3758/BF03212667 Wingfield A, 2007, J AM ACAD AUDIOL, V18, P548, DOI 10.3766/jaaa.18.7.3 Wingfield A, 2005, CURR DIR PSYCHOL SCI, V14, P144, DOI 10.1111/j.0963-7214.2005.00356.x Winkler I, 2005, COGNITIVE BRAIN RES, V25, P291, DOI 10.1016/j.cogbrainres.2005.06.005 WOODS WS, 1996, INT SPEECH COMM ASS, P232 Working Group on Speech Understanding Committee on Hearing Bioacoustics and Biomechanics, 1988, J ACOUST SOC AM, V83, P859 Zekveld AA, 2007, J SPEECH LANG HEAR R, V50, P74, DOI 10.1044/1092-4388(2007/006) ZUREK PM, 1987, J ACOUST SOC AM, V82, P1548, DOI 10.1121/1.395145 NR 101 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2010 VL 260 IS 1-2 BP 54 EP 62 DI 10.1016/j.heares.2009.11.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559RR UT WOS:000274844400006 PM 19922784 ER PT J AU Kals, M Schatzer, R Krenmayr, A Vermeire, K Visser, D Bader, P Neustetter, C Zangerl, M Zierhofer, C AF Kals, Mathias Schatzer, Reinhold Krenmayr, Andreas Vermeire, Katrien Visser, Daniel Bader, Paul Neustetter, Christian Zangerl, Matthias Zierhofer, Clemens TI Results with a cochlear implant channel-picking strategy based on "Selected Groups" SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Selected groups; Speech coding; Electrical stimulation; Channel interaction ID SPEECH RECOGNITION; PROCESSING STRATEGIES; PHONEME RECOGNITION; AUDITORY-NERVE; DYNAMIC-RANGE; STIMULATION; NUMBER AB A novel channel-picking strategy for cochlear implants (CIs) which considers the spatial distribution and the spectral relevance of the channels selected for stimulation is described. In the proposed strategy, the available channels are subdivided into groups, designated as "Selected Groups" (SG), and within each group, a specified number of active channels with the largest amplitudes are selected for stimulation. The hypothesis is that most of the spectral information that can be perceived by CI listeners is conveyed by taking the highest filter band outputs within a stimulation area represented by a group of neighboring channels. Two experiments were conducted in subjects with MED-EL implant systems, measuring recognition of sentences in speech-shaped noise. In experiment 1, the SG group size was varied from two to four while selecting one active channel per group and keeping the pulse phase durations constant. Results showed no significant difference in sentence recognition between continuous interleaved sampling and SG configurations up to a group size of three. In experiment 2, phase durations were doubled, using groups of two channels with one active channel each. This resulted in a reduction of pulse amplitudes by about 40%. Intelligibility of sentences in noise was unaffected, making a substantial reduction of implant supply voltages feasible. In all experiments, the stimulation frame rate was kept constant in order to avoid rate-change effects. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kals, Mathias; Schatzer, Reinhold; Krenmayr, Andreas; Vermeire, Katrien; Visser, Daniel; Bader, Paul; Neustetter, Christian; Zangerl, Matthias; Zierhofer, Clemens] Univ Innsbruck, Inst Ion Phys & Appl Phys, C Doppler Lab Act Implantable Syst, A-6020 Innsbruck, Austria. RP Kals, M (reprint author), Univ Innsbruck, Inst Ion Phys & Appl Phys, C Doppler Lab Act Implantable Syst, Tech Str 25, A-6020 Innsbruck, Austria. EM mathias.kals@uibk.ac.at FU Austrian C. Doppler Research Association (CDG) FX We thank our subjects for participating in this study. This work was supported by the Austrian C. Doppler Research Association (CDG). CR Brill SN, 1997, AM J OTOL, V18, P104 Dorman MF, 2002, J SPEECH LANG HEAR R, V45, DOI 10.1044/1092-4388(2002/063) FASTL H, 1993, P TC HEAR AC SOC JAP, V93, P70 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2000, EAR HEARING, V21, P227, DOI 10.1097/00003446-200006000-00006 Garnham Carolyn, 2002, Ear and Hearing, V23, P540, DOI 10.1097/00003446-200212000-00005 Kollmeier B, 1997, J ACOUST SOC AM, V102, P2412, DOI 10.1121/1.419624 Lawson D., 1996, SPEECH PROCESSORS AU Loizou PC, 2000, J ACOUST SOC AM, V108, P790, DOI 10.1121/1.429612 Loizou PC, 2000, EAR HEARING, V21, P25, DOI 10.1097/00003446-200002000-00006 MCDERMOTT HJ, 1992, J ACOUST SOC AM, V91, P3367, DOI 10.1121/1.402826 Mckay C.M., 1991, J OTOLARYNGOL SOC AU, V6, P354 McKay CM, 1999, J ACOUST SOC AM, V106, P998, DOI 10.1121/1.428052 Nie K, 2006, EAR HEARING, V27, P208, DOI 10.1097/01.aud.0000202312.31837.25 Nogueira W, 2005, EURASIP J APPL SIG P, V2005, P3044, DOI 10.1155/ASP.2005.3044 Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6 Plant Kerrie L, 2002, Cochlear Implants Int, V3, P104, DOI 10.1002/cii.56 Wilson B. S., 1997, AM J OTOL, V18, P30 WILSON BS, 1995, AM J OTOL, V16, P669 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 WILSON BS, 1988, LARYNGOSCOPE, V98, P1069 Zeng FG, 1999, EAR HEARING, V20, P60, DOI 10.1097/00003446-199902000-00006 Zeng FG, 1998, NEUROREPORT, V9, P1845, DOI 10.1097/00001756-199806010-00033 Zierhofer C., 2007, Patent U. S., Patent No. [72,838,76, 7283876] Ziese M, 2000, ORL J OTO-RHINO-LARY, V62, P321, DOI 10.1159/000027763 NR 26 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2010 VL 260 IS 1-2 BP 63 EP 69 DI 10.1016/j.heares.2009.11.012 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559RR UT WOS:000274844400007 PM 19944138 ER PT J AU Larsen, E Liberman, MC AF Larsen, Erik Liberman, M. Charles TI Contralateral cochlear effects of ipsilateral damage: No evidence for interaural coupling SO HEARING RESEARCH LA English DT Article DE Hearing loss; Feedback; Acoustic injury ID CROSSED OLIVOCOCHLEAR BUNDLE; HEARING-LOSS; LOUD SOUND; EFFERENT INNERVATION; NEURONS; NOISE; EAR; REFLEX; STIMULATION; SENSITIVITY AB Lesion studies of the olivocochlear efferents have suggested that feedback via this neuronal pathway normally maintains an appropriate binaural balance in excitability of the two cochlear nerves (Darrow et al., 2006). If true, a decrease in cochlear nerve output from one ear, due to conductive or sensorineural hearing loss, should change cochlear nerve response in the opposite ear via modulation in olivocochlear feedback. To investigate this putative efferent-mediated interaural coupling, we measured cochlear responses repeatedly from both ears in groups of mice for several weeks before, and for up to 5 weeks after, a unilateral manipulation causing either conductive or sensorineural hearing loss. Response measures included amplitude vs. level functions for distortion product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs), evoked at 7 log-spaced frequencies. Ipsilateral manipulations included either tympanic membrane removal or an acoustic overstimulation designed to produce a reversible or irreversible threshold shift over a restricted frequency range. None of these ipsilateral manipulations produced systematic changes in contralateral cochlear responses, either at threshold or suprathreshold levels, either in ABRs or DPOAEs. Thus, we find no evidence for compensatory contralateral changes following ipsilateral hearing loss. We did, however, find evidence for age-related increases in DPOAE amplitudes as animals mature from 6 to 12 weeks and evidence for a slow apical spread of noise-induced threshold shifts, which continues for several days post-exposure. (C) 2009 Elsevier B.V. All rights reserved. C1 [Larsen, Erik; Liberman, M. Charles] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Larsen, Erik; Liberman, M. Charles] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA. [Liberman, M. Charles] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02215 USA. RP Liberman, MC (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Labs, 243 Charles St, Boston, MA 02114 USA. EM charles_liberman@meei.harvard.edu FU NIH [R01 DC00188, P30 DC005209] FX This work was supported by NIH Grants R01 DC00188 and P30 DC005209. E. Larsen was partly supported by NIH Training Grant T32 DC00038. This paper is based on a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Speech and Hearing Bioscience and Technology Program of the Harvard-MIT Division of Health Sciences and Technology in September, 2008. CR Bledsoe SC, 2009, J NEUROPHYSIOL, V102, P886, DOI 10.1152/jn.91003.2008 Brown MC, 2001, J NEUROPHYSIOL, V86, P2381 BROWN MC, 1988, J COMP NEUROL, V278, P591, DOI 10.1002/cne.902780410 Darrow KN, 2006, NAT NEUROSCI, V9, P1474, DOI 10.1038/mn1807 DOAN DE, 1994, J COMP PHYSIOL A, V174, P103 Groff JA, 2003, J NEUROPHYSIOL, V90, P3178, DOI 10.1152/jn.00537.2003 Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3 Hozawa J, 1989, EAR RES JPN, V20, P111 King AJ, 2001, AUDIOL NEURO-OTOL, V6, P182, DOI 10.1159/000046829 KOBLER JB, 1987, BRAIN RES, V425, P372, DOI 10.1016/0006-8993(87)90523-3 Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006 Liberman MC, 1998, J COMMUN DISORD, V31, P471, DOI 10.1016/S0021-9924(98)00019-7 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779 Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 MILLER JD, 1963, ACTA OTOLARYNGOL S, V176 Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508 RAJAN R, 1989, HEARING RES, V39, P299, DOI 10.1016/0378-5955(89)90049-X Rajan R, 2001, J NEUROPHYSIOL, V85, P1257 RAJAN R, 1989, HEARING RES, V39, P263, DOI 10.1016/0378-5955(89)90046-4 ROBERTSON D, 1994, BRAIN RES, V646, P37, DOI 10.1016/0006-8993(94)90055-8 Robinson K, 1996, J ACOUST SOC AM, V99, P1255, DOI 10.1121/1.414637 Spoendlin H, 1967, Arch Klin Exp Ohren Nasen Kehlkopfheilkd, V189, P346, DOI 10.1007/BF00440938 Sumner CJ, 2005, J NEUROPHYSIOL, V94, P4234, DOI 10.1152/jn.00401.2005 Tucci DL, 2006, ASS RES OT 29 MIDW M Vetter DE, 1999, NEURON, V23, P93, DOI 10.1016/S0896-6273(00)80756-4 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 NR 30 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2010 VL 260 IS 1-2 BP 70 EP 80 DI 10.1016/j.heares.2009.11.011 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559RR UT WOS:000274844400008 PM 19944141 ER PT J AU Wong, ACY Guo, CX Gupta, R Housley, GD Thorne, PR Vlajkovic, SM AF Wong, Ann Chi Yan Guo, Cindy X. Gupta, Rita Housley, Gary D. Thorne, Peter R. Vlajkovic, Srdjan M. TI Post exposure administration of A(1) adenosine receptor agonists attenuates noise-induced hearing loss SO HEARING RESEARCH LA English DT Article DE Adenosine receptors; Cochlea; Hearing; Noise; Otoprotection ID RAT COCHLEA; CHINCHILLA COCHLEA; BLOOD-FLOW; INNER-EAR; EXPRESSION; PROTECTION; TRIPHOSPHATE; OTOTOXICITY; MECHANISMS; ISCHEMIA AB Adenosine is a constitutive cell metabolite with a putative role in protection and regeneration in many tissues. This study was undertaken to determine if adenosine signalling pathways are involved in protection against noise injury. A, adenosine receptor expression levels were altered in the cochlea exposed to loud sound, suggesting their involvement in the development of noise injury. Adenosine and selective adenosine receptor agonists (CCPA, CGS-21680 and CI-IB-MECA) were applied to the round window membrane of the cochlea 6 h after noise exposure. Auditory brainstem responses measured 48 h after drug administration demonstrated partial recovery of hearing thresholds (up to 20 dB) in the cochleae treated with adenosine (non-selective adenosine receptor agonist) or CCPA (selective A(1) adenosine receptor agonist). In contrast, the selective A(2A) adenosine receptor agonist CGS-21680 and A(3) adenosine receptor agonist CI-IB-MECA did not protect the cochlea from hearing loss. Sound-evoked cochlear potentials in control rats exposed to ambient noise were minimally altered by local administration of the adenosine receptor agonists used in the noise study. Free radical generation in the cochlea exposed to noise was reduced by administration of adenosine and CCPA. This study pinpoints A, adenosine receptors as attractive targets for pharmacological interventions to reduce noise-induced cochlear injury after exposure. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wong, Ann Chi Yan; Guo, Cindy X.; Gupta, Rita; Housley, Gary D.; Thorne, Peter R.; Vlajkovic, Srdjan M.] Univ Auckland, Dept Physiol, Fac Med & Hlth Sci, Auckland, New Zealand. [Thorne, Peter R.] Univ Auckland, Sect Audiol, Sch Populat Hlth, Auckland 1, New Zealand. [Housley, Gary D.] Univ New S Wales, Sch Med Sci, Dept Physiol, Sydney, NSW, Australia. RP Vlajkovic, SM (reprint author), Univ Auckland, Dept Physiol, Fac Med & Hlth Sci, Private Bag 92019, Auckland, New Zealand. EM ann.wong@auckland.ac.nz; c.guo@auckland.ac.nz; RitaG@adhb.govt.nz; g.housley@unsw.edu.au; pr.thorne@auckland.ac.nz; s.vlajkovic@auckland.ac.nz RI Wong, Ann CY/C-3660-2012 FU Royal National Institute for Deaf People (RNID, UK); Deafness Research Foundation (NZ); Auckland Medical Research Foundation FX This study was supported by the Royal National Institute for Deaf People (RNID, UK), Deafness Research Foundation (NZ) and Auckland Medical Research Foundation. CR Adair TH, 2005, AM J PHYSIOL-REG I, V289, pR283, DOI 10.1152/ajpregu.00840.2004 Altschuler RA, 2002, AUDIOL NEURO-OTOL, V7, P152, DOI 10.1159/000058301 Eltzschig HK, 2004, BLOOD, V104, P3986, DOI 10.1182/blood-2004-06-2066 Ford MS, 1997, HEARING RES, V105, P130, DOI 10.1016/S0378-5955(96)00204-3 Fredholm BB, 2005, INT REV NEUROBIOL, V63, P191, DOI 10.1016/S0074-7742(05)63007-3 Fredholm BB, 2007, CELL DEATH DIFFER, V14, P1315, DOI 10.1038/sj.cdd.4402132 Fredholm BB, 2001, PHARMACOL REV, V53, P527 GUPTA S, 1995, SCIENCE, V267, P389, DOI 10.1126/science.7824938 Hammarberg C, 2004, BIOCHEM PHARMACOL, V67, P129, DOI 10.1016/j.bcp.2003.08.031 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Jacobson KA, 2000, J BIOL CHEM, V275, P30272, DOI 10.1074/jbc.M001520200 Jacobson KA, 2006, NAT REV DRUG DISCOV, V5, P247, DOI 10.1038/nrd1983 Jiang H, 2007, NEUROBIOL AGING, V28, P1605, DOI 10.1016/j.neurobiolaging.2006.06.025 Juhn S K, 1989, Acta Otolaryngol Suppl, V457, P43 Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006 Linden J, 2005, MOL PHARMACOL, V67, P1385, DOI 10.1124/mol.105.011783 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 MILLER JM, 1995, OTOLARYNG HEAD NECK, V112, P101, DOI 10.1016/S0194-5998(95)70308-X Munoz DJB, 2001, ACTA OTO-LARYNGOL, V121, P10 Munoz DJB, 1999, HEARING RES, V127, P55, DOI 10.1016/S0378-5955(98)00161-0 PATHAM K, 2001, HDB MOUSE AUDITORY R, P37 Ramkumar V, 2004, HEARING RES, V188, P47, DOI 10.1016/S0378-5955(03)00344-7 Rybak LP, 2007, KIDNEY INT, V72, P931, DOI 10.1038/sj.ki.5002434 Seidman MD, 1999, ANN NY ACAD SCI, V884, P226, DOI 10.1111/j.1749-6632.1999.tb08644.x Tabuchi K, 1999, HEARING RES, V136, P86, DOI 10.1016/S0378-5955(99)00111-2 Vlajkovic SM, 2004, NEUROSCIENCE, V126, P763, DOI 10.1016/j.neuroscience.2004.04.023 Vlajkovic SM, 2007, CELL TISSUE RES, V328, P461, DOI 10.1007/s00441-006-0374-2 Whitworth CA, 2004, BIOCHEM PHARMACOL, V67, P1801, DOI 10.1016/j.bcp.2004.01.010 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104 NR 32 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2010 VL 260 IS 1-2 BP 81 EP 88 DI 10.1016/j.heares.2009.12.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559RR UT WOS:000274844400009 PM 19995597 ER PT J AU Ardoint, M Lorenzi, C AF Ardoint, Marine Lorenzi, Christian TI Effects of lowpass and highpass filtering on the intelligibility of speech based on temporal fine structure or envelope cues SO HEARING RESEARCH LA English DT Article DE Filtering; Intelligibility; Speech; Temporal envelope; Temporal fine structure ID AUDITORY-NERVE FIBERS; FUNDAMENTAL-FREQUENCY; PERCEPTION; RECOGNITION; AMPLITUDE; TONES; RESPONSES; HEARING; SOUNDS AB This study aimed to assess whether or not temporal envelope (E) and fine structure (TFS) cues in speech convey distinct phonetic information. Syllables uttered by a male and female speaker were (i) processed to retain either E or TFS within 16 frequency bands, (ii) lowpass or highpass filtered at different cut-off frequencies, and (iii) presented for identification to seven listeners. Psychometric functions were fitted using a sigmoid function, and used to determine crossover frequencies (cut-off frequencies at which lowpass and highpass filtering yielded equivalent performance), and gradients at each point of the psychometric functions (change in performance with respect to cut-off frequency). Crossover frequencies and gradients were not significantly different across speakers. Crossover frequencies were not significantly different between E and TFS speech (similar to 1.5 kHz). Gradients were significantly different between E and TFS speech in various filtering conditions. When stimuli were highpass filtered above 2.5 kHz, performance was significantly above chance level and gradients were significantly different from 0 for E speech only. These findings suggest that E and TFS convey important but distinct phonetic cues between 1 and 2 kHz. Unlike TFS, E conveys information up to 6 kHz, consistent with the characteristics of neural phase locking to E and TFS. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ardoint, Marine; Lorenzi, Christian] Univ Paris 05, DEC, Ecole Normale Super, CNRS,Lab Psychol Percept, F-75005 Paris, France. RP Ardoint, M (reprint author), Univ Paris 05, DEC, Ecole Normale Super, CNRS,Lab Psychol Percept, 29 Rue Ulm, F-75005 Paris, France. EM marine.ardoint@ens.fr RI Lorenzi, Christian/F-5310-2012 FU MENRT; ANR-Presbycusis; DUALPRO [FP7-SME-2007-1] FX This research was supported by a MENRT grant to the first author, and an ANR-Presbycusis and DUALPRO (FP7-SME-2007-1, EQ grant to the second author. CR ARDOINT M, EFFECTS COMBIN UNPUB ARDOINT M, PERCEPTION TEM UNPUB de Cheveigne A, 2002, J ACOUST SOC AM, V111, P1917, DOI 10.1121/1.1458024 FRENCH NR, 1947, J ACOUST SOC AM, V19, P90, DOI 10.1121/1.1916407 Ghitza O, 2001, J ACOUST SOC AM, V110, P1628, DOI 10.1121/1.1396325 Gilbert G, 2006, J ACOUST SOC AM, V119, P2438, DOI 10.1121/1.2173522 Gilbert G, 2007, J ACOUST SOC AM, V122, P1336, DOI 10.1121/1.2756161 GRANT KW, 1991, J ACOUST SOC AM, V89, P2952, DOI 10.1121/1.400733 Healy EW, 2003, J ACOUST SOC AM, V113, P1676, DOI 10.1121/1.1553464 HEINZ MG, 2009, J ASS RES OTOLARYNGO JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 KIANG NYS, 1965, ANN OTO RHINOL LARYN, V74, P463 Kong YY, 2005, J ACOUST SOC AM, V117, P1351, DOI 10.1121/1.1857526 Lippmann RP, 1996, IEEE T SPEECH AUDI P, V4, P66, DOI 10.1109/TSA.1996.481454 Loizou PC, 1999, J ACOUST SOC AM, V106, P2097, DOI 10.1121/1.427954 Lorenzi C, 2009, J ACOUST SOC AM, V125, P27, DOI 10.1121/1.2939125 Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103 LORENZI C, 2008, P INT S AUD AUD RES Moore BCJ, 2006, J ACOUST SOC AM, V119, P480, DOI 10.1121/1.2139070 Oxenham AJ, 2009, J ACOUST SOC AM, V125, P2189, DOI 10.1121/1.3089220 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 Ruggero MA, 2005, P NATL ACAD SCI USA, V102, P18614, DOI 10.1073/pnas.0509323102 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Sheft S, 2008, J ACOUST SOC AM, V124, P562, DOI 10.1121/1.2918540 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Stickney GS, 2005, J ACOUST SOC AM, V118, P2412, DOI 10.1121/1.2031967 STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 WARREN RM, 1995, PERCEPT PSYCHOPHYS, V57, P175, DOI 10.3758/BF03206503 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 Zeng FG, 2004, J ACOUST SOC AM, V116, P1351, DOI 10.1121/1.1777938 NR 34 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2010 VL 260 IS 1-2 BP 89 EP 95 DI 10.1016/j.heares.2009.12.002 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559RR UT WOS:000274844400010 PM 19963053 ER PT J AU Slee, SJ Young, ED AF Slee, Sean J. Young, Eric D. TI Sound localization cues in the marmoset monkey SO HEARING RESEARCH LA English DT Article DE (3-6) ITD; ILD; Spectral notch; Sound localization; HRTF; Marmoset behavior ID EAR TRANSFER-FUNCTIONS; EXTERNAL-EAR; PRESSURE TRANSFORMATION; NEURAL REPRESENTATIONS; AUDITORY-CORTEX; SPECTRAL CUES; INFERIOR COLLICULUS; TIME DIFFERENCES; ACOUSTICAL CUES; AWAKE PRIMATES AB The most important acoustic cues available to the brain for sound localization are produced by the interaction of sound with the animal's head and external ears. As a first step in understanding the relation between these cues and their neural representation in a vocal new-world primate, we measured head-related transfer functions (HRTFs) across frequency for a wide range of sound locations in three anesthetized marmoset monkeys. The HRTF magnitude spectrum has a broad resonance peak at 6-12 kHz that coincides with the frequency range of the major can types of this species. A prominent first spectral notch (FN) in the HRTF magnitude above this resonance was observed at most source locations. The center frequency of the FN increased monotonically from similar to 12 to 26 kHz with increases in elevation in the lateral field. In the frontal field FN frequency changed in a less orderly fashion with source position. From the HRTFs we derived interaural time (ITDs) and level differences (ILDs). ITDs and ILDs (below 12 kHz) varied as a function of azimuth between +/- 250 mu s and +/- 20 dB, respectively. A reflexive orienting behavioral paradigm was used to confirm that marmosets can orient to sound sources. Published by Elsevier B.V. C1 [Slee, Sean J.; Young, Eric D.] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA. RP Slee, SJ (reprint author), Johns Hopkins Univ, Dept Biomed Engn, 505 Traylor Res Bldg,720 Rutland Ave, Baltimore, MD 21205 USA. EM sslee1@jhmi.edu FU NIDCD [DC00115, DC00023] FX We thank Dr. Bradford May for assistance with surgical design and the behavioral experiments, Ron Atkinson, Jay Burns, Phyllis Taylor, and Qian Gao for technical assistance, and jenny Estes and Judy Cook for assistance with animal care. This work was supported by grants DC00115 and DC00023 from NIDCD. CR AITKIN L, 1993, PROG NEUROBIOL, V41, P345, DOI 10.1016/0301-0082(93)90004-C Aytekin M, 2004, J ACOUST SOC AM, V116, P3594, DOI [10.1121/1.1811412, 10.1121/1.1811412]] Bartlett EL, 2007, J NEUROPHYSIOL, V97, P1005, DOI 10.1152/jn.00593.2006 Bendor D, 2006, CURR OPIN NEUROBIOL, V16, P391, DOI 10.1016/j.conb.2006.07.001 Blauert J., 1997, SPATIAL HEARING CARLILE S, 1987, HEARING RES, V31, P111, DOI 10.1016/0378-5955(87)90117-1 CARLILE S, 1990, J ACOUST SOC AM, V88, P2196, DOI 10.1121/1.400116 CHEN QC, 1995, J EXP BIOL, V198, P2007 COLES RB, 1986, J EXP BIOL, V121, P371 DiMattina C, 2006, J NEUROPHYSIOL, V95, P1244, DOI 10.1152/jn.00818.2005 DUDA RO, 1998, J ACOUST SOC AM, V104, P3049 Firzlaff Uwe, 2003, Hearing Research, V185, P110, DOI 10.1016/S0378-5955(03)00281-8 Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 HARRISON JM, 1970, J ACOUST SOC AM, V47, P1509, DOI 10.1121/1.1912082 HENNING GB, 1974, J ACOUST SOC AM, V55, P84, DOI 10.1121/1.1928135 Huang AY, 1996, J ACOUST SOC AM, V100, P2341, DOI 10.1121/1.417943 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 Keller CH, 1998, HEARING RES, V118, P13, DOI 10.1016/S0378-5955(98)00014-8 Koka K, 2008, J ACOUST SOC AM, V123, P4297, DOI 10.1121/1.2916587 KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498 Lu T, 2001, J NEUROPHYSIOL, V85, P2364 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 Maki K, 2005, J ACOUST SOC AM, V118, P872, DOI 10.1121/1.1944647 Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1493, DOI 10.1121/1.427147 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 MIDDLEBROOKS JC, 1989, J ACOUST SOC AM, V86, P89, DOI 10.1121/1.398224 MIDDLEBROOKS JC, 1990, J ACOUST SOC AM, V87, P2149, DOI 10.1121/1.399183 MOISEFF A, 1989, J COMP PHYSIOL A, V164, P629, DOI 10.1007/BF00614505 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 Nelson PC, 2009, J NEUROSCI, V29, P2553, DOI 10.1523/JNEUROSCI.5359-08.2009 OBRIST MK, 1993, J EXP BIOL, V180, P119 RABBITT RD, 1988, J ACOUST SOC AM, V83, P1064, DOI 10.1121/1.396051 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 RIFE DD, 1989, J AUDIO ENG SOC, V37, P419 ROTH GL, 1980, J ACOUST SOC AM, V68, P1643, DOI 10.1121/1.385196 Schnupp JWH, 2003, J ACOUST SOC AM, V113, P2021, DOI 10.1121/1.1547460 SEIDEN HR, 1958, THESIS PRINCETON U P SHAW EAG, 1974, J ACOUST SOC AM, V56, P1848, DOI 10.1121/1.1903522 SHAW EAG, 1968, J ACOUST SOC AM, V44, P240, DOI 10.1121/1.1911059 Spezio ML, 2000, HEARING RES, V144, P73, DOI 10.1016/S0378-5955(00)00050-2 Sterbing SJ, 2003, J NEUROPHYSIOL, V90, P2648, DOI 10.1152/jn.00348.2003 Strutt J. W., 1904, PHILOS T R SOC LON A, V203, P87 Strutt JW, 1945, THEORY SOUND Tollin DJ, 2009, J ACOUST SOC AM, V125, P980, DOI 10.1121/1.3058630 Wang XQ, 2007, HEARING RES, V229, P81, DOI 10.1016/j.heares.2007.01.019 WIENER FM, 1947, J ACOUST SOC AM, V19, P444, DOI 10.1121/1.1916501 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P868, DOI 10.1121/1.397558 Woodworth R. S., 1938, EXPT PSYCHOL WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410 ZHOU B, 1992, J ACOUST SOC AM, V92, P1169, DOI 10.1121/1.404045 NR 51 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2010 VL 260 IS 1-2 BP 96 EP 108 DI 10.1016/j.heares.2009.12.001 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559RR UT WOS:000274844400011 PM 19963054 ER PT J AU Supin, AY Popov, VV Milekhina, ON Tarakanov, MB AF Supin, Alexander Ya. Popov, Vladimir V. Milekhina, Olga N. Tarakanov, Mikhail B. TI Masking of rippled-spectrum-pattern resolution in diotic and dichotic presentations SO HEARING RESEARCH LA English DT Article DE Spectrum-pattern resolution; Rippled spectra; Masking; Dichotic release ID SIMULATED ANECHOIC ENVIRONMENT; HEARING-IMPAIRED LISTENERS; BROAD-BAND SIGNALS; SPEECH-INTELLIGIBILITY; INFORMATIONAL MASKING; SPATIAL SEPARATION; ENERGETIC MASKING; SIMULTANEOUS TALKERS; DENSITY RESOLUTION; LEVEL DIFFERENCES AB Using rippled noise probes, spectrum-pattern resolution was measured with and without a narrow-band noise masker. Diotic presentation of both the probe and masker (S(0)N(0) mode) resulted in decreased spectrum resolution as compared to the control (no masker) conditions. The effects of the low- and on-frequency maskers differed quantitatively, however in both cases the ability to discriminate the probe spectrum pattern was suppressed completely when the masker/probe level ratio exceeded 10 dB (on-frequency masker) or 10-25 dB, depending on the probe level (low-frequency masker). The effect of the high-frequency masker was negligible. Slight but noticeable releasing of the spectrum-pattern resolution was found when the probe was presented to both ears in-phase and the masker counter-phase (S(0)N(pi) mode). In conditions of the probe delivered to one ear and the masker to the other ear (S(L)N(R) mode), the effect on the spectrum-pattern resolution was slight or negligible within a wide range of the noise/probe ratio. (C) 2009 Elsevier B.V. All rights reserved. C1 [Supin, Alexander Ya.; Popov, Vladimir V.; Milekhina, Olga N.; Tarakanov, Mikhail B.] Russian Acad Sci, Inst Ecol & Evolut, Moscow 119071, Russia. RP Supin, AY (reprint author), Russian Acad Sci, Inst Ecol & Evolut, 33 Leninsky Prospect, Moscow 119071, Russia. EM alex_supin@mail.ru FU Russian Foundation for Basic Research [08-04-00460]; Russian Ministry of Education and Sciences [NSh-157.2008.4] FX The study was supported by the Russian Foundation for Basic Research, Grant 08-04-00460, and the Russian Ministry of Education and Sciences, Grant NSh-157.2008.4. Valuable comments of two anonymous reviewers helped very much to improve the manuscript. CR Arbogast TL, 2002, J ACOUST SOC AM, V112, P2086, DOI 10.1121/1.1510141 Bilsen F.A., 1980, PSYCHOPHYSICAL BEHAV, P379 BRONKHORST AW, 1989, J ACOUST SOC AM, V86, P1374, DOI 10.1121/1.398697 Brungart DS, 2001, J ACOUST SOC AM, V109, P1101, DOI 10.1121/1.1345696 Brungart DS, 2001, J ACOUST SOC AM, V110, P2527, DOI 10.1121/1.1408946 Carhart R., 1965, INT AUDIOL, V4, P5 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 Colburn H. S., 1978, HDB PERCEPTION, P467 DIRKS DD, 1969, J SPEECH HEAR RES, V12, P5 DOLL TJ, 1995, HUM FACTORS, V37, P341, DOI 10.1518/001872095779064573 Drullman R, 2000, J ACOUST SOC AM, V107, P2224, DOI 10.1121/1.428503 Durlach N. I., 1978, HDB PERCEPTION, V4, P365 Durlach NI, 2003, J ACOUST SOC AM, V113, P2984, DOI 10.1121/1.1570435 DURLACH NI, 1963, J ACOUST SOC AM, V35, P1206, DOI 10.1121/1.1918675 EBATA M, 1968, J ACOUST SOC AM, V43, P289, DOI 10.1121/1.1910778 Eddins DA, 2007, J ACOUST SOC AM, V121, P363, DOI 10.1121/1.2382347 EGAN JP, 1954, J ACOUST SOC AM, V26, P774, DOI 10.1121/1.1907416 Fastl H, 1980, PSYCHOPHYSICAL PHYSL, P334 Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211 Freyman RL, 2001, J ACOUST SOC AM, V109, P2112, DOI 10.1121/1.1354984 Gallun FJ, 2005, J ACOUST SOC AM, V118, P1614, DOI 10.1121/1.1984876 Green D, 1986, AUDITORY FREQUENCY S, P351 Green DM, 1987, PROFILE ANAL AUDITOR GREEN DM, 1975, HDB SENSORY PHYSL HE Hawley ML, 1999, J ACOUST SOC AM, V105, P3436, DOI 10.1121/1.424670 Hawley ML, 2004, J ACOUST SOC AM, V115, P833, DOI 10.1121/1.1639908 HIRSH IJ, 1948, J ACOUST SOC AM, V20, P536, DOI 10.1121/1.1906407 KOHLRAUSCH A, 1992, PHILOS T ROY SOC B, V336, P375, DOI 10.1098/rstb.1992.0071 Kidd G, 2005, J ACOUST SOC AM, V118, P982, DOI 10.1121/1.1953167 Kidd G, 1998, J ACOUST SOC AM, V104, P422, DOI 10.1121/1.423246 Koehnke J, 1996, EAR HEARING, V17, P211, DOI 10.1097/00003446-199606000-00004 Kopco N, 2003, J ACOUST SOC AM, V114, P2856, DOI 10.1121/1.1616577 LICKLIDER JCR, 1948, J ACOUST SOC AM, V20, P150, DOI 10.1121/1.1906358 MACKEITH N W, 1971, Journal of Laryngology and Otology, V85, P213, DOI 10.1017/S0022215100073369 MCFADDEN D, 1975, NERVOUS SYSTEM HUMAN, V3 MORAY N, 1959, Q J EXP PSYCHOL, V11, P56, DOI 10.1080/17470215908416289 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 OSMAN E, 1971, J ACOUST SOC AM, V50, P1494, DOI 10.1121/1.1912803 Peissig J, 1997, J ACOUST SOC AM, V101, P1660, DOI 10.1121/1.418150 PLOMP R, 1981, ACUSTICA, V48, P325 Shinn-Cunningham BG, 2001, J ACOUST SOC AM, V110, P1118, DOI 10.1121/1.1386633 SMALL AM, 1967, J ACOUST SOC AM, V92, P773 SUMMERS V, 1994, J ACOUST SOC AM, V95, P3518, DOI 10.1121/1.409969 SUPIN AY, 1994, HEARING RES, V78, P31, DOI 10.1016/0378-5955(94)90041-8 Supin AY, 1997, HEARING RES, V108, P17, DOI 10.1016/S0378-5955(97)00035-X Supin AY, 1999, J ACOUST SOC AM, V106, P2800, DOI 10.1121/1.428105 Supin AY, 2001, HEARING RES, V151, P157, DOI 10.1016/S0378-5955(00)00223-9 Supin AY, 2003, HEARING RES, V185, P1, DOI 10.1016/S0378-5955(03)00215-6 Supin AY, 1998, J ACOUST SOC AM, V103, P2042, DOI 10.1121/1.421351 Supin AY, 2005, HEARING RES, V204, P191, DOI 10.1016/j.heares.2005.01.010 Watson C. S., 1987, AUDITORY PROCESSING, P267 WEBSTER FA, 1951, J ACOUST SOC AM, V23, P452, DOI 10.1121/1.1906787 WOOD NL, 1995, J EXP PSYCHOL GEN, V124, P243, DOI 10.1037/0096-3445.124.3.243 YOST WA, 1978, J ACOUST SOC AM, V64, P485, DOI 10.1121/1.382021 YOST WA, 1978, J ACOUST SOC AM, V63, P1166, DOI 10.1121/1.381824 YOST WA, 1979, J ACOUST SOC AM, V66, P400, DOI 10.1121/1.382942 YOST WA, 1982, J ACOUST SOC AM, V72, P416, DOI 10.1121/1.388094 NR 57 TC 0 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2010 VL 260 IS 1-2 BP 109 EP 116 DI 10.1016/j.heares.2009.12.018 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559RR UT WOS:000274844400012 PM 20005938 ER PT J AU Rhode, WS Roth, GL Recio-Spinoso, A AF Rhode, William S. Roth, G. Linn Recio-Spinoso, Alberto TI Response properties of cochlear nucleus neurons in monkeys SO HEARING RESEARCH LA English DT Article DE Primates; Response properties; Cochlear nucleus; Auditory system ID AUDITORY-NERVE FIBERS; SINGLE-UNIT-ACTIVITY; DIFFERING SPONTANEOUS RATE; LOW-FREQUENCY TONES; SQUIRREL-MONKEY; CENTRAL PROJECTIONS; HORSERADISH-PEROXIDASE; NEURAL SYNCHRONIZATION; AMPLITUDE-MODULATION; REGULARITY ANALYSIS AB Much of what is known about how the cochlear nuclei participate in mammalian hearing comes from studies of non-primate mammalian species. To determine to what extent the cochlear nuclei of primates resemble those of other mammalian orders, we have recorded responses to sound in three primate species: marmosets, cynomolgus macaques, and squirrel monkeys. These recordings show that the same types of temporal firing patterns are found in primates that have been described in other mammals. Responses to tones of neurons in the ventral cochlear nucleus have similar tuning, latencies, post-stimulus time and interspike interval histograms as those recorded in non-primate cochlear nucleus neurons. In the dorsal cochlear nucleus, too, responses were similar. From these results it is evident that insights gained from non-primate studies can be applied to the peripheral auditory system of primates. (C) 2009 Elsevier B.V. All rights reserved. C1 [Rhode, William S.; Roth, G. Linn; Recio-Spinoso, Alberto] Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA. RP Rhode, WS (reprint author), Univ Wisconsin, Dept Physiol, 1300 Univ Ave, Madison, WI 53706 USA. EM rhode@physiology.wisc.edu; rothlinn@sbcglobal.net; a.recio@lumc.nl RI Recio-Spinoso, Alberto/F-7744-2013 FU NIDCD [17590] FX We are greatly indebted to our colleagues, Donata Oertel, Don Sinex, and Phil Smith, for their review of this manuscript. This study was funded by NIDCD Grant 17590. CR ADAMS JC, 1986, ARCH OTOLARYNGOL, V112, P1253 Adams JC, 1997, AUDIT NEUROSCI, V3, P335 ANDERSON DJ, 1971, J ACOUST SOC AM, V49, P1131, DOI 10.1121/1.1912474 ARNOTT RH, 2004, JARO-J ASSOC RES OTO, V5, P1153 BANKS MI, 1991, J NEUROPHYSIOL, V65, P606 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 BOURK TR, 1976, THESIS BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 BRUGGE JF, 1969, J NEUROPHYSIOL, V32, P386 CANT NB, 1981, NEUROSCIENCE, V6, P243 DUBLIN W, 1976, FUNDAMENTALS SENSORI EVANS EF, 1973, EXP BRAIN RES, V17, P402 FEKETE DM, 1984, J COMP NEUROL, V229, P432, DOI 10.1002/cne.902290311 FENG JJ, 1994, J COMP NEUROL, V346, P1, DOI 10.1002/cne.903460102 Ferragamo MJ, 1998, J NEUROPHYSIOL, V79, P51 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FUSE G, 1913, ARB HIRNANAT I ZURIC, V7, P1 GEISLER CD, 1974, J NEUROPHYSIOL, V37, P1156 GEISLER CD, 2008, COMMUNICATION GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 GODFREY DA, 1975, J COMP NEUROL, V162, P269, DOI 10.1002/cne.901620207 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HANCOCK KE, 2002, J NEUROPHYSIOL, V87, P25005 HEIMANPATTERSON TD, 1985, J MORPHOL, V186, P289, DOI 10.1002/jmor.1051860306 HIND JE, 1967, J NEUROPHYSIOL, V30, P794 IGARASHI M, 1968, J SPEECH HEAR RES, V11, P229 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1037 JORIS PX, 2006, ASS RES OT ABST, V897, P302 Kanold PO, 2001, J NEUROSCI, V21, P7848 Katsuki Y, 1966, Prog Brain Res, V21, P71 KIANG NYS, 1974, J ACOUST SOC AM, V55, P620, DOI 10.1121/1.1914572 KIM DO, 1990, J ACOUST SOC AM, V87, P1648, DOI 10.1121/1.399412 Lai Y C, 1994, J Comput Neurosci, V1, P167, DOI 10.1007/BF00961733 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIBERMAN MC, 1993, J COMP NEUROL, V327, P17, DOI 10.1002/cne.903270103 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC MOORE JK, 1980, J COMP NEUROL, V193, P609 MOORE JK, 1979, AM J ANAT, V154, P393, DOI 10.1002/aja.1001540306 MOORE JK, 1979, EXP BRAIN RES, V2, P36 MOSKOWIT.N, 1969, ANN NY ACAD SCI, V167, P357, DOI 10.1111/j.1749-6632.1969.tb20456.x Needham K, 2003, J NEUROSCI, V23, P6357 NOMOTO M, 1964, J NEUROPHYSIOL, V27, P768 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 Oertel D., 1988, AUDITORY FUNCTION NE, P313 Oertel D, 2000, P NATL ACAD SCI USA, V97, P11773, DOI 10.1073/pnas.97.22.11773 OLSON RE, 1985, DIGITAL SYSTEM VERSI OSEN KK, 1969, ACTA OTO-LARYNGOL, V67, P352, DOI 10.3109/00016486909125462 OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103 Palmer AR, 2003, EXP BRAIN RES, V153, P418, DOI 10.1007/s00221-003-1602-6 Paolini AG, 2005, EUR J NEUROSCI, V21, P1236, DOI 10.1111/j.1460-9568.2005.03958.x PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 RHODE WS, 1986, J NEUROPHYSIOL, V56, P287 RHODE WS, 1994, HEARING RES, V77, P43, DOI 10.1016/0378-5955(94)90252-6 Rhode WS, 1992, MAMMALIAN AUDITORY P, P94 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1997, COCHLEAR NUCL STRUCT, P9 RHODE WS, 1985, HEARING RES, V28, P259 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 RHODE WS, 1983, J COMP NEUROL, V213, P426, DOI 10.1002/cne.902130407 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 ROSE JE, 1969, J NEUROPHYSIOL, V32, P402 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 ROSE JE, 1971, J NEUROPHYSIOL, V34, P685 ROUILLER EM, 1986, J COMP NEUROL, V249, P261, DOI 10.1002/cne.902490210 ROULLIER EM, 1984, J COMP NEUROL, V225, P167 Rubio ME, 2008, NEUROSCIENCE, V154, P99, DOI 10.1016/j.neuroscience.2007.12.016 RUGGERO MA, 1973, J NEUROPHYSIOL, V36, P569 Ruggero MA, 2005, P NATL ACAD SCI USA, V102, P18614, DOI 10.1073/pnas.0509323102 RYAN AF, 1984, J NEUROSCI, V4, P298 SCHALK TB, 1980, J ACOUST SOC AM, V67, P903, DOI 10.1121/1.383970 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 Schofield BR, 1997, J COMP NEUROL, V379, P363, DOI 10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 SMITH PH, 1985, J COMP NEUROL, V237, P127, DOI 10.1002/cne.902370110 SMITH PH, 1987, J COMP NEUROL, V266, P360, DOI 10.1002/cne.902660305 Smith PH, 2005, J COMP NEUROL, V482, P349, DOI 10.1002/cne.20407 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 SMITH PH, 1993, NATO ADV SCI INST SE, V239, P349 TOLBERT LP, 1982, NEUROSCIENCE, V7, P3013, DOI 10.1016/0306-4522(82)90227-5 WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3 WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E Young E. D., 2002, INTEGRATIVE FUNCTION, P160 Young E.D., 2004, SYNAPTIC ORG BRAIN, P125 Young ED, 2008, NEUROSCIENCE, V154, P127, DOI 10.1016/j.neuroscience.2008.01.036 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 NR 94 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2010 VL 259 IS 1-2 BP 1 EP 15 DI 10.1016/j.heares.2009.06.004 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 560DL UT WOS:000274882100001 PM 19531377 ER PT J AU Ding, DL Jiang, HY Salvi, RJ AF Ding, Dalian Jiang, Haiyan Salvi, Richard J. TI Mechanisms of rapid sensory hair-cell death following co-administration of gentamicin and ethacrynic acid SO HEARING RESEARCH LA English DT Article DE Hair cells; Gentamicin; Ethacrynic acid; Apoptosis; Cytochrome c; Caspase-9; Caspase-8; Caspase-3 ID AMINOGLYCOSIDE ANTIBIOTICS; STRIA VASCULARIS; HEARING-LOSS; IN-VIVO; PROTECTS COCHLEAR; AUDITORY-NERVE; KANAMYCIN; APOPTOSIS; OTOTOXICITY; INHIBITION AB Concurrent administration of a high dose of gentamicin (GM; 125 mg/kg IM) and ethacrynic acid (EA; 40 mg/kg IV) results in rapid destruction of virtually all cochlear hair cells; however, the cell death signaling pathways underlying this rapid form of hair-cell degeneration are unclear. To elucidate the mechanisms underlying GM/EA-mediated cell death, several key cell death markers were assessed in the chinchilla cochlea during the early stages of degeneration. In the middle and basal turns of the cochlea, massive hair-cell loss including destruction of the stereocilia and cuticular plate occurred 12 h after GM/EA treatment. Condensation and fragmentation of outer hair-cell nuclei, morphological features of apoptosis, were first observed 5-6 h post-treatment in the basal turn of the cochlea. Metabolic function, reflected by succinate dehydrogenase histochemistry and mitochondrial staining, decreased significantly in the basal turn 4 h following GM/EA treatment; these early changes were accompanied by the release of cytochrome c from the mitochondria into the cytosol and intense expression of initiator caspase-9 and effector caspase-3. GM/EA failed to induce expression of extrinsic initiator caspase-8. These results suggest that the rapid loss of hair cells following GM/EA treatment involves cell death pathways mediated by mitochondrial dysfunction leading to the release of cytochrome c, activation of initiator caspase-9 and effector caspase-3. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ding, Dalian; Jiang, Haiyan; Salvi, Richard J.] SUNY Buffalo, Dept Communicat Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Salvi, RJ (reprint author), SUNY Buffalo, Dept Communicat Disorders & Sci, Ctr Hearing & Deafness, 137 Cary Hall, Buffalo, NY 14214 USA. EM salvi@buffalo.edu FU NIH [501DC006630-05] FX This research was supported in part by NIH Grant 501DC006630-05. CR Acehan D, 2002, MOL CELL, V9, P423, DOI 10.1016/S1097-2765(02)00442-2 Akiyoshi M, 1981, Scand Audiol Suppl, V14 Suppl, P185 BABSON JR, 1994, BIOCHEM PHARMACOL, V48, P1509, DOI 10.1016/0006-2952(94)90577-0 Benbow U, 2000, CYTOMETRY, V40, P253, DOI 10.1002/1097-0320(20000801)40:4<253::AID-CYTO1>3.0.CO;2-M BOSHER SK, 1980, ACTA OTO-LARYNGOL, V89, P407, DOI 10.3109/00016488009127156 BRUMMETT RE, 1975, ACTA OTO-LARYNGOL, V80, P86, DOI 10.3109/00016487509121305 Conlon BJ, 1998, LARYNGOSCOPE, V108, P1087, DOI 10.1097/00005537-199807000-00024 Dai CF, 2008, HEARING RES, V235, P114, DOI 10.1016/j.heares.2007.10.010 Dai CF, 2006, HEARING RES, V213, P64, DOI 10.1016/j.heares.2005.11.011 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J Dehne N, 2002, HEARING RES, V169, P47, DOI 10.1016/S0378-5955(02)00338-6 DING D, 1995, CHIN J OTORHINOLARYN, V30, P323 DING D, 1988, ACTA U MED 2 SHANGHA, V8, P34 Ding D, 2001, AUDITORY PSYCHOBIOLO, P189 DING D, 1996, CHIN J CLIN OTORHINO, V10, P330 DING D, 1997, CHIN J OTORHINOLARYN, V32, P348 DING D, 1991, CHIN J OTORHINOLARYN, V26, P154 DING D, 1995, J CLIN OTORHINOLARYG, V9, P346 Ding D, 2002, HEARING RES, V173, P1, DOI 10.1016/S0378-5955(02)00585-3 Ding DL, 2003, HEARING RES, V185, P90, DOI 10.1016/S0378-5955(03)00258-2 Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8 Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x Ding DL, 2007, HEARING RES, V226, P129, DOI 10.1016/j.heares.2006.07.015 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FORGE A, 1981, ACTA OTO-LARYNGOL, V92, P439, DOI 10.3109/00016488109133283 Hashino E, 2000, BRAIN RES, V887, P90, DOI 10.1016/S0006-8993(00)02971-1 Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3 HAYASHIDA T, 1989, ACTA OTO-LARYNGOL, V108, P404, DOI 10.3109/00016488909125546 HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G HIEL H, 1993, AUDIOLOGY, V32, P78 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 HUY PTB, 1986, J CLIN INVEST, V77, P1492 IKEDA K, 1993, JPN J PHYSIOL, V43, pS171 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 Kalinec GM, 2005, P NATL ACAD SCI USA, V102, P16019, DOI 10.1073/pnas.0508053102 Kasajima K, 1978, Auris Nasus Larynx, V5, P1 Khadir A, 1999, ARCH BIOCHEM BIOPHYS, V370, P163, DOI 10.1006/abbi.1999.1393 KUZEL RA, 1990, J PHARMACOL METHOD, V24, P9, DOI 10.1016/0160-5402(90)90045-M Lenaz G, 1999, ACTA BIOCHIM POL, V46, P1 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 MATSUSHIMA JI, 1991, HEARING RES, V56, P133, DOI 10.1016/0378-5955(91)90162-3 McFadden SL, 2004, BRAIN RES, V997, P40, DOI 10.1016/j.brainres.2003.10.031 McFadden SL, 2002, HEARING RES, V174, P230, DOI 10.1016/S0378-5955(02)00697-4 Mehta R, 2002, ANTIMICROB AGENTS CH, V46, P1546, DOI 10.1128/AAC.46.5.1546-1549.2002 MICHELBRIAND Y, 1978, CR SOC BIOL, V172, P609 Nagane M, 2000, CANCER RES, V60, P847 Naito H, 1997, ORL J OTO-RHINO-LARY, V59, P248 Nakagawa T, 1998, EUR ARCH OTO-RHINO-L, V255, P127, DOI 10.1007/s004050050027 Nourski KV, 2004, HEARING RES, V187, P131, DOI 10.1016/S0378-5955(03)00336-8 PRAZMA J, 1974, ANN OTO RHINOL LARYN, V83, P111 RUSSELL NJ, 1979, ACTA OTO-LARYNGOL, V88, P369, DOI 10.3109/00016487909137181 RYBAK LP, 1985, LARYNGOSCOPE, V95, P1, DOI 10.1288/00005537-198509010-00001 Samali A, 1999, CELL DEATH DIFFER, V6, P495, DOI 10.1038/sj.cdd.4400520 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1367 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 SHEPHERD RK, 1994, HEARING RES, V72, P89, DOI 10.1016/0378-5955(94)90209-7 Syka J, 1981, Scand Audiol Suppl, V14 Suppl, P63 Tabuchi K, 2007, NEUROSCIENCE, V149, P213, DOI 10.1016/j.neuroscience.2007.06.061 HUY PTB, 1983, HEARING RES, V11, P191, DOI 10.1016/0378-5955(83)90078-3 Trautwein PG, 1998, AUDIOL NEURO-OTOL, V3, P229, DOI 10.1159/000013795 Tsuruya K, 2003, AM J PHYSIOL-RENAL, V285, pF208, DOI 10.1152/ajprenal.00311.2002 Voldrich L, 1965, Acta Otolaryngol, V60, P243, DOI 10.3109/00016486509127007 Wang R, 2007, CANCER RES, V67, P7856, DOI 10.1158/0008-5472.CAN-07-0151 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X Ylikoski J, 2002, HEARING RES, V166, P33, DOI 10.1016/S0378-5955(01)00388-4 Zhang M, 2003, NEUROSCIENCE, V120, P191, DOI 10.1016/S0306-4522(03)00286-0 ZHU Q, 1993, ACAD J 2 MIL MED U, V114, P568 NR 70 TC 24 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2010 VL 259 IS 1-2 BP 16 EP 23 DI 10.1016/j.heares.2009.08.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 560DL UT WOS:000274882100002 PM 19715747 ER PT J AU Eastwood, H Pinder, D James, D Chang, A Galloway, S Richardson, R O'Leary, S AF Eastwood, Hayden Pinder, Darren James, David Chang, Andrew Galloway, Stuart Richardson, Rachael O'Leary, Stephen TI Permanent and transient effects of locally delivered n-acetyl cysteine in a guinea pig model of cochlear implantation SO HEARING RESEARCH LA English DT Article DE Cochlear implantation; Round window membrane; n-Acetyl cysteine; Residual hearing ID INDUCED HEARING-LOSS; ELECTRODE INSERTION TRAUMA; NITRIC-OXIDE-SYNTHASE; IMPULSE NOISE TRAUMA; CISPLATIN OTOTOXICITY; ACOUSTIC STIMULATION; RESIDUAL HEARING; AUDITORY-SYSTEM; D-METHIONINE; ACETYLCYSTEINE AB Protection of residual hearing after cochlear implant surgery can improve the speech and music perception of cochlear implant recipients, particularly in the presence of background noise. Surgical trauma and chronic inflammation are thought to be responsible for a significant proportion of residual hearing loss after surgery. Local delivery of the anti-oxidant precursor n-acetyl cysteine (NAC) to the cochlea via round window 30 min prior to surgery, increased the level of residual hearing at 24-32 kHz 4 weeks post surgery compared to controls. The hearing protection was found in the basal turn near the site of implantation. Coincidentally, the basal turn was also the location that sustained the greatest hearing loss. As well as protecting residual hearing, NAC-treated animals demonstrated a reduction in the chronic inflammatory changes associated with implantation. While these findings indicate that anti-oxidant therapy can be used to reduce the hearing loss associated with surgical trauma, the local delivery of NAC was associated with a transient increase in hearing thresholds, and osseoneogenesis was seen in a greater number of NAC-treated animals. These side-effects would limit its clinical use through local cochlear administration. However, it is not known yet whether these effects would also be produced by other anti-oxidants, or ameliorated by using a different route of administration. (C) 2009 Elsevier B.V. All rights reserved. C1 [Eastwood, Hayden; Pinder, Darren; James, David; Chang, Andrew; O'Leary, Stephen] Univ Melbourne, Melbourne, Vic 3002, Australia. [Galloway, Stuart] St Vincents Pathol, Melbourne, Vic, Australia. RP Eastwood, H (reprint author), Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, Melbourne, Vic 3002, Australia. EM haydente@unimelb.edu.au FU Garnett Passe and Rodney Williams Memorial Foundation; National Health and Medical Research Council Australia; NIDCD [HHS-N-263-2007-00053-C]; National Institute on Deafness and Other Communication Disorders, National Institutes of Health [DC 01368] FX Project grants from the Garnett Passe and Rodney Williams Memorial Foundation and the National Health and Medical Research Council Australia.Helen Feng for manufacturing electrode arrays.Maria Clark and Prudence Nielsen for preparing histological materials.Dr. James Fallon for providing the ABR analysis program (NIDCD Contract HHS-N-263-2007-00053-C; PI: RK Shepherd).Dr. Alec Salt, Washington University Cochlear Fluids Simulator: Version 1.6 available from http://oto.wustl.edu/cochlea/modet.htm (This program was developed and is made available by Grant funding (DC 01368) from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health.).Dimitra Stathopoulos for editing the manuscript. CR Bielefeld EC, 2007, ACTA OTO-LARYNGOL, V127, P914, DOI 10.1080/00016480601110188 Briggs RJS, 2005, ACTA OTO-LARYNGOL, V125, P870, DOI 10.1080/00016480510031489 Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012 Chae HJ, 2004, IMMUNOPHARM IMMUNOT, V26, P203, DOI 10.1081/IPH-120037716 Chen G, 2008, MEDIAT INFLAMM, DOI 10.1155/2008/716458 Cheng PW, 2008, EAR HEARING, V29, P65 Choe WT, 2004, OTOL NEUROTOL, V25, P910, DOI 10.1097/00129492-200411000-00009 Choi CH, 2005, HEARING RES, V205, P193, DOI 10.1016/j.heares.2005.03.018 Cotgreave I A, 1997, Adv Pharmacol, V38, P205 COTGREAVE IA, 1987, BIOPHARM DRUG DISPOS, V8, P377, DOI 10.1002/bdd.2510080408 Duan M, 2008, ACTA OTO-LARYNGOL, V128, P277, DOI 10.1080/00016480701509941 Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005 Ege T, 2006, J CARDIOVASC SURG, V47, P563 Eshraghi AA, 2007, HEARING RES, V226, P168, DOI 10.1016/j.heares.2006.09.008 Eshraghi AA, 2006, ANAT REC PART A, V288A, P473, DOI 10.1002/ar.a.20305 Eshraghi AA, 2006, OTOL NEUROTOL, V27, P504, DOI 10.1097/00129492-200606000-00012 Fessenden JD, 1999, J COMP NEUROL, V404, P52 Gantz BJ, 2005, LARYNGOSCOPE, V115, P796, DOI 10.1097/01.MLG.0000157695.07536.D2 Gstoettner W, 2004, ACTA OTO-LARYNGOL, V124, P348, DOI 10.1080/00016480410016432 Hanada T, 2002, CYTOKINE GROWTH F R, V13, P413, DOI 10.1016/S1359-6101(02)00026-6 Hayden MS, 2008, CELL, V132, P344, DOI 10.1016/j.cell.2008.01.020 Hess A, 1999, BRAIN RES, V830, P113, DOI 10.1016/S0006-8993(99)01433-X Hess A, 1999, NEUROSCI LETT, V264, P145, DOI 10.1016/S0304-3940(99)00195-0 Huh YJ, 2006, CELL DEATH DIFFER, V13, P1138, DOI 10.1038/sj.cdd.4401793 James Chris J, 2006, Audiol Neurootol, V11 Suppl 1, P57, DOI 10.1159/000095615 James DP, 2008, AUDIOL NEURO-OTOL, V13, P86, DOI 10.1159/000111780 Jun JH, 2008, J CELL BIOCHEM, V103, P1246, DOI 10.1002/jcb.21508 Kiefer J, 2004, ACTA OTO-LARYNGOL, V124, P272, DOI 10.1080/00016480310000755 Kiefer J, 2005, AUDIOL NEURO-OTOL, V10, P134, DOI 10.1159/000084023 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kopke RD, 2007, HEARING RES, V226, P114, DOI 10.1016/j.heares.2006.10.008 Lean JM, 2003, J CLIN INVEST, V112, P915, DOI 10.1172/JCI200318859 Lenarz Thomas, 2006, Audiol Neurootol, V11 Suppl 1, P34, DOI 10.1159/000095612 Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3 Mikulec AA, 2009, OTOL NEUROTOL, V30, P131, DOI 10.1097/MAO.0b013e318191bff8 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 OHYAMA K, 1988, HEARING RES, V35, P119, DOI 10.1016/0378-5955(88)90111-6 OLEARY MJ, 1991, ANN OTO RHINOL LARYN, V100, P695 Pouyatos B, 2007, HEARING RES, V224, P61, DOI 10.1016/j.heares.2006.11.009 Roland Peter S, 2006, Adv Otorhinolaryngol, V64, P11 Sanaei-Ardekani Mohammad, 2005, Cardiovasc Revasc Med, V6, P82, DOI 10.1016/j.carrev.2005.07.004 Sanders KM, 2007, TRANSL RES, V150, P215, DOI 10.1016/j.trsl.2007.03.012 Saricaoglu F, 2005, ACTA ANAESTH SCAND, V49, P847, DOI 10.1111/j.1399-6576.2005.00722.x Schultz MJ, 2006, CURR MED CHEM, V13, P2565, DOI 10.2174/092986706778201684 Seidman MD, 2004, OTOLARYNG CLIN N AM, V37, P973, DOI 10.1016/j.otc.2004.03.005 SHEPHERD RK, 1985, HEARING RES, V18, P105, DOI 10.1016/0378-5955(85)90001-2 Shi XR, 2001, HEARING RES, V153, P23, DOI 10.1016/S0378-5955(00)00254-9 Tripathi P, 2007, FEMS IMMUNOL MED MIC, V51, P443, DOI 10.1111/j.1574-695X.2007.00329.x Wangemann P, 2006, J PHYSIOL-LONDON, V576, P11, DOI 10.1113/jphysiol.2006.112888 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X Zafarullah M, 2003, CELL MOL LIFE SCI, V60, P6, DOI 10.1007/s000180300001 Zou J, 2003, ORL J OTO-RHINO-LARY, V65, P155, DOI 10.1159/000072253 NR 53 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2010 VL 259 IS 1-2 BP 24 EP 30 DI 10.1016/j.heares.2009.08.010 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 560DL UT WOS:000274882100003 PM 19732818 ER PT J AU Hederstierna, C Hultcrantz, M Collins, A Rosenhall, U AF Hederstierna, C. Hultcrantz, M. Collins, A. Rosenhall, U. TI The menopause triggers hearing decline in healthy women SO HEARING RESEARCH LA English DT Article DE Female; Audiometry; Estrogen; Left; Right; Asymmetry ID OTOACOUSTIC EMISSIONS; POSTMENOPAUSAL WOMEN; ESTROGEN-RECEPTORS; RANDOM-POPULATION; EAR ASYMMETRIES; SEX-DIFFERENCES; INNER-EAR; CBA MICE; AGE; SENSITIVITY AB Background: Epidemiological studies have shown that women have better high-frequency thresholds than men in virtually all age groups, and that age-related hearing decline starts after 30 in men but not until after the age of 50 in women. This coincides with the menopausal transition in most women, thus leading us to hypothesize that the menopause triggers auditory deterioration, possibly due to reduced levels of endogenous estrogens, which are known to have protective effects on the auditory system. Methods: 104 women with a mean age 51.2 at baseline, were tested with pure tone audiometry twice with an average interval of 7.5 years. The age at the final menstrual period (FMP) was reported by all women. Hearing decline at individual frequencies was calculated. Results: Women with a FMP 0-4 years ago, had a rate of high frequency hearing decline of 0.9-1.5 dB/year in the left ear, those with 5-7 years since the FMP had a corresponding rate of 1.1-1.5 dB/year in the right ear, and 8-13 years after the FMP the decline was more subtle, 0.7-1.1 dB/year in both ears. Conclusion: The menopause appears to act as a trigger of a relatively rapid age-related hearing decline in healthy women, starting in the left ear. (C) 2009 Published by Elsevier B.V. C1 [Hederstierna, C.; Hultcrantz, M.; Rosenhall, U.] Karolinska Inst, Dept Clin Neurosci, Div Otorhinolaryngol & Hearing, Stockholm, Sweden. [Collins, A.] Karolinska Inst, Dept Clin Neurosci, Div Psychol, Stockholm, Sweden. RP Hederstierna, C (reprint author), Karolinska Univ Hosp, Dept Hearing & Balance, S-17176 Stockholm, Sweden. EM christina.hederstierna@karolinska.se FU The Foundation Tysta Skolan; The Foundation for Audiological Research (Stingerfonden); The Swedish Association of Hard of Hearing People (HRF) FX This study was funded by grants from The Foundation Tysta Skolan, The Foundation for Audiological Research (Stingerfonden), and The Swedish Association of Hard of Hearing People (HRF). CR [Anonymous], 1989, 82531 ISO Berninger E, 2007, INT J AUDIOL, V46, P661, DOI 10.1080/14992020701438797 Borchgrevink H M, 2005, Noise Health, V7, P1 Cruickshanks KJ, 1998, AM J EPIDEMIOL, V148, P879 Davis A, 1995, HEARING ADULTS GATES GA, 1990, EAR HEARING, V11, P247, DOI 10.1097/00003446-199008000-00001 Guimaraes P, 2004, HEARING RES, V192, P83, DOI 10.1016/j.heares.2004.01.013 Hederstierna C, 2007, ACTA OTO-LARYNGOL, V127, P149, DOI 10.1080/00016480600794446 Jerger J, 1993, J Am Acad Audiol, V4, P42 Job A, 1998, HEARING RES, V122, P119, DOI 10.1016/S0378-5955(98)00104-X Jonsson R, 1998, AUDIOLOGY, V37, P207 Khalfa S, 1997, ACTA OTO-LARYNGOL, V117, P192, DOI 10.3109/00016489709117767 Kilicdag EB, 2004, AM J OBSTET GYNECOL, V190, P77, DOI 10.1016/j.ajpg.2003.06.001 Kim SH, 2002, OBSTET GYNECOL, V99, P726, DOI 10.1016/S0029-7844(02)01963-4 Martini A, 2001, DEFINITIONS PROTOCOL McFadden D, 2002, ARCH SEX BEHAV, V31, P99, DOI 10.1023/A:1014087319682 MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K Nageris BI, 2007, OTOL NEUROTOL, V28, P434, DOI 10.1097/mao.0b013e3180430191 PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 PIRILA T, 1991, SCAND AUDIOL, V20, P223, DOI 10.3109/01050399109045967 PIRILA T, 1992, AUDIOLOGY, V31, P150 ROSENHALL U, 1995, OCCUP MED, V10, P593 RUDIN R, 1988, SCAND AUDIOL, V17, P3, DOI 10.3109/01050398809042174 SIMONOSKA R, 2009, ACTA OTO-LARYNGOL, P1, DOI DOI 10.1080/00016480802691150 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5 Stenberg AE, 2003, HEARING RES, V182, P19, DOI 10.1016/S0378-5955(03)00136-9 Thompson SK, 2006, OTOLARYNG HEAD NECK, V135, P100, DOI 10.1016/j.otohns.2006.02.004 Van Eyken E, 2007, AUDIOL NEURO-OTOL, V12, P345, DOI 10.1159/000106478 NR 29 TC 11 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JAN PY 2010 VL 259 IS 1-2 BP 31 EP 35 DI 10.1016/j.heares.2009.09.009 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 560DL UT WOS:000274882100004 PM 19781610 ER PT J AU Getzmann, S Lewald, J AF Getzmann, Stephan Lewald, Joerg TI Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion SO HEARING RESEARCH LA English DT Article DE Spatial hearing; Sound localization; Auditory motion cues; Binaural cues; EEG ID HUMAN CEREBRAL-CORTEX; SOUND LOCALIZATION; HUMAN BRAIN; EVOKED-POTENTIALS; INTERAURAL TIME; PERCEPTION; MOVEMENT; ACTIVATION; DYNAMICS; HUMANS AB The effect of the type of the auditory motion stimulus on neural correlates of motion processing were investigated using high-density electroencephalography. Sound motion was implemented by (a) gradual shifts in interaural time or (b) level difference; (c) motion of virtual 3D sound sources; or (d) successive activation of 45 loudspeakers along the horizontal plane. In a subset of trials, listeners (N = 20) performed a two-alternative forced-choice motion discrimination task. Each trial began with a stationary phase of the acoustic stimulus in a central position, immediately followed by a motion of the stimulus. The motion onset elicited a specific cortical response that was dominated by large negative and positive deflections, the so-called change-N1 and change-P2. The temporal dynamics of these components depended on the auditory motion cues presented: Free-field motion and virtual 3D motion were associated with earlier cortical responses and with shorter reaction times than shifts in interaural time or level. Also, free-field motion elicited much stronger onset responses than simulated motion. These findings suggest that natural-like stimulation using stimuli presented in the free sound field allows more reliable conclusions on neural processing of sound motion, whereas artificial motion stimuli, in particular gradual shifts in interaural time or level, seem to be less suited with respect to this aim. (C) 2009 Elsevier B.V. All rights reserved. C1 [Getzmann, Stephan] Leibniz Res Ctr Working Environm & Human Factors, D-44139 Dortmund, Germany. Ruhr Univ Bochum, D-44780 Bochum, Germany. RP Getzmann, S (reprint author), Leibniz Res Ctr Working Environm & Human Factors, Ardeystr 67, D-44139 Dortmund, Germany. EM stephan.getzmann@rub.de RI Lewald, Jorg/D-3034-2009 OI Lewald, Jorg/0000-0001-9351-0170 FU Deutsche Forschungsgemeinschaft [Ge1920/2-1, Fa211/24-1] FX The authors are especially grateful to Ines Mombrei for her help in running the experiments, and to Michael Falkenstein and two anonymous reviewers for valuable comments on an earlier draft of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (Ge1920/2-1; Fa211/24-1). CR Alink A, 2008, J NEUROSCI, V28, P2690, DOI 10.1523/JNEUROSCI.2980-07.2008 ALTMAN JA, 1990, ELECTROEN CLIN NEURO, V75, P323, DOI 10.1016/0013-4694(90)90110-6 Altman JA, 2005, NEUROSCI LETT, V384, P330, DOI 10.1016/j.neulet.2005.05.002 BAUMANN O, 2007, CEREB CORTEX, V17, P433 Baumgart F, 1999, NATURE, V400, P724, DOI 10.1038/23390 Bidet-Caulet A, 2005, J COGNITIVE NEUROSCI, V17, P1691, DOI 10.1162/089892905774589244 Blauert J., 1997, SPATIAL HEARING PSYC Clarke S, 2002, EXP BRAIN RES, V147, P8, DOI 10.1007/s00221-002-1203-9 Crowley KE, 2004, CLIN NEUROPHYSIOL, V115, P732, DOI 10.1016/j.clinph.2003.11.021 Downar J, 2000, NAT NEUROSCI, V3, P277 Ducommun CY, 2004, NEURON, V43, P765, DOI 10.1016/j.neuron.2004.08.020 Ducommun CY, 2002, NEUROIMAGE, V16, P76, DOI 10.1006/nimg.2002.1062 Eggermont JJ, 2002, AUDIOL NEURO-OTOL, V7, P71, DOI 10.1159/000057656 Fujiki N, 2002, EUR J NEUROSCI, V16, P2207, DOI 10.1046/j.1460-9568.2002.02276.x GARDNER WG, 1995, J ACOUST SOC AM, V97, P3907, DOI 10.1121/1.412407 Grantham DW, 1997, BINAURAL SPATIAL HEA, P295 GRANTHAM DW, 1986, J ACOUST SOC AM, V79, P1939, DOI 10.1121/1.393201 GRATTON G, 1983, ELECTROEN CLIN NEURO, V55, P468, DOI 10.1016/0013-4694(83)90135-9 Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276 Griffiths TD, 1996, NATURE, V383, P425, DOI 10.1038/383425a0 Griffiths TD, 1999, NEUROIMAGE, V10, P84, DOI 10.1006/nimg.1999.0464 Griffiths TD, 2000, HUM BRAIN MAPP, V9, P72, DOI 10.1002/(SICI)1097-0193(200002)9:2<72::AID-HBM2>3.0.CO;2-9 Hall DA, 2003, AUDIOL NEURO-OTOL, V8, P1, DOI 10.1159/000067894 Hirnstein M, 2007, LATERALITY, V12, P87, DOI 10.1080/13576500600959247 Hofman PM, 1998, NAT NEUROSCI, V1, P417, DOI 10.1038/1633 Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784 Jerger James, 2002, J Am Acad Audiol, V13, P59 Kaiser J, 2000, J NEUROSCI, V20, P6631 Kaiser J, 2003, NEUROIMAGE, V19, P1427, DOI 10.1016/S1053-8119(03)00233-7 Krumbholz K, 2005, EUR J NEUROSCI, V21, P230, DOI 10.1111/j.1460-9568.2004.03836.x Krumbholz K, 2007, J NEUROPHYSIOL, V97, P1649, DOI 10.1152/jn.00560.2006 Lacquaniti F, 1997, NEUROIMAGE, V5, P129, DOI 10.1006/nimg.1996.0254 Law I, 1997, ACTA PHYSIOL SCAND, V161, P419, DOI 10.1046/j.1365-201X.1997.00207.x Lewald J, 2009, NEUROPSYCHOLOGIA, V47, P962, DOI 10.1016/j.neuropsychologia.2008.10.016 Lewis JW, 2000, CEREB CORTEX, V10, P873, DOI 10.1093/cercor/10.9.873 Makela JP, 1996, EXP BRAIN RES, V110, P446 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 MOISEFF A, 1992, J NEUROPHYSIOL, V67, P1428 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Palomaki KJ, 2005, COGNITIVE BRAIN RES, V24, P364, DOI 10.1016/j.cogbrainres.2005.02.013 Pavani F, 2002, CURR BIOL, V12, P1584, DOI 10.1016/S0960-9822(02)01143-0 POIRIER C, 2005, COGNITIVE BRAIN RES, V25, P65 Ponton C, 2002, CLIN NEUROPHYSIOL, V113, P407, DOI 10.1016/S1388-2457(01)00733-7 Potts GF, 2004, BRAIN COGNITION, V56, P5, DOI 10.1016/j.bande.2004.03.006 Schroger E, 1996, HEARING RES, V96, P191, DOI 10.1016/0378-5955(96)00066-4 Smith KR, 2007, BRAIN RES, V1150, P94, DOI 10.1016/j.brainres.2007.03.003 Smith KR, 2004, NEUROREPORT, V15, P1523, DOI 10.1097/01.wnr.0000130233.43788.4b Soeta Y, 2005, NEUROSCI LETT, V383, P311, DOI 10.1016/j.neulet.2005.04.027 SPITZER MW, 1991, SCIENCE, V254, P721, DOI 10.1126/science.1948053 Tardif E, 2006, BRAIN RES, V1092, P161, DOI 10.1016/j.brainres.2006.03.095 TORONCHUK JM, 1992, EXP BRAIN RES, V88, P169, DOI 10.1007/BF02259138 Ungan P, 2001, CLIN NEUROPHYSIOL, V112, P485, DOI 10.1016/S1388-2457(00)00550-2 Warren JD, 2002, NEURON, V34, P139, DOI 10.1016/S0896-6273(02)00637-2 XIANG J, 2004, NEUROL CLIN NEUROPHY, V106, P1 Xiang J, 2002, CLIN NEUROPHYSIOL, V113, P1, DOI 10.1016/S1388-2457(01)00709-X NR 55 TC 21 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2010 VL 259 IS 1-2 BP 44 EP 54 DI 10.1016/j.heares.2009.09.021 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 560DL UT WOS:000274882100005 PM 19800957 ER PT J AU Mazurek, B Haupt, H Joachim, R Klapp, BF Stover, T Szczepek, AJ AF Mazurek, Birgit Haupt, Heidemarie Joachim, Ricarda Klapp, Burghard F. Stoever, Timo Szczepek, Agnieszka J. TI Stress induces transient auditory hypersensitivity in rats SO HEARING RESEARCH LA English DT Article DE Stress; ABR; DPOAE; Corticosterone; Auditory hypersensitivity; Gene expression ID OUTER HAIR-CELLS; FACTOR-KAPPA-B; GLUCOCORTICOID-RECEPTOR; RESTRAINT STRESS; INFERIOR COLLICULUS; ACOUSTIC TRAUMA; GENE-EXPRESSION; NOISE EXPOSURE; MOTOR PROTEIN; HEARING-LOSS AB Exposure to harsh environment induces stress reactions that increase probability of survival. Stress influences the endocrine, nervous and immune systems and affects the functioning of a variety of organs. Numerous researchers demonstrated that a 24-h exposure to an acoustic rodent repellent provokes stress reaction in exposed animals. In addition to the activated hypothalamic-pituitary-adrenal (HPA) axis, exposed animals had pathological reactions in the reproductive organs, bronchia and skin. Here, we examined the effect of above stress model on the auditory system of Wistar rats. We found that 24-h stress decreases the thresholds and increases the amplitudes of auditory brainstem responses and distortion product otoacoustic emissions. Resultant auditory hypersensitivity was transient and most pronounced between 3 and 6 h post-stress, returning to control levels one week later. The concentration of corticosterone and tumor necrosis factor alpha was systemically elevated in stressed animals between 3 and 6 h post-stress, confirming the activation of the HPA axis. In addition, expression of the HPA-axis-associated genes: glucocorticoid receptor (GR) and hypoxia-inducible factor 1 alpha (Hif1a) was modulated in the auditory tissues. In detail, in the inferior colliculus, we found an up-regulation of GR mRNA 3 h post-stress and continuous up-regulation of Hif1a up to 24 h post-stress. In the spiral ganglion, we found no differences in gene expression between stressed and control animals. In the organ of Corti, expression of GR mRNA remained stable, whereas that of Hif1a was significantly down-regulated one week after stress. In addition, the expression of an outer hair cell marker prestin was significantly up-regulated 6 h post-stress. We conclude that 24-h stress induces transient hypersensitivity of the auditory system and modulates gene expression in a tissue-specific manner. Stress-induced auditory hypersensitivity could have evolutionary consequence by giving animals an advantage of hearing better under stress conditions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Mazurek, Birgit] Charite, Dept Otorhinolaryngol, Tinnitus Ctr, Mol Biol Res Lab, D-10117 Berlin, Germany. [Joachim, Ricarda; Klapp, Burghard F.] Charite, Dept Internal Med & Psychosomat, D-10117 Berlin, Germany. [Stoever, Timo] Hannover Med Sch, Dept Otorhinolaryngol, Hannover, Germany. RP Mazurek, B (reprint author), Charite, Dept Otorhinolaryngol, Tinnitus Ctr, Mol Biol Res Lab, Charitepl 1, D-10117 Berlin, Germany. EM birgit.mazurek@charite.de FU Charite - Universitatsmedizin Berlin [2008-750, 2008-751]; Sonnenfeld Foundation, Berlin, Germany FX This work was supported by grants from the Charite - Universitatsmedizin Berlin (Gr. 2008-750 and 2008-751) and the Sonnenfeld Foundation, Berlin, Germany. We thank Ms. Julia Fuchs, Ms. Olga Hegend and Ms. Astrid Machulik for their excellent technical assistance. CR ADER R, 1995, LANCET, V345, P99, DOI 10.1016/S0140-6736(95)90066-7 Adler HJ, 2003, HEARING RES, V184, P27, DOI 10.1016/S0378-5955(03)00192-8 Al-Mana D, 2008, NEUROSCIENCE, V153, P881, DOI 10.1016/j.neuroscience.2008.02.077 Arck PC, 2006, J INVEST DERMATOL, V126, P1697, DOI 10.1038/sj.jid.5700104 ARCK PC, 1995, AM J REPROD IMMUNOL, V33, P74 Avitsur R, 2005, BRAIN BEHAV IMMUN, V19, P311, DOI 10.1016/j.bbi.2004.09.005 Ban JH, 2006, OTOLARYNG HEAD NECK, V134, P970, DOI 10.1016/j.otohns.2005.11.045 Bardos JI, 2005, BBA-REV CANCER, V1755, P107, DOI 10.1016/j.bbcan.2005.05.001 Bauer ME, 2001, LIFE SCI, V69, P1167, DOI 10.1016/S0024-3205(01)01200-0 Biacabe B, 2001, AURIS NASUS LARYNX, V28, P85, DOI 10.1016/S0385-8146(00)00080-8 Bierhaus A, 2006, ANESTHESIOL CLIN N A, V24, P325, DOI 10.1016/j.atc.2006.01.001 Buynitsky T, 2009, NEUROSCI BIOBEHAV R, V33, P1089, DOI 10.1016/j.neubiorev.2009.05.004 Cacioppo JT, 1998, ANN NY ACAD SCI, V840, P664, DOI 10.1111/j.1749-6632.1998.tb09605.x Cao L, 2002, J NEUROIMMUNOL, V125, P94, DOI 10.1016/S0165-5728(02)00039-5 Chesnokova V, 2002, ENDOCRINOLOGY, V143, P1571, DOI 10.1210/en.143.5.1571 Cho YS, 2002, JARO, V3, P54, DOI 10.1007/s101620010042 Chrousos GP, 1998, ANN NY ACAD SCI, V851, P311, DOI 10.1111/j.1749-6632.1998.tb09006.x Curtis LM, 1995, HEARING RES, V92, P120, DOI 10.1016/0378-5955(95)00207-3 Dagnino-Subiabre A, 2005, NEUROSCIENCE, V135, P1067, DOI 10.1016/j.neuroscience.2005.07.032 Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 Datson NA, 2008, EUR J PHARMACOL, V583, P272, DOI 10.1016/j.ejphar.2007.11.070 Fagelson Marc A, 2007, Am J Audiol, V16, P107, DOI 10.1044/1059-0889(2007/015) FOWLER EP, 1952, JAMA-J AM MED ASSOC, V148, P1265 Gagnon PM, 2007, HEARING RES, V226, P79, DOI 10.1016/j.heares.2006.09.006 Geuze E, 2008, MOL PSYCHIATR, V13, P74, DOI 10.1038/sj.mp.4002054 Gross J, 2003, HEARING RES, V183, P73, DOI 10.1016/S0378-5955(03)00222-3 Haddad JJ, 2005, INT IMMUNOPHARMACOL, V5, P461, DOI 10.1016/j.intimp.2004.11.009 Harvey BH, 2004, PSYCHOPHARMACOLOGY, V175, P494, DOI 10.1007/s00213-004-1836-4 Haupt H, 2003, ORL J OTO-RHINO-LARY, V65, P134, DOI 10.1159/000072250 Haupt H, 2002, MAGNESIUM RES, V15, P17 Hayashi R, 2004, EUR J PHARMACOL, V500, P51, DOI 10.1016/j.ejphar.2004.07.011 Hebert S, 2007, NEUROSCI LETT, V411, P138, DOI 10.1016/j.neulet.2006.10.028 Heitzer MD, 2007, REV ENDOCR METAB DIS, V8, P321, DOI 10.1007/s11154-007-9059-8 Hinton DE, 2006, J TRAUMA STRESS, V19, P541, DOI 10.1002/jts.20138 Horner KC, 2001, EUR J NEUROSCI, V13, P405, DOI 10.1046/j.0953-816X.2000.01386.x Hurley LM, 2002, HEARING RES, V168, P1, DOI 10.1016/S0378-5955(02)00365-9 Imig TJ, 2005, J COMP NEUROL, V490, P391, DOI 10.1002/cne.20674 Ison JR, 2007, JARO-J ASSOC RES OTO, V8, P539, DOI 10.1007/s10162-007-0098-3 Joachim RA, 2003, PSYCHOSOM MED, V65, P811, DOI 10.1097/01.PSY.0000088582.50468.A3 Kadner A, 2006, NEUROREPORT, V17, P635, DOI 10.1097/00001756-200604240-00015 Kodama T, 2003, J BIOL CHEM, V278, P33384, DOI 10.1074/jbc.M302581200 Kyrou I, 2007, HORM METAB RES, V39, P430, DOI 10.1055/s-2007-981462 Leonard MO, 2005, J IMMUNOL, V174, P2250 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Mazurek B, 2007, HEARING RES, V231, P73, DOI 10.1016/j.heares.2007.05.008 MUCHNIK C, 1992, HEARING RES, V58, P101, DOI 10.1016/0378-5955(92)90013-D Murakoshi M, 2006, BRAIN RES, V1107, P121, DOI 10.1016/j.brainres.2006.05.095 Organ LE, 2009, JARO-J ASSOC RES OTO, V10, P383, DOI 10.1007/s10162-009-0171-1 Popelar J, 2008, HEARING RES, V245, P82, DOI 10.1016/j.heares.2008.09.002 Qiu BS, 1999, NAT MED, V5, P1178 Ricart-Jane D, 2002, METABOLISM, V51, P925, DOI 10.1053/meta.2002.33353 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Schaaf MJM, 2002, J STEROID BIOCHEM, V83, P37, DOI 10.1016/S0960-0760(02)00263-7 Sfondouris J, 2008, J BIOL CHEM, V283, P22473, DOI 10.1074/jbc.M803722200 Sheps DS, 2002, CIRCULATION, V105, P1780, DOI 10.1161/01.CIR.0000014491.90666.06 Steptoe A, 2001, CLIN SCI, V101, P185, DOI 10.1042/CS20010038 Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024 Tahera Y, 2006, NEUROREPORT, V17, P879, DOI 10.1097/01.wnr.0000220131.24468.e7 Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260 Tahera Y, 2007, NEUROBIOL DIS, V25, P189, DOI 10.1016/j.nbd.2006.09.004 Vaiva G, 2006, AM J PSYCHIAT, V163, P1446, DOI 10.1176/appi.ajp.163.8.1446 van Cruijsen N, 2005, OTOL NEUROTOL, V26, P1214, DOI 10.1097/01.mao.0000179528.24909.ba Van Laethem F, 2003, J IMMUNOL, V170, P2932 Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 65 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2010 VL 259 IS 1-2 BP 55 EP 63 DI 10.1016/j.heares.2009.10.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 560DL UT WOS:000274882100006 PM 19840840 ER PT J AU Stronks, HC Versnel, H Prijs, VF Klis, SFL AF Stronks, H. Christiaan Versnel, Huib Prijs, Vera F. Klis, Sjaak F. L. TI Suppression of the acoustically evoked auditory-nerve response by electrical stimulation in the cochlea of the guinea pig SO HEARING RESEARCH LA English DT Article DE Electro-acoustical stimulation; Electrocochleography; Compound action potential; Cochlear implant ID COMPOUND ACTION-POTENTIALS; BASILAR-MEMBRANE MOTION; SINGLE-FIBER RESPONSES; ELECTROACOUSTIC STIMULATION; RESIDUAL HEARING; FORWARD-MASKING; PULSE TRAINS; IMPLANTATION; SPEECH; CAT AB There is increasing interest in the use of electro-acoustical stimulation in people with a cochlear implant that have residual low-frequency hearing in the implanted ear. This raises the issue of how electrical and acoustical stimulation interact in the cochlea. We have investigated the effect of electrical stimulation on the acoustically evoked compound action potential (CAP) in normal-hearing guinea pigs. CAPs were evoked by tone bursts, and electric stimuli were delivered at the base of the cochlea using extracochlear electrodes. CAPs could be suppressed by electrical stimulation under various conditions. The dependence of CAP suppression on several parameters was investigated, including frequency and level of the acoustic stimulus, current level of the electric stimulus and the interval between electric and acoustic stimulus (EAI). Most pronounced suppression was observed when CAPs were evoked with high-frequency tones of low level. Suppression increased with current level and at high currents low-frequency evoked CAPs could also be suppressed. Suppression was typically absent several milliseconds after the electric stimulus. Suppression mediated by direct neural responses and hair cell mediated (electrophonic) responses is discussed. We conclude that the high-frequency part of the cochlea can be stimulated electrically with little detrimental effects on CAPs evoked by low-frequency tones. (C) 2009 Elsevier B.V. All rights reserved. C1 [Klis, Sjaak F. L.] Univ Med Ctr Utrecht, Dept Otorhinolaryngol, Hearing Res Labs, Rudolf Magnus Inst Neurosci, NL-3508 GA Utrecht, Netherlands. RP Klis, SFL (reprint author), Univ Med Ctr Utrecht, Dept Otorhinolaryngol, Hearing Res Labs, Rudolf Magnus Inst Neurosci, Room G-02-531,POB 85500, NL-3508 GA Utrecht, Netherlands. EM c.stronks@umcutrecht.nl; h.versnel@umcutrecht.nl; v.prijs@umcutrecht.nl; s.klis@umcutrecht.nl FU Heinsius-Houbolt Fund FX This study was supported by the Heinsius-Houbolt Fund. The authors thank Ren van de Vosse for technical assistance and data acquisition and analysis software, and Rik Mansvelt Beck for technical assistance. The authors thank the reviewers for their critical comments. CR ABBAS PJ, 1981, J ACOUST SOC AM, V69, P492, DOI 10.1121/1.385477 Adunka O, 2004, ORL J OTO-RHINO-LARY, V66, P306, DOI 10.1159/000081887 BALL L L, 1982, Journal of Auditory Research, V22, P107 BROWN MC, 1994, J NEUROPHYSIOL, V71, P1826 CHING TYC, 2006, AUDIOL NEUROOTOL S11, V1, P6 DESAUVAGE RC, 1983, J ACOUST SOC AM, V73, P616 DESMEDT J. E., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1478, DOI 10.1121/1.1918374 DOOLEY GJ, 1993, ARCH OTOLARYNGOL, V119, P55 Fraysse B, 2006, OTOL NEUROTOL, V27, P624, DOI 10.1097/01.mao.0000226289.04048.0f Gantz BJ, 2005, LARYNGOSCOPE, V115, P796, DOI 10.1097/01.MLG.0000157695.07536.D2 Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012 GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497 GORGA MP, 1981, J ACOUST SOC AM, V70, P1310, DOI 10.1121/1.387145 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Gstoettner W, 2004, ACTA OTO-LARYNGOL, V124, P348, DOI 10.1080/00016480410016432 Gstoettner WK, 2008, ACTA OTO-LARYNGOL, V128, P968, DOI 10.1080/00016480701805471 Hu N, 2003, HEARING RES, V185, P77, DOI 10.1016/S0378-5955(03)00261-2 KILLIAN MJP, 1994, HEARING RES, V81, P66, DOI 10.1016/0378-5955(94)90154-6 KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0 Kong YY, 2005, J ACOUST SOC AM, V117, P1351, DOI 10.1121/1.1857526 Lorens A, 2008, LARYNGOSCOPE, V118, P288, DOI 10.1097/MLG.0b013e3181598887 Luetje CM, 2007, OTOL NEUROTOL, V28, P473, DOI 10.1097/RMR.0b013e3180423aed Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6 MCANALLY KI, 1994, ACTA OTO-LARYNGOL, V114, P366, DOI 10.3109/00016489409126071 MCANALLY KI, 1993, HEARING RES, V67, P55, DOI 10.1016/0378-5955(93)90232-P McAnally KI, 1997, HEARING RES, V106, P146, DOI 10.1016/S0378-5955(97)00012-9 McAnally KI, 1997, HEARING RES, V106, P137, DOI 10.1016/S0378-5955(97)00011-7 Miller CA, 2006, JARO-J ASSOC RES OTO, V7, P195, DOI 10.1007/s10162-006-0036-9 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Mok M, 2006, J SPEECH LANG HEAR R, V49, P338, DOI 10.1044/1092-4388(2006/027) Nourski KV, 2005, HEARING RES, V202, P141, DOI [10.1016/j.heares.2004.10.001, 10.1016/j.heares.2004.11.001] Nourski KV, 2007, HEARING RES, V232, P87, DOI 10.1016/j.heares.2007.07.001 Novak MA, 2007, OTOL NEUROTOL, V28, P609 Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2 NUTTALL AL, 1974, J ACOUST SOC AM, V56, P1239, DOI 10.1121/1.1903414 Pang XD, 1997, J ACOUST SOC AM, V102, P3576, DOI 10.1121/1.420399 PRIJS VF, 1980, ACUSTICA, V45, P1 PRIJS VF, 1993, HEARING RES, V71, P190, DOI 10.1016/0378-5955(93)90034-X PRIJS VF, 1981, HEARING RES, V4, P23, DOI 10.1016/0378-5955(81)90034-4 RAJAN R, 1983, HEARING RES, V12, P405, DOI 10.1016/0378-5955(83)90009-6 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 TASAKI I, 1951, AM J PHYSIOL, V167, P831 TASAKI I, 1952, J NEUROPHYSIOL, V15, P497 TEAS DC, 1970, J ACOUST SOC AM, V47, P1527, DOI 10.1121/1.1912084 Turner CW, 2008, HEARING RES, V242, P164, DOI 10.1016/j.heares.2007.11.008 VANDEELEN GW, 1986, ACTA OTO-LARYNGOL, V101, P207, DOI 10.3109/00016488609132829 VANDENBERGE H, 1990, HEARING RES, V48, P209, DOI 10.1016/0378-5955(90)90061-S VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 VERSNEL H, 1990, HEARING RES, V46, P147, DOI 10.1016/0378-5955(90)90145-F von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Wilson BS, 2003, ANNU REV BIOMED ENG, V5, P207, DOI 10.1146/annurev.bioeng.5.040202.121645 XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103 NR 54 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2010 VL 259 IS 1-2 BP 64 EP 74 DI 10.1016/j.heares.2009.10.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 560DL UT WOS:000274882100007 PM 19840841 ER PT J AU Bahmer, A Polak, M Baumann, U AF Bahmer, Andreas Polak, Marek Baumann, Uwe TI Recording of electrically evoked auditory brainstem responses after electrical stimulation with biphasic, triphasic and precision triphasic pulses SO HEARING RESEARCH LA English DT Article DE Biphasic; Triphasic; Precision triphasic; E-ABR; Cochlear implant; Artifact; Stimulation protocol ID COMPOUND ACTION-POTENTIALS; COCHLEAR IMPLANT USERS; MONOPHASIC STIMULATION; NERVE; CAT; ABR; SENSITIVITY; MONOPOLAR; HUMANS; FIBERS AB Biphasic electrical pulses are the standard stimulation pulses in current cochlear implants. In auditory brainstem recordings biphasic pulses generate a significant artifact that disrupts brainstem responses, which are magnitudes smaller. Triphasic pulses may minimize artifacts by restoring the neural membrane to its resting potential faster than biphasic pulses and make auditory brainstem responses detection easier. We compared biphasic pulses with triphasic and precision triphasic pulses to evoke brainstem responses in human subjects. For this purpose, electrically evoked brainstem response audiometry was performed in 10 (11 ears) cochlear implant patients. Artifacts and brainstem responses evoked by bi- and triphasic stimulation were analyzed. Artifact amplitude and decay time were related to pulse pattern shape, but application of averaging and alternation reduced the deterioration of electrically evoked brainsterm responses independent of pulse pattern shape. Contrary to our expectations, biphasic pulses showed a higher detectability in comparison to triphasic pulse stimulation at the same stimulation amplitude. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bahmer, Andreas; Baumann, Uwe] Univ Frankfurt Main, Clin Otolaryngol, D-60590 Frankfurt, Germany. [Polak, Marek] MED EL, A-6020 Innsbruck, Austria. RP Bahmer, A (reprint author), Univ Frankfurt Main, Clin Otolaryngol, D-60590 Frankfurt, Germany. EM andreas.bahmer@kgu.de; marek.polak@medel.com; uwe.baumann@kgu.de FU Deutsche Forschungsgemeinschaft [BA 2085/3-1] FX The authors would like to thank Otto Peter from the University of Innsbruck for providing the interface (RIB2) for the MED-EL cochlear implants. We also would like to thank two anonymous reviewers for their valuable advice and Dr. Jane M. Opie for grammar review. The recordings were performed under the authorization of the Ethic committee of the University of Frankfurt. The work was supported by the grant from the Deutsche Forschungsgemeinschaft (BA 2085/3-1). CR Alvarez I, 2007, J NEUROSCI METH, V165, P95, DOI 10.1016/j.jneumeth.2007.05.028 Bahmer A, 2008, J NEUROSCI METH, V173, P306, DOI 10.1016/j.jneumeth.2008.06.012 Bonnet RM, 2004, ACTA OTO-LARYNGOL, V124, P371, DOI 10.1080/00016480410031084 BROWN CJ, 1994, EAR HEARING, V15, P168, DOI 10.1097/00003446-199404000-00006 BURKARD RF, 1994, HDB CLIN AUDIOLOGY Carlyon RP, 2005, HEARING RES, V205, P210, DOI 10.1016/j.heares.2005.03.021 Coste RL, 1996, J ACOUST SOC AM, V99, P3099, DOI 10.1121/1.414796 EDDINGTON DK, 2004, 9 NIH Guiraud J, 2007, HEARING RES, V223, P48, DOI 10.1016/j.heares.2006.09.014 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 ILBERG C, 1999, J OTORHINOLARYNGOL, V61, P334 JEWETT DL, 1971, BRAIN, V94, P681, DOI 10.1093/brain/94.4.681 Macherey O, 2008, JARO-J ASSOC RES OTO, V9, P241, DOI 10.1007/s10162-008-0112-4 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Moller AR, 2006, INTRAOPERATIVE NEURO Polak M, 2004, J NEUROSCI METH, V134, P141, DOI 10.1016/j.jneumeth.2003.11.003 Prado-Guitierrez P, 2006, HEARING RES, V215, P47, DOI 10.1016/j.heares.2006.03.006 Rubinstein JT, 2001, IEEE T BIO-MED ENG, V48, P1065, DOI 10.1109/10.951508 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 VANDENHONERT C, 1986, HEARING RES, V21, P109, DOI 10.1016/0378-5955(86)90033-X VONSPECHT H, 1988, PROGR COMPUTER ASSIS Wieringen A., 2008, HEARING RES, V242, P154 NR 23 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2010 VL 259 IS 1-2 BP 75 EP 85 DI 10.1016/j.heares.2009.10.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 560DL UT WOS:000274882100008 PM 19850116 ER PT J AU Kumar, G Chokshi, M Richter, CP AF Kumar, Gagan Chokshi, Moulin Richter, Claus-Peter TI Electrical impedance measurements of cochlear structures using the four-electrode reflection-coefficient technique SO HEARING RESEARCH LA English DT Article DE Cochlea; Hemicochlea; Electrical impedance; Four-electrode reflection-coefficient method ID GUINEA-PIG COCHLEA; INNER-EAR; RESISTANCE CHANGES; HEMICOCHLEA AB In individuals with severe-to-profound hearing loss, cochlear implants (CIs) bypass normal inner ear function by applying electrical current directly into the cochlea, thereby stimulating surviving auditory nerve fibers. Although cochlear implants are able to restore some auditory sensation, they are far from providing normal hearing. It has been estimated that up to 75% of the current injected via a Cl is shunted along scala tympani and is not available to stimulate auditory neurons. The path of the injected current and the consequent population of stimulated spiral ganglion cells are dependent upon the positions of the electrode contacts within the cochlea and the impedances of cochlear structures. However, characterization of the current path remains one of the most critical, yet least understood, aspects of cochlear implantation. In particular, the impedances of cochlear structures, including the modiolus, are either unknown or based upon estimates derived from circuit models. Impedance values for many cochlear structures have never been measured. By combining the hemicochlea preparation, a cochlea cut in half along its mid-modiolar plane, and the four-electrode reflection-coefficient technique, impedances can be measured for cochlear tissues in a cochlear cross section including the modiolus. Advantages and disadvantages of the method are discussed in detail and electrical impedance measurements obtained in the gerbil hemicochlea are presented. The resistivity values for the cochlear wall in Omega cm are, 528 (range: 432-708) for scala media 3rd turn, 502 (range: 421-616) for scala tympani 3rd turn and scala vestibuli 2nd turn, 627 (range: 531-759) for scala media 2nd turn, 434 (range: 353-555) for scala tympani 2nd turn and scala vestibuli basal turn, 434 (range: 373-514) for scala media basal turn, and 590 (range: 546-643) for scala tympani basal turn. The resistivity was 455 Omega cm (range: 426-487) for the modiolus. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kumar, Gagan; Chokshi, Moulin; Richter, Claus-Peter] Northwestern Univ, Feinberg Sch Med, Dept Otolaryngol Head & Neck Surg, Chicago, IL 60611 USA. [Richter, Claus-Peter] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA. [Richter, Claus-Peter] Northwestern Univ, Dept Commun Sci & Disorders, Hugh Knowles Ctr, Evanston, IL 60208 USA. RP Richter, CP (reprint author), Northwestern Univ, Feinberg Sch Med, Dept Otolaryngol Head & Neck Surg, 303 E Chicago Ave, Chicago, IL 60611 USA. EM cri529@northwestern.edu FU National Science Foundation; American Hearing Research Foundation FX This work was funded in part by a grant from the National Science Foundation and in part by the American Hearing Research Foundation. CR ASAKUMA S, 1978, HEARING RES, V1, P25, DOI 10.1016/0378-5955(78)90005-9 Bekesy G., 1960, EXPT HEARING CANNON MW, 1976, ELECT IMPEDANCES CUR Edge RM, 1998, HEARING RES, V124, P1, DOI 10.1016/S0378-5955(98)00090-2 GEISLER CD, 1977, J ACOUST SOC AM, V61, P1557, DOI 10.1121/1.381469 GEISLER CD, 1980, J ACOUST SOC AM, V67, P1729, DOI 10.1121/1.384299 HAAS GF, 1973, J ACOUST SOC AM, V53, P2, DOI 10.1121/1.1913324 HONRUBIA V, 1969, J ACOUST SOC AM, V46, P388, DOI 10.1121/1.1911701 HONRUBIA V, 1976, ANN OTO RHINOL LARYN, V85, P697 Hu XT, 1999, J NEUROPHYSIOL, V82, P2798 JOHNSTON.BM, 1966, J ACOUST SOC AM, V40, P1398, DOI 10.1121/1.1910239 Keiler S, 2001, HEARING RES, V162, P91, DOI 10.1016/S0378-5955(01)00374-4 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Kun S, 2000, IEEE T BIO-MED ENG, V47, P163, DOI 10.1109/10.821749 KUROKAWA S, 1965, JAP J OTOL TOKYO, V68, P1177 MAXWELL JC, 1891, TREATISE ELECT MAGNE, P433 MISRAHY GA, 1958, AM J PHYSIOL, V194, P396 MORTAZAVI M, 1995, UNTERSUCHUNGEN EINSC Richter CP, 2000, JARO, V1, P195, DOI 10.1007/s101620010019 RICHTER CP, 1998, ABSTR ASS RES OT, V21, P735 SITKO E, 1973, JASA, V54, P295 Spelman F A, 1982, Ann Otol Rhinol Laryngol Suppl, V98, P3 STRELIOF.D, 1973, J ACOUST SOC AM, V54, P620, DOI 10.1121/1.1913642 SUESSERMAN MF, 1993, IEEE T BIO-MED ENG, V40, P1032, DOI 10.1109/10.247802 SUESSERMAN MF, 1992, NONINVASIVE MICROELE Teudt IU, 2007, J NEUROSCI METH, V162, P187, DOI 10.1016/j.jneumeth.2007.01.012 VONBEKESY G, 1951, J ACOUST SOC AM, V23, P18 Wait J. R., 1982, GEOELECTROMAGNETISM NR 28 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2010 VL 259 IS 1-2 BP 86 EP 94 DI 10.1016/j.heares.2009.10.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 560DL UT WOS:000274882100009 PM 19857561 ER PT J AU Friesen, LM Picton, TW AF Friesen, Lendra M. Picton, Terence W. TI A method for removing cochlear implant artifact SO HEARING RESEARCH LA English DT Article DE N1; P2; ERP; Evoked potential; CAEP; Cochlear implant; Artifact ID AUDITORY-EVOKED-POTENTIALS; NERVE ACTION-POTENTIALS; MISMATCH NEGATIVITY; ACOUSTIC CHANGE; CORTICAL POTENTIALS; STIMULUS ARTIFACT; CHANGE COMPLEX; HUMAN CORTEX; N1 WAVE; RESPONSES AB When cortical auditory evoked potentials (CAEPs) are recorded in individuals with a cochlear implant (CI), electrical artifact can make the CAEP difficult or impossible to measure. Since increasing the inter-stimulus interval (ISI) increases the amplitude of physiological responses without changing the artifact, subtracting CAEPs recorded with a short ISI from those recorded with a longer ISI should show the physiological response without any artifact. In the first experiment, N1-P2 responses were recorded using a speech syllable and tone, paired with ISIs that changed randomly between 0.5 and 4 s. In the second experiment, the same stimuli, at ISIs of either 500 or 3000 ms, were presented in blocks that were homogeneous or random with respect to the ISI or stimulus. in the third experiment, N1-P2 responses were recorded using pulse trains with 500 and 3000 ms ISIs in 4 CI listeners. The results demonstrated: (1) N1-P2 response amplitudes generally increased with increasing ISI. (2) Difference waveforms were largest for the homogeneous and random-stimulus blocks than for the random-ISI block. (3) The subtraction technique almost completely eliminated the electrical artifact in individuals with cochlear implants. Therefore, the subtraction technique is a feasible method of removing from the N1-P2 response the electrical artifact generated by the cochlear implant. (C) 2009 Elsevier B.V. All rights reserved. C1 [Friesen, Lendra M.] Sunnybrook Hlth Sci Ctr, Dept Otolaryngol, Toronto, ON M4N 3M5, Canada. Univ Toronto, Toronto, ON, Canada. RP Friesen, LM (reprint author), Sunnybrook Hlth Sci Ctr, Dept Otolaryngol, Rm M1-102,2075 Bayview Ave, Toronto, ON M4N 3M5, Canada. EM lendra.friesen@sunnybrook.ca FU Hearing Foundation of Canada; University of Toronto Faculty of Medicine; Canadian Institutes of Health Research FX The authors wish to thank the subjects who participated in these experiments for their time and effort. We would also like to thank Patricia Van Roon and Kaibao Nie for their technical assistance. This research was supported by the Hearing Foundation of Canada, the Dean's Fund of the University of Toronto Faculty of Medicine, and the Canadian Institutes of Health Research. Portions of this paper were presented at the 21st International Evoked Response Audiometry Study Group Meeting and at the 2009 Conference on Implantable Auditory Prosthesis. CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 *ADV BION CORP, 2003, LOUDN RAT SCAL *ADV BION CORP, 2006, BION EAR DAT COLL SY Beagley HA, 1969, INT AUDIOL, V8, P345, DOI 10.3109/05384916909079077 BERG P, 1994, ELECTROEN CLIN NEURO, V90, P229, DOI 10.1016/0013-4694(94)90094-9 Brown CJ, 2008, EAR HEARING, V29, P704, DOI 10.1097/AUD.0b013e31817a98af Brown CJ, 1996, J SPEECH HEAR RES, V39, P453 BROWN CJ, 1990, J ACOUST SOC AM, V88, P2205, DOI 10.1121/1.400117 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Bruneau N, 1997, PSYCHOPHYSIOLOGY, V34, P32, DOI 10.1111/j.1469-8986.1997.tb02413.x BUTLER RA, 1972, ELECTROEN CLIN NEURO, V33, P277, DOI 10.1016/0013-4694(72)90154-X BUTLER RA, 1968, J ACOUST SOC AM, V44, P945, DOI 10.1121/1.1911233 DAVIS H, 1966, ELECTROEN CLIN NEURO, V21, P105, DOI 10.1016/0013-4694(66)90118-0 DAVIS H, 1967, J SPEECH HEAR RES, V10, P717 DAVIS H, 1966, J ACOUST SOC AM, V39, P109, DOI 10.1121/1.1909858 Debener S, 2008, PSYCHOPHYSIOLOGY, V45, P20, DOI 10.1111/j.1469-8986.2007.00610.x DUBNO JR, 1992, J ACOUST SOC AM, V91, P2110, DOI 10.1121/1.403697 Eggermont JJ, 1976, HDB SENSORY PHYSL, P625 Eggermont JJ, 1997, ACTA OTO-LARYNGOL, V117, P161, DOI 10.3109/00016489709117760 EGGERMON.JJ, 1974, AUDIOLOGY, V13, P1 Friesen LM, 2006, EAR HEARING, V27, P678, DOI 10.1097/01.aud.0000240620.63453.c3 FRUHSTOR.H, 1970, ELECTROEN CLIN NEURO, V28, P153, DOI 10.1016/0013-4694(70)90183-5 Gilley PM, 2006, CLIN NEUROPHYSIOL, V117, P1772, DOI 10.1016/j.clinph.2006.04.018 Gilley PM, 2008, BRAIN RES, V1239, P56, DOI 10.1016/j.brainres.2008.08.026 Gilley PM, 2005, CLIN NEUROPHYSIOL, V116, P648, DOI 10.1016/j.clinph.2004.09.009 Gordon KA, 2005, NEUROREPORT, V16, P2041, DOI 10.1097/00001756-200512190-00015 Groenen PAP, 2001, SCAND AUDIOL, V30, P31, DOI 10.1080/010503901750069554 HARI R, 1989, ADV AUDIOLOGY, V6 HARI R, 1982, ELECTROEN CLIN NEURO, V54, P561, DOI 10.1016/0013-4694(82)90041-4 HARI R, 1987, AUDIOLOGY, V26, P31 HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177 Hyde M, 1997, AUDIOL NEURO-OTOL, V2, P281 Ille N, 2002, J CLIN NEUROPHYSIOL, V19, P113, DOI 10.1097/00004691-200203000-00002 Kisley MA, 2004, NEUROSCI LETT, V358, P197, DOI 10.1016/j.neulet.2004.01.042 Lightfoot G, 2006, EAR HEARING, V27, P443, DOI 10.1097/01.aud.0000233902.53432.48 LU ZL, 1992, BRAIN RES, V572, P236, DOI 10.1016/0006-8993(92)90475-O Martin BA, 2007, J AM ACAD AUDIOL, V18, P126, DOI 10.3766/jaaa.18.2.5 Martin BA, 2007, AUDITORY EVOKED POTE, P482 McCallum W C, 1980, Prog Brain Res, V54, P767, DOI 10.1016/S0079-6123(08)61701-X McCallum W. C., 1979, HUMAN EVOKED POTENTI, P235, DOI 10.1007/978-1-4684-3483-5_16 Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 MILNER BA, 1969, INT J AUDIOL, V361, P370 Moore JK, 2001, JARO, V2, P297, DOI 10.1007/s101620010052 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NAATANEN R, 1988, ELECTROEN CLIN NEURO, V69, P523, DOI 10.1016/0013-4694(88)90164-2 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 NAATANEN R, 1989, NEUROSCI LETT, V98, P217, DOI 10.1016/0304-3940(89)90513-2 NELSON DA, 1969, J SPEECH HEAR RES, V12, P199 NELSON DA, 1968, J ACOUST SOC AM, V44, P1529, DOI 10.1121/1.1911292 Ostroff JM, 1998, EAR HEARING, V19, P290, DOI 10.1097/00003446-199808000-00004 Pang EW, 2000, CLIN NEUROPHYSIOL, V111, P388, DOI 10.1016/S1388-2457(99)00259-X PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 Pantev C, 2002, HEARING RES, V171, P191, DOI 10.1016/S0378-5955(02)00511-7 Picton TW, 2000, CLIN NEUROPHYSIOL, V111, P53, DOI 10.1016/S1388-2457(99)00227-8 Picton TW, 1988, EEG HDB, P361 PICTON TW, 1977, J OTOLARYNGOL, V6, P90 PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P198, DOI 10.1016/0013-4694(78)90004-4 PICTON TW, 1992, ELECTROEN CLIN NEURO, V84, P90, DOI 10.1016/0168-5597(92)90071-I PICTON TW, 1976, HDB SENSORY PHYSL 3, pCH8 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 Ponton C W, 1999, Scand Audiol Suppl, V51, P13 PONTON CW, 1993, ELECTROEN CLIN NEURO, V88, P478, DOI 10.1016/0168-5597(93)90037-P Ponton CW, 2000, AUDIOL NEURO-OTOL, V5, P167, DOI 10.1159/000013878 PONTON CW, 1995, EAR HEARING, V16, P131, DOI 10.1097/00003446-199502000-00010 Purdy SC, 2001, AUDIOL NEURO-OTOL, V6, P211, DOI 10.1159/000046835 Rinne T, 2006, BRAIN RES, V1077, P135, DOI 10.1016/j.brainres.2006.01.043 RITTER W, 1968, ELECTROEN CLIN NEURO, V25, P550, DOI 10.1016/0013-4694(68)90234-4 ROTH WT, 1976, ELECTROEN CLIN NEURO, V40, P623, DOI 10.1016/0013-4694(76)90137-1 ROTHMAN HH, 1970, ELECTROEN CLIN NEURO, V29, P225, DOI 10.1016/0013-4694(70)90135-5 Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336 Sharma A, 2004, ARCH OTOLARYNGOL, V130, P511, DOI 10.1001/archotol.130.5.511 Williamson S. J., 1987, EEG HDB, V1, P405 WOLDORFF MG, 1991, ELECTROEN CLIN NEURO, V79, P170, DOI 10.1016/0013-4694(91)90136-R WOLPAW JR, 1975, ELECTROEN CLIN NEURO, V39, P609, DOI 10.1016/0013-4694(75)90073-5 WOOD CC, 1982, ELECTROEN CLIN NEURO, V54, P25, DOI 10.1016/0013-4694(82)90228-0 NR 75 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2010 VL 259 IS 1-2 BP 95 EP 106 DI 10.1016/j.heares.2009.10.012 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 560DL UT WOS:000274882100010 PM 19878712 ER PT J AU Okazaki, S Kanoh, S Tsukada, M Oka, K AF Okazaki, Shuntaro Kanoh, Shin'ichiro Tsukada, Minoru Oka, Kotaro TI Neural substrate of sound duration discrimination during an auditory sequence in the guinea pig primary auditory cortex SO HEARING RESEARCH LA English DT Article DE Sound duration; Change detection; Mismatch negativity; Unit recording; Guinea pig ID BIG BROWN BAT; EVENT-RELATED POTENTIALS; MISMATCH NEGATIVITY MMN; INFERIOR COLLICULUS; EPTESICUS-FUSCUS; TONE DURATION; MEMORY-TRACE; NEURONS; CAT; STIMULI AB Mismatch negativity (MMN) is a negative component of event-related brain potentials elicited by stimulus transitions. Stimulus duration transition also elicits MMN (duration MMN), with a magnitude that is related to the degree of duration change and the discrimination ability. The neural substrates of duration MMN have not yet been investigated. We therefore studied how duration transitions in an auditory stimulus train are represented in neurons in the primary auditory cortex of anesthetized guinea pigs. Two types of neuronal responses to the context of changes in stimulus duration were found. One was a reduced response as the duration of the preceding stimulus was increased. Second was an enhancement of the late components of the response including sustained and offset responses at the duration transition. The former may be explained by the previously proposed two-tone suppression, which is dependent on the preceding stimulus duration. The latter is likely to be caused by stimulus-specific adaptation that could be a possible neural generator of duration MMN. (C) 2009 Elsevier B.V. All rights reserved. C1 [Oka, Kotaro] Keio Univ, Sch Fundamental Sci & Technol, Grad Sch Sci & Technol, Kohoku Ku, Kanagawa 2238522, Japan. [Okazaki, Shuntaro] Natl Rehabil Ctr Persons Disabil, Res Inst, Dept Rehabil Sensory Funct, Saitama, Japan. [Kanoh, Shin'ichiro] Tohoku Univ, Grad Sch Engn, Dept Elect Engn, Sendai, Miyagi 980, Japan. [Tsukada, Minoru] Tamagawa Univ, Fac Engn, Tokyo, Japan. RP Oka, K (reprint author), Keio Univ, Sch Fundamental Sci & Technol, Grad Sch Sci & Technol, Kohoku Ku, 3-14-1 Hiyoshi, Kanagawa 2238522, Japan. EM oka@bio.keio.ac.jp CR ABBAS PJ, 1976, J ACOUST SOC AM, V59, P112, DOI 10.1121/1.380841 Astikainen P, 2006, NEUROREPORT, V17, P1561, DOI 10.1097/01.wnr.0000233097.13032.7d Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004 Brand A, 2000, J NEUROPHYSIOL, V84, P1790 Brimijoin WO, 2005, HEARING RES, V210, P63, DOI 10.1016/j.heares.2005.07.005 Brosch M, 1997, J NEUROPHYSIOL, V77, P923 Brosch M, 1999, J NEUROPHYSIOL, V82, P1542 CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 CHURCH RM, 1976, J EXP PSYCHOL ANIM B, V2, P303, DOI 10.1037//0097-7403.2.4.303 Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 Fremouw T, 2005, J NEUROPHYSIOL, V94, P1869, DOI 10.1152/jn.00253.2005 Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050 Haenschel C, 2005, J NEUROSCI, V25, P10494, DOI 10.1523/JNEUROSCI.1227-05.2005 Harper L. V., 1976, BIOL GUINEA PIG, P31 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 He JF, 1997, J NEUROSCI, V17, P2615 Jacobsen T, 2003, CLIN NEUROPHYSIOL, V114, P1133, DOI 10.1016/S1388-2457(03)00043-9 Jen PHS, 2006, BRAIN RES, V1108, P76, DOI 10.1016/j.brainres.2006.06.017 Joutsiniemi SL, 1998, EVOKED POTENTIAL, V108, P154, DOI 10.1016/S0168-5597(97)00082-8 KAUKORANTA E, 1989, HEARING RES, V41, P15, DOI 10.1016/0378-5955(89)90174-3 Klink KB, 2004, J COMP PHYSIOL A, V190, P1039, DOI 10.1007/s00359-004-0561-0 Morlet D, 2001, INT J PSYCHOPHYSIOL, V41, P199 NAATANEN R, 1989, NEUROSCI LETT, V107, P347, DOI 10.1016/0304-3940(89)90844-6 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Naatanen R, 2005, PSYCHOPHYSIOLOGY, V42, P25, DOI 10.1111/j.1469-8986.2005.00256.x Nakamoto KT, 2006, J NEUROPHYSIOL, V95, P1897, DOI 10.1152/jn.00625.2005 Okazaki S, 2006, NEUROREPORT, V17, P395, DOI 10.1097/01.wnr.0000204979.91253.7a Perez-Gonzalez D, 2006, J NEUROPHYSIOL, V95, P823, DOI 10.1152/jn.00741.2005 Reale RA, 2000, J NEUROPHYSIOL, V84, P435 Ruusuvirta T, 1998, NEUROSCI LETT, V248, P45, DOI 10.1016/S0304-3940(98)00330-9 SAMS M, 1983, BIOL PSYCHOL, V17, P41, DOI 10.1016/0301-0511(83)90065-0 SINNOTT JM, 1987, J ACOUST SOC AM, V82, P465, DOI 10.1121/1.395447 SMITH DI, 1988, ELECTROEN CLIN NEURO, V71, P296, DOI 10.1016/0168-5597(88)90030-5 Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002 Szymanski FD, 2009, J NEUROPHYSIOL, V102, P1483, DOI 10.1152/jn.00240.2009 Takahashi H, 2004, NEUROREPORT, V15, P1565, DOI 10.1097/01.wnr.0000134848.63755.5c Tervaniemi M, 1999, CLIN NEUROPHYSIOL, V110, P1388, DOI 10.1016/S1388-2457(99)00108-X Troche SJ, 2009, INTELLIGENCE, V37, P365, DOI 10.1016/j.intell.2009.03.002 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 Umbricht D, 2005, CLIN NEUROPHYSIOL, V116, P353, DOI 10.1016/j.clinph.2004.08.015 Wang J, 2006, BRAIN RES, V1114, P63, DOI 10.1016/j.brainres.2006.07.046 Winkler I, 2001, J COGNITIVE NEUROSCI, V13, P59, DOI 10.1162/089892901564171 Yin SK, 2008, HEARING RES, V237, P32, DOI 10.1016/j.heares.2007.12.008 Yu YQ, 2004, J PHYSIOL-LONDON, V560, P191, DOI 10.1113/jphysiol.2004.067678 NR 46 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2010 VL 259 IS 1-2 BP 107 EP 116 DI 10.1016/j.heares.2009.10.011 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 560DL UT WOS:000274882100011 PM 19857562 ER PT J AU Krueger, J Royal, DW Fister, MC Wallace, MT AF Krueger, Juliane Royal, David W. Fister, Matthew C. Wallace, Mark T. TI Spatial receptive field organization of multisensory neurons and its impact on multisensory interactions SO HEARING RESEARCH LA English DT Article DE Polysensory; Cat; Cross-modal; Multimodal; Integration ID CAT SUPERIOR COLLICULUS; ANTERIOR ECTOSYLVIAN CORTEX; EYE-MOVEMENTS; SOMATOSENSORY CONVERGENCE; OUTPUT NEURONS; VISUAL-CORTEX; DEEP LAMINAE; INTEGRATION; AREA; CONNECTIONS AB Previous work has established that the spatial receptive fields (SRFs) of multisensory neurons in the cerebral cortex are strikingly heterogeneous, and that SRF architecture plays an important deterministic role in sensory responsiveness and multisensory integrative capacities. The initial part of this contribution serves to review these findings detailing the key features of SRF organization in cortical multisensory populations by highlighting work from the cat anterior ectosylvian sulcus (AES). In addition, we have recently conducted parallel studies designed to examine SRF architecture in the classic model for multisensory studies, the cat superior colliculus (SC), and we present some of the preliminary observations from the SC here. An examination of individual SC neurons revealed marked similarities between their unisensory (i.e., visual and auditory) SRFs, as well as between these unisensory SRFs and the multisensory SRF. Despite these similarities within individual neurons, different SC neurons had SRFs that ranged from a single area of greatest activation (hot spot) to multiple and spatially discrete hot spots. Similar to cortical multisensory neurons, the interactive profile of SC neurons was correlated strongly to SRF architecture, closely following the principle of inverse effectiveness. Thus, large and often superadditive multisensory response enhancements were typically seen at SRF locations where visual and auditory stimuli were weakly effective. Conversely, subadditive interactions were seen at SRF locations where stimuli were highly effective. Despite the unique functions characteristic of cortical and subcortical multisensory circuits, our results suggest a strong mechanistic interrelationship between SRF microarchitecture and integrative capacity. (C) 2009 Elsevier B.V. All rights reserved. C1 [Krueger, Juliane; Royal, David W.; Wallace, Mark T.] Vanderbilt Univ, Kennedy Ctr Res Human Dev, Nashville, TN 37232 USA. [Fister, Matthew C.; Wallace, Mark T.] Vanderbilt Univ, Dept Hearing & Speech Sci, Nashville, TN 37232 USA. RP Krueger, J (reprint author), Vanderbilt Univ, Kennedy Ctr Res Human Dev, 7110 MRB 3, Nashville, TN 37232 USA. EM juliane.krueger@vanderbilt.edu FU National Institute of Mental Health [MH-63861]; Vanderbilt Kennedy Center for Research on Human Development FX This work was supported by the National Institute of Mental Health Grant MH-63861 and by the Vanderbilt Kennedy Center for Research on Human Development. We acknowledge the technical expertise of Zachary Barnett. We also thank LuAnn Toy and Troy Apple, DVM for their expert assistance with animal care. CR BENEDEK G, 1988, PROG BRAIN RES, V75, P245 Carriere BN, 2008, J NEUROPHYSIOL, V99, P2357, DOI 10.1152/jn.01386.2007 CLAREY JC, 1990, J COMP NEUROL, V301, P304, DOI 10.1002/cne.903010212 CLAREY JC, 1986, BRAIN RES, V386, P12, DOI 10.1016/0006-8993(86)90136-8 CLEMO HR, 1982, BRAIN RES, V235, P162 CLEMO HR, 1984, J NEUROPHYSIOL, V51, P843 CLEMO HR, 1983, J NEUROPHYSIOL, V50, P910 Fiset S, 1996, J EXP PSYCHOL ANIM B, V22, P420 Fitzgerald PJ, 2006, J NEUROSCI, V26, P6485, DOI 10.1523/JNEUROSCI.5061-05.2006 HUBEL DH, 1962, J PHYSIOL-LONDON, V160, P106 JIANG H, 1994, EXP BRAIN RES, V101, P385 JIANG H, 1994, EXP BRAIN RES, V97, P404 Li Y, 2008, NATURE, V456, P952, DOI 10.1038/nature07417 MEREDITH MA, 1986, BRAIN RES, V365, P350 MEREDITH MA, 1992, EXP BRAIN RES, V88, P181, DOI 10.1007/BF02259139 MEREDITH MA, 1991, J COMP NEUROL, V312, P353, DOI 10.1002/cne.903120304 MEREDITH MA, 1990, J NEUROSCI, V10, P3727 MEREDITH MA, 1983, SCIENCE, V221, P389, DOI 10.1126/science.6867718 MEREDITH MA, 1987, J NEUROSCI, V7, P3215 MEREDITH MA, 1986, J NEUROPHYSIOL, V56, P640 MIDDLEBROOKS JC, 1984, J NEUROSCI, V4, P2621 MUCKE L, 1982, EXP BRAIN RES, V46, P1 NORITA M, 1986, EXP BRAIN RES, V62, P225 OLSON CR, 1987, J COMP NEUROL, V261, P277, DOI 10.1002/cne.902610209 Ozeki H, 2004, J NEUROSCI, V24, P1428, DOI 10.1523/JNEUROSCI.3852-03.2004 Pena JL, 2003, BIOL CYBERN, V89, P371, DOI 10.1007/s00422-003-0442-6 Pollen DA, 2002, CEREB CORTEX, V12, P601, DOI 10.1093/cercor/12.6.601 ROBINSON DA, 1972, VISION RES, V12, P1795, DOI 10.1016/0042-6989(72)90070-3 ROYAL DW, 2009, EXP BRAIN RES SPARKS DL, 1986, PHYSIOL REV, V66, P118 Stein BE, 1996, PROG BRAIN RES, V112, P289 STEIN BE, 1976, BRAIN RES, V118, P469, DOI 10.1016/0006-8993(76)90314-0 VICTOR JD, 1994, J NEUROPHYSIOL, V72, P2151 WALLACE MT, 1992, EXP BRAIN RES, V91, P484 Wallace MT, 2006, J NEUROSCI, V26, P11844, DOI 10.1523/JNEUROSCI.3295-06.2006 WALLACE MT, 1993, J NEUROPHYSIOL, V69, P1797 NR 36 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2009 VL 258 IS 1-2 BP 47 EP 54 DI 10.1016/j.heares.2009.08.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535IL UT WOS:000272960900006 PM 19698773 ER PT J AU Bizley, JK King, AJ AF Bizley, Jennifer K. King, Andrew J. TI Visual influences on ferret auditory cortex SO HEARING RESEARCH LA English DT Article DE Spatial processing; Multisensory; Vision; Audition; Mutual information; Auditory cortex; Visual cortex; Auditory-visual; Anatomy; Spatial ID SUPERIOR TEMPORAL PLANE; MULTISENSORY CONVERGENCE; SOUND LOCALIZATION; MUSTELA-PUTORIUS; COOLING DEACTIVATION; ANATOMICAL EVIDENCE; LAMINAR PROFILE; STRIATE CORTEX; MACAQUE MONKEY; SULCAL CORTEX AB Multisensory neurons are now known to be widespread in low-level regions of the cortex usually thought of as being responsible for modality-specific processing. The auditory cortex provides a particularly striking example of this, exhibiting responses to both visual and somatosensory stimulation. Single-neuron recording studies in ferrets have shown that each of auditory fields that have been characterized using physiological and anatomical criteria also receives visual inputs, with the incidence of visually-sensitive neurons ranging from 15% to 20% in the primary areas to around 50% or more in higher-level areas. Although some neurons exhibit spiking responses to visual stimulation, these inputs often have subthreshold influences that modulate the responses of the cortical neurons to sound. Insights into the possible role played by the visual inputs can be obtained by examining their sources of origin and the way in which they alter the processing capabilities of neurons in the auditory cortex These studies suggest that one of the functions of the visual input to auditory cortex is to sharpen the relatively imprecise spatial coding typically found there. Because the extent to which this happens varies between cortical fields, the investigation of multisensory interactions can also help in understanding their relative contributions to auditory perception. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bizley, Jennifer K.; King, Andrew J.] Univ Oxford, Dept Physiol Anat & Genet, Oxford OX1 3PT, England. RP Bizley, JK (reprint author), Univ Oxford, Dept Physiol Anat & Genet, Sherrington Bldg,Parks Rd, Oxford OX1 3PT, England. EM jennifer.bizley@dpag.ox.ac.uk RI King, Andrew/M-6708-2013 OI King, Andrew/0000-0001-5180-7179 FU Wellcome Trust; Principal Research Fellowship; Biotechnology and Biological Sciences Research Council [BB/D009758/1] FX Supported by the Wellcome Trust through a Principal Research Fellowship to A.J. King and the Biotechnology and Biological Sciences Research Council (Grant BB/D009758/1). CR Alais D, 2004, CURR BIOL, V14, P257, DOI 10.1016/j.cub.2004.01.029 Alex Meredith M., 2004, HDB MULTISENSORY PRO, P343 ALLMAN BL, 2008, BRAIN RES Bajo VM, 2007, CEREB CORTEX, V17, P475, DOI 10.1093/cercor/bhj164 BIZLEY JK, 2008, BRAIN RES Bizley JK, 2009, J NEUROSCI, V29, P2064, DOI 10.1523/JNEUROSCI.4755-08.2009 Bizley JK, 2005, CEREB CORTEX, V15, P1637, DOI 10.1093/cercor/bhi042 Bizley JK, 2007, CEREB CORTEX, V17, P2172, DOI 10.1093/cercor/bhl128 Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005 BROWN CH, 2005, SOUND SOURCE LOCALIZ Budinger E, 2006, NEUROSCIENCE, V143, P1065, DOI 10.1016/j.neuroscience.2006.08.035 BUDINGER E, 2007, BRAIN RES CAMPI KL, 2009, CEREB CORTEX Cantone G, 2005, J COMP NEUROL, V487, P312, DOI 10.1002/cne.20570 CAPPE C, 2009, CEREB CORTEX Cappe C, 2005, EUR J NEUROSCI, V22, P2886, DOI 10.1111/j.1460-9568.2005.04462.x DEVALOIS RL, 1993, VISION RES, V33, P1053, DOI 10.1016/0042-6989(93)90240-W Dehner LR, 2004, CEREB CORTEX, V14, P387, DOI 10.1093/cercor/bhg135 Falchier A, 2002, J NEUROSCI, V22, P5749 Freeman E, 2008, CURR BIOL, V18, P1262, DOI 10.1016/j.cub.2008.07.066 Fu KMG, 2004, J NEUROPHYSIOL, V92, P3522, DOI 10.1152/jn.01228.2003 Ghazanfar AA, 2006, TRENDS COGN SCI, V10, P278, DOI 10.1016/j.tics.2006.04.008 Ghazanfar AA, 2005, J NEUROSCI, V25, P5004, DOI 10.1523/JNEUROSCI.0799-05.2005 Hackett TA, 2007, PERCEPTION, V36, P1419, DOI 10.1068/p5841 Hackett TA, 2007, J COMP NEUROL, V502, P924, DOI 10.1002/cne.21326 Harrington IA, 2008, HEARING RES, V240, P22, DOI 10.1016/j.heares.2008.02.004 Howard I. P., 1966, HUMAN SPATIAL ORIENT Jenison RL, 2000, J ACOUST SOC AM, V107, P414, DOI 10.1121/1.428313 KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746 Kayser C, 2008, CEREB CORTEX, V18, P1560, DOI 10.1093/cercor/bhm187 Kayser C, 2009, NEURON, V61, P597, DOI 10.1016/j.neuron.2009.01.008 KELLY JB, 1986, HEARING RES, V24, P111, DOI 10.1016/0378-5955(86)90054-7 King AJ, 2001, AUDIOL NEURO-OTOL, V6, P182, DOI 10.1159/000046829 King AJ, 2009, PHILOS T R SOC B, V364, P331, DOI 10.1098/rstb.2008.0230 KING AJ, 1985, EXP BRAIN RES, V60, P492 Lakatos P, 2007, NEURON, V53, P279, DOI 10.1016/j.neuron.2006.12.011 Malhotra S, 2007, J NEUROPHYSIOL, V97, P26, DOI 10.1152/jn.00720.2006 Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003 Manger PR, 2002, CEREB CORTEX, V12, P1280, DOI 10.1093/cercor/12.12.1280 Manger PR, 2005, EUR J NEUROSCI, V22, P706, DOI 10.1111/j.1460-9568.2005.04246.x Manger PR, 2004, CEREB CORTEX, V14, P676, DOI 10.1093/cercor/bhh028 Meredith MA, 2009, NEUROREPORT, V20, P126, DOI 10.1097/WNR.0b013e32831d7bb6 Middlebrooks JC, 1998, J NEUROPHYSIOL, V80, P863 Mrsic-Flogel TD, 2003, NAT NEUROSCI, V6, P981, DOI 10.1038/nn1108 Nelken I, 2005, J COMPUT NEUROSCI, V19, P199, DOI 10.1007/s10827-005-1739-3 Nelken I, 2004, J NEUROPHYSIOL, V92, P2574, DOI 10.1152/jn.00276.2004 Pekkola J, 2005, NEUROREPORT, V16, P125, DOI 10.1097/00001756-200502080-00010 PHILIPP R, 2005, CEREB CORTEX, DOI DOI 10.1093/CERCOR/BHJ1022 PLACK CJ, 1993, J ACOUST SOC AM, V93, P976, DOI 10.1121/1.405403 Ramsay AM, 2004, NEUROREPORT, V15, P461, DOI 10.1097/01.wnr.0000111326.38420.5b Rockland KS, 2003, INT J PSYCHOPHYSIOL, V50, P19, DOI 10.1016/S0167-8760(03)00121-1 Schnupp JWH, 2006, J NEUROSCI, V26, P4785, DOI 10.1523/JNEUROSCI.4330-05.2006 Schroeder CE, 2002, COGNITIVE BRAIN RES, V14, P187, DOI 10.1016/S0926-6410(02)00073-3 Shams L, 2000, NATURE, V408, P788, DOI 10.1038/35048669 Smiley JF, 2007, J COMP NEUROL, V502, P894, DOI 10.1002/cne.21325 STEIN BE, 1988, BRAIN RES, V448, P355, DOI 10.1016/0006-8993(88)91276-0 TYLER CW, 1990, J OPT SOC AM A, V7, P743, DOI 10.1364/JOSAA.7.000743 Ungerleider Leslie G., 1994, Current Opinion in Neurobiology, V4, P157, DOI 10.1016/0959-4388(94)90066-3 VAUDANO E, 1991, EUR J NEUROSCI, V3, P317, DOI 10.1111/j.1460-9568.1991.tb00818.x Wallace MT, 2004, P NATL ACAD SCI USA, V101, P2167, DOI 10.1073/pnas.0305697101 Werner-Reiss U, 2003, CURR BIOL, V13, P554, DOI 10.1016/S0960-9822(03)00168-4 Woods TM, 2006, J NEUROPHYSIOL, V96, P3323, DOI 10.1152/jn.00392.2006 NR 62 TC 30 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2009 VL 258 IS 1-2 BP 55 EP 63 DI 10.1016/j.heares.2009.06.017 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535IL UT WOS:000272960900007 PM 19595754 ER PT J AU Meredith, MA Allman, BL Keniston, LP Clemo, HR AF Meredith, M. Alex Allman, Brian L. Keniston, Leslie P. Clemo, H. Ruth TI Auditory influences on non-auditory cortices SO HEARING RESEARCH LA English DT Article DE Vision; Somatosensation; Multisensory; Subthreshold; Modulation ID ANTERIOR ECTOSYLVIAN SULCUS; SUPERIOR TEMPORAL SULCUS; PRIMARY VISUAL-CORTEX; RAT PARIETOTEMPORAL CORTEX; FERRET MUSTELA-PUTORIUS; CAT CEREBRAL-CORTEX; MACAQUE MONKEY; MULTISENSORY CONVERGENCE; ASSOCIATION CORTEX; EVOKED-POTENTIALS AB Although responses to auditory stimuli have been extensively examined in the well-known regions of auditory cortex, there are numerous reports of acoustic sensitivity in cortical areas that are dominated by other sensory modalities. Whether in 'polysensory' cortex or in visual or somatosensory regions, auditory responses in non-auditory cortex have been described largely in terms of auditory processing. This review takes a different perspective that auditory responses in non-auditory cortex, either through multisensory subthreshold or bimodal processing, provide subtle but consistent expansion of the range of activity of the dominant modality within a given area. Thus, the features of these acoustic responses may have more to do with the subtle adjustment of response gain within a given non-auditory region than the encoding of their tonal properties. (C) 2009 Elsevier B.V. All rights reserved. C1 [Meredith, M. Alex; Allman, Brian L.; Keniston, Leslie P.; Clemo, H. Ruth] Virginia Commonwealth Univ, Sch Med, Dept Anzat & Neurobiol, Richmond, VA 23298 USA. RP Meredith, MA (reprint author), Virginia Commonwealth Univ, Sch Med, Dept Anzat & Neurobiol, Med Coll Virginia Campus, Richmond, VA 23298 USA. EM mameredi@vcu.edu FU NIH [NS039460] FX Supported by NIH Grant l. CR ALBEFESSARD D, 1963, PROGRESS BRAIN RESEA, V1, P115, DOI 10.1016/S0079-6123(08)60591-9 Alex Meredith M., 2004, HDB MULTISENSORY PRO, P343 Allman BL, 2008, CEREB CORTEX, V18, P2066, DOI 10.1093/cercor/bhm230 Allman BL, 2007, J NEUROPHYSIOL, V98, P545, DOI 10.1152/jn.00173.2007 Allman BL, 2008, BRAIN RES, V1242, P95, DOI 10.1016/j.brainres.2008.03.086 Bajo VM, 2007, CEREB CORTEX, V17, P475, DOI 10.1093/cercor/bhj164 Barraclough NE, 2005, J COGNITIVE NEUROSCI, V17, P377, DOI 10.1162/0898929053279586 BENEVENTO LA, 1977, EXP NEUROL, V57, P849, DOI 10.1016/0014-4886(77)90112-1 BENTAL E, 1968, EXP NEUROL, V20, P341, DOI 10.1016/0014-4886(68)90077-0 Brett-Green B, 2003, J COMP NEUROL, V460, P223, DOI 10.1002/cne.10637 Budinger E, 2006, NEUROSCIENCE, V143, P1065, DOI 10.1016/j.neuroscience.2006.08.035 Carriere BN, 2007, J NEUROPHYSIOL, V98, P2858, DOI 10.1152/jn.00587.2007 Wang Y, 2008, BMC NEUROSCI, V9, DOI 10.1186/1471-2202-9-79 Clemo HR, 2007, J COMP NEUROL, V503, P110, DOI 10.1002/cne.21378 Dehner LR, 2004, CEREB CORTEX, V14, P387, DOI 10.1093/cercor/bhg135 DI S, 1994, BRAIN RES, V642, P267, DOI 10.1016/0006-8993(94)90931-8 DOW BM, 1971, J NEUROPHYSIOL, V34, P47 DOW BM, 1969, J NEUROPHYSIOL, V32, P773 Falchier A, 2002, J NEUROSCI, V22, P5749 FISHMAN MC, 1973, VISION RES, V13, P1415, DOI 10.1016/0042-6989(73)90002-3 Ghazanfar AA, 2006, TRENDS COGN SCI, V10, P278, DOI 10.1016/j.tics.2006.04.008 Hall AJ, 2008, EXP BRAIN RES, V190, P413, DOI 10.1007/s00221-008-1485-7 HIKOSAKA K, 1988, J NEUROPHYSIOL, V60, P1615 HORN G, 1966, EXP NEUROL, V14, P199, DOI 10.1016/0014-4886(66)90007-0 Hunt DL, 2006, NEUROSCIENCE, V139, P1507, DOI 10.1016/j.neuroscience.2006.01.023 IRVINE DRF, 1979, J NEUROPHYSIOL, V42, P107 JONES E G, 1970, Brain Behavior and Evolution, V93, P793, DOI 10.1093/brain/93.4.793 KHAN DM, 2002, PNAS, V99, P11429 Lakatos P, 2005, J NEUROPHYSIOL, V94, P1904, DOI 10.1152/jn.00263.2005 Manger PR, 2008, VISUAL NEUROSCI, V25, P27, DOI 10.1017/S0952523808080036 Manger PR, 2002, CEREB CORTEX, V12, P423, DOI 10.1093/cercor/12.4.423 MEREDITH MA, 2009, PMID19057421 Meredith MA, 2002, COGNITIVE BRAIN RES, V14, P31, DOI 10.1016/S0926-6410(02)00059-9 Meredith MA, 2006, EXP BRAIN RES, V172, P472, DOI 10.1007/s00221-006-0356-3 MEREDITH MA, 1986, J NEUROPHYSIOL, V56, P640 MORRELL F, 1972, NATURE, V238, P44, DOI 10.1038/238044a0 MUCKE L, 1982, EXP BRAIN RES, V46, P1 MURATA K, 1965, J NEUROPHYSIOL, V28, P1223 NELSON CN, 1973, EXP NEUROL, V40, P189, DOI 10.1016/0014-4886(73)90135-0 NEWMAN EA, 1981, SCIENCE, V213, P789, DOI 10.1126/science.7256281 OLSON CR, 1983, PROG BRAIN RES, V58, P239, DOI 10.1016/S0079-6123(08)60025-4 PALMER LA, 1978, J COMP NEUROL, V177, P237, DOI 10.1002/cne.901770205 Perrault TJ, 2005, J NEUROPHYSIOL, V93, P2575, DOI 10.1152/jn.00926.2004 RAUSCHECKER JP, 1987, J NEUROSCI, V7, P943 RAUSCHECKER JP, 1988, PROG BRAIN RES, V75, P95 ROBERTSON RT, 1975, J NEUROPHYSIOL, V38, P780 Rockland KS, 2003, INT J PSYCHOPHYSIOL, V50, P19, DOI 10.1016/S0167-8760(03)00121-1 Scannell JW, 1996, J NEUROPHYSIOL, V76, P895 SCHNEIDE.AS, 1974, PHYSIOL BEHAV, V13, P365, DOI 10.1016/0031-9384(74)90089-4 Schroeder CE, 2001, J NEUROPHYSIOL, V85, P1322 Schroeder CE, 2002, COGNITIVE BRAIN RES, V14, P187, DOI 10.1016/S0926-6410(02)00073-3 SPINELLI DN, 1968, EXP NEUROL, V22, P75, DOI 10.1016/0014-4886(68)90020-4 Stein B. E., 1993, MERGING SENSES STEIN BE, 1993, PROG BRAIN RES, V95, P79, DOI 10.1016/S0079-6123(08)60359-3 Sugihara T, 2006, J NEUROSCI, V26, P11138, DOI 10.1523/JNEUROSCI.3550-06.2006 THOMPSON RF, 1963, J NEUROPHYSIOL, V26, P343 TOLDI J, 1984, NEUROSCIENCE, V13, P645, DOI 10.1016/0306-4522(84)90084-8 Wallace MT, 2004, P NATL ACAD SCI USA, V101, P2167, DOI 10.1073/pnas.0305697101 WALLACE MJT, 2006, J NEUROSCI, V46, P11844 NR 59 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2009 VL 258 IS 1-2 BP 64 EP 71 DI 10.1016/j.heares.2009.03.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535IL UT WOS:000272960900008 PM 19303926 ER PT J AU Musacchia, G Schroeder, CE AF Musacchia, Gabriella Schroeder, Charles E. TI Neuronal mechanisms, response dynamics and perceptual functions of multisensory interactions in auditory cortex SO HEARING RESEARCH LA English DT Article DE Auditory cortex; Multisensory; Neuroanatomy; Somatosensory; Oscillations ID SUPERIOR TEMPORAL PLANE; MEDIAL BELT REGIONS; MACAQUE MONKEY; CORTICAL CONNECTIONS; RHESUS-MONKEY; VISUAL SPEECH; THALAMOCORTICAL CONNECTIONS; AUDIOTACTILE INTERACTION; SOMATOSENSORY INPUT; EVOKED RESPONSES AB Most auditory events in nature are accompanied by non-auditory signals, such as a view of the speaker's face during face-to-face communication or the vibration of a string during a musical performance. While it is known that accompanying visual and somatosensory signals can benefit auditory perception, often by making the sound seem louder, the specific neural bases for sensory amplification are still debated. In this review, we want to deal with what we regard as confusion on two topics that are crucial to our understanding of multisensory integration mechanisms in auditory cortex: (1) Anatomical Underpinnings (e.g., what circuits underlie multisensory convergence), and (2) Temporal Dynamics (e.g., what time windows of integration are physiologically feasible). The combined evidence on multisensory structure and function in auditory cortex advances the emerging view of the relationship between perception and low level multisensory integration. In fact, it seems that the question is no longer whether low level, putatively unisensory cortex is accessible to multisensory influences, but how. (C) 2009 Published by Elsevier B.V. C1 [Musacchia, Gabriella; Schroeder, Charles E.] Nathan S Kline Inst Psychiat Res, Cognit Neurosci & Neuroimaging Lab, Cognit Neurosci & Schizophrenia Program, Orangeburg, NY 10962 USA. [Schroeder, Charles E.] Columbia Univ Coll Phys & Surg, Dept Psychiat, Orangeburg, NY 10962 USA. RP Musacchia, G (reprint author), Nathan S Kline Inst Psychiat Res, Cognit Neurosci & Neuroimaging Lab, Cognit Neurosci & Schizophrenia Program, 140 Old Orangeburg Rd, Orangeburg, NY 10962 USA. EM gmusacchia@gmail.com; Schrod@nki.rfmh.org FU National Institutes of Health [DC 09918, MH 61989] FX We would like to thank our colleagues Tammy McGinnis, M. Noelle O'Connel and Aimee Mills for their assistance. We also thank Peter Lakatos, Arnaud Falchier and Troy A. Hackett for their helpful comments and suggestions. This work was supported by the National Institutes of Health DC 09918 and MH 61989. CR Angelucci A, 2003, J PHYSIOLOGY-PARIS, V97, P141, DOI 10.1016/j.jphysparis.2003.09.001 Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005 Calvert GA, 1997, SCIENCE, V276, P593, DOI 10.1126/science.276.5312.593 CAPPE C, 2009, CEREB CORTEX Cappe C, 2005, EUR J NEUROSCI, V22, P2886, DOI 10.1111/j.1460-9568.2005.04462.x CELESIA GG, 1968, ARCH NEUROL-CHICAGO, V19, P430 Chandrasekaran C, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000436 Chen CM, 2007, CEREB CORTEX, V17, P1561, DOI 10.1093/cercor/bhl067 Cheung SW, 2001, HEARING RES, V156, P115, DOI 10.1016/S0378-5955(01)00272-6 DAVIES P W, 1956, Bull Johns Hopkins Hosp, V99, P55 de la Mothe LA, 2006, J COMP NEUROL, V496, P27, DOI 10.1002/cne.20923 de la Mothe LA, 2006, J COMP NEUROL, V496, P72, DOI 10.1002/cne.20924 Driver J, 2008, NEURON, V57, P11, DOI 10.1016/j.neuron.2007.12.013 ELBERT T, 1995, SCIENCE, V270, P305, DOI 10.1126/science.270.5234.305 Falchier A, 2002, J NEUROSCI, V22, P5749 Foxe JJ, 2005, NEUROREPORT, V16, P419, DOI 10.1097/00001756-200504040-00001 Fu KMG, 2003, J NEUROSCI, V23, P7510 Gaese BH, 2001, J NEUROPHYSIOL, V86, P1062 Ghazanfar AA, 2006, TRENDS COGN SCI, V10, P278, DOI 10.1016/j.tics.2006.04.008 Giard MH, 1999, J COGNITIVE NEUROSCI, V11, P473, DOI 10.1162/089892999563544 Gobbele R, 2003, NEUROIMAGE, V20, P503, DOI 10.1016/S1053-8119(03)00312-4 Gomez Gonzalez Carlos M., 1994, Brain Topography, V7, P41 Grant KW, 1998, J ACOUST SOC AM, V103, P2677, DOI 10.1121/1.422788 Hackett TA, 2007, PERCEPTION, V36, P1419, DOI 10.1068/p5841 Hackett TA, 2007, J COMP NEUROL, V502, P924, DOI 10.1002/cne.21326 Hackett TA, 1998, J COMP NEUROL, V400, P271, DOI 10.1002/(SICI)1096-9861(19981019)400:2<271::AID-CNE8>3.0.CO;2-6 Hairston WD, 2006, NEUROREPORT, V17, P791, DOI 10.1097/01.wnr.0000220141.29413.b4 Hayes EA, 2003, NEUROSCI LETT, V351, P46, DOI 10.1016/S0304-3940(03)00971-6 Hodges DA, 2005, ANN NY ACAD SCI, V1060, P175, DOI 10.1196/annals.1360.012 Jones E G, 1998, Adv Neurol, V77, P49 Jones EG, 2001, TRENDS NEUROSCI, V24, P595, DOI 10.1016/S0166-2236(00)01922-6 Jousmaki V, 1998, CURR BIOL, V8, pR190, DOI 10.1016/S0960-9822(98)70120-4 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kajikawa Y, 2005, J NEUROPHYSIOL, V93, P22, DOI 10.1152/jn.00248.2004 Kayser C, 2007, BRAIN STRUCT FUNCT, V212, P121, DOI 10.1007/s00429-007-0154-0 KING AJ, 1985, EXP BRAIN RES, V60, P492 Lakatos P, 2005, J NEUROPHYSIOL, V94, P1904, DOI 10.1152/jn.00263.2005 Lakatos P, 2007, NEURON, V53, P279, DOI 10.1016/j.neuron.2006.12.011 Lakatos P, 2005, NEUROREPORT, V16, P933, DOI 10.1097/00001756-200506210-00011 Lakatos P, 2008, SCIENCE, V320, P110, DOI 10.1126/science.1154735 Laurienti PJ, 2005, EXP BRAIN RES, V166, P289, DOI 10.1007/s00221-005-2370-2 Lewis JW, 2000, J COMP NEUROL, V428, P112, DOI 10.1002/1096-9861(20001204)428:1<112::AID-CNE8>3.0.CO;2-9 LIEGEOISCHAUVEL C, 1991, BRAIN, V114, P139 Linke R, 1999, EUR J NEUROSCI, V11, P187, DOI 10.1046/j.1460-9568.1999.00422.x Lipton ML, 2006, J NEUROSCI, V26, P180, DOI 10.1523/JNEUROSCI.1073-05.2006 Massaro DW, 1996, J ACOUST SOC AM, V100, P1777, DOI 10.1121/1.417342 Massaux A, 2004, J NEUROPHYSIOL, V91, P2117, DOI 10.1152/jn.00970.2003 MAUNSELL JHR, 1990, J NEUROSCI, V10, P3323 MAUNSELL JHR, 1992, J NEUROPHYSIOL, V68, P1332 MEREDITH MA, 1983, SCIENCE, V221, P389, DOI 10.1126/science.6867718 MEREDITH MA, 1987, J NEUROSCI, V7, P3215 Miller LM, 2005, J NEUROSCI, V25, P5884, DOI 10.1523/JNEUROSCI.0896-05.2005 Morand S, 2000, CEREB CORTEX, V10, P817, DOI 10.1093/cercor/10.8.817 Musacchia G, 2006, EXP BRAIN RES, V168, P1, DOI 10.1007/s00221-005-0071-5 Musacchia G, 2008, HEARING RES, V241, P34, DOI 10.1016/j.heares.2008.04.013 MUSACCHIA G, 2009, EAR HEAR Oberman LM, 2008, SOC NEUROSCI, V3, P348, DOI 10.1080/17470910701563681 OCONNELL MN, 2004, SOC NEUR ANN M PANDYA DN, 1981, EXP BRAIN RES, V42, P319 Populin LC, 2002, J NEUROSCI, V22, P2826 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315 ROCKLAND KS, 1979, BRAIN RES, V179, P3, DOI 10.1016/0006-8993(79)90485-2 Rockland KS, 2003, INT J PSYCHOPHYSIOL, V50, P19, DOI 10.1016/S0167-8760(03)00121-1 Romanski LM, 1999, J COMP NEUROL, V403, P141, DOI 10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V Ross LA, 2007, SCHIZOPHR RES, V97, P173, DOI 10.1016/j.schres.2007.08.008 SALDANA HM, 1993, PERCEPT PSYCHOPHYS, V54, P406, DOI 10.3758/BF03205276 SAMS M, 1991, NEUROSCI LETT, V127, P141, DOI 10.1016/0304-3940(91)90914-F Schmolesky MT, 1998, J NEUROPHYSIOL, V79, P3272 Schroeder C. E., 2004, HDB MULTISENSORY PRO, P295 Schroeder CE, 2005, CURR OPIN NEUROBIOL, V15, P454, DOI 10.1016/j.conb.2005.06.008 Schroeder CE, 2001, J NEUROPHYSIOL, V85, P1322 SCHROEDER CE, 1995, ELECTROENCEPHALOGR S, V44, P5 Schroeder CE, 2002, COGNITIVE BRAIN RES, V14, P187, DOI 10.1016/S0926-6410(02)00073-3 Schroeder C.E., 2004, COGN PROCESS, V5, P140 Schroeder CE, 1998, CEREB CORTEX, V8, P575, DOI 10.1093/cercor/8.7.575 Schroeder CE, 2008, TRENDS COGN SCI, V12, P106, DOI 10.1016/j.tics.2008.01.002 Schroeder CE, 2003, INT J PSYCHOPHYSIOL, V50, P5, DOI 10.1016/S0167-8760(03)00120-X Schroger E, 1998, PSYCHOPHYSIOLOGY, V35, P755, DOI 10.1017/S0048577298980714 Schurmann M, 2004, J ACOUST SOC AM, V115, P830, DOI 10.1121/1.1639909 Sekiyama K, 2003, NEUROSCI RES, V47, P277, DOI 10.1016/S0168-0102(03)00214-1 Sherman SM, 2002, PHILOS T R SOC B, V357, P1695, DOI 10.1098/rstb.2002.1161 Sincich LC, 2004, NAT NEUROSCI, V7, P1123, DOI 10.1038/nn1318 Smiley JF, 2007, J COMP NEUROL, V502, P894, DOI 10.1002/cne.21325 Stein B. E., 1993, MERGING SENSES Stein BE, 2008, NAT REV NEUROSCI, V9, P255, DOI 10.1038/nrn2331 STEINSCHNEIDER M, 1992, ELECTROEN CLIN NEURO, V84, P196, DOI 10.1016/0168-5597(92)90026-8 SUMBY WH, 1954, J ACOUST SOC AM, V26, P212, DOI 10.1121/1.1907309 Thompson WF, 2005, SEMIOTICA, V156, P203, DOI 10.1515/semi.2005.2005.156.203 van Wassenhove V, 2005, P NATL ACAD SCI USA, V102, P1181, DOI 10.1073/pnas.0408949102 Vines BW, 2006, COGNITION, V101, P80, DOI 10.1016/j.cognition.2005.09.003 Wallace MT, 1998, J NEUROPHYSIOL, V80, P1006 White AJR, 2001, J PHYSIOL-LONDON, V533, P519, DOI 10.1111/j.1469-7793.2001.0519a.x ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 93 TC 33 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2009 VL 258 IS 1-2 BP 72 EP 79 DI 10.1016/j.heares.2009.06.018 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535IL UT WOS:000272960900009 PM 19595755 ER PT J AU Recanzone, GH AF Recanzone, Gregg H. TI Interactions of auditory and visual stimuli in space and time SO HEARING RESEARCH LA English DT Article DE Perception; Auditory cortex; Vision; Multisensory ID TEMPORAL RATE PERCEPTION; SOUND-LOCALIZATION; MACAQUE MONKEY; CORTICAL-NEURONS; APPARENT MOTION; RHESUS-MONKEY; CORTEX; VENTRILOQUISM; INTENSITY; FLICKER AB The nervous system has evolved to transduce different types of environmental energy independently, for example light energy is transduced by the retina whereas sound energy is transduced by the cochlea. However, the neural processing of this energy is necessarily combined, resulting in a unified percept of a real-world object or event. These percepts can be modified in the laboratory, resulting in illusions that can be used to probe how multisensory integration occurs. This paper reviews studies that have utilized such illusory percepts in order to better understand the integration of auditory and visual signals in primates. Results from human psychophysical experiments where visual stimuli alter the perception of acoustic space (the ventriloquism effect) are discussed, as are experiments probing the underlying cortical mechanisms of this integration. Similar psychophysical experiments where auditory stimuli alter the perception of visual temporal processing are also described. (C) 2009 Elsevier B.V. All rights reserved C1 [Recanzone, Gregg H.] Univ Calif Davis, Ctr Neurosci, Davis, CA 95616 USA. [Recanzone, Gregg H.] Univ Calif Davis, Dept Neurobiol Physiol & Behav, Davis, CA 95616 USA. RP Recanzone, GH (reprint author), Ctr Neurosci, 1544 Newton Ct, Davis, CA 95618 USA. EM ghrecanzone@ucdavis.edu CR Abel SM, 2000, J ACOUST SOC AM, V108, P743, DOI 10.1121/1.429607 Alais D, 2004, CURR BIOL, V14, P257, DOI 10.1016/j.cub.2004.01.029 ALTSHULER M W, 1975, Journal of Auditory Research, V15, P262 Barraclough NE, 2005, J COGNITIVE NEUROSCI, V17, P377, DOI 10.1162/0898929053279586 Beauchamp MS, 2005, CURR OPIN NEUROBIOL, V15, P145, DOI 10.1016/j.conb.2005.03.011 Bizley JK, 2008, BRAIN RES, V1242, P24, DOI 10.1016/j.brainres.2008.02.087 Bonath B, 2007, CURR BIOL, V17, P1697, DOI 10.1016/j.cub.2007.08.050 BROWN CH, 1980, J ACOUST SOC AM, V68, P127, DOI 10.1121/1.384638 Burr D, 2006, PROG BRAIN RES, V155, P243, DOI 10.1016/S0079-6123(06)55014-9 CAVONIUS CR, 1973, J PHYSIOL-LONDON, V232, P239 COHEN LE, 2002, NEUROREPORT, V13, P891 COMALLI P E JR, 1976, Journal of Auditory Research, V16, P275 Freeman E, 2008, CURR BIOL, V18, P1262, DOI 10.1016/j.cub.2008.07.066 Frissen I, 2005, ACTA PSYCHOL, V118, P93, DOI 10.1016/j.actpsy.2004.10.004 GEBHARD JW, 1959, AM J PSYCHOL, V72, P521, DOI 10.2307/1419493 Getzmann S, 2007, PERCEPTION, V36, P1089, DOI 10.1068/p5741 Ghazanfar AA, 2006, TRENDS COGN SCI, V10, P278, DOI 10.1016/j.tics.2006.04.008 HAY JC, 1965, PSYCHON SCI, V2, P215 Howard I. P., 1966, HUMAN SPATIAL ORIENT JACK CE, 1973, PERCEPT MOTOR SKILL, V37, P967 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kayser C, 2009, HEARING RES, V258, P80, DOI 10.1016/j.heares.2009.02.011 Knox GW, 1945, J GEN PSYCHOL, V33, P145 Lakatos P, 2007, NEURON, V53, P279, DOI 10.1016/j.neuron.2006.12.011 Lakatos P, 2008, SCIENCE, V320, P110, DOI 10.1126/science.1154735 Lewald J, 2002, LEARN MEMORY, V9, P268, DOI 10.1101/lm.51402 Linden JF, 1999, J NEUROPHYSIOL, V82, P343 MAUNSELL JHR, 1992, J NEUROPHYSIOL, V68, P1332 Mazzoni P, 1996, J NEUROPHYSIOL, V75, P1233 Miller LM, 2009, P NATL ACAD SCI USA, V106, P5931, DOI 10.1073/pnas.0901023106 OGILVIE JC, 1956, CAN J PSYCHOLOGY, V10, P61, DOI 10.1037/h0083662 OLGIVIE JC, 1956, CAN J PSYCHOL, V10, P207 Parise C, 2008, NEUROSCI LETT, V442, P257, DOI 10.1016/j.neulet.2008.07.010 Phan ML, 2000, J COGNITIVE NEUROSCI, V12, P583, DOI 10.1162/089892900562354 Poremba A, 2003, SCIENCE, V299, P568, DOI 10.1126/science.1078900 RADEAU M, 1977, PERCEPT PSYCHOPHYS, V22, P137, DOI 10.3758/BF03198746 RADEAU M, 1978, PERCEPT PSYCHOPHYS, V23, P341, DOI 10.3758/BF03199719 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 Recanzone GH, 1998, P NATL ACAD SCI USA, V95, P869, DOI 10.1073/pnas.95.3.869 Recanzone GH, 1998, J ACOUST SOC AM, V103, P1085, DOI 10.1121/1.421222 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2723 Recanzone GH, 2004, HEARING RES, V198, P116, DOI 10.1016/j.heares.2004.07.017 Recanzone GH, 2003, J NEUROPHYSIOL, V89, P1078, DOI 10.1152/jn.00706.2002 Sabin AT, 2005, HEARING RES, V199, P124, DOI 10.1016/j.heares.2004.08.001 Sato Y, 2007, NEURAL COMPUT, V19, P3335, DOI 10.1162/neco.2007.19.12.3335 Schroeder CE, 2005, CURR OPIN NEUROBIOL, V15, P454, DOI 10.1016/j.conb.2005.06.008 Schroeder CE, 2001, J NEUROPHYSIOL, V85, P1322 Schroeder CE, 2002, COGNITIVE BRAIN RES, V14, P187, DOI 10.1016/S0926-6410(02)00073-3 Sekuler R, 1997, NATURE, V385, P308, DOI 10.1038/385308a0 SHIPLEY T, 1964, SCIENCE, V145, P1328, DOI 10.1126/science.145.3638.1328 Slutsky DA, 2001, NEUROREPORT, V12, P7, DOI 10.1097/00001756-200101220-00009 Stein BE, 1996, J COGNITIVE NEUROSCI, V8, P497, DOI 10.1162/jocn.1996.8.6.497 Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748 Su TIK, 2001, JARO, V2, P246, DOI 10.1007/s101620010073 Vroomen J, 2004, J EXP PSYCHOL HUMAN, V30, P513, DOI 10.1037/0096-1523.30.3.513 Wade NJ, 2008, PSYCHOL RES-PSYCH FO, V72, P593, DOI 10.1007/s00426-008-0170-6 Welch R. B., 1999, COGNITIVE CONTRIBUTI, P371, DOI 10.1016/S0166-4115(99)80036-3 WELCH RB, 1980, PSYCHOL BULL, V88, P638, DOI 10.1037/0033-2909.88.3.638 WELCH RB, 1986, PERCEPT PSYCHOPHYS, V39, P294, DOI 10.3758/BF03204939 Werner-Reiss U, 2008, J NEUROSCI, V28, P3747, DOI 10.1523/JNEUROSCI.5044-07.2008 WOODS T. M., 2004, HDB MULTISENSORY PRO, P35 Woods TM, 2004, CURR BIOL, V14, P1559, DOI 10.1016/j.cub.2004.08.059 Woods TM, 2006, J NEUROPHYSIOL, V96, P3323, DOI 10.1152/jn.00392.2006 NR 65 TC 38 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2009 VL 258 IS 1-2 BP 89 EP 99 DI 10.1016/j.heares.2009.04.009 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535IL UT WOS:000272960900011 PM 19393306 ER PT J AU Maier, JX Groh, JM AF Maier, Joost X. Groh, Jennifer M. TI Multisensory guidance of orienting behavior SO HEARING RESEARCH LA English DT Article DE Reference frame; Representational format; Superior colliculus; Inferior colliculus; Auditory cortex; Multisensory; Orienting behavior ID PRIMATE SUPERIOR COLLICULUS; SACCADIC EYE-MOVEMENTS; AUDITORY CORTICAL-NEURONS; POSTERIOR PARIETAL CORTEX; HEAD GAZE SHIFTS; SOUND-LOCALIZATION; INFERIOR COLLICULUS; HUMAN LISTENERS; MACAQUE MONKEY; SENSORIMOTOR INTEGRATION AB We use both vision and audition when localizing objects and events in our environment. However, these sensory systems receive spatial information in different coordinate systems: sounds are localized using inter-aural and spectral cues, yielding a head-centered representation of space, whereas the visual system uses an eye-centered representation of space, based on the site of activation on the retina. In addition, the visual system employs a place-coded, retinotopic map of space, whereas the auditory system's representational format is characterized by broad spatial tuning and a lack of topographical organization. A common view is that the brain needs to reconcile these differences in order to control behavior, such as orienting gaze to the location of a sound source. To accomplish this, it seems that either auditory spatial information must be transformed from a head-centered rate code to an eye-centered map to match the frame of reference used by the visual system, or vice versa. Here, we review a number of studies that have focused on the neural basis underlying such transformations in the primate auditory system. Although, these studies have found some evidence for such transformations, many differences in the way the auditory and visual system encode space exist throughout the auditory pathway. We will review these differences at the neural level, and will discuss them in relation to differences in the way auditory and visual information is used in guiding orienting movements. (C) 2009 Elsevier B.V. All rights reserved. C1 [Maier, Joost X.; Groh, Jennifer M.] Duke Univ, Ctr Cognit Neurosci, Dept Neurobiol, Dept Psychol & Neurosci, Durham, NC 27708 USA. RP Maier, JX (reprint author), Duke Univ, Ctr Cognit Neurosci, Dept Neurobiol, Dept Psychol & Neurosci, LSRC B203, Durham, NC 27708 USA. EM joost.maier@gmail.com FU [NS50942-01]; [NSF0415634]; [EY016478] FX The authors thank Dave Bulkin for valuable discussions. This work was supported by NS50942-01, NSF0415634, EY016478 to JMG. CR ANDERSEN RA, 1985, SCIENCE, V230, P456, DOI 10.1126/science.4048942 ANDERSEN RA, 1990, J NEUROSCI, V10, P1176 Andersen RA, 2002, ANNU REV NEUROSCI, V25, P189, DOI 10.1146/annurev.neuro.25.112701.142922 Batista AP, 1999, SCIENCE, V285, P257, DOI 10.1126/science.285.5425.257 BENSON DA, 1981, BRAIN RES, V219, P249, DOI 10.1016/0006-8993(81)90290-0 BINNS KE, 1992, BRAIN RES, V589, P231, DOI 10.1016/0006-8993(92)91282-J Boucher L, 2001, VISION RES, V41, P2631, DOI 10.1016/S0042-6989(01)00156-0 BROTCHIE PR, 1995, NATURE, V375, P232, DOI 10.1038/375232a0 BROWN CH, 1982, J ACOUST SOC AM, V72, P1804, DOI 10.1121/1.388653 Brugge JF, 1998, J NEUROPHYSIOL, V80, P2417 Buneo CA, 2002, NATURE, V416, P632, DOI 10.1038/416632a Carlile S, 1997, HEARING RES, V114, P179, DOI 10.1016/S0378-5955(97)00161-5 Cohen YE, 2000, NEURON, V27, P647, DOI 10.1016/S0896-6273(00)00073-8 COLBY CL, 1995, CEREB CORTEX, V5, P470, DOI 10.1093/cercor/5.5.470 Colonius H, 2001, PERCEPT PSYCHOPHYS, V63, P126, DOI 10.3758/BF03200508 Corneil BD, 2002, J NEUROPHYSIOL, V88, P438, DOI 10.1152/jn.00699.2001 CYNADER M, 1972, J NEUROPHYSIOL, V35, P187 Freedman EG, 1996, J NEUROPHYSIOL, V76, P927 FRENS MA, 1995, EXP BRAIN RES, V107, P103 Fu KMG, 2004, J NEUROPHYSIOL, V92, P3522, DOI 10.1152/jn.01228.2003 Goldring JE, 1996, EXP BRAIN RES, V111, P68 Groh JM, 1996, J NEUROPHYSIOL, V75, P439 Groh JM, 2001, NEURON, V29, P509, DOI 10.1016/S0896-6273(01)00222-7 Groh JM, 2003, J COGNITIVE NEUROSCI, V15, P1217, DOI 10.1162/089892903322598166 GROH JM, 1992, BIOL CYBERN, V67, P291, DOI 10.1007/BF02414885 Groh JM, 1996, J NEUROPHYSIOL, V75, P428 Groh JM, 2001, BIOL CYBERN, V85, P159, DOI 10.1007/s004220100249 Hackett TA, 2007, PERCEPTION, V36, P1419, DOI 10.1068/p5841 Hartnagel D, 2007, PERCEPTION, V36, P1487, DOI 10.1068/p5847 HIKOSAKA O, 1985, J NEUROPHYSIOL, V53, P266 JAY MF, 1987, J NEUROPHYSIOL, V57, P35 JAY MF, 1984, NATURE, V309, P345, DOI 10.1038/309345a0 JAY MF, 1987, J NEUROPHYSIOL, V57, P22 JAY MF, 1990, COMP PERCEPTION, V1, P351 Klier EM, 2003, PROG BRAIN RES, V142, P109 KNUDSEN EI, 1978, SCIENCE, V200, P795, DOI 10.1126/science.644324 LEE CK, 1988, NATURE, V332, P357, DOI 10.1038/332357a0 Lewald J, 1998, HEARING RES, V115, P206, DOI 10.1016/S0378-5955(97)00190-1 Lewald J, 1996, EXP BRAIN RES, V108, P473 Lewald J, 1997, BEHAV BRAIN RES, V87, P35, DOI 10.1016/S0166-4328(96)02254-1 LUECK CJ, 1990, EXP BRAIN RES, V82, P149 MAKOUS JC, 1990, J ACOUST SOC AM, V87, P2188, DOI 10.1121/1.399186 Metzger RR, 2004, J NEUROPHYSIOL, V92, P2622, DOI 10.1152/jn.00326.2004 MIDDLEBROOKS JC, 1994, SCIENCE, V264, P842, DOI 10.1126/science.8171339 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 MIDDLEBROOKS JC, 1984, J NEUROSCI, V4, P2621 Miller LM, 2009, P NATL ACAD SCI USA, V106, P5931, DOI 10.1073/pnas.0901023106 Mullette-Gillman OA, 2005, J NEUROPHYSIOL, V94, P2331, DOI 10.1152/jn.00021.2005 Mullette-Gillman OA, 2009, CEREB CORTEX, V19, P1761, DOI 10.1093/cercor/bhn207 Nelken I, 2005, J COMPUT NEUROSCI, V19, P199, DOI 10.1007/s10827-005-1739-3 Perrett S, 1997, PERCEPT PSYCHOPHYS, V59, P1018, DOI 10.3758/BF03205517 Perrett S, 1997, J ACOUST SOC AM, V102, P2325, DOI 10.1121/1.419642 PERROTT DR, 1990, PERCEPT PSYCHOPHYS, V48, P214, DOI 10.3758/BF03211521 Populin LC, 2008, EXP BRAIN RES, V190, P11, DOI 10.1007/s00221-008-1445-2 Populin LC, 2006, J NEUROSCI, V26, P9820, DOI 10.1523/JNEUROSCI.3061-06.2006 Porter KK, 2006, PROG BRAIN RES, V155, P313, DOI 10.1016/S0079-6123(06)55018-6 Porter KK, 2006, J NEUROPHYSIOL, V95, P1826, DOI 10.1152/jn.00857.2005 Pouget A, 2002, NAT REV NEUROSCI, V3, P741, DOI 10.1038/nrn914 Pouget A, 1997, J COGNITIVE NEUROSCI, V9, P222, DOI 10.1162/jocn.1997.9.2.222 Razavi B, 2007, J NEUROSCI, V27, P10249, DOI 10.1523/JNEUROSCI.0938-07.2007 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2723 ROBINSON DA, 1972, VISION RES, V12, P1795, DOI 10.1016/0042-6989(72)90070-3 Rowe C, 1999, ANIM BEHAV, V58, P921, DOI 10.1006/anbe.1999.1242 SCHILLER PH, 1972, J NEUROPHYSIOL, V35, P915 Schlack A, 2005, J NEUROSCI, V25, P4616, DOI 10.1523/JNEUROSCI.0455-05.2005 Schroeder CE, 2001, J NEUROPHYSIOL, V85, P1322 SHIBUTANI H, 1984, EXP BRAIN RES, V55, P1 Sparks D L, 1989, Rev Oculomot Res, V3, P213 Sparks DL, 2002, NAT REV NEUROSCI, V3, P952, DOI 10.1038/nrn986 SPARKS DL, 1986, PHYSIOL REV, V66, P118 Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 Stein B. E., 1993, MERGING SENSES Stricanne B, 1996, J NEUROPHYSIOL, V76, P2071 Wallace MT, 1996, J NEUROPHYSIOL, V76, P1246 Wandell BA, 2007, NEURON, V56, P366, DOI 10.1016/j.neuron.2007.10.012 Wang XL, 2007, NAT NEUROSCI, V10, P640, DOI 10.1038/nn1878 Werner-Reiss U, 2003, CURR BIOL, V13, P554, DOI 10.1016/S0960-9822(03)00168-4 Werner-Reiss U, 2008, J NEUROSCI, V28, P3747, DOI 10.1523/JNEUROSCI.5044-07.2008 Wightman FL, 1999, J ACOUST SOC AM, V105, P2841, DOI 10.1121/1.426899 Woods TM, 2006, J NEUROPHYSIOL, V96, P3323, DOI 10.1152/jn.00392.2006 WURTZ RH, 1971, SCIENCE, V171, P82, DOI 10.1126/science.171.3966.82 Xing J, 2000, J COGNITIVE NEUROSCI, V12, P601, DOI 10.1162/089892900562363 Yao LJ, 1997, EXP BRAIN RES, V115, P25, DOI 10.1007/PL00005682 ZAMBARBIERI D, 1982, EXP BRAIN RES, V47, P417 Zwiers MP, 2004, J NEUROSCI, V24, P4145, DOI 10.1523/JNEUROSCI.0199-04.2004 NR 85 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2009 VL 258 IS 1-2 BP 106 EP 112 DI 10.1016/j.heares.2009.05.008 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535IL UT WOS:000272960900013 PM 19520151 ER PT J AU Spence, C Santangelo, V AF Spence, Charles Santangelo, Valerio TI Capturing spatial attention with multisensory cues: A review SO HEARING RESEARCH LA English DT Article DE Multisensory perception; Spatial attention; Exogenous orienting; Hearing; Touch; Vision; Psychophysics; ERP ID WORKING-MEMORY LOAD; VISUAL-ATTENTION; SUPERIOR COLLICULUS; SELECTIVE ATTENTION; TACTILE ATTENTION; ILLUSORY LOCATION; TASK-IRRELEVANT; EXOGENOUS CUES; REACTION-TIME; NEURAL BASIS AB The last 30 years have seen numerous studies demonstrating unimodal and crossmodal spatial cuing effects. However, surprisingly few studies have attempted to investigate whether multisensory cues might be any more effective in capturing a person's spatial attention than unimodal cues. Indeed, until very recently, the consensus view was that multisensory cues were, in fact, no more effective. However, the results of several recent studies have overturned this conclusion, by showing that multisensory cues retain their attention-capturing ability under conditions of perceptual load (i.e., when participants are simultaneously engaged in a concurrent attention-demanding task) while their constituent signals (when presented unimodally) do not. Here we review the empirical literature on multisensory spatial cuing effects and highlight the implications that this research has for the design of more effective warning signals in applied settings. (C) 2009 Elsevier B.V. All rights reserved. C1 [Spence, Charles] Univ Oxford, Dept Expt Psychol, Crossmodal Res Lab, Oxford OX1 3UD, England. [Santangelo, Valerio] Univ Perugia, Dept Human & Educ Sci, I-06100 Perugia, Italy. RP Spence, C (reprint author), Univ Oxford, Dept Expt Psychol, Crossmodal Res Lab, S Parks Rd, Oxford OX1 3UD, England. EM charles.spence@psy.ox.ac.uk CR Alais D, 2004, CURR BIOL, V14, P257, DOI 10.1016/j.cub.2004.01.029 Bertelson P, 2000, PERCEPT PSYCHOPHYS, V62, P321, DOI 10.3758/BF03205552 Bolognini N, 2005, EXP BRAIN RES, V160, P273, DOI 10.1007/s00221-004-2005-z Bonath B, 2007, CURR BIOL, V17, P1697, DOI 10.1016/j.cub.2007.08.050 Boot WR, 2005, PSYCHON B REV, V12, P662, DOI 10.3758/BF03196755 Callejas A, 2004, BRAIN COGNITION, V54, P225, DOI 10.1016/j.bandc.2004.02.012 Calvert G. A., 2004, HDB MULTISENSORY PRO, P3 CHONG T, 2000, J COGNITIVE NEUROS S, V12, P38 DEWAR RE, 1988, INT J VEHICLE DES, V9, P557 Duncan J, 1997, NATURE, V387, P808, DOI 10.1038/42947 Fitch GM, 2007, HUM FACTORS, V49, P710, DOI 10.1518/001872007X215782 Folk CL, 2009, PSYCHON B REV, V16, P127, DOI 10.3758/PBR.16.1.127 Frassinetti F, 2002, EXP BRAIN RES, V147, P332, DOI 10.1007/s00221-002-1262-y Giard MH, 1999, J COGNITIVE NEUROSCI, V11, P473, DOI 10.1162/089892999563544 GRAY R, 2009, ACM T APPL PERCEPTIO HO C, HUMAN FACTORS UNPUB Ho C, 2005, J EXP PSYCHOL-APPL, V11, P157, DOI 10.1037/1076-898X.11.3.157 Ho C, 2009, EXP BRAIN RES, V195, P261, DOI 10.1007/s00221-009-1778-5 Ho C, 2007, HUM FACTORS, V49, P1107, DOI 10.1518/001872007X249965 Ho C., 2008, MULTISENSORY DRIVER Ho C, 2005, TRANSPORT RES F-TRAF, V8, P397, DOI 10.1016/j.trf.2005.05.002 Ho C., 2006, ACCIDENT ANAL PREV, V38, P989 Ignashchenkova A, 2004, NAT NEUROSCI, V7, P56, DOI 10.1038/nn1169 Jonides J., 1981, ATTENTION PERFORM, V9, P187 Kellie FJ, 2004, PERCEPT PSYCHOPHYS, V66, P692, DOI 10.3758/BF03194912 KING AJ, 1985, EXP BRAIN RES, V60, P492 Klein RM, 2000, TRENDS COGN SCI, V4, P138, DOI 10.1016/S1364-6613(00)01452-2 Kustov AA, 1996, NATURE, V384, P74, DOI 10.1038/384074a0 Lakatos P, 2008, SCIENCE, V320, P110, DOI 10.1126/science.1154735 Lavie N, 2005, TRENDS COGN SCI, V9, P75, DOI 10.1016/j.tics.2004.12.004 Lavie N, 2005, PSYCHON B REV, V12, P669, DOI 10.3758/BF03196756 Lupianez J., 1999, 1 INT MULT RES C CRO Macaluso E, 2000, SCIENCE, V289, P1206, DOI 10.1126/science.289.5482.1206 Macaluso E, 2001, SCIENCE, V292, P1791 McDonald J J, 2001, Science, V292, P1791 McDonald JJ, 2000, NATURE, V407, P906, DOI 10.1038/35038085 McDonald JJ, 2005, NAT NEUROSCI, V8, P1197, DOI 10.1038/nn1512 MEREDITH MA, 1987, J NEUROSCI, V7, P3215 Posner M., 1978, CHRONOMETRIC EXPLORA Prime DJ, 2008, CAN J EXP PSYCHOL, V62, P192, DOI 10.1037/1196-1961.62.3.192 Prinzmetal W, 2005, PERCEPT PSYCHOPHYS, V67, P1344, DOI 10.3758/BF03193639 Prinzmetal W, 2005, J EXP PSYCHOL GEN, V134, P73, DOI 10.1037/0096-3445.134.1.73 Rees G, 2001, NEUROPSYCHOLOGIA, V39, P937, DOI 10.1016/S0028-3932(01)00016-1 ROBINSON DL, 1995, J NEUROPHYSIOL, V74, P713 Santangelo V, 2008, EXP BRAIN RES, V185, P269, DOI 10.1007/s00221-007-1151-5 Santangelo V, 2007, PERCEPTION, V36, P1497, DOI 10.1068/p5848 Santangelo V, 2008, EXP BRAIN RES, V184, P371, DOI 10.1007/s00221-007-1108-8 Santangelo V, 2008, PSYCHON B REV, V15, P398, DOI 10.3758/PBR.15.2.398 Santangelo V, 2008, CONSCIOUS COGN, V17, P989, DOI 10.1016/j.concog.2008.02.006 SANTANGELO V, 2007, HUMAN PERCEPTION PER, V33, P1311 Santangelo V, 2007, NEUROSCI LETT, V413, P105, DOI 10.1016/j.neulet.2006.11.037 Santangelo V, 2007, J EXP PSYCHOL HUMAN, V33, P137, DOI 10.1037/0096-1523.33.1.137 Santangelo V, 2006, EXP BRAIN RES, V173, P40, DOI 10.1007/s00221-006-0361-6 Santangelo V, 2008, VIS COGN, V16, P155, DOI 10.1080/13506280701453540 Schroeder CE, 2008, TRENDS NEUROSCI, V32, P9, DOI 10.1016/j.tins.2008.09.012 Schroeder CE, 2002, COGNITIVE BRAIN RES, V14, P187, DOI 10.1016/S0926-6410(02)00073-3 Schwartz S, 2005, CEREB CORTEX, V15, P770, DOI 10.1093/cercor/bhh178 Scott JJ, 2008, HUM FACTORS, V50, P264, DOI [10.1518/001872008X250674, 10.1518/00187200SX250674] SELCON SJ, 1995, ERGONOMICS, V38, P2362, DOI 10.1080/00140139508925273 Simon J. R., 1990, STIMULUS RESPONSE CO, P31 SIMON JR, 1970, J EXP PSYCHOL, V86, P272, DOI 10.1037/h0029961 Sklar AE, 1999, HUM FACTORS, V41, P543, DOI 10.1518/001872099779656716 Slutsky DA, 2001, NEUROREPORT, V12, P7, DOI 10.1097/00001756-200101220-00009 Spence C, 1997, PERCEPT PSYCHOPHYS, V59, P1, DOI 10.3758/BF03206843 Spence C., 2001, ATTENTION DISTRACTIO, P231 Spence C, 1998, EXP BRAIN RES, V118, P352, DOI 10.1007/s002210050289 Spence C, 2000, NEUROREPORT, V11, P2057, DOI 10.1097/00001756-200006260-00049 Spence C, 2001, EXP BRAIN RES, V141, P324, DOI 10.1007/s002210100883 Spence C., 1999, ENG PSYCHOL COGNITIV, V4, P455 Spence C, 2000, EXP BRAIN RES, V134, P42, DOI 10.1007/s002210000442 Spence C, 1998, PERCEPT PSYCHOPHYS, V60, P544, DOI 10.3758/BF03206045 Spence C., 2004, CROSSMODAL SPACE CRO, P277 Spence C., 2008, THEOR ISSUES ERGON S, V9, P523, DOI DOI 10.1080/14639220701816765 SPENCE C, 2008, IEEE T HAPTICS, V1, P1 SPENCE C, AUDITORY PE IN PRESS SPENCE CJ, 1994, J EXP PSYCHOL HUMAN, V20, P555, DOI 10.1037//0096-1523.20.3.555 STANGELO V, 2009, EXPT BRAIN RES, V194, P577 Stein B. E., 1993, MERGING SENSES Stein Barry E., 1995, P683 Stein BE, 2008, NAT REV NEUROSCI, V9, P255, DOI 10.1038/nrn2331 Talsma D, 2005, J COGNITIVE NEUROSCI, V17, P1098, DOI 10.1162/0898929054475172 Teder-Salejarvi WA, 2002, COGNITIVE BRAIN RES, V14, P106, DOI 10.1016/S0926-6410(02)00065-4 van der Burg E, 2008, J VISION, V8, P1 van der Lubbe RHJ, 2005, EXP BRAIN RES, V164, P464, DOI 10.1007/s00221-005-2267-0 Visser TA, 2004, PERCEPT PSYCHOPHYS, V66, P1418, DOI 10.3758/BF03195008 Vroomen J, 2001, ACTA PSYCHOL, V108, P21, DOI 10.1016/S0001-6918(00)00068-8 Vroomen J, 2001, PERCEPT PSYCHOPHYS, V63, P651, DOI 10.3758/BF03194427 Wallace MT, 1996, J NEUROPHYSIOL, V76, P1246 WARD LM, 1994, CAN J EXP PSYCHOL, V48, P242, DOI 10.1037/1196-1961.48.2.242 Wilkinson LK, 1996, EXP BRAIN RES, V112, P1 Wright R. D., 2008, ORIENTING ATTENTION WRIGHT RD, 1994, CAN J EXP PSYCHOL, V48, P151, DOI 10.1037/1196-1961.48.2.151 WRIGHT TD, 1998, VISUAL ATTENTION, P132 YATES MJ, 2009, PERCEPT PSYCHOPHYS, V71, P847 Zimmer U, 2007, EUR J NEUROSCI, V26, P1681, DOI 10.1111/j.1460-9568.2007.05784.x NR 95 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2009 VL 258 IS 1-2 BP 134 EP 142 DI 10.1016/j.heares.2009.04.015 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535IL UT WOS:000272960900016 PM 19409472 ER PT J AU Besle, J Bertrand, O Giard, MH AF Besle, Julien Bertrand, Olivier Giard, Marie-Helene TI Electrophysiological (EEG, sEEG, MEG) evidence for multiple audiovisual interactions in the human auditory cortex SO HEARING RESEARCH LA English DT Article DE Auditory; Visual; Multisensory; Intracranial; Speech; Human; ERPs ID MISMATCH NEGATIVITY MMN; BIMODAL DIVIDED ATTENTION; SHORT-TERM-MEMORY; VISUAL SPEECH; MULTISENSORY INTEGRATION; HUMAN BRAIN; FEATURE CONJUNCTIONS; SELECTIVE ATTENTION; SENSORY MEMORY; SEEING SPEECH AB In this review, we examine the contribution of human electrophysiological studies (EEG sEEG and MEG), to the study of visual influence on processing in the auditory cortex. Focusing mainly on studies performed by our group, we critically review the evidence showing (1) that visual information can both activate and modulate the activity of the auditory cortex at relatively early stages (mainly at the processing stage of the auditory N1 wave) in response to both speech and non-speech sounds and (2) that visual information can be included in the representation of both speech and non-speech sounds in auditory sensory memory. We describe an important conceptual tool in the study of audiovisual interaction (the additive model) and show the importance of considering the spatial distribution of electrophysiological data when interpreting EEG results. Review of these studies points to the probable role of sensory, attentional and task-related factors in modulating audiovisual interactions in the auditory cortex. (C) 2009 Elsevier B.V. All rights reserved. C1 [Besle, Julien] Univ Lyon 1, INSERM, U821, F-69500 Bron, France. [Besle, Julien; Bertrand, Olivier; Giard, Marie-Helene] Univ Lyon 1, F-69000 Lyon, France. [Besle, Julien] Univ Lyon 2, F-69000 Lyon, France. RP Besle, J (reprint author), Univ Lyon 1, INSERM, U821, F-69500 Bron, France. EM julien.besle@inserm.fr RI Besle, Julien/A-8262-2014; Bertrand, Olivier/B-6165-2008 OI Besle, Julien/0000-0002-8792-1712; CR Aoyama A, 2006, BRAIN RES, V1068, P194, DOI 10.1016/j.brainres.2005.11.017 Besle J, 2004, COGN PROCESS, V5, P189, DOI DOI 10.1007/S10339-004-0026-Y Besle J, 2004, EUR J NEUROSCI, V20, P2225, DOI 10.1111/j.1460-9568.2004.03670.x BESLE J, REPRESENTATION UNPUB Besle J, 2005, EXP BRAIN RES, V166, P337, DOI 10.1007/s00221-005-2375-x Besle J, 2008, J NEUROSCI, V28, P14301, DOI 10.1523/JNEUROSCI.2875-08.2008 Besle J, 2007, J PSYCHOPHYSIOL, V21, P231, DOI 10.1027/0269-8803.21.34.231 Calvert GA, 2001, NEUROIMAGE, V14, P427, DOI 10.1006/nimg.2001.0812 Calvert GA, 2001, CEREB CORTEX, V11, P1110, DOI 10.1093/cercor/11.12.1110 Colin C, 2002, CLIN NEUROPHYSIOL, V113, P507, DOI 10.1016/S1388-2457(02)00028-7 Colin C, 2002, CLIN NEUROPHYSIOL, V113, P495, DOI 10.1016/S1388-2457(02)00024-X Colin C, 2004, CLIN NEUROPHYSIOL, V115, P1989, DOI [10.1016/j.clinph.2004.03.027, 10.1016/j.clinch.2004.03.027] Czigler I, 2007, J PSYCHOPHYSIOL, V21, P224, DOI 10.1027/0269-8803.21.34.224 Davis C, 2008, BRAIN RES, V1242, P151, DOI 10.1016/j.brainres.2008.04.077 Dittmann-Balcar A, 1999, NEUROREPORT, V10, P3749, DOI 10.1097/00001756-199912160-00005 Fort A, 2002, CEREB CORTEX, V12, P1031, DOI 10.1093/cercor/12.10.1031 Fort A, 2002, COGNITIVE BRAIN RES, V14, P20, DOI 10.1016/S0926-6410(02)00058-7 Giard M. H., 2000, FRONT BIOSCI, V5, P84 Giard MH, 1999, J COGNITIVE NEUROSCI, V11, P473, DOI 10.1162/089892999563544 GIARD MH, MULTISENSOR IN PRESS Gomes H, 1997, PSYCHOPHYSIOLOGY, V34, P712, DOI 10.1111/j.1469-8986.1997.tb02146.x Hertrich I, 2007, NEUROPSYCHOLOGIA, V45, P1342, DOI 10.1016/j.neuropsychologia.2006.09.019 Hillyard SA, 1998, CURR OPIN NEUROBIOL, V8, P202, DOI 10.1016/S0959-4388(98)80141-4 Jaaskelainen IP, 2004, NEUROREPORT, V15, P2741 Kislyuk DS, 2008, J COGNITIVE NEUROSCI, V20, P2175, DOI 10.1162/jocn.2008.20152 Korzyukov OA, 2003, NEUROIMAGE, V20, P2245, DOI 10.1016/j.neuroimage.2003.08.014 KULCHAREV V, 2003, BRAIN RES COGN BRAIN, V18, P65 Lebib R, 2003, NEUROSCI LETT, V341, P185, DOI 10.1016/S0304-3940(03)00131-9 MCGURK H, 1976, NATURE, V264, P746, DOI 10.1038/264746a0 Miki K, 2004, NEUROSCI LETT, V357, P199, DOI 10.1016/j.neulet.2003.12.082 MILLER J, 1982, COGNITIVE PSYCHOL, V14, P247, DOI 10.1016/0010-0285(82)90010-X MILLER J, 1986, PERCEPT PSYCHOPHYS, V40, P331, DOI 10.3758/BF03203025 MILLER J, 1991, J EXP PSYCHOL HUMAN, V17, P160, DOI 10.1037/0096-1523.17.1.160 Molholm S, 2002, COGNITIVE BRAIN RES, V14, P115, DOI 10.1016/S0926-6410(02)00066-6 Mottonen R, 2002, COGNITIVE BRAIN RES, V13, P417, DOI 10.1016/S0926-6410(02)00053-8 Mottonen R, 2004, NEUROSCI LETT, V363, P112, DOI 10.1016/j.neulet.2004.03.076 Muller-Gass A, 2006, BRAIN RES, V1078, P112, DOI 10.1016/j.brainres.2005.12.125 Musacchia G, 2006, EXP BRAIN RES, V168, P1, DOI 10.1007/s00221-005-0071-5 Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026 NYMAN G, 1990, ELECTROEN CLIN NEURO, V77, P436, DOI 10.1016/0168-5597(90)90004-W Oray S, 2002, INT J PSYCHOPHYSIOL, V43, P213, DOI 10.1016/S0167-8760(01)00174-X Otten LJ, 2000, NEUROREPORT, V11, P875, DOI 10.1097/00001756-200003200-00043 Paavilainen P, 2007, NEUROREPORT, V18, P159, DOI 10.1097/WNR.0b013e328010e2ac Pekkola J, 2005, NEUROREPORT, V16, P125, DOI 10.1097/00001756-200502080-00010 Reale RA, 2007, NEUROSCIENCE, V145, P162, DOI 10.1016/j.neuroscience.2006.11.036 Romei V, 2007, J NEUROSCI, V27, P11465, DOI 10.1523/JNEUROSCI.2827-07.2007 SAARINEN J, 1992, NEUROREPORT, V3, P1149, DOI 10.1097/00001756-199212000-00030 Saint-Amour D, 2007, NEUROPSYCHOLOGIA, V45, P587, DOI 10.1016/j.neuropsychologia.2006.03.036 SAMS M, 1998, BRAIN TOPOGRAPHY TOD, P47 SAMS M, 1991, NEUROSCI LETT, V127, P141, DOI 10.1016/0304-3940(91)90914-F Schneider TR, 2008, NEUROIMAGE, V42, P1244, DOI 10.1016/j.neuroimage.2008.05.033 Schroger E, 1998, PSYCHOPHYSIOLOGY, V35, P755, DOI 10.1017/S0048577298980714 Senkowski D, 2007, NEUROPSYCHOLOGIA, V45, P561, DOI 10.1016/j.neuropsychologia.2006.01.013 Senkowski D, 2007, NEUROIMAGE, V36, P877, DOI 10.1016/j.neuroimage.2007.01.053 Senkowski D, 2007, EXP BRAIN RES, V177, P184, DOI 10.1007/s00221-006-0664-7 Senkowski D, 2006, CEREB CORTEX, V16, P1556, DOI 10.1093/cercor/bhj091 Stein B. E., 1993, MERGING SENSES Stekelenburg JJ, 2007, J COGNITIVE NEUROSCI, V19, P1964, DOI 10.1162/jocn.2007.19.12.1964 Stekelenburg JJ, 2004, NEUROSCI LETT, V357, P163, DOI 10.1016/j.neulet.2003.12.085 Takegata R, 2005, COGNITIVE BRAIN RES, V25, P169, DOI 10.1016/j.cogbrainres.2005.05.006 Talsma D, 2005, J COGNITIVE NEUROSCI, V17, P1098, DOI 10.1162/0898929054475172 Talsma D, 2007, CEREB CORTEX, V17, P679, DOI 10.1093/cercor/bhk016 Teder-Salejarvi WA, 2005, J COGNITIVE NEUROSCI, V17, P1396, DOI 10.1162/0898929054985383 Teder-Salejarvi WA, 2002, COGNITIVE BRAIN RES, V14, P106, DOI 10.1016/S0926-6410(02)00065-4 Thomas GJ, 1941, J EXP PSYCHOL, V28, P163, DOI 10.1037/h0055183 Ullsperger P, 2006, INT J PSYCHOPHYSIOL, V59, P3, DOI 10.1016/j.ijpsycho.2005.06.007 Valtonen J, 2003, COGNITIVE BRAIN RES, V17, P358, DOI 10.1016/S0926-6410(03)00137-X van Wassenhove V, 2005, P NATL ACAD SCI USA, V102, P1181, DOI 10.1073/pnas.0408949102 VAUGHAN HG, 1970, ELECTROEN CLIN NEURO, V28, P360, DOI 10.1016/0013-4694(70)90228-2 Widmann A, 2004, PSYCHOPHYSIOLOGY, V41, P709, DOI 10.1111/j.1469-8986.2004.00208.x Yumoto M, 2005, NEUROREPORT, V16, P803, DOI 10.1097/00001756-200505310-00005 NR 71 TC 32 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2009 VL 258 IS 1-2 SI SI BP 143 EP 151 DI 10.1016/j.heares.2009.06.016 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535IL UT WOS:000272960900017 PM 19573583 ER PT J AU van Atteveldt, N Roebroeck, A Goebel, R AF van Atteveldt, Nienke Roebroeck, Alard Goebel, Rainer TI Interaction of speech and script in human auditory cortex: Insights from neuro-imaging and effective connectivity SO HEARING RESEARCH LA English DT Article DE fMRI; Auditory cortex; Audiovisual; Speech; Script; Multisensory integration; Granger causality mapping ID GRAPHEME-PHONEME CORRESPONDENCE; SUPERIOR TEMPORAL SULCUS; HUMAN VISUAL-CORTEX; HUMAN BRAIN; MULTISENSORY INTEGRATION; FUNCTIONAL CONNECTIVITY; CORTICAL OSCILLATIONS; MISMATCH NEGATIVITY; READING-DISABILITY; COMPONENT ANALYSIS AB In addition to visual information from the face of the speaker, a less natural, but nowadays extremely important visual component of speech is its representation in script. In this review, neuro-imaging studies are examined which were aimed to understand how speech and script are associated in the adult "literate" brain. The reviewed studies focused on the role of different stimulus and task factors and effective connectivity between different brain regions. The studies will be summarized in a neural mechanism for the integration of speech and script that can serve as a basis for future studies addressing (the failure of) literacy acquisition. In this proposed mechanism, speech sound processing in auditory cortex is modulated by co-presented visual letters, depending on the congruency of the letter-sound pairs. Other factors of influence are temporal correspondence, input quality and task instruction. We present results showing that the modulation of auditory cortex is most likely mediated by feedback from heteromodal areas in the superior temporal cortex, but direct influences from visual cortex are not excluded. The influence of script on speech sound processing occurs automatically and shows extended development during reading acquisition. This review concludes with suggestions to answer currently still open questions to get closer to understanding the neural basis of normal and impaired literacy. (C) 2009 Elsevier B.V. All rights reserved. C1 [van Atteveldt, Nienke] Columbia Univ Coll Phys & Surg, Div Child & Adolescent Psychiat, Dept Psychiat, New York, NY 10032 USA. [van Atteveldt, Nienke] New York State Psychiat Inst & Hosp, New York, NY 10032 USA. [van Atteveldt, Nienke; Roebroeck, Alard; Goebel, Rainer] Maastricht Univ, Fac Psychol & Neurosci, Dept Cognit Neurosci, NL-6200 MD Maastricht, Netherlands. [Goebel, Rainer] Netherlands Inst Neurosci, NL-1105 BA Amsterdam, Netherlands. RP van Atteveldt, N (reprint author), Columbia Univ Coll Phys & Surg, Div Child & Adolescent Psychiat, Dept Psychiat, 1051 Riverside Dr, New York, NY 10032 USA. EM n.vanatteveldt@maastrichtuniversity.nl; a.roebroeck@maastrichtuniversity.nl; r.goebel@maastrichtuniversity.nl FU Dutch Organization for Scientific Research [451-07-020]; European Community's Seventh Framework Programme [221187] FX This work is supported by the Dutch Organization for Scientific Research (NWO, VENI Grant # 451-07-020 to N.v.A.) and the European Community's Seventh Framework Programme ([FP/2007-2013] Grant # 221187 to N.v.A.). CR Amedi A, 2005, EXP BRAIN RES, V166, P559, DOI 10.1007/s00221-005-2396-5 Beauchamp MS, 2005, NEUROINFORMATICS, V3, P93, DOI 10.1385/NI:03:02:93 Blau V, 2009, CURR BIOL, V19, P503, DOI 10.1016/j.cub.2009.01.065 Blau V, 2008, EUR J NEUROSCI, V28, P500, DOI 10.1111/j.1460-9568.2008.06350.x BLAU V, 2008, J COGNITIVE NEUROS S, pS140 Buchel C, 1997, CEREB CORTEX, V7, P768, DOI 10.1093/cercor/7.8.768 Buchel C, 2000, NEURAL NETWORKS, V13, P871, DOI 10.1016/S0893-6080(00)00066-6 Buchsbaum BR, 2005, NEUROIMAGE, V24, P444, DOI 10.1016/j.neuroimage.2004.08.025 Budinger E, 2006, NEUROSCIENCE, V143, P1065, DOI 10.1016/j.neuroscience.2006.08.035 Byrne B, 1996, AUST J PSYCHOL, V48, P119, DOI 10.1080/00049539608259517 Calvert GA, 1999, NEUROREPORT, V10, P2619, DOI 10.1097/00001756-199908200-00033 Calvert GA, 2001, CEREB CORTEX, V11, P1110, DOI 10.1093/cercor/11.12.1110 Campanella S, 2007, TRENDS COGN SCI, V11, P535, DOI 10.1016/j.tics.2007.10.001 Campbell R, 2008, PHILOS T R SOC B, V363, P1001, DOI 10.1098/rstb.2007.2155 Cohen L, 2004, NEUROIMAGE, V22, P466, DOI 10.1016/j.neuroimage.2003.12.049 COUNCIL NR, 1998, PREVENTING READING D De Martino F, 2008, NEUROIMAGE, V43, P44, DOI 10.1016/j.neuroimage.2008.06.037 DESHPANDE G, 2008, HUMAN BRAIN MAP 0606 Deshpande G, 2008, NEUROIMAGE, V40, P1807, DOI 10.1016/j.neuroimage.2008.01.044 Driver J, 2008, NEURON, V57, P11, DOI 10.1016/j.neuron.2007.12.013 Eckert MA, 2008, HUM BRAIN MAPP, V29, P848, DOI 10.1002/hbm.20560 Eden GF, 2002, NAT NEUROSCI, V5, P1080, DOI 10.1038/nn946 Ehri LC, 2005, BL HBK DEV PSYCHOL, P135, DOI 10.1002/9780470757642.ch8 Ethofer T, 2006, HUM BRAIN MAPP, V27, P707, DOI 10.1002/hbm.20212 Falchier A, 2002, J NEUROSCI, V22, P5749 Flowers DL, 2004, NEUROIMAGE, V21, P829, DOI 10.1016/j.neuroimage.2003.10.002 Formisano E, 2008, SCIENCE, V322, P970, DOI 10.1126/science.1164318 Formisano E, 2003, NEURON, V40, P859, DOI 10.1016/S0896-6273(03)00669-X FOX E, 1994, BRIT J PSYCHOL, V85, P41 Friston Karl J., 1994, Human Brain Mapping, V2, P56, DOI 10.1002/hbm.460020107 Friston K. J., 1993, Human Brain Mapping, V1, P69, DOI 10.1002/hbm.460010108 FRISTON KJ, 1993, J CEREBR BLOOD F MET, V13, P5 Friston KJ, 1997, NEUROIMAGE, V6, P218, DOI 10.1006/nimg.1997.0291 Friston KJ, 2003, NEUROIMAGE, V19, P1273, DOI 10.1016/S1053-8119(03)00202-7 Froyen D, 2008, NEUROSCI LETT, V430, P23, DOI 10.1016/j.neulet.2007.10.014 Froyen DJW, 2009, J COGNITIVE NEUROSCI, V21, P567, DOI 10.1162/jocn.2009.21061 FUJITA I, 1992, NATURE, V360, P343, DOI 10.1038/360343a0 Genovese CR, 2002, NEUROIMAGE, V15, P870, DOI 10.1006/nimg.2001.1037 Ghazanfar AA, 2008, J NEUROSCI, V28, P4457, DOI 10.1523/JNEUROSCI.0541-08.2008 Ghazanfar AA, 2007, NEURON, V53, P162, DOI 10.1016/j.neuron.2007.01.003 GLEITMAN LR, 1977, PSYCHOL READING Goebel R., 2009, COGNITIVE NEUROSCIEN, VIV GOEBEL R, 2009, COMBINED FMRI EEG DA Gough P. B., 1980, B ORTON SOC, V30, P179, DOI DOI 10.1007/BF02653717 Greicius MD, 2003, P NATL ACAD SCI USA, V100, P253, DOI 10.1073/pnas.0135058100 Grill-Spector K, 2001, ACTA PSYCHOL, V107, P293, DOI 10.1016/S0001-6918(01)00019-1 Haxby JV, 2001, SCIENCE, V293, P2425, DOI 10.1126/science.1063736 Haynes JD, 2005, NAT NEUROSCI, V8, P686, DOI 10.1038/nn1445 Herdman AT, 2006, NEUROSCI LETT, V399, P61, DOI 10.1016/j.neulet.2006.01.069 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kamitani Y, 2005, NAT NEUROSCI, V8, P679, DOI 10.1038/nn1444 Kayser C, 2007, J NEUROSCI, V27, P1824, DOI 10.1523/JNEUROSCI.4737-06.2007 Kayser C, 2007, BRAIN STRUCT FUNCT, V212, P121, DOI 10.1007/s00429-007-0154-0 Kriegeskorte N, 2006, P NATL ACAD SCI USA, V103, P3863, DOI 10.1073/pnas.0600244103 Lakatos P, 2007, NEURON, V53, P279, DOI 10.1016/j.neuron.2006.12.011 Laurienti PJ, 2005, EXP BRAIN RES, V166, P289, DOI 10.1007/s00221-005-2370-2 Liberman A. M., 1992, ORTHOGRAPHY PHONOLOG, P167 Lin FH, 2006, NEUROIMAGE, V31, P160, DOI 10.1016/j.neuroimage.2005.11.054 Macaluso E, 2000, SCIENCE, V289, P1206, DOI 10.1126/science.289.5482.1206 Maier JX, 2008, CURR BIOL, V18, P963, DOI 10.1016/j.cub.2008.05.043 Mattingly I. G., 1972, LANGUAGE EAR EYE REL McIntosh A. R., 1994, Human Brain Mapping, V2, P2 McKeown MJ, 1998, HUM BRAIN MAPP, V6, P160, DOI 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 Molholm S, 2005, NEUROREPORT, V16, P123, DOI 10.1097/00001756-200502080-00009 Morais J, 2005, BL HBK DEV PSYCHOL, P188, DOI 10.1002/9780470757642.ch11 Morosan P, 2001, NEUROIMAGE, V13, P684, DOI 10.1006/nimg.2000.0715 Nakada T, 2001, EUR NEUROL, V46, P121, DOI 10.1159/000050784 Noesselt T, 2007, J NEUROSCI, V27, P11431, DOI 10.1523/JNEUROSCI.2252-07.2007 Noppeney U, 2008, CEREB CORTEX, V18, P598, DOI 10.1093/cercor/bhm091 Pekkola J, 2005, NEUROREPORT, V16, P125, DOI 10.1097/00001756-200502080-00010 Perfetti C., 2000, J DEAF STUD DEAF EDU, V5, P32, DOI DOI 10.1093/DEAFED/5.1.32 Perrault TJ, 2005, J NEUROPHYSIOL, V93, P2575, DOI 10.1152/jn.00926.2004 Petkov CI, 2006, PLOS BIOL, V4, P1213, DOI 10.1371/journal.pbio.0040215 Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875 Polk TA, 2002, J COGNITIVE NEUROSCI, V14, P145, DOI 10.1162/089892902317236803 Price CJ, 2005, CURR OPIN NEUROBIOL, V15, P231, DOI 10.1016/j.conb.2005.03.003 Raij T, 2000, NEURON, V28, P617, DOI 10.1016/S0896-6273(00)00138-0 Ramus F, 2003, CURR OPIN NEUROBIOL, V13, P212, DOI 10.1016/S0959-4388(03)00035-7 Riecke L, 2007, J NEUROSCI, V27, P12684, DOI 10.1523/JNEUROSCI.2713-07.2007 Rockland KS, 2003, INT J PSYCHOPHYSIOL, V50, P19, DOI 10.1016/S0167-8760(03)00121-1 Roebroeck A, 2005, NEUROIMAGE, V25, P230, DOI 10.1016/j.neuroimage.2004.11.017 Schreiber G, 2005, CURR OPIN STRUC BIOL, V15, P1, DOI 10.1016/j.sbl.2005.01.016 Schroeder CE, 2002, COGNITIVE BRAIN RES, V14, P187, DOI 10.1016/S0926-6410(02)00073-3 Schroeder CE, 2008, TRENDS COGN SCI, V12, P106, DOI 10.1016/j.tics.2008.01.002 Schroger E, 1998, BEHAV RES METH INS C, V30, P131, DOI 10.3758/BF03209423 SERENO MI, 1995, SCIENCE, V268, P889, DOI 10.1126/science.7754376 Shaywitz SE, 2005, BIOL PSYCHIAT, V57, P1301, DOI 10.1016/j.biopsych.2005.01.043 Snowling MJ, 2005, BL HBK DEV PSYCHOL, P1 SNOWLING MJ, 1980, J EXP CHILD PSYCHOL, V29, P294, DOI 10.1016/0022-0965(80)90021-1 Stein B. E., 1993, MERGING SENSES Tootell RBH, 1997, J NEUROSCI, V17, P7060 VANATTEVELDT N, 2008, ANN M INT MULT RES F van Atteveldt N, 2004, NEURON, V43, P271, DOI 10.1016/j.neuron.2004.06.025 van Atteveldt NM, 2007, CEREB CORTEX, V17, P962, DOI 10.1093/cercor/bhl007 van Atteveldt NM, 2007, NEUROIMAGE, V36, P1345, DOI 10.1016/j.neuroimage.2007.03.065 van de Ven VG, 2004, HUM BRAIN MAPP, V22, P165, DOI 10.1002/hbm.20022 Vellutino FR, 2004, J CHILD PSYCHOL PSYC, V45, P2, DOI 10.1046/j.0021-9630.2003.00305.x von Kriegstein K, 2005, J COGNITIVE NEUROSCI, V17, P367, DOI 10.1162/0898929053279577 Yacoub E, 2008, P NATL ACAD SCI USA, V105, P10607, DOI 10.1073/pnas.0804110105 NR 99 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2009 VL 258 IS 1-2 SI SI BP 152 EP 164 DI 10.1016/j.heares.2009.05.007 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535IL UT WOS:000272960900018 PM 19500658 ER PT J AU Wild, JM Krutzfeldt, NOE Kubke, MF AF Wild, J. M. Kruetzfeldt, N. O. E. Kubke, M. F. TI Afferents to the cochlear nuclei and nucleus laminaris from the ventral nucleus of the lateral lemniscus in the zebra finch (Taeniopygia guttata) SO HEARING RESEARCH LA English DT Article DE Auditory brainstem; Songbird; Avian; Superior olive ID INTERAURAL TIME DIFFERENCES; SUPERIOR OLIVARY NUCLEUS; STEM AUDITORY NUCLEI; BRAIN-STEM; BARN OWL; PROJECTIONS; CHICK; IMMUNOREACTIVITY; NEURONS; BASALIS AB The presence and nature of a descending projection from the ventral nucleus of the lateral lemniscus (LLV) to the cochlear nuclei (NA, NM) and the third-order nucleus laminaris (NL) was investigated in a songbird using tract tracing and GAD immunohistochemistry. Tracer injections into LLV produced anterograde label in the ipsilateral NA, NM and NL, which was found not to be GABAergic. Double retrograde labeling from LLV and NA/NM/NL ruled out the possibility that the LLV projection actually arose from collaterals of superior olivary projections to NA/NM/NL. The LLV projection may be involved in the discrimination of laterality of auditory input. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wild, J. M.; Kruetzfeldt, N. O. E.; Kubke, M. F.] Univ Auckland, Fac Med & Hlth Sci, Dept Anat Radiol, Sch Med Sci, Auckland 1, New Zealand. RP Wild, JM (reprint author), Univ Auckland, Fac Med & Hlth Sci, Dept Anat, PB 92019, Auckland 1, New Zealand. EM jm.wild@auckland.ac.nz RI Kubke, Maria Fabiana/E-2472-2011; Kubke, M Fabiana/H-3320-2012 FU Royal Society of New Zealand Marsden FX Funded by a grant from the Royal Society of New Zealand Marsden Fund to J.M. Wild. We thank Silke Fuchs for histological assistance. CR ARENDS JJA, 1986, BRAIN RES, V398, P375, DOI 10.1016/0006-8993(86)91499-X Bruckner S, 1998, EUR J NEUROSCI, V10, P3438, DOI 10.1046/j.1460-9568.1998.00353.x Burger RM, 2005, J COMP NEUROL, V481, P6, DOI 10.1002/ce.20334 CARR CE, 1989, J COMP NEUROL, V286, P190, DOI 10.1002/cne.902860205 CODE RA, 1989, HEARING RES, V40, P167, DOI 10.1016/0378-5955(89)90109-3 CODE RA, 1989, J COMP NEUROL, V284, P504, DOI 10.1002/cne.902840403 Coleman MJ, 2007, J NEUROSCI, V27, P10024, DOI 10.1523/JNEUROSCI.2215-07.2007 CONLEE JW, 1986, BRAIN RES, V367, P96, DOI 10.1016/0006-8993(86)91583-0 GROEBBELS F, 1924, ANAT ANZEIGER, V57, P385 Hyson RL, 2005, PHYSIOL BEHAV, V86, P297, DOI 10.1016/j.physbeh.2005.08.003 JUNGHERR EL, 1969, AVIAN DIS, V1, P126 KAUFMAN DL, 1991, J NEUROCHEM, V56, P720, DOI 10.1111/j.1471-4159.1991.tb08211.x Konishi M, 2003, ANNU REV NEUROSCI, V26, P31, DOI 10.1146/annurev.neuro.26.041002.131123 KRUTZFELDT NOE, 2007, INT SOC NEUR C VANC LACHICA EA, 1994, J COMP NEUROL, V348, P403, DOI 10.1002/cne.903480307 LEIBLER LM, 1975, MONAURAL BINAURAL PA MacLeod KM, 2006, J COMP NEUROL, V495, P185, DOI 10.1002/cne.20862 MULLER CM, 1987, NEUROSCI LETT, V77, P272, DOI 10.1016/0304-3940(87)90511-8 OERTEL WH, 1981, NEUROSCIENCE, V6, P2689, DOI 10.1016/0306-4522(81)90113-5 Puelles L., 2007, CHICK BRAIN STEREOTA Spiro JE, 1999, J NEUROPHYSIOL, V81, P3007 STOKES TM, 1974, J COMP NEUROL, V156, P337, DOI 10.1002/cne.901560305 TAKAHASHI TT, 1988, J COMP NEUROL, V274, P212, DOI 10.1002/cne.902740207 VEENMAN CL, 1992, J NEUROSCI METH, V41, P239, DOI 10.1016/0165-0270(92)90089-V WESTERBERG BD, 1995, J OTOLARYNGOL, V24, P20 Wild JM, 2009, J COMP NEUROL, V512, P768, DOI 10.1002/cne.21932 WILD JM, 1995, J COMP NEUROL, V358, P465, DOI 10.1002/cne.903580402 Wild JM, 2001, BRAIN BEHAV EVOLUT, V57, P39, DOI 10.1159/000047225 Wild JM, 1996, J COMP NEUROL, V365, P306, DOI 10.1002/(SICI)1096-9861(19960205)365:2<306::AID-CNE8>3.0.CO;2-9 WILD JM, 1987, BRAIN RES, V408, P303, DOI 10.1016/0006-8993(87)90393-3 WILD JM, 2007, INT SOC NEUR C VANC NR 31 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2009 VL 257 IS 1-2 BP 1 EP 7 DI 10.1016/j.heares.2009.07.007 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 511QB UT WOS:000271180200001 PM 19631727 ER PT J AU Lin, CY Wu, JL Shih, TS Tsai, PJ Sun, YM Guo, YL AF Lin, Cheng-Yu Wu, Jiunn-Liang Shih, Tung-Sheng Tsai, Perng-Jy Sun, Yih-Min Guo, Yueliang Leon TI Glutathione S-transferase M1, T1, and P1 polymorphisms as susceptibility factors for noise-induced temporary threshold shift SO HEARING RESEARCH LA English DT Article DE Temporary threshold shift; Glutathione S-transferase; Single nucleotide polymorphism ID INDUCED HEARING-LOSS; GENETIC POLYMORPHISMS; ENZYME-ACTIVITY; RISK-FACTORS; CANCER RISK; INCREASES SUSCEPTIBILITY; EPOXIDE HYDROLASE; OXIDATIVE STRESS; LIVER-CIRRHOSIS; AIR-POLLUTION AB The generation of reactive oxygen species (ROS) is thought to be part of the mechanism underlying noise-induced hearing loss (NIHL). Glutathione is an important cellular antioxidant that limits cell damage by ROS. We aimed to determine the effect of genetic polymorphisms of glutathione S-transferase (GST) T1, GSTM1, and GSTP1, on temporary threshold shift (TTS) in 58 noise-exposed male workers from a steel factory. The pre-shift hearing impairment at high frequency (HF, average of 3, 4, and 6 kHz) was 30.7 dB HL (S.D. = 19.3). The amount of daily noise exposure was 83.0 dBA (S.D. = 5.0). Noise-induced TTS at HF by pure-tone audiometry (PTA) was related to the daily noise exposure (p < 0.05). Based on combinatory analysis, we found that individuals carrying all genotypes with GSTT1 null, GSTM1 null, and GSTP1 Ile(105)/Ile(105) were more susceptible to NIHL These results suggest that pre-shift hearing impairment and daily noise exposure had impacts on TTS at HF by PTA. In addition, GST genetic polymorphisms may modify the susceptibility to noise-induced TTS. (C) 2009 Elsevier B.V. All rights reserved. C1 [Guo, Yueliang Leon] Natl Taiwan Univ, Dept Environm & Occupat Med, Coll Med, Taipei 100, Taiwan. [Guo, Yueliang Leon] NTU Hosp, Taipei 100, Taiwan. [Lin, Cheng-Yu] Tainan Municipal Hosp, Dept Otolaryngol, Tainan 701, Taiwan. [Lin, Cheng-Yu; Tsai, Perng-Jy] Natl Cheng Kung Univ, Coll Med, Inst Environm & Occupat Hlth Med, Tainan 704, Taiwan. [Wu, Jiunn-Liang] Natl Cheng Kung Univ, Coll Med, Dept Otolaryngol, Tainan 704, Taiwan. [Shih, Tung-Sheng] Council Labor Affairs, Inst Occupat Safety & Hlth, Taipei 221, Taiwan. [Sun, Yih-Min] Chung Hwa Univ Med Technol, Dept Occupat Safety & Hlth, Rende Township 717, Tainan County, Taiwan. RP Guo, YL (reprint author), Natl Taiwan Univ, Dept Environm & Occupat Med, Coll Med, Room 339,17 Syujhou Rd, Taipei 100, Taiwan. EM yu621109@ms48.hinet.net; jiunn@mail.ncku.edu.tw; stone@mail.iosh.gov.tw; pjtsai@mail.ncku.edu.tw; swimming@mail.hwai.edu.tw; leonguo@ntu.edu.tw FU Council of Labor Affairs; Executive Yuan; Tainan Municipal Hospital FX The authors thank Miss Wen-Kuei Lin, Miss I.-Hui Lin, Miss Linda Chang, and the staffs of the TeamBest Company and the Clinico Company for their assistance in the preparation of this manuscript. This study was supported by grants from the Council of Labor Affairs, the Executive Yuan, and the Tainan Municipal Hospital. CR Agalliu I, 2006, PROSTATE, V66, P146, DOI 10.1002/pros.20305 [Anonymous], 1994, 3892 ISO [Anonymous], 1989, 82531 ISO *ANSI, 1997, S1251991 ANSI *ANSI, 2001, S141983 ANSI Arand M, 1996, ANAL BIOCHEM, V236, P184, DOI 10.1006/abio.1996.0153 Bruhn C, 1998, BIOCHEM PHARMACOL, V56, P1189, DOI 10.1016/S0006-2952(98)00191-9 Burns W, 1965, Trans Assoc Ind Med Off, V15, P2 Cadoni G, 2006, OTOL NEUROTOL, V27, P1166, DOI 10.1097/01.mao.0000226303.59198.ce Carlsson PI, 2005, HEARING RES, V202, P87, DOI 10.1016/j.heares.2004.09.005 Chang NC, 2007, OTOLARYNG HEAD NECK, V137, P603, DOI 10.1016/j.otohns.2007.04.022 Chang TW, 2006, BREAST, V15, P754, DOI 10.1016/j.breast.2006.03.008 Cheng SL, 2004, EUR RESPIR J, V23, P818, DOI 10.1183/09031936.04.00104904 COHEN A, 1970, ARCH ENVIRON HEALTH, V20, P614 CROFTON KM, 1994, HEARING RES, V80, P25, DOI 10.1016/0378-5955(94)90005-1 Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 DENGERINK HA, 1992, ACTA OTO-LARYNGOL, V112, P932, DOI 10.3109/00016489209137493 Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X FECHTER LD, 1986, HEARING RES, V23, P275, DOI 10.1016/0378-5955(86)90116-4 Fryer AA, 2005, CARCINOGENESIS, V26, P185, DOI 10.1093/carcin/bgh291 Fujimoto K, 2006, DRUG METAB DISPOS, V34, P1495, DOI 10.1124/dmd.106.010009 Fujimoto K, 2007, DRUG METAB DISPOS, V35, P2196, DOI 10.1124/dmd.107.017905 Geisler SA, 2001, AM J EPIDEMIOL, V154, P95, DOI 10.1093/aje/154.2.95 Ghobadloo SM, 2006, CLIN BIOCHEM, V39, P46, DOI 10.1016/j.clinbiochem.2005.10.004 Ghobadloo SM, 2004, J GASTROINTEST SURG, V8, P423, DOI 10.1016/j.gassur.2004.02.005 Gilliland FD, 2004, LANCET, V363, P119, DOI 10.1016/S0140-6736(03)15262-2 GLORIG A, 1961, ARCHIV OTOLARYNGOL, V74, P413 Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Holley SL, 2007, CARCINOGENESIS, V28, P2268, DOI 10.1093/carcin/bgm135 Holme RH, 2004, JARO-J ASSOC RES OTO, V5, P66, DOI 10.1007/s10162-003-4021-2 Hosgood HD, 2007, MUTAT RES-REV MUTAT, V636, P134, DOI 10.1016/j.mrrev.2007.02.002 *ISO, 1990, DET OCC NOIS EXP EST Ivaschenko TE, 2002, J MOL MED-JMM, V80, P39, DOI 10.1007/s001090100274 Jirková H, 1965, Prac Lek, V17, P147 KANO T, 1987, CANCER RES, V47, P5626 Konings A, 2007, HUM MOL GENET, V16, P1872, DOI 10.1093/hmg/ddm135 Kozel PJ, 2002, HEARING RES, V164, P231, DOI 10.1016/S0378-5955(01)00420-8 Lee YL, 2007, ALLERGY, V62, P641, DOI 10.1111/j.1398-9995.2007.01380.x Lee YL, 2004, CLIN EXP ALLERGY, V34, P1707, DOI 10.1111/j.1365-2222.2004.02099.x Lee YL, 2005, CHEST, V128, P1156, DOI 10.1378/chest.128.3.1156 Mak JCW, 2007, CLIN EXP ALLERGY, V37, P1150, DOI 10.1111/j.1365-2222.2007.02704.x Mann CLA, 2000, NEUROLOGY, V54, P552 Matthias C, 1998, PHARMACOGENETICS, V8, P1, DOI 10.1097/00008571-199802000-00001 May JJ, 2000, AM J IND MED, V37, P112, DOI 10.1002/(SICI)1097-0274(200001)37:1<112::AID-AJIM9>3.0.CO;2-# Mikołajczyk H, 1982, Med Pr, V33, P57 MILLS JH, 1973, J SPEECH HEAR RES, V16, P700 MORATA TC, 1994, ARCH ENVIRON HEALTH, V49, P359 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Peters U, 2000, ANTI-CANCER DRUG, V11, P639, DOI 10.1097/00001813-200009000-00007 Pouryaghoub G, 2007, BMC PUBLIC HEALTH, V7, DOI 10.1186/1471-2458-7-137 PYYKKO I, 1987, INT ARCH OCC ENV HEA, V59, P439, DOI 10.1007/BF00377838 Rabinowitz PM, 2002, HEARING RES, V173, P164, DOI 10.1016/S0378-5955(02)00350-7 RYBAK LP, 1986, ANNU REV PHARMACOL, V26, P79 SAUNDERS JC, 1986, HEARING RES, V23, P233, DOI 10.1016/0378-5955(86)90112-7 SCHWARTZ J, 1987, ARCH ENVIRON HEALTH, V42, P153 Singh M, 2008, MUTAT RES-FUND MOL M, V638, P184, DOI 10.1016/j.mrfmmm.2007.10.003 Strange RC, 2001, MUTAT RES-FUND MOL M, V482, P21, DOI 10.1016/S0027-5107(01)00206-8 McCarty KM, 2007, ENVIRON HEALTH-UK, V6, DOI 10.1186/1476-069X-6-5 Tamer L, 2005, CELL BIOCHEM FUNCT, V23, P267, DOI 10.1027/cbf.1148 Tan EK, 2000, NEUROLOGY, V55, P533 Toppila E, 2001, SCAND AUDIOL, V30, P236, DOI 10.1080/01050390152704751 Tsai PC, 2006, CHEMOSPHERE, V63, P1410, DOI 10.1016/j.chemosphere.2005.08.012 Uchida Y, 2005, INT J AUDIOL, V44, P86, DOI 10.1080/14992020500031256 Van Laer L, 2006, HUM MUTAT, V27, P786, DOI 10.1002/humu.20360 Watson MA, 1998, CARCINOGENESIS, V19, P275, DOI 10.1093/carcin/19.2.275 White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849 Wiencke JK, 1997, CARCINOGENESIS, V18, P1431, DOI 10.1093/carcin/18.7.1431 Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X Yang Miao, 2005, Wei Sheng Yan Jiu, V34, P647 YOUNG JS, 1987, HEARING RES, V26, P37, DOI 10.1016/0378-5955(87)90034-7 Yun BR, 2005, J RHEUMATOL, V32, P992 ZELMAN S, 1973, JAMA-J AM MED ASSOC, V223, P920 Zhao Yi-ming, 2006, Zhonghua Yi Xue Za Zhi, V86, P48 Zidzik J, 2008, CROAT MED J, V49, P182, DOI 10.3325/cmj.2008.2.182 NR 77 TC 9 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2009 VL 257 IS 1-2 BP 8 EP 15 DI 10.1016/j.heares.2009.07.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 511QB UT WOS:000271180200002 PM 19643173 ER PT J AU Lu, E Llano, DA Sherman, SM AF Lu, E. Llano, D. A. Sherman, S. M. TI Different distributions of calbindin and calretinin immunostaining across the medial and dorsal divisions of the mouse medial geniculate body SO HEARING RESEARCH LA English DT Article DE Thalamus; Cortex; Calcium; Intralaminar; Paralaminar; Auditory ID CALCIUM-BINDING PROTEINS; THALAMIC NUCLEUS; STRIATAL PROJECTIONS; RELAY NEURONS; RAT; PARVALBUMIN; ORGANIZATION; IMMUNOREACTIVITY; AMYGDALA; CORTEX AB We studied the distributions of calretinin and calbindin immunoreactivity in subdivisions of the mouse medial geniculate body and the adjacent paralaminar nuclei. We found that the vast majority of labeled cells in the dorsal division of the medial geniculate body were immunoreactive for calbindin-only, whereas most of the remaining labeled cells were double-labeled. Very few calretinin+ only cells were observed. By contrast, we observed significant proportions of calbindin+ only, calretinin+ only and double-labeled cells in the medial division of the medial geniculate body. Further, the distributions of calbindin-only, calretinin-only and double-labeled cells did not differ between the medial division of the medial geniculate body, the suprageniculate nucleus, the peripeduncular nucleus and the posterior intralaminar nucleus. We found essentially no somatic staining for either calbindin or calretinin in the ventral division of the medial geniculate body. These data suggest that there are distinct neurochemical differences between the two non-lemniscal auditory thalamic nuclei. In addition, these data extend previous observations that the medial division of the medial geniculate body shares many properties with the paralaminar group of nuclei. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lu, E.; Llano, D. A.; Sherman, S. M.] Univ Chicago, Dept Neurobiol, Chicago, IL 60637 USA. [Llano, D. A.] Univ Chicago, Dept Neurol, Chicago, IL 60637 USA. [Llano, D. A.] Abbott Labs, Abbott Pk, IL 60064 USA. RP Llano, DA (reprint author), Univ Chicago, Dept Neurobiol, 549 E 58th St MC 0926, Chicago, IL 60637 USA. EM a.daniel.llano@gmail.com FU United States Public Health Service, NIH [DC008320, EY03038, DC008794] FX The authors thank Angelia Viaene for her technical assistance in the work. The authors obtained funding from the United States Public Health Service, NIH, Grants DC008320 (D.A.L.), EY03038 and DC008794 (S.M.S.). CR ARAI R, 1994, BRAIN RES BULL, V33, P595, DOI 10.1016/0361-9230(94)90086-8 Bartlett EL, 2000, NEUROSCIENCE, V100, P811, DOI 10.1016/S0306-4522(00)00340-7 Bastianelli E, 2003, CEREBELLUM, V2, P242, DOI 10.1080/14734220310022289 Beatty JA, 2009, NEUROSCIENCE, V162, P155, DOI 10.1016/j.neuroscience.2009.04.043 BORDI F, 1994, EXP BRAIN RES, V98, P275, DOI 10.1007/BF00228415 CAFFORD MB, 1983, J NEUROSCI, V3, P2365 Cheatwood JL, 2003, BRAIN RES, V968, P1, DOI 10.1016/S0006-8993(02)04212-9 CLUGNET MC, 1990, J NEUROSCI, V10, P1055 Cruikshank SJ, 2001, NEUROSCIENCE, V105, P553, DOI 10.1016/S0306-4522(01)00226-3 DEVENECIA RK, 1995, J COMP NEUROL, V359, P595, DOI 10.1002/cne.903590407 FitzGibbon T, 2000, EXP NEUROL, V164, P371, DOI 10.1006/exnr.2000.7436 Fortin M, 1998, NEUROSCIENCE, V84, P537, DOI 10.1016/S0306-4522(97)00486-7 Gonzalez G, 2002, BRAIN RES BULL, V57, P439, DOI 10.1016/S0361-9230(01)00720-1 Guillery RW, 1995, J ANAT, V187, P583 Harting JK, 2001, EUR J NEUROSCI, V14, P893, DOI 10.1046/j.0953-816x.2001.01712.x HASHIKAWA T, 1991, BRAIN RES, V544, P335, DOI 10.1016/0006-8993(91)90076-8 HENDRY SHC, 1994, SCIENCE, V264, P575, DOI 10.1126/science.8160015 HERKENHAM M, 1980, SCIENCE, V207, P532, DOI 10.1126/science.7352263 Hof PR, 1999, J CHEM NEUROANAT, V16, P77, DOI 10.1016/S0891-0618(98)00065-9 Jinno S, 2006, NEUROSCI RES, V56, P229, DOI 10.1016/j.neures.2006.07.007 JONES EG, 1989, EUR J NEUROSCI, V1, P222, DOI 10.1111/j.1460-9568.1989.tb00791.x Jones EG, 2001, TRENDS NEUROSCI, V24, P595, DOI 10.1016/S0166-2236(00)01922-6 Jones EG, 1998, NEUROSCIENCE, V85, P331, DOI 10.1016/S0306-4522(97)00581-2 Lacey CJ, 2007, J NEUROSCI, V27, P4374, DOI 10.1523/JNEUROSCI.5519-06.2007 LEDOUX JE, 1991, NEUROSCI LETT, V134, P139, DOI 10.1016/0304-3940(91)90526-Y Leuba G, 1997, J CHEM NEUROANAT, V13, P41, DOI 10.1016/S0891-0618(97)00022-7 Linke R, 1999, EUR J NEUROSCI, V11, P187, DOI 10.1046/j.1460-9568.1999.00422.x Llano DA, 2008, J COMP NEUROL, V507, P1209, DOI 10.1002/cne.21602 Llinas RR, 2002, P NATL ACAD SCI USA, V99, P449, DOI 10.1073/pnas.012604899 Meuth SG, 2005, PFLUG ARCH EUR J PHY, V450, P111, DOI 10.1007/s00424-004-1377-z Morel A, 1997, J COMP NEUROL, V387, P588, DOI 10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-Z Munkle MC, 2000, J CHEM NEUROANAT, V19, P155, DOI 10.1016/S0891-0618(00)00060-0 Munkle MC, 1999, NEUROSCIENCE, V90, P485, DOI 10.1016/S0306-4522(98)00444-8 Oda S, 2004, NEUROSCI LETT, V367, P394, DOI 10.1016/j.neulet.2004.06.042 OTTERSEN OP, 1979, J COMP NEUROL, V187, P401, DOI 10.1002/cne.901870209 Paxinos G., 2008, MOUSE BRAIN STEREOTA RAUSELL E, 1992, J NEUROSCI, V12, P4088 Rockland KS, 1999, J COMP NEUROL, V406, P221, DOI 10.1002/(SICI)1096-9861(19990405)406:2<221::AID-CNE7>3.0.CO;2-K Rubio-Garrido P, 2007, NEUROSCIENCE, V149, P242, DOI 10.1016/j.neuroscience.2007.07.036 RYUGO DK, 1974, BRAIN RES, V82, P173, DOI 10.1016/0006-8993(74)90903-2 Schwaller Beat, 2002, Cerebellum, V1, P241, DOI 10.1080/147342202320883551 Sherman S. M., 2005, EXPLORING THALAMUS I Sherman SM, 2002, PHILOS T R SOC B, V357, P1695, DOI 10.1098/rstb.2002.1161 Smith PH, 2006, J COMP NEUROL, V496, P314, DOI 10.1002/cne.20913 Soares JGM, 2001, J CHEM NEUROANAT, V22, P139, DOI 10.1016/S0891-0618(01)00123-5 Uroz V, 2004, SYNAPSE, V51, P173, DOI 10.1002/syn.10298 WINER JA, 1983, J NEUROSCI, V3, P2629 NR 47 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2009 VL 257 IS 1-2 BP 16 EP 23 DI 10.1016/j.heares.2009.07.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 511QB UT WOS:000271180200003 PM 19643174 ER PT J AU Pienkowski, M Eggermont, JJ AF Pienkowski, Martin Eggermont, Jos J. TI Long-term, partially-reversible reorganization of frequency tuning in mature cat primary auditory cortex can be induced by passive exposure to moderate-level sounds SO HEARING RESEARCH LA English DT Article DE Auditory cortex; Plasticity; Passive sound exposure; Extracellular recording; Single-unit activity; Local field potential; Receptive field; Tonotopic map ID SPECTROTEMPORAL RECEPTIVE-FIELDS; CRITICAL-PERIOD; COCHLEAR LESIONS; ADULT CATS; CORTICAL PLASTICITY; ORGANIZATION; ENVIRONMENT; NEURONS; REPRESENTATION; POTENTIATION AB We recently reported that passive exposure for at least 4 months of adult cats to a two-octave-wide tone pip ensemble at 80 dB SPL, decreased the responsiveness of primary auditory cortex (AI) to sound frequencies in the exposure band, and increased the responsiveness to frequencies at the outer edges of the band. Here we expand on this by demonstrating qualitatively similar plasticity for a 6-week exposure level of 68 dB SPL Though no peripheral hearing loss is induced by the exposure, the resulting reorganization of the AI tonotopic map resembles that following a restricted lesion of the sensory epithelium. Most exposure-induced effects were likely present in the thalamus, as deduced from changes in local field potentials, but were further modified in AI. We then examined the potential for the reversal of these changes, given recovery in a quiet laboratory environment for up to 12 weeks after the cessation of exposure. While frequency tuning returned to near-normal, other neuronal response properties, as well as tonotopic map organization, remained abnormal at the end of our 12-week window. This could have implications for persistently noisy work/recreation/living environments, even at levels considerably below those presently considered unacceptable. (C) 2009 Elsevier B.V. All rights reserved. C1 [Eggermont, Jos J.] Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. Univ Calgary, Dept Physiol & Pharmacol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Psychol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM eggermon@ucalgary.ca FU Alberta Heritage Foundation for Medical Research; Natural Sciences and Engineering Research Council; Campbell McLaurin Chair of Hearing Deiciencies FX This work was supported by the Alberta Heritage Foundation for Medical Research, by the Natural Sciences and Engineering Research Council, and by the Campbell McLaurin Chair of Hearing Deiciencies. Arnaud Norena and Boris Gourevich assisted with some of the data collection. Greg Shaw provided programming support. CR BAKIN JS, 1996, P NATL ACAD SCI USA, V93, P10546 BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A BAO S, 2003, J NEUROSCI, V23, P1065 Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003 Bruno RM, 2006, SCIENCE, V312, P1622, DOI 10.1126/science.1124593 Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 CONDON CD, 1991, BEHAV NEUROSCI, V105, P416 de la Rocha J, 2007, NATURE, V448, P802, DOI 10.1038/nature06028 de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007 de Villers-Sidani E, 2008, NAT NEUROSCI, V11, P957, DOI 10.1038/nn.2144 Eggermont JJ, 1990, CORRELATIVE BRAIN TH EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006 Formby C, 2003, J ACOUST SOC AM, V114, P55, DOI 10.1121/1.1582860 GARDNER MJ, 1986, BRIT MED J, V292, P746 Gourevitch B, 2009, CEREB CORTEX, V19, P1448, DOI 10.1093/cercor/bhn184 Hebb D, 1949, ORG BEHAV HUBEL DH, 1970, J PHYSIOL-LONDON, V206, P419 Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Irvine DRF, 2003, J COMP NEUROL, V467, P354, DOI 10.1002/ene.10921 KAAS JH, 1990, SCIENCE, V248, P229, DOI 10.1126/science.2326637 Kamke MR, 2003, J COMP NEUROL, V459, P355, DOI 10.1002/cne.10586 Kamke MR, 2005, NEURON, V48, P675, DOI 10.1016/j.neuron.2005.09.014 Kaur S, 2004, J NEUROPHYSIOL, V91, P2551, DOI 10.1152/jn.01121.2003 Kendall MG, 1975, RANK CORRELATION MET Keuroghlian AS, 2007, PROG NEUROBIOL, V82, P109, DOI 10.1016/j.pneurobio.2007.03.005 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 KNUDSEN EI, 1985, J NEUROSCI, V5, P3094 KOTAK VC, 2008, CEREB CORTE IN PRESS Kotak VC, 2007, P NATL ACAD SCI USA, V104, P3550, DOI 10.1073/pnas.0607177104 Kral A, 2007, BRAIN RES REV, V56, P259, DOI 10.1016/j.brainresrev.2007.07.021 Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006 Lee CC, 2004, NEUROSCIENCE, V128, P871, DOI 10.1016/j.neuroscience.2004.06.062 Maffei A, 2006, NATURE, V443, P81, DOI 10.1038/nature05079 Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 MERZENICH MM, 1984, J COMP NEUROL, V224, P591, DOI 10.1002/cne.902240408 MITZDORF U, 1985, PHYSIOL REV, V65, P37 Nakahara H, 2004, P NATL ACAD SCI USA, V101, P7170, DOI 10.1073/pnas.0401196101 Norena AJ, 2007, NEUROREPORT, V18, P1251, DOI 10.1097/WNR.0b013e3282202c35 Norena AJ, 2006, NAT NEUROSCI, V9, P932, DOI 10.1038/nn1720 Norena AJ, 2008, J NEUROSCI, V28, P8885, DOI 10.1523/JNEUROSCI.2693-08.2008 Nowak LG, 1998, EXP BRAIN RES, V118, P477, DOI 10.1007/s002210050304 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4 Stanton SG, 1996, AUDIT NEUROSCI, V2, P97 SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207 THORPE W. H., 1958, IBIS, V100, P535, DOI 10.1111/j.1474-919X.1958.tb07960.x Tomita M, 2005, J NEUROPHYSIOL, V93, P378, DOI 10.1152/jn.00643.2004 Turrigiano GG, 1999, TRENDS NEUROSCI, V22, P221, DOI 10.1016/S0166-2236(98)01341-1 Valentine PA, 2004, HEARING RES, V196, P119, DOI 10.1016/j.heares.2004.05.011 WEINBERGER NM, 1995, ANNU REV NEUROSCI, V18, P129 Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 Zhang YF, 2000, J NEUROPHYSIOL, V84, P325 Zhang YF, 2008, CEREB CORTEX, V18, P1521, DOI 10.1093/cercor/bhm188 Zhou X, 2008, NEUROSCIENCE, V154, P390, DOI 10.1016/j.neuroscience.2008.01.026 NR 58 TC 36 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2009 VL 257 IS 1-2 BP 24 EP 40 DI 10.1016/j.heares.2009.07.011 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 511QB UT WOS:000271180200004 PM 19647789 ER PT J AU Howard, MF Poeppel, D AF Howard, Mary F. Poeppel, David TI Hemispheric asymmetry in mid and long latency neuromagnetic responses to single clicks SO HEARING RESEARCH LA English DT Article DE Auditory; Evoked field; M100; N1m; Lateralization; MEG ID HUMAN AUDITORY-CORTEX; EVOKED MAGNETIC-FIELDS; SENSORY MEMORY; TEMPORAL INTEGRATION; SOURCE LOCALIZATION; VOLUME MEASUREMENT; HESCHLS GYRUS; TONE BURSTS; POTENTIALS; SPEECH AB We examine lateralization in the evoked magnetic field response to a click stimulus, observing that lateralization effects previously demonstrated for tones, noise, frequency modulated sweeps and certain syllables are also observed for (acoustically simpler) clicks. These effects include a difference in the peak latency of the M100 component of the evoked field waveform such that the peak consistently appears earlier in the right hemisphere, as well as rightward lateralization of field amplitude during the rise of the M100 component. Our review of previous findings on M100 lateralization, taken together with our data on the click-evoked response, leads to the hypothesis that these lateralization effects are elicited by stimuli containing a sharp sound energy onset or acoustic transition rather than specific types of stimuli. We argue that both the latency and the amplitude lateralization effects have a common origin, namely, hemispheric asymmetry in the amplitude of the magnetic field generated by one or more sources active during the M100 rise. While anatomical asymmetry cannot be excluded as the cause of the amplitude difference, we propose that the difference reflects a rightward asymmetry in the processing of sound energy onsets that potentially underlies the lateralization of several functions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Howard, Mary F.; Poeppel, David] Univ Maryland, Dept Linguist, College Pk, MD 20742 USA. [Poeppel, David] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. [Poeppel, David] NYU, Dept Psychol, New York, NY 10003 USA. RP Howard, MF (reprint author), Univ Maryland, Dept Linguist, Biol Psychol Bldg 3263,1401 Marie Mt Hall, College Pk, MD 20742 USA. EM mfhoward@umd.edu; david.poeppel@nyu.edu FU National Institute of Deafness and Other Communication Disorders of the National Institutes of Health [DC-00046, 2R01 DC05660] FX We are grateful to J. Walker for excellent technical assistance. This work was supported by the National Institute of Deafness and Other Communication Disorders of the National Institutes of Health through Training Grant DC-00046 to M. Howard and Grant 2R01 DC05660 to D. Poeppel. CR Adachi Y, 2001, IEEE T APPL SUPERCON, V11, P669, DOI 10.1109/77.919433 Ahveninen J, 2006, P NATL ACAD SCI USA, V103, P14608, DOI 10.1073/pnas.0510480103 Anderson B, 1999, NEUROPSY NEUROPSY BE, V12, P247 Biermann S, 2000, J NEUROPHYSIOL, V84, P2426 Corbetta M, 2002, NAT REV NEUROSCI, V3, P201, DOI 10.1038/nrn755 de Cheveigne A, 2007, J NEUROSCI METH, V165, P297, DOI 10.1016/j.jneumeth.2007.06.003 DOURSAINTPIERRE R, 2006, BRAIN, V129, P1164 Efron B., 1993, INTRO BOOTSTRAP Eggermont JJ, 2002, AUDIOL NEURO-OTOL, V7, P71, DOI 10.1159/000057656 Fullerton BC, 2007, J COMP NEUROL, V504, P470, DOI 10.1002/cne.21432 Gabriel D, 2004, HEARING RES, V197, P55, DOI 10.1016/j.heares.2004.07.015 Gage N, 1998, BRAIN RES, V814, P236, DOI 10.1016/S0006-8993(98)01058-0 Gage NM, 2002, COGNITIVE BRAIN RES, V14, P303, DOI 10.1016/S0926-6410(02)00128-3 GALABURDA A, 1980, J COMP NEUROL, V190, P597, DOI 10.1002/cne.901900312 Godey B, 2001, CLIN NEUROPHYSIOL, V112, P1850, DOI 10.1016/S1388-2457(01)00636-8 Goff WR, 1969, AVERAGE EVOKED POTEN, P95 HARI R, 1987, AUDIOLOGY, V26, P31 Hausmann M, 2005, COGNITIVE BRAIN RES, V25, P537, DOI 10.1016/j.cogbrainres.2005.08.008 Hine J, 2007, CLIN NEUROPHYSIOL, V118, P1274, DOI 10.1016/j.clinph.2007.03.012 Huotilainen M, 1998, EVOKED POTENTIAL, V108, P370, DOI 10.1016/S0168-5597(98)00017-3 Inui K, 2006, CEREB CORTEX, V16, P18, DOI 10.1093/cercor/bhi080 Jaaskelainen IP, 2004, P NATL ACAD SCI USA, V101, P6809, DOI 10.1073/pnas.0303760101 JIN CY, 2007, INT C SER, V1300, P61, DOI 10.1016/j.ics.2007.01.033 Kanno A, 2000, NEUROSCI LETT, V293, P187, DOI 10.1016/S0304-3940(00)01525-1 Kirveskari E, 2006, CLIN NEUROPHYSIOL, V117, P643, DOI 10.1016/j.clinph.2005.11.001 KONDERA K, 1979, INT J AUDIOL, V18, P395 Konig R, 2008, BRAIN RES, V1220, P102, DOI 10.1016/j.brainres.2008.02.086 LEONARD CM, 2008, NEUR M PLANN SOC NEU Leonard CM, 1998, CEREB CORTEX, V8, P397, DOI 10.1093/cercor/8.5.397 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5 Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790 McEvoy L, 1997, PSYCHOPHYSIOLOGY, V34, P308, DOI 10.1111/j.1469-8986.1997.tb02401.x Moran John E., 1993, Brain Topography, V5, P229, DOI 10.1007/BF01128990 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Obleser J, 2003, NEUROIMAGE, V20, P1839, DOI 10.1016/j.neuroimaging.2003.07.019 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 ONISHI S, 1968, J ACOUST SOC AM, V44, P582, DOI 10.1121/1.1911124 PANTEV C, 1991, P NATL ACAD SCI USA, V88, P8996, DOI 10.1073/pnas.88.20.8996 PANTEV C, 1986, AUDIOLOGY, V25, P54 PARDO PJ, 1999, NEUROREPORT, V10, P3018 PELIZZONE M, 1987, NEUROSCI LETT, V82, P303, DOI 10.1016/0304-3940(87)90273-4 Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 Poeppel D, 2003, SPEECH COMMUN, V41, P245, DOI 10.1016/S0167-6393(02)00107-3 Poeppel D, 2001, COGNITIVE SCI, V25, P679, DOI 10.1016/S0364-0213(01)00050-7 Poeppel D, 1997, NEUROSCI LETT, V221, P145, DOI 10.1016/S0304-3940(97)13325-0 RADEMACHER J, 1993, CEREB CORTEX, V3, P313, DOI 10.1093/cercor/3.4.313 Rademacher J, 2001, NEUROIMAGE, V13, P669, DOI 10.1006/nimg.2000.0714 Roberts TPL, 2000, J CLIN NEUROPHYSIOL, V17, P114, DOI 10.1097/00004691-200003000-00002 ROGERS RL, 1990, ELECTROEN CLIN NEURO, V77, P237, DOI 10.1016/0168-5597(90)90043-D Rosburg T, 2002, CLIN NEUROPHYSIOL, V113, P421, DOI 10.1016/S1388-2457(01)00727-1 Salajegheh A, 2004, NEUROIMAGE, V23, P288, DOI 10.1016/j.neuroimage.2004.05.022 SAMS M, 1993, J COGNITIVE NEUROSCI, V5, P363, DOI 10.1162/jocn.1993.5.3.363 Schonwiesner M, 2008, EXP BRAIN RES, V187, P97, DOI 10.1007/s00221-008-1286-z Schonwiesner M, 2005, EUR J NEUROSCI, V22, P1521, DOI 10.1111/j.1460-9568.2005.04315.x Sigalovsky IS, 2006, NEUROIMAGE, V32, P1524, DOI 10.1016/j.neuroimage.2006.05.023 TALLAL P, 1993, ANN NY ACAD SCI, V682, P27, DOI 10.1111/j.1749-6632.1993.tb22957.x Teale P, 1998, NEUROREPORT, V9, P2647, DOI 10.1097/00001756-199808030-00041 WOODS DL, 1995, CLIN NEUROPHYSIOL, V44, P102 Yoshiura T, 1995, BRAIN RES, V703, P139, DOI 10.1016/0006-8993(95)01075-0 Yvert B, 2001, CEREB CORTEX, V11, P411, DOI 10.1093/cercor/11.5.411 Yvert B, 2005, NEUROIMAGE, V28, P140, DOI 10.1016/j.neuroimage.2005.05.056 Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7 Zatorre RJ, 2001, J NEUROSCI, V21, P6321 Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946 Zatorre RJ, 2002, NAT NEUROSCI, V5, P905, DOI 10.1038/nn904 Zatorre RJ, 2008, PHILOS T R SOC B, V363, P1087, DOI 10.1098/rstb.2007.2161 Zouridakis G, 1998, BRAIN TOPOGR, V10, P183, DOI 10.1023/A:1022246825461 NR 69 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD NOV PY 2009 VL 257 IS 1-2 BP 41 EP 52 DI 10.1016/j.heares.2009.07.010 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 511QB UT WOS:000271180200005 PM 19647788 ER PT J AU Park, HJ Kim, HJ Bae, GS Seo, SW Kim, DY Jung, WS Kim, MS Song, MY Kim, EK Kwon, KB Hwang, SY Song, HJ Park, CS Park, RK Chong, MS Park, SJ AF Park, Hee-Je Kim, Hyung-Jin Bae, Gi-Sang Seo, Sang-Wan Kim, Do-Yun Jung, Won-Seok Kim, Min-Sun Song, Mi-Young Kim, Eun-Kyung Kwon, Kang-Beom Hwang, Sung-Yeon Song, Ho-Joon Park, Cheung-Seog Park, Rae-Kil Chong, Myong-Soo Park, Sung-Joo TI Selective GSK-3 beta inhibitors attenuate the cisplatin-induced cytotoxicity of auditory cells SO HEARING RESEARCH LA English DT Article DE GSK-3; Ototoxicity; Cochlea; Hair cell; Hearing loss ID GLYCOGEN-SYNTHASE KINASE-3; GROWTH-FACTOR WITHDRAWAL; NF-KAPPA-B; INDUCED APOPTOSIS; C57BL/6 MICE; ORGANOTYPIC CULTURES; HAIR-CELLS; PHOSPHORYLATION; ACTIVATION; DEATH AB Glycogen synthase kinase-3 (GSK-3) plays an important role in the regulation of apoptosis. However, the role of GSK-3 in the auditory system remains unknown. Here we examined whether the GSK-3-specific inhibitors, SB 216763 and LiCl, could protect against cisplatin-induced cytotoxicity of auditory cells. GSK-3 was activated by cisplatin treatment of HEl-OC1 cells. SB 216763 or LiCl treatments inhibited cisplatin-induced apoptosis in a dose-dependent manner and activated caspase-9, -8 and -3. In rat primary explants of the organ of Corti, SB 216763 or LiCl treatments completely abrogated the cisplatin-induced destruction of outer hair cell arrays. Administration of SB 216763 or LiCl inhibited cochlear destruction and the production of tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta) and IL-6 in cisplatin-injected mice. Furthermore, administration of SB 216763 or LiCl reduced the thresholds of the auditory brainstem response (ABR) in cisplatin-injected mice. Collectively, these results suggest that cisplatin-induced otortoxicity might be associated with modulation of GSK-3 activation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Park, Hee-Je; Bae, Gi-Sang; Seo, Sang-Wan; Kim, Do-Yun; Jung, Won-Seok; Kim, Min-Sun; Hwang, Sung-Yeon; Song, Ho-Joon; Park, Sung-Joo] Wonkwang Univ, Coll Oriental Med, Dept Herbol, Iksan, Jeonbuk, South Korea. [Kim, Hyung-Jin; Park, Rae-Kil] Wonkwang Univ, Coll Med, Vestibulocochlear Res Ctr, Iksan, Jeonbuk, South Korea. [Kim, Hyung-Jin; Park, Rae-Kil] Wonkwang Univ, Coll Med, Dept Microbiol, Iksan, Jeonbuk, South Korea. [Seo, Sang-Wan; Park, Cheung-Seog] Kyung Hee Univ, Coll Med, Dept Microbiol, Seoul, South Korea. [Song, Mi-Young; Kim, Eun-Kyung; Kwon, Kang-Beom] Wonkwang Univ, Coll Oriental Med, Dept Physiol, Iksan, Jeonbuk, South Korea. [Chong, Myong-Soo] Wonkwang Univ, Coll Oriental Med, Dept Prevent Med, Iksan, Jeonbuk, South Korea. RP Park, SJ (reprint author), Wonkwang Univ, Coll Oriental Med, Dept Herbol, Iksan, Jeonbuk, South Korea. EM tajohj82@hanmail.net; enz94@hanmail.net; baegs888@hanmail.net; jiluman@hanmail.net; doyun325@hanmail.net; starjungws@hanmail.net; minsun.75@Gmail.com; white1696@nate.com; rei1325@nate.com; desson@wku.ac.kr; kimsiblue@wonkwang.ac.kr; songhj@wonkwang.ac.kr; pcs@khu.ac.kr; rkpark@wonkwang.ac.kr; neurokid@wku.ac.kr; parksj08@wku.ac.kr FU Ministry of Science & Technology (MoST)/Korea Science & Engineering Foundation (KOSEF) through the Vestibulocochlear Research Center (VCRC) [R13-2002-055-00000-0] FX This work was supported by the Ministry of Science & Technology (MoST)/Korea Science & Engineering Foundation (KOSEF) through the Vestibulocochlear Research Center (VCRC) at Wonkwang University (R13-2002-055-00000-0). CR Alvarez G, 1999, FEBS LETT, V453, P260, DOI 10.1016/S0014-5793(99)00685-7 Bartolome MV, 2002, ADV OTO-RHINO-LARYNG, V59, P106 Bhat RV, 2000, P NATL ACAD SCI USA, V97, P11074, DOI 10.1073/pnas.190297597 Cai GQ, 2007, INT J ONCOL, V31, P657 Coghlan MP, 2000, CHEM BIOL, V7, P793, DOI 10.1016/S1074-5521(00)00025-9 Crowder RJ, 2000, J BIOL CHEM, V275, P34266, DOI 10.1074/jbc.M006160200 Davis CA, 2001, J AM SOC NEPHROL, V12, P2683 Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2 Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005 Forde JE, 2007, CELL MOL LIFE SCI, V64, P1930, DOI 10.1007/s00018-007-7045-7 Fram Robert J., 1992, Current Opinion in Oncology, V4, P1073, DOI 10.1097/00001622-199212000-00012 Henry KR, 2002, HEARING RES, V170, P107, DOI 10.1016/S0378-5955(02)00391-X Hequembourg S, 2001, JARO, V2, P118 Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5 Jeong HJ, 2007, J NEUROSCI RES, V85, P896, DOI 10.1002/jnr.21168 Jordan P, 2000, CELL MOL LIFE SCI, V57, P1229, DOI 10.1007/PL00000762 Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059 Kharbanda S, 2000, MOL CELL BIOL, V20, P4979, DOI 10.1128/MCB.20.14.4979-4989.2000 Klein PS, 1996, P NATL ACAD SCI USA, V93, P8455, DOI 10.1073/pnas.93.16.8455 Koh Seong-Ho, 2003, Brain Res Mol Brain Res, V118, P72 Kopke RD, 1997, AM J OTOL, V18, P559 Kwon O, 2008, CELL SIGNAL, V20, P602, DOI 10.1016/j.cellsig.2007.10.022 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 Loberg RD, 2002, J BIOL CHEM, V277, P41667, DOI 10.1074/jbc.M206405200 McFadden SL, 2001, AUDIOLOGY, V40, P313 Oloumi A, 2006, ONCOGENE, V25, P7747, DOI 10.1038/sj.onc.1209752 Price MA, 2002, CELL, V108, P823, DOI 10.1016/S0092-8674(02)00664-5 Rosato RR, 2007, CANCER RES, V67, P9490, DOI 10.1158/0008-5472.CAN-07-0598 Shaw M, 1997, FEBS LETT, V416, P307, DOI 10.1016/S0014-5793(97)01235-0 Shiga A, 2005, AUDIOL NEURO-OTOL, V10, P97, DOI 10.1159/000083365 So H, 2007, JARO-J ASSOC RES OTO, V8, P338, DOI 10.1007/s10162-007-0084-9 So HS, 2005, HEARING RES, V204, P127, DOI 10.1016/j.heares.2005.01.011 Somervaille TCP, 2001, BLOOD, V98, P1374, DOI 10.1182/blood.V98.5.1374 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Stanton SE, 2006, J BIOL CHEM, V281, P28782, DOI 10.1074/jbc.M603348200 Tan Y, 2006, J BIOL CHEM, V281, P17689, DOI 10.1074/jbc.M601978200 Watanabe K, 2002, CHEMOTHERAPY, V48, P82, DOI 10.1159/000057667 Yin H, 2004, HYPERTENSION, V43, P109, DOI 10.1161/01.HYP.0000103696.60047.55 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x NR 39 TC 18 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2009 VL 257 IS 1-2 BP 53 EP 62 DI 10.1016/j.heares.2009.08.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 511QB UT WOS:000271180200006 PM 19666099 ER PT J AU Melcher, JR Levine, RA Bergevin, C Norris, B AF Melcher, Jennifer R. Levine, Robert A. Bergevin, Christopher Norris, Barbara TI The auditory midbrain of people with tinnitus: Abnormal sound-evoked activity revisited SO HEARING RESEARCH LA English DT Article DE Hyperacusis; Midbrain; Phantom sensation; fMRI; Neuroimaging ID HUMAN BRAIN-STEM; FMRI ACTIVATION; PSYCHOMETRIC PROPERTIES; LATERALIZED TINNITUS; INFERIOR COLLICULUS; NOISE EXPOSURE; ACOUSTIC NOISE; SCANNER NOISE; LOUDNESS; PLASTICITY AB Sound-evoked fMRI activation of the inferior colliculi (IC) was compared between tinnitus and non-tinnitus subjects matched in threshold (normal), age, depression, and anxiety. Subjects were stimulated with broadband sound in an "on/off" fMRI paradigm with and without on-going sound from the scanner coolant pump. (1) With pump sounds off. the tinnitus; group showed greater stimulus-evoked activation of the IC than the non-tinnitus group, suggesting abnormal gain within the auditory pathway of tinnitus subjects. (2) Having pump sounds on reduced activation in the tinnitus, but not the non-tinnitus; group. This result suggests response saturation in tinnitus subjects, possibly occurring because abnormal gain increased response amplitude to an upper limit. (3) In contrast to Melcher et al. (2000), the ratio of activation between right and left IC did not differ significantly between tinnitus and non-tinnitus subjects or in a manner dependent on tinnitus laterality. However, new data from subjects imaged previously by Melcher et al. suggest a possible tinnitus subgroup with abnormally asymmetric function of the IC. The present and previous data together suggest elevated responses to sound in the IC are common among those with tinnitus and normal thresholds, while abnormally asymmetric activation is not, even among those with lateralized tinnitus. (C) 2009 Elsevier B.V. All rights reserved. C1 [Melcher, Jennifer R.; Levine, Robert A.; Bergevin, Christopher; Norris, Barbara] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Melcher, Jennifer R.; Bergevin, Christopher] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA. [Melcher, Jennifer R.; Levine, Robert A.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Levine, Robert A.] Massachusetts Gen Hosp, Neurol Serv, Boston, MA 02114 USA. RP Melcher, JR (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM jennifer_melcher@meei.harvard.edu FU Tinnitus Research Consortium; American Tinnitus Association; Royal National Institute for Deaf People; Tinnitus Research Initiative; Jack and Shelley Blais; Kenneth Griffin; NIH/NIDCD [P30DC005209]; National Center for Research Resources [P41RR14075]; Mental Illness and Neuroscience Discovery (MIND) Institute FX We thank Irina Sigalovsky for her assistance in performing some of the experiments and Inge Knudson, Jianwen Gu and Christopher Shera for their comments on an earlier version of this manuscript. Support was provided by the Tinnitus Research Consortium, American Tinnitus Association, Royal National Institute for Deaf People, Tinnitus Research Initiative, Jack and Shelley Blais, Kenneth Griffin, and NIH/NIDCD P30DC005209. Partial support was also provided by the National Center for Research Resources (P41RR14075) and the Mental Illness and Neuroscience Discovery (MIND) Institute. CR ADJAMIAN P, 2009, HEARING RES Arnold W, 1996, ORL J OTO-RHINO-LARY, V58, P195 BECK AT, 1988, J CONSULT CLIN PSYCH, V56, P893, DOI 10.1037/0022-006X.56.6.893 BECK AT, 1961, ARCH GEN PSYCHIAT, V4, P561 Brittan FH, 1939, J ACOUST SOC AM, V11, P113, DOI 10.1121/1.1916013 COLDINGJORGENSEN E, 1992, ELECTROEN CLIN NEURO, V83, P322, DOI 10.1016/0013-4694(92)90091-U D'Esposito M, 1999, NEUROIMAGE, V10, P6, DOI 10.1006/nimg.1999.0444 Edmister WB, 1999, HUM BRAIN MAPP, V7, P89, DOI 10.1002/(SICI)1097-0193(1999)7:2<89::AID-HBM2>3.0.CO;2-N Friedman L, 2006, NEUROIMAGE, V32, P1656, DOI 10.1016/j.neuroimage.2006.03.062 Gerken GM, 1996, HEARING RES, V97, P75 Gu J, 2008, ASS RES OTOLARYNGOL, V31, P336 Guimaraes AR, 1998, HUM BRAIN MAPP, V6, P33, DOI 10.1002/(SICI)1097-0193(1998)6:1<33::AID-HBM3>3.0.CO;2-M Hall DA, 2000, MAGNET RESON MED, V43, P601, DOI 10.1002/(SICI)1522-2594(200004)43:4<601::AID-MRM16>3.0.CO;2-R Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N Hall DA, 2001, J ACOUST SOC AM, V109, P1559, DOI 10.1121/1.1345697 Harms MP, 2002, J NEUROPHYSIOL, V88, P1433, DOI 10.1152/jn.00156.2002 Hawley ML, 2005, HEARING RES, V204, P101, DOI 10.1016/j.heares.2005.01.005 HOKE M, 1991, ACTA OTO-LARYNGOL, P176 JACOBSON GP, 1991, HEARING RES, V56, P44, DOI 10.1016/0378-5955(91)90152-Y Job A, 2007, AUDIOL NEURO-OTOL, V12, P137, DOI 10.1159/000099025 Kaltenbach JA, 2004, TINNITUS THEORY MANA, P141 Kovacs S, 2006, INVEST RADIOL, V41, P87, DOI 10.1097/01.rli.0000189637.42344.09 Krumbholz K, 2005, EUR J NEUROSCI, V21, P230, DOI 10.1111/j.1460-9568.2004.03836.x Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006 Langers DRM, 2007, NEUROIMAGE, V35, P709, DOI 10.1016/j.neuroimage.2006.12.013 Lanting CP, 2008, ACTA OTO-LARYNGOL, V128, P415, DOI 10.1080/00016480701793743 LANTING CP, 2009, HEARING RES Levin R, 2004, TINNITUS THEORY MANA, P108 Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1 LEVINE RA, 2000, J AUDIOL MED, V9, pR5 LOCKWOOD AH, 2004, TINNITUS THEORY MANA, P255 Lockwood AH, 1998, NEUROLOGY, V50, P114 Meindl T, 2008, EUR RADIOL, V18, P1102, DOI 10.1007/s00330-008-0869-1 MELCHER JR, 1999, P 6 INT TINN SEM CAM, P317 Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058 Nuttall AL, 2004, TINNITUS THEORY MANA, P52 PANTEV C, 1989, HEARING RES, V40, P261, DOI 10.1016/0378-5955(89)90167-6 POLLACK I, 1951, J ACOUST SOC AM, V23, P646, DOI 10.1121/1.1906814 Ravicz ME, 2001, J ACOUST SOC AM, V109, P216, DOI 10.1121/1.1326083 Ravicz ME, 2000, J ACOUST SOC AM, V108, P1683, DOI 10.1121/1.1310190 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Shiomi Y, 1997, ACTA OTO-LARYNGOL, V117, P31, DOI 10.3109/00016489709117987 Sigalovsky IS, 2006, HEARING RES, V215, P67, DOI 10.1016/j.heares.2006.03.002 Smits M, 2007, NEURORADIOLOGY, V49, P669, DOI 10.1007/s00234-007-0231-3 WILSON PH, 1991, J SPEECH HEAR RES, V34, P197 ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963 NR 47 TC 40 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2009 VL 257 IS 1-2 BP 63 EP 74 DI 10.1016/j.heares.2009.08.005 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 511QB UT WOS:000271180200007 PM 19699287 ER PT J AU Luo, F Wang, QZ Farid, N Liu, XP Yan, J AF Luo, Feng Wang, Qianzhou Farid, Niloufar Liu, Xiuping Yan, Jun TI Three-dimensional tonotopic organization of the C57 mouse cochlear nucleus SO HEARING RESEARCH LA English DT Article DE Auditory; Cochlear nucleus; Tonotopic map; Frequency tuning curve; Mouse ID AUDITORY-NERVE FIBERS; INFERIOR COLLICULUS; HOUSE MOUSE; FREQUENCY REPRESENTATION; CORTICOFUGAL MODULATION; QUANTITATIVE-ANALYSIS; RESPONSE PROPERTIES; SINGLE NEURONS; TUNING CURVES; HEARING-LOSS AB The cochlear nucleus (CN) is the first sound processing center in the central auditory system that receives the almost unprocessed auditory information from the auditory periphery. The functional organization of the CN has been studied to a great extent in many mammals, including the cat, rat and bat. Yet, despite the general usefulness of the mouse, including the availability of various inbred strains and gene-manipulated lines, our current understanding of the mouse CN remains limited. The purpose of this study was to illustrate the functional organization of the CN in C57 mice, using an electrophysiological approach. Our results showed that the auditory response properties of CN neurons were similar in all three of the CN subdivisions. Sound frequency was systematically represented in each of the three CN subdivisions, i.e., the anteroventral, posteroventral and the dorsal divisions. The best frequency of CN neurons decreased along the dorsomedial-to-ventrolateral axis in an orderly progression whereas the tonotopic axes were relatively indistinct in the rostrocaudal plane. There was no disruption of the tonotopic map within each subdivision of the CN. The findings indicate, that the CN tonotopic organization in the C57 mouse is similar to that in the cat and other mammals. (C) 2009 Elsevier B.V. All rights reserved. C1 [Luo, Feng; Wang, Qianzhou; Farid, Niloufar; Liu, Xiuping; Yan, Jun] Univ Calgary, Dept Physiol & Pharmacol, Hotchkiss Brain Inst, Fac Med, Calgary, AB T2N 4N1, Canada. RP Luo, F (reprint author), Univ Calgary, Dept Physiol & Pharmacol, Hotchkiss Brain Inst, Fac Med, HMRB 130,3330 Hosp Dr NW, Calgary, AB T2N 4N1, Canada. EM fluo@ucalgary.ca; juyan@ucalgary.ca FU National Sciences and Engineering Research Council; University of Calgary; Alberta Heritage Foundation for Medical Research FX We thank Drs. William K. Stell and Alireza Kashani for their help in histological work. This research is supported by the National Sciences and Engineering Research Council, the Campbell McLaurin Chair for Hearing Deficiencies of the University of Calgary and the Alberta Heritage Foundation for Medical Research. CR BOURK TR, 1981, HEARING RES, V4, P215, DOI 10.1016/0378-5955(81)90008-3 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 BRUNS V, 1980, HEARING RES, V3, P27, DOI 10.1016/0378-5955(80)90006-4 Egorova M, 2001, EXP BRAIN RES, V140, P145, DOI 10.1007/s002210100786 EHRET G, 1985, J COMP PHYSIOL A, V156, P619, DOI 10.1007/BF00619111 EVANS EF, 1973, EXP BRAIN RES, V17, P402 FEKETE DM, 1984, J COMP NEUROL, V229, P432, DOI 10.1002/cne.902290311 FENG AS, 1985, J COMP NEUROL, V235, P529, DOI 10.1002/cne.902350410 Finlayson PG, 2006, BRAIN RES, V1069, P63, DOI 10.1016/j.brainres.2005.10.097 Franklin K.B.J., 2001, MOUSE BRAIN STEREOTA Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 KALTENBACH JA, 1992, HEARING RES, V59, P213, DOI 10.1016/0378-5955(92)90118-7 KALTENBACH JA, 1991, HEARING RES, V51, P149, DOI 10.1016/0378-5955(91)90013-Y KIANG NYS, 1967, J ACOUST SOC AM, V42, P1341, DOI 10.1121/1.1910723 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Luo F, 2008, J NEUROSCI, V28, P11615, DOI 10.1523/JNEUROSCI.3972-08.2008 MARTIN MR, 1983, HEARING RES, V9, P35, DOI 10.1016/0378-5955(83)90132-6 Meleca RJ, 1997, BRAIN RES, V750, P201, DOI 10.1016/S0006-8993(96)01354-6 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 MULLER M, 1990, EXP BRAIN RES, V81, P140 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 PERRY DR, 1981, J COMP NEUROL, V197, P623, DOI 10.1002/cne.901970406 PFEIFFER RR, 1965, BIOPHYS J, V5, P301 PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 RHODE WS, 1986, J NEUROPHYSIOL, V56, P287 RHODE WS, 1987, J NEUROPHYSIOL, V57, P414 ROSE JE, 1959, B JOHNS HOPKINS HOSP, V104, P211 Rose J.E., 1960, NEURAL MECHANISMS AU, P116 RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0 RYUGO DK, 1993, J COMP NEUROL, V329, P20, DOI 10.1002/cne.903290103 Shnerson A, 1983, AUDITORY PSYCHOBIOLO, P395 Snyder RL, 1997, J COMP NEUROL, V379, P133, DOI 10.1002/(SICI)1096-9861(19970303)379:1<133::AID-CNE9>3.0.CO;2-5 SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750 Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140 Suga N, 1997, J NEUROPHYSIOL, V77, P2098 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 VANGISBERGER JAM, 1975, EXP BRAIN RES, V23, P367 WEBSTER DB, 1971, J COMP NEUROL, V143, P323, DOI 10.1002/cne.901430305 WEBSTER DB, 1982, AM J ANAT, V163, P103, DOI 10.1002/aja.1001630202 WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 Willott JF, 2009, HEARING RES, V252, P89, DOI 10.1016/j.heares.2008.12.002 WILLOTT JF, 1982, NEUROSCI LETT, V34, P13, DOI 10.1016/0304-3940(82)90085-4 Willott JF, 2001, HDB MOUSE AUDITORY R YAJIMA Y, 1989, EXP BRAIN RES, V75, P381 Yan J, 2005, J NEUROPHYSIOL, V93, P71, DOI 10.1152/jn.00348.2004 Yan J, 2002, EUR J NEUROSCI, V16, P119, DOI 10.1046/j.1460-9568.2002.02046.x Yan J, 2005, EUR J NEUROSCI, V21, P563, DOI 10.1111/j.1460-9568.2005.03878.x YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 Zhang YF, 2005, HEARING RES, V201, P145, DOI 10.1016/j.heares.2004.10.003 NR 53 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2009 VL 257 IS 1-2 BP 75 EP 82 DI 10.1016/j.heares.2009.08.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 511QB UT WOS:000271180200008 PM 19695320 ER PT J AU Gutschalk, A Oldermann, K Rupp, A AF Gutschalk, Alexander Oldermann, Konstanze Rupp, Andre TI Rate perception and the auditory 40-Hz steady-state fields evoked by two-tone sequences SO HEARING RESEARCH LA English DT Article DE Tonotopy; Auditory cortex; Streaming; Magnetoencephalography ID STREAM SEGREGATION; TONOTOPIC ORGANIZATION; TONE SEQUENCES; AWAKE MONKEY; 40 HZ; CORTEX; RESPONSES; DECONVOLUTION; POTENTIALS; ATTENTION AB The rate perception of tone sequences reflects the physical repetition rate for identical sound elements. More complex sequences are perceived at the physical rate or at lower rates, depending on perceptual organization. Here, we used magnetoencephalography and psychophysical studies to evaluate the possible relationship between rate perception of such rapid, 40-Hz tone trains and the 40-Hz steady-state response (SSR) in human primary auditory cortex. In Experiment 1, the 40-Hz SSR evoked by monotone sequences of 1000 and 600 Hz were compared to the response evoked by alternating-tone sequences of the same frequencies. The results showed that the 40-Hz SSR for the alternating-tones was attenuated compared to the monotones. In Experiment 2, frequency differences across a range of 25-300 Hz were studied. Compared to a 1000-Hz monotone sequence, the 40-Hz SSR was reduced. Amplitude reduction was most prominent for frequency differences of 200 Hz and more, which were generally perceived with half-the-physical rate. We discuss possible physiological mechanisms of this finding and its relationship to perception. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gutschalk, Alexander; Oldermann, Konstanze; Rupp, Andre] Univ Heidelberg, Dept Neurol, D-69120 Heidelberg, Germany. [Gutschalk, Alexander; Oldermann, Konstanze] Univ Heidelberg, Dept Neuroradiol, D-69120 Heidelberg, Germany. RP Gutschalk, A (reprint author), Univ Heidelberg, Dept Neurol, Neuenheimer Feld 400, D-69120 Heidelberg, Germany. EM Alexander_Gutschalk@med.uni-heidelberg.de FU Deutsche Forschungsgemeinschaft (DFG) [GU 593/3-1] FX The authors are grateful to Chris Micheyl for his helpful comments on a previous version of this manuscript. This research was supported by Deutsche Forschungsgemeinschaft (DFG Grant GU 593/3-1). CR Bee MA, 2005, BRAIN BEHAV EVOLUT, V66, P197, DOI 10.1159/000087854 Bidet-Caulet A, 2007, J NEUROSCI, V27, P9252, DOI 10.1523/JNEUROSCI.1402-07.2007 Bohorquez J, 2008, CLIN NEUROPHYSIOL, V119, P2598, DOI 10.1016/j.clinph.2008.08.002 BRAAK H, 1978, ANAT EMBRYOL, V154, P213, DOI 10.1007/BF00304663 Bregman AS., 1990, AUDITORY SCENE ANAL Brosch M, 1997, J NEUROPHYSIOL, V77, P923 CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0 Formisano E, 2003, NEURON, V40, P859, DOI 10.1016/S0896-6273(03)00669-X Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005 GALABURDA A, 1980, J COMP NEUROL, V190, P597, DOI 10.1002/cne.901900312 GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643 GOUREVITCH B, 2008, CEREB CORTEX, P1448 Gutschalk A, 1999, CLIN NEUROPHYSIOL, V110, P856, DOI 10.1016/S1388-2457(99)00019-X Gutschalk A, 2007, J NEUROSCI, V27, P13074, DOI 10.1523/JNEUROSCI.2299-07.2007 Gutschalk A, 2005, J NEUROSCI, V25, P5382, DOI 10.1523/JNEUROSCI.0374-05.2005 Hackett TA, 2001, J COMP NEUROL, V441, P197, DOI 10.1002/cne.1407 HARI R, 1989, J ACOUST SOC AM, V86, P1033, DOI 10.1121/1.398093 Herdman AT, 2002, BRAIN TOPOGR, V15, P69, DOI 10.1023/A:1021470822922 Herdman AT, 2003, NEUROIMAGE, V20, P995, DOI 10.1016/S1053-8119(03)00403-8 Irino T, 2001, J ACOUST SOC AM, V109, P2008, DOI 10.1121/1.1367253 Liegeois-Chauvel C, 2004, CEREB CORTEX, V14, P731, DOI 10.1093/cercor/bhh033 LIEGEOISCHAUVEL C, 1991, BRAIN, V114, P139 LINS OG, 1995, EVOKED POTENTIAL, V96, P420, DOI 10.1016/0168-5597(95)00048-W LINS OG, 1995, J ACOUST SOC AM, V97, P3051, DOI 10.1121/1.411869 LPAS Van Noorden, 1975, TEMPORAL COHERENCE P MAKELA JP, 1987, ELECTROEN CLIN NEURO, V66, P539, DOI 10.1016/0013-4694(87)90101-5 Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039 MILLER GA, 1948, J ACOUST SOC AM, V20, P171, DOI 10.1121/1.1906360 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 Ozdamar O, 2008, CLIN NEUROPHYSIOL, V119, P1870, DOI 10.1016/j.clinph.2008.03.023 Ozdamar O, 2007, CLIN NEUROPHYSIOL, V118, P1261, DOI 10.1016/j.clinph.2007.02.016 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 PICTON TW, 1992, ELECTROEN CLIN NEURO, V84, P90, DOI 10.1016/0168-5597(92)90071-I ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770 Ross B, 2005, J NEUROPHYSIOL, V94, P4082, DOI 10.1152/jn.00469.2005 Ross B, 2002, HEARING RES, V165, P68, DOI 10.1016/S0378-5955(02)00285-X Ross B, 2003, HEARING RES, V186, P57, DOI 10.1016/S0378-5955(03)00299-5 Scherg M., 1990, AUDITORY EVOKED MAGN, P40 SCHERG M, 1986, ELECTROEN CLIN NEURO, V65, P344, DOI 10.1016/0168-5597(86)90014-6 Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021 STEINSCHNEIDER M, 1992, ELECTROEN CLIN NEURO, V84, P196, DOI 10.1016/0168-5597(92)90026-8 Steinschneider M, 1998, J ACOUST SOC AM, V104, P2935, DOI 10.1121/1.423877 NR 43 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2009 VL 257 IS 1-2 BP 83 EP 92 DI 10.1016/j.heares.2009.08.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 511QB UT WOS:000271180200009 PM 19699286 ER PT J AU Fallon, JB Shepherd, RK Brown, M Irvine, DRF AF Fallon, James B. Shepherd, Robert K. Brown, Mel Irvine, Dexter R. F. TI Effects of neonatal partial deafness and chronic intracochlear electrical stimulation on auditory and electrical response characteristics in primary auditory cortex SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Auditory cortex; Electrical stimulation; Neural prosthesis; Sensorineural hearing loss ID COCHLEAR HEARING-LOSS; ENHANCED FREQUENCY DISCRIMINATION; CAT INFERIOR COLLICULUS; ADULT CATS; TEMPORAL RESOLUTION; NEURONAL RESPONSES; PERCEPTUAL CONSEQUENCES; TONOTOPIC ORGANIZATION; CORTICAL PLASTICITY; CONGENITAL DEAFNESS AB The use of cochlear implants in patients with severe hearing losses but residual low-frequency hearing raises questions concerning the effects of chronic intracochlear electrical stimulation (ICES) on cortical responses to auditory and electrical stimuli. We investigated these questions by studying responses to tonal and electrical stimuli in primary auditory cortex (AI) of two groups of neonatally deafened cats with residual high-threshold, low-frequency hearing. One group were implanted with a multi-channel intracochlear electrode at 8 weeks of age, and received chronic ICES for up to 9 months before cortical recording. Cats in the other group were implanted immediately prior to cortical recording as adults. In all cats in both groups, multi-neuron responses throughout the rostro-caudal extent of AI had low characteristic frequencies (CFs), in the frequency range of the residual hearing, and high-thresholds. Threshold and minimum latency at CF did not differ between the groups, but in the chronic ICES animals there was a higher proportion of electrically but not acoustically excited recording sites. Electrical response thresholds were higher and latencies shorter in the chronically stimulated animals. Thus, chronic implantation and ICES affected the extent of AI that could be activated by acoustic stimuli and resulted in changes in electrical response characteristics. (C) 2009 Elsevier B.V. All rights reserved. C1 [Fallon, James B.; Shepherd, Robert K.; Irvine, Dexter R. F.] Bion Ear Inst, Melbourne, Vic, Australia. [Fallon, James B.; Shepherd, Robert K.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic, Australia. [Brown, Mel; Irvine, Dexter R. F.] Monash Univ, Sch Psychol Psychiat & Psychol Med, Fac Med Nursing & Hlth Sci, Clayton, Vic 3800, Australia. RP Fallon, JB (reprint author), Bion Ear Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM jfallon@bionicear.org RI Irvine, Dexter/F-7474-2011; Fallon, James/B-5211-2012; Shepherd, Robert/I-6276-2012; Fallon, James/B-6383-2014 FU NIDCD [N01-DC-3-1005, HHS-N-263-2007-00053-C]; Bionic Ear Institute FX This work was funded by NIDCD (N01-DC-3-1005 and HHS-N-263-2007-00053-C) and The Bionic Ear Institute. The Bionic Ear Institute acknowledges the support it receives from the Victorian Government through its Operational Infrastructure Support Program. The authors are grateful to Jin Xu and Helen Feng for electrode manufacture and surgical assistance; Anne Coco and Stephanie Epp for research assistance; Sue Pierce for veterinary advice Elisa Borg for animal maintenance; Rodney Millard for engineering support and helpful discussions on experimental design, and Hugh McDermott, Peter Blarney and two anonymous reviewers for comments on an earlier version of the manuscript. CR Bi GQ, 2001, ANNU REV NEUROSCI, V24, P139, DOI 10.1146/annurev.neuro.24.1.139 Black R C, 1983, Acta Otolaryngol Suppl, V399, P5 Blamey P, 1996, Audiol Neurootol, V1, P293 Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056 BROWN M, 1992, HEARING RES, V59, P224, DOI 10.1016/0378-5955(92)90119-8 Buss E, 1998, HEARING RES, V125, P98, DOI 10.1016/S0378-5955(98)00131-2 Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9 Dinse HR, 1997, AM J OTOL, V18, pS17 Dinse HR, 2003, SPEECH COMMUN, V41, P201, DOI 10.1016/S0167-6393(02)00104-8 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Fallon JB, 2008, HEARING RES, V238, P110, DOI 10.1016/j.heares.2007.08.004 Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886 Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012 Green KMJ, 2005, HEARING RES, V205, P184, DOI 10.1016/j.heares.2005.03.016 HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R HARRISON RV, 1993, J OTOLARYNGOL, V22, P4 Huang CQ, 1999, IEEE T BIO-MED ENG, V46, P461, DOI 10.1109/10.752943 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Irvine DRF, 2003, J COMP NEUROL, V467, P354, DOI 10.1002/ene.10921 Irvine DRF, 2005, INT REV NEUROBIOL, V70, P435, DOI 10.1016/S0074-7742(05)70013-1 Irvine DRF, 2000, HEARING RES, V147, P188, DOI 10.1016/S0378-5955(00)00131-3 KAAS JH, 2001, MUTABLE BRAIN, P165 Kamke MR, 2003, J COMP NEUROL, V459, P355, DOI 10.1002/cne.10586 Kiefer J, 2005, AUDIOL NEURO-OTOL, V10, P134, DOI 10.1159/000084023 Klinke R, 2001, AUDIOL NEURO-OTOL, V6, P203, DOI 10.1159/000046833 Kluk K, 2006, HEARING RES, V222, P1, DOI 10.1016/j.heares.2006.06.020 Kral Andrej, 2006, Adv Otorhinolaryngol, V64, P89 Kral A, 2009, J NEUROSCI, V29, P811, DOI 10.1523/JNEUROSCI.2424-08.2009 Kral A, 2006, PROG BRAIN RES, V157, P283, DOI 10.1016/S0079-6123(06)57018-9 Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797 McDermott H, 2009, AUDIOL NEURO-OTOL, V14, P2, DOI 10.1159/000206489 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 McKay CM, 2005, INT REV NEUROBIOL, V70, P473, DOI 10.1016/S0074-7742(05)70012-X MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 Moore BCJ, 2009, BRAIN, V132, P524, DOI 10.1093/brain/awn308 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 Raggio MW, 1999, J NEUROPHYSIOL, V82, P3506 RAGGIO MW, 1994, J NEUROPHYSIOL, V72, P2334 Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786 Rajan R, 1998, J COMP NEUROL, V399, P35 RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 Reiss LAJ, 2007, JARO-J ASSOC RES OTO, V8, P241, DOI 10.1007/s10162-007-0077-8 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X Shepherd R K, 1983, Acta Otolaryngol Suppl, V399, P19 Shepherd RK, 1995, HEARING RES, V92, P131, DOI 10.1016/0378-5955(95)00211-1 Simpson A, 2009, INT J AUDIOL, V48, P63, DOI 10.1080/14992020802452184 SNYDER R, 1995, J NEUROPHYSIOL, V73, P449 Snyder RL, 2002, J NEUROPHYSIOL, V87, P434 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Thai-Van H, 2007, HEARING RES, V233, P14, DOI 10.1016/j.heares.2007.06.003 Thai-Van H, 2003, BRAIN, V126, P2235, DOI 10.1093/brain/awg228 Turner CW, 2008, HEARING RES, V242, P164, DOI 10.1016/j.heares.2007.11.008 Vollmer M, 2005, J NEUROPHYSIOL, V93, P3339, DOI 10.1152/jn.00900.2004 Vollmer M, 1999, J NEUROPHYSIOL, V82, P2883 Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005 Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 NR 61 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2009 VL 257 IS 1-2 BP 93 EP 105 DI 10.1016/j.heares.2009.08.006 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 511QB UT WOS:000271180200010 PM 19703532 ER PT J AU Paltoglou, AE Sumner, CJ Hall, DA AF Paltoglou, Aspasia E. Sumner, Christian J. Hall, Deborah A. TI Examining the role of frequency specificity in the enhancement and suppression of human cortical activity by auditory selective attention SO HEARING RESEARCH LA English DT Article DE Attentional modulation; Frequency-dependent response region; Task-related effects ID RECEPTIVE-FIELD PLASTICITY; MACAQUE VISUAL-CORTEX; SINGLE-UNIT ACTIVITY; STREAM SEGREGATION; FUNCTIONAL MRI; TASK-DIFFICULTY; TONOTOPIC ORGANIZATION; IMAGE REGISTRATION; NEURAL MECHANISMS; FMRI ACTIVATION AB This study examined the neural basis of auditory selective attention using functional magnetic resonance imaging. The main hypothesis stated that attending to a particular sound frequency would significantly enhance the neural response within those tonotopic regions of the auditory cortex sensitive to that frequency. To test this prediction, low- and high-frequency sound sequences were interleaved to produce two concurrent auditory streams. Six normally hearing participants either performed a task which required them to attend to one or the other stream or listened passively to the sounds while functional images were acquired using a high-resolution (1.5 mm x 1.5 mm x 2.5 mm) sequence. Two statistical comparisons identified the attention-specific and general effects of enhancement. The first controlled for task-related processes, while the second did not. Results demonstrated frequency-specific, attention-specific enhancement in the response to the attended frequency, but no response suppression for the unattended frequency. Instead, a general effect of suppression was found in several posterior sites, possibly related to resting-state processes. Furthermore, there was widespread general enhancement across auditory cortex when performing the task compared to passive listening. This enhancement did include frequency-sensitive regions, but was not restricted to them. In conclusion, our results show partial support for frequency-specific enhancement. (C) 2009 Elsevier B.V. All rights reserved. C1 [Hall, Deborah A.] Nottingham Trent Univ, Div Psychol, Sch Social Sci, Nottingham NG1 4BU, England. [Paltoglou, Aspasia E.; Sumner, Christian J.; Hall, Deborah A.] MRC, Inst Hearing Res, Nottingham NG7 2RD, England. RP Hall, DA (reprint author), Nottingham Trent Univ, Div Psychol, Sch Social Sci, Burton St, Nottingham NG1 4BU, England. EM aspa.paltoglou@abdn.ac.uk; chris@ihr.mrc.ac.uk; deborah.hall@ntu.ac.uk CR Ahveninen J, 2006, P NATL ACAD SCI USA, V103, P14608, DOI 10.1073/pnas.0510480103 Altmann CF, 2008, NEUROIMAGE, V41, P69, DOI 10.1016/j.neuroimage.2008.02.013 Amunts K, 1999, J COMP NEUROL, V412, P319, DOI 10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7 Ashburner J, 1999, HUM BRAIN MAPP, V7, P254, DOI 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G Atiani S, 2009, NEURON, V61, P467, DOI 10.1016/j.neuron.2008.12.027 BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A Bandettini PA, 1998, MAGNET RESON MED, V39, P410, DOI 10.1002/mrm.1910390311 Bee MA, 2004, J NEUROPHYSIOL, V92, P1088, DOI 10.1152/jn.00884.2003 BENSON DA, 1978, BRAIN RES, V159, P307, DOI 10.1016/0006-8993(78)90537-1 BENSON DA, 1981, BRAIN RES, V219, P249, DOI 10.1016/0006-8993(81)90290-0 Boudreau CE, 2006, J NEUROPHYSIOL, V96, P2377, DOI 10.1152/jn.01072.2005 Buckner RL, 2007, NEUROIMAGE, V37, P1091, DOI 10.1016/j.neuroimage.2007.01.010 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 COLLIGNON A, 1995, COMP IMAG VIS, V3, P263 CORBETTA M, 1990, SCIENCE, V248, P1556, DOI 10.1126/science.2360050 CORBETTA M, 1991, J NEUROSCI, V11, P2383 Cox RW, 1999, MAGNET RESON MED, V42, P1014, DOI 10.1002/(SICI)1522-2594(199912)42:6<1014::AID-MRM4>3.0.CO;2-F Degerman A, 2006, BRAIN RES, V1077, P123, DOI 10.1016/j.brainres.2006.01.025 DESIMONE R, 1995, ANNU REV NEUROSCI, V18, P193, DOI 10.1146/annurev.neuro.18.1.193 DIAMOND DM, 1989, BEHAV NEUROSCI, V103, P471, DOI 10.1037/0735-7044.103.3.471 DIAMOND DM, 1986, BRAIN RES, V372, P357, DOI 10.1016/0006-8993(86)91144-3 Downar J, 2000, NAT NEUROSCI, V3, P277 Duncan J, 2000, TRENDS NEUROSCI, V23, P475, DOI 10.1016/S0166-2236(00)01633-7 Duvernoy H. M., 1999, HUMAN BRAIN SURFACE, V2nd EDELINE JM, 1993, BEHAV NEUROSCI, V107, P82, DOI 10.1037//0735-7044.107.1.82 EDELINE JM, 1993, BEHAV NEUROSCI, V107, P539 Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0 Fishman YI, 2004, J ACOUST SOC AM, V116, P1656, DOI 10.1121/1.1778903 Formisano E, 2003, NEURON, V40, P859, DOI 10.1016/S0896-6273(03)00669-X Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz JB, 2007, J NEUROPHYSIOL, V98, P2337, DOI 10.1152/jn.00552.2007 Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005 Fritz JB, 2007, HEARING RES, V229, P186, DOI 10.1016/j.heares.2007.01.009 Genovese CR, 2002, NEUROIMAGE, V15, P870, DOI 10.1006/nimg.2001.1037 Griffiths TD, 2002, TRENDS NEUROSCI, V25, P348, DOI 10.1016/S0166-2236(02)02191-4 Gusnard DA, 2001, NAT REV NEUROSCI, V2, P685, DOI 10.1038/35094500 Gutschalk A, 2005, J NEUROSCI, V25, P5382, DOI 10.1523/JNEUROSCI.0374-05.2005 HALL DA, 2009, CEREB CORTEX, V19, P543 Hall DA, 2000, HUM BRAIN MAPP, V10, P107, DOI 10.1002/1097-0193(200007)10:3<107::AID-HBM20>3.0.CO;2-8 Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N Harel N, 2002, J CEREBR BLOOD F MET, V22, P908 Hart HC, 2002, HEARING RES, V171, P177, DOI 10.1016/S0378-5955(02)00498-7 Hart HC, 2003, HEARING RES, V179, P104, DOI 10.1016/S0378-5955(03)00100-X HOCHERMAN S, 1976, BRAIN RES, V117, P51, DOI 10.1016/0006-8993(76)90555-2 Howard MA, 1996, BRAIN RES, V724, P260, DOI 10.1016/0006-8993(96)00315-0 HUBEL DH, 1959, SCIENCE, V129, P1279, DOI 10.1126/science.129.3358.1279 Jancke L, 1999, NEUROSCI LETT, V266, P125, DOI 10.1016/S0304-3940(99)00288-8 Johnson JA, 2006, NEUROIMAGE, V31, P1673, DOI 10.1016/j.neuroimage.2006.02.026 Johnson JA, 2005, CEREB CORTEX, V15, P1609, DOI 10.1093/cercor/bhi039 Krumbholz K, 2007, J COGNITIVE NEUROSCI, V19, P1721, DOI 10.1162/jocn.2007.19.10.1721 Logothetis NK, 2004, ANNU REV PHYSIOL, V66, P735, DOI 10.1146/annurev.physiol.66.082602.092845 Luck SJ, 1997, J NEUROPHYSIOL, V77, P24 Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039 O'Craven KM, 1999, NATURE, V401, P584 Ohl FW, 1996, EUR J NEUROSCI, V8, P1001, DOI 10.1111/j.1460-9568.1996.tb01587.x Petkov CI, 2004, NAT NEUROSCI, V7, P658, DOI 10.1038/nn1256 PFINGST BE, 1977, EXP BRAIN RES, V29, P393 Price CJ, 1997, HUM BRAIN MAPP, V5, P264, DOI 10.1002/(SICI)1097-0193(1997)5:4<264::AID-HBM11>3.0.CO;2-E Schoenfeld MA, 2007, CEREB CORTEX, V17, P2468, DOI 10.1093/cercor/bhl154 Shmuel A, 2006, NAT NEUROSCI, V9, P569, DOI 10.1038/nn1675 Shulman GL, 1997, J COGNITIVE NEUROSCI, V9, P648, DOI 10.1162/jocn.1997.9.5.648 Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021 Somers DC, 1999, P NATL ACAD SCI USA, V96, P1663, DOI 10.1073/pnas.96.4.1663 Sridharan D, 2008, P NATL ACAD SCI USA, V105, P12569, DOI 10.1073/pnas.0800005105 Studholme C, 1998, P SOC PHOTO-OPT INS, V3338, P132, DOI 10.1117/12.310835 Talavage TM, 2000, HEARING RES, V150, P225, DOI 10.1016/S0378-5955(00)00203-3 Talavage TM, 2004, J NEUROPHYSIOL, V91, P1282, DOI 10.1152/jn.01125.2002 Tootell RBH, 1998, NEURON, V21, P1409, DOI 10.1016/S0896-6273(00)80659-5 Treue S, 1999, NATURE, V399, P575, DOI 10.1038/21176 Wilson EC, 2007, J NEUROPHYSIOL, V97, P2230, DOI 10.1152/jn.00788.2006 NR 70 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2009 VL 257 IS 1-2 BP 106 EP 118 DI 10.1016/j.heares.2009.08.007 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 511QB UT WOS:000271180200011 PM 19706320 ER PT J AU Larsen, E Liberman, MC AF Larsen, Erik Liberman, M. Charles TI Slow build-up of cochlear suppression during sustained contralateral noise: Central modulation of olivocochlear efferents? SO HEARING RESEARCH LA English DT Article DE Feedback; Inner ear; Brainstem plasticity; Olivocochlear reflex ID EVOKED OTOACOUSTIC EMISSIONS; AUDITORY-NERVE FIBERS; INDUCED HEARING-LOSS; OUTER HAIR-CELLS; ACOUSTIC INJURY; GUINEA-PIG; ELECTRICAL-STIMULATION; CENTRIFUGAL PATHWAYS; LOUD-SOUND; REFLEX AB The strength of the medial olivocochlear (OC) reflex is routinely assayed by measuring suppression of ipsilateral responses such as otoacoustic emissions (OAEs) by a brief contralateral noise, e.g., (Berlin, C.I., Hood, L.J., Cecola, P., Jackson, D.F., Szabo, P. 1993. Does type I afferent dysfunction reveal itself through lack of efferent suppression. Hear. Res. 65, 40-50). Here, we show in anesthetized guinea pigs, that the magnitude of OC-mediated suppression of ipsilateral cochlear responses (i.e., compound actions potentials (CAPs), distortion product (DP) OAEs and round-window noise) slowly builds over 2-3 min during a sustained contralateral noise. The magnitude of this build-up suppression was largest at low ipsilateral stimulus intensities, as seen for suppression measured at contra-noise onset. However, as a function of stimulus frequency, build-up suppression magnitude was complementary to onset suppression, i.e., largest at the lowest and highest frequencies tested. Both build-up and onset suppression were eliminated by cutting the OC bundle. In contrast to "slow effects" of shock-evoked medial OC activity (Sridhar, T.S., Liberman, M.C., Brown, M.C., Sewell, W.F. 1995. A novel cholinergic "slow effect" of efferent stimulation on cochlear potentials in the guinea pig. J. Neurosci. 15, 3667-3678), which are mediated by slow intracellular changes in Ca concentration in OHCs, build-up effects of contralateral noise are immediately extinguished upon OC bundle transection and are likely mediated by central modulation of the response rates in MOC fibers due to the sustained noise. Results suggest that conventional tests of OC reflex strength may underestimate its magnitude in noisy environments. (C) 2009 Elsevier B.V. All rights reserved. C1 [Larsen, Erik; Liberman, M. Charles] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Larsen, Erik; Liberman, M. Charles] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA. [Liberman, M. Charles] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. RP Liberman, MC (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM charles_liberman@meei.harvard.edu FU NIDCD [R01 (DC00188), P30 (DC05209), T32 DC00038] FX This work was supported by an R01 (DC00188) and a P30 (DC05209) from the NIDCD. E. Larsen was partly supported by a training grant from the NIDCD (T32 DC00038). This report is based on a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Speech and Hearing Bioscience and Technology Program of the Harvard-MIT Division of Health Sciences and Technology. CR Backus BC, 2006, J ACOUST SOC AM, V119, P2889, DOI 10.1121/1.2169918 BERLIN CI, 1995, HEARING RES, V87, P96, DOI 10.1016/0378-5955(95)00082-F BERLIN CI, 1993, HEARING RES, V65, P40, DOI 10.1016/0378-5955(93)90199-B Boyev KP, 2002, JARO, V3, P362, DOI 10.1007/s101620020044 BROWN MC, 1984, J PHYSIOL-LONDON, V354, P625 BUNO W, 1978, EXP NEUROL, V59, P62, DOI 10.1016/0014-4886(78)90201-7 COLLET L, 1992, AUDIOLOGY, V31, P1 Cooper NP, 2003, J PHYSIOL-LONDON, V548, P307, DOI 10.1113/jphysiol.2003.039081 daCosta DL, 1997, J NEUROPHYSIOL, V78, P1826 DACOSTA DL, 1997, AM PHYS SOC, P1826 DALLOS P, 1976, J ACOUST SOC AM, V60, P510, DOI 10.1121/1.381086 Darrow KN, 2007, J NEUROPHYSIOL, V97, P1775, DOI 10.1152/jn.00955.2006 Dean I, 2005, NAT NEUROSCI, V8, P1684, DOI 10.1038/nn1541 DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 FUCHS PA, 1992, J NEUROSCI, V12, P800 GEISLER CD, 1974, J ACOUST SOC AM, V56, P1910, DOI 10.1121/1.1903533 Groff JA, 2003, J NEUROPHYSIOL, V90, P3178, DOI 10.1152/jn.00537.2003 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 GUINAN JJ, 1996, SPRINGER VERLAG HDB, V8 Guinan JJ, 1996, J ACOUST SOC AM, V100, P1680, DOI 10.1121/1.416066 GUINAN JJ, 1988, HEARING RES, V33, P115, DOI 10.1016/0378-5955(88)90024-X Hood LJ, 1996, HEARING RES, V101, P113, DOI 10.1016/S0378-5955(96)00138-4 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2533 Kendall MG, 1938, BIOMETRIKA, V30, P81, DOI 10.2307/2332226 KIANG NYS, 1976, RELATIONSHIP GROSS P Kujawa SG, 1997, J NEUROPHYSIOL, V78, P3095 Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 Le Prell CG, 2003, JARO, V4, P276, DOI 10.1007/s10162-002-3018-6 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 LIBERMAN MC, 1991, J NEUROPHYSIOL, V65, P123 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779 Maison SF, 2003, J COMP NEUROL, V455, P406, DOI 10.1002/cne.10490 Maison SF, 2000, J NEUROSCI, V20, P4701 Mukari SZMS, 2008, AUDIOL NEURO-OTOL, V13, P328, DOI 10.1159/000128978 Murugasu E, 1996, J NEUROSCI, V16, P325 Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508 Rajan R, 2001, J NEUROPHYSIOL, V86, P1277 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 Rajan R, 2000, J NEUROSCI, V20, P6684 RAJAN R, 1991, PROTECTIVE FUNCTIONS Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Sridhar TS, 1997, J NEUROSCI, V17, P428 SRIDHAR TS, 1995, J NEUROSCI, V15, P3667 SULLIVAN MJ, 1987, HEARING RES, V31, P161, DOI 10.1016/0378-5955(87)90122-5 Vetter DE, 2005, 28 ARO MIDW M, V28 VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 Vetter DE, 2007, P NATL ACAD SCI USA, V104, P20594, DOI 10.1073/pnas.0708545105 Veuillet E, 2001, ACTA OTO-LARYNGOL, V121, P278 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 Yoshida N, 1999, J NEUROPHYSIOL, V82, P3168 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 Yoshida S, 2001, CYTOGENET CELL GENET, V94, P88, DOI 10.1159/000048791 NR 56 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2009 VL 256 IS 1-2 BP 1 EP 10 DI 10.1016/j.heares.2009.02.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 502XV UT WOS:000270495000001 PM 19232534 ER PT J AU Osmanski, MS Marvit, P Depireux, DA Dooling, RJ AF Osmanski, Michael S. Marvit, Peter Depireux, Didier A. Dooling, Robert J. TI Discrimination of auditory gratings in birds SO HEARING RESEARCH LA English DT Article DE Auditory grating; Threshold; Budgerigar; Zebra finch; Human; Psychoacoustics ID BUDGERIGARS MELOPSITTACUS-UNDULATUS; ZEBRA FINCHES; PERCEPTUAL ORGANIZATION; HARMONIC COMPLEXES; ACOUSTIC STIMULI; DYNAMIC SPECTRA; UNIT RESPONSES; NATURAL SOUNDS; CONTACT CALLS; SPEECH AB Auditory gratings (also called auditory ripples) are a family of complex, broadband sounds with sinusoidally modulated logarithmic amplitudes and a drifting spectral envelope. These stimuli have been studied both physiologically in mammals and psychophysically in humans. Auditory gratings share spectro-temporal properties with many natural sounds, including species-specific vocalizations and the formant transitions of human speech. We successfully trained zebra finches and budgerigars, using operant conditioning methods, to discriminate between flat-spectrum broadband noise and noises with ripple spectra of different densities that moved up or down in frequency at various rates. Results show that discrimination thresholds (minimum modulation depth) increased as a function of increasing grating periodicity and density across all species. Results also show that discrimination in the two species of birds was better at those grating periodicities and densities that are prominent in their species-specific vocalizations. Budgerigars were generally more sensitive than both zebra finches and humans. Both bird species showed greater sensitivity to descending auditory gratings, which mirrors the main direction in their vocalizations. Humans, on the other hand, showed no directional preference even though speech is somewhat downward directional. Overall, our results are suggestive of both common strategies in the processing of complex sounds between birds and mammals and specialized, species-specific variations on that processing in birds. (C) 2009 Elsevier B.V. All rights reserved. C1 [Osmanski, Michael S.; Marvit, Peter; Dooling, Robert J.] Univ Maryland, Dept Psychol, College Pk, MD 20742 USA. [Depireux, Didier A.] Univ Maryland, Dept Anat & Neurobiol, Baltimore, MD 21210 USA. RP Marvit, P (reprint author), Univ Maryland, Dept Psychol, Biol Psychol Bldg, College Pk, MD 20742 USA. EM michael.osmanski@gmail.com; pmarvit@gmail.com; depireux@gmail.com; dooling@psyc.umd.edu FU NIH/NIDCD [R01 DC000198] FX This research was supported by NIH/NIDCD R01 DC000198. The authors thank two anonymous reviewers for their helpful comments. CR ALI NJ, 1993, B PSYCHONOMIC SOC, V31, P468 Amagai S, 1999, J ACOUST SOC AM, V105, P2029, DOI 10.1121/1.426736 BRENOWITZ EA, 1991, SCIENCE, V251, P303, DOI 10.1126/science.1987645 Brockway B. F., 1964, Behaviour, V23, P294, DOI 10.1163/156853964X00193 BROCKWAY BF, 1965, ANIM BEHAV, V13, P575, DOI 10.1016/0003-3472(65)90123-5 Brockway B. F., 1964, Behaviour, V22, P193, DOI 10.1163/156853964X00021 BROWN SD, 1988, J COMP PSYCHOL, V102, P236, DOI 10.1037/0735-7036.102.3.236 Chi TS, 1999, J ACOUST SOC AM, V106, P2719, DOI 10.1121/1.428100 Dent ML, 1997, J ACOUST SOC AM, V102, P1891, DOI 10.1121/1.420111 Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220 DEPIREUX DA, 1998, COMMENTS THEOR BIOL, V5, P89 Dooling R. J., 2000, COMP HEARING BIRDS R, P308 Dooling RJ, 2002, J ACOUST SOC AM, V112, P748, DOI 10.1121/1.1494447 DOOLING RJ, 1975, J COMP PHYSIOL PSYCH, V88, P1, DOI 10.1037/h0076226 DOOLING RJ, 1995, J ACOUST SOC AM, V97, P1839, DOI 10.1121/1.412058 DOOLING RJ, 1992, J COMP PSYCHOL, V106, P20, DOI 10.1037/0735-7036.106.1.20 Dooling RJ, 2001, HEARING RES, V152, P159, DOI 10.1016/S0378-5955(00)00249-5 DOOLING RJ, 1992, 9 INT S HEAR AUD PHY, P407 DOOLING RJ, 1987, J COMP PSYCHOL, V101, P367, DOI 10.1037//0735-7036.101.4.367 DOOLING RJ, 1995, METHODS COMP PSYCHOA Doupe AJ, 1999, ANNU REV NEUROSCI, V22, P567, DOI 10.1146/annurev.neuro.22.1.567 ECHTELER SM, 1989, NATURE, V341, P147, DOI 10.1038/341147a0 Farabaugh Susan M., 1992, Bioacoustics, V4, P111 Farabaugh Susan M., 1996, P97 Fitch RH, 1997, ANNU REV NEUROSCI, V20, P331, DOI 10.1146/annurev.neuro.20.1.331 FRITZ JB, 2002, MEASURING FERRET SPE GERHARDT HC, 1986, EXP BIOL, V45, P167 Ghazanfar AA, 2001, CURR OPIN NEUROBIOL, V11, P712, DOI 10.1016/S0959-4388(01)00274-4 GLEICH O, 1994, J MORPHOL, V220, P1 Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3503 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3524 Kroodsma D. E., 1996, ECOLOGY EVOLUTION AC LIBERMAN AM, 1982, AM PSYCHOL, V37, P148, DOI 10.1037//0003-066X.37.2.148 Lohr B, 2006, J COMP PSYCHOL, V120, P239, DOI 10.1037/0735-7036.120.3.239 Lohr B, 1998, J COMP PSYCHOL, V112, P36, DOI 10.1037/0735-7036.112.1.36 Manley G. A., 1990, PERIPHERAL HEARING M MANLEY GA, 1993, J MORPHOL, V218, P153, DOI 10.1002/jmor.1052180205 Nespor Amy A., 1997, Bird Behavior, V12, P15 OKANOYA K, 1991, J COMP PSYCHOL, V105, P60, DOI 10.1037/0735-7036.105.1.60 OKANOYA K, 1987, J COMP PSYCHOL, V101, P7, DOI 10.1037//0735-7036.101.1.7 Ratcliffe Laurene, 1996, P339 Sen K, 2001, J NEUROPHYSIOL, V86, P1445 Theunissen FE, 1998, J NEUROSCI, V18, P3786 Theunissen FE, 2000, J NEUROSCI, V20, P2315 Versnel H, 1998, J ACOUST SOC AM, V103, P2502, DOI 10.1121/1.422771 VERSNEL H, 2002, SPECTROTEMPORAL MODU Zann R, 1996, ZEBRA FINCH SYNTHESI ZANN R, 1984, Z TIERPSYCHOL, V66, P328 NR 49 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2009 VL 256 IS 1-2 BP 11 EP 20 DI 10.1016/j.heares.2009.04.020 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 502XV UT WOS:000270495000002 PM 19427374 ER PT J AU Vetesnik, A Turcanu, D Dalhoff, E Gummer, AW AF Vetesnik, Ales Turcanu, Diana Dalhoff, Ernst Gummer, Anthony W. TI Extraction of sources of distortion product otoacoustic emissions by onset-decomposition SO HEARING RESEARCH LA English DT Article DE Cochlear amplifier; Hearing loss; Nonlinear mechanical distortion; Coherent reflection; Estimated distortion product threshold; Adaptation ID COCHLEAR HEARING-LOSS; DPOAE FINE-STRUCTURE; EFFERENT-MEDIATED ADAPTATION; INPUT/OUTPUT FUNCTIONS; AUDITORY-SENSITIVITY; RAPID ADAPTATION; BASILAR-MEMBRANE; FREQUENCY PLACE; GROWTH-BEHAVIOR; GUINEA-PIG AB The cubic component of the distortion product otoacoustic emission (DPOAE) in response to two tones of frequency f(1) and f(2) is generated by so-called primary- and secondary-source mechanisms in the cochlea. Interference between the resulting two source components can limit the usefulness of DPOAEs in assessing cochlear function. Although techniques are available for separating the source components, depending on the application, they can be either time-consuming or ineffective without a priori knowledge of optimal parameters. Here, we investigated, in humans, the possibility of separating the source components in the time-domain by sampling the onset and offset of the DPOAE-time signal at appropriate instants. Therefore, a DPOAE paradigm was developed in which the f(2) tone was periodically switched on during the continuous presence of the f(1) tone. F(2) was increased in 20-Hz steps from 1.5 to 2.5 kHz and the ratio f(2)/f(1) held constant at 1.2; measurements were made at six primary tone levels, ranging from L(2) = 25 to 65 dB SPL To investigate the possibility of separating the two sources by appropriate sampling, we developed an algorithm called onset-decomposition. The algorithm is based on the shape properties of DP-grams constructed from DPOAE responses at different time instants in the onset of the DPOAE signal. Thus, at each such time instant, the source components were extracted by time-windowing of the corresponding DP-gram. The time courses of the amplitude onsets of these separated primary- and secondary-source components provided evidence that the primary-source component attained its steady-state before the secondary-source component started to significantly influence the DPOAE by interference with the primary-source component. Consequently, in the final paradigm, the primary-source component is extracted by sampling the DPOAE signal at a single pre-defined time instant after the onset of the f(2) stimulus tone, before the secondary component begins to interfere. Based on the near-absence of interference maxima and minima in the DP-grams, the appropriate sampling instant was 8-10 ms for all frequencies and intensities in the stimulus set. Extracting the primary-source by onset sampling has the advantage that when individual source components for a given f2 are to be investigated, there is no need to measure a DP-gram. In conclusion, it is shown that the technique can reliably and quickly separate the source components, making it an attractive paradigm for applications in basic research and clinical diagnosis. (C) 2009 Elsevier B.V. All rights reserved. C1 [Turcanu, Diana; Dalhoff, Ernst; Gummer, Anthony W.] Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Tubingen, Germany. [Vetesnik, Ales] Czech Tech Univ, Dept Nucl Chem, CR-16635 Prague, Czech Republic. RP Gummer, AW (reprint author), Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Elfriede Aulhorn Str 5, Tubingen, Germany. EM vetesnik@fjfi.cvut.cz; diana.turcanu@uni-tuebin-gen.de; ernst.dalhoff@web.de; anthony.gummer@uni-tuebingen.de FU Marie Curie Intra-European Fellowship EAR-POST [MEIF-CT-2003-502451]; German Research Council [DFG Gu 194/8-1] FX Supported by the Marie Curie Intra-European Fellowship EAR-POST (MEIF-CT-2003-502451) and by the German Research Council, DFG Gu 194/8-1. The authors are grateful to Prof. Renato Nobili for inducing interest in f2 pulsed paradigms. CR ALLEN JB, 1993, J ACOUST SOC AM, V93, P568, DOI 10.1121/1.405640 Bassim MK, 2003, HEARING RES, V182, P140, DOI 10.1016/S0378-5955(03)00190-4 Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 Boyev KP, 2002, JARO, V3, P362, DOI 10.1007/s101620020044 Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209 Dalhoff E, 2007, P NATL ACAD SCI USA, V104, P1546, DOI 10.1073/pnas.0610185103 Dhar S, 2004, EAR HEARING, V25, P573, DOI 10.1097/00003446-200412000-00006 Dhar S, 2002, J ACOUST SOC AM, V112, P2882, DOI 10.1121/1.1516757 Fahey PF, 1997, J ACOUST SOC AM, V102, P2880, DOI 10.1121/1.420343 Fahey PF, 2000, J ACOUST SOC AM, V108, P1786, DOI 10.1121/1.1308048 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 Gaskill SA, 1996, J ACOUST SOC AM, V100, P3268, DOI 10.1121/1.417210 Gorga MP, 2003, J ACOUST SOC AM, V113, P3275, DOI 10.1121/1.1570433 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 Halsey K, 2005, HEARING RES, V201, P99, DOI 10.1016/j.heares.2004.09.010 HE NJ, 1993, J ACOUST SOC AM, V94, P2659, DOI 10.1121/1.407350 Heitmann J, 1998, J ACOUST SOC AM, V103, P1527, DOI 10.1121/1.421290 Heitmann J, 1996, EUR ARCH OTO-RHINO-L, V253, P167, DOI 10.1007/BF00615115 Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053 Johnson TA, 2006, J ACOUST SOC AM, V119, P3896, DOI 10.1121/1.2200048 Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597 Kemp D. T., 1983, MECH HEARING, P75 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223 KIM DO, 1980, HEARING RES, V2, P297, DOI 10.1016/0378-5955(80)90064-7 Kim DO, 2001, JARO, V2, P31, DOI 10.1007/s101620010066 KIMBERLEY BP, 1989, J OTOLARYNGOL, V18, P365 Knight RD, 2000, J ACOUST SOC AM, V107, P457, DOI 10.1121/1.428351 Konrad-Martin D, 2001, J ACOUST SOC AM, V109, P2862, DOI 10.1121/1.1370356 Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 Kummer P, 2000, HEARING RES, V146, P47, DOI 10.1016/S0378-5955(00)00097-6 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 Long GR, 2008, J ACOUST SOC AM, V124, P1613, DOI 10.1121/1.2949505 Luebke AE, 2002, JARO, V3, P16, DOI 10.1007/s101620010089 Lukashkin AN, 2002, J ACOUST SOC AM, V111, P2740, DOI 10.1121/1.1479151 Lukashkin AN, 1999, J ACOUST SOC AM, V106, P2661, DOI 10.1121/1.428096 Lukashkin AN, 2002, J ACOUST SOC AM, V112, P1561, DOI 10.1121/1.1502903 Maison SF, 2000, J NEUROSCI, V20, P4701 Martin G K, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P30 Mauermann M, 1999, J ACOUST SOC AM, V106, P3484, DOI 10.1121/1.428201 Mauermann M, 2004, J ACOUST SOC AM, V116, P2199, DOI 10.1121/1.1791719 Mauermann M, 1999, J ACOUST SOC AM, V106, P3473, DOI 10.1121/1.428200 MAUERMANN M, 1998, FORTSCHRITTE AKUSTIK, P316 Meinke DK, 2005, HEARING RES, V208, P89, DOI 10.1016/j.heares.2005.05.004 Mills DM, 2006, EAR HEARING, V27, P508, DOI 10.1097/01.aud.0000233885.02706.ad MULLER J, 2005, J ACOUST SOC AM, V118, P747 Preyer S, 2001, HEARING RES, V152, P139, DOI 10.1016/S0378-5955(00)00245-8 PROBST R, 1990, AM J OTOLARYNG, V11, P236, DOI 10.1016/0196-0709(90)90083-8 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Relkin EM, 2005, JARO-J ASSOC RES OTO, V6, P119, DOI 10.1007/s10162-004-5047-9 Reuter K, 2006, J ACOUST SOC AM, V120, P270, DOI 10.1121/1.2205130 ROBLES L, 1991, NATURE, V349, P413, DOI 10.1038/349413a0 Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Siegel J. H., 2002, OTOACOUSTIC EMISSION, P416 Skjonsberg A, 2007, HEARING RES, V224, P27, DOI 10.1016/j.heares.2006.11.008 Stover LJ, 1996, J ACOUST SOC AM, V99, P1016, DOI 10.1121/1.414630 Sun XM, 1999, J ACOUST SOC AM, V105, P3399, DOI 10.1121/1.424668 Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 TALMADGE CL, 1998, J ACOUST SOC AM, V104, P157 Turcanu D, 2009, HEARING RES, V251, P17, DOI 10.1016/j.heares.2009.02.005 Vetesnik A, 2006, ORL J OTO-RHINO-LARY, V68, P347, DOI 10.1159/000095277 Wagner W, 2008, EUR ARCH OTO-RHINO-L, V265, P1165, DOI 10.1007/s00405-008-0593-0 Wagner W, 2007, HEARING RES, V223, P83, DOI 10.1016/j.heares.2006.10.001 Whitehead ML, 1996, J ACOUST SOC AM, V100, P1663, DOI 10.1121/1.416065 Withnell RH, 2006, Auditory Mechanisms: Processes and Models, P322, DOI 10.1142/9789812773456_0054 Withnell RH, 1998, HEARING RES, V123, P87, DOI 10.1016/S0378-5955(98)00100-2 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 NR 70 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2009 VL 256 IS 1-2 BP 21 EP 38 DI 10.1016/j.heares.2009.06.002 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 502XV UT WOS:000270495000003 PM 19523509 ER PT J AU Luddemann, H Riedel, H Kollmeier, B AF Lueddemann, Helge Riedel, Helmut Kollmeier, Birger TI Electrophysiological and psychophysical asymmetries in sensitivity to interaural correlation steps SO HEARING RESEARCH LA English DT Article DE Binaural psychoacoustics; Spatial diffuseness; Scale transform; Late auditory evoked potentials; Sustained potential; Auditory scene analysis ID AUDITORY BRAIN-STEM; EVOKED-POTENTIALS; CORRELATION DISCRIMINATION; BINAURAL DETECTION; CROSS-CORRELATION; SPEECH-INTELLIGIBILITY; INFERIOR COLLICULUS; SOURCE LOCALIZATION; MISMATCH RESPONSE; AURAL CORRELATION AB The binaural auditory system's sensitivity to changes in the interaural cross correlation (IAC), as an indicator for the perceived spatial diffuseness of a sound, is of major importance for the ability to distinguish concurrent sound sources. In this article, we present electroencephalographical and corresponding psychophysical experiments with stepwise transitions of the IAC in continuously running noise. Both the transient and sustained brain response, display electrophysiological correlates of specific binaural processing in humans. The transient late auditory evoked potentials (LAEP) systematically depend on the size of the IAC transition, the reference correlation preceding the transition, the direction of the transition and on unspecific context information from the stimulus sequence. The psychophysical and electrophysiological data are characterized by two asymmetries. (1) Major asymmetry: for reference correlations of +1 and -1, psychoacoustical thresholds are comparatively lower, and the peak-to-peak-amplitudes of LAEP are larger than for a reference correlation of zero. (2) Minor asymmetry: for IAC transitions in the positive parameter range, perceptual thresholds are slightly better and peak-to-peak amplitudes are larger than in the negative range. In all experimental conditions, LAEP amplitudes are linearly related to the dB scaled power ratio of correlated (N(0)) versus anticorrelated (N(pi)) signal components. The voltage gain of LAEP per dB(N(0)/N(pi)) closely corresponds to a constant perceptual distance between two correlations. We therefore suggest that activity in the auditory cortex and perceptual IAC sensitivity are better represented by the dB-scaled N(0)/N(pi) power ratio than by the normalized IAC itself (C) 2009 Elsevier B.V. All rights reserved. C1 [Lueddemann, Helge; Riedel, Helmut; Kollmeier, Birger] Carl VonOssietzky Univ Oldenburg, D-26111 Oldenburg, Germany. RP Luddemann, H (reprint author), Carl VonOssietzky Univ Oldenburg, D-26111 Oldenburg, Germany. EM h.lueddemann@uni-oldenburg.de FU Deutsche Forschungsgemeinschaft (DFG) [KO 942/19-1] FX This work was supported by the Deutsche Forschungsgemeinschaft (DFG, Project KO 942/19-1). The authors would like to thank Anita Gorges and Frank Grunau for technical assistance and Steve Colburn and several anonymous reviewers for their comments on previous versions of the manuscript. CR Akeroyd MA, 1999, J ACOUST SOC AM, V105, P2807, DOI 10.1121/1.426897 Ando Y., 1987, Journal of the Acoustical Society of Japan (E), V8 Beutelmann R, 2006, J ACOUST SOC AM, V120, P331, DOI 10.1121/1.2202888 Boehnke SE, 2002, J ACOUST SOC AM, V112, P1617, DOI 10.1121/1.1504857 Breebaart J, 2001, J ACOUST SOC AM, V110, P1074, DOI 10.1121/1.1383297 Bronkhorst AW, 2000, ACUSTICA, V86, P117 Budd TW, 2003, NEUROIMAGE, V20, P1783, DOI 10.1016/j.neuroimaging.2003.07.026 Chait M, 2007, J NEUROPHYSIOL, V98, P224, DOI 10.1152/jn.00359.2007 Chait M, 2005, J NEUROSCI, V25, P8518, DOI 10.1523/JNEUROSCI.1266-05.2005 Coffey CS, 2006, HEARING RES, V221, P1, DOI 10.1016/j.jheares.2006.06.005 COLBURN HS, 1995, SPRINGER HDB AUDITOR, V6, P332 Culling JF, 2001, J ACOUST SOC AM, V110, P1020, DOI 10.1121/1.1383296 Culling JF, 2003, ACTA ACUST UNITED AC, V89, P1049 Dajani HR, 2006, HEARING RES, V219, P85, DOI 10.1016/j.heares.2006.06.003 Damaschke J, 2005, HEARING RES, V205, P157, DOI 10.1016/j.heares.2005.03.014 DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391 DURLACH NI, 1986, J ACOUST SOC AM, V79, P1548, DOI 10.1121/1.393681 Faller C, 2004, J ACOUST SOC AM, V116, P3075, DOI 10.1121/1.1791872 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 GABRIEL KJ, 1981, J ACOUST SOC AM, V69, P1394, DOI 10.1121/1.385821 GRANTHAM DW, 1982, J ACOUST SOC AM, V72, P1178, DOI 10.1121/1.388326 HALLIDAY R, 1978, ELECTROEN CLIN NEURO, V45, P118, DOI 10.1016/0013-4694(78)90350-4 HOKE M, 1984, ELECTROEN CLIN NEURO, V57, P484, DOI 10.1016/0013-4694(84)90078-6 JAIN M, 1991, J ACOUST SOC AM, V90, P1918, DOI 10.1121/1.401671 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 Johnson BW, 2003, CLIN NEUROPHYSIOL, V114, P2245, DOI 10.1016/S1388-2457(03)00247-5 JONES SJ, 1991, ELECTROEN CLIN NEURO, V80, P146, DOI 10.1016/0168-5597(91)90152-N JONES SJ, 1991, ELECTROEN CLIN NEURO, V80, P399, DOI 10.1016/0168-5597(91)90088-F Junius D, 2007, HEARING RES, V225, P91, DOI 10.1016/j.heares.2006.12.008 KOEHNKE J, 1986, J ACOUST SOC AM, V79, P1558, DOI 10.1121/1.393682 KOLLMEIER B, 1990, J ACOUST SOC AM, V87, P1709, DOI 10.1121/1.399419 Lammertmann C, 2001, CLIN NEUROPHYSIOL, V112, P499, DOI 10.1016/S1388-2457(00)00551-4 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LUDDEMANN H, 2007, HEARING SENSORY PROC MCEVOY LK, 1991, EAR HEARING, V12, P389, DOI 10.1097/00003446-199112000-00003 MCEVOY LK, 1991, AUDIOLOGY, V30, P286 MCNEMAR Q, 1955, PSYCHOL STAT, P147 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1102, DOI 10.1121/1.396055 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Nix J, 2007, IEEE T AUDIO SPEECH, V15, P995, DOI 10.1109/TASL.2006.889788 Nix J, 2006, J ACOUST SOC AM, V119, P463, DOI 10.1121/1.2139619 van de Par S, 2001, J ACOUST SOC AM, V109, P830, DOI 10.1121/1.1336136 PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P186, DOI 10.1016/0013-4694(78)90003-2 POLLACK I, 1959, J ACOUST SOC AM, V31, P1250, DOI 10.1121/1.1907852 POLLACK I, 1959, J ACOUST SOC AM, V31, P1616, DOI 10.1121/1.1907669 PRESS WH, 1992, ART SCI COMPUTING, pCH15 Rayleigh L., 1907, PHILOS MAG, V13, P214 Riedel H, 2002, HEARING RES, V169, P85, DOI 10.1016/S0378-5955(02)00342-8 Riedel H., 2001, Zeitschrift fur Audiologie, V40 Riedel H, 2006, HEARING RES, V218, P5, DOI 10.1016/j.heares.2006.03.018 Riedel H, 2002, HEARING RES, V163, P12, DOI 10.1016/S0378-5955(01)00362-8 Ross B, 2007, J ACOUST SOC AM, V121, P1017, DOI 10.1121/1.2404915 Saberi K, 1998, NEURON, V21, P789, DOI 10.1016/S0896-6273(00)80595-4 Schroger E, 1996, HEARING RES, V96, P191, DOI 10.1016/0378-5955(96)00066-4 Schroger E, 1996, NEUROREPORT, V7, P3005, DOI 10.1097/00001756-199611250-00041 Shackleton TM, 2005, JARO-J ASSOC RES OTO, V6, P244, DOI 10.1007/s10162-005-0005-8 Sharbrough F., 1991, J CLIN NEUROPHYSIOL, V8, P200 Soeta Y, 2004, HEARING RES, V196, P109, DOI 10.1016/j.heares.2004.07.002 Sonnadara RR, 2006, BRAIN RES, V1071, P175, DOI 10.1016/j.brainres.2005.11.088 Trahiotis C, 2001, J ACOUST SOC AM, V109, P321, DOI 10.1121/1.1327579 vanderHeijden M, 1997, J ACOUST SOC AM, V101, P1019, DOI 10.1121/1.418026 Yost W., 1987, DIRECTIONAL HEARING NR 62 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2009 VL 256 IS 1-2 BP 39 EP 57 DI 10.1016/j.heares.2009.06.010 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 502XV UT WOS:000270495000004 PM 19555753 ER PT J AU Strimbu, CE Ramunno-Johnson, D Fredrickson, L Arisaka, K Bozovic, D AF Strimbu, C. E. Ramunno-Johnson, D. Fredrickson, L. Arisaka, K. Bozovic, D. TI Correlated movement of hair bundles coupled to the otolithic membrane in the bullfrog sacculus SO HEARING RESEARCH LA English DT Article DE Auditory systems; Vestibular system; Hair cells; Otolithic membrane; Bullfrog sacculus; High-speed imaging ID MECHANOELECTRICAL TRANSDUCTION; SPONTANEOUS OSCILLATIONS; INTERNAL EAR; CELLS; MECHANOTRANSDUCTION; STIFFNESS; AMPLIFICATION; STEREOCILIA; MOTILITY; CHANNELS AB High-speed imaging with a CMOS camera was used to track the motion of multiple hair bundles of the bullfrog sacculus. To maintain the natural degree of intercell coupling, the overlying otolithic membrane was left intact atop the in vitro preparation. Effects of an incoming mechanical signal were mimicked by laterally deflecting the membrane with a glass probe at physiological amplitudes. The motion evoked in the underlying hair bundles was found to be highly phase-locked, yielding an entrained response across hundreds of cells. We imaged significant portions of the saccular epithelium, up to 40 x 350 mu m(2), and observed a high degree of correlation over those scales. Published by Elsevier B.V. C1 [Bozovic, D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. Calif NanoSyst Inst, Los Angeles, CA 90095 USA. RP Bozovic, D (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, 475 Portola Plaza, Los Angeles, CA 90095 USA. EM strimbu@physics.ucla.edu; dameinrj@physics.ucla.edu; lea@physics.ucla.edu; arisaka@physics.ucla.edu; bozovic@physics.ucla.edu CR BENSER ME, 1993, HEARING RES, V68, P243, DOI 10.1016/0378-5955(93)90128-N Camalet S, 2000, P NATL ACAD SCI USA, V97, P3183, DOI 10.1073/pnas.97.7.3183 Dierkes K, 2008, P NATL ACAD SCI USA, V105, P18669, DOI 10.1073/pnas.0805752105 Eguiluz VM, 2000, PHYS REV LETT, V84, P5232, DOI 10.1103/PhysRevLett.84.5232 Fettiplace R, 2001, TRENDS NEUROSCI, V24, P169, DOI 10.1016/S0166-2236(00)01740-9 Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 FREDRICKSON L, 2007, P SPIE, V6859 Freeman DM, 2003, HEARING RES, V180, P11, DOI 10.1016/S0378-5955(03)00072-8 Gillespie PG, 2001, NATURE, V413, P194, DOI 10.1038/35093011 He DZZ, 2004, NATURE, V429, P766, DOI 10.1038/nature02591 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 Hudspeth A. J, 2000, PRINCIPLES NEURAL SC, P590 KACHAR B, 1990, HEARING RES, V45, P179, DOI 10.1016/0378-5955(90)90119-A Kozlov AS, 2007, NAT NEUROSCI, V10, P87, DOI 10.1038/nn1818 Le Goff L, 2005, P NATL ACAD SCI USA, V102, P16996, DOI 10.1073/pnas.0508731102 LeMasurier M, 2005, NEURON, V48, P403, DOI 10.1016/j.neuron.2005.10.017 MARKIN VS, 1995, ANNU REV BIOPH BIOM, V24, P59 Martin P, 2003, J NEUROSCI, V23, P4533 Martin P, 2001, P NATL ACAD SCI USA, V98, P14380, DOI 10.1073/pnas.251530598 Martin P, 2000, P NATL ACAD SCI USA, V97, P12026, DOI 10.1073/pnas.210389497 Nadrowski B, 2004, P NATL ACAD SCI USA, V101, P12195, DOI 10.1073/pnas.0403020101 Nicolson T, 2005, TRENDS NEUROSCI, V28, P140, DOI 10.1016/j.tins.2004.12.008 Ramunno-Johnson D, 2009, BIOPHYS J, V96, P1159, DOI 10.1016/j.bpj.2008.09.060 Ricci AJ, 2005, J NEUROSCI, V25, P7831, DOI 10.1523/JNEUROSCI.1127-05.2005 Smotherman MS, 2000, J EXP BIOL, V203, P2237 TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807 Tinevez JY, 2007, BIOPHYS J, V93, P4053, DOI 10.1529/biophysj.107.108498 Vollrath MA, 2007, ANNU REV NEUROSCI, V30, P339, DOI 10.1146/annurev.neuro.29.051605.112917 NR 28 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2009 VL 256 IS 1-2 BP 58 EP 63 DI 10.1016/j.heares.2009.06.015 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 502XV UT WOS:000270495000005 PM 19573584 ER PT J AU Ng, CW Plakke, B Poremba, A AF Ng, Chi-Wing Plakke, Bethany Poremba, Amy TI Primate auditory recognition memory performance varies with sound type SO HEARING RESEARCH LA English DT Article DE Macaca mulatta; Delayed matching-to-sample; Vocalizations; Performance; Same; Different; Rhesus; Monkey ID VENTROLATERAL PREFRONTAL CORTEX; OBJECT LOCATION MEMORY; MONKEYS CEBUS-APELLA; SEX-DIFFERENCES; RHESUS-MONKEYS; MACACA-MULATTA; COMMUNICATION SOUNDS; GENDER-DIFFERENCES; TEMPORAL CORTEX; AIR-CONDUCTION AB Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatto), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy] Univ Iowa, Dept Psychol, Behav & Cognit Neurosci Program, Iowa City, IA 52242 USA. RP Poremba, A (reprint author), Univ Iowa, Dept Psychol, Behav & Cognit Neurosci Program, E11 Seashore Hall, Iowa City, IA 52242 USA. EM amy-poremba@uiowa.edu FU Amy Poremba from University; NIH, NIDCD [DC0007156] FX We thank Dr. Mortimer Mishkin for his invaluable support of our research, Dr. Yale Cohen for providing guidance and MATLAB scripts for acoustic analyses, and Dr. Robert McMurray for advising on methods of statistical analysis. This work was supported by funding awarded to Amy Poremba from University of Iowa Startup Funds and NIH, NIDCD, DC0007156. CR Amrhein PC, 2002, J EXP PSYCHOL LEARN, V28, P843, DOI 10.1037//0278-7393.28.5.843 Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078 Belin P, 2006, PHILOS T R SOC B, V361, P2091, DOI 10.1098/rstb.2006.1933 Belizaire G, 2007, NEUROREPORT, V18, P29 BETKE K, 1991, J ACOUST SOC AM, V89, P2400, DOI 10.1121/1.400927 Boersma P., 2007, PRAAT DOING PHONETIC Buffalo EA, 1999, LEARN MEMORY, V6, P572, DOI 10.1101/lm.6.6.572 Bulthoff I, 2006, PROG BRAIN RES, V154, P315, DOI 10.1016/S0079-6123(06)54017-8 CHUNG DY, 1983, J ACOUST SOC AM, V73, P1277, DOI 10.1121/1.389276 Cohen MA, 2009, P NATL ACAD SCI USA, V106, P6008, DOI 10.1073/pnas.0811884106 Cohen YE, 2007, J NEUROPHYSIOL, V97, P1470, DOI 10.1152/jn.00769.2006 Cohen YE, 2004, J NEUROSCI, V24, P11307, DOI 10.1523/JNEUROSCI.3935-04.2004 Cohen YE, 2006, BIOL LETT-UK, V2, P261, DOI 10.1698/rsbl.2005.0436 COLOMBO M, 1990, SCIENCE, V247, P336, DOI 10.1126/science.2296723 Colombo M, 1996, J NEUROSCI, V16, P4501 DAMATO MR, 1985, ANIM LEARN BEHAV, V13, P375, DOI 10.3758/BF03208013 DIAMOND R, 1986, J EXP PSYCHOL GEN, V115, P107, DOI 10.1037/0096-3445.115.2.107 Dreisbach LE, 2007, INT J AUDIOL, V46, P419, DOI 10.1080/14992020701355074 EALS M, 1994, ETHOL SOCIOBIOL, V15, P95, DOI 10.1016/0162-3095(94)90020-5 Ecuyer-Dab I, 2004, COGNITION, V91, P221, DOI 10.1016/j.cognition.2003.09.007 EHRET G, 1987, NATURE, V325, P249, DOI 10.1038/325249a0 Fecteau S, 2004, NEUROIMAGE, V23, P840, DOI 10.1016/j.neuroimage.2004.09.019 Fitch WT, 2006, J ACOUST SOC AM, V120, P2132, DOI 10.1121/1.2258499 Fitch WT, 2000, TRENDS COGN SCI, V4, P258, DOI 10.1016/S1364-6613(00)01494-7 FRANK T, 1990, EAR HEARING, V11, P450, DOI 10.1097/00003446-199012000-00007 Freedman DJ, 2003, J NEUROSCI, V23, P5235 Fritz J, 2005, P NATL ACAD SCI USA, V102, P9359, DOI 10.1073/pnas.0503998102 Geissler DB, 2004, EUR J NEUROSCI, V19, P1027, DOI 10.1111/j.1460-9568.2004.03205.x Ghazanfar AA, 2007, CURR BIOL, V17, P425, DOI 10.1016/j.cub.2007.01.029 Ghazanfar AA, 2001, CURR OPIN NEUROBIOL, V11, P712, DOI 10.1016/S0959-4388(01)00274-4 Gifford GW, 2003, BRAIN BEHAV EVOLUT, V61, P213, DOI 10.1159/000070704 Gifford GW, 2005, J COGNITIVE NEUROSCI, V17, P1471, DOI 10.1162/0898929054985464 Gil-Da-Costa R, 2004, P NATL ACAD SCI USA, V101, P17516, DOI 10.1073/pnas.0408077101 HALLMO P, 1994, SCAND AUDIOL, V23, P165, DOI 10.3109/01050399409047503 HAUSER MD, 1993, BEHAV ECOL, V4, P194, DOI 10.1093/beheco/4.3.194 Hauser MD, 2007, ANIM BEHAV, V73, P1059, DOI 10.1016/j.anbehav.2006.11.006 Hauser MD, 1998, ANIM BEHAV, V55, P1647, DOI 10.1006/anbe.1997.0712 Hienz RD, 2004, J ACOUST SOC AM, V116, P1692, DOI 10.1121/1.1778902 Jonasson Z, 2005, NEUROSCI BIOBEHAV R, V28, P811, DOI 10.1016/j.neubiorev.2004.10.006 Kanwisher N, 2006, PHILOS T R SOC B, V361, P2109, DOI 10.1098/rstb.2006.1934 KIMURA D, 1994, CURR DIR PSYCHOL SCI, V3, P57, DOI 10.1111/1467-8721.ep10769964 Kimura D, 1996, CURR OPIN NEUROBIOL, V6, P259, DOI 10.1016/S0959-4388(96)80081-X Kimura D, 2002, PSYCHOL REP, V91, P1137, DOI 10.2466/PR0.91.8.1137-1142 Kupfer K, 1977, EXP BRAIN RES, V30, P75 Lacreuse A, 2005, BEHAV NEUROSCI, V119, P118, DOI 10.1037/0735-7044.119.1.118 Lacreuse A, 1999, HORM BEHAV, V36, P70, DOI 10.1006/hbeh.1999.1532 Levy LJ, 2005, BEHAV NEUROSCI, V119, P853, DOI 10.1037/0735-7044.119.4.853 LOPPONEN H, 1991, SCAND AUDIOL, V20, P181, DOI 10.3109/01050399109074951 Muhammad R, 2006, J COGNITIVE NEUROSCI, V18, P974, DOI 10.1162/jocn.2006.18.6.974 Murray EA, 1998, J NEUROSCI, V18, P6568 OSTERHAMMEL D, 1979, Scandinavian Audiology, V8, P73, DOI 10.3109/01050397909076304 Parr LA, 2006, PERCEPTION, V35, P1473, DOI 10.1068/p5455 Parr LA, 2008, ANIM COGN, V11, P467, DOI 10.1007/s10071-008-0137-4 PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 PETERSEN MR, 1984, BEHAV NEUROSCI, V98, P779, DOI 10.1037/0735-7044.98.5.779 Petkov CI, 2008, NAT NEUROSCI, V11, P367, DOI 10.1038/nn2043 Poremba A, 2004, NATURE, V427, P448, DOI 10.1038/nature02268 Postma A, 1998, BRAIN COGNITION, V36, P334, DOI 10.1006/brcg.1997.0974 Remedios R, 2009, J NEUROSCI, V29, P1034, DOI 10.1523/JNEUROSCI.4089-08.2009 Rendall D, 2003, J ACOUST SOC AM, V113, P3390, DOI 10.1121/1.1568942 Rizk-Jackson AM, 2006, BEHAV BRAIN RES, V173, P181, DOI 10.1016/j.bbr.2006.06.029 Romanski LM, 2005, J NEUROPHYSIOL, V93, P734, DOI 10.1152/jn.00675.2004 Russ BE, 2007, HEARING RES, V229, P204, DOI 10.1016/j.heares.2006.10.010 Seifert LS, 1997, J EXP PSYCHOL LEARN, V23, P1106, DOI 10.1037/0278-7393.23.5.1106 Singh NC, 2003, J ACOUST SOC AM, V114, P3394, DOI 10.1121/1.1624067 Sutcliffe JS, 2007, BEHAV BRAIN RES, V177, P117, DOI 10.1016/j.bbr.2006.10.029 Theunissen FE, 2006, CURR OPIN NEUROBIOL, V16, P400, DOI 10.1016/j.conb.2006.07.003 Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911 TOMONAGA M, 1994, PRIMATES, V35, P155, DOI 10.1007/BF02382051 Voyer D, 2007, PSYCHON B REV, V14, P23, DOI 10.3758/BF03194024 Warren SG, 1997, BEHAV NEUROSCI, V111, P259, DOI 10.1037/0735-7044.111.2.259 Wright AA, 1998, PSYCHOL SCI, V9, P91, DOI 10.1111/1467-9280.00017 Wright AA, 1999, J EXP PSYCHOL ANIM B, V25, P284, DOI 10.1037/0097-7403.25.3.284 Zola SM, 2000, J NEUROSCI, V20, P451 ZOLOTH SR, 1979, SCIENCE, V204, P870, DOI 10.1126/science.108805 NR 75 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2009 VL 256 IS 1-2 BP 64 EP 74 DI 10.1016/j.heares.2009.06.014 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 502XV UT WOS:000270495000006 PM 19567264 ER PT J AU Luo, X Fu, QJ Wu, HP Hsu, CJ AF Luo, Xin Fu, Qian-Jie Wu, Hung-Pin Hsu, Chuan-Jen TI Concurrent-vowel and tone recognition by Mandarin-speaking cochlear implant users SO HEARING RESEARCH LA English DT Article DE Concurrent-vowel recognition; Concurrent-tone recognition; Cochlear implants; Mandarin Chinese ID SPEECH RECOGNITION; DEAF-CHILDREN; PERCEPTUAL SEGREGATION; FREQUENCY-MODULATION; TEMPORAL CUES; HEARING; PITCH; AGE; NOISE AB In Mandarin Chinese, tonal patterns are lexically meaningful. In a multi-talker environment, competing tones may create interference in addition to competing vowels and consonants. The present study measured Mandarin-speaking cochlear implant (CI) users' ability to recognize concurrent vowels, tones, and syllables in a concurrent-syllable recognition test. Concurrent syllables were constructed by summing either one Chinese syllable each from one male and one female talker or two syllables from the same male talker. Each talker produced 16 different syllables (4 vowels combined with 4 tones); all syllables were normalized to have the same overall duration and amplitude. Both single- and concurrent-syllable recognition were measured in 4 adolescent and 4 adult Cl subjects, using their clinically assigned speech processors. The results showed no significant difference in performance between the adolescent and adult CI subjects. With single syllables, mean vowel recognition was 90% correct, while tone and syllable recognition were only 63% and 57% correct, respectively. With concurrent syllables, vowel, tone, and syllable recognition scores dropped by 40-60 percentage points. Concurrent-syllable performance was significantly correlated with single-syllable performance. Concurrent-vowel and syllable recognition were not significantly different between the same- and different-talker conditions, while concurrent-tone recognition was significantly better with the same-talker condition. Vowel and tone recognition were better when concurrent syllables contained the same vowels or tones, respectively. Across the different vowel pairs, tone recognition was less variable than vowel recognition; across the different tone pairs, vowel recognition was less variable than tone recognition. The present results suggest that interference between concurrent tones may contribute to Mandarin-speaking Cl users' susceptibility to competing-talker backgrounds. (C) 2009 Elsevier B.V. All rights reserved. C1 [Luo, Xin] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA. [Fu, Qian-Jie] House Ear Res Inst, Div Commun & Auditory Neurosci, Los Angeles, CA 90057 USA. [Wu, Hung-Pin] Natl Taiwan Univ, Inst Occupat Med & Ind Hyg, Taipei 10764, Taiwan. [Wu, Hung-Pin] Buddhist Tzuchi Gen Hosp, Dept Otolaryngol, Taipei, Taiwan. [Hsu, Chuan-Jen] Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan. [Hsu, Chuan-Jen] Natl Taiwan Univ, Coll Med, Taipei 10764, Taiwan. RP Luo, X (reprint author), Purdue Univ, Dept Speech Language & Hearing Sci, 500 Oval Dr, W Lafayette, IN 47907 USA. EM luo5@purdue.edu FU NIH [R03-DC-008192, R01-DC-004993] FX We are grateful to all subjects for their participation in the present study. We thank John J. Galvin III for assistance in editing the manuscript. We would also like to thank two anonymous reviewers for their constructive comments on an earlier version of this paper. Research was supported in part by NIH Grants R03-DC-008192 and R01-DC-004993. CR ASSMANN PF, 1990, J ACOUST SOC AM, V88, P680, DOI 10.1121/1.399772 Bregman AS., 1990, AUDITORY SCENE ANAL CHALIKIA MH, 1989, PERCEPT PSYCHOPHYS, V46, P487, DOI 10.3758/BF03210865 Connor CM, 2006, EAR HEARING, V27, P628, DOI 10.1097/01.aud.0000240640.59205.42 CULLING JF, 1995, J ACOUST SOC AM, V98, P837, DOI 10.1121/1.413510 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2004, EAR HEARING, V25, P501, DOI 10.1097/01.aud.0000145125.50433.19 Fu QJ, 2000, ASIA PACIFIC J SPEEC, V5, P45 Fu QJ, 1998, J ACOUST SOC AM, V104, P505, DOI 10.1121/1.423251 Green T, 2004, J ACOUST SOC AM, V116, P2298, DOI 10.1121/1.1785611 Kirk Karen Iler, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P69 Laneau J, 2006, J ACOUST SOC AM, V119, P491, DOI 10.1121/1.2133391 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 Luo X, 2008, EAR HEARING, V29, P957, DOI 10.1097/AUD.0b013e3181888f61 Luo X., 2007, TRENDS AMPLIF, V11, P301, DOI DOI 10.1177/1084713807305301 Luo Xin, 2004, Journal of the Acoustical Society of America, V116, P3659, DOI 10.1121/1.1783352 Luo X, 2009, J ACOUST SOC AM, V125, P3223, DOI 10.1121/1.3106534 MARIN CMH, 1991, J ACOUST SOC AM, V89, P341, DOI 10.1121/1.400469 McDermott Hugh J, 2004, Trends Amplif, V8, P49, DOI 10.1177/108471380400800203 McKay CM, 1999, J ACOUST SOC AM, V105, P347, DOI 10.1121/1.424553 Peng SC, 2008, EAR HEARING, V29, P336, DOI 10.1097/AUD.0b013e318168d94d Peng SC, 2004, EAR HEARING, V25, P251, DOI 10.1097/01.AUD.0000130797.73809.40 Qin MK, 2005, EAR HEARING, V26, P451, DOI 10.1097/01.aud.0000179689.79868.06 Scheffers M. T. M., 1983, THESIS GRONINGEN U N SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399 Wang R. H, 1993, STANDARD CHINESE DAT Wei CG, 2004, HEARING RES, V197, P87, DOI 10.1016/j.heares.2004.06.002 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Wu JL, 2006, INT J PEDIATR OTORHI, V70, P207, DOI 10.1016/j.ijporl.2005.06.013 Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102 Zwolan TA, 2004, OTOL NEUROTOL, V25, P112, DOI 10.1097/00129492-200403000-00006 NR 32 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2009 VL 256 IS 1-2 BP 75 EP 84 DI 10.1016/j.heares.2009.07.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 502XV UT WOS:000270495000007 PM 19595753 ER PT J AU Mulders, WHAM Paolini, AG Needham, K Robertson, D AF Mulders, W. H. A. M. Paolini, A. G. Needham, K. Robertson, D. TI Synaptic responses in cochlear nucleus neurons evoked by activation of the olivocochlear system SO HEARING RESEARCH LA English DT Article DE Efferents; Hearing; Guinea pigs; Intracellular recording ID ELECTRICAL-STIMULATION PARAMETERS; ONSET CHOPPER NEURONS; INTRACELLULAR RESPONSES; COMMISSURAL NEURONS; STELLATE CELLS; GUINEA-PIG; CONTRALATERAL SOUND; RAT; INHIBITION; DEPENDENCE AB The action of olivocochlear collaterals to the cochlear nucleus is not fully established. Synaptic ultrastructure suggests an excitatory role. Extracellular recordings show spikes evoked by electrical stimulation of olivocochlear axons, but these spikes in the cochlear nucleus may be antidromic (activation of output axons) or orthodromic (synaptic input). We therefore recorded intracellular responses to shocks to olivocochlear axons in anaesthetized guinea pigs. In chopper and primary-like neurons shocks caused either no response or an inhibitory synaptic response (IPSP), but never an excitatory one (EPSP). In contrast, onset neurons never showed IPSPs but showed a variety of other responses; antidromic spikes, EPSPs, orthodromic spikes or no effect. The results agree with earlier extracellular observations in that olivocochlear collaterals provide excitatory input to onset neurons. Because some onset neurons are inhibitory they may be the source of the IPSPs observed in other cochlear nucleus neurons. The data also show that electrical stimulation at the floor of the IVth ventricle results in antidromic spikes as well. However, intracellular recording enabled the orthodromic action to be verified and the presumed olivocochlear action to be better understood. Our data support the hypothesis that olivocochlear collaterals initiate excitatory input onto onset-chopper neurons. (C) 2009 Elsevier B.V. All rights reserved. C1 [Mulders, W. H. A. M.; Robertson, D.] Univ Western Australia, Auditory Lab, Discipline Physiol, Sch Biomed Biomol & Chem Sci, Crawley, WA 6009, Australia. [Needham, K.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. [Paolini, A. G.] La Trobe Univ, Sch Psychol Sci, Graeme Clark Ctr, Bundoora, Vic 3086, Australia. RP Mulders, WHAM (reprint author), Univ Western Australia, Auditory Lab, Discipline Physiol, Sch Biomed Biomol & Chem Sci M311, 35 Stirling Highway, Crawley, WA 6009, Australia. EM hmulders@cyllene.uwa.edu.au CR Alibardi L, 1998, ANN ANAT, V180, P427 Alibardi L, 2000, ANN ANAT, V182, P207, DOI 10.1016/S0940-9602(00)80023-0 Arnott RH, 2004, JARO-J ASSOC RES OTO, V5, P153, DOI 10.1007/s10162-003-4036-8 Babalian AL, 2002, NEUROREPORT, V13, P555, DOI 10.1097/00001756-200203250-00038 Benson TE, 1996, J COMP NEUROL, V365, P27 BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106 Bleeck S, 2006, HEARING RES, V212, P176, DOI 10.1016/j.heares.2005.12.005 BROWN MC, 1993, J COMP NEUROL, V337, P600, DOI 10.1002/cne.903370406 CANT NB, 1982, J COMP NEUROL, V212, P313, DOI 10.1002/cne.902120308 DESMEDT J. E., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1478, DOI 10.1121/1.1918374 Doucet JR, 2009, JARO-J ASSOC RES OTO, V10, P269, DOI 10.1007/s10162-008-0155-6 FENG JJ, 1994, J COMP NEUROL, V346, P1, DOI 10.1002/cne.903460102 Fujino K, 2001, J NEUROSCI, V21, P7372 Ingham NJ, 2006, EUR J NEUROSCI, V24, P2515, DOI 10.1111/j.1460-9568.2006.05134.x JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244 Mulders WHAM, 2003, HEARING RES, V176, P113, DOI 10.1016/S0378-5955(02)00750-5 Mulders WHAM, 2008, EUR J NEUROSCI, V27, P702, DOI 10.1111/j.1460-9568.2008.06046.x Mulders WHAM, 2007, J NEUROPHYSIOL, V97, P3288, DOI 10.1152/jn.01148.2006 Mulders WHAM, 2002, HEARING RES, V174, P264, DOI 10.1016/S0378-5955(02)00701-3 Needham K, 2006, HEARING RES, V216, P31, DOI 10.1016/j.heares.2006.01.016 Needham K, 2003, J NEUROSCI, V23, P6357 Needham K, 2007, BRAIN RES, V1134, P113, DOI 10.1016/j.brainres.2006.11.058 Palmer AR, 2003, EXP BRAIN RES, V153, P418, DOI 10.1007/s00221-003-1602-6 Paolini AG, 2005, EUR J NEUROSCI, V21, P1236, DOI 10.1111/j.1460-9568.2005.03958.x Paolini AG, 1999, J NEUROPHYSIOL, V81, P2347 Paolini AG, 1997, NEUROREPORT, V8, P3415, DOI 10.1097/00001756-199710200-00044 RAJAN R, 1988, HEARING RES, V36, P53, DOI 10.1016/0378-5955(88)90137-2 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 Sayles M, 2008, NEURON, V58, P789, DOI 10.1016/j.neuron.2008.03.029 Schofield BR, 1996, J COMP NEUROL, V375, P128, DOI 10.1002/(SICI)1096-9861(19961104)375:1<128::AID-CNE8>3.0.CO;2-5 Seluakumaran K, 2008, EXP BRAIN RES, V186, P161, DOI 10.1007/s00221-007-1219-2 SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8 SHORE SE, 1992, HEARING RES, V62, P16, DOI 10.1016/0378-5955(92)90199-W Shore SE, 2003, EXP BRAIN RES, V153, P427, DOI 10.1007/s00221-003-1610-6 Smith PH, 2005, J COMP NEUROL, V482, P349, DOI 10.1002/cne.20407 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 NR 43 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2009 VL 256 IS 1-2 BP 85 EP 92 DI 10.1016/j.heares.2009.07.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 502XV UT WOS:000270495000008 PM 19607895 ER PT J AU Bal, R Baydas, G Naziroglu, M AF Bal, Ramazan Baydas, Giyasettin Naziroglu, Mustafa TI Electrophysiological properties of ventral cochlear nucleus neurons of the dog SO HEARING RESEARCH LA English DT Article DE Auditory pathways; Ventral cochlear nucleus; Patch-clamp; Dog ID AUDITORY-NERVE FIBERS; VOLTAGE-SENSITIVE CONDUCTANCES; OCTOPUS CELLS; HORSERADISH-PEROXIDASE; BUSHY CELLS; LATERAL LEMNISCUS; CHOLINERGIC MODULATION; SUBESOPHAGEAL GANGLIA; ELECTRICAL-PROPERTIES; POSTNATAL-DEVELOPMENT AB Neurons in the cochlear nucleus (CN) have distinct anatomical and biophysical specializations and extract various facets of auditory information which are transmitted to the higher auditory centres. The aim of the present study was to determine if the principal neurons (stellate, bushy and octopus cells) of the ventral cochlear nucleus (VCN) in 2-week-old dog brain slices share common electrophysiological properties with the principal neurons of mouse VCN. Stellate cells (n = 21, of which three were anatomically identified), fired large, regular trains of action potentials in response to depolarizing current pulses. Input resistance and membrane time constant were 176 +/- 35.9 M Omega (n = 21) and 8.8 +/- 1.4 ms (n = 21), respectively. Bushy cells, (n = 6, of which three were anatomically identified) responded with a single action potential at the onset of depolarizing current steps and showed large hyperpolarizing voltage changes that sag back toward rest to hyperpolarizing current pulses. Input resistance and membrane time constant were 120.4 +/- 56.1 M Omega (n = 5) and 7.6 +/- 2.3 ms (n = 5), respectively. Octopus cells (n = 17, of which seven were anatomically identified) fired a single action potential at the start of a depolarizing current step and exhibited a pronounced depolarizing sag of the membrane potential towards the resting value to hyperpolarizing current steps. Input resistance and membrane time constant were 17.58 +/- 1.3 M Omega (n = 15) and 1.34 +/- 0.13 ms (n = 15), respectively. While stellate cells did not have a threshold rate of depolarization (dV/dt(thresh)), bushy and octopus had a dV/dt(thresh) of 5.06 +/- 1.04 mV/ms (n = 4) and 10.6 +/- 2.0 mV/ms (n = 6), respectively. In octopus cells, the single action potential was abolished by tetrodotoxin (TTX). An alpha-dendrotoxin (alpha-DTX)-sensitive, low-voltage-activated potassium conductance (g(KL)) together with a ZD7288-sensitive, mixed-cation conductance (g(b)) were responsible for the low input resistance, and as a consequence for the brief time constant of the octopus cells. We conclude that the principal neurons of the dog VCN are, as in mouse and cat, distinguishable on the basis of whole-cell patch-clamp recordings. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bal, Ramazan] Firat Univ, Fac Med, Dept Biophys, TR-23119 Elazig, Turkey. [Baydas, Giyasettin] Bingol Univ, Bingol Univ Rectorate, Bingol, Turkey. [Naziroglu, Mustafa] Suleyman Demirel Univ, Fac Med, Dept Biophys, TR-32200 Isparta, Turkey. RP Bal, R (reprint author), Firat Univ, Fac Med, Dept Biophys, TR-23119 Elazig, Turkey. EM rbal1969@gmail.com FU TUBITAK [105 O 215] FX We are grateful to Prof. Donata Oertel for her guidance and support in setting up the electrophysiology lab. We thank Dr. Adrian Rees for reading the manuscript and making suggestions for its improvement. This work was supported by a grant from TUBITAK, 105 O 215 (Turkey). CR ADAMS JC, 1986, ARCH OTOLARYNGOL, V112, P1253 Adams JC, 1997, AUDIT NEUROSCI, V3, P335 ADAMS JC, 1976, J COMP NEUROL, V170, P107, DOI 10.1002/cne.901700108 Arnott RH, 2004, JARO-J ASSOC RES OTO, V5, P153, DOI 10.1007/s10162-003-4036-8 Bal R, 2000, J NEUROPHYSIOL, V84, P806 Bal R, 2001, J MEMBRANE BIOL, V179, P71, DOI 10.1007/s002320010038 Bal R, 2000, J MEMBRANE BIOL, V173, P179, DOI 10.1007/s002320001018 Bal R, 2009, JARO-J ASSOC RES OTO, V10, P281, DOI 10.1007/s10162-009-0159-x Bal R, 2002, NEUROSCI LETT, V317, P42, DOI 10.1016/S0304-3940(01)02425-9 Bal R, 2001, J NEUROPHYSIOL, V86, P2299 Bal R, 2007, JARO-J ASSOC RES OTO, V8, P509, DOI 10.1007/s10162-007-0091-x Barnes-Davies M, 2004, EUR J NEUROSCI, V19, P325, DOI 10.1111/j.1460-9568.2003.03133.x BEAVER BV, 2009, CANINE BEHAV INSIGHT, P53 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406 Brew HM, 2003, J PHYSIOL-LONDON, V548, P1, DOI 10.1113/jphysiol.2002.035568 BRUGGE JF, 1984, J ACOUST SOC AM, V75, P1548, DOI 10.1121/1.390826 Cao XJ, 2005, J NEUROPHYSIOL, V94, P821, DOI 10.1152/jn.01049.2004 Cao XJ, 2007, J NEUROPHYSIOL, V97, P3961, DOI 10.1152/jn.00052.2007 DOLAN DF, 1985, J ACOUST SOC AM, V78, P544, DOI 10.1121/1.392421 Dolly JO, 1996, J BIOENERG BIOMEMBR, V28, P231, DOI 10.1007/BF02110698 Doucet JR, 1997, J COMP NEUROL, V385, P245 EHRET G, 1974, NATURWISSENSCHAFTEN, V61, P506 Ferragamo MJ, 2002, J NEUROPHYSIOL, V87, P2262, DOI 10.1152/jn.00587.2001 FORSCHER P, 1985, J GEN PHYSIOL, V85, P743, DOI 10.1085/jgp.85.5.743 FRIAUF E, 1988, EXP BRAIN RES, V73, P263 Fujino K, 2001, J NEUROSCI, V21, P7372 Gardner SM, 1999, J NEUROSCI, V19, P8721 GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GOLDING NL, 1995, J NEUROSCI, V15, P3138 Golding NL, 1999, J NEUROSCI, V19, P2897 HACKNEY CM, 1990, ANAT EMBRYOL BERL, V182, P3 HARRISON JM, 1966, J COMP NEUROL, V126, P391, DOI 10.1002/cne.901260303 Heffner HE, 2007, J AM ASSOC LAB ANIM, V46, P11 Isaacson JS, 1996, J NEUROPHYSIOL, V76, P1566 KANE EC, 1973, INT J NEUROSCI, V5, P251, DOI 10.3109/00207457309149485 KETTNER RE, 1985, J NEUROSCI, V5, P275 Leao RN, 2004, J PHYSIOL-LONDON, V559, P25, DOI 10.1113/jphysiol.2004.067421 LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC MANIS PB, 1991, J NEUROSCI, V11, P2865 McGinley MJ, 2006, HEARING RES, V216, P52, DOI 10.1016/j.heares.2006.02.006 MOORE JK, 1979, AM J ANAT, V154, P393, DOI 10.1002/aja.1001540306 MOREST DK, 1990, J COMP NEUROL, V300, P230, DOI 10.1002/cne.903000207 Needham K, 2003, J NEUROSCI, V23, P6357 NELKEN I, 1994, J NEUROPHYSIOL, V71, P2446 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 Oertel D, 2008, NEUROSCIENCE, V154, P77, DOI 10.1016/j.neuroscience.2008.01.085 OERTEL D, 1983, J NEUROSCI, V3, P2043 OERTEL D, 2000, P NATL ACAD SCI USA, V97, P3 Oertel D, 2001, AUDIOL NEURO-OTOL, V6, P161, DOI 10.1159/000046825 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 OSEN KK, 1970, ARCH ITAL BIOL, V108, P21 Palmer AR, 1996, J NEUROPHYSIOL, V75, P780 Reyes AD, 1996, J NEUROSCI, V16, P993 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 Rodrigues ARA, 2006, J NEUROPHYSIOL, V95, P76, DOI 10.1152/jn.00624.2005 ROMAND R, 1975, BRAIN RES, V83, P225, DOI 10.1016/0006-8993(75)90932-4 Rusznák Z, 1996, Neurobiology (Bp), V4, P275 Schofield BR, 1997, J COMP NEUROL, V379, P363, DOI 10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1 Schwarz DWF, 1997, HEARING RES, V114, P127, DOI 10.1016/S0378-5955(97)00162-7 Scott LL, 2005, J NEUROSCI, V25, P7887, DOI 10.1523/JNEUROSCI.1016-05.2005 SMITH PH, 1987, J COMP NEUROL, V266, P360, DOI 10.1002/cne.902660305 Smith PH, 2005, J COMP NEUROL, V482, P349, DOI 10.1002/cne.20407 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 SMITH PH, 1991, J COMP NEUROL, V304, P7 SMITH PH, 1993, NATO ADV SCI INST SE, V239, P349 Taschenberger H, 2000, J NEUROSCI, V20, P9162 TOLBERT LP, 1982, NEUROSCIENCE, V7, P3031, DOI 10.1016/0306-4522(82)90228-7 WEBSTER DB, 1982, AM J ANAT, V163, P103, DOI 10.1002/aja.1001630202 WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106 Woolf N K, 1985, Brain Res, V349, P131 WU SH, 1987, HEARING RES, V30, P99 NR 76 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2009 VL 256 IS 1-2 BP 93 EP 103 DI 10.1016/j.heares.2009.07.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 502XV UT WOS:000270495000009 PM 19615433 ER PT J AU Finlayson, PG Kaltenbach, JA AF Finlayson, Paul G. Kaltenbach, James A. TI Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure SO HEARING RESEARCH LA English DT Article DE Burst; Tinnitus; Spike waveform; Couplet; Fusiform cells; Dorsal cochlear nucleus ID SPONTANEOUS NEURAL ACTIVITY; STEM AUDITORY NUCLEI; AUTOTOMY-INDUCED CHANGES; COMPLEX-SPIKING NEURONS; ROOT GANGLION NEURONS; INDUCED HEARING-LOSS; BRAIN-STEM; GUINEA-PIG; INFERIOR COLLICULUS; NEUROPATHIC PAIN AB Electrophysiological recordings in the dorsal cochlear nucleus (DCN) were conducted to determine the nature of changes in single unit activity following intense sound exposure and how they relate to changes in multiunit activity. Single and multiunit spontaneous discharge rates and auditory response properties were recorded from the left DCN of tone exposed and control hamsters. The exposure condition consisted of a 10 kHz tone presented in the free-field at a level of 115 dB for 4 h. Recordings conducted at 5-6 days post-exposure revealed several important changes. Increases in multiunit spontaneous neural activity were observed at surface and subsurface levels of the DCN of exposed animals, reaching a peak at intermediate depths corresponding to the fusiform cell layer and upper level of the deep layer. Extracellular spikes from single units in the DCN of both control and exposed animals characteristically displayed either M- or W-shaped waveforms, although the proportion of units with M-shaped spikes was higher in exposed animals than in controls. W-shaped spikes showed significant increases in the duration of their major peaks after exposure, suggestive of changes in the intrinsic membrane properties of neurons. Spike amplitudes were not found to be significantly increased in exposed animals. Spontaneous discharge rates of single units increased significantly from 8.7 spikes/s in controls to 15.9 spikes/s after exposure. Units with the highest activity in exposed animals displayed type III electrophysiological responses patterns, properties usually attributed to fusiform cells. Increases in spontaneous discharge rate were significantly larger when the comparison was limited to a subset of units having type III frequency response patterns. There was an increase in the incidence of simple spiking activity as well as in the incidence of spontaneous bursting activity, although the incidence of spikes occurring in bursts was low in both animal groups (i.e., <30%). Despite this low incidence, approximately half of the increase in spontaneous activity in exposed animals was accounted for by an increase in bursting activity. Finally, we found no evidence of an increase in the mean number of spontaneously active units in electrode penetrations of exposed animals compared to those in controls. Overall our results indicate that the increase in multiunit activity observed at the DCN surface reflects primarily an increase in the spontaneous discharge rates of single units below the DCN surface, of which approximately half was contributed by spikes in bursts. The highest level of hyperactivity was observed among units having the response properties most commonly attributed to fusiform cells. (C) 2009 Elsevier B.V. All rights reserved. C1 [Finlayson, Paul G.] Wayne State Univ, Sch Med, Dept Otolaryngol, Detroit, MI 48201 USA. [Kaltenbach, James A.] Cleveland Clin, Dept Neurosci, Head & Neck Inst, Cleveland, OH 44195 USA. RP Finlayson, PG (reprint author), Wayne State Univ, Sch Med, Dept Otolaryngol, 5E UHC, Detroit, MI 48201 USA. EM pfinlays@med.wayne.edu FU NIDCD [R01 DC03258] FX This project was supported by a Grant from NIDCD (R01 DC03258). CR Abdulla FA, 2001, J NEUROPHYSIOL, V85, P644 Abdulla FA, 2001, J NEUROPHYSIOL, V85, P630 Asako M, 2005, J NEUROSCI RES, V81, P102, DOI 10.1002/jnr.20542 Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 Chaplan SR, 2003, J NEUROSCI, V23, P1169 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Cransac H, 1998, HEARING RES, V118, P151, DOI 10.1016/S0378-5955(98)00031-8 Devor M, 2006, J PAIN, V7, pS3, DOI 10.1016/j.jpain.2005.09.006 Ding J, 1999, J NEUROPHYSIOL, V82, P3434 Dong S, 2009, NEUROSCIENCE, V159, P1164, DOI 10.1016/j.neuroscience.2009.01.043 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Ellis LD, 2007, J NEUROSCI, V27, P9491, DOI 10.1523/JNEUROSCI.1106-07.2007 FINLAYSON P, 2005, ASS RES OT ABSTR, P654 Finlayson PG, 2006, BRAIN RES, V1069, P63, DOI 10.1016/j.brainres.2005.10.097 Francis HW, 2000, HEARING RES, V149, P91, DOI 10.1016/S0378-5955(00)00165-9 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 GODFREY DA, 1975, J COMP NEUROL, V162, P269, DOI 10.1002/cne.901620207 HAINS NC, 2003, J NEUROSCI, V23, P8881 Hu HJ, 2006, NEURON, V50, P89, DOI 10.1016/j.neuron.2006.03.010 Illing RB, 2005, HEARING RES, V206, P185, DOI 10.1016/j.heares.2005.01.016 Imig TJ, 2005, J COMP NEUROL, V490, P391, DOI 10.1002/cne.20674 ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7 Jin YM, 2006, J NEUROSCI RES, V83, P157, DOI 10.1002/jnr.20706 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach J.A., 2002, ABS ASS RES OTOLARYN, V25 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kaltenbach JA, 2007, PROG BRAIN RES, V166, P89, DOI 10.1016/S0079-6123(07)66009-9 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 Kaltenbach JA, 2007, HEARING RES, V226, P232, DOI 10.1016/j.heares.2006.07.001 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kanold PO, 1999, J NEUROSCI, V19, P2195 Kim DS, 2002, MOL BRAIN RES, V105, P146, DOI 10.1016/S0169-328X(02)00388-1 Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 Kim Y, 2007, J NEUROPHYSIOL, V97, P1705, DOI 10.1152/jn.00536.2006 Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750 Kwon O, 1999, P 6 INT TINN SEM CAM, P459 Liu CN, 2000, J NEUROPHYSIOL, V84, P205 Ma WLD, 2006, HEARING RES, V216, P176, DOI 10.1016/j.heares.2006.03.011 Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 MANIS PB, 1990, J NEUROSCI, V10, P2338 MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208 Manis PB, 2003, EXP BRAIN RES, V153, P443, DOI 10.1007/s00221-003-1639-6 Molitor SC, 2003, J NEUROPHYSIOL, V89, P2225, DOI 10.1152/jn.00709.2002 Molitor SC, 1999, J NEUROPHYSIOL, V81, P985 Mugnaini E., 1993, Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology, V173, P683 Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011 Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206 Pal B, 2003, CELL MOL LIFE SCI, V60, P2189, DOI 10.1007/s00018-003-3187-4 PARHAM K, 1995, J NEUROPHYSIOL, V73, P550 Parham K, 2000, HEARING RES, V148, P137, DOI 10.1016/S0378-5955(00)00147-7 Portfors CV, 2007, J NEUROPHYSIOL, V98, P744, DOI 10.1152/jn.01356.2006 Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X RHODE WS, 1986, J NEUROPHYSIOL, V56, P287 Rusznak Z, 2000, PFLUG ARCH EUR J PHY, V440, P462, DOI 10.1007/s004240000314 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Serodio P, 1998, J NEUROPHYSIOL, V79, P1081 Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x Stabler SE, 1996, J NEUROPHYSIOL, V76, P1667 Suneja SK, 2000, EXP NEUROL, V165, P355, DOI 10.1006/exnr.2000.7471 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Wallhausser-Franke E, 2003, EXP BRAIN RES, V153, P649, DOI 10.1007/s00221-003-1614-2 Waxman SG, 1999, P NATL ACAD SCI USA, V96, P7635, DOI 10.1073/pnas.96.14.7635 Weedman DL, 1996, J COMP NEUROL, V371, P311 WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3 YOUNG ED, 1980, BRAIN RES, V200, P23, DOI 10.1016/0006-8993(80)91091-4 Zhang HM, 2004, J NEUROPHYSIOL, V91, P2194, DOI 10.1152/jn.00730.2003 Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 ZHANG S, 1993, J NEUROPHYSIOL, V69, P1409 NR 76 TC 46 Z9 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2009 VL 256 IS 1-2 BP 104 EP 117 DI 10.1016/j.heares.2009.07.006 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 502XV UT WOS:000270495000010 PM 19622390 ER PT J AU Shechter, B Dobbins, HD Marvit, P Depireux, DA AF Shechter, B. Dobbins, H. D. Marvit, P. Depireux, D. A. TI Dynamics of spectro-temporal tuning in primary auditory cortex of the awake ferret SO HEARING RESEARCH LA English DT Article DE Tuning dynamics; Auditory cortex; AI; Temporal symmetry; Inferior colliculus; IC; Auditory grating; Spectro-temporal receptive field; STRF ID LATERAL GENICULATE-NUCLEUS; RECEPTIVE-FIELD PROPERTIES; INPUT X-CELLS; UNIT RESPONSES; REVERSE CORRELATION; NATURAL STIMULI; CAT; NEURONS; SYSTEM; CLASSIFICATION AB We previously characterized the steady-state spectro-temporal tuning properties of cortical cells with respect to broadband sounds by using sounds with sinusoidal spectro-temporal modulation envelope where spectral density and temporal periodicity were constant over several seconds. However, since speech and other natural sounds have spectro-temporal features that change substantially over milliseconds, we study the dynamics of tuning by using stimuli of constant overall intensity, but alternating between a flat spectro-temporal envelope and a modulated envelope with well defined spectral density and temporal periodicity. This allows us to define the tuning of cortical cells to speech-like and other rapid transitions, on the order of milliseconds, as well as the time evolution of this tuning in response to the appearance of new features in a sound. Responses of 92 cells in AI were analyzed based on the temporal evolution of the following measures of tuning after a rapid transition in the stimulus: center of mass and breadth of tuning; separability and direction selectivity; temporal and spectral asymmetry. We find that tuning center of mass increased in 70% of cells for spectral density and in 68% of cells for temporal periodicity, while roughly half of cells (47%) broadened their tuning, with the other half (53%) sharpening tuning. The majority of cells (73%) were initially not direction selective, as measured by an inseparability index, which had an initial low value that then increased to a higher steady state value. Most cells were characterized by temporal symmetry, while spectral symmetry was initially high and then progressed to low steady-state values (61%). We demonstrate that cortical neurons can be characterized by a lag-dependent modulation transfer function. This characterization, when measured through to steady-state, becomes equivalent to the classical spectro-temporal receptive field. (C) 2009 Elsevier B.V. All rights reserved. C1 [Depireux, D. A.] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA. [Shechter, B.; Dobbins, H. D.; Depireux, D. A.] Univ Maryland, Sch Med, Dept Anat & Neurobiol, Baltimore, MD 21201 USA. [Shechter, B.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. [Dobbins, H. D.; Depireux, D. A.] Univ Maryland, Sch Med, Program Neurosci, Baltimore, MD 21201 USA. [Marvit, P.] Univ Maryland, Dept Psychol, Program Neurosci & Cognit Sci, College Pk, MD 20742 USA. RP Depireux, DA (reprint author), Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA. EM barak.shechter@gmail.com; depireux@gmail.com FU NIH/NIDCD [1 RO01 DC005937]; NIH/NINDS [2T32NS007375-11] FX We thank Yadong "KK" Ji for extensive help in animal care and data acquisition, and Sridhar Kalluri and Asaf Keller for help in preparation of this manuscript. This research was funded by NIH/NIDCD 1 RO01 DC005937 awarded to DAD. PM also received support from training grant NIH/NINDS 2T32NS007375-11. CR Abdi H., 2007, ENCY MEASUREMENT STA AERTSEN AMHJ, 1981, BIOL CYBERN, V42, P145, DOI 10.1007/BF00336732 BAJO VM, 2006, CEREB CORTEX Bredfeldt CE, 2002, J NEUROSCI, V22, P1976 deCharms RC, 1998, SCIENCE, V280, P1439, DOI 10.1126/science.280.5368.1439 Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220 DOBBINS HD, 2007, J NEUROSCI METHODS, V159 Escabi MA, 2002, J NEUROSCI, V22, P4114 EVANS EF, 1964, J PHYSIOL-LONDON, V171, P476 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Galazyuk AV, 2005, J NEUROPHYSIOL, V94, P314, DOI 10.1152/jn.00056.2005 Harris KD, 2000, J NEUROPHYSIOL, V84, P401 Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183 Klein DJ, 2006, J COMPUT NEUROSCI, V20, P111, DOI 10.1007/s10827-005-3589-4 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3503 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3524 Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002 MASTRONARDE DN, 1987, J NEUROPHYSIOL, V57, P381 MASTRONARDE DN, 1987, J NEUROPHYSIOL, V57, P357 Miller LM, 2001, J NEUROSCI, V21, P8136 REDISH AD, 2004, MCLUST SPIKE SORTING SAUL AB, 1990, J NEUROPHYSIOL, V64, P206 SCHAFER M, 1992, HEARING RES, V57, P231, DOI 10.1016/0378-5955(92)90154-F Schreiner CE, 1994, AUDIT NEUROSCI, V1, P39 Sen K, 2001, J NEUROPHYSIOL, V86, P1445 Shechter B, 2006, HEARING RES, V221, P91, DOI 10.1016/j.heares.2006.08.002 Shechter B, 2007, NEUROSCIENCE, V148, P806, DOI 10.1016/j.neuroscience.2007.06.027 Simon JZ, 2007, NEURAL COMPUT, V19, P583, DOI 10.1162/neco.2007.19.3.583 Spinks RL, 2003, J NEUROPHYSIOL, V90, P1324, DOI 10.1152/jn.00169.2003 SULLIVAN WE, 1982, J NEUROPHYSIOL, V48, P1033 Theunissen F. E., 2001, Network: Computation in Neural Systems, V12, DOI 10.1088/0954-898X/12/3/304 Valentine PA, 2004, HEARING RES, V196, P119, DOI 10.1016/j.heares.2004.05.011 Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565 YESHURUN Y, 1985, BIOL CYBERN, V51, P383, DOI 10.1007/BF00350778 NR 34 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2009 VL 256 IS 1-2 BP 118 EP 130 DI 10.1016/j.heares.2009.07.005 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 502XV UT WOS:000270495000011 PM 19619629 ER PT J AU Ries, DT DiGiovanni, JJ AF Ries, Dennis T. DiGiovanni, Jeffrey J. TI Effects of recurrent tonal information on auditory working memory for pitch SO HEARING RESEARCH LA English DT Article DE Frequency; Pitch; Difference limen; Auditory working memory ID TERM RECOGNITION MEMORY; UP-DOWN METHOD; ABSOLUTE PITCH; RETROACTIVE INTERFERENCE; TONES; REPETITION; STAIRCASE; STANDARD; LOUDNESS; INPUT AB This study ascertained the influence of repeating pitch information within an intervening tonal sequence upon the extent of interference for a pitch standard held within auditory working memory as measured by the difference limen for frequency (DLF). Standard and comparison tones were presented to subjects and same/different responses were obtained using a touch screen monitor and the DLF was measured using single interval adjustment matrix (SIAM) procedure [Kaernbach, C., 1990. A single-interval adjustment-matrix (SIAM) procedure for unbiased adaptive testing. J. Acoust. Soc. Am. 88, 2645-2655]. Estimates of the DLF were obtained in a control condition with a silent inter-comparison interval and three conditions containing intervening tones within the temporal gap between the standard and comparison stimuli. The presence of intervening stimuli produced a significant increase in the DLF when the intervening tonal sequence contained tones with pitches that differed from that of the standard (Int condition) as well as when the sequence contained a tone with a pitch identical to that of the comparison (RptCmp condition). Further, the DLFs obtained for RptCmp condition were significantly higher than those measured in the Int condition. The DLFs measured in the condition where the pitch of an intervening tone was identical to the standard were significantly lower than those for the Int and RptCmp condition, but did not differ from the DLFs for the control condition. These results indicate that either a release from or an increase in interference in auditory working memory for pitch can occur dependent upon the frequency relationships between of the standard, comparison, and intervening tones. (C) 2009 Elsevier B.V. All rights reserved. C1 [DiGiovanni, Jeffrey J.] Ohio Univ, Sch Hearing Speech & Language Sci, Auditory Psychophys & Signal Proc Lab, Athens, OH 45701 USA. [Ries, Dennis T.] Ohio Univ, Sch Hearing Speech & Language Sci, Grover Ctr W241, Auditory Percept Lab, Athens, OH 45701 USA. RP Ries, DT (reprint author), Ohio Univ, Sch Hearing Speech & Language Sci, Grover Ctr W221, Athens, OH 45701 USA. EM ries@ohio.edu; digiovan@ohio.edu CR BACHEM A, 1954, J ACOUST SOC AM, V26, P751, DOI 10.1121/1.1907411 Bernstein LR, 2008, J ACOUST SOC AM, V124, P3850, DOI 10.1121/1.2996340 Bernstein LR, 2006, J ACOUST SOC AM, V119, P2981, DOI 10.1121/1.2188373 Berti S, 2006, EXP PSYCHOL, V53, P111, DOI 10.1027/1618-3169.53.2.111 Brown LG, 1996, PERCEPT PSYCHOPHYS, V58, P959, DOI 10.3758/BF03205497 BULL AR, 1972, PERCEPT PSYCHOPHYS, V11, P105, DOI 10.3758/BF03212696 Clement S, 1999, J ACOUST SOC AM, V106, P2805, DOI 10.1121/1.428106 DEUSTCH D, 2004, MUSIC PERCEPT, V21, P339 DEUTSCH D, 1978, Q J EXP PSYCHOL, V30, P283, DOI 10.1080/14640747808400675 DEUTSCH D, 1975, PERCEPT PSYCHOPHYS, V17, P320, DOI 10.3758/BF03203217 DEUTSCH D, 1972, J EXP PSYCHOL, V93, P156, DOI 10.1037/h0032496 DEUTSCH D, 1972, SCIENCE, V175, P1020, DOI 10.1126/science.175.4025.1020 Deutsch D, 2006, J ACOUST SOC AM, V119, P719, DOI 10.1121/1.2151799 DEUTSCH D, 1974, Q J EXP PSYCHOL, V26, P229, DOI 10.1080/14640747408400408 DEUTSCH D, 1975, MEM COGNITION, V3, P263, DOI 10.3758/BF03212909 DEUTSCH D, 1970, SCIENCE, V168, P1604, DOI 10.1126/science.168.3939.1604 DEUTSCH D, 1970, NATURE, V226, P286, DOI 10.1038/226286a0 ELLIOTT LL, 1970, PERCEPT PSYCHOPHYS, V8, P379, DOI 10.3758/BF03212613 Gerrits E, 2004, PERCEPT PSYCHOPHYS, V66, P363, DOI 10.3758/BF03194885 GROSSMANN A, 2008, AM AUD SOC SCOTTSD A HARRIS JD, 1952, J EXP PSYCHOL, V43, P96, DOI 10.1037/h0057373 Jump RL, 2008, HEARING RES, V240, P112, DOI 10.1016/j.heares.2008.04.004 KAERNBACH C, 1990, J ACOUST SOC AM, V88, P2645, DOI 10.1121/1.399985 KAERNBACH C, 1991, PERCEPT PSYCHOPHYS, V49, P227, DOI 10.3758/BF03214307 KALLMAN HJ, 1987, MEM COGNITION, V15, P454, DOI 10.3758/BF03197735 Klein SA, 2001, PERCEPT PSYCHOPHYS, V63, P1421, DOI 10.3758/BF03194552 KONIG E, 1957, J ACOUST SOC AM, V29, P606 Leeuw AR, 1998, HEARING RES, V126, P1, DOI 10.1016/S0378-5955(98)00153-1 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MASSARO DW, 1970, J EXP PSYCHOL, V83, P32, DOI 10.1037/h0028566 MEESE TS, 1995, PERCEPT PSYCHOPHYS, V57, P267, DOI 10.3758/BF03213053 PECHMANN T, 1992, MEM COGNITION, V20, P314, DOI 10.3758/BF03199668 PROFITA J, 1988, AM J MED GENET, V29, P763, DOI 10.1002/ajmg.1320290405 Ries DT, 2007, HEARING RES, V230, P64, DOI 10.1016/j.heares.2007.04.003 Ross DA, 2004, J ACOUST SOC AM, V116, P1793, DOI 10.1121/1.1758973 Ross DA, 2003, ANN NY ACAD SCI, V999, P522, DOI 10.1196/annals.1284.065 RYAN TA, 1959, PSYCHOL BULL, V56, P394, DOI 10.1037/h0041280 SCHLAUCH RS, 1990, J ACOUST SOC AM, V88, P732, DOI 10.1121/1.399776 SEMAL C, 1991, J ACOUST SOC AM, V89, P2404, DOI 10.1121/1.400928 SEMAL C, 1993, J ACOUST SOC AM, V94, P1315, DOI 10.1121/1.408159 STEWART JM, 1984, HEARING DISORDERS, P267 WICKELGR.WA, 1969, J MATH PSYCHOL, V6, P13, DOI 10.1016/0022-2496(69)90028-5 WICKELGR.WA, 1966, J EXP PSYCHOL, V72, P250, DOI 10.1037/h0023438 NR 43 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 14 EP 21 DI 10.1016/j.heares.2009.05.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600002 PM 19435599 ER PT J AU Haake, SM Dinh, CT Chen, SB Eshraghi, AA Van De Water, TR AF Haake, Scott M. Dinh, Christine T. Chen, Shibing Eshraghi, Adrien A. Van De Water, Thomas R. TI Dexamethasone protects auditory hair cells against TNF alpha-initiated apoptosis via activation of PI3K/Akt and NF kappa B signaling SO HEARING RESEARCH LA English DT Article DE Organ of Corti explants; Tumor necrosis factor alpha; Apoptosis; Auditory hair cells; Dexamethasone; Nuclear factor kappa B; Otoprotection ID SPIRAL LIGAMENT FIBROCYTES; NECROSIS-FACTOR-ALPHA; INDUCED HEARING-LOSS; GLUCOCORTICOID-RECEPTOR ANTAGONIST; GUINEA-PIG COCHLEA; PROINFLAMMATORY CYTOKINES; ACOUSTIC TRAUMA; PHOSPHOLIPASE-A2 INHIBITOR; CONSERVES HEARING; MOUSE COCHLEA AB Background: Tumor necrosis factor alpha (TNF alpha) is associated with trauma-induced hearing loss. Local treatment of cochleae of trauma-exposed animals with a glucocorticoid is effective in reducing the level of hearing loss that occurs post-trauma (e.g., electrode insertion trauma-induced hearing loss/dexamethasone treatment). Hypothesis: Dexamethasone (Dex) protects auditory hair cells (AHCs) from trauma-induced loss by activating cellular signal pathways that promote cell survival. Materials and methods: Organ of Corti explants challenged with an ototoxic level of TNF alpha was the trauma model with Dex the otoprotective drug. A series of inhibitors were used in combination with the Dex treatment of TNF alpha-exposed explants to investigate the signal molecules that participate in Dex-mediated otoprotection. The otoprotective capacity of Dex against TNF alpha ototoxicity was determined by hair cell counts obtained from fixed explants stained with FITC-phalloidin labeling with investigators blinded to specimen identity. Results: The general caspase inhibitor Boc-d-fmk prevented TNF alpha-induced AHC death. There was a significant reduction (p < 0.05) in the efficacy of Dex otoprotection against TNF alpha ototoxicity when the following cellular events were blocked: (1) glucocorticoid receptors (Mif); (2) PI3K (LY294002); (3) Akt/PKB (SH-6); and (4) NF kappa B (NF kappa B-I). Conclusion: Dex treatment protects hair cells against TNF alpha apoptosis in vitro by activation of PI3K/Akt and NF kappa B signaling. (C) 2009 Elsevier B.V. All rights reserved. C1 [Haake, Scott M.; Dinh, Christine T.; Chen, Shibing; Eshraghi, Adrien A.; Van De Water, Thomas R.] Univ Miami, Miller Sch Med, Dept Otolaryngol, Cochlear Implant Res Program,Ear Inst, Miami, FL 33136 USA. RP Van De Water, TR (reprint author), Univ Miami, Miller Sch Med, Dept Otolaryngol, Cochlear Implant Res Program,Ear Inst, 1600 NW 10th Ave,RMSB 3160, Miami, FL 33136 USA. EM shaake@med.miami.edu; ctdinh@gmail.com; s.chen4@miami.edu; aeshraghi@med.miami.edu; tvandewater@med.miami.edu FU Advanced Bionics Corporation, Valencia CA FX Supported by a grant from Advanced Bionics Corporation, Valencia CA to T.R.V. CR Aminpour S, 2005, OTOL NEUROTOL, V26, P602, DOI 10.1097/01.mao.0000178121.28365.0d Ashkenazi A, 1998, SCIENCE, V281, P1305, DOI 10.1126/science.281.5381.1305 AUPHAN N, 1995, SCIENCE, V270, P286, DOI 10.1126/science.270.5234.286 Buckingham JC, 2006, BRIT J PHARMACOL, V147, pS258, DOI 10.1038/sj.bjp.0706456 Canlon B, 2007, HEARING RES, V226, P61, DOI 10.1016/j.heares.2006.05.009 Chung WH, 2006, JARO-J ASSOC RES OTO, V7, P373, DOI 10.1007/s10162-006-0050-y Chung WH, 2008, ACTA OTO-LARYNGOL, V128, P1063, DOI 10.1080/00016480701881811 Croxtall JD, 2003, BIOCHEM J, V371, P927, DOI 10.1042/BJ20021856 De Bosscher K, 2003, ENDOCR REV, V24, P488, DOI 10.1210/er.2002-0006 Dinh CT, 2008, NEUROSCIENCE, V157, P405, DOI 10.1016/j.neuroscience.2008.09.012 Eshraghi AA, 2007, OTOL NEUROTOL, V28, P842, DOI 10.1097/MAO.0b013e31805778fc FLOWER RJ, 1979, NATURE, V278, P456, DOI 10.1038/278456a0 Fujioka M, 2006, J NEUROSCI RES, V83, P575, DOI 10.1002/jnr.20764 Hafezi-Moghadam A, 2002, NAT MED, V8, P473, DOI 10.1038/nm0502-473 Herr BD, 2005, OTOLARYNG HEAD NECK, V132, P527, DOI 10.1016/j.otohns.2004.09.138 Himeno C, 2002, HEARING RES, V167, P61, DOI 10.1016/S0378-5955(02)00345-3 Hirose Y, 2007, NEUROSCI LETT, V413, P63, DOI 10.1016/j.neulet.2006.11.029 Ichimiya I, 2003, ANN OTO RHINOL LARYN, V112, P722 Ichimiya I, 2000, INT J PEDIATR OTORHI, V56, P45, DOI 10.1016/S0165-5876(00)00408-0 Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392 John CD, 2004, TRENDS ENDOCRIN MET, V15, P103, DOI 10.1016/j.tem.2004.02.001 Keithley EM, 2008, OTOL NEUROTOL, V29, P854, DOI 10.1097/MAO.0b013e31818256a9 Lang HN, 2006, J NEUROSCI, V26, P3541, DOI 10.1523/JNEUROSCI.2488-05.2006 Limbourg FP, 2003, J MOL MED-JMM, V81, P168, DOI 10.1007/s00109-003-0418-y Maeda K, 2005, HEARING RES, V202, P154, DOI 10.1016/j.heares.2004.08.022 Maier C, 2005, J CELL SCI, V118, P3353, DOI 10.1242/jcs.02462 Masuda M, 2006, BRAIN RES, V1068, P237, DOI 10.1016/j.brainres.2005.11.020 Mattson MP, 2005, NEUROCHEM RES, V30, P883, DOI 10.1007/s11064-005-6961-x Moon SK, 2006, ACTA OTO-LARYNGOL, V126, P564, DOI 10.1080/00016480500452525 Mori T, 2004, AURIS NASUS LARYNX, V31, P395, DOI 10.1016/j.anl.2004.09.008 Nagy I, 2005, JARO-J ASSOC RES OTO, V6, P260, DOI 10.1007/s10162-005-0006-7 Palladino MA, 2003, NAT REV DRUG DISCOV, V2, P736, DOI 10.1038/nrd1175 Perkins ND, 2004, TRENDS CELL BIOL, V14, P64, DOI 10.1016/j.tcb.2003.12.004 Pirvola U, 2000, J NEUROSCI, V20, P43 Rath PC, 1999, J CLIN IMMUNOL, V19, P350, DOI 10.1023/A:1020546615229 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 SCHEINMAN RI, 1995, SCIENCE, V270, P286 Siaud P, 2006, EUR J NEUROSCI, V24, P3365, DOI 10.1111/j.1460-9568.2006.05224.x So H, 2007, JARO-J ASSOC RES OTO, V8, P338, DOI 10.1007/s10162-007-0084-9 Tabuchi K, 2005, J PHARMACOL SCI, V99, P191, DOI 10.1254/jphs.SCZ050443 Tabuchi K, 2006, LARYNGOSCOPE, V116, P627, DOI 10.1097/01.mlg.0000200963.69342.d7 Tadros SF, 2008, APOPTOSIS, V13, P1303, DOI 10.1007/s10495-008-0266-x Tahera Y, 2006, NEUROREPORT, V17, P879, DOI 10.1097/01.wnr.0000220131.24468.e7 Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260 Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 Tahera Y, 2007, NEUROBIOL DIS, V25, P189, DOI 10.1016/j.nbd.2006.09.004 Takemura K, 2004, HEARING RES, V196, P56 Tischner D, 2007, MOL CELL ENDOCRINOL, V275, P62, DOI 10.1016/j.mce.2007.03.007 Udo KM, 2001, BRIT J PHARMACOL, V133, P467 Vivero RJ, 2008, LARYNGOSCOPE, V118, P2028, DOI 10.1097/MLG.0b013e31818173ec Wang J, 2003, J NEUROSCI, V23, P8596 WANG J, 2007, MOL PHARM, V71, P645 Yamamoto H, 2009, J NEUROSCI RES, V87, P1832, DOI 10.1002/jnr.22018 Ylikoski J, 2002, HEARING RES, V166, P33, DOI 10.1016/S0378-5955(01)00388-4 Yoshida K, 1999, HEARING RES, V137, P155, DOI 10.1016/S0378-5955(99)00134-3 Zine A., 2004, Current Drug Targets - CNS and Neurological Disorders, V3, P325, DOI 10.2174/1568007043337166 Zou J, 2005, HEARING RES, V202, P13, DOI 10.1016/j.heares.2004.10.008 ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I NR 58 TC 36 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 22 EP 32 DI 10.1016/j.heares.2009.05.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600003 PM 19442713 ER PT J AU Kraus, KS Ding, D Zhou, Y Salvi, RJ AF Kraus, K. S. Ding, D. Zhou, Y. Salvi, R. J. TI Central auditory plasticity after carboplatin-induced unilateral inner ear damage in the chinchilla: Up-regulation of GAP-43 in the ventral cochlear nucleus SO HEARING RESEARCH LA English DT Article DE Carboplatin; GAP-43; Ventral cochlear nucleus; Chinchilla; Hair cells ID HAIR CELL LOSS; CHOLINE-ACETYLTRANSFERASE ACTIVITY; PERIPHERAL-NERVE INJURY; RETINAL GANGLION-CELLS; IN-SITU HYBRIDIZATION; MESSENGER-RNA; BRAIN-STEM; OTOACOUSTIC EMISSIONS; NEURITE OUTGROWTH; AXON REGENERATION AB Inner ear damage may lead to structural changes in the central auditory system. In rat and chinchilla, cochlear ablation and noise trauma result in fiber growth and synaptogenesis in the ventral cochlear nucleus (VCN). In this study, we documented the relationship between carboplatin-induced hair cell degeneration and VCN plasticity in the chinchilla. Unilateral application of carboplatin (5 mg/ml) on the round window membrane resulted in massive hair cell loss. Outer hair cell degeneration showed a pronounced basal-to-apical gradient while inner hair cell loss was more equally distributed throughout the cochlea. Expression of the growth associated protein GAP-43, a well-established marker for synaptic plasticity, was up-regulated in the ipsilateral VCN at 15 and 31 days post-carboplatin, but not at 3 and 7 days. In contrast, the dorsal cochlear nucleus showed only little change. In VCN, the high-frequency area dorsally showed slightly yet significantly stronger GAP-43 up-regulation than the low-frequency area ventrally, possibly reflecting the high-to-low frequency gradient of hair cell degeneration. Synaptic modification or formation of new synapses may be a homeostatic process to re-adjust mismatched inputs from two ears. Alternatively, massive fiber growth may represent a deleterious process causing central hyperactivity that leads to loudness recruitment or tinnitus. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kraus, K. S.; Ding, D.; Zhou, Y.; Salvi, R. J.] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Kraus, KS (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM skkraus@buffalo.edu; dding@buffalo.edu; ydzhou111@l63.com; salvi@buffalo.edu FU NIH [R01 DC06630]; NOHR [1068911] FX Supported in part by NIH Grant R01 DC06630 and NOHR Grant 1068911. CR BAETGE EE, 1991, NEURON, V6, P21, DOI 10.1016/0896-6273(91)90118-J Benowitz LI, 1997, TRENDS NEUROSCI, V20, P84, DOI 10.1016/S0166-2236(96)10072-2 BENOWITZ LI, 1991, PROG BRAIN RES, V89, P69, DOI 10.1016/S0079-6123(08)61716-1 Benson CG, 1997, SYNAPSE, V25, P243 BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106 Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 DEGRAAN PNE, 1985, NEUROSCI LETT, V61, P235, DOI 10.1016/0304-3940(85)90470-7 Ding D., 1998, J AUDIOL SPEECH PATH, V6, P65 Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x Elliott EJ, 1997, BRAIN RES, V755, P221, DOI 10.1016/S0006-8993(97)00100-5 Florentine M, 1976, J Am Audiol Soc, V1, P243 Fujino K, 2001, J NEUROSCI, V21, P7372 Godfrey DA, 2005, HEARING RES, V206, P64, DOI 10.1016/j.heares.2005.03.004 GOSLIN K, 1990, J NEUROSCI, V10, P588 Happe HK, 1998, J COMP NEUROL, V397, P163, DOI 10.1002/(SICI)1096-9861(19980727)397:2<163::AID-CNE2>3.0.CO;2-Z HOEFFDING V, 1988, BRAIN RES, V449, P104, DOI 10.1016/0006-8993(88)91029-3 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Hofstetter P, 1997, AUDIOLOGY, V36, P301 Illing RB, 1999, J COMP NEUROL, V412, P353, DOI 10.1002/(SICI)1096-9861(19990920)412:2<353::AID-CNE12>3.0.CO;2-W Illing RB, 2005, HEARING RES, V206, P185, DOI 10.1016/j.heares.2005.01.016 Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4 Jin YM, 2005, J NEUROSCI RES, V81, P91, DOI 10.1002/jnr.20536 Jin YM, 2006, J NEUROSCI RES, V83, P157, DOI 10.1002/jnr.20706 Jin YM, 2006, HEARING RES, V216, P168, DOI 10.1016/j.heares.2006.02.002 Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211 King AJ, 2001, AUDIOL NEURO-OTOL, V6, P182, DOI 10.1159/000046829 Kraus KS, 2005, NEUROSCIENCE, V134, P467, DOI 10.1016/j.neuroscience.2005.04.037 Kraus K.S., 2004, J COMP NEUROL, V475, P169 Li YZ, 2002, HEARING RES, V165, P19, DOI 10.1016/S0378-5955(01)00389-6 LIABOTIS S, 1995, EXP NEUROL, V135, P28, DOI 10.1006/exnr.1995.1063 LINDA H, 1992, EXP BRAIN RES, V91, P284 MAHALIK TJ, 1992, DEV BRAIN RES, V67, P75, DOI 10.1016/0165-3806(92)90027-T Meidinger MA, 2006, EUR J NEUROSCI, V23, P3187, DOI 10.1111/j.1460-9568.2006.04853.x Meiri KF, 1998, J NEUROSCI, V18, P10429 Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348 Moore D R, 1993, J Am Acad Audiol, V4, P277 MULY SM, 2002, EXP NEUROL, V177, P2002 PALACIOS G, 1994, MOL BRAIN RES, V24, P107, DOI 10.1016/0169-328X(94)90122-8 Paxinos G., 2004, RAT BRAIN STEREOTAXI Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9 Reyes S, 2001, HEARING RES, V158, P139, DOI 10.1016/S0378-5955(01)00309-4 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Salvi RJ, 2000, NOISE HEALTH, V2, P9 SCHADEN H, 1994, J NEUROBIOL, V25, P1570, DOI 10.1002/neu.480251209 SCHREYER DJ, 1991, J NEUROSCI, V11, P3738 SKENE JHP, 1989, ANNU REV NEUROSCI, V12, P127, DOI 10.1146/annurev.neuro.12.1.127 SKENE JHP, 1981, J CELL BIOL, V89, P86, DOI 10.1083/jcb.89.1.86 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 VERHAAGEN J, 1993, J NEUROSCI RES, V35, P162, DOI 10.1002/jnr.490350206 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WAKE M, 1994, LARYNGOSCOPE, V104, P488 Wang J, 2003, HEARING RES, V181, P65, DOI 10.1016/S0378-5955(03)00176-X Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WENTHOLD RJ, 1977, BRAIN RES, V138, P111, DOI 10.1016/0006-8993(77)90787-9 WOOLF CJ, 1990, NEUROSCIENCE, V34, P465, DOI 10.1016/0306-4522(90)90155-W Yao WP, 1999, HEARING RES, V128, P97, DOI 10.1016/S0378-5955(98)00199-3 Yin T. C. T, 2002, INTEGRATIVE FUNCTION, P99 NR 60 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 33 EP 43 DI 10.1016/j.heares.2009.05.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600004 PM 19435600 ER PT J AU Navawongse, R Voigt, HF AF Navawongse, Rapeechai Voigt, Herbert F. TI Single neuron recordings in dorsal cochlear nucleus (DCN) of awake gerbil SO HEARING RESEARCH LA English DT Article DE Dorsal cochlear nucleus; Electrophysiology; Awake recording; Gerbil; Response map; Notch noise ID UNANESTHETIZED DECEREBRATE GERBIL; ACOUSTIC STARTLE REFLEX; AUDITORY-NERVE FIBERS; BRAIN-STEM NUCLEI; GUINEA-PIG; RESPONSE PROPERTIES; MONGOLIAN GERBIL; DESCENDING PROJECTIONS; SOUND LOCALIZATION; CARTWHEEL CELLS AB The auditory responses of neurons in the dorsal cochlear nucleus (DCN) are known to be sensitive to anesthesia, and consequently many studies have used an unanesthetized, decerebrate preparation. Decerebration, however, severs multiple descending pathways to the DCN and is traumatic to the brain, and so sensory responses may be influenced. It was possible, by combining sterile surgery, animal conditioning, and mild restraint to allow recordings in awake gerbils (Merionus unguiculatus). Response maps (RMs), post-stimulus time histograms (PSTHs), and responses to notch noise stimuli were recorded in awake gerbils. Some units' responses were compared to those from previous experiments in anesthetized and decerebrate gerbil preparations. All RM types observed in decerebrate gerbils were also observed in the awake gerbil, with the notable exception of type IV units. Type III units were still the most commonly recorded units. No significant changes were observed in either RM shape or notch noise responses. Although most awake DCN units had spontaneous activity (typically <20 spikes/s), these rates were lower than those in decerebrate gerbils. Type III units' spontaneous activity rates were significantly different from those in the decerebrate prep (P < 0.05). DCN neurons may be more inhibited in awake gerbils. Although type III units were most sensitive to spectral notches, different unit types seem to respond slightly differently to notch noise. This study indicates that responses of DCN units in awake and decerebrate gerbils are different, though the shapes of RMs are the same. (C) 2009 Elsevier B.V. All rights reserved. C1 [Voigt, Herbert F.] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA. Boston Univ, Hearing Res Ctr, Boston, MA 02215 USA. RP Voigt, HF (reprint author), Boston Univ, Dept Biomed Engn, 44 Cummington St,Room 414C, Boston, MA 02215 USA. EM navawong@bu.edu; hfv@bu.edu FU National Institutes of Health [R01 DC001099]; Biomedical Engineering department at Boston University; Hearing Research Center FX This work was supported by Grant R01 DC001099 from the National Institutes of Health, the Biomedical Engineering department at Boston University, and the Hearing Research Center. The authors thank Dr. Kevin Davis for access to his thesis data from decerebrate gerbils and Dr. Kamal Sen for reading a previous version of this manuscript. This work is a part of a doctoral dissertation in Biomedical Engineering submitted by R. Navawongse. CR ADAMS JC, 1976, J COMP NEUROL, V170, P107, DOI 10.1002/cne.901700108 BENSON TE, 1995, J NEUROSCI METH, V57, P81, DOI 10.1016/0165-0270(94)00131-Y BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 BROWN MC, 1988, J COMP NEUROL, V278, P581, DOI 10.1002/cne.902780409 BURIAN M, 1988, NEUROSCI LETT, V84, P13, DOI 10.1016/0304-3940(88)90329-1 CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305 CHIU TH, 1995, EUR J PHARMACOL, V285, P261, DOI 10.1016/0014-2999(95)00417-J COVEY E, 1984, J COMP NEUROL, V226, P289, DOI 10.1002/cne.902260212 Davis KA, 2000, J NEUROPHYSIOL, V83, P926 Davis KA, 1996, J NEUROPHYSIOL, V75, P1411 DAVIS KA, 1995, THESIS BOSTON U BOST Ding JA, 1997, J NEUROPHYSIOL, V77, P2549 Ebert U, 1996, EUR J NEUROSCI, V8, P1306, DOI 10.1111/j.1460-9568.1996.tb01299.x EVANS EF, 1973, EXP BRAIN RES, V17, P402 FAN H, 2000, THESIS BOSTON U BOST Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 FRISINA RD, 1982, HEARING RES, V6, P259, DOI 10.1016/0378-5955(82)90059-4 Gates TS, 1996, HEARING RES, V96, P157, DOI 10.1016/0378-5955(96)00054-8 Gdowski GT, 1997, HEARING RES, V105, P85, DOI 10.1016/S0378-5955(96)00196-7 GDOWSKI GT, 1995, THESIS BOSTON U BOST Gitter AH, 2000, FASEB J, V14, P1749, DOI 10.1096/fj.99-0898com Golding NL, 1997, J NEUROPHYSIOL, V78, P248 Golding NL, 1996, J NEUROSCI, V16, P2208 Grace SM, 2008, ACTA ACUST UNITED AC, V94, P310, DOI 10.3813/AAA.918034 Hancock KE, 2002, J NEUROPHYSIOL, V87, P2505, DOI 10.1152/jn00342.2001 ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7 KEVETTER GA, 1989, BRAIN BEHAV EVOLUT, V34, P193, DOI 10.1159/000116505 King AJ, 2007, HEARING RES, V229, P106, DOI 10.1016/j.heares.2007.01.001 KOLSTON J, 1992, ANAT EMBRYOL, V186, P443 LAY DOUGLAS, 1972, J MORPHOL, V138, P41, DOI 10.1002/jmor.1051380103 Lemon R, 1984, METHODS NEURONAL REC Loquet G, 2004, AUDIOL NEURO-OTOL, V9, P144, DOI 10.1159/000077266 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC Maki K, 2005, J ACOUST SOC AM, V118, P2392, DOI 10.1121/1.2033571 Maki K, 2005, J ACOUST SOC AM, V118, P872, DOI 10.1121/1.1944647 MAKI K, 2003, ASS RES OT ABSTR, V26, P89 MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208 May BJ, 2000, HEARING RES, V148, P74, DOI 10.1016/S0378-5955(00)00142-8 MAY BJ, 1992, J NEUROPHYSIOL, V68, P1589 Meloni EG, 1998, HEARING RES, V119, P69, DOI 10.1016/S0378-5955(98)00040-9 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 Namba H, 2006, MOL CELL NEUROSCI, V31, P628, DOI 10.1016/j.mcn.2005.12.002 Nicolelis M., 1998, METHODS NEURAL ENSEM Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 OSEN KK, 1990, COLOCALIZATION GLYCI Parsons JE, 2001, ANN BIOMED ENG, V29, P887, DOI 10.1114/1.1408924 PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 Portfors CV, 2007, J NEUROPHYSIOL, V98, P744, DOI 10.1152/jn.01356.2006 Reiss LAJ, 2005, J NEUROSCI, V25, P3680, DOI 10.1523/JNEUROSCI.4963-04.2005 RHODE WS, 1987, J NEUROPHYSIOL, V57, P414 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 ROBERTS PD, 2007, ASS RES OT ABSTR, V30, P132 ROSE JE, 1959, B JOHNS HOPKINS HOSP, V104, P211 Ruotsalainen S, 1997, PHARMACOL BIOCHEM BE, V56, P31, DOI 10.1016/S0091-3057(96)00151-7 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 RYUGO DK, 1993, J COMP NEUROL, V329, P20, DOI 10.1002/cne.903290103 Sallinen J, 1998, J NEUROSCI, V18, P3035 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 Shore SE, 2003, NEUROSCIENCE, V119, P1085, DOI 10.1016/S0306-4522(03)00207-0 SHORE SE, 1991, HEARING RES, V52, P255, DOI 10.1016/0378-5955(91)90205-N Shore SE, 1998, HEARING RES, V116, P33, DOI 10.1016/S0378-5955(97)00207-4 SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750 SPIROU GA, 1993, J COMP NEUROL, V329, P36, DOI 10.1002/cne.903290104 Ter-Mikaelian M, 2007, J NEUROSCI, V27, P6091, DOI 10.1523/JNEUROSCI.4848-06-2007 VOIGT HF, 1988, J NEUROPHYSIOL, V59, P1014 VOIGT HF, 1980, J NEUROPHYSIOL, V44, P76 WANG X, 2008, NEUROSCIENCE, V19, P484 Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 Wolff A, 1997, NEUROSCI LETT, V221, P125, DOI 10.1016/S0304-3940(96)13305-X WOUTERLOOD FG, 1984, J NEUROCYTOL, V13, P639, DOI 10.1007/BF01148083 WRIGHT D, 1974, J ACOUST SOC AM, V56, P957, DOI 10.1121/1.1903355 Xie R, 2007, J NEUROSCI, V27, P9469, DOI 10.1523/JNEUROSCI.2865-07.2007 YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 YOUNG ED, 1980, BRAIN RES, V200, P23, DOI 10.1016/0006-8993(80)91091-4 ZHANG S, 1994, J NEUROPHYSIOL, V71, P914 ZHANG S, 1993, J NEUROPHYSIOL, V69, P1384 Zheng XH, 2006, BIOL CYBERN, V95, P233, DOI 10.1007/s00422-006-0081-9 Zheng XH, 2006, ANN BIOMED ENG, V34, P697, DOI 10.1007/s10439-005-9073-5 Zhou JX, 2004, J NEUROSCI RES, V78, P901, DOI 10.1002/jnr.20343 NR 84 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 44 EP 57 DI 10.1016/j.heares.2009.05.004 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600005 PM 19450672 ER PT J AU Manley, GA AF Manley, Geoffrey A. TI Spontaneous otoacoustic emissions in lizards: A comparison of the skink-like lizard families Cordylidae and Gerrhosauridae SO HEARING RESEARCH LA English DT Article DE Lizard hearing; Spontaneous otoacoustic emissions; Evolution ID SCANNING ELECTRON-MICROSCOPE; FROG RANA-ESCULENTA; BOBTAIL LIZARD; TEMPERATURE-DEPENDENCE; EXTERNAL TONES; GEKKO-GECKO; HAIR-CELLS; PAPILLAE; TILIQUA; EAR AB Lizard families can be grouped into larger units comprising those families that are closely related and whose auditory papillae are morphologically very similar. Based on the few species studied at that time [Manley, G.A., 1997. Diversity in hearing-organ structure and the characteristics of spontaneous otoacoustic emissions in lizards. In: Lewis, E.R., Long, G.R., Lyon, R.F., Narins, P.M., Steele, C.R. (Eds.), Diversity in Auditory Mechanics. World Scientific Publishing Co., Singapore, pp. 32-38], it was suggested that SOAE spectral patterns are strongly influenced by papillar anatomy. However, in two family groups, only one single species has been studied and we have no data on the regularity of pattern within related lizard families. Within the group of skink-like lizards, whose papillae all have salletal tectorial structures, the only detailed SOAE studies so far were on the skink genus Tiliqua. To ascertain the similarity of SOAE in species from families related to the skinks, we have studied one species each from two families that are closely related to skinks, the Cordylidae (Girdle-tailed lizards) and the Gerrhosauridae (plated lizards). Gerrhosaurus and Cordylus have a similar number and amplitudes of SOAE to Tiliqua (Skinkidae). The maximal frequency shifts of SOAE under the influence of external tones is also similar to that of Tiliqua. However, the maximal suppression and maximal facilitation are smaller. in general, the patterns displayed by the SOAE of lizards of these two new families are recognizably similar to the skink Tiliqua, suggesting that the anatomy of the papilla and the tectorial structures do play an important role in determining how SOAE are manifested in papillae that possess tectorial sallets. (C) 2009 Elsevier B.V. All rights reserved. C1 Tech Univ Munich, Lehrstuhl Zool, D-85350 Freising Weihenstephan, Germany. RP Manley, GA (reprint author), Tech Univ Munich, Lehrstuhl Zool, Hochfeldweg 2, D-85350 Freising Weihenstephan, Germany. EM geoffrey.manley@wzw.tum.de CR Baker R. J., 1989, COCHLEAR MECHANISMS, P349 CLARK WW, 1984, HEARING RES, V16, P299, DOI 10.1016/0378-5955(84)90119-9 Drexl M, 2004, HEARING RES, V194, P135, DOI 10.1016/j.heares.2004.04.006 Koppl C, 1995, ADV HEARING RES, P207 KOPPL C, 1988, HEARING RES, V35, P209, DOI 10.1016/0378-5955(88)90119-0 KOPPL C, 1994, HEARING RES, V72, P159, DOI 10.1016/0378-5955(94)90215-1 KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U KOPPL C, 1995, HEARING RES, V82, P14 LONG GR, 1993, BIOPHYSICS HAIR CELL, P40 Long GR, 1996, HEARING RES, V98, P22, DOI 10.1016/0378-5955(96)00057-3 Manley GA, 2006, HEARING RES, V212, P33, DOI 10.1016/j.heares.2005.10.007 MANLEY GA, 1988, HEARING RES, V33, P181, DOI 10.1016/0378-5955(88)90031-7 MANLEY GA, 1994, HEARING RES, V72, P171, DOI 10.1016/0378-5955(94)90216-X Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858 Manley GA, 2001, P NATL ACAD SCI USA, V98, P2826, DOI 10.1073/pnas.041604998 Manley GA, 2004, HEARING RES, V189, P41, DOI 10.1016/S0378-5955(03)00367-8 MANLEY GA, 2000, DTSCH FORSCHUNGSGEME, P93 Manley GA, 2000, SPR HDB AUD, V13, P139 MANLEY GA, 2008, DIVERSITY AUDITORY M, P32 MANLEY GA, 2007, SPRINGER HDB AUDITOR, V30, P211 Manley GA, 1996, J ACOUST SOC AM, V99, P1588, DOI 10.1121/1.414680 MARTIN GK, 1988, HEARING RES, V33, P49, DOI 10.1016/0378-5955(88)90020-2 MILLER MR, 1985, J COMP NEUROL, V232, P1, DOI 10.1002/cne.902320102 MILLER MR, 1974, CELL TISSUE RES, V150, P125 MILLER MR, 1978, J MORPHOL, V156, P381, DOI 10.1002/jmor.1051560305 OHYAMA K, 1992, ASS RES OT ABSTR, V15, P150 OHYAMA K, 1991, HEARING RES, V56, P111, DOI 10.1016/0378-5955(91)90160-B PENNER MJ, 1993, HEARING RES, V68, P229, DOI 10.1016/0378-5955(93)90126-L RABINOWITZ WM, 1984, J ACOUST SOC AM, V76, P1713, DOI 10.1121/1.391618 Taschenberger G, 1997, HEARING RES, V110, P61, DOI 10.1016/S0378-5955(97)00070-1 VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2 Vilfan A, 2008, BIOPHYS J, V95, P4622, DOI 10.1529/biophysj.108.130286 Wever EG, 1978, REPTILE EAR ITS STRU NR 33 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 58 EP 66 DI 10.1016/j.heares.2009.05.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600006 PM 19539017 ER PT J AU Chang, A Eastwood, H Sly, D James, D Richardson, R O'Leary, S AF Chang, Andrew Eastwood, Hayden Sly, David James, David Richardson, Rachael O'Leary, Stephen TI Factors influencing the efficacy of round window dexamethasone protection of residual hearing post-cochlear implant surgery SO HEARING RESEARCH LA English DT Article DE Cochlear implantation; Round window membrane; Dexamethasone; Pharmacokinetic; Residual hearing ID EAR DRUG-DELIVERY; SPIRAL LIGAMENT FIBROCYTES; INTRATYMPANIC DEXAMETHASONE; ACOUSTIC HEARING; GUINEA-PIG; MODEL; PHARMACOKINETICS; INTRACOCHLEAR; THERAPY; CELLS AB Aim: To protect hearing in an experimental model of cochlear implantation by the application of dexamethasone to the round window prior to surgery. The present study examined the dosage and timing relationships required to optimise the hearing protection. Methods: Dexamethasone or saline (control) was absorbed into a pledget of the carboxymethylcellulose and hyaluronic acid and applied to the round window of the guinea pig prior to cochlear implantation. The treatment groups were 2% w/v dexamethasone for 30, 60 and 120 min; 20% dexamethasone applied for 30 min. Auditory sensitivity was determined pre-operatively, and at I week after surgery, with pure-tone auditory brainstem response audiometry (2-32 kHz). Cochlear implantation was performed via a cochleostomy drilled into the basal turn of the cochlea, into which a miniature cochlear implant dummy electrode was inserted using soft-surgery techniques. Results: ABR thresholds were elevated after cochlear implantation, maximally at 32 kHz and to a lesser extent at lower frequencies. Thresholds were less elevated after dexamethasone treatment, and the hearing protection improved when 2% dexamethasone was applied to the round window for longer periods of time prior to implantation. The time that dexamethasone need be applied to achieve hearing protection could be reduced by increasing the concentration of steroid, with a 20% application for 30 min achieving similar levels of protection to a 60 min application of 2% dexamethasone. Conclusions: Hearing protection is improved by increasing the time that dexamethasone is applied to the round window prior to cochlear implantation, and the waiting time can be reduced by increasing the steroid concentration. These results suggest that the diffusion dexamethasone through the cochlea is the prime determinant of the extent of hearing protection. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved. C1 [Chang, Andrew; Eastwood, Hayden; Sly, David; James, David; Richardson, Rachael; O'Leary, Stephen] Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, Melbourne, Vic 3002, Australia. [Richardson, Rachael; O'Leary, Stephen] Bion Ear Inst, Melbourne, Vic 3002, Australia. RP O'Leary, S (reprint author), Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, 32 Gisborne St, Melbourne, Vic 3002, Australia. EM sjoleary@unimelb.edu.au FU National Health and Medical Research Council Australia; Garnett Passe and Rodney Williams Memorial Foundation; NIDCD [HHS-N-263-2007-00053-C]; National Institute on Deafness and Other Communication Disorders, National Institutes of Health [DC 01368] FX Project grants from the National Health and Medical Research Council Australia and Otolaryngology Scholarship from the Garnett Passe and Rodney Williams Memorial Foundation. Helen Feng for manufacturing electrode arrays. Maria Clark and Prudence Nielsen for preparing histological materials. Dr. Stuart Galloway and St. Vincent's Hospital Anatomical Pathology Department for histological analysis. Dr. James Fallon for providing the ABR analysis program (NIDCD Contract HHS-N-263-2007-00053-C; PI: RK Shepherd). Salt A, Washington University Cochlear Fluids Simulator: Version 1.6 available from http: //oto.wustl.edu/cochlea/model.htm. (This program was developed and is made available by Grant funding (DC 01368) from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health.) CR Adunka O, 2006, LARYNGOSCOPE, V116, P1017, DOI 10.1097/01.mlg.0000217224.94804.bb Borenstein JT, 2007, TISSUE ENG, V13, P1837, DOI 10.1089/ten.2006.0156 Borkholder DA, 2008, CURR OPIN OTOLARYNGO, V16, P472, DOI 10.1097/MOO.0b013e32830e20db Chandrasekhar SS, 2001, OTOL NEUROTOL, V22, P18, DOI 10.1097/00129492-200101000-00005 Chen ZQ, 2005, J CONTROL RELEASE, V110, P1, DOI 10.1016/j.jconrel.2005.09.003 Cope D, 2008, LARYNGOSCOPE, V118, P1556, DOI 10.1097/MLG.0b013e31817c0b4d Dodson Kelley M, 2004, Ear Nose Throat J, V83, P394 Eshraghi Adrien A, 2006, Curr Opin Otolaryngol Head Neck Surg, V14, P323, DOI 10.1097/01.moo.0000244189.74431.df Eshraghi AA, 2007, OTOL NEUROTOL, V28, P842, DOI 10.1097/MAO.0b013e31805778fc Gantz BJ, 2004, ACTA OTO-LARYNGOL, V124, P344, DOI 10.1080/00016480410016423 Gifford RH, 2007, J SPEECH LANG HEAR R, V50, P835, DOI 10.1044/1092-4388(2007/058) Gouveris H, 2005, EUR ARCH OTO-RHINO-L, V262, P131, DOI 10.1007/s00405-004-0772-6 Goycoolea MV, 2001, ACTA OTO-LARYNGOL, V121, P437, DOI 10.1080/000164801300366552 Gstoettner W, 2004, ACTA OTO-LARYNGOL, V124, P348, DOI 10.1080/00016480410016432 GSTOETTNER WK, 2008, ACTA OTO-LARYNGOL, V1, P8 Hahn H, 2006, HEARING RES, V212, P236, DOI 10.1016/j.heares.2005.12.001 Ichimiya I, 2000, INT J PEDIATR OTORHI, V56, P45, DOI 10.1016/S0165-5876(00)00408-0 James Chris J, 2006, Audiol Neurootol, V11 Suppl 1, P57, DOI 10.1159/000095615 James DP, 2008, AUDIOL NEURO-OTOL, V13, P86, DOI 10.1159/000111780 Kopke RD, 2006, AUDIOL NEURO-OTOL, V11, P123, DOI 10.1159/000090685 LEHNHARDT E, 1993, HNO, V41, P356 Lenarz Thomas, 2006, Audiol Neurootol, V11 Suppl 1, P34, DOI 10.1159/000095612 Li PMMC, 2007, ANN OTO RHINOL LARYN, V116, P731 Maeda K, 2005, HEARING RES, V202, P154, DOI 10.1016/j.heares.2004.08.022 MATHIVANAR R, 1990, PACE, V13, P1883, DOI 10.1111/j.1540-8159.1990.tb06909.x MERCANZINI A, 2007, C P IEEE ENG MED BIO, P6613 Pettingill LN, 2008, NEUROSCIENCE, V152, P821, DOI 10.1016/j.neuroscience.2007.11.057 Plontke SK, 2007, AUDIOL NEURO-OTOL, V12, P37, DOI 10.1159/000097246 Rogowski M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P434 Salt AN, 2005, DRUG DISCOV TODAY, V10, P1299, DOI 10.1016/S1359-6446(05)03574-9 Salt AN, 2002, ADV OTO-RHINO-LARYNG, V59, P140 Sasson R, 2003, BIOCHEM PHARMACOL, V66, P1393, DOI 10.1016/S0006-2952(03)00489-1 Silverstein H, 1996, ENT-EAR NOSE THROAT, V75, P74 Silverstein H, 1996, ENT-EAR NOSE THROAT, V75, P76 Silverstein H, 1996, Ear Nose Throat J, V75, P468 Turner CW, 2008, HEARING RES, V242, P164, DOI 10.1016/j.heares.2007.11.008 Wu WJ, 2002, AUDIOL NEURO-OTOL, V7, P171, DOI 10.1159/000058305 Ye Qing, 2004, Cochlear Implants Int, V5 Suppl 1, P17, DOI 10.1002/cii.149 Ye Q, 2007, EAR HEARING, V28, P361, DOI 10.1097/01.aud.0000261655.30652.62 NR 39 TC 37 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 67 EP 72 DI 10.1016/j.heares.2009.05.010 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600007 PM 19539739 ER PT J AU Pap, P Koszeghy, A Szucs, G Rusznak, Z AF Pap, Pal Koszeghy, Aron Szucs, Geza Rusznak, Zoltan TI Cytoplasmic Ca2+ concentration changes evoked by cholinergic stimulation in primary astrocyte cultures prepared from the rat cochlear nucleus SO HEARING RESEARCH LA English DT Article DE Glia; Muscarinic receptors; Immunochemistry; Q-PCR; Fluo-4 ID MUSCARINIC ACETYLCHOLINE-RECEPTORS; CENTRAL-NERVOUS-SYSTEM; CORTICAL ASTROCYTES; GLIAL-CELLS; IN-VIVO; CALCIUM; NEURONS; MODULATION; RESPONSES; SLICES AB The involvement of astrocytes in the cholinergic modulation of the cochlear nucleus has been studied using primary astrocyte cultures prepared from this nucleus. The cells were loaded with the membrane permeable form of the fluorescent Ca2+ indicator Fluo-4, and carbachol-induced Ca2+ concentration increases were monitored using an imaging system. In the presence of cholinergic stimulation 36.3% of the cells produced Ca2+ transients. The time course of the transients was variable; 45.0% of the responding cells showed only a rapid Ca2+ concentration increase, while in 50.5% of the astrocytes the fast component was followed by a slow plateau phase. Using muscarine as well as general and more specific cholinergic antagonists (atropine, pirenzepine, 4-DAMP and hexamethonium), the role of the M3 and (to a smaller extent) M1 muscarinic acetylcholine receptors could be demonstrated in the genesis of the carbachol-induced Ca2+ transients. The presence of these two subtypes of muscarinic receptors has been confirmed at both mRNA (Q-PCR) and protein (immunocytochemistry) levels. Our data demonstrate the responsiveness of the cochlear astrocytes towards cholinergic stimulation, suggesting that they may have roles in mediating the effects of cholinergic modulation in the rat cochlear nucleus. (C) 2009 Elsevier B.V. All rights reserved. C1 [Pap, Pal; Koszeghy, Aron; Szucs, Geza; Rusznak, Zoltan] Univ Debrecen, Dept Physiol, Med & Hlth Sci Ctr, H-4012 Debrecen, Hungary. RP Rusznak, Z (reprint author), Univ Debrecen, Dept Physiol, Med & Hlth Sci Ctr, POB 22,Nagyerdei Krt 98, H-4012 Debrecen, Hungary. EM rz@phys.dote.hu FU Hungarian Scientific Research Fund [OTKA K-72812, NK-61412] FX This work was supported by Grants from the Hungarian Scientific Research Fund (OTKA K-72812, NK-61412). The authors are indebted to Mrs. Ibolya Varga for her skilled technical assistance. CR Agulhon C, 2008, NEURON, V59, P932, DOI 10.1016/j.neuron.2008.09.004 Amadio S, 2007, BMC DEV BIOL, V7, DOI 10.1186/1471-213X-7-77 Araque A, 2002, J NEUROSCI, V22, P2443 Bains JS, 2007, TRENDS NEUROSCI, V30, P417, DOI 10.1016/j.tins.2007.06.007 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 Buisson B, 1998, MOL PHARMACOL, V53, P555 Carmignoto G, 2000, PROG NEUROBIOL, V62, P561, DOI 10.1016/S0301-0082(00)00029-0 Catlin MC, 2000, CYTOMETRY, V41, P123 Chen K, 1999, NEUROSCIENCE, V90, P1043, DOI 10.1016/S0306-4522(98)00503-X CHEN KJ, 1995, HEARING RES, V89, P137, DOI 10.1016/0378-5955(95)00131-6 CHEN KJ, 1994, HEARING RES, V77, P168 Chen KJ, 1998, BRAIN RES, V783, P219, DOI 10.1016/S0006-8993(97)01348-6 Deitmer JW, 1998, CELL CALCIUM, V24, P405, DOI 10.1016/S0143-4160(98)90063-X Fiacco TA, 2006, GLIA, V54, P676, DOI 10.1002/glia.20396 Fujino K, 2001, J NEUROSCI, V21, P7372 Fumagalli M, 2003, GLIA, V43, P218, DOI 10.1002/glia.10248 GODFREY DA, 1987, HEARING RES, V28, P253, DOI 10.1016/0378-5955(87)90053-0 Happe HK, 1998, J COMP NEUROL, V397, P163, DOI 10.1002/(SICI)1096-9861(19980727)397:2<163::AID-CNE2>3.0.CO;2-Z HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P549 HOSLI E, 1993, PROG NEUROBIOL, V40, P477, DOI 10.1016/0301-0082(93)90019-O Hosli E, 2001, INT J DEV NEUROSCI, V19, P11, DOI 10.1016/S0736-5748(00)00082-4 James G, 2002, EUR J PHARMACOL, V447, P247, DOI 10.1016/S0014-2999(02)01756-9 Jourdain P, 2007, NAT NEUROSCI, V10, P331, DOI 10.1038/nn1849 KANE EC, 1974, J COMP NEUROL, V155, P301, DOI 10.1002/cne.901550303 Kettenmann H., 1995, NEUROGLIA Kimelberg HK, 2004, NEUROCHEM INT, V45, P191, DOI 10.1016/j.neuint.2003.08.015 Kimelberg HK, 2000, J NEUROSCI RES, V61, P577, DOI 10.1002/1097-4547(20000915)61:6<577::AID-JNR1>3.0.CO;2-T Lalo U, 2006, J NEUROSCI, V26, P2673, DOI 10.1523/JNEUROSCI.4689-05.2006 Militante J, 2008, MOL PHARMACOL, V74, P764, DOI 10.1124/mol.108.047134 MOORE JK, 1986, NEUROBIOLOGY HEARING, P283 Moriya H, 1999, LIFE SCI, V64, P2351, DOI 10.1016/S0024-3205(99)00188-5 Nedergaard M, 2003, TRENDS NEUROSCI, V26, P523, DOI 10.1016/j.tins.2003.08.008 Nishiyama A, 2005, J ANAT, V207, P687, DOI 10.1111/j.1469-7580.2005.00489.x Oertel D, 2001, AUDIOL NEURO-OTOL, V6, P161, DOI 10.1159/000046825 Oikawa H, 2005, J NEUROSCI RES, V79, P535, DOI 10.1002/jnr.20398 Perea G, 2002, J PHYSIOLOGY-PARIS, V96, P199, DOI 10.1016/S0928-4257(02)00007-4 Perea G, 2005, J NEURAL TRANSM, V112, P127, DOI 10.1007/s00702-004-0170-7 Porter JT, 1997, PROG NEUROBIOL, V51, P439, DOI 10.1016/S0301-0082(96)00068-8 Rusznak Z, 2001, BRAIN RES PROTOC, V7, P68, DOI 10.1016/S1385-299X(01)00047-2 Safieddine S, 1996, MOL BRAIN RES, V40, P127 SHAO Y, 1995, CELL CALCIUM, V17, P187, DOI 10.1016/0143-4160(95)90033-0 SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8 Stengel PW, 2002, J PHARMACOL EXP THER, V301, P643, DOI 10.1124/jpet.301.2.643 Takahashi A, 1999, PHYSIOL REV, V79, P1089 van Koppen CJ, 2003, PHARMACOL THERAPEUT, V98, P197, DOI 10.1016/S0163-7258(03)00032-9 Verkhratsky A, 2006, PFLUG ARCH EUR J PHY, V453, P411, DOI 10.1007/s00424-006-0099-9 Verkhratsky A, 1998, PHYSIOL REV, V78, P99 Verkhratsky A, 1996, TRENDS NEUROSCI, V19, P346, DOI 10.1016/0166-2236(96)10048-5 WENTHOLD RJ, 1986, BRAIN RES, V380, P7, DOI 10.1016/0006-8993(86)91423-X WOUTERLOOD FG, 1984, J COMP NEUROL, V227, P136, DOI 10.1002/cne.902270114 Xiu J, 2005, NEUROCHEM INT, V47, P281, DOI 10.1016/j.neuint.2005.04.023 Yao WP, 1996, J COMP NEUROL, V373, P27 YAO WP, 1995, HEARING RES, V89, P76, DOI 10.1016/0378-5955(95)00123-7 Zhang JS, 2000, HEARING RES, V140, P7, DOI 10.1016/S0378-5955(99)00181-1 NR 54 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 73 EP 83 DI 10.1016/j.heares.2009.05.006 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600008 PM 19497356 ER PT J AU El-Badry, MM McFadden, SL AF El-Badry, Mohamed M. McFadden, Sandra L. TI Evaluation of inner hair cell and nerve fiber loss as sufficient pathologies underlying auditory neuropathy SO HEARING RESEARCH LA English DT Article DE Auditory neuropathy; Inner hair cells; Auditory nerve; Carboplatin; Auditory brainstem response; Cochlea; Auditory evoked potentials ID PRODUCT OTOACOUSTIC EMISSIONS; SUMMATING POTENTIALS; CARBOPLATIN; CHINCHILLAS; ELECTROCOCHLEOGRAPHY; CONSEQUENCES; SYNCHRONY; DAMAGE AB Auditory neuropathy is a hearing disorder characterized by normal function of outer hair cells, evidenced by intact cochlear microphonic (CM) potentials and otoacoustic emissions (OAEs), with absent or severely dys-synchronized auditory brainstem responses (ABRs). To determine if selective lesions of inner hair cells (IHCs) and auditory nerve fibers (ANFs) can account for these primary clinical features of auditory neuropathy, we measured physiological responses from chinchillas with large lesions of ANFs (about 85%) and IHCs (45% loss in the apical half of the cochlea; 73% in the basal half). Distortion product OAEs and CM potentials were significantly enhanced, whereas summating potentials and compound action potentials (CAPs) were significantly reduced. CAP threshold was elevated by 7.5 dB, but response synchrony was well preserved down to threshold levels of stimulation. Similarly, ABR threshold was elevated by 5.6 dB, but all waves were present and well synchronized down to threshold levels in all animals. Thus, large lesions of IHCs and ANI's reduced response amplitudes but did not abolish or severely dys-synchronize CAPs or ABRs. Pathologies other than or in addition to ANF and IHC loss are likely to account for the evoked potential dys-synchrony that is a clinical hallmark of auditory neuropathy in humans. (C) 2009 Elsevier B.V. All rights reserved. C1 [El-Badry, Mohamed M.] Menia Univ, El Minia Univ Hosp, Audiol Unit, Dept Otolaryngol, El Minia, Egypt. [McFadden, Sandra L.] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. RP McFadden, SL (reprint author), Menia Univ, El Minia Univ Hosp, Audiol Unit, Dept Otolaryngol, El Minia, Egypt. EM elbadrymm@hotmail.com; sl-mcfadden@wiu.edu FU NIH/NIDCD [P01 DC03600] FX The authors gratefully acknowledge the invaluable assistance of Dalian Ding, Center for Hearing and Deafness, State University of New York at Buffalo, for performing all histology. This research was supported by NIH/NIDCD Grant P01 DC03600 (SLM). CR Berg AL, 2005, PEDIATRICS, V116, P933, DOI 10.1542/peds.2004-2806 BERLIN CI, 1995, HAIR CELLS HEARING A, P99 Berlin CI, 2003, MENT RETARD DEV D R, V9, P225, DOI 10.1002/mrdd.10084 BERLIN CI, 1993, HEARING RES, V65, P40, DOI 10.1016/0378-5955(93)90199-B Ding DL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P189, DOI 10.1201/9781420038736.ch13 DING D, 2001, JARO-J ASSOC RES OTO, V3, P68 Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x Durrant JD, 1998, J ACOUST SOC AM, V104, P370, DOI 10.1121/1.423293 ELBADRY MM, 2007, BRAIN RES, V1134, P112 El-Badry MM, 2007, EUR J NEUROSCI, V25, P1437, DOI 10.1111/j.1460-9568.2007.05401.x Foerst A, 2006, INT J PEDIATR OTORHI, V70, P1415, DOI 10.1016/j.ijporl.2006.02.010 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Harrison RV, 1998, EAR HEARING, V19, P355, DOI 10.1097/00003446-199810000-00002 Jock BM, 1996, HEARING RES, V96, P179, DOI 10.1016/0378-5955(96)00058-5 Kraus N, 2000, JARO-J ASSOC RES OTO, V1, P33, DOI 10.1007/s101620010004 Mason JC, 2003, LARYNGOSCOPE, V113, P45, DOI 10.1097/00005537-200301000-00009 MCFADDEN SL, 2007, PHARM OTOTOXICITY AU, P86 Ngo RYS, 2006, INT J PEDIATR OTORHI, V70, P1299, DOI 10.1016/j.ijporl.2005.12.004 Peterson Ann, 2003, J Am Acad Audiol, V14, P188 Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9 Salvi RJ, 2000, NOISE HEALTH, V2, P9 Salvi R J, 1999, Scand Audiol Suppl, V51, P1 Santarelli R, 2008, CLIN NEUROPHYSIOL, V119, P1028, DOI 10.1016/j.clinph.2008.01.018 Santarelli R, 2002, HEARING RES, V170, P32, DOI 10.1016/S0378-5955(02)00450-1 Shallop JK, 2001, LARYNGOSCOPE, V111, P555, DOI 10.1097/00005537-200104000-00001 Sheykholeslami K, 2001, J LARYNGOL OTOL, V115, P530 Sininger Yvonne S., 2002, Seminars in Hearing, V23, P193, DOI 10.1055/s-2002-34456 Sininger YS, 2001, AUDITORY NEUROPATHY, P15 SNYDER DL, 1994, LAB ANIMAL, V23, P42 Starr A, 1996, BRAIN, V119, P741, DOI 10.1093/brain/119.3.741 Starr A, 2001, EAR HEARING, V22, P91, DOI 10.1097/00003446-200104000-00002 Starr A., 2000, Journal of Basic and Clinical Physiology and Pharmacology, V11, P215 STARR A, 2001, AUDITORY NEUROPATHY, P37 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 Wake M, 1996, ACTA OTO-LARYNGOL, V116, P374, DOI 10.3109/00016489609137860 WAKE M, 1994, LARYNGOSCOPE, V104, P488 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 Wang J, 2003, HEARING RES, V181, P65, DOI 10.1016/S0378-5955(03)00176-X Zeng FG, 1999, NEUROREPORT, V10, P3429, DOI 10.1097/00001756-199911080-00031 Zeng FG, 2005, J NEUROPHYSIOL, V93, P3050, DOI 10.1152/jn.00985.2004 ZHENG XY, 1997, HEARING RES, V76, P88 NR 42 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 84 EP 90 DI 10.1016/j.heares.2009.06.003 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600009 PM 19531376 ER PT J AU Nava, E Bottari, D Bonfioli, F Beltrame, MA Pavani, F AF Nava, Elena Bottari, Davide Bonfioli, Francesca Beltrame, Millo Achille Pavani, Francesco TI Spatial hearing with a single cochlear implant in late-implanted adults SO HEARING RESEARCH LA English DT Article DE Spatial hearing; Monaural localisation; Cochlear implant; Auditory plasticity ID SOUND LOCALIZATION; SPEECH-PERCEPTION; ABILITIES; BENEFITS; USERS; SPACE; EARS AB We assessed sound localisation abilities of late-implanted adults fitted with a single cochlear implant (Cl) and examined whether these abilities are affected by the duration of implant use. Ten prelingually and four postlingually deafened adults who received a unilateral Cl were tested in a sound-source identification task. Above chance performance was observed in those prelingual Cl recipients who had worn their implant for longer time (9 years on average), revealing some monaural sound localisation abilities in this population but only after extensive Cl use. On the contrary, the four postlingual recipients performed equal or better with respect to the best prelingual participants despite shorter experience with the monaural implant (11 months on average). Our findings reveal that some sound localisation ability can emerge in prelingually deafened adults fitted with a single implant, at least in a controlled laboratory setting. This ability, however, appears to emerge only after several years of Cl use. Furthermore, the results of four postlingually deafened adults suggest that early experience with auditory cues may result in more rapid acquisition of spatial hearing with a single Cl. (C) 2009 Elsevier B.V. All rights reserved. C1 [Nava, Elena; Pavani, Francesco] Univ Trent, Ctr Mind Brain Sci, I-38068 Rovereto, TN, Italy. [Bottari, Davide; Pavani, Francesco] Univ Trent, Dept Cognit Sci & Educ, I-38068 Rovereto, TN, Italy. [Bonfioli, Francesca; Beltrame, Millo Achille] Hosp Santa Maria del Carmine, Grp Impianti Cocleari, Rovereto, Italy. RP Nava, E (reprint author), Univ Trent, Ctr Mind Brain Sci, Corso Bettini 31, I-38068 Rovereto, TN, Italy. EM elena.nava@unitn.it; francesco.pavani@unitn.it RI Pavani, Francesco/B-4836-2010 FU Ministero dell'Universita e della Ricerca (Italy) [2006118540004]; Comune di Rovereto (Italy); Provincia Autonoma di Trento [PAT-CRS 2008] FX F.P. was supported by a PRIN Grant (Prot. 2006118540004) from Ministero dell'Universita e della Ricerca (Italy), a grant from Comune di Rovereto (Italy), and a Grant from Provincia Autonoma di Trento (PAT-CRS 2008). The authors are grateful to Wesley Grantham for reading so carefully the previous version of the manuscript and for many helpful suggestions. CR Blauert J., 1997, SPATIAL HEARING PSYC Buhagiar R, 2004, Cochlear Implants Int, V5, P96, DOI 10.1002/cii.133 BUTLER RA, 1987, PERCEPT PSYCHOPHYS, V41, P1, DOI 10.3758/BF03208206 Crawford JR, 2002, NEUROPSYCHOLOGIA, V40, P1196, DOI 10.1016/S0028-3932(01)00224-X Dunn CC, 2008, EAR HEARING, V29, P352, DOI 10.1097/AUD.0b013e318167b870 Grantham DW, 2008, LARYNGOSCOPE, V118, P145, DOI 10.1097/MLG.0b013e31815661f9 Grantham DW, 2007, EAR HEARING, V28, P524, DOI 10.1097/AUD.0b013e31806dc21a Hofman PM, 1998, NAT NEUROSCI, V1, P417, DOI 10.1038/1633 King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821 Laszig R, 2004, OTOL NEUROTOL, V25, P958, DOI 10.1097/00129492-200411000-00016 Luntz Michal, 2005, Cochlear Implants Int, V6, P1, DOI 10.1002/cii.15 Luntz M, 2002, INT J PEDIATR OTORHI, V64, P1, DOI 10.1016/S0165-5876(02)00023-X Moore BCJ, 1997, INTRO PSYCHOL HEARIN Nava E, 2009, NEUROPSYCHOLOGIA, V47, P928, DOI 10.1016/j.neuropsychologia.2008.11.020 Neuman AC, 2007, EAR HEARING, V28, P73, DOI 10.1097/01.aud.0000249910.80803.b9 Noble W, 2008, INT J AUDIOL, V47, P505, DOI 10.1080/14992020802070770 Nopp P, 2004, EAR HEARING, V25, P205, DOI 10.1097/01.AUD.0000130793.20444.50 Tyler RS, 2007, EAR HEARING, V28, p86S, DOI 10.1097/AUD.0b013e31803153e2 Tyler RS, 2006, INT J AUDIOL, V45, pS113, DOI 10.1080/14992020600783095 van Hoesel RJM, 2003, J ACOUST SOC AM, V113, P1617, DOI 10.1121/1.1539520 Van Wanrooij MM, 2004, J NEUROSCI, V24, P4163, DOI 10.1523/JNEUROSCI.0048-04.2004 Verschuur CA, 2005, OTOL NEUROTOL, V26, P965, DOI 10.1097/01.mao.0000185073.81070.07 NR 22 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 91 EP 98 DI 10.1016/j.heares.2009.06.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600010 PM 19539018 ER PT J AU Apoux, F Healy, EW AF Apoux, Frederic Healy, Eric W. TI On the number of auditory filter outputs needed to understand speech: Further evidence for auditory channel independence SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 2nd Joint Conference of the Acoustical-Society-of-America/European-Acoustics-Association CY JUN 29-JUL 04, 2008 CL Paris, FRANCE SP Acoust Soc Amer, European Acoust Assoc, Soc Francaise Acoust DE Peripheral filtering; Speech recognition; Glimpsing; Auditory channel independence ID NORMAL-HEARING LISTENERS; CONSONANT IDENTIFICATION; INTERFERING-SPEECH; ARTICULATION INDEX; TEMPORAL CUES; NOISE; FREQUENCY; INTELLIGIBILITY; RECOGNITION; MASKING AB The number of auditory filter outputs required to identify phonemes was estimated in two experiments. Stimuli were divided into 30 contiguous equivalent rectangular bandwidths (ERB(N)) spanning 80-7563 Hz. Normal-hearing listeners were presented with limited numbers of bands having frequency locations determined randomly from trial to trial to provide a general view, i.e., irrespective of specific band location, of the number of 1-ERB(N)-wide speech bands needed to identify phonemes. The first experiment demonstrated that 20 such bands are required to accurately identify vowels, and 16 are required to identify consonants. In the second experiment, speech-shaped noise or time-reversed speech was introduced to the non-speech bands at various signal-to-noise ratios. Considerably elevated noise levels were necessary to substantially affect phoneme recognition, confirming a high degree of channel independence in the auditory system. The independence observed between auditory filter outputs supports current views of speech recognition in noise in which listeners extract and combine pieces of information randomly distributed both in time and frequency. These findings also suggest that the ability to partition incoming sounds into a large number of narrow bands, an ability often lost in cases of hearing impairment or cochlear implantation, is critical for speech recognition in noise. Published by Elsevier B.V. C1 [Apoux, Frederic] Ohio State Univ, Dept Speech & Hearing Sci, Speech Psychoacoust Lab, Columbus, OH 43210 USA. RP Apoux, F (reprint author), Ohio State Univ, Dept Speech & Hearing Sci, Speech Psychoacoust Lab, 110 Pressey Hall,1070 Carmack Rd, Columbus, OH 43210 USA. EM fred.apoux@gmail.com; healy.66@osu.edu CR ANSI, 2004, S362004 ANSI ANSI, 1969, S351969 ANSI ANSI, 1997, S351997 ANSI Apoux F, 2008, J ACOUST SOC AM, V123, P2792, DOI 10.1121/1.2897916 Apoux F, 2008, J ACOUST SOC AM, V123, P1665, DOI 10.1121/1.2828067 Baskent D, 2006, J ACOUST SOC AM, V119, P1156, DOI 10.1121/1.2151825 Benki JR, 2003, PHONETICA, V60, P129, DOI 10.1159/000071450 BOSMAN AJ, 1989, THESIS U UTRECHT UTR BREEUWER M, 1984, J ACOUST SOC AM, V76, P686, DOI 10.1121/1.391255 BREEUWER M, 1985, J ACOUST SOC AM, V77, P314, DOI 10.1121/1.392230 BREEUWER M, 1986, J ACOUST SOC AM, V79, P481, DOI 10.1121/1.393536 BRONKHORST AW, 1993, J ACOUST SOC AM, V93, P499, DOI 10.1121/1.406844 Brungart DS, 2006, J ACOUST SOC AM, V120, P4007, DOI 10.1121/1.2363929 Buss E, 2004, J ACOUST SOC AM, V115, P2278, DOI 10.1121/1.691035 CELMER RD, 1987, PSYCHOPHYSICS SPEECH, P473 Cooke M, 2005, SPEECH SEPARATION BY HUMANS AND MACHINES, P305, DOI 10.1007/0-387-22794-6_21 Cooke M, 2006, J ACOUST SOC AM, V119, P1562, DOI 10.1121/1.2166600 COOKE MP, 2003, J PHONETICS, V31, P9 Dorman MF, 1997, J ACOUST SOC AM, V102, P2403, DOI 10.1121/1.419603 DRULLMAN R, 1995, J ACOUST SOC AM, V98, P1796, DOI 10.1121/1.413378 Dubno JR, 2002, J ACOUST SOC AM, V111, P2897, DOI 10.1121/1.1480421 Dudley H, 1939, J ACOUST SOC AM, V11, P169, DOI 10.1121/1.1916020 FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 FRENCH NR, 1947, J ACOUST SOC AM, V19, P90, DOI 10.1121/1.1916407 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fullgrabe C, 2006, HEARING RES, V211, P74, DOI 10.1016/j.heares.2005.09.001 GILLIOM JD, 1976, J ACOUST SOC AM, V59, P1428, DOI 10.1121/1.381031 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GRANT KW, 1991, J ACOUST SOC AM, V89, P2952, DOI 10.1121/1.400733 Green TJ, 2001, J EXP PSYCHOL HUMAN, V27, P1197, DOI 10.1037//0096-1523.27.5.1197 GUSTAFSSON HA, 1994, J ACOUST SOC AM, V95, P518, DOI 10.1121/1.408346 Healy EW, 2003, J ACOUST SOC AM, V113, P1676, DOI 10.1121/1.1553464 HEALY EW, 1998, THESIS U WISCONSIN M HILLENBRAND J, 1995, J ACOUST SOC AM, V97, P3099, DOI 10.1121/1.411872 HOWARDJONES PA, 1993, J ACOUST SOC AM, V93, P2915, DOI 10.1121/1.405811 HUBNER R, 1995, PERCEPT PSYCHOPHYS, V57, P197, DOI 10.3758/BF03206506 Iyer N, 2007, J ACOUST SOC AM, V122, P1693, DOI 10.1121/1.2756177 KALIKOW DN, 1977, J ACOUST SOC AM, V61, P1337, DOI 10.1121/1.381436 Kennedy E, 1998, J ACOUST SOC AM, V103, P1098, DOI 10.1121/1.423108 KRYTER KD, 1962, J ACOUST SOC AM, V34, P1698, DOI 10.1121/1.1909096 Li N, 2008, J ACOUST SOC AM, V123, P1673, DOI 10.1121/1.2832617 Lippmann RP, 1996, IEEE T SPEECH AUDI P, V4, P66, DOI 10.1109/TSA.1996.481454 Loizou PC, 1999, J ACOUST SOC AM, V106, P2097, DOI 10.1121/1.427954 MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 Rhebergen KS, 2005, J ACOUST SOC AM, V118, P1274, DOI 10.1121/1.2000751 Scharf B, 2007, J ACOUST SOC AM, V121, P2149, DOI 10.1121/1.2537461 Shanley A, 1999, CHEM ENG-NEW YORK, V106, P74 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Warren RM, 2004, J ACOUST SOC AM, V115, P1292, DOI 10.1121/1.1646404 Warren RM, 1997, PERCEPT PSYCHOPHYS, V59, P275, DOI 10.3758/BF03211895 WARREN RM, 1995, PERCEPT PSYCHOPHYS, V57, P175, DOI 10.3758/BF03206503 Xu L, 2005, J ACOUST SOC AM, V117, P3255, DOI 10.1121/.1.1886405 ZWICKER E, 1978, AUDIOLOGY, V17, P120 NR 56 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 99 EP 108 DI 10.1016/j.heares.2009.06.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600011 PM 19539016 ER PT J AU Zallocchi, M Meehan, DT Delimont, D Askew, C Garige, S Gratton, MA Rothermund-Franklin, CA Cosgrove, D AF Zallocchi, Marisa Meehan, Daniel T. Delimont, Duane Askew, Charles Garige, Suneetha Gratton, Michael Anne Rothermund-Franklin, Christie A. Cosgrove, Dominic TI Localization and expression of clarin-1, the Clrn1 gene product, in auditory hair cells and photoreceptors SO HEARING RESEARCH LA English DT Article DE Usher syndrome; Clarin-1; Stereocilia; Connecting cilia; Ribbon synapse ID USHER PROTEIN NETWORK; ANKLE-LINK COMPLEX; EAR SENSORY CELLS; SYNDROME TYPE IIA; INNER-EAR; RIBBON SYNAPSES; MYOSIN VIIA; MUTATIONS; MOUSE; HARMONIN AB The Usher syndrome 3A (CLRN1) gene encodes clarin-1, which is a member of the tetraspanin family of transmembrane proteins. Although identified more than 6 years ago, little is known about its localization or function in the eye and ear. We developed a polyclonal antibody that react with all clarin-1 isoforms and used it to characterize protein expression in cochlea and retina. In the cochlea, we observe clarin-1 expression in the stereocilia of PO mice, and in synaptic terminals present at the base of the auditory hair cells from E18 to P6. In the retina, clarin-1 localizes to the connecting cilia, inner segment of photo-receptors and to the ribbon synapses. RT-PCR from PO cochlea and P28 retina show mRNAs encoding only isoforms 2 and 3. Western blots show that only isoform 2 is present in protein extracts from these same tissues. We examined clarin-1 expression in the immortomouse-derived hair cell line UB/OC-1. Only isoform 2 is expressed in UB/OC-1 at both mRNA and protein levels, suggesting this isoform is biologically relevant to hair cell function. The protein co-localizes with microtubules and post-transgolgi vesicles. The subcellular localization of clarin-1 in hair cells and photoreceptors suggests it functions at both the basal and apical poles of neurosensoriepithelia. (C) 2009 Elsevier B.V. All rights reserved. C1 [Cosgrove, Dominic] Boys Town Natl Res Hosp, Natl Usher Syndrome Ctr, Omaha, NE 68131 USA. [Askew, Charles; Gratton, Michael Anne] Univ Penn, Auditory Res Lab, Dept Otorhinolaryngol, HNS, Philadelphia, PA 19104 USA. [Rothermund-Franklin, Christie A.; Cosgrove, Dominic] Univ Nebraska, Med Ctr, Omaha, NE USA. RP Cosgrove, D (reprint author), Boys Town Natl Res Hosp, Natl Usher Syndrome Ctr, 555 N 30th St, Omaha, NE 68131 USA. EM zallocchim@boystown.org; meehand@boystown.org; delimontd@boystown.org; garriges@boystown.org; mgratton@slu.edu.com; crothermund-franklin@unmc.edu; cosgrove@boystown.org FU NCRR, NIH [C06 RR17417-01]; [R01 DC004844]; [R01 DC 006442] FX Supported by R01 DC004844 (to D.C.) and R01 DC 006442 (to M.A.G.). The authors gratefully acknowledge Skip Kennedy for expert preparation of figures, Mathew Holley and Dr. Marilyn Farquhar for the kind gift of UB/OC-1 cells and the mannosidase 11 antibodies, respectively. Confocal microscopy was conducted at the Integrative Biological Imaging Facility at Creighton University, Omaha, NE. This facility was constructed with support from C06 Grant RR17417-01 from the NCRR, NIH. CR Aarnisalo AA, 2007, HEARING RES, V230, P9, DOI 10.1016/j.heares.2007.03.004 Adato A, 2002, EUR J HUM GENET, V10, P339, DOI 10.1038/sj.ejhg.5200831 Adato A, 2005, HUM MOL GENET, V14, P347, DOI 10.1093/hmg/ddi031 Adato A, 2005, HUM MOL GENET, V14, P3921, DOI 10.1093/hmg/ddi416 AHMED ZM, 2001, AM J HUM GENET, V69, P5 Beller M, 2008, PLOS BIOL, V6, P2530, DOI 10.1371/journal.pbio.0060292 Berditchevski F, 2001, J CELL SCI, V114, P4143 BERGERON AL, 2005, JARO-J ASSOC RES OTO, V6, P4143 Beurg M, 2008, J NEUROSCI, V28, P1798, DOI 10.1523/JNEUROSCI.4653-07.2008 Bhattacharya G, 2004, J CELL SCI, V117, P233, DOI 10.1242/jcs.00850 Bhattacharya Gautam, 2005, Biochemistry, V44, P11518, DOI 10.1021/bi050245u Bitner-Glindzicz M, 2000, NAT GENET, V26, P56, DOI 10.1038/79178 Boeda B, 2002, EMBO J, V21, P6689, DOI 10.1093/emboj/cdf689 Bolz H, 2001, NAT GENET, V27, P108 Bork JM, 2001, AM J HUM GENET, V68, P26, DOI 10.1086/316954 BOUGHMAN JA, 1983, J CHRON DIS, V36, P595, DOI 10.1016/0021-9681(83)90147-9 Boyer S, 2004, BRAIN RES PROTOC, V13, P91, DOI 10.1016/j.brainresport.2004.02.004 Chen L, 2000, NATURE, V408, P936 Duijsings D, 2009, TRAFFIC, V10, P316, DOI 10.1111/j.1600-0854.2008.00868.x Ebermann I, 2007, HUM GENET, V121, P203, DOI 10.1007/s00439-006-0304-0 El-Amraoui A, 2005, J CELL SCI, V118, P4593, DOI 10.1242/jcs.02636 Eudy JD, 1998, SCIENCE, V280, P1753, DOI 10.1126/science.280.5370.1753 Fields RR, 2002, AM J HUM GENET, V71, P607, DOI 10.1086/342098 Gerber S, 2006, AM J HUM GENET, V78, P357, DOI 10.1086/500275 Gibbs D, 2003, P NATL ACAD SCI USA, V100, P6481, DOI 10.1073/pnas.1130432100 Hallgren B, 1959, ACTA PSYCHIAT SCAN S, V138, P1 Hashimoto T, 2007, GENE THER, V14, P584, DOI 10.1038/sj.gt.3302897 Head BP, 2006, J BIOL CHEM, V281, P26391, DOI 10.1074/jbc.M602577200 Hemler ME, 2001, J CELL BIOL, V155, P1103, DOI 10.1083/jcb.200108061 Hmani-Aifa M, 2009, EUR J HUM GENET, V17, P474, DOI 10.1038/ejhg.2008.167 HUANG LC, 2007, DEVELOPMENT, V134, P2625 Joensuu T, 2001, AM J HUM GENET, V69, P673, DOI 10.1086/323610 Johnson KR, 2003, HUM MOL GENET, V12, P3075, DOI 10.1093/hmg/ddg332 Kato AS, 2008, NEURON, V59, P986, DOI 10.1016/j.neuron.2008.07.034 Kremer H, 2006, HUM MOL GENET, V15, pR262, DOI 10.1093/hmg/ddl205 Lefevre G, 2008, DEVELOPMENT, V135, P1427, DOI 10.1242/dev.012922 Letts VA, 1998, NAT GENET, V19, P340, DOI 10.1038/1228 Liu XR, 1999, J NEUROSCI, V19, P6267 LUTCKE A, 1993, J CELL BIOL, V121, P553, DOI 10.1083/jcb.121.3.553 Maerker T, 2008, HUM MOL GENET, V17, P71, DOI 10.1093/hmg/ddm285 McGee J, 2006, J NEUROSCI, V26, P6543, DOI 10.1523/JNEUROSCI.0693-06.2006 Michalski N, 2007, J NEUROSCI, V27, P6478, DOI 10.1523/JNEUROSCI.0342-07.2007 Moser T, 2006, CELL TISSUE RES, V326, P347, DOI 10.1007/s00441-006-0276-3 Neco P, 2003, EUR J NEUROSCI, V18, P733, DOI 10.1046/j.1460-9568.2003.02801.x Payne HL, 2008, MOL MEMBR BIOL, V25, P353, DOI 10.1080/09687680801986480 Pujol R, 1998, DEV SENSORY NEURAL S PUJOL R, 1985, ACTA OTO-LARYNGOL, P5 Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9 Reiners J, 2003, INVEST OPHTH VIS SCI, V44, P5006, DOI 10.1167/iovs.03-0483 REINERS J, 2006, EXP EYE RES, V83, P7 Rivolta MN, 2002, GENOME RES, V12, P1091, DOI 10.1101/gr.225602 Rivolta MN, 1998, P ROY SOC B-BIOL SCI, V265, P1595 Roux I, 2006, CELL, V127, P277, DOI 10.1016/j.cell.2006.08.040 Ruel J, 2007, HEARING RES, V227, P19, DOI 10.1016/j.heares.2006.08.017 Siemens J, 2002, P NATL ACAD SCI USA, V99, P14946, DOI 10.1073/pnas.232579599 SOBKOWICZ HM, 1982, J NEUROSCI, V2, P942 Sterling P, 2005, TRENDS NEUROSCI, V28, P20, DOI 10.1016/j.tins.2004.11.009 Tomita S, 2007, NEUROPHARMACOLOGY, V52, P87, DOI 10.1016/j.neuropharm.2006.07.012 Trojan P, 2008, PROG RETIN EYE RES, V27, P237, DOI 10.1016/j.preteyeres.2008.01.003 van Wijk E, 2006, HUM MOL GENET, V15, P751, DOI 10.1093/hmg/ddi490 VELASCO A, 1993, J CELL BIOL, V122, P39, DOI 10.1083/jcb.122.1.39 Verpy E, 2000, NAT GENET, V26, P51 Weil D, 1995, Nature, V374, P60 Weil D, 2003, HUM MOL GENET, V12, P463, DOI 10.1093/hmg/ddg051 Weston MD, 2004, AM J HUM GENET, V74, P357, DOI 10.1086/381685 NR 65 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 109 EP 120 DI 10.1016/j.heares.2009.06.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600012 PM 19539019 ER PT J AU Jung, HH Kim, HJ Im, GJ Chang, J Choi, J Chae, SW AF Jung, Hak Hyun Kim, Hyung Jin Im, Gi Jung Chang, Jiwon Choi, June Chae, Sung Won TI Differential protein expression profiles in salicylate ototoxicity of the mouse cochlea SO HEARING RESEARCH LA English DT Article DE Cochlea; Ototoxicity; Salicylate; Mouse ID CELL-PROLIFERATION; HAIR-CELLS; CALMODULIN; APOPTOSIS; ASPIRIN AB The purpose of this study was to investigate protein expression profiles of salicylate ototoxicity using proteomic analysis, and to identify whether salicylates induce apoptosis in organotypic culture of mouse cochlear cells. The adult mice were injected intraperitoneally with 400 mg/kg of sodium salicylate. Approximately 30 dB threshold shift was observed 3 h after the injection, and the hearing threshold returned to normal range within 3 days. Proteomic analysis of mouse cochlea was performed 3 h after salicylate injection, because this was the time to show maximal ototoxic effect in salicylate intoxication. Expression pattern of proteomic analysis at 3 h was compared with those of normal cochlea and cochlea 3 days after salicylate injection. Sixteen proteins were transiently up-regulated threefolds or more at 3 h after the injection compared with normal cochlea, and three proteins were down-regulated at 3 h. Similar protein expression profiles were also observed between normal and 3 days group. These up-regulated and down-regulated proteins at 3 h were analyzed by MALDI-TOF MS. The mRNA expressions of nine selected genes from 16 up-regulated protein profiles were also investigated by RT-PCR, and their expression levels at 3 h were found to be higher than those of normal cochlea. We also confirmed the ototoxicity of salicylate in organotypic culture of cochlear cells using MTT assay, Hoechst staining and DNA laddering assay in vitro, and found that salicylate decreased the viability of cells in a time and dose-dependent manner, and that induced apoptosis in organotypic culture of cochlear cells. This study demonstrated that some proteins can be related to salicylate ototoxicity, and provides basic information about candidate proteins which are related to pathologic changes in salicylate-induced ototoxicity. (C) 2009 Elsevier B.V. All rights reserved. C1 [Jung, Hak Hyun; Kim, Hyung Jin; Im, Gi Jung; Chang, Jiwon; Choi, June; Chae, Sung Won] Korea Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, Seoul 136705, South Korea. RP Jung, HH (reprint author), Korea Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, Anam Dong 5 Ga 126-1, Seoul 136705, South Korea. EM ranccoon@naver.com RI Choi, June/E-7063-2013 FU Communication Disorders Center, Korea University, Korea; Brain Korea 21. FX The authors thank Seo Jin Kim, and Ji Hye Lee for helpful technical assistance. This study was supported by the Communication Disorders Center, Korea University, Korea and the Brain Korea 21. CR AAS AT, 1995, J NEURO-ONCOL, V24, P171, DOI 10.1007/BF01078487 Benndorf R, 2004, NAT GENET, V36, P547, DOI 10.1038/ng0604-547 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 Furness DN, 2002, HEARING RES, V173, P10, DOI 10.1016/S0378-5955(02)00584-1 HOCHSTRASSER DF, 1988, ANAL BIOCHEM, V173, P412, DOI 10.1016/0003-2697(88)90208-4 Hsu SY, 2000, PHYSIOL REV, V80, P593 Im GJ, 2007, ACTA OTO-LARYNGOL, V127, P459, DOI 10.1080/00016480600801365 Irobi J, 2004, NAT GENET, V36, P597, DOI 10.1038/ng1328 JUNG TTK, 1993, OTOLARYNG CLIN N AM, V26, P791 Kappe G, 2001, BBA-GENE STRUCT EXPR, V1520, P1, DOI 10.1016/S0167-4781(01)00237-8 Lee EJ, 2003, INT J ONCOL, V23, P503 Li S, 2000, Zhonghua Er Bi Yan Hou Ke Za Zhi, V35, P263 LIM HH, 1993, HEARING RES, V69, P146 Lue AJC, 1999, HEARING RES, V135, P163, DOI 10.1016/S0378-5955(99)00102-1 Marra DE, 2001, TRENDS CARDIOVAS MED, V11, P339, DOI 10.1016/S1050-1738(01)00133-5 McMurtrie EB, 1997, GENOMICS, V45, P623, DOI 10.1006/geno.1997.4959 Mori MX, 2004, SCIENCE, V304, P432, DOI 10.1126/science.1093490 Nascimben L, 1996, CIRCULATION, V94, P1894 Ricchi P, 1997, INT J CANCER, V73, P880 SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 Tokumaru H, 2001, CELL, V104, P421, DOI 10.1016/S0092-8674(01)00229-X Yi JH, 2006, J NEUROTRAUM, V23, P86, DOI 10.1089/neu.2006.23.86 NR 22 TC 2 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 121 EP 128 DI 10.1016/j.heares.2009.06.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600013 PM 19540324 ER PT J AU Xu, L Zhou, N Chen, XW Li, YX Schultz, HM Zhao, XY Han, DM AF Xu, Li Zhou, Ning Chen, Xiuwu Li, Yongxin Schultz, Heather M. Zhao, Xiaoyan Han, Demin TI Vocal singing by prelingually-deafened children with cochlear implants SO HEARING RESEARCH LA English DT Article DE Cochlear implants; Vocal singing; Pediatric; Pitch; Rhythm ID MANDARIN-SPEAKING CHILDREN; MUSIC PERCEPTION; TONE PRODUCTION; PRODUCTION SKILLS; SONG RECOGNITION; HEARING; PITCH; LISTENERS; RECIPIENTS; ABILITY AB The coarse pitch information in cochlear implants might hinder the development of singing in prelingually-deafened pediatric users. In the present study, seven prelingually-deafened children with cochlear implants (5.4-12.3 years old) sang one song that was the most familiar to him or her. The control group consisted of 14 normal-hearing children (4.1-8.0 years old). The fundamental frequencies (F0) of each note in the recorded songs were extracted. The following five metrics were computed based on the reference music scores: (1) F0 contour direction of the adjacent notes, (2) F0 compression ratio of the entire song, (3) mean deviation of the normalized F0 across the notes, (4) mean deviation of the pitch intervals, and (5) standard deviation of the note duration differences. Children with cochlear implants showed significantly poorer performance in the pitch-based assessments than the normal-hearing children. No significant differences were seen between the two groups in the rhythm-based measure. Prelingually-deafened children with cochlear implants have significant deficits in singing due to their inability to manipulate pitch in the correct directions and to produce accurate pitch height. Future studies with a large sample size are warranted in order to account for the large variability in singing performance. (C) 2009 Elsevier B.V. All rights reserved. C1 [Xu, Li; Zhou, Ning; Schultz, Heather M.] Ohio Univ, Sch Hearing Speech & Language Sci, Athens, OH 45701 USA. [Chen, Xiuwu; Li, Yongxin; Zhao, Xiaoyan; Han, Demin] Beijing Tongren Hosp, Beijing Inst Otorhinolaryngol, Dept Otolaryngol, Beijing, Peoples R China. RP Xu, L (reprint author), Ohio Univ, Sch Hearing Speech & Language Sci, Athens, OH 45701 USA. EM xul@ohio.edu FU NIH NIDCD [R03 DC006161, R15 DC009504]; Advanced Bionics Corporation FX The authors express appreciation to Natalie Bevilacqua, Jiong Hu, and Cyndi Welch for their technique assistance. Three anonymous reviewers provided useful comments to an early version of the manuscript. This work was supported by NIH NIDCD Grant Nos. R03 DC006161 and R15 DC009504 and Advanced Bionics Corporation. CR Cooper WB, 2008, EAR HEARING, V29, P618, DOI 10.1097/AUD.0b013e318174e787 Dalla Bella Simone, 2007, J Acoust Soc Am, V121, P1182, DOI 10.1121/1.2427111 Dowling W. J., 1999, PSYCHOL MUSIC Firszt JB, 2009, OTOL NEUROTOL, V30, P146, DOI 10.1097/MAO.0b013e3181924ff8 FIRSZT JB, 2004, HIRESOLUTION SPEECH FLOWERS PJ, 1990, J RES MUSIC EDUC, V38, P102, DOI 10.2307/3344930 Fujita S, 1999, ANN OTO RHINOL LARYN, V108, P634 Galvin JJ, 2007, EAR HEARING, V28, P302, DOI 10.1097/01.aud.0000261689.35445.20 Gfeller Kate, 2002, Cochlear Implants Int, V3, P29, DOI 10.1002/cii.50 Gfeller K, 1998, J Am Acad Audiol, V9, P1 Gfeller K, 1997, EAR HEARING, V18, P252, DOI 10.1097/00003446-199706000-00008 Gfeller Kate E, 2006, Audiol Neurootol, V11 Suppl 1, P12, DOI 10.1159/000095608 Han DM, 2007, INT J PEDIATR OTORHI, V71, P875, DOI 10.1016/j.ijporl.2007.02.008 Han DM, 2009, EAR HEARING, V30, P169, DOI 10.1097/AUD.0b013e31819342cf Hsiao F, 2008, J MUSIC THER, V45, P390 KOCH DB, 2007, ABSTR ASS RES OT MID, V30, P158 Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F Lieberman P., 1988, SPEECH PHYSL SPEECH McDermott Hugh J, 2004, Trends Amplif, V8, P49, DOI 10.1177/108471380400800203 Mitani C, 2007, EAR HEARING, V28, p29S, DOI 10.1097/AUD.0b013e318031547a Moore BCJ, 2003, OTOL NEUROTOL, V24, P243, DOI 10.1097/00129492-200303000-00019 Nakata T, 2006, MUSIC PERCEPT, V24, P147, DOI 10.1525/mp.2006.24.2.147 Nimmons GL, 2008, OTOL NEUROTOL, V29, P149 OSTWALD PF, 1973, DEV MED CHILD NEUROL, V15, P367 Patel A., 2008, MUSIC LANGUAGE BRAIN Peng SC, 2004, EAR HEARING, V25, P251, DOI 10.1097/01.AUD.0000130797.73809.40 Peng SC, 2007, J SPEECH LANG HEAR R, V50, P1210, DOI 10.1044/1092-4388(2007/085) Pijl S, 1997, EAR HEARING, V18, P364, DOI 10.1097/00003446-199710000-00002 RAMSEY JH, 1983, J RES MUSIC EDUC, V31, P133, DOI 10.2307/3345216 Stalinski SM, 2008, J ACOUST SOC AM, V124, P1759, DOI 10.1121/1.2956470 Stordahl J, 2002, J MUSIC THER, V39, P2 Tobey EA, 2003, EAR HEARING, V24, p36S, DOI 10.1097/01.AUD.0000051688.48224.A6 Vongpaisal T, 2006, J SPEECH LANG HEAR R, V49, P1091, DOI 10.4044/1092-4388(2006/078) Xu L, 2004, ACTA OTO-LARYNGOL, V124, P363, DOI 10.1080/00016480410016351 Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102 Zhou N, 2008, J ACOUST SOC AM, V123, P1653, DOI 10.1121/1.2832623 NR 36 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 129 EP 134 DI 10.1016/j.heares.2009.06.011 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600014 PM 19560528 ER PT J AU DeCasper, AJ Prescott, P AF DeCasper, Anthony J. Prescott, Phyllis TI Lateralized processes constrain auditory reinforcement in human newborns SO HEARING RESEARCH LA English DT Article DE Human newborn; Perception; Auditory reinforcement; Functional lateralization of audition; Auditory development; Auditory spectral processing; Rapid variation in audition ID MATERNAL SPEECH; FETAL; PERCEPTION; EXPERIENCE; LANGUAGE; INFANTS; SOUNDS; DISCRIMINATION; RECOGNITION; RESPONSES AB We investigated operant sucking response learning in human newborns. Auditory reinforcers always occurred monaurally to see whether their potency differed between ears. Experiment I - we controlled the reinforcers, either intrauterine heartbeat sounds or unfamiliar speech, while infants chose which ear received it. Experiment 2 - we controlled the reinforcers and the receiving ear. Unfamiliar speech reinforced learning only if infants could use their right ear and heartbeats reinforced learning only if infants could use their left ear. Experiment 3 - we controlled the ear while infants chose between their mothers' vs. a stranger's voice and between their mothers' vs. a foreign language. The more familiar speech reinforced learning only if infants could use their left ear. We proposed reinforcers' potencies differed between ears because the newborn's auditory system, just like adult's, optimizes their perceptual clarity by left-lateralized processing of their rapid temporal variations and right-lateralized processing of their longer-lasting spectral characteristics. (C) 2009 Elsevier B.V. All rights reserved. C1 [DeCasper, Anthony J.; Prescott, Phyllis] UNC Greensboro, Dept Psychol, Greensboro, NC 27402 USA. RP DeCasper, AJ (reprint author), UNC Greensboro, Dept Psychol, Greensboro, NC 27402 USA. EM decasper@uncg.edu CR Abdala C, 1996, J ACOUST SOC AM, V100, P3726, DOI 10.1121/1.417234 Aidan D, 1997, ACTA OTO-LARYNGOL, V117, P25, DOI 10.3109/00016489709117986 ALEXANDRA PF, 2007, ENVIRON HEALTH PERSP, V115, P623 BRYDEN MP, 1977, NEUROPSYCHOLOGIA, V15, P617, DOI 10.1016/0028-3932(77)90067-7 BUTTERFIELD EC, 1972, ORAL SENSATION PERCE Cheour M, 2002, DEV NEUROPSYCHOL, V22, P471, DOI 10.1207/S15326942DN2202_3 COOPER RP, 1989, CAN J PSYCHOL, V43, P247, DOI 10.1037/h0084216 DECASPER AJ, 1980, SCIENCE, V208, P1174, DOI 10.1126/science.7375928 DECASPER AJ, 1994, INFANT BEHAV DEV, V17, P159, DOI 10.1016/0163-6383(94)90051-5 DECASPER AJ, 1978, 5 BIENN SE C HUM DEV DECASPER AJ, 1986, INFANT BEHAV DEV, V9, P133, DOI 10.1016/0163-6383(86)90025-1 DECASPER AJ, 1984, DEV PSYCHOBIOL, V17, P481, DOI 10.1002/dev.420170506 DECASPER AJ, 1983, INFANT BEHAV DEV, V6, P19, DOI 10.1016/S0163-6383(83)80004-6 deReginer RA, 2000, J PEDIATR-US, V137, P777, DOI 10.1067/mpd.2000.109149 Draganova R, 2007, EARLY HUM DEV, V83, P199, DOI 10.1016/j.earlhumdev.2006.05.018 Eldredge L, 1996, EARLY HUM DEV, V45, P215, DOI 10.1016/0378-3782(96)01732-X FAIRBANKS G, 1960, G FAIRBANKS VOICE AR, P124 FIFER WP, 1989, SEMIN PERINATOL, V13, P430 GRANIERDEFERRE C, DEV SCI IN PRESS Jardri R, 2008, NEUROIMAGE, V42, P10, DOI 10.1016/j.neuroimage.2008.04.247 Joos M, 1948, LANGUAGE, V24, P5, DOI 10.2307/522229 Kisilevsky BS, 2003, PSYCHOL SCI, V14, P220, DOI 10.1111/1467-9280.02435 Krueger C, 2004, INFANT BEHAV DEV, V27, P537, DOI 10.1016/j.infbeh.2004.03.001 LECANUET JP, 1987, CR ACAD SCI III-VIE, V305, P161 LECANUET JP, 1993, EARLY DEV PARENTING, V2, P217, DOI DOI 10.1002/EDP.2430020405 LECANUET JP, 1993, DEV NEUROCOGNITION S, V69, P237 Lecanuet JP, 2000, DEV PSYCHOBIOL, V36, P29, DOI 10.1002/(SICI)1098-2302(200001)36:1<29::AID-DEV4>3.3.CO;2-A LIBERMAN AM, 1985, COGNITION, V21, P1, DOI 10.1016/0010-0277(85)90021-6 Mehl MR, 2007, SCIENCE, V317, P82, DOI 10.1126/science.1139940 MOON C, 1993, INFANT BEHAV DEV, V16, P495, DOI 10.1016/0163-6383(93)80007-U Moon C.M., 2000, J PERINATOLOGY, V20, P37 Moore DR, 2002, BRIT MED BULL, V63, P171, DOI 10.1093/bmb/63.1.171 MUROOKA H, 1974, CAPITOL RECORDS OLIVER CC, 1989, SEMIN PERINATOL, V13, P354 PANNETON RK, 1984, INT C INF STUD NEW Y Pena M, 2003, P NATL ACAD SCI USA, V100, P11702, DOI 10.1073/pnas.1934290100 Poeppel D, 2003, SPEECH COMMUN, V41, P245, DOI 10.1016/S0167-6393(02)00107-3 Porcaro C, 2006, BRAIN RES, V1101, P51, DOI 10.1016/j.brainres.2006.04.134 QUERLEU D, 1989, SEMIN PERINATOL, V13, P409 Ray B, 2005, HEARING RES, V202, P74, DOI 10.1016/j.heares.2004.09.013 Rayson P., 1997, INT J CORPUS LINGUIS, V2, P133, DOI DOI 10.1075/IJCL.2.1.07RAY RICHARDS DS, 1992, OBSTET GYNECOL, V80, P186 SEEBACH BS, 1994, P NATL ACAD SCI USA, V91, P7473, DOI 10.1073/pnas.91.16.7473 Sininger YS, 2004, SCIENCE, V305, P1581, DOI 10.1126/science.1100646 Sininger YS, 2006, HEARING RES, V212, P203, DOI 10.1016/j.heares.2005.12.003 SPENCE MJ, 1987, INFANT BEHAV DEV, V10, P133, DOI 10.1016/0163-6383(87)90028-2 Spence MJ, 1996, INFANT BEHAV DEV, V19, P199, DOI 10.1016/S0163-6383(96)90019-3 WITELSON SF, 1987, CHILD DEV, V58, P653, DOI 10.1111/j.1467-8624.1987.tb01408.x Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7 NR 49 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 135 EP 141 DI 10.1016/j.heares.2009.06.012 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600015 PM 19563874 ER PT J AU Savel, S AF Savel, Sophie TI Individual differences and left/right asymmetries in auditory space perception. I. Localization of low-frequency sounds in free field SO HEARING RESEARCH LA English DT Article DE Hearing; Auditory localization; Individual differences; Binaural cues; Learning ID CORTICAL REPRESENTATION; SPATIAL LOCALIZATION; RIGHT-HEMISPHERE; HUMAN LISTENERS; NEARBY SOURCES; LATERALIZATION; HUMANS; PERFORMANCES; RESPONSES; HEARING AB The number of subjects in studies on human spatial hearing is generally small. Therefore, individual differences and the factors underlying variability are unknown. In this study, we investigated across-listener variability in auditory localization abilities in a group of 50 naive adults with normal hearing. Targets were trains of low-frequency noise bursts presented to I of 12 hidden speakers in the azimuthal plane. We observed less across-listener variability in the variance of individual responses but more in the root-mean-square and signed errors, which tended to increase with target angle. One third of the listeners demonstrated systematically smaller signed errors with left-sided targets than with right-sided ones. These asymmetries were observed less frequently in left-handers and females than in right-handers and males. Performance was not correlated with age. About 4 of 6 listeners trained with sensory feedback showed no reduction of asymmetries with training but rather showed a reduction in errors on their "best" side. Across-listener variability in the asymmetry of brain organization, notably linked to handedness or gender, is discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 CNRS, Equipe Acoust Percept & Informat Musicale, UPR 7051, Lab Mecan & Acoust, F-13402 Marseille 20, France. RP Savel, S (reprint author), CNRS, Equipe Acoust Percept & Informat Musicale, UPR 7051, Lab Mecan & Acoust, 31 Chemin Joseph Aiguier, F-13402 Marseille 20, France. EM savel@lma.cnrs-mrs.fr CR Abel SM, 2000, J ACOUST SOC AM, V108, P743, DOI 10.1121/1.429607 Abel SM, 1999, ACUSTICA, V85, P378 American National Standards Institute (ANSI), 1996, S361996 ANSI BISIACH E, 1984, BRAIN, V107, P37, DOI 10.1093/brain/107.1.37 Bradshaw J.L., 1995, CLIN NEUROPSYCHOLOGY Brungart DS, 1999, J ACOUST SOC AM, V106, P1956, DOI 10.1121/1.427943 Brungart DS, 1999, J ACOUST SOC AM, V106, P3589, DOI 10.1121/1.428212 BRYDEN MP, 1991, CAN J PSYCHOL, V45, P427, DOI 10.1037/h0084305 BURKE KA, 1994, NEUROPSYCHOLOGIA, V32, P1409, DOI 10.1016/0028-3932(94)00074-3 Bushara KO, 1999, NAT NEUROSCI, V2, P759 Butler AJ, 2004, HUM BRAIN MAPP, V21, P165, DOI 10.1002/hbm.20001 Carlile S, 1997, HEARING RES, V114, P179, DOI 10.1016/S0378-5955(97)00161-5 Cherbuin N, 2006, NEUROPSYCHOLOGY, V20, P700, DOI 10.1037/0894-4105.20.6.700 Deouell LY, 2007, NEURON, V55, P985, DOI 10.1016/i.neuron.2007.08.019 Feinstein S H, 1975, Undersea Biomed Res, V2, P173 Fujiki N, 2002, EUR J NEUROSCI, V16, P2207, DOI 10.1046/j.1460-9568.2002.02276.x GIGUERE C, 1993, J ACOUST SOC AM, V94, P769 GILKEY RH, 1995, BEHAV RES METH INSTR, V27, P1, DOI 10.3758/BF03203614 Good MD, 1996, J ACOUST SOC AM, V99, P1108, DOI 10.1121/1.415233 Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276 HARTMANN WM, 1983, J ACOUST SOC AM, V74, P1380, DOI 10.1121/1.390163 Hausmann M, 2005, COGNITIVE BRAIN RES, V25, P537, DOI 10.1016/j.cogbrainres.2005.08.008 Honda A, 2007, APPL ACOUST, V68, P885, DOI 10.1016/j.apacoust.2006.08.007 Itoh K, 2000, NEUROSCI LETT, V292, P215, DOI 10.1016/S0304-3940(00)01465-8 JAVER AR, 1995, J OTOLARYNGOL, V24, P111 Kaiser J, 2000, J NEUROSCI, V20, P6631 KIMURA D, 1967, CORTEX, V3, P168 KRUSKAL WILLIAM H., 1952, JOUR AMER STATIST ASSOC, V47, P583, DOI 10.2307/2280779 KULYNYCH JJ, 1992, BRAIN, V115, P1521 LACKNER JR, 1988, BRAIN, V111, P281, DOI 10.1093/brain/111.2.281 Lewald J., 2002, J NEUROSCI, V22, P1 LORING DW, 1990, NEUROPSYCHOLOGIA, V28, P831, DOI 10.1016/0028-3932(90)90007-B Macpherson EA, 2000, J ACOUST SOC AM, V108, P1834, DOI 10.1121/1.1310196 MAKOUS JC, 1990, J ACOUST SOC AM, V87, P2188, DOI 10.1121/1.399186 Martin RL, 2001, J AUDIO ENG SOC, V49, P14 MCKINLEY RL, 1994, AVIAT SPACE ENVIR MD, V65, pA31 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 MONDOR TA, 1991, NEUROPSYCHOLOGIA, V29, P1179, DOI 10.1016/0028-3932(91)90032-4 MOORE BJC, 2003, INTRO PSYCHOL HEARIN, P233 Morimoto M., 2003, Acoustical Science and Technology, V24, DOI 10.1250/ast.24.267 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 OLDFIELD SR, 1984, PERCEPTION, V13, P581, DOI 10.1068/p130581 Otten J, 2001, THESIS U OLDENBURG O Palomaki K, 2000, NEUROREPORT, V11, P1535, DOI 10.1097/00001756-200005150-00033 PERRETT S, 1995, PERCEPT PSYCHOPHYS, V57, P150, DOI 10.3758/BF03206501 PETERS M, 1995, BRAIN ASYMMETRY RASMUSSEN T, 1977, EVOLUTION LATERALIZA RUFF RM, 1981, NEUROPSYCHOLOGIA, V19, P435, DOI 10.1016/0028-3932(81)90073-7 SANDEL TT, 1955, J ACOUST SOC AM, V27, P842, DOI 10.1121/1.1908052 Savel S, 2009, ACTA ACUST UNITED AC, V95, P128, DOI 10.3813/AAA.918134 Shinn-Cunningham BG, 1998, J ACOUST SOC AM, V103, P3656, DOI 10.1121/1.423088 Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748 TIITINEN H, 2004, NEUROL CLIN NEUROPHY, P50 Voss P, 2004, CURR BIOL, V14, P1734, DOI 10.1016/j.cub.2004.09.051 Voyer D, 1996, Laterality, V1, P51, DOI 10.1080/713754209 WADA JA, 1975, ARCH NEUROL-CHICAGO, V32, P239 Weeks RA, 1999, NEUROSCI LETT, V262, P155, DOI 10.1016/S0304-3940(99)00062-2 Weisenberg T., 1935, APHASIA CLIN PSYCHOL WELLS MJ, 1980, AVIAT SPACE ENVIR MD, V51, P767 WENZEL EM, 1993, J ACOUST SOC AM, V94, P111, DOI 10.1121/1.407089 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P868, DOI 10.1121/1.397558 Wright BA, 2006, INT J AUDIOL, V45, pS92, DOI 10.1080/14992020600783004 Zahorik P, 2006, J ACOUST SOC AM, V120, P343, DOI 10.1121/1.2208429 Zatorre RJ, 2002, NAT NEUROSCI, V5, P905, DOI 10.1038/nn904 NR 64 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2009 VL 255 IS 1-2 BP 142 EP 154 DI 10.1016/j.heares.2009.06.013 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 490QO UT WOS:000269516600016 PM 19567263 ER PT J AU Ishiyama, A Mowry, SE Lopez, IA Ishiyama, G AF Ishiyama, Akira Mowry, Sarah E. Lopez, Ivan A. Ishiyama, Gail TI Immunohistochemical distribution of basement membrane proteins in the human inner ear from older subjects SO HEARING RESEARCH LA English DT Article DE Collagen; Nidogen; Laminin; alpha-Dystroglycan; Tenascin-C; Aging human temporal bone ID EXTRACELLULAR-MATRIX PROTEINS; QUIET-AGED GERBILS; ALPORT-SYNDROME; IV COLLAGEN; DYSTROGLYCAN EXPRESSION; ALPHA-DYSTROGLYCAN; STRIA VASCULARIS; TENASCIN-C; VESTIBULAR ENDORGANS; TISSUE DISTRIBUTION AB The immunolocalization of several basement membrane (BM) proteins was investigated in vestibular endorgans microdissected from temporal bones obtained from subjects with a documented normal auditory and vestibular function (n = 5, average age = 88 years old). Fluorescent immunostaining using antibodies directed at collagen IV alpha 2, nidogen-1, laminin-beta 1, alpha-dystroglycan, and tenascin-C was applied to cryosections from human cochlea, cristae ampullares, utricular and saccular maculae. Collagen IV alpha 2, nidogen-1, and laminin-beta 2 localized to all subepithelial cochlear BMs, Reissner's membrane, strial and spiral ligamental perineural and perivascular BMs, and the spiral limbus. Tenascin-C localized to the basilar membrane and the osseous spiral lamina. alpha-Dystroglycan localized to most cochlear BMs except those in the spiral ligament, basilar membrane and spiral limbus. Collagen IV, nidgen-1, and laminin-beta 2 localized to the subepithelial BMs of the maculae and cristae ampullares, and the perineural and perivascular BMs within the underlying stroma. The BM underlying the transitional and dark cell region of the cristae ampullares also expressed collagen IV, nidgen-1, and laminin-beta 2. Tenascin-C localized to the subepithelial BMs of the utricular maculae and cristae ampullares, and to calyx-like profiles throughout the vestibular epithelium, but not to the perineural and perivascular BMs. alpha-Dystroglycan colocalized with aquaporin-4 in the basal vestibular supporting cell, and was also expressed in the subepithelial BMs, as well as perivascular and perineural BMs. This study provides the first comprehensive immunolocalization of these ECM proteins in the human inner ear. The validity of the rodent models for inner ear disorders secondary to BM pathologies was confirmed as there is a high degree of conservation of expression of these proteins in the human inner ear. This information is critical to begin to unravel the role that BMs may play in human inner ear physiology and audiovestibular pathologies. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ishiyama, Gail] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Los Angeles, CA 90095 USA. [Ishiyama, Akira; Mowry, Sarah E.; Lopez, Ivan A.] Div Head & Neck, Dept Surg, Los Angeles, CA USA. RP Ishiyama, G (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Box 951769,3-250 RNRC, Los Angeles, CA 90095 USA. EM gishiyama@mednet.ucla.edu FU National Institutes of Health; National Institute on Deafness and Other Communication Disorders (NIDCD) [DC 008635, DC 005028, DC 005187] FX Grant Support: National Institutes of Health Grants, National Institute on Deafness and Other Communication Disorders (NIDCD) DC 008635; DC 005028, DC 005187. CR Alford AI, 2006, BONE, V38, P749, DOI 10.1016/j.bone.2005.11.017 BARKER DF, 1990, SCIENCE, V248, P1224, DOI 10.1126/science.2349482 Chiquet-Ehrismann R, 2004, INT J BIOCHEM CELL B, V36, P986, DOI 10.1016/j.biocel.2003.12.002 Cosgrove D, 1996, HEARING RES, V97, P54 Cosgrove D, 1998, HEARING RES, V121, P84, DOI 10.1016/S0378-5955(98)00069-0 Day JM, 2004, J BIOL CHEM, V279, P12511, DOI 10.1074/jbc.M400242200 Dityatev Alexander, 2006, V43, P69, DOI 10.1007/025 Eikmans M, 2003, J PATHOL, V200, P526, DOI 10.1002/path.1417 Erickson AC, 2000, J HISTOCHEM CYTOCHEM, V48, P1291 Gratton MA, 2005, AM J PATHOL, V166, P1465, DOI 10.1016/S0002-9440(10)62363-2 GRATTON MA, 1995, HEARING RES, V82, P44 GUADAGNO E, 2004, GLIA, V47, P8 Heaney DL, 2003, HEARING RES, V177, P12, DOI 10.1016/S0378-5995(02)00769-4 Heaney DL, 2002, HEARING RES, V174, P9, DOI 10.1016/S0378-5955(02)00611-1 Henry MD, 1998, CELL, V95, P859, DOI 10.1016/S0092-8674(00)81708-0 Ho MSP, 2008, MICROSC RES TECHNIQ, V71, P387, DOI 10.1002/jemt.20567 Hohenester E, 2002, MATRIX BIOL, V21, P115, DOI 10.1016/S0945-053X(01)00191-3 Hsia HC, 2005, J BIOL CHEM, V280, P26641, DOI 10.1074/jbc.R500005200 Ishiyama Gail, 2006, Curr Opin Otolaryngol Head Neck Surg, V14, P332, DOI 10.1097/01.moo.0000244191.51560.22 Iyer AKV, 2007, J CELL PHYSIOL, V211, P748, DOI 10.1002/jcp.20986 Jarad G, 2006, J CLIN INVEST, V116, P2272, DOI 10.1172/JCI28414 Kalluri R, 1998, CONNECT TISSUE RES, V37, P143, DOI 10.3109/03008209809028906 Kalluri R, 2003, NAT REV CANCER, V3, P422, DOI 10.1038/nrc1094 Kalluri R, 2000, J BIOL CHEM, V275, P12719, DOI 10.1074/jbc.275.17.12719 KATZ A, 1991, KIDNEY INT, V40, P643, DOI 10.1038/ki.1991.256 KEFALIDE.NA, 1971, BIOCHEM BIOPH RES CO, V45, P226, DOI 10.1016/0006-291X(71)90073-8 KHETARPAL U, 1994, HEARING RES, V79, P59, DOI 10.1016/0378-5955(94)90127-9 Khoshnoodi J, 2008, MICROSC RES TECHNIQ, V71, P357, DOI 10.1002/jemt.20564 KLEPPEL MM, 1989, AM J PATHOL, V134, P813 Kohfeldt E, 1998, J MOL BIOL, V282, P99, DOI 10.1006/jmbi.1998.2004 Li SH, 2005, J CELL BIOL, V169, P179, DOI 10.1083/jcb.200501098 Lohi J, 1997, INT J CANCER, V72, P43, DOI 10.1002/(SICI)1097-0215(19970703)72:1<43::AID-IJC6>3.0.CO;2-4 Lopez I, 2005, J NEUROSCI METH, V145, P37, DOI 10.1016/j.jneumeth.2004.11.024 Lopez IA, 2007, CELL TISSUE RES, V328, P453, DOI 10.1007/s00441-007-0380-z MARTINEZHERNANDEZ A, 1983, LAB INVEST, V48, P656 Mckee KK, 2007, J BIOL CHEM, V282, P21437, DOI 10.1074/jbc.M702963200 Merchant SN, 2004, LARYNGOSCOPE, V114, P1609, DOI 10.1097/00005537-200409000-00020 Milner R, 2008, J CEREBR BLOOD F MET, V28, P812, DOI 10.1038/sj.jcbfm.9600585 Montanaro F, 1999, J CELL BIOL, V145, P1325, DOI 10.1083/jcb.145.6.1325 Moukhles H, 2000, J COMP NEUROL, V420, P182, DOI 10.1002/(SICI)1096-9861(20000501)420:2<182::AID-CNE3>3.0.CO;2-2 MOWRY S, 2008, 31 MIDW M ASS RES OT NAGELHUS EA, 1999, GLIA, V26, P7 Okada M, 1996, Nihon Jinzo Gakkai Shi, V38, P213 Orend G, 2005, INT J BIOCHEM CELL B, V37, P1066, DOI 10.1016/j.biocel.2004.12.002 Rodgers KD, 2001, HEARING RES, V158, P39, DOI 10.1016/S0378-5955(01)00283-0 Sakaguchi N, 1997, HEARING RES, V105, P44, DOI 10.1016/S0378-5955(96)00180-3 Salmivirta K, 2002, EXP CELL RES, V279, P188, DOI 10.1006/excr.2002.5611 Satoh H, 1998, EUR ARCH OTO-RHINO-L, V255, P285, DOI 10.1007/s004050050060 SCHULNECHT H, 1968, Archives of Otolaryngology, V87, P129 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Swartz DJ, 1999, HEARING RES, V130, P108, DOI 10.1016/S0378-5955(98)00229-9 Takahashi M, 1992, Ann Otol Rhinol Laryngol Suppl, V157, P58 Takumi Y, 1998, EUR J NEUROSCI, V10, P3584, DOI 10.1046/j.1460-9568.1998.00360.x Timpl R, 1996, CURR OPIN CELL BIOL, V8, P618, DOI 10.1016/S0955-0674(96)80102-5 Tsuprun V, 1999, HEARING RES, V129, P35, DOI 10.1016/S0378-5955(98)00219-6 Tsuprun V, 2001, HEARING RES, V157, P65, DOI 10.1016/S0378-5955(01)00278-7 Tunggal P, 2000, MICROSC RES TECHNIQ, V51, P214, DOI 10.1002/1097-0029(20001101)51:3<214::AID-JEMT2>3.0.CO;2-J Utsumi K, 2001, TRANSPLANTATION, V71, P1757, DOI 10.1097/00007890-200106270-00010 VIRTANEN I, 1995, J HISTOCHEM CYTOCHEM, V43, P621 Vogtlander NPJ, 2005, J HISTOCHEM CYTOCHEM, V53, P1345, DOI 10.1369/jhc.4A6596.2005 Warchol ME, 2007, J COMP NEUROL, V500, P646, DOI 10.1002/cne.21153 WEHRLE B, 1990, DEVELOPMENT, V110, P401 Weidauer H, 1976, Laryngol Rhinol Otol (Stuttg), V55, P6 Weinberger DG, 1999, LARYNGOSCOPE, V109, P2001, DOI 10.1097/00005537-199912000-00020 Whitlon DS, 1999, J COMP NEUROL, V406, P361, DOI 10.1002/(SICI)1096-9861(19990412)406:3<361::AID-CNE5>3.0.CO;2-O YAMASHITA H, 1991, EUR ARCH OTO-RHINO-L, V248, P479, DOI 10.1007/BF00627638 YAMASHITA H, 1992, ACTA OTO-LARYNGOL, P31 YURCHENCO PD, 1990, FASEB J, V4, P1577 Zehnder AF, 2005, ARCH OTOLARYNGOL, V131, P1007, DOI 10.1001/archotol.131.11.1007 Zenker M, 2004, HUM MOL GENET, V13, P2625, DOI 10.1093/hmg/ddh284 zum Gottesberge AMM, 2005, HISTOCHEM CELL BIOL, V124, P507, DOI 10.1007/s00418-005-0027-7 NR 71 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 11 PY 2009 VL 254 IS 1-2 BP 1 EP 14 DI 10.1016/j.heares.2009.03.014 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 476KH UT WOS:000268438500001 PM 19348877 ER PT J AU Billings, CJ Tremblay, KL Stecker, GC Tolin, WM AF Billings, Curtis J. Tremblay, Kelly L. Stecker, G. Christopher Tolin, Wendy M. TI Human evoked cortical activity to signal-to-noise ratio and absolute signal level SO HEARING RESEARCH LA English DT Article DE Cortical auditory evoked potentials (CAEPs); Event-related potentials (ERPs); Signals in noise; Signal-to-noise ratio (SNR); N1; Auditory cortex; Hearing aids ID SENSORINEURAL HEARING-LOSS; EVENT-RELATED POTENTIALS; BROAD-BAND NOISE; NEURAL REPRESENTATION; AUDITORY-CORTEX; BEHAVIORAL MEASURES; STIMULUS-INTENSITY; AMPLIFIED SPEECH; RESPONSES; SOUND AB The purpose of this study was to determine the effect of signal level and signal-to-noise ratio (SNR) on the latency and amplitude of evoked cortical activity to further our understanding of how the human central auditory system encodes signals in noise. Cortical auditory evoked potentials (CAEPs) were recorded from 15 young normal-hearing adults in response to a 1000 Hz tone presented at two tone levels in quiet and while continuous background noise levels were varied in five equivalent SNR steps. These 12 conditions were used to determine the effects of signal level and SNR level on CAEP components P1, N1, P2, and N2. Based on prior signal-in-noise experiments conducted in animals, we hypothesized that SNR, would be a key contributor to human CAEP characteristics. As hypothesized, amplitude increased and latency decreased with increasing SNR; in addition, there was no main effect of tone level across the two signal levels tested (60 and 75 dB SPL). Morphology of the P1-N1-P2 complex was driven primarily by SNR, highlighting the importance of noise when recording CAEPs. Results are discussed in terms of the current interest in recording CAEPs in hearing aid users. Published by Elsevier B.V. C1 [Billings, Curtis J.] Portland VA Med Ctr, Natl Ctr Rehabilitat Auditory Res, Portland, OR 97239 USA. [Billings, Curtis J.; Tremblay, Kelly L.; Stecker, G. Christopher; Tolin, Wendy M.] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98105 USA. RP Billings, CJ (reprint author), Portland VA Med Ctr, Natl Ctr Rehabilitat Auditory Res, 3710 SW US Vet Hosp Rd NCRAR, Portland, OR 97239 USA. EM curtis.billings2@va.gov; tremblay@u.washington.edu; cstecker@u.washington.edu; wendyt3@u.washington.edu FU National Institutes of Health through the National Institute on Deafness and Other Communication Disorders [F31-DC007296, R01-DC007705, P30DC004661] FX The authors thank Richard Folsom and Pamela Souza who contributed to this work through many helpful discussions and as dissertation committee members of the first author. The authors are also grateful to the reviewers for their helpful comments. This work was supported by the National Institutes of Health through the National Institute on Deafness and Other Communication Disorders (F31-DC007296, CJ.B.; R01-DC007705, K.L.T.; P30DC004661). CR ADLER G, 1989, AUDIOLOGY, V28, P316 ADLER G, 1991, BIOL PSYCHIAT, V29, P347, DOI 10.1016/0006-3223(91)90220-G AKEROYD MA, 1995, J ACOUST SOC AM, V98, P2466, DOI 10.1121/1.414462 Beagley H A, 1967, J Laryngol Otol, V81, P861, DOI 10.1017/S0022215100067815 Billings CJ, 2007, AUDIOL NEURO-OTOL, V12, P234, DOI 10.1159/000101331 BRUNEAU N, 1985, ELECTROEN CLIN NEURO, V62, P364, DOI 10.1016/0168-5597(85)90045-0 BURKARD R, 1983, J ACOUST SOC AM, V74, P1204, DOI 10.1121/1.390024 BUTLER RA, 1969, PSYCHOPHYSIOLOGY, V5, P665, DOI 10.1111/j.1469-8986.1969.tb02869.x Caldwell Marc, 2006, Trends Amplif, V10, P145, DOI 10.1177/1084713806292653 DAVIS H, 1967, J SPEECH HEAR RES, V10, P717 DAVIS H, 1976, ANN OTOL RHINOL LA S, V28, P1 Eggermont J. J, 2007, AUDITORY EVOKED POTE, P3 Gatehouse S., 1996, PSYCHOACOUSTICS SPEE, P319 GIBSON DJ, 1985, J NEUROPHYSIOL, V53, P940 Golding M, 2007, J AM ACAD AUDIOL, V18, P117, DOI 10.3766/jaaa.18.2.4 Gravel JS, 1989, SEMIN HEAR, V10, P272 GREENHOUSE SW, 1959, PSYCHOMETRIKA, V24, P95, DOI 10.1007/BF02289823 HAWKINS JE, 1950, J ACOUST SOC AM, V22, P6, DOI 10.1121/1.1906581 Hyde M, 1997, AUDIOL NEURO-OTOL, V2, P281 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Irvine DRF, 1996, CLIN EXP PHARMACOL P, V23, P939, DOI 10.1111/j.1440-1681.1996.tb01146.x Kaplan-Neeman R, 2006, J ACOUST SOC AM, V120, P926, DOI 10.1121/1.2217567 Kirk R. E., 1968, EXPT DESIGN PROCEDUR Korczak PA, 2005, EAR HEARING, V26, P165, DOI 10.1097/00003446-200504000-00005 Kraus N, 1994, AM J AUDIOLOGY, V3, P39 KURTZBERG D, 1989, Seminars in Hearing, V10, P252 Martin BA, 2008, EAR HEARING, V29, P285, DOI 10.1097/AUD.0b013e3181662c0e Martin BA, 2005, EAR HEARING, V26, P195, DOI 10.1097/00003446-200504000-00007 Martin BA, 2000, J ACOUST SOC AM, V107, P2155, DOI 10.1121/1.428556 MCCANDLE.GA, 1966, J SPEECH HEAR RES, V9, P266 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Oates PA, 2002, EAR HEARING, V23, P399, DOI 10.1097/01.AUD.0000034777.12562.31 PATTERSON RD, 1994, J ACOUST SOC AM, V96, P1419, DOI 10.1121/1.410286 PERL ER, 1953, CLIN NEUROPHYSIOL, V5, P501 PHILLIPS DP, 1985, HEARING RES, V19, P253, DOI 10.1016/0378-5955(85)90145-5 PHILLIPS DP, 1986, J ACOUST SOC AM, V80, P177, DOI 10.1121/1.394178 PHILLIPS DP, 1990, BEHAV BRAIN RES, V37, P197, DOI 10.1016/0166-4328(90)90132-X Phillips DP, 2002, HEARING RES, V167, P192, DOI 10.1016/S0378-5955(02)00393-3 PHILLIPS DP, 1992, CEREB CORTEX, V2, P134, DOI 10.1093/cercor/2.2.134 PICTON TW, 1970, ACTA OTO-LARYNGOL, V70, P77 Purdy SC, 2005, SOUND FDN EARLY AMPL, P115 RAPIN I, 1967, NEUROLOGY, V17, P881 RAPIN I, 1966, ELECTROEN CLIN NEURO, V21, P335, DOI 10.1016/0013-4694(66)90039-3 Sharma A, 2004, ARCH OTOLARYNGOL, V130, P511, DOI 10.1001/archotol.130.5.511 SKRANDIES W, 1989, Brain Topography, V2, P73, DOI 10.1007/BF01128845 Souza Pamela E, 2006, Trends Amplif, V10, P119, DOI 10.1177/1084713806292648 STAPELLS DR, 1991, CLIN PERINATOL, V18, P497 STELMACHOWICZ PG, 1995, J ACOUST SOC AM, V98, P1388, DOI 10.1121/1.413474 STEVENS SS, 1967, PERCEPT PSYCHOPHYS, V2, P459, DOI 10.3758/BF03208795 Tremblay K. L., 2007, AUDITORY EVOKED POTE, P403 Tremblay Kelly L, 2006, Trends Amplif, V10, P155, DOI 10.1177/1084713806292655 Tremblay KL, 2006, EAR HEARING, V27, P93, DOI 10.1097/01.aud.0000202288.21315.bd Tremblay KL, 2002, NEUROREPORT, V13, P1865, DOI 10.1097/00001756-200210280-00007 Tremblay Kelly L, 2004, J Am Acad Audiol, V15, P226, DOI 10.3766/jaaa.15.3.5 Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7 VAUGHAN HG, 1970, ELECTROEN CLIN NEURO, V28, P360, DOI 10.1016/0013-4694(70)90228-2 Whiting KA, 1998, EAR HEARING, V19, P218, DOI 10.1097/00003446-199806000-00005 WOLPAW JR, 1975, ELECTROEN CLIN NEURO, V39, P609, DOI 10.1016/0013-4694(75)90073-5 ZHOU B, 1992, J ACOUST SOC AM, V92, P1169, DOI 10.1121/1.404045 NR 59 TC 24 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 11 PY 2009 VL 254 IS 1-2 BP 15 EP 24 DI 10.1016/j.heares.2009.04.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 476KH UT WOS:000268438500002 PM 19364526 ER PT J AU Chen, GD Henderson, D AF Chen, Guang-Di Henderson, Donald TI Cochlear injuries induced by the combined exposure to noise and styrene SO HEARING RESEARCH LA English DT Article DE Cochlear injury; Styrene ototoxicity; Noise trauma; Noise and chemical interaction ID INDUCED HEARING-LOSS; HAIR CELL LOSS; OCCUPATIONAL EXPOSURE; AUDITORY FUNCTION; GUINEA-PIG; SUPEROXIDE-DISMUTASE; SOLVENT OTOTOXICITY; CARBON-MONOXIDE; ACOUSTIC TRAUMA; OXIDE ADDUCTS AB Workers exposed to industrial solvents are also frequently exposed to mechanical noise. In this study, a combination of a continuous noise (100 dB SPL) and an impact noise (110 dB SPL) was used to mimic the noise exposure in the workplace. A noise band of 10-20 kHz was used to induce a cochlear injury in the same cochlear region in the rat as styrene exposure. Styrene levels of 300 and 400 mg/kg were applied to induce outer hair cell (OHC) loss limited to the third row of the middle turn, but without significant cochlear functional loss. The combined exposures of the noise and styrene for 3 weeks caused greater threshold shifts than the noise alone, although the styrene alone did not induce significant threshold shift. Correspondingly, the combined exposures induced OHC losses that were greater than the summated OHC losses induced by the noise and styrene exposure alone. Apoptosis in Deiters cells was also examined after a short-term exposure (7 days) to a combined exposure of a high-level styrene (800 mg/kg) and the noise. The styrene-noise synergistic interaction was also observed in the Deiters cells. The synergistic interaction between the noise and styrene suggests that each of the exposures alone (noise or styrene) may cause stress, temporary alteration, or nonlethal injury in cochlear cells and the combined exposure strengthens the stress leading to cell death. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chen, Guang-Di; Henderson, Donald] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Chen, GD (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM gchen7@buffalo.edu FU NIOSH [IR01OH008113] FX This study is supported by NIOSH Grant IR01OH008113. The authors thank Ellen Schopp for assistance in animal exposures. The authors also thank Dr. Eric Bielefeld for his comments. CR BARREGARD L, 1984, SCAND AUDIOL, V13, P151, DOI 10.3109/01050398409043054 Calabrese G, 1996, INT ARCH OCC ENV HEA, V68, P219 Campo P, 2001, HEARING RES, V154, P170, DOI 10.1016/S0378-5955(01)00218-0 Campo P, 1999, NEUROTOXICOL TERATOL, V21, P427, DOI 10.1016/S0892-0362(99)00010-0 Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X Chen GD, 2008, HEARING RES, V243, P28, DOI 10.1016/j.heares.2008.05.008 Chen GD, 2007, HEARING RES, V226, P14, DOI 10.1016/j.heares.2006.06.007 Chen GD, 2007, TOXICOL SCI, V98, P167, DOI 10.1093/toxsci/kfm078 Chen GD, 2006, HEARING RES, V222, P54, DOI 10.1016/j.heares.2006.08.011 FECHTER LD, 1993, NEUROTOXICOL TERATOL, V15, P151, DOI 10.1016/0892-0362(93)90010-L Gagnaire F, 2005, ARCH TOXICOL, V79, P346, DOI 10.1007/s00204-004-0636-2 Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x HENDERSON D, 1994, HEARING RES, V76, P101, DOI 10.1016/0378-5955(94)90092-2 JACOBSEN P, 1993, OCCUP MED-OXFORD, V43, P180, DOI 10.1093/occmed/43.4.180 JOHNSON AC, 1988, ACTA OTO-LARYNGOL, V105, P56, DOI 10.3109/00016488809119446 JOHNSON AC, 1995, OCCUP MED, V10, P623 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Koskinen M, 2001, J OCCUP ENVIRON MED, V43, P694, DOI 10.1097/00043764-200108000-00007 Koskinen M, 2001, CHEM-BIOL INTERACT, V138, P111, DOI 10.1016/S0009-2797(01)00254-X Lataye R, 1997, NEUROTOXICOL TERATOL, V19, P373, DOI 10.1016/S0892-0362(97)00049-4 Lataye R, 2003, NEUROTOXICOL TERATOL, V25, P39, DOI 10.1016/S0892-0362(02)00326-4 Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 Lataye R, 2001, NEUROTOXICOL TERATOL, V23, P71, DOI 10.1016/S0892-0362(00)00114-8 Liu SF, 2001, J ENVIRON SCI-CHINA, V13, P391 LIU Z, 1992, CHIN J OTORHINOLARYN, V27, P24 Loquet G, 2000, HEARING RES, V148, P173, DOI 10.1016/S0378-5955(00)00151-9 Loquet G, 1999, NEUROTOXICOL TERATOL, V21, P689, DOI 10.1016/S0892-0362(99)00030-6 Makitie AA, 2003, HEARING RES, V179, P9, DOI 10.1016/S0378-5955(03)00066-2 Marczynski B, 2000, MED HYPOTHESES, V54, P619, DOI 10.1054/mehy.1999.0907 Miller R.R., 1994, CRIT REV TOXICOL, V24, P1 MIZUNUMA K, 1993, ARCH ENVIRON CON TOX, V25, P129 MOLLER C, 1990, SCAND J WORK ENV HEA, V16, P189 MORATA TC, 1994, ARCH ENVIRON HEALTH, V49, P359 Morata TC, 2002, J OCCUP ENVIRON MED, V44, P806, DOI 10.1097/01.jom.0000026645.83602.60 Morioka I, 1999, ARCH ENVIRON HEALTH, V54, P341 MUIJSER H, 1988, TOXICOLOGY, V49, P331, DOI 10.1016/0300-483X(88)90016-9 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Rao D, 2000, TOXICOL APPL PHARM, V167, P125, DOI 10.1006/taap.2000.8995 Rao DB, 2001, HEARING RES, V161, P113, DOI 10.1016/S0378-5955(01)00366-5 RYBAK LP, 1992, OTOLARYNG HEAD NECK, V106, P677 Sass-Kortsak Andrea M., 1995, Annals of Epidemiology, V5, P15, DOI 10.1016/1047-2797(94)00036-S SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Sliwinska-Kowalska M, 2003, J OCCUP ENVIRON MED, V45, P15, DOI 10.1097/01.jom.0000048169.87707.c2 Vodicka P, 2001, CHEM-BIOL INTERACT, V137, P213, DOI 10.1016/S0009-2797(01)00253-8 YAMANE H, 1995, ACTA OTO-LARYNGOL, P87 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yang WL, 2008, AUTONOMOUS SYSTEMS - SELF-ORGANIZATION, MANAGEMENT, AND CONTROL, P1 NR 49 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 11 PY 2009 VL 254 IS 1-2 BP 25 EP 33 DI 10.1016/j.heares.2009.04.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 476KH UT WOS:000268438500003 PM 19371775 ER PT J AU Landsberger, DM Srinivasan, AG AF Landsberger, David M. Srinivasan, Arthi G. TI Virtual channel discrimination is improved by current focusing in cochlear implant recipients SO HEARING RESEARCH LA English DT Article DE Cochlear implants; Virtual channels; Current focusing; Current steering; Psychophysics ID SPEECH CODING STRATEGY; ELECTRODE CONFIGURATIONS; ELECTRICAL-STIMULATION; PITCH DISCRIMINATION; SPECTRAL RESOLUTION; NORMAL-HEARING; RECOGNITION; PERCEPTION; NOISE; USERS AB Cochlear implant users' spectral resolution is limited by both the number of implanted electrodes and channel interactions between electrodes. Current steering (virtual channels) between two adjacent monopolar electrodes has been used to increase the number of spectral channels across the electrode array. However, monopolar stimulation is associated with large current spread and increased channel interaction. Current focusing across three adjacent electrodes (tripolar stimulation) has been used to reduce electrode current spread and improve channel selectivity. In the present study, current steering and current focusing were combined within a four-electrode stimulation pattern (quadrupolar virtual channels), thereby addressing the need for both increased channels and reduced current spread. Virtual channel discrimination was measured in 7 users of the Advanced Bionics Clarion 11 or HiRes 90K implants; virtual channel discrimination was compared between monopolar and quadrupolar virtual channels at three stimulation sites. The results showed that quadrupolar virtual channels provided better spectral resolution than monopolar virtual channels. The results suggested that quadrupolar virtual channels might provide the "best of both worlds" improving the number of spectral channels while reducing channel interactions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Landsberger, David M.; Srinivasan, Arthi G.] House Ear Res Inst, Dept Commun & Auditory Neurosci, Los Angeles, CA 90057 USA. [Srinivasan, Arthi G.] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA. RP Landsberger, DM (reprint author), House Ear Res Inst, Dept Commun & Auditory Neurosci, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM dlandsberger@hei.org CR Berenstein CK, 2008, EAR HEARING, V29, P250 BIERER JA, 2008, ASS RES OT ABS, V100 Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006 Brendel M, 2008, OTOL NEUROTOL, V29, P199, DOI 10.1097/mao.0b013e31816335c6 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Burns E.M., 2001, C IMPL AUD PROSTH PA, V81 Busby PA, 2008, EAR HEARING, V29, P853, DOI 10.1097/AUD.0b013e318181a878 Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362 Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3 Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941 HACKER MJ, 1979, PERCEPT PSYCHOPHYS, V26, P168, DOI 10.3758/BF03208311 Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567 Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900 Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99 Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549 Kiefer J, 2001, AUDIOLOGY, V40, P32 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Kwon BJ, 2006, J ACOUST SOC AM, V120, pEL1, DOI 10.1121/1.2208152 Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414 LITVAK LM, 2008, COMMUNICATION Loizou PC, 1999, J ACOUST SOC AM, V106, P2097, DOI 10.1121/1.427954 MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475 Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d PADILLA M, 2002, J ACOUST SOC AM, V112, P2385 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5 Spelman F A, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P131 SUPIN AY, 1994, HEARING RES, V78, P31, DOI 10.1016/0378-5955(94)90041-8 Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 NR 35 TC 35 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 11 PY 2009 VL 254 IS 1-2 BP 34 EP 41 DI 10.1016/j.heares.2009.04.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 476KH UT WOS:000268438500004 PM 19383534 ER PT J AU Wagoner, JL Kulesza, RJ AF Wagoner, Jessica L. Kulesza, Randy J., Jr. TI Topographical and cellular distribution of perineuronal nets in the human cochlear nucleus SO HEARING RESEARCH LA English DT Article DE Auditory; Hearing; Brainstem ID CALCIUM-BINDING PROTEINS; SUPERIOR OLIVARY COMPLEX; CHONDROITIN SULFATE PROTEOGLYCANS; PHYSIOLOGICAL-RESPONSE PROPERTIES; BRAIN EXTRACELLULAR-MATRIX; SONG CONTROL-SYSTEM; TRAPEZOID BODY; HORSERADISH-PEROXIDASE; MEDIAL NUCLEUS; RHESUS-MONKEY AB Specialized constructs of the extracellular matrix termed perineuronal nets surround the soma, primary dendrites and initial axon segment of some but not all neuronal populations in the central nervous system. in an effort to determine the cellular localization of perineuronal nets in the human cochlear nucleus (CN), we first performed a quantitative morphometric study of the human CN. We provide evidence for a laminar organization in the human dorsal cochlear nucleus (DCN; including molecular, granular and deep layers) as in other laboratory animals. Additionally, we find that the human ventral cochlear nucleus (VCN) contains distinct octopus, stellate, globular and spherical bushy cell populations, as described in other species. Using Wisteria floribunda histochemistry in five human brainstems, we identified perineuronal nets in the human cochlear nucleus. Perineuronal nets are associated with the vast majority of octopus and stellate cells in the caudal VCN. In the rostral VCN, dense perineuronal nets are associated with globular bushy cells and faint nets are associated with some spherical bushy cells and stellate cells. Few perineuronal nets are found in the DCN. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wagoner, Jessica L.; Kulesza, Randy J., Jr.] Lake Erie Coll Osteopath Med, Auditory Res Ctr, Erie, PA 16509 USA. RP Kulesza, RJ (reprint author), Lake Erie Coll Osteopath Med, Auditory Res Ctr, 1858 W Grandview Blvd, Erie, PA 16509 USA. EM rkulesza@lecom.edu FU LECOM Research Collective; Deafness Research Foundation FX This work was supported by the LECOM Research Collective and a grant from the Deafness Research Foundation. The authors thank Richard Lukose and Holli Martinez for technical assistance, Drs. Jack Caldwell and Michael Bradbury for reading an early version of the manuscript and the three anonymous reviewers for their many helpful comments. CR ADAMS JC, 1986, ARCH OTOLARYNGOL, V112, P1253 ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 BACSIK RD, 1973, J COMP NEUROL, V147, P281, DOI 10.1002/cne.901470209 Bazwinsky I, 2005, J ANAT, V207, P745, DOI 10.1111/j.1469-7580.2005.00491.x BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406 BRUCKNER G, 1993, GLIA, V8, P183, DOI 10.1002/glia.440080306 Cant NB, 2006, HEARING RES, V216, P64, DOI 10.1016/j.heares.2006.01.008 CANT NB, 1992, MAMMALIAN AUDITORY P, V1 Celio MR, 1998, TRENDS NEUROSCI, V21, P510, DOI 10.1016/S0166-2236(98)01298-3 Deepa SS, 2006, J BIOL CHEM, V281, P17789, DOI 10.1074/jbc.M600544200 Dityatev A, 2003, NAT REV NEUROSCI, V4, P456, DOI 10.1038/nrn1115 Doucet JR, 2006, ANAT REC PART A, V288A, P331, DOI 10.1002/ar.a.20294 DUBLIN WB, 1974, ARCH OTOLARYNGOL, V100, P355 GANDOLFI A, 1984, ANN NEUROL, V15, P135, DOI 10.1002/ana.410150205 HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 HARRISON JM, 1962, J COMP NEUROL, V119, P341, DOI 10.1002/cne.901190306 HARRISON JM, 1966, J COMP NEUROL, V126, P391, DOI 10.1002/cne.901260303 HARRISON JM, 1965, J COMP NEUROL, V124, P15, DOI 10.1002/cne.901240103 HARTIG W, 1995, BRAIN RES, V698, P265, DOI 10.1016/0006-8993(95)01016-O Hartig W, 2001, BRAIN RES, V899, P123, DOI 10.1016/S0006-8993(01)02211-9 HEIMANPATTERSON TD, 1985, J MORPHOL, V186, P289, DOI 10.1002/jmor.1051860306 HELFERT RH, 1991, NEUROBIOLOGY HEARING Hilbig H, 2007, J ANAT, V210, P507, DOI 10.1111/j.1469-7580.2007.00713.x Horn AK, 2003, J COMP NEUROL, V455, P341, DOI 10.1002/cne.10495 INIGUEZ C, 1985, J NEUROSCI METH, V13, P77, DOI 10.1016/0165-0270(85)90045-7 JEBB AH, 1977, STAIN TECHNOL, V52, P315 KIANG NYS, 1973, BASIC MECH HEARING Konigsmark BW, 1970, CONT RES METHODS NEU, P315 KONIGSMARK BW, 1969, ANAT REC, V1963, P213 Kulesza RJ, 2002, HEARING RES, V168, P12, DOI 10.1016/S0378-5955(02)00374-X Kulesza RJ, 2007, HEARING RES, V225, P80, DOI 10.1016/j.heares.2006.12.006 Kulesza RJ, 2008, HEARING RES, V241, P52, DOI 10.1016/j.heares.2008.04.010 Kwok JCF, 2008, RESTOR NEUROL NEUROS, V26, P131 LEAKE PA, 1989, J COMP NEUROL, V281, P612, DOI 10.1002/cne.902810410 MARTIN GF, 1977, J COMP NEUROL, V175, P345, DOI 10.1002/cne.901750308 McCreery D B, 1998, IEEE Trans Rehabil Eng, V6, P391, DOI 10.1109/86.736153 McRae PA, 2007, J NEUROSCI, V27, P5405, DOI 10.1523/JNEUROSCI.5425-06.2007 MOORE JK, 1980, J COMP NEUROL, V193, P609 MOORE JK, 1979, AM J ANAT, V154, P393, DOI 10.1002/aja.1001540306 MOORE JK, 1986, NEUROBIOLOGY HEARING Morris NP, 2000, EUR J NEUROSCI, V12, P828, DOI 10.1046/j.1460-9568.2000.00970.x MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406 NAKAGAWA F, 1986, J COMP NEUROL, V243, P280, DOI 10.1002/cne.902430210 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 Pantazopoulos H, 2008, BRAIN RES, V1207, P84, DOI 10.1016/j.brainres.2008.02.036 POWELL TPS, 1962, J ANAT, V96, P249 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 RHODE WS, 1983, J COMP NEUROL, V213, P426, DOI 10.1002/cne.902130407 Richter E, 1983, Adv Otorhinolaryngol, V31, P59 RICHTER EA, 1983, AM J ANAT, V168, P157, DOI 10.1002/aja.1001680205 ROUILLER EM, 1984, J COMP NEUROL, V182, P661 Rubio ME, 2008, NEUROSCIENCE, V154, P99, DOI 10.1016/j.neuroscience.2007.12.016 Ruoslahti E, 1996, GLYCOBIOLOGY, V6, P489, DOI 10.1093/glycob/6.5.489 Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 SENTO S, 1989, J COMP NEUROL, V280, P553, DOI 10.1002/cne.902800406 STANDRING S, 2008, ANATOMICAL NOMENCLAT TERR LI, 1985, ARCH OTOLARYNGOL, V111, P495 TERR LI, 1987, AM J OTOL, V8, P432 Thompson CK, 2005, J COMP NEUROL, V481, P276, DOI 10.1002/cne.20381 Tramontin AD, 1998, J COMP NEUROL, V396, P186, DOI 10.1002/(SICI)1096-9861(19980629)396:2<186::AID-CNE4>3.0.CO;2-X Viapiano MS, 2006, TRENDS MOL MED, V12, P488, DOI 10.1016/j.molmed.2006.08.007 Wintergerst ES, 1996, NEUROSCI LETT, V209, P173, DOI 10.1016/0304-3940(96)12643-4 Yamaguchi Y, 2000, CELL MOL LIFE SCI, V57, P276, DOI 10.1007/PL00000690 YIN TCT, 1990, J COMP NEUROL, V295, P438, DOI 10.1002/cne.902950308 NR 64 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 11 PY 2009 VL 254 IS 1-2 BP 42 EP 53 DI 10.1016/j.heares.2009.04.008 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 476KH UT WOS:000268438500005 PM 19383535 ER PT J AU Harding, GW Bohne, BA AF Harding, Gary W. Bohne, Barbara A. TI Relation of focal hair-cell lesions to noise-exposure parameters from a 4-or a 0.5-kHz octave band of noise SO HEARING RESEARCH LA English DT Article DE Focal lesion; Organ of Corti; Noise-induced hearing loss; Octave band of noise; Hair cells; Chinchilla ID INTENSE AUDITORY-STIMULATION; ABR THRESHOLD SHIFTS; INDUCED HEARING-LOSS; LOW-FREQUENCY NOISE; DPOAE LEVEL SHIFTS; CHINCHILLA-COCHLEA; HISTOPATHOLOGICAL DAMAGE; INTERRUPTED EXPOSURE; RETICULAR LAMINA; MOUSE COCHLEA AB In a previous study, we examined the relation between total energy in a noise exposure and the percentage losses of outer (OHC) and inner (IHC) hair cells in the basal and apical halves of 607 chinchilla cochleae [Harding, G.W., Bohne, B.A., 2004a. Noise-induced hair-cell loss and total exposure energy: analysis of a large data set. J. Acoust. Soc. Am. 115, 2207-2220]. The animals had been exposed continuously to either a 4-kHz octave band of noise (OBN) at 47-108 dB SPL for 0.5 h-36 d, or a 0.5-kHz OBN at 65-128 dB SPL for 3.5 h-433 d. Interrupted exposures were also employed with both OBNs. Post-exposure recovery times ranged from 0 to 913 days. Cluster analysis was used to separate the data into three magnitudes of damage. The data were also separated into recovery times of 0 days (acute) and >0 days (chronic) and the apical and basal halves of the organ of Corti (OC). A substantial part of these hair-cell losses occurred in focal lesions (i.e., >= 50% loss of IHCs, OHCs or both over a distance of >= 0.03 mm). This aspect of the damage from noise was not included in the previous analysis. The present analysis describes, within the same three clusters, the apex-to-base distribution of 1820 focal lesions found in 468 of 660 (71%) noise-exposed cochleae. In these cochleae, OC length in mm was converted to percent distance from the apex. The lesion data were analyzed for location in percent distance from the apex and size (mm) of the lesions. In 55 of 140 (39%) non-noise-exposed, control OCs, there were 186 focal hair-cell lesions, the characteristics of which were also determined. Focal lesions with hair-cell loss >= 50% involved predominantly OHCs, IHCs only, or both OHCs and IHCs (i.e., combined OHC-IHC lesions). The predominantly OHC and combined lesions were pooled together for the analysis. The distributions of lesion location (in percent distance from the apex), weighted by lesion size (in percent of OC length) were tallied in 2%-distance bins. In controls, focal lesions were uniformly distributed from apex to base and 70% of them were pure IHC lesions. In cochleae exposed to the 4-kHz OBN, lesions were distributed throughout the basal half of the OC. In cochleae exposed to the 0.5-kHz OBN, lesions occurred in both halves of the CC. With continuous exposures, 74% of the lesions were predominantly OHC or combined lesions. With interrupted exposures, 52% of the lesions were OHC or combined lesions. Lesion size was generally larger in the chronic compared to acute cochleae with similar exposures. There was a minimum total energy at which focal lesions began to appear and slightly higher energies resulted in nearly all exposed cochleae having focal lesions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Harding, Gary W.; Bohne, Barbara A.] Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Harding, GW (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115,660 S Euclid Ave, St Louis, MO 63110 USA. EM hardingg@ent.wustl.edu FU NIOSH [OH003973]; Department of Otolaryngology, Washington University School of Medicine FX This work was supported by NIOSH (Grant # OH003973) and the Department of Otolaryngology, Washington University School of Medicine. The contents are solely the responsibility of the authors and do not necessarily represent the official views of NIOSH. CR Ahmad M, 2003, HEARING RES, V175, P82, DOI 10.1016/S0378-5955(02)00713-X Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 Bohne BA, 2000, AM J OTOL, V21, P505 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 BOHNE BA, 1987, HEARING RES, V29, P251, DOI 10.1016/0378-5955(87)90172-9 BOHNE BA, 1972, LARYNGOSCOPE, V82, P1 BOHNE BA, 1986, J ACOUST SOC AM, V80, P1729, DOI 10.1121/1.394285 Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004 BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8 BOHNE BA, 1976, ANN OTO RHINOL LARYN, V85, P711 BOHNE BA, 1985, ANN OTO RHINOL LARYN, V94, P122 Bredberg G, 1973, Adv Otorhinolaryngol, V20, P102 BREDBERG G, 1968, ACTA OTO-LARYNGOL, V236, P1135 CLARK WW, 1978, ANN OTOL RHINOL LA S, V51, P1 CODY AR, 1981, J ACOUST SOC AM, V70, P707, DOI 10.1121/1.386906 Cummings MC, 1997, AM J SURG PATHOL, V21, P88, DOI 10.1097/00000478-199701000-00010 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 FREDELIUS L, 1988, THESIS KAROLINSKA I Harding GW, 2004, HEARING RES, V196, P94, DOI 10.1016/j.heares.2004.03.011 Harding GW, 2005, HEARING RES, V204, P90, DOI 10.1016/j.heares.2005.01.004 Harding GW, 2007, HEARING RES, V225, P50, DOI 10.1016/j.heares.2006.12.012 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 Harding GW, 2004, J ACOUST SOC AM, V115, P2207, DOI 10.1121/1.1689961 HAWKINS JE, 1976, EFFECTS NOISE HEARIN, P91 Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006 HUNTERDU.IM, 1974, J ACOUST SOC AM, V55, P795, DOI 10.1121/1.1914602 JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294 KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33 Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 Lee SH, 2008, RHEUMATOL INT, V29, P43, DOI 10.1007/s00296-008-0602-z Liberman MC, 1982, NEW PERSPECTIVES NOI, P105 LIBERMAN MC, 1978, ACTA OTO-LARYNGOL, V358, P163 MAJNO G, 1995, AM J PATHOL, V146, P3 MCGILL TJI, 1976, LARYNGOSCOPE, V86, P1293, DOI 10.1288/00005537-197609000-00001 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X NUTTALL AL, 1999, NOISE HLTH, V5, P17 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 QUIRK WS, 1992, HEARING RES, V63, P102, DOI 10.1016/0378-5955(92)90079-3 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SCHMITT N, 2004, 27 MIDW RES M ARO, P132 STOCKWEL.CW, 1969, ANN OTO RHINOL LARYN, V78, P1144 THORNE PR, 1985, ANN OTO RHINOL LARYN, V94, P81 VONBISMARCK G, 1967, THESIS MIT CAMBRIDGE, P1 Wilkinson L, 1988, SYSTAT SYSTEM STAT Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104 NR 48 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 11 PY 2009 VL 254 IS 1-2 BP 54 EP 63 DI 10.1016/j.heares.2009.04.011 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 476KH UT WOS:000268438500006 PM 19393307 ER PT J AU Fishman, YI Steinschneider, M AF Fishman, Yonatan I. Steinschneider, Mitchell TI Temporally dynamic frequency tuning of population responses in monkey primary auditory cortex SO HEARING RESEARCH LA English DT Article DE Auditory cortex; Spectral tuning; Tonotopic organization; Onset response; Sustained response; Off response; Population coding ID VOICE ONSET TIME; AWAKE MONKEY; SOUND LOCALIZATION; RECEPTIVE-FIELDS; CORTICAL-NEURONS; MACAQUE MONKEYS; SINGLE NEURONS; FUNCTIONAL-ORGANIZATION; ANURAN CEREBELLUM; PITCH PERCEPTION AB Frequency tuning of auditory cortical neurons is typically determined by integrating spikes over the entire duration of a tone stimulus. However, this approach may mask functionally significant variations in tuning over the time course of the response. To explore this possibility, frequency response functions (FRFs) based on population multiunit activity evoked by pure tones of 175 or 200 ms duration were examined within four time windows relative to stimulus onset corresponding to "on" (10-30 ms), "early sustained" (30-100 ms), "late sustained" (100-175 ms), and "off" (185-235 or 210-260 ms) portions of responses in primary auditory cortex (A1) of 5 awake macaques. FRFs of "on" and "early sustained" responses displayed a good concordance, with best frequencies (BFs) differing, on average, by less than 0.25 octaves. In contrast, FRFs of "on" and "late sustained" responses differed considerably, with a mean difference in BF of 0.68 octaves. At many sites, tuning of "off' responses was inversely related to that of "on" responses, with "off" FRFs displaying a trough at the BF of "on" responses. Inversely correlated "on" and "off' FRFs were more common at sites with a higher "on" BF, thus suggesting functional differences between sites with low and high "on" BF. These results indicate that frequency tuning of population responses in A1 may vary considerably over the course of the response to a tone, thus revealing a temporal dimension to the representation of sound spectrum in A1. (C) 2009 Elsevier B.V. All rights reserved. C1 [Fishman, Yonatan I.; Steinschneider, Mitchell] Albert Einstein Coll Med, Rose F Kennedy Ctr, Dept Neurol, Bronx, NY 10461 USA. [Steinschneider, Mitchell] Albert Einstein Coll Med, Rose F Kennedy Ctr, Dept Neurosci, Bronx, NY 10461 USA. RP Fishman, YI (reprint author), Albert Einstein Coll Med, Rose F Kennedy Ctr, Dept Neurol, Room 322,1410 Pelham Pkwy S, Bronx, NY 10461 USA. EM yfishman@aecom.yu.edu FU National Institute of Deafness and Other Communications Disorders [DC-00657] FX Grants. Supported by National Institute of Deafness and Other Communications Disorders Grant DC-00657. CR AHISSAR M, 1992, J NEUROPHYSIOL, V67, P203 Atencio CA, 2007, J NEUROPHYSIOL, V98, P2182, DOI 10.1152/jn.00394.2007 BARNA JS, 1981, ELECTROEN CLIN NEURO, V52, P494, DOI 10.1016/0013-4694(81)90035-3 Bieser A, 1996, EXP BRAIN RES, V108, P273 Brosch M, 1997, J NEUROPHYSIOL, V77, P923 Brosch M, 1999, J NEUROPHYSIOL, V82, P1542 Brosch M, 1997, CEREB CORTEX, V7, P70, DOI 10.1093/cercor/7.1.70 CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732 deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0 Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3 Fishman YI, 2000, J ACOUST SOC AM, V108, P247, DOI 10.1121/1.429461 Fishman YI, 2006, J NEUROPHYSIOL, V96, P1105, DOI 10.1152/jn.00124.2006 FISHMAN YI, 2008, ASS RES OT ABS, V679 Fishman YI, 2004, J ACOUST SOC AM, V116, P1656, DOI 10.1121/1.1778903 Fishman YI, 2001, J NEUROPHYSIOL, V86, P2761 Fishman YI, 2000, J ACOUST SOC AM, V108, P235, DOI 10.1121/1.429460 FREEMAN JA, 1975, J NEUROPHYSIOL, V38, P369 Ghazanfar AA, 2001, CURR OPIN NEUROBIOL, V11, P712, DOI 10.1016/S0959-4388(01)00274-4 Hackett TA, 1998, J COMP NEUROL, V394, P475, DOI 10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P915 Kadia SC, 2003, J NEUROPHYSIOL, V89, P1603, DOI 10.1152/jn.00271.2001 Kaur S, 2004, J NEUROPHYSIOL, V91, P2551, DOI 10.1152/jn.01121.2003 Lakatos P, 2005, NEUROREPORT, V16, P933, DOI 10.1097/00001756-200506210-00011 LEGATT AD, 1980, J NEUROSCI METH, V2, P203, DOI 10.1016/0165-0270(80)90061-8 Lisman JE, 1997, TRENDS NEUROSCI, V20, P38, DOI 10.1016/S0166-2236(96)10070-9 Liu BH, 2007, NAT NEUROSCI, V10, P1594, DOI 10.1038/nn2012 Loftus WC, 2001, J NEUROPHYSIOL, V86, P475 Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898 Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003 MATSUBARA JA, 1988, J COMP NEUROL, V268, P38, DOI 10.1002/cne.902680105 Mehta Ashesh D., 2000, Cerebral Cortex, V10, P343, DOI 10.1093/cercor/10.4.343 MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 Metherate R, 1999, EXP BRAIN RES, V126, P160, DOI 10.1007/s002210050726 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 Moshitch D, 2006, J NEUROPHYSIOL, V95, P3756, DOI 10.1152/jn.00822.2005 MULLERPREUSS P, 1984, HEARING RES, V16, P133, DOI 10.1016/0378-5955(84)90003-0 NAATANEN R, 1990, BEHAV BRAIN SCI, V13, P201 NICHOLSON C, 1975, J NEUROPHYSIOL, V38, P356 Ojima H, 2004, NEUROSCIENCE, V126, P203, DOI 10.1016/j.neuroscience.2004.03.018 Pasupathy A, 2002, NAT NEUROSCI, V5, P1332, DOI 10.1038/nn972 Petersen RS, 2002, CURR OPIN NEUROBIOL, V12, P441, DOI 10.1016/S0959-4388(02)00338-0 PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48 Popper AN, 1992, MAMMALIAN AUDITORY P Qin L, 2003, NEUROSCI RES, V46, P145, DOI 10.1016/S0168-0102(03)00034-8 Qin L, 2008, J NEUROPHYSIOL, V100, P1622, DOI 10.1152/jn.90364.2008 Qin L, 2007, J NEUROPHYSIOL, V97, P3421, DOI 10.1152/jn.00184.2007 REALE RA, 1990, J NEUROPHYSIOL, V64, P1247 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315 Recanzone GH, 1999, J COMP NEUROL, V415, P460, DOI 10.1002/(SICI)1096-9861(19991227)415:4<460::AID-CNE4>3.0.CO;2-F Recanzone GH, 2000, HEARING RES, V150, P104, DOI 10.1016/S0378-5955(00)00194-5 Samonds JM, 2004, P NATL ACAD SCI USA, V101, P6722, DOI 10.1073/pnas.0401661101 Sanger TD, 2003, CURR OPIN NEUROBIOL, V13, P238, DOI 10.1016/S0959-4388(03)00034-5 Schreiner CE, 1998, AUDIOL NEURO-OTOL, V3, P104, DOI 10.1159/000013785 Schroeder CE, 2005, CURR OPIN NEUROBIOL, V15, P454, DOI 10.1016/j.conb.2005.06.008 Scott BH, 2009, J NEUROPHYSIOL, V101, P1781, DOI 10.1152/jn.00678.2007 Selezneva E, 2006, CURR BIOL, V16, P2428, DOI 10.1016/j.cub.2006.10.027 SHAMMA SA, 1985, HEARING RES, V19, P1, DOI 10.1016/0378-5955(85)90094-2 STEINSCHNEIDER M, 1994, ELECTROEN CLIN NEURO, V92, P30, DOI 10.1016/0168-5597(94)90005-1 STEINSCHNEIDER M, 1992, ELECTROEN CLIN NEURO, V84, P196, DOI 10.1016/0168-5597(92)90026-8 Steinschneider M, 2008, CEREB CORTEX, V18, P610, DOI 10.1093/cercor/bhm094 Steinschneider M, 2005, CEREB CORTEX, V15, P170, DOI 10.1093/cercor/bhh120 Steinschneider M, 1998, J ACOUST SOC AM, V104, P2935, DOI 10.1121/1.423877 Steinschneider M, 2003, J ACOUST SOC AM, V114, P307, DOI 10.1121/1.1582449 Sukov W, 1998, J NEUROPHYSIOL, V79, P2875 Super H, 2001, NAT NEUROSCI, V4, P304, DOI 10.1038/85170 Super H, 2005, PROG BRAIN RES, V147, P263, DOI 10.1016/S0079-6123(04)47020-4 Sutter ML, 2000, J NEUROPHYSIOL, V84, P1012 SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207 Talwar SK, 2001, J NEUROPHYSIOL, V85, P2350 Tramo MJ, 2002, J NEUROPHYSIOL, V87, P122 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Vaughan H. G., 1988, HDB ELECTROENCEPHALO, P45 VOLKOV IO, 1992, EXP BRAIN RES, V91, P115 WALLACE MN, 1991, EXP BRAIN RES, V86, P518 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565 Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035 NR 78 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 11 PY 2009 VL 254 IS 1-2 BP 64 EP 76 DI 10.1016/j.heares.2009.04.010 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 476KH UT WOS:000268438500007 PM 19389466 ER PT J AU van Zyl, A Swanepoel, D Hall, JW AF van Zyl, Altelani Swanepoel, D. Hall, James W., III TI Effect of prolonged contralateral acoustic stimulation on transient evoked otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE Transient evoked otoacoustic emissions; Contralateral acoustic stimulation; Medial olivocochlear efferent system; Prolonged stimulation, Suppression ID COCHLEAR MICROMECHANICAL PROPERTIES; MEDIAL OLIVOCOCHLEAR SYSTEM; SUPPRESSION; HUMANS; POTENTIALS; SOUND AB Although the suppressive effect of the medial olivocochlear system (MOCS) on peripheral auditory active mechanisms is well documented in humans, the effect of efferent inhibition over prolonged periods of acoustic stimulation is less well documented, especially as observed by transient evoked otoacoustic emission (TEOAE) suppression. The present study evaluated the relationship between the duration of contralateral acoustic stimulation and the suppression of TEOAE in 10 normal-hearing adults. TEOAE recordings with linear clicks (60 dB SPL) were measured at four intervals during 15 min of continuous contralateral white noise (45 dB SL), followed by two post-noise recordings. An identical within-subject control condition was recorded without contralateral noise. Experimental and control measurements were repeated three times, on separate days. Results revealed significant and sustained TEOAE amplitude reduction for the entire duration of contralateral stimulation. Suppression increased gradually for the duration of contralateral noise presented, but not sufficiently to be statistically significant. Three minutes after noise termination, TEOAE amplitudes increased to values significantly above control recordings. The MOCS is able to sustain suppression over a prolonged duration of contralateral stimulation, supporting its role as an active modulator of outer hair cell mechanics during ongoing stimuli. (C) 2009 Elsevier B.V. All rights reserved. C1 [van Zyl, Altelani; Swanepoel, D.; Hall, James W., III] Univ Pretoria, Dept Commun Pathol, ZA-0002 Pretoria, South Africa. [Swanepoel, D.] Univ Texas Dallas, Callier Ctr Commun Disorders, Dallas, TX 75235 USA. [Hall, James W., III] Univ Florida, Dept Communicat Disorders, Gainesville, FL USA. RP Swanepoel, D (reprint author), Univ Pretoria, Dept Commun Pathol, ZA-0002 Pretoria, South Africa. EM dewet.swanepoel@up.ac.za CR BERLIN CI, 1994, OTOLARYNG HEAD NECK, V110, P3, DOI 10.1016/S0194-5998(94)70788-X BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S BERLIN CI, 1993, HEARING RES, V65, P40, DOI 10.1016/0378-5955(93)90199-B BROWN AM, 1988, HEARING RES, V34, P27, DOI 10.1016/0378-5955(88)90048-2 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E COLLET L, 1992, AUDIOLOGY, V31, P1 Cooper NP, 2003, J PHYSIOL-LONDON, V548, P307, DOI 10.1113/jphysiol.2003.039081 DACOSTA DL, 1997, EXPT BRAIN RES, V77, P1826 Giraud AL, 1997, HEARING RES, V109, P78, DOI 10.1016/S0378-5955(97)00055-5 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 Hood LJ, 1996, HEARING RES, V101, P113, DOI 10.1016/S0378-5955(96)00138-4 Maison S, 1999, SCAND AUDIOL, V28, P77 Maison SF, 2007, J NEUROPHYSIOL, V97, P3269, DOI 10.1152/jn.00067.2007 Moulin A, 1998, NEUROREPORT, V9, P3741, DOI 10.1097/00001756-199811160-00031 Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 RYAN S, 1991, British Journal of Audiology, V25, P391, DOI 10.3109/03005369109076614 SRIDHAR TS, 1995, J NEUROSCI, V15, P3667 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 NR 19 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 11 PY 2009 VL 254 IS 1-2 BP 77 EP 81 DI 10.1016/j.heares.2009.04.013 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 476KH UT WOS:000268438500008 PM 19401226 ER PT J AU Moffat, G Adjout, K Gallego, S Thai-Van, H Collet, L Norena, AJ AF Moffat, G. Adjout, K. Gallego, S. Thai-Van, H. Collet, L. Norena, A. J. TI Effects of hearing aid fitting on the perceptual characteristics of tinnitus SO HEARING RESEARCH LA English DT Article DE Tinnitus; Hearing aid; Tinnitus pitch; Neural plasticity; Deafferentation ID PRIMARY AUDITORY-CORTEX; TRANSCRANIAL MAGNETIC STIMULATION; ENHANCED FREQUENCY DISCRIMINATION; ENRICHED ACOUSTIC ENVIRONMENT; RAT INFERIOR COLLICULUS; PURE-TONE TRAUMA; COCHLEAR DAMAGE; NEURAL ACTIVITY; NOISE TRAUMA; CORTICAL PLASTICITY AB Restoration of auditory input through the use of hearing aids has been proposed as a potentially important means of altering tinnitus among those tinnitus sufferers who experience significant sensorineural hearing loss. In animal models of neural plasticity induced by noise trauma, high-frequency stimulation in deafferented regions of the auditory spectrum has been shown to modulate cortical reorganization after hearing loss, a result which suggests that the neural basis of tinnitus is subject to interference by acoustic stimulation. This study drew on deafferentation models to investigate the effect of hearing aids on the psychoacoustic properties of the tinnitus sensation, using both conventional amplification and high-bandwidth amplification regimes. The tinnitus percept was affected only weakly in the conventional amplification group, and was not at all affected in the high-bandwidth group. The changes observed under conventional, low-to-medium frequency amplification may indicate that the perceptual characteristics of tinnitus depend on the pattern of sensory inputs - notably a contrast in activity between adjacent central auditory regions of more and less afferent activity - while the absence of modifications in the high-bandwidth amplification group suggests limit on the tractability of the tinnitus percept. This limit to the malleability of the tinnitus percept may arise from either the extent of hearing deficits or the duration and robustness of the neuroplastic changes that originally give rise to tinnitus. (C) 2009 Elsevier B.V. All rights reserved. C1 [Moffat, G.; Norena, A. J.] CNRS, UMR 6149, Lab Neurobiol Integrat & Adaptat, F-13331 Marseille 03, France. [Adjout, K.; Thai-Van, H.; Collet, L.] Univ Lyon, F-69003 Lyon, France. [Gallego, S.; Thai-Van, H.; Collet, L.] Hop Edouard Herriot, Serv Audiol & Explorat Orofaciales, Hosp Civils Lyon, F-69003 Lyon, France. [Adjout, K.; Thai-Van, H.; Collet, L.] CNRS, UMR5020, F-69007 Lyon, France. [Adjout, K.; Thai-Van, H.; Collet, L.] Inst Federatif Neurosci Lyon, F-69677 Lyon, France. RP Norena, AJ (reprint author), CNRS, UMR 6149, Lab Neurobiol Integrat & Adaptat, 3 Pl Victor Hugo, F-13331 Marseille 03, France. EM arnaud.norena@univ-provence.fr FU CNRS; ANR (Agence Nationale pour la Recherche); CIFRE FX This research was supported by CNRS and ANR (Agence Nationale pour la Recherche). The first author is supported by a CIFRE scholarship in partnership with Neurelec, S.A., 2720 Chemin St. Bernard, Vallauris, F-06220, France. CR Argence M, 2006, NEUROSCIENCE, V141, P1193, DOI 10.1016/j.neuroscience.2006.04.058 Baguley DM, 2007, PROG BRAIN RES, V166, P347, DOI 10.1016/S0079-6123(07)66033-6 Buonomano DV, 1998, ANNU REV NEUROSCI, V21, P149, DOI 10.1146/annurev.neuro.21.1.149 Burk Matthew H, 2004, Am J Audiol, V13, P54, DOI 10.1044/1059-0889(2004/008) BURNS EM, 1984, AUDIOLOGY, V23, P426 CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C CAZALS Y, 1978, J AM AUDITORY SOC, V3, P209 De Ridder D, 2005, OTOL NEUROTOL, V26, P616, DOI 10.1097/01.mao.0000178146.91139.3c Del Bo L, 2007, PROG BRAIN RES, V166, P341, DOI 10.1016/S0079-6123(07)66032-4 Doetsch GS, 1998, NEUROREPORT, V9, pR29, DOI 10.1097/00001756-199806010-00001 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 2005, DRUG DISCOV TODAY, V10, P1283, DOI 10.1016/S1359-6446(05)03542-7 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 FABIJANSKA A, 1999, P 6 INT TINN SEM TIN Ferrari G. M. S., 2007, BRAZ J OTORHINOLAR, V73, P370 Gerken GM, 1996, HEARING RES, V97, P75 Guitton MJ, 2003, J NEUROSCI, V23, P3944 HALLAM RS, 1985, ACTA OTO-LARYNGOL, V99, P501 HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R HARRISON RV, 1993, J OTOLARYNGOL, V22, P4 Henry JA, 1999, P 6 INT TINN SEM, P51 Henry J A, 2000, J Am Acad Audiol, V11, P138 Henry J A, 1999, J Am Acad Audiol, V10, P261 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Irvine DRF, 2000, HEARING RES, V147, P188, DOI 10.1016/S0378-5955(00)00131-3 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Jeanmonod D, 1996, BRAIN, V119, P363, DOI 10.1093/brain/119.2.363 Kahlbrock N, 2008, BMC BIOL, V6, DOI 10.1186/1741-7007-6-4 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 Kaltenbach James A, 2006, Acta Otolaryngol Suppl, P20 Kleinjung T, 2007, OTOLARYNG HEAD NECK, V137, P589, DOI 10.1016/j.otohns.2006.12.007 Kluk K, 2006, INT J AUDIOL, V45, P463, DOI 10.1080/14992020600753189 Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750 Konig O, 2006, HEARING RES, V221, P59, DOI 10.1016/j.heares.2006.07.007 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 Llinas RR, 1999, P NATL ACAD SCI USA, V96, P15222, DOI 10.1073/pnas.96.26.15222 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X Norena A, 2000, HEARING RES, V149, P24, DOI 10.1016/S0378-5955(00)00158-1 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 NORENA AJ, 2006, NEUROREPORT, V18, P1251 Ochi K, 1997, HEARING RES, V105, P105, DOI 10.1016/S0378-5955(96)00201-8 Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 Parra LC, 2007, J ACOUST SOC AM, V121, P1632, DOI 10.1121/1.2431346 PENNER MJ, 1983, J SPEECH HEAR RES, V26, P263 Pilgramm M, 1999, P 6 INT TINN SEM CAM, P64 Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4 Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9 ROBERTS LE, 2006, ACTA OTO-LARYNGOL, V556, P27, DOI DOI 10.1080/03655230600895358 Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X Sirimanna T., 1996, J AUDIOL MED, V5, P38 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Thai-Van H, 2007, HEARING RES, V233, P14, DOI 10.1016/j.heares.2007.06.003 Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044 Thai-Van H, 2003, BRAIN, V126, P2235, DOI 10.1093/brain/awg228 Trotrer MI, 2008, J LARYNGOL OTOL, V122, P1052, DOI 10.1017/S002221510800203X TYLER RS, 1983, J SPEECH HEAR RES, V26, P59 Tyler R S, 1983, Br J Audiol, V17, P101, DOI 10.3109/03005368309078916 Verhoeven KJF, 2005, OIKOS, V108, P643, DOI 10.1111/j.0030-1299.2005.13727.x Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 Weisz N, 2005, PLOS MED, V2, P546, DOI 10.1371/journal.pmed.0020153 Weisz N, 2007, J NEUROSCI, V27, P1479, DOI 10.1523/JNEUROSCI.3711-06.2007 Weisz N, 2006, HEARING RES, V222, P108, DOI 10.1016/j.heares.2006.09.003 West RL, 2000, PERCEPT PSYCHOPHYS, V62, P137, DOI 10.3758/BF03212067 NR 73 TC 40 Z9 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 11 PY 2009 VL 254 IS 1-2 BP 82 EP 91 DI 10.1016/j.heares.2009.04.016 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 476KH UT WOS:000268438500009 PM 19409969 ER PT J AU Sha, SH Chen, FQ Schacht, J AF Sha, Su-Hua Chen, Fu-Quan Schacht, Jochen TI Activation of cell death pathways in the inner ear of the aging CBA/J mouse SO HEARING RESEARCH LA English DT Article DE Cochlea; Age-related hearing loss; Apoptosis; Oxidative stress; Caspase; Calpain ID ISCHEMIC NEURONAL DEATH; INDUCED HEARING-LOSS; OUTER HAIR-CELLS; OXIDATIVE STRESS; CALORIC RESTRICTION; COCHLEAR PATHOLOGY; ENDONUCLEASE-G; CYTOCHROME-C; CATHEPSIN-D; APOPTOSIS AB We have previously demonstrated that oxidative stress increases in the inner ear of aging CBA/J mice and might contribute to the loss of function of the sensory system. We now investigate the activation of cell death pathways in the cochleae of these animals. Middle-aged (112 months) and old (18-26 months) mice with hearing deficits displayed outer hair cell nuclei with apoptotic and, to a lesser extent, necrotic features. Both intrinsic and extrinsic cell death pathways were activated by translocation or post-translational modification of proteins in the aging cochlea as compared to young (3 months) animals. Cytosolic cytochrome c increased, formed a complex with, and activated caspase 9. Endonuclease G translocated to the nuclei of aging outer hair cells suggesting its function as an apoptotic DNase. The cleaved (and hence active) forms of calpain I and calpain 11 increased while active cathepsin D was transiently elevated in middle-aged but not old animals. Finally, increases in the phosphorylation of p38 MAPK and JNK implicated the additional involvement of the MAPK pathway. The results suggest that multiple cell death pathways, all potentially linked to oxidative stress, are activated in hair cells of the auditory organ in aging mice. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sha, Su-Hua; Chen, Fu-Quan; Schacht, Jochen] Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Chen, Fu-Quan] Fourth Mil Med Univ, Dept Otolaryngol, Xian 710032, Peoples R China. RP Sha, SH (reprint author), Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, 1150 W Med Ctr Dr,5315 B MS 1, Ann Arbor, MI 48109 USA. EM shasha@umich.edu FU National Institute on Aging [AC-025164]; National Institute on Deafness and Other Communication Disorders, NIH [P30 DC-05188] FX This study was supported by program project Grant AC-025164 from the National Institute on Aging and core Grant P30 DC-05188 from the National Institute on Deafness and Other Communication Disorders, NIH. CR Brunk UT, 1997, FREE RADICAL BIO MED, V23, P616, DOI 10.1016/S0891-5849(97)00007-5 Danial NN, 2004, CELL, V116, P205, DOI 10.1016/S0092-8674(04)00046-7 Deshmukh M, 1998, NEURON, V21, P695, DOI 10.1016/S0896-6273(00)80587-5 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 Ferri KF, 2001, NAT CELL BIOL, V3, pE255, DOI 10.1038/ncb1101-e255 Fridberger A, 1998, P NATL ACAD SCI USA, V95, P7127, DOI 10.1073/pnas.95.12.7127 Green DR, 2004, SCIENCE, V305, P626, DOI 10.1126/science.1099320 Green Steven H., 2008, V31, P275 Guicciardi ME, 2000, J CLIN INVEST, V106, P1127, DOI 10.1172/JCI9914 Henderson Donald, 2008, V31, P195 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Ishihara Y, 2006, J BIOL CHEM, V281, P6726, DOI 10.1074/jbc.M510382200 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 Jiang H, 2007, NEUROBIOL AGING, V28, P1605, DOI 10.1016/j.neurobiolaging.2006.06.025 Kelekar A, 2006, ANN NY ACAD SCI, V1066, P259 Kyriakis JM, 2001, PHYSIOL REV, V81, P807 Lee CK, 1999, SCIENCE, V285, P1390, DOI 10.1126/science.285.5432.1390 Leist M, 2001, CELL DEATH DIFFER, V8, P324, DOI 10.1038/sj.cdd.4400859 Leppa S, 1999, ONCOGENE, V18, P6158, DOI 10.1038/sj.onc.1203173 Li LY, 2001, NATURE, V412, P95, DOI 10.1038/35083620 Liu ZG, 1996, CELL, V87, P565, DOI 10.1016/S0092-8674(00)81375-6 Matsui JI, 2004, J NEUROBIOL, V61, P250, DOI 10.1002/neu.20054 McFadden SL, 2001, AUDIOLOGY, V40, P313 McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 McFadden SL, 1999, J COMP NEUROL, V413, P101 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 Nakagawa T, 1998, EUR ARCH OTO-RHINO-L, V255, P127, DOI 10.1007/s004050050027 Ogita K, 2000, NEUROREPORT, V11, P859, DOI 10.1097/00001756-200003200-00040 Roberg K, 2002, AM J PATHOL, V161, P89, DOI 10.1016/S0002-9440(10)64160-0 Rybak Leonard P., 2008, V31, P219 Ryter SW, 2007, ANTIOXID REDOX SIGN, V9, P49, DOI 10.1089/ars.2007.9.49 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003 Sha SH, 2008, HEARING RES, V243, P87, DOI 10.1016/j.heares.2008.06.001 SOHAL RS, 1994, FREE RADICAL BIO MED, V16, P621, DOI 10.1016/0891-5849(94)90062-0 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 Tadros SF, 2008, APOPTOSIS, V13, P1303, DOI 10.1007/s10495-008-0266-x Trachootham D, 2008, ANTIOXID REDOX SIGN, V10, P1343, DOI 10.1089/ars.2007.1957 Tsukuba T, 2000, MOL CELLS, V10, P601, DOI 10.1007/s100590000019 Unal-Cevik I, 2004, STROKE, V35, P2189, DOI 10.1161/01.STR.0000136149.81831.c5 Yamashima T, 2004, CELL CALCIUM, V36, P285, DOI 10.1016/j.ceca.2004.03.001 Yamashima T, 2000, PROG NEUROBIOL, V62, P273, DOI 10.1016/S0301-0082(00)00006-X Yamashita D, 2004, NEUROREPORT, V15, P2719 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 NR 45 TC 29 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 11 PY 2009 VL 254 IS 1-2 BP 92 EP 99 DI 10.1016/j.heares.2009.04.019 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 476KH UT WOS:000268438500010 PM 19422898 ER PT J AU Dai, M Nuttall, A Yang, Y Shi, XR AF Dai, Min Nuttall, Alfred Yang, Yue Shi, Xiaorui TI Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament SO HEARING RESEARCH LA English DT Article DE Cochlear pericyte; Capillary of spiral ligament; Diaminofluorescein-2 diacetate (DAF-2DA) ID ENDOTHELIAL NITRIC-OXIDE; SYNTHASE UP-REGULATION; GUINEA-PIG COCHLEA; EAR BLOOD-FLOW; RETINAL MICROVASCULATURE; MODIOLAR ARTERY; LUNG PERICYTES; GROWTH-FACTOR; RAT RETINA; IN-VITRO AB Pericytes, mural cells located on microvessels, are considered to play an important role in the formation of the vasculature and the regulation of local blood flow in some organs. Little is known about the physiology of cochlear pericytes. in order to investigate the function of cochlear pericytes, we developed a method to visualize cochlear pericytes using diaminofluorescein-2 diacetate (DAF-2DA) and intravital fluorescence microscopy. This method can permit the study of the effect of vasoactive agents on pericytes under the in vivo and normal physiological condition. The specificity of the labeling method was verified by the immunofluorescence labeling of pericyte maker proteins such as desmin, neural proteoglycan (NG2), and thymocyte differentiation antigen 1 (Thy-1). Superfused K(+) and Ca(2+) to the cochlear lateral wall resulted in localized constriction of capillaries at pericyte locations both in vivo and in vitro, while there was no obvious change in cochlear capillary diameters with application of the adrenergic neurotransmitter noradrenaline. The method could be an effective way to visualize cochlear pericytes and microvessels and study lateral wall vascular physiology. Moreover, we demonstrate for the first time that cochlear pericytes have contractility, which may be important for regulation of cochlear blood flow. Published by Elsevier B.V. C1 [Dai, Min; Nuttall, Alfred; Yang, Yue; Shi, Xiaorui] Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr NRC04, Dept Otolaryngol Head & Neck Surg, Portland, OR 97239 USA. [Nuttall, Alfred] Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Nuttall, Alfred] Shanghai Jiao Tong Univ, Dept Otolaryngol, Renji Hosp, Shanghai 200030, Peoples R China. [Dai, Min; Shi, Xiaorui] Chinese Acad Med Sci, Inst Microcirculat, Beijing, Peoples R China. [Dai, Min; Shi, Xiaorui] Peking Union Med Coll, Beijing 100021, Peoples R China. RP Shi, XR (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr NRC04, Dept Otolaryngol Head & Neck Surg, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM shix@ohsu.edu RI Dai, Min/B-9908-2012 FU National Institute of Deafness and Other Communications Disorders [NIDCD DC 00888, NIDCD DC 00105, NIDCD DC 005983 (p30)] FX This work was supported by National Institute of Deafness and Other Communications Disorders Grants NIDCD DC 00888, NIDCD DC 00105, and NIDCD DC 005983 (p30). CR Allt G, 2001, CELLS TISSUES ORGANS, V169, P1, DOI 10.1159/000047855 Armulik A, 2005, CIRC RES, V97, P512, DOI 10.1161/01.RES.0000182903.16652.d7 Betsholtz C, 2006, AM J PHYSIOL-HEART C, V290, pH509, DOI 10.1152/ajpheart.01075.2005 Donoghue L, 2006, AM J SURG, V191, P349, DOI 10.1016/j.amjsurg.2005.10.034 Franz P, 2004, ACTA OTO-LARYNGOL, V124, P481, DOI 10.1080/00016480410017206 Heinrich UR, 2005, BRAIN RES, V1047, P85, DOI 10.1016/j.brainres.2005.04.023 Heinrich UR, 2006, EUR ARCH OTO-RHINO-L, V263, P62, DOI 10.1007/s00405-005-0949-7 HERMAN IM, 1985, J CELL BIOL, V101, P43, DOI 10.1083/jcb.101.1.43 Herskovic JJ, 2002, LUNG, V180, P215, DOI 10.1007/s004080000095 Herzog M, 2003, LARYNGO RHINO OTOL, V82, P490 Hirase H, 2004, GLIA, V46, P95, DOI 10.1002/glia.10295 Hughes S, 2006, NEUROBIOL AGING, V27, P1838, DOI 10.1016/j.neurobiolaging.2005.10.021 Jiang ZG, 2004, HEARING RES, V189, P92, DOI 10.1016/S0378-5955(03)00398-8 Jiang ZG, 2007, J PHARMACOL EXP THER, V320, P544, DOI 10.1124/jpet.106.115212 Kamouchi M, 2004, MOL BRAIN RES, V126, P114, DOI 10.1016/j.molbrainres.2004.03.008 Kawamura H, 2004, J PHYSIOL-LONDON, V561, P671, DOI 10.1113/jphysiol.2004.073098 Konishi K, 1998, ACTA OTO-LARYNGOL, P40 KUWABARA T, 1960, ARCH OPHTHALMOL-CHIC, V64, P904 Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006 Miller JM, 2003, AUDIOL NEURO-OTOL, V8, P207, DOI 10.1159/000071061 MILLER JM, 1995, OTOLARYNG HEAD NECK, V112, P101, DOI 10.1016/S0194-5998(95)70308-X Murfee WL, 2005, MICROCIRCULATION, V12, P151, DOI 10.1080/10739680590904955 Nakashima T, 2003, BRAIN RES REV, V43, P17, DOI 10.1016/S0165-0173(03)00189-9 NEHLS V, 1993, HISTOCHEMISTRY, V99, P1, DOI 10.1007/BF00268014 NUTTALL AL, 1987, HEARING RES, V27, P111, DOI 10.1016/0378-5955(87)90012-8 Pallone TL, 2001, EXP NEPHROL, V9, P165 Peppiatt CM, 2006, NATURE, V443, P700, DOI 10.1038/nature05193 Puro DG, 2007, MICROCIRCULATION, V14, P1, DOI 10.1080/10739680601072099 Quignard JF, 2003, J CARDIOVASC PHARM, V42, P379, DOI 10.1097/00005344-200309000-00009 Sakagami K, 1999, J PHYSIOL-LONDON, V521, P637, DOI 10.1111/j.1469-7793.1999.00637.x Seidman MD, 1999, ANN NY ACAD SCI, V884, P226, DOI 10.1111/j.1749-6632.1999.tb08644.x SEIDMAN MD, 1992, EUR ARCH OTO-RHINO-L, V249, P332 Shi XR, 2001, HEARING RES, V153, P23, DOI 10.1016/S0378-5955(00)00254-9 Shi XR, 2002, HEARING RES, V172, P73, DOI 10.1016/S0378-5955(02)00513-0 Shi XR, 2008, MICROCIRCULATION, V15, P515, DOI 10.1080/10739680802047445 Sims DE, 2000, CLIN EXP PHARMACOL P, V27, P842, DOI 10.1046/j.1440-1681.2000.03343.x Sugimoto K, 2000, HISTOCHEM CELL BIOL, V113, P341 von Tell D, 2006, EXP CELL RES, V312, P623, DOI 10.1016/j.yexcr.2005.10.019 Wangemann P, 2002, ADV OTO-RHINO-LARYNG, V59, P51 Wangemann P, 2005, HEARING RES, V209, P91, DOI 10.1016/j.heares.2005.06.011 Yamanishi S, 2006, AM J PHYSIOL-HEART C, V290, pH925, DOI 10.1152/ajpheart.01012.2005 Zhang Z, 2002, AM J PHYSIOL-REG I, V283, pR949, DOI 10.1152/ajpregu.00251.2002 NR 42 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG 11 PY 2009 VL 254 IS 1-2 BP 100 EP 107 DI 10.1016/j.heares.2009.04.018 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 476KH UT WOS:000268438500011 PM 19422897 ER PT J AU Klop, WMC Frijns, JHM Soede, W Briaire, JJ AF Klop, W. Martin C. Frijns, Johan H. M. Soede, Wim Briaire, Jeroen J. TI An objective method to measure electrode independence in cochlear implant patients with a dual-masker forward masking technique SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Current steering; eCAP; Electrode independence; Neural response imaging ID SPEECH CODING STRATEGY; ELECTRICAL-STIMULATION; PITCH DISCRIMINATION; EXCITATION PATTERNS; NEURAL EXCITATION; SPATIAL SPREAD; USERS; PERCEPTION; ARRAYS; CII AB This study introduced a dual-masker forward masking technique and evaluated whether this objective method could measure electrode independency in a cochlear implant; more particularly, whether the optimal locations and number of active electrodes could be determined. This method further enabled the investigation of the efficacy of current steering, because the proposed recording method could also be described as applying a sequentially current steered masker. The paradigm requires 5 frames involving 2 maskers and 1 probe and is referred to as the Apple Core method (MP5-AC). For each recording, both the masker and probe amplitude were varied independently, producing 3-D eCAP plots that showed the eCAP amplitude for independent variations of masker and probe amplitudes. A simple quantitative model was developed to aid interpretation of the results. Theory and model were clinically tested in 14 patients. On the basis of the model, the multi-variate, color-coded plots could be subdivided into seven distinct regions, each depicting a unique relationship between the probe and the maskers. The model's predictions supported interpretation of the results, and indicated independence for the probe electrode contacts only at lower current levels and/or at greater inter-electrode separations. The clinical results revealed a lack of selectivity in the electrode array for stimulus levels larger than 600 mu A. This suggests that sequential current steering is only capable of producing a single excitation area at higher current levels, or smaller electrode distances, without additional loudness correction being applied. Thus, the MP5-AC paradigm provided insight concerning the independence of electrodes and the efficacy of current steering in clinical patients. However, its current clinical applicability is limited because measurements were adequate only in anesthetized patients. (C) 2009 Elsevier B.V. All rights reserved. C1 [Klop, W. Martin C.; Frijns, Johan H. M.; Soede, Wim; Briaire, Jeroen J.] Leiden Univ, Med Ctr, Dept Otolaryngol Head & Neck Surg, NL-2300 RC Leiden, Netherlands. RP Frijns, JHM (reprint author), Leiden Univ, Med Ctr, ENT Dept, POB 9600, NL-2300 RC Leiden, Netherlands. EM j.h.m.frijns@lumc.nl RI Frijns, Johan/H-6249-2011; Briaire, Jeroen/A-7972-2008 OI Briaire, Jeroen/0000-0003-4302-817X CR Boex C, 2003, J ACOUST SOC AM, V114, P2058, DOI 10.1121/1.1610452 Brendel M, 2008, OTOL NEUROTOL, V29, P199, DOI 10.1097/mao.0b013e31816335c6 Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020 Briaire JJ, 2006, HEARING RES, V214, P17, DOI 10.1016/j.heares.2006.01.015 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Buchner A, 2008, OTOL NEUROTOL, V29, P189, DOI 10.1097/mao.0b013e318162512c BUCHNER A, 2008, OTOL NEUROTOL, V29, P203 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 Chatterjee M, 2006, JARO-J ASSOC RES OTO, V7, P15, DOI 10.1007/s10162-005-0019-2 Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 COHEN LT, 2001, 2001 C IMPL AUD PROS Cohen LT, 2006, HEARING RES, V212, P160, DOI 10.1016/j.heares.2005.11.005 Cohen LT, 2009, HEARING RES, V248, P15, DOI 10.1016/j.heares.2008.11.008 Cohen LT, 2005, INT J AUDIOL, V44, P559, DOI 10.1080/14992020500258743 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Cohen SP, 2009, NAT CLIN PRACT NEURO, V5, P14, DOI 10.1038/ncpneuro0987 Dingemanse JG, 2006, EAR HEARING, V27, P645, DOI 10.1097/01.aud.0000246683.29611.1b Donaldson GS, 2000, J ACOUST SOC AM, V107, P1645, DOI 10.1121/1.428449 Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362 Finley CC, 2008, OTOL NEUROTOL, V29, P920, DOI 10.1097/MAO.0b013e318184f492 Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc Fitzgerald MB, 2007, ACTA OTO-LARYNGOL, V127, P378, DOI 10.1080/00016480701258671 FRIJNS JH, 2008, ACTA OTO-LARYNGOL, P1 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 Frijns JHM, 2003, ACTA OTO-LARYNGOL, V123, P138, DOI 10.1080/0036554021000028126 Frijns JHM, 2002, EAR HEARING, V23, P184, DOI 10.1097/00003446-200206000-00003 Gani M, 2007, JARO-J ASSOC RES OTO, V8, P69, DOI 10.1007/s10162-006-0065-4 Hughes ML, 2006, J ACOUST SOC AM, V119, P1538, DOI 10.1121/1.2164969 Hughes ML, 2008, EAR HEARING, V29, P435, DOI 10.1097/AUD.0b013e31816a0d3d Klop WMC, 2004, ACTA OTO-LARYNGOL, V124, P137, DOI 10.1080/00016480310016901 Koch DB, 2007, EAR HEARING, V28, p38S, DOI 10.1097/AUD.0b013e31803150de Kos MI, 2007, EUR ARCH OTO-RHINO-L, V264, P1369, DOI 10.1007/s00405-007-0354-5 Kwon BJ, 2006, J ACOUST SOC AM, V120, pEL1, DOI 10.1121/1.2208152 LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732 Marrinan MS, 2004, OTOL NEUROTOL, V25, P290, DOI 10.1097/00129492-200405000-00015 Nogueira W, 2005, EURASIP J APPL SIG P, V2005, P3044, DOI 10.1155/ASP.2005.3044 Peeters S, 1998, Acta Otorhinolaryngol Belg, V52, P115 Polak M, 2005, OTOL NEUROTOL, V26, P639, DOI 10.1097/01.mao.0000178145.14010.25 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 SAOJI AA, 2008, ARO MIDW M PHOEN AZ, P472 SAOJI AA, 2008, 10 INT C COCHL IMPL, P66 SAOJI AA, 2008, 10 INT C COCHL IMPL, P86 van der Beek FB, 2005, EAR HEARING, V26, P577, DOI 10.1097/01.aud.0000188116.30954.21 Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401 NR 44 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL 9 PY 2009 VL 253 IS 1-2 BP 3 EP 14 DI 10.1016/j.heares.2009.03.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471SR UT WOS:000268079100002 PM 19306921 ER PT J AU Owens, KN Coffin, AB Hong, LS Bennett, KO Rubel, EW Raible, DW AF Owens, Kelly N. Coffin, Allison B. Hong, Lisa S. Bennett, Keri O'Connell Rubel, Edwin W. Raible, David W. TI Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways SO HEARING RESEARCH LA English DT Article DE Ototoxicity; Aminoglycoside; Mechanosensory; Lateral line; Zebrafish; Hair cell ID GUINEA-PIG COCHLEA; GENTAMICIN-INDUCED OTOTOXICITY; IN-VITRO; DANIO-RERIO; HEARING-LOSS; CASPASE ACTIVATION; SENSORY EPITHELIA; AUDITORY FUNCTION; STRUCTURAL BASIS; GENE-EXPRESSION AB We report a series of experiments investigating the kinetics of hair cell loss in lateral line neuromasts of zebrafish larvae following exposure to aminoglycoside antibiotics. Comparisons of the rate of hair cell loss and the differential effects of acute versus chronic exposure to gentamicin and neomycin revealed markedly different results. Neomycin induced rapid and dramatic concentration-dependent hair cell loss that is essentially complete within 90 min, regardless of concentration or exposure time. Gentamicin-induced loss of half of the hair cells within 90 min and substantial additional loss, which was prolonged and cumulative over exposure times up to at least 24 h. Small molecules and genetic mutations that inhibit neomycin-induced hair cell loss were ineffective against prolonged gentamicin exposure supporting the hypothesis that these two drugs are revealing at least two cellular pathways. The mechanosensory channel blocker amiloride blocked both neomycin and gentamicin-induced hair cell death acutely and chronically indicating that these aminoglycosides share a common entry route. Further tests with additional aminoglycosides revealed a spectrum of differential responses to acute and chronic exposure. The distinctions between the times of action of these aminoglycosides indicate that these drugs induce multiple cell death pathways. (C) 2009 Elsevier B.V. All rights reserved. C1 [Owens, Kelly N.; Raible, David W.] Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA. [Owens, Kelly N.; Coffin, Allison B.; Rubel, Edwin W.] Univ Washington, Dept Otolaryngol HNS, Seattle, WA 98195 USA. [Owens, Kelly N.; Coffin, Allison B.; Hong, Lisa S.; Bennett, Keri O'Connell; Rubel, Edwin W.; Raible, David W.] Univ Washington, VM Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. [Hong, Lisa S.; Bennett, Keri O'Connell] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98195 USA. RP Owens, KN (reprint author), Univ Washington, Dept Biol Struct, Box 357420, Seattle, WA 98195 USA. EM kowens@u.washington.edu; coffina@u.washington.edu; lisaness@gmail.com; Keri.Oconnell2@va.gov; rubel@u.washington.edu; draible@u.washington.edu FU Virginia Merrill Bloedel Hearing Research Center; NIH [DC04661, DC05987, DC06998, DC00018] FX Support was provided by the Department of Speech and Hearing Sciences, the Virginia Merrill Bloedel Hearing Research Center and NIH grants DC04661; DC05987; DC06998; DC00018. CR ARAN JM, 1982, ACTA OTO-LARYNGOL, P1 Aran J M, 1993, Rev Laryngol Otol Rhinol (Bord), V114, P125 AU S, 1987, BIOCHIM BIOPHYS ACTA, V902, P80, DOI 10.1016/0005-2736(87)90137-4 Bang PI, 2001, J COMP NEUROL, V438, P173, DOI 10.1002/cne.1308 Battaglia A, 2003, NEUROSCIENCE, V122, P1025, DOI 10.1016/j.neuroscience.2003.08.041 BEAUBIEN AR, 1990, ACTA OTO-LARYNGOL, V109, P345, DOI 10.3109/00016489009125154 BEAUBIEN AR, 1995, HEARING RES, V83, P62, DOI 10.1016/0378-5955(94)00192-S Bermingham-McDonogh O, 2001, DEV BIOL, V238, P247, DOI 10.1006/dbio.2001.0412 Bodmer D, 2002, HEARING RES, V172, P81, DOI 10.1016/S0378-5955(02)00514-2 Borovinskaya MA, 2007, NAT STRUCT MOL BIOL, V14, P727, DOI 10.1038/nsmb1271 Borovinskaya MA, 2008, RNA, V14, P1590, DOI 10.1261/rna.1076908 CHANG JSY, 1992, J COMP NEUROL, V324, P621, DOI 10.1002/cne.903240413 Cheng Alan G, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P343, DOI 10.1097/01.moo.0000186799.45377.63 Cheng AG, 2003, JARO, V4, P91, DOI 10.1007/s10162-002-3016-8 Chiu LL, 2008, JARO-J ASSOC RES OTO, V9, P178, DOI 10.1007/s10162-008-0118-y Chung WH, 2006, JARO-J ASSOC RES OTO, V7, P373, DOI 10.1007/s10162-006-0050-y Coombs S, 1999, COMP HEARING FISH AM Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006 Cunningham LL, 2002, J NEUROSCI, V22, P8532 Cunningham LL, 2006, JARO-J ASSOC RES OTO, V7, P299, DOI 10.1007/s10162-006-0043-x Dai CF, 2008, HEARING RES, V235, P114, DOI 10.1016/j.heares.2007.10.010 Dambly-Chaudiere C, 2003, BIOL CELL, V95, P579, DOI 10.1016/j.biolcel.2003.10.005 Day AS, 2007, EAR HEARING, V28, P18, DOI 10.1097/01.aud.0000249765.76065.27 Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040 DULON D, 1986, ANTIMICROB AGENTS CH, V30, P96 ESTERHAI JL, 1986, CLIN ORTHOP RELAT R, P185 Fischel-Ghodsian N, 2003, EAR HEARING, V24, P303, DOI 10.1097/01.AUD.0000079802.82344.B5 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Gale JE, 2001, J NEUROSCI, V21, P7013 Guan MX, 2006, AM J HUM GENET, V79, P291, DOI 10.1086/506389 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x HAWKINS J E Jr, 1952, Trans Am Otol Soc, V40, P133 Hernandez PP, 2007, DEV NEUROBIOL, V67, P637, DOI 10.1002/dneu.20386 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 HUTCHIN T, 1994, ANTIMICROB AGENTS CH, V38, P2517 Izumikawa M, 2008, HEARING RES, V240, P52, DOI 10.1016/j.heares.2008.02.007 Jiang H, 2006, J NEUROCHEM, V99, P269, DOI 10.1111/j.1471-4159.2006.04117.x KOTECHA B, 1994, HEARING RES, V73, P173, DOI 10.1016/0378-5955(94)90232-1 Lahne M, 2008, J NEUROSCI, V28, P4918, DOI 10.1523/JNEUROSCI.4914-07.2008 Leake PA, 2008, JARO-J ASSOC RES OTO, V9, P349, DOI 10.1007/s10162-008-0127-x LERNER SA, 1986, AM J MED, V80, P98, DOI 10.1016/0002-9343(86)90486-9 Lynch SR, 2001, J MOL BIOL, V306, P1037, DOI 10.1006/jmbi.2000.4420 Ma EY, 2008, J NEUROSCI, V28, P2261, DOI 10.1523/JNEUROSCI.4372-07.2008 Magnet S, 2005, CHEM REV, V105, P477, DOI 10.1021/cr0301088 MAGNUSSON M, 1991, ACTA OTO-LARYNGOL, V111, P671, DOI 10.3109/00016489109138398 Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129 Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951 Matsui JI, 2004, J NEUROBIOL, V61, P250, DOI 10.1002/neu.20054 Matsui Jonathan Isamu, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P418, DOI 10.1097/01.moo.0000136873.56878.56 Montgomery J, 2000, PHILOS T ROY SOC B, V355, P1325 MOORE RD, 1984, J INFECT DIS, V149, P23 Murakami SL, 2003, HEARING RES, V186, P47, DOI 10.1016/S0378-5955(03)00259-4 Nagy I, 2004, HEARING RES, V195, P1, DOI 10.1016/j.heares.2004.04.010 Nakashima T, 2000, ACTA OTO-LARYNGOL, V120, P904, DOI 10.1080/00016480050218627 Nelson EG, 2006, LARYNGOSCOPE, V116, P1, DOI 10.1097/01.mlg.0000236089.44566.62 Ou HC, 2007, HEARING RES, V233, P46, DOI 10.1016/j.heares.2007.07.003 Owens KN, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000020 Owens KN, 2007, J COMP NEUROL, V502, P522, DOI 10.1002/cne.21345 PARKS TN, 2004, SERIES SPRINGER HDB, V23 Pirvola U, 2000, J NEUROSCI, V20, P43 PLATT C, 1993, HEARING RES, V65, P133, DOI 10.1016/0378-5955(93)90208-I PREZANT TR, 1993, NAT GENET, V4, P289, DOI 10.1038/ng0793-289 Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K Rauch SD, 2001, ANN NY ACAD SCI, V942, P220 Rizzi Mark Douglas, 2007, Curr Opin Otolaryngol Head Neck Surg, V15, P352, DOI 10.1097/MOO.0b013e3282ef772d Rybak LP, 2005, DRUG DISCOV TODAY, V10, P1313, DOI 10.1016/S1359-6446(05)03552-X Rybak LP, 2007, HEARING RES, V226, P157, DOI 10.1016/j.heares.2006.09.015 Santos F, 2006, HEARING RES, V213, P25, DOI 10.1016/j.heares.2005.12.009 SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 SCHACHT J, 1993, OTOLARYNG CLIN N AM, V26, P845 Schacht J, 1999, Acta Physiol Pharmacol Ther Latinoam, V49, P251 Selimoglu E, 2003, YONSEI MED J, V44, P517 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Shakil S, 2008, J BIOMED SCI, V15, P5, DOI 10.1007/s11373-007-9194-y Shepherd RK, 1995, HEARING RES, V92, P131, DOI 10.1016/0378-5955(95)00211-1 SMITH C R, 1977, New England Journal of Medicine, V296, P349, DOI 10.1056/NEJM197702172960701 Song JK, 1995, HEARING RES, V91, P63, DOI 10.1016/0378-5955(95)00170-0 Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5 Sugahara K, 2006, HEARING RES, V221, P128, DOI 10.1016/j.heares.2006.08.009 Suzuki M, 2008, ACTA OTO-LARYNGOL, V128, P724, DOI 10.1080/00016480701714244 Tabuchi K, 2007, NEUROSCIENCE, V149, P213, DOI 10.1016/j.neuroscience.2007.06.061 Taleb M, 2008, JARO-J ASSOC RES OTO, V9, P277, DOI 10.1007/s10162-008-0122-2 Taylor RR, 2008, JARO-J ASSOC RES OTO, V9, P44, DOI 10.1007/s10162-007-0105-8 TUCCI DL, 1990, OTOLARYNG HEAD NECK, V103, P443 Wanamaker HH, 1999, AM J OTOL, V20, P457 WANG BM, 1984, BIOCHEM PHARMACOL, V33, P3257, DOI 10.1016/0006-2952(84)90087-X Wang J, 2007, MOL PHARMACOL, V71, P654, DOI 10.1124/mol.106.028936 Wang J, 2003, J NEUROSCI, V23, P8596 Wang J, 2009, ASS RES OTOLARYNGOL, V32, P54 Wei X, 2005, NEUROSCIENCE, V131, P513, DOI 10.1016/j.neuroscience.2004.11.014 Wersäll J, 1980, Scand J Infect Dis Suppl, VSuppl 23, P104 Westerfield M., 2000, ZEBRAFISH BOOK GUIDE, V4th Yan QF, 2005, J BIOL CHEM, V280, P29151, DOI 10.1074/jbc.M504247200 NR 94 TC 37 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL 9 PY 2009 VL 253 IS 1-2 BP 32 EP 41 DI 10.1016/j.heares.2009.03.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471SR UT WOS:000268079100004 PM 19285126 ER PT J AU Coffin, AB Reinhart, KE Owens, KN Raible, DW Rubel, EW AF Coffin, Allison B. Reinhart, Katherine E. Owens, Kelly N. Raible, David W. Rubel, Edwin W. TI Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line SO HEARING RESEARCH LA English DT Article DE Hair cell; Ototoxicity; Aminoglycoside; Lateral line; Calcium; Magnesium ID VESTIBULAR SENSORY EPITHELIA; IN-VITRO; DANIO-RERIO; TRANSDUCER ADAPTATION; GENTAMICIN EXPOSURE; ACOUSTIC TRAUMA; GUINEA-PIG; INNER-EAR; MECHANOELECTRICAL TRANSDUCTION; MECHANOTRANSDUCER CHANNEL AB Aminoglycoside antibiotics cause death of sensory hair cells. Research over the past decade has identified several key players in the intracellular cascade. However, the role of the extracellular environment in aminoglycoside ototoxicity has received comparatively little attention. The present study uses the zebrafish lateral line to demonstrate that extracellular calcium and magnesium ions modulate hair cell death from neomycin and gentamicin in vivo, with high levels of either divalent cation providing significant protection. Imaging experiments with fluorescently-tagged gentamicin show that drug uptake is reduced under high calcium conditions. Treating fish with the hair cell transduction blocker amiloride also reduces aminoglycoside uptake, preventing the toxicity, and experiments with variable calcium and amiloride concentrations suggest complementary effects between the two protectants. Elevated magnesium, in contrast, does not appear to significantly attenuate drug uptake, suggesting that the two divalent cations may protect hair cells from aminoglycoside damage through different mechanisms. These results provide additional evidence for calcium- and transduction-dependent aminoglycoside uptake. Divalent cations provided differential protection from neomycin and gentamicin, with high cation concentrations almost completely protecting hair cells from neomycin and acute gentamicin toxicity, but offering reduced protection from continuous (6 h) gentamicin exposure. These experiments lend further support to the hypothesis that aminoglycoside toxicity occurs via multiple pathways in a both a drug and time course-specific manner. (C) 2009 Elsevier B.V. All rights reserved. C1 [Coffin, Allison B.; Reinhart, Katherine E.; Owens, Kelly N.; Raible, David W.; Rubel, Edwin W.] Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. [Owens, Kelly N.; Raible, David W.] Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA. [Coffin, Allison B.; Reinhart, Katherine E.; Owens, Kelly N.; Rubel, Edwin W.] Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. RP Rubel, EW (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA. EM rubel@u.washington.edu FU NIDCD [DC000018, DC004661, DC009931, DC005987]; Virginia Merrill Bloedel Hearing Research Center FX Support was provided by NIDCD grants DC000018, DC004661, DC009931 and DC005987, and the Virginia Merrill Bloedel Hearing Research Center. CR Arundine M, 2003, CELL CALCIUM, V34, P325, DOI 10.1016/S0143-4160(03)00141-6 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338 Beurg M, 2008, BIOPHYS J, V94, P2639, DOI 10.1529/biophysj.107.123257 Cheng Alan G, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P343, DOI 10.1097/01.moo.0000186799.45377.63 Cheng AG, 2003, JARO, V4, P91, DOI 10.1007/s10162-002-3016-8 Cheung ELM, 2006, BIOPHYS J, V90, P124, DOI 10.1529/biophysj.105.061226 Chiesa R, 1998, J NEUROCHEM, V70, P1474 Chiu LL, 2008, JARO-J ASSOC RES OTO, V9, P178, DOI 10.1007/s10162-008-0118-y Coombs S, 2001, J EXP BIOL, V204, P337 Coombs S., 1989, MECHANOSENSORY LATER COREY DP, 1983, J NEUROSCI, V3, P962 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 Crouch JJ, 1995, HEARING RES, V92, P112, DOI 10.1016/0378-5955(95)00201-4 Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006 Cunningham LL, 2002, J NEUROSCI, V22, P8532 Cunningham LL, 2006, JARO-J ASSOC RES OTO, V7, P299, DOI 10.1007/s10162-006-0043-x Cyr JL, 2002, J NEUROSCI, V22, P2487 Dai CF, 2006, HEARING RES, V213, P64, DOI 10.1016/j.heares.2005.11.011 Dehne N, 2002, HEARING RES, V169, P47, DOI 10.1016/S0378-5955(02)00338-6 DIJKGRAAF S, 1963, BIOL REV, V38, P51, DOI 10.1111/j.1469-185X.1963.tb00654.x Dumont RA, 2001, J NEUROSCI, V21, P5066 Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285 Fan MMY, 2007, PROG NEUROBIOL, V81, P272, DOI 10.1016/j.pneurobio.2006.11.003 Ficarella R, 2007, P NATL ACAD SCI USA, V104, P1516, DOI 10.1073/pnas.0609775104 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X FREEMAN DM, 1994, HEARING RES, V79, P197, DOI 10.1016/0378-5955(94)90141-4 Gale JE, 2004, CURR BIOL, V14, P526, DOI 10.1016/j.cub.2004.03.002 Gale JE, 2001, J NEUROSCI, V21, P7013 GARCIA ML, 1990, J BIOL CHEM, V265, P3763 Gillespie PG, 2004, ANNU REV PHYSIOL, V66, P521, DOI 10.1146/annurev.physiol.66.032102.112842 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x Haupt H, 2003, ORL J OTO-RHINO-LARY, V65, P134, DOI 10.1159/000072250 Hem JD, 1992, 2254 USGS WAT SUPPL Hernandez PP, 2006, HEARING RES, V213, P1, DOI 10.1016/j.heares.2005.10.015 Hirose K, 1999, ANN NY ACAD SCI, V884, P389, DOI 10.1111/j.1749-6632.1999.tb08657.x Hirose K, 2004, J COMP NEUROL, V470, P164, DOI 10.1002/cne.11046 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Holt JR, 2000, P NATL ACAD SCI USA, V97, P11730, DOI 10.1073/pnas.97.22.11730 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 JORGENSEN F, 1988, J PHYSIOL-LONDON, V403, P577 KAUS S, 1992, ACTA OTO-LARYNGOL, V112, P83, DOI 10.3109/00016489209100787 Kros CJ, 2002, NAT NEUROSCI, V5, P41, DOI 10.1038/nn784 Lang HN, 1997, HEARING RES, V111, P177, DOI 10.1016/S0378-5955(97)00098-1 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 MANEV H, 1990, NEUROPHARMACOLOGY, V29, P1103, DOI 10.1016/0028-3908(90)90033-N Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129 Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951 Matsui JI, 2002, J NEUROSCI, V22, P1218 Matsui JI, 2004, J NEUROBIOL, V61, P250, DOI 10.1002/neu.20054 MAYER ML, 1984, NATURE, V309, P261, DOI 10.1038/309261a0 McConkey DJ, 1997, BIOCHEM BIOPH RES CO, V239, P357, DOI 10.1006/bbrc.1997.7409 MCGLONE FP, 1979, J EXP BIOL, V83, P123 METCALFE WK, 1985, J COMP NEUROL, V233, P377, DOI 10.1002/cne.902330307 MONTGOMERY JC, 1987, SCIENCE, V235, P195, DOI 10.1126/science.235.4785.195 Montgomery JC, 1997, NATURE, V389, P960, DOI 10.1038/40135 Murakami SL, 2003, HEARING RES, V186, P47, DOI 10.1016/S0378-5955(03)00259-4 Myrdal SE, 2005, HEARING RES, V204, P170, DOI 10.1016/j.heares.2005.02.005 Nakagawa T, 1998, ACTA OTO-LARYNGOL, P32 New JG, 2001, J EXP BIOL, V204, P1207 NOWAK L, 1984, NATURE, V307, P462, DOI 10.1038/307462a0 Ou HC, 2007, HEARING RES, V233, P46, DOI 10.1016/j.heares.2007.07.003 Owens KN, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000020 Owens KN, 2009, HEARING RES, V253, P32, DOI 10.1016/j.heares.2009.03.001 Owens KN, 2007, J COMP NEUROL, V502, P522, DOI 10.1002/cne.21345 Piazza V, 2007, CELL CALCIUM, V41, P77, DOI 10.1016/j.ceca.2006.05.005 Pirvola U, 2000, J NEUROSCI, V20, P43 Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K Ricci AJ, 2006, J MEMBRANE BIOL, V209, P71, DOI 10.1007/s00232-005-0834-8 Ricci AJ, 1998, J NEUROSCI, V18, P8261 Ricci AJ, 1998, J PHYSIOL-LONDON, V506, P159, DOI 10.1111/j.1469-7793.1998.159bx.x Richardson GP, 1997, J NEUROSCI, V17, P9506 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E Richardson GP, 1999, ANN NY ACAD SCI, V884, P110 RUSCH A, 1994, J PHYSIOL-LONDON, V474, P75 Santos F, 2006, HEARING RES, V213, P25, DOI 10.1016/j.heares.2005.12.009 Scheibe F, 2001, NOISE HLTH, V3, P79 Seiler C, 1999, J NEUROBIOL, V41, P424, DOI 10.1002/(SICI)1097-4695(19991115)41:3<424::AID-NEU10>3.0.CO;2-G Sendowski I, 2006, ACTA OTO-LARYNGOL, V126, P122, DOI 10.1080/00016480500312547 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 SHAH DM, 1995, HEARING RES, V87, P187, DOI 10.1016/0378-5955(95)00089-M Smaili SS, 2000, J BIOENERG BIOMEMBR, V32, P35, DOI 10.1023/A:1005508311495 Song JK, 1995, HEARING RES, V91, P63, DOI 10.1016/0378-5955(95)00170-0 Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5 Street VA, 1998, NAT GENET, V19, P390 Sugahara K, 2006, HEARING RES, V221, P128, DOI 10.1016/j.heares.2006.08.009 Taleb M, 2008, JARO-J ASSOC RES OTO, V9, P277, DOI 10.1007/s10162-008-0122-2 TANG CM, 1988, SCIENCE, V240, P213, DOI 10.1126/science.2451291 Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005 Van De Water TR, 2004, OTOL NEUROTOL, V25, P627, DOI 10.1097/00129492-200407000-00035 Wang J, 2003, J NEUROSCI, V23, P8596 Wenk GL, 2006, J CLIN PSYCHIAT, V67, P3 Westerfield M., 2000, ZEBRAFISH BOOK GUIDE, V4th Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3 Wu YC, 1999, J NEUROPHYSIOL, V82, P2171 Yamoah EN, 1998, J NEUROSCI, V18, P610 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 Zhu LP, 2000, CELL CALCIUM, V28, P107, DOI 10.1054/ceca.2000.0138 NR 98 TC 31 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL 9 PY 2009 VL 253 IS 1-2 BP 42 EP 51 DI 10.1016/j.heares.2009.03.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471SR UT WOS:000268079100005 PM 19285547 ER PT J AU Goble, TJ Moller, AR Thompson, LT AF Goble, T. J. Moller, A. R. Thompson, L. T. TI Acute high-intensity sound exposure alters responses of place cells in hippocampus SO HEARING RESEARCH LA English DT Article DE Tinnitus; Hippocampus; Place cells; Non-classical pathways ID COMPLEX-SPIKE CELLS; FREELY-BEHAVING RATS; INFERIOR COLLICULUS; EVOKED-POTENTIALS; AUDITORY-CORTEX; TEMPORAL INTEGRATION; FIELD STABILITY; NOISE EXPOSURE; SPATIAL MEMORY; UNIT-ACTIVITY AB Overstimulation is known to activate neural plasticity in the auditory nervous system causing changes in function and re-organization. It has been shown earlier that overstimulation using high-intensity noise or tones can induce signs of tinnitus. Here we show in studies in rats that overstimulation causes changes in the way place cells of the hippocampus respond as rats search for rewards in a spatial maze. In familiar environments, a subset of hippocampal pyramidal neurons, known as place cells, respond when the animal moves through specific locations but are relatively silent in others. This place-field activity (i.e. location-specific firing) is stable in a fixed environment. The present study shows that activation of neural plasticity through overstimulation by sound can alter the response of these place cells. Rats implanted with chronic drivable dorsal hippocampal tetrodes (four microelectrodes) were assessed for stable single-unit place-field responses that were extracted from multiunit responses using NeuroExplorer computer spike-sorting software. Rats then underwent either 30 min exposure to a 4 kHz tone at 104 dB SPL or a control period in the same sound chamber. The place-field activity was significantly altered after sound exposure showing that plastic changes induced by overstimulation are not limited to the auditory nervous system but extend to other parts of the CNS, in this case to the hippocampus, a brain region often studied in the context of plasticity. (C) 2009 Elsevier B.V. All rights reserved. C1 [Goble, T. J.; Moller, A. R.; Thompson, L. T.] Univ Texas Dallas, Sch Behav & Brain Sci, Dallas, TX 75080 USA. RP Thompson, LT (reprint author), Univ Texas Dallas, Sch Behav & Brain Sci, 800 W Campbell Rd, Dallas, TX 75080 USA. EM tres@utdallas.edu RI Thompson, Lucien/F-3496-2012 FU American Tinnitus Association; BBS; DARPA FX This work was supported by the grant from the American Tinnitus Association to A.R.M. and L.T.T., a BBS initiative grant to L.T.T., funding from DARPA, and a precloctoral student research fellowship from Jeffrey H. Owen to T.J.G. CR BEST PJ, 1982, ADV BEHAV BIOL, V26, P99 DERIDDER D, 2006, ACTA OTO-LARYNGOL, V556, P50, DOI DOI 10.1080/03655230600895580 Eggermont JJ, 2007, HEARING RES, V229, P69, DOI 10.1016/j.heares.2007.01.008 EGGERMONT JJ, 2007, TINNITUS PATHOPHYSIO, V166, P19, DOI 10.1016/S0079-6123(07)66002-6 Eichenbaum H, 1999, NEURON, V23, P209, DOI 10.1016/S0896-6273(00)80773-4 Fenton AA, 2000, J GEN PHYSIOL, V116, P191, DOI 10.1085/jgp.116.2.191 FOX SE, 1981, EXP BRAIN RES, V41, P399 FOX SE, 1975, EXP NEUROL, V49, P299, DOI 10.1016/0014-4886(75)90213-7 GERKEN GM, 1991, HEARING RES, V53, P101, DOI 10.1016/0378-5955(91)90217-W Gray CM, 1995, J NEUROSCI METH, V63, P43, DOI 10.1016/0165-0270(95)00085-2 HENDERSON D, 1975, J ACOUST SOC AM, V57, P53 Herry C, 2007, J NEUROSCI, V27, P5958, DOI 10.1523/JNEUROSCI.5218-06.2007 Hetherington PA, 1997, BEHAV NEUROSCI, V111, P20 HILL AJ, 1981, EXP NEUROL, V74, P204, DOI 10.1016/0014-4886(81)90159-X KAAS JH, 1991, ANNU REV NEUROSCI, V14, P137, DOI 10.1146/annurev.neuro.14.1.137 KAAS JH, 1990, SCIENCE, V229, P232 KALTENBACH JA, 1992, HEARING RES, V59, P213, DOI 10.1016/0378-5955(92)90118-7 Kentros CG, 2004, NEURON, V42, P283, DOI 10.1016/S0896-6273(04)00192-8 KUBIE JL, 1984, PHYSIOL BEHAV, V32, P115, DOI 10.1016/0031-9384(84)90080-5 Lockwood AH, 1998, NEUROLOGY, V50, P114 Mirz F, 1999, HEARING RES, V134, P133, DOI 10.1016/S0378-5955(99)00075-1 Mirz F, 2000, ACTA OTO-LARYNGOL, P241 MOLLER AR, 1984, ANN OTO RHINOL LARYN, V93, P39 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 Moller AR, 2007, PROG BRAIN RES, V166, P37, DOI 10.1016/S0079-6123(07)66003-8 Moller AR, 2002, NEUROSCI LETT, V319, P41, DOI 10.1016/S0304-3940(01)02516-2 Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340 MULLER RU, 1987, J NEUROSCI, V7, P1935 NICOLELIS MA, 1991, BRAIN RES REV, V56, P344 NICOLELIS MAL, 1993, NATURE, V361, P533, DOI 10.1038/361533a0 OKEEFE J, 1978, EXP BRAIN RES, V31, P573 OKeefe J, 1996, NATURE, V381, P425, DOI 10.1038/381425a0 OLTON DS, 1978, EXP NEUROL, V58, P387, DOI 10.1016/0014-4886(78)90096-1 Ostlund SB, 2008, J NEUROSCI, V28, P4398, DOI 10.1523/JNEUROSCI.5472-07.2008 PAVLIDES C, 1989, J NEUROSCI, V9, P2907 POPELAR J, 1994, HEARING RES, V72, P125, DOI 10.1016/0378-5955(94)90212-7 Quirk MC, 1999, J NEUROSCI METH, V94, P41, DOI 10.1016/S0165-0270(99)00124-7 Rossier J, 2000, BEHAV NEUROSCI, V114, P273, DOI 10.1037//0735-7044.114.2.273 Russell NA, 2003, J VESTIBUL RES-EQUIL, V13, P9 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U Save E, 2000, HIPPOCAMPUS, V10, P64, DOI 10.1002/(SICI)1098-1063(2000)10:1<64::AID-HIPO7>3.0.CO;2-Y Shapiro ML, 1997, HIPPOCAMPUS, V7, P624, DOI 10.1002/(SICI)1098-1063(1997)7:6<624::AID-HIPO5>3.0.CO;2-E Simpson EL, 1999, Q J EXP PSYCHOL-B, V52, P1 Skaggs WE, 1998, J NEUROSCI, V18, P8455 Stackman RW, 2002, HIPPOCAMPUS, V12, P291, DOI 10.1002/hipo.1112 Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0 SZCZEPANIAK WS, 1995, NEUROSCI LETT, V196, P77, DOI 10.1016/0304-3940(95)11851-M TAMURA R, 1992, HIPPOCAMPUS, V2, P307, DOI 10.1002/hipo.450020309 THOMPSON LT, 1989, J NEUROSCI, V9, P2382 THOMPSON LT, 1990, BRAIN RES, V509, P299, DOI 10.1016/0006-8993(90)90555-P WALL PD, 1977, PHILOS T R SOC B, V278, P361, DOI 10.1098/rstb.1977.0048 WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 NR 52 TC 23 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL 9 PY 2009 VL 253 IS 1-2 BP 52 EP 59 DI 10.1016/j.heares.2009.03.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471SR UT WOS:000268079100006 PM 19303432 ER PT J AU Su, YY Luo, B Wang, HT Chen, L AF Su, Yan-Yan Luo, Bin Wang, Hai-Tao Chen, Lin TI Differential effects of sodium salicylate on current-evoked firing of pyramidal neurons and fast-spiking interneurons in slices of rat auditory cortex SO HEARING RESEARCH LA English DT Article DE Sodium salicylate; Tinnitus; Auditory cortex; Brain slice; Pyramidal neuron; Fast-spiking interneuron; Current-evoked firing; Whole-cell patch-clamp ID INHIBITORY POSTSYNAPTIC CURRENTS; INDUCED TINNITUS; CEREBRAL-CORTEX; BRAIN-SLICES; ANIMAL-MODEL; OTOTOXICITY; ACTIVATION; NEOCORTEX; ASPIRIN; SYSTEM AB Sodium salicylate (SS) can penetrate the blood-brain barrier to target neurons in the central auditory system. Understanding how SS alters functional behaviors of different types of central auditory neurons will provide insights into the neural mechanisms of SS-induced tinnitus. Here, we report the differential effects of SS on current-evoked firing of pyramidal neurons and fast-spiking interneurons in layer II/III of auditory cortex slices in young rats (P12-P19). The two neuronal types were identified according to their characteristic patterns of current-evoked firing as recorded with whole-cell patch-clamp techniques and by their morphological features. Following perfusion of the brain slice with 1.4 mM SS, the threshold current needed to evoke an action potential remained unchanged for pyramidal neurons (68.96 +/- 10.68 pA vs 70.39 +/- 12.14 pA, n = 7, P > 0.05), but significantly increased for fast-spiking interneurons (56.9 +/- 13.69 pA vs 74.04 +/- 15.73 pA, n = 7, P < 0.05). The drug perfusion caused no significant change in current-evoked firing rates in pyramidal neurons (-2.43 +/- 7.07%, n = 14, P > 0.05); however, it drastically and reversibly depressed those in fast-spiking interneurons by up to -49.88 +/- 10.39% (n = 14, P < 0.05). Our results suggest that functionally impairing fast-spiking interneurons, which are GABAergic and inhibitory, is probably one of the pathways through which SS raises excitability in the central auditory system and consequently produces tinnitus. (C) 2009 Elsevier B.V. All rights reserved. C1 [Su, Yan-Yan; Luo, Bin; Wang, Hai-Tao; Chen, Lin] Univ Sci & Technol China, Auditory Res Lab, Hefei 230027, Peoples R China. [Su, Yan-Yan; Luo, Bin; Chen, Lin] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230027, Peoples R China. [Su, Yan-Yan; Luo, Bin; Chen, Lin] Univ Sci & Technol China, Sch Life Sci, Hefei 230027, Peoples R China. RP Chen, L (reprint author), Univ Sci & Technol China, Auditory Res Lab, Hefei 230027, Peoples R China. EM linchen@ustc.edu.cn RI Chen, Lin/N-8327-2013 OI Chen, Lin/0000-0002-5847-2989 FU National Natural Science Foundation of China [30470560, 30730041]; National Basic Research Program of China [2006CB500803, 2007CB512306]; CAS [KSCX1-YW-R-36] FX This study was supported by the National Natural Science Foundation of China (Grants 30470560 and 30730041), the National Basic Research Program of China (Grants 2006CB500803 and 2007CB512306) and the CAS Knowledge Innovation Project (Grant KSCX1-YW-R-36). CR Atencio CA, 2008, J NEUROSCI, V28, P3897, DOI 10.1523/JNEUROSCI.5366-07.2008 Basta D, 2008, HEARING RES, V240, P42, DOI 10.1016/j.heares.2008.02.005 Basta D, 2004, NEUROSCI RES, V50, P237, DOI 10.1016/j.neures.2004.07.003 Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 Cancedda L, 2007, J NEUROSCI, V27, P5224, DOI 10.1523/JNEUROSCI.5169-06.2007 Cauli B, 1997, J NEUROSCI, V17, P3894 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 CELIO MR, 1986, SCIENCE, V231, P995, DOI 10.1126/science.3945815 CONNORS BW, 1990, TRENDS NEUROSCI, V13, P99, DOI 10.1016/0166-2236(90)90185-D Cruikshank SJ, 2007, NAT NEUROSCI, V10, P462, DOI 10.1038/nn1861 DEER BC, 1982, J OTOLARYNGOL, V11, P260 DEFELIPE J, 1992, PROG NEUROBIOL, V39, P563, DOI 10.1016/0301-0082(92)90015-7 DeFelipe J, 2002, PROG BRAIN RES, V136, P215 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 2005, DRUG DISCOV TODAY, V10, P1283, DOI 10.1016/S1359-6446(05)03542-7 Guitton MJ, 2003, J NEUROSCI, V23, P3944 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1986, ARCH OTOLARYNGOL, V112, P1050 Lipton RB, 2005, HEADACHE, V45, P283, DOI 10.1111/j.1526-4610.2005.05065.x Maffei A, 2004, NAT NEUROSCI, V7, P1353, DOI 10.1038/nn1351 Markram H, 2004, NAT REV NEUROSCI, V5, P793, DOI 10.1038/nrn1519 McBain CJ, 2001, NAT REV NEUROSCI, V2, P11, DOI 10.1038/35049047 MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483 PATRONO C, 1994, NEW ENGL J MED, V330, P1287 Paul AK, 2009, NEUROIMAGE, V44, P312, DOI 10.1016/j.neuroimage.2008.09.024 Paxinos G, 2005, RAT BRAIN STEREOTAXI, V5th Ruel J, 2008, J NEUROSCI, V28, P7313, DOI 10.1523/JNEUROSCI.5335-07.2008 Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3 Sanchez-Vives MV, 2000, NAT NEUROSCI, V3, P1027 Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024 Wang HT, 2008, HEARING RES, V236, P42, DOI 10.1016/j.heares.2007.11.015 Wang HT, 2006, HEARING RES, V215, P77, DOI 10.1016/j.heares.2006.03.004 Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 NR 35 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL 9 PY 2009 VL 253 IS 1-2 BP 60 EP 66 DI 10.1016/j.heares.2009.03.007 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471SR UT WOS:000268079100007 PM 19306920 ER PT J AU Schuck, JB Smith, ME AF Schuck, Julie B. Smith, Michael E. TI Cell proliferation follows acoustically-induced hair cell bundle loss in the zebrafish saccule SO HEARING RESEARCH LA English DT Article DE Hair cell; Regeneration; Zebrafish; Saccule; Inner ear; Phalloidin; BrdU ID AVIAN AUDITORY EPITHELIUM; VESTIBULAR OTOLITH ORGANS; SCANNING ELECTRON-MICROSCOPY; GOLDFISH CARASSIUS-AURATUS; INTENSE SOUND EXPOSURE; LATERAL-LINE SYSTEM; INNER-EAR; SUPPORTING CELL; CHICK COCHLEA; SENSORY EPITHELIA AB Fishes are capable of regenerating sensory hair cells in the inner ear after acoustic trauma. However, a time course of auditory hair cell regeneration has not been established for zebrafish. Adult zebrafish (Danio rerio) were exposed to a 100 Hz pure tone at 179 dB re 1 mu Pa RMS for 36 h and then allowed to recover for 0-14 days before morphological analysis. Hair cell bundle loss and recovery were determined using phalloidin to visualize hair bundles. Cell proliferation was quantified through bromodeoxyuridine (BrdU) labeling. Immediately following sound exposure, zebrafish saccules exhibited significant hair bundle damage (e.g., splayed, broken, and missing stereocilia) and loss (i.e., missing bundles and lesions in the epithelia) in the caudal region. Hair bundle counts increased over the course of the experiment, reaching pre-treatment levels at 14 days post-sound exposure (dpse). Low levels of proliferation were observed in untreated controls, indicating that some cells of the zebrafish saccule are mitotically active in the absence of a damaging event. In sound-exposed fish, cell proliferation peaked two dpse in the caudal region, and to a lesser extent in the rostral region. This proliferation was followed by an increase in numbers of cuticular plates with rudimentary stereocilia, and immature-like hair bundles at 7 and 14 dpse, suggesting that at least some of the saccular cell proliferation resulted in newly formed hair cells. This study establishes a time course of hair cell bundle regeneration in the zebrafish inner ear and demonstrates that cell proliferation is associated with the regenerative process. (C) 2009 Elsevier B.V. All rights reserved. C1 [Smith, Michael E.] Western Kentucky Univ, Dept Biol, Bowling Green, KY 42104 USA. Western Kentucky Univ, Ctr Biotechnol, Bowling Green, KY 42104 USA. RP Smith, ME (reprint author), Western Kentucky Univ, Dept Biol, 1906 Coll Hts Blvd 11080, Bowling Green, KY 42104 USA. EM michael.smith1@wku.edu FU NIH [P20 RR-16481]; NSF Kentucky EPSCoR; WKU FX This research was supported by NIH grant P20 RR-16481, an NSF Kentucky EPSCoR grant, and a WKU faculty summer fellowship to M.E.S. CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 Adler HJ, 1997, INT J DEV NEUROSCI, V15, P375, DOI 10.1016/S0736-5748(96)00098-6 Amoser S, 2003, J ACOUST SOC AM, V113, P2170, DOI 10.1121/1.1557212 Arnaout R, 2007, P NATL ACAD SCI USA, V104, P11316, DOI 10.1073/pnas.0702724104 Avallone B, 2003, HEARING RES, V178, P79, DOI 10.1016/S0378-5955(03)00040-6 Baird RA, 1996, ANN NY ACAD SCI, V781, P59, DOI 10.1111/j.1749-6632.1996.tb15693.x Baird RA, 2000, P NATL ACAD SCI USA, V97, P11722, DOI 10.1073/pnas.97.22.11722 BAIRD RA, 1993, HEARING RES, V65, P164, DOI 10.1016/0378-5955(93)90211-I BALAK KJ, 1990, J NEUROSCI, V10, P2502 BERESFORD WA, 1990, CELL DIFFER DEV, V29, P81, DOI 10.1016/0922-3371(90)90026-S Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 BHAVE SA, 1995, J NEUROSCI, V15, P4618 BOHNE BA, 1972, LARYNGOSCOPE, V82, P1 BOHNE BA, 1976, HEARING DAVIS ESSAYS, P85 BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8 BREDBERG G, 1970, SCIENCE, V170, P861, DOI 10.1126/science.170.3960.861 Cafaro J, 2007, DEV DYNAM, V236, P156, DOI 10.1002/dvdy.21023 Chan E, 1998, NEUROSCIENCE, V83, P961, DOI 10.1016/S0306-4522(97)00446-6 COLEMAN JW, 1976, ACTA OTO-LARYNGOL, V82, P33, DOI 10.3109/00016487609120860 CORWIN JT, 1981, J COMP NEUROL, V201, P541, DOI 10.1002/cne.902010406 Corwin J.T., 1989, P161 CORWIN JT, 1986, BIOL CHANGE OTOLARYN, P291 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 CORWIN JT, 1983, J COMP NEUROL, V217, P345, DOI 10.1002/cne.902170309 COTANCHE DA, 1987, HEARING RES, V28, P35, DOI 10.1016/0378-5955(87)90151-1 COTANCHE DA, 1987, HEARING RES, V25, P267, DOI 10.1016/0378-5955(87)90098-0 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 COTANCHE DA, 1990, HEARING RES, V46, P29, DOI 10.1016/0378-5955(90)90137-E Enger PS, 1981, HEARING SOUND COMMUN, P243 Ernest S, 2000, HUM MOL GENET, V9, P2189, DOI 10.1093/hmg/9.14.2189 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Forge A, 1998, J COMP NEUROL, V397, P69 GAO WY, 1992, HEARING RES, V62, P27, DOI 10.1016/0378-5955(92)90200-7 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x HASHINO E, 1993, J CELL SCI, V105, P23 Hawkins Jr JE, 1981, AMINOGLYCOSIDE OTOTO, P175 Hernandez PP, 2007, DEV NEUROBIOL, V67, P637, DOI 10.1002/dneu.20386 Higgs DM, 2002, JARO, V3, P174, DOI 10.1007/s101620020035 Hulander M, 1998, NAT GENET, V20, P374 Hulander M, 2003, DEVELOPMENT, V130, P2013, DOI 10.1242/dev.00376 Husbands JM, 1999, HEARING RES, V135, P135, DOI 10.1016/S0378-5955(99)00101-X Itoh M, 2001, MECH DEVELOP, V102, P263, DOI 10.1016/S0925-4773(01)00308-2 Jones JE, 1996, J NEUROSCI, V16, P649 KATAYAMA A, 1989, J COMP NEUROL, V281, P129, DOI 10.1002/cne.902810110 KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X KELLEY MW, 1995, J NEUROSCI, V15, P3013 Kozlowski DJ, 2005, DEV BIOL, V277, P27, DOI 10.1016/j.ydbio.2004.08.033 Lanford PJ, 1996, HEARING RES, V100, P1, DOI 10.1016/0378-5955(96)00110-4 Li L, 1997, INT J DEV NEUROSCI, V15, P433, DOI 10.1016/S0736-5748(96)00102-5 LIBERMAN MC, 1987, HEARING RES, V26, P65, DOI 10.1016/0378-5955(87)90036-0 LIM DJ, 1976, ANN OTO RHINOL LARYN, V85, P740 LINDEMAN HH, 1972, ARCH KLIN EXP OHR, V203, P1, DOI 10.1007/BF00344558 LOMBARTE A, 1993, HEARING RES, V64, P166, DOI 10.1016/0378-5955(93)90002-I MARSH RR, 1990, HEARING RES, V46, P229, DOI 10.1016/0378-5955(90)90004-9 Millimaki BB, 2007, DEVELOPMENT, V134, P295, DOI 10.1242/dev.02734 MULROY MJ, 1982, SCANNING ELECT MICRO, V4, P1753 POPPER AN, 1973, J ACOUST SOC AM, V53, P1515, DOI 10.1121/1.1913496 Popper A.N., 1999, COMP HEARING FISH AM, P43 RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408 RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7 RAPHAEL Y, 1992, EXP NEUROL, V115, P32, DOI 10.1016/0014-4886(92)90217-E RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 ROBERSON DW, 1994, AM J OTOL, V15, P28 Roberson DW, 1996, AUDIT NEUROSCI, V2, P195 Roberson DW, 2004, J NEUROSCI RES, V78, P461, DOI 10.1002/jnr.20271 RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 SAUNDERS JC, 1992, EXP NEUROL, V115, P13, DOI 10.1016/0014-4886(92)90213-A Scholik AR, 2001, HEARING RES, V152, P17, DOI 10.1016/S0378-5955(00)00213-6 Scholik AR, 2002, COMP BIOCHEM PHYS A, V133, P43, DOI 10.1016/S1095-6433(02)00108-3 Smith ME, 2004, J EXP BIOL, V207, P427, DOI 10.1242/jeb.00755 Smith ME, 2006, J EXP BIOL, V209, P4193, DOI 10.1242/jeb.02490 Sobkowicz HM, 1996, ACTA OTO-LARYNGOL, V116, P257, DOI 10.3109/00016489609137836 Solomon KS, 2003, DEVELOPMENT, V130, P929, DOI 10.1242/dev.00308 Song JK, 1995, HEARING RES, V91, P63, DOI 10.1016/0378-5955(95)00170-0 Steyger PS, 1997, INT J DEV NEUROSCI, V15, P417, DOI 10.1016/S0736-5748(96)00101-3 STOCKWEL.CW, 1969, ANN OTO RHINOL LARYN, V78, P1144 Stone JS, 2007, INT J DEV BIOL, V51, P633, DOI 10.1387/ijdb.072408js STONE JS, 1994, J COMP NEUROL, V341, P50, DOI 10.1002/cne.903410106 Stone LS, 1937, J COMP NEUROL, V68, P83, DOI 10.1002/cne.900680105 Taylor RR, 2005, J COMP NEUROL, V484, P105, DOI 10.1002/cne.20450 TESTER AL, 1969, PAC SCI, V23, P1 THEOPOLD HM, 1977, ACTA OTO-LARYNGOL, V84, P57, DOI 10.3109/00016487709123942 TILNEY LG, 1986, DEV BIOL, V116, P100, DOI 10.1016/0012-1606(86)90047-3 TSUE TT, 1994, J NEUROSCI, V14, P140 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Warchol ME, 1996, J NEUROSCI, V16, P5466 Warchol ME, 2002, J NEUROSCI, V22, P2607 WEISLEDER P, 1993, J COMP NEUROL, V331, P97, DOI 10.1002/cne.903310106 Westerfield M., 1994, ZEBRAFISH BOOK White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849 Whitfield TT, 2002, J NEUROBIOL, V53, P157, DOI 10.1002/neu.10123 Wilkins HR, 1999, J NEUROBIOL, V39, P527, DOI 10.1002/(SICI)1097-4695(19990615)39:4<527::AID-NEU6>3.0.CO;2-K WRIGHT MR, 1947, J EXP ZOOL, V105, P221, DOI 10.1002/jez.1401050206 Wysocki LE, 2005, HEARING RES, V201, P27, DOI 10.1016/j.heares.2004.08.015 Zheng JL, 2000, NAT NEUROSCI, V3, P580 Zheng JL, 1997, J NEUROSCI, V17, P8270 Zheng JL, 1999, J NEUROSCI, V19, P2161 NR 99 TC 15 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL 9 PY 2009 VL 253 IS 1-2 BP 67 EP 76 DI 10.1016/j.heares.2009.03.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471SR UT WOS:000268079100008 PM 19327392 ER PT J AU Vlajkovic, SM Housley, GD Thorne, PR Gupta, R Enjyoji, K Cowan, PJ Liberman, MC Robson, SC AF Vlajkovic, Srdjan M. Housley, Gary D. Thorne, Peter R. Gupta, Rita Enjyoji, Keiichi Cowan, Peter J. Liberman, M. Charles Robson, Simon C. TI Preservation of cochlear function in Cd39 deficient mice SO HEARING RESEARCH LA English DT Article DE CD39; NTPDase1; Ectonucleotidase; Purinergic signalling; Knockout mice; Hearing ID NUCLEOSIDE TRIPHOSPHATE DIPHOSPHOHYDROLASE-1; RAT COCHLEA; UP-REGULATION; CATALYTIC PROPERTIES; PROTECTION; ECTONUCLEOTIDASES; RECEPTOR; INJURY; EXPRESSION; ADENOSINE AB Signalling actions of extracellular nucleotides via P2 receptors influence cellular function in most tissues. In the inner ear, P2 receptor signaling is involved in many processes including the regulation of hearing sensitivity and the cochlea's response to noise stress. CD39 (NTPDase1/ENTPD1) is an ectonucleotidase (ecto-nucleoside triphosphate diphosphohydrolase) that can hydrolyse purine and pyrimidine nucleoside tri- and di-phosphates to generate monophosphate nucleosides. Mice null for Cd39 exhibit major alterations in haemostasis and profound alterations in inflammatory and thrombotic reactions. Studies in the cochlea have suggested the involvement of purinergic-type signals that could be modulated by CD39 in regulation of cochlear blood flow and also auditory neurotransmission. This study aimed to determine the auditory phenotype of adult Cd39 null mice on the C57BL6 background. Auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) were unaffected in Cd39-deficient mice across the range of test frequencies, suggesting normal neural and outer hair cell function. Mutant mice also showed little difference to wild type mice in vulnerability to acoustic trauma. Gene expression analysis of other membrane-bound NTPDases with comparable hydrolytic activity demonstrated an up-regulation of Entpd2 and Entpd8 in the cochleae of Cd39 deficient mice. These findings suggest that Cd39 deletion alone does not adversely affect cochlear function, possibly as compensatory up-regulation of other surface located NTPDases may offset predicted alterations in cochlear homeostasis. (C) 2009 Elsevier B.V. All rights reserved. C1 [Vlajkovic, Srdjan M.; Housley, Gary D.; Thorne, Peter R.; Gupta, Rita] Univ Auckland, Fac Med & Hlth Sci, Dept Physiol, Auckland 1142, New Zealand. [Thorne, Peter R.] Univ Auckland, Fac Med & Hlth Sci, Discipline Audiol, Auckland 1142, New Zealand. [Enjyoji, Keiichi; Robson, Simon C.] Harvard Univ, Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA. [Cowan, Peter J.] Univ Melbourne, St Vincents Hosp Melbourne, Immunol Res Ctr, Melbourne, Vic, Australia. [Cowan, Peter J.] Univ Melbourne, Dept Med, Melbourne, Vic, Australia. [Liberman, M. Charles] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. RP Vlajkovic, SM (reprint author), Univ Auckland, Fac Med & Hlth Sci, Dept Physiol, 85 Pk Rd,Private Bag 92019, Auckland 1142, New Zealand. EM s.vlajkovic@auckland.ac.nz; g.housley@unsw.edu.au; pr.thorne@auckland.ac.nz; r.gupta@aucklan-d.ac.nz; kenjoji@caregroup.harvard.edu; Peter.COWAN@svh-m.org.au; Charles_Liberman@meei.harvard.edu; srobson@bidmc.harvard.edu FU Health Research Council (NZ); Deafness Research Foundation (NZ); Auckland Medical Research Foundation; National Institute on Deafness and other Communicative Disorders [DC RO1 00188]; RNID FX This study was supported by the Health Research Council (NZ), Deafness Research Foundation (NZ), Auckland Medical Research Foundation, the National Institute on Deafness and other Communicative Disorders (DC RO1 00188 to MCQ, and RNID (UK). CR Adriouch S, 2002, J IMMUNOL, V169, P4108 Bigonnesse F, 2004, BIOCHEMISTRY-US, V43, P5511, DOI 10.1021/bi0362222 Braun N, 2000, EUR J NEUROSCI, V12, P4357, DOI 10.1111/j.1460-9568.2000.01342.x Burnstock G, 2006, PHARMACOL REV, V58, P58, DOI 10.1124/pr.58.1.5 Deaglio S, 2007, J EXP MED, V204, P1257, DOI 10.1084/jem.20062512 Dwyer KM, 2004, J CLIN INVEST, V113, P1440, DOI 10.1172/JCI200419560 Eckle T, 2007, J IMMUNOL, V178, P8127 Enjyoji K, 1999, NAT MED, V5, P1010 Ferrari D, 1999, FEBS LETT, V447, P71, DOI 10.1016/S0014-5793(99)00270-7 Fredholm BB, 2007, CELL DEATH DIFFER, V14, P1315, DOI 10.1038/sj.cdd.4402132 Grenz A, 2007, FASEB J, V21, P2863, DOI 10.1096/fj.06-7947com Heine P, 2001, EUR J BIOCHEM, V268, P364, DOI 10.1046/j.1432-1327.2001.01896.x Hequembourg S, 2001, JARO, V2, P118 Housley GD, 2006, J MEMBRANE BIOL, V209, P89, DOI 10.1007/s00232-005-0835-7 Huang LC, 2005, J COMP NEUROL, V484, P133, DOI 10.1002/cne.20442 Jackson SW, 2007, AM J PATHOL, V171, P1395, DOI 10.2353/ajpatb.2007.070190 Kaczmarek E, 1996, J BIOL CHEM, V271, P33116 Kohler D, 2007, CIRCULATION, V116, P1784, DOI 10.1161/CIRCULATIONAHA.107.690180 LIBERMAN MC, 1995, HEARING RES, V90, P158, DOI 10.1016/0378-5955(95)00160-2 Linden J, 2005, MOL PHARMACOL, V67, P1385, DOI 10.1124/mol.105.011783 LIVAK KJ, 2001, METHOD METHODS, V4, P402 Maison SF, 2003, J NEUROPHYSIOL, V90, P2941, DOI 10.1152/jn.00596.2003 Mizumoto N, 2002, NAT MED, V8, P358, DOI 10.1038/nm0402-358 Ralevic V, 1998, PHARMACOL REV, V50, P413 Robson Simon C, 2006, Purinergic Signal, V2, P409, DOI 10.1007/s11302-006-9003-5 Robson SC, 2005, SEMIN THROMB HEMOST, V31, P217, DOI 10.1055/s-2005-869527 Schwartz IR, 2002, HEARING RES, V171, P1, DOI 10.1016/S0378-5955(01)00396-3 Sevigny J, 2002, BLOOD, V99, P2801, DOI 10.1182/blood.V99.8.2801 Thorne PR, 2004, JARO-J ASSOC RES OTO, V5, P58, DOI 10.1007/s10162-003-4003-4 Vlajkovic SM, 2002, J HISTOCHEM CYTOCHEM, V50, P1435 Vlajkovic SM, 2004, NEUROSCIENCE, V126, P763, DOI 10.1016/j.neuroscience.2004.04.023 Vlajkovic SM, 2006, BRAIN RES, V1104, P55, DOI 10.1016/j.brainres.2006.05.094 Wang JCC, 2003, NEUROREPORT, V14, P817, DOI 10.1097/01.wnr.0000067784.69995.47 Zimmermann H, 2001, DRUG DEVELOP RES, V52, P44, DOI 10.1002/ddr.1097 Zimmermann H, 2007, AN REAL ACAD NAC F, V73, P537 NR 35 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL 9 PY 2009 VL 253 IS 1-2 BP 77 EP 82 DI 10.1016/j.heares.2009.03.009 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471SR UT WOS:000268079100009 PM 19327391 ER PT J AU Rosowski, JJ Cheng, JT Ravicz, ME Hulli, N Hernandez-Montes, M Harrington, E Furlong, C AF Rosowski, John J. Cheng, Jeffrey Tao Ravicz, Michael E. Hulli, Nesim Hernandez-Montes, Maria Harrington, Ellery Furlong, Cosme TI Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz SO HEARING RESEARCH LA English DT Article DE Tympanic membrane; Middle-ear sound transmission; Middle-ear models ID HUMAN MIDDLE-EAR; FINITE-ELEMENT METHOD; VIBRATION MEASUREMENT; TEMPORAL BONES; CAT EARDRUM; MODEL; TRANSMISSION; GERBIL; MECHANICS AB Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f > 4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing. wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined. (C) 2009 Elsevier B.V. All rights reserved. C1 [Rosowski, John J.; Cheng, Jeffrey Tao; Ravicz, Michael E.; Furlong, Cosme] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA. [Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme] Worcester Polytech Inst, Ctr Holog Studies & Laser MicromechaTron, Worcester, MA 01609 USA. [Rosowski, John J.; Cheng, Jeffrey Tao; Ravicz, Michael E.; Furlong, Cosme] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Rosowski, John J.] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA. RP Rosowski, JJ (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM john_rosowski@meei.harvard.edu FU NIDCD; WPI; MEEI FX This work was funded by the NIDCD, the WPI, the MEEI and a generous donor. CR Brillouin L., 1960, WAVE PROPAGATION GRO Chien W, 2007, OTOL NEUROTOL, V28, P250, DOI 10.1097/01.mao.0000244370.47320.9a Decraemer WF, 2008, CHRONIC OTITIS MEDIA, P51 Decraemer WF, 1999, EOS SPIE INT S IND L Dong W, 2006, J NEUROPHYSIOL, V95, P2951, DOI 10.1152/jn.01214.2005 Fay J, 2005, J BIOMECH, V38, P1807, DOI 10.1016/j.jbiomech.2004.08.022 Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104 Fletcher NJC, 1992, ACOUSTIC SYSTEMS BIO FRITZE W, 1978, ARCH OTORHINOLARYNGO, V221, P225 FUNNELL WRJ, 1982, ORL J OTO-RHINO-LARY, V44, P181 Funnell WRJ, 1996, J ACOUST SOC AM, V100, P925, DOI 10.1121/1.416252 FUNNELL WRJ, 1978, J ACOUST SOC AM, V63, P1461, DOI 10.1121/1.381892 FURLONG C, 2006, 29 M ASS RES OT, P217 Furlong C, 2009, STRAIN, V45, P301, DOI 10.1111/j.1475-1305.2008.00490.x FURLONG C, 1995, SPIE, V2544, P45 Furlong C, 1998, OPT ENG, V37, P1448, DOI 10.1117/1.601679 Gan RZ, 2002, OTOL NEUROTOL, V23, P271, DOI 10.1097/00129492-200205000-00008 GOODE RL, 1994, AM J OTOL, V15, P145 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 HERNANDEZMONTES MD, J BIOMED OP IN PRESS HUBER A, 1997, MIDDLE EAR MECH RES, P219 KHANNA SM, 1972, J ACOUST SOC AM, V51, P1904, DOI 10.1121/1.1913050 Kinsler LE, 1982, FUNDAMENTALS ACOUSTI Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073 KONRADSSON KS, 1987, SCAND AUDIOL, V16, P159, DOI 10.3109/01050398709042171 Kreis T., 2005, HDB HOLOGRAPHIC INTE LIM DJ, 1970, ACTA OTO-LARYNGOL, V70, P176 Lim D J, 1968, Acta Otolaryngol, V66, P515, DOI 10.3109/00016486809126316 LOKBERG OJ, 1979, APPL OPTICS, V18, P763, DOI 10.1364/AO.18.000763 Maeta M, 1991, Nihon Jibiinkoka Gakkai Kaiho, V94, P231 NAITO Y, 1990, NIPPON JIBIINKOKA GA, V83, P2021 Nakajima HH, 2009, JARO-J ASSOC RES OTO, V10, P23, DOI 10.1007/s10162-008-0150-y O'Connor KN, 2008, J ACOUST SOC AM, V123, P197, DOI 10.1121/1.2817358 O'Connor KN, 2008, LARYNGOSCOPE, V118, P483, DOI 10.1097/MLG.0b013e31815b0d9f Okano K, 1990, Nihon Jibiinkoka Gakkai Kaiho, V93, P1847 Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083 Overstreet EH, 2002, J ACOUST SOC AM, V111, P261, DOI 10.1121/1.1420382 Parenta P, 2007, J ACOUST SOC AM, V122, P918, DOI 10.1121/12747156 Pryputniewicz RJ, 1994, P SOC PHOTO-OPT INS, V2342, P282, DOI 10.1117/12.195516 Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930 RABBITT RD, 1986, J ACOUST SOC AM, V80, P1716, DOI 10.1121/1.394284 RABBITT RD, 1988, J ACOUST SOC AM, V87, P2566 Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061 Rosowski JJ, 2007, MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P295, DOI 10.1142/9789812708694_0040 SAUNDERS JC, 1972, ACTA OTO-LARYNGOL, V73, P353, DOI 10.3109/00016487209138952 Shaw E. A. G., 1983, MECH HEARING, P3 STETSON KA, 1988, J OPT SOC AM A, V5, P1472, DOI 10.1364/JOSAA.5.001472 Suehiro M, 1990, Nihon Jibiinkoka Gakkai Kaiho, V93, P398 TONNDORF J, 1972, J ACOUST SOC AM, V52, P1221, DOI 10.1121/1.1913236 TONNDORF J, 1970, ANN OTO RHINOL LARYN, V79, P743 von Bally G, 1978, Laryngol Rhinol Otol (Stuttg), V57, P444 Voss SE, 2001, J ACOUST SOC AM, V110, P1432, DOI 10.1121/1.1394195 Wada H, 2002, J ACOUST SOC AM, V111, P2189, DOI 10.1121/1.1467671 NR 53 TC 42 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL 9 PY 2009 VL 253 IS 1-2 BP 83 EP 96 DI 10.1016/j.heares.2009.03.010 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471SR UT WOS:000268079100010 PM 19328841 ER PT J AU Verhey, JL Ernst, SMA AF Verhey, Jesko L. Ernst, Stephan M. A. TI Comodulation masking release for regular and irregular modulators SO HEARING RESEARCH LA English DT Article DE Masking release; Modulation; Regularity; Nonlinearity ID NARROW-BAND NOISE; AMPLITUDE-MODULATION; SIGNAL-DETECTION; QUANTITATIVE MODEL; AUDITORY-SYSTEM; NATURAL SOUNDS; FREQUENCY; BANDWIDTH; MASKERS; HEARING AB The present study investigates whether the difference in comodulation masking release (CMR) for different modulator types is due to the different degrees of modulator regularity, as suggested in the literature, or results from different envelope distributions. Thresholds of a sinusoidal signal are measured in the presence of a noise masker which was either broadband or narrow band. A square-wave modulator with different degrees of regularity is used that preserves the envelope distribution. The measured CMR does not decrease as the regularity decreases. This finding argues against the hypothesis that the difference in CMR for different modulator types reported in the literature is due to differences in regularity. The data for the narrow-band conditions which either mimic the auditory frequency selectivity or preserve the modulation spectrum indicate that most of the CMR of the present study is due to within-channel cues. In agreement with this finding, within-channel models using either a peripheral nonlinearity or a modulation filterbank predict a CMR of a similar size. In contrast to the model predictions and the findings for the narrow-band conditions, the CMR for the broadband masker increases as the regularity decreases. This suggests that the CMR is not solely determined by the envelope distributions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Verhey, Jesko L.; Ernst, Stephan M. A.] Carl VonOssietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany. RP Verhey, JL (reprint author), Carl VonOssietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany. EM jesko.verhey@uni-oldenburg.de FU Deutsche Forschungsgemeinschaft [SF13 TR31] FX This work was supported by the Deutsche Forschungsgemeinschaft (SF13 TR31) and the Heinz Neurnfiller Stiftung. CR Bacon SP, 1997, J ACOUST SOC AM, V101, P1600, DOI 10.1121/1.418175 Bacon SP, 1997, J ACOUST SOC AM, V101, P3617, DOI 10.1121/1.418322 Buschermohle M, 2007, BIOL CYBERN, V97, P397, DOI 10.1007/s00422-007-0179-8 BUUS S, 1985, J ACOUST SOC AM, V78, P1958, DOI 10.1121/1.392652 CARLYON RP, 1989, HEARING RES, V42, P37, DOI 10.1016/0378-5955(89)90116-0 Dau T, 1996, J ACOUST SOC AM, V99, P3615, DOI 10.1121/1.414959 Dau T, 1997, J ACOUST SOC AM, V102, P2906, DOI 10.1121/1.420345 DAU T, 1997, J ACOUST SOC AM, V102, P2893 Dau T, 1996, J ACOUST SOC AM, V99, P3623, DOI 10.1121/1.414960 Dubno JR, 2001, J ACOUST SOC AM, V110, P1049, DOI 10.1121/1.1381023 EDDINS DA, 1993, J ACOUST SOC AM, V93, P470, DOI 10.1121/1.405627 Ernst SMA, 2008, BRAIN RES, V1220, P246, DOI 10.1016/j.brainres.2007.08.013 Ernst SMA, 2006, J ACOUST SOC AM, V120, P3843, DOI 10.1121/1.2361183 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T HAGGARD MP, 1990, J ACOUST SOC AM, V88, P113, DOI 10.1121/1.399956 Hall JW, 1997, J ACOUST SOC AM, V102, P1746, DOI 10.1121/1.420084 Hall JW, 1996, J ACOUST SOC AM, V100, P2365, DOI 10.1121/1.417946 HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005 Hohmann V, 2002, ACTA ACUST UNITED AC, V88, P433 International Organization for Standardization, 1989, 82531 ISO LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Meddis R, 2001, J ACOUST SOC AM, V109, P2852, DOI 10.1121/1.1370357 MOORE BCJ, 1993, J ACOUST SOC AM, V93, P435, DOI 10.1121/1.405624 MOORE BCJ, 1982, J ACOUST SOC AM, V71, P942, DOI 10.1121/1.387574 MOORE BCJ, 1990, J ACOUST SOC AM, V88, P1694, DOI 10.1121/1.400244 NEFF DL, 1986, J ACOUST SOC AM, V79, P1519, DOI 10.1121/1.393678 Nelken I, 1999, NATURE, V397, P154, DOI 10.1038/16456 Oxenham AJ, 1998, J ACOUST SOC AM, V104, P3500, DOI 10.1121/1.423933 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 Plack CJ, 2002, ACTA ACUST UNITED AC, V88, P348 SCHOONEVELDT GP, 1989, J ACOUST SOC AM, V85, P273, DOI 10.1121/1.397734 Singh NC, 2003, J ACOUST SOC AM, V114, P3394, DOI 10.1121/1.1624067 Strickland EA, 1996, J ACOUST SOC AM, V99, P3638, DOI 10.1121/1.414962 van de Par S, 1998, J ACOUST SOC AM, V103, P2100, DOI 10.1121/1.421356 Verhey JL, 2007, ACTA ACUST UNITED AC, V93, P115 Verhey JL, 2003, EXP BRAIN RES, V153, P405, DOI 10.1007/s00221-003-1607-1 Verhey JL, 1999, J ACOUST SOC AM, V106, P2733, DOI 10.1121/1.428101 Wojtczak M, 2003, J ACOUST SOC AM, V114, P991, DOI 10.1121/1.1593067 NR 39 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL 9 PY 2009 VL 253 IS 1-2 BP 97 EP 106 DI 10.1016/j.heares.2009.03.011 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471SR UT WOS:000268079100011 PM 19341786 ER PT J AU Pienkowski, M Hagerman, B AF Pienkowski, Martin Hagerman, Bjorn TI Auditory intensity discrimination as a function of level-rove and tone duration in normal-hearing and impaired subjects: The "mid-level hump" revisited SO HEARING RESEARCH LA English DT Article DE Audition; Intensity discrimination; Weber's law; Cochlear compression; Sensorineural hearing loss; Mid-level hump ID BASILAR-MEMBRANE NONLINEARITY; SEVERE DEPARTURE; DYNAMIC-RANGE; ROVING-LEVEL; SOUND LEVEL; TEMPORAL INTEGRATION; MOSSBAUER TECHNIQUE; 2-TONE SUPPRESSION; DIFFERENCE LIMEN; MASKING NOISE AB The just-noticeable difference (Delta I) in the intensity (I) Of Sound is typically reported to be a constant or a slightly decreasing ratio of the baseline intensity (known as Weber's law, and the "near-miss to Weber's law", respectively). However, in the relatively few studies on the intensity discrimination of very brief sounds, Delta I/I is usually found to be non-monotonic, with poorest discrimination in the middle of the auditory dynamic range. Here, it is demonstrated that this "severe departure from Weber's law" or "mid-level hump" is not merely a phenomenon of short-duration sounds. In normal-hearing subjects (n = 8), the near-miss to Weber's law that is observed with the discrimination of 300 ms-long, 4 kHz tones, gives way to a significant mid-level hump if tone intensities are not fixed over a great many trials (as is standard practice) but are instead randomly roved, trial-to-trial, over a wide intensity range. This was not the case in subjects with mild to moderate hearing impairment (n = 4). Furthermore, in the discrimination of widely-roved, 4 ms-long, 4 kHz tone bursts, the performance of normal-hearing subjects did not significantly worsen at mid-levels compared to the unroved condition, unlike what was found with the 300 ms-long tones. It is suggested that mid-level humps could simply be the product of the well-known mid-level compressive nonlinearity in cochlear mechanics. We further suggest that the hump is eliminated, and the near-miss to Weber's law is produced, by a more central mechanism such as the recently reported "adaptation to sound-level statistics", which is bypassed during wide-range roving and possibly when sound durations are brief. (C) 2009 Elsevier B.V. All rights reserved. C1 [Pienkowski, Martin] Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. [Pienkowski, Martin] Univ Calgary, Dept Physiol & Biophys, Calgary, AB T2N 1N4, Canada. [Pienkowski, Martin; Hagerman, Bjorn] Karolinska Inst, Ctr Hearing & Commun Res, Lab Hearing Technol, Stockholm, Sweden. RP Pienkowski, M (reprint author), Univ Calgary, Dept Physiol & Biophys, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM mpienkow@ucalgary.ca RI Hagerman, Bjorn/H-6720-2014 FU Center for Hearing and Communications Research, Karolinska Institutet, Stockholm. FX The first author was supported by grants to Prof. Mats Ulfendahl of the Center for Hearing and Communications Research, Karolinska Institutet, Stockholm. CR AVAKYAN RV, 1963, SOV PHYS ACOUST, V8, P320 Baer T, 2001, HEARING RES, V159, P74, DOI 10.1016/S0378-5955(01)00324-0 BERLINER JE, 1973, J ACOUST SOC AM, V53, P1270, DOI 10.1121/1.1913465 BERLINER JE, 1977, J ACOUST SOC AM, V61, P1577, DOI 10.1121/1.381471 Brenner N, 2000, NEURON, V26, P695, DOI 10.1016/S0896-6273(00)81205-2 Buus S, 1999, J ACOUST SOC AM, V105, P3464, DOI 10.1121/1.424673 CARLYON RP, 1986, J ACOUST SOC AM, V79, P461, DOI 10.1121/1.393533 CARLYON RP, 1984, J ACOUST SOC AM, V76, P1369, DOI 10.1121/1.391453 Cheatham MA, 2000, J ACOUST SOC AM, V107, P1508, DOI 10.1121/1.428437 Colburn HS, 2003, JARO, V4, P294, DOI 10.1007/s10162-002-1090-6 Dean I, 2008, J NEUROSCI, V28, P6430, DOI 10.1523/JNEUROSCI.0470-08.2008 Dean I, 2005, NAT NEUROSCI, V8, P1684, DOI 10.1038/nn1541 Florentine M, 1996, J ACOUST SOC AM, V99, P1633, DOI 10.1121/1.415236 FLORENTINE M, 1987, J ACOUST SOC AM, V81, P1528, DOI 10.1121/1.394505 GEISLER CD, 1990, HEARING RES, V44, P241, DOI 10.1016/0378-5955(90)90084-3 Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003 Jacobsen T, 2003, AUDIOL NEURO-OTOL, V8, P338, DOI 10.1159/000073518 JESTEADT W, 1977, J ACOUST SOC AM, V61, P169, DOI 10.1121/1.381278 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LINDBLAD AC, 1992, 125 TA KAR I UN TECH LIPPMANN RP, 1976, J ACOUST SOC AM, V59, P129, DOI 10.1121/1.380843 MCGILL WJ, 1968, J ACOUST SOC AM, V44, P576, DOI 10.1121/1.1911123 MILLER GA, 1947, J ACOUST SOC AM, V19, P609, DOI 10.1121/1.1916528 MOORE BCJ, 1975, J ACOUST SOC AM, V57, P400, DOI 10.1121/1.380455 Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108 MOORE BCJ, 1974, J ACOUST SOC AM, V55, P1049, DOI 10.1121/1.1914646 Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026 Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439 Nizami L, 2005, MATH BIOSCI, V197, P15, DOI 10.1016/j.mbs.2005.04.006 Nizami L, 2001, J ACOUST SOC AM, V110, P2505, DOI 10.1121/1.1409371 Nizami L, 2006, PERCEPT PSYCHOPHYS, V68, P1107, DOI 10.3758/BF03193713 Oberfeld D, 2008, J ACOUST SOC AM, V123, P1571, DOI 10.1121/1.2837284 Olsen HL, 1999, ACUSTICA, V85, P566 Oxenham AJ, 2000, HEARING RES, V150, P258, DOI 10.1016/S0378-5955(00)00206-9 Oxenham AJ, 2000, J ACOUST SOC AM, V107, P1605, DOI 10.1121/1.428445 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 PLACK CJ, 1992, J ACOUST SOC AM, V92, P3097, DOI 10.1121/1.404205 Plack CJ, 1998, J ACOUST SOC AM, V103, P2530, DOI 10.1121/1.422774 PLACK CJ, 1992, J ACOUST SOC AM, V92, P1902, DOI 10.1121/1.405237 RAAB DH, 1969, J ACOUST SOC AM, V46, P965, DOI 10.1121/1.1911816 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 Rosengard PS, 2005, J ACOUST SOC AM, V117, P3028, DOI 10.1121/1.1883367 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SELLICK PM, 1983, HEARING RES, V10, P93, DOI 10.1016/0378-5955(83)90019-9 SIEBERT WM, 1965, KYBERNETIK, V2, P206, DOI 10.1007/BF00306416 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 VIEMEISTER NF, 1988, HEARING RES, V34, P267, DOI 10.1016/0378-5955(88)90007-X VIEMEISTER NF, 1983, SCIENCE, V221, P1206, DOI 10.1126/science.6612337 VONKLITZING R, 1994, J ACOUST SOC AM, V95, P2192, DOI 10.1121/1.408679 Williams EJ, 2005, HEARING RES, V201, P44, DOI 10.1016/j.heares.2004.10.006 YATES GK, 1990, HEARING RES, V45, P203, DOI 10.1016/0378-5955(90)90121-5 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M ZENG FG, 1991, HEARING RES, V55, P223, DOI 10.1016/0378-5955(91)90107-K ZWICKER E, 1965, J ACOUST SOC AM, V38, P132, DOI 10.1121/1.1909588 NR 58 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL 9 PY 2009 VL 253 IS 1-2 BP 107 EP 115 DI 10.1016/j.heares.2009.03.013 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471SR UT WOS:000268079100012 PM 19345257 ER PT J AU Ying, YLM Balaban, CD AF Ying, Yu-Lan Mary Balaban, Carey D. TI Regional distribution of manganese superoxide dismutase 2 (Mn SOD2) expression in rodent and primate spiral ganglion cells SO HEARING RESEARCH LA English DT Article DE Spiral ganglion cells; Manganese superoxide dismutase 2; Gradient; Reactive oxygen species; Primate; Rodent; Superoxide dismutase; Immunohistochemistry ID MITOCHONDRIAL UNCOUPLING PROTEINS; AGING INNER-EAR; TEMPORAL BONE; FREE-RADICALS; CEREBRAL-ISCHEMIA; AUDITORY-NERVE; HEARING-LOSS; RAT COCHLEA; PRESBYCUSIS; ANTIOXIDANTS AB Manganese superoxide dismutase 2 (SOD2) is a key metabolic anti-oxidant enzyme for detoxifying free radicals inside mitochondria. This study documents a gradient in expression of SOD2 by spiral ganglion cells in basal versus apical turn of cochlea that is consistent with differential vulnerability of high frequency hearing to free radical damage. Immurohistochemical methods were used to identify distribution of SOD2 in temporal bone sections from mice, rats, macaques, and humans. In mice and rats, both the proportion of SOD2 immunopositive type 1 spiral ganglion cells and the intensity of immunoreactivity were elevated near cochlear apex. In macaques and humans, the proportion of SO2 immunopositive spiral ganglion cells was equal across cochlear turn, but the intensity of immunoreactivity remained highest for ganglion cells near cochlear apex. Strong SOD2 immunoreactivity was also observed in human type I spiral ganglion cells. The average area density of SOD2 immunoreactivity in ganglion cells for each species and cochlear turn showed an allometric relationship with body weight, which is consistent with a conserved basal metabolic characteristic. These findings suggest that spiral ganglion cell responses to ROS exposure may vary along cochlear spiral with lower response capacity at cochlear base contributing to cumulative susceptibility to high frequency hearing loss. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ying, Yu-Lan Mary; Balaban, Carey D.] Univ Pittsburgh, Dept Otolaryngol, Pittsburgh, PA 15213 USA. RP Ying, YLM (reprint author), Univ Pittsburgh, Dept Otolaryngol, 200 Lothrop St,Suite 500, Pittsburgh, PA 15213 USA. EM yingym@upmc.edu; balabancd@upmc.edu FU Pennsylvania Lions Hearing Research Foundation; American Otologic Society FX This project was supported by the Pennsylvania Lions Hearing Research Foundation and American Otologic Society Research Fellowship. CR Bates B, 2002, NEUROBIOL DIS, V9, P24, DOI 10.1006/nbdi.2001.0458 Bidmon HJ, 1998, STROKE, V29, P203 Borecky J, 2001, BIOSCIENCE REP, V21, P201, DOI 10.1023/A:1013604526175 Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X Choi DK, 2005, J NEUROSCI, V25, P6594, DOI 10.1523/JNEUROSCI.0970-05.2005 Culotta VC, 2006, BBA-MOL CELL RES, V1763, P747, DOI 10.1016/j.bbamcr.2006.05.003 Desai SS, 2005, J NEUROPHYSIOL, V93, P267, DOI 10.1152/jn.00747.2003 Echtay KS, 2002, NATURE, V415, P96, DOI 10.1038/415096a ELSE PL, 1985, AM J PHYSIOL R, V248, P415 FischelGhodsian N, 1997, HEARING RES, V110, P147, DOI 10.1016/S0378-5955(97)00077-4 FREEMAN BA, 1982, LAB INVEST, V47, P412 Ganbo T, 1997, ANN OTO RHINOL LARYN, V106, P662 Gao F, 2008, ANTIOXID REDOX SIGN, V10, P343, DOI 10.1089/ars.2007.1908 Gleich O, 2005, NATURWISSENSCHAFTEN, V92, P595, DOI 10.1007/s00114-005-0050-5 Green PS, 2004, J NEUROCHEM, V90, P724, DOI 10.1111/j.1471-4159.2004.02527.x Hemmingsen A. M., 1950, REP STENO MEM HOSP, V4, P1 Jiang H, 2007, NEUROBIOL AGING, V28, P1605, DOI 10.1016/j.neurobiolaging.2006.06.025 KAMMERMAN JR, 1992, ARMED FORCES I PATHO, P72 KLEIBER MAX, 1932, HILGARDIA, V6, P315 Lai MT, 1996, EUR ARCH OTO-RHINO-L, V253, P273 Le T, 2007, HEARING RES, V226, P194, DOI 10.1016/j.heares.2006.04.003 Lechpammer S, 2005, EXP HEMATOL, V33, P1201, DOI 10.1016/j.exphem.2005.06.026 LIU XH, 1993, BRAIN RES, V625, P29, DOI 10.1016/0006-8993(93)90134-9 Maruyama J, 2007, NEUROBIOL DIS, V25, P309, DOI 10.1016/j.nbd.2006.09.012 Maruyama J, 2008, NEUROBIOL DIS, V29, P14, DOI 10.1016/j.nbd.2007.07.026 McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077 MIQUEL J, 1980, EXP GERONTOL, V15, P575, DOI 10.1016/0531-5565(80)90010-8 NADOL JB, 1988, HEARING RES, V34, P253, DOI 10.1016/0378-5955(88)90006-8 Nelson EG, 2006, LARYNGOSCOPE, V116, P1, DOI 10.1097/01.mlg.0000236089.44566.62 Niklas KJ, 1994, PLANT ALLOMETRY SCAL Rarey KE, 1996, ACTA OTO-LARYNGOL, V116, P833, DOI 10.3109/00016489609137935 Saha RN, 2007, FREE RADICAL BIO MED, V42, P1866, DOI 10.1016/j.freeradbiomed.2007.03.022 Schmidt-Nielsen K, 1984, SCALING WHY IS ANIMA SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNECHT H F, 1955, Laryngoscope, V65, P402 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Southgate TD, 2006, J GENE MED, V8, P557, DOI 10.1002/jgm.890 Spoor F, 2002, NATURE, V417, P163, DOI 10.1038/417163a STONE M, 1998, HEARING RES, V115, P217 Sugawara M, 2007, J COMP NEUROL, V501, P30, DOI 10.1002/cne.21227 SUZUKI K, 1993, AM J PHYSIOL, V265, pH1173 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 West GB, 2002, P NATL ACAD SCI USA, V99, P2473, DOI 10.1073/pnas.012579799 West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122 ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 NR 47 TC 7 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL 9 PY 2009 VL 253 IS 1-2 BP 116 EP 124 DI 10.1016/j.heares.2009.04.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471SR UT WOS:000268079100013 PM 19376215 ER PT J AU Hederstierna, C Hultcrantz, M Rosenhall, U AF Hederstierna, Christina Hultcrantz, Malou Rosenhall, Ulf TI Estrogen and hearing from a clinical point of view; characteristics of auditory function in women with Turner syndrome SO HEARING RESEARCH LA English DT Article DE ABR; Sound localization; Speech audiometry; TEOAE ID SPEECH RECOGNITION SCORES; PHASE AUDIOMETRY; HEAD SIZE; INNER-EAR; BETA; POPULATION; RECEPTORS; MOUSE; NOISE; MICE AB Turner syndrome is a chromosomal aberration affecting 1:2000 newborn girls, in which all or part of one X chromosome is absent. This leads to ovarial dysgenesis and little or no endogenous estrogen production. These women have, among many other syndromal features, a high occurrence of ear and hearing problems, and neurocognitive dysfunctions, including reduced visual-spatial abilities; it is assumed that estrogen deficiency is at least partially responsible for these problems. In this, study 30 Turner women aged 40-67, with mild to moderate hearing loss, performed a battery of hearing tests aimed at localizing the lesion causing the sensorineural hearing impairment and assessing central auditory function, primarily sound localization. The results of TEOAE, ABR and speech recognition scores in noise were all indicative of cochlear dysfunction as the cause of the sensorineural impairment. Phase audiometry, a test for sound localization, showed mild disturbances in the Turner women compared to the reference group, suggesting that auditory-spatial dysfunction is another facet of the recognized neurocognitive phenotype in Turner women. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hederstierna, Christina; Hultcrantz, Malou; Rosenhall, Ulf] Karolinska Inst, Div Otorhinolaryngol & Hearing, Dept Clin Neurosci, Stockholm, Sweden. RP Hederstierna, C (reprint author), Karolinska Inst, Div Otorhinolaryngol & Hearing, Dept Clin Neurosci, Stockholm, Sweden. EM christina.hederstierna@karolinska.se FU Foundation for Audiological Research (Stingerfonden); foundation Tysta Skolan; Acta Otolaryngologica foundation FX This study was funded by grants from the Foundation for Audiological Research (Stingerfonden), the foundation Tysta Skolan and the Acta Otolaryngologica foundation. CR ALMQVIST U, 1989, SCAND AUDIOL, V18, P155, DOI 10.3109/01050398909070739 Anderson H., 1969, ACTA OTO-LARYNGOL, V247, P1 Barrenas ML, 2000, EAR HEARING, V21, P569, DOI 10.1097/00003446-200012000-00004 Berlin CI, 2003, MENT RETARD DEV D R, V9, P225, DOI 10.1002/mrdd.10084 Brann DW, 2007, STEROIDS, V72, P381, DOI 10.1016/j.steroids.2007.02.003 DEMPSEY JJ, 1986, AUDIOLOGY, V25, P258 DURRANT JD, 1990, EAR HEARING, V11, P210, DOI 10.1097/00003446-199006000-00008 Gawron W, 2008, INT J PEDIATR OTORHI, V72, P575, DOI 10.1016/j.ijporl.2008.01.021 Gungor N, 2000, EUR J PEDIATR, V159, P740, DOI 10.1007/PL00008338 Hart SJ, 2006, BRAIN, V129, P1125, DOI 10.1093/brain/awl046 Holzapfel M, 2006, J NEUROSCI, V26, P7007, DOI 10.1523/JNEUROSCI.1764-06.2006 Hultcrantz M, 2000, HEARING RES, V143, P182, DOI 10.1016/S0378-5955(00)00042-3 HULTCRANTZ M, 1994, HEARING RES, V76, P127, DOI 10.1016/0378-5955(94)90094-9 Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617 Hultcrantz M, 1997, HEARING RES, V103, P69, DOI 10.1016/S0378-5955(96)00165-7 Johansson MSK, 2003, INT J AUDIOL, V42, P18, DOI 10.3109/14992020309056081 JONSSON R, 1994, J AUDIOL MED, V3, P1 Lewald J, 2004, COGNITIVE BRAIN RES, V21, P335, DOI 10.1016/j.cogbrainres.2004.06.008 Magnusson L, 1995, SCAND AUDIOL, V24, P217, DOI 10.3109/01050399509047539 Meltser I, 2008, J CLIN INVEST, V118, P1563, DOI 10.1172/JCI32796 MOLLER MB, 1985, ASSESSMENT CENTRAL A, P43 Pastor MA, 2006, NEUROIMAGE, V30, P512, DOI 10.1016/j.neuroimage.2005.09.053 RINTELMANN W, 1985, ASSESSMENT CENTRAL A, pCH11 ROSENHALL U, 1985, SCAND AUDIOL, V14, P187, DOI 10.3109/01050398509045940 ROSENHALL U, 1992, ACTA OTO-LARYNGOL, V112, P429, DOI 10.3109/00016489209137423 Rosenhall U., 1998, J AUDIOL MED, V7, P200 Ross J, 2006, HORM RES, V65, P47, DOI 10.1159/000090698 Saenger P, 1996, NEW ENGL J MED, V335, P1749, DOI 10.1056/NEJM199612053352307 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5 Stenberg AE, 1998, HEARING RES, V124, P85, DOI 10.1016/S0378-5955(98)00113-0 Wang L, 2001, P NATL ACAD SCI USA, V98, P2792, DOI 10.1073/pnas.041617498 Zinn AR, 2007, BEHAV BRAIN FUNCT, V3, DOI 10.1186/1744-9081-3-24 NR 33 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 8 PY 2009 VL 252 IS 1-2 BP 3 EP 8 DI 10.1016/j.heares.2008.11.006 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471ME UT WOS:000268061000002 PM 19095053 ER PT J AU Sisneros, JA AF Sisneros, Joseph A. TI Steroid-dependent auditory plasticity for the enhancement of acoustic communication: Recent insights from a vocal teleost fish SO HEARING RESEARCH LA English DT Article DE Saccule; Sex steroids; Tuning; Hair cells; Inner ear ID PLAINFIN MIDSHIPMAN FISH; PORICHTHYS-NOTATUS GIRARD; ELECTRIC FISH; HAIR-CELLS; INNER-EAR; SIGNAL RECOGNITION; SEASONAL-VARIATION; NEURAL MECHANISMS; ANDROGENS ALTER; MORMYRID FISH AB The vocal plainfin midshipman fish (Porichthys notatus) has become an excellent model for identifying neural mechanisms of auditory perception that may be shared by all vertebrates. Recent neuroethological studies of the midshipman fish have yielded strong evidence for the steroid-dependent modulation of hearing sensitivity that leads to enhanced coupling of sender and receiver in this vocal-acoustic communication system. Previous work shows that non-reproductive females treated with either testosterone or 17 beta-estradiol exhibit an increase in the degree of temporal encoding by the auditory saccular afferents to the dominant frequency content of male vocalizations produced during social-reproductive behaviors. The expanded frequency sensitivity of steroid treated females mimics the reproductive female's auditory phenotype and is proposed to improve the detection and localization of calling conspecific mates during the summer breeding season. This review focuses on the novel form of steroid-dependent auditory plasticity that is found in the adult midshipman fish and its association with the reproductive biology and behavior of this species. Evidence for midshipman reproductive-state and steroid-dependent auditory plasticity is reviewed and the potential mechanisms that lead to this novel form of adaptive plasticity are discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sisneros, Joseph A.] Univ Washington, Dept Psychol, Seattle, WA 98195 USA. [Sisneros, Joseph A.] Univ Washington, Dept Biol, Seattle, WA 98195 USA. [Sisneros, Joseph A.] Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. RP Sisneros, JA (reprint author), Univ Washington, Dept Psychol, 337 Guthrie Hall,Box 351525, Seattle, WA 98195 USA. EM sisneros@u.washington.edu FU National Institutes of Health [1F32DC00445]; University of Washington FX Research support for work reported here was provided by the National Institutes of Health (1F32DC00445) and a Royal Research Fund grant from the University of Washington. CR BASS A, 1991, BRAIN BEHAV EVOLUT, V38, P240, DOI 10.1159/000114391 Bass AH, 1999, DESIGN OF ANIMAL COMMUNICATION, P493 Bass AH, 2003, PROG NEUROBIOL, V69, P1, DOI 10.1016/S0301-0082(03)00004-2 BASS AH, 1986, J COMP PHYSIOL A, V159, P535, DOI 10.1007/BF00604173 BASS AH, 2007, FISH PHYSL SENSORY S, V25 Bass Andrew H., 2006, P123 BASS AH, 1994, J NEUROSCI, V14, P4025 Bass AH, 2005, INFERIOR COLLICULUS, P459, DOI 10.1007/0-387-27083-3_16 Bass AH, 1996, AM SCI, V84, P352 Bass AH, 2005, HORM BEHAV, V48, P360, DOI 10.1016/j.yhbeh.2005.05.022 BASS AH, 1984, J COMP PHYSIOL, V155, P713, DOI 10.1007/BF00611588 Bass AH, 2003, SPRINGER HDB AUDITOR, P1 Bodnar DA, 1997, J NEUROSCI, V17, P7553 Bodnar DA, 1999, J NEUROPHYSIOL, V81, P552 BRANTLEY RK, 1993, HORM BEHAV, V27, P332, DOI 10.1006/hbeh.1993.1025 BRANTLEY RK, 1994, ETHOLOGY, V96, P213 Dunlap KD, 1998, HORM BEHAV, V34, P30, DOI 10.1006/hbeh.1998.1460 Dunlap KD, 1997, J NEUROSCI, V17, P2869 FAY RR, 1982, J COMP PHYSIOL, V147, P201 FAY RR, 1978, NATURE, V275, P320, DOI 10.1038/275320a0 Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 Few WP, 2001, HORM BEHAV, V40, P434, DOI 10.1006/hbeh.2001.1709 FINE ML, 1983, COMP BIOCHEM PHYS A, V76, P225, DOI 10.1016/0300-9629(83)90319-5 Forlano PM, 2005, J COMP NEUROL, V483, P91, DOI 10.1002/cne.20397 FURUKAWA T, 1978, J PHYSIOL-LONDON, V276, P193 Goense JBM, 2005, J NEUROBIOL, V65, P22, DOI 10.1002/neu.20172 Guimaraes P, 2006, P NATL ACAD SCI USA, V103, P14246, DOI 10.1073/pnas.0606891103 KELLER CH, 1986, J COMP PHYSIOL A, V158, P301, DOI 10.1007/BF00603614 Knapp R, 1999, HORM BEHAV, V35, P81, DOI 10.1006/hbeh.1998.1499 LEWIS ER, 1982, SCIENCE, V215, P1641, DOI 10.1126/science.6978525 LEWIS RS, 1983, NATURE, V304, P538, DOI 10.1038/304538a0 LIN JW, 1988, NEUROSCIENCE, V24, P829, DOI 10.1016/0306-4522(88)90071-1 Lucas JR, 2007, J COMP PHYSIOL A, V193, P201, DOI 10.1007/s00359-006-0180-z Lucas JR, 2002, J COMP PHYSIOL A, V188, P981, DOI 10.1007/s00359-002-0359-x MCCUE MP, 1994, J NEUROSCI, V14, P6058 McKibben JR, 2001, J ACOUST SOC AM, V109, P2934, DOI 10.1121/1.1373441 McKibben JR, 1998, J ACOUST SOC AM, V104, P3520, DOI 10.1121/1.423938 McKibben JR, 2001, J COMP PHYSIOL A, V187, P271, DOI 10.1007/s003590100199 McKibben JR, 1999, J COMP PHYSIOL A, V184, P563, DOI 10.1007/s003590050356 MEYER JH, 1982, SCIENCE, V217, P635, DOI 10.1126/science.217.4560.635 Miller D.J., 1972, CALIF DEP FISH GAME, P157 ROBERTS WM, 1988, ANNU REV CELL BIOL, V4, P63, DOI 10.1146/annurev.cb.04.110188.000431 Rogers P.H, 1988, SENSORY BIOL AQUATIC, P130 Sisneros JA, 2007, J COMP PHYSIOL A, V193, P413, DOI 10.1007/s00359-006-0195-5 Sisneros JA, 2005, J EXP BIOL, V208, P3121, DOI 10.1242/jeb.01742 Sisneros JA, 2004, GEN COMP ENDOCR, V136, P101, DOI 10.1016/j.ygcen.2003.12.007 Sisneros JA, 2000, J NEUROSCI, V20, P8586 Sisneros JA, 2003, J NEUROSCI, V23, P1049 Sisneros JA, 2004, SCIENCE, V305, P404, DOI 10.1126/science.1097218 STEINACKER A, 1991, BRAIN RES, V556, P22, DOI 10.1016/0006-8993(91)90543-5 STEINACKER A, 1992, BRAIN RES, V574, P229, DOI 10.1016/0006-8993(92)90821-P Weeg MS, 2002, J COMP PHYSIOL A, V188, P631, DOI 10.1007/s00359-002-0338-2 Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786 Zakon H.H., 1991, Seminars in the Neurosciences, V3, P449, DOI 10.1016/1044-5765(91)90054-R Zakon HH, 1996, DEV NEUROSCI-BASEL, V18, P115, DOI 10.1159/000111399 Zakon HH, 1998, TRENDS NEUROSCI, V21, P202, DOI 10.1016/S0166-2236(97)01209-5 ZAKON HH, 1987, TRENDS NEUROSCI, V10, P416, DOI 10.1016/0166-2236(87)90012-9 NR 57 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 8 PY 2009 VL 252 IS 1-2 BP 9 EP 14 DI 10.1016/j.heares.2008.12.007 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471ME UT WOS:000268061000003 PM 19168118 ER PT J AU Arch, VS Narins, PM AF Arch, Victoria S. Narins, Peter M. TI Sexual hearing: The influence of sex hormones on acoustic communication in frogs SO HEARING RESEARCH LA English DT Article DE Anurans; Arginine vasotocin; Auditory system; Gonadal steroids; Sensory physiology ID GONADOTROPIN-RELEASING-HORMONE; HUMAN CHORIONIC-GONADOTROPIN; TREEFROG HYLA-CINEREA; FEMALE TUNGARA FROGS; ARGININE VASOTOCIN; CONCENTRATING CELLS; AUDITORY MIDBRAIN; RANA-ESCULENTA; XENOPUS-LAEVIS; GREEN TREEFROG AB The majority of anuran amphibians (frogs and toads) use acoustic communication to mediate sexual behavior and reproduction. Generally, females find and select their mates using acoustic cues provided by males in the form of conspicuous advertisement calls. In these species, vocal signal production and reception are intimately tied to successful reproduction. Research with anurans has demonstrated that acoustic communication is modulated by reproductive hormones, including gonadal steroids and peptide neuromodulators. Most of these studies have focused on the ways in which hormonal systems influence vocal signal production; however, here we will concentrate on a growing body of literature that examines hormonal modulation of call reception. This literature suggests that reproductive hormones contribute to the coordination of reproductive behaviors between signaler and receiver by modulating sensitivity and spectral filtering of the anuran auditory system. It has become evident that the hormonal systems that influence reproductive behaviors are highly conserved among vertebrate taxa. Thus, studying the endocrine and neuromodulatory bases of acoustic communication in frogs and toads can lead to insights of broader applicability to hormonal modulation of vertebrate sensory physiology and behavior. (C) 2009 Elsevier B.V. All rights reserved. C1 [Arch, Victoria S.; Narins, Peter M.] Univ Calif Los Angeles, Dept Ecol & Evolut Biol, Los Angeles, CA 90095 USA. [Narins, Peter M.] Univ Calif Los Angeles, Dept Physiol Sci, Los Angeles, CA 90095 USA. RP Arch, VS (reprint author), Univ Calif Los Angeles, Dept Ecol & Evolut Biol, 621 Charles E Young Dr S, Los Angeles, CA 90095 USA. EM varch@ucla.edu; pnarins@ucla.edu FU Paul S. Veneklasen Research Foundation; NIDCD [DC-00222]; GAANN Fellowship FX We are grateful to Dr. Walt Wilczynski for his insightful comments on an earlier version of this manuscript. Financial support was provided by grants from the Paul S. Veneklasen Research Foundation and NIDCD (No. DC-00222) to P.M.N., and a GAANN Fellowship to V.S.A. CR ALLISON JD, 1992, J COMP PHYSIOL A, V171, P387 BALL JN, 1981, GEN COMP ENDOCR, V44, P135, DOI 10.1016/0016-6480(81)90243-4 BOYD SK, 1992, HORM BEHAV, V26, P522, DOI 10.1016/0018-506X(92)90019-R BOYD SK, 1994, HORM BEHAV, V28, P232, DOI 10.1006/hbeh.1994.1020 Burmeister S, 2000, HORM BEHAV, V38, P201, DOI 10.1006/hbeh.2000.1605 Burmeister SS, 2001, HORM BEHAV, V40, P550, DOI 10.1006/hbeh.2001.1723 Burmeister SS, 2008, BRAIN RES, V1190, P105, DOI 10.1016/j.brainres.2007.11.008 Burmeister SS, 2005, BRAIN BEHAV EVOLUT, V65, P26, DOI 10.1159/000081108 Bush SL, 1997, J HERPETOL, V31, P251, DOI 10.2307/1565393 Chakraborty M, 2009, HORM BEHAV, V55, P106, DOI 10.1016/j.yhbeh.2008.09.001 Chu J, 1998, HORM BEHAV, V34, P248, DOI 10.1006/hbeh.1998.1479 Chu J, 2001, GEN COMP ENDOCR, V121, P66, DOI 10.1006/gcen.2000.7563 DIAKOW C, 1978, HORM BEHAV, V11, P183, DOI 10.1016/0018-506X(78)90047-8 DIAKOW C, 1981, HORM BEHAV, V15, P86, DOI 10.1016/0018-506X(81)90037-4 DIAKOW C, 1978, SCIENCE, V199, P1456, DOI 10.1126/science.305115 DIMEGLIO M, 1987, GEN COMP ENDOCR, V67, P149, DOI 10.1016/0016-6480(87)90142-0 Duellman W. E, 1986, BIOL AMPHIBIANS ELKINDHIRSCH KE, 1992, HEARING RES, V60, P143, DOI 10.1016/0378-5955(92)90016-G Emerson SB, 1999, BRAIN BEHAV EVOLUT, V53, P187, DOI 10.1159/000006594 Endepols H, 1999, EUR J MORPHOL, V37, P182, DOI 10.1076/ejom.37.2.182.4753 Endepols Heike, 2000, Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology, V186, P1119 GIVEN MF, 1987, HERPETOLOGICA, V43, P467 GOBBETTI A, 1991, GEN COMP ENDOCR, V82, P331, DOI 10.1016/0016-6480(91)90307-R Goodson JL, 2001, BRAIN RES REV, V35, P246, DOI 10.1016/S0165-0173(01)00043-1 Gore AC, 2002, PROG BRAIN RES, V141, P193 Harvey LA, 1997, GEN COMP ENDOCR, V105, P102, DOI 10.1006/gcen.1996.6805 HILLERY CM, 1984, COPEIA, P844 HINDE RA, 1964, J ENDOCRINOL, V30, P355, DOI 10.1677/joe.0.0300355 Hoke KL, 2005, P NATL ACAD SCI USA, V102, P10712, DOI 10.1073/pnas.0502261102 Hoke KL, 2004, J NEUROSCI, V24, P11264, DOI 10.1523/JNEUROSCI.2079-04.2004 ITOH M, 1990, GEN COMP ENDOCR, V78, P242, DOI 10.1016/0016-6480(90)90011-A ITOH M, 1990, GEN COMP ENDOCR, V80, P451, DOI 10.1016/0016-6480(90)90194-Q KELLEY DB, 1980, SCIENCE, V207, P553, DOI 10.1126/science.7352269 KELLEY DB, 1975, J COMP NEUROL, V164, P47, DOI 10.1002/cne.901640105 KELLEY DB, 1981, J COMP NEUROL, V199, P221, DOI 10.1002/cne.901990206 KELLEY DB, 1978, BRAIN RES, V140, P287, DOI 10.1016/0006-8993(78)90461-4 Kime NM, 2007, BRAIN BEHAV EVOLUT, V69, P254, DOI 10.1159/000099613 Klomberg KF, 2000, ANIM BEHAV, V59, P807, DOI 10.1006/anbe.1999.1367 KOMISARU.BR, 1972, SCIENCE, V178, P1295, DOI 10.1126/science.178.4067.1295 LEI ZM, 1993, ENDOCRINOLOGY, V132, P2262, DOI 10.1210/en.132.5.2262 Lei ZM, 2001, SEMIN REPROD MED, V19, P103, DOI 10.1055/s-2001-13917 Lynch KS, 2005, ANIM BEHAV, V69, P689, DOI 10.1016/j.anbehav.2004.06.016 Lynch KS, 2006, HORM BEHAV, V49, P450, DOI 10.1016/j.yhbeh.2005.10.001 Lynch KS, 2006, HORM BEHAV, V50, P101, DOI 10.1016/j.yhbeh.2006.01.010 Lynch KS, 2005, GEN COMP ENDOCR, V143, P51, DOI 10.1016/j.ygcen.2005.02.023 Lynch KS, 2008, BRAIN BEHAV EVOLUT, V71, P143, DOI 10.1159/000111460 Maney DL, 2006, EUR J NEUROSCI, V23, P1523, DOI 10.1111/j.1460-9568.2006.04673.x Marler CA, 1995, HORM BEHAV, V29, P554, DOI 10.1006/hbeh.1995.1286 Marler CA, 2003, ADV STUD BEHAV, V32, P263, DOI 10.1016/S0065-3454(03)01006-4 MARQUEZ R, 1991, J ZOOL, V225, P125 Mello CV, 2004, ANN NY ACAD SCI, V1016, P263, DOI 10.1196/annals.1298.021 MIRANDA JA, 2007, THESIS U TEXAS AUSTI, P120 Moore F. L., 2002, HORMONES BRAIN BEHAV, V2, P515 MORRELL JI, 1975, J COMP NEUROL, V164, P63, DOI 10.1002/cne.901640106 Neary T.J., 1988, P233 Orlov N, 1997, COPEIA, P464, DOI 10.2307/1447774 PENNA M, 1992, J COMP PHYSIOL A, V170, P73 PICKER MD, 1983, BEHAVIOUR, V84, P74, DOI 10.1163/156853983X00291 Polzonetti-Magni AM, 1998, BIOL REPROD, V58, P88, DOI 10.1095/biolreprod58.1.88 Propper CR, 1997, HORM BEHAV, V32, P99, DOI 10.1006/hbeh.1997.1408 RAIMONDI D, 1981, PHYSIOL BEHAV, V27, P167, DOI 10.1016/0031-9384(81)90316-4 Rao CV, 2004, BIOL REPROD, V71, P579, DOI 10.1095/biolreprod.104.027300 Rastogi RK, 1998, GEN COMP ENDOCR, V112, P330, DOI 10.1006/gcen.1998.7144 ROY D, 1995, CURR SCI INDIA, V69, P265 Schlaepfer MA, 1998, COPEIA, P1076 SCHMIDT RS, 1983, HORM BEHAV, V17, P94, DOI 10.1016/0018-506X(83)90019-3 SCHMIDT RS, 1985, J COMP PHYSIOL A, V156, P823, DOI 10.1007/BF00610834 Semsar K, 1998, ANIM BEHAV, V56, P983, DOI 10.1006/anbe.1998.0863 Sisneros JA, 2004, SCIENCE, V305, P404, DOI 10.1126/science.1097218 Solis R, 1997, HORM BEHAV, V31, P101, DOI 10.1006/hbeh.1997.1366 Tobias ML, 1998, P NATL ACAD SCI USA, V95, P1870, DOI 10.1073/pnas.95.4.1870 VARRIALE B, 1986, GEN COMP ENDOCR, V64, P401, DOI 10.1016/0016-6480(86)90075-4 Vilain E, 1998, MOL GENET METAB, V65, P74, DOI 10.1006/mgme.1998.2749 WADA M, 1976, GEN COMP ENDOCR, V29, P72, DOI 10.1016/0016-6480(76)90008-3 WADA M, 1977, HORM BEHAV, V8, P310, DOI 10.1016/0018-506X(77)90005-8 WALKOWIAK W, 1980, J COMP PHYSIOL, V138, P131 Walpurger V, 2004, HORM BEHAV, V46, P600, DOI 10.1016/j.yhbeh.2004.07.002 WETZEL DM, 1983, HORM BEHAV, V17, P388, DOI 10.1016/0018-506X(83)90048-X WILCZYNSKI W, 1989, BRAIN BEHAV EVOLUT, V33, P317, DOI 10.1159/000115939 Wilczynski W, 2007, SPR HDB AUD, V28, P221 Wilczynski W., 1988, P209 Wilczynski W, 2005, HORM BEHAV, V48, P440, DOI 10.1016/j.yhbeh.2005.06.001 Wilczynski Walter, 2001, P23 WILCZYNSKI W, 1993, BRAIN BEHAV EVOLUT, V42, P252, DOI 10.1159/000114159 WRIGHT P, 1973, HORM BEHAV, V4, P387, DOI 10.1016/0018-506X(73)90040-8 Yamaguchi A., 2002, ACOUSTIC COMMUNICATI, P275 Yang EJ, 2007, P NATL ACAD SCI USA, V104, P2477, DOI 10.1073/pnas.0608391104 You SK, 2000, BIOL REPROD, V62, P117, DOI 10.1095/biolreprod62.1.117 YOVANOF S, 1983, NEUROSCI LETT, V36, P291, DOI 10.1016/0304-3940(83)90015-0 NR 89 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 8 PY 2009 VL 252 IS 1-2 BP 15 EP 20 DI 10.1016/j.heares.2009.01.001 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471ME UT WOS:000268061000004 PM 19272318 ER PT J AU Price, K Zhu, XX Guimaraes, PF Vasilyeva, ON Frisina, RD AF Price, Katharine Zhu, Xiaoxia Guimaraes, Patricia F. Vasilyeva, Olga N. Frisina, Robert D. TI Hormone replacement therapy diminishes hearing in peri-menopausal mice SO HEARING RESEARCH LA English DT Article DE Aging; Hearing loss; Presbycusis; HRT; Otoacoustic emissions; Progestin; Progesterone; Estrogen; Auditory brainstem response; Sex hormones ID PRODUCT OTOACOUSTIC EMISSIONS; POSTMENOPAUSAL WOMEN; CBA MICE; ESTROGEN; AGE; STIMULATION; ASSOCIATION; IMPAIRMENT; RESPONSES; DECLINES AB We recently discovered that progestin in hormone replacement therapy (HRT) for post-menopausal women has detrimental effects on the ear and central auditory system [Guimaraes, P., Frisina, S.T., Mapes, F., Tadros, S.F., Frisina, D.R., Frisina, R.D., 2006. Progestin negatively affects hearing in aged women. Proc. Natl. Acad. Sci. - PNAS 103, 14246-14249]. To start determining the generality and neural bases of these human findings, the present study examined the effects of combination HRT (estrogen + progestin) and estrogen alone on hearing in peri-menopausal mice. Specifically, auditory brainstem responses (ABRs-sensitivity of the auditory system) and distortion-product otoacoustic emissions (DPOAEs-cochlear outer hair cell system) were employed. Middle age female CBA mice received either a time-release, subcutaneous implanted pellet of estrogen + progestin, estrogen alone, or placebo. Longitudinal comparisons of ABR threshold data obtained at 4 months of treatment revealed statistically significant declines in auditory sensitivity over time for the combined estrogen + progestin treatment group, with the estrogen only group revealing milder changes at 3, 6 and 32 kHz. DPOAE testing revealed statistically significant differences for the estrogen + progestin treatment group in the high and middle frequency ranges (15-29 and 30-45 kHz) after as early as 2 months of treatment (p < 0.01 and p < 0.001, respectively). Statistically significant changes were also seen at 4 months of treatment across all frequencies for the combined HRT group. These data suggest that estrogen + progestin HRT therapy of 4 months duration impairs outer hair cell functioning and overall auditory sensitivity. These findings indicate that estrogen + progestin HRT may actually accelerate age-related hearing loss, relative to estrogen monotherapy; findings that are consistent with the clinical hearing loss observed in aging women that have taken combination HRT. (C) 2009 Elsevier B.V. All rights reserved. C1 [Frisina, Robert D.] Univ Rochester, Med Ctr, Dept Otolaryngol, Sch Med & Dent, Rochester, NY 14642 USA. [Zhu, Xiaoxia; Guimaraes, Patricia F.; Vasilyeva, Olga N.; Frisina, Robert D.] Rochester Inst Technol, Natl Tech Inst Deaf, Int Ctr Hearing & Speech Res, Rochester, NY 14623 USA. [Frisina, Robert D.] Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA. [Frisina, Robert D.] Univ Rochester, Sch Med & Dent, Dept Biomed Engn, Rochester, NY 14642 USA. RP Frisina, RD (reprint author), Univ Rochester, Med Ctr, Dept Otolaryngol, Sch Med & Dent, 601 Elmwood Ave, Rochester, NY 14642 USA. EM Robert_Frisina@urmc.rochester.edu FU National Institute on Aging [NIH P01 AG09524]; National Institute on Deafness and Other Communication Disorders [P30 DC05409] FX We thank John Housel for technical assistance and Enza Daugherty for project support. Supported by NIH Grant P01 AG09524 from the National Institute on Aging, and P30 DC05409 from the National Institute on Deafness and Other Communication Disorders. CR ALBERTSON BD, 1975, J REPROD FERTIL, V42, P407 Bittar R S, 2001, Int Tinnitus J, V7, P41 Caruso S, 2003, HUM REPROD, V18, P85, DOI 10.1093/humrep/deg003 COLEMAN JR, 1994, HEARING RES, V80, P209, DOI 10.1016/0378-5955(94)90112-0 Frisina RD, 2005, INFERIOR COLLICULUS, P559, DOI 10.1007/0-387-27083-3_19 Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24 GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 Guimaraes P, 2004, HEARING RES, V192, P83, DOI 10.1016/j.heares.2004.01.013 Guimaraes P, 2006, P NATL ACAD SCI USA, V103, P14246, DOI 10.1073/pnas.0606891103 Hederstierna C, 2007, ACTA OTO-LARYNGOL, V127, P149, DOI 10.1080/00016480600794446 Hulley S, 2002, JAMA-J AM MED ASSOC, V288, P58, DOI 10.1001/jama.288.1.58 Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617 Jacobson M, 2003, LARYNGOSCOPE, V113, P1707, DOI 10.1097/00005537-200310000-00009 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Kilicdag EB, 2004, AM J OBSTET GYNECOL, V190, P77, DOI 10.1016/j.ajpg.2003.06.001 Kim SH, 2002, OBSTET GYNECOL, V99, P726, DOI 10.1016/S0029-7844(02)01963-4 LAUGEL GR, 1988, ACTA OTO-LARYNGOL, V106, P34, DOI 10.3109/00016488809107368 MADER S, 1984, J AM GERIATR SOC, V32, P548 MULROW CD, 1990, J AM GERIATR SOC, V38, P45 PLEIS J, 2007, VITAL HLTH STAT, V10 Pradhan AD, 2002, JAMA-J AM MED ASSOC, V288, P980, DOI 10.1001/jama.288.8.980 SHARPE KL, 1991, FERTIL STERIL, V55, P403 Sorensen KE, 1998, CIRCULATION, V97, P1234 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 Stenberg AE, 2003, HEARING RES, V182, P19, DOI 10.1016/S0378-5955(03)00136-9 Varghese GI, 2005, HEARING RES, V209, P60, DOI 10.1016/j.heares.2005.06.006 Walpurger V, 2004, HORM BEHAV, V46, P600, DOI 10.1016/j.yhbeh.2004.07.002 Willott J. F., 1991, AGING AUDITORY SYSTE Yellin M W, 1999, J Am Acad Audiol, V10, P400 ZHU X, 2004, ASS RES OT ABSTR, V27 NR 30 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 8 PY 2009 VL 252 IS 1-2 BP 29 EP 36 DI 10.1016/j.heares.2009.02.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471ME UT WOS:000268061000006 PM 19269311 ER PT J AU McFadden, D AF McFadden, Dennis TI Masculinization of the mammalian cochlea SO HEARING RESEARCH LA English DT Article DE Otoacoustic emissions; Auditory evoked potentials; Sex differences; Prenatal development; Masculinization; Testosterone; Estradiol ID SPONTANEOUS OTOACOUSTIC EMISSIONS; ATTENTION-DEFICIT/HYPERACTIVITY DISORDER; AUDITORY-EVOKED POTENTIALS; MONKEYS MACACA-MULATTA; SHEEP OVIS-ARIES; DISTORTION-PRODUCT; SEX-DIFFERENCES; STIMULUS-FREQUENCY; GENDER-DIFFERENCES; SPOTTED HYENAS AB Otoacoustic emissions (OAEs) differ between the sexes in humans, rhesus and marmoset monkeys, and sheep. OAEs also are different in a number of special populations of humans. Those basic findings are reviewed and discussed in the context of possible prenatal-androgen effects on the auditory system. A parsimonious explanation for several outcomes is that prenatal exposure to high levels of androgens can weaken the cochlear amplifiers and thereby weaken otoacoustic emissions (OAEs). Prenatal androgen exposure apparently also can alter auditory evoked potentials (AEPs). Some non-hormonal factors possibly capable of producing sex and group differences are discussed, and some speculations are offered about specific cochlear structures that might differ between the two sexes. (C) 2009 Elsevier B.V. All rights reserved. C1 [McFadden, Dennis] Univ Texas Austin, Dept Psychol, Austin, TX 78712 USA. [McFadden, Dennis] Univ Texas Austin, Ctr Perceptual Syst, Austin, TX 78712 USA. RP McFadden, D (reprint author), Univ Texas Austin, Dept Psychol, Seay Bldg,1 Univ Stn,A8000, Austin, TX 78712 USA. EM mcfadden@psy.utexas.edu FU National Institute on Deafness and other Communication Disorders (NIDCD) [DC 00153] FX Supported by research Grant DC 00153 awarded by the National Institute on Deafness and other Communication Disorders (NIDCD). E.G. Pasanen was instrumental to the implementation and completion of all of our studies, and he made numerous valuable comments about early drafts of this paper. R.H. Margolis kindly provided helpful, and much appreciated, comments about the paper. M.M. Maloney assisted with the figures. CR American Psychiatric Association, 2000, DIAGN STAT MAN MENT Bergevin C, 2008, J COMP PHYSIOL A, V194, P665, DOI 10.1007/s00359-008-0338-y BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 BOKLAGE CE, 1985, AM J HUM GENET, V37, P591 Bowman DM, 2000, HEARING RES, V142, P1, DOI 10.1016/S0378-5955(99)00212-9 BROWN MC, 1983, SCIENCE, V222, P70 Brown WM, 2002, HORM BEHAV, V42, P380, DOI 10.1006/hbeh.2002.1830 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BURNS EM, 1994, J ACOUST SOC AM, V95, P385, DOI 10.1121/1.408330 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 BURNS EM, 1993, ABSTR ASS RES OT, V16, P98 Cacace AT, 1996, J SPEECH HEAR RES, V39, P1138 CHAN JCK, 1990, J ACOUST SOC AM, V87, P1237, DOI 10.1121/1.398799 CLEMENS LG, 1978, HORM BEHAV, V10, P40, DOI 10.1016/0018-506X(78)90023-5 COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 COLLAER ML, 1995, PSYCHOL BULL, V118, P55, DOI 10.1037//0033-2909.118.1.55 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 Dempsey PJ, 1999, AM J HUM BIOL, V11, P577, DOI 10.1002/(SICI)1520-6300(199909/10)11:5<577::AID-AJHB1>3.3.CO;2-P DON M, 1993, J ACOUST SOC AM, V94, P2135, DOI 10.1121/1.407485 ENGDAHL B, 1994, SCAND AUDIOL, V23, P99, DOI 10.3109/01050399409047492 FRANK LG, 1991, SCIENCE, V252, P702, DOI 10.1126/science.2024122 FRANKLIN DJ, 1992, EAR HEARING, V13, P417 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 GLICKMAN SE, 1992, J REPROD FERTIL, V95, P451 Glinianaia SV, 1998, INT J EPIDEMIOL, V27, P657, DOI 10.1093/ije/27.4.657 Guimaraes P, 2004, HEARING RES, V192, P83, DOI 10.1016/j.heares.2004.01.013 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 Hall J, 1992, HDB AUDITORY EVOKED Johansson MSK, 2003, INT J AUDIOL, V42, P448, DOI 10.3109/14992020309081515 Jordan CL, 2008, HORM BEHAV, V53, P589, DOI 10.1016/j.yhbeh.2008.02.016 Kalluri R, 2007, J ACOUST SOC AM, V121, P2097, DOI 10.1121/1.2435981 Keefe DH, 2008, J ACOUST SOC AM, V123, P1504, DOI 10.1121/1.2832615 Kemp D T, 1986, Scand Audiol Suppl, V25, P71 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008 KIMBERLEY BP, 1993, J ACOUST SOC AM, V94, P1343, DOI 10.1121/1.408162 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 LONSBURYMARTIN BL, 1990, ANN OTO RHINOL LARYN, V99, P15 Lummaa V, 2007, P NATL ACAD SCI USA, V104, P10915, DOI 10.1073/pnas.0605875104 Margolis RH, 1999, J ACOUST SOC AM, V106, P265, DOI 10.1121/1.427055 Martel MM, 2008, BEHAV NEUROSCI, V122, P273, DOI 10.1037/0735-7044.122.2.273 McFadden D, 1996, HEARING RES, V97, P102 McFadden D, 1999, J ACOUST SOC AM, V105, P2403, DOI 10.1121/1.426845 McFadden D, 1998, DEV NEUROPSYCHOL, V14, P261 McFadden D, 2006, HORM BEHAV, V50, P285, DOI 10.1016/j.yhbeh.2006.03.013 McFadden D, 1998, P NATL ACAD SCI USA, V95, P2709, DOI 10.1073/pnas.95.5.2709 McFadden D, 2000, JARO, V1, P89, DOI 10.1007/s101620010008 McFadden D, 2006, HORM BEHAV, V50, P274, DOI 10.1016/j.yhbeh.2006.03.012 McFadden D, 2008, J ACOUST SOC AM, V124, P3730, DOI 10.1121/1.2982402 McFadden D, 2005, CLIN NEUROSCI RES, V5, P233, DOI 10.1016/j.cnr.2005.09.004 MCFADDEN D, 1993, HEARING RES, V71, P208, DOI 10.1016/0378-5955(93)90036-Z McFadden D, 2003, HORM BEHAV, V43, P421, DOI 10.1016/S0018-506X(03)00014-X MCFADDEN D, 1995, HEARING RES, V85, P181, DOI 10.1016/0378-5955(95)00045-6 McFadden D, 2000, HEARING RES, V142, P23, DOI 10.1016/S0378-5955(00)00002-2 MCFADDEN D, 1993, P NATL ACAD SCI USA, V90, P11900, DOI 10.1073/pnas.90.24.11900 McFadden D, 2009, HORM BEHAV, V55, P98, DOI 10.1016/j.yhbeh.2008.08.013 McFadden D, 2008, PERSPECT PSYCHOL SCI, V3, P309, DOI 10.1111/j.1745-6924.2008.00082.x MCFADDEN D, 1994, J ACOUST SOC AM, V95, P3460, DOI 10.1121/1.410022 McFadden D, 2009, J ACOUST SOC AM, V125, P239, DOI 10.1121/1.3037231 McFadden D., 2002, ARCH SEX BEHAV, V31, P93 MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K McFadden SL, 1999, EAR HEARING, V20, P164, DOI 10.1097/00003446-199904000-00007 Miller JD, 2007, J ACOUST SOC AM, V121, pEL151, DOI 10.1121/1.2710746 Morlet T, 1996, NEUROSCI LETT, V220, P49, DOI 10.1016/S0304-3940(96)13226-2 MORLET T, 1995, HEARING RES, V90, P44, DOI 10.1016/0378-5955(95)00144-4 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K NAEVE SL, 1992, J ACOUST SOC AM, V91, P2091, DOI 10.1121/1.403695 Nelson R. J., 2005, INTRO BEHAV ENDOCRIN Pasanen EG, 2000, J ACOUST SOC AM, V108, P1105, DOI 10.1121/1.1287026 PRIEVE BA, 1993, J ACOUST SOC AM, V93, P3308, DOI 10.1121/1.405715 SATO H, 1991, ACTA OTO-LARYNGOL, V111, P1037, DOI 10.3109/00016489109138447 Seifert E, 1998, BRIT J AUDIOL, V32, P387, DOI 10.3109/03005364000000090 Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211 Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5 STRICKLAND EA, 1985, J ACOUST SOC AM, V78, P931, DOI 10.1121/1.392924 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V Torre P, 2000, HEARING RES, V142, P131, DOI 10.1016/S0378-5955(00)00025-3 Valero MD, 2008, HEARING RES, V243, P57, DOI 10.1016/j.heares.2008.05.006 van Anders SM, 2006, PSYCHONEUROENDOCRINO, V31, P895, DOI 10.1016/j.psyneuen.2006.03.002 vom Saal F S, 1989, J Anim Sci, V67, P1824 Wallen K., 2002, HORMONES BRAIN BEHAV, P385 WHITEHEAD ML, 1996, SPR HDB AUD, V7, P199 WIER CC, 1988, J ACOUST SOC AM, V84, P230, DOI 10.1121/1.396970 Wizemann TM, 2001, EXPLORING BIOL CONTR Zuloaga DG, 2008, HORM BEHAV, V53, P613, DOI 10.1016/j.yhbeh.2008.01.013 ZWICKER E, 1981, HEARING RES, V4, P43, DOI 10.1016/0378-5955(81)90035-6 NR 89 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 8 PY 2009 VL 252 IS 1-2 BP 37 EP 48 DI 10.1016/j.heares.2009.01.002 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471ME UT WOS:000268061000007 PM 19272340 ER PT J AU Noirot, IC Adler, HJ Cornil, CA Harada, N Dooling, RJ Balthazart, J Ball, GF AF Noirot, Isabelle C. Adler, Henry J. Cornil, Charlotte A. Harada, Nobuhiro Dooling, Robert J. Balthazart, Jacques Ball, Gregory F. TI Presence of aromatase and estrogen receptor alpha in the inner ear of zebra finches SO HEARING RESEARCH LA English DT Article DE Estradiol; Steroid hormone; Basilar papilla; Hair cell; Songbird ID AUDITORY-EVOKED-RESPONSES; HAIR CELL REGENERATION; ACOUSTIC TRAUMA; IMMUNOCYTOCHEMICAL LOCALIZATION; IMMUNOREACTIVE CELLS; TAENIOPYGIA-GUTTATA; SEASONAL-VARIATION; JAPANESE-QUAIL; SONGBIRD BRAIN; MESSENGER-RNA AB Sex differences in song behavior and in the neural system controlling song in songbirds are well documented but relatively little is known about sex differences in hearing. We recently demonstrated the existence of sex differences in auditory brainstem responses in a songbird species, the zebra finch (Taeniopygia guttata). Many sex differences are regulated by sex steroid hormone action either during ontogeny or in adulthood. As a first step to test the possible implication of sex steroids in the control of sex differences in the zebra finch auditory system, we evaluated via immunocytochemistry whether estrogens are produced and act in the zebra finch inner ear. Specifically we examined the distribution of aromatase, the enzyme converting testosterone into an estrogen, and of estrogen receptors of the alpha subtype (ER alpha) in adult zebra finch inner ears. The anatomy of the basilar papillae was visualized by fluorescein-phalloidin, which delineated the actin structure of hair cells and supporting cells at their apical surface. Whole mount preparations of basilar papillae stained by immunocytochemistry revealed in both males and females an abundant aromatase distribution in the cytoplasm of hair cells, while ER alpha was identified in the nuclei of hair cells and of underlying supporting cells. Double-labeled preparations confirmed the extensive co-localization of aromatase and ER alpha in the vast majority of the hair cells. These results are consistent with studies on non-avian species, suggesting a role for estrogens in auditory function. These findings are also consistent with the notion that estrogens may contribute to a sex difference in hearing. To our knowledge, this is the first demonstration of the presence of aromatase and of the co-localization of aromatase and ER alpha in the sensory epithelium of the inner ear in any animal model. (C) 2009 Elsevier B.V. All rights reserved. C1 [Cornil, Charlotte A.; Ball, Gregory F.] Johns Hopkins Univ, Dept Psychol & Brain Sci, Baltimore, MD 21218 USA. [Noirot, Isabelle C.; Dooling, Robert J.] Univ Maryland, Dept Psychol, College Pk, MD 20742 USA. [Adler, Henry J.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. [Noirot, Isabelle C.] Univ Liege, Dept Sci & Environm Management, B-4000 Liege, Belgium. [Cornil, Charlotte A.; Balthazart, Jacques] Univ Liege, Ctr Cellular & Mol Neurobiol, B-4000 Liege, Belgium. [Harada, Nobuhiro] Fujita Hlth Univ, Sch Med, Dept Biochem, Aichi 4701192, Japan. [Adler, Henry J.] Gallaudet Univ, Mol Genet Lab, Washington, DC 20002 USA. RP Ball, GF (reprint author), Johns Hopkins Univ, Dept Psychol & Brain Sci, Baltimore, MD 21218 USA. EM gball@jhu.edu FU NIH/NINDS [R01 NS 35467]; NIDCD [000436]; [DC000198]; [DC001372] FX We thank Drs Catherine E. Carr and Steven E. Brauth for generously hosting this research. We also thank Or Elizabeth F. Brittan-Powell and Ms Megan Shaw for the logistical assistance. This research was supported by Grants DC000198, DC001372 to R.J.D., a Grant from the NIH/NINDS (R01 NS 35467) to G.F.B., and a disability supplement (H.J.A.) to NIDCD 000436 (Catherine E. Carr). C.A.C. is a FNRS postdoctoral researcher. CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 BALTHAZART J, 1990, BRAIN RES, V514, P327, DOI 10.1016/0006-8993(90)91428-J Balthazart J, 1996, J NEUROBIOL, V31, P129, DOI 10.1002/(SICI)1097-4695(199610)31:2<129::AID-NEU1>3.3.CO;2-2 BALTHAZART J, 1989, BRAIN RES, V501, P205, DOI 10.1016/0006-8993(89)90638-0 BALTHAZART J, 2002, HORMONES BRAIN BEHAV, V4, P223 BLAUSTEIN JD, 1992, ENDOCRINOLOGY, V131, P1336, DOI 10.1210/en.131.3.1336 Carere C, 2007, J COMP NEUROL, V500, P894, DOI 10.1002/cne.21210 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 DRENCKHAHN D, 1991, J CELL BIOL, V112, P641, DOI 10.1083/jcb.112.4.641 FOIDART A, 1995, J CHEM NEUROANAT, V8, P267, DOI 10.1016/0891-0618(95)00054-B Forlano PM, 2005, J COMP NEUROL, V483, P91, DOI 10.1002/cne.20397 FOX CA, 1991, BRAIN RES, V546, P96, DOI 10.1016/0006-8993(91)91163-U GAHR M, 1987, BRAIN RES, V402, P173, DOI 10.1016/0006-8993(87)91063-8 Garcia-Segura LM, 2003, PROG NEUROBIOL, V71, P31, DOI 10.1016/j.pneurobio.2003.09.005 Garcia-Segura LM, 2001, PROG NEUROBIOL, V63, P29, DOI 10.1016/S0301-0082(00)00025-3 Goense JBM, 2005, J NEUROBIOL, V65, P22, DOI 10.1002/neu.20172 Holloway CC, 2001, NAT NEUROSCI, V4, P170, DOI 10.1038/84001 Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617 Kruijver FPM, 2002, J COMP NEUROL, V454, P115, DOI 10.1002/cne.10416 Lucas JR, 2007, J COMP PHYSIOL A, V193, P201, DOI 10.1007/s00359-006-0180-z Manley G. A., 1990, PERIPHERAL HEARING M Meltser I, 2008, J CLIN INVEST, V118, P1563, DOI 10.1172/JCI32796 NOIROT IC, 2007, 672Z26 SOC NEUR NOTTEBOHM F, 1976, SCIENCE, V194, P211, DOI 10.1126/science.959852 Peterson RS, 2001, J NEUROENDOCRINOL, V13, P317, DOI 10.1046/j.1365-2826.2001.00647.x Roberson DW, 1996, AUDIT NEUROSCI, V2, P195 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Ryals BM, 1999, HEARING RES, V131, P71, DOI 10.1016/S0378-5955(99)00022-2 Sisneros JA, 2004, GEN COMP ENDOCR, V136, P101, DOI 10.1016/j.ygcen.2003.12.007 Sisneros JA, 2003, J NEUROSCI, V23, P1049 Sisneros JA, 2004, SCIENCE, V305, P404, DOI 10.1126/science.1097218 Smolders JWT, 1999, AUDIOL NEURO-OTOL, V4, P286, DOI 10.1159/000013853 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5 Thornton JW, 2001, P NATL ACAD SCI USA, V98, P5671, DOI 10.1073/pnas.091553298 Toran-Allerand CD, 2004, ENDOCRINOLOGY, V145, P1069, DOI 10.1210/en.2003-1462 Wade J, 2004, ANN NY ACAD SCI, V1016, P540, DOI 10.1196/annals.1298.015 YOVANOF S, 1983, NEUROSCI LETT, V36, P291, DOI 10.1016/0304-3940(83)90015-0 NR 39 TC 27 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 8 PY 2009 VL 252 IS 1-2 BP 49 EP 55 DI 10.1016/j.heares.2009.04.012 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471ME UT WOS:000268061000008 PM 19397967 ER PT J AU Horner, KC AF Horner, Kathleen C. TI The effect of sex hormones on bone metabolism of the otic capsule - an overview SO HEARING RESEARCH LA English DT Article DE Cochlea; Hormones; Bone; Prolactin; Estrogen; Osteoprotegerin; RANK ID KAPPA-B LIGAND/OSTEOPROTEGERIN; BRAIN-STEM RESPONSES; HEARING-LOSS; POSTMENOPAUSAL WOMEN; RECEPTOR ACTIVATOR; MENSTRUAL-CYCLE; ORAL-CONTRACEPTIVES; PROLACTIN SECRETION; INNER-EAR; MENIERES-DISEASE AB Bone resorption, which can occur after the menopause, has long been considered to due to the decrease of estrogen and so estrogen and estrogen/progestin treatment in women has been employed with the aim of slowing down the process. Other important factors have recently been considered, including follicle-stimulating hormone. The hormonal control of bone metabolism has taken on a new dimension since the description, within the last decade, of a major osteoclast inhibiting control system. The receptor activator of nuclear factor-kappa B (NF-kappa B) ligand (RANKL) produced by osteoblastic lineage cells, must bind with its receptor RANK, located on osteoclasts, in order to allow the maturation and activation of osteoclasts. The potential continuous bone loss is controlled by the decoy receptor osteoprotegerin (OPG) which competitively binds to RANKL and hence blocks the interaction of RANKL-RANK. Estrogen contributes to bone protection since it decreases the response of osteoclasts to RANKL and induces osteoclast apoptosis. But estrogen, alone and especially in synergy with progesterone, is a potent stimulator of prolactin release. Prolactin affects calcium metabolism and hyperprolactinemia associated with pregnancy, lactation, antipsychotic drug treatment, or aging is reflected in decreased bone mineral density. Long-term estrogen treatment in guinea pig results in hyperprolactinemia and has been shown to lead to hearing loss as well as bone dysmorphology of the otic capsule. Recent data show that prolactin decreases OPG and increases RANKL OPG has been shown to be expressed at high levels in the cochlea and OPG knock-out mice have indeed abnormal remodeling of the otic capsule and resorption of the auditory ossicles. So estrogen-induced hyperprolactinemia could oppose estrogen protection by the knock-down of the OPG bone protection system. This might explain why oral contraception treatment and hormone replacement therapies, involving estrogen together with progestin, increases the risk of otosclerosis and vestibular disorders. Hyperprolactinemia associated with pregnancy and lactation might also underlie the association of increased risk of otosclerosis with multiple pregnancies. (C) 2008 Elsevier B.V. All rights reserved. C1 Univ Paul Cezanne, Fac Sci & Tech, Dept Physiol Neurovegetat, CRN2M,UMR 6231, F-13397 Marseille 20, France. RP Horner, KC (reprint author), Univ Paul Cezanne, Fac Sci & Tech, Dept Physiol Neurovegetat, CRN2M,UMR 6231, Blvd Normandie Niemen, F-13397 Marseille 20, France. EM kathleen.horner@univ-cezanne.fr CR Allali F, 2007, MATURITAS, V57, P392, DOI 10.1016/j.maturitas.2007.04.006 Al-Mana D, 2008, NEUROSCIENCE, V153, P881, DOI 10.1016/j.neuroscience.2008.02.077 AMENDT P, 1992, EXP CLIN ENDOCRINOL, V99, P73 ARBOGAST LA, 1990, ENDOCRINOLOGY, V126, P246 ARNOLD W, 2007, ADV OTORHINOLARYNGOL, V65 Arnold W, 1996, HNO, V44, P121 Baranowska B, 2007, NEUROBIOL AGING, V28, P774, DOI 10.1016/j.neurobiolaging.2006.03.014 Baron R, 2006, CELL METAB, V3, P302, DOI 10.1016/j.cmet.2006.04.007 Bekker PJ, 2001, J BONE MINER RES, V16, P348, DOI 10.1359/jbmr.2001.16.2.348 BLACKMAN MR, 1986, J GERONTOL, V41, P699 Boyle WJ, 2003, NATURE, V423, P337, DOI 10.1038/nature01658 Bucay N, 1998, GENE DEV, V12, P1260, DOI 10.1101/gad.12.9.1260 Buzi F, 2004, CLIN ENDOCRINOL, V60, P87, DOI 10.1046/j.1365-2265.2003.01951.x CALIGARI.L, 1974, J ENDOCRINOL, V60, P205, DOI 10.1677/joe.0.0600205 Caruso S, 2003, HUM REPROD, V18, P85, DOI 10.1093/humrep/deg003 Charoenphandhu N, 2007, CAN J PHYSIOL PHARM, V85, P569, DOI 10.1139/Y07-041 Charoenphandhu N, 2008, CAN J PHYSIOL PHARM, V86, P240, DOI 10.1139/y08-037 Chole RA, 2001, OTOL NEUROTOL, V22, P249, DOI 10.1097/00129492-200103000-00023 Clark Kathleen, 1995, Annals of Epidemiology, V5, P8, DOI 10.1016/1047-2797(94)00035-R Clayton AE, 2004, J LARYNGOL OTOL, V118, P617 COSS D, 2000, AM J PHYSIOL, V279, P1216 Darlington CL, 2001, NEUROSCI LETT, V307, P147, DOI 10.1016/S0304-3940(01)01933-4 Dougall WC, 1999, GENE DEV, V13, P2412, DOI 10.1101/gad.13.18.2412 ELKINDHIRSCH KE, 1992, HEARING RES, V60, P143, DOI 10.1016/0378-5955(92)90016-G ELKINDHIRSCH KE, 1992, HEARING RES, V64, P93, DOI 10.1016/0378-5955(92)90171-I Falkenius-Schmidt K, 2005, HEARING RES, V203, P154, DOI 10.1016/j.heares.2004.11.015 Gordon-Salant S, 2005, J REHABIL RES DEV, V42, P9, DOI 10.1682/JRRD.2005.01.0006 GRISTWOOD RE, 1983, CLIN OTOLARYNGOL, V8, P205, DOI 10.1111/j.1365-2273.1983.tb01428.x Guimaraes P, 2006, P NATL ACAD SCI USA, V103, P14246, DOI 10.1073/pnas.0606891103 HANNA GS, 1986, J LARYNGOL OTOL, V100, P701, DOI 10.1017/S0022215100099928 Helzner EP, 2005, OSTEOPOROSIS INT, V16, P1675, DOI 10.1007/s00198-005-1902-8 Hofbauer LC, 1999, ENDOCRINOLOGY, V140, P4367, DOI 10.1210/en.140.9.4367 Hofbauer LC, 2001, EUR J ENDOCRINOL, V145, P681, DOI 10.1530/eje.0.1450681 Horner KC, 2007, AM J PHYSIOL-ENDOC M, V293, pE1224, DOI 10.1152/ajpendo.00279.2007 Horner KC, 2002, NEUROPSYCHOPHARMACOL, V26, P135, DOI 10.1016/S0893-133X(01)00356-6 Horner KC, 2003, NEUROSCI BIOBEHAV R, V27, P437, DOI 10.1016/S0149-7634(03)00071-X HUIZING EH, 1987, ACTA OTO-LARYNGOL, V103, P464 Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617 Kameda T, 1997, J EXP MED, V186, P489, DOI 10.1084/jem.186.4.489 Kanzaki S, 2006, BONE, V39, P414, DOI 10.1016/j.bone.2006.01.155 Karosi T, 2006, LARYNGOSCOPE, V116, P1427, DOI 10.1097/01.mlg.0000225928.35838.e5 Kilicdag EB, 2004, AM J OBSTET GYNECOL, V190, P77, DOI 10.1016/j.ajpg.2003.06.001 Kim SH, 2002, OBSTET GYNECOL, V99, P726, DOI 10.1016/S0029-7844(02)01963-4 Kong YY, 1999, NATURE, V397, P315 Kopp P, 2008, TRENDS ENDOCRIN MET, V19, P260, DOI 10.1016/j.tem.2008.07.001 Kovacs CS, 2005, J MAMMARY GLAND BIOL, V10, P105, DOI 10.1007/s10911-005-5394-0 Li J, 2000, P NATL ACAD SCI USA, V97, P1566, DOI 10.1073/pnas.97.4.1566 Lippy WH, 2005, LARYNGOSCOPE, V115, P1833, DOI 10.1097/01.MLG.0000187573.99335.85 lotsova V., 1997, NAT MED, V3, P1285 McFadden D, 2000, HEARING RES, V142, P23, DOI 10.1016/S0378-5955(00)00002-2 McKenna MJ, 2007, ADV OTO-RHINO-LARYNG, V65, P68, DOI 10.1159/000098674 McKenna Michael J., 2004, Otology & Neurotology, V25, P447, DOI 10.1097/00129492-200407000-00008 Meltser I, 2008, J CLIN INVEST, V118, P1563, DOI 10.1172/JCI32796 METKA M, 1994, MATURITAS, V20, P151, DOI 10.1016/0378-5122(94)90011-6 Mitre Edson Ibrahim, 2006, Rev. Bras. Otorrinolaringol., V72, P350, DOI 10.1590/S0034-72992006000300009 Mizuno A, 1998, BIOCHEM BIOPH RES CO, V247, P610, DOI 10.1006/bbrc.1998.8697 Murphy MP, 1997, MEDSCAPE WOMENS HLTH, V2, P2 Niedermeyer HP, 2008, ORL J OTO-RHINO-LARY, V70, P63, DOI 10.1159/000111049 OKULICZ G, 1978, HNO, V26, P330 Pacifici R, 1996, J BONE MINER RES, V11, P1043 PAPARELLA MM, 1984, LARYNGOSCOPE, V94, P1414 PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 PecinsThompson M, 1997, NEUROENDOCRINOLOGY, V65, P335, DOI 10.1159/000127192 Peveler Robert C, 2008, J Psychopharmacol, V22, P98, DOI 10.1177/0269881107087346 Pinilla L, 2001, NEUROSCI LETT, V311, P149, DOI 10.1016/S0304-3940(01)02104-8 RAYMOND V, 1978, SCIENCE, V200, P1173, DOI 10.1126/science.418505 Riggs BL, 2002, NOVART FDN SYMP, V242, P247 Rillema JA, 2003, AM J PHYSIOL-ENDOC M, V284, pE25, DOI 10.1152/ajpendo.00383.2002 Royaux IE, 2003, JARO, V4, P394, DOI 10.1007/s10162-002-3052-4 RYBAK LP, 1995, OTOLARYNG HEAD NECK, V112, P128, DOI 10.1016/S0194-5998(95)70312-8 SATO S, 1984, TOHOKU J EXP MED, V144, P425, DOI 10.1620/tjem.144.425 Schwarz EM, 2007, ARTHRITIS RES THER, V9, DOI 10.1186/ar2171 Seemungal BM, 2001, CURR OPIN NEUROL, V14, P27, DOI 10.1097/00019052-200102000-00005 Sellari-Franceschini S, 1998, Acta Otorhinolaryngol Ital, V18, P59 Sennaroglu G, 2001, J LARYNGOL OTOL, V115, P617 Seriwatanachai D, 2008, BONE, V42, P535, DOI 10.1016/j.bone.2007.11.008 Seriwatanachai D, 2008, CELL BIOL INT, V32, P1126, DOI 10.1016/j.cellbi.2008.04.026 Serra A, 2003, ANN OTO RHINOL LARYN, V112, P549 SHEA JJ, 1994, AM J OTOL, V15, P348 Simonet WS, 1997, CELL, V89, P309, DOI 10.1016/S0092-8674(00)80209-3 SISMANIS A, 1986, LARYNGOSCOPE, V96, P9 Srivastava S, 2001, J BIOL CHEM, V276, P8836, DOI 10.1074/jbc.M010764200 Strachan D, 1996, J LARYNGOL OTOL, V110, P1148 Sun L, 2006, CELL, V125, P247, DOI 10.1016/j.cell.2006.01.051 SWANSON SJ, 1988, J SPEECH HEAR RES, V31, P569 Tsunoda K, 1999, J LARYNGOL OTOL, V113, P318 Vessey M, 2001, CONTRACEPTION, V63, P61, DOI 10.1016/S0010-7824(01)00176-7 WILLIAMS RF, 1985, J CLIN ENDOCR METAB, V60, P126 YOON TH, 1990, OTOLARYNG HEAD NECK, V103, P107 Zehnder AF, 2005, LARYNGOSCOPE, V115, P172, DOI 10.1097/01.mlg.0000150702.28451.35 Zehnder AF, 2006, LARYNGOSCOPE, V116, P201, DOI 10.1097/01.mlg.0000191466.09210.9a NR 91 TC 24 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 8 PY 2009 VL 252 IS 1-2 BP 56 EP 60 DI 10.1016/j.heares.2008.12.004 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471ME UT WOS:000268061000009 PM 19121641 ER PT J AU Charitidi, K Meltser, I Tahera, Y Canlon, B AF Charitidi, Konstantina Meltser, Inna Tahera, Yeasmin Canlon, Barbara TI Functional responses of estrogen receptors in the male and female auditory system SO HEARING RESEARCH LA English DT Article DE Estrogen receptors; Hearing; Auditory; Cochlea; Hormones; Hormone replacement therapy; Neurotrophic factors ID GLOBAL COGNITIVE FUNCTION; HEALTH INITIATIVE MEMORY; BRAIN-STEM RESPONSE; ALPHA ER-ALPHA; POSTMENOPAUSAL WOMEN; OTOACOUSTIC EMISSIONS; REPLACEMENT THERAPY; RAT-BRAIN; REPRODUCTIVE PHENOTYPES; NEUROTROPHIC FACTOR AB Recently significant progress was made in understanding the mechanisms by which the two estrogen receptors (alpha and beta) are involved in different pathways of estrogen action in a wide variance of tissues. Divergent responses of cells and tissues to estrogens or their ligands have been attributed to various isoforms and signaling pathways of estrogen receptors. Both subtypes of estrogen receptors have been identified in the cochlea and there are indications that they have neuroprotective effects but there is still limited information on the role and specific mechanisms of these two receptors in the auditory system. This review will examine the molecular and functional actions of the two estrogen receptor subtypes, the pivotal role they play in the auditory system and their therapeutic strategies for protecting against hearing loss. (C) 2009 Elsevier B.V. All rights reserved. C1 [Charitidi, Konstantina; Meltser, Inna; Tahera, Yeasmin; Canlon, Barbara] Karolinska Inst, Dept Physiol & Pharmacol, Stockholm, Sweden. RP Charitidi, K (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, Stockholm, Sweden. EM konstantina.charitidi@ki.se CR ANDREWS JC, 1992, ARCH OTOLARYNGOL, V118, P74 Barkhem T, 1998, MOL PHARMACOL, V54, P105 Bialek M, 2004, POL J PHARMACOL, V56, P509 Bjornstrom L, 2005, MOL ENDOCRINOL, V19, P833, DOI 10.1210/me.2004-0486 Carreau S, 2003, FOLIA HISTOCHEM CYTO, V41, P107 Caruso S, 2003, FERTIL STERIL, V79, P556, DOI 10.1016/S0015-0282(02)04763-5 COLEMAN JR, 1994, HEARING RES, V80, P209, DOI 10.1016/0378-5955(94)90112-0 Coleman KM, 2001, FRONT BIOSCI, V6, P1379 Dalla C, 2004, EUR J NEUROSCI, V20, P217, DOI 10.1111/j.1460-9568.2004.03443.x Daniel JM, 1997, HORM BEHAV, V32, P217, DOI 10.1006/hbeh.1997.1433 DORRINGTON JH, 1978, BIOL REPROD, V18, P55, DOI 10.1095/biolreprod18.1.55 Dupont S, 2000, DEVELOPMENT, V127, P4277 Eddy EM, 1996, ENDOCRINOLOGY, V137, P4796, DOI 10.1210/en.137.11.4796 Espeland MA, 2004, JAMA-J AM MED ASSOC, V291, P2959, DOI 10.1001/jama.291.24.2959 Flouriot G, 2000, EMBO J, V19, P4688, DOI 10.1093/emboj/19.17.4688 GRADY D, 1992, ANN INTERN MED, V117, P1016 GREENE GL, 1986, SCIENCE, V231, P1150, DOI 10.1126/science.3753802 Guimaraes P, 2006, P NATL ACAD SCI USA, V103, P14246, DOI 10.1073/pnas.0606891103 Haggard M, 1978, Br J Audiol, V12, P105, DOI 10.3109/03005367809078862 HENDERSON VW, 1994, ARCH NEUROL-CHICAGO, V51, P896 Hewitt SC, 2003, REPRODUCTION, V125, P143, DOI 10.1530/rep.0.1250143 JERGER J, 1988, EAR HEARING, V9, P168, DOI 10.1097/00003446-198808000-00002 JUSTICE MJ, 1990, GENETICS, V125, P855 KATO S, 1995, SCIENCE, V270, P1491, DOI 10.1126/science.270.5241.1491 Kilicdag EB, 2004, AM J OBSTET GYNECOL, V190, P77, DOI 10.1016/j.ajpg.2003.06.001 Kim SH, 2002, OBSTET GYNECOL, V99, P726, DOI 10.1016/S0029-7844(02)01963-4 Kimura M, 2003, CIRC RES, V93, P1267, DOI 10.1161/01.RES.0000103172.98986.25 KLEINHITPASS L, 1986, CELL, V46, P1053, DOI 10.1016/0092-8674(86)90705-1 Korach KS, 1996, RECENT PROG HORM RES, V51, P159 Koss WA, 2004, HORM BEHAV, V46, P158, DOI 10.1016/j.yhbeh.2004.02.011 Krege JH, 1998, P NATL ACAD SCI USA, V95, P15677, DOI 10.1073/pnas.95.26.15677 KRUST A, 1986, EMBO J, V5, P891 Kuiper GGJM, 1996, P NATL ACAD SCI USA, V93, P5925, DOI 10.1073/pnas.93.12.5925 Laflamme N, 1998, J NEUROBIOL, V36, P357, DOI 10.1002/(SICI)1097-4695(19980905)36:3<357::AID-NEU5>3.0.CO;2-V Levallet J, 1998, BIOL REPROD, V58, P919, DOI 10.1095/biolreprod58.4.919 Losel RM, 2003, PHYSIOL REV, V83, P965, DOI 10.1152/physrev.00003.2003 LUBAHN DB, 1993, P NATL ACAD SCI USA, V90, P11162, DOI 10.1073/pnas.90.23.11162 MACLUSKY NJ, 1985, PSYCHONEUROENDOCRINO, V10, P355, DOI 10.1016/0306-4530(85)90013-7 Makela S, 2000, MOL CELL ENDOCRINOL, V164, P109, DOI 10.1016/S0303-7207(00)00233-1 McFadden D, 1999, J ACOUST SOC AM, V105, P2403, DOI 10.1121/1.426845 McFadden D, 1998, J ACOUST SOC AM, V104, P1555, DOI 10.1121/1.424366 McFadden D, 2000, HEARING RES, V142, P23, DOI 10.1016/S0378-5955(00)00002-2 MCFADDEN D, 1993, P NATL ACAD SCI USA, V90, P11900, DOI 10.1073/pnas.90.24.11900 McKenna NJ, 1999, ENDOCR REV, V20, P321, DOI 10.1210/er.20.3.321 Meltser I, 2008, J CLIN INVEST, V118, P1563, DOI 10.1172/JCI32796 Melvin VS, 2004, J BIOL CHEM, V279, P14763, DOI 10.1074/jbc.M313335200 MENASCE LP, 1993, GENOMICS, V17, P263, DOI 10.1006/geno.1993.1320 Merchenthaler I, 2004, J COMP NEUROL, V473, P270, DOI 10.1002/cne.20128 METZGER D, 1988, NATURE, V334, P31, DOI 10.1038/334031a0 Mitra SW, 2003, ENDOCRINOLOGY, V144, P2055, DOI 10.1210/en.2002-221069 Mosselman S, 1996, FEBS LETT, V392, P49, DOI 10.1016/0014-5793(96)00782-X Ogawa S, 2003, ENDOCRINOLOGY, V144, P230, DOI 10.1210/en.2002-220519 Paech K, 1997, SCIENCE, V277, P1508, DOI 10.1126/science.277.5331.1508 PAGANINIHILL A, 1995, PROG CARDIOVASC DIS, V38, P223, DOI 10.1016/S0033-0620(95)80014-X PONGLIKITMONGKOL M, 1988, EMBO J, V7, P3385 Rapp SR, 2003, JAMA-J AM MED ASSOC, V289, P2663, DOI 10.1001/jama.289.20.2663 Reid G, 2002, CELL MOL LIFE SCI, V59, P821, DOI 10.1007/s00018-002-8470-2 Remage-Healey L, 2008, NAT NEUROSCI, V11, P1327, DOI 10.1038/nn.2200 Sentis S, 2005, MOL ENDOCRINOL, V19, P2671, DOI 10.1210/me.2005-0042 Shughure PJ, 1998, STEROIDS, V63, P498, DOI 10.1016/S0039-128X(98)00054-3 SIMERLY RB, 1990, J COMP NEUROL, V294, P76, DOI 10.1002/cne.902940107 Sisneros JA, 2004, SCIENCE, V305, P404, DOI 10.1126/science.1097218 Skafar DF, 2008, ENDOCRINE, V33, P1, DOI 10.1007/s12020-008-9054-1 SOHRABJI F, 1995, P NATL ACAD SCI USA, V92, P11110, DOI 10.1073/pnas.92.24.11110 Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 Thompson SK, 2006, OTOLARYNG HEAD NECK, V135, P100, DOI 10.1016/j.otohns.2006.02.004 Tremblay GB, 1997, MOL ENDOCRINOL, V11, P353, DOI 10.1210/me.11.3.353 WALTER P, 1985, P NATL ACAD SCI USA, V82, P7889, DOI 10.1073/pnas.82.23.7889 WHARTON JA, 1990, AUDIOLOGY, V29, P196 WHITE R, 1987, MOL ENDOCRINOL, V1, P735 Zandi PP, 2002, JAMA-J AM MED ASSOC, V288, P2123, DOI 10.1001/jama.288.17.2123 NR 72 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 8 PY 2009 VL 252 IS 1-2 BP 71 EP 78 DI 10.1016/j.heares.2008.12.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471ME UT WOS:000268061000011 PM 19450435 ER PT J AU Miranda, JA Wilczynski, W AF Miranda, Jason A. Wilczynski, Walter TI Sex differences and androgen influences on midbrain auditory thresholds in the green treefrog, Hyla cinerea SO HEARING RESEARCH LA English DT Article DE Sensory processing; Communication; Testosterone; Vocalization; Auditory plasticity; Torus semicircularis ID FROG RANA-ESCULENTA; NEOTROPICAL FROG; ACOUSTIC COMMUNICATION; ANURAN AMPHIBIANS; NERVOUS-SYSTEM; CALL PATTERNS; FEMALE ANURAN; ELECTRIC FISH; CRICKET FROGS; PLASTICITY AB Reproductive hormones can modulate communication-evoked behavior by acting on neural systems associated with motivation; however, recent evidence suggests that modulation occurs at the sensory processing level as well. The anuran auditory midbrain processes communication stimuli, and is sensitive to steroid hormones. Using multiunit electrophysiology, we tested whether sex and circulating testosterone influence auditory sensitivity to pure tones and to the natural vocalization in the green treefrog, Hyla cinerea. Sex did not influence audiogram best frequencies although sexes did differ in the sensitivities at those frequencies with males more sensitive in the lower frequency range. Females were more sensitive than males in response to the natural vocalization, despite showing no difference in response to pure tones at frequencies found within the advertisement call. Thresholds to frequencies outside the range of the male advertisement call were higher in females. Additionally, circulating testosterone increased neural thresholds in females in a frequency-specific manner. These results demonstrate that sex differences are limited to frequency ranges that relate to the processing of natural vocalizations, and depend on the type of stimulus. The frequency-dependent and stimulus-dependent nature of sex and testosterone influences suggests that reproductive hormones influence the filtering properties of the auditory system. (C) 2009 Elsevier B.V. All rights reserved. C1 [Miranda, Jason A.; Wilczynski, Walter] Univ Texas Austin, Inst Neurosci, Austin, TX 78712 USA. RP Miranda, JA (reprint author), Emory Univ, Dept Biol, 1510 Clifton Rd,Room 2006, Atlanta, GA 30322 USA. EM jason.miranda@emory.edu; wwilczynski@gsu.edu RI Miranda, Jason/B-8043-2009 OI Miranda, Jason/0000-0002-1459-2022 FU NIGMS [F31 GM66547]; NIH [RO1 MH057066] FX This research was supported by NIGMS F31 GM66547 (JAM) and NIH RO1 MH057066 (WW). CR Ball GF, 2002, FRONT NEUROENDOCRIN, V23, P137, DOI 10.1006/frne.2002.0230 Burmeister S, 2000, HORM BEHAV, V38, P201, DOI 10.1006/hbeh.2000.1605 Burmeister SS, 2001, HORM BEHAV, V40, P550, DOI 10.1006/hbeh.2001.1723 DIMEGLIO M, 1987, GEN COMP ENDOCR, V67, P149, DOI 10.1016/0016-6480(87)90142-0 EHRET G, 1980, J COMP PHYSIOL, V141, P13 Emerson SB, 1996, GEN COMP ENDOCR, V103, P220, DOI 10.1006/gcen.1996.0113 Endepols H, 2003, BEHAV BRAIN RES, V145, P63, DOI 10.1016/S0166-4328(03)00098-6 Feng AS, 2000, ANNU REV PSYCHOL, V51, P699, DOI 10.1146/annurev.psych.51.1.699 GARTON J S, 1975, Herpetologica, V31, P150 GERHARDT HC, 1968, THESIS U TEXAS AUSTI GERHARDT HC, 1976, NATURE, V261, P692, DOI 10.1038/261692a0 GERHARDT HC, 1974, J EXP BIOL, V61, P229 Gobbetti A, 1999, J NEUROENDOCRINOL, V11, P589 Goense JBM, 2005, J NEUROBIOL, V65, P22, DOI 10.1002/neu.20172 Guerriero G, 2005, ANN NY ACAD SCI, V1040, P332, DOI 10.1196/annals.1327.054 Harvey LA, 1997, GEN COMP ENDOCR, V105, P102, DOI 10.1006/gcen.1996.6805 HILLERY CM, 1984, COPEIA, V844, P852 Hoke KL, 2008, BIOL LETTERS, V4, P518, DOI 10.1098/rsbl.2008.0192 KEDDYHECTOR AC, 1992, BRAIN BEHAV EVOLUT, V39, P238, DOI 10.1159/000114121 KELLEY DB, 1980, SCIENCE, V207, P553, DOI 10.1126/science.7352269 LOMBARD RE, 1974, J EXP BIOL, V61, P71 Lynch KS, 2005, ANIM BEHAV, V69, P689, DOI 10.1016/j.anbehav.2004.06.016 Lynch KS, 2006, HORM BEHAV, V50, P101, DOI 10.1016/j.yhbeh.2006.01.010 Lynch KS, 2005, GEN COMP ENDOCR, V143, P51, DOI 10.1016/j.ygcen.2005.02.023 McClelland BE, 1997, J COMP PHYSIOL A, V180, P451, DOI 10.1007/s003590050062 Medina MF, 2004, GEN COMP ENDOCR, V136, P143, DOI 10.1016/j.ygcen.2003.11.013 MEGELASIMMONS A, 1985, J ACOUST SOC AM, V78, P1236, DOI 10.1121/1.392892 NARINS PM, 1976, SCIENCE, V192, P378, DOI 10.1126/science.1257772 PENNA M, 1992, J COMP PHYSIOL A, V170, P73 ROSE G, 1983, SCIENCE, V219, P1087, DOI 10.1126/science.6600522 ROSE GJ, 1985, J NEUROPHYSIOL, V53, P446 Rose GJ, 2007, SPR HDB AUD, V28, P250 SHOFNER WP, 1981, J EXP BIOL, V93, P181 Sisneros JA, 2004, SCIENCE, V305, P404, DOI 10.1126/science.1097218 Smotherman MS, 2000, J EXP BIOL, V203, P2237 Stoddard PK, 2006, J COMP PHYSIOL A, V192, P613, DOI 10.1007/s00359-006-0101-1 Vassilakis PN, 2004, J ACOUST SOC AM, V116, P3713, DOI 10.1121/1.1811571 WALKOWIAK W, 1980, J COMP PHYSIOL, V138, P131 WILCZYNSKI W, 1984, J COMP PHYSIOL, V155, P577, DOI 10.1007/BF00610843 Wilczynski W, 2007, SPR HDB AUD, V28, P221 WILCZYNSKI W, 1984, PROG NEUROBIOL, V22, P1, DOI 10.1016/0301-0082(84)90016-9 WILCZYNSKI W, 1993, J COMP PHYSIOL A, V172, P425, DOI 10.1007/BF00213524 Wilczynski W, 2005, HORM BEHAV, V48, P440, DOI 10.1016/j.yhbeh.2005.06.001 WILCZYNSKI W, 1992, BRAIN BEHAV EVOLUT, V39, P229, DOI 10.1159/000114120 Wollerman L, 2002, ANIM BEHAV, V63, P15, DOI 10.1006/anbe.2001.1885 Wollerman L, 1999, ANIM BEHAV, V57, P529, DOI 10.1006/anbe.1998.1013 Woolley SMN, 2006, J NEUROSCI, V26, P2499, DOI 10.1523/JNEUROSCI.3731-05.2006 YOVANOF S, 1983, NEUROSCI LETT, V36, P291, DOI 10.1016/0304-3940(83)90015-0 ZAKON HH, 1987, TRENDS NEUROSCI, V10, P416, DOI 10.1016/0166-2236(87)90012-9 NR 49 TC 16 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN 8 PY 2009 VL 252 IS 1-2 BP 79 EP 88 DI 10.1016/j.heares.2009.04.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 471ME UT WOS:000268061000012 PM 19371774 ER PT J AU Shub, DE Richards, VM AF Shub, Daniel E. Richards, Virginia M. TI Psychophysical spectro-temporal receptive fields in an auditory task SO HEARING RESEARCH LA English DT Article DE Human; Informational-masking; Psychophysical weights ID MULTIPLE-OBSERVATION TASKS; CORRELATION-COEFFICIENTS; INFORMATIONAL MASKING; DECISION WEIGHTS; SIGNAL-DETECTION; INTERNAL NOISE; REACTION-TIME; DETECTABILITY; HEARING; NEURONS AB Psychophysical relative weighting functions, which provide information about the importance of different regions of a stimulus in forming decisions, are traditionally estimated using trial-based procedures, where a single stimulus is presented and a single response is recorded. Everyday listening is much more "free-running" in that we often must detect randomly occurring signals in the presence of a continuous background. Psychophysical relative weighting functions have not been measured with free-running paradigms. Here, we combine a free-running paradigm with the reverse correlation technique used to estimate physiological spectro-temporal receptive fields (STRFs) to generate psychophysical relative weighting functions that are analogous to physiological STRFs. The psychophysical task required the detection of a fixed target signal (a sequence of spectro-temporally coherent tone pips with a known frequency) in the presence of a continuously presented informational masker (spectro-temporally random tone pips). A comparison of psychophysical relative weighting functions estimated with the current free-running paradigm and trial-based paradigms, suggests that in informational-masking tasks subjects' decision strategies are similar in both free-running and trial-based paradigms. For more cognitively challenging tasks there may be differences in the decision strategies with free-running and trial-based paradigms. (C) 2009 Elsevier B.V. All rights reserved. C1 [Shub, Daniel E.; Richards, Virginia M.] Univ Penn, Dept Psychol, Philadelphia, PA 19104 USA. RP Shub, DE (reprint author), Univ Penn, Dept Psychol, 3451 Walnut St, Philadelphia, PA 19104 USA. EM dshub@sas.upenn.edu FU NIH [DC02012] FX This research was supported by NIH DC02012 and the University of Pennsylvania School of Arts and Sciences Cass term chair funds (Richards). The authors thank Dr. Yi Zhou and two anonymous reviewers for helpful comments on a previous version of this manuscript. CR AHUMADA A, 1975, J ACOUST SOC AM, V57, P385, DOI 10.1121/1.380453 Ahumada AJ, 2002, J VISION, V2, P121, DOI 10.1167/2.1.8 AHUMADA A, 1971, J ACOUST SOC AM, V49, P1751, DOI 10.1121/1.1912577 Alexander JM, 2004, J ACOUST SOC AM, V116, P2234, DOI 10.1121/1.1784437 Berg BG, 2004, J ACOUST SOC AM, V115, P822, DOI 10.1121/1.1639904 BERG BG, 1989, J ACOUST SOC AM, V86, P1743, DOI 10.1121/1.398605 DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561 Dye RH, 2005, J ACOUST SOC AM, V117, P3079, DOI 10.1121/1.1861832 EGAN JP, 1961, J ACOUST SOC AM, V33, P993, DOI 10.1121/1.1908935 EMMERICH DS, 1976, PERCEPT PSYCHOPHYS, V20, P210, DOI 10.3758/BF03198603 Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 Green D. M., 1988, PROFILE ANAL AUDITOR Gutschalk A, 2008, PLOS BIOL, V6, P1156, DOI 10.1371/journal.pbio.0060138 Huang R, 2008, J ACOUST SOC AM, V124, P3831, DOI 10.1121/1.2967827 LUTFI RA, 1995, J ACOUST SOC AM, V97, P1333, DOI 10.1121/1.412177 Oh EL, 1998, J ACOUST SOC AM, V104, P3489, DOI 10.1121/1.423932 PFINGST BE, 1975, J ACOUST SOC AM, V57, P421, DOI 10.1121/1.380465 Richards VM, 2006, J ACOUST SOC AM, V119, P1574, DOI 10.1121/1.2165001 RICHARDS VM, 1994, J ACOUST SOC AM, V95, P423, DOI 10.1121/1.408336 Theunissen FE, 2000, J NEUROSCI, V20, P2315 WATSON CS, 1976, J ACOUST SOC AM, V59, P655, DOI 10.1121/1.380915 Wu MCK, 2006, ANNU REV NEUROSCI, V29, P477, DOI 10.1146/annurev.neuro.29.051605.113024 NR 22 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2009 VL 251 IS 1-2 BP 1 EP 9 DI 10.1016/j.heares.2009.02.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 447LT UT WOS:000266193300001 PM 19249339 ER PT J AU Job, A Raynal, M Kossowski, M Studler, M Ghernaouti, C Baffioni-Venturi, A Roux, A Darolles, C Guelorget, A AF Job, A. Raynal, M. Kossowski, M. Studler, M. Ghernaouti, C. Baffioni-venturi, A. Roux, A. Darolles, C. Guelorget, A. TI Otoacoustic detection of risk of early hearing loss in ears with normal audiograms: A 3-year follow-up study SO HEARING RESEARCH LA English DT Article DE DPOAEs; Biomarkers; Noise-induced; Hearing loss; Vulnerability; Prevention; Public health ID EMISSION INPUT/OUTPUT FUNCTIONS; TEST-PERFORMANCE; OTITIS-MEDIA; PHYSIOLOGICAL VULNERABILITY; GUINEA-PIG; TYMPANOMETRY; AUDIOMETRY; HUMANS; REFLEX; ADULTS AB Introduction: Distortion product otoacoustic emissions (DPOAEs) are known to represent the contractile amplifier function of cochlear outer hair cells. It is known that low or absent DPOAEs are associated with hearing loss on audiograms. However, low DPOAEs can also be found associated with normal audiograms. It is unknown whether low DPOAEs in normal hearing ears are risk markers for subsequent early hearing loss when subjects are exposed to noise. Materials and methods: A 3-year follow-up study was carried out on a population of pilots aged 20-40 years (n = 521). Data collection consisted of tonal audiograms, DPOAEs measurements with a calculation of an index of abnormality (the IaDPOAE). Of the 521 pilots enrolled, 350 (67%) had follow-up data 3 years later. In pilots with normal audiograms (n = 219, all frequencies = 10 dB HL), we observed the occurrence of hearing threshold shifts after 3 years depending on whether the IaDPOAE was initially high (group 1) or low (group 2). We used this index to test the hypothesis that reduced DPOAEs levels are potential ear vulnerability biomarkers in apparent normal hearing ears. Results: After a 3-year follow-up, the initial IaDPOAE in normal hearing subjects was correlated with final noise-induced hearing threshold shifts at high frequencies (p < 0.01). The occurrence of abnormal audiograms was significantly higher in group 1 compared to group 2 (p = 0.003). In group 1, 13% of audiograms were found with at least one frequency >= 25 dB HL compared to 3% of audiograms in group 2. In both groups, impairments occurred at high frequencies and hearing in the 4 kHz frequency range was significantly more impaired in group 1 (p = 0.035). Group 1 was associated with a relative risk of 2.29 (95% CI 1.26-4.16, p = 0.005) of sustaining early hearing loss. There was no significant differences between groups for age and noise exposure. Discussion: In adults with a normal audiogram, ear vulnerability to noise could be elicited by the use of objective DPOAE measurements. A high IaDPOAE that corresponded to reduced DPOAE levels constitutes a risk for early hearing loss. This study emphasised the interest of DPOAE measurements in public health and occupational noise prevention policies. The IaDPOAE calculation may also be interesting for clinicians because no DPOAE index of abnormality is currently available. (C) 2009 Elsevier B.V. All rights reserved. C1 [Job, A.; Baffioni-venturi, A.; Roux, A.; Darolles, C.; Guelorget, A.] CRSSA, F-38702 La Tronche, France. [Raynal, M.; Kossowski, M.; Studler, M.; Ghernaouti, C.] Hop Instruct Armees Percy, CPEMPN, F-92141 Clamart, France. RP Job, A (reprint author), CRSSA, 24 Ave Maquis Gresivaudan,BP 87, F-38702 La Tronche, France. EM ajob.crssa@gmail.com RI JOB, Agnes/L-3158-2014 OI JOB, Agnes/0000-0001-6764-284X FU DCSSA/AST/REC [2007_RC_10] FX Particular thanks to Pr Dan Frost for proofreading the manuscript. CR Avan P, 2005, HEARING RES, V209, P68, DOI 10.1016/j.heares.2005.06.008 AVAN P, 1990, HEARING RES, V44, P151, DOI 10.1016/0378-5955(90)90077-3 Cianfrone G, 2000, SCAND AUDIOL, V29, P111, DOI 10.1080/010503900424525 Dorn PA, 2001, J ACOUST SOC AM, V110, P3119, DOI 10.1121/1.1417524 Dorn PA, 1999, EAR HEARING, V20, P149, DOI 10.1097/00003446-199904000-00006 Gorga MP, 2002, J ACOUST SOC AM, V111, P271, DOI 10.1121/1.1426372 Gorga MP, 2003, J ACOUST SOC AM, V113, P3275, DOI 10.1121/1.1570433 Gorga MP, 1999, EAR HEARING, V20, P345, DOI 10.1097/00003446-199908000-00007 Gorga MP, 1997, EAR HEARING, V18, P440, DOI 10.1097/00003446-199712000-00003 Gorga MP, 2000, J ACOUST SOC AM, V107, P2128, DOI 10.1121/1.428494 GREISEN O, 1975, ARCH OTOLARYNGOL, V101, P348 HARRIS FP, 1990, J SPEECH HEAR RES, V33, P594 Janssen T, 2006, ORL J OTO-RHINO-LARY, V68, P334, DOI 10.1159/000095275 Job A, 2002, HEARING RES, V167, P28, DOI 10.1016/S0378-5955(02)00330-1 Job A, 1999, LANCET, V353, P35, DOI 10.1016/S0140-6736(98)04216-0 Job A, 2007, TOXICOLOGY, V238, P119, DOI 10.1016/j.tox.2007.05.024 Johnson TA, 2007, J ACOUST SOC AM, V122, P3539, DOI 10.1121/1.2799474 KAZANAS SG, 1994, ACTA OTO-LARYNGOL, V114, P410, DOI 10.3109/00016489409126079 KEMP DT, 1990, EAR HEARING, V11, P93 Lataye R, 2003, NEUROTOXICOL TERATOL, V25, P39, DOI 10.1016/S0892-0362(02)00326-4 Lukashkin AN, 2002, J ACOUST SOC AM, V111, P2740, DOI 10.1121/1.1479151 Lutman ME, 1999, AUDIOLOGY, V38, P263 Mom T, 1999, HEARING RES, V136, P65, DOI 10.1016/S0378-5955(99)00109-4 Nagy Attila L, 2002, Int Tinnitus J, V8, P94 Neely ST, 2003, J ACOUST SOC AM, V114, P1499, DOI 10.1121/1.1604122 RENVALL U, 1976, ANN OTO RHINOL LARYN, V85, P209 Shiomi Y, 1997, HEARING RES, V108, P83, DOI 10.1016/S0378-5955(97)00043-9 Sisto R, 2007, J ACOUST SOC AM, V122, P387, DOI 10.1121/1.2737668 Stover L, 1996, J ACOUST SOC AM, V100, P956, DOI 10.1121/1.416207 Swanepoel DW, 2006, INT J PEDIATR OTORHI, V70, P1241, DOI 10.1016/j.ijporl.2006.01.002 Tsui PWY, 2008, CLIN OTOLARYNGOL, V33, P108, DOI 10.1111/j.1749-4486.2008.01663.x Uchida Y, 2008, EAR HEARING, V29, P176 van Dijk P, 2003, J ACOUST SOC AM, V114, P2044, DOI 10.1121/1.1608957 Wagner W, 2005, LARYNGOSCOPE, V115, P2021, DOI 10.1097/01.MLG.0000181463.16591.A7 Wagner WG, 2008, EAR HEARING, V29, P378, DOI 10.1097/AUD.0b013e31816906e7 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 Xu Z, 2005, B-ENT, V1, P11 NR 37 TC 17 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2009 VL 251 IS 1-2 BP 10 EP 16 DI 10.1016/j.heares.2009.02.008 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 447LT UT WOS:000266193300002 PM 19249340 ER PT J AU Turcanu, D Dalhoff, E Muller, M Zenner, HP Gummer, AW AF Turcanu, Diana Dalhoff, Ernst Mueller, Marcus Zenner, Hans-Peter Gummer, Anthony W. TI Accuracy of velocity distortion product otoacoustic emissions for estimating mechanically based hearing loss SO HEARING RESEARCH LA English DT Article DE Otoacoustic emissions; Estimated DPOAE threshold; Objective hearing threshold estimation; Differential diagnostic; Age-related hearing loss ID AUDITORY BRAIN-STEM; PURE-TONE THRESHOLDS; MIDDLE-EAR FUNCTION; OUTER HAIR-CELLS; GUINEA-PIGS; CLINICAL UTILITY; GROWTH-BEHAVIOR; NERVE-FIBERS; INPUT/OUTPUT FUNCTIONS; COCHLEAR DISORDERS AB Distortion product otoacoustic emissions (DPOAEs) measured as vibration of the human eardrum have been successfully used to estimate hearing threshold. The estimates have proved more accurate than similar methods using sound-pressure DPOAEs. Nevertheless, the estimation accuracy of the new technique might have been influenced by endogenous noise, such as heart beat, breathing and swallowing. Here, we investigate in an animal model to what extent the accuracy of the threshold estimation technique using velocity-DPOAEs might be improved by reducing noise sources. Velocity-DPOAE I/O functions were measured in normal and hearing-impaired anaesthetized guinea pigs. Hearing loss was either conductive or induced by furosemide injection. The estimated distortion product threshold (EDPT) obtained by extrapolation of the I/O function to the abscissa was found to linearly correlate with the compound action potential threshold at the f(2) frequency, provided that furosemide data were excluded. The standard deviation of the linear regression fit was 6 dB as opposed to 8 dB in humans, suggesting that this accuracy should be achievable in humans with appropriate improvement of signal-to-noise ratio. For the furosemide animals, the CAP threshold relative to the regression line provided an estimate of the functional loss of the inner hair cell system. For mechanical losses in the middle ear and/or cochlear amplifier, DPOAEs measured as velocity of the umbo promise an accuracy of hearing threshold estimation comparable to classical audiometry. (C) 2009 Elsevier B.V. All rights reserved. C1 [Turcanu, Diana; Dalhoff, Ernst; Mueller, Marcus; Zenner, Hans-Peter; Gummer, Anthony W.] Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, D-72076 Tubingen, Germany. RP Gummer, AW (reprint author), Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany. EM diana.turcanu@uni-tuebingen.de; ernst.dalhoff@web.de; marcus.mueller@uni-tuebingen.de; hans-peter.zenner@med.uni-tuebingen.de; anthony.gummer@uni-tuebingen.de CR Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 BROWN AM, 1990, J ACOUST SOC AM, V88, P840, DOI 10.1121/1.399733 Dai C, 2008, HEARING RES, V243, P78, DOI 10.1016/j.heares.2008.05.010 Dalhoff E, 2007, P NATL ACAD SCI USA, V104, P1546, DOI 10.1073/pnas.0610185103 DALLOS P, 1992, J NEUROSCI, V12, P4575 DAVIS H, 1965, COLD SPRING HARB SYM, V30, P181 EVANS EF, 1982, J PHYSIOL-LONDON, V331, P409 Forge A, 1982, Br J Audiol, V16, P109, DOI 10.3109/03005368209081455 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 Frank G, 1997, HEARING RES, V113, P57, DOI 10.1016/S0378-5955(97)00131-7 Gan RZ, 2006, J ACOUST SOC AM, V120, P3799, DOI 10.1121/1.2372451 Gehr DD, 2004, HEARING RES, V193, P9, DOI 10.1016/j.heares.2004.03.018 Gorga MP, 2006, EAR HEARING, V27, P60, DOI 10.1097/01.aud.0000194511.14740.9c Gorga MP, 2003, J ACOUST SOC AM, V113, P3275, DOI 10.1121/1.1570433 GORGA MP, 1993, J ACOUST SOC AM, V93, P2050, DOI 10.1121/1.406691 Harris Jeffrey P, 2002, Ann Otol Rhinol Laryngol, V111, P246 HAYES D, 1982, SCAND AUDIOL, V11, P133, DOI 10.3109/01050398209076210 HE NJ, 1993, J ACOUST SOC AM, V94, P2659, DOI 10.1121/1.407350 Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022 Ingham NJ, 1998, ACTA OTO-LARYNGOL, V118, P673 Janssen T, 2005, J ACOUST SOC AM, V117, P2969, DOI 10.1121/1.1853101 Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053 Johnson TA, 2007, J ACOUST SOC AM, V122, P3539, DOI 10.1121/1.2799474 JORGE JR, 2000, THESIS EBERHARD KARL KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223 Kennedy HJ, 2006, J NEUROSCI, V26, P2757, DOI 10.1523/JNEUROSCI.3808-05.2006 KIMBERLEY BP, 1994, EAR HEARING, V15, P199, DOI 10.1097/00003446-199406000-00001 KIMBERLEY BP, 1989, J OTOLARYNGOL, V18, P365 Kummer P, 2006, HNO, V54, P457, DOI 10.1007/s00106-005-1341-z Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 Kummer P, 2000, HEARING RES, V146, P47, DOI 10.1016/S0378-5955(00)00097-6 KUSAKARI J, 1978, LARYNGOSCOPE, V88, P12 Le Calvez S, 1998, HEARING RES, V120, P37, DOI 10.1016/S0378-5955(98)00050-1 LONSBURYMARTIN BL, 1990, EAR HEARING, V11, P144 MANLEY GA, 1974, J ACOUST SOC AM, V56, P571, DOI 10.1121/1.1903292 Martin G K, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P30 Martin P, 1999, P NATL ACAD SCI USA, V96, P14306, DOI 10.1073/pnas.96.25.14306 Mauermann M, 2004, J ACOUST SOC AM, V116, P2199, DOI 10.1121/1.1791719 Michaelis CE, 2004, HEARING RES, V189, P58, DOI 10.1016/S0378-5955(03)00373-3 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 Mills DM, 2006, EAR HEARING, V27, P508, DOI 10.1097/01.aud.0000233885.02706.ad Mills DM, 2004, JARO-J ASSOC RES OTO, V5, P1, DOI 10.1007/s10162-4004-3 Mills DM, 2003, J ACOUST SOC AM, V113, P914, DOI 10.1121/1.1535942 MUNNERLEY GM, 1991, AUDIOLOGY, V30, P25 Nakajima HH, 2005, LARYNGOSCOPE, V115, P147, DOI 10.1097/01.mlg.0000150692.23506.b7 Nakajima HH, 2005, HEARING RES, V204, P60, DOI 10.1016/j.heares.2005.01.002 NELSON DA, 1992, J SPEECH HEAR RES, V35, P1142 Nozawa I, 1996, LARYNGOSCOPE, V106, P1034, DOI 10.1097/00005537-199608000-00024 ODENTHAL DW, 1974, ACTA OTO-LARYNGOL, P62 PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PESTALOZZA G, 1957, Laryngoscope, V67, P1113 PIKE DA, 1980, HEARING RES, V3, P79, DOI 10.1016/0378-5955(80)90009-X PROBST R, 1990, AM J OTOLARYNG, V11, P236, DOI 10.1016/0196-0709(90)90083-8 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Proctor TB, 1998, AM J OTOL, V19, P226 Purdy SC, 2002, EAR HEARING, V23, P358, DOI 10.1097/01.AUD.0000027433.32822.3E Ravicz ME, 2004, HEARING RES, V195, P103, DOI 10.1016/j.heares.2004.05.010 Reuter K, 2006, J ACOUST SOC AM, V120, P270, DOI 10.1121/1.2205130 ROBLES L, 1991, NATURE, V349, P413, DOI 10.1038/349413a0 Rodriguez Jorge J, 1997, HNO, V45, P997, DOI 10.1007/s001060050185 Rosowski JJ, 2008, EAR HEARING, V29, P3 RUBSAMEN R, 1995, J NEUROPHYSIOL, V74, P1628 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 Schmuziger N, 2006, J ACOUST SOC AM, V119, P1937, DOI 10.1121/1.2180531 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 SEWELL WF, 1984, HEARING RES, V15, P69, DOI 10.1016/0378-5955(84)90226-0 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83 STAPELLS DR, 1995, EAR HEARING, V16, P361, DOI 10.1097/00003446-199508000-00003 TIELEMANS JLM, 2001, THESIS EBERHARD KARL Turcanu D, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P223, DOI 10.1142/9789812833785_0035 Turcanu D, 2007, HNO, V55, P930, DOI 10.1007/s00106-007-1582-0 VANDERDRIFT JFC, 1987, AUDIOLOGY, V26, P1 VETESNIK A, 2008, ABST ASS RES OTOLARY, V31, P233 Wada H, 2002, J ACOUST SOC AM, V111, P2189, DOI 10.1121/1.1467671 Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0 Withnell RH, 2003, HEARING RES, V178, P106, DOI 10.1016/S0378-5955(03)00064-9 Wysocki J, 2005, HEARING RES, V199, P103, DOI 10.1016/j.heares.2004.08.008 ZWISLOCKI J, 1963, J ACOUST SOC AM, V35, P1034, DOI 10.1121/1.1918650 NR 82 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2009 VL 251 IS 1-2 BP 17 EP 28 DI 10.1016/j.heares.2009.02.005 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 447LT UT WOS:000266193300003 PM 19233253 ER PT J AU Bohorquez, A Hurley, LM AF Bohorquez, Alexander Hurley, Laura M. TI Activation of serotonin 3 receptors changes in vivo auditory responses in the mouse inferior colliculus SO HEARING RESEARCH LA English DT Article DE Serotonin; Neuromodulation; 5-HT3 receptor; Inferior colliculus ID CENTRAL-NERVOUS-SYSTEM; FREELY MOVING CATS; 5-HT3 RECEPTORS; RAT-BRAIN; ULTRASONIC VOCALIZATIONS; NEUROTRANSMITTER RELEASE; GABAERGIC INHIBITION; SPECTRAL INTEGRATION; MODULATES RESPONSES; FREQUENCY-RESPONSE AB Metabotropic serotonin receptors such as 5-HT1A and 5-HT1B receptors shape the level, selectivity, and timing of auditory responses in the inferior colliculus (IC). Less is known about the effects of ionotropic 5-HT3 receptors, which are cation channels that depolarize neurons. In the present study, the influence of the 5-HT3 receptor on auditory responses in vivo was explored by locally iontophoresing a 5-HT3 receptor agonist and antagonists onto single neurons recorded extracellularly in mice. Three main findings emerge from these experiments. First, activation of the 5-HT3 receptor can either facilitate or suppress auditory responses, but response suppressions are not consistent with 5-HT3 effects on presynaptic GABAergic neurons. Both response facilitations and suppressions are less pronounced in neurons with high precision in response latency, suggesting functional differences in the role of receptor activation for different classes of neuron. Finally, the effects of 5-HT3 activation vary across repetition rate within a subset of single neurons, suggesting that the influence of receptor activation sometimes varies with the level of activity. These findings contribute to the view of the 5-HT3 receptor as an important component of the serotonergic infrastructure in the IC, with effects that are complex and neuron-selective. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bohorquez, Alexander; Hurley, Laura M.] Indiana Univ, Dept Biol, Ctr Integrat Study Anim Behav, Program Neurosci, Bloomington, IN 47405 USA. RP Hurley, LM (reprint author), Indiana Univ, Dept Biol, Ctr Integrat Study Anim Behav, Program Neurosci, 1001 E 3rd St, Bloomington, IN 47405 USA. EM lhurley@indiana.edu FU National Institute of Deafness and Other Communication Disorders [DC-006608] FX The authors thank Kristin Harris for assistance in data analysis. These experiments were funded in part by National Institute of Deafness and Other Communication Disorders Grant DC-006608 plus supplement 02S1. CR AKASU T, 1987, BRIT J PHARMACOL, V91, P453 Alkadhi KA, 1996, J PHYSIOL-LONDON, V496, P479 BENNETTCLARKE CA, 1993, P NATL ACAD SCI USA, V90, P153, DOI 10.1073/pnas.90.1.153 Bibikov NG, 2008, HEARING RES, V241, P43, DOI 10.1016/j.heares.2008.04.008 BOUTELLE MG, 1990, J NEUROSCI METH, V34, P151, DOI 10.1016/0165-0270(90)90053-I Butt CM, 2002, BRAIN RES, V931, P21, DOI 10.1016/S0006-8993(01)03370-4 CAMPBELL MJ, 1987, J COMP NEUROL, V261, P209, DOI 10.1002/cne.902610204 CHALMERS DT, 1991, BRAIN RES, V561, P51, DOI 10.1016/0006-8993(91)90748-K Chameau P, 2006, CELL TISSUE RES, V326, P573, DOI 10.1007/s00441-006-0255-8 CHEN QC, 1994, BRAIN RES, V654, P155, DOI 10.1016/0006-8993(94)91582-2 Choi IS, 2007, J NEUROCHEM, V103, P2342, DOI 10.1111/j.1471-4159.2007.04945.x CLEMENT HW, 1993, BRAIN RES, V614, P117, DOI 10.1016/0006-8993(93)91024-M Clement HW, 1998, J NEURAL TRANSM, V105, P1155, DOI 10.1007/s007020050119 Debarbieux F, 1998, J NEUROPHYSIOL, V79, P2911 DeFelipe J, 1991, CEREB CORTEX, V1, P117, DOI 10.1093/cercor/1.2.117 Ehret G, 2003, NEUROREPORT, V14, P1365, DOI 10.1097/01.wnr.0000078545.07662.85 FUKUDA T, 1991, EUR J PHARMACOL, V196, P299 Gil-Loyzaga P, 2000, ACTA OTO-LARYNGOL, V120, P128 GilLoyzaga P, 1997, NEUROREPORT, V8, P3519, DOI 10.1097/00001756-199711100-00020 Gourbal BEF, 2004, NATURWISSENSCHAFTEN, V91, P381, DOI 10.1007/s00114-004-0543-7 GYERMEK L, 1995, J CLIN PHARMACOL, V35, P845 Hall IC, 2007, HEARING RES, V228, P82, DOI 10.1016/j.heares.2007.01.023 HARLAN R, 2000, ARO ABSTR, V23, P113 HAVEY DC, 1980, ELECTROEN CLIN NEURO, V48, P249, DOI 10.1016/0013-4694(80)90313-2 Holy TE, 2005, PLOS BIOL, V3, P2177, DOI 10.1371/journal.pbio.0030386 HURLEY L, 2001, J COMP NEUROL, V435, P77 Hurley LM, 2008, J NEUROPHYSIOL, V100, P1656, DOI 10.1152/jn.90536.2008 Hurley LM, 1999, J NEUROSCI, V19, P8071 Hurley LM, 2007, BRAIN RES, V1181, P21, DOI 10.1016/j.brainres.2007.08.053 Hurley LM, 2001, J NEUROPHYSIOL, V85, P828 HURLEY LM, 2006, J NEUROPHYSIOL Hurley LM, 2005, J COMP PHYSIOL A, V191, P535, DOI 10.1007/s00359-005-0623-y Jen PHS, 2002, BRAIN RES, V948, P159, DOI 10.1016/S0006-8993(02)03056-1 Johnson SW, 1997, NEUROSCI LETT, V231, P13, DOI 10.1016/S0304-3940(97)00508-9 KAISER A, 1997, 5 HT INNERVATION AUD, P71 KIDD EJ, 1993, BRAIN RES, V612, P289, DOI 10.1016/0006-8993(93)91674-H KILPATRICK GJ, 1990, EUR J PHARMACOL, V182, P193, DOI 10.1016/0014-2999(90)90513-6 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H Koyama S, 2000, J PHYSIOL-LONDON, V529, P373, DOI 10.1111/j.1469-7793.2000.00373.x Koyama S, 2002, LIFE SCI, V72, P375, DOI 10.1016/S0024-3205(02)02280-4 Liu RC, 2003, J ACOUST SOC AM, V114, P3412, DOI 10.1121/1.1623787 MAEDA T, 1994, NEUROSCI RES, V18, P277, DOI 10.1016/0168-0102(94)90163-5 Mas M, 1995, BEHAV BRAIN RES, V71, P69, DOI 10.1016/0166-4328(95)00043-7 Maya-Vetencourt JF, 2008, SCIENCE, V320, P385, DOI 10.1126/science.1150516 Miko IJ, 2009, HEARING RES, V251, P39, DOI 10.1016/j.heares.2009.02.003 Morales M, 1997, J NEUROSCI, V17, P3157 Morales Marisela, 1998, Journal of Comparative Neurology, V402, P385 Nichols RA, 1996, J NEUROCHEM, V67, P581 OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 Peruzzi D, 2004, BRAIN RES, V998, P247, DOI 10.1016/j.brainres.2003.10.059 POMPEIANO M, 1992, J NEUROSCI, V12, P440 Portfors CV, 2005, NEUROSCIENCE, V136, P1159, DOI 10.1016/j.neuroscience.2005.08.031 Portfors CV, 2007, J AM ASSOC LAB ANIM, V46, P28 RASMUSSEN K, 1986, BRAIN RES, V369, P336, DOI 10.1016/0006-8993(86)90546-9 Roerig B, 1997, J NEUROSCI, V17, P8324 Ronde P, 1998, J NEUROCHEM, V70, P1094 ROPERT N, 1991, J PHYSIOL-LONDON, V441, P121 Rosenberg M, 1997, J NEUROSCI, V17, P6629 Schuller G, 1997, J NEUROSCI METH, V71, P187, DOI 10.1016/S0165-0270(96)00142-2 SCHULLER G, 1986, J NEUROSCI METH, V18, P339, DOI 10.1016/0165-0270(86)90022-1 SEPULVEDA MI, 1991, BRIT J PHARMACOL, V104, P536 Sivaramakrishnan S, 2001, J NEUROSCI, V21, P2861 Thompson AM, 2001, BRAIN RES, V907, P195, DOI 10.1016/S0006-8993(01)02483-0 Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9 TO ZP, 1995, BRIT J PHARMACOL, V115, P107 TRULSON ME, 1981, SEROTONIN NEUROTRANS, P339 TRULSON ME, 1979, BRAIN RES, V163, P135, DOI 10.1016/0006-8993(79)90157-4 Turner TJ, 2004, NEUROSCIENCE, V129, P703, DOI 10.1016/j.neuroscience.2004.08.020 van Hooft JA, 2000, TRENDS NEUROSCI, V23, P605, DOI 10.1016/S0166-2236(00)01662-3 WAEBER C, 1994, NEUROPHARMACOLOGY, V33, P527, DOI 10.1016/0028-3908(94)90084-1 WATERHOUSE BD, 1990, BRAIN RES, V514, P276, DOI 10.1016/0006-8993(90)91422-D WILLOTT JF, 1986, BRAIN RES, V386, P105, DOI 10.1016/0006-8993(86)90146-0 WRIGHT DE, 1995, J COMP NEUROL, V351, P357, DOI 10.1002/cne.903510304 Xiang ZX, 2003, J NEUROPHYSIOL, V89, P1278, DOI 10.1152/jn.00533.2002 Xu JH, 2007, CURR OPIN NEUROBIOL, V17, P352, DOI 10.1016/j.conb.2007.04.005 NR 76 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2009 VL 251 IS 1-2 BP 29 EP 38 DI 10.1016/j.heares.2009.02.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 447LT UT WOS:000266193300004 PM 19236912 ER PT J AU Miko, IJ Sanes, DH AF Miko, Ilona J. Sanes, Dan H. TI Transient gain adjustment in the inferior colliculus is serotonin- and calcium-dependent SO HEARING RESEARCH LA English DT Article DE Inferior colliculus; Synaptic plasticity; Serotonin; 5-HT(3) receptor ID CENTRAL AUDITORY-SYSTEM; INTERAURAL PHASE DISPARITY; LATERAL SUPERIOR OLIVE; SHORT-TERM ADAPTATION; BRAIN-STEM; RESPONSE PROPERTIES; RECEPTIVE-FIELDS; CENTRAL NUCLEUS; 5-HT3B SUBUNIT; DORSAL NUCLEUS AB In the inferior colliculus (IC) a brief period of acoustic conditioning can transiently enhance evoked discharge rate. The cellular basis of this phenomenon was assessed with whole cell current-clamp recordings in a gerbil IC brain slice preparation. The current needed to elicit a single action potential was first established for each neuron. A 5s synaptic stimulus train was delivered to the lateral lemniscus (LL), and followed immediately by the initial current pulse to assess a change in postsynaptic gain. The majority of IC neurons (66%) displayed an increase in current-evoked action potentials (Positive Gain). Despite the blockade of ionotropic glutamate receptors, this effect was correlated with membrane depolarization that occurred during the synaptic train. The postsynaptic mechanism for positive gain was examined by selective blockade of specific neurotransmitter receptors. Gain in action potentials was enhanced by antagonists of metabotropic glutamate, acetylcholine, GABA(A) and glycine receptors. In contrast, the gain was blocked or reduced by an antagonist to ionotropic serotonin receptors (5-HT(3)R). Blocking voltage-activated calcium channels with verapamil also reduced the effect. These results suggest that 5-HT3R activation, coupled with increased intracellular calcium, can transiently alter postsynaptic excitability in IC neurons. (C) 2009 Elsevier B.V. All tights reserved. C1 [Miko, Ilona J.; Sanes, Dan H.] NYU, Ctr Neural Sci, New York, NY 10003 USA. [Sanes, Dan H.] NYU, Dept Biol, New York, NY 10003 USA. RP Sanes, DH (reprint author), NYU, Ctr Neural Sci, 4 Washington Pl, New York, NY 10003 USA. EM ilona@cns.nyu.edu; sanes@cns.nyu.edu FU [DC006864]; [DC05455] FX The authors acknowledge the technical and intellectual contributions of Dr. Vibhakar Kotak during the course of this study. Supported by DC006864 and DC05455. CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 Balakrishnan V, 2003, J NEUROSCI, V23, P4134 Barnes NM, 1999, NEUROPHARMACOLOGY, V38, P1083, DOI 10.1016/S0028-3908(99)00010-6 BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2 BLAUERT J, 1972, AUDIOLOGY, V11, P265 Bohorquez A, 2009, HEARING RES, V251, P29, DOI 10.1016/j.heares.2009.02.006 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 Buonomano DV, 1998, J NEUROPHYSIOL, V80, P1765 Burger RM, 2001, J NEUROSCI, V21, P4830 Castilho VM, 1999, PHARMACOL BIOCHEM BE, V62, P425, DOI 10.1016/S0091-3057(98)00197-X COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 CONTRERAS NEIR, 1979, EXP BRAIN RES, V36, P573 Davies PA, 1999, NATURE, V397, P359, DOI 10.1038/16941 DelgadoLezama R, 1997, J PHYSIOL-LONDON, V504, P97, DOI 10.1111/j.1469-7793.1997.097bf.x Delgado-Lezama R, 1999, J PHYSIOL-LONDON, V515, P203, DOI 10.1111/j.1469-7793.1999.203ad.x Dubin AE, 1999, J BIOL CHEM, V274, P30799, DOI 10.1074/jbc.274.43.30799 Egorov AV, 2002, NATURE, V420, P173, DOI 10.1038/nature01171 Faingold C.L., 1991, NEUROBIOLOGY HEARING, P223 FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050 Finlayson PG, 1999, HEARING RES, V131, P177, DOI 10.1016/S0378-5955(99)00032-5 Finlayson PG, 1997, ACTA OTO-LARYNGOL, V117, P187, DOI 10.3109/00016489709117766 Fitzgerald KK, 1999, J NEUROPHYSIOL, V81, P2743 GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210 GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E Habbicht H, 1996, BRAIN RES, V724, P169, DOI 10.1016/0006-8993(96)00224-7 Hall IC, 2007, HEARING RES, V228, P82, DOI 10.1016/j.heares.2007.01.023 Holt LL, 2002, HEARING RES, V167, P156, DOI 10.1016/S0378-5955(02)00383-0 HOUNSGAARD J, 1989, J PHYSIOL-LONDON, V414, P265 HOUNSGAARD J, 1988, J PHYSIOL-LONDON, V405, P345 Hurley LM, 2008, J NEUROPHYSIOL, V100, P1656, DOI 10.1152/jn.90536.2008 Hurley LM, 1999, J NEUROSCI, V19, P8071 Hurley LM, 2007, BRAIN RES, V1181, P21, DOI 10.1016/j.brainres.2007.08.053 Hurley LM, 2002, HEARING RES, V168, P1, DOI 10.1016/S0378-5955(02)00365-9 Hurley LM, 2006, J NEUROPHYSIOL, V96, P2177, DOI 10.1152/jn.00046.2006 Hurley LM, 2001, J COMP NEUROL, V435, P78, DOI 10.1002/cne.1194 Ji WQ, 2001, J NEUROPHYSIOL, V86, P211 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H Kotak VC, 1998, J NEUROSCI, V18, P4646 Kvale MN, 2004, J NEUROPHYSIOL, V91, P604, DOI 10.1152/jn.00484.2003 Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1302 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 Ma XF, 2003, J NEUROPHYSIOL, V89, P90, DOI 10.1152/jn.00968.2001 Malone BJ, 2001, J NEUROPHYSIOL, V86, P1113 MATEEFF S, 1988, Acta Physiologica et Pharmacologica Bulgarica, V14, P32 McAlpine D, 2000, J NEUROPHYSIOL, V83, P1356 Miquel MC, 2002, EUR J NEUROSCI, V15, P449, DOI 10.1046/j.0953-816x.2001.01872.x Monckton JE, 2002, J NEUROPHYSIOL, V87, P2124, DOI 10.1152/jn.00650.2001 Moore DR, 1998, J NEUROPHYSIOL, V80, P2229 Morales Marisela, 1998, Journal of Comparative Neurology, V402, P385 N'Gouemo P, 2003, NEUROSCIENCE, V120, P815, DOI 10.1016/S0306-4522(03)00323-3 NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203 Oliver D. L., 1991, NEUROBIOLOGY HEARING, P195 Oswald AMM, 2008, J NEUROPHYSIOL, V99, P2998, DOI 10.1152/jn.01160.2007 Perrier JF, 2002, BRAIN RES REV, V40, P223, DOI 10.1016/S0165-0173(02)00204-7 PERROTT D R, 1981, Journal of Auditory Research, V21, P287 PERROTT DR, 1977, J ACOUST SOC AM, V62, P1463, DOI 10.1121/1.381675 Peruzzi D, 2004, BRAIN RES, V998, P247, DOI 10.1016/j.brainres.2003.10.059 Saint Marie RL, 1999, HEARING RES, V128, P70, DOI 10.1016/S0378-5955(98)00188-9 Sanchez-Vives MV, 2000, J NEUROSCI, V20, P4286 Sanes DH, 1998, J NEUROSCI, V18, P794 SANES DH, 1993, J NEUROSCI, V13, P2627 Scott LL, 2005, J NEUROSCI, V25, P7887, DOI 10.1523/JNEUROSCI.1016-05.2005 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Shin RM, 2001, NEUROSCI RES, V40, P67, DOI 10.1016/S0168-0102(01)00213-9 Sivaramakrishnan S, 2001, J NEUROSCI, V21, P2861 Spitzer MW, 1998, J NEUROPHYSIOL, V80, P3062 SPITZER MW, 1993, J NEUROPHYSIOL, V69, P1245 Stewart A, 2003, NEUROPHARMACOLOGY, V44, P214, DOI 10.1016/S0028-3908(02)00376-3 Thompson AM, 2004, NEUROSCI LETT, V356, P179, DOI 10.1016/j.neulet.2003.11.052 THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9 Thornton SK, 1999, EUR J NEUROSCI, V11, P1414, DOI 10.1046/j.1460-9568.1999.00558.x Tollin DJ, 2002, J NEUROSCI, V22, P1468 Vale C, 2000, J NEUROSCI, V20, P1912 Wilson WW, 2002, J NEUROPHYSIOL, V87, P240 Wilson WW, 1998, J NEUROPHYSIOL, V79, P2040 Yigit M, 2003, NEUROPHARMACOLOGY, V45, P504, DOI 10.1016/S0028-3908(03)00197-7 Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5 NR 78 TC 7 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2009 VL 251 IS 1-2 BP 39 EP 50 DI 10.1016/j.heares.2009.02.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 447LT UT WOS:000266193300005 PM 19232535 ER PT J AU Buki, B Giraudet, F Avan, P AF Bueki, B. Giraudet, F. Avan, P. TI Non-invasive measurements of intralabyrinthine pressure changes by electrocochleography and otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE Intralabyrinthine pressure; Posture; Otoacoustic emissions; Electrocochleography ID INNER-EAR PRESSURE; CEREBROSPINAL-FLUID PRESSURE; MENIERES-DISEASE; INTRACRANIAL-PRESSURE; ENDOLYMPHATIC HYDROPS; COCHLEAR AQUEDUCT; GUINEA-PIG; MIDDLE-EAR; EXTRATYMPANIC ELECTROCOCHLEOGRAPHY; POSTURAL CHANGES AB By varying the mechanical load on the stapes footplate, intralabyrinthine pressure (ILP) influences the stiffness of the middle ear and modifies its transfer function. This results in a characteristic phase shift of the otoacoustic emissions (OAEs) around 1 kHz [Buki, B., Avan, P., Lemaire, J.J., Dordain, M., Chazal, J., Ribari, O., 1996. Otoacoustic emissions: a new tool for monitoring intracranial pressure changes through stapes displacements, Hear. Res. 94, 125-139]. This finding provides non-invasive means of monitoring changes of ILP and indirectly of intracranial pressure. Yet the vulnerability of OAEs to sensorineural hearing loss excludes many patients from being monitored in this manner. Being dependent on the middle-ear transfer function, the phase of the cochlear microphonic potential (CM) around I kHz should also respond to ILP changes while being less affected by impaired hearing than OAEs. Here, normal volunteers were subjected to body tilt resulting in stepwise changes in their intracranial pressure and ILP. Their CM around 1 kHz was recorded by extratympanic electrocochleography and its dependence on body position was compared to that of distortion-product OAEs. The posture-induced CM changes were also monitored in ears with sensorineural deafness and impaired OAEs to assess the usefulness of CM in the presence of hearing impairment. Last, OAEs and CM were simultaneously monitored in gerbils during intracranial pressure changes brought about via an intracranial catheter. The phase and level shifts induced by body tilt in man and intracranial pressure changes in gerbils showed up both in distortion-product OAEs and CM with similar time courses. In normally-hearing subjects, the mean phase shifts reached 16.3 degrees for CM and 41.6 degrees for OAEs, and CM remained large enough in hearing-impaired subjects for ILP to be monitored. The ratio of about two of OAEs to CM phase shifts matched the prediction of middle-ear models allowing for the fact that CM does not travel back through the middle ear while OAEs do. It follows that CM phase around I kHz provides non-invasive access to ILP changes even if OAEs cannot be measured due to sensorineural hearing loss. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bueki, B.; Giraudet, F.; Avan, P.] Univ Auvergne, Lab Sensory Biophys EA 2667, Sch Med, F-63000 Clermont Ferrand, France. [Bueki, B.] Landesklinikum, ENT Dept, Krems, Austria. RP Avan, P (reprint author), Univ Auvergne, Lab Sensory Biophys EA 2667, Sch Med, 28 Pl Henri Dunant, F-63000 Clermont Ferrand, France. EM paul.avan@u-clermont1.fr FU Clermont-Communaute; Region Auvergne; CNRS; INSERM FX The technical support of Thierry Hassoun and Romain Moura is gratefully acknowledged. Parts of this work were funded by grants from Clermont-Communaute, the Region Auvergne (CART 2006), CNRS and INSERM (ACI Technologies pour la Sante, 2006-7). CR ANDREWS JC, 1995, OTOLARYNG HEAD NECK, V112, P78 Avan P, 2000, HEARING RES, V140, P189, DOI 10.1016/S0378-5955(99)00201-4 BAUCH CD, 1990, EAR HEARING, V11, P463, DOI 10.1097/00003446-199012000-00010 BEENTJES BI, 1972, ACTA OTO-LARYNGOL, V73, P112, DOI 10.3109/00016487209138919 Bouccara D, 1998, AUDIOLOGY, V37, P255 Buki B, 2002, HEARING RES, V167, P180, DOI 10.1016/S0378-5955(02)00392-1 Buki B, 1996, HEARING RES, V94, P125, DOI 10.1016/0378-5955(96)00015-9 Buki B, 2000, HEARING RES, V140, P202, DOI 10.1016/S0378-5955(99)00202-6 CARLBORG BIR, 1983, AM J OTOLARYNG, V4, P273, DOI 10.1016/S0196-0709(83)80071-4 CHAPMAN PH, 1990, NEUROSURGERY, V26, P181 Chomicki A, 2007, NEUROCHIRURGIE, V53, P265, DOI 10.1016/j.neuchi.2007.04.005 Chung WH, 2004, OTOL NEUROTOL, V25, P144, DOI 10.1097/00129492-200403000-00011 COATS AC, 1986, ARCH OTOLARYNGOL, V112, P759 de Kleine E, 2001, J ACOUST SOC AM, V110, P973, DOI 10.1121/1.1381025 Fetterman BL, 2001, LARYNGOSCOPE, V111, P946, DOI 10.1097/00005537-200106000-00004 GIBSON WPR, 1983, OTOLARYNG CLIN N AM, V16, P59 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 GORGA MP, 1993, J ACOUST SOC AM, V94, P2639, DOI 10.1121/1.407348 KLIS SFL, 1994, HEARING RES, V75, P114, DOI 10.1016/0378-5955(94)90062-0 Levine S, 1998, LARYNGOSCOPE, V108, P993, DOI 10.1097/00005537-199807000-00008 Lonsbury-Martin B.L., 2002, OTOACOUSTIC EMISSION, P116 LUTMAN ME, 1979, J SOUND VIB, V64, P133, DOI 10.1016/0022-460X(79)90578-9 MAGNAES B, 1976, J NEUROSURG, V44, P687, DOI 10.3171/jns.1976.44.6.0687 MARCHBANKS R J, 1990, British Journal of Audiology, V24, P179, DOI 10.3109/03005369009076554 Marchbanks RJ, 1982, HEARING AID J, V35, P14 Merchant SN, 2005, OTOL NEUROTOL, V26, P74, DOI 10.1097/00129492-200501000-00013 Noguchi Y, 1999, AUDIOLOGY, V38, P135 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 ROLAND PS, 1995, AM J OTOL, V16, P444 Rosingh HJ, 1996, CLIN OTOLARYNGOL, V21, P335, DOI 10.1111/j.1365-2273.1996.tb01082.x RUTH RA, 1988, AM J OTOL, V9, P1 Valk WL, 2004, HEARING RES, V192, P47, DOI 10.1016/j.heares.2003.12.021 Valk WL, 2008, EUR ARCH OTO-RHINO-L, V265, P287, DOI 10.1007/s00405-007-0442-6 Voss SE, 2006, NEUROCRIT CARE, V4, P251, DOI 10.1385/Neurocrit.Care2006;04:251-257 WHITEHEAD ML, 1993, J SPEECH HEAR RES, V36, P1097 Wit HP, 1999, HEARING RES, V132, P131, DOI 10.1016/S0378-5955(99)00048-9 WLODYKA J, 1978, ANN OTO RHINOL LARYN, V87, P22 YOSHIDA M, 1991, EUR ARCH OTO-RHINO-L, V248, P139 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 39 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2009 VL 251 IS 1-2 BP 51 EP 59 DI 10.1016/j.heares.2009.02.004 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 447LT UT WOS:000266193300006 PM 19233252 ER PT J AU Sloan, AM Dodd, OT Rennaker, RL AF Sloan, Andrew M. Dodd, Owen T. Rennaker, Robert L., II TI Frequency discrimination in rats measured with tone-step stimuli and discrete pure tones SO HEARING RESEARCH LA English DT Article DE Albino rat; Frequency discrimination; Repeating standard; Tone duration; Response latency ID AUDITORY-FREQUENCY; INTENSITY DISCRIMINATION; DIFFERENCE LIMENS; CORTEX; DURATION; HEARING; SENSITIVITY; THRESHOLDS; GLIDES; PITCH AB Two modified go/no-go tasks are compared for the measurement of frequency discrimination in albino rats. The first task required detection of an instantaneous, phase-matched frequency change, called a "tone-step," within a continuous reference tone. The more traditional second task required detection of a frequency change between repetitions of a reference sequence of repeating discrete tones. For each task frequency difference limens were measured over a range of reference frequencies from 2.31 to 27.7 kHz at 60 dB sound pressure level, with both upward and downward frequency shifts. All 24 subjects quickly learned the "tone-step" task to criterion, but only 13 could also learn the discrete tone task. Subjects' performance at either task generally improved with increasing reference frequency, and in both tasks upward frequency change thresholds were significantly higher than thresholds for downward changes. Overall mean Weber ratios were 1.73 +/- 0.27% for the "tone-step" task and 2.76 +/- 0.29% for the discrete tone task. However, subjects' performance on the "tone-step" task was not correlated with subsequent performance on the discrete tone task. We suggest that the lack of correspondence between tasks might be due to frequency discrimination processes interacting with short-term memory traces during inter-tone intervals in the discrete tone task. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sloan, Andrew M.; Dodd, Owen T.; Rennaker, Robert L., II] Univ Oklahoma, Ctr Bioengn, Sarkeys Energy Ctr T 335, Norman, OK 73019 USA. [Rennaker, Robert L., II] Univ Oklahoma, Dept Aerosp & Mech Engn, Norman, OK 73019 USA. RP Sloan, AM (reprint author), Univ Oklahoma, Ctr Bioengn, Sarkeys Energy Ctr T 335, 100 E Boyd St, Norman, OK 73019 USA. EM drewsloan@gmail.com; doyledodd@gmail.com; renn@ou.edu RI Rennaker, Robert/K-9049-2013 OI Rennaker, Robert/0000-0003-1260-1973 FU National Institute of Deafness and Communicative Disorders [F31-DC008716-01A1, 1R01DC008982]; U.S. Board of Education FX Andrew Sloan was supported by an NRSA Fellowship from the National Institute of Deafness and Communicative Disorders: F31-DC008716-01A1. Owen Dodd is supported by a GAANN Fellowship from the U.S. Board of Education. Robert Rennaker's research is supported by a grant from the National Institute of Deafness and Communicative Disorders: 1R01DC008982. CR ARLINGER S, 1977, AUDIOLOGY, V16, P480 Beauvois MW, 1997, PERCEPT PSYCHOPHYS, V59, P81, DOI 10.3758/BF03206850 BORG E, 1982, HEARING RES, V8, P101, DOI 10.1016/0378-5955(82)90069-7 Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056 Clement S, 1999, J ACOUST SOC AM, V106, P2805, DOI 10.1121/1.428106 CRANFORD JL, 1978, BRAIN RES, V148, P499, DOI 10.1016/0006-8993(78)90737-0 FAY RR, 1974, J ACOUST SOC AM, V56, P206, DOI 10.1121/1.1903256 FREYMAN RL, 1986, J ACOUST SOC AM, V79, P1034, DOI 10.1121/1.393375 GOUREVIT.G, 1966, J COMP PHYSIOL PSYCH, V62, P289, DOI 10.1037/h0023669 GREEN DM, 1966, SIGNAL DETECTION THE GRIER JB, 1971, PSYCHOL BULL, V75, P424, DOI 10.1037/h0031246 HALL JW, 1984, J SPEECH HEAR RES, V27, P252 HARRIS JD, 1952, J EXP PSYCHOL, V43, P96, DOI 10.1037/h0057373 HEFFNER RS, 1988, J COMP PSYCHOL, V102, P66, DOI 10.1037/0735-7036.102.1.66 JAMISON JH, 1951, J COMP PHYSIOL PSYCH, V44, P118, DOI 10.1037/h0058322 JESTEADT W, 1975, J ACOUST SOC AM, V57, P1161, DOI 10.1121/1.380574 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 Kelly J.B., 1970, THESIS VANDERBILT U Lyzenga J, 2004, J ACOUST SOC AM, V116, P491, DOI 10.1121/1.1756616 MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640 Moore B. C. J., 1976, BRIT J AUDIOL, V10, P17, DOI 10.3109/03005367609078803 NABELEK I, 1969, J ACOUST SOC AM, V45, P1510, DOI 10.1121/1.1911631 PROSEN CA, 1989, J ACOUST SOC AM, V85, P1302, DOI 10.1121/1.397461 ROGERS WL, 1993, PERCEPT PSYCHOPHYS, V53, P179, DOI 10.3758/BF03211728 Roverud RC, 1999, J COMP PHYSIOL A, V185, P247, DOI 10.1007/s003590050384 SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968 Sek A, 1999, J ACOUST SOC AM, V106, P351, DOI 10.1121/1.427061 Shower EG, 1931, J ACOUST SOC AM, V3, P275, DOI 10.1121/1.1915561 SINNOTT JM, 1987, J COMP PSYCHOL, V101, P126, DOI 10.1037/0735-7036.101.2.126 SINNOTT JM, 1980, J COMP PHYSIOL PSYCH, V94, P401, DOI 10.1037/h0077681 SINNOTT JM, 1992, HEARING RES, V59, P205, DOI 10.1016/0378-5955(92)90117-6 Skinner Burrhus F., 1938, BEHAV ORG EXPT ANAL Syka J, 1996, HEARING RES, V100, P107, DOI 10.1016/0378-5955(96)00101-3 Talwar SK, 1999, J ACOUST SOC AM, V105, P1784, DOI 10.1121/1.426716 Talwar SK, 1998, HEARING RES, V126, P135, DOI 10.1016/S0378-5955(98)00162-2 THOMPSON RF, 1960, J NEUROPHYSIOL, V23, P321 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 WIER CC, 1975, J ACOUST SOC AM, V57, P1512, DOI 10.1121/1.380592 NR 38 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2009 VL 251 IS 1-2 BP 60 EP 69 DI 10.1016/j.heares.2009.02.009 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 447LT UT WOS:000266193300007 PM 19258029 ER PT J AU Kim, SJ Park, C Han, AL Youn, MJ Lee, JH Kim, Y Kim, ES Kim, HJ Kim, JK Lee, HK Chung, SY So, H Park, R AF Kim, Se-Jin Park, Channy Han, A. Lum Youn, Myung-Ja Lee, Jeong-Han Kim, Yunha Kim, Eun-Sook Kim, Hyung-Jin Kim, Jin-Kyung Lee, Ho-Kyun Chung, Sang-Young So, Hongseob Park, Raekil TI Ebselen attenuates cisplatin-induced ROS generation through Nrf2 activation in auditory cells SO HEARING RESEARCH LA English DT Article DE Cisplatin; Ebselen; Heme-oxygenase 1; HEI-OC1 auditory cell; Nrf2; NAD(P)H:quinine oxidoreductase; gamma-Glutamylcysteine synthetase; Lipid peroxidation; Organotypic culture; Auditory brainstem response (ABR) ID INDUCED OTOTOXICITY; SELENOORGANIC ANTIOXIDANT; ORGANOTYPIC CULTURES; PEROXIDASE-ACTIVITY; OXIDATIVE STRESS; GUINEA-PIGS; HAIR-CELLS; IN-VITRO; PROTECTION; RATS AB Ebselen, an organoselenium compound that acts as a glutathione peroxidase mimetic, has been demonstrated to possess antioxidant and anti-inflammatory activities. However, the molecular mechanism underlying this effect is not fully understood in auditory cells. The purpose of the present study is to investigate the protective effect of ebselen against cisplatin-induced toxicity in HEI-OC1 auditory cells, organotypic cultures of cochlear explants from two-day postnatal rats (P(2)) and adult Balb/C mice. Pretreatment with ebselen ameliorated apoptotic death induced by cisplatin in HEI-OC1 cells and organotypic cultures of Corti's organ. Ebselen pretreatment also significantly suppressed cisplatin-induced increases in intracellular reactive oxygen species (ROS), intracellular reactive nitrogen species (RNS) and lipid peroxidation levels. Ebselen dose-dependently increased the expression level of an antioxidant response element (ARE)-luciferase reporter in HEI-OC1 cells through the translocation of Nrf2 into the nucleus. Furthermore, we found that pretreatment with ebselen significantly restored Nrf2 function, whereas it ameliorated the cytotoxicity of cisplatin in cells transfectants with either a pcDNA3.1 (control) or a DN-Nrf2 (dominant-negative) plasmid. We also observed that Nrf2 activation by ebselen increased the expression of phase II antioxidant genes, including heme oxygenase (HO-1), NAD(P)H:quinine oxidoreductase, and gamma-glutamylcysteine synthetase (gamma-GCS). Treatment with ebselen resulted in an increased expression of HO-I and intranuclear Nrf2 in hair cells of organotypic cultured cochlea. After intraperitoneal injection with cisplatin, auditory brainstem responses (ABRs) threshold was measured on 8th day in Balb/C mice. ABR threshold shift was marked occurred in mice injected with cisplatin (16 mg/kg, n = 5; Click and 8-kHz stimuli, P < 0.05; 4, 16 and 32 kHz, p < 0.01), whereas that of animal group which was treated with cisplatin and ebselen was not significantly changed. These results suggest that ebselen activates the Nrf2-ARE signaling pathway, which ultimately prevents free radical stresses from cisplatin and further contributes to protect auditory sensory hair cells from free radicals produced by cisplatin. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kim, Se-Jin; Park, Channy; Youn, Myung-Ja; Lee, Jeong-Han; Kim, Yunha; Kim, Eun-Sook; Kim, Hyung-Jin; Kim, Jin-Kyung; So, Hongseob; Park, Raekil] Wonkwang Univ, Vestibulocochlear Res Ctr VCRC, Dept Microbiol, Coll Med, Iksan 570749, Jeonbuk, South Korea. [Lee, Ho-Kyun; Chung, Sang-Young] Chonnam Natl Univ, Dept Surg, Sch Med, Kwangju 501758, South Korea. RP Park, R (reprint author), Wonkwang Univ, Vestibulocochlear Res Ctr VCRC, Dept Microbiol, Coll Med, 344-2 Shinyong Dong, Iksan 570749, Jeonbuk, South Korea. EM rkpark@wku.ac.kr FU Korea Science and Engineering Foundation (KOSEF) through the Vestibulocochler Research Center (VCRC) FX This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the Vestibulocochler Research Center (VCRC) at Wonkwang University in 2008. CR Antunes LMG, 2000, PHARMACOL RES, V41, P405, DOI 10.1006/phrs.1999.0600 Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200 Daiber A, 2000, BIOCHEM PHARMACOL, V59, P153, DOI 10.1016/S0006-2952(99)00309-3 Dhanarajan R, 2006, BASIC CLIN PHARMACOL, V99, P267, DOI 10.1111/j.1742-7843.2006.pto_474.x FAUSTI SA, 1993, ARCH OTOLARYNGOL, V119, P661 Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005 HAMERS FPT, 1993, CANCER RES, V53, P544 Itoh K, 2003, GENES CELLS, V8, P379, DOI 10.1046/j.1365-2443.2003.00640.x Jamieson ER, 1999, CHEM REV, V99, P2467, DOI 10.1021/cr980421n Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059 KILL J, 2007, HEARING RES, V226, P44 Kizilay A, 2004, J CHEMOTHERAPY, V16, P381 Kopke RD, 1997, AM J OTOL, V18, P559 Lapchak PA, 2003, STROKE, V34, P2013, DOI 10.1161/01.STR.0000081223.74129.04 Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029 Lynch ED, 2005, HEARING RES, V201, P81, DOI 10.1016/j.heares.2004.08.002 MAIORINO M, 1988, BIOCHEM PHARMACOL, V37, P2267, DOI 10.1016/0006-2952(88)90591-6 MARKMAN M, 1991, J CANCER RES CLIN, V117, P151, DOI 10.1007/BF01613139 McMahon M, 2004, J BIOL CHEM, V279, P31556, DOI 10.1074/jbc.M403061200 MULLER A, 1984, BIOCHEM PHARMACOL, V33, P3235, DOI 10.1016/0006-2952(84)90083-2 Rybak LP, 2005, DRUG DISCOV TODAY, V10, P1313, DOI 10.1016/S1359-6446(05)03552-X Rybak LP, 1999, TOXICOL SCI, V47, P195, DOI 10.1093/toxsci/47.2.195 Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 Sakurai T, 2006, CHEM RES TOXICOL, V19, P1196, DOI 10.1021/tx0601105 Satoh T, 2004, NEUROSCI LETT, V371, P1, DOI 10.1016/j.neulet.2004.04.055 SCHEWE T, 1995, GEN PHARMACOL, V26, P1153, DOI 10.1016/0306-3623(95)00003-J Sies H, 1997, Adv Pharmacol, V38, P229 So HS, 2005, HEARING RES, V204, P127, DOI 10.1016/j.heares.2005.01.011 So HS, 2006, CELL DEATH DIFFER, V13, P1763, DOI 10.1038/sj.cdd.4401863 Taguchi T, 2005, CONTRIB NEPHROL, V148, P107 Tamasi V, 2004, ARCH BIOCHEM BIOPHYS, V431, P161, DOI 10.1016/j.abb.2004.07.030 Teranishi M, 2001, HEARING RES, V151, P61, DOI 10.1016/S0300-2977(00)00080-2 Velichkova M, 2005, MOL CELL BIOL, V25, P4501, DOI 10.1128/MCB.25.11.4501-4513.2005 Wakabayashi N, 2004, P NATL ACAD SCI USA, V101, P2040, DOI 10.1073/pnas.0307301101 Wasserman WW, 1997, P NATL ACAD SCI USA, V94, P5361, DOI 10.1073/pnas.94.10.5361 Watanabe K, 2000, ANTI-CANCER DRUG, V11, P401, DOI 10.1097/00001813-200006000-00011 Yamasoba T, 2005, NEUROSCI LETT, V380, P234, DOI 10.1016/j.neulet.2005.01.047 Zhang DD, 2003, MOL CELL BIOL, V23, P8137, DOI 10.1128/MCB.23.22.8137-8151.2003 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x NR 40 TC 30 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2009 VL 251 IS 1-2 BP 70 EP 82 DI 10.1016/j.heares.2009.03.003 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 447LT UT WOS:000266193300008 PM 19286452 ER PT J AU Schmutzhard, J Glueckert, R Sergi, C Schwentner, I Abraham, I Schrott-Fischer, A AF Schmutzhard, Joachim Glueckert, Rudolf Sergi, Consolato Schwentner, Ilona Abraham, Irene Schrott-Fischer, Annelies TI Does perinatal asphyxia induce apoptosis in the inner ear? SO HEARING RESEARCH LA English DT Article DE Asphyxia; Inner ear; Apoptosis; Transmission electron microscopy; Cleaved caspase 3; Bcl 2 ID HAIR CELL-DEATH; HEARING-LOSS; INFANTS; ACTIVATION; MECHANISMS; CASPASES; ENCEPHALOPATHY; COCHLEA; SYSTEM; FAMILY AB Pre- and perinatal asphyxia is known to be an important risk factor in the development of neonatal hearing impairment. This study aims to evaluate the role of apoptosis, which is known to play an essential role in the development of the inner ear structures, in the development of neonatal hearing loss caused by pre- and perinatal asphyxia. Eight temporal bones of six different newborns were included. We performed a morphologic analysis by both light microscopy, and transmission electron microscopy, as well as immunohistochemical staining to detect the cleaved form of caspase 3 as apoptosis marker and Bcl 2 as anti-apoptotic marker. Early and late phases of apoptosis were evidenced by condensation of chromatin (electron-dense, black structure along nuclear membrane) and fragmentation of the nucleus, respectively. Changes in nuclear morphology during apoptosis correlate with cleavage by caspase 3 located downstream of Bcl 2 action. The immunohistochemistry for cleaved caspase 3 showed a particular predilection for the inner and outer hair cells, spiral ganglion cells and the marginal cells of the stria vascularis. The brain of all examined cases did not show signs of apoptosis. In summary, this investigation suggests that apoptosis takes place before brain tissue apoptosis and is probably an earlier event than thought. Apoptosis of the cochlea is known to play an essential role in the development of the inner ear. Additionally, this study shows that apoptosis may play an important role in the development of hearing impairment, caused by pre- and perinatal asphyxia. (c) 2008 Elsevier B.V. All rights reserved. C1 [Schmutzhard, Joachim; Glueckert, Rudolf; Schwentner, Ilona; Abraham, Irene; Schrott-Fischer, Annelies] Innsbruck Med Univ, Dept Otorhinolaryngol, A-6020 Innsbruck, Austria. [Sergi, Consolato] Innsbruck Med Univ, Inst Pathol, A-6020 Innsbruck, Austria. [Sergi, Consolato] Univ Alberta, Dept Lab Med, Edmonton, AB, Canada. RP Schwentner, I (reprint author), Innsbruck Med Univ, Dept Otorhinolaryngol, Anichstr 35, A-6020 Innsbruck, Austria. EM Joachim.Schmutzhard@i-med.ac.at; Rudolf.Glueckert@i-med.ac.at; Consolato.Sergi@i-med.ac.at; Ilona.Schwenter@i-med.ac.at; Irene.Abraham@uki.at; Annelies.Schrott@i-med.ac.at FU Austrian Science Foundation [15948-1305] FX We are very grateful to Mrs. Gunde Rieger for the acquisition of the photographs taken during the ultrastructural analysis. The work was supported by the Austrian Science Foundation Grant 15948-1305. CR Amatuzzi MG, 2001, ARCH OTOLARYNGOL, V127, P629 BAX M, 1993, DEV MED CHILD NEUROL, V35, P1022 Blankenberg F. G., 2008, J NUCL MED S2, V49, P81, DOI DOI 10.2967/JNUMED.107.045898 Borg E, 1997, SCAND AUDIOL, V26, P77, DOI 10.3109/01050399709074979 Chen M, 2002, J BIOL CHEM, V277, P50761, DOI 10.1074/jbc.M210356200 Cheng AG, 2003, JARO, V4, P91, DOI 10.1007/s10162-002-3016-8 DSOUZA SW, 1981, ARCH DIS CHILD, V56, P245 EAVEY RD, 1995, CLIN PEDIAT PHILA, V3, P138 Ferri KF, 2001, BIOESSAYS, V23, P111, DOI 10.1002/1521-1878(200102)23:2<111::AID-BIES1016>3.0.CO;2-Y Galluzzi L, 2007, CELL DEATH DIFFER, V14, P1237, DOI 10.1038/sj.cdd.4402148 HACKER G, 2000, CELL TISSUE RES, V1, P5 Hargitai B, 2004, BRAIN DEV-JPN, V26, P30, DOI 10.1016/S0387-7604(03)00091-3 Ishii N, 1996, BRAIN RES, V726, P123, DOI 10.1016/S0006-8993(96)00305-8 JIANG ZD, 2008, CLIN NEUROPHYSIOL, V7, P1496 Kaiser CL, 2008, HEARING RES, V240, P1, DOI [10.1016/j.heares.2008.03.003, 10.1016/j.heares.2008.03.0003] KERR J. F., 1972, BRIT J CANCER, V4, P239 KONG WJ, 1994, ACTA OTO-LARYNGOL, V3, P245 Koyama S, 2005, ACTA OTO-LARYNGOL, V125, P1028, DOI 10.1080/00016480410023092 Krysko DV, 2008, METHODS, V44, P205, DOI 10.1016/j.ymeth.2007.12.001 Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304 Leist M, 2001, NAT REV MOL CELL BIO, V2, P589, DOI 10.1038/35085008 Marlow N, 2005, ARCH DIS CHILD-FETAL, V90, pF380, DOI 10.1136/adc.2004.067520 Matsui JI, 2002, J NEUROSCI, V22, P1218 Mazumder Suparna, 2008, V414, P13 Pierrat V, 2005, Arch Dis Child Fetal Neonatal Ed, V90, pF257, DOI 10.1136/adc.2003.047985 RYAN AF, 1980, HEARING RES, V4, P335 Rybak LP, 2007, HEARING RES, V226, P157, DOI 10.1016/j.heares.2006.09.015 SANDERS R, 1985, J OTOLARYNGOL, V14, P28 Sano M, 2005, INT J PEDIATR OTORHI, V69, P1211, DOI 10.1016/j.ijporl.2005.03.014 Saraste A, 2000, CARDIOVASC RES, V45, P528, DOI 10.1016/S0008-6363(99)00384-3 Scholtz AW, 2001, HEARING RES, V157, P77, DOI 10.1016/S0378-5955(01)00279-9 Shacka JJ, 2006, CELL DEATH DIFFER, V13, P1299, DOI 10.1038/sj.cdd.4401974 Tibbetts MD, 2003, NAT IMMUNOL, V4, P404, DOI 10.1038/ni0503-404 Zakeri Z, 2008, ADV EXP MED BIOL, V615, P1, DOI 10.1007/978-1-4020-6554-5_1 Ziegler U, 2004, NEWS PHYSIOL SCI, V19, P124, DOI 10.1152/nips.01519.2004 NR 35 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2009 VL 250 IS 1-2 BP 1 EP 9 DI 10.1016/j.heares.2008.12.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 446XL UT WOS:000266154800001 PM 19136052 ER PT J AU Tanaka, C Chen, GD Hu, BH Chi, LH Li, MN Zheng, G Bielefeld, EC Jamesdaniel, S Coling, D Henderson, D AF Tanaka, Chiemi Chen, Guang-Di Hu, Bo Hua Chi, Lai-Har Li, Manna Zheng, Guiliang Bielefeld, Eric C. Jamesdaniel, Samson Coling, Donald Henderson, Donald TI The effects of acoustic environment after traumatic noise exposure on hearing and outer hair cells SO HEARING RESEARCH LA English DT Article DE Acoustic trauma; Hearing loss; Augmented acoustic environment; Glutathione; Chinchilla; Sound deprivation ID STEM RESPONSE THRESHOLDS; CHINCHILLA COCHLEA; C57BL/6J MICE; DBA/2J MICE; CONDITIONING EXPOSURES; PROLONGED EXPOSURE; HIGH-FREQUENCY; IMPULSE NOISE; APOPTOSIS; CYTOCOCHLEOGRAMS AB Previous studies reported that exposure to non-traumatic level sounds after traumatic noise exposure reduced the degree of noise-induced hearing loss and hair cell stereocilia damage. The current study investigated the effects of a 3-day post-noise acoustic environment on the degree of noise-induced hearing loss and cochlear damage. Female chinchillas were exposed to traumatic continuous noise (4 kHz octave-band noise) at 107 dB SPL for 1 h and then placed in either an augmented acoustic environment (AAE) or deprived acoustic environment (DAE) for 3 days. The AAE group was exposed to a broad-band noise (4-20 kHz) at 80 dB SPL and the DAE animals were fit with conventional earplugs to minimize the level of acoustic stimulation. Auditory brainstem responses (ABRs) were recorded before and 3 days after the traumatic noise exposure. The AAE group showed a significantly lower average threshold shift at the frequencies of 4 and 8 kHz (p < 0.01). Correspondingly, significantly fewer missing and dying outer hair cells (OHCs) were observed in the AAE group than in the DAE group. Although the cochlear reduced and oxidized glutathione levels (GSH and GSSG, respectively) were essentially the same in two groups at day 3, significant correlations were found between GSSG levels and mean ABR threshold shift (1-16 kHz) in the AAE group; as well as GSSG and percentage of total OHC loss in the DAE group. The results suggest that post-noise acoustic environment influenced the degree of hearing loss and OHC deterioration after traumatic noise exposure. (c) 2009 Elsevier B.V. All rights reserved. C1 [Tanaka, Chiemi; Chen, Guang-Di; Hu, Bo Hua; Li, Manna; Bielefeld, Eric C.; Jamesdaniel, Samson; Coling, Donald; Henderson, Donald] SUNY Buffalo, Dept Communicat Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. [Chi, Lai-Har] SUNY Buffalo, Toxicol Res Ctr, Buffalo, NY 14214 USA. [Zheng, Guiliang] Peoples Liberat Army Gen Hosp, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China. RP Tanaka, C (reprint author), SUNY Buffalo, Dept Communicat Disorders & Sci, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM ctanaka@buffalo.edu RI Bielefeld, Eric/D-2015-2012 CR Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004 CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x FUKUSHIMA N, 1990, HEARING RES, V50, P107, DOI 10.1016/0378-5955(90)90037-P Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 HENSELMAN LW, 1994, HEARING RES, V78, P1, DOI 10.1016/0378-5955(94)90038-8 Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006 Hu BH, 1997, HEARING RES, V110, P209, DOI 10.1016/S0378-5955(97)00075-0 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8 Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Niu XZ, 2004, AUDIOL NEURO-OTOL, V9, P265, DOI 10.1159/000080226 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Snyder D.L, 1994, LAB ANIM, V24, P42 Turner JG, 1998, HEARING RES, V118, P101, DOI 10.1016/S0378-5955(98)00024-0 Willott JF, 2006, HEARING RES, V221, P73, DOI 10.1016/j.heares.2006.07.016 Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5 Willott JF, 2005, JARO-J ASSOC RES OTO, V6, P234, DOI 10.1007/s10162-005-0004-9 WILLOTT JF, 2006, HEARING RES, P138 Willott JF, 2004, J COMP NEUROL, V472, P358, DOI 10.1002/cne.20065 Willott JF, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P205 Willott JF, 2008, HEARING RES, V235, P60, DOI 10.1016/j.heares.2007.10.006 Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 NR 28 TC 8 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2009 VL 250 IS 1-2 BP 10 EP 18 DI 10.1016/j.heares.2008.12.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 446XL UT WOS:000266154800002 PM 19450428 ER PT J AU Macias, S Mora, EC Kossl, M Abel, C Foeller, E AF Macias, Silvio Mora, Emanuel C. Koessl, Manfred Abel, Cornelius Foeller, Elisabeth TI The auditory cortex of the bat Molossus molossus: Disproportionate search call frequency representation SO HEARING RESEARCH LA English DT Article DE Electrophysiological mapping; Tonotopy; Frequency tuning curves; Cortical maps ID MUSTACHE BAT; FUNCTIONAL-ORGANIZATION; CAROLLIA-PERSPICILLATA; INFERIOR COLLICULUS; SENSITIVE NEURONS; RHINOLOPHUS-ROUXI; ECHOLOCATING BATS; EPTESICUS-FUSCUS; HORSESHOE BAT; TARGET RANGE AB The extent of the auditory cortex in the bat Molossus molossus was electrophysiologically investigated. Best frequencies and minimum thresholds of neural tuning curves were analyzed to define the topography of the auditory cortex. The auditory cortex encompasses an average cortical surface area of 5 mm(2). Characteristic frequencies are tonotopically organized with low frequencies being represented caudally and high frequencies rostrally. However, a large interindividual variability in the tonotopic organization was found. In most animals, the caudal 50% was tonotopically organized. More anterior, a variable area was found. A distinct field with reversed topography was not consistently found. Within the demarcated auditory cortex, frequencies of 30-40 kHz, which correspond to the frequency range of search calls emitted during hunting, are overrepresented, occupying 49% of the auditory cortex surface. High minimum thresholds >50 dB SPL were found in a narrow dorsal narrow area. Neurons with multipeaked tuning curves (20%) preferentially were located in the dorsal part of the auditory cortex. In accordance with studies in other bat species, the auditory cortex of M. molossus is highly sensitive to the dominant frequencies of biosonar search calls. (c) 2009 Elsevier B.V. All rights reserved. C1 [Macias, Silvio; Mora, Emanuel C.] Univ Havana, Fac Biol, Dept Anim & Human Biol, Vedado 10400, Cuidad Habana, Cuba. [Koessl, Manfred; Abel, Cornelius; Foeller, Elisabeth] Univ Frankfurt, Inst Zellbiol & Neurowissensch, D-60323 Frankfurt, Germany. RP Macias, S (reprint author), Univ Havana, Fac Biol, Dept Anim & Human Biol, Calle 25 455 Entre J&I, Vedado 10400, Cuidad Habana, Cuba. EM silvio@fbio.uh.cu FU VW Foundation [1/77306]; DFG FX This work was supported by VW Foundation (1/77306) and DFG. CR DEAR SP, 1993, J NEUROPHYSIOL, V70, P1988 Esser KH, 1999, EUR J NEUROSCI, V11, P3669, DOI 10.1046/j.1460-9568.1999.00789.x Foeller E, 2001, JARO, V2, P279 GRINNELL AD, 1973, J ACOUST SOC AM, V54, P147, DOI 10.1121/1.1913558 GRINNELL AD, 1972, Z VERGL PHYSIOL, V76, P41, DOI 10.1007/BF00395500 HABERSETZER J, 1983, J COMP PHYSIOL, V152, P275 KOBER R, 1990, J ACOUST SOC AM, V87, P882, DOI 10.1121/1.398898 KOSSL M, 1992, HEARING RES, V60, P156, DOI 10.1016/0378-5955(92)90018-I KOSSL M, 1994, HEARING RES, V72, P59, DOI 10.1016/0378-5955(94)90206-2 Kossl M, 1999, J COMP PHYSIOL A, V185, P217, DOI 10.1007/s003590050381 Kossl M, 1999, J MAMMAL, V80, P929, DOI 10.2307/1383262 Macias S, 2006, HEARING RES, V212, P245, DOI 10.1016/j.heares.2005.12.004 Mills DM, 2001, JARO-J ASSOC RES OTO, V2, P130, DOI 10.1007/s101620010059 Mora EC, 2004, J COMP PHYSIOL A, V190, P561, DOI 10.1007/s00359-004-0519-2 NEUWEILER G, 1980, ANIMAL SONAR SYSTEMS, P519 O'Neill W. E., 1995, HEARING BATS, P416 ONEILL WE, 1979, SCIENCE, V203, P69, DOI 10.1126/science.758681 OSTWALD J, 1980, ANIMAL SONAR SYSTEMS, P953 OSTWALD J, 1984, J COMP PHYSIOL, V155, P821, DOI 10.1007/BF00611599 POLLAK GD, 1980, ANIMAL SONAR SYSTEMS, P549 RADTKESCHULLER S, 1995, EUR J NEUROSCI, V7, P570, DOI 10.1111/j.1460-9568.1995.tb00662.x Razak KA, 2002, J NEUROPHYSIOL, V87, P72 SCHULLER G, 1991, EUR J NEUROSCI, V3, P1165, DOI 10.1111/j.1460-9568.1991.tb00051.x SCHULLER G, 1979, J COMP PHYSIOL, V132, P47 SIMMONS JA, 1978, J COMP PHYSIOL, V125, P291 Suga N., 1973, BASIC MECH HEARING, P675 SUGA N, 1979, SCIENCE, V206, P351, DOI 10.1126/science.482944 SUGA N, 1976, SCIENCE, V194, P542, DOI 10.1126/science.973140 SUGA N, 1979, SCIENCE, V203, P270, DOI 10.1126/science.760193 VATER M, 1979, J COMP PHYSIOL, V131, P137 Wittekindt A, 2005, J COMP PHYSIOL A, V191, P31, DOI 10.1007/s00359-004-0564-x WONG D, 1988, BRAIN RES, V453, P349, DOI 10.1016/0006-8993(88)90176-X NR 32 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2009 VL 250 IS 1-2 BP 19 EP 26 DI 10.1016/j.heares.2009.01.006 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 446XL UT WOS:000266154800003 PM 19450436 ER PT J AU Chung, K Zeng, FG AF Chung, King Zeng, Fan-Gang TI Using hearing aid adaptive directional microphones to enhance cochlear implant performance SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Adaptive; Directional microphone; Hearing aid; Speech recognition; Sound quality ID NOISE-REDUCTION ALGORITHMS; SPEECH RECOGNITION; BACKGROUND-NOISE; SYSTEM AB The goal of this study was to investigate whether adaptive microphone directionality could enhance cochlear implant performance. Speech stimuli were created by fitting a digital hearing aid with programmable omnidirectional (OM), fixed directional (FDM), or adaptive directional (ADM) microphones to KEMAR, and recording the hearing aid output in three noise conditions. The first condition simulated a diffused field with noise sources from five stationary locations, whereas the second and third condition represented one or three non-stationary locations in the back hemifield of KEMAR. Speech was always presented to 0 degrees azimuth and the overall signal-to-noise ratio (SNR) was +5 dB in the sound field. Eighteen postlingually deafened cochlear implant users listened to the recorded test materials via the direct audio input of their speech processors. Their speech recognition ability and overall sound quality preferences were assessed and the correlation between the amount of noise reduction and the improvement in speech recognition were calculated. The results indicated that ADM yielded significantly better speech recognition scores and overall sound quality preference than FDM and OM in all three noise conditions and the improvement in speech recognition scores was highly correlated with the amount of noise reduction. Factors influencing the noise level are discussed. (c) 2009 Elsevier B.V. All rights reserved. C1 [Chung, King] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47906 USA. [Zeng, Fan-Gang] Univ Calif Irvine, Dept Otolaryngol Head & Neck Surg, Irvine, CA 92697 USA. RP Chung, K (reprint author), No Illinois Univ, Dept Allied Hlth & Communicat Disorders, 323 Wirtz Hall, De Kalb, IL 60115 USA. EM kchung@niu.edu; fzeng@uci.edu RI Zeng, Fan-Gang/G-4875-2012 FU New Investigator Award from American Academy of Audiology; National Institute of Health [2R01-DC002267] FX The authors thank Lance Nelson for data collection, Rachael Fischer for editing the testing materials, Nicholas McKibben for technical support, and Andrea Miller for data entry. This work was supported by New Investigator Award from American Academy of Audiology and a grant from National Institute of Health (2R01-DC002267). CR BENTLER RA, 2006, J AM ACAD AUDIOL, V27, P179 Bentler Ruth A, 2004, Am J Audiol, V13, P73, DOI 10.1044/1059-0889(2004/010) BERGHE JV, 2005, Patent No. 6888949 Blamey PJ, 2006, J AM ACAD AUDIOL, V17, P519, DOI 10.3766/jaaa.17.7.7 BURKHARD MD, 1975, J ACOUST SOC AM, V58, P214, DOI 10.1121/1.380648 Chung King, 2004, Trends Amplif, V8, P83, DOI 10.1177/108471380400800302 Chung K, 2006, J ACOUST SOC AM, V120, P2216, DOI 10.1121/1.2285800 Chung K, 2004, ACOUST RES LETT ONL, V5, P56, DOI 10.1121/1.1666869 Cord Mary T, 2002, J Am Acad Audiol, V13, P295 Cord Mary T, 2004, J Am Acad Audiol, V15, P353, DOI 10.3766/jaaa.15.5.3 GREENBERG JE, 1992, J ACOUST SOC AM, V91, P1662, DOI 10.1121/1.402446 *IND HEAR AID FITT, 1994, COMPR HEAR AID FITT JENSEN LB, 2006, Patent No. 7010134 Kompis M, 2001, J ACOUST SOC AM, V109, P1134, DOI 10.1121/1.1338558 Kuk Francis, 2005, J Am Acad Audiol, V16, P333, DOI 10.3766/jaaa.16.6.2 LEEUW AR, 1991, AUDIOLOGY, V30, P330 Mackenzie E, 2005, EAR HEARING, V26, P669, DOI 10.1097/01.aud.0000188185.78217.c5 Maj JB, 2004, EAR HEARING, V25, P215, DOI 10.1097/01.AUD.0000130794.28068.96 Maj JB, 2006, SPEECH COMMUN, V48, P957, DOI 10.1016/j.specom.2005.12.005 MUELLER HG, 1983, HEAR INSTRUM, V34, P48 MUELLER HG, 1983, HEARING I, V34, P47 MUELLER HG, 1983, HEAR INSTRUM, V34, P14 Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 Nilsson M.J., 1994, J ACOUST SOC AM, V95, P1985 PALMER C, 2006, J AM ACAD AUDIOL, V27, P190 Pearsons K.S., 1976, ENV HLTH EFFECTS RES Powers T. A., 2002, HEAR J, V55, P38 Ricketts T, 2002, INT J AUDIOL, V41, P100, DOI 10.3109/14992020209090400 Ricketts T, 2003, EAR HEARING, V24, P424, DOI 10.1097/01.AUD.0000094555.89110.0A Ricketts T A, 2001, Trends Amplif, V5, P139, DOI 10.1177/108471380100500401 Spriet A, 2007, EAR HEARING, V28, P62, DOI 10.1097/01.aud.0000252470.54246.54 Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399 Surr Rauna K, 2002, J Am Acad Audiol, V13, P308 Thompson S. C., 2003, HEAR J, V56, P14 Valente M, 1999, Trends Amplif, V4, P112, DOI 10.1177/108471389900400302 VANHOESEL RJM, 1995, J ACOUST SOC AM, V97, P2498, DOI 10.1121/1.411970 Walden B E, 2000, J Am Acad Audiol, V11, P540 Wouters J, 2001, EAR HEARING, V22, P420, DOI 10.1097/00003446-200110000-00006 Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 NR 40 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2009 VL 250 IS 1-2 BP 27 EP 37 DI 10.1016/j.heares.2009.01.005 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 446XL UT WOS:000266154800004 PM 19450437 ER PT J AU Mom, T Gilain, L Avan, P AF Mom, Thierry Gilain, Laurent Avan, Paul TI Effects of glycerol intake and body tilt on otoacoustic emissions reflect labyrinthine pressure changes in Meniere's disease SO HEARING RESEARCH LA English DT Article DE Intralabyrinthine pressure; Meniere's disease; Otoacoustic emissions; Glycerol; Posture ID INNER-EAR PRESSURE; EXPERIMENTAL ENDOLYMPHATIC HYDROPS; TYMPANIC MEMBRANE DISPLACEMENT; MIDDLE-EAR; GUINEA-PIG; COCHLEAR AQUEDUCT; DIAGNOSIS; DYNAMICS; MODEL; ELECTROCOCHLEOGRAPHY AB It is known that by influencing stapes stiffness thus the ear's impedance, changes in intracranial and intralabyrinthine pressure induce a characteristic phase shift in otoacoustic emissions (OAE) around 1 kHz in human ears. Thus, if the regulation of pressure in intralabyrinthine compartments were abnormal in Meniere patients, OAEs might help detect it. Body tilt, which acts on intracranial pressure, and administration of an osmotically active substance provide two simple ways of manipulating intralabyrinthine pressure. Here, 14 patients with typical signs of an attack of unilateral endolymphatic hydrops were submitted to postural changes and a glycerol test. Their OAEs initially collected in upright position served as references, then OAEs were measured in supine position, and back to the upright posture one and 3 h after glycerol intake. Twenty control subjects were also tested for body tilt. The main effect of body tilt and glycerol was a phase rotation of CAEs peaking around 1 kHz. Its frequency dependence matched the one due to a pressure-related change in stapes or basilar membrane stiffness predicted by the ear model of Zwislocki (1962). The average glycerol-induced phase shifts were similar in size in Meniere vs. asymptomatic ear and audiometric thresholds were stable after glycerol intake in line with the model predicting little change in the magnitude of the transfer function. These data support a simple conductive pressure-related mechanism explaining the action of glycerol on inner ear responses. The fact that the mean postural shift was three times larger in Meniere than asymptomatic and control ears suggests an additional effect in allegedly hydropic ears. (c) 2009 Elsevier B.V. All rights reserved. C1 [Mom, Thierry; Gilain, Laurent; Avan, Paul] Univ Auvergne, Sch Med, Lab Sensory Biophys, F-63000 Clermont Ferrand, France. RP Avan, P (reprint author), Univ Auvergne, Sch Med, Lab Sensory Biophys, 28 Pl Henri Dunant, F-63000 Clermont Ferrand, France. EM paul.avan@u-clermont1.fr CR Andrews JC, 2000, AM J OTOL, V21, P652 ANDREWS JC, 1995, OTOLARYNG HEAD NECK, V112, P78 Avan Paul, 2001, Seminars in Hearing, V22, P405, DOI 10.1055/s-2001-19113 Avan P, 2000, HEARING RES, V140, P189, DOI 10.1016/S0378-5955(99)00201-4 BEENTJES BIJ, 1972, ACTA OTOLARYNGOL STO, V75, P184 BELL A, 1992, HEARING RES, V58, P91, DOI 10.1016/0378-5955(92)90012-C BOHMER A, 1993, ACTA OTO-LARYNGOL, P3 Bouccara D, 1998, AUDIOLOGY, V37, P255 Braun M, 1996, HEARING RES, V97, P1 Buki B, 2000, BRAIN RES, V852, P140, DOI 10.1016/S0006-8993(99)02227-1 Buki B, 1996, HEARING RES, V94, P125, DOI 10.1016/0378-5955(96)00015-9 CARLBORG B, 1982, ANN OTO RHINOL LARYN, V91, P209 CHAPMAN PH, 1990, NEUROSURGERY, V26, P181 Cianfrone G, 2000, SCAND AUDIOL, V29, P111, DOI 10.1080/010503900424525 Claes GME, 2008, EUR ARCH OTO-RHINO-L, V265, P517, DOI 10.1007/s00405-007-0486-7 Committee on Hearing and Equilibirum, 1995, OTOLARYNGOL HEAD NEC, V113, P181 de Kleine E, 2002, OTOL NEUROTOL, V23, P510, DOI 10.1097/00129492-200207000-00020 de Kleine E, 2001, J ACOUST SOC AM, V110, P973, DOI 10.1121/1.1381025 Densert B, 1997, AM J OTOL, V18, P726 DENSERT B, 1982, LARYNGOSCOPE, V92, P1285 De Valck CFJ, 2007, OTOL NEUROTOL, V28, P700, DOI 10.1097/01.mao.0000281806.82315.84 Fetterman BL, 2001, LARYNGOSCOPE, V111, P946, DOI 10.1097/00005537-200106000-00004 Frim DM, 2000, J NEUROSURG, V92, P927, DOI 10.3171/jns.2000.92.6.0927 GIBSON WPR, 1983, OTOLARYNG CLIN N AM, V16, P59 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 Hallpike C S, 1938, Proc R Soc Med, V31, P1317 HARRIS FP, 1992, ACTA OTO-LARYNGOL, V112, P36, DOI 10.3109/00016489209100780 HORNER KC, 1991, HEARING RES, V52, P147, DOI 10.1016/0378-5955(91)90194-E HUY PTB, 1984, ACTA OTO-LARYNGOL, V97, P571, DOI 10.3109/00016488409132935 KANOH N, 1985, ACTA OTO-LARYNGOL, V99, P46, DOI 10.3109/00016488509119144 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1990, EAR HEARING, V11, P93 Klockhoff I, 1966, Acta Otolaryngol, V61, P459, DOI 10.3109/00016486609127084 KUBO T, 1995, ACTA OTO-LARYNGOL, P275 Levine S, 1998, LARYNGOSCOPE, V108, P993, DOI 10.1097/00005537-199807000-00008 LUTMAN ME, 1979, J SOUND VIB, V64, P133, DOI 10.1016/0022-460X(79)90578-9 Magliulo G, 2004, ANN OTO RHINOL LARYN, V113, P1000 Magliulo G, 2001, LARYNGOSCOPE, V111, P102, DOI 10.1097/00005537-200101000-00018 Marchbanks RJ, 1982, HEARING AID J, V35, P14 Mateijsen DJM, 2001, EUR ARCH OTO-RHINO-L, V258, P1, DOI 10.1007/PL00007515 Meniere P, 1861, GAZ MED PARIS, V16, P597 Merchant SN, 2005, OTOL NEUROTOL, V26, P74, DOI 10.1097/00129492-200501000-00013 Morrison GAJ, 1996, ACTA OTO-LARYNGOL, V116, P546, DOI 10.3109/00016489609137887 Palazón J Hernández, 2008, Rev Esp Anestesiol Reanim, V55, P289 Robinette M.S., 2002, OTOACOUSTIC EMISSION Rosingh HJ, 1998, AUDIOLOGY, V37, P1 RUSSELL IJ, 1986, HEARING RES, V22, P199, DOI 10.1016/0378-5955(86)90096-1 Shimbles S, 2005, ACT NEUR S, V95, P197 Sirjani DB, 2004, J ACOUST SOC AM, V115, P1219, DOI 10.1121/1.1647479 Thalen EO, 2001, ACTA OTO-LARYNGOL, V121, P470, DOI 10.1080/000164801300366606 THORNTON ARD, 1991, SCAND AUDIOL, V20, P13, DOI 10.3109/01050399109070784 Valk WL, 2004, HEARING RES, V192, P47, DOI 10.1016/j.heares.2003.12.021 van Huffelen WM, 1998, AUDIOL NEURO-OTOL, V3, P419, DOI 10.1159/000013810 Wada H, 2001, HEARING RES, V154, P158, DOI 10.1016/S0378-5955(01)00242-8 Wit HP, 1999, HEARING RES, V132, P131, DOI 10.1016/S0378-5955(99)00048-9 Yamakawa K, 1938, J OTORHINOLARYNGOL S, V4, P2310 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 57 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2009 VL 250 IS 1-2 BP 38 EP 45 DI 10.1016/j.heares.2009.01.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 446XL UT WOS:000266154800005 PM 19450433 ER PT J AU Galvin, JJ Fu, QJ AF Galvin, John J., III Fu, Qian-Jie TI Influence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant users SO HEARING RESEARCH LA English DT Article DE Modulation detection; Intensity discrimination; Loudness growth; Cochlear implant; High rate stimulation ID SPEECH RECOGNITION; PHONEME RECOGNITION; PULSE-RATE; ELECTRODE CONFIGURATION; CONSONANT RECOGNITION; AMPLITUDE-MODULATION; IMPAIRED LISTENERS; AUDITORY-NERVE; TEMPORAL CUES; ENVELOPE CUES AB In cochlear implants (CIs), increasing the stimulation rate typically increases the electric dynamic range (DR), mostly by reducing audibility thresholds. While CI users' intensity resolution has been shown to be fairly constant across stimulation rates, high rates have been shown to weaken modulation sensitivity, especially at low listening levels. In this study, modulation detection thresholds (MDTs) were measured in five CI users for a range of stimulation rates (250-2000 pulses per second) and modulation frequencies (5-100 Hz) at 8 stimulation levels that spanned the DR (loudness-balanced across stimulation rates). Intensity difference limens (IDLs) were measured for the same stimulation rates and levels used for modulation detection. For all modulation frequencies, modulation sensitivity was generally poorer at low levels and at higher stimulation rates. CI users were sensitive to modulation frequency only at relatively high levels. Similarly, IDLs were poorer at low levels and at high stimulation rates. When compared directly in terms of relative amplitude, IDLs were generally better than MDTs at low levels. Differences in loudness growth between dynamic and steady stimuli might explain level-dependent differences between MDTs and IDLs. The slower loudness growth associated with high stimulation rates might explain the poorer MDTs and IDLs with high rates. In general, high stimulation rates provided no advantage in intensity resolution and a disadvantage in modulation sensitivity. (c) 2009 Elsevier B.V. All rights reserved. C1 [Galvin, John J., III; Fu, Qian-Jie] House Ear Res Inst, Div Commun & Auditory Neurosci, Los Angeles, CA 90057 USA. [Fu, Qian-Jie] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA. [Fu, Qian-Jie] Univ So Calif, Neurosci Program, Los Angeles, CA 90089 USA. RP Galvin, JJ (reprint author), House Ear Res Inst, Div Commun & Auditory Neurosci, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM jgalvin@hei.org FU NIDCD [R01-004993] FX The authors would like to thank all the CI patients who graciously participated in these experiments. The authors would also like to thank Bob Shannon, Monita Chatterjee and David Landsberget, as well as two anonymous reviewers for helpful comments. This work was supported by NIDCD R01-004993. CR BRILL SM, 1998, 4 EUR S PAED COCHL I BRILL SM, 1998, 24 INT C AUD BUEN AI Brill SM, 1997, AM J OTOL, V18, pS104 Chatterjee Monita, 2000, Journal of the Acoustical Society of America, V107, P1637, DOI 10.1121/1.428448 Donaldson GS, 2000, J ACOUST SOC AM, V108, P760, DOI 10.1121/1.429609 Friesen LM, 2005, AUDIOL NEURO-OTOL, V10, P169, DOI 10.1159/000084027 Fu QJ, 2005, HEARING RES, V202, P55, DOI 10.1016/j.heares.2004.10.004 Fu QJ, 2000, J ACOUST SOC AM, V107, P589, DOI 10.1121/1.428325 Fu QJ, 1999, J ACOUST SOC AM, V106, pL18, DOI 10.1121/1.427031 Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013 Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6 Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99 JESTEADT W, 1980, PERCEPT PSYCHOPHYS, V28, P85, DOI 10.3758/BF03204321 Kreft HA, 2004, J ACOUST SOC AM, V116, P2258, DOI 10.1121/1.1786871 Lawson D., 1996, SPEECH PROCESSORS AU Loizou PC, 2000, J ACOUST SOC AM, V108, P790, DOI 10.1121/1.429612 Loizou PC, 2000, J ACOUST SOC AM, V108, P2377, DOI 10.1121/1.1317557 Middlebrooks JC, 2008, J NEUROPHYSIOL, V100, P92, DOI 10.1152/jn.01114.2007 PFINGST BE, 1983, J ACOUST SOC AM, V73, P1283, DOI 10.1121/1.389277 Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SHANNON RV, 2005, ASS RES OT 28 MIDW M, V28, P183 Skinner Margaret W, 2003, Ann Otol Rhinol Laryngol Suppl, V191, P4 TURNER CW, 1995, J ACOUST SOC AM, V97, P2568, DOI 10.1121/1.411911 VANTASSELL DJ, 1992, J ACOUST SOC AM, V92, P1247, DOI 10.1121/1.403920 VANTASELL DJ, 1987, J ACOUST SOC AM, V82, P1152, DOI 10.1121/1.395251 WILSON B, 1997, SPEECH PROCESSORS AU Wilson BS, 1997, AM J OTOL, V18, pS30 Wojtczak M, 1999, J ACOUST SOC AM, V106, P1917, DOI 10.1121/1.427940 WYGONSKI J, 2002, INT MAT ZENG FG, 1991, Q J EXP PSYCHOL-A, V43, P565 Zeng FG, 1999, EAR HEARING, V20, P60, DOI 10.1097/00003446-199902000-00006 Zeng FG, 2002, J ACOUST SOC AM, V111, P377, DOI 10.1121/1.1423926 Zeng FG, 1998, NEUROREPORT, V9, P1845, DOI 10.1097/00001756-199806010-00033 ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013 ZHANG C, 1997, J ACOUST SOC AM, V105, P2925 NR 39 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2009 VL 250 IS 1-2 BP 46 EP 54 DI 10.1016/j.heares.2009.01.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 446XL UT WOS:000266154800006 PM 19450432 ER PT J AU Liu, W Bostrom, M Kinnefors, A Rask-Andersen, H AF Liu, Wei Bostrom, Marja Kinnefors, Anders Rask-Andersen, Helge TI Unique expression of connexins in the human cochlea SO HEARING RESEARCH LA English DT Article DE Human cochlea; Connexin; Gap junction channel; Immunohistochemistry; Human spiral ganglion; Speech signal processing ID GAP-JUNCTIONS; ELECTRICAL SYNAPSES; HEARING IMPAIRMENT; MAMMALIAN BRAIN; RAT COCHLEA; INNER-EAR; MUTATIONS; DEAFNESS; CELLS; PERMEABILITY AB Mutations in the genes GJB2 and GJB6, which encode the proteins Connexin 26 (Cx26) and Connexin 30 (Cx30), have been linked to nonsyndromic prelingual deafness in humans. These proteins may form so-called gap junctions (GJ) or transcellular pathways between cells. The pathogenesis of deafness due to GJ Connexin mutations remains unclear partly because examinations performed in the human ear are infrequent. Here we analysed the expression and distribution of Cx26 and Cx30 in five fresh normal human cochleae taken out at occasional surgery. Immunohistochemistry including confocal microscopy in decalcified specimen showed that these proteins are widely expressed in the human cochlea. In the lateral wall there was strong antibody co-labeling for Cx26 and Cx30 that support the existence of channels comprising heteromeric Cx26/Cx30 connexons. In the organ of Corti there were some co-labeling in the supporting cell area including mainly the Claudius cells and Deiter cells of these two Cxs, apart from isolated Cx26 and Cx30 labeling in the same area, suggestive of both homomeric/homotypic pattern and hybrid pattern (heteromeric or heterotypic). Cx30, Cx26 and Connexin 36 (Cx36) immunoreactivity was also associated with spiral ganglion type I neurons, the latter being a gap junction protein specific to neurons. Gap-junction-based electrical synapses are not known to occur in mammalian auditory system other than in bats where they may play a role for fast electrical nerve transmission useful for echolocation. Their potential role in the processing of human auditory nerve signaling as well as non-GJ roles of the connexins in human cochlea is discussed. (c) 2009 Elsevier B.V. All rights reserved. C1 [Rask-Andersen, Helge] Univ Uppsala Hosp, Dept Surg Sci, Otolaryngol Sect, SE-75185 Uppsala, Sweden. [Liu, Wei] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Otolaryngol, Guangzhou 510275, Guangdong, Peoples R China. RP Rask-Andersen, H (reprint author), Univ Uppsala Hosp, Dept Surg Sci, Otolaryngol Sect, SE-75185 Uppsala, Sweden. EM helge.rask-andersen@akademiska.se FU Tysta Skolan Foundation; Hearing Research Foundation (HRF); Sellanders Foundation FX Our research is a part of the European Community 6th Framework Programme on Research, Technological Development and Demonstration (Nanotechnology-based targeted drug delivery; Contract No. NMP-2004-3.4.1.5-1-1; project acronym: NANOEAR). This study was supported by grants from the Tysta Skolan Foundation, the Hearing Research Foundation (HRF), and the Sellanders Foundation. CR Beltramello M, 2005, NAT CELL BIOL, V7, P63, DOI 10.1038/ncb1205 Bennett MVL, 2004, NEURON, V41, P495, DOI 10.1016/S0896-6273(04)00043-1 Cohen-Salmon M, 2002, CURR BIOL, V12, P1106, DOI 10.1016/S0960-9822(02)00904-1 Cohn ES, 1999, AM J MED GENET, V89, P130, DOI 10.1002/(SICI)1096-8628(19990924)89:3<130::AID-AJMG3>3.3.CO;2-D Condorelli DF, 1998, EUR J NEUROSCI, V10, P1202, DOI 10.1046/j.1460-9568.1998.00163.x Connors BW, 2004, ANNU REV NEUROSCI, V27, P393, DOI 10.1146/annurev.neuro.26.041002.131128 del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052 Forge A, 2003, J COMP NEUROL, V467, P207, DOI 10.1002/cne.10916 Gibson JR, 1999, NATURE, V402, P75 Grifa A, 1999, NAT GENET, V23, P16 Han Y, 2005, P NATL ACAD SCI USA, V102, P13313, DOI 10.1073/pnas.0505067102 Hernandez VH, 2007, NAT METHODS, V4, P353, DOI 10.1038/NMETH1031 Hormuzdi SG, 2004, BBA-BIOMEMBRANES, V1662, P113, DOI 10.1016/j.bbamem.2003.10.023 Horowitz SS, 2008, BRAIN RES, V1197, P76, DOI 10.1016/j.brainres.2007.12.048 Jagger DJ, 2006, J NEUROSCI, V26, P1260, DOI 10.1523/JNEUROSCI.4278-05.2006 Jun AI, 2000, LARYNGOSCOPE, V110, P269, DOI 10.1097/00005537-200002010-00016 Kammen-Jolly K, 2001, HEARING RES, V160, P15, DOI 10.1016/S0378-5955(01)00310-0 Kandel ER, 2000, BRAIN RES REV, V32, P3, DOI 10.1016/S0165-0173(99)00062-4 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KOLING A, 1982, CELL BIOL INT REP, V6, P419, DOI 10.1016/0309-1651(82)90111-4 Landisman CE, 2002, J NEUROSCI, V22, P1002 Lautermann J, 1999, DEV GENET, V25, P306, DOI 10.1002/(SICI)1520-6408(1999)25:4<306::AID-DVG4>3.0.CO;2-R Maeda Y, 2005, HUM MOL GENET, V14, P1641, DOI 10.1093/hmg/ddi172 Nagy JI, 1999, NEUROSCIENCE, V88, P447, DOI 10.1016/S0306-4522(98)00191-2 Paramonova N M, 2008, Morfologiia, V134, P13 Placantonakis DG, 2004, P NATL ACAD SCI USA, V101, P7164, DOI 10.1073/pnas.0400322101 Rask-Andersen H, 2000, HEARING RES, V141, P1, DOI 10.1016/S0378-5955(99)00179-3 Sohl G, 2004, CARDIOVASC RES, V62, P228, DOI 10.1016/j.cardiores.2003.11.013 Sun JJ, 2005, AM J PHYSIOL-CELL PH, V288, pC613, DOI 10.1152/ajpcell.00341.2004 Teubner B, 2003, HUM MOL GENET, V12, P13, DOI 10.1093/hmg/ddg001 Weickert Svenja, 2005, Brain Res Mol Brain Res, V133, P102 YUM SW, 2007, AM J PHYSIOL-CELL PH, V293, P1032 Zhang YP, 2005, P NATL ACAD SCI USA, V102, P15201, DOI 10.1073/pnas.0501859102 NR 34 TC 16 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2009 VL 250 IS 1-2 BP 55 EP 62 DI 10.1016/j.heares.2009.01.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 446XL UT WOS:000266154800007 PM 19450429 ER PT J AU Salt, AN Brown, DJ Hartsock, JJ Plontke, SK AF Salt, Alec N. Brown, Daniel J. Hartsock, Jared J. Plontke, Stefan K. TI Displacements of the organ of Corti by gel injections into the cochlear apex SO HEARING RESEARCH LA English DT Article DE Transduction; Operating point; Cochlea; Helicotrema ID LOW-FREQUENCY TONES; GUINEA-PIG COCHLEA; PRODUCT OTOACOUSTIC EMISSIONS; ACUTE ENDOLYMPHATIC HYDROPS; TRANSDUCER OPERATING POINT; BASILAR-MEMBRANE MOTION; OUTER HAIR-CELLS; INNER-EAR; MAMMALIAN COCHLEA; PERILYMPHATIC INJECTIONS AB In order to transduce sounds efficiently, the stereocilia of hair cells in the organ of Corti must be positioned optimally. Mechanical displacements, such as pressure differentials across the organ caused by endolymphatic hydrops, may impair sensitivity. Studying this phenomenon has been limited by the technical difficulty of inducing sustained displacements of stereocilia in vivo. We have found that small injections (0.5-2 mu L) of Healon gel into the cochlear apex of guinea pigs produced sustained changes of endocochlear potential (EP), summating potential (SP) and transducer operating point (OP) in a manner consistent with a mechanically-induced position change of the organ of Corti in the basal turn. Induced changes immediately recovered when injection ceased. In addition, effects of low-frequency bias tones on EP, SP and OP were enhanced during the injection of gel and remained hypersensitive after injection ceased. This is thought to result from the viscous gel mechanically limiting pressure shunting through the helicotrema. Cochlear microphonics measured as frequency was varied showed enhancement below 100 Hz but most notably in the sub-auditory range. Sensitivity to low-frequency biasing was also enhanced in animals with surgically-induced endolymphatic hydrops, suggesting that obstruction of the perilymphatic space by hydrops could contribute to the pathophysiology of this condition. (c) 2009 Elsevier B.V. All rights reserved. C1 [Salt, Alec N.; Brown, Daniel J.; Hartsock, Jared J.] Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. [Plontke, Stefan K.] Univ Tubingen, Dept Otorhinolaryngol Head & Neck Surg, D-72076 Tubingen, Germany. [Plontke, Stefan K.] Univ Tubingen, THRC, D-72076 Tubingen, Germany. RP Salt, AN (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115,660 S Euclid Ave, St Louis, MO 63110 USA. EM salta@msnotes.wustl.edu FU National Institute on Deafness and Other Communication Disorders [RO1 DC01368]; National Institutes of Health; Meniere's Research Fund Group of New South Wales, Australia FX This study was supported by research Grant RO1 DC01368 from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health and by a grant to Daniel Brown from the Meniere's Research Fund Group of New South Wales, Australia. We would like to acknowledge contribution of Ruth Gill, for assisting in the preparation of the manuscript and of Dr. Barbara Bohne for taking the photographs of histological specimens. CR ASSAD JA, 1992, J NEUROSCI, V12, P3291 Bian L, 2002, J ACOUST SOC AM, V112, P198, DOI 10.1121/1.1488943 Bian L, 2004, J ACOUST SOC AM, V115, P2159, DOI 10.1121/1.1690081 Bian L, 2007, J ACOUST SOC AM, V122, P1681, DOI 10.1121/1.2764467 BOHMER A, 1993, ACTA OTO-LARYNGOL, P3 Brown DJ, 2009, J ACOUST SOC AM, V125, P2129, DOI 10.1121/1.3083228 Choi CH, 2004, J ACOUST SOC AM, V116, P2996, DOI 10.1121/1.1791722 COHEN J, 1984, ACTA OTO-LARYNGOL, V98, P398, DOI 10.3109/00016488409107580 COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y DALLAS P, 1970, AUDITORY PERIPHERY, P180 DALLOS P, 1992, J NEUROSCI, V12, P4575 Dunnebier EA, 2001, OTOL NEUROTOL, V22, P655, DOI 10.1097/00129492-200109000-00017 Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285 Fettiplace R, 2003, CURR OPIN NEUROBIOL, V13, P446, DOI 10.1016/S0959-4388(03)00094-1 Flock A, 1999, J NEUROSCI, V19, P4498 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 Fridberger A, 1997, ACTA PHYSIOL SCAND, V161, P239, DOI 10.1046/j.1365-201X.1997.00214.x Hibino H, 2006, PHYSIOLOGY, V21, P336, DOI 10.1152/physiol.00023.2006 Hirschfelder A, 2005, HNO, V53, P612, DOI 10.1007/s00106-004-1171-4 Hof-Duin NJ, 2007, HEARING RES, V231, P84, DOI 10.1016/j.heares.2007.06.004 HORNER KC, 1992, SCANNING MICROSCOPY, V6, P1115 Kirk DL, 1997, HEARING RES, V112, P69, DOI 10.1016/S0378-5955(97)00104-4 Kirk DL, 1997, HEARING RES, V112, P49, DOI 10.1016/S0378-5955(97)00105-6 KLIS JFL, 1988, HEARING RES, V32, P175, DOI 10.1016/0378-5955(88)90089-5 KONISHI T, 1978, JPN J PHYSIOL, V28, P291 KROS CJ, 1992, P ROY SOC B-BIOL SCI, V249, P185, DOI 10.1098/rspb.1992.0102 LEPAGE EL, 1987, J ACOUST SOC AM, V82, P139, DOI 10.1121/1.395557 LONG CH, 1987, OTOLARYNG HEAD NECK, V96, P83 Lukashkin AN, 2002, J ACOUST SOC AM, V112, P1561, DOI 10.1121/1.1502903 Marquardt T, 2007, J ACOUST SOC AM, V121, P3628, DOI 10.1121/1.2722506 NINOYU O, 1986, ARCH OTO-RHINO-LARYN, V243, P106, DOI 10.1007/BF00453759 O'Beirne GA, 2007, HEARING RES, V234, P29, DOI 10.1016/j.heares.2007.09.008 Odkvist LM, 2000, ACTA OTO-LARYNGOL, P99 Patuzzi R, 1998, HEARING RES, V125, P1, DOI 10.1016/S0378-5955(98)00125-7 PATUZZI R, 1984, HEARING RES, V13, P19, DOI 10.1016/0378-5955(84)90091-1 PATUZZI R, 1984, HEARING RES, V13, P1, DOI 10.1016/0378-5955(84)90089-3 Patuzzi RB, 2004, HEARING RES, V190, P87, DOI 10.1016/S0378-5955(03)00405-2 PURIA S, 1991, J ACOUST SOC AM, V89, P287, DOI 10.1121/1.400675 Rotter A, 2008, EUR ARCH OTO-RHINO-L, V265, P643, DOI 10.1007/s00405-007-0520-9 RUSSELL IJ, 1986, HEARING RES, V22, P199, DOI 10.1016/0378-5955(86)90096-1 RYDMARKER S, 1991, HEARING RES, V53, P113, DOI 10.1016/0378-5955(91)90218-X Sakikawa Y, 1999, ANN OTO RHINOL LARYN, V108, P271 Salt AN, 2004, HEARING RES, V191, P90, DOI 10.1016/j.heares.2003.12.018 SALT AN, 1995, HEARING RES, V88, P79, DOI 10.1016/0378-5955(95)00103-B Salt AN, 2006, J NEUROSCI METH, V153, P121, DOI 10.1016/j.jneumeth.2005.10.008 SALT AN, 2005, P 5 INT S MEN DIS IN, P115 Salt AN, 1997, HEARING RES, V107, P29, DOI 10.1016/S0378-5955(97)00018-X Salt AN, 1998, HEARING RES, V123, P137, DOI 10.1016/S0378-5955(98)00106-3 SALT AN, 1994, HEARING RES, V74, P115, DOI 10.1016/0378-5955(94)90180-5 Salt AN, 2004, JARO-J ASSOC RES OTO, V5, P203, DOI 10.1007/s10162-003-4032-z SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 Shinomori Y, 2001, ANN OTO RHINOL LARYN, V110, P91 Sirjani DB, 2004, J ACOUST SOC AM, V115, P1219, DOI 10.1121/1.1647479 TAKEUCHI S, 1990, ACTA OTO-LARYNGOL, V109, P93, DOI 10.3109/00016489009107419 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 TONO T, 1995, AUDIOLOGY, V34, P47 Valk WL, 2006, EUR ARCH OTO-RHINO-L, V263, P430, DOI 10.1007/s00405-005-1035-x Wit HP, 2000, HEARING RES, V145, P82, DOI 10.1016/S0378-5955(00)00078-2 Xenellis JE, 2004, LARYNGOSCOPE, V114, P1953, DOI 10.1097/01.mlg.0000147927.98766.e1 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 Zou Y, 2006, J ACOUST SOC AM, V119, P2232, DOI 10.1121/1.2173517 NR 61 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2009 VL 250 IS 1-2 BP 63 EP 75 DI 10.1016/j.heares.2009.02.001 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 446XL UT WOS:000266154800008 PM 19217935 ER PT J AU Ohlemiller, KK Rice, MER Lett, JM Gagnon, PM AF Ohlemiller, Kevin K. Rice, Mary E. Rybak Lett, Jaclynn M. Gagnon, Patricia M. TI Absence of strial melanin coincides with age-associated marginal cell loss and endocochlear potential decline SO HEARING RESEARCH LA English DT Article DE Cochlea; Aging; Stria vascularis; Hair cells; Spiral ganglion; Spiral ligament; Fibrocytes; Presbycusis; C57BL/6; Mouse ID PIGMENTED GUINEA-PIGS; INDUCED HEARING-LOSS; CHLOROQUINE-TREATED RED; INNER-EAR; ACOUSTIC TRAUMA; SPIRAL LIGAMENT; LATERAL WALL; MICROVASCULAR PATHOLOGY; COCHLEAR DEGENERATION; DEPENDENT DIFFERENCES AB Cochlear stria vascularis contains melanin-producing intermediate cells that play a critical role in the production of the endocochlear potential (EP) and in maintaining the high levels of K(+) that normally exist in scala media. The melanin produced by intermediate cells can be exported to the intrastrial space, where it may be taken up by strial marginal cells and basal cells. Because melanin can act as an antioxidant and metal chelator, evidence for its role in protecting the stria and organ of Corti against noise, ototoxins, and aging has long been sought. While some evidence supports a protective role of melanin against noise and ototoxins, no evidence yet presented has demonstrated a clear role for melanin in maintaining the EP during aging. We tested this by comparing basal turn EPs and a host of cochlear cellular metrics in aging C57BL/6 (B6) mice and C57BL/6-Tyr(c-2J) mice. The latter mice carry a naturally occurring inactivating mutation of the tyrosinase locus, and produce no strial melanin. Because these two strains are coisogenic, and because pigmented B6 mice show essentially no age-related EP decline, they provide an ideal test of importance of melanin in the aging stria. Pigmented and albino B6 mice showed identical rates of hearing loss and sensory cell loss. However, after two years of age, basal turn EPs significantly diverged, with 42% of albinos showing EPs below 100 mV versus only 18% of pigmented mice. The clearest anatomical correlate of this EP difference was significantly reduced strial thickness in the albinos that was highly correlated with loss of marginal cells. Combined with findings in human temporal bones, plus recent work in BALB/c mice and gerbils, the present findings point to a common etiology in strial presbycusis whereby EP reduction is principally linked to marginal cell loss or dysfunction. For any individual, genetic background, environmental influences, and stochastic events may work together to determine whether marginal cell density or function falls below some critical level, and thus whether EP decline occurs. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ohlemiller, Kevin K.; Lett, Jaclynn M.; Gagnon, Patricia M.] Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. [Ohlemiller, Kevin K.; Lett, Jaclynn M.; Gagnon, Patricia M.] Washington Univ, Fay & Carl Simons Ctr Biol Hearing & Deafness, Cent Inst Deaf, St Louis, MO 63110 USA. [Ohlemiller, Kevin K.; Rice, Mary E. Rybak] Washington Univ, Program Audiol & Commun Sci, St Louis, MO 63110 USA. RP Ohlemiller, KK (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid, St Louis, MO 63110 USA. EM kohlemiller@wustl.edu FU NIH [R01 DC08321, R01 DC03454, P30 DC04665] FX Thanks to Dr. K. Hirose for helpful comments. Supported by Washington University Med. School Dept. of Otolaryngology, NIH R01 DC08321 (KKO), R01 DC03454 (KKO) and P30 DC04665 (R. Chole). CR ATTIAS J, 1985, AUDIOLOGY, V24, P149 BARRENAS M-L, 1991, British Journal of Audiology, V25, P303, DOI 10.3109/03005369109076602 Barrenas ML, 2000, AUDIOLOGY, V39, P238 Barrenas ML, 1997, AUDIOLOGY, V36, P187 BARRENAS ML, 1993, SCAND AUDIOL, V23, P93 Bartels S, 2001, HEARING RES, V154, P116, DOI 10.1016/S0378-5955(01)00213-1 Bielefeld EC, 2008, HEARING RES, V241, P26, DOI 10.1016/j.heares.2008.04.006 CABLE J, 1993, PIGM CELL RES, V6, P215, DOI 10.1111/j.1600-0749.1993.tb00605.x COHENSALMON M, 2007, P NAT ACAD SCI, V105, P6229 COMIS SD, 1980, HEARING RES, V3, P249, DOI 10.1016/0378-5955(80)90051-9 CONLEE JW, 1994, HEARING RES, V79, P115, DOI 10.1016/0378-5955(94)90133-3 CONLEE JW, 1994, HEARING RES, V72, P108, DOI 10.1016/0378-5955(94)90211-9 CONLEE JW, 1989, HEARING RES, V41, P43, DOI 10.1016/0378-5955(89)90177-9 CONLEE JW, 1991, HEARING RES, V55, P57, DOI 10.1016/0378-5955(91)90092-N CONLEE JW, 1995, ACTA OTO-LARYNGOL, V115, P367, DOI 10.3109/00016489509139331 CONLEE JW, 1988, ACTA OTO-LARYNGOL, V106, P64, DOI 10.3109/00016488809107372 COVELL W. P., 1957, LARYNGOSCOPE, V67, P118 CUNNINGHAM WH, 1982, SIAM J ALGEBRA DISCR, V3, P214, DOI 10.1137/0603021 DACOSTA DA, 2008, INT J AUDIOL, V47, P115 delMarmol V, 1996, FEBS LETT, V381, P165, DOI 10.1016/0014-5793(96)00109-3 Di Girolamo S, 2001, AUDIOLOGY, V40, P322 Eppig JT, 2007, NUCLEIC ACIDS RES, V35, pD630, DOI 10.1093/nar/gkl940 Farkas E, 2001, PROG NEUROBIOL, V64, P575, DOI 10.1016/S0301-0082(00)00068-X Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654 Gill SS, 1997, HEARING RES, V113, P191, DOI 10.1016/S0378-5955(97)00141-X GRATACAP B, 1989, ARCH OTO-RHINO-LARYN, V246, P235, DOI 10.1007/BF00463562 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 GRATTON MA, 1995, HEARING RES, V82, P44 GRATTON MA, 1992, PIGM CELL RES, V5, P30, DOI 10.1111/j.1600-0749.1992.tb00779.x Hayashi H, 2007, ARCH OTOLARYNGOL, V133, P151, DOI 10.1001/archotol.133.2.151 Hequembourg S, 2001, JARO, V2, P118 Hibino H, 2006, PHYSIOLOGY, V21, P336, DOI 10.1152/physiol.00023.2006 Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619 Ichimiya I, 2000, HEARING RES, V139, P116, DOI 10.1016/S0378-5955(99)00170-7 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P364 Keithley EM, 2005, HEARING RES, V209, P76, DOI 10.1016/j.heares.2005.06.009 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 Kusunoki T, 2004, OTOLARYNG HEAD NECK, V131, P897, DOI 10.1016/j.otohns.2004.05.022 Lang H, 2003, JARO, V4, P164, DOI 10.1007/s10162-002-2056-4 Lang H, 2002, HEARING RES, V172, P118, DOI 10.1016/S0378-5955(02)00552-X Le T, 2007, HEARING RES, V226, P194, DOI 10.1016/j.heares.2006.04.003 Lin DW, 1997, OTOLARYNG HEAD NECK, V117, P530, DOI 10.1016/S0194-5998(97)70026-3 McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 McFadden SL, 1999, J COMP NEUROL, V413, P101 MIKAELIA.DO, 1974, ACTA OTO-LARYNGOL, V77, P327, DOI 10.3109/00016487409124632 Nelson EG, 2003, LARYNGOSCOPE, V113, P1672, DOI 10.1097/00005537-200310000-00006 Nemoto M, 2004, BIOCHEM BIOPH RES CO, V324, P1283, DOI 10.1016/j.bbrc.2004.09.186 Ohlemiller KK, 2008, HEARING RES, V244, P85, DOI 10.1016/j.heares.2008.08.001 Ohlemiller KK, 2007, HEARING RES, V224, P34, DOI 10.1016/j.heares.2006.11.005 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 OHLEMILLER KK, 2007, ABSTR ASS RES OT, V30, P257 OHLEMILLER KK, 2008, ABSTR ASS RES OTOLAR, V31, P219 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Ohlemiller KK, 2006, HEARING RES, V220, P10, DOI 10.1016/j.heares.2006.06.012 Ohlemiller Kevin K., 2008, V31, P145 Ohlemiller Kevin K, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P439, DOI 10.1097/01.moo.0000134450.99615.22 PAULER M, 1988, LARYNGOSCOPE, V98, P754 RAREY KE, 1982, HEARING RES, V6, P15, DOI 10.1016/0378-5955(82)90004-1 Riley PA, 1997, INT J BIOCHEM CELL B, V29, P1235, DOI 10.1016/S1357-2725(97)00013-7 SCHMIEDT RA, 1993, SENSORY RESEARCH MULTIMODAL PERSPECTIVES, P91 Schmiedt RA, 2002, J NEUROSCI, V22, P9643 Schraermeyer U, 1999, PIGM CELL RES, V12, P219, DOI 10.1111/j.1600-0749.1999.tb00755.x SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Setaluri V, 2000, PIGM CELL RES, V13, P128, DOI 10.1034/j.1600-0749.2000.130302.x SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 Spicer SS, 2005, HEARING RES, V205, P225, DOI 10.1016/j.heares.2005.03.022 Spicer SS, 2005, HEARING RES, V200, P87, DOI 10.1016/j.heares.2004.09.006 Steel KP, 1995, ANNU REV GENET, V29, P675 Tachibana M, 1999, PIGM CELL RES, V12, P344, DOI 10.1111/j.1600-0749.1999.tb00518.x Takeuchi S, 2001, HEARING RES, V155, P103, DOI 10.1016/S0378-5955(01)00252-0 Taylor RR, 2008, JARO-J ASSOC RES OTO, V9, P44, DOI 10.1007/s10162-007-0105-8 Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4 TRACHIMOWICZ RA, 1981, NEUROBIOL AGING, V2, P133, DOI 10.1016/0197-4580(81)90011-7 TRUNE DR, 2002, HDB MOUSE AUDITORY R, P505 Wang Y, 2006, INT J PEDIATR OBES, V1, P11, DOI 10.1080/17477160600586747 Wangemann P., 1996, COCHLEA, P130 WASTERSTROM SA, 1986, AM J OTOL, V7, P11 WRIGHT CG, 1989, ACTA OTO-LARYNGOL, V108, P190, DOI 10.3109/00016488909125518 WRIGHT JL, 1972, ARCHIV OTOLARYNGOL, V96, P16 ZUMGOTTESBERGE AMM, 1988, PIGM CELL RES, V1, P238 NR 85 TC 23 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2009 VL 249 IS 1-2 BP 1 EP 14 DI 10.1016/j.heares.2008.12.005 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 426XA UT WOS:000264740500001 PM 19141317 ER PT J AU Batts, SA Shoemaker, CR Raphael, Y AF Batts, Shelley A. Shoemaker, Christopher R. Raphael, Yehoash TI Notch signaling and Hes labeling in the normal and drug-damaged organ of Corti SO HEARING RESEARCH LA English DT Article DE Notch signaling; Hair cell; Supporting cell; Cochlea; Ototoxicity; Guinea pig; bHLH gene ID HAIR CELL REGENERATION; MAMMALIAN INNER-EAR; ACOUSTIC TRAUMA; EXPRESSION PATTERNS; PROSENSORY PATCHES; GENE-TRANSFER; GUINEA-PIGS; DIFFERENTIATION; COCHLEA; INHIBITION AB During the development of the inner ear, the Notch cell signaling pathway is responsible for the specification of the pro-sensory domain and influences cell fate decisions. It is assumed that Notch signaling ends during maturity and cannot be reinitiated to alter the fate of new or existing cells in the organ of Corti. This is in contrast to non-mammalian species which reinitiate Delta1-Notch1 signaling in response to trauma in the auditory epithelium, resulting in hair cell regeneration through transdifferentiation and/or mitosis. We report immunohistochemical data and Western protein analysis showing that in the aminoglycoside-damaged guinea pig organ of Corti, there is an increase in proteins involved in Notch activation occurring within 24 h of a chemical hair cell lesion. The signaling response is characterized by the increased presence of Jagged1 ligand in pillar and Deiters cells, Notch1 signal in surviving supporting cell nuclei, and the absence of Jagged2 and Delta-like1. The pro-sensory bHLH protein Atoh1 was absent at all time points following an ototoxic lesion, while the repressor bHLH transcription factors Hes1 and Hes5 were detected in surviving supporting cell nuclei in the former inner and outer hair cell areas, respectively. Notch pathway proteins peaked at 2 weeks, decreased at 1 month, and nearly disappeared by 2 months. These results indicate that the mammalian auditory epithelium retains the ability to regulate Notch signaling and Notch-dependent Hes activity in response to cellular trauma and that the signaling is transient. Additionally, since Hes activity antagonizes the transcription of pro-sensory Arch 1, the presence of Hes after a lesion may prohibit the occurrence of transdifferentiation in the surviving supporting cells. (C) 2009 Elsevier B.V. All rights reserved. C1 [Batts, Shelley A.; Raphael, Yehoash] Univ Michigan, Kresge Hearing Res Inst, Sch Med, Ann Arbor, MI 48109 USA. [Batts, Shelley A.; Raphael, Yehoash] Univ Michigan, Neurosci Program, Ann Arbor, MI 48109 USA. [Shoemaker, Christopher R.] Wayne State Univ, Sch Med, Detroit, MI USA. RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, Sch Med, MSRB-3,Room 9220B,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM yoash@umich.edu FU A. Alfred Taubman Medical Research Institute; Berte and Alan Hirschfield; NIH-NIDCD [R01DC01634, R01-DC007634, T32-DC00011, P30-DC05188] FX This work was supported by the R. Jamison and Betty Williams Professorship, the A. Alfred Taubman Medical Research Institute, a gift from Berte and Alan Hirschfield and NIH-NIDCD Grants R01DC01634, R01-DC007634, T32-DC00011, and P30-DC05188. CR Abrashkin KA, 2006, HEARING RES, V218, P20, DOI 10.1016/j.heares.2006.04.001 Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 Baird RA, 1996, ANN NY ACAD SCI, V781, P59, DOI 10.1111/j.1749-6632.1996.tb15693.x Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7 Bray SJ, 2006, NAT REV MOL CELL BIO, V7, P678, DOI 10.1038/nrm2009 Cafaro J, 2007, DEV DYNAM, V236, P156, DOI 10.1002/dvdy.21023 Conboy IM, 2003, SCIENCE, V302, P1575, DOI 10.1126/science.1087573 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 Daudet N, 2007, DEVELOPMENT, V134, P2369, DOI 10.1242/dev.001842 Daudet N, 2005, DEVELOPMENT, V132, P541, DOI 10.1242/dev.01589 Djalilian AR, 2008, MOL VIS, V14, P1041 Ehebauer M, 2006, SCI STKE Givogri MI, 2006, DEV NEUROSCI-BASEL, V28, P81, DOI 10.1159/000090755 HAWKINS JE, 1976, EFFECTS NOISE HEARIN, V270, P91 Hori R, 2007, NEUROREPORT, V18, P1911 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Kawamoto K, 2003, J NEUROSCI, V23, P4395 Kelley MW, 2003, CURR TOP DEV BIOL, V57, P321, DOI 10.1016/S0070-2153(03)57011-9 Kelley MW, 1997, AUDIOL NEURO-OTOL, V2, P50 Kelley Matthew W, 2002, ScientificWorldJournal, V2, P1079 Kiernan AE, 2006, PLOS GENET, V2, P27, DOI 10.1371/journal.pgen.0020004 Kiernan AE, 2005, DEVELOPMENT, V132, P4353, DOI 10.1242/dev.02002 Kiernan AE, 2001, P NATL ACAD SCI USA, V98, P3873, DOI 10.1073/pnas.071496998 Krawczyk CM, 2008, J IMMUNOL, V180, P7931 Lai EC, 2004, DEVELOPMENT, V131, P965, DOI 10.1242/dev.01074 Lanford PJ, 1999, NAT GENET, V21, P289 Lewis AK, 1998, MECH DEVELOP, V78, P159, DOI 10.1016/S0925-4773(98)00165-8 Lindner V, 2001, AM J PATHOL, V159, P875, DOI 10.1016/S0002-9440(10)61763-4 Liu T, 2007, CARCINOGENESIS, V28, P488, DOI 10.1093/carcin/bgl176 Lovschall H, 2005, EUR J ORAL SCI, V113, P312, DOI 10.1111/j.1600-0722.2005.00221.x Mitsiadis TA, 1999, EXP CELL RES, V246, P312, DOI 10.1006/excr.1998.4285 Oesterle EC, 2008, JARO-J ASSOC RES OTO, V9, P65, DOI 10.1007/s10162-007-0106-7 RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7 ROBERSON DW, 1994, AM J OTOL, V15, P28 Roberson DW, 1996, AUDIT NEUROSCI, V2, P195 RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Shimojo H, 2008, NEURON, V58, P52, DOI 10.1016/j.neuron.2008.02.014 Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6 Stone JS, 1999, DEVELOPMENT, V126, P961 Takebayashi S, 2007, DEV BIOL, V307, P165, DOI 10.1016/j.ydbio.2007.04.035 Taylor R, 2005, SCIENCE, V307, P1056, DOI 10.1126/science.1109680 van Es JH, 2005, TRENDS MOL MED, V11, P496, DOI 10.1016/j.molmed.2005.09.008 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Weir J, 2000, ARCH OTOLARYNGOL, V126, P1244 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349 Yamamoto N, 2006, J MOL MED-JMM, V84, P37, DOI 10.1007/s00109-005-0706-9 Zheng JL, 2000, NAT NEUROSCI, V3, P580 Zheng JL, 2000, DEVELOPMENT, V127, P4551 Zine A, 2001, J NEUROSCI, V21, P4712 Zine A, 2000, DEVELOPMENT, V127, P3373 NR 52 TC 29 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2009 VL 249 IS 1-2 BP 15 EP 22 DI 10.1016/j.heares.2008.12.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 426XA UT WOS:000264740500002 PM 19185606 ER PT J AU McLachlan, N AF McLachlan, Neil TI A computational model of human pitch strength and height judgments SO HEARING RESEARCH LA English DT Article DE Pitch; Strength; Height; Neurobiological; Model ID VENTRAL COCHLEAR NUCLEUS; PRIMARY AUDITORY-CORTEX; INFERIOR COLLICULUS; AMPLITUDE-MODULATION; PERIODICITY INFORMATION; DIFFERENCE LIMENS; RESPONSE AREAS; COMPUTER-MODEL; CHOPPER UNITS; COMPLEX TONES AB A synchronization model of pitch processing was extended to include lateral inhibition mechanisms that have been observed in the mammalian mid brain, and information integration mechanisms consistent with observed changes to response fields of mammalian auditory cortex neurons. Model parameters for the inhibition mechanisms were adapted to fit model outputs to observed temporal dynamics of pitch height difference limens from the literature. Pitch strength was defined as the certainty of pitch height judgment, and was calculated by normalizing model responses by their mean. The model was adapted to fit experimental pitch strength data reported in the literature for pure tones and harmonic Complexes. It was proposed that pitch height is first estimated in relation to patterns (or templates) of tonotopic activation on the auditory nerve for particular stimulus types. These patterns are stored in long term memory. This pitch height estimation primes cortical pitch neurons to integrate finely tuned pitch information from the inferior colliculus across the periodotopic and tonotopic dimensions. Predicted pitch strength for complexes of unresolved harmonics, iterated rippled noise and amplitude modulated tones using this model also conformed to behavioral data from the literature. (C) 2009 Elsevier B.V. Ail rights reserved. C1 Univ Melbourne, Sch Behav Sci, Melbourne, Vic 3010, Australia. RP McLachlan, N (reprint author), Univ Melbourne, Sch Behav Sci, Melbourne, Vic 3010, Australia. EM mcln@unimelb.edu.au FU Australian Research Council (ARC) FX The author would like to thank Ray Meddis and Sarah Wilson for their generous help and advice in undertaking this research, and the reviewers who have helped refine the manuscript. The author would also like to acknowledge the support-of an Australian Research Council (ARC) Discovery Grant to fund this research. CR Alkhatib A, 2006, EXP BRAIN RES, V174, P124, DOI 10.1007/s00221-006-0424-8 BEERENDS JG, 1989, J ACOUST SOC AM, V85, P813, DOI 10.1121/1.397974 Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 Bitterman Y, 2008, NATURE, V451, P197, DOI 10.1038/nature06476 BLACKBURN CC, 1992, J NEUROPHYSIOL, V68, P124 Blackburn C.C., 1991, J NEUROPHYSIOL, V65, P606 Caspary DM, 2002, HEARING RES, V168, P163, DOI 10.1016/S0378-5955(02)00363-5 Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 DEMANY L, 1989, J ACOUST SOC AM, V85, P1295, DOI 10.1121/1.397460 Dicke U, 2007, J ACOUST SOC AM, V121, P310, DOI 10.1121/1.2400670 FASTL H, 1984, ACUSTICA, V56, P41 Frisina R.D., 1990, HEARING RES, V44, P90 Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 Guerin A, 2006, HEARING RES, V211, P54, DOI 10.1016/j.heares.2005.10.001 HEWITT MJ, 1992, J ACOUST SOC AM, V91, P2096, DOI 10.1121/1.403696 HEWITT MJ, 1994, J ACOUST SOC AM, V95, P2145, DOI 10.1121/1.408676 Hsieh IH, 2007, HEARING RES, V233, P108, DOI 10.1016/j.heares.2007.08.005 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 Langner G, 2002, HEARING RES, V168, P110, DOI 10.1016/S0378-5955(02)00367-2 MCLACHLAN NM, 2008, P ICMPC, V10, P776 Meddis R, 2006, J ACOUST SOC AM, V120, P3861, DOI 10.1121/1.2372595 MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640 Moore BCJ, 2003, HEARING RES, V182, P153, DOI 10.1016/S0378-5955(03)00191-6 MOORE BCJ, 1984, J ACOUST SOC AM, V75, P550, DOI 10.1121/1.390527 Moore GA, 2003, J ACOUST SOC AM, V113, P977, DOI 10.1121/1.1536631 Nelson PC, 2004, J ACOUST SOC AM, V116, P2173, DOI 10.1121/1.1784442 Oertel D., 1985, J ACOUST SOC AM, V78, P329 Paolini AG, 2004, J NEUROPHYSIOL, V92, P2615, DOI 10.1152/jn.00327.2004 Paolini AG, 2005, EUR J NEUROSCI, V21, P1236, DOI 10.1111/j.1460-9568.2005.03958.x PARNCUTT R., 1989, HARMONY PSYCHOACOUST Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7 Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004 Rakowski A, 1996, ACUSTICA, V82, pS80 ROBINSON K, 1995, J ACOUST SOC AM, V98, P1858, DOI 10.1121/1.414405 Ru PW, 1997, J NEW MUSIC RES, V26, P154, DOI 10.1080/09298219708570723 Shamma S, 2000, J ACOUST SOC AM, V107, P2631, DOI 10.1121/1.428649 SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367 SLANEY M, 1994, 45 APPL Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648 THURLOW WR, 1959, J ACOUST SOC AM, V31, P1332, DOI 10.1121/1.1907630 Warren JD, 2003, P NATL ACAD SCI USA, V100, P10038, DOI 10.1073/pnas.1730682100 Wiegrebe L, 2001, J NEUROPHYSIOL, V85, P1206 Wiegrebe L, 2004, J ACOUST SOC AM, V115, P1207, DOI 10.1121/1.1643359 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 YOST WA, 1978, J ACOUST SOC AM, V64, P485, DOI 10.1121/1.382021 YOST WA, 1978, J ACOUST SOC AM, V63, P1168 Zwicker E, 1999, PSYCHOACOUSTICS FACT NR 48 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2009 VL 249 IS 1-2 BP 23 EP 35 DI 10.1016/j.heares.2009.01.003 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 426XA UT WOS:000264740500003 PM 19271312 ER PT J AU Fathke, RL Gabriele, ML AF Fathke, Robert L. Gabriele, Mark L. TI Patterning of multiple layered projections to the auditory midbrain prior to experience SO HEARING RESEARCH LA English DT Article DE Inferior colliculus; Cochlear nucleus; Lateral superior olive; Dorsal nucleus of the lateral lemniscus; Fibrodendritic laminae ID DORSAL COCHLEAR NUCLEUS; SUPERIOR OLIVARY NUCLEUS; CAT INFERIOR COLLICULUS; BRAIN-STEM; GANGLION-CELLS; LATERAL LEMNISCUS; AFFERENT PATTERNS; NEURAL DEVELOPMENT; MAMMALIAN RETINA; EPH RECEPTORS AB The precise arrangement of patterned inputs into discrete functional domains is a common organizational feature of primary sensory structures. While the specific organization of patterned connections has been well documented in the visual and somatosensory systems, comparatively little is known about the arrangement of neighboring afferent patterns in the emerging auditory system. Here we report early projection specificity for multiple converging inputs to the rat central nucleus of the inferior colliculus (ICC). Afferents arising from the dorsal cochlear nucleus (DCN), the dorsal nucleus of the lateral lemniscus (DNLL), and the lateral superior olive (LSO) establish discernible axonal layers a week prior to experience. By hearing onset, contralateral DCN and contralateral LSO layers are clearly defined and segregated from contralateral DNLL terminal zones. Layering of the ipsilateral LSO projection, on the other hand, exhibits considerable spatial overlap with the contralateral DNLL pattern. This fine laminar structure of interdigitating and overlapping inputs likely underlies the complex signal processing performed in the auditory midbrain and may serve as a model system for examining competitive interactions between neighboring excitatory and inhibitory projections early in development. (C) 2009 Elsevier B.V. All rights reserved. C1 [Fathke, Robert L.; Gabriele, Mark L.] James Madison Univ, Dept Biol, Harrisonburg, VA 22807 USA. RP Gabriele, ML (reprint author), James Madison Univ, Dept Biol, MSC 7801, Harrisonburg, VA 22807 USA. EM gabrieml@jmu.edu FU National Science Foundation [DBI-0619207]; Jeffress Memorial Trust [J-665] FX This work was supported by the National Science Foundation DBI-0619207 (MLG) and the Jeffress Memorial Trust J-665 (MLG). The authors would like to thank Dr. Thomas L. Gabriele and Sarah H. Shahmoradian for their help and insightful comments concerning the statistical analysis of the developing afferent patterns. RLF carried out all the experiments, participated in the experimental design, and assisted in the editing and writing of the manuscript. MLG conceived the project, prepared the figures, performed the statistical analyses, and wrote the manuscript. CR ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 Chen CF, 2000, NEURON, V28, P955, DOI 10.1016/S0896-6273(00)00166-5 Cramer KS, 2002, J COMP NEUROL, V452, P51, DOI 10.1002/cne.10399 Cramer KS, 2000, J COMP NEUROL, V426, P270 Flanagan JG, 1998, ANNU REV NEUROSCI, V21, P309, DOI 10.1146/annurev.neuro.21.1.309 Franklin SR, 2006, NEUROSCIENCE, V143, P105, DOI 10.1016/j.neuroscience.2006.07.039 Friauf E, 1999, CELL TISSUE RES, V297, P187, DOI 10.1007/s004410051346 Gabriele ML, 2000, J NEUROSCI, V20, P6939 Gabriele ML, 2000, J COMP NEUROL, V416, P368, DOI 10.1002/(SICI)1096-9861(20000117)416:3<368::AID-CNE8>3.0.CO;2-C Gabriele ML, 2007, BRAIN RES, V1173, P66, DOI 10.1016/j.brainres.2007.07.055 GALLI L, 1988, SCIENCE, V242, P90, DOI 10.1126/science.3175637 GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F GELNDENNING KK, 1992, J COMP NEUROL, V319, P100 Henkel CK, 2007, NEUROSCIENCE, V146, P225, DOI 10.1016/j.neuroscience.2007.01.016 Henkel CK, 2005, NEUROSCIENCE, V136, P945, DOI 10.1016/j.neuroscience.2005.03.020 Jones TA, 2001, J NEUROSCI, V21, P8129 Jones TA, 2007, J NEUROPHYSIOL, V98, P1898, DOI 10.1152/jn.00472.2007 Kandler K, 2004, CURR OPIN NEUROBIOL, V14, P96, DOI 10.1016/j.conb.2004.01.017 KANDLER K, 1993, J COMP NEUROL, V328, P161, DOI 10.1002/cne.903280202 Kandler K, 2005, TRENDS NEUROSCI, V28, P290, DOI 10.1016/j.tins.2005.04.007 Kros CJ, 1998, NATURE, V394, P281, DOI 10.1038/28401 Leao RN, 2006, J PHYSIOL-LONDON, V571, P563, DOI 10.1113/jphysiol.2005.098780 Lim HH, 2007, J NEUROSCI, V27, P8733, DOI 10.1523/JNEUROSCI.5127-06.2007 LIPPE WR, 1994, J NEUROSCI, V14, P1486 Loftus WC, 2004, J COMP NEUROL, V472, P330, DOI 10.1002/cne.20070 Lukas JR, 1998, J HISTOCHEM CYTOCHEM, V46, P901 Malmierca MS, 2005, NEUROSCIENCE, V136, P883, DOI 10.1016/j.neuroscience.2005.04.040 Malmierca MS, 2008, J NEUROSCI, V28, P4767, DOI 10.1523/JNEUROSCI.0238-08.2008 MEISTER M, 1991, SCIENCE, V252, P939, DOI 10.1126/science.2035024 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 Miko IJ, 2007, J COMP NEUROL, V505, P669, DOI 10.1002/cne.21530 Miko IJ, 2008, HEARING RES, V235, P39, DOI 10.1016/j.heares.2007.09.003 OLIVER DL, 1984, J COMP NEUROL, V224, P155, DOI 10.1002/cne.902240202 Oliver DL, 2005, INFERIOR COLLICULUS, P69, DOI 10.1007/0-387-27083-3_2 Oliver DL, 1997, J COMP NEUROL, V382, P215, DOI 10.1002/(SICI)1096-9861(19970602)382:2<215::AID-CNE6>3.0.CO;2-6 OLIVER DL, 1995, J COMP NEUROL, V360, P17, DOI 10.1002/cne.903600103 Person AL, 2004, J NEUROBIOL, V60, P28, DOI 10.1002/neu.10330 Puel J L, 1987, Brain Res, V465, P179 Schreiner CE, 1997, NATURE, V388, P383, DOI 10.1038/41106 SEMPLE MN, 1979, J NEUROPHYSIOL, V42, P1626 Shatz CJ, 1996, P NATL ACAD SCI USA, V93, P602, DOI 10.1073/pnas.93.2.602 SHNEIDERMAN A, 1987, J COMP NEUROL, V266, P519, DOI 10.1002/cne.902660406 Tritsch NX, 2007, NATURE, V450, P50, DOI 10.1038/nature06233 Wilkinson DG, 2001, NAT REV NEUROSCI, V2, P155, DOI 10.1038/35058515 WONG ROL, 1993, NEURON, V11, P923, DOI 10.1016/0896-6273(93)90122-8 Zhang LI, 2001, NAT NEUROSCI, V4, P1207, DOI 10.1038/nn753 NR 46 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2009 VL 249 IS 1-2 BP 36 EP 43 DI 10.1016/j.heares.2009.01.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 426XA UT WOS:000264740500004 PM 19271271 ER PT J AU Vasilyeva, ON Frisina, ST Zhu, XX Walton, JP Frisina, RD AF Vasilyeva, Olga N. Frisina, Susan T. Zhu, Xiaoxia Walton, Joseph P. Frisina, Robert D. TI Interactions of hearing loss and diabetes mellitus in the middle age CBA/CaJ mouse model of presbycusis SO HEARING RESEARCH LA English DT Article DE CBA/CaJ mice; Hearing loss; Diabetes; Auditory brainstem response; Distortion product otoacoustic emissions; Auditory midbrain; Inferior colliculus ID PRODUCT OTOACOUSTIC EMISSIONS; HAIR-CELL LOSS; EAR DAMAGE SECONDARY; SHR/N-CP RATS; INNER-EAR; INFERIOR COLLICULUS; AUDITORY-SYSTEM; CONTRALATERAL SUPPRESSION; PREPULSE INHIBITION; STARTLE RESPONSE AB Recently, we characterized the more severe nature of hearing loss in aged Type 2 diabetic human subjects [Frisina, S.T., Mapes, F., Kim, S., Frisina, D.R., Frisina, R.D., 2006. Characterization of hearing loss in aged type II diabetics. Hear. Res. 211, 103-113]. The current study prospectively assessed hearing abilities in middle age CBA/CaJ mice with Type I diabetes mellitus (T1DM) (STZ injection) or Type 2 diabetes mellitus (T2DM) (high fat diet), for a period of 6 months. Blood glucose, body weight and auditory tests (Auditory Brainstem Response-ABR, Distortion Product Otoracoustic Emissions-DPOAE) were evaluated at baseline and every 2 months. Tone and broad-band noise-burst responses in the inferior colliculus were obtained at 6 months. Body weights of controls did not change over 6 months (similar to 32 g), but there was a significant (similar to 5 g) decline in the T1DM, while T2DM exhibited similar to 10 g weight gain. Blood glucose levels significantly increased: 3-fold for T1DM, 1.3-fold for T2DM; with no significant changes in controls. ABR threshold elevations were found for both types of diabetes, but were most pronounced in the T2DM, starting as early as 2 months after induction of diabetes. A decline of mean DPOAE amplitudes was observed in both diabetic groups at high frequencies, and for the T2DM at low frequencies. In contrast to ABR thresholds, tone and noise thresholds in the inferior colliculus were lower for both diabetic groups. Induction of diabetes in middle-aged CBA/CaJ mice promotes amplification of age-related peripheral hearing loss which makes it a suitable model for studying the interaction of age-related hearing loss and diabetes. On the other hand, initial results of effects from very high blood glucose level (T1DM) on the auditory midbrain showed disruption of central inhibition, increased response synchrony or enhanced excitation in the inferior colliculus. (C) 2009 Elsevier B.V. All rights reserved. C1 [Vasilyeva, Olga N.; Frisina, Susan T.; Zhu, Xiaoxia; Walton, Joseph P.; Frisina, Robert D.] Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA. [Walton, Joseph P.; Frisina, Robert D.] Univ Rochester, Sch Med, Dept Biomed Engn, Rochester, NY 14642 USA. [Walton, Joseph P.; Frisina, Robert D.] Univ Rochester, Sch Med, Dept Neurobiol & Anat, Rochester, NY 14642 USA. [Vasilyeva, Olga N.; Frisina, Susan T.; Zhu, Xiaoxia; Walton, Joseph P.; Frisina, Robert D.] Rochester Inst Technol, Natl Tech Inst Deaf, Int Ctr Hearing Speech Res, Rochester, NY 14642 USA. RP Frisina, RD (reprint author), Univ Rochester, Sch Med & Dent, Dept Otolaryngol, 601 Elmwood Ave, Rochester, NY 14642 USA. EM Robert_Frisina@urmc.rochester.edu FU National Institute on Aging (NIH) [P01 AG09524]; National Institute on Deafness and Communication Disorders (NIH) [P30 DC05409] FX We thank John Housel for collecting the ABR data, and Enza Daugherty for project assistance, and three anonymous reviewers for very helpful critiques. This research was funded by NIH Grant P01 AG09524 from the National Institute on Aging, and P30 DC05409 from the National Institute on Deafness and Communication Disorders. CR Allen PD, 2003, HEARING RES, V186, P17, DOI 10.1016/S0378-5955(03)00300-9 American Diabetes Association, 2006, DIABETES CARE S1, V29, P4 BIESSELS GJ, 2002, EUR J PHARMACOL, V44, P1 Biessels GJ, 2001, J NEUROL SCI, V182, P99, DOI 10.1016/S0022-510X(00)00456-1 Biessels GJ, 1999, BRAIN, V122, P757, DOI 10.1093/brain/122.4.757 BIESSELS GJ, 2005, BRAIN RES, V21, P86 CASPARY DM, 1990, J NEUROSCI, V10, P2363 Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 Collin GB, 2005, HUM MOL GENET, V14, P2323, DOI 10.1093/hmg/ddi235 Cryns K, 2003, HISTOCHEM CELL BIOL, V119, P247, DOI 10.1007/s00418-003-0495-6 Dalton DS, 1998, DIABETES CARE, V21, P1540, DOI 10.2337/diacare.21.9.1540 deEspana R, 1995, ORL J OTO-RHINO-LARY, V57, P325 de Leon-Morales LVD, 2005, ARCH MED RES, V36, P507, DOI 10.1016/j.arcmed.2005.02.002 DiLeo MAS, 1997, DIABETES CARE, V20, P824, DOI 10.2337/diacare.20.5.824 DONALD MW, 1981, J NEUROL NEUROSUR PS, V44, P641, DOI 10.1136/jnnp.44.7.641 Elamin A, 2005, INDIAN PEDIATR, V42, P15 Erdem T, 2003, EUR ARCH OTO-RHINO-L, V260, P62, DOI 10.1007/s00405-002-0519-1 FERRER JP, 1991, DIABETES RES CLIN PR, V11, P17, DOI 10.1016/0168-8227(91)90136-2 Fowler PD, 1999, CLIN OTOLARYNGOL, V24, P3, DOI 10.1046/j.1365-2273.1999.00212.x Frisina R.D, 2006, HEARING RES, V217, P216 Frisina RD, 1998, HEARING RES, V115, P61, DOI 10.1016/S0378-5955(97)00176-7 Frisina ST, 2006, HEARING RES, V211, P103, DOI 10.1016/j.heares.2005.09.002 Fukushima H, 2006, ARCH OTOLARYNGOL, V132, P934, DOI 10.1001/archotol.132.9.934 Fukushima H, 2005, OTOLARYNG HEAD NECK, V133, P100, DOI 10.1016/j.otohns.2005.02.004 Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 Gratton Michael Anne, 2003, Curr Opin Otolaryngol Head Neck Surg, V11, P367, DOI 10.1097/00020840-200310000-00010 Guimaraes P, 2004, HEARING RES, V192, P83, DOI 10.1016/j.heares.2004.01.013 HENRY KR, 1994, HEARING RES, V79, P190, DOI 10.1016/0378-5955(94)90140-6 Henry KR, 2002, HEARING RES, V170, P107, DOI 10.1016/S0378-5955(02)00391-X Hsueh W, 2007, CIRC RES, V100, P1415, DOI 10.1161/01.RES.0000266449.37396.1f ISHIKAWA T, 1995, DIABETOLOGIA, V38, P649, DOI 10.1007/BF00401834 Jacobson M, 2003, LARYNGOSCOPE, V113, P1707, DOI 10.1097/00005537-200310000-00009 Johnson KR, 2006, BRAIN RES, V1091, P79, DOI 10.1016/j.brainres.2006.02.021 Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159 KURIEN M, 1989, J LARYNGOL OTOL, V103, P164, DOI 10.1017/S0022215100108345 Liberman MC, 2006, JARO-J ASSOC RES OTO, V7, P211, DOI 10.1007/s10162-006-0035-x Maia Clícia Adriana S, 2005, Braz J Otorhinolaryngol, V71, P208 Manschot SM, 2003, DIABETES-METAB RES, V19, P469, DOI 10.1002/dmrr.401 McQueen CT, 1999, J LARYNGOL OTOL, V113, P13 MORDES JP, 1981, AM J MED, V70, P353, DOI 10.1016/0002-9343(81)90772-5 Nageris B, 1998, AM J OTOL, V19, P63 NAKAE S, 1986, ARCH OTO-RHINO-LARYN, V243, P313, DOI 10.1007/BF00460208 NOTVEST RR, 1987, DIABETES, V36, P500, DOI 10.2337/diabetes.36.4.500 PAIK SG, 1980, P NATL ACAD SCI-BIOL, V77, P6129, DOI 10.1073/pnas.77.10.6129 Parham K, 1999, HEARING RES, V134, P29, DOI 10.1016/S0378-5955(99)00059-3 PARVING A, 1990, AUDIOLOGY, V29, P113 RAYNOR EM, 1995, ARCH OTOLARYNGOL, V121, P452 Rózańska-Kudelska Małgorzata, 2002, Otolaryngol Pol, V56, P607 RUBINI R, 1992, DIABETES RES CLIN PR, V16, P19, DOI 10.1016/0168-8227(92)90131-A RUST KR, 1992, ARCH OTOLARYNGOL, V118, P397 Sakuta H, 2007, DIABETES RES CLIN PR, V75, P229, DOI 10.1016/j.diabres.2006.06.029 SALVINELLI F, 2004, INT J OTORHINOLARYNG, V3, P1 SASSO FC, 1999, METABOLISM, V48, P346 Shafrir E., 1997, ELLENBERG RIFKINS DI, P301 SMITH TL, 1995, LARYNGOSCOPE, V105, P236, DOI 10.1288/00005537-199503000-00002 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 SURWIT RS, 1988, DIABETES, V37, P1163, DOI 10.2337/diabetes.37.9.1163 Tadros SF, 2007, NEUROBIOL AGING, V28, P1112, DOI 10.1016/j.neurobiolaging.2006.05.021 TAY HL, 1995, CLIN OTOLARYNGOL, V20, P130, DOI 10.1111/j.1365-2273.1995.tb00029.x TAYLOR IG, 1978, J LARYNGOL OTOL, V92, P99, DOI 10.1017/S0022215100085108 TRIANA RJ, 1991, ARCH OTOLARYNGOL, V117, P635 WADE GN, 1985, INT J OBESITY, V9, P83 Walton JP, 1998, J NEUROSCI, V18, P2764 Willott JF, 2001, AUDIOL NEURO-OTOL, V6, P231, DOI 10.1159/000046129 WILLOTT JF, 1995, BEHAV NEUROSCI, V109, P396, DOI 10.1037//0735-7044.109.3.396 WILLOTT JF, 1994, BEHAV NEUROSCI, V108, P703, DOI 10.1037/0735-7044.108.4.703 Zhang L, 2005, MOL MED, V11, P39, DOI 10.2119/2005-00021.Ro ZHU X, 2007, J COMP NEUROL, V10, P593 NR 69 TC 11 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2009 VL 249 IS 1-2 BP 44 EP 53 DI 10.1016/j.heares.2009.01.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 426XA UT WOS:000264740500005 PM 19271313 ER PT J AU Chien, W Rosowski, JJ Ravicz, ME Rauch, SD Smullen, J Merchant, SN AF Chien, Wade Rosowski, John J. Ravicz, Michael E. Rauch, Steven D. Smullen, Jennifer Merchant, Saumil N. TI Measurements of stapes velocity in live human ears SO HEARING RESEARCH LA English DT Article DE Stapes velocity; Middle-ear mechanics; Laser-Doppler vibrometry; Middle-ear output; Umbo velocity; Round-window velocity ID DOPPLER VIBROMETER LDV; HUMAN MIDDLE-EAR; INPUT IMMITTANCE; FOOTPLATE; MOTION; TRANSMISSION; MECHANICS; MOVEMENT; GERBIL AB Sound-induced stapes velocity (Vs) was measured intraoperatively in 14 patients undergoing cochlear implantation. All 14 patients had no history of middle-ear pathology, and their ossicular chains appeared normal on intraoperative inspection and palpation. The magnitude of the mean Vs (normalized by simultaneously-measured ear-canal sound pressure) was stiffness-dominated at frequencies below 1 kHz, increased up to similar to 4 kHz, and then decreased at higher frequencies. The phase of the mean velocity was +0.2 periods at 0.3 kHz, and gradually became a phase lag at higher frequencies. The mean Vs measured in this study was similar to that of seven ears reported in the only other published study of live human measurements (Huber et al., 2001). We also made measurements of Vs in fresh cadaveric temporal bones using a technique identical to that used in live ears, including similar measurement angles and location. The mean Vs measured in the cadaveric ears under these conditions was similar to the mean Vs measurements in the 14 live ears. This indicates that middle-ear mechanics are similar in live and cadaveric ears. In addition, interspecies comparisons were made between our live human Vs and the Vs reported in different animal studies. There were some clear similarities in Vs across species, as well as differences. The primary interspecies differences were in the magnitude of the Vs as well as in the frequency of transitions in the magnitudes' frequency dependence from rising to flat or falling. (C) 2008 Elsevier B.V. All rights reserved. C1 [Chien, Wade; Rosowski, John J.; Ravicz, Michael E.; Merchant, Saumil N.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Dept Otolaryngol, Boston, MA 02114 USA. [Chien, Wade; Rosowski, John J.; Rauch, Steven D.; Smullen, Jennifer; Merchant, Saumil N.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Rosowski, John J.; Merchant, Saumil N.] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA. RP Chien, W (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Dept Otolaryngol, 243 Charles St, Boston, MA 02114 USA. EM wadechien@hotmail.com FU NIDCD [R01 DC047998, R01 DC000194, T32 DC000020]; Silverstein Young Investigator Award FX We thank Diane Jones, William Peake, Jocelyn Songer, and the staff at Eaton-Peabody Lab for their support and inputs. Funded in part by NIDCD (grants R01 DC047998, R01 DC000194, and T32 DC000020), Mr. Axel Eliasen, Mr. Lakshmi Mittal, and the Silverstein Young Investigator Award. CR Asai M, 1999, ACTA OTO-LARYNGOL, V119, P356 Chien WD, 2006, AUDIOL NEURO-OTOL, V11, P183, DOI 10.1159/000091815 Decraemer W. F, 2004, MIDDLE EAR MECH RES, P3, DOI 10.1142/9789812703019_0001 Gan RZ, 2001, ANN OTO RHINOL LARYN, V110, P478 Goode RL, 1996, AM J OTOL, V17, P813 GOODE RL, 1993, AM J OTOL, V14, P247 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475 Heiland KE, 1999, AM J OTOL, V20, P81 Huber A, 2001, ANN OTO RHINOL LARYN, V110, P31 KRINGLEBOTN M, 1985, J ACOUST SOC AM, V77, P159, DOI 10.1121/1.392280 MANLEY GA, 1974, J ACOUST SOC AM, V56, P571, DOI 10.1121/1.1903292 MARGOLIS RH, 1993, EAR HEARING, V14, P408 Mehta RP, 2003, OTOL NEUROTOL, V24, P176, DOI 10.1097/00129492-200303000-00009 O'Connor KN, 2008, J ACOUST SOC AM, V123, P197, DOI 10.1121/1.2817358 RABINOWITZ WM, 1981, J ACOUST SOC AM, V70, P1025, DOI 10.1121/1.386953 Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061 ROSOWSKI JJ, 1990, ANN OTO RHINOL LARYN, V99, P403 Rosowski JJ, 2008, EAR HEARING, V29, P3 Rosowski JJ, 1999, AUDIOL NEURO-OTOL, V4, P129, DOI 10.1159/000013831 RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409 Ruggero MA, 2003, ACOUST RES LETT ONL, V4, P53, DOI 10.1121/1.1566924 Stepp CE, 2005, J ACOUST SOC AM, V118, P861, DOI 10.1121/1.1974730 Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Wever EG, 1954, PHYSL ACOUSTICS Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 27 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2009 VL 249 IS 1-2 BP 54 EP 61 DI 10.1016/j.heares.2008.11.011 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 426XA UT WOS:000264740500006 PM 19111599 ER PT J AU Cohen, LT AF Cohen, Lawrence T. TI Practical model description of peripheral neural excitation in cochlear implant recipients: 5. Refractory recovery and facilitation SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Modeling of neural response; ECAP; Refractory recovery; Facilitation; Inhibition; NRT ID AUDITORY-NERVE FIBER; TERM ADAPTATION; RESPONSES; STIMULATION; ARRAY AB In this paper the neural response to electrical stimulation with short inter-pulse intervals was examined. The refractory recovery of the electrically-evoked compound action potential (ECAP) was recorded using masker pulses with a wide range of currents relative to the probe pulse. The ECAP was recorded in subjects implanted with the Nucleus (R) 24 cochlear implant system (three with straight and two with Contour (TM) electrode arrays), using the Neural Response Telemetry (TM) (NRT (TM)) system. Employing the non-refractory parameters previously obtained in the fourth piper of the series and a two-parameter neural refractory recovery function, the model was fitted to ECAP recovery data for a case where the masker current was high relative to that of the probe and masking assumed to be almost complete. A single pair of refractory parameters, fitted at one probe current, allowed the model to describe quite well the ECAP recovery functions for different probe currents. Facilitatory contributions to the recovery functions, for differing current of masker relative to probe, were quantified by comparing experimental recovery functions with modeled functions that included only refractory behavior. The model should provide the means to improve speech processing algorithms for cochlear implants, by allowing the systematic incorporation of additional information concerning the neural response to electrical stimulation. (C) 2008 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP Cohen, LT (reprint author), Univ Melbourne, Dept Otolaryngol, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM ltcohen@unimelb.edu.au CR ABBAS PJ, 2007, 5 INT S REL ADD EV O, P9 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P630, DOI 10.1109/10.764939 COHEN LT, 2008, HEAR RES IN PRESS, DOI DOI 10.1016/I.HEARES.2008.11.003 Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 COHEN LT, 2008, HEAR RES IN PRESS, DOI DOI 10.1016/I.HEARES.2008.11.004 Cohen LT, 2006, HEARING RES, V212, P160, DOI 10.1016/j.heares.2005.11.005 Cohen LT, 2009, HEARING RES, V248, P15, DOI 10.1016/j.heares.2008.11.008 Cohen LT, 1996, AM J OTOL, V17, P859 Cohen LT, 2009, HEARING RES, V247, P112, DOI 10.1016/j.heares.2008.11.002 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 COHEN LT, 2001, 2 INT S WORKSH OBJ M, P16 COHEN LT, 2000, 5 EUR S PAED COCHL I, P4 Dillier N, 2002, ANN OTO RHINOL LARYN, V111, P407 Dynes SBC, 1996, THESIS MIT CAMBRIDGE Finley C., 1997, SPEECH PROCESSORS AU FRIJNS JHM, 2007, 5 INT S REL ADD EV O, P9 GRAY PR, 1967, BIOPHYS J, V7, P759, DOI 10.1016/S0006-3495(67)86621-9 Hay-McCutcheon MJ, 2005, J ACOUST SOC AM, V118, P2444, DOI 10.1121/1.2035593 Javel E, 1996, J ACOUST SOC AM, V99, P1040, DOI 10.1121/1.414633 Miller CA, 2001, JARO, V2, P216 Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 Morsnowski A, 2006, AUDIOL NEURO-OTOL, V11, P389, DOI 10.1159/000095966 Patrick James F, 2006, Trends Amplif, V10, P175, DOI 10.1177/1084713806296386 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x Sly DJ, 2007, EUR J NEUROSCI, V26, P510, DOI 10.1111/j.1460-9568.2007.05678.x WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X Zhang F, 2007, JARO-J ASSOC RES OTO, V8, P356, DOI 10.1007/s10162-007-0086-7 NR 30 TC 10 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2009 VL 248 IS 1-2 BP 1 EP 14 DI 10.1016/j.heares.2008.11.007 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 419QM UT WOS:000264234300001 PM 19110048 ER PT J AU Cohen, LT AF Cohen, Lawrence T. TI Practical model description of peripheral neural excitation in cochlear implant recipients: 4. Model development at low pulse rates: General model and application to individuals SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Modeling of neural response; ECAP; Neural survival; Spread of neural excitation; Relative spread; NRT; Loudness growth ID ELECTRICALLY STIMULATED COCHLEA; SENSORINEURAL HEARING-LOSS; AUDITORY-NERVE; STOCHASTIC-MODEL; ELECTRODE ARRAY; SPATIAL SPREAD; RESPONSES; PATTERNS; SURVIVAL; MASKING AB This fourth paper in the series presents the initial development of the model at low pulse rates, where refractory behavior is minimal. This is a necessary developmental stage that makes possible the subsequent incorporation of temporal effects, in the fifth paper. The model comprises a population of neural fibers spread along the cochlear duct, with normally distributed thresholds. Each has a finite dynamic range, allowing stochastic behavior. The fibers are stimulated by a field that is attenuated longitudinally according to a model-based function, scaled to fit an individual FCAP (compound action potential) measure of effective field attenuation. First, the model parameters were tuned to provide general trend m itches to: the observed range of maximum comfortable level (MCL); the relationship between threshold and MCL; and the relationship between curvature of the loudness growth function and MCL. These trend differences between patients are explained by differing percentage of neural survival, although additional parameters clearly influence individual behavior, Second, the model was fitted to three electrodes in each of six subjects implanted with the Nucleus(oo) 24 cochlear implant system (three with straight and three with Contour (TM) electrode arrays). Across the subjects, different values were required for the "relative spread", a measure of neural fiber dynamic range relative to threshold, which indicated differences in neural stochasticity. The consistency of the fittings was assessed by comparing model emulations of the ECAP "spread of excitation" (SOE) measure with experimental findings. (C) 2008 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP Cohen, LT (reprint author), Univ Melbourne, Dept Otolaryngol, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM ltcohen@unimelb.edu.au FU Commonwealth of Australia; Cochlear Implant and Hearing Aid Innovation; Department of Otolaryngology; Bionic Ear Institute FX I acknowledge support provided by the Commonwealth of Australia through the Co-operative Research Centre for Cochlear Implant and Hearing Aid Innovation. I acknowledge, also, additional support provided by the Department of Otolaryngology (University of Melbourne, Australia) and the Bionic Ear Institute (Melbourne, Australia). Thanks are due to the subjects, to Cochlear Limited and to the staff of the Cochlear Implant Clinic at the Royal Victorian Eye and Ear Hospital, Melbourne, for their assistance. I am grateful for the encouragement of Mark White. I thank Anthony Burkitt, Barbara Cone-Wesson, Robert Cowan and Ian Jakovenko for their critical reading of the manuscript, and acknowledge the support of the following in reading and discussing early versions of this work: Mark White, Richard van Hoesel and Stephen O'Leary. I am indebted to Norbert Dillier and Waikong Lai for provision of the data of Appendix A. CR Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P617, DOI 10.1109/10.764938 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P1393, DOI 10.1109/10.804567 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P630, DOI 10.1109/10.764939 Cohen LT, 2004, INT J AUDIOL, V43, P346, DOI 10.1080/14992020400050044 Cohen LT, 2009, HEARING RES, V248, P1, DOI 10.1016/j.heares.2008.11.007 Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 COHEN LT, 2001, 2 INT S WORKSH OBJ M Cohen LT, 2006, HEARING RES, V212, P160, DOI 10.1016/j.heares.2005.11.005 Cohen LT, 2009, HEARING RES, V247, P100, DOI 10.1016/j.heares.2008.11.004 Cohen LT, 1996, AM J OTOL, V17, P859 Cohen LT, 2009, HEARING RES, V247, P112, DOI 10.1016/j.heares.2008.11.002 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Cohen L.T., 2000, 5 EUR S PAED COCHL I Cohen LT, 2009, HEARING RES, V247, P87, DOI 10.1016/j.heares.2008.11.003 Dillier N, 2002, ANN OTO RHINOL LARYN, V111, P407 DILLIER N, COMMUNICATION Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q FRIJNS JHM, 2007, 5 INT S REL ADD EV O FRIJNS JHM, 1994, IEEE T BIO-MED ENG, V41, P556, DOI 10.1109/10.293243 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 Hanekom T, 2001, EAR HEARING, V22, P300, DOI 10.1097/00003446-200108000-00005 Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906 Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 Park KS, 2002, KOREAN J GENETIC, V24, P41 RATTAY F, 1989, IEEE T BIO-MED ENG, V36, P676, DOI 10.1109/10.32099 Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Rattay F, 1999, NEUROSCIENCE, V89, P335, DOI 10.1016/S0306-4522(98)00330-3 RUBINSTEIN JT, 1995, BIOPHYS J, V68, P779 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 Saunders E, 2002, EAR HEARING, V23, p28S Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Sly DJ, 2007, EUR J NEUROSCI, V26, P510, DOI 10.1111/j.1460-9568.2007.05678.x Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007 VERVEEN AA, 1961, FLUCTUATIONS EXCITAB Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X NR 41 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2009 VL 248 IS 1-2 BP 15 EP 30 DI 10.1016/j.heares.2008.11.008 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 419QM UT WOS:000264234300002 PM 19110049 ER PT J AU Praetorius, M Brough, DE Hsu, C Plinkert, PK Pfannenstiel, SC Staecker, H AF Praetorius, Mark Brough, Douglas E. Hsu, Chi Plinkert, Peter K. Pfannenstiel, Susanna C. Staecker, Hinrich TI Adenoviral vectors for improved gene delivery to the inner ear SO HEARING RESEARCH LA English DT Article DE Adenovirus vector; Enhanced delivery; Retargeting; alpha nu integrin; Heparan sulfate; Gene therapy; Inner ear ID PENTON BASE; FIBER; RECEPTORS; COCHLEA; CELLS; CAR; TRANSDUCTION; EXPRESSION; INTEGRINS; BINDING AB An important requirement for gene therapy in the inner ear is to achieve efficient gene delivery without damaging residual inner ear function. This can be achieved by delivering a high concentration of vector in a minimal volume. Adenovectors are well suited to meet these requirements since high quality concentrated vector with a high capacity for a gene payload can be produced. To reduce the number of vector particles and Volume of delivery to the inner ear, we tested vectors with enhancements in cell binding and cell entry properties. We compared delivery of a marker gene to the inner ear using two different advanced generation serotype 5 adenovector designs. The first adenovector tested, AdRGD, has a restricted tropism of entry into cells. AdRGD is an Ad5 capsid vector with an arg-gly-asp (RGD) motif built into the adenovector fiber that has also been modified to abolish the fiber-CAR and penton-integrin interactions that provide the normal well characterized two-step entry pathway for adenovirus. The AdRGD vector has enhanced binding to alpha nu integrins, The second vector, AdF2K, contains 7 lysine residues within the fiber knob and has been shown to have expanded tropism for cells in vitro and in vivo. AdF2K maintains its normal CAR and integrin receptors interactions and has an additional mechanism of entry via its ability to interact with heparan sulfate. Both vectors demonstrated effective delivery to the inner ear and more uniform labeling of the inner ear sensory epithelia than native capsid vector, when tested in vivo. Analysis of expression efficiency using quantitative PCR was tested in vitro on cultured macular organs and demonstrated that vector delivery with the AdF2K vector design yielded optimal delivery. The present study demonstrates that retargeting strategies can improve delivery to the inner ear. (C) 2009 Elsevier B.V. All rights reserved. C1 [Pfannenstiel, Susanna C.; Staecker, Hinrich] Univ Kansas, Dept Otolaryngol Head & Neck Surg, Kansas City, KS 66160 USA. [Praetorius, Mark; Plinkert, Peter K.; Pfannenstiel, Susanna C.] Univ Heidelberg, Dept Otolaryngol, D-6900 Heidelberg, Germany. [Brough, Douglas E.; Hsu, Chi] GenVec Inc, Gaithersburg, MD USA. RP Staecker, H (reprint author), Univ Kansas, Dept Otolaryngol Head & Neck Surg, Mailstop 3010,3901 Rainbow Blvd, Kansas City, KS 66160 USA. EM hstaecker@kumc.edu FU National Institutes of Health [R01 DC008424] FX Ad5 vector capsids that have undergone modification to increase binding of heparan sulfate increase the transduction efficiency of the vector in the inner ear, especially when low doses of vector were used. Targeting the vector to cellular integrins resulted in a similar histologic distribution of transgene but did not increase transgene delivery. The AdF2K advanced generation adenovirus vector provides an advantage to delivery of transgenes to the inner ear. Supported by National Institutes of Health Grant R01 DC008424. CR Akiyama M, 2004, MOL THER, V9, P218, DOI 10.1016/j.ymthe.2003.10.010 Brough DE, 1996, J VIROL, V70, P6497 Chu Y, 2001, ARTERIOSCL THROM VAS, V21, P238 Coyne CB, 2005, ADV DRUG DELIVER REV, V57, P869, DOI 10.1016/j.addr.2005.01.007 Dechecchi MC, 2001, J VIROL, V75, P8772, DOI 10.1128/JVI.75.18.8772-8780.2001 Einfeld DA, 2001, J VIROL, V75, P11284, DOI 10.1128/JVI.75.23.11284-11291.2001 Einfeld DA, 1999, J VIROL, V73, P9130 Gaden F, 2002, AM J RESP CELL MOL, V27, P628, DOI 10.1165/rcmb.4841 Hong SS, 1997, EMBO J, V16, P2294, DOI 10.1093/emboj/16.9.2294 Huang S, 1996, J VIROL, V70, P4502 Lalwani AK, 1998, AM J OTOL, V19, P390 Lalwani AK, 2002, AUDIOL NEURO-OTOL, V7, P146, DOI 10.1159/000058300 Lecollinet S, 2006, J VIROL, V80, P2747, DOI 10.1128/JVI.80.6.2747-2759.2006 Praetorius M, 2002, AUDIOL NEURO-OTOL, V7, P324, DOI 10.1159/000066157 Schoggins JW, 2005, J VIROL, V79, P11627, DOI 10.1128/JVI.79.18.11627-11637.2005 Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P157 Tsuprun V, 1999, HEARING RES, V129, P35, DOI 10.1016/S0378-5955(98)00219-6 Venail F, 2007, GENE THER, V14, P30, DOI 10.1038/sj.gt.3302826 WICKHAM TJ, 1993, CELL, V73, P309, DOI 10.1016/0092-8674(93)90231-E Wickham TJ, 1996, NAT BIOTECHNOL, V14, P1570, DOI 10.1038/nbt1196-1570 Wickham TJ, 1997, J VIROL, V71, P8221 Wickham TJ, 1995, GENE THER, V2, P750 NR 22 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2009 VL 248 IS 1-2 BP 31 EP 38 DI 10.1016/j.heares.2008.11.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 419QM UT WOS:000264234300003 PM 19105978 ER PT J AU Chen, GD Li, MN Tanaka, C Bielefeld, EC Hu, BH Kermany, MH Salvi, R Henderson, D AF Chen, Guang-Di Li, Manna Tanaka, Chiemi Bielefeld, Eric C. Hu, Bo-Hua Kermany, Mohammad Habiby Salvi, Richard Henderson, Donald TI Aging outer hair cells (OHCs) in the Fischer 344 rat cochlea: Function and morphology SO HEARING RESEARCH LA English DT Article DE OHC; Age-related hearing loss; Prestin; Fischer 344 rat ID AGE-RELATED-CHANGES; MOTOR PROTEIN; HEARING-LOSS; SUCCINIC-DEHYDROGENASE; PRESTIN; PATHOLOGY; DEGENERATION; PRESBYCUSIS; EXPRESSION; THRESHOLD AB As previously reported [Popelar, J., Groh, D., Pelanova, J., Canlon, B., Syka, J., 2006. Age-related changes in cochlear and brainstern auditory functions in Fischer 344 rats. Neurobiol. Aging 27, 490-500; Buckiova, D., Popelar, J., Syka, J., 2007. Aging cochleas in the F344 rat: morphological and functional changes. Exp. Gerontol. 42, 629-638; Bielefeld, E.C., Coling, D., Chen, G.D., Li, M.N., Tanaka, C., Hu, B.H., Henderson, D., 2008. Age-related hearing loss in the Fischer 344/NHsd rat substrain. Hear. Res. 241, 26-33], aged Fischer 344 (17344) rats with severe hearing loss retain many outer hair cells (OHCs) especially in the middle turn of the cochlea. The current Study confirmed the previous findings showing that aged OHCs were present, but dysfunctional. Distortion product otoacoustic emissions (DPOAE), which are believed to reflect in vivo OHC motility, were absent in the aged rats while the majority of OHCs (>80%) were present and morphologically intact. There was no detectable injury of OHC stereocilia as assessed by actin-staining and examination under the light microscope. Cochlear microphonics (CM) at 12 kHz, recorded from the middle turn, only showed a slight age-related reduction, indicating a normal mechanoelectrical transduction apparatus in the remaining OHCs in the cochlear regions with 10-20% OHC loss. Activities of succinate dehydrogenase (SDH), an enzyme shared by the citric acid cycle and the mitochondrial electron transport chain (METC), were also at normal levels in aged OHCs. Importantly, aged OHCs showed reduced levels of prestin immunolabeling compared to young controls. Together with our previous finding showing that the stria vascularis and endocochlear potential were essentially normal in aged F344 rats [Bielefeld, E.C., Coling, D., Chen, G.D., Li, M.N., Tanaka, C., Hu, B.H., Henderson, D., 2008. Age-related hearing loss in the Fischer 344/NHsd rat substrain. Hear. Res. 241, 26-33], the results Suggest that disruption of prestin is the major cause of DPOAE loss and loss of cochlear sensitivity. (C) 2008 Elsevier B.V. All rights reserved. C1 [Chen, Guang-Di; Li, Manna; Tanaka, Chiemi; Bielefeld, Eric C.; Hu, Bo-Hua; Kermany, Mohammad Habiby; Salvi, Richard; Henderson, Donald] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Chen, GD (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main, Buffalo, NY 14214 USA. EM gchen7@buffalo.edu RI Bielefeld, Eric/D-2015-2012 FU NIH [1RO1DCO0686201AI] FX This study was supported by the NIH Grant: #1RO1DCO0686201AI to Donald Henderson. Part of the results have been presented at the 2008 ARO Midwinter meeting in Phoenix, AZ (Chen et al., 2008, #645). CR Ashmore J, 2002, BRIT MED BULL, V63, P59, DOI 10.1093/bmb/63.1.59 BACKOFF PM, 1994, HEARING RES, V73, P163, DOI 10.1016/0378-5955(94)90231-3 Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001 Belyantseva I.A., 2000, J NEUROSCI, V20, P1 Berlett BS, 1997, J BIOL CHEM, V272, P20313, DOI 10.1074/jbc.272.33.20313 Bielefeld EC, 2008, HEARING RES, V241, P26, DOI 10.1016/j.heares.2008.04.006 BRUNDIN L, 1992, HEARING RES, V58, P175, DOI 10.1016/0378-5955(92)90126-8 Buckiova D, 2007, EXP GERONTOL, V42, P629, DOI 10.1016/j.exger.2007.02.007 Buckiova D, 2006, EXP GERONTOL, V41, P296, DOI 10.1016/j.exger.2005.11.010 Chang HP, 2007, INT J AUDIOL, V46, P738, DOI 10.1080/14992020701558529 Chen GD, 2000, HEARING RES, V145, P91, DOI 10.1016/S0378-5955(00)00076-9 CHEN GD, 2008, ABST ASS RES OTOLARY, V645 Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 Fredelius L, 2001, ORL J OTO-RHINO-LARY, V63, P12, DOI 10.1159/000055700 IWASA KH, 1994, J ACOUST SOC AM, V96, P2216, DOI 10.1121/1.410094 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 Kusunoki T, 2004, OTOLARYNG HEAD NECK, V131, P897, DOI 10.1016/j.otohns.2004.05.022 LI HS, 1994, J OTORHINOLARYNGOL R, V56, P61 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Meng QY, 2007, MECH AGEING DEV, V128, P286, DOI 10.1016/j.mad.2006.12.008 Mio K, 2008, J BIOL CHEM, V283, P1137, DOI 10.1074/jbc.M702681200 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 Popelar J, 2006, NEUROBIOL AGING, V27, P490, DOI 10.1016/j.neurobiolaging.2005.03.001 Popelar J, 2003, HEARING RES, V186, P75, DOI 10.1016/S0378-5955(03)00329-0 Ries P. W., 1994, VITAL HLTH STAT, V10, P1 Ruttiger L, 2007, NEUROBIOL AGING, V28, P586, DOI 10.1016/j.neurobiolaging.2006.02.008 SASS B, 1975, J NATL CANCER I, V54, P1449 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Schuknecht HF, 1993, PATHOLOGY EAR SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 SJOSTROM B, 1992, ORL J OTO-RHINO-LARY, V54, P220 Stadtman ER, 1998, DRUG METAB REV, V30, P225, DOI 10.3109/03602539808996310 Wang J A, 1990, Hear Res, V44, P143, DOI 10.1016/0378-5955(90)90076-2 Yamasoba T, 2007, HEARING RES, V226, P185, DOI 10.1016/j.heares.2006.06.004 Yasuda K, 2006, MECH AGEING DEV, V127, P763, DOI 10.1016/j.mad.2006.07.002 Yu N, 2006, BRAIN RES, V1095, P51, DOI 10.1016/j.brainres.2006.04.017 Zhai SQ, 1998, ACTA OTO-LARYNGOL, V118, P813, DOI 10.1080/00016489850182495 Zheng J, 2003, NEUROSCI LETT, V347, P13, DOI 10.1016/S0304-3940(03)00597-4 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 41 TC 21 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2009 VL 248 IS 1-2 BP 39 EP 47 DI 10.1016/j.heares.2008.11.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 419QM UT WOS:000264234300004 PM 19111601 ER PT J AU Ross, B Tremblay, K AF Ross, Bernhard Tremblay, Kelly TI Stimulus experience modifies auditory neuromagnetic responses in young and older listeners SO HEARING RESEARCH LA English DT Article DE Hearing; Auditory plasticity; Perceptual learning; Aging; MEG ID EVENT-RELATED POTENTIALS; SYNTHETIC-APERTURE MAGNETOMETRY; TEST-RETEST RELIABILITY; STEADY-STATE RESPONSES; EVOKED-POTENTIALS; SPEECH SOUNDS; TIME-COURSE; CORTEX; PLASTICITY; MUSICIANS AB Experiencing repeatedly presented auditory stimuli during magnetoencephalographic (MEG) recording may affect how the sound is processed in the listener's brain and may modify auditory evoked responses over the time course of the experiment. Amplitudes of NI and P2 responses have been proposed as indicators for the outcome of training and learning studies. In this context the effect of merely sound experience on N1 and P2 responses was studied during two experimental sessions on different days with young, middle-aged, and older participants passively listening to speech stimuli and a noise sound. NI and P2 were characterized as functionally distinct responses with P2 sources located more anterior than NI in auditory cortices. N1 amplitudes decreased continuously during each recording session, but completely recovered between sessions. In contrast, P2 amplitudes were fairly constant within a session but increased from the first to the second day of MEG recording. Whereas NI decrease was independent of age, the amount of P2 amplitude increase diminished with age. Temporal dynamics of N1 and P2 amplitudes were interpreted as reflecting neuroplastic changes along different time scales. The long lasting increase in P2 amplitude indicates that the auditory P2 response is potentially an important physiological correlate of perceptual learning, memory, and training. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ross, Bernhard] Rotman Res Inst, Baycrest Ctr, Toronto, ON M6A 2E1, Canada. [Ross, Bernhard] Univ Toronto, Toronto, ON M6A 2E1, Canada. [Tremblay, Kelly] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98195 USA. RP Ross, B (reprint author), Rotman Res Inst, Baycrest Ctr, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada. EM bross@rotman-baycrest.on.ca FU Canadian Institutes for Health Research [81135]; National Institutes of Health [NIDCD R01 DC007705]; Virginia Merrill Bloedel Hearing Research Center FX We are grateful for support by grants from the Canadian Institutes for Health Research (Grant No. 81135) to BR and the National Institutes of Health (NIH NIDCD R01 DC007705) awarded to KT as well as the Virginia Merrill Bloedel Hearing Research Center traveling scholar program for KT. We like to thank Drs. Claude Alain and Terry Picton for helpful comments on a previous version of the manuscript. CR Ahveninen J, 2006, P NATL ACAD SCI USA, V103, P14608, DOI 10.1073/pnas.0510480103 Alain C, 2007, CEREB CORTEX, V17, P1074, DOI 10.1093/cercor/bhl018 Atienza M, 2002, LEARN MEMORY, V9, P138, DOI 10.1101/lm.46502 Bardouille T, 2006, CLIN NEUROPHYSIOL, V117, P952, DOI 10.1016/j.clinph.2006.01.021 Binder JR, 1996, BRAIN, V119, P1239, DOI 10.1093/brain/119.4.1239 Budd TW, 1998, INT J PSYCHOPHYSIOL, V31, P51, DOI 10.1016/S0167-8760(98)00040-3 Crowley KE, 2004, CLIN NEUROPHYSIOL, V115, P732, DOI 10.1016/j.clinph.2003.11.021 Dahmen JC, 2007, CURR OPIN NEUROBIOL, V17, P456, DOI 10.1016/j.conb.2007.07.004 Engelien A, 2000, HEARING RES, V148, P153, DOI 10.1016/S0378-5955(00)00148-9 Escera C, 1996, EVOKED POTENTIAL, V100, P549, DOI 10.1016/S0168-5597(96)95633-6 Godey B, 2001, CLIN NEUROPHYSIOL, V112, P1850, DOI 10.1016/S1388-2457(01)00636-8 HARI R, 1987, AUDIOLOGY, V26, P31 Herdman AT, 2003, NEUROIMAGE, V20, P995, DOI 10.1016/S1053-8119(03)00403-8 Hyde M, 1997, AUDIOL NEURO-OTOL, V2, P281 Jaaskelainen IP, 2007, TRENDS NEUROSCI, V30, P653, DOI 10.1016/j.tins.2007.09.003 Johnsrude IS, 1997, NEUROREPORT, V8, P1761 KENEMANS JL, 1989, BIOL PSYCHOL, V28, P199, DOI 10.1016/0301-0511(89)90001-X KILENY PR, 1987, EAR HEARING, V8, P110, DOI 10.1097/00003446-198704000-00008 Kinoshita S, 1996, PHYSIOL BEHAV, V60, P1087, DOI 10.1016/0031-9384(96)00130-8 Kuriki S, 2006, J NEUROSCI, V26, P4046, DOI 10.1523/JNEUROSCI.3907-05.2006 Lagerlund TD, 1997, J CLIN NEUROPHYSIOL, V14, P73, DOI 10.1097/00004691-199701000-00007 Leonard CM, 1998, CEREB CORTEX, V8, P397, DOI 10.1093/cercor/8.5.397 Lomber S., 2006, REPROGRAMMING CEREBR Lopez L, 2003, ANN NY ACAD SCI, V999, P124, DOI 10.1196/annals.1284.013 Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790 MacMillan N. A., 2005, DETECTION THEORY USE Maquet P, 2001, SCIENCE, V294, P1048, DOI 10.1126/science.1062856 MCCLASKEY CL, 1983, PERCEPT PSYCHOPHYS, V34, P323, DOI 10.3758/BF03203044 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Naatanen R, 2001, TRENDS NEUROSCI, V24, P283, DOI 10.1016/S0166-2236(00)01790-2 Pantev C, 2003, ANN NY ACAD SCI, V999, P438, DOI 10.1196/annals.1284.054 Pantev C, 2001, NEUROREPORT, V12, P169, DOI 10.1097/00001756-200101220-00041 Pantev C, 2001, ANN NY ACAD SCI, V930, P300 Pantev C, 1998, NATURE, V392, P811, DOI 10.1038/33918 Pantev C, 1996, EAR HEARING, V17, P255, DOI 10.1097/00003446-199606000-00008 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 Picton T. W., 1976, HDB SENSORY PHYSL, V3, P343 Reinke KS, 2003, COGNITIVE BRAIN RES, V17, P781, DOI 10.1016/S0926-6410(03)00202-7 RIF J, 1991, ELECTROEN CLIN NEURO, V79, P464, DOI 10.1016/0013-4694(91)90166-2 RITTER W, 1968, ELECTROEN CLIN NEURO, V25, P550, DOI 10.1016/0013-4694(68)90234-4 ROGERS RL, 1990, ELECTROEN CLIN NEURO, V77, P237, DOI 10.1016/0168-5597(90)90043-D Ross B, 2007, J NEUROSCI, V27, P11172, DOI 10.1523/JNEUROSCI.1813-07.2007 Ross B, 2000, J ACOUST SOC AM, V108, P679, DOI 10.1121/1.429600 Roth DAE, 2005, LEARN MEMORY, V12, P159, DOI 10.1101/87505 SAMS M, 1985, ELECTROEN CLIN NEURO, V61, P254, DOI 10.1016/0013-4694(85)91092-2 Sandman CA, 2000, CLIN NEUROPHYSIOL, V111, P1427, DOI 10.1016/S1388-2457(00)00320-5 Shahin A, 2003, J NEUROSCI, V23, P5545 Shahin A, 2005, NEUROREPORT, V16, P1781, DOI 10.1097/01.wnr.0000185017.29316.63 Sheehan KA, 2005, COGNITIVE BRAIN RES, V25, P547, DOI 10.1016/j.cogbrainres.2005.08.007 TESCHE CD, 1995, ELECTROEN CLIN NEURO, V95, P189, DOI 10.1016/0013-4694(95)00064-6 Trachtenberg JT, 2002, NATURE, V420, P788, DOI 10.1038/nature01273 Trainor LJ, 2003, ANN NY ACAD SCI, V999, P506, DOI 10.1196/annals.1284.061 Tremblay K, 1998, NEUROREPORT, V9, P3557 Tremblay K, 1997, J ACOUST SOC AM, V102, P3762, DOI 10.1121/1.420139 Tremblay K, 2001, EAR HEARING, V22, P79, DOI 10.1097/00003446-200104000-00001 Tremblay KL, 2003, EAR HEARING, V24, P225, DOI 10.1097/01.AUD.0000069229.84883.03 Tremblay KL, 2002, J SPEECH LANG HEAR R, V45, P564, DOI 10.1044/1092-4388(2002/045) Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7 Uwer R, 2000, CLIN NEUROPHYSIOL, V111, P45, DOI 10.1016/S1388-2457(99)00204-7 Vrba J, 2001, METHODS, V25, P249, DOI 10.1003/meth.2001.1238 Williams LM, 2005, INT J NEUROSCI, V115, P1605, DOI 10.1080/00207450590958475 WOODS DL, 1986, ELECTROEN CLIN NEURO, V65, P447, DOI 10.1016/0168-5597(86)90024-9 Zouridakis G, 1998, BRAIN TOPOGR, V10, P183, DOI 10.1023/A:1022246825461 NR 63 TC 44 Z9 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2009 VL 248 IS 1-2 BP 48 EP 59 DI 10.1016/j.heares.2008.11.012 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 419QM UT WOS:000264234300005 PM 19110047 ER PT J AU Kolarik, AJ Culling, JF AF Kolarik, Andrew J. Culling, John F. TI Measurement of the binaural temporal window using a lateralisation task SO HEARING RESEARCH LA English DT Article DE Binaural hearing; Temporal resolution; Lateralisation ID INTER-AURAL CORRELATION; CORRELATION DISCRIMINATION; INTENSITY DIFFERENCES; BAND NOISE; TIME; DETECTABILITY; LEVEL; TONE; SLUGGISHNESS; FREQUENCY AB Binaural temporal resolution was measured using the discrimination of brief interaural time delays (ITDs). In experiment 1, three listeners performed a 21-2AFC, ITD-discrimination procedure. ITD changes of 8 to 1024 mu s were applied to brief probe noises. These probes, with durations of 16 to 362 ms, were placed symmetrically in time within a 500-ms burst of otherwise interaurally uncorrelated noise. Psychometric functions were measured to obtain thresholds and temporal windows fitted to those thresholds. The best-fitting window was a symmetric roex shape (equivalent rectangular duration = 197 ms), an order of magnitude longer than monaural temporal windows and differed substantially from windows reported by Bernstein et al. [Bernstein, L.R., Trahiotis, C., Akeroyd, M.A., Hartung, K., 2001. Sensitivity to brief changes of interaural time and interaural intensity. J. Acoust. Soc. Am. 109, 1604-1615]. Experiment 2, replicated their main experiment, comparing their ITD-detection task with a similar discrimination procedure. Thresholds in the detection conditions were significantly better than those in the discrimination condition, particularly for short probe durations, indicating the use of an additional cue at these durations for the detection task and thus undermining the assumptions made in their window fit. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kolarik, Andrew J.; Culling, John F.] Cardiff Univ, Sch Psychol, Cardiff CF10 3AT, S Glam, Wales. RP Culling, JF (reprint author), Cardiff Univ, Sch Psychol, Tower Bldg,Pk Pl, Cardiff CF10 3AT, S Glam, Wales. EM Cullingj@cf.ac.uk RI Culling, John/D-1468-2009 CR Akeroyd MA, 1999, J ACOUST SOC AM, V105, P2807, DOI 10.1121/1.426897 Bernstein LR, 2001, J ACOUST SOC AM, V109, P1604, DOI 10.1121/1.1354203 Blauert J., 1996, SPATIAL HEARING BLAUERT J, 1972, AUDIOLOGY, V11, P265 Culling JF, 2007, HEARING - FROM SENSORY PROCESSING TO PERCEPTION, P359, DOI 10.1007/978-3-540-73009-5_39 Culling JF, 2000, J ACOUST SOC AM, V107, P517, DOI 10.1121/1.428320 Culling JF, 2003, ACTA ACUST UNITED AC, V89, P1049 Culling JF, 1998, J ACOUST SOC AM, V103, P3540, DOI 10.1121/1.423061 GABRIEL KJ, 1981, J ACOUST SOC AM, V69, P1394, DOI 10.1121/1.385821 GRANTHAM DW, 1978, J ACOUST SOC AM, V63, P511, DOI 10.1121/1.381751 GRANTHAM DW, 1982, J ACOUST SOC AM, V72, P1178, DOI 10.1121/1.388326 GRANTHAM DW, 1984, J ACOUST SOC AM, V76, P71, DOI 10.1121/1.391009 GRANTHAM DW, 1979, J ACOUST SOC AM, V65, P1509, DOI 10.1121/1.382915 HIRSH IJ, 1948, J ACOUST SOC AM, V20, P536, DOI 10.1121/1.1906407 Holube I, 1998, J ACOUST SOC AM, V104, P2412, DOI 10.1121/1.423773 KOHLRAUSCH A, 1986, HEARING RES, V23, P267, DOI 10.1016/0378-5955(86)90115-2 KOLARIK AJ, J ACOUST SO IN PRESS KOLLMEIER B, 1990, J ACOUST SOC AM, V87, P1709, DOI 10.1121/1.399419 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Mossop JE, 1998, J ACOUST SOC AM, V104, P1574, DOI 10.1121/1.424369 NELDER JA, 1965, COMPUT J, V7, P308 Patterson RD, 1986, FREQUENCY SELECTIVIT PERROTT DR, 1989, J ACOUST SOC AM, V85, P2669, DOI 10.1121/1.397764 PERROTT DR, 1977, J ACOUST SOC AM, V62, P1463, DOI 10.1121/1.381675 PLACK CJ, 1990, J ACOUST SOC AM, V87, P2178, DOI 10.1121/1.399185 POLLACK I, 1978, J ACOUST SOC AM, V63, P550, DOI 10.1121/1.381765 Stellmack MA, 2005, J ACOUST SOC AM, V118, P2507, DOI 10.1121/1.2032057 VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 ZUREK PM, 1980, J ACOUST SOC AM, V67, P952, DOI 10.1121/1.383974 NR 29 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2009 VL 248 IS 1-2 BP 60 EP 68 DI 10.1016/j.heares.2008.12.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 419QM UT WOS:000264234300006 PM 19111600 ER PT J AU Reuss, S Kuhn, I Windoffer, R Riemann, R AF Reuss, Stefan Kuehn, Inna Windoffer, Reinhard Riemann, Randolf TI Neurochemistry of identified motoneurons of the tensor tympani muscle in rat middle ear SO HEARING RESEARCH LA English DT Article DE Nitric oxide synthase; Neuropeptides; Fluoro-Gold; Retrograde tracing ID NITRIC-OXIDE SYNTHASE; SUPERIOR OLIVARY COMPLEX; LOWER BRAIN-STEM; RETROGRADE HORSERADISH-PEROXIDASE; IMMUNOREACTIVE CELL-BODIES; TRIGEMINAL MOTOR NUCLEUS; CENTRAL NERVOUS-SYSTEM; GUINEA-PIG; SUBSTANCE-P; CHOLINE-ACETYLTRANSFERASE AB The objective of the present study was to identify efferent and afferent transmitters of motoneurons of the tensor tympani Muscle (MoTTM) to gain more insight into the neuronal regulation of the muscle. To identify MoTTM, we injected the fluorescent neuronal tracer Fluoro-Gold (FG) into the muscle after preparation of the middle ear in adult rats. Upon terminal uptake and retrograde neuronal transport, we observed FG in neurons located lateral and ventrolateral to the motor trigeminal nucleus ipsilateril to the injection site. Immunohistochemical studies of these motoneurons showed that apparently all contained choline acetyltransferase, demonstrating their motoneuronal character. Different portions of these cell bodies were immunoreactive to bombesin (33%), cholecystokinin (37%), endorphin (100%), leuenkephalin (25%) or neuronal nitric oxide synthase (32%). MoTTM containing calcitonin gene-related peptide, tyrosine hydroxylase, substance P, neuropeptide Y or serotonin were not found. While calcitonin gene-related peptide was not detected in the region under study, nerve fibers immunoreactive to tyrosine hydroxylase, substance P, neuropeptide Y or serotonin were observed in close spatial relationship to MoTTM, suggesting that these neurons are under aminergic and neuropeptidergic influence. Our results demonstrating the neurochemistry of motoneuron input and output of the rat tensor tympany muscle may prove useful also for the general understanding of motoneuron function and regulation. (C) 2008 Elsevier B.V. All rights reserved. C1 [Reuss, Stefan; Kuehn, Inna; Windoffer, Reinhard] Johannes Gutenberg Univ Mainz, Dept Anat & Cell Biol, Sch Med, D-55099 Mainz, Germany. [Riemann, Randolf] City Hosp Frankfurt Hoechst, Dept Otorhinolaryngol, Frankfurt, Germany. RP Reuss, S (reprint author), Johannes Gutenberg Univ Mainz, Dept Anat & Cell Biol, Sch Med, Becherweg 13, D-55099 Mainz, Germany. EM reuss@uni-mainz.de FU Deutsche Forschungsgerneinschaft [Re 644/3-1]; University Medical Faculty Science Program (MAIFOR); Schleicher-Stiftung (Baden-Baden) FX The authors thank U. Disque-Kaiser for excellent technical assistance. Data in this study are part of a thesis presented by 1. Kuhn in partial fulfillment of her M.D. degree at the Johannes Gutenberg-University, Mainz. This work was supported by the Deutsche Forschungsgerneinschaft (Re 644/3-1), the University Medical Faculty Science Program (MAIFOR) and the Schleicher-Stiftung (Baden-Baden). CR ABERCROMBIE M, 1946, ANAT REC, V94, P239, DOI 10.1002/ar.1090940210 Aguilar LA, 2004, HEARING RES, V187, P111, DOI 10.1016/S0378-5955(03)00333-2 ALM P, 1993, ACTA PHYSIOL SCAND, V148, P421, DOI 10.1111/j.1748-1716.1993.tb09578.x Billig I, 2007, BRAIN RES, V1154, P124, DOI 10.1016/j.brainres.2007.04.007 BORG E, 1973, BRAIN RES, V49, P101, DOI 10.1016/0006-8993(73)90404-6 BORG E, 1989, SCI AM, V261, P74 Briski KP, 1999, HISTOCHEM CELL BIOL, V111, P229, DOI 10.1007/s004180050352 Bullock G. R., 1982, TECHNIQUES IMMUNOCYT CARMEL PW, 1963, J NEUROPHYSIOL, V26, P598 CORTES R, 1990, J CHEM NEUROANAT, V3, P467 COVENAS R, 1990, BRAIN RES BULL, V25, P675, DOI 10.1016/0361-9230(90)90042-X CUELLO AC, 1979, P NATL ACAD SCI USA, V76, P3532, DOI 10.1073/pnas.76.7.3532 DONGA R, 1992, NEUROSCIENCE, V49, P951, DOI 10.1016/0306-4522(92)90371-8 FELDMAN AS, 1967, J SPEECH HEAR RES, V10, P616 FODOR M, 1992, NEUROSCIENCE, V46, P891, DOI 10.1016/0306-4522(92)90192-5 FRIAUF E, 1985, EXP BRAIN RES, V57, P499 Fukuoka T, 1999, MOL BRAIN RES, V63, P304, DOI 10.1016/S0169-328X(98)00297-6 GANNON PJ, 1987, BRAIN RES, V404, P257, DOI 10.1016/0006-8993(87)91376-X GARTHWAITE J, 2000, NITRIC OXIDE, P259 GODFREY DA, 1990, OTOLARYNG HEAD NECK, V103, P799 GRAYBIEL AM, 1974, BRAIN RES, V81, P543, DOI 10.1016/0006-8993(74)90850-6 GROTTEL K, 1986, J HIRNFORSCH, V27, P305 HALLIDAY GM, 1990, NEUROSCIENCE, V39, P81, DOI 10.1016/0306-4522(90)90223-Q Hokfelt T, 1984, HDB CHEM NEUROANATOM, V2, P277 ITO J, 1988, ACTA OTO-LARYNGOL, V105, P292, DOI 10.3109/00016488809097010 ITO J, 1987, ACTA OTO-LARYNGOL, V104, P108, DOI 10.3109/00016488709109054 ITOH K, 1986, BRAIN RES, V375, P214, DOI 10.1016/0006-8993(86)90979-0 KAMERER DB, 1978, OTOLARYNG HEAD NECK, V86, P416 Kawano H, 1996, NEUROSCI LETT, V212, P143, DOI 10.1016/0304-3940(96)12795-6 KEVANISH.ZS, 1972, ACTA OTO-LARYNGOL, V74, P231, DOI 10.3109/00016487209128444 KHACHATURIAN H, 1983, J COMP NEUROL, V220, P310, DOI 10.1002/cne.902200305 Kitahama K, 1996, J CHEM NEUROANAT, V10, P137, DOI 10.1016/0891-0618(96)00111-1 KLOCKHOFF I, 1961, ACTA OTO-LARYNGOL, V164, P63 KOLTA A, 1993, NEUROSCIENCE, V53, P1113, DOI 10.1016/0306-4522(93)90494-Z LI YQ, 1995, J COMP NEUROL, V356, P563, DOI 10.1002/cne.903560407 LYON MJ, 1975, EXP NEUROL, V49, P439, DOI 10.1016/0014-4886(75)90100-4 Manaker S, 1998, SYNAPSE, V28, P44, DOI 10.1002/(SICI)1098-2396(199801)28:1<44::AID-SYN6>3.0.CO;2-C MARCOS P, 1994, NEUROPEPTIDES, V26, P93, DOI 10.1016/0143-4179(94)90100-7 MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077 Meessen H, 1949, CYTOARCHITEKTONISCHE Min MY, 2007, ANAT REC, V290, P96, DOI 10.1002/ar.a.20411 MIZUNO N, 1982, NEUROSCI LETT, V31, P205, DOI 10.1016/0304-3940(82)90020-9 Paxinos G., 1998, RAT BRAIN STEREOTAXI Ramírez Luis Miguel, 2007, Med Oral Patol Oral Cir Bucal, V12, pE96 Reuss MH, 2001, J CHEM NEUROANAT, V21, P181, DOI 10.1016/S0891-0618(01)00091-6 Reuss S, 2000, MICROSC RES TECHNIQ, V51, P318, DOI 10.1002/1097-0029(20001115)51:4<318::AID-JEMT3>3.0.CO;2-Y Reuss S, 1998, NEUROREPORT, V9, P3643 Reuss S, 1999, CELL TISSUE RES, V297, P13, DOI 10.1007/s004410051329 REUSS S, 1995, NEUROENDOCRINOLOGY, V61, P337, DOI 10.1159/000126856 Reuss S, 2008, BRAIN RES, V1221, P59, DOI 10.1016/j.brainres.2008.05.008 REUSS S, 1991, NEUROSCI LETT, V128, P13, DOI 10.1016/0304-3940(91)90749-J Riemann R, 1999, HEARING RES, V135, P181, DOI 10.1016/S0378-5955(99)00113-6 Robertson D, 2000, MICROSC RES TECHNIQ, V51, P307, DOI 10.1002/1097-0029(20001115)51:4<307::AID-JEMT2>3.0.CO;2-4 ROUILLER EM, 1986, NEUROSCI LETT, V72, P247, DOI 10.1016/0304-3940(86)90521-5 Saad M, 1997, J COMP NEUROL, V383, P428 Saad M, 1999, NEUROSCIENCE, V88, P927, DOI 10.1016/S0306-4522(98)00212-7 SHAW MD, 1983, J COMP NEUROL, V216, P10, DOI 10.1002/cne.902160103 SHIROMANI PJ, 1990, BRAIN RES, V517, P224, DOI 10.1016/0006-8993(90)91030-K Simmons DD, 1999, ANAT EMBRYOL, V200, P585, DOI 10.1007/s004290050306 SPANGLER KM, 1982, NEUROSCI LETT, V32, P23, DOI 10.1016/0304-3940(82)90223-3 STRUTZ J, 1988, ARCH OTO-RHINO-LARYN, V245, P108, DOI 10.1007/BF00481446 SUTIN EL, 1990, MOL BRAIN RES, V8, P63, DOI 10.1016/0169-328X(90)90010-B SZENTAGOTHAI J, 1949, J COMP NEUROL, V90, P111, DOI 10.1002/cne.900900105 TAKAHASHI O, 1984, NEUROSCI LETT, V49, P19, DOI 10.1016/0304-3940(84)90129-0 TATEHATA T, 1987, J HIRNFORSCH, V28, P707 Thompson AM, 1998, BRAIN RES, V787, P175, DOI 10.1016/S0006-8993(97)01020-2 VANDENBERGE H, 1990, HEARING RES, V48, P209, DOI 10.1016/0378-5955(90)90061-S VANDENBERGE H, 1990, J ANAT, V170, P99 VANDENBERGE H, 1989, J ANAT, V164, P215 WETTS R, 1994, NEUROSCIENCE, V63, P1117, DOI 10.1016/0306-4522(94)90577-0 Wynne B, 1997, J CHEM NEUROANAT, V12, P259, DOI 10.1016/S0891-0618(97)00219-6 ZAMIR N, 1984, J NEUROSCI, V4, P1240 Zheng YW, 2006, BRAIN RES, V1123, P201, DOI 10.1016/j.brainres.2006.09.045 NR 73 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2009 VL 248 IS 1-2 BP 69 EP 79 DI 10.1016/j.heares.2008.12.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 419QM UT WOS:000264234300007 PM 19126425 ER PT J AU Cohen, LT AF Cohen, Lawrence T. TI Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Modeling of neural response; ECAP; NRT; Loudness growth; Temporal loudness summation ID STIMULATED AUDITORY-NERVE; ELECTRODE ARRAYS; STOCHASTIC-MODEL; SPATIAL SPREAD; MASKING; CONTOUR(TM) AB This is the first in a series of five papers, presenting the development of a practical mathematical model that describes excitation of the auditory nerve by electrical stimulation from a cochlear implant. Here are presented methods and basic data for the subjects, who were implanted with the Nucleus' 24 cochlear implant system (three with straight and three with Contour (TM) electrode arrays), required as background for all papers. The growth of subjective loudness with stimulus current was studied, for low-rate pulse bursts and for single pulses. The growth of the amplitude of the compound action potential (ECAP) was recorded using the Neural Response Telemetry (TM) (NRT (TM)) system. An approximately linear relationship was demonstrated between ECAP amplitude and burst loudness, although this failed at the lower end of the dynamic range, to an extent that varied with subject and stimulated electrode. Single-pulse stimuli were audible below ECAP threshold, demonstrating that the audibility of burst stimuli at such low currents was not due solely to temporal loudness summation. An approximate function was established relating the curvature of the burst loudness growth function to the maximum comfortable level (MCL). Loudness at threshold was quantified, as a percentage of loudness at MCL. The relationship between loudness and ECAP growth functions, the curvature versus MCL function and the loudness associated with threshold are relevant to the development of a mathematical model of electrically evoked auditory nerve excitation. (c) 2008 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP Cohen, LT (reprint author), Univ Melbourne, Dept Otolaryngol, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM ltcohen@unimelb.edu.au FU Commonwealth of Australia through the Co-operative Research Centre for Cochlear Implant and Hearing Aid Innovation; Department of Otolaryngology (University of Melbourne, Australia); Bionic Ear Institute (Melbourne, Australia). FX I acknowledge support provided by the Commonwealth of Australia through the Co-operative Research Centre for Cochlear Implant and Hearing Aid Innovation. I acknowledge, also, additional support provided by the Department of Otolaryngology (University of Melbourne, Australia) and the Bionic Ear Institute (Melbourne, Australia). Thanks are due to the subjects, to Cochlear Limited and to the staff of the Cochlear Implant Clinic at the Royal Victorian Eye and Ear Hospital, Melbourne, for their assistance. I am grateful for the encouragement of Mark White. I thank Anthony Burkitt, David Grayden, Barbara Cone-Wesson, Robert Cowan and Ian Jakovenko for their critical reading of the manuscript, and acknowledge the support of the following in reading and discussing early versions of this work: Mark White, Richard van Hoesel and Stephen O'Leary. CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 ARIYASU L, 1989, OTOLARYNG HEAD NECK, V100, P87 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P617, DOI 10.1109/10.764938 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P1393, DOI 10.1109/10.804567 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P630, DOI 10.1109/10.764939 CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330 Cohen LT, 2004, INT J AUDIOL, V43, P346, DOI 10.1080/14992020400050044 Cohen LT, 2009, HEARING RES, V248, P1, DOI 10.1016/j.heares.2008.11.007 COHEN LT, 2007, 5 INT S REL ADD EV O COHEN LT, 2005, C IMPL AUD PROSTH AS Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 COHEN LT, 2001, 2001 C IMPL AUD PROS COHEN LT, 2001, 2 INT S WORKSH OBJ M COHEN LT, 2005, 4 INT S WORKSH OBJ M Cohen LT, 2006, HEARING RES, V212, P160, DOI 10.1016/j.heares.2005.11.005 Cohen LT, 2009, HEARING RES, V248, P15, DOI 10.1016/j.heares.2008.11.008 Cohen LT, 2005, INT J AUDIOL, V44, P559, DOI 10.1080/14992020500258743 Cohen LT, 2009, HEARING RES, V247, P100, DOI 10.1016/j.heares.2008.11.004 Cohen LT, 1996, AM J OTOL, V17, P859 Cohen LT, 2009, HEARING RES, V247, P112, DOI 10.1016/j.heares.2008.11.002 COHEN LT, 2003, 3 INT S WORKSH OBJ M Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Cohen L.T., 2000, 5 EUR S PAED COCHL I GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Lai WK, 2000, AUDIOL NEURO-OTOL, V5, P333, DOI 10.1159/000013899 MARSH MA, 1993, AM J OTOL, V14, P386 Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 Saunders E, 2002, EAR HEARING, V23, p28S Sridhar Divya, 2006, Audiol Neurootol, V11 Suppl 1, P16, DOI 10.1159/000095609 Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007 VERVEEN AA, 1961, FLUCTUATIONS EXCITAB VONBEKESY G, 1947, ACTA OTO-LARYNGOL, V35, P411 Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X NR 34 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN 20 PY 2009 VL 247 IS 2 BP 87 EP 99 DI 10.1016/j.heares.2008.11.003 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 412GZ UT WOS:000263714500001 PM 19063956 ER PT J AU Cohen, LT AF Cohen, Lawrence T. TI Practical model description of peripheral neural excitation in cochlear implant recipients: 2. Spread of the effective stimulation field (ESF), from ECAP and FEA SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Modeling of neural response; ECAP; NRT; Current spread; Spread of neural excitation ID NERVE; ARRAY AB This second paper of the series considers the spread of the "effective stimulation field" (ESF) produced by monopolar biphasic stimulation of an electrode within scala tympani, in subjects implanted with the Nucleus' 24 cochlear implant system (three with straight and two with Contour (TM) electrode arrays). A novel measure of the ECAP was employed, using the Neural Response Telemetry (TM) (NRT (TM)) system. The ESF provides a patient-specific measure of the "ability" of the stimulation field to excite neurons at differing locations around the cochlea. The results were interpreted with the aid of simple finite element computational models of the electric field. The finite element models were used to generate template field spread functions that differed with radial distance of the stimulated electrode from the modiolus. Relative to a template field function for the appropriate radial distance, the ESF spread on average approximately twice as broadly (a scaling factor of two). The magnitude of this scaling factor was considered to be indicative of the site of excitation on the neural fibers. The relationship between two ECAP measures, the spread of ESF and the "spread of excitation" (SOE), is discussed. (c) 2008 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP Cohen, LT (reprint author), Univ Melbourne, Dept Otolaryngol, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM ltcohen@unimelb.edu.au FU Commonwealth of Australia through the Co-operative Research Centre for Cochlear Implant and Hearing Aid Innovation; Department of Otolaryngology (University of Melbourne, Australia); Bionic Ear Institute (Melbourne, Australia) FX I wish to acknowledge support provided by the Commonwealth of Australia through the Co-operative Research Centre for Cochlear Implant and Hearing Aid Innovation. I acknowledge, also, additional support provided by the Department of Otolaryngology (University of Melbourne, Australia) and the Bionic Ear Institute (Melbourne, Australia). Thanks are due to the subjects, to Cochlear Limited and to the staff of the Cochlear Implant Clinic at the Royal Victorian Eye and Ear Hospital, Melbourne, for their assistance. I am grateful for the encouragement of Mark White. I thank David Grayden, Barbara Cone-Wesson, Robert Cowan and lan Jakovenko for their critical reading of the manuscript, and acknowledge the support of the following in reading and discussing early versions of this work: Mark White, Richard van Hoesel and Stephen O'Leary. I am indebted to Patricia Leake for provision of data that enabled estimation, in the model, of the influence of the angular offset of ganglion cells relative to their dendritic sites of origin at the organ of Corti. CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 ARIYASU L, 1989, OTOLARYNG HEAD NECK, V100, P87 BLACK RC, 1980, J ACOUST SOC AM, V67, P868, DOI 10.1121/1.383966 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Cohen LT, 2009, HEARING RES, V248, P1, DOI 10.1016/j.heares.2008.11.007 Cohen LT, 2006, HEARING RES, V212, P160, DOI 10.1016/j.heares.2005.11.005 Cohen LT, 2009, HEARING RES, V248, P15, DOI 10.1016/j.heares.2008.11.008 Cohen LT, 1996, AM J OTOL, V17, P859 Cohen LT, 2009, HEARING RES, V247, P112, DOI 10.1016/j.heares.2008.11.002 Cohen L T, 1996, Audiol Neurootol, V1, P265 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Cohen L.T., 2000, 5 EUR S PAED COCHL I Cohen LT, 2009, HEARING RES, V247, P87, DOI 10.1016/j.heares.2008.11.003 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 Lai WK, 2000, AUDIOL NEURO-OTOL, V5, P333, DOI 10.1159/000013899 Patrick James F, 2006, Trends Amplif, V10, P175, DOI 10.1177/1084713806296386 Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Rattay F, 1999, NEUROSCIENCE, V89, P335, DOI 10.1016/S0306-4522(98)00330-3 Saunders E, 2002, EAR HEARING, V23, p28S Sridhar Divya, 2006, Audiol Neurootol, V11 Suppl 1, P16, DOI 10.1159/000095609 Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007 Vanpoucke F, 2004, OTOL NEUROTOL, V25, P282, DOI 10.1097/00129492-200405000-00014 Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X NR 26 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN 20 PY 2009 VL 247 IS 2 BP 100 EP 111 DI 10.1016/j.heares.2008.11.004 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 412GZ UT WOS:000263714500002 PM 19063955 ER PT J AU Cohen, LT AF Cohen, Lawrence T. TI Practical model description of peripheral neural excitation in cochlear implant recipients: 3. ECAP during bursts and loudness as function of burst duration SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Modeling of neural response; ECAP; NRT; Temporal loudness summation ID AUDITORY-NERVE FIBER; TEMPORAL INTEGRATION; SPATIAL SPREAD; NUCLEUS; STIMULATION; HEARING; MASKING; USERS AB In this, the third paper of the series, the loudness of low-rate bursts of electrical pulses was measured as a function of the burst duration, in subjects implanted with the Nucleus' 24 cochlear implant system (three with straight and two with Contour (TM) electrode arrays). In order to help distinguish between the contributions of peripheral and more central effects, the ECAP was recorded to the individual pulses comprising the bursts, using the Neural Response Telemetry (TM) (NRT (TM)) system. At a pulse rate of 250 pulses/s, the ECAP amplitude did not decrease greatly during the bursts: the mean reduction factor was 0.89. The time-constant for summation of the loudness contributions from the pulses comprising a burst was found to be larger than that associated with normal hearing. In addition, the first pulse of a pulse train was found to contribute much more to the overall loudness than did the subsequent pulses, although a corresponding difference was not observed in the ECAP recordings. These results establish a necessary connection between the essentially single-pulse model, developed in the fourth and fifth papers of the series, and the psychophysical data for pulse bursts, but they also have broader implications. (c) 2008 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP Cohen, LT (reprint author), Univ Melbourne, Dept Otolaryngol, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM ltcohen@unimelb.edu.au CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Cohen LT, 2004, INT J AUDIOL, V43, P346, DOI 10.1080/14992020400050044 Cohen LT, 2009, HEARING RES, V248, P1, DOI 10.1016/j.heares.2008.11.007 Cohen LT, 2009, HEARING RES, V248, P15, DOI 10.1016/j.heares.2008.11.008 Cohen LT, 2009, HEARING RES, V247, P100, DOI 10.1016/j.heares.2008.11.004 Cohen LT, 1996, AM J OTOL, V17, P859 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Cohen L.T., 2000, 5 EUR S PAED COCHL I Cohen LT, 2009, HEARING RES, V247, P87, DOI 10.1016/j.heares.2008.11.003 Donaldson GS, 1997, J ACOUST SOC AM, V101, P3706, DOI 10.1121/1.418330 Finley C., 1997, SPEECH PROCESSORS AU Glasberg BR, 2002, J AUDIO ENG SOC, V50, P331 GOLDING NL, 1995, J NEUROSCI, V15, P3138 Heil P, 2003, P NATL ACAD SCI USA, V100, P6151, DOI 10.1073/pnas.1030017100 Lai WK, 2000, AUDIOL NEURO-OTOL, V5, P333, DOI 10.1159/000013899 McKay CM, 2003, J ACOUST SOC AM, V113, P2054, DOI 10.1121/1.1558378 McKay CM, 1998, J ACOUST SOC AM, V104, P1061, DOI 10.1121/1.423316 Miller CA, 2001, JARO, V2, P216 Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x Sly DJ, 2007, EUR J NEUROSCI, V26, P510, DOI 10.1111/j.1460-9568.2007.05678.x Vandali AE, 2001, J ACOUST SOC AM, V109, P2049, DOI 10.1121/1.1358300 VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 Wilson BS, 1997, AM J OTOL, V18, pS30 Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X NR 27 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN 20 PY 2009 VL 247 IS 2 BP 112 EP 121 DI 10.1016/j.heares.2008.11.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 412GZ UT WOS:000263714500003 PM 19068227 ER PT J AU D'Alessandro, LM Norwich, KH AF D'Alessandro, Lisa M. Norwich, Kenneth H. TI Loudness adaptation measured by the simultaneous dichotic loudness balance technique differs between genders SO HEARING RESEARCH LA English DT Article DE Loudness adaptation; Gender differences; Loudness exponent ID SPONTANEOUS OTOACOUSTIC EMISSIONS; AUDITORY ADAPTATION; SEX-DIFFERENCES; HEARING; TIME AB Loudness adaptation was measured using the classic simultaneous, dichotic loudness balance technique. A 6-min continuous tone was introduced using headphones to a participant's adapting ear. Immediately upon presentation of the tone and at 1-min intervals, participants adjusted the sound level of a tone of the same frequency in the contralateral control ear until both tones sounded equally loud. The control ear, which was otherwise retained in silence, measured adaptation in the adapting ear. As the constant-sound level stimulus to the adapting ear continued, the sound level that a participant selected to produce equal loudness between ears decreased, oscillating towards an apparent asymptotic value. This value was used to calculate total decibels of adaptation. The magnitude of female adaptation exceeded that of males at all time points measured following stimulus onset. The ratio total dB of adaptation to dB SL of the test tone may provide an empirical estimate for the loudness exponent, n, seen in Stevens' power law, L = k phi(n). which relates the intensity of a pure tone, phi, to the loudness of the tone, L. Since dB of adaptation for females was greater than that of males, female n-values exceeded those of males, in accordance with previous research. (c) 2008 Elsevier B.V. All rights reserved. C1 [D'Alessandro, Lisa M.; Norwich, Kenneth H.] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada. [D'Alessandro, Lisa M.; Norwich, Kenneth H.] Univ Toronto, Dept Physiol, Toronto, ON M5S 1A8, Canada. RP Norwich, KH (reprint author), Univ Toronto, Inst Biomat & Biomed Engn, 164 Coll St, Toronto, ON M5S 3G9, Canada. EM l.dalessandro@utoronto.ca; k.norwich@utoronto.ca FU Natural Sciences and Engineering Research Council of Canada; Ontario Graduate Scholarship FX This research was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (to KHN) and by an Ontario Graduate Scholarship (to LMD). This paper is also in memoriam Ernest Weiler, who passed away on March 22, 2008. CR BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 Canévet G, 1983, Br J Audiol, V17, P49, DOI 10.3109/03005368309081481 CANEVET G, 1985, AUDIOLOGY, V24, P430 CORSO JF, 1959, J ACOUST SOC AM, V31, P498, DOI 10.1121/1.1907742 DALESSANDRO LM, 2008, THESIS U TORONTO TOR DON M, 1993, J ACOUST SOC AM, V94, P2135, DOI 10.1121/1.407485 DOU HW, 1998, THESIS U CINCINNATI Hellman R, 1997, J ACOUST SOC AM, V101, P2176, DOI 10.1121/1.418202 HIRSH IJ, 1955, J ACOUST SOC AM, V27, P1186, DOI 10.1121/1.1908157 HOOD J D, 1950, Acta Otolaryngol Suppl, V92, P1 JERGER JF, 1957, J ACOUST SOC AM, V29, P357, DOI 10.1121/1.1908889 Katz J, 2002, HDB CLIN AUDIOLOGY, P124 Langford T.L., 1994, J ACOUST SOC AM, V96, P3256, DOI 10.1121/1.411025 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MARKS LE, 1974, SENSORY PROCESSES NE, P73 McFadden D, 1996, HEARING RES, V97, P102 McFadden D, 1998, DEV NEUROPSYCHOL, V14, P261 MCGUINNESS D, 1974, PSYCHOPHYSIOLOGY, V11, P115 Miller JD, 2007, J ACOUST SOC AM, V121, pEL151, DOI 10.1121/1.2710746 NEUHOFF JG, J EXP PSYCH IN PRESS Norwich K. H., 1993, INFORM SENSATION PER ROYSTER LH, 1980, J ACOUST SOC AM, V68, P551, DOI 10.1121/1.384769 Sagi E, 2007, CAN J EXP PSYCHOL, V61, P64, DOI 10.1037/cjep2007007 SMALL AM, 1961, J ACOUST SOC AM, V33, P1028, DOI 10.1121/1.1908884 Small Susan A, 2005, J Am Acad Audiol, V16, P172, DOI 10.3766/jaaa.16.3.5 STEVENS SS, 1970, SCIENCE, V170, P1043, DOI 10.1126/science.170.3962.1043 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V VONBEKESY G, 1947, ACTA OTO-LARYNGOL, V35, P411 von Bekesy G, 1929, PHYS Z, V30, P115 VONBEKESY G, 1960, EXPT HEARING, P354 Ward LM, 1999, PSYCHON B REV, V6, P472, DOI 10.3758/BF03210837 WEILER EM, 1972, J ACOUST SOC AM, V51, P638, DOI 10.1121/1.1912887 WEILER E M, 1973, Journal of Auditory Research, V13, P101 NR 33 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN 20 PY 2009 VL 247 IS 2 BP 122 EP 127 DI 10.1016/j.heares.2008.10.009 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 412GZ UT WOS:000263714500004 PM 19027058 ER PT J AU Petermann, M Kummer, P Burger, M Lohscheller, J Eysholdt, U Dollinger, M AF Petermann, Miriam Kummer, Peter Burger, Martin Lohscheller, Joerg Eysholdt, Ulrich Doellinger, Michael TI Statistical detection and analysis of mismatch negativity derived by a multi-deviant design from normal hearing children SO HEARING RESEARCH LA English DT Article DE Auditory evoked potentials (AEP); Mismatch negativity (MMN); Children; Statistical analysis; Multi-deviant paradigm ID EVENT-RELATED POTENTIALS; AUDITORY-DISCRIMINATION; EVOKED-POTENTIALS; LANGUAGE IMPAIRMENT; ASPERGER-SYNDROME; SPEECH SOUNDS; MATURATION; MMN; INFANTS; REPRESENTATION AB To shorten the time of measurement of mismatch negativity (MMN) and to objectify the analysis of MMN characteristics, auditory evoked potentials (AEP) were recorded and MMNs were statistically examined. AEPs from 16 healthy children between the ages of 5 and 7 were elicited using a multi-deviant design including: frequency, duration, intensity, and gap. For detection of MMN an automatic method was applied based on statistical analysis (t-tests) of AEP sweeps. The incidences found were compared to the incidences of MMNs detected by visual inspection of difference waveforms. MMN features such as peak amplitude, peak latency, onset latency, duration of MMN, and area under the curve were evaluated for MMN intervals identified by statistical analysis. MMN incidences identified by statistical analysis (44) reflected a consistency of 84% to visually identified (52) incidences of MMN. Scalp distribution of MMN was mainly fronto-central. Peak latencies of the duration MMN differed significantly from those of the other deviant MMNs. The multi-deviant paradigm was successfully applied for measuring children's AEPs. The statistical approach proved applicable for analysing the data objectively. (c) 2008 Elsevier B.V. All rights reserved. C1 [Petermann, Miriam; Burger, Martin; Lohscheller, Joerg; Eysholdt, Ulrich; Doellinger, Michael] Univ Hosp Erlangen, Dept Phoniatr & Paediat Audiol, Sch Med, D-91054 Erlangen, Bavaria, Germany. [Kummer, Peter] Univ Hosp Munchen, Dept Phoniatr & Paediat Audiol, Sch Med, D-80336 Munich, Germany. RP Dollinger, M (reprint author), Univ Hosp Erlangen, Dept Phoniatr & Paediat Audiol, Sch Med, Bohlenpl 21, D-91054 Erlangen, Bavaria, Germany. EM Miriam.ct@gmx.de; Peter.Kummer@med.uni-muenchen.de; Burger.Martin@vdi.de; Joerg.Lohscheller@uk-erlangen.de; Ulrich.Eysholdt@uk-erlangen.de; Michael.Doellinger@uk-erlangen.de CR ALHO K, 1986, PSYCHOPHYSIOLOGY, V23, P613, DOI 10.1111/j.1469-8986.1986.tb00680.x Alonso-Bua B, 2006, INT J PSYCHOPHYSIOL, V59, P159, DOI 10.1016/j.ijpsycho.2005.03.020 Ceponiene R, 2004, PSYCHOPHYSIOLOGY, V41, P130, DOI 10.1111/j.1469-8986.2003.00138.x Ceponiene R, 2002, INT J PSYCHOPHYSIOL, V43, P199, DOI 10.1016/S0167-8760(01)00172-6 Cheour M, 2001, AUDIOL NEURO-OTOL, V6, P2, DOI 10.1159/000046804 Cheour M, 2000, CLIN NEUROPHYSIOL, V111, P4, DOI 10.1016/S1388-2457(99)00191-1 Cheour M, 1998, INT J PSYCHOPHYSIOL, V29, P217, DOI 10.1016/S0167-8760(98)00017-8 CHEOURLUHTANEN M, 1995, HEARING RES, V82, P53 Foster S D, 1990, Nurse Anesth, V1, P38 GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x Graben PB, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.051104 Holopainen IE, 1997, NEUROPEDIATRICS, V28, P253, DOI 10.1055/s-2007-973709 Jansson-Verkasalo E, 2003, NEUROSCI LETT, V338, P197, DOI 10.1016/S0304-3940(02)01405-2 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 Korpilahti P., 1995, SCAND J LOGOP PHONIA, V20, P131, DOI 10.3109/14015439509098740 KORPILAHTI P, 1994, ELECTROEN CLIN NEURO, V91, P256, DOI 10.1016/0013-4694(94)90189-9 Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 KRAUS N, 1995, EAR HEARING, V16, P19, DOI 10.1097/00003446-199502000-00003 Kujala T, 2006, CLIN NEUROPHYSIOL, V117, P885, DOI 10.1016/j.clinph.2006.01.002 Lachmann T, 2005, INT J PSYCHOPHYSIOL, V56, P105, DOI 10.1016/j.ijpsycho.2004.11.005 Lepisto T, 2006, CLIN NEUROPHYSIOL, V117, P2161, DOI 10.1016/j.clinph.2006.06.709 Lepisto T, 2004, CLIN NEUROPHYSIOL, V115, P620, DOI 10.1016/j.clinph.2003.10.020 Martin BA, 2003, EAR HEARING, V24, P463, DOI 10.1097/01.AUD.0000100306.20188.0E McArthur GM, 2005, BRAIN LANG, V94, P260, DOI 10.1016/j.bandl.2005.01.002 McGee T, 1997, EVOKED POTENTIAL, V104, P359, DOI 10.1016/S0168-5597(97)00024-5 MOCKS J, 1984, ELECTROEN CLIN NEURO, V57, P517 Molholm S, 2004, PSYCHOPHYSIOLOGY, V41, P385, DOI 10.1111/j.1469-8986.2004.00168.x MOLNAR M, 1988, BIOL PSYCHOL, V26, P339, DOI 10.1016/0301-0511(88)90028-2 Morr ML, 2002, EAR HEARING, V23, P118, DOI 10.1097/00003446-200204000-00005 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Naatanen R, 2005, PSYCHOPHYSIOLOGY, V42, P25, DOI 10.1111/j.1469-8986.2005.00256.x Naatanen R, 2004, CLIN NEUROPHYSIOL, V115, P140, DOI 10.1016/j.clinph.2003.04.001 Niedermeyer E, 1993, ELECTROENCEPHALOGRAP, V5th Novitski N, 2004, COGNITIVE BRAIN RES, V20, P26, DOI 10.1016/j.cogbrainres.2003.12.011 Pakarinen S, 2007, CLIN NEUROPHYSIOL, V118, P177, DOI 10.1016/j.clinph.2006.09.001 Pettigrew CM, 2004, EAR HEARING, V25, P284, DOI 10.1097/01.AUD.0000130800.88987.03 Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875 Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9 Ponton CW, 1997, EVOKED POTENTIAL, V104, P143, DOI 10.1016/S0168-5597(97)96104-9 Ceponiene R, 2002, CLIN NEUROPHYSIOL, V113, P870, DOI 10.1016/S1388-2457(02)00078-0 Ors Marianne, 2002, Eur J Paediatr Neurol, V6, P47, DOI 10.1053/ejpn.2001.0541 Shafer VL, 2000, EAR HEARING, V21, P242, DOI 10.1097/00003446-200006000-00008 Shestakova A, 2003, CLIN NEUROPHYSIOL, V114, P1507, DOI 10.1016/S1388-2457(03)00134-2 Sinkkonen J, 2000, AUDIOL NEURO-OTOL, V5, P235, DOI 10.1159/000013885 Sussman E, 2004, HEARING RES, V190, P128, DOI 10.1016/S0378-5955(04)00016-4 Tremblay KL, 2003, EAR HEARING, V24, P225, DOI 10.1097/01.AUD.0000069229.84883.03 Tremblay KL, 2006, EAR HEARING, V27, P93, DOI 10.1097/01.aud.0000202288.21315.bd Uwer R, 2002, DEV MED CHILD NEUROL, V44, P527 Zeftawi MS, 2005, HEARING RES, V210, P24, DOI 10.1016/j.heares.2005.06.012 NR 49 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN 20 PY 2009 VL 247 IS 2 BP 128 EP 136 DI 10.1016/j.heares.2008.11.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 412GZ UT WOS:000263714500005 PM 19071204 ER PT J AU Abaamrane, L Raffin, F Gal, M Avan, P Sendowski, I AF Abaamrane, L. Raffin, F. Gal, M. Avan, P. Sendowski, I. TI Long-term administration of magnesium after acoustic trauma caused by gunshot noise in guinea pigs SO HEARING RESEARCH LA English DT Article DE Acoustic trauma; Guinea pig; Impulse noise; Magnesium; Methylprednisolone; NIHL ID INDUCED HEARING-LOSS; PRODUCT OTOACOUSTIC EMISSIONS; GLUCOCORTICOID-RECEPTORS; THERAPEUTIC-EFFICACY; INNER-EAR; EXPOSURE; COCHLEA; MECHANISMS; SYSTEM; REPAIR AB In a previous study we observed that a 7-day post-trauma magnesium treatment significantly reduced auditory threshold shifts measured 7 days after gunshot noise exposure. However this improvement was only temporary, suggesting that it could be potentially beneficial to prolong this treatment. The aim of the present study was to evaluate the efficacy of a long-term (I month) magnesium treatment after an impulse noise trauma, in comparison with either a 7-day magnesium treatment, an administration of methylprednisolone (conventional treatment), or a placebo (NaCl). Guinea pigs were exposed to impulse noise (three blank gunshots, 170 dB SPL peak). They received one of the four treatments, I h after the noise exposure. Auditory function was explored by recording the auditory brainstem response (ABR) and measuring the distortion product otoacoustic emissions (DPOAE) over a 3-month recovery period after the gunshot exposure. The functional hearing study was supplemented by a histological analysis. The results showed that a 1-month treatment with magnesium was the most effective treatment in terms of hair cell preservation. The DPOAE confirmed this effectiveness. Methylprednisolone accelerated recovery but its final efficacy remained moderate. It is probable that magnesium acts on the later metabolic processes that occur after noise exposure. Multiple mechanisms could be involved: calcium antagonism, anti-ischaemic effect or NMDA channel blockage. Regardless of the specific mechanism, a 1-month treatment with magnesium clearly attenuates NIHL, and presents the advantage of being safe for use in humans. (c) 2008 Elsevier B.V. All rights reserved. C1 [Abaamrane, L.; Raffin, F.; Sendowski, I.] Ctr Rech Serv Sante Armees, F-38702 La Tronche, France. [Gal, M.] Hop Instruct Armees Laveran, Serv ORL, F-13998 Marseille, France. [Avan, P.] Fac Med, EA 2667, Lab Biophys Sensorielle, F-63001 Clermont Ferrand, France. RP Sendowski, I (reprint author), Ctr Rech Serv Sante Armees, 24 Ave Maquis Gresivaudan,BP 87, F-38702 La Tronche, France. EM Labaamrane@crssa.net; Fraffin@crssa.net; metmgal@hotmail.com; Paul.avan@u-clermont.fr; isendowski@crssa.net FU French army health service [RC2005-21] FX The authors thank Dr. J. Viret for his valuable advice. This study was supported by the French army health service (contract no. RC2005-21). CR AVAN P, 2001, NOISE INDUCED HEARIN, P411 Bede O, 2008, INFLAMM RES, V57, P279, DOI 10.1007/s00011-007-7077-3 Bohne BA, 1999, HEARING RES, V134, P163, DOI 10.1016/S0378-5955(99)00082-9 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 Canlon B, 1988, Scand Audiol Suppl, V27, P1 Canlon B, 2007, HEARING RES, V226, P61, DOI 10.1016/j.heares.2006.05.009 Cevette Michael J, 2003, J Am Acad Audiol, V14, P202 Dubray C, 1997, NEUROREPORT, V8, P1383, DOI 10.1097/00001756-199704140-00013 Emmerich E, 2000, EUR ARCH OTO-RHINO-L, V257, P128, DOI 10.1007/s004050050208 Erichsen S, 1996, ACTA OTO-LARYNGOL, V116, P721, DOI 10.3109/00016489609137913 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Haupt H, 2003, ORL J OTO-RHINO-LARY, V65, P134, DOI 10.1159/000072250 Haupt H, 2002, MAGNESIUM RES, V15, P17 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 HENDERSON D, 1994, HEARING RES, V76, P101, DOI 10.1016/0378-5955(94)90092-2 Hirose Y, 2007, NEUROSCI LETT, V413, P63, DOI 10.1016/j.neulet.2006.11.029 HU B, 2002, HEARING RES, V113, P198 Kannan K, 2000, PATHOPHYSIOLOGY, V7, P153, DOI DOI 10.1016/S0928-4680(00)00053-5 KOPKE RD, 2005, HEARING HLTH, V21, P26 Le Prell CG, 2007, FREE RADICAL BIO MED, V42, P1454, DOI 10.1016/j.freeradbiomed.2007.02.008 Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006 Makara GB, 2001, PROG NEUROBIOL, V65, P367, DOI 10.1016/S0301-0082(01)00012-0 MICHAELIS CE, 2003, HEARING RES, V189, P58 Nelson DI, 2005, AM J IND MED, V48, P446, DOI 10.1002/aijm.20223 NOWAK L, 1984, NATURE, V307, P463 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X Ravishankar S, 2001, BRAIN RES, V901, P23, DOI 10.1016/S0006-8993(01)02109-6 Scheibe F, 2001, NOISE HLTH, V3, P79 Scheibe F, 2002, MAGNESIUM RES, V15, P27 Sendowski I, 2006, ACTA OTO-LARYNGOL, V126, P122, DOI 10.1080/00016480500312547 Sendowski I, 2006, HEARING RES, V221, P119, DOI 10.1016/j.heares.2006.08.010 SENDOWSKI L, 2006, MAGNESIUM RES, V19, P1 Sharikabad MN, 2001, AM J PHYSIOL-HEART C, V280, pH344 Tan CT, 2001, HEARING RES, V161, P72, DOI 10.1016/S0378-5955(01)00359-8 TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 NR 39 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN 20 PY 2009 VL 247 IS 2 BP 137 EP 145 DI 10.1016/j.heares.2008.11.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 412GZ UT WOS:000263714500006 PM 19084059 ER PT J AU Holmstrom, L Kim, S McNames, J Portfors, C AF Holmstrom, Lars Kim, Sunghan McNames, James Portfors, Christine TI Stimulus design for auditory neuroethology using state space modeling and the extended Kalman smoother SO HEARING RESEARCH LA English DT Article DE Stimulus design; Extended Kalman filter; Frequency tracking; Neuroethology; Vocalization ID FILTER FREQUENCY TRACKER; TEMPORAL RECEPTIVE-FIELD; MISTUNED COMPLEX TONES; WHITE-CROWNED SPARROW; INFERIOR COLLICULUS; REVERSE-CORRELATION; MOUSTACHED BAT; NATURAL SOUNDS; PHASE VOCODER; NERVE FIBERS AB A new method for designing vocalization based stimuli for experiments in auditory neurophysiology is described. This analysis-synthesis technique leverages a state space statistical signal model and the extended Kalman smoother for tracking the frequency, amplitude, and phase information of harmonically related components in recorded vocalizations. Using the same state space model, these parameters can then be used to synthesize the vocalizations and random or deterministic variants of the vocalizations. This method is shown to outperform short-time Fourier transform based frequency tracking methods in both noisy and noise-free synthetic test signals. It is further shown to accurately track recorded hummingbird, human, and bat vocalizations while removing recording artifacts such as noise, echo, and digital aliasing in the synthesis phase. (c) 2008 Elsevier B.V. All rights reserved. C1 [Holmstrom, Lars; Kim, Sunghan; McNames, James] Portland State Univ, Biomed Signal Proc Lab, Portland, OR 97207 USA. [Holmstrom, Lars] Portland State Univ, Dept Syst Sci, Portland, OR 97207 USA. [Kim, Sunghan; McNames, James] Portland State Univ, Coll Engn & Comp Sci, Portland, OR 97207 USA. [Portfors, Christine] Washington State Univ, Auditory Neurophysiol Lab, Vancouver, WA 98686 USA. RP Holmstrom, L (reprint author), Portland State Univ, Biomed Signal Proc Lab, POB 751, Portland, OR 97207 USA. EM larsh@pdx.edu; sunghan@pdx.edu; mcnames@pdx.edu; portfors@vancouver.wsu.edu FU NSF [IOS-0620560] FX This work supported by NSF IOS-0620560. CR AERTSEN AMHJ, 1981, BIOL CYBERN, V42, P133, DOI 10.1007/BF00336731 Bittanti S, 2000, IEEE T AUTOMAT CONTR, V45, P1718, DOI 10.1109/9.880631 BRYSON AE, 1963, 63119 TDR AER SYS DI CROCHIERE RE, 1980, IEEE T ACOUST SPEECH, V28, P99, DOI 10.1109/TASSP.1980.1163353 DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704 DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P897, DOI 10.1121/1.390599 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 DELGUTTE B, 1980, J ACOUST SOC AM, V68, P843, DOI 10.1121/1.384824 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P887, DOI 10.1121/1.390598 DiMattina C, 2006, J NEUROPHYSIOL, V95, P1244, DOI 10.1152/jn.00818.2005 Doupe AJ, 1997, J NEUROSCI, V17, P1147 Dubois C, 2007, IEEE T AUDIO SPEECH, V15, P1283, DOI 10.1109/TASL.2007.894522 EGGERMONT JJ, 1983, HEARING RES, V10, P191, DOI 10.1016/0378-5955(83)90053-9 EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R Ehret G, 2002, P NATL ACAD SCI USA, V99, P479, DOI 10.1073/pnas.012361999 Escabi MA, 2003, BIOL CYBERN, V89, P350, DOI 10.1007/S00422-003-0440-8 Fischler E, 2006, SIGNAL PROCESS, V86, P3481, DOI 10.1016/j.sigpro.2006.06.001 FLANAGAN JL, 1966, AT&T TECH J, V45, P1493 HAYES MH, 1980, IEEE T ACOUST SPEECH, V28, P672, DOI 10.1109/TASSP.1980.1163463 HOLMSTROM L, 2007, J NEUROPHYSIOL JAMES B, 1994, IEEE T SIGNAL PROCES, V42, P1366, DOI 10.1109/78.286953 Kalman R. E., 1960, T ASME D, V82, P35, DOI DOI 10.1115/1.3662552 KESHNER MS, 1982, P IEEE, V70, P212, DOI 10.1109/PROC.1982.12282 Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183 LAROCHE J, 1993, APPL SIGN PROC AUD A, P169 LaScala BF, 1996, IEEE T SIGNAL PROCES, V44, P739, DOI 10.1109/78.489052 LaScala BF, 1996, IEEE T SIGNAL PROCES, V44, P431, DOI 10.1109/78.485940 LASCALA BF, 1995, MATH CONTROL SIGNAL, V8, P1 LYZENGA J, 1995, J ACOUST SOC AM, V98, P1943, DOI 10.1121/1.413314 Manolakis D.G., 2005, STAT ADAPTIVE SIGNAL MARGOLIASH D, 1983, J NEUROSCI, V3, P1039 MARGOLIASH D, 1986, J NEUROSCI, V6, P1643 Ohlemiller K., 1994, AUDIT NEUROSCI, V1, P19 PARKER PJ, 1990, SIGNAL PROCESS, V20, P127, DOI 10.1016/0165-1684(90)90124-H POLLAK GD, 1977, J NEUROPHYSIOL, V40, P926 Portfors CV, 2001, JARO, V2, P104, DOI 10.1007/s101620010057 Portfors CV, 2002, HEARING RES, V168, P131, DOI 10.1016/S0378-5955(02)00376-3 Portfors CV, 1999, J NEUROPHYSIOL, V82, P1326 PORTNOFF MR, 1976, IEEE T ACOUST SPEECH, V24, P243, DOI 10.1109/TASSP.1976.1162810 PORTNOFF MR, 1981, IEEE T ACOUST SPEECH, V29 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 Sen K, 2001, J NEUROPHYSIOL, V86, P1445 Sinex DG, 2003, HEARING RES, V182, P130, DOI 10.1016/S0378-5955(03)00189-8 Sinex DG, 2002, HEARING RES, V168, P150, DOI 10.1016/S0378-5955(02)00366-0 SUGA N, 1992, PHILOS T ROY SOC B, V336, P423, DOI 10.1098/rstb.1992.0078 SUGA N, 1976, SCIENCE, V194, P542, DOI 10.1126/science.973140 SUGA N, 1979, SCIENCE, V203, P270, DOI 10.1126/science.760193 Theunissen FE, 1998, J NEUROSCI, V18, P3786 Theunissen FE, 2004, ANN NY ACAD SCI, V1016, P187, DOI 10.1196/annals.1298.020 Theunissen FE, 2000, J NEUROSCI, V20, P2315 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 WHITE LB, 1993, IEEE T AUTOMAT CONTR, V38, P367, DOI 10.1109/9.250495 Young ED, 2005, J NEUROPHYSIOL, V94, P4441, DOI 10.1152/jn.00261.2005 NR 54 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2009 VL 247 IS 1 BP 1 EP 16 DI 10.1016/j.heares.2008.09.012 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 399CI UT WOS:000262777600001 PM 18977287 ER PT J AU Kawamoto, K Izumikawa, M Beyer, LA Atkin, GM Raphael, Y AF Kawamoto, Kohei Izumikawa, Masahiko Beyer, Lisa A. Atkin, Graham M. Raphael, Yehoash TI Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity SO HEARING RESEARCH LA English DT Article DE Balance; Cochlea; Mouse; Hair cell; Regeneration; Vestibular; Gentamicin ID CHINCHILLA CRISTA-AMPULLARIS; SCANNING ELECTRON-MICROSCOPY; MATH1 GENE-TRANSFER; INNER-EAR; POSTNATAL-DEVELOPMENT; BASILAR PAPILLA; EPITHELIUM; PROLIFERATION; RECOVERY; CHICK AB Whereas most epithelial tissues turn-over and regenerate after a traumatic lesion, this restorative ability is diminished in the sensory epithelia of the inner ear; it is absent in the cochlea and exists only in a limited capacity in the vestibular epithelium. The extent of regeneration in vestibular hair cells has been characterized for several mammalian species including guinea pig, rat, and chinchilla, but not yet in mouse. As the fundamental model species for investigating hereditary disease, the mouse can be studied using a wide variety of genetic and molecular tools. To design a mouse model for vestibular hair cell regeneration research, an aminoglycoside-induced method of complete hair cell elimination was developed in our lab and applied to the murine utricle. Loss of utricular hair cells was observed using scanning electron microscopy, and corroborated by a loss of fluorescent signal in utricles from transgenic mice with GFP-positive hair cells. Regenerative capability was characterized at several time points up to six months following insult. Using scanning electron microscopy, we observed that as early as two weeks after insult, a few immature hair cells, demonstrating the characteristic immature morphology indicative of regeneration, could be seen in the utricle. As time progressed, larger numbers of immature hair cells could be seen along with some mature cells resembling surface morphology of type II hair cells. By six months post-lesion, numerous regenerated hair cells were present in the utricle, however, neither their number nor their appearance was normal. A BrdU assay suggested that at least some of the regeneration of mouse vestibular hair cells involved mitosis. Our results demonstrate that the vestibular sensory epithelium in mice can spontaneously regenerate, elucidate the time course of this process, and identify involvement of mitosis in some cases. These data establish a road map of the murine vestibular regenerative process, which can be used for elucidating the molecular events that govern this process. (c) 2008 Published by Elsevier B.V. C1 [Izumikawa, Masahiko; Beyer, Lisa A.; Atkin, Graham M.; Raphael, Yehoash] Univ Michigan, Dept Otolaryngol Head & Neck Surg, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Kawamoto, Kohei; Izumikawa, Masahiko] Kansai Med Univ, Dept Otolaryngol, Moriguchi, Osaka 5708506, Japan. RP Raphael, Y (reprint author), Univ Michigan, Dept Otolaryngol Head & Neck Surg, Kresge Hearing Res Inst, MSRB 3,Rm 9301,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM yoash@umich.edu FU Kansai Medical University; NIH/NIDCD [R01-DC01634, R01-DC05401, R01-DC03685, P30-DC05188] FX We thank Jian Zuo for the GFP knock-in mice, Anna Lysakowski for helpful comments and Donald Swiderski for assistance. Work supported by the A. Alfred Taubman Medical Research Institute, the Berte and Alan Hirschfield Foundation, the R. Jamison and Betty Williams Professorship, a Research Grant from Kansai Medical University, and NIH/NIDCD Grants R01-DC01634, R01-DC05401, R01-DC03685 and P30-DC05188. CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 Cotanche DA, 1995, HEARING RES, V91, P148, DOI 10.1016/0378-5955(95)00185-9 DAVIES S, 1987, J MICROSC-OXFORD, V147, P89 Denman-Johnson K, 1999, J NEUROCYTOL, V28, P821, DOI 10.1023/A:1007061819934 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Kawamoto K, 2003, J NEUROSCI, V23, P4395 Kevetter GA, 2005, J NEUROSCI RES, V80, P279, DOI 10.1002/jnr.20451 Kopke RD, 2001, P NATL ACAD SCI USA, V98, P5886, DOI 10.1073/pnas.101120898 Leonard RB, 2007, NEUROSCIENCE, V147, P794, DOI 10.1016/j.neuroscience.2007.05.001 Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 Lopez I, 1998, OTOLARYNG HEAD NECK, V119, P255, DOI 10.1016/S0194-5998(98)70060-9 Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7 MBIENE JP, 1984, ANAT EMBRYOL, V170, P229, DOI 10.1007/BF00318726 MEITELES LZ, 1994, HEARING RES, V79, P26, DOI 10.1016/0378-5955(94)90124-4 MEITELES LZ, 1994, ANN OTO RHINOL LARYN, V103, P149 Meyers JR, 2007, J NEUROSCI, V27, P4313, DOI 10.1523/JNEUROSCI.5023-06.2007 NIEMIEC AJ, 1994, HEARING RES, V79, P1, DOI 10.1016/0378-5955(94)90122-8 Oesterle EC, 2008, JARO-J ASSOC RES OTO, V9, P65, DOI 10.1007/s10162-007-0106-7 Oesterle EC, 1997, J COMP NEUROL, V380, P262, DOI 10.1002/(SICI)1096-9861(19970407)380:2<262::AID-CNE8>3.0.CO;2-1 OSBORNE MP, 1991, SCANNING MICROSCOPY, V5, P555 Roberson DW, 1996, AUDIT NEUROSCI, V2, P195 Rusch A, 1998, J NEUROSCI, V18, P7487 SAUNDERS JC, 1992, EXP NEUROL, V115, P13, DOI 10.1016/0014-4886(92)90213-A SHER AE, 1971, ACTA OTO-LARYNGOL, P1 Sobkowicz HM, 1997, INT J DEV NEUROSCI, V15, P463, DOI 10.1016/S0736-5748(96)00104-9 Sobkowicz HM, 1996, ACTA OTO-LARYNGOL, V116, P257, DOI 10.3109/00016489609137836 Staecker H, 2007, OTOL NEUROTOL, V28, P223, DOI 10.1097/MAO.0b013e31802b3225 Steyger PS, 1997, INT J DEV NEUROSCI, V15, P417, DOI 10.1016/S0736-5748(96)00101-3 Stone JS, 2000, J COMP NEUROL, V417, P1, DOI 10.1002/(SICI)1096-9861(20000131)417:1<1::AID-CNE1>3.0.CO;2-E Stone JS, 1998, CURR OPIN NEUROL, V11, P17, DOI 10.1097/00019052-199802000-00004 TANYERI H, 1995, HEARING RES, V89, P194, DOI 10.1016/0378-5955(95)00137-7 Wilkins HR, 1999, J NEUROBIOL, V39, P527, DOI 10.1002/(SICI)1097-4695(19990615)39:4<527::AID-NEU6>3.0.CO;2-K Zuo J, 1999, P NATL ACAD SCI USA, V96, P14100, DOI 10.1073/pnas.96.24.14100 NR 34 TC 45 Z9 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2009 VL 247 IS 1 BP 17 EP 26 DI 10.1016/j.heares.2008.08.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 399CI UT WOS:000262777600002 PM 18809482 ER PT J AU Wittekindt, A Gaese, BH Kossl, M AF Wittekindt, Anna Gaese, Bernhard H. Koessl, Manfred TI Influence of contralateral acoustic stimulation on the quadratic distortion product f2-f1 in humans SO HEARING RESEARCH LA English DT Article DE DPOAE; Medial olivocochlear efferents (MOC); Cochlear mechanics; Difference tone; Cochlear amplifier ID COCHLEAR MICROMECHANICAL PROPERTIES; CROSSED OLIVOCOCHLEAR BUNDLE; EAR MUSCLE-REFLEX; OUTER HAIR CELL; OTOACOUSTIC EMISSIONS; MIDDLE-EAR; EFFERENT SYSTEM; SOUND STIMULATION; GUINEA-PIG; LOW-LEVEL AB Contralateral acoustic stimulation is known to activate the medial olivocochlear system which is capable of modulating the amplification process in the outer hair cells of the inner ear. We investigated the influence of different levels of contralateral broadband noise on distortion product otoacoustic emissions in humans, with a particular focus on the quadratic distortion product at f2-f1. The primary stimulus frequency ratio was optimized to yield maximum f2-f1 level. While the cubic distortion product at 2f1-f2 was not significantly affected during contralateral noise stimulation, the level of f2-f1 was reduced by up to 4.8 dB on average (maximum: 10.1 dB), with significant suppression occurring for noise levels as low as 40 dB SPL. In addition, a significant phase lead was observed. Quadratic distortions are minimal at a symmetrical position of the transfer function of the cochlear amplifier. The observed sensitivity of f2-f1 to contralateral noise stimulation could hence be resulting from a shift of the operating state and/or a change in the gain of the cochlear amplification due to contralateral induced efferent modulation of the outer hair cell properties. (c) 2008 Elsevier B.V. All rights reserved. C1 [Wittekindt, Anna; Gaese, Bernhard H.; Koessl, Manfred] Goethe Univ Frankfurt, Inst Zellbiol & Neurowissensch, D-60323 Frankfurt, Germany. RP Wittekindt, A (reprint author), Goethe Univ Frankfurt, Inst Zellbiol & Neurowissensch, Siesmayerstr 70A, D-60323 Frankfurt, Germany. EM Anna.Wittekindt@bio.uni-frankfurt.de; Gaese@bio.uni-frankfurt.de; Koessl@bio.uni-frankfurt.de CR Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006 Avan P, 2000, HEARING RES, V140, P189, DOI 10.1016/S0378-5955(99)00201-4 Bian L, 2002, J ACOUST SOC AM, V112, P198, DOI 10.1121/1.1488943 Bian L, 2004, J ACOUST SOC AM, V116, P3559, DOI 10.1121/1.1819501 BROWN AM, 1988, HEARING RES, V34, P27, DOI 10.1016/0378-5955(88)90048-2 Buki B, 2000, BRAIN RES, V852, P140, DOI 10.1016/S0006-8993(99)02227-1 Chang KW, 1997, J ACOUST SOC AM, V102, P1719, DOI 10.1121/1.420082 CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E Cooper NP, 2003, J PHYSIOL-LONDON, V548, P307, DOI 10.1113/jphysiol.2003.039081 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 Frank G, 1997, HEARING RES, V113, P57, DOI 10.1016/S0378-5955(97)00131-7 Frolenkov GI, 2006, J PHYSIOL-LONDON, V576, P43, DOI 10.1113/jphysiol.2006.114975 Gelfand SA., 1984, ACOUSTIC REFLEX, P137 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 Goodman SS, 2006, JARO-J ASSOC RES OTO, V7, P125, DOI 10.1007/s10162-006-0028-9 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 Guinan Jr J.J., 1996, COCHLEA, P435 HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 Kim DO, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P506, DOI 10.1142/9789812704931_0069 KIRK DL, 1993, HEARING RES, V67, P20, DOI 10.1016/0378-5955(93)90228-S KUJAWA SG, 1995, HEARING RES, V85, P142, DOI 10.1016/0378-5955(95)00041-2 KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 Lisowska G, 2002, ACTA OTO-LARYNGOL, V122, P613, DOI 10.1080/000164802320396286 Lukashkin AN, 2002, J ACOUST SOC AM, V111, P2740, DOI 10.1121/1.1479151 Lukashkin AN, 1999, J ACOUST SOC AM, V106, P2661, DOI 10.1121/1.428096 Lukashkin AN, 2002, J ACOUST SOC AM, V112, P1561, DOI 10.1121/1.1502903 Lukashkin AN, 2005, HEARING RES, V203, P45, DOI 10.1016/j.heares.2004.11.011 Maison S, 2000, HEARING RES, V140, P111, DOI 10.1016/S0378-5955(99)00196-3 Meinke DK, 2005, HEARING RES, V208, P89, DOI 10.1016/j.heares.2005.05.004 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 Murugasu E, 1996, J NEUROSCI, V16, P325 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 Puria S, 2003, J ACOUST SOC AM, V113, P2773, DOI 10.1121/1.1564018 Relkin EM, 2005, JARO-J ASSOC RES OTO, V6, P119, DOI 10.1007/s10162-004-5047-9 Robles L, 2001, PHYSIOL REV, V81, P1305 Russell Ian J., 2008, V30, P343 Sasaki N, 2000, TOHOKU J EXP MED, V191, P71, DOI 10.1620/tjem.191.71 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 Smith JL, 2008, HEARING RES, V235, P47, DOI 10.1016/j.heares.2007.09.010 Sun XM, 2008, HEARING RES, V237, P66, DOI 10.1016/j.heares.2007.12.004 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WITTEKINDT A, 2008, CONCEPTS CHALLENGES NR 50 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2009 VL 247 IS 1 BP 27 EP 33 DI 10.1016/j.heares.2008.09.011 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 399CI UT WOS:000262777600003 PM 18951964 ER PT J AU Sepmeijer, JW Klis, SFL AF Sepmeijer, Jan Willem Klis, Sjaak F. L. TI Distribution of platinum in blood and perilymph in relation to cisplatin induced ototoxicity in the guinea pig SO HEARING RESEARCH LA English DT Article DE Cisplatin; Ototoxicity; Perilymph; Plasma; Compound action potential ID CEREBROSPINAL-FLUID; HEARING-LOSS; PHARMACOKINETICS; PARAMETERS; INFUSIONS; RECOVERY; PLASMA AB Cisplatin, a platinum-based chemotherapeutic drug, has severe dose-limiting side effects which include ototoxicity. In this study, we investigate the ototoxic effects of cisplatin in relation to the concentration of platinum in whole blood, plasma and perilymph. Guinea pigs were equipped with a permanent round window electrode for electrocochleography and treated with cisplatin on a daily basis (1.5 mg/kg/day ip) until a 40 dB shift of the compound action potential (CAP) threshold (3 mu V isoresponse criterion) at 8 kHz stimulation occurred. When this criterion was reached blood and perilymph was sampled and the total platinum concentration was measured. The number of days necessary to reach criterion threshold shift varied from 6 to 22. At this time, platinum concentration was found to be slightly more than 10 times higher in whole blood and plasma than in perilymph. While a significant correlation became apparent between threshold shift and total platinum concentration in whole blood and plasma, this was not the case for threshold shift and platinum concentration in perilymph. (c) 2008 Elsevier B.V. All rights reserved. C1 [Sepmeijer, Jan Willem; Klis, Sjaak F. L.] Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Otorhinolaryngol, Hearing Res Lab, NL-3508 GA Utrecht, Netherlands. RP Klis, SFL (reprint author), Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Otorhinolaryngol, Hearing Res Lab, Room G 02-531,POB 85500, NL-3508 GA Utrecht, Netherlands. EM j.w.sepmeijer@umcutrecht.nl; s.klis@umcutrecht.nl CR ANDERSSON A, 1994, J CHROMATOGR B, V652, P203, DOI 10.1016/0378-4347(93)E0403-D BLAKLEY BW, 1994, ARCH OTOLARYNGOL, V120, P541 Cappaert NLM, 2005, HEARING RES, V203, P80, DOI 10.1016/j.heares.2004.10.012 de Jongh FE, 2001, J CLIN ONCOL, V19, P3733 DESOIZE B, 1991, BIOMED PHARMACOTHER, V45, P203, DOI 10.1016/0753-3322(91)90109-7 Ekborn A, 2003, CANCER CHEMOTH PHARM, V51, P36, DOI 10.1007/s00280-002-0540-5 Fay R. R., 1988, HEARING VERTEBRATES GAMELIN E, 1995, CANCER CHEMOTH PHARM, V37, P97 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7 Lanvers-Kaminsky C, 2006, PEDIATR BLOOD CANCER, V47, P183, DOI 10.1002/pbc.20673 LAURELL G, 1990, LARYNGOSCOPE, V100, P724 LAURELL G, 1995, CANCER CHEMOTH PHARM, V36, P83 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 O'Leary SJ, 2001, HEARING RES, V154, P135, DOI 10.1016/S0378-5955(01)00232-5 PRESTAYKO AW, 1979, CANCER TREAT REV, V6, P17, DOI 10.1016/S0305-7372(79)80057-2 Salas SB, 2006, THER DRUG MONIT, V28, P532, DOI 10.1097/00007691-200608000-00008 Salt AN, 2003, HEARING RES, V182, P24, DOI 10.1016/S0378-5955(03)00137-0 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Shinomori Y, 2001, ANN OTO RHINOL LARYN, V110, P91 Stengs CHM, 1998, HEARING RES, V124, P99, DOI 10.1016/S0378-5955(98)00129-4 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 TOTHILL P, 1992, EUR J CANCER, V28A, P1358, DOI 10.1016/0959-8049(92)90519-8 VERMORKEN JB, 1986, CLIN PHARMACOL THER, V39, P136 VERMORKEN JB, 1984, CANCER TREAT REP, V68, P505 NR 25 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2009 VL 247 IS 1 BP 34 EP 39 DI 10.1016/j.heares.2008.10.001 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 399CI UT WOS:000262777600004 PM 18955125 ER PT J AU Feng, YM Yin, SK Wang, J AF Feng, Yanmei Yin, Shankai Wang, Jian TI Cortical responses to amplitude modulation in guinea pigs and the effects of general anesthesia by pentobarbital SO HEARING RESEARCH LA English DT Article DE Auditory cortex; Envelope following response; Evoked potential; Guinea pigs; Temporal resolution ID ENVELOPE-FOLLOWING RESPONSE; PRIMARY AUDITORY-CORTEX; SINGLE-UNIT ACTIVITY; INFERIOR COLLICULUS; FREQUENCY REGION; THALAMOCORTICAL NEURONS; POSTSYNAPTIC POTENTIALS; POTASSIUM CONDUCTANCE; DETECTION THRESHOLDS; SINUSOIDAL CARRIERS AB Test of amplitude modulation detection threshold against modulation frequency (Mf) is one of the major measures in behavior studies for exploring temporal acuity of the auditory system. In this experiment, we recorded cortical responses from implanted electrodes in guinea pigs to generate temporal modulation transfer functions (TMTFs) by calculating the response amplitude changes across a range of Mfs in order to evaluate the temporal resolution in different frequency regions. A -3 dB cutoff frequency was measured from each TMTFs and was used as a single-value index for temporal resolution. We found that the temporal resolution, as represented by this index, did not change significantly with the carrier frequency. This result suggested that the temporal resolution of the auditory system is not simply determined by the bandwidth of peripheral auditory channels. We further evaluated the effects of the general anesthesia by pentobarbital on temporal acuity and found that, in addition to the suppressions of response amplitude, this anesthesia significantly decreases the -3 dB cutoff frequencies of TMTF. (c) 2008 Elsevier B.V. All rights reserved. C1 [Feng, Yanmei; Yin, Shankai; Wang, Jian] Shanghai Jiao Tong Univ, Otolaryngol Inst, Affiliated Peoples Hosp 6, Shanghai 200233, Peoples R China. [Wang, Jian] Dalhousie Univ, Sch Human Commun Disorders, Halifax, NS B3H 1R2, Canada. RP Yin, SK (reprint author), Shanghai Jiao Tong Univ, Otolaryngol Inst, Affiliated Peoples Hosp 6, Shanghai 200233, Peoples R China. EM yinshankai@china.com; jian.wang@dal.ca FU The Natural Sciences & Engineering Research Council of Canada [250088-02]; National Natural Science Foundation of China [30271410/C030310] FX This study was supported by a grant from The Natural Sciences & Engineering Research Council of Canada 250088-02 and a grant from The National Natural Science Foundation of China 30271410/CO30310. CR BARKER JL, 1978, J PHYSIOL-LONDON, V280, P355 Belelli D, 1999, NEUROCHEM INT, V34, P447, DOI 10.1016/S0197-0186(99)00037-6 BIESER A, 1996, EXP BRAIN RES, V108, P223 Bieser A, 1996, EXP BRAIN RES, V108, P273 BLAUSTEI.MP, 1968, J GEN PHYSIOL, V51, P293, DOI 10.1085/jgp.51.3.293 Cheung SW, 2001, HEARING RES, V156, P115, DOI 10.1016/S0378-5955(01)00272-6 Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 deCharms RC, 1998, SCIENCE, V280, P1439, DOI 10.1126/science.280.5368.1439 DOLPHIN WF, 1994, J ACOUST SOC AM, V96, P2225, DOI 10.1121/1.411382 DOLPHIN WF, 1992, HEARING RES, V58, P70, DOI 10.1016/0378-5955(92)90010-K EDDINS DA, 1993, J ACOUST SOC AM, V93, P470, DOI 10.1121/1.405627 Eddins DA, 1999, J ACOUST SOC AM, V105, P829, DOI 10.1121/1.426272 EDDINS DA, 1992, J ACOUST SOC AM, V91, P1069, DOI 10.1121/1.402633 Eggermont JJ, 2002, J NEUROPHYSIOL, V87, P305 EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227 Feng Y, 2007, ACTA OTO-LARYNGOL, V127, P143, DOI 10.1080/00016480600740613 FFRENCHMULLEN JMH, 1993, J NEUROSCI, V13, P3211 Finneran JJ, 2007, J COMP PHYSIOL A, V193, P835, DOI 10.1007/s00359-007-0238-6 Fischer W, 2001, N-S ARCH PHARMACOL, V363, P182, DOI 10.1007/s002100000341 FORMBY C, 1988, J ACOUST SOC AM, V84, P545, DOI 10.1121/1.396831 Herdman AT, 2002, BRAIN TOPOGR, V15, P69, DOI 10.1023/A:1021470822922 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 KLUMP GM, 1991, HEARING RES, V52, P1, DOI 10.1016/0378-5955(91)90182-9 Kohlrausch A, 2000, J ACOUST SOC AM, V108, P723, DOI 10.1121/1.429605 KRNJEVIC K, 1992, GEN PHARMACOL, V23, P965, DOI 10.1016/0306-3623(92)90274-N KUWADA S, 1989, J NEUROPHYSIOL, V61, P269 KUWADA S, 1986, HEARING RES, V21, P179, DOI 10.1016/0378-5955(86)90038-9 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001 Lingamaneni R, 2003, BRIT J ANAESTH, V90, P199, DOI 10.1093/bja/aeg040 MATHERS DA, 1980, SCIENCE, V209, P507, DOI 10.1126/science.6248961 Mehta AK, 1999, BRAIN RES REV, V29, P196, DOI 10.1016/S0165-0173(98)00052-6 Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1093, DOI 10.1121/1.396054 NICOLL RA, 1975, NATURE, V258, P625, DOI 10.1038/258625a0 NICOLL RA, 1982, SCIENCE, V217, P1055, DOI 10.1126/science.7112112 OBEIRNE M, 1987, CAN J PHYSIOL PHARM, V65, P36 PICTON TW, 1987, J ACOUST SOC AM, V82, P165, DOI 10.1121/1.395560 PLACK CJ, 1990, J ACOUST SOC AM, V87, P2178, DOI 10.1121/1.399185 Purcell DW, 2004, J ACOUST SOC AM, V116, P3581, DOI 10.1121/1.1798354 REES A, 1986, HEARING RES, V23, P123, DOI 10.1016/0378-5955(86)90009-2 Ries CR, 1999, J NEUROPHYSIOL, V81, P1802 Ries CR, 1999, J NEUROPHYSIOL, V81, P1795 Rodenburg M., 1977, PSYCHOPHYSICS PHYSL, P429 Palombi PS, 2001, HEARING RES, V153, P174, DOI 10.1016/S0378-5955(00)00264-1 SHAILER MJ, 1985, J ACOUST SOC AM, V77, P635, DOI 10.1121/1.391881 STAPELLS DR, 1984, EAR HEARING, V5, P105 Stellmack MA, 2005, J ACOUST SOC AM, V118, P2507, DOI 10.1121/1.2032057 Strickland EA, 1997, J ACOUST SOC AM, V102, P1799, DOI 10.1121/1.419617 SUGIYAMA K, 1992, BRAIN RES, V576, P97, DOI 10.1016/0006-8993(92)90613-E Supin AY, 1995, HEARING RES, V92, P38, DOI 10.1016/0378-5955(95)00194-8 Tennigkeit F, 1997, J NEUROPHYSIOL, V78, P591 TERHARDT E, 1974, ACUSTICA, V30, P201 TERHARDT E, 1968, ACUSTICA, V20, P215 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 Viemeister N.F., 1977, PSYCHOPHYSICS PHYSL, P419 Wan X, 2003, NEUROSCIENCE, V121, P947, DOI 10.1016/S0306-4522(03)00592-X Wang J, 2006, INT J AUDIOL, V45, P521, DOI 10.1080/14992020600803869 WEAKLY JN, 1969, J PHYSIOL-LONDON, V204, P63 WERZ MA, 1985, MOL PHARMACOL, V28, P269 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 61 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2009 VL 247 IS 1 BP 40 EP 46 DI 10.1016/j.heares.2008.10.004 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 399CI UT WOS:000262777600005 PM 18992800 ER PT J AU Jeng, FC Abbas, PJ Hu, N Miller, CA Nourski, KV Robinson, BK AF Jeng, Fuh-Cherng Abbas, Paul J. Hu, Ning Miller, Charles A. Nourski, Kirill V. Robinson, Barbara K. TI Effects of temporal properties on compound action potentials in response to amplitude-modulated electric pulse trains in guinea pigs SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Amplitude modulation; Compound action potential; Guinea pig ID AUDITORY-NERVE FIBERS; COCHLEAR IMPLANT USERS; BRAIN-STEM RESPONSE; MONOPHASIC STIMULATION; CAT; PATTERNS; RECORDINGS; MONOPOLAR; MODEL; RAT AB The electrically evoked compound action potential (ECAP) of the auditory nerve in response to amplitude-modulated pulse trains varies over time, but the response amplitudes are not linearly proportional to the level of stimulus pulses. At least two mechanisms could contribute to the deviations of the ECAP response pattern from that of the stimulus envelope. The first mechanism is time-invariant or stationary that reflects the non-linear growth of response amplitude with changes in stimulus level that is evident in the response to single pulses. This can be considered a time-invariant or stationary effect. The second mechanism is time-variant or non-stationary and reflects neural refractoriness and adaptation. The purpose of this study was to characterize the auditory nerve responses to amplitude-modulated pulse trains and also to evaluate the extent to which the stationary and non-stationary effects may contribute to those responses. ECAP amplitudes were predicted from single-pulse growth functions of the auditory nerve to account for time-invariant effects. Linear regression was performed on the measured vs. predicted ECAP amplitudes to quantify the discrepancies between the two datasets, thereby separating the influence of non-linear growth from time-varying effects on ECAP amplitudes. The results demonstrated a bandpass function of the modulated response amplitudes, with a low-cutoff modulation frequency at 300 Hz and a high-cutoff modulation frequency at 800 Hz, depending on the carrier pulse rate. The relative contribution of the temporal effects on ECAP amplitudes is greatest at low stimulus levels and low modulation depths. Published by Elsevier B.V. C1 [Jeng, Fuh-Cherng] Ohio Univ, Sch Hearing Speech & Language Sci, Athens, OH 45701 USA. [Jeng, Fuh-Cherng; Abbas, Paul J.; Hu, Ning; Miller, Charles A.; Nourski, Kirill V.; Robinson, Barbara K.] Univ Iowa, Dept Otolaryngol HNS, Dept Commun Sci & Disorders, Iowa City, IA 52242 USA. RP Jeng, FC (reprint author), Ohio Univ, Sch Hearing Speech & Language Sci, Athens, OH 45701 USA. EM jeng@ohio.edu CR ABBAS PJ, 1998, ASS RES OT ARO Brown CJ, 1996, J SPEECH HEAR RES, V39, P453 Cartee LA, 2000, HEARING RES, V146, P143, DOI 10.1016/S0378-5955(00)00109-X Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013 Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6 GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497 Haenggeli A, 1998, AUDIOLOGY, V37, P353 HALL RD, 1990, HEARING RES, V45, P123, DOI 10.1016/0378-5955(90)90188-U HARTMANN R, 1994, ACTA OTO-LARYNGOL, V114, P495, DOI 10.3109/00016489409126093 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 HARTMANN R, 1990, ACTA OTO-LARYNGOL, P128 Hay-McCutcheon M., 2005, J ACOUST SOC AM, V118, P11 HU N, 2008, ASS RES OT ARO JAVEL E, 1987, ANN OTO RHINOL LARYN, V96, P26 Jayel E., 1990, COCHLEAR IMPLANTS MO, P247 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 Litvak LM, 2003, J ACOUST SOC AM, V114, P2079, DOI 10.1121/1.1612493 Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 1999, HEARING RES, V135, P1, DOI 10.1016/S0378-5955(99)00081-7 Miller CA, 2001, JARO, V2, P216 Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Moxon E.C., 1971, THESIS MIT CAMBRIDGE Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 SCHMIDTCLAY KM, 2007, EAR HEARING, V28, P850 Shannon Robert V, 2002, Am J Audiol, V11, P124, DOI 10.1044/1059-0889(2002/013) SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 Wilson B., 1995, SPEECH PROCESSORS AU WILSON BS, 1994, SPEECH PROCESSORS AU Wilson BS, 1997, AM J OTOL, V18, pS30 Zhang F, 2007, JARO-J ASSOC RES OTO, V8, P356, DOI 10.1007/s10162-007-0086-7 ZHOU RZ, 1995, HEARING RES, V88, P98, DOI 10.1016/0378-5955(95)00105-D NR 35 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2009 VL 247 IS 1 BP 47 EP 59 DI 10.1016/j.heares.2008.10.007 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 399CI UT WOS:000262777600006 PM 19015019 ER PT J AU Shepherd, D Hautus, MJ AF Shepherd, Daniel Hautus, Michael J. TI Negative masking and the units problem in audition SO HEARING RESEARCH LA English DT Article DE Level discrimination; Negative masking; Difference threshold; The units problem in audition ID INTENSITY DISCRIMINATION; STOCHASTIC RESONANCE; WEBERS LAW; PSYCHOMETRIC FUNCTIONS; SEVERE DEPARTURE; SENSORY ANALYSIS; GAUSSIAN-NOISE; NEAR-MISS; INFORMATION; THRESHOLD AB Masking functions constructed from pedestal levels bracketing absolute threshold may exhibit negative masking, particularly when stimuli are defined in terms of amplitude (pressure). Three experimental conditions using 10-ms 1000-Hz tones in quiet, 1000-Hz tones embedded in continuous noise and 6500, Hz tones in quiet, yielded negative masking when amplitudes were used to define the stimulus, with the greatest amount of negative masking occurring with 6500-Hz tones. Two models were applied to the data: the transduction model, which assumes direct coupling, and the sensory analytical model, which assumes differential coupling. Maximum likelihood estimates were derived to indicate goodness-of-fit, and the Akaike information criterion and Bayesian information criterion were utilised to adjust for model complexity. Overall, both models effectively accounted for the data, though the sensory analytic model provided the best fits to the data and has the added quality of being based on underlying physiological processes. (c) 2008 Elsevier B.V. All rights reserved. C1 [Shepherd, Daniel; Hautus, Michael J.] Univ Auckland, Dept Psychol, Auckland, New Zealand. RP Shepherd, D (reprint author), Univ Auckland, Dept Psychol, Private Bag 92019, Auckland, New Zealand. EM daniel.shepherd@auckland.ac.nz; m.hautus@auckland.ac.nz RI Hautus, Michael/B-5077-2008 OI Hautus, Michael/0000-0003-2936-9023 FU University of Auckland's Research Committee FX This research was supported by a grant from the University of Auckland's Research Committee. CR AVAKYAN RV, 1963, SOV PHYS ACOUST, V8, P320 BENHAM SE, 2003, HEARING RES, V186, P91 Bibikov NG, 2002, HEARING RES, V173, P21, DOI 10.1016/S0378-5955(02)00456-2 CAMPBELL FW, 1968, J PHYSIOL-LONDON, V197, P551 CARLYON RP, 1986, J ACOUST SOC AM, V79, P461, DOI 10.1121/1.393533 CARLYON RP, 1984, J ACOUST SOC AM, V76, P1369, DOI 10.1121/1.391453 DAI H, 1998, J ACOUST SOC AM, V105, P2043 Doble CW, 2003, PSYCHOL REV, V110, P365, DOI 10.1037/0033-295X.110.2.365 DOUGLASS JK, 1993, NATURE, V365, P337, DOI 10.1038/365337a0 ENROTHCU.C, 1966, J PHYSIOL-LONDON, V187, P517 Fechner GT, 1860, ELEMENTE PSYCHOPHYSI FLORENTINE M, 1987, J ACOUST SOC AM, V81, P1528, DOI 10.1121/1.394505 FLORENTINE M, 1981, J ACOUST SOC AM, V70, P1646, DOI 10.1121/1.387219 Gammaitoni L, 1998, REV MOD PHYS, V70, P223, DOI 10.1103/RevModPhys.70.223 Green D. M., 1988, PROFILE ANAL GREEN DM, 1966, SIGNAL DETECTION THE GREEN DM, 1993, HUMAN PSYCHOPHYSICS GREEN DM, 1960, J ACOUST SOC AM, V32, P1189, DOI 10.1121/1.1907882 GREEN DM, 1979, J ACOUST SOC AM, V66, P1051, DOI 10.1121/1.383324 GREENWOOD DD, 1992, HEARING RES, V65, P1 GREGORY RL, 1955, NATURE, V176, P1272, DOI 10.1038/1761272a0 GROSSBERG S, 1983, BEHAV BRAIN SCI, V6, P625 HANNA TE, 1986, J ACOUST SOC AM, V80, P1335, DOI 10.1121/1.394385 Heil P, 2001, J NEUROSCI, V21, P7404 HOOD DC, 1978, VISUAL PSYCHOPHYSICS IRWIN RJ, 1989, Q J EXP PSYCHOL-A, V41, P655 JEFFRESS LA, 1979, J ACOUST SOC AM, V65, P1034, DOI 10.1121/1.382571 JESTEADT W, 1977, J ACOUST SOC AM, V61, P169, DOI 10.1121/1.381278 LAMING D, 1982, BRIT J MATH STAT PSY, V35, P129 LAMING D, 1985, PSYCHOL REV, V92, P462, DOI 10.1037/0033-295X.92.4.462 Laming D, 1986, SENSORY ANAL LAMING D, 1988, BEHAV BRAIN SCI, V11, P275 LASLEY DJ, 1979, VISION RES, V21, P273 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LONG GR, 1985, J ACOUST SOC AM, V78, P507, DOI 10.1121/1.392472 Lu ZL, 1999, J OPT SOC AM A, V16, P764, DOI 10.1364/JOSAA.16.000764 LUCE RD, 1974, J ACOUST SOC AM, V56, P1554, DOI 10.1121/1.1903479 Matsuoka AJ, 2000, HEARING RES, V149, P129, DOI 10.1016/S0378-5955(00)00173-8 MCGILL WJ, 1991, SIGNAL DETECTION MCGILL WJ, 1989, J MATH PSYCHOL, V33, P99, DOI 10.1016/0022-2496(89)90006-0 MCGILL WJ, 1968, PERCEPT PSYCHOPHYS, V4, P105, DOI 10.3758/BF03209518 MCGILL WJ, 1967, J MATH PSYCHOL, V4, P6 MILLER GA, 1947, J ACOUST SOC AM, V19, P609, DOI 10.1121/1.1916528 Morse RP, 1999, HEARING RES, V133, P120, DOI 10.1016/S0378-5955(99)00063-5 Moss F, 2004, CLIN NEUROPHYSIOL, V115, P267, DOI 10.1016/j.clinph.2003.09.014 Myung IJ, 2003, J MATH PSYCHOL, V47, P90, DOI 10.1016/S0022-2496(02)00028-7 Myung IJ, 2000, J MATH PSYCHOL, V44, P190, DOI 10.1006/jmps.1999.1283 NACHMIAS J, 1970, J OPT SOC AM, V60, P382, DOI 10.1364/JOSA.60.000382 Pitt MA, 2002, PSYCHOL REV, V109, P472, DOI 10.1037//0033-295X.109.3.472 RAAB DH, 1963, J ACOUST SOC AM, V35, P1942, DOI 10.1121/1.1918862 RAAB DH, 1963, J ACOUST SOC AM, V35, P1053, DOI 10.1121/1.1918653 RANEY JJ, 1989, J ACOUST SOC AM, V86, P954, DOI 10.1121/1.398730 RASHBASS C, 1970, J PHYSIOL-LONDON, V210, P165 Ries DT, 2007, HEARING RES, V228, P136, DOI 10.1016/j.heares.2007.01.027 RUSHTON WA, 1969, PROCESSING OPTICAL D SWETS JA, 1961, SCIENCE, V134, P168, DOI 10.1126/science.134.3473.168 TREISMAN M, 1969, PERCEPT PSYCHOPHYS, V6, P281, DOI 10.3758/BF03210099 VIEMEISTER NF, 1988, J ACOUST SOC AM, V84, P172, DOI 10.1121/1.396961 VOGTEN LLM, 1978, J ACOUST SOC AM, V63, P1509, DOI 10.1121/1.381845 WATSON CS, 1976, J ACOUST SOC AM, V59, P655, DOI 10.1121/1.380915 Zeng FG, 2000, BRAIN RES, V869, P251, DOI 10.1016/S0006-8993(00)02475-6 NR 61 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2009 VL 247 IS 1 BP 60 EP 70 DI 10.1016/j.heares.2008.10.008 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 399CI UT WOS:000262777600007 PM 19015018 ER PT J AU Riecke, L Mendelsohn, D Schreiner, C Formisano, E AF Riecke, Lars Mendelsohn, Daniel Schreiner, Claudia Formisano, Elia TI The continuity illusion adapts to the auditory scene SO HEARING RESEARCH LA English DT Article DE Continuity illusion; Auditory restoration; Adaptation; Auditory scene analysis; Hearing ID INDUCED LOUDNESS REDUCTION; FREQUENCY-MODULATED TONES; INTENSITY DISCRIMINATION; SELECTIVE ADAPTATION; AMPLITUDE-MODULATION; BACKWARD-MASKING; PSYCHOPHYSICAL EVIDENCE; PERCEPTUAL RESTORATION; MASKER DURATION; TIME-COURSE AB The human auditory system is efficient at restoring sounds of interest. In noisy environments, for example, an interrupted target sound may be illusorily heard as continuing smoothly when a loud noise masks the interruptions. In quiet environments, however, sudden interruptions might signal important events. In that case, restoration of the target sound would be disadvantageous. Achieving useful perceptual stability may require the restoration mechanism to adapt its output to current perceptual demands, a hypothesis which has not yet been fully evaluated. In this study, we investigated whether auditory restoration depends on preceding auditory scenes, and we report evidence that restoration adapts to the perceived continuity of target sounds and to the loudness of interrupting sounds. In the first experiment, listeners adapted to illusory and non-illusory tone sweeps (targets) and interrupting noise, and we observed that the perceived continuity of the target and the loudness of the interrupting noise influenced the extent of subsequent restorations. A second experiment revealed that these adaptation effects were unrelated to the adapted spectra, indicating that non-sensory representations of the perceived auditory scene were involved. We argue that auditory restoration is a dynamic illusory phenomenon which recalibrates continuity hearing to different acoustic environments. (c) 2008 Elsevier B.V. All rights reserved. C1 [Riecke, Lars; Schreiner, Claudia; Formisano, Elia] Maastricht Univ, Fac Psychol, Dept Cognit Neurosci, NL-6200 MD Maastricht, Netherlands. [Mendelsohn, Daniel] Univ Western Ontario, Schulich Sch Med & Dent, London, ON N6A 3K7, Canada. RP Riecke, L (reprint author), Maastricht Univ, Fac Psychol, Dept Cognit Neurosci, POB 616, NL-6200 MD Maastricht, Netherlands. EM l.riecke@psychology.unimaas.nl CR Arieh Y, 2005, J ACOUST SOC AM, V117, P3381, DOI 10.1121/1.1898103 Arieh Y, 2003, J ACOUST SOC AM, V114, P1550, DOI 10.1121/1.1603768 Arieh Y, 2003, J EXP PSYCHOL HUMAN, V29, P523, DOI 10.1037/0096-1523.29.3.523 BARLETT EL, 2005, J NEUROPHYSIOL, V94, P83 BASHFORD JA, 1992, PERCEPT PSYCHOPHYS, V51, P211, DOI 10.3758/BF03212247 BREGMAN AS, 1977, CAN J PSYCHOL, V31, P151, DOI 10.1037/h0081658 Bregman AS., 1990, AUDITORY SCENE ANAL CARLYON RP, 1993, J ACOUST SOC AM, V93, P2886, DOI 10.1121/1.405808 CIOCCA V, 1987, PERCEPT PSYCHOPHYS, V42, P476, DOI 10.3758/BF03209755 COOPER WE, 1974, J ACOUST SOC AM, V56, P617, DOI 10.1121/1.1903300 DANNENBRING GL, 1976, CAN J PSYCHOL, V30, P99, DOI 10.1037/h0082053 DIEHL RL, 1978, J EXP PSYCHOL HUMAN, V4, P599, DOI 10.1037//0096-1523.4.4.599 EIMAS PD, 1973, COGNITIVE PSYCHOL, V4, P99, DOI 10.1016/0010-0285(73)90006-6 Fechner GT, 1860, ELEMENTS PSYCHOPHYSI Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 Frissen I, 2003, ACTA PSYCHOL, V113, P315, DOI 10.1016/S0001-6918(03)00043-X Frissen I, 2005, ACTA PSYCHOL, V118, P93, DOI 10.1016/j.actpsy.2004.10.004 GREEN G G R, 1973, Journal of Physiology (Cambridge), V234, P50 Green GGR, 1974, J PHYSIOL-LONDON, V241, P29 HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048 KAY RH, 1972, J PHYSIOL-LONDON, V225, P657 KIDD G, 1982, J ACOUST SOC AM, V72, P1384, DOI 10.1121/1.388443 LANDAHL KL, 1982, J ACOUST SOC AM, V71, P1234, DOI 10.1121/1.387772 Mapes-Riordan D, 1999, J ACOUST SOC AM, V106, P3506, DOI 10.1121/1.428203 MARKS LE, 1994, J EXP PSYCHOL HUMAN, V20, P382, DOI 10.1037//0096-1523.20.2.382 MARKS LE, 1993, J EXP PSYCHOL HUMAN, V19, P227, DOI 10.1037//0096-1523.19.2.227 MARKS LE, 1991, J EXP PSYCHOL HUMAN, V17, P986, DOI 10.1037/0096-1523.17.4.986 MARKS LE, 1988, PERCEPT PSYCHOPHYS, V43, P511, DOI 10.3758/BF03207739 Miller CT, 2001, NAT NEUROSCI, V4, P783, DOI 10.1038/90481 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 MOODY DB, 1984, J ACOUST SOC AM, V76, P1076, DOI 10.1121/1.391399 Nakajima Y, 2000, PERCEPT PSYCHOPHYS, V62, P1413, DOI 10.3758/BF03212143 Nieder B, 2007, J ACOUST SOC AM, V122, P35, DOI 10.1121/1.2735107 Nieder B, 2003, J ACOUST SOC AM, V114, P2846, DOI 10.1121/1.1616580 Oberfeld D, 2008, J ACOUST SOC AM, V123, P1571, DOI 10.1121/1.2837284 Oberfeld D, 2007, J ACOUST SOC AM, V121, P2137, DOI 10.1121/1.2710433 OHDE RN, 1979, J ACOUST SOC AM, V66, P30, DOI 10.1121/1.383034 PENNER MJ, 1974, J ACOUST SOC AM, V56, P179, DOI 10.1121/1.1903250 Petkov CI, 2007, NEURON, V54, P153, DOI 10.1016/j.neuron.2007.02.031 Petkov CI, 2003, J NEUROSCI, V23, P9155 Phillips DP, 2005, HEARING RES, V202, P188, DOI [10.1016/j.heares.2004.11.001, 10.1016/j.heres.2004.11.001] Plack CJ, 1996, J ACOUST SOC AM, V100, P1024, DOI 10.1121/1.416288 PLACK CJ, 1995, J ACOUST SOC AM, V97, P1141, DOI 10.1121/1.412227 POWERS GL, 1977, J ACOUST SOC AM, V61, P195, DOI 10.1121/1.381255 Recanzone GH, 2008, ANNU REV PSYCHOL, V59, P119, DOI 10.1146/annurev.psych.59.103006.093544 REGAN D, 1979, J ACOUST SOC AM, V65, P1249, DOI 10.1121/1.382792 REMIJN GB, 2005, J EXP PSYCHOL HUMAN, V3, P183 REMIJN GB, 2001, J MUSIC PERCEPTION C, V7, P77 Riecke L, 2008, PERCEPT PSYCHOPHYS, V70, P1, DOI 10.3758/PP.70.1.1 Riecke L, 2007, J NEUROSCI, V27, P12684, DOI 10.1523/JNEUROSCI.2713-07.2007 ROSENBLITH WA, 1947, SCIENCE, V106, P333, DOI 10.1126/science.106.2754.333 SAMUEL AG, 1979, J EXP PSYCHOL HUMAN, V5, P563, DOI 10.1037/h0078136 SAWUSCH JR, 1981, J EXP PSYCHOL HUMAN, V7, P408, DOI 10.1037//0096-1523.7.2.408 Scharf B, 2002, J ACOUST SOC AM, V112, P807, DOI 10.1121/1.1500755 Schweinberger SR, 2008, CURR BIOL, V18, P684, DOI 10.1016/j.cub.2008.04.015 SIMON HJ, 1978, J ACOUST SOC AM, V64, P1338, DOI 10.1121/1.382101 TANSLEY BW, 1983, J ACOUST SOC AM, V74, P765, DOI 10.1121/1.389864 THURLOW W, 1957, AM J PSYCHOL, V70, P653, DOI 10.2307/1419466 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 VIEMEISTER NF, 1982, J ACOUST SOC AM, V71, P1502, DOI 10.1121/1.387849 Wagner E, 2006, J ACOUST SOC AM, V119, P1012, DOI 10.1021/1.2159430 Warren R. M., 1999, AUDITORY PERCEPTION WARREN RM, 1994, PERCEPT PSYCHOPHYS, V55, P313, DOI 10.3758/BF03207602 WARREN RM, 1984, PSYCHOL BULL, V96, P371 WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392 WARREN RM, 1983, J AUDIO ENG SOC, V31, P623 WARREN RM, 1972, SCIENCE, V176, P1149, DOI 10.1126/science.176.4039.1149 Werner-Reiss U, 2006, EXP BRAIN RES, V168, P272, DOI 10.1007/s00221-005-0184-x Wojtczak M, 2005, J ACOUST SOC AM, V118, P3198, DOI 10.1121/1.2042970 Wojtczak M, 2003, J ACOUST SOC AM, V114, P991, DOI 10.1121/1.1593067 WRIGHT BA, 1993, J ACOUST SOC AM, V94, P72, DOI 10.1121/1.408215 WRIGHTSON JM, 1981, J ACOUST SOC AM, V69, pS105, DOI 10.1121/1.386495 ZENG FG, 1992, J ACOUST SOC AM, V92, P782, DOI 10.1121/1.403947 ZENG FG, 1991, HEARING RES, V55, P223, DOI 10.1016/0378-5955(91)90107-K ZENG FG, 1995, HEARING RES, V82, P216, DOI 10.1016/0378-5955(94)00179-T ZWICKER E, 1964, J ACOUST SOC AM, V36, P2413, DOI 10.1121/1.1919373 NR 77 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2009 VL 247 IS 1 BP 71 EP 77 DI 10.1016/j.heares.2008.10.006 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 399CI UT WOS:000262777600008 PM 19015017 ER PT J AU Alvarado, JC Fuentes-Santamariia, V Henkel, CK AF Carlos Alvarado, Juan Fuentes-Santamaria, Veronica Henkel, Craig K. TI Rapid modifications in calretinin immunostaining in the deep layers of the superior colliculus after unilateral cochlear ablation SO HEARING RESEARCH LA English DT Article DE Cross-modal; Calcium-binding proteins; Upregulation; Deafferentation; Hearing loss ID AUDITORY BRAIN-STEM; CALCIUM-BINDING PROTEINS; INFERIOR COLLICULUS; NUCLEUS NEURONS; ADULT FERRETS; UP-REGULATION; CELL-DEATH; IMMUNOREACTIVE NEURONS; SUPERFICIAL LAYERS; OLIVARY COMPLEX AB Calretinin (CR) is a calcium-binding protein that plays an important role in the homeostasis of intracellular calcium concentration in the auditory pathway. To test if hearing loss could lead indirectly to modifications in levels of this calcium-binding protein in neurons and neuropilar structures outside of the lemniscal auditory pathway, CR-immunostaining was evaluated in the superior colliculus (SC) in adult ferrets at 1, 20 and 90 days after unilateral cochlear ablation. The results demonstrate that within 24 h there was a significant increase in CR-immunostaining in ablated animals as indicated by an increase in the mean gray level of immunostaining in the deep, multisensory layers of the contralateral SC compared to the ipsilateral side and control ferrets. This upregulation was evident in both neurons and neuropil and did not change at the two subsequent time points. In contrast, there was no change in the superficial layers of the SC which have visual properties but no auditory inputs. These findings suggest that upregulation of CR levels within neurons and neuropil in the contralateral deep SC is subject to modifications by activity in multisynaptic auditory pathways. Therefore, cochlear-driven activity appears to affect calcium-binding protein levels not only in auditory nuclei but also in other neural structures whose response properties may be influenced by auditory-related activity. (c) 2008 Published by Elsevier B.V. C1 [Carlos Alvarado, Juan; Fuentes-Santamaria, Veronica; Henkel, Craig K.] Wake Forest Univ, Bowman Gray Sch Med, Dept Neurobiol & Anat, Winston Salem, NC 27157 USA. [Carlos Alvarado, Juan; Fuentes-Santamaria, Veronica] Univ Castilla La Mancha, Sch Med, Dept Med Sci, Reg Ctr Biomed Res, Albacete, Spain. RP Alvarado, JC (reprint author), Wake Forest Univ, Bowman Gray Sch Med, Dept Neurobiol & Anat, Med Ctr Blvd, Winston Salem, NC 27157 USA. EM juanCarlos.Alvarado@uclm.es FU National Institute of Health [DC00813] FX Funded in part by National Institute of Health; Grant number: DC00813. CR Alvarado JC, 2004, J COMP NEUROL, V470, P63, DOI 10.1002/cne.11038 Alvarado JC, 2007, SYNAPSE, V61, P288, DOI 10.1002/syn.20373 Alvarado JC, 2005, NEUROSCIENCE, V136, P957, DOI 10.1016/j.neuroscience.2005.04.022 ANDRESSEN C, 1993, CELL TISSUE RES, V271, P181, DOI 10.1007/BF00318606 ARAI M, 1993, BRAIN RES, V613, P341, DOI 10.1016/0006-8993(93)90924-C BAIMBRIDGE KG, 1992, TRENDS NEUROSCI, V15, P303, DOI 10.1016/0166-2236(92)90081-I Behan M, 2002, J COMP NEUROL, V452, P334, DOI 10.1002/cne.10378 Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8 D'Orlando C, 2001, BRAIN RES, V909, P145, DOI 10.1016/S0006-8993(01)02671-3 Doubell TP, 2000, EUR J NEUROSCI, V12, P4290, DOI 10.1111/j.1460-9568.2000.01337.x EDWARDS SB, 1979, J COMP NEUROL, V184, P309, DOI 10.1002/cne.901840207 Fuentes-Santamaria V, 2005, J COMP NEUROL, V483, P458, DOI 10.1002/cne.20437 Fuentes-Santamaria V, 2003, J COMP NEUROL, V460, P585, DOI 10.1002/cne.10676 Hardie NA, 1998, NEUROREPORT, V9, P2019, DOI 10.1097/00001756-199806220-00020 Henkel CK, 1998, MICROSC RES TECHNIQ, V41, P234, DOI 10.1002/(SICI)1097-0029(19980501)41:3<234::AID-JEMT7>3.0.CO;2-T Herborn CU, 2002, INVEST RADIOL, V37, P464, DOI 10.1097/00004424-200208000-00008 HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P580 Huerta M.F., 1984, P687 Huesa G, 2002, CELL TISSUE RES, V309, P355, DOI 10.1007/s00441-002-0305-x Ikura M, 1996, TRENDS BIOCHEM SCI, V21, P14, DOI 10.1016/S0968-0004(06)80021-6 ILLING RB, 1995, NEUROSCI LETT, V194, P9, DOI 10.1016/0304-3940(95)11706-3 Illing RB, 2001, AUDIOL NEURO-OTOL, V6, P319, DOI 10.1159/000046844 Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4 Illing RB, 2000, MICROSC RES TECHNIQ, V51, P364, DOI 10.1002/1097-0029(20001115)51:4<364::AID-JEMT6>3.0.CO;2-E Jeon CJ, 1998, NEUROREPORT, V9, P3847, DOI 10.1097/00001756-199812010-00015 Jiang ZD, 1997, BRAIN RES, V755, P279, DOI 10.1016/S0006-8993(97)00105-4 KANASEKI T, 1974, J COMP NEUROL, V158, P319, DOI 10.1002/cne.901580307 Kang YS, 2002, MOL CELLS, V14, P361 Kang YS, 2002, NEUROSCI LETT, V330, P104, DOI 10.1016/S0304-3940(02)00723-1 KING AJ, 1994, J NEUROPHYSIOL, V71, P182 King AJ, 1998, J COMP NEUROL, V390, P342 Lee JY, 2006, ACTA HISTOCHEM CYTOC, V39, P125, DOI 10.1267/ahc.06008 McAlpine D, 1997, J NEUROPHYSIOL, V78, P767 MEREDITH MA, 1983, SCIENCE, V221, P389, DOI 10.1126/science.6867718 MILLER RJ, 1995, BIOCHEM SOC T, V23, P629 MIZE RR, 1985, MICROCOMPUTER CELL N, P333 MIZE RR, 1988, J NEUROSCI METH, V26, P1, DOI 10.1016/0165-0270(88)90125-2 MOORE DR, 1988, HEARING RES, V35, P275, DOI 10.1016/0378-5955(88)90125-6 MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412 MOORE DR, 1993, PROG BRAIN RES, V97, P127 MOORE DR, 1991, AUDIOLOGY, V30, P125 MOORE DR, 1985, J COMP NEUROL, V240, P180, DOI 10.1002/cne.902400208 Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G PALMER AR, 1985, HEARING RES, V17, P267, DOI 10.1016/0378-5955(85)90071-1 Riquelme R, 2001, J COMP NEUROL, V432, P409, DOI 10.1002/cne.1111 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Russ J. C., 1990, COMPUTER ASSISTED MI Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Stein B. E., 1993, MERGING SENSES Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 TAKAHASHI TT, 1987, J NEUROSCI, V7, P1843 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R Wallace MT, 1997, J NEUROSCI, V17, P2429 WINSKY L, 1995, J COMP NEUROL, V354, P564, DOI 10.1002/cne.903540407 Zettel ML, 2001, HEARING RES, V158, P131, DOI 10.1016/S0378-5955(01)00305-7 ZIRPEL L, 1995, J NEUROPHYSIOL, V74, P1355 Zirpel L, 1998, J NEUROPHYSIOL, V79, P2288 Zirpel L, 2000, J COMP NEUROL, V421, P95 NR 59 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2009 VL 247 IS 1 BP 78 EP 86 DI 10.1016/j.heares.2008.10.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 399CI UT WOS:000262777600009 PM 19017539 ER PT J AU Popper, P Winkler, J Erbe, CB Lerch-Gaggl, A Siebeneich, W Wackym, PA AF Popper, Paul Winkler, John Erbe, Christy B. Lerch-Gaggl, Alexandara Siebeneich, Wolfgang Wackym, P. Ashley TI Distribution of two-pore-domain potassium channels in the adult rat vestibular periphery SO HEARING RESEARCH LA English DT Article DE Inner ear; Kcnk; 2P-domain K(+) channel; Real-time RT-PCR; Immunohistochemistry; Confocal microscopy; Vestibular ID DOMAIN K+ CHANNELS; INNERVATING SEMICIRCULAR CANALS; BACKGROUND K-2P CHANNELS; SQUIRREL-MONKEY; INNER-EAR; EXPRESSION; TREK-1; LOCALIZATION; STIMULATION; NEURONS AB Constitutively active background or "leak" two-pore-domain potassium (K(+)) channels (Kcnk family), as defined by lack of voltage and time dependency are central to electrical excitability of cells by controlling resting membrane potential and membrane resistance. Inhibition of these channels by several neurotransmitters, e.g. glutamate, or acetylcholine, induces membrane depolarization and subsequent action potential firing as well as increases membrane resistance amplifying responses to synaptic inputs. In contrast, their opening contributes to hyperpolarization. Because of their central role in determining cellular excitability and response to synaptic stimulation, these channels likely play a role in the differential effects of vestibular efferent neurons on afferent discharge. Microarray data from previous experiments showed Kcnk 1, 2, 3, 6, 12 and 15 mRNA in Scarpa's ganglia. Real-time RTPCR showed Kcnk 1, 2. 3, 6, 12 and 15 mRNA expression in Scarpa's ganglia and Kcnk 1, 2, 3, 6, 12 but not 15 mRNA expression in the crista ampullaris. We studied the distribution of two-pore-domain potassium channels K(2p)1.1, 2.1, 3.1 and 6.1 like immunoreactivity (corresponding to Kcnk genes 1, 2, 3 and 6) in the vestibular periphery. K(2P)1.1 (TWIK 1) immunoreactivity was detected along nerve terminals, supporting cells and blood vessels of the crista ampullaris and in the cytoplasm of neurons of the Scarpa's ganglia. K(2p)2.1 (TREK I) immunoreactivity was detected in nerve terminals and transitional cells of the crista ampullaris, in the vestibular dark cells and in neuronal fibers and somata of neurons of Scarpa's ganglia. K(2p)3.1 (TASK 1) immunoreactivity was detected in supporting cells and transitional cells of the crista ampullaris, in vestibular dark cells and in neuron cytoplasm within Scarpa's ganglia. K(2p)6.1 (TWIK 2) immunoreactivity was detected in nerve terminals, blood vessels hair cells and transitional cells of the crista ampullaris and in the somata and neuron fibers of Scarpa's ganglia. (c) 2008 Elsevier B.V. All rights reserved. C1 [Popper, Paul; Winkler, John; Erbe, Christy B.; Siebeneich, Wolfgang; Wackym, P. Ashley] Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, Milwaukee, WI 53226 USA. [Wackym, P. Ashley] Med Coll Wisconsin, Dept Physiol, Milwaukee, WI 53226 USA. [Popper, Paul; Lerch-Gaggl, Alexandara] Med Coll Wisconsin, Dept Cell Biol Neurobiol & Anat, Milwaukee, WI 53226 USA. RP Wackym, PA (reprint author), Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, 9200 W Wisconsin Ave, Milwaukee, WI 53226 USA. EM wackym@alumni.vanderbilt.edu FU NIH/NIDCD [R01DC02971, R03DC006571]; Toohill Research Fund of the Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin FX Supported by NIH/NIDCD Grants R01DC02971 (PAW) and R03DC006571 (PP), and intramural funds from the Toohill Research Fund of the Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin. CR Buckler KJ, 2000, J PHYSIOL-LONDON, V525, P135, DOI 10.1111/j.1469-7793.2000.00135.x CHARPAK S, 1990, NATURE, V347, P765, DOI 10.1038/347765a0 Chavez RA, 1999, J BIOL CHEM, V274, P7887, DOI 10.1074/jbc.274.12.7887 Chemin J, 2003, EMBO J, V22, P5403, DOI 10.1093/emboj/cdg528 DECHESNE CJ, 1991, BRAIN RES, V560, P139, DOI 10.1016/0006-8993(91)91224-O Desai SS, 2005, J NEUROPHYSIOL, V93, P267, DOI 10.1152/jn.00747.2003 Duprat F, 1997, EMBO J, V16, P5464, DOI 10.1093/emboj/16.17.5464 Duprat F, 2007, TRENDS NEUROSCI, V30, P573, DOI 10.1016/j.tins.2007.08.003 FERNANDE.C, 1971, J NEUROPHYSIOL, V34, P661 Fink M, 1996, EMBO J, V15, P6854 FRANKENHAEUSER B, 1956, J PHYSIOL-LONDON, V131, P341 GOLDBERG JM, 1971, J NEUROPHYSIOL, V34, P635 Goldstein SAN, 2005, PHARMACOL REV, V57, P527, DOI 10.1124/pr.57.4.12 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 Heurteaux C, 2004, EMBO J, V23, P2684, DOI 10.1038/sj.emboj.7600234 Honore E, 2007, NAT REV NEUROSCI, V8, P251, DOI 10.1038/nrn2117 JIANG YQ, 1992, J CELL SCI, V103, P643 Kang D, 2005, J PHYSIOL-LONDON, V564, P103, DOI 10.1113/jphysiol.2004.081059 Kanjhan R, 2004, NEUROREPORT, V15, P437, DOI 10.1097/01.wnr.0000114978.66165.39 Kim D, 2001, BIOCHEM BIOPH RES CO, V284, P923, DOI 10.1006/bbrc.2001.5064 KRAPIVINSKY G, 1995, NATURE, V374, P135, DOI 10.1038/374135a0 Lauritzen I, 2000, EMBO J, V19, P1784, DOI 10.1093/emboj/19.8.1784 Leonard RB, 2002, BRAIN RES, V928, P8, DOI 10.1016/S0006-8993(01)03268-1 Lesage F, 2000, AM J PHYSIOL-RENAL, V279, pF793 Lesage F, 2003, NEUROPHARMACOLOGY, V44, P1, DOI 10.1016/S0028-3908(02)00339-8 Lesage F, 1996, EMBO J, V15, P1004 Maingret F, 1999, J BIOL CHEM, V274, P26691, DOI 10.1074/jbc.274.38.26691 Maingret F, 2001, EMBO J, V20, P47, DOI 10.1093/emboj/20.1.47 Maingret F, 2000, EMBO J, V19, P2483, DOI 10.1093/emboj/19.11.2483 Mhatre AN, 2004, J NEUROSCI RES, V75, P25, DOI 10.1002/jnr.10839 Millar JA, 2000, P NATL ACAD SCI USA, V97, P3614, DOI 10.1073/pnas.050012597 Miller P, 2005, BIOCHEM BIOPH RES CO, V331, P1253, DOI 10.1016/j.bbrc.2005.04.042 MINOR LB, 1990, EXP BRAIN RES, V82, P1 Nicolas MT, 2003, HEARING RES, V181, P20, DOI 10.1016/S0378-5955(03)00162-X Nicolas MT, 2004, BRAIN RES, V1017, P46, DOI 10.1016/j.brainres.2004.05.012 NICOLL RA, 1990, PHYSIOL REV, V70, P513 Nie X, 2005, PFLUG ARCH EUR J PHY, V451, P479, DOI 10.1007/s00424-005-1480-9 Patel AJ, 1998, EMBO J, V17, P4283, DOI 10.1093/emboj/17.15.4283 Patel AJ, 2004, PFLUG ARCH EUR J PHY, V448, P261, DOI 10.1007/s00424-004-1255-8 Patel AJ, 2000, J BIOL CHEM, V275, P28722, DOI 10.1074/jbc.M003755200 Patel AJ, 1999, NAT NEUROSCI, V2, P422 Patel AJ, 2001, TRENDS NEUROSCI, V24, P339, DOI 10.1016/S0166-2236(00)01810-5 Rajan S, 2001, J BIOL CHEM, V276, P7302, DOI 10.1074/jbc.M008985200 Reyes R, 1998, J BIOL CHEM, V273, P30863, DOI 10.1074/jbc.273.47.30863 Talley EM, 2000, NEURON, V25, P399, DOI 10.1016/S0896-6273(00)80903-4 Talley EM, 2003, NEUROSCIENTIST, V9, P46, DOI 10.1177/1073858402239590 Terrenoire C, 2001, CIRC RES, V89, P336, DOI 10.1161/hh1601.094979 Vega R, 2003, NEUROREPORT, V14, P1327, DOI 10.1097/01.wnr.0000078382.40088.0b VONBAUMGARTEN R, 1984, SCIENCE, V225, P208, DOI 10.1126/science.6610216 Vouriot A, 2005, NEUROTOXICOLOGY, V26, P193, DOI 10.1016/j.neuro.2004.11.002 WACKYM PA, HEARING BALANCE GENE NR 51 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2008 VL 246 IS 1-2 BP 1 EP 8 DI 10.1016/j.heares.2008.09.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 386AA UT WOS:000261853500001 PM 18838117 ER PT J AU Muller, J Janssen, T AF Mueller, Joerg Janssen, Thomas TI Impact of occupational noise on pure-tone threshold and distortion product otoacoustic emissions after one workday SO HEARING RESEARCH LA English DT Article DE Distortion product otoacoustic emissions; Pure-tone threshold; Occupational noise; Noise-induced hearing loss; Noise vulnerability; Medial olivocochlear system ID INDUCED HEARING-LOSS; CROSSED OLIVOCOCHLEAR BUNDLE; CANAL STANDING WAVES; FINE-STRUCTURE; ACOUSTIC STIMULATION; RAPID ADAPTATION; INDUSTRIAL NOISE; GROWTH-BEHAVIOR; GUINEA-PIG; HUMANS AB The aim of this study was to investigate whether distortion product otoacoustic emissions (DPOAEs) are a suitable means for detecting small changes in cochlear amplifier functionality due to Occupational noise exposure of one workday and whether efferent reflex strength of the media] olivocochlear bundle is able to predict the ear's susceptibility to noise. High-resolution (Delta f(2) = 47 Hz) DPOAEs were recorded between 3.5 and 4.5 kHz at close-to-threshold primary tone levels. For comparison, pure-tone audiometry was conducted. Efferent reflex strength was measured by means of DPOAEs at a specific frequency with and without contralateral acoustic stimulation. A statistically significant change was found for pure-tone thresholds (Delta L(ht) = +1.6 +/- 3.0 dB, n = 155) and DPOAE levels (Delta L(dp) = -1.0 +/- 2.4 dB, n 646; L(2) = 20 dB SPL) in factory workers but not in office workers (Delta L(ht) = -1.3 +/- 3.3 dB, n = 80; Delta L(dp) = 0.0 +/- 1.6 dB, n = 336) (control group). However, the influence of systematic biases due to, e.g. ear probe calibration or measurement sequence effects, has to be considered. Moreover, there was no significant correlation between efferent reflex strength and shifts in pure-tone thresholds or shifts in DPOAE levels. Thus, the applied measures of efferent reflex strength do not seem to be suitable for predicting temporary changes in hearing capability. (c) 2008 Elsevier B.V. All rights reserved. C1 [Mueller, Joerg; Janssen, Thomas] Tech Univ Munich, Hals Nasen Ohren Klin, D-81675 Munich, Germany. RP Janssen, T (reprint author), Tech Univ Munich, Hals Nasen Ohren Klin, Ismaningerstr 22, D-81675 Munich, Germany. EM T.Janssem@lrz.tum.de FU Deutsche Forschungsgemeinschaft [597/9] FX This work was supported by Deutsche Forschungsgemeinschaft (Ja 597/9). We thank Wolfram Weinsheimer, executive company medical officer at Voith AG (Heidenheim, Germany), for supervision and assistance, as well as Julia Weinsheimer and Zehra Akkaya for recruiting the subjects and conducting the measurements as part of their medical doctorate thesis. We thank the reviewers for their valuable comments on the manuscript. CR AGRAMA MT, 1998, ABST ASS RES OTOLARY, V21, P152 Attias J, 2001, NOISE HEALTH, V3, P19 Bassim MK, 2003, HEARING RES, V182, P140, DOI 10.1016/S0378-5955(03)00190-4 Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 CODY AR, 1982, HEARING RES, V6, P199, DOI 10.1016/0378-5955(82)90054-5 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E Engdahl B, 1996, HEARING RES, V93, P72, DOI 10.1016/0378-5955(95)00197-2 Engdahl B, 1996, J ACOUST SOC AM, V99, P1573, DOI 10.1121/1.414733 European Union, 2003, OFFICIAL J EUROPEA L, VL42, P38 GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103 Guinan Jr J.J., 1996, COCHLEA, P435 Hall AJ, 1999, AUDIOLOGY, V38, P277 HE NJ, 1993, J ACOUST SOC AM, V94, P2659, DOI 10.1121/1.407350 Heitmann J, 1998, J ACOUST SOC AM, V103, P1527, DOI 10.1121/1.421290 Janssen T, 2005, J ACOUST SOC AM, V117, P1241, DOI [10.1121/1.1854331, 10.1121/1.1854311] Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053 Janssen T, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P498, DOI 10.1142/9789812704931_0068 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 Kim DO, 2001, JARO, V2, P31, DOI 10.1007/s101620010066 Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 KUMMER P, 1995, J ACOUST SOC AM, V98, P197, DOI 10.1121/1.413747 Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 Kummer P, 2000, HEARING RES, V146, P47, DOI 10.1016/S0378-5955(00)00097-6 LAROCHE C, 1989, J ACOUST SOC AM, V85, P1681, DOI 10.1121/1.397957 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 Liberman MC, 1998, J COMMUN DISORD, V31, P471, DOI 10.1016/S0021-9924(98)00019-7 LINDGREN F, 1988, SCAND AUDIOL, V17, P11, DOI 10.3109/01050398809042175 Linss V, 2005, EUR ARCH OTO-RHINO-L, V262, P488, DOI 10.1007/s00405-004-0864-3 Luebke AE, 2002, J NEUROSCI, V22, P4241 Maison SF, 2000, J NEUROSCI, V20, P4701 Marshall L, 2001, NOISE HEALTH, V3, P43 Mauermann M, 2004, J ACOUST SOC AM, V116, P2199, DOI 10.1121/1.1791719 McBride DI, 2001, OCCUP ENVIRON MED, V58, P46, DOI 10.1136/oem.58.1.46 Miller JAL, 2006, J ACOUST SOC AM, V120, P280, DOI 10.1121/1.2204437 MILLS JH, 1979, J ACOUST SOC AM, V65, P1238, DOI 10.1121/1.382791 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 Muller J, 2005, J ACOUST SOC AM, V118, P3747, DOI 10.1121/1.2109127 Murugasu E, 1996, J NEUROSCI, V16, P325 National Institute for Occupational Safety and Health, 1998, DHHS NIOSH PUBL, V98-126 National Institute for Occupational Safety and Health, 2001, DHHS NIOSH PUBL Nieschalk M, 1997, HNO, V45, P378, DOI 10.1007/s001060050113 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Patuzzi R, 2002, AUDIOL NEURO-OTOL, V7, P17, DOI 10.1159/000046857 Patuzzi R, 1998, HEARING RES, V125, P17, DOI 10.1016/S0378-5955(98)00126-9 Preyer S, 2001, HEARING RES, V152, P139, DOI 10.1016/S0378-5955(00)00245-8 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 Reuter K, 2007, J ACOUST SOC AM, V121, P327, DOI 10.1121/1.2395915 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 Schneider ME, 2002, NATURE, V418, P837, DOI 10.1038/418837a Seixas NS, 2005, OCCUP ENVIRON MED, V62, P309, DOI 10.1136/oem.2004.018143 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 SIEGEL JH, 1994, J ACOUST SOC AM, V95, P2589, DOI 10.1121/1.409829 Strasser H, 1999, NOISE CONTROL ENG, V47, P187, DOI 10.3397/1.599303 SUTTON LA, 1994, HEARING RES, V75, P161, DOI 10.1016/0378-5955(94)90067-1 Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 Wagner W, 2005, LARYNGOSCOPE, V115, P2021, DOI 10.1097/01.MLG.0000181463.16591.A7 Wagner W, 2007, HEARING RES, V223, P83, DOI 10.1016/j.heares.2006.10.001 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 Whitehead ML, 1995, J ACOUST SOC AM, V98, P3200, DOI 10.1121/1.413810 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235 WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 Yoshida N, 2000, HEARING RES, V148, P213, DOI 10.1016/S0378-5955(00)00161-1 ZHANG MS, 1995, HEARING RES, V85, P1, DOI 10.1016/0378-5955(95)00026-Z NR 70 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2008 VL 246 IS 1-2 BP 9 EP 22 DI 10.1016/j.heares.2008.09.005 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 386AA UT WOS:000261853500002 PM 18848612 ER PT J AU Verhulst, S Harte, JM Dau, T AF Verhulst, Sarah Harte, James M. Dau, Torsten TI Temporal suppression and augmentation of click-evoked otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE Otoacoustic emission; SOAE; CEOAE; Temporal nonlinearity; Suppression; Cochlear compression ID STIMULATED ACOUSTIC EMISSIONS; GUINEA-PIG; BASILAR-MEMBRANE; PURE-TONE; ENHANCEMENT; COCHLEA; MECHANICS; HEARING; MODEL AB This study investigates temporal suppression of click-evoked otoacoustic emissions (CEOAEs), occurring when a suppressor-click is presented close in time to a test-click (e.g. 0-8 ms). Various temporal suppression methods for examining temporal changes in cochlear compression were evaluated and measured here for seven subjects, both for short- and long-latency CEOAEs. Long-latency CEOAEs (duration >20 ms) typically indicate the presence of synchronised spontaneous otoacoustic emissions (SSOAEs). Temporal suppression can only be linked to changes in CEOAE-compression if the suppressor-click affects the CEOAE magnitude. Phase changes induced by the suppressor-click were shown to bias suppression in two ways: (i) when a specific asymmetric measurement method was used and (ii) when synchronisation between the CEOAE and the click-stimuli was incomplete. When such biases were eliminated, temporal suppression and augmentation (the opposite effect) were observed and shown to be subject-dependent. This indicates that the nonlinearity underlying temporal suppression can work in a more (i.e., suppressed) or less (i.e., augmented) compressive state, depending on the inter-click interval and the subject under test. Temporal suppression was shown to be comparable for CEOAEs and SSOAEs, indicating similar underlying cochlear nonlinear mechanisms. This study contributes to a better understanding of the temporal properties of cochlear dynamics. (c) 2008 Elsevier B.V. All rights reserved. C1 [Verhulst, Sarah; Harte, James M.; Dau, Torsten] Tech Univ Denmark, Dept Elect Engn, Ctr Appl Hearing Res, DK-2800 Lyngby, Denmark. RP Verhulst, S (reprint author), Tech Univ Denmark, Dept Elect Engn, Ctr Appl Hearing Res, DK-2800 Lyngby, Denmark. EM sv@elektro.dtu.dk FU Technical University of Denmark (DTU); forskerskolen SNAK and GN ReSound FX The authors would like to thank the anonymous reviewer for constructive and helpful comments. This work was supported by the Technical University of Denmark (DTU), forskerskolen SNAK and GN ReSound. CR DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 Eguiluz VM, 2000, PHYS REV LETT, V84, P5232, DOI 10.1103/PhysRevLett.84.5232 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 Harte JM, 2005, HEARING RES, V207, P99, DOI 10.1016/j.heares.2005.04.008 Hine JE, 2002, HEARING RES, V165, P128, DOI 10.1016/S0378-5955(02)00295-2 HUDSPETH AJ, 1995, NEURON, V12, P1 Kalluri R, 2007, J ACOUST SOC AM, V121, P2097, DOI 10.1121/1.2435981 Kapadia S, 2000, HEARING RES, V146, P89, DOI 10.1016/S0378-5955(00)00102-7 Kapadia S, 2000, HEARING RES, V146, P101, DOI 10.1016/S0378-5955(00)00103-9 KEMP DT, 1980, HEARING RES, V2, P213, DOI 10.1016/0378-5955(80)90059-3 Kemp D T, 1986, Scand Audiol Suppl, V25, P71 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Kevanishvili Z, 1996, SCAND AUDIOL, V25, P161, DOI 10.3109/01050399609047999 Kirk DL, 1996, J ACOUST SOC AM, V100, P3714, DOI 10.1121/1.417335 Kirk DL, 1998, J ACOUST SOC AM, V104, P1544, DOI 10.1121/1.424365 LINAGRANADE G, 1995, HEARING RES, V87, P55, DOI 10.1016/0378-5955(95)00078-I Lineton B, 2008, HEARING RES, V239, P34, DOI 10.1016/j.heares.2008.01.006 MOUNTAIN DC, 1989, HEARING RES, V42, P195, DOI 10.1016/0378-5955(89)90144-5 Neumann J, 1997, HEARING RES, V103, P19, DOI 10.1016/S0378-5955(96)00160-8 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 REN T, 1998, J ACOUST SOC AM, V104, P344 Ren TY, 1999, J ACOUST SOC AM, V105, P919, DOI 10.1121/1.426280 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750 TAVARTKILADZE GA, 1994, BRIT J AUDIOL, V28, P193, DOI 10.3109/03005369409086568 Thornton ARD, 2006, HEARING RES, V219, P56, DOI 10.1016/j.heares.2006.05.010 WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X Withnell RH, 1998, J ACOUST SOC AM, V104, P344, DOI 10.1121/1.423243 XUE SW, 1993, HEARING RES, V70, P121, DOI 10.1016/0378-5955(93)90056-7 Yates GK, 1999, J ACOUST SOC AM, V105, P922, DOI 10.1121/1.426281 NR 30 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2008 VL 246 IS 1-2 BP 23 EP 35 DI 10.1016/j.heares.2008.09.008 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 386AA UT WOS:000261853500003 PM 18926894 ER PT J AU Zhou, N Xu, L AF Zhou, Ning Xu, Li TI Lexical tone recognition with spectrally mismatched envelopes SO HEARING RESEARCH LA English DT Article DE Mandarin Chinese tones; Tone recognition; Spectral shift; Shallow insertion; Frequency compression; Cochlear implants ID FREQUENCY-PLACE COMPRESSION; ELECTRODE INSERTION DEPTH; COCHLEAR-IMPLANT; SPEECH RECOGNITION; TEMPORAL CUES; PERCEPTION; HEARING; PROSTHESES; CHILDREN; INTELLIGIBILITY AB It has been shown that frequency-place mismatch has detrimental effects on English speech recognition. The present study investigated the effects of mismatched spectral distribution of envelopes on Mandarin Chinese tone recognition using a noise-excited vocoder. In Experiment 1, speech samples were processed to simulate a cochlear implant with various insertion depths. The carrier bands were shifted basally relative to the analysis bands by 1-7 mm in the cochlea. Nine normal-hearing Mandarin Chinese listeners participated in this experiment. Basal shift of the carriers only slightly affected tone recognition. The resistance of tone recognition to spectral shift can be attributed to the overall amplitude contour cues that are independent from spectral manipulations. Experiment 2 examined the effects of frequency compression, where widened analysis bands by 2, 6, and 10 mm were compressively allocated to narrower carrier bands. Five of the 9 subjects participated in Experiment 2. It appears that the expanded frequency information especially on the low frequency end can compensate for the distortion from frequency compression. Thus, spectral shift might not pose a severe problem for tone recognition, and allocation of wider frequency range to include more low frequency information might be beneficial for tone recognition. (c) 2008 Elsevier B.V. All rights reserved. C1 [Zhou, Ning; Xu, Li] Ohio Univ, Sch Hearing Speech & Language Sci, Athens, OH 45701 USA. RP Xu, L (reprint author), Ohio Univ, Sch Hearing Speech & Language Sci, Athens, OH 45701 USA. EM XuL@ohio.edu FU NIH NIDCD [R03-DC006161, R15-DC009504] FX The authors thank Dr. Qian-Jie Fu for providing data from his previous publication (1999, JASA) to be re-plotted in Fig. 2. The study was supported in part by NIH NIDCD Grants R03-DC006161 and R15-DC009504. CR BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640 BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176 Baskent D, 2004, J ACOUST SOC AM, V116, P3130, DOI 10.1121/1.1804627 Baskent D, 2003, J ACOUST SOC AM, V113, P2064, DOI 10.1121/1.1558357 Baskent D, 2005, J ACOUST SOC AM, V117, P1405, DOI 10.1121/1.1856273 Baskent D, 2006, J ACOUST SOC AM, V119, P1156, DOI 10.1121/1.2151825 Chu KMY, 2005, ACTA OTO-LARYNGOL, V125, P718, DOI 10.1080/00016480410024640 Ciocca V, 2002, J ACOUST SOC AM, V111, P2250, DOI 10.1121/1.1471897 Dorman MF, 1997, J ACOUST SOC AM, V102, P2993, DOI 10.1121/1.420354 Duanmu S., 2002, PHONOLOGY STANDARD C Faulkner Andrew, 2006, Audiol Neurootol, V11 Suppl 1, P21, DOI 10.1159/000095610 Faulkner A, 2003, J ACOUST SOC AM, V113, P1073, DOI 10.1121/1.1536928 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2004, EAR HEARING, V25, P501, DOI 10.1097/01.aud.0000145125.50433.19 Fu QJ, 1999, J ACOUST SOC AM, V105, P1889, DOI 10.1121/1.426725 Fu QJ, 2002, J ACOUST SOC AM, V112, P1664, DOI 10.1121/1.1502901 FUJIMURA O, 1962, J ACOUST SOC AM, V34, P1865, DOI 10.1121/1.1909142 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HILL FJ, 1968, J ACOUST SOC AM, V44, P13, DOI 10.1121/1.1911047 Kong YY, 2006, J ACOUST SOC AM, V120, P2830, DOI 10.1121/1.2346009 Lee KYS, 2002, INT J PEDIATR OTORHI, V63, P137, DOI 10.1016/S0165-5876(02)00005-8 Liang Z. A., 1963, ACTA PHYS SINICA, V26, P85 Lin MC, 1988, ZHONGGUO YUWEN, V3, P182 LIU TC, 2004, ACTA OTO-LARYNGOL, V124, P1 Luo Xin, 2004, Journal of the Acoustical Society of America, V116, P3659, DOI 10.1121/1.1783352 Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101 Pfingst BE, 2001, JARO, V2, P87 Pickett J. M., 1999, ACOUSTICS SPEECH COM REMEZ RE, 1981, SCIENCE, V212, P947, DOI 10.1126/science.7233191 Rosen S, 1999, J ACOUST SOC AM, V106, P3629, DOI 10.1121/1.428215 Shannon RV, 1998, J ACOUST SOC AM, V104, P2467, DOI 10.1121/1.423774 Shannon RV, 2002, JARO, V3, P185, DOI 10.1007/s101620020021 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 TERKEURS M, 1993, J ACOUST SOC AM, V93, P1547, DOI 10.1121/1.406813 TERKEURS M, 1992, J ACOUST SOC AM, V91, P872 VANTASELL DJ, 1987, J ACOUST SOC AM, V82, P1152, DOI 10.1121/1.395251 Wei WI, 2000, ACTA OTO-LARYNGOL, V120, P218 WHALEN DH, 1992, PHONETICA, V49, P25 Wong AOC, 2004, OTOLARYNG HEAD NECK, V130, P751, DOI 10.1016/j.otohns.2003.09.037 Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786 Xu L, 2002, J ACOUST SOC AM, V112, P247, DOI 10.1121/1.1487843 Xu L, 2008, HEARING RES, V242, P132, DOI 10.1016/j.heares.2007.12.010 Xu L, 2005, J ACOUST SOC AM, V117, P3255, DOI 10.1121/.1.1886405 ZOLLNER VM, 1979, ACUSTICA, V43, P271 NR 45 TC 10 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2008 VL 246 IS 1-2 BP 36 EP 43 DI 10.1016/j.heares.2008.09.006 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 386AA UT WOS:000261853500004 PM 18848614 ER PT J AU Getzmann, S AF Getzmann, Stephan TI Effects of velocity and motion-onset delay on detection and discrimination of sound motion SO HEARING RESEARCH LA English DT Article DE Spatial hearing; Motion perception; Motion velocity; Response times ID AUDIBLE MOVEMENT ANGLE; AUDITORY MOTION; HUMAN BRAIN; REACTION-TIME; TEMPORAL INTEGRATION; MISMATCH NEGATIVITY; HORIZONTAL PLANE; CORTEX; HUMANS; PERCEPTION AB The effect of velocity on auditory motion processing in combination with a motion-onset delay was investigated in two experiments. The detection of motion onset and discrimination of motion direction were studied, employing a psychophysical reaction time task. Listeners were presented with sounds moving along the frontal horizontal plane in a dark anechoic environment. Response times (RTs) were measured, while the velocity (20 degrees/s, 40 degrees/s, 80 degrees/s) and the motion-onset delay (the time between sound onset and start of motion: 0, 200, 500, 1000 ms) were varied. Listeners responded faster with higher velocity and longer motion-onset delay. In particular, with higher velocity, the function relating RT to motion-onset delay had a steeper initial decrease than with lower velocities. The results are in line with psychophysical studies of the minimum audible movement angle and recent electrophysiological data about the role of motion velocity in auditory motion processing. The effect of motion-onset delay is discussed with regard to a dynamic temporal window, in which auditory spatial information is integrated until enough information is accumulated to trigger motion detection. (c) 2008 Elsevier B.V. All rights reserved. C1 [Getzmann, Stephan] Leibniz Res Ctr Working Environm & Human Factors, D-44139 Dortmund, Germany. [Getzmann, Stephan] Ruhr Univ Bochum, D-44780 Bochum, Germany. RP Getzmann, S (reprint author), Leibniz Res Ctr Working Environm & Human Factors, Ardeystr 67, D-44139 Dortmund, Germany. EM stephan.getzmann@rub.de FU Deutsche Forschungsgerneinschaft [Ge 1920/2-1] FX The author is especially grateful to Jens Kreitewolf for his help in running the experiments, and to Joachim Hohnsbein for valuable comments on an earlier draft of the manuscript. This work was supported by the Deutsche Forschungsgerneinschaft (Ge 1920/2-1). CR AHISSAR M, 1992, J NEUROPHYSIOL, V67, P203 ALTMAN JA, 1990, ELECTROEN CLIN NEURO, V75, P323, DOI 10.1016/0013-4694(90)90110-6 Altman JA, 2005, NEUROSCI LETT, V384, P330, DOI 10.1016/j.neulet.2005.05.002 BALL K, 1980, PSYCHOL REV, V87, P435, DOI 10.1037//0033-295X.87.5.435 Baumgart F, 1999, NATURE, V400, P724, DOI 10.1038/23390 Bausenhart KM, 2006, PSYCHON B REV, V13, P536, DOI 10.3758/BF03193882 Bausenhart KM, 2007, Q J EXP PSYCHOL, V60, P1610, DOI 10.1080/17470210701536419 Bidet-Caulet A, 2005, J COGNITIVE NEUROSCI, V17, P1691, DOI 10.1162/089892905774589244 Bremmer F, 2001, NEURON, V29, P287, DOI 10.1016/S0896-6273(01)00198-2 CHANDLER DW, 1992, J ACOUST SOC AM, V91, P1624, DOI 10.1121/1.402443 Ducommun CY, 2002, NEUROIMAGE, V16, P76, DOI 10.1006/nimg.2002.1062 ENGELKEN EJ, 1991, AVIAT SPACE ENVIR MD, V62, P315 Grantham DW, 1997, BINAURAL SPATIAL HEA GRANTHAM DW, 1989, SOUND LOC HUM OBS S, P35 GRANTHAM DW, 1986, J ACOUST SOC AM, V79, P1939, DOI 10.1121/1.393201 Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276 Hall DA, 2003, AUDIOL NEURO-OTOL, V8, P1, DOI 10.1159/000067894 Jerger James, 2002, J Am Acad Audiol, V13, P59 Kawakami O, 2002, HUM BRAIN MAPP, V16, P104, DOI 10.1002/hbm.10033 Kreegipuu K, 2007, PSYCHOL RES-PSYCH FO, V71, P703, DOI 10.1007/s00426-006-0059-1 Krumbholz K, 2005, EUR J NEUROSCI, V21, P230, DOI 10.1111/j.1460-9568.2004.03836.x Krumbholz K, 2007, J NEUROPHYSIOL, V97, P1649, DOI 10.1152/jn.00560.2006 Lewis JW, 2000, CEREB CORTEX, V10, P873, DOI 10.1093/cercor/10.9.873 Makela JP, 1996, EXP BRAIN RES, V110, P446 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 MOISEFF A, 1992, J NEUROPHYSIOL, V67, P1428 MONDOR TA, 1995, J EXP PSYCHOL HUMAN, V21, P387, DOI 10.1037//0096-1523.21.2.387 PERROTT DR, 1988, J ACOUST SOC AM, V83, P1522, DOI 10.1121/1.395908 PERROTT DR, 1989, J ACOUST SOC AM, V85, P1773, DOI 10.1121/1.397968 PERROTT DR, 1977, J ACOUST SOC AM, V62, P1463, DOI 10.1121/1.381675 SABERI K, 1990, J ACOUST SOC AM, V88, P2639, DOI 10.1121/1.399984 Saberi K, 2003, ACTA ACUST UNITED AC, V89, P333 SPENCE CJ, 1994, J EXP PSYCHOL HUMAN, V20, P555, DOI 10.1037//0096-1523.20.3.555 SPITZER MW, 1991, SCIENCE, V254, P721, DOI 10.1126/science.1948053 Sussman E, 1999, NEUROSCI LETT, V264, P161, DOI 10.1016/S0304-3940(99)00214-1 TORONCHUK JM, 1992, EXP BRAIN RES, V88, P169, DOI 10.1007/BF02259138 TYNAN PD, 1982, VISION RES, V22, P61, DOI 10.1016/0042-6989(82)90167-5 Warren JD, 2002, NEURON, V34, P139, DOI 10.1016/S0896-6273(02)00637-2 Xiang J, 2002, CLIN NEUROPHYSIOL, V113, P1, DOI 10.1016/S1388-2457(01)00709-X Xiang J, 2005, BRAIN TOPOGR, V17, P139, DOI 10.1007/s10548-005-4447-4 Yabe H, 2001, BRAIN RES, V897, P222, DOI 10.1016/S0006-8993(01)02224-7 Yabe H, 1998, PSYCHOPHYSIOLOGY, V35, P615, DOI 10.1017/S0048577298000183 NR 42 TC 8 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2008 VL 246 IS 1-2 BP 44 EP 51 DI 10.1016/j.heares.2008.09.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 386AA UT WOS:000261853500005 PM 18848613 ER PT J AU Allen, PD Schmuck, N Ison, JR Walton, JP AF Allen, Paul D. Schmuck, Nicholas Ison, James R. Walton, Joseph P. TI Kv1.1 channel subunits are not necessary for high temporal acuity in behavioral and electrophysiological gap detection SO HEARING RESEARCH LA English DT Article DE Voltage-gated potassium channel; Kv1.1; Inferior colliculus; Prepulse inhibition ID INFERIOR COLLICULUS; PREPULSE INHIBITION; STARTLE REFLEX; BRAIN-STEM; MICE; MOUSE; PRECISION; YOUNG AB The Kv1.1 potassium channel subunit, encoded by the Kcna 1 gene, is heavily expressed in the auditory brainstem and is thought to have a critical role in producing the high temporal precision of action potentials characteristic of the auditory system. Our intent was to determine whether temporal acuity was reduced in Kcria1 null-mutant (-/-) mice, compared to wild-type (+/+) and heterozygotic mice (+/-), as measured by the encoding of gaps in the inferior colliculus by near-field auditory evoked potentials (NFAEP) or behavioral gap detection (BCD) using a prepulse inhibition paradigm. NFAEPs were collected at 40, 60 and 80 dB SPL with gap durations from 0.5 to 64 ms. BGD data were collected using silent gaps in 70 dB noise from I to 15 ins in duration. There were no systematic effects of Kcna 1 genotype on NFAEP recovery functions, NFAEP latencies, or the time constant for BCD, but there was a small reduction in asymptotic prepulse inhibition for the longest gap stimuli in -/- mice. Gap thresholds were approximately 1-2 ms across genotypes, stimulus conditions, and paradigms. These data suggest that the neural pathways encoding behaviorally relevant, rapid auditory temporal fluctuations are not limited by the absence of Kv1.1 expression. (c) 2008 Elsevier B.V. All rights reserved. C1 [Allen, Paul D.; Ison, James R.; Walton, Joseph P.] Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA. [Allen, Paul D.; Schmuck, Nicholas; Ison, James R.; Walton, Joseph P.] Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA. [Allen, Paul D.; Ison, James R.] Univ Rochester, Dept Brain & Cognit Sci, Rochester, NY 14627 USA. RP Walton, JP (reprint author), Univ Rochester, Sch Med & Dent, Dept Otolaryngol, 601 Elmwood Ave, Rochester, NY 14642 USA. EM pallen@cvs.rochester.edu; nick.schmuck@gmail.com; jison@bcs.rochester.edu; joseph_walton@urmc.rochester.edu RI Allen, Paul/A-1228-2007 FU USPHS [AG009524] FX This research was supported in part by a USPHS grant AG009524, and in part by the Schmitt Program on Integrative Brain Research. A preliminary report of these findings was presented at the Association for Research in Otolaryngology, St. Petersburg Beach, FL, February 2002. We thank two anonymous reviewers for their helpful critique of a previous version of this manuscript. CR ALLEN P, 2005, ASS RES OTOLARYNGOL, V28 Allen PD, 2003, HEARING RES, V186, P17, DOI 10.1016/S0378-5955(03)00300-9 ALLEN PD, 2003, SOC NEUROSCI ABSTR, V29 Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8 BREW H, 2005, SOC NEUROSCI ABSTR, V31 BREW H, 2006, ASS RES OTOLARYNGOL, V29 Brew HM, 2003, J PHYSIOL-LONDON, V548, P1, DOI 10.1113/jphysiol.2002.035568 Carlson S, 1996, HEARING RES, V99, P168, DOI 10.1016/S0378-5955(96)00098-6 Dodson PD, 2002, J NEUROSCI, V22, P6953 Eggermont JJ, 1999, J NEUROPHYSIOL, V81, P2570 Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BRM.41.4.1149 Fendt M, 2001, PSYCHOPHARMACOLOGY, V156, P216, DOI 10.1007/s002130100794 Ferragamo MJ, 2002, J NEUROPHYSIOL, V87, P2262, DOI 10.1152/jn.00587.2001 Gittelman JX, 2006, J NEUROPHYSIOL, V96, P1203, DOI 10.1152/jn.00092.005 Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2 Guo YQ, 2002, HEARING RES, V171, P158, DOI 10.1016/S0378-5955(02)00496-3 He NJ, 1999, J ACOUST SOC AM, V106, P966, DOI 10.1121/1.427109 Ison JR, 2005, J ACOUST SOC AM, V117, P3944, DOI 10.1121/1.1904387 ISON JR, 2007, SOC NEUROSC ABSTR, V33 KARCZ A, 2007, SOC NEUROSC ABSTR, V33 KARCZ A, 2008, ASS RES OTOLARYNGOL, V31 Koch M, 1999, PROG NEUROBIOL, V59, P107, DOI 10.1016/S0301-0082(98)00098-7 Kopp-Scheinpflug C, 2003, J NEUROSCI, V23, P9199 Li L, 1998, PHYSIOL BEHAV, V65, P133, DOI 10.1016/S0031-9384(98)00143-7 PATEL M, 2002, ASS RES OTOLARYNGOL, V25 Rho JM, 1999, DEV NEUROSCI-BASEL, V21, P320, DOI 10.1159/000017381 Smart SL, 1998, NEURON, V20, P809, DOI 10.1016/S0896-6273(00)81018-1 Snell KB, 2002, J ACOUST SOC AM, V112, P720, DOI 10.1121/1.1487841 SON JR, 2007, JARO-J ASSOC RES OTO, V8, P539 SWERDLOW N R, 1992, Journal of Psychopharmacology, V6, P176, DOI 10.1177/026988119200600210 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 YOUNG JS, 1983, J ACOUST SOC AM, V73, P1686, DOI 10.1121/1.389391 NR 32 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2008 VL 246 IS 1-2 BP 52 EP 58 DI 10.1016/j.heares.2008.09.009 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 386AA UT WOS:000261853500006 PM 18926893 ER PT J AU Snyder, RL Bonham, BH Sinex, DG AF Snyder, Russell L. Bonham, Ben H. Sinex, Donal G. TI Acute changes in frequency responses of inferior colliculus central nucleus (ICC) neurons following progressively enlarged restricted spiral ganglion lesions SO HEARING RESEARCH LA English DT Article DE Plasticity; Inferior colliculus; Hearing loss; Tonotopic reorganization; Cochleotopic organization; Cochlear lesions; Auditory; Tonotopy ID DORSAL COCHLEAR NUCLEUS; COMBINATION-SENSITIVE NEURONS; COMPLEX AUDITORY RESPONSES; SINGLE-UNIT RESPONSES; INDUCED HEARING-LOSS; ADULT FLYING-FOX; GUINEA-PIG; RECEPTIVE-FIELDS; SOMATOSENSORY CORTEX; LATERAL LEMNISCUS AB Immediate effects of sequential and progressively enlarged spiral ganglion (SG) lesions were recorded from cochleas and inferior colliculi. Small SG-lesions produced modest elevations in cochlear tone-evoked compound action potential (CAP) thresholds across narrow frequency ranges; progressively enlarged lesions produced progressively higher CAP-threshold elevations across progressively wider frequency ranges. No comparable changes in distortion product otoacoustic emissions (DPOAEs) amplitudes were observed consistent with silencing of auditory nerve sectors without affecting organ of Corti function. Frequency response areas (FRAs) of inferior colliculus (IC) neurons were recorded before and immediately after SG-lesions using multi-site silicon arrays fixed in place with recording sites arrayed along IC frequency gradient. Individual post-lesion FRAs exhibited progressively elevated response thresholds and diminished response amplitudes at lesion frequencies, whereas responses at non-lesion frequencies were either unchanged or enhanced. Characteristic frequencies were shifted and silent areas were introduced within these FRAs. Sequentially larger lesions produced sequentially larger shifts in CF and/or enlarged silent areas within affected FRAs, producing immediate changes in IC frequency organization. These results contrast with those from the auditory nerve, extend previous reports of experience-induced plasticity in the auditory CNS, and support results indicating afferent convergence onto ICC neurons across broad frequency bands. (c) 2008 Elsevier B.V. All rights reserved. C1 [Snyder, Russell L.] Univ Calif San Francisco, Epstein Lab, Dept Otolaryngol, San Francisco, CA 94143 USA. [Snyder, Russell L.; Sinex, Donal G.] Utah State Univ, Dept Psychol, Logan, UT 84322 USA. RP Snyder, RL (reprint author), Univ Calif San Francisco, Epstein Lab, Dept Otolaryngol, Box 0526,U490, San Francisco, CA 94143 USA. EM rsnyder@ohns.ucsf.edu FU NIDCD [DC03549, DC00341] FX The authors would like to thank Drs. CJ. Sumner, J.H. LaVail and an anonymous reviewer for their thoughtful reading of and comments on this manuscript. We would also like to acknowledge Support by NIDCD Grants DC03549 and DC00341. CR Biebel UW, 2002, HEARING RES, V169, P151, DOI 10.1016/S0378-5955(02)00459-8 Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006 CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C Calford MB, 1999, P ROY SOC B-BIOL SCI, V266, P499 CALFORD MB, 1991, J NEUROPHYSIOL, V65, P178 Calford MB, 2002, NEUROSCIENCE, V111, P709, DOI 10.1016/S0306-4522(02)00022-2 CALFORD MB, 1988, NATURE, V332, P446, DOI 10.1038/332446a0 CALFORD MB, 1991, SOMATOSENS MOT RES, V8, P249 CANT NB, 1984, HEARING SCI RECENT A, P371 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Ehret G., 1997, CENTRAL AUDITORY SYS, P259 Frisina RD, 2005, INFERIOR COLLICULUS, P559, DOI 10.1007/0-387-27083-3_19 HARRISON RV, 1995, ACTA OTO-LARYNGOL, P30 Harrison RV, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P238 HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R HARRISON RV, 1993, J OTOLARYNGOL, V22, P4 Henkel CK, 2003, HEARING RES, V177, P32, DOI 10.1016/S0378-5955(02)00794-3 Henkel CK, 1997, J COMP NEUROL, V380, P136 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Irvine DRF, 2003, J COMP NEUROL, V467, P354, DOI 10.1002/ene.10921 Irvine DRF, 2000, HEARING RES, V147, P188, DOI 10.1016/S0378-5955(00)00131-3 KALTENBACH JA, 1992, HEARING RES, V59, P213, DOI 10.1016/0378-5955(92)90118-7 KIANG NYS, 1976, ANN OTO RHINOL LARYN, V85, P752 Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5 Kitzes L, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P256 KOLARIK RC, 1994, J NEUROSCI, V14, P4269 Krishna BS, 2000, J NEUROPHYSIOL, V84, P255 Leake PA, 2000, HEARING RES, V147, P221, DOI 10.1016/S0378-5955(00)00133-7 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 Li HZ, 2006, HEARING RES, V220, P116, DOI 10.1016/j.heares.2006.07.012 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Liberman MC, 1982, NEW PERSPECTIVES NOI, P105 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 Malmierca MS, 2005, NEUROSCIENCE, V136, P883, DOI 10.1016/j.neuroscience.2005.04.040 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 Nataraj K, 2005, J NEUROPHYSIOL, V93, P3294, DOI 10.1152/jn.01152.2004 Nataraj K, 2006, J NEUROPHYSIOL, V95, P2179, DOI 10.1152/jn.01148.2005 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 Oliver DL, 2005, INFERIOR COLLICULUS, P69, DOI 10.1007/0-387-27083-3_2 OLIVER DL, 1987, J COMP NEUROL, V264, P24, DOI 10.1002/cne.902640104 OSEN KK, 1972, J COMP NEUROL, V144, P355, DOI 10.1002/cne.901440307 Palmer CV, 1998, J ACOUST SOC AM, V103, P1705, DOI 10.1121/1.421050 Portfors CV, 2002, HEARING RES, V168, P131, DOI 10.1016/S0378-5955(02)00376-3 Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786 Rajan R, 1998, J COMP NEUROL, V399, P35 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152 REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851 Rhode WS, 1991, NEUROBIOLOGY HEARING, P47 ROBERTSON D, 1982, HEARING RES, V7, P55, DOI 10.1016/0378-5955(82)90081-8 ROSE JE, 1963, J NEUROPHYSIOL, V26, P294 RYAN A, 1978, EXP BRAIN RES, V32, P389 Salvi RJ, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P275 SALVI R, 1982, HEARING RES, V10, P37 SCHMID LM, 1995, NEUROREPORT, V6, P1349 SCHOLES C, 2006, ASS RES OTOLARYNGOL Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X Sinex DG, 2008, HEARING RES, V238, P39, DOI 10.1016/j.heares.2007.11.001 Sinex DG, 2007, J NEUROPHYSIOL, V98, P3171, DOI 10.1152/jn.00516.2007 Sinex DG, 2005, INT REV NEUROBIOL, V70, P371, DOI 10.1016/S0074-7742(05)70011-8 Sinex DG, 2002, HEARING RES, V168, P150, DOI 10.1016/S0378-5955(02)00366-0 Snyder PM, 2002, ENDOCR REV, V23, P258, DOI 10.1210/er.23.2.258 Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013 SNYDER RL, 1998, SOC NEUROSCI SUGA N, 1985, J NEUROPHYSIOL, V53, P1109 SUMNER CJ, 2008, J ASS RES OTOL, V12, DOI DOI 10.1007/S10162-008-0139-6 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R Wang J, 1996, J NEUROPHYSIOL, V75, P171 WEINBERGER NM, 1995, ANNU REV NEUROSCI, V18, P129 WHITLEY JM, 1984, J COMP NEUROL, V229, P257, DOI 10.1002/cne.902290210 Willott JF, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P297 WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310 WILLOTT JF, 1984, BRAIN RES, V309, P159, DOI 10.1016/0006-8993(84)91022-9 Xie R, 2007, J NEUROSCI, V27, P9469, DOI 10.1523/JNEUROSCI.2865-07.2007 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 NR 76 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2008 VL 246 IS 1-2 BP 59 EP 78 DI 10.1016/j.heares.2008.09.010 PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 386AA UT WOS:000261853500007 PM 18938235 ER PT J AU Carmichael, ME Hall, SE Phillips, DP AF Carmichael, Martha E. Hall, Susan E. Phillips, Dennis P. TI Ear and contralateral masker effects on auditory temporal gap detection thresholds SO HEARING RESEARCH LA English DT Article DE Temporal gap detection; Ear differences; Temporal processing; Hemispheric asymmetry; Contralateral masking ID WORD RECOGNITION; LEFT-HEMISPHERE; NORMAL-HEARING; INTERRUPTED NOISE; SPEECH-PERCEPTION; CORTEX; FREQUENCY; RESOLUTION; LISTENERS; SPECIALIZATION AB A temporal processing advantage is thought to underlie the left hemisphere dominance for language. One measure of a temporal processing advantage is temporal acuity or resolution. A standard paradigm for measuring auditory temporal resolution is gap detection in its "with in-channel" and "between-channel" forms. Previous experiments investigating a right ear advantage for within-channel gap detection have yielded conflicting results, and between-channel gap detection has not previously been studied for ear differences. In the present study, the two types of gap detection task were employed, under each of three contralateral masking conditions (no noise, continuous noise and interrupted noise). An adaptive tracking procedure was used to measure the minimal detectable gap at each ear (and therefore, the temporal acuity of the contralateral hemisphere). A significant effect of masking noise was observed in both of the gap detection tasks. Within-channel gap threshold durations were longer in the interrupted noise condition for both ears. Between-channel gap threshold durations were shorter in the interrupted noise condition at the left ear, with a trend in the same direction at the right ear. The study found no significant difference between the ears in thresholds in either gap detection task in any of the masking conditions. This suggests that if the left cerebral hemisphere has a temporal processing advantage, then it is not in the form of acuity for temporal gap detection. (C) 2008 Elsevier B.V. All rights reserved. C1 [Carmichael, Martha E.; Hall, Susan E.; Phillips, Dennis P.] Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada. RP Phillips, DP (reprint author), Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada. EM dennis.phillips@dal.ca RI Phillips, Dennis/A-6496-2011 FU NSERC of Canada; Killam Trust FX The general questions posed in this experiment were inspired by a conversation between Dr. Meagan E. Curtis and DPP at the 2004 meeting of the American Psychological Association. The research was supported by Grants to DPP from NSERC of Canada and the Killam Trust. We specially thank two anonymous reviewers who provided helpful commentary on a previous version of this report, and the anonymous reviewer who provided help with the power calculations used in the interpretation of the statistical data. CR Baker RJ, 2008, LATERALITY, V13, P1, DOI 10.1080/13576500701507861 BAKER RJ, 2000, SPEECH HEARING LANGU, V12, P56 Boehnke SE, 2005, PERCEPT PSYCHOPHYS, V67, P1088, DOI 10.3758/BF03193634 Bowen GP, 2003, CEREB CORTEX, V13, P815, DOI 10.1093/cercor/13.8.815 Brown S, 1997, PERCEPT PSYCHOPHYS, V59, P442, DOI 10.3758/BF03211910 Bryden M. P., 1982, LATERALITY FUNCTIONA Creese I, 1999, BRAIN RES BULL, V50, P431, DOI 10.1016/S0361-9230(99)00179-3 EDDINS DA, 1992, J ACOUST SOC AM, V91, P1069, DOI 10.1121/1.402633 EFRON R, 1985, NEUROPSYCHOLOGIA, V23, P43, DOI 10.1016/0028-3932(85)90042-9 ELANGOVAN S, EAR HEAR IN PRESS FITZGIBBONS PJ, 1982, J ACOUST SOC AM, V72, P761, DOI 10.1121/1.388256 Formby C, 1998, J ACOUST SOC AM, V103, P3554, DOI 10.1121/1.423084 Grose JH, 2001, J ACOUST SOC AM, V109, P1587, DOI 10.1121/1.1354983 Hari R, 1996, NEUROSCI LETT, V205, P138, DOI 10.1016/0304-3940(96)12393-4 Hill PR, 2004, J SPEECH LANG HEAR R, V47, P1022, DOI 10.1044/1092-4388(2004/076) Hugdahl K, 2000, ACTA PSYCHOL, V105, P211, DOI 10.1016/S0001-6918(00)00062-7 Ishigami Y, 2008, HEARING RES, V241, P97, DOI 10.1016/j.heares.2008.05.003 Kelly JB, 1996, BEHAV NEUROSCI, V110, P542 KIMURA D, 1961, CAN J PSYCHOLOGY, V15, P166, DOI 10.1037/h0083219 KIMURA D, 1961, CAN J PSYCHOLOGY, V15, P156, DOI 10.1037/h0083218 Kitzes L, 2008, HEARING RES, V238, P68, DOI 10.1016/j.heares.2008.01.003 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Liegeois-Chauvel C, 1999, CEREB CORTEX, V9, P484, DOI 10.1093/cercor/9.5.484 Lorenzi C, 2000, NEUROCASE, V6, P231 Moore BC., 2003, INTRO PSYCHOL HEARIN Musiek F E, 1990, J Am Acad Audiol, V1, P240 Nicholls MER, 1999, NEUROPSY NEUROPSY BE, V12, P11 Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661 PENNER MJ, 1977, J ACOUST SOC AM, V61, P552, DOI 10.1121/1.381297 Phillips DP, 1997, J ACOUST SOC AM, V101, P3694, DOI 10.1121/1.419376 PHILLIPS DP, 1994, AM J OTOL, V15, P679 Phillips DP, 2000, J ACOUST SOC AM, V108, P2957, DOI 10.1121/1.1320473 PHILLIPS DP, 1990, BEHAV BRAIN RES, V37, P197, DOI 10.1016/0166-4328(90)90132-X Phillips DP, 2002, HEARING RES, V167, P192, DOI 10.1016/S0378-5955(02)00393-3 PHILLIPS DP, 1982, INT J NEUROSCI, V16, P41, DOI 10.3109/00207458209147600 Phillips DP, 2004, PERCEPTION, V33, P371, DOI 10.1068/p5116 PLOMP R, 1964, J ACOUST SOC AM, V36, P277, DOI 10.1121/1.1918946 Posner M., 1978, CHRONOMETRIC EXPLORA SCHWARTZ J, 1980, SCIENCE, V207, P1380 SHAILER MJ, 1983, J ACOUST SOC AM, V74, P467, DOI 10.1121/1.389812 Sininger YS, 2008, EAR HEARING, V29, P228 Stefanatos GA, 2007, NEUROPSYCHOLOGIA, V45, P1127, DOI 10.1016/j.neuropsychologia.2006.09.011 Stefanatos GA, 2005, J INT NEUROPSYCH SOC, V11, P456, DOI 10.1017/S1355617705050538 Stuart A, 2006, J ACOUST SOC AM, V119, P1946, DOI 10.1121/1.2178700 Stuart A, 2008, J AM ACAD AUDIOL, V19, P135, DOI 10.3766/jaaa.19.2.4 Stuart A, 1996, EAR HEARING, V17, P478, DOI 10.1097/00003446-199612000-00004 Sulakhe N, 2003, BRAIN COGNITION, V53, P372, DOI 10.1016/S0278-2626(03)00146-5 Syka J, 2002, HEARING RES, V172, P151, DOI 10.1016/S0378-5955(02)00578-6 TALLAL P, 1978, BRAIN LANG, V5, P13, DOI 10.1016/0093-934X(78)90003-2 Zaehle T, 2004, EUR J NEUROSCI, V20, P2447, DOI 10.1111/j.1460-9568.2004.03687.x Zhang JP, 2004, J NEUROPHYSIOL, V91, P101, DOI 10.1152/jn.00166.2003 NR 51 TC 6 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2008 VL 245 IS 1-2 BP 18 EP 23 DI 10.1016/j.heares.2008.08.002 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 381WD UT WOS:000261565700004 PM 18761067 ER PT J AU Chikar, JA Colesa, DJ Swiderski, DL Di Polo, A Raphael, Y Pfingst, BE AF Chikar, Jennifer A. Colesa, Deborah J. Swiderski, Donald L. Di Polo, Adriana Raphael, Yehoash Pfingst, Bryan E. TI Over-expression of BDNF by adenovirus with concurrent electrical stimulation improves cochlear implant thresholds and survival of auditory neurons SO HEARING RESEARCH LA English DT Article DE Animal psychophysics; EABR; Spiral ganglion cell; Growth factors; Electrical stimulation; Gene therapy; Adenovirus; Ad.BDNF ID SPIRAL GANGLION NEURONS; SENSORINEURAL HEARING-LOSS; MEDIATED GENE-TRANSFER; DEAFENED GUINEA-PIG; NEUROTROPHIC FACTOR; ETHACRYNIC-ACID; IN-VIVO; NERVE; DEGENERATION; INNERVATION AB The survival of the auditory nerve in cases of sensorineural hearing loss is believed to be a major factor in effective cochlear implant function. The current study assesses two measures of cochlear implant thresholds following a post-deafening treatment intended to halt auditory nerve degeneration. We used an adenoviral construct containing a gene insert for brain-derived neurotrophic factor (BDNF), a construct that has previously been shown to promote neuronal survival in a number of biological systems. We implanted ototoxically deafened guinea pigs with a multichannel cochlear implant and delivered a single inoculation of an adenovirus suspension coding for BDNF (Ad.BDNF) into the scala tympani at the time of implantation. Thresholds to electrical stimulation were assessed both psychophysically and electrophysiologically over a period of 80 days. Spiral ganglion cell survival was analyzed at the 80 days time point. Compared to the control group, the Ad.BDNF treated group had lower psychophysical and electrophysiological thresholds as well as higher survival of spiral ganglion cells. Electrophysiological, but not psychophysical, thresholds correlated well with the density of spiral ganglion cells. These results indicate that the changes in the anatomy of the auditory nerve induced by the combination of Ad.BDNF inoculation and the electrical stimulation used for testing improved functional measures of Cl performance. (C) 2008 Elsevier B.V. All rights reserved. C1 [Raphael, Yehoash] Univ Michigan, Kresge Hearing Res Inst, Sch Med, Dept Otolaryngol, Ann Arbor, MI 48109 USA. [Chikar, Jennifer A.; Raphael, Yehoash; Pfingst, Bryan E.] Univ Michigan, Neurosci Program, Ann Arbor, MI 48109 USA. [Di Polo, Adriana] Univ Montreal, Dept Pathol & Cell Biol, Montreal, PQ H3C 3J7, Canada. RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, Sch Med, Dept Otolaryngol, 1150 W Med Ctr Dr,9301 MSRB 3, Ann Arbor, MI 48109 USA. EM jchikar@umich.edu; djmorris@umich.edu; dlswider@umich.edu; adriana.di.polo@umontreal.ca; yoash@umich.edu; bpfingst@umich.edu FU Royal National Institute for Deaf and Hard of Hearing People (RNID); A. Alfred Taubman Medical Research Institute; NIH [R01-DC03389, ROI-DC05401, T32DC00011, P30-DC05188] FX We thank Jennifer Benson, Lisa Beyer, Matthew Johnson, Kohei Kawamoto, Chen-Chung Lee, Ryosej Minoda, Toshihiko Nakaizumi, Taha Qazi, and Gina Su for technical support and assistance in completion of this study. This work was supported by The Royal National Institute for Deaf and Hard of Hearing People (RNID), the R. Jamison and Betty Williams Professorship, a gift from Bette and Alan Hirschfield, the A. Alfred Taubman Medical Research Institute, and NIH Grants R01-DC03389, ROI-DC05401, T32DC0001 I and P30-DC05188. CR Adamson CL, 2002, J NEUROSCI, V22, P1385 Altschuler RA, 1999, ANN NY ACAD SCI, V884, P305, DOI 10.1111/j.1749-6632.1999.tb08650.x Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627 COLOMBO J, 1987, HEARING RES, V31, P287, DOI 10.1016/0378-5955(87)90197-3 Di Polo A, 1998, P NATL ACAD SCI USA, V95, P3978, DOI 10.1073/pnas.95.7.3978 Farinas I, 2001, J NEUROSCI, V21, P6170 Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244 Fritzsch B, 1997, TRENDS NEUROSCI, V20, P159, DOI 10.1016/S0166-2236(96)01007-7 Fritzsch B, 1997, J NEUROSCI, V17, P6213 Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Hartnick CJ, 1996, J NEUROBIOL, V30, P246, DOI 10.1002/(SICI)1097-4695(199606)30:2<246::AID-NEU6>3.0.CO;2-5 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 Hegarty JL, 1997, J NEUROSCI, V17, P1959 Ishimoto S, 2003, AUDIOL NEURO-OTOL, V8, P70, DOI 10.1159/000069000 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 Kim YH, 2007, CELL CYCLE, V6, P612, DOI 10.4161/cc.6.5.3929 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Malgrange B, 1996, NEUROREPORT, V7, P2495, DOI 10.1097/00001756-199611040-00019 Miller AL, 2001, HEARING RES, V151, P1, DOI 10.1016/S0378-5955(00)00226-4 Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9 Miller J M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P57 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264 PFINGST BE, 1981, ACTA OTO-LARYNGOL, V92, P1, DOI 10.3109/00016488109133232 PFINGST BE, 1983, ANN NY ACAD SCI, V405, P224, DOI 10.1111/j.1749-6632.1983.tb31635.x PROSEN CA, 1978, J ACOUST SOC AM, V63, P559, DOI 10.1121/1.381754 Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X Rejali D, 2007, HEARING RES, V228, P180, DOI 10.1016/j.heares.2007.02.010 Schimmang T, 2003, DEVELOPMENT, V130, P4741, DOI 10.1242/dev.00676 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005 Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 STAECKER H, 1995, NEUROREPORT, V6, P1533 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Stover T, 1999, HEARING RES, V136, P124, DOI 10.1016/S0378-5955(99)00115-X Su GL, 2008, HEARING RES, V241, P64, DOI 10.1016/j.heares.2008.04.011 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Weiss MA, 1997, INT J DEV NEUROSCI, V15, P577, DOI 10.1016/S0736-5748(96)00112-8 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 NR 47 TC 35 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2008 VL 245 IS 1-2 BP 24 EP 34 DI 10.1016/j.heares.2008.08.005 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 381WD UT WOS:000261565700005 PM 18768155 ER PT J AU Aiken, SJ Picton, TW AF Aiken, Steven J. Picton, Terence W. TI Envelope and spectral frequency-following responses to vowel sounds SO HEARING RESEARCH LA English DT Article DE Auditory evoked potentials; Frequency-following responses; Speech envelope; Vowel sounds; Fourier analyzer ID STEADY-STATE RESPONSES; AUDITORY-EVOKED-POTENTIALS; BRAIN-STEM RESPONSE; OTOACOUSTIC EMISSIONS; PRESSURE MEASUREMENTS; DISTORTION PRODUCTS; LEARNING-PROBLEMS; NORMAL-HEARING; SPEECH SOUNDS; NERVE FIBERS AB Frequency-following responses (FFRs) were recorded to two naturally produced vowels (/a/ and /i/) in normal hearing Subjects. A digitally implemented Fourier analyzer was used to measure response amplitude at the fundamental frequency and at 23 higher harmonics. Response components related to the stimulus envelope ("envelope FFR") were distinguished from components related to the stimulus spectrum ("spectral FFR") by adding or subtracting responses to opposite polarity stimuli. Significant envelope FFRs were detected at the fundamental frequency of both vowels, for all of the subjects. Significant spectral FFRs were detected at harmonics close to formant peaks, and at harmonics corresponding to cochlear intermodulation distortion products, but these were not significant in all subjects, and were not detected above 1500 Hz. These findings indicate that speech-evoked FFRs follow both the glottal pitch envelope as well as spectral Stimulus components. (C) 2008 Elsevier B.V. All rights reserved. C1 [Aiken, Steven J.] Dalhousie Univ, Sch Human Commun Disorders, Halifax, NS B3H 1R2, Canada. [Picton, Terence W.] Univ Toronto, Baycrest Ctr Geriatr Care, Rotman Res Inst, Toronto, ON M5S 1A1, Canada. RP Aiken, SJ (reprint author), Dalhousie Univ, Sch Human Commun Disorders, 5599 Fenwick St, Halifax, NS B3H 1R2, Canada. EM steve.aiken@dal.ca FU Canadian Institutes for Health Research; James Knowles; Patricia Van Roon FX This study was supported by a Grant from the Canadian Institutes for Health Research and by funds donated by James Knowles. Patricia Van Roon provided technical assistance with the recordings and with the manuscript. CR Aiken SJ, 2008, EAR HEARING, V29, P139 Aiken SJ, 2006, AUDIOL NEURO-OTOL, V11, P213, DOI 10.1159/000092589 ANDERSON DJ, 1971, J ACOUST SOC AM, V49, P1131, DOI 10.1121/1.1912474 Billings CJ, 2007, AUDIOL NEURO-OTOL, V12, P234, DOI 10.1159/000101331 BRUGGE JF, 1969, J NEUROPHYSIOL, V32, P1005 Cebulla M, 2006, J AM ACAD AUDIOL, V17, P93, DOI 10.3766/jaaa.17.2.3 CHERTOFF ME, 1992, J SPEECH HEAR RES, V35, P157 CHIMENTO TC, 1990, ELECTROEN CLIN NEURO, V75, P88, DOI 10.1016/0013-4694(90)90156-E COATS AC, 1979, J ACOUST SOC AM, V65, P747, DOI 10.1121/1.382488 Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5 Dajani HR, 2005, IEEE T BIO-MED ENG, V52, P1614, DOI 10.1109/TBME.2005.851499 Dimitrijevic A, 2004, EAR HEARING, V25, P68, DOI 10.1097/01.AUD.0000111545.71693.48 Dobie RA, 1996, J ACOUST SOC AM, V100, P2236, DOI 10.1121/1.417933 FANT G, 1970, ACOUSTICAL THEORY SP Galbraith GC, 2000, NEUROSCI LETT, V292, P123, DOI 10.1016/S0304-3940(00)01436-1 GOBLICK TJ, 1969, J ACOUST SOC AM, V46, P924, DOI 10.1121/1.1911812 Golding M, 2007, J AM ACAD AUDIOL, V18, P117, DOI 10.3766/jaaa.18.2.4 GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9 Herdman AT, 2003, INT J AUDIOL, V42, P237, DOI 10.3109/14992020309078343 HILLENBRAND J, 1995, J ACOUST SOC AM, V97, P3099, DOI 10.1121/1.411872 HOLMBERG EB, 1988, J ACOUST SOC AM, V84, P511, DOI 10.1121/1.396829 Huis in't Veld F., 1977, SCAND AUDIOL, V6, P35 John MS, 2000, COMPUT METH PROG BIO, V61, P125, DOI 10.1016/S0169-2607(99)00035-8 Johnson KL, 2007, J COGNITIVE NEUROSCI, V19, P376, DOI 10.1162/jocn.2007.19.3.376 Johnson KL, 2005, EAR HEARING, V26, P424, DOI 10.1097/01.aud.0000179687.71662.6e King C, 2002, NEUROSCI LETT, V319, P111, DOI 10.1016/S0304-3940(01)02556-3 Korczak PA, 2005, EAR HEARING, V26, P165, DOI 10.1097/00003446-200504000-00005 Krishnan A., 2007, AUDITORY EVOKED POTE, P313 Krishnan A, 2004, HEARING RES, V189, P1, DOI 10.1016/S0378-5955(03)00402-7 Krishnan A, 1999, AUDIOL NEURO-OTOL, V4, P95, DOI 10.1159/000013826 Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1 LEVI EC, 1995, HEARING RES, V89, P21, DOI 10.1016/0378-5955(95)00118-3 Liberman AM, 1954, PSYCHOL MONOGR-GEN A, V68, P1 Lins OG, 1996, EAR HEARING, V17, P81, DOI 10.1097/00003446-199604000-00001 Luts H, 2004, INT J PEDIATR OTORHI, V68, P915, DOI 10.1016/j.ijporl.2004.02.007 Luts H, 2005, INT J AUDIOL, V44, P244, DOI 10.1080/14992020500057780 MOUSHEGI.G, 1973, ELECTROEN CLIN NEURO, V35, P665, DOI 10.1016/0013-4694(73)90223-X Pandya Pritesh K, 2004, J Am Acad Audiol, V15, P184, DOI 10.3766/jaaa.15.3.2 Picton T. W., 2001, SOUND FDN EARLY AMPL, P59 Picton TW, 2003, INT J AUDIOL, V42, P177, DOI 10.3109/14992020309101316 Plyler P N, 2001, J Am Acad Audiol, V12, P523 Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563 Rance G, 2002, EAR HEARING, V23, P239, DOI 10.1097/00003446-200206000-00008 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 RICKMAN MD, 1991, J ACOUST SOC AM, V89, P2818, DOI 10.1121/1.400720 Rosner B. S., 1994, VOWEL PERCEPTION PRO Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003 SCHIANO JL, 1986, J ACOUST SOC AM, V79, P1563, DOI 10.1121/1.393683 Small Susan A, 2005, J Am Acad Audiol, V16, P172, DOI 10.3766/jaaa.16.3.5 SOHMER H, 1977, ELECTROEN CLIN NEURO, V42, P656, DOI 10.1016/0013-4694(77)90282-6 Stapells D. R., 2000, SOUND FDN EARLY AMPL, P13 Stapells D. R, 2002, HEAR J, V55, P14 STAPELLS DR, 1990, AUDIOLOGY, V29, P262 Stapells DR, 2000, J SPEECH LANGUAGE PA, V42, P74 Stroebel D, 2007, INT J AUDIOL, V46, P287, DOI 10.1080/14992020701212630 Stueve Melissa Payne, 2003, Am J Audiol, V12, P125, DOI 10.1044/1059-0889(2003/020) Tlumak AI, 2007, INT J AUDIOL, V46, P692, DOI 10.1080/14992020701482480 Tremblay KL, 2006, EAR HEARING, V27, P93, DOI 10.1097/01.aud.0000202288.21315.bd VOIGT HF, 1982, HEARING RES, V8, P49, DOI 10.1016/0378-5955(82)90033-8 Wunderlich JL, 2006, HEARING RES, V212, P185, DOI 10.1016/j.heares.2005.11.010 YAMADA O, 1977, ELECTROEN CLIN NEURO, V43, P362, DOI 10.1016/0013-4694(77)90259-0 ZUREK PM, 1992, EAR HEARING, V13, P307, DOI 10.1097/00003446-199210000-00008 ZWISLOCKI J, 1956, J ACOUST SOC AM, V28, P860, DOI 10.1121/1.1908495 NR 63 TC 79 Z9 80 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2008 VL 245 IS 1-2 BP 35 EP 47 DI 10.1016/j.heares.2008.08.004 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 381WD UT WOS:000261565700006 PM 18765275 ER PT J AU Hu, BH Yang, WP Bielefeld, EC Li, M Chen, GD Henderson, D AF Hu, Bo Hua Yang, Wei-Ping Bielefeld, Eric C. Li, Manna Chen, Guang-Di Henderson, Donald TI Apoptotic outer hair cell death in the cochleae of aging Fischer 344/NHsd rats SO HEARING RESEARCH LA English DT Article DE Aging; Apoptosis; Necrosis; Outer hair cell; Fischer 344/NHsd rat ID NOISE-INDUCED APOPTOSIS; CYTOCHROME-C; CHROMATIN CONDENSATION; INTENSE NOISE; AGED COCHLEA; CANCER-CELLS; BAX; PATHWAYS; MITOCHONDRIA; CLEAVAGE AB Apoptotic cell death has been implicated in cochlear degeneration during aging. To better understand the impact and the biological process of outer hair cell (OHC) apoptosis, we investigated the contribution apoptotic cell death to the formation of the OHC lesions, and observed the temporal patterns of the occurrence of apoptotic events associated with the mitochondrial pathway in Fischer 344/NHsd rats, with ages ranging from 20 to 27 months. The results showed that the ratio of apoptotic to necrotic OHCs was 8:1. During the process of cell degeneration, the onset of Bax expression, cytochrome c release, and nuclear DNA fragmentation preceded the onset of nuclear condensation. in contrast, the activation of caspases-3 and -9, as well as the degradation of F-actin, took place after the onset of nuclear condensation. The results of this study suggest that the initiation of nuclear degradation is a caspase-3-indepenclent process. Moreover, the study revealed that OHCs with Bax expression or cytochrome c release could enter either the apoptotic or necrotic pathway, suggesting the presence of a regulatory mechanism that guides degenerating OHCs to die via either the apoptotic or necrotic pathway. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hu, Bo Hua; Bielefeld, Eric C.; Li, Manna; Chen, Guang-Di; Henderson, Donald] SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. [Yang, Wei-Ping] Peoples Liberat Army Gen Hosp, Inst Otolaryngol, Beijing 100853, Peoples R China. RP Hu, BH (reprint author), SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM bhu@acsu.buffalo.edu RI Bielefeld, Eric/D-2015-2012 FU NIDCD [1R01DC0068201A1, 2006BA102BO6] FX The Study was supported by NIDCD 1R01DC0068201A1 and 2006BA102BO6. CR Aiba-Masago S, 2002, ONCOGENE, V21, P2762, DOI 10.1038/sj/onc/1205369 Alam SA, 2001, LARYNGOSCOPE, V111, P528, DOI 10.1097/00005537-200103000-00026 Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004 Cory S, 2005, CANCER CELL, V8, P5, DOI 10.1016/j.ccr.2005.06.012 Galan A, 2001, EUR J CELL BIOL, V80, P312, DOI 10.1078/0171-9335-00159 Gorman AM, 2000, DEV NEUROSCI-BASEL, V22, P348, DOI 10.1159/000017460 Gumpricht E, 2000, TOXICOL APPL PHARM, V164, P102, DOI 10.1006/taap.2000.8894 Hu BH, 2002, HEARING RES, V172, P1, DOI 10.1016/S0378-5955(01)00361-6 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Jonas EA, 2005, ANTIOXID REDOX SIGN, V7, P1092, DOI 10.1089/ars.2005.7.1092 Jordan J, 2003, J PHYSIOL BIOCHEM, V59, P129 Jurgensmeier JM, 1998, P NATL ACAD SCI USA, V95, P4997, DOI 10.1073/pnas.95.9.4997 Karbowski M, 2006, NATURE, V443, P658, DOI 10.1038/nature05111 Komatsu N, 2000, J BIOCHEM-TOKYO, V128, P463 Lallemend F, 2005, CURR PHARM DESIGN, V11, P2257, DOI 10.2174/1381612054367346 Lieberthal W, 1998, AM J PHYSIOL-RENAL, V274, pF315 Liu XS, 1998, P NATL ACAD SCI USA, V95, P8461, DOI 10.1073/pnas.95.15.8461 Nevado J, 2006, ACTA OTO-LARYNGOL, V126, P1134, DOI 10.1080/00016480600672592 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Perianayagam MC, 2003, EUR J CLIN INVEST, V33, P905, DOI 10.1046/j.1365-2362.2003.01225.x Riva C, 2005, Rev Laryngol Otol Rhinol (Bord), V126, P67 Rogalinska M, 2002, CELL MOL BIOL LETT, V7, P995 Ruchaud S, 2002, EMBO J, V21, P1967, DOI 10.1093/emboj/21.8.1967 Sawa H, 2000, INT J ONCOL, V16, P745 Shiraishi J, 2001, AM J PHYSIOL-HEART C, V281, pH1637 Susin SA, 2000, J EXP MED, V192, P571, DOI 10.1084/jem.192.4.571 Thees S, 2005, RESTOR NEUROL NEUROS, V23, P1 Usami S, 1997, BRAIN RES, V747, P147, DOI 10.1016/S0006-8993(96)01243-7 VanderVliet HJJ, 1997, CLIN EXP IMMUNOL, V110, P324 Van De Water TR, 2004, OTOL NEUROTOL, V25, P627, DOI 10.1097/00129492-200407000-00035 Woo M, 1998, GENE DEV, V12, P806, DOI 10.1101/gad.12.6.806 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 Zheng Y, 1998, HEARING RES, V126, P11, DOI 10.1016/S0378-5955(98)00138-5 NR 33 TC 12 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2008 VL 245 IS 1-2 BP 48 EP 57 DI 10.1016/j.heares.2008.08.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 381WD UT WOS:000261565700007 PM 18778762 ER PT J AU Sun, W Hansen, A Zhang, LY Lu, JZ Stolzberg, D Kraus, KS AF Sun, Wei Hansen, Anna Zhang, Liyan Lu, Jianzhong Stolzberg, Daniel Kraus, Kari Suzanne TI Neonatal nicotine exposure impairs development of auditory temporal processing SO HEARING RESEARCH LA English DT Article DE Nicotine; Startle reflex; Gap detection; Development; Auditory cortex ID PREPULSE INHIBITION; GAP DETECTION; CORTEX; LANGUAGE; RAT; PREGNANCY; SYSTEM; AGE; EXPERIENCE; RESPONSES AB Accurate temporal processing of sound is essential for detecting word structures in speech. Maternal smoking affects speech processing in newborns and may influence child language development; however, it is unclear how neonatal exposure to nicotine, present in cigarettes, affects the normal development of temporal processing. The present study used the gap-induced prepulse inhibition (gap-PPI) of the acoustic startle response to investigate the effects of neonatal nicotine exposure on the normal development of gap detection, a behavioral testing procedure of auditory temporal resolution. Neonatal rats were injected twice per day with saline (control), 1 mg/kg nicotine (N-1 mg) or 5 mg/kg nicotine (N-5 mg) from postnatal day 8-12 (P8-P12). During the first month after birth, rats showed poor gap-PPI in all three groups. At P45 and P60, gap-PPI in control rats improved significantly, whereas rats exposed to nicotine exhibited less improvement. At P60, the gap-detection threshold in the N-5 mg group was significantly higher than in the control group, suggesting that neonatal nicotine exposure affects the normal development of gap-detection acuity. Additionally, 1 h after receiving an acute nicotine injection (I mg/kg), gap-PPI recorded in adult rats from the N-5 mg group showed a temporary significant improvement. These results suggest that neonatal nicotine exposure reduces gap-PPI implying an impairment of the normal development of auditory temporal processing by inducing changes in cholinergic systems. Published by Elsevier B.V. C1 [Sun, Wei; Hansen, Anna; Zhang, Liyan; Lu, Jianzhong; Stolzberg, Daniel; Kraus, Kari Suzanne] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. [Sun, Wei; Hansen, Anna] SUNY Buffalo, Dept Commun Disorders & Sci, Buffalo, NY 14214 USA. RP Sun, W (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 3435 Main St, Buffalo, NY 14214 USA. EM weisun@buffalo.edu; aghansen@buffalo.edu; liyanzhang007@hotmail.com; jlu6@buffalo.edu; djs32@buffalo.edu; skkraus@buffalo.edu FU National Institute of Health [DC008685-01]; National Organization for Hearing Research FX We thank Dr. Ison and Dr. Allen at the University at Rochester for generously sharing the custom software for startle reflex testing. This project is supported by grants from National Institute of Health (DC008685-01) and National Organization for Hearing Research. CR Abreu-Villaca Y, 2004, NEUROPSYCHOPHARMACOL, V29, P879, DOI 10.1038/sj.npp.1300401 Bartlett EL, 2007, J NEUROPHYSIOL, V97, P1005, DOI 10.1152/jn.00593.2006 BAYER SA, 1993, NEUROTOXICOLOGY, V14, P83 Bowen GP, 2003, CEREB CORTEX, V13, P815, DOI 10.1093/cercor/13.8.815 Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102 Cooke JE, 2007, HEARING RES, V231, P90, DOI 10.1016/j.heares.2007.06.002 de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007 Dwyer Jennifer B., 2008, Birth Defects Research, V84, P30, DOI 10.1002/bdrc.20118 Faden VB, 2000, J SUBST ABUSE, V12, P329, DOI 10.1016/S0899-3289(01)00052-9 Friedman JT, 2004, DEV BRAIN RES, V152, P83, DOI 10.1016/j.devbrainres.2004.06.007 Fu QJ, 2001, J ACOUST SOC AM, V109, P379, DOI 10.1121/1.1327578 Ison JR, 2002, J ACOUST SOC AM, V112, P740, DOI 10.1121/1.1490352 Johnson KL, 2007, J COGNITIVE NEUROSCI, V19, P376, DOI 10.1162/jocn.2007.19.3.376 KARBE H, 1990, J NEUROL, V237, P19, DOI 10.1007/BF00319662 Key APF, 2007, ENVIRON HEALTH PERSP, V115, P623, DOI 10.1289/ehp.9521 Liang K, 2006, EUR J NEUROSCI, V24, P857, DOI 10.1111/j.1460-9568.2006.04945.x Metherate R, 2005, HEARING RES, V206, P146, DOI 10.1016/j.heares.2005.01.014 MOORE MJ, 1983, J NEUROSCI, V3, P237 Nicholas JG, 2006, EAR HEARING, V27, P286, DOI 10.1097/01.aud.0000215973.76912.c6 Oncken CA, 2003, DRUG ALCOHOL REV, V22, P191, DOI 10.1080/09595230100100633 Purcell DW, 2004, J ACOUST SOC AM, V116, P3581, DOI 10.1121/1.1798354 ROSATI G, 1982, J NEUROL, V227, P21, DOI 10.1007/BF00313543 Saygin AP, 2003, BRAIN, V126, P928, DOI 10.1093/brain/awg082 Schmajuk NA, 2005, BEHAV NEUROSCI, V119, P1546, DOI 10.1037/0735-7044.119.6.1546 Siveke I, 2008, J NEUROSCI, V28, P2043, DOI 10.1523/JNEUROSCI.4488-07.2008 Stollman MHP, 2003, INT J AUDIOL, V42, P303, DOI 10.3109/14992020309101322 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 TRAMMER RM, 1992, ACTA PAEDIATR, V81, P962, DOI 10.1111/j.1651-2227.1992.tb12154.x Trehub SE, 1996, J SPEECH HEAR RES, V39, P1315 Wallace MN, 2007, J NEUROPHYSIOL, V98, P1941, DOI 10.1152/jn.00697.2007 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 WILLOTT JF, 1994, BEHAV NEUROSCI, V108, P703, DOI 10.1037/0735-7044.108.4.703 Wittmann M, 2004, NEUROREPORT, V15, P2401, DOI 10.1097/00001756-200410250-00020 Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 NR 35 TC 8 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2008 VL 245 IS 1-2 BP 58 EP 64 DI 10.1016/j.heares.2008.08.009 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 381WD UT WOS:000261565700008 PM 18801421 ER PT J AU Ehmann, H Salzig, C Lang, P Friauf, E Nothwang, HG AF Ehmann, Heike Salzig, Christian Lang, Patrick Friauf, Eckhard Nothwang, Hans Gerd TI Minimal sex differences in gene expression in the rat superior olivary complex SO HEARING RESEARCH LA English DT Article DE Auditory system; Superior olivary complex; Transcriptome; Sexual dimorphism ID AUDITORY BRAIN-STEM; INFERIOR COLLICULUS; OTOACOUSTIC EMISSIONS; GENDER DIFFERENCES; COCHLEAR NUCLEUS; EAR ASYMMETRIES; PITUITARY-GLAND; TEMPORAL-ORDER; X-INACTIVATION; AGE AB A critical issue in large-scale gene expression analysis is the impact of sexually dimorphic genes, which may confound the results when sampling across sexes. Here, we assessed, for the first time, sex differences at the transcriptome level in the auditory brainstem. To this end, microarray experiments covering the whole rat genome were performed in the superior olivary complex (SOC) of 16-day-old Sprague-Dawley rats. Sexually dimorphic genes were identified using two criteria: a >= 2-fold change and a P-value < 0.05. Only 12 out of 41,374 probes (0.03%) showed sexually dimorphic expression. For companson, pituitaries from 60-day-old female and male rats were analyzed, as this gland is known to display many sex-specific features. Indeed, almost 40 times more probes, i.e. 460 (1.1 %), displayed sexual dimorphism. Quantitative RT-PCR confirmed 47 out of 48 microarray results from both tissues. Taking microarray and qRT-PCR data together, the expression of six genes (Prl, Eif2s3y, Gnrhr, Panic, Ddx3y, Akr1c6) was higher in the male SOC, whereas two genes were upregulated in the female SOC (LOC302172, Xist). Four of these genes are sex-chromosome linked (Eif2s3y, Ddx3y, LOC302172, Xist). In summary, our data indicate only minor and negligible sex-specific differences in gene expression within the SOC at P16. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ehmann, Heike; Friauf, Eckhard; Nothwang, Hans Gerd] Univ Kaiserslautern, Dept Biol, Anim Physiol Grp, D-67653 Kaiserslautern, Germany. [Salzig, Christian; Lang, Patrick] Fraunhofer Inst Ind Math ITWM, Dept Syst Anal Prognosis & Control, D-67663 Kaiserslautern, Germany. [Nothwang, Hans Gerd] Carl VonOssietzky Univ Oldenburg, Dept Neurogenet, D-26111 Oldenburg, Germany. RP Nothwang, HG (reprint author), Univ Kaiserslautern, Dept Biol, Anim Physiol Grp, POB 3049, D-67653 Kaiserslautern, Germany. EM ehmann@rhrk.uni-kl.de; christian.salzig@itwm.fraunhofer.de; patrick.lang@itwm.fraunhofer.de; eckhard.friauf@biologie.uni-kl.de; hans.g.nothwang@uni-oldenburg.de RI Nothwang, Hans/C-5847-2011; Friauf, Eckhard/D-7529-2012 OI Friauf, Eckhard/0000-0002-1833-1698 FU State Rhineland Palatinate FX We thank Anja Feistner for excellent technical support, members of the Kaiserslautern group for comments during the course of this work, and Karsten Andresen (Institut fiJr Biotechnologie und Wirkstoff-Forschung, Kaiserslautern) for helpful discussions with the analysis. This work was supported by an A4 grant of the State Rhineland Palatinate within the Hochschulprogramm Wissen schafft Zukunft. CR Becker M, 2008, NEUROSCIENCE, V154, P233, DOI 10.1016/j.neuroscience.2008.02.017 Berninger E, 2007, INT J AUDIOL, V46, P661, DOI 10.1080/14992020701438797 Blackshaw S, 2002, CURR OPIN NEUROBIOL, V12, P110, DOI 10.1016/S0959-4388(02)00298-2 BROWN CJ, 1991, NATURE, V349, P38, DOI 10.1038/349038a0 Cahill L, 2006, NAT REV NEUROSCI, V7, P477, DOI 10.1038/nrn1909 Chaudhuri JD, 2005, MED SCI MONITOR, V11, pRA52 Cho YS, 2002, JARO, V3, P54, DOI 10.1007/s101620010042 Cromie GA, 2007, TRENDS CELL BIOL, V17, P448, DOI 10.1016/j.tcb.2007.07.007 Dewing Phoebe, 2003, Brain Res Mol Brain Res, V118, P82 DON M, 1993, J ACOUST SOC AM, V94, P2135, DOI 10.1121/1.407485 Ehrlich I, 1999, J PHYSIOL-LONDON, V520, P121, DOI 10.1111/j.1469-7793.1999.00121.x Ehrmann IE, 1998, HUM MOL GENET, V7, P1725, DOI 10.1093/hmg/7.11.1725 Feroze-Merzoug F, 2002, BIOTECHNIQUES, V32, P776 Fink M, 2005, RESTOR NEUROL NEUROS, V23, P281 Friedland DR, 2006, NEUROSCIENCE, V142, P753, DOI 10.1016/j.neuroscience.2006.06.060 Gomez-Ospina N, 2006, CELL, V127, P591, DOI 10.1016/j.cell.2006.10.017 Grothe B, 2003, NAT REV NEUROSCI, V4, P1 Harris JA, 2005, J COMP NEUROL, V493, P460, DOI 10.1002/cne.20776 Henry KR, 2002, HEARING RES, V170, P107, DOI 10.1016/S0378-5955(02)00391-X Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617 Kah O, 2007, GEN COMP ENDOCR, V153, P346, DOI 10.1016/j.ygcen.2007.01.030 Kempna P, 2008, BEST PRACT RES CL EN, V22, P77, DOI 10.1016/j.beem.2007.07.008 Klug A, 2006, J NEUROPHYSIOL, V96, P1547, DOI 10.1152/jn.01381.2005 Koehl A, 2004, EUR J NEUROSCI, V20, P3244, DOI 10.1111/j.1460-9568.2004.03791.x Konishi M, 2003, ANNU REV NEUROSCI, V26, P31, DOI 10.1146/annurev.neuro.26.041002.131123 Ma MC, 2005, MAMM GENOME, V16, P391, DOI 10.1007/s00335-004-2464-3 MacMaster FP, 2007, LIFE SCI, V80, P940, DOI 10.1016/j.lfs.2006.11.040 MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K MIMICS K, 2000, NEURON, V28, P53 Moles G, 2007, GEN COMP ENDOCR, V150, P75, DOI 10.1016/j.ygcen.2006.07.012 Morey JS, 2006, BIOL PROCED ONLINE, V8, P175, DOI 10.1251/bpo126 Nishida Y, 2005, GENOMICS, V85, P679, DOI 10.1016/j.ygeno.2005.02.013 Nothwang HG, 2003, MOL BRAIN RES, V116, P59, DOI 10.1016/S0169-328X(03)00234-1 Pang WW, 2007, J MAMMARY GLAND BIOL, V12, P211, DOI 10.1007/s10911-007-9054-4 PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45 Rosner A, 2007, CURR MED CHEM, V14, P2517, DOI 10.2174/092986707782023677 SCHALLREUTER KU, 2007, EXP DERMATOL, V17, P395 Sininger YS, 1998, HEARING RES, V126, P58, DOI 10.1016/S0378-5955(98)00152-X Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x SMITH PH, 2002, INTEGRATIVE FUNCTION, P6 Song P, 2006, J BIOL CHEM, V281, P15582, DOI 10.1074/jbc.M512866200 Srinivasan G, 2004, NEUROSCIENCE, V128, P617, DOI 10.1016/j.neuroscience.2004.06.012 Szymaszek A, 2006, NEUROSCI LETT, V403, P190, DOI 10.1016/j.neulet.2006.04.062 Tadros SF, 2007, BRAIN RES, V1127, P1, DOI 10.1016/j.brainres.2006.09.081 Vergnes L, 2003, J LIPID RES, V44, P503, DOI 10.1194/jlr.M200399-JLR200 Vrinten DH, 2001, EUR J PHARMACOL, V429, P61, DOI 10.1016/S0014-2999(01)01306-1 Xu J, 2002, HUM MOL GENET, V11, P1409, DOI 10.1093/hmg/11.12.1409 Yang X, 2006, GENOME RES, V16, P995, DOI 10.1101/gr.5217506 Zhan XQ, 2003, CLIN CHEM, V49, P1740, DOI 10.1373/49.10.1740 NR 51 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2008 VL 245 IS 1-2 BP 65 EP 72 DI 10.1016/j.heares.2008.08.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 381WD UT WOS:000261565700009 PM 18793710 ER PT J AU Hayashi, H Kunisada, T Takakura, N Aoki, M Mizuta, K Ito, Y AF Hayashi, Hisamitsu Kunisada, Takahiro Takakura, Nobuyuki Aoki, Mitsuhiro Mizuta, Keisuke Ito, Yatsuji TI Involvement of platelet-derived growth of mesenchyme and sensory epithelium factor receptor-beta in maintenance of the neonatal mouse inner ear SO HEARING RESEARCH LA English DT Article DE Platelet-derived growth factor receptor; Inner ear; Mesenchymal tissue; Neonatal mouse; Immunohistochemistry; APB5 ID PROTEASE-ACTIVATED LIGAND; BLOOD-LABYRINTH BARRIER; PDGF-ALPHA-RECEPTOR; DEFICIENT MICE; CELL-DEVELOPMENT; HAIR-CELLS; RAT; EXPRESSION; COCHLEA; MORPHOGENESIS AB Platelet-derived growth factor receptor (PDGFR) signaling has been demonstrated to play a pivotal role in early embryonic development. Although the expression of PDGF in the inner ear has been studied by RTPCR, how PDGFR is involved there remains largely unclear. In the current study, we used the antagonistic anti-PDGFR-beta antibody, APB5, to investigate the role of PDGFR-beta in the neonatal mouse inner ear. PDGFR-beta was detected immunohistochemically in the mesenchymal tissue adjacent to the sensory epithelium of the inner ear, and a ligand for PDGFR-beta was detected around the sensory epithelium. To determine whether this expression plays a functional role, we injected APB5 into neonates to block the function of PDGFR-beta. Mesenchymal tissue defects and abnormal capillaries with irregular shapes, especially in the cochlear lateral wall, were detected in APB5-treated mice. The results of a TUNEL assay revealed that not only the adjacent mesenchymal cells but also the sensory epithelial cells underwent cell death. These results indicate that PDGFR-beta signals are required for the survival of the capillary and mesenchymal cells in the neonatal mouse inner ear and also indirectly implicate these signals in the survival of the sensory epithelium. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hayashi, Hisamitsu; Aoki, Mitsuhiro; Mizuta, Keisuke; Ito, Yatsuji] Gifu Univ, Grad Sch Med, Dept Otolaryngol, Gifu 5011194, Japan. [Kunisada, Takahiro] Gifu Univ, Grad Sch Med, Dept Tissue & Organ Dev, Gifu 5011194, Japan. [Takakura, Nobuyuki] Osaka Univ, Microbial Dis Res Inst, Dept Signal Transduct, Suita, Osaka 565087, Japan. RP Hayashi, H (reprint author), Gifu Univ, Grad Sch Med, Dept Otolaryngol, 1-1 Yanagido, Gifu 5011194, Japan. EM hh@gifu-u.ac.jp; kunisad@gifu-u.ac.jp; ntakaku@biken.osaka-u.ac.jp; aoki@gifu-u.ac.jp; kmizuta@gifu-u.ac.jp; ity@gifu-u.ac.jp CR Basciani S, 2004, BIOL REPROD, V70, P168, DOI 10.1095/biolreprod.103.019232 Bergsten E, 2001, NAT CELL BIOL, V3, P512, DOI 10.1038/35074588 Betsholtz C, 2004, CYTOKINE GROWTH F R, V15, P215, DOI 10.1016/j.cytogfr.2004.03.005 Bostrom H, 1996, CELL, V85, P863, DOI 10.1016/S0092-8674(00)81270-2 Davidson JM, 1999, FASEB J, V13, P325 Fruttiger M, 2000, CURR BIOL, V10, P1283, DOI 10.1016/S0960-9822(00)00757-0 Fruttiger M, 1996, NEURON, V17, P1117, DOI 10.1016/S0896-6273(00)80244-5 Fruttiger M, 1999, DEVELOPMENT, V126, P457 Gnessi L, 2000, J CELL BIOL, V149, P1019, DOI 10.1083/jcb.149.5.1019 Heldin CH, 1998, BBA-REV CANCER, V1378, pF79, DOI 10.1016/S0304-419X(98)00015-8 Heldin CH, 1999, PHYSIOL REV, V79, P1283 HELDIN CH, 1985, MOL CELL ENDOCRINOL, V39, P169, DOI 10.1016/0303-7207(85)90061-9 Hellstrom M, 2001, J CELL BIOL, V153, P543, DOI 10.1083/jcb.153.3.543 Hellstrom M, 1999, DEVELOPMENT, V126, P3047 Hequembourg S, 2001, JARO, V2, P118 Hoch RV, 2003, DEVELOPMENT, V130, P4769, DOI 10.1242/dev.00721 JAHNKE K, 1980, ARCH OTO-RHINO-LARYN, V228, P29, DOI 10.1007/BF00455891 Kamiya K, 2007, AM J PATHOL, V171, P214, DOI 10.2353/ajpath.2007.060948 Karlsson L, 1999, DEVELOPMENT, V126, P2611 Karlsson L, 2000, DEVELOPMENT, V127, P3457 LaRochelle WJ, 2001, NAT CELL BIOL, V3, P517, DOI 10.1038/35074593 Lee YW, 2004, ACTA OTO-LARYNGOL, V124, P558, DOI 10.1080/00016480410016577 LEVEEN P, 1994, GENE DEV, V8, P1875, DOI 10.1101/gad.8.16.1875 Li XR, 2000, NAT CELL BIOL, V2, P302 Lindahl P, 1997, SCIENCE, V277, P242, DOI 10.1126/science.277.5323.242 Lindahl P, 1997, DEVELOPMENT, V124, P3943 Lindahl P, 1998, DEVELOPMENT, V125, P3313 Malgrange B, 1998, NEUROCHEM RES, V23, P1133, DOI 10.1023/A:1020724506337 Malgrange B, 2002, HEARING RES, V170, P48, DOI 10.1016/S0378-5955(02)00451-3 Ohlsson R, 1999, DEV BIOL, V212, P124, DOI 10.1006/dbio.1999.9306 Ramachandran RK, 1997, DEVELOPMENT, V124, P2355 Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9 Risau W, 1992, Growth Factors, V7, P261, DOI 10.3109/08977199209046408 Saffer LD, 1996, HEARING RES, V94, P14, DOI 10.1016/0378-5955(95)00228-6 Sano H, 2001, CIRCULATION, V103, P2955 Sano H, 2002, AM J PATHOL, V161, P135, DOI 10.1016/S0002-9440(10)64165-X Soriano P, 1997, DEVELOPMENT, V124, P2691 SORIANO P, 1994, GENE DEV, V8, P1888, DOI 10.1101/gad.8.16.1888 Suzuki M, 1998, HEARING RES, V116, P107, DOI 10.1016/S0378-5955(97)00208-6 Suzuki M, 1999, HEARING RES, V129, P27, DOI 10.1016/S0378-5955(98)00214-7 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 Xiang MQ, 1998, DEVELOPMENT, V125, P3935 Zheng JL, 1997, J NEUROSCI, V17, P216 NR 43 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2008 VL 245 IS 1-2 BP 73 EP 81 DI 10.1016/j.heares.2008.08.01 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 381WD UT WOS:000261565700010 PM 18817860 ER PT J AU Popelar, J Grecova, J Rybalko, N Syka, J AF Popelar, Jiri Grecova, Jolana Rybalko, Natalia Syka, Josef TI Comparison of noise-induced changes of auditory brainstem and middle latency response amplitudes in rats SO HEARING RESEARCH LA English DT Article DE Noise exposure; Long evans rats; Middle latency responses; Auditory brainstem responses; Amplitude-intensity functions ID DORSAL COCHLEAR NUCLEUS; CENTRAL-NERVOUS-SYSTEM; INDUCED HEARING-LOSS; AWAKE GUINEA-PIGS; INFERIOR COLLICULUS; EVOKED-RESPONSES; ACOUSTIC TRAUMA; ELECTRICAL-STIMULATION; DISCHARGE PATTERNS; GENERATOR SYSTEMS AB Auditory brainstem responses (ABRs) and middle latency responses (MLRs) were compared after noise exposure to elucidate the specific effects of a loud sound on the central auditory system in rats. Rats were exposed twice for I h to broad-band noise (BBN) of 118 dB SPL (first exposure) and 122 dB SPL (second exposure) with an interval between the exposures of three weeks. The first noise exposure produced threshold shifts (TSs) amounting to 5-45 dB, and the second exposure resulted in 40-70 dB TSs. The slope of MLR amplitude-intensity functions (AIFs) increased significantly in correlation with the TS, resembling loudness recruitment. However, maximal MLR amplitudes measured at 8 kHz increased after the first and second noise exposures to almost equal values in individual animals regardless of the TS. In addition, maximum MLR amplitude enhancement was dependent on pre-exposure MLR voltage, probably reflecting the level of metabolic activity or neurotransmitter processes in individual animals. In contrast to MLR amplitudes, ABR amplitudes were suppressed after noise exposure without changing the slope of ABR AIFs. The MLR changes reflect the specific effects of noise exposure on the central auditory system. (C) 2008 Elsevier B.V. All rights reserved. C1 [Popelar, Jiri; Grecova, Jolana; Rybalko, Natalia; Syka, Josef] Acad Sci Czech Republic, Inst Expt Med, VVI, Prague 14220 4, Czech Republic. RP Popelar, J (reprint author), Acad Sci Czech Republic, Inst Expt Med, VVI, Videnska 1083, Prague 14220 4, Czech Republic. EM jpopelar@biomed.cas.cz RI Rybalko, Natalia/H-2629-2014; Popelar, Jiri/H-2558-2014; Syka, Josef/H-3103-2014 FU Grant Agency of the Czech Republic [AVOZ50390512, 309/07/1336]; Internal Grant Agency of the Czech Ministry of Health [NR 8113-4]; Center of Neuroscience [LC 554] FX The study was supported by Grants AVOZ50390512 and 309/07/1336 from the Grant Agency of the Czech Republic, NR 8113-4 from the Internal Grant Agency of the Czech Ministry of Health and LC 554 from the Center of Neuroscience. CR Abbott SD, 1999, NEUROSCIENCE, V93, P1375, DOI 10.1016/S0306-4522(99)00300-0 Bauer CA, 2001, JARO, V2, P54 Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 BUCHWALD JS, 1981, BRAIN RES, V205, P91, DOI 10.1016/0006-8993(81)90722-8 CAIRD DM, 1987, ELECTROEN CLIN NEURO, V68, P237, DOI 10.1016/0168-5597(87)90034-7 CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3 Eggermont JJ, 2007, PROG BRAIN RES, V166, P19, DOI 10.1016/S0079-6123(07)66002-6 Eldredge D H, 1973, Adv Otorhinolaryngol, V20, P64 EVANS EF, 1993, PROG BRAIN RES, V97, P117 EVANS EF, 1973, EXP BRAIN RES, V17, P402 EVANS EF, 1975, AUDIOLOGY, V14, P419 FULLERTON BC, 1990, HEARING RES, V49, P363, DOI 10.1016/0378-5955(90)90114-5 Gerken GM, 1996, HEARING RES, V97, P75 Gerken GM, 2001, HEARING RES, V157, P52, DOI 10.1016/S0378-5955(01)00277-5 GERKEN GM, 1984, HEARING RES, V13, P249, DOI 10.1016/0378-5955(84)90078-9 Heinz MG, 2005, JARO-J ASSOC RES OTO, V6, P91, DOI 10.1007/s10162-004-5043-0 HINMAN CL, 1983, BRAIN RES, V264, P57, DOI 10.1016/0006-8993(83)91120-4 HUANG CM, 1977, BRAIN RES, V137, P291 Ison JR, 2007, JARO-J ASSOC RES OTO, V8, P539, DOI 10.1007/s10162-007-0098-3 JASTREBOFF PJ, 1993, BRIT J AUDIOL, V27, P7, DOI 10.3109/03005369309077884 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Jastreboff P J, 2000, J Am Acad Audiol, V11, P162 Kaga K, 1997, ACTA OTO-LARYNGOL, V117, P197, DOI 10.3109/00016489709117768 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 KASEDA Y, 1991, J NEUROL, V238, P427, DOI 10.1007/BF00314648 Kiang N Y, 1970, Ciba Found Symp, P241 Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750 KRAUS N, 1992, BRAIN RES, V587, P186, DOI 10.1016/0006-8993(92)90996-M Kraus N, 1995, Electroencephalogr Clin Neurophysiol Suppl, V44, P93 KRAUS N, 1988, ELECTROEN CLIN NEURO, V70, P541, DOI 10.1016/0013-4694(88)90152-6 Leavitt VM, 2007, J PSYCHIATR NEUROSCI, V32, P339 Lim VK, 2005, ANN NY ACAD SCI, V1060, P349, DOI 10.1196/annals.1360.029 Lockwood AH, 1998, NEUROLOGY, V50, P114 Lonsbury-Martin B L, 1981, Am J Otolaryngol, V2, P321, DOI 10.1016/S0196-0709(81)80042-7 MCGEE T, 1991, BRAIN RES, V544, P211, DOI 10.1016/0006-8993(91)90056-2 Melcher JR, 1996, HEARING RES, V93, P28, DOI 10.1016/0378-5955(95)00179-4 MOLLER AR, 1986, ELECT CLIN NEUROPHYS, V65, P61 MOREST DK, 1983, HEARING RES, V9, P145, DOI 10.1016/0378-5955(83)90024-2 Morita T, 2007, NEUROSCI RES, V58, P6, DOI 10.1016/j.neures.2007.01.010 NOVIKOVA L A, 1982, Human Physiology (English Translation of Fiziologiya Cheloveka), V8, P371 POPELAR J, 1987, HEARING RES, V26, P239, DOI 10.1016/0378-5955(87)90060-8 RADIONOVA EA, 2003, EXPT HEARING PHYSL N SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U SALVI RJ, 1978, EXP BRAIN RES, V32, P301 Salvi RJ, 2000, NOISE HEALTH, V2, P9 SALVI RJ, 1979, ARCH OTO-RHINO-LARYN, V224, P111, DOI 10.1007/BF00455233 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Sendowski I, 2004, EUR ARCH OTO-RHINO-L, V261, P77, DOI 10.1007/s00405-003-0647-2 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407 SIMPSON GV, 1993, BRAIN RES, V602, P251, DOI 10.1016/0006-8993(93)90690-O SIMPSON GV, 1993, BRAIN RES, V602, P240, DOI 10.1016/0006-8993(93)90689-K STARR A, 1976, ELECTROEN CLIN NEURO, V41, P595, DOI 10.1016/0013-4694(76)90005-5 Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6 Syka J, 1989, PROGR SENSORY PHYSL, V9, P97 SYKA J, 1994, HEARING RES, V78, P158, DOI 10.1016/0378-5955(94)90021-3 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0 Tan J, 2007, NEUROSCIENCE, V145, P715, DOI 10.1016/j.neuroscience.2006.11.067 WANG CY, 1972, J ACOUST SOC AM, V52, P1678, DOI 10.1121/1.1913302 Wang J, 1996, J NEUROPHYSIOL, V75, P171 Wang JA, 2002, HEARING RES, V168, P238, DOI 10.1016/S0378-5955(02)00360-X WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 WOOD CC, 1982, ELECTROEN CLIN NEURO, V54, P25, DOI 10.1016/0013-4694(82)90228-0 Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 NR 68 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2008 VL 245 IS 1-2 BP 82 EP 91 DI 10.1016/j.heares.2008.09.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 381WD UT WOS:000261565700011 PM 18812219 ER PT J AU Spankovich, C Hood, LJ Grantham, DW Polley, DB AF Spankovich, Christopher Hood, Linda J. Grantham, D. Wesley Polley, Daniel B. TI Application of frequency modulated chirp stimuli for rapid and sensitive ABR measurements in the rat SO HEARING RESEARCH LA English DT Article DE ABR; Amplitude; Threshold; Chirp; Mouse; Rat ID BRAIN-STEM RESPONSES; AUDITORY-EVOKED-RESPONSES; TONE BURSTS; SIGNALS; HUMANS AB Rodents have proven to be a useful model system to screen genes, ototoxic compounds and sound exposure protocols that may play a role in hearing loss. High-throughput screening depends upon a rapid and reliable functional assay for hearing loss. This study describes the use of a frequency modulated (FM) chirp stimulus as an alternative to the click to derive a rapid assessment of auditory brainstem response (ABR) threshold in the rodent. We designed a rising frequency A-chirp based upon the spatial mapping of preferred frequency along the rat basilar membrane to provide a more synchronous and equipotent input across the length of the cochlea. We observed that the ABR wave I and wave IV amplitudes evoked by the A-chirp were significantly greater than the click and that A-chirp minimum response thresholds were lower than the click. Subsequent analyses compared the efficacy of the A-chirp to linear, time-reversed and amplitude-reversed chirps and confirmed that the A-chirp was most effective chirp configuration. These data suggest that the A-chirp may be optimally suited as a single screening broad-frequency stimulus for rapid ABR threshold estimations in the rodent and could serve to complement more detailed frequency-specific physiologic and behavioral estimates of hearing threshold. (C) 2008 Published by Elsevier B.V. C1 [Spankovich, Christopher; Hood, Linda J.; Grantham, D. Wesley; Polley, Daniel B.] Vanderbilt Univ, Med Ctr, Dept Hearing & Speech Sci, Vanderbilt Bill Wilkerson Ctr Otolaryngol & Commu, Nashville, TN 37232 USA. [Hood, Linda J.; Polley, Daniel B.] Vanderbilt Univ, Vanderbilt Kennedy Ctr Res Human Dev, Nashville, TN 37202 USA. RP Polley, DB (reprint author), Vanderbilt Univ, Med Ctr, Dept Hearing & Speech Sci, Vanderbilt Bill Wilkerson Ctr Otolaryngol & Commu, 465 21st Ave South,7114C MRB 3, Nashville, TN 37232 USA. EM daniel.polley@vanderbilt.edu CR ANDERSON DJ, 1971, J ACOUST SOC AM, V49, P1131, DOI 10.1121/1.1912474 Bekesy G., 1960, EXPT HEARING Burkard R, 2006, BRAIN RES, V1091, P27, DOI 10.1016/j.brainres.2006.02.132 CHIAPPA KH, 1979, ARCH NEUROL-CHICAGO, V36, P81 Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438 Elberling C, 2007, J ACOUST SOC AM, V122, P2772, DOI 10.1121/1.2783985 Fobel O, 2004, J ACOUST SOC AM, V116, P2213, DOI 10.1121/1.1787523 GORGA MP, 1988, J SPEECH HEAR RES, V31, P87 GORGA MP, 1994, PRINCIPLES APPL AUDI GORGA MP, 1989, EAR HEARING, V10, P217, DOI 10.1097/00003446-198908000-00002 HECOX K, 1976, J ACOUST SOC AM, V60, P1187, DOI 10.1121/1.381194 Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 MOLLER AR, 1983, EXP NEUROL, V80, P633, DOI 10.1016/0014-4886(83)90313-8 NEELY ST, 1988, J ACOUST SOC AM, V83, P652, DOI 10.1121/1.396542 Picton Terence W, 2005, J Am Acad Audiol, V16, P140, DOI 10.3766/jaaa.16.3.3 Ruggero MA, 2007, JARO-J ASSOC RES OTO, V8, P153, DOI 10.1007/s10162-007-0081-z SHORE SE, 1985, J ACOUST SOC AM, V78, P1286, DOI 10.1121/1.392898 SHORE SE, 1984, AM J OTOLARYNG, V5, P34, DOI 10.1016/S0196-0709(84)80018-6 STOCKARD JE, 1979, ARCH NEUROL-CHICAGO, V36, P823 Zhou XM, 2006, BRAIN RES, V1091, P16, DOI 10.1016/j.brainres.2006.01.107 NR 20 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2008 VL 245 IS 1-2 BP 92 EP 97 DI 10.1016/j.heares.2008.09.001 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 381WD UT WOS:000261565700012 PM 18812220 ER PT J AU Vermeire, K Nobbe, A Schleich, P Nopp, P Voormolen, MH Van de Heyning, PH AF Vermeire, Katrien Nobbe, Andrea Schleich, Peter Nopp, Peter Voormolen, Maurits H. Van de Heyning, Paul H. TI Neural tonotopy in cochlear implants: An evaluation in unilateral cochlear implant patients with unilateral deafness and tinnitus SO HEARING RESEARCH LA English DT Article DE Single-sided deafness; Cochlear implants; Tonotopy; Greenwood ID PITCH PERCEPTION; RESIDUAL HEARING; EAR; MAP AB In cochlear implants, the signal is filtered into different frequency bands and transmitted to electrodes along the cochlea. In this study the frequency-place function for electric hearing was investigated as a means to possibly improve speech coding by delivering information to the appropriate cochlear place. Fourteen subjects with functional hearing in the contralateral ear have been provided with a MED-EL cochlear implant in the deaf ear in order to reduce intractable tinnitus. Pitch scaling experiments were performed using single-electrode, constant-amplitude, constant-rate stimuli in the implanted ear, and acoustic sinusoids in the contralateral ear. The frequency-place function was calculated using the electrode position in the cochlea as obtained from postoperative skull radiographs. Individual frequency-place functions were compared to Greenwood's function in normal hearing. Electric stimulation elicited a low pitch in the apical region of the cochlea, and shifting the stimulating electrode towards the basal region elicited increasingly higher pitch. The frequency-place function did not show a significant shift relative to Greenwood's function. In cochlear implant patients with functional hearing in the non-implanted ear, electrical stimulation produced a frequency-place function that on average resembles Greenwood's function. These results differ from previously derived data. (C) 2008 Elsevier B.V. All rights reserved. C1 [Vermeire, Katrien] Univ Innsbruck, Inst Ion Phys & Appl Phys, C Doppler Lab Act Implantable Syst, A-6020 Innsbruck, Austria. [Nobbe, Andrea; Schleich, Peter; Nopp, Peter] MED EL GmbH, A-6020 Innsbruck, Austria. [Voormolen, Maurits H.] Univ Antwerp, Univ Antwerp Hosp, Dept Radiol, B-2650 Edegem, Belgium. [Vermeire, Katrien; Van de Heyning, Paul H.] Univ Antwerp, Univ Antwerp Hosp, Dept Otorhinolaryngol & Head & Neck Surg, B-2650 Edegem, Belgium. RP Vermeire, K (reprint author), Univ Innsbruck, Inst Ion Phys & Appl Phys, C Doppler Lab Act Implantable Syst, Technikerstr 25, A-6020 Innsbruck, Austria. EM katrien.vermeire@uibk.ac.at; Andrea.nobbe@web.de; Peter.schleich@medel.com; Peter.nopp@medel.com; Maurits.voormolen@uza.be; Paul.van.de.heyning@uza.be CR Baumann U, 2006, HEARING RES, V213, P34, DOI 10.1016/j.heares.2005.12.010 Blamey PJ, 1996, HEARING RES, V99, P139, DOI 10.1016/S0378-5955(96)00095-0 Boex C, 2006, JARO-J ASSOC RES OTO, V7, P110, DOI 10.1007/s10162-005-0027-2 BUSBY PA, 1994, J ACOUST SOC AM, V95, P2658, DOI 10.1121/1.409835 Dorman MF, 2007, JARO-J ASSOC RES OTO, V8, P234, DOI 10.1007/s10162-007-0071-1 DORMAN MF, 1990, EAR HEARING, V11, P310, DOI 10.1097/00003446-199008000-00010 DORMAN MF, 1994, J ACOUST SOC AM, V95, P1677, DOI 10.1121/1.408558 Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 James C, 2001, AUDIOL NEURO-OTOL, V6, P87, DOI 10.1159/000046814 Kawano A, 1996, ANN OTO RHINOL LARYN, V105, P701 MCDERMOTT H, AUDIO NEURO IN PRESS Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101 Sridhar Divya, 2006, Audiol Neurootol, V11 Suppl 1, P16, DOI 10.1159/000095609 Stakhovskaya O, 2007, JARO-J ASSOC RES OTO, V8, P220, DOI 10.1007/s10162-007-0076-9 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645 VERMEIRE K, AUDIO NEURO IN PRESS Vinay, 2007, EAR HEARING, V28, P231 Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X NR 21 TC 23 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2008 VL 245 IS 1-2 BP 98 EP 106 DI 10.1016/j.heares.2008.09.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 381WD UT WOS:000261565700013 PM 18817861 ER PT J AU Markaryan, A Nelson, EG Tretiakova, M Hinojosa, R AF Markaryan, Adam Nelson, Erik G. Tretiakova, Maria Hinojosa, Raul TI Technical report: Laser microdissection of cochlear structures from celloidin embedded human temporal bone tissues and detection of the mitochondrial DNA common deletion using real time PCR SO HEARING RESEARCH LA English DT Article DE Laser microdissection; Human temporal bones; Mitochondrial DNA deletions ID POLYMERASE-CHAIN-REACTION; FORMALDEHYDE; DEGRADATION; SPECIMENS; PATHOLOGY; FIXATION AB Laser microdissection (LMD) has been used to isolate groups of cells and single cells from numerous tissues. in this study, we describe a technique for isolating cochlear structures and individual spiral ganglion cells from archival celloidin embedded human temporal bone sections. The specimens isolated are suitable for quantifying the mitochondrial DNA (mtDNA) common deletion (CD) within these tissues using a real time polymerase chain reaction (PCR) assay. The results presented in this manuscript demonstrate the feasibility of using this LMD technique to study the accumulation of mtDNA deletions in diseases of the ear. To our knowledge, this approach to analyzing archival human temporal bone tissues has not been previously reported. (C) 2008 Elsevier B.V. All rights reserved. C1 [Markaryan, Adam; Nelson, Erik G.; Hinojosa, Raul] Univ Chicago, Dept Surg, Sect Otolaryngol Head & Neck Surg, Chicago, IL 60637 USA. [Tretiakova, Maria] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA. RP Markaryan, A (reprint author), Univ Chicago, Dept Surg, Sect Otolaryngol Head & Neck Surg, 5841 S Maryland Ave,MC 1035, Chicago, IL 60637 USA. EM amarkary@surgery.bsd.uchicago.edu FU Bloom Endowment Fund; American Hearing Research Foundation FX This research was supported by the Bloom Endowment Fund and in part by the 2007 Wiley H. Harrison, M.D. Grant from the American Hearing Research Foundation. CR Alers JC, 1999, J HISTOCHEM CYTOCHEM, V47, P703 CORRALDEBRINSKI M, 1992, NAT GENET, V2, P324, DOI 10.1038/ng1292-324 CORTOPASSI GA, 1992, P NATL ACAD SCI USA, V89, P7370, DOI 10.1073/pnas.89.16.7370 DUBEAU L, 1986, CANCER RES, V46, P2964 EmmertBuck MR, 1996, SCIENCE, V274, P998, DOI 10.1126/science.274.5289.998 Erickson Heidi S., 2008, V424, P433, DOI 10.1007/978-1-60327-064-9_34 GOELZ SE, 1985, BIOCHEM BIOPH RES CO, V130, P118, DOI 10.1016/0006-291X(85)90390-0 HASELKORN R, 1961, J BIOL CHEM, V236, P2738 HINOJOSA R, 1985, ACTA OTO-LARYNGOL, V99, P8, DOI 10.3109/00016488509119139 Kimura Y, 2005, ACTA OTO-LARYNGOL, V125, P697, DOI 10.1080/00016480510027510 Markaryan A, 2008, HEARING RES, V241, P1, DOI 10.1016/j.heares.2008.04.009 Markaryan A, 2008, MUTAT RES-FUND MOL M, V640, P38, DOI 10.1016/j.mrfmmm.2007.12.007 Miething F, 2006, J HISTOCHEM CYTOCHEM, V54, P371, DOI 10.1369/jhc.5B6726.2005 TOKUDA Y, 1990, J CLIN PATHOL, V43, P748, DOI 10.1136/jcp.43.9.748 Nelson EG, 2006, LARYNGOSCOPE, V116, P1, DOI 10.1097/01.mlg.0000236089.44566.62 Rait VK, 2006, J HISTOCHEM CYTOCHEM, V54, P301, DOI 10.1369/jhc.5A6125.2005 Sabunciyan S, 2007, J NEURAL TRANSM, V114, P665, DOI 10.1007/s00702-006-0581-8 Sirivatanauksorn Y, 1999, J PATHOL, V189, P150, DOI 10.1002/(SICI)1096-9896(199910)189:2<150::AID-PATH451>3.0.CO;2-G TRETIAKOVA M, 2004, ADV MED LAB PROFESSI, V16, P29 TRETIAKOVA MS, 2004, BIOPHOTONICS INT, V11, P46 WACKYM PA, 1993, LARYNGOSCOPE, V103, P583 Williams C, 1999, AM J PATHOL, V155, P1467, DOI 10.1016/S0002-9440(10)65461-2 Wong C, 1998, CANCER GENET CYTOGEN, V107, P21, DOI 10.1016/S0165-4608(98)00079-X Yamamoto-Fukuda T, 2000, HISTOCHEM J, V32, P697, DOI 10.1023/A:1004171517639 NR 24 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2008 VL 244 IS 1-2 BP 1 EP 6 DI 10.1016/j.heares.2008.07.007 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 368XC UT WOS:000260655200001 PM 18706496 ER PT J AU Davids, T Valero, J Papsin, BC Harrison, RV Gordon, KA AF Davids, Taryn Valero, Jerome Papsin, Blake C. Harrison, Robert V. Gordon, Karen A. TI Effects of stimulus manipulation on electrophysiological responses in pediatric cochlear implant users. Part I: Duration effects SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Electrical stimulation; Duration of stimulation; Electrophysiological thresholds; Behavioral thresholds ID AUDITORY BRAIN-STEM; MIDDLE LATENCY RESPONSE; ELECTRICAL-STIMULATION; TEMPORAL INTEGRATION; CLINICAL IMPLICATIONS; ACTION-POTENTIALS; GROWTH FUNCTIONS; CHILDREN; NERVE; HEARING AB Discrepancies between electrophysiological and behavioral thresholds in cochlear implant users might be due to differences in stimuli such as the duration and rate of the electrical pulse train. In the present study, we asked: Is there an effect of stimulus duration on electrophysiological responses of the auditory brainstem, thalamo-cortex, and behavioral thresholds? In 5 pediatric cochlear implant users, behavioral thresholds in response to electrical pulse trains at 500 pulses per second (pps) were significantly lower for 40 ms than 2 ms duration pulse trains. Clear electrically evoked auditory brainstern responses (EABR) and electrically evoked middle latency responses (EMLR) were generated by single electrical pulses and 2, 6, and 10 ms pulse trains (500 pps) in 5 children. There was a linear decrease in the inter-wave latency between the eV of the EABR and the Na of the EMLR as duration increased. No significant effect of duration was found on eV latency relative to the last pulse in the train or Na latency relative to the onset of the stimuli. Behavioral threshold data is consistent with temporal integration of auditory activity. Electrophysiological data indicates that: (a) recognizable EABR and EMLR waveforms can be recorded in response to electrical pulse trains of up to 10 ms; and (b) pulse train stimuli have unique effects on the auditory brainstem compared to thalamo-cortical areas. (C) 2008 Elsevier B.V. All rights reserved. C1 [Davids, Taryn; Valero, Jerome; Papsin, Blake C.; Harrison, Robert V.; Gordon, Karen A.] Hosp Sick Children, Dept Otolaryngol Head & Neck Surg, Toronto, ON M5G 1X8, Canada. [Davids, Taryn; Papsin, Blake C.; Harrison, Robert V.; Gordon, Karen A.] Univ Toronto, Dept Otolaryngol Head & Neck Surg, Toronto, ON M5G 2N2, Canada. RP Davids, T (reprint author), Hosp Sick Children, Dept Otolaryngol Head & Neck Surg, 6th Floor,Elm Wing,555 Univ Ave, Toronto, ON M5G 1X8, Canada. EM taryndavids@hotmail.com CR ABBAS PJ, 1991, HEARING RES, V51, P123, DOI 10.1016/0378-5955(91)90011-W ABBAS PJ, 1993, 3 INT COCHL IMPL C 4 Alvarez I, 2007, J NEUROSCI METH, V165, P95, DOI 10.1016/j.jneumeth.2007.05.028 Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009 Brown Carolyn J, 2003, Curr Opin Otolaryngol Head Neck Surg, V11, P383, DOI 10.1097/00020840-200310000-00013 BROWN CJ, 1994, EAR HEARING, V15, P168, DOI 10.1097/00003446-199404000-00006 Brown C J, 1999, Ann Otol Rhinol Laryngol Suppl, V177, P50 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Carlyon RP, 2005, HEARING RES, V205, P210, DOI 10.1016/j.heares.2005.03.021 Davids T, 2008, HEARING RES, V244, P15, DOI 10.1016/j.heares.2008.06.010 Donaldson GS, 1997, J ACOUST SOC AM, V101, P3706, DOI 10.1121/1.418330 Eisen MD, 2005, JARO-J ASSOC RES OTO, V6, P160, DOI 10.1007/s10162-005-5057-2 Eisen MD, 2004, EAR HEARING, V25, P528, DOI 10.1097/00003446-200412000-00002 Firszt JB, 1999, ANN OTO RHINOL LARYN, V108, P58 Firszt Jill B., 2002, Ear and Hearing, V23, P502, DOI 10.1097/00003446-200212000-00002 Gallego S, 1999, ACTA OTO-LARYNGOL, V119, P234, DOI 10.1080/00016489950181738 GENGEL RW, 1971, J SPEECH HEAR DISORD, V36, P213 GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726 Gordon J, 2004, MICH QUART REV, V43, P1 Gordon KA, 2005, HEARING RES, V204, P78, DOI 10.1016/j.heares.2005.01.003 Gordon KA, 2003, EAR HEARING, V24, P485, DOI 10.1097/01.AUD.0000100203.65990.D4 Gordon KA, 2004, EAR HEARING, V25, P447, DOI 10.1097/01.aud.0000146178.84065.b3 Gordon KA, 2007, CLIN NEUROPHYSIOL, V118, P1671, DOI 10.1016/j.clinph.2007.04.030 Gordon KA, 2006, AUDIOL NEURO-OTOL, V11, P7, DOI 10.1159/000088851 GORGA MP, 1989, EAR HEARING, V10, P217, DOI 10.1097/00003446-198908000-00002 Hughes ML, 2001, EAR HEARING, V22, P471, DOI 10.1097/00003446-200112000-00004 Kraus N., 1995, CLIN NEUROPHYSIOL, V44, P93 KRAUS N, 1993, EAR HEARING, V14, P36, DOI 10.1097/00003446-199302000-00006 McKay CM, 2003, HEARING RES, V181, P94, DOI 10.1016/S0378-5955(03)00177-1 MILLER CA, 1993, HEARING RES, V69, P35, DOI 10.1016/0378-5955(93)90091-E MILLER CA, 1993, HEARING RES, V66, P130, DOI 10.1016/0378-5955(93)90134-M Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 MOON AK, 1993, HEARING RES, V67, P166, DOI 10.1016/0378-5955(93)90244-U Oates P, 1997, J ACOUST SOC AM, V102, P3597, DOI 10.1121/1.420148 PFINGST BE, 1988, HEARING RES, V34, P243, DOI 10.1016/0378-5955(88)90005-6 PLOMP R, 1959, J ACOUST SOC AM, V31, P749, DOI 10.1121/1.1907781 SCHOESSER H, 2001, C IMPL AUD PROSTH AS SHALLOP JK, 1991, ANN OTO RHINOL LARYN, V100, P896 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 SMITH DW, 1994, HEARING RES, V81, P1, DOI 10.1016/0378-5955(94)90147-3 STEPHAN K, 1990, AUDIOLOGY, V29, P46 VANDENHONERT C, 1986, HEARING RES, V21, P109, DOI 10.1016/0378-5955(86)90033-X VANDENHONERT C, 1979, ANN BIOMED ENG, V7, P117 VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276 NR 45 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2008 VL 244 IS 1-2 BP 7 EP 14 DI 10.1016/j.heares.2008.06.011 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 368XC UT WOS:000260655200002 PM 18692121 ER PT J AU Davids, T Valero, J Papsin, BC Harrison, RV Gordon, KA AF Davids, Taryn Valero, Jerome Papsin, Blake C. Harrison, Robert V. Gordon, Karen A. TI Effects of stimulus manipulation on electrophysiological responses of pediatric cochlear implant users. Part II: Rate effects SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Electrical stimulation; Electrophysiological thresholds; Behavioral thresholds ID AUDITORY BRAIN-STEM; ELECTRICAL-STIMULATION; PSYCHOPHYSICAL MEASURES; FUNCTIONAL-RESPONSES; EVOKED-POTENTIALS; PULSE TRAINS; GUINEA-PIGS; NERVE; THRESHOLDS; NUCLEUS AB Electrophysiological thresholds do not accurately predict behavioral thresholds in pediatric cochlear implant users possibly due to differences in rate and duration of pulse presentation. We asked: (1) is there an effect of rate of stimulus presentation on the electrophysiological responses of the auditory brainstem and thalamo-cortex? and (2) can the relationship between electrophysiological and behavioral thresholds be improved by using the same rate of pulse presentation? Behavioral and electrophysiological (EABR and EMLR) responses were elicited for 14 children to single electrical pulses and pulse trains of 2 ms ranging in rate from 500 to 3600 pulses per second (pps). Low rate (500 pps) pulse trains resulted in an increase in EABR wave eIII amplitude and a decrease in wave eV amplitude. Further rate increases resulted in smaller EABR wave amplitudes. EMLR amplitudes were unaffected by increases in rate as were EABR and EMLR latencies. Behavioral thresholds decreased with increasing rate, however, there was no associated reduction in electrophysiological thresholds. Correlation between behavioral and electrophysiological thresholds did not improve by using the same rate of electrical pulse stimulation. Results suggest: (1) higher rates of electrical pulse presentation increase the potential for neural adaptation in the auditory brainstem and (2) using the same rate of electrical pulse presentation does not improve the ability of EABR and EMLR thresholds to predict behavioral thresholds. (C) 2008 Elsevier B.V. All rights reserved. C1 [Davids, Taryn; Valero, Jerome; Papsin, Blake C.; Harrison, Robert V.; Gordon, Karen A.] Hosp Sick Children, Dept Otolaryngol Head & Neck Surg, Toronto, ON M5G 1X8, Canada. [Davids, Taryn; Papsin, Blake C.; Harrison, Robert V.; Gordon, Karen A.] Univ Toronto, Dept Otolaryngol Head & Neck Surg, Toronto, ON M5G 2N2, Canada. RP Davids, T (reprint author), Hosp Sick Children, Dept Otolaryngol Head & Neck Surg, 6th Floor,Elm Wing,555 Univ Ave, Toronto, ON M5G 1X8, Canada. EM taryndavids@hotmail.com FU Hospital for Sick Children Research Institute FX This research is supported by the Hospital for Sick Children Research Institute, there are no conflicts of interest. CR Abbas P J, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P6 Abrams DA, 2006, J NEUROSCI, V26, P11131, DOI 10.1523/JNEUROSCI.2744-06.2006 Banai K, 2007, INT J AUDIOL, V46, P524, DOI 10.1080/14992020701383035 Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009 BROWN CJ, 1994, EAR HEARING, V15, P168, DOI 10.1097/00003446-199404000-00006 Brown C J, 1999, Ann Otol Rhinol Laryngol Suppl, V177, P50 Dees DC, 2005, AUDIOL NEURO-OTOL, V10, P105, DOI 10.1159/000083366 Davids T, 2008, HEARING RES, V244, P7, DOI 10.1016/j.heares.2008.06.011 DON M, 1977, ANN OTO RHINOL LARYN, V86, P186 Dynes SBC, 1996, THESIS MIT CAMBRIDGE Firszt JB, 1999, ANN OTO RHINOL LARYN, V108, P58 Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6 Gordon J, 2004, MICH QUART REV, V43, P1 Gordon KA, 2003, EAR HEARING, V24, P485, DOI 10.1097/01.AUD.0000100203.65990.D4 Gordon KA, 2004, EAR HEARING, V25, P447, DOI 10.1097/01.aud.0000146178.84065.b3 Gordon KA, 2006, AUDIOL NEURO-OTOL, V11, P7, DOI 10.1159/000088851 Gorga MP, 2006, EAR HEARING, V27, P60, DOI 10.1097/01.aud.0000194511.14740.9c Han DM, 2005, ACTA OTO-LARYNGOL, V125, P732, DOI 10.1080/00016480510026890 Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99 Hong RS, 2003, J ACOUST SOC AM, V114, P3327, DOI 10.1121/1.1623785 Huang CQ, 1998, HEARING RES, V116, P55, DOI 10.1016/S0378-5955(97)00196-2 Hughes ML, 2000, EAR HEARING, V21, P164, DOI 10.1097/00003446-200004000-00010 Johnson KL, 2007, J COGNITIVE NEUROSCI, V19, P376, DOI 10.1162/jocn.2007.19.3.376 KEIFER J, 2001, AUDIOLOGY, V40, P32 KRAUS N, 1982, ELECTROEN CLIN NEURO, V54, P275, DOI 10.1016/0013-4694(82)90177-8 Kraus N, 1995, Electroencephalogr Clin Neurophysiol Suppl, V44, P93 Kraus N, 2005, TRENDS NEUROSCI, V28, P176, DOI 10.1016/j.tins.2005.02.003 Kraus N, 1990, J Am Acad Audiol, V1, P130 Kreft HA, 2004, J ACOUST SOC AM, V116, P2258, DOI 10.1121/1.1786871 McGee T, 1996, EAR HEARING, V17, P419, DOI 10.1097/00003446-199610000-00008 McKay CM, 2005, J ACOUST SOC AM, V118, P386, DOI 10.1121/1.1937349 Miller CA, 1995, HEARING RES, V92, P100, DOI 10.1016/0378-5955(95)00205-7 Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9 Miller CA, 2001, JARO, V2, P216 PFINGST BE, 1993, J ACOUST SOC AM, V94, P1287, DOI 10.1121/1.408155 PICTON TW, 1994, INT J PEDIATR OTORHI, V28, P93, DOI 10.1016/0165-5876(94)90001-9 Rubinstein Jay T, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P444, DOI 10.1097/01.moo.0000134452.24819.c0 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 Runge-Samuelson CL, 2004, HEARING RES, V194, P1, DOI 10.1016/j.heares.2004.03.020 Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2 SHALLOP JK, 1991, ANN OTO RHINOL LARYN, V100, P896 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Sininger YS, 1996, EAR HEARING, V17, P395, DOI 10.1097/00003446-199610000-00005 SMITH DW, 1994, HEARING RES, V81, P1, DOI 10.1016/0378-5955(94)90147-3 Song JH, 2006, AUDIOL NEURO-OTOL, V11, P233, DOI 10.1159/000093058 Stapells DR, 1997, AUDIOL NEURO-OTOL, V2, P257 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P205, DOI 10.3109/03005369309076694 THORNTON ARD, 1975, ELECTROEN CLIN NEURO, V39, P399, DOI 10.1016/0013-4694(75)90103-0 TYKOCINSKI M, 1995, HEARING RES, V88, P124, DOI 10.1016/0378-5955(95)00108-G Tykocinski M, 1997, HEARING RES, V112, P147, DOI 10.1016/S0378-5955(97)00117-2 Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 WERNER LA, 1993, HEARING RES, V68, P131, DOI 10.1016/0378-5955(93)90071-8 Wible B, 2005, BRAIN, V128, P417, DOI 10.1093/brain/awh367 WILSON BS, 1997, AM J OTOL, V18, pS3 NR 56 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2008 VL 244 IS 1-2 BP 15 EP 24 DI 10.1016/j.heares.2008.06.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 368XC UT WOS:000260655200003 PM 18692122 ER PT J AU Agterberg, MJH Versnel, H de Groot, JCMJ Smoorenburg, GF Albers, FWJ Klis, SFL AF Agterberg, Martijn J. H. Versnel, Huib de Groot, John C. M. J. Smoorenburg, Guido F. Albers, Frans W. J. Klis, Sjaak F. L. TI Morphological changes in spiral ganglion cells after intracochlear application of brain-derived neurotrophic factor in deafened guinea pigs SO HEARING RESEARCH LA English DT Article DE Brain-derived neurotrophic factor; Electron microscopy; Guinea pig; Perikaryal area; Spiral ganglion cells ID SENSORINEURAL HEARING-LOSS; CHRONIC ELECTRICAL-STIMULATION; NERVE GROWTH-FACTOR; COCHLEAR IMPLANTS; AUDITORY NEURONS; INNER-EAR; TIME-SEQUENCE; IN-VIVO; SURVIVAL; DEGENERATION AB When guinea pigs are deafened with ototoxic drugs spiral ganglion cells (SGCs) degenerate progressively. Application of neurotrophins can prevent this process. Morphological changes of rescued SGCs have not been quantitatively determined yet. It might be that SGCs treated with neurotrophins are more vulnerable than SGCs in cochleae of normal-hearing guinea pigs. Therefore, the mitochondria. and myelinisation of type-I SGCs were studied and the perikaryal area, cell circularity and electron density were determined. Guinea pigs were deafened with a subcutaneous injection of kanamycin followed by intravenous infusion of furosemide. Brain-derived neurotrophic factor (BDNF) delivery was started two weeks after the deafening procedure and continued for four weeks. Four cohorts of cochleae were studied: (I) cochleae of normal-hearing guinea pigs: (2) of guinea pigs two weeks after deafening; (3) six weeks after deafening; (4) cochleae treated with BDNF after deafening. The deafening procedure resulted in a progressive loss of SGcs. Six weeks after deafening the size of mitochondria, perikaryal area and cell circularity of the remaining untreated SGCs were decreased and the number of layers of the myelin sheath was reduced. In the basal part of the cochlea BDNF treatment rescued SGCs from degeneration. SGCs treated with BDNF were larger than SGCs in normal-hearing guinea pigs, whereas circularity had normal values and electron density was unchanged. The number of layers in the myelin sheath of BDNF-treated SGCs was reduced as compared to the number of layers in the myelin sheath of SGCs in normal-hearing guinea pigs. The morphological changes of SGCs might be related to the rapid loss of SGCs that has been reported to occur after cessation of BDNF treatment. (C) 2008 Elsevier B.V. All rights reserved. C1 [Agterberg, Martijn J. H.; Versnel, Huib; de Groot, John C. M. J.; Smoorenburg, Guido F.; Albers, Frans W. J.; Klis, Sjaak F. L.] Univ Med Ctr Utrecht, Dept Otorhinolaryngol, Rudolf Magnus Inst Neurosci, NL-3508 GA Utrecht, Netherlands. RP Agterberg, MJH (reprint author), Univ Med Ctr Utrecht, Dept Otorhinolaryngol, Rudolf Magnus Inst Neurosci, Room G-02-531,POB 85500, NL-3508 GA Utrecht, Netherlands. EM m.j.h.agterberg@umcutrecht.nl RI Agterberg, Martijn/K-2956-2012 FU Cochlear(R); Heinsius-Houbolt Foundation FX The authors thank Kelly Maijoor and Rik Mansvelt-Beck for excellent technical assistance, Ferry Hendriksen and Frits Meeuwsen for assisting with histology, and Frank Harriers and Rene van de Vosse for developing the recording and analysis software. This study was also supported by Cochlear (R) and the Heinsius-Houbolt Foundation. CR BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T CLUECKERT R, 2008, J COMP NEUROL, V507, P1602 Coggeshall RE, 1996, J COMP NEUROL, V364, P6, DOI 10.1002/(SICI)1096-9861(19960101)364:1<6::AID-CNE2>3.0.CO;2-9 Davis RL, 2003, NEUROSCIENTIST, V9, P311, DOI 10.1177/1073858403251986 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 Desagher S, 2000, TRENDS CELL BIOL, V10, P369, DOI 10.1016/S0962-8924(00)01803-1 Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040 Dodson HC, 2000, J NEUROCYTOL, V29, P525, DOI 10.1023/A:1007201913730 FALLON JB, 2007, HEARING RES, V238, P110 Gillespie LN, 2005, EUR J NEUROSCI, V22, P2123, DOI 10.1111/j.1460-9568.2005.04430.x Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HALL RD, 1990, HEARING RES, V49, P155, DOI 10.1016/0378-5955(90)90102-U Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 Ito J, 2005, ORL J OTO-RHINO-LARY, V67, P272, DOI 10.1159/000089407 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 Khan AM, 2005, LARYNGOSCOPE, V115, P672, DOI 10.1097/01.mlg.0000161335.62139.80 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 LEFEBVRE PP, 1992, HEARING RES, V58, P185, DOI 10.1016/0378-5955(92)90127-9 MANSOURROBAEY S, 1994, P NATL ACAD SCI USA, V91, P1632, DOI 10.1073/pnas.91.5.1632 Marzella PL, 1999, ACTA OTO-LARYNGOL, V119, P407 Miller AL, 2001, HEARING RES, V151, P1, DOI 10.1016/S0378-5955(00)00226-4 MILLER CA, 1994, HEARING RES, V78, P11, DOI 10.1016/0378-5955(94)90039-6 Miller JM, 2002, AUDIOL NEURO-OTOL, V7, P175, DOI 10.1159/000058306 Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X MONTERO CN, 1988, J NEUROSCI, V8, P2986 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 Noushi F, 2005, OTOL NEUROTOL, V26, P528, DOI 10.1097/01.mao.0000169780.84588.a5 Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375 PFINGST BE, 1981, ACTA OTO-LARYNGOL, V92, P1, DOI 10.3109/00016488109133232 PFINGST BE, 1983, ANN NY ACAD SCI, V405, P224, DOI 10.1111/j.1749-6632.1983.tb31635.x Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8 Rejali D, 2007, HEARING RES, V228, P180, DOI 10.1016/j.heares.2007.02.010 Richardson RT, 2005, HEARING RES, V204, P37, DOI 10.1016/j.heares.2005.01.001 Romand R, 1984, ULTRASTRUCTURAL ATLA, P165 SHAH SB, 1995, AM J OTOL, V16, P310 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005 Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 van Ruijven MWM, 2004, HEARING RES, V197, P44, DOI 10.1016/j.heares.2004.07.014 van Ruijven MWM, 2005, HEARING RES, V205, P241, DOI 10.1016/j.heares.2005.03.023 Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 Yamagata T, 2004, J NEUROSCI RES, V78, P75, DOI 10.1002/jnr.20239 YLIKOSKI J, 1974, ACTA OTO-LARYNGOL, P23 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C NR 52 TC 31 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2008 VL 244 IS 1-2 BP 25 EP 34 DI 10.1016/j.heares.2008.07.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 368XC UT WOS:000260655200004 PM 18692557 ER PT J AU Marshall, AF Pearson, JM Falk, SE Skaggs, JD Crocker, WD Saldana, E Fitzpatrick, DC AF Marshall, Allen F. Pearson, James M. Falk, Stephanie E. Skaggs, John D. Crocker, William D. Saldana, Enrique Fitzpatrick, Douglas C. TI Auditory response properties of neurons in the tectal longitudinal column of the rat SO HEARING RESEARCH LA English DT Article DE Midbrain tectum; Inferior colliculus; Superior colliculus; Periaqueductal gray ID SUPERIOR OLIVARY COMPLEX; MEDIAL OLIVOCOCHLEAR NEURONS; COCHLEAR ROOT NEURONS; INFERIOR COLLICULUS NEURONS; AMPLITUDE-MODULATED SOUNDS; PARAOLIVARY NUCLEUS; LATERAL LEMNISCUS; DORSAL NUCLEUS; CHOLERA-TOXIN; ALBINO-RAT AB The newly-discovered tectal longitudinal column (TLC) spans the paramedian region of the mammalian tectum. It has connections with several nuclei of the auditory system. In this report, we provide the first detailed description of the responses of TLC neurons to auditory stimuli, including monaural and binaural tones and amplitude modulated tones. For comparison, responses in the inferior colliculus (IC) were also recorded. Neurons in the TLC were sensitive to similar ranges of frequency as IC neurons, could have comparably low thresholds, and showed primarily excitatory responses to stimulation of the contralateral ear with either phasic or sustained response patterns. Differences of TLC compared to IC neurons included broader frequency tuning, higher average threshold, longer response latencies, little synchronization or rate tuning to amplitude modulation frequency and a smaller degree of inhibition evoked by stimulation of the ipsilateral ear. These features of TLC neurons suggest a role for the TLC in descending auditory pathways. (C) 2008 Elsevier B.V. All rights reserved. C1 [Marshall, Allen F.; Pearson, James M.; Falk, Stephanie E.; Skaggs, John D.; Crocker, William D.; Fitzpatrick, Douglas C.] Univ N Carolina, Sch Med, Dept Otolaryngol Head & Neck Surg, Neurosci Hosp G0412, Chapel Hill, NC 27599 USA. [Saldana, Enrique] Univ Salamanca, Dept Pathol & Cell Biol, Neurosci Inst Castilla & Leon INCyL, Lab Neurobiol Hearing, E-37008 Salamanca, Spain. RP Fitzpatrick, DC (reprint author), Univ N Carolina, Sch Med, Dept Otolaryngol Head & Neck Surg, Neurosci Hosp G0412, CB 7070, Chapel Hill, NC 27599 USA. EM DCF@med.unc.edu RI Saldana, Enrique/C-4017-2011; 2008, Ibsal/A-1268-2012 FU NIH [DC-03948]; UNC Medical Alumni Association Endowment Fund; MCyT [BF12000-1358, BFU2004-05909]; JCyL [SA079/01, SA007C05] FX Research supported (in part) by NIH Short Term Research Training Grant, the UNC Medical Alumni Association Endowment Fund, and by NIH Grant DC-03948 to DCF, and by Grants MCyT (BF12000-1358 and BFU2004-05909) and JCyL (SA079/01 and SA007CO5) to E.S. CR BOCK GR, 1984, HEARING RES, V13, P201, DOI 10.1016/0378-5955(84)90109-6 Chebat DR, 2006, J COMP NEUROL, V494, P887, DOI 10.1002/cne.20856 Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412 FAYELUND H, 1986, ANAT EMBRYOL, V175, P35, DOI 10.1007/BF00315454 Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 Feng AS, 2000, ANNU REV PSYCHOL, V51, P699, DOI 10.1146/annurev.psych.51.1.699 Gaese BH, 2000, EUR J NEUROSCI, V12, P1739, DOI 10.1046/j.1460-9568.2000.00054.x GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 Hernandez O, 2005, NEUROSCIENCE, V132, P203, DOI 10.1016/j.neuroscience.2005.01.001 HIRSCH JA, 1985, J NEUROPHYSIOL, V53, P726 Huerta M.F., 1984, P687 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Irvine D. R. F., 1986, PROGR SENSORY PHYSL Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Keay K.A., 2004, RAT NERVOUS SYSTEM, P243 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 Kelly JB, 1997, HEARING RES, V104, P112, DOI 10.1016/S0378-5955(96)00182-7 KELLY JB, 1991, HEARING RES, V56, P273, DOI 10.1016/0378-5955(91)90177-B Kulesza RJ, 2002, HEARING RES, V168, P12, DOI 10.1016/S0378-5955(02)00374-X Kulesza RJ, 2003, J NEUROPHYSIOL, V89, P2299, DOI 10.1152/jn.00547.2002 Kulesza RJ, 2007, J NEUROPHYSIOL, V97, P1610, DOI 10.1152/jn.00613.2006 Kulesza RJ, 2000, JARO, V1, P255, DOI 10.1007/s101620010054 Kuwada S, 1999, J NEUROSCI, V19, P2273 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F LARUE DT, 2005, CENTRAL GRAY INFERIO Lee YL, 1996, J NEUROSCI, V16, P3775 Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001 Lopez DE, 1999, J COMP NEUROL, V415, P160 LOPEZ DE, 1993, NATO ADV SCI INST SE, V239, P291 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 Malmierca MS, 1998, J NEUROSCI, V18, P10603 Mardia K. V., 1999, DIRECTIONAL STAT MERCHAN MA, 1988, J NEUROCYTOL, V17, P711, DOI 10.1007/BF01260998 MERCHAN MA, 1994, J COMP NEUROL, V342, P259, DOI 10.1002/cne.903420209 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 Mugnaini E, 1985, HDB CHEM NEUROANAT 1, V4, P436 Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 Palombi PS, 1996, HEARING RES, V100, P41, DOI 10.1016/0378-5955(96)00115-3 Paxinos G., 1998, RAT BRAIN STEREOTAXI REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 RHOADES RW, 1986, J COMP NEUROL, V253, P197, DOI 10.1002/cne.902530207 Saldana E, 2005, INFERIOR COLLICULUS, P155, DOI 10.1007/0-387-27083-3_5 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O Saldana E, 2007, J NEUROSCI, V27, P13108, DOI 10.1523/JNEUROSCI.1892-07.2007 SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308 SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409 Palombi PS, 2001, HEARING RES, V153, P174, DOI 10.1016/S0378-5955(00)00264-1 VETTER DE, 1993, HEARING RES, V70, P173, DOI 10.1016/0378-5955(93)90156-U VETTER DE, 1992, ANAT EMBRYOL, V185, P1, DOI 10.1007/BF00213596 Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0 Warr WB, 2003, EXP BRAIN RES, V153, P499, DOI 10.1007/s00221-003-1682-3 WISE LZ, 1983, J NEUROPHYSIOL, V49, P674 YAMASAKI DS, 1984, BRAIN RES, V300, P368, DOI 10.1016/0006-8993(84)90848-5 NR 54 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2008 VL 244 IS 1-2 BP 35 EP 44 DI 10.1016/j.heares.2008.07.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 368XC UT WOS:000260655200005 PM 18662764 ER PT J AU Basura, GJ Abbas, AI O'Donohue, H Lauder, JM Roth, BL Walker, PD Manis, PB AF Basura, Gregory J. Abbas, Atheir I. O'Donohue, Heather Lauder, Jean M. Roth, Bryan L. Walker, Paul D. Manis, Paul B. TI Ontogeny of serotonin and serotonin(2A) receptors in rat auditory cortex SO HEARING RESEARCH LA English DT Article DE Auditory cortex; High performance liquid chromatography; Immunocytochemistry; Serotonin; Serotonin(2A) receptors; Autoradiography ID CENTRAL-NERVOUS-SYSTEM; VISUAL-CORTEX; PREFRONTAL CORTEX; POSTNATAL-DEVELOPMENT; SOMATOSENSORY CORTEX; INTENSITY DEPENDENCE; CORTICAL DEVELOPMENT; EVOKED-POTENTIALS; PYRAMIDAL NEURONS; CEREBRAL-CORTEX AB Maturation of the mammalian cerebral cortex is, in part, dependent upon multiple coordinated afferent neurotransmitter systems and receptor-mediated cellular linkages during early postnatal development. Given that serotonin (5-HT) is one such system, the present study was designed to specifically evaluate 5-HT tissue content as well as 5-HT2A receptor protein levels within the developing auditory cortex (AC). Using high performance liquid chromatography (HPLC), 5-HT and the metabolite, 5-hydroxyindoleacetic acid (5-HIAA), was measured in isolated AC, which demonstrated a developmental dynamic, reaching young adult levels early during the second week of postnatal development. Radioligand binding of 5-HT2A receptors with the 5-HT2A/2C receptor agonist, I-125-DOI ((+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl; in the presence of SB206553, a selective 5-HT2C receptor antagonist, also demonstrated a developmental trend, whereby receptor protein levels reached young adult levels at the end of the first postnatal week (138), significantly increased at PI 0 and at PI 7, and decreased back to levels not significantly different from P8 thereafter. Immunocytochemical labeling of 5-HT2A receptors and confocal microscopy revealed that 5-HT2A receptors are largely localized on layer II/III pyramidal cell bodies and apical dendrites within AC. When considered together, the results of the present study suggest that 5-HT, likely through 5-HT2A receptors, may play an important role in early postnatal AC development. (C) 2008 Elsevier B.V. All rights reserved. C1 [Basura, Gregory J.; O'Donohue, Heather; Manis, Paul B.] Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. [Roth, Bryan L.] Univ N Carolina, Dept Pharmacol, Chapel Hill, NC 27599 USA. [Lauder, Jean M.] Univ N Carolina, Dept Cell & Dev Biol, Chapel Hill, NC 27599 USA. [Manis, Paul B.] Univ N Carolina, Dept Cell & Mol Physiol & Curriculum Neurobiol, Chapel Hill, NC 27599 USA. [Walker, Paul D.] Wayne State Univ, Sch Med, Dept Anat & Cell Biol, Detroit, MI 48201 USA. [Abbas, Atheir I.; Roth, Bryan L.] Case Western Reserve Univ, Sch Med, Dept Biochem, Cleveland, OH 44106 USA. RP Manis, PB (reprint author), Univ N Carolina, Dept Otolaryngol Head & Neck Surg & Cell & Mol Ph, G127 Phys Off Bldg,CB 7070, Chapel Hill, NC 27599 USA. EM pmanis@med.unc.edu RI Roth, Bryan/F-3928-2010 FU Deafness Research Foundation; NIH [T32 GM007250] FX This work was supported by a grant from the Deafness Research Foundation. The authors thank Iris Obispo-Peak for performing 5-HT2A immunocytochemistry and confocal imaging and the reviewers for their helpful comments on an earlier version of this manuscript. Atheir Abbas was supported in part by NIH T32 GM007250. CR ARANEDA R, 1991, NEUROSCIENCE, V40, P399, DOI 10.1016/0306-4522(91)90128-B AZMITIA EC, 1978, J COMP NEUROL, V179, P641, DOI 10.1002/cne.901790311 Basura GJ, 1999, DEV BRAIN RES, V116, P111, DOI 10.1016/S0165-3806(99)00066-8 Beique JC, 2004, J NEUROSCI, V24, P4807, DOI 10.1523/JNEUROSCI.5113-03.2004 BENNETTCLARKE CA, 1994, J NEUROSCI, V14, P7594 BENNETTCLARKE CA, 1993, P NATL ACAD SCI USA, V90, P153, DOI 10.1073/pnas.90.1.153 BennettClarke CA, 1996, BRAIN RES, V733, P301, DOI 10.1016/0006-8993(96)00791-3 BLUE ME, 1983, J NEUROCYTOL, V12, P599, DOI 10.1007/BF01181526 BLUE ME, 1983, J NEUROCYTOL, V12, P697, DOI 10.1007/BF01181531 Cases O, 1996, NEURON, V16, P297, DOI 10.1016/S0896-6273(00)80048-3 CLAUSTRE Y, 1988, J PHARMACOL EXP THER, V244, P1051 CONRAD LCA, 1974, J COMP NEUROL, V156, P179, DOI 10.1002/cne.901560205 Cornea-Hebert V, 1999, J COMP NEUROL, V409, P187, DOI 10.1002/(SICI)1096-9861(19990628)409:2<187::AID-CNE2>3.0.CO;2-P Cruikshank SJ, 2002, J NEUROPHYSIOL, V87, P361 DAMATO RJ, 1987, P NATL ACAD SCI USA, V84, P4322, DOI 10.1073/pnas.84.12.4322 DAVIES MF, 1987, BRAIN RES, V423, P347, DOI 10.1016/0006-8993(87)90861-4 Dori I, 1996, EXP NEUROL, V138, P1, DOI 10.1006/exnr.1996.0041 Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412 Edagawa Y, 2001, J NEUROSCI, V21, P1532 Eriksson KS, 2001, NEUROPHARMACOLOGY, V40, P345, DOI 10.1016/S0028-3908(00)00175-1 FISCHETTE CT, 1987, BRAIN RES, V421, P263, DOI 10.1016/0006-8993(87)91296-0 Fitzgerald KK, 1999, J NEUROPHYSIOL, V81, P2743 GU Q, 1995, EUR J NEUROSCI, V7, P1146, DOI 10.1111/j.1460-9568.1995.tb01104.x HEGERL U, 1993, BIOL PSYCHIAT, V33, P173, DOI 10.1016/0006-3223(93)90137-3 HELLENDALL RP, 1993, EXP NEUROL, V120, P186, DOI 10.1006/exnr.1993.1054 Hoyer D, 2002, PHARMACOL BIOCHEM BE, V71, P533, DOI 10.1016/S0091-3057(01)00746-8 IKE J, 1995, BRAIN RES, V678, P49, DOI 10.1016/0006-8993(95)00143-E Ji WQ, 2007, J NEUROSCI, V27, P4910, DOI 10.1523/JNEUROSCI.5528-06.2007 JOHNSON DS, 1995, MOL CELL NEUROSCI, V6, P122, DOI 10.1006/mcne.1995.1012 Juckel G, 1999, NEUROPSYCHOPHARMACOL, V21, P710, DOI 10.1016/S0893-133X(99)00074-3 Kahkonen S, 2002, NEUROPSYCHOPHARMACOL, V27, P862, DOI 10.1016/S0893-133X(02)00357-3 Kahkonen S, 2002, PSYCHOPHARMACOLOGY, V164, P221, DOI 10.1007/s00213-002-1194-z Lauder JM, 1990, ANN NY ACAD SCI, V600, P314 LAUDER JM, 1982, BRAIN RES BULL, V9, P605, DOI 10.1016/0361-9230(82)90165-4 LAUDER JM, 1978, DEV NEUROSCI-BASEL, V1, P15, DOI 10.1159/000112549 Lebrand C, 1996, NEURON, V17, P823, DOI 10.1016/S0896-6273(00)80215-9 Li QH, 2004, J COMP NEUROL, V469, P128, DOI 10.1002/cne.11004 LIDOV HGW, 1982, BRAIN RES BULL, V8, P389, DOI 10.1016/0361-9230(82)90077-6 Luo XY, 2003, DEV NEUROSCI-BASEL, V25, P173, DOI 10.1159/000072266 Manjarrez G, 2005, NUTR NEUROSCI, V8, P213, DOI 10.1080/10284150500170971 Martin-Ruiz R, 2001, J NEUROSCI, V21, P9856 Micheva KD, 1996, J COMP NEUROL, V373, P340, DOI 10.1002/(SICI)1096-9861(19960923)373:3<340::AID-CNE3>3.0.CO;2-2 MILLER M, 1981, J COMP NEUROL, V203, P555, DOI 10.1002/cne.902030402 NOGUEIRA RL, 1995, PHARMACOL BIOCHEM BE, V52, P1, DOI 10.1016/0091-3057(94)00402-5 O'Leary D D, 1994, Curr Opin Neurobiol, V4, P535, DOI 10.1016/0959-4388(94)90054-X Paxinos G., 1986, STEREOTAXIC COORDINA RHOADES RW, 1990, J COMP NEUROL, V299, P151, DOI 10.1002/cne.902990203 RICE FL, 1985, J COMP NEUROL, V236, P477, DOI 10.1002/cne.902360405 ROTH BL, 1991, DEV BRAIN RES, V58, P51, DOI 10.1016/0165-3806(91)90236-C Stern EA, 2001, NEURON, V31, P305, DOI 10.1016/S0896-6273(01)00360-9 Stojic AS, 1998, J COMP NEUROL, V401, P187 Talley EM, 1997, J NEUROSCI, V17, P4473 TANAKA E, 1993, J NEUROPHYSIOL, V69, P1749 Thompson AM, 2006, BRAIN RES, V1122, P122, DOI 10.1016/j.brainres.2006.08.126 Thompson AM, 2005, DEV NEUROSCI-BASEL, V27, P1, DOI 10.1159/000084527 UYLINGS HBM, 1993, ACTA STEROL, V2, P55 VANEDEN CG, 1985, J COMP NEUROL, V241, P253, DOI 10.1002/cne.902410302 Vitalis T, 2003, DEV NEUROSCI-BASEL, V25, P245, DOI 10.1159/000072272 WALLACE JA, 1983, BRAIN RES BULL, V10, P459, DOI 10.1016/0361-9230(83)90144-2 WALLACE JA, 1982, BRAIN RES BULL, V9, P117, DOI 10.1016/0361-9230(82)90127-7 Whitaker-Azmitia PM, 2001, BRAIN RES BULL, V56, P479, DOI 10.1016/S0361-9230(01)00615-3 Willins DL, 1997, SYNAPSE, V27, P79, DOI 10.1002/(SICI)1098-2396(199709)27:1<79::AID-SYN8>3.0.CO;2-A WILSON MA, 1991, NEUROSCIENCE, V44, P537, DOI 10.1016/0306-4522(91)90076-Z Zhang ZW, 2003, J NEUROSCI, V23, P3373 NR 64 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2008 VL 244 IS 1-2 BP 45 EP 50 DI 10.1016/j.heares.2008.07.009 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 368XC UT WOS:000260655200006 PM 18718516 ER PT J AU Huang, Y Huang, Q Chen, X Qu, TS Wu, XH Li, L AF Huang, Ying Huang, Qiang Chen, Xun Qu, Tianshu Wu, Xihong Li, Liang TI Perceptual integration between target speech and target-speech reflection reduces masking for target-speech recognition in younger adults and older adults SO HEARING RESEARCH LA English DT Article DE Auditory perception; Energetic masking; Informational masking; Perceptual integration; Precedence effect; Reverberant environment ID PERCEIVED SPATIAL SEPARATION; HEARING-LOSS; INFORMATIONAL MASKING; GAP DETECTION; AUDITORY LOCALIZATION; ENERGETIC MASKING; CHINESE SPEECH; NEARBY SOURCES; BAND STIMULI; NOISE AB This study evaluated unmasking functions of perceptual integration of target speech and simulated target-speech reflection, which were presented by two spatially separated loudspeakers. In both younger-adult listeners with normal hearing and older-adult listeners in the early stages of presbycusis, reducing the time interval between target speech and target-reflection simulation (inter-target interval, ITI) from 64 to 0 ms not only progressively enhanced perceptual integration of target-speech signals, but also progressively released target speech from either speech masking or noise masking. When the signal-to-noise ratio was low, the release from speech masking was significantly larger than the release from noise masking in both younger listeners and older listeners, but the longest ITI at which a significant release from speech masking occurred was significantly shorter in older listeners than in younger listeners. These results suggest that in reverberant environments with multi-talker speech, perceptual integration between the direct sound wave and correlated reflections, which facilitates perceptual segregation of various sources, is critical for unmasking attended speech. The age-related reduction of the ITI range for releasing speech from speech masking may be one of the causes for the speech-recognition difficulties experienced by older listeners in such adverse environments. (C) 2008 Elsevier B.V. All rights reserved. C1 [Huang, Ying; Huang, Qiang; Chen, Xun; Qu, Tianshu; Wu, Xihong; Li, Liang] Peking Univ, Dept Psychol, Speech & Hearing Res Ctr, Key Lab Machine Percept Minist Educ, Beijing 100871, Peoples R China. RP Li, L (reprint author), Peking Univ, Dept Psychol, Speech & Hearing Res Ctr, Key Lab Machine Percept Minist Educ, 5 Yiheyuan Rd, Beijing 100871, Peoples R China. EM liangli@pku.edu.cn FU National Natural Science Foundation of China [30711120563, 30670704, 60605016, 60535030, 60435010]; National High Technology Research and Development Program of China [2006AA01Z196, 2006AA010103]; 2006AA01Z196; 2006AA010103), the Trans-Century Training Program Foundation for the Talents by the State Education Commission; Peking University FX This work was supported by the National Natural Science Foundation of China (30711120563; 30670704; 60605016; 60535030; 60435010), the National High Technology Research and Development Program of China (2006AA01Z196; 2006AA010103), the Trans-Century Training Program Foundation for the Talents by the State Education Commission, and "985" grants from Peking University. CR Arbogast TL, 2002, J ACOUST SOC AM, V112, P2086, DOI 10.1121/1.1510141 Blauert J., 1997, SPATIAL HEARING BRONKHORST AW, 1992, J ACOUST SOC AM, V92, P3132, DOI 10.1121/1.404209 Brungart DS, 1999, J ACOUST SOC AM, V106, P1956, DOI 10.1121/1.427943 Brungart DS, 1999, J ACOUST SOC AM, V106, P1465, DOI 10.1121/1.427180 Brungart DS, 2005, J ACOUST SOC AM, V118, P3241, DOI 10.1121/1.2082557 Brungart DS, 2001, J ACOUST SOC AM, V110, P2527, DOI 10.1121/1.1408946 Chiang YC, 1998, J ACOUST SOC AM, V104, P3039, DOI 10.1121/1.423885 Durlach NI, 2003, J ACOUST SOC AM, V114, P368, DOI 10.1121/1.1577562 Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211 Freyman RL, 2001, J ACOUST SOC AM, V109, P2112, DOI 10.1121/1.1354984 Freyman RL, 2004, J ACOUST SOC AM, V115, P2246, DOI 10.1121/1.689343 GUSTAFSSON HA, 1994, J ACOUST SOC AM, V95, P518, DOI 10.1121/1.408346 HELFER KS, 1990, J SPEECH HEAR RES, V33, P149 Helfer KS, 1997, J SPEECH LANG HEAR R, V40, P432 Helfer KS, 2008, EAR HEARING, V29, P87 HOWARDJONES PA, 1993, ACUSTICA, V78, P258 Kidd G, 2005, ACTA ACUST UNITED AC, V91, P526 KIDD G, 1994, J ACOUST SOC AM, V95, P3475, DOI 10.1121/1.410023 Koehnke J, 1996, EAR HEARING, V17, P211, DOI 10.1097/00003446-199606000-00004 LEAKEY DM, 1957, J ACOUST SOC AM, V29, P284, DOI 10.1121/1.1908858 LI L, 2002, HEARING RES, V168, P113 Li L, 2004, J EXP PSYCHOL HUMAN, V30, P1077, DOI 10.1037/0096-1523.30.6.1077 Li L, 2005, HEARING RES, V202, P235, DOI 10.1016/j.heures.2004.10.007 Lister JJ, 2005, J SPEECH LANG HEAR R, V48, P482, DOI 10.1044/1092-4388(2005/033) Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 NABELEK AK, 1982, J ACOUST SOC AM, V71, P1242 NABELEK AK, 1988, J ACOUST SOC AM, V84, P476 NARINS PM, 1979, IEEE T BIO-MED ENG, V26, P43, DOI 10.1109/TBME.1979.326476 Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 Rakerd B, 2006, J ACOUST SOC AM, V119, P1597, DOI 10.1121/1.2161438 Roberts RA, 2002, EAR HEARING, V23, P349, DOI 10.1097/01.AUD.0000027429.24853.FB Roberts RA, 2004, J SPEECH LANG HEAR R, V47, P965, DOI 10.1044/1092-4388(2004/071) Schneider B. A., 2007, J AM ACAD AUDIOL, V18, P578 Schneider BA, 2002, CAN J EXP PSYCHOL, V56, P139, DOI 10.1037/h0087392 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 Summers V, 2004, J SPEECH LANG HEAR R, V47, P245, DOI 10.1044/1092-4388(2004/020) WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 Watkins AJ, 2005, J ACOUST SOC AM, V118, P249, DOI 10.1121/1.1923369 Wingfield A, 2005, CURR DIR PSYCHOL SCI, V14, P144, DOI 10.1111/j.0963-7214.2005.00356.x Wu X., 2007, INTERSPEECH, P390 Wu XH, 2005, HEARING RES, V199, P1, DOI 10.1016/j.heares.2004.03.010 Yang ZG, 2007, SPEECH COMMUN, V49, P892, DOI 10.1016/j.specom.2007.05.005 Zurek PM, 2004, J ACOUST SOC AM, V115, P1609, DOI 10.1121/1.1650333 NR 44 TC 21 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2008 VL 244 IS 1-2 BP 51 EP 65 DI 10.1016/j.heares.2008.07.006 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 368XC UT WOS:000260655200007 PM 18694813 ER PT J AU Morton, KD Torrione, PA Throckmorton, CS Collins, LM AF Morton, Kenneth D. Torrione, Peter A., Jr. Throckmorton, Chandra S. Collins, Leslie M. TI Mandarin Chinese tone identification in cochlear implants: Predictions from acoustic models SO HEARING RESEARCH LA English DT Article DE Cochlear implant; Mandarin Chinese tones; F0 estimation; Particle filter ID SPEECH CODING STRATEGY; AUDITORY-PERCEPTION; PITCH PERCEPTION; FINE-STRUCTURE; RECOGNITION; STIMULATION; NOISE; CUES; INFORMATION; AMPLITUDE AB It has been established that current cochlear implants do not supply adequate spectral information for perception of tonal languages. Comprehension of a tonal language, such as Mandarin Chinese, requires recognition of lexical tones. New strategies of cochlear stimulation such as variable stimulation rate and current steering may provide the means of delivering more spectral information and thus may provide the auditory fine-structure required for tone recognition. Several cochlear implant signal processing strategies are examined in this study, the continuous interleaved sampling (CIS) algorithm, the frequency amplitude modulation encoding (FAME) algorithm, and the multiple carrier frequency algorithm (MCFA). These strategies provide different types and amounts of spectral information. Pattern recognition techniques can be applied to data from Mandarin Chinese tone recognition tasks using acoustic models as a means of testing the abilities of these algorithms to transmit the changes in fundamental frequency indicative of the four lexical tones. The ability of processed Mandarin Chinese tones to be correctly classified may predict trends in the effectiveness of different signal processing algorithms in cochlear implants. The proposed techniques can predict trends in performance of the signal processing techniques in quiet conditions but fail to do so in noise. (C) 2008 Elsevier B.V. All rights reserved. C1 [Morton, Kenneth D.; Torrione, Peter A., Jr.; Throckmorton, Chandra S.; Collins, Leslie M.] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. RP Collins, LM (reprint author), Duke Univ, Dept Elect & Comp Engn, Box 90291, Durham, NC 27708 USA. EM lcollins@ee.duke.edu FU NIH [1-R01-DC007994-01] FX The authors would like to acknowledge Dr. Zeng at the University of California Irvine for his help in acquiring the speech material used in this research. They would also like to thank the subjects who participated in the experiment. This research was supported in part by NIH Grant 1-R01-DC007994-01. CR Arnoldner C, 2007, ACTA OTO-LARYNGOL, V127, P1298, DOI 10.1080/00016480701275261 Arulampalam MS, 2002, IEEE T SIGNAL PROCES, V50, P174, DOI 10.1109/78.978374 BLAMEY PJ, 1984, J ACOUST SOC AM, V76, P97, DOI 10.1121/1.391012 BLAMEY PJ, 1984, J ACOUST SOC AM, V76, P104, DOI 10.1121/1.391104 Clopper CJ, 1934, BIOMETRIKA, V26, P404, DOI 10.2307/2331986 COVER TM, 1967, IEEE T INFORM THEORY, V13, P21, DOI 10.1109/TIT.1967.1053964 Dorman MF, 1997, J ACOUST SOC AM, V102, P2403, DOI 10.1121/1.419603 Duda RO, 2004, PATTERN CLASSIFICATI FEARN R, 2001, 7 S COCHL IMPL CHILD, P51 Fearn R. A., 2001, THESIS U NEW S WALES FLANAGAN JL, 1966, AT&T TECH J, V45, P1493 Fu QJ, 1998, J ACOUST SOC AM, V104, P505, DOI 10.1121/1.423251 GORDON NJ, 1993, IEE PROC-F, V140, P107 GRAYDEN DB, 2006, P 11 AUSTR INT C SPE, P323 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 KOCH DB, 2005, C IMPL AUD PROSTH A Kong YY, 2006, J ACOUST SOC AM, V120, P2830, DOI 10.1121/1.2346009 Lan N, 2004, IEEE T BIO-MED ENG, V51, P752, DOI 10.1109/TBME.2004.826597 LAROCHE J, 1999, IEEE WORKSH APPL SIG LI J, 1999, FUZZ SYST C P FUZZ I, V2, P1059 Luo RC, 2004, IEEE T AUTOM SCI ENG, V1, P4, DOI [10.1109/TASE.2004.829344, 10.1109/TASE.2004.839344] Luo Xin, 2004, Journal of the Acoustical Society of America, V116, P3659, DOI 10.1121/1.1783352 MARKEL JD, 1972, IEEE T ACOUST SPEECH, VAU20, P367, DOI 10.1109/TAU.1972.1162410 McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177 Nie KB, 2005, IEEE T BIO-MED ENG, V52, P64, DOI 10.1109/TBME.2004.839799 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 Nogueira W, 2005, EURASIP J APPL SIG P, V2005, P3044, DOI 10.1155/ASP.2005.3044 NOGUEIRA W, 2007, ENG MED BIOL SOC EMB, P4127 REMUS J, 2003, C IMPL AUD PROSTH MO Seneff S., 1988, READINGS SPEECH RECO, P101 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SHI Y, 2003, P IEEE INT C AC SPEE Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Strope B, 1997, IEEE T SPEECH AUDI P, V5, P451, DOI 10.1109/89.622569 Tchorz J, 1999, J ACOUST SOC AM, V106, P2040, DOI 10.1121/1.427950 THROCKMORTON C, 2006, HEARING RES TIAN Y, 2004, P ICASSP, V1, P105 TONG YC, 1985, J ACOUST SOC AM, V77, P1881, DOI 10.1121/1.391939 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 Vandali AE, 2005, J ACOUST SOC AM, V117, P3126, DOI 10.1121/1.1874632 van Hoesel RJM, 2003, J ACOUST SOC AM, V113, P1617, DOI 10.1121/1.1539520 WEI CG, 2004, HEARING RES, P57 Whalen A D, 1971, DETECTION SIGNALS NO WHALEN DH, 1992, PHONETICA, V49, P25 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786 Xu L, 2002, J ACOUST SOC AM, V112, P247, DOI 10.1121/1.1487843 Zakis JA, 2007, SPEECH COMMUN, V49, P113, DOI 10.1016/j.specom.2006.12.001 Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 ZHENG Y, 2004, P IEEE INT C AC SPEE ZHENG Y, 2003, IEEE WORKSH STAT SIG NR 54 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2008 VL 244 IS 1-2 BP 66 EP 76 DI 10.1016/j.heares.2008.07.008 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 368XC UT WOS:000260655200008 PM 18706497 ER PT J AU Pretorius, LL Hanekom, JJ AF Pretorius, L. L. Hanekom, J. J. TI Free field frequency discrimination abilities of cochlear implant users SO HEARING RESEARCH LA English DT Article DE Cochlear implants; Frequency discrimination; Pure tones; Music perception ID NORMALLY HEARING SUBJECTS; DUAL-ELECTRODE STIMULI; PITCH PERCEPTION; MUSIC PERCEPTION; ELECTRICAL-STIMULATION; TEMPORAL CUES; RECIPIENTS; RANKING; SPEECH; SOUNDS AB Poor music perception abilities of cochlear implant users may be attributed to limited pitch resolution afforded by the implant system. We investigated (i) what the typical frequency discrimination thresholds of cochlear implant users would be in free field listening conditions and (ii) whether frequency discrimination behaviour would be influenced by the position of the reference frequency relative to the frequency response of filters selected from the user's map. Frequency discrimination thresholds were determined according to an adaptive two-alternative forced choice (2AFC) method, using pure tones delivered in free field conditions. Results showed that finer frequency resolution than previously thought could be available to cochlear implant users. Results are interpreted in terms of intermediate pitch percepts possibly created by near-simultaneous activation of adjacent electrodes, resulting in overlapping neural populations to be stimulated. The findings may contribute to strategies aiming to improve music perception abilities of cochlear implant users. (C) 2008 Elsevier B.V. All rights reserved. C1 [Pretorius, L. L.; Hanekom, J. J.] Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria, South Africa. RP Hanekom, JJ (reprint author), Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria, South Africa. EM johan.hanekom@up.ac.za FU National Research Foundation (South Africa) FX The authors wish to thank all the participants for their contribution, P.J. Venter for his contribution towards software development, as well as two anonymous reviewers for helpful comments. Financial assistance by the National Research Foundation (South Africa) is acknowledged. CR Collins LM, 2000, J ACOUST SOC AM, V108, P2353, DOI 10.1121/1.1314320 Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362 Dorman Michael F., 1996, Journal of the Acoustical Society of America, V99, P1174, DOI 10.1121/1.414600 DORMAN MF, 1992, J ACOUST SOC AM, V92, P3428, DOI 10.1121/1.404193 Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc Foxton JM, 2004, BRAIN, V127, P801, DOI 10.1093/brain/awh105 Fu QJ, 2002, EAR HEARING, V23, P339, DOI 10.1097/01.AUD.0000027432.18827.07 Galvin JJ, 2007, EAR HEARING, V28, P302, DOI 10.1097/01.aud.0000261689.35445.20 GFELLER K, 1991, J SPEECH HEAR RES, V34, P916 Gfeller K, 1997, EAR HEARING, V18, P252, DOI 10.1097/00003446-199706000-00008 Gfeller K, 2005, EAR HEARING, V26, P237, DOI 10.1097/00003446-200506000-00001 Hughes ML, 2006, J ACOUST SOC AM, V119, P1538, DOI 10.1121/1.2164969 Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F Kwon BJ, 2006, J ACOUST SOC AM, V120, pEL1, DOI 10.1121/1.2208152 Leal MC, 2003, ACTA OTO-LARYNGOL, V123, P826, DOI 10.1080/00016480310000386 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LOOI V, 2004, INT C SERIES, P197 MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475 McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177 McKay CM, 1996, J ACOUST SOC AM, V99, P1079, DOI 10.1121/1.414594 Moore BCJ, 2003, OTOL NEUROTOL, V24, P243, DOI 10.1097/00129492-200303000-00019 Nimmons GL, 2008, OTOL NEUROTOL, V29, P149 Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101 Peretz I, 2003, NAT NEUROSCI, V6, P688, DOI 10.1038/nn1083 PERETZ I, 1990, BRAIN, V113, P1185, DOI 10.1093/brain/113.4.1185 Peretz I, 2003, TRENDS COGN SCI, V7, P362, DOI 10.1016/S1364-6613(03)00150-5 Peretz I, 2005, ANNU REV PSYCHOL, V56, P89, DOI 10.1146/annurev.psych.56.091103.070225 Peretz I., 2002, NEUROSCIENTIST, V8, P374 PIJL S, 1995, HEARING RES, V89, P203, DOI 10.1016/0378-5955(95)00138-9 Pijl S, 1997, EAR HEARING, V18, P364, DOI 10.1097/00003446-199710000-00002 Reed CM, 2005, EAR HEARING, V26, P48, DOI 10.1097/00003446-200502000-00005 Shannon RV, 2005, INT REV NEUROBIOL, V70, P121, DOI 10.1016/S0074-7742(05)70004-0 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Sucher CM, 2007, HEARING RES, V230, P80, DOI 10.1016/j.heares.2007.05.002 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 Wilson BS, 2007, IEEE T BIO-MED ENG, V54, P969, DOI 10.1109/TBME.2007.893505 Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7 Zwicker E, 1999, PSYCHOACOUSTICS FACT NR 39 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2008 VL 244 IS 1-2 BP 77 EP 84 DI 10.1016/j.heares.2008.07.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 368XC UT WOS:000260655200009 PM 18692556 ER PT J AU Ohlemiller, KK Rice, MER Gagnon, PM AF Ohlemiller, Kevin K. Rice, Mary E. Rybak Gagnon, Patricia M. TI Strial microvascular pathology and age-associated endocochlear potential decline in NOD congenic mice SO HEARING RESEARCH LA English DT Article DE Cochlea; Presbycusis; Stria vascularis; Marginal cells; Basal cells; intermediate cells; Autoimmunity; Capillary ID NORTH AUTOIMMUNE MOUSE; HEARING-LOSS; INNER-EAR; MRL-FAS(LPR) MOUSE; AUDITORY DYSFUNCTION; VASCULARIS; DISEASE; HYPERLIPOPROTEINEMIA; IMMUNOGLOBULIN; CAPILLARIES AB NOD/ShiLtJ (previously NOD/LtJ) inbred mice show polygenic autoimmune disease and are commonly used to model autoimmune-related type I diabetes, as well as Sjogren's syndrome. They also show rapidly progressing hearing loss, partly due to the combined effects of Cdh23(ahl) and Ahl2. Congenic NOD.NON-H2(nb1)/LtJ mice, which carry corrective alleles within the H2 histocompatibility gene complex, are free from diabetes and other overt signs of autoimmune disease, but still exhibit rapidly progressive hearing loss. Here we show that cochlear pathology in these congenics broadly includes hair cell and neuronal loss, plus endocochlear potential (EP) decline from initially normal values after two months of age. The EP reduction follows often dramatic degeneration of capillaries in stria, vascularis, with resulting strial degeneration. The cochlear modiolus also features perivascular inclusions that resemble those in some mouse autoimmune models. We posit that cochlear hair cell/neural and strial pathology arise independently. While sensory cell loss may be closely tied to Cdh23(ahl) and Ahl2, the strial microvascular pathology and modiolar anomalies we observe may arise from alleles on the NOD background related to immune function. Age-associated EP decline in NOD.NON-H2(nbl) mice may model forms of strial age-related hearing loss caused principally by microvascular disease. The remarkable strial capillary loss in these mice may also be useful for studying the relation between strial vascular insufficiency and strial function. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ohlemiller, Kevin K.; Gagnon, Patricia M.] Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. [Ohlemiller, Kevin K.; Gagnon, Patricia M.] Washington Univ, Cent Inst Deaf, Fay & Carl Simons Ctr Biol Hearing & Deafness, St Louis, MO 63110 USA. [Ohlemiller, Kevin K.; Rice, Mary E. Rybak] Washington Univ, Program Audiol & Commun Sci, St Louis, MO 63110 USA. RP Ohlemiller, KK (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid St, St Louis, MO 63110 USA. EM kohlemiller@wustl.edu FU NIH [R01 DC008321, R01 DC03454, P30 DC04665, P30 NS057105] FX Supported by NIH R01 DC008321 (KKO), R01 DC03454 (KKO), P30 DC04665 (R. Chole), P30 NS057105 (D. Holtzman), and Washington University Medical School Department of Otolaryngology. Thanks to Dr. Dennis Trune for comments on the manuscript. CR Brod SA, 2000, INFLAMM RES, V49, P561, DOI 10.1007/s000110050632 COHENSALMON M, 2007, P NAT ACAD SCI, V105, P6229 Diaz RC, 2007, JARO-J ASSOC RES OTO, V8, P422, DOI 10.1007/s10162-007-0089-4 Ding CQ, 2006, CURR EYE RES, V31, P13, DOI 10.1080/02713680500428613 Edelman DA, 2006, J SURG RES, V135, P305, DOI 10.1016/j.jss.2006.06.010 Farkas E, 2001, PROG NEUROBIOL, V64, P575, DOI 10.1016/S0301-0082(00)00068-X Frisina ST, 2006, HEARING RES, V211, P103, DOI 10.1016/j.heares.2005.09.002 Fujimura T, 2005, HEARING RES, V209, P53, DOI 10.1016/j.heares.2005.05.013 Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654 Geesaman BJ, 2006, AM J CLIN NUTR, V83, p466S Gow A, 2004, J NEUROSCI, V24, P7051, DOI 10.1523/JNEUROSCI.1640-04.2004 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 Hasler P, 2005, CELL IMMUNOL, V233, P102, DOI 10.1016/j.cellimm.2005.04.012 HAWKINS JE, 1972, LARYNGOSCOPE, V82, P1091, DOI 10.1288/00005537-197207000-00001 HERTLER CK, 1990, OTOLARYNG HEAD NECK, V103, P713 Hibino H, 2006, PHYSIOLOGY, V21, P336, DOI 10.1152/physiol.00023.2006 Hirschi KK, 1996, CARDIOVASC RES, V32, P687, DOI 10.1016/S0008-6363(96)00063-6 Ikegami H, 2003, ANN NY ACAD SCI, V1005, P196, DOI 10.1196/annals.1288.026 Johnson KR, 2002, GENOMICS, V80, P461, DOI [10.1006/geno.2002.6858, 10.1016/S0888-7543(02)96858-8] JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P364 Khan DC, 2000, HEARING RES, V142, P12, DOI 10.1016/S0378-5955(99)00221-X LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61 Lin DW, 1997, OTOLARYNG HEAD NECK, V117, P530, DOI 10.1016/S0194-5998(97)70026-3 McQueen CT, 1999, J LARYNGOL OTOL, V113, P13 Mouadeb DA, 2005, LARYNGOSCOPE, V115, P879, DOI 10.1097/01.MLG.0000158666.15447.37 Ohlemiller KK, 2006, HEARING RES, V220, P10, DOI 10.1016/j.heares.2006.06.012 PALLIS M, 1994, LUPUS, V3, P401, DOI 10.1177/096120339400300507 PAULER M, 1988, LARYNGOSCOPE, V98, P754 PILLSBURY HC, 1986, LARYNGOSCOPE, V96, P1112 Rothe H, 2001, J MOL MED-JMM, V79, P190, DOI 10.1007/s001090000182 Ruckenstein MJ, 1999, HEARING RES, V131, P22, DOI 10.1016/S0378-5955(99)00018-0 Ruckenstein MJ, 1999, OTOLARYNG HEAD NECK, V121, P452, DOI 10.1016/S0194-5998(99)70236-6 Ruckenstein MJ, 1999, HEARING RES, V127, P137, DOI 10.1016/S0378-5955(98)00189-0 SAITO T, 1986, ARCH OTO-RHINO-LARYN, V243, P242, DOI 10.1007/BF00464438 Sakaguchi N, 1997, HEARING RES, V109, P83, DOI 10.1016/S0378-5955(97)00048-8 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 Schuknecht HF, 1993, PATHOLOGY EAR SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K SIKORA MA, 1986, ACTA OTO-LARYNGOL, V102, P372, DOI 10.3109/00016488609119420 SPENCER JT, 1973, LARYNGOSCOPE, V83, P639, DOI 10.1288/00005537-197305000-00002 Spicer SS, 2005, HEARING RES, V205, P225, DOI 10.1016/j.heares.2005.03.022 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Suzuki K, 2000, LARYNGOSCOPE, V110, P1736, DOI 10.1097/00005537-200010000-00033 TACHIBANA M, 1986, ARCH OTO-RHINO-LARYN, V243, P238, DOI 10.1007/BF00464437 Trune DR, 1997, OTOLARYNG HEAD NECK, V117, P504, DOI 10.1016/S0194-5998(97)70022-6 TRUNE DR, 1990, HEARING RES, V48, P241, DOI 10.1016/0378-5955(90)90064-V Trune DR, 2001, HEARING RES, V155, P9, DOI 10.1016/S0378-5955(01)00240-4 Trune DR, 2000, LARYNGOSCOPE, V110, P1902, DOI 10.1097/00005537-200011000-00025 TRUNE DR, 1991, AM J OTOLARYNG, V12, P259, DOI 10.1016/0196-0709(91)90003-X TRUNE DR, 2002, HDB MOUSE AUDITORY R, P505 van Blokland SCA, 2002, CLIN IMMUNOL, V103, P111, DOI 10.1006/clim.2002.5189 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 NR 52 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2008 VL 244 IS 1-2 BP 85 EP 97 DI 10.1016/j.heares.2008.08.001 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 368XC UT WOS:000260655200010 PM 18727954 ER PT J AU Berntson, AK Walmsley, B AF Berntson, A. K. Walmsley, B. TI Characterization of a potassium-based leak conductance in the medial nucleus of the trapezoid body SO HEARING RESEARCH LA English DT Article DE Mouse; Two-pore potassium channel; Dynamic clamp; TWIK; Leak ID DEAFNESS ASSOCIATED CHANGES; MOUSE-BRAIN SLICE; DYNAMIC CLAMP; K+ CHANNEL; EXTRACELLULAR PH; NEURONS; FAMILY; MNTB; EXCITABILITY; MODULATION AB Principal neurons of the medial nucleus of the trapezoid body (MNTB) integrate the large, excitatory inputs from anteroventral cochlear nucleus (AVCN) bushy cells with conventional inhibitory inputs to produce an inhibitory output to the lateral and medial superior olive. This circuit is critical in the sound localization pathway of the auditory brainstem. Many ionic currents act in concert to produce the rapid phase-locked firing properties characteristic of MNTB principal neurons. We report here that MNTB neurons of the mouse possess a 2-4 nS instantaneous potassium-based leak current, probably mediated by TWIK two-pore potassium leak channels. The function of the leak current was examined by modulating its magnitude with a dynamic clamp. The leak current modulates the resting voltage by 5 mV/nS, reduces the input resistance of the cell by 5 M Omega/nS and reduces the membrane time constant by 0.075 mu s/nS. The leak current also modulates spike timing. Given leak channels are highly regulated, they are well placed to influence the firing properties, and action potential timing in principal neurons of the MNTB. (C) 2008 Elsevier B.V. All rights reserved C1 [Berntson, A. K.; Walmsley, B.] Australian Natl Univ, John Curtin Sch Med Res, Div Neurosci, Acton, ACT 0200, Australia. RP Berntson, AK (reprint author), Australian Natl Univ, John Curtin Sch Med Res, Div Neurosci, GPO Box 4, Acton, ACT 0200, Australia. EM Amy.Eichner@anu.edu.au CR Awatramani GB, 2004, J NEUROSCI, V24, P2643, DOI 10.1523/JNEUROSCI.5144-03.2004 BORON WF, 1992, J GEN PHYSIOL, V99, P817, DOI 10.1085/jgp.99.5.817 Brickley SG, 2001, NATURE, V409, P88, DOI 10.1038/35051086 Chavez RA, 1999, J BIOL CHEM, V274, P7887, DOI 10.1074/jbc.274.12.7887 Cui YL, 2007, NEUROSCIENCE, V149, P421, DOI 10.1016/j.neuroscience.2007.05.054 Cymbalyuk GS, 2002, J NEUROSCI, V22, P10580 Day M, 2005, J NEUROSCI, V25, P8776, DOI 10.1523/JNEUROSCI.2650-05.2005 Del Negro CA, 2002, J NEUROPHYSIOL, V88, P2242, DOI 10.1152/jn.00081.2002 Dodson PD, 2002, J NEUROSCI, V22, P6953 FORSYTHE ID, 1993, P ROY SOC B-BIOL SCI, V251, P143, DOI 10.1098/rspb.1993.0021 Goaillard JM, 2006, PHYSIOLOGY, V21, P197, DOI 10.1152/physiol.00063.2005 Goldstein SAN, 2001, NAT REV NEUROSCI, V2, P175, DOI 10.1038/35058574 GUINAN JJ, 1990, HEARING RES, V49, P321, DOI 10.1016/0378-5955(90)90111-2 Holt AG, 2006, HEARING RES, V216, P146, DOI 10.1016/j.heares.2006.03.009 Johnston D, 1999, FDN CELLULAR NEUROPH Kaczmarek LK, 2005, HEARING RES, V206, P133, DOI 10.1016/j.heares.2004.11.023 Kindler CH, 2005, REGION ANESTH PAIN M, V30, P260, DOI 10.1016/j.rapm.2004.12.001 Klug A, 2006, J NEUROPHYSIOL, V96, P1547, DOI 10.1152/jn.01381.2005 Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5 Leao RN, 2005, EUR J NEUROSCI, V22, P147, DOI 10.1111/j.1460-9568.2005.04185.x Leonoudakis D, 1998, J NEUROSCI, V18, P868 Lesage F, 2000, J BIOL CHEM, V275, P28398, DOI 10.1074/jbc.M002822200 Lesage F, 1996, EMBO J, V15, P1004 MELLERGARD P, 1994, ACT NEUR S, V60, P34 Patel AJ, 2001, TRENDS NEUROSCI, V24, P339, DOI 10.1016/S0166-2236(00)01810-5 Plant LD, 2005, CURR OPIN NEUROBIOL, V15, P326, DOI 10.1016/j.conb.2005.05.008 Prinz AA, 2004, TRENDS NEUROSCI, V27, P218, DOI 10.1016/j.tins.2004.02.004 Salinas M, 1999, J BIOL CHEM, V274, P11751, DOI 10.1074/jbc.274.17.11751 SHARP AA, 1993, TRENDS NEUROSCI, V16, P389, DOI 10.1016/0166-2236(93)90004-6 Smith PH, 1998, J NEUROPHYSIOL, V79, P3127 Sorensen M, 2004, J NEUROSCI, V24, P5427, DOI 10.1523/JNEUROSCI.4449-03.2004 Talley EM, 2000, NEURON, V25, P399, DOI 10.1016/S0896-6273(00)80903-4 Talley EM, 2001, J NEUROSCI, V21, P7491 Taschenberger H, 2000, J NEUROSCI, V20, P9162 WU SH, 1993, HEARING RES, V68, P189 WU SH, 1995, J NEUROPHYSIOL, V73, P256 NR 36 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2008 VL 244 IS 1-2 BP 98 EP 106 DI 10.1016/j.heares.2008.08.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 368XC UT WOS:000260655200011 PM 18761066 ER PT J AU MacDonald, GH Rubel, EW AF MacDonald, Glen H. Rubel, Edwin W. TI Three-dimensional imaging of the intact mouse cochlea by fluorescent laser scanning confocal microscopy SO HEARING RESEARCH LA English DT Article DE fluorescence; confocal; cochlea; refractive index; methyl salicylate; benzyl benzoate ID SPIRAL GANGLION NEURONS; MAMMALIAN COCHLEA; ELECTRON-MICROSCOPY; 3D RECONSTRUCTION; SUPPORTING CELLS; REFRACTIVE-INDEX; HAIR-CELLS; INNERVATION; ORGAN; CORTI AB The complex anatomy of the mammalian cochlea is most readily understood by representation in three-dimensions. However, the cochlea is often sectioned to minimize the effects of its anatomic complexity and optical properties on image acquisition by light microscopy. We have found that optical aberrations present in the decalcified cochlea can be greatly reduced by dehydration through graded ethanols followed by clearing with a mixture of five parts methyl salicylate and three parts benzyl benzoate (MSBB). Clearing the cochlea with MSBB enables acquisition of high-resolution images with multiple fluorescent labels, through the full volume of the cochlea by laser scanning confocal microscopy. The resulting images are readily applicable to three-dimensional morphometric analysis and volumetric visualizations. This method promises to be particularly useful for three-dimensional characterization of anatomy, innervation and expression of genes or proteins in the many new animal models of hearing and balance generated by genetic manipulation. Furthermore, the MSBB is compatible with most non-protein fluorophores used for histological labeling, and may be removed with traditional transitional solvents to allow subsequent epoxy embedding for sectioning. (C) 2008 Elsevier B.V. All rights reserved. C1 [MacDonald, Glen H.; Rubel, Edwin W.] Univ Washington, Virginia Merrill Bloedel Heating Res Ctr, Dept Otolaryngol HNS, Seattle, WA 98195 USA. RP Rubel, EW (reprint author), Univ Washington, Virginia Merrill Bloedel Heating Res Ctr, Dept Otolaryngol HNS, Box 357923, Seattle, WA 98195 USA. EM rubel@u.washington.edu FU NIDCD [DC04661, DC03829]; Foundation Fighting Blindness [BR-GE-0606-0347] FX This work was supported by NIDCD grants DC04661 and DC03829, and the Foundation Fighting Blindness BR-GE-0606-0347. CR ANGELBOR.C, 1972, ACTA OTO-LARYNGOL, P49 Benveniste H, 2002, PROG NEUROBIOL, V67, P393, DOI 10.1016/S0301-0082(02)00020-5 BERGLUND AM, 1991, J COMP NEUROL, V306, P393, DOI 10.1002/cne.903060304 BERGLUND AM, 1987, J COMP NEUROL, V255, P560, DOI 10.1002/cne.902550408 Born M., 2005, PRINCIPLES OPTICS CARLSSON K, 1991, J MICROSC-OXFORD, V163, P167 CELIO MR, 1990, NEUROSCIENCE, V35, P375, DOI 10.1016/0306-4522(90)90091-H Egner A., 2006, HDB BIOL CONFOCAL MI, P404, DOI 10.1007/978-0-387-45524-2_20 Ellis EA, 2006, MICROSC TODAY, V14, P32 Hallworth R, 2000, HEARING RES, V148, P161, DOI 10.1016/S0378-5955(00)00149-0 Hardie NA, 2004, BRAIN RES, V1000, P200, DOI 10.1016/j.brainres.2003.10.071 HASHIMOTO S, 1990, ACTA OTO-LARYNGOL, V109, P228, DOI 10.3109/00016489009107438 HELL S, 1993, J MICROSC-OXFORD, V169, P391 Hibbs A.R., 2006, HDB BIOL CONFOCAL MI, P650, DOI 10.1007/978-0-387-45524-2_36 Huang LC, 2007, DEVELOPMENT, V134, P2925, DOI 10.1242/dev.001925 KELLER HE, 2006, HDB BIOL CONFOCAL MI, P154 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 Maison SF, 2003, J COMP NEUROL, V455, P406, DOI 10.1002/cne.10490 Maison SF, 2006, J NEUROSCI, V26, P10315, DOI 10.1523/JNEUROSCI.2395-06.2006 Munoz TE, 2004, J NEUROSCI METH, V137, P133, DOI 10.1016/j.jneumeth.2004.02.020 RICHARDSON KC, 1960, STAIN TECHNOL, V35, P313 Sato M, 1999, HEARING RES, V135, P29, DOI 10.1016/S0378-5955(99)00086-6 Slepecky NB, 1995, HEARING RES, V91, P136, DOI 10.1016/0378-5955(95)00184-0 SLEPECKY NB, 1992, HEARING RES, V57, P201, DOI 10.1016/0378-5955(92)90152-D Spalteholz W, 1914, DURCHSICHTIGMACHEN M Tinling SP, 2004, J MICROSC-OXFORD, V215, P230, DOI 10.1111/j.0022-2720.2004.01382.x Torok P, 1997, J MICROSC-OXFORD, V188, P158, DOI 10.1046/j.1365-2818.1997.2440802.x VOIE AH, 1993, J MICROSC-OXFORD, V170, P229 VOIE AH, 2007, 30 MIDW RES M ASS RE Voie AH, 2002, HEARING RES, V171, P119, DOI 10.1016/S0378-5955(02)00493-8 Wang G, 2001, ADV IMAGING, V16, P18 NR 31 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 1 EP 10 DI 10.1016/j.heares.2008.05.009 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900001 PM 18573326 ER PT J AU Santi, PA Rapson, I Voie, A AF Santi, Peter A. Rapson, Ian Voie, Arne TI Development of the mouse cochlea database (MCD) SO HEARING RESEARCH LA English DT Article DE mice; cochlea; atlas; 3D reconstruction; OPFOS ID MICE AB The mouse cochlea database (MCD) provides an interactive, image database of the mouse cochlea for learning its anatomy and data mining of its resources. The MCD website is hosted on a centrally maintained, high-speed server at the following URL: http://mousecochlea.umn.edu. The MCD contains two types of image resources, serial 2D image stacks and 3D reconstructions of cochlear structures. Complete image stacks of the cochlea from two different mouse strains were obtained using orthogonal plane fluorescence optical microscopy (OPFOS). 2D images of the cochlea are presented on the MCD website as: viewable images within a stack, 2D atlas of the cochlea, orthogonal sections, and direct volume renderings combined with isosurface reconstructions. In order to assess cochlear structures quantitatively, "true" cross-sections of the scala media along the length of the basilar membrane were generated by virtual resectioning of a cochlea orthogonal to a cochlear structure, such as the centroid of the basilar membrane or the scala media. 3D images are presented on the MCD website as: direct volume renderings, movies, interactive QuickTime VRs, flythrough, and isosurface 3D reconstructions of different cochlear structures. 3D computer models can also be used for solid model fabrication by rapid prototyping and models from different cochleas can be combined to produce an average 3D model. The MCD is the first comprehensive image resource on the mouse cochlea and is a new paradigm for understanding the anatomy of the cochlea, and establishing morphometric parameters of cochlear structures in normal and mutant mice. (C) 2008 Elsevier B.V. All rights reserved. C1 [Santi, Peter A.; Rapson, Ian] Univ Minnesota, Dept Otolaryngol, Minneapolis, MN 55455 USA. [Voie, Arne] Spencer Technol, Seattle, WA USA. RP Santi, PA (reprint author), Univ Minnesota, Dept Otolaryngol, Room 121,Lions Res Bldg,2001 6th St SE, Minneapolis, MN 55455 USA. EM psanti@umn.edu FU NIDCD [R21 DC005482, R01 DC007588]; Capita Foundation FX The authors thank the following students who have worked on the initial development of the MCD: Viet Pham, Jodi Lukkes, and Ann Schrafnagle, who did a great deal of structure segmentation. We also thank Tom Forsythe for work on the Stack Viewer program, and John Purdy for his excellent work on preliminary development of the 3D coordinate system of the cochlea. We also thank Dr. Douglas B. Webster of Louisiana State University the celloidin sections of the mouse cochlea and Dave Hultman for assistance with the rapid prototyping. Authorship credit follows ICMJE guidelines (http://www.icmje.org/index.html). Funding for this research has been provided by the: NIDCD (R21 DC005482; R01 DC007588), Capita Foundation, and University of Minnesota resources including the: Digital Technology Center, Supercomputing Institute, and Biomedical Engineering Institute. P.S. designed the MCD, wrote grants to fund the project, prepared the images, and wrote the manuscript. AN. performed the OPFOS imaging and reviewed the manuscript. AN. is an employee of Spencer Technologies (http://www.spencertechnologies.com). CR BATTEY J, 1998, T NIH MOUSE INITIATI BOHNE B, 2004, MICROSCOPIC ANATOMY BROWNELL W, 2005, COCHLEAR BIOPHYSICS BRUGGE J, 1996, EARWORKS AUDITORY TO BURDA H, 1988, J MORPHOL, V198, P269, DOI 10.1002/jmor.1051980303 EHRET G, 1977, J COMP PHYSL, V122, P1432 HENSON C, 2000, VERTEBRATE EAR TEMPO JONES A, 2008, ALLEN BRAIN ATLAS Keiler S, 2001, HEARING RES, V162, P91, DOI 10.1016/S0378-5955(01)00374-4 MAMMANO F, 2005, COCHLEA MARTONE M, 2008, CELL CTR DATABASE NA MOUNTAIN DC, 2008, EARLAB BOSTON U PUJOL R, 2007, PROMENADE ROUND COCH SALT AN, 2006, COCHLEAR FLUIDS RES Santi PA, 2004, HEARING RES, V192, P75, DOI 10.1016/j.heares.2004.01.017 TOGA AW, 2008, MOUSE ATLAS PROJECT VOIE AH, 1993, J MICROSC-OXFORD, V170, P229 Voie AH, 2002, HEARING RES, V171, P119, DOI 10.1016/S0378-5955(02)00493-8 WANG H, 2008, 3D VIRTUAL MODELS HU NR 19 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 11 EP 17 DI 10.1016/j.heares.2008.04.014 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900002 PM 18603386 ER PT J AU Zhang, ZG Zhang, VW Chan, SC McPherson, B Hu, Y AF Zhang, Z. G. Zhang, V. W. Chan, S. C. McPherson, B. Hu, Y. TI Time-frequency analysis of click-evoked otoacoustic emissions by means of a minimum variance spectral estimation-based method SO HEARING RESEARCH LA English DT Article DE click-evoked otoacoustic emissions; minimum variance spectral estimation; time-frequency analysis; time-frequency resolution; wavelet transform ID WAVELET ANALYSIS; NOISE; SYSTEM AB This paper proposes a new minimum variance spectral estimation (MVSE)-based time-frequency analysis (TFA) technique for click-evoked otoacoustic emissions (CEOAEs). The MVSE is a popular spectrum analysis method which can yield a high frequency resolution compared to other nonparametric spectral analysis procedures. The conventional MVSE is extended to a TFA method by windowing the observation data to obtain a time-frequency representation for the signal under study. Inspired by the adaptive window selection process in wavelet transform and based on the time-frequency characteristics of CECAEs, the window size of the windowed MVSE (WMVSE) is given a small value at high frequencies and a large value at low frequencies. The adaptive window size selection yields the proposed frequency-dependent WMVSE (FDWMVSE). The FDWMVSE method integrates the advantages of the adaptive window selection in wavelet transform with the fine frequency resolution of MVSE. Experimental results show that the FDWMVSE can achieve satisfactory time-frequency resolution and reveal meaningful time-frequency features when applied to synthesized and real CEOAEs. (C) 2008 Elsevier B.V. All rights reserved. C1 [Zhang, Z. G.; Hu, Y.] Univ Hong Kong, Dept Orthopaed & Traumatol, Pokfulam, Hong Kong, Peoples R China. [Zhang, V. W.; McPherson, B.] Univ Hong Kong, Dept Speech & Hearing Sci, Pokfulam, Hong Kong, Peoples R China. [Chan, S. C.] Univ Hong Kong, Dept Elect & Elect Engn, Pokfulam, Hong Kong, Peoples R China. RP Zhang, ZG (reprint author), Duchess Kent Childrens Hosp, Res Off, 12 Sandy Bay Rd, Pokfulam, Hong Kong, Peoples R China. EM zgzhang@eee.hku.hk RI McPherson, Donald/A-3140-2010 FU University Grants Council, Hong Kong [HKU 7434/04M] FX This study was partially supported by the University Grants Council, Hong Kong, Grant No. HKU 7434/04M. The authors also thank Dr. C.Q. Chang for his comments on this manuscript. The authors wish to thank the reviewers for their useful comments on an earlier version of the manuscript. CR Akay M., 1998, TIME FREQUENCY WAVEL CAPON J, 1969, P IEEE, V57, P1408, DOI 10.1109/PROC.1969.7278 CHAN SC, 2007, P 2007 IEEE ISCAS NE CHENG J, 2000, THESIS KAROLINSKA I CHENG J, 1995, SCAND AUDIOL, V24, P91, DOI 10.3109/01050399509047520 Hall J., 2000, HDB OTOACOUSTIC EMIS Hatzopoulos S, 2000, AUDIOLOGY, V39, P70 Hatzopoulos S, 2000, AUDIOLOGY, V39, P1 Hu Y, 2002, COMPUT BIOL MED, V32, P13, DOI 10.1016/S0010-4825(01)00026-9 IRINO T, 1993, IEEE T SIGNAL PROCES, V41, P3549, DOI 10.1109/78.258095 Janusauskas A, 2002, IEEE T BIO-MED ENG, V49, P132, DOI 10.1109/10.979352 JANUSAUSKAS A, 1998, SPR43 LUND TU Jedrzejczak WW, 2005, HEARING RES, V205, P249, DOI 10.1016/j.heares.2005.03.024 Kay S. M., 1987, MODERN SPECTRAL ESTI KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 LACOSS RT, 1971, GEOPHYSICS, V36, P661, DOI 10.1190/1.1440203 Manolakis D., 2000, STAT ADAPTIVE SIGNAL Muller P, 2002, J ACOUST SOC AM, V112, P164, DOI 10.1121/1.1488138 Ozgen MT, 2003, SIGNAL PROCESS, V83, P575, DOI 10.1016/S0165-1684(02)00487-5 Proakis J. G., 2002, ALGORITHMS STAT SIGN PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Quatieri T. F., 2002, DISCRETE TIME SPEECH Rhoades K, 1998, EAR HEARING, V19, P450, DOI 10.1097/00003446-199812000-00006 Sisto R, 2002, J ACOUST SOC AM, V111, P297, DOI 10.1121/1.1428547 Tognola G, 1998, IEEE T BIO-MED ENG, V45, P686, DOI 10.1109/10.678603 Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5 TOGNOLA G, 1996, P 1996 IEEE ENG MED, V4, P1526 Tognola G, 2005, HEARING RES, V199, P71, DOI 10.1016/j.heares.2004.08.005 WIT HP, 1994, HEARING RES, V73, P141, DOI 10.1016/0378-5955(94)90228-3 Zheng L, 1999, IEEE T BIO-MED ENG, V46, P1098 ZIMATORE G, 2000, THESIS U ROME SAPIEN NR 31 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 18 EP 27 DI 10.1016/j.heares.2008.07.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900003 PM 18662763 ER PT J AU Chen, GD Tanaka, C Henderson, D AF Chen, Guang-Di Tanaka, Chiemi Henderson, Donald TI Relation between outer hair cell loss and hearing loss in rats exposed to styrene SO HEARING RESEARCH LA English DT Article DE outer hair cell; cochlear amplification; hearing loss; styrene ototoxicity; rat ID NOISE-INDUCED HEARING; COCHLEAR AMPLIFIER; CARBON-MONOXIDE; GUINEA-PIG; MICE; INTERMITTENT; POTENTIATION; OTOTOXICITY; SENSITIVITY; MECHANISMS AB The relationship between outer hair cell (OHC) loss and cochlear sensitivity is still unclear, because in many animal models there exist surviving but dysfunctional OHCs and also injured/dead inner hair cells (IHC). Styrene is an ototoxic agent, which targets and destroys OHCs starting from the third row to the second and first rows depending on the exposure level. The remaining cells may be less affected. In this experiment, rats were exposed to styrene by gavage at different doses (200-800 mg/kg/day) for varying periods (5 days/week for 3-12 weeks). An interesting finding was that the cochlear sensitivity was not affected in a few rats with all OHCs in the third row being destroyed by styrene. A further loss of OHCs was usually accompanied with a linear input/output (I/O) function of cochlear compound action potentials (CAP), indicating the loss of cochlear amplification. However, normal CAP amplitudes at the highest stimulation level of 90 dB SPL were often observed when all OHCs were destroyed, indicating normal function of the remaining IHCs. The OHC-loss/hearing-loss relation appeared to be a sigmoid-type function. Initially, styrene-induced OHC losses (<33%) did not result in a significant threshold shift. Then CAP threshold shift increased dramatically with OHC loss from 33% to 66%. Then, CAP threshold changed less with OHC loss. The data suggest a tri-modal relationship between OHC loss and cochlear amplification. That is, under the condition that all surviving OHCs are ideally functioning, the cochlear amplifier is not affected until 33% of OHCs are absent, then the gain of the amplifier decreases proportionally with the OHC loss, and at last the amplifier may fail completely when more than 67% of OHCs are lost. (C) 2008 Elsevier B.V. All rights reserved. C1 [Chen, Guang-Di; Tanaka, Chiemi; Henderson, Donald] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Chen, GD (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM gchen7@buffalo.edu FU NIOSH [1R0101-1008113-01A1] FX This study is supported by NIOSH Grant 1R0101-1008113-01A1 The authors thank Eric Bielefeld for his comments and editorial help. CR Ahn JH, 2005, BIOCHEM BIOPH RES CO, V335, P485, DOI 10.1016/j.bbrc.2005.07.114 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BORG E, 1987, HEARING RES, V30, P119, DOI 10.1016/0378-5955(87)90129-8 BORG E, 1989, J ACOUST SOC AM, V86, P1776, DOI 10.1121/1.398609 Borg E, 1995, Scand Audiol Suppl, V40, P1 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Campo P, 2001, HEARING RES, V154, P170, DOI 10.1016/S0378-5955(01)00218-0 Chen GD, 1999, HEARING RES, V138, P181, DOI 10.1016/S0378-5955(99)00157-4 Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X Chen GD, 2001, HEARING RES, V154, P108, DOI 10.1016/S0378-5955(01)00228-3 Chen GD, 2002, HEARING RES, V172, P186, DOI 10.1016/S0378-5955(02)00582-8 Chen GD, 2005, HEARING RES, V200, P1, DOI 10.1016/j.heares.2004.08.016 Chen GD, 2007, HEARING RES, V226, P14, DOI 10.1016/j.heares.2006.06.007 Chen GD, 2007, TOXICOL SCI, V98, P167, DOI 10.1093/toxsci/kfm078 Chen GD, 2006, HEARING RES, V222, P54, DOI 10.1016/j.heares.2006.08.011 DALLOS P, 1992, J NEUROSCI, V12, P4575 Flock A, 1999, J NEUROSCI, V19, P4498 Gagnaire F, 2005, ARCH TOXICOL, V79, P346, DOI 10.1007/s00204-004-0636-2 HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 Lataye R, 2003, NEUROTOXICOL TERATOL, V25, P39, DOI 10.1016/S0892-0362(02)00326-4 Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 Lataye R, 2001, NEUROTOXICOL TERATOL, V23, P71, DOI 10.1016/S0892-0362(00)00114-8 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Loquet G, 2000, HEARING RES, V148, P173, DOI 10.1016/S0378-5955(00)00151-9 Loquet G, 1999, NEUROTOXICOL TERATOL, V21, P689, DOI 10.1016/S0892-0362(99)00030-6 Makitie AA, 2003, HEARING RES, V179, P9, DOI 10.1016/S0378-5955(03)00066-2 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 Murashita H, 2006, HEARING RES, V214, P1, DOI 10.1016/j.heares.2005.12.008 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Vicente-Torres MA, 2006, J NEUROSCI RES, V83, P1564, DOI 10.1002/jnr.20832 White DR, 1998, J ACOUST SOC AM, V103, P1566, DOI 10.1121/1.421303 Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7 Zhao HB, 1999, NATURE, V399, P359 NR 35 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 28 EP 34 DI 10.1016/j.heares.2008.05.008 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900004 PM 18586423 ER PT J AU Seluakumaran, K Mulders, WHAM Robertson, D AF Seluakumaran, Kumar Mulders, Wilhelmina H. A. M. Robertson, Donald TI Unmasking effects of olivocochlear efferent activation on responses of inferior colliculus neurons SO HEARING RESEARCH LA English DT Article DE guinea pig; auditory midbrain; descending control; masking ID AUDITORY-NERVE FIBERS; VENTRAL COCHLEAR NUCLEUS; GUINEA-PIG; ELECTRICAL-STIMULATION; INTENSITY DISCRIMINATION; CONTRALATERAL SOUND; DECEREBRATE CATS; DYNAMIC-RANGE; MASKED TONES; BRAIN-STEM AB Behavioural studies suggest a role for the medial olivocochlear (MOC) system in improving detection and discrimination of signals in noise. Physiological studies in the cochlea support this notion, showing unmasking, an improvement of the dynamic range of primary auditory afferents in response to tones in noise after MOC system activation. However, little is known about unmasking effects in higher centres. We investigated the effects of MOC stimulation on the responses of neurons in the guinea pig inferior colliculus to masked tones. In 50% of neurons background noise increased the basal rate and decreased maximum rate, an effect similar to that reported in primary afferents. In 35% of neurons maximum rate was increased by the background noise. Activation of the MOC system caused an increased slope and output dynamic range in the majority of input-output functions. Statistical analysis showed that this increased the discriminability of the tones within the noise. Hence, antimasking effects of olivocochlear activation that have been described in the cochlea can still be observed in the midbrain. However, 27% of neurons showed a variety of effects that have not been described in primary afferents, suggesting involvement of central circuitry in modulating effects of MOC stimulation on higher centres. (C) 2008 Elsevier B.V. All rights reserved. C1 [Seluakumaran, Kumar; Mulders, Wilhelmina H. A. M.; Robertson, Donald] Univ Western Australia, Sch Biomed Biomol & Chem Sci, Crawley, WA 6009, Australia. RP Mulders, WHAM (reprint author), Univ Western Australia, Sch Biomed Biomol & Chem Sci, Physiol M311,35 Stirling Highway, Crawley, WA 6009, Australia. EM kumarselvakumaran@hotmail.com; hmul-ders@cyllene.uwa.edu.au; drobed@cyllene.uwa.edu.au RI seluakumaran, kumar/B-3926-2009; SELUAKUMARAN, KUMAR/B-8814-2010 FU National Health and Medical Research Council (Australia); Medical Health and Research Infrastructure Fund; University of Western Australia FX K. Seluakumaran was a recipient of an international Postgraduate Research Scholarship from the Australian government and a University Postgraduate Award from The University of Western Australia. This work was supported by grants from the National Health and Medical Research Council (Australia), the Medical Health and Research Infrastructure Fund and The University of Western Australia. The authors thank IM Winter for generous supply of recording microelectrodes and M Lloyd for developing the Neurosound software. CR BENSON CG, 1990, J COMP NEUROL, V296, P415, DOI 10.1002/cne.902960307 Benson TE, 1996, J COMP NEUROL, V365, P27 BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106 Blanchet C, 2000, J PHYSIOL-LONDON, V525, P641, DOI 10.1111/j.1469-7793.2000.t01-1-00641.x BROWN MC, 1993, J COMP NEUROL, V337, P600, DOI 10.1002/cne.903370406 CASPARY DM, 1990, J NEUROSCI, V10, P2363 Cooper NP, 2003, J PHYSIOL-LONDON, V548, P307, DOI 10.1113/jphysiol.2003.039081 COSTALUPES JA, 1984, J NEUROPHYSIOL, V51, P1326 DELGUTTE B, 1990, J ACOUST SOC AM, V87, P791, DOI 10.1121/1.398891 DESMEDT J. E., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1478, DOI 10.1121/1.1918374 DEWSON JH, 1968, J NEUROPHYSIOL, V31, P122 DOLAN DF, 1988, J ACOUST SOC AM, V83, P1081, DOI 10.1121/1.396052 EHRET G, 1984, HEARING RES, V14, P45, DOI 10.1016/0378-5955(84)90068-6 GIARD MH, 1994, BRAIN RES, V633, P353, DOI 10.1016/0006-8993(94)91561-X GIBSON DJ, 1985, J NEUROPHYSIOL, V53, P940 GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 Giraud AL, 1997, NEUROREPORT, V8, P1779 GREEN DM, 1966, SIGNAL DETECTION THE GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8 Guinan Jr J.J., 1996, COCHLEA, P435 Hienz RD, 1998, HEARING RES, V116, P10, DOI 10.1016/S0378-5955(97)00197-4 Horvath M, 2000, J COMP NEUROL, V422, P95 JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2519 Kawase T, 1995, HEARING RES, V91, P1, DOI 10.1016/0378-5955(95)00145-X KAWASE T, 1993, J NEUROPHYSIOL, V70, P2533 Kumar UA, 2004, EAR HEARING, V25, P142, DOI 10.1097/01.AUD.0000120363.56591.E6 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Liberman MC, 1998, J COMMUN DISORD, V31, P471, DOI 10.1016/S0021-9924(98)00019-7 Lustig LR, 2006, ANAT REC PART A, V288A, P424, DOI 10.1002/ar.a.20302 Maison S, 2001, PSYCHOPHYSIOLOGY, V38, P35, DOI 10.1017/S0048577201990109 May BJ, 1995, AUDIT NEUROSCI, V1, P385 MAY BJ, 1992, J NEUROPHYSIOL, V68, P1589 MERRILL EG, 1972, MED BIOL ENG, V10, P662, DOI 10.1007/BF02476084 Micheyl C, 1997, BEHAV NEUROSCI, V111, P801, DOI 10.1037/0735-7044.111.4.801 Micheyl C, 1996, J ACOUST SOC AM, V99, P1604, DOI 10.1121/1.414734 MICHEYL C, 1995, ACTA OTO-LARYNGOL, V115, P178, DOI 10.3109/00016489509139286 Mulders WHAM, 2003, HEARING RES, V176, P113, DOI 10.1016/S0378-5955(02)00750-5 Mulders WHAM, 2007, J NEUROPHYSIOL, V97, P3288, DOI 10.1152/jn.01148.2006 Mulders WHAM, 2002, HEARING RES, V174, P264, DOI 10.1016/S0378-5955(02)00701-3 NIEDER P, 1970, EXP NEUROL, V28, P179, DOI 10.1016/0014-4886(70)90172-X OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 PATUZZI R, 1988, PHYSIOL REV, V68, P1009 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152 Ramachandran R, 2000, JARO, V1, P144, DOI 10.1007/s101620010029 REES A, 1988, J ACOUST SOC AM, V83, P1488, DOI 10.1121/1.395904 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 SAKITT B, 1973, NATURE, V241, P133, DOI 10.1038/241133a0 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 Seluakumaran K, 2008, EXP BRAIN RES, V186, P161, DOI 10.1007/s00221-007-1219-2 SMITH RL, 1979, J ACOUST SOC AM, V65, P166, DOI 10.1121/1.382260 SWETS JA, 1961, PSYCHOMETRIKA, V26, P49, DOI 10.1007/BF02289684 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WARREN EH, 1989, HEARING RES, V37, P105, DOI 10.1016/0378-5955(89)90033-6 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5 WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 YOUNG ED, 1986, J ACOUST SOC AM, V79, P426, DOI 10.1121/1.393530 NR 63 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 35 EP 46 DI 10.1016/j.heares.2008.05.004 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900005 PM 18573627 ER PT J AU Harris, KC Mills, JH He, NJ Dubno, JR AF Harris, Kelly C. Mills, John H. He, Ning-Ji Dubno, Judy R. TI Age-related differences in sensitivity to small changes in frequency assessed with cortical evoked potentials SO HEARING RESEARCH LA English DT Article DE aging and cortical potentials; auditory evoked potentials; aging and frequency discrimination ID SENSORINEURAL HEARING-LOSS; EVENT-RELATED POTENTIALS; INTENSITY DISCRIMINATION; NEURAL REPRESENTATION; MISMATCH NEGATIVITY; STIMULUS FREQUENCY; SPEECH RECOGNITION; ELDERLY PERSONS; OLDER-ADULTS; MODULATION AB As part of an ongoing study of age-related changes in auditory processing, sensitivity to small changes in frequency were assessed using the cortical auditory evoked potential, P1-N1-132, in younger and older adults with normal hearing. Behavioral measures have shown age-related differences in intensity and frequency discrimination that are larger at lower than higher frequencies. However, substantial individual differences and equivocal results among studies have been reported. This variability may reflect differences in tasks and procedures, as well as subject variables, such as hearing sensitivity and level of attention. To minimize these subject variables, the P1-N1-P2 response was investigated using a passive listening paradigm. Subjects were 10 younger and 10 older adults. The P1-N1-P2 was elicited by a 150-ms change in frequency in otherwise continuous 500-Hz and 3000-Hz pure tones presented at 70dB SPL. P1-N1-P2 threshold was defined as the smallest change in frequency needed to evoke a P1-N1-P2 response. Furthermore, a frequency-dependent aging effect was observed for P1-N1-P2 thresholds, such that older subjects were significantly less sensitive to the frequency change than younger subjects, with significantly larger age-related differences at 500 Hz than at 3000 Hz. Age-related changes in response latencies and amplitude of the P1-N1-P2 response were also evident at 500 and 3000 Hz. These results are consistent with age-related changes in the central auditory system and suggest that changes in frequency discrimination abilities of older adults may be, in part, related to changes in preattentive levels of auditory processing. (C) 2008 Elsevier B.V. All rights reserved. C1 [Harris, Kelly C.; Mills, John H.; He, Ning-Ji; Dubno, Judy R.] Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. RP Harris, KC (reprint author), Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, 135 Rutledge Ave,MSC 550, Charleston, SC 29425 USA. EM harriskc@musc.edu FU NIH/NIDCD [P50 DC00422]; National Center for Research Resources [C06 RR-14516]; National Institutes of Health FX This investigation was supported by NIH/NIDCD P50 DC00422 and conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR-14516 from the National Center for Research Resources, National Institutes of Health. Helpful contributions from Fu-Shing Lee are gratefully acknowledged. Our gratitude is also given to the editor Jos Eggermont, Bob Burkard and an anonymous reviewer for their constructive comments, which greatly improved this paper. CR Alain C, 1997, EVOKED POTENTIAL, V104, P531, DOI 10.1016/S0168-5597(97)00057-9 American National Standards Institute, 2004, S362004 ANSI Anderer P, 1996, ELECTROEN CLIN NEURO, V99, P458, DOI 10.1016/S0013-4694(96)96518-9 ANTINORO F, 1969, J ACOUST SOC AM, V46, P1433, DOI 10.1121/1.1911881 ATTIAS J, 1993, HEARING RES, V71, P106, DOI 10.1016/0378-5955(93)90026-W Bertoli S, 2005, JARO-J ASSOC RES OTO, V6, P207, DOI 10.1007/s10162-005-0002-y Boettcher FA, 2002, J SPEECH LANG HEAR R, V45, P1249, DOI 10.1044/1092-4388(2002/100) Boettcher FA, 2002, HEARING RES, V165, P10, DOI 10.1016/S0378-5955(01)00398-7 Boutros NN, 2000, INT PSYCHOGERIATR, V12, P513, DOI 10.1017/S1041610200006621 Buss E, 2004, EAR HEARING, V25, P242, DOI 10.1097/01.AUD.0000130796.93809.09 CHAMBERS RD, 1991, HEARING RES, V151, P1 Hallgren M, 2001, EAR HEARING, V22, P120 Harkrider AW, 2005, CLIN NEUROPHYSIOL, V116, P2153, DOI 10.1016/j.clinph.2005.05.016 Harris KC, 2007, HEARING RES, V228, P58, DOI 10.1016/j.heares.2007.01.021 HARTMANN WM, 1997, SIGNALS SOUND SENSAT, P431 He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127 He NJ, 2007, J ACOUST SOC AM, V122, P467, DOI 10.1121/1.2741208 HOKE M, 1989, HEARING RES, V37, P281, DOI 10.1016/0378-5955(89)90028-2 Humes L E, 1996, J Am Acad Audiol, V7, P419 HUMES LE, 1991, J SPEECH HEAR RES, V34, P686 Humes LE, 2005, J SPEECH LANG HEAR R, V48, P224, DOI 10.1044/1092-4388(2005/016) Humes LE, 2005, EAR HEARING, V26, P109, DOI 10.1097/00003446-200504000-00001 HUMES LE, 1994, J SPEECH HEAR RES, V37, P465 Humes L E, 1996, J Am Acad Audiol, V7, P161 Humes LE, 2006, J ACOUST SOC AM, V120, P2926, DOI 10.1121/1.2354070 JACOBSON GP, 1992, EAR HEARING, V13, P300, DOI 10.1097/00003446-199210000-00007 JESTEADT W, 1975, J ACOUST SOC AM, V57, P1161, DOI 10.1121/1.380574 Kadner A, 2002, NEUROREPORT, V13, P443, DOI 10.1097/00001756-200203250-00016 KONIG E, 1957, Acta Otolaryngol, V48, P475, DOI 10.3109/00016485709126909 LAFFONT F, 1989, Neurophysiologie Clinique, V19, P15, DOI 10.1016/S0987-7053(89)80081-4 Martin BA, 1999, EAR HEARING, V20, P33, DOI 10.1097/00003446-199902000-00004 MCCANDLE.GA, 1970, J SPEECH HEAR RES, V13, P624 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NELSON DA, 1986, J ACOUST SOC AM, V79, P799, DOI 10.1121/1.393470 Oates PA, 2002, EAR HEARING, V23, P399, DOI 10.1097/01.AUD.0000034777.12562.31 PFEFFERBAUM A, 1980, ELECTROEN CLIN NEURO, V49, P266, DOI 10.1016/0013-4694(80)90221-7 PFEIFFER E, 1975, J AM GERIATR SOC, V23, P433 PICTON TW, 1987, J ACOUST SOC AM, V82, P165, DOI 10.1121/1.395560 PICTON TW, 1984, PSYCHOPHYSIOLOGY, V21, P312, DOI 10.1111/j.1469-8986.1984.tb02941.x Schroeder MM, 1995, ANN NY ACAD SCI, V769, P399, DOI 10.1111/j.1749-6632.1995.tb38155.x SIMON HJ, 1993, EAR HEARING, V14, P190, DOI 10.1097/00003446-199306000-00006 SMITH DBD, 1980, BIOL PSYCHOL, V11, P135, DOI 10.1016/0301-0511(80)90048-4 Tremblay Kelly L, 2004, J Am Acad Audiol, V15, P226, DOI 10.3766/jaaa.15.3.5 Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7 TURNER CW, 1982, J SPEECH HEAR RES, V25, P34 WOLPAW JR, 1975, ELECTROEN CLIN NEURO, V39, P609, DOI 10.1016/0013-4694(75)90073-5 Woods D L, 1995, Electroencephalogr Clin Neurophysiol Suppl, V44, P102 WOODS DL, 1986, ELECTROEN CLIN NEURO, V65, P297, DOI 10.1016/0168-5597(86)90008-0 WOODS DL, 1992, ELECTROEN CLIN NEURO, V84, P456, DOI 10.1016/0168-5597(92)90033-8 Wunderlich JL, 2001, J ACOUST SOC AM, V109, P1526, DOI 10.1121/1.1349184 YINGLING CD, 1983, INT J NEUROSCI, V22, P107, DOI 10.3109/00207459308987389 NR 51 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 47 EP 56 DI 10.1016/j.heares.2008.05.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900006 PM 18597958 ER PT J AU Valero, MD Pasanen, EG McFadden, D Ratnam, R AF Valero, M. D. Pasanen, E. G. McFadden, D. Ratnam, R. TI Distortion-product otoacoustic emissions in the common marmoset (Callithrix jacchus): Parameter optimization SO HEARING RESEARCH LA English DT Article DE OAE; DPOAE; parameter optimization; primary-tone frequency ratio; primary-tone level difference; animal model; primate; marmoset ID MEDIAL BELT REGIONS; ACOUSTIC DISTORTION; AUDITORY-CORTEX; FREQUENCY RATIO; MACACA-MULATTA; STIMULUS PARAMETERS; BASIC FEATURES; FINE-STRUCTURE; HUMAN ADULTS; MUTANT MICE AB Distortion-product otoacoustic emissions (DPOAEs) were measured in a New World primate, the common marmoset (Callithrix jacchus). We determined the optimal primary-tone frequency ratio (f(2)/f(1)) to generate DPOAEs of maximal amplitude between 3 and 24 kHz. The optimal f(2)/f(1), determined by varying f(2)/f(1) from 1.02 to 1.40 using equilevell primary tones, decreased with increasing f(2) frequency between 3 and 17 kHz, and increased at 24 kHz. The optimal f(2)/f(1) ratio increased with increasing primary-tone levels from 50 to 74 dB SPL. When all stimulus parameters were considered, the mean optimal f(2)/f(1) was 1.224-1.226. Additionally, we determined the effect of reducing L(2) below L(1). Decreasing L(2) below L(1) by 0, 5, and 10 dB (f(2)/f(1) = 1.21) minimally affected DPOAE strength. DPOAE levels were stronger in females than males and stronger in the right ear than the left, just as in humans. This study is the first to measure OAEs in the marmoset, and the results indicate that the effect of varying the frequency ratio and primary-tone level difference on marmoset DPOAEs is similar to the reported effects in humans and Old World primates. (C) 2008 Elsevier B.V. All rights reserved. C1 [Valero, M. D.; Ratnam, R.] Univ Texas San Antonio, Dept Biol, San Antonio, TX 78249 USA. [Pasanen, E. G.; McFadden, D.] Univ Texas Austin, Dept Psychol, Austin, TX 78712 USA. [Pasanen, E. G.; McFadden, D.] Univ Texas Austin, Ctr Perceptual Syst, Austin, TX 78712 USA. RP Ratnam, R (reprint author), Univ Texas San Antonio, Dept Biol, 1 UTSA Circle, San Antonio, TX 78249 USA. EM Rama.ratnam@utsa.edu RI Ratnam, Rama/F-9508-2011 FU Southwest National Primate Research Center (SNPRC); Southwest Foundation for Biomedical Research in San Antonio; Institute for Aging Research at UTSA; NIH/NIDCD [R03DC009050]; National Institute of Health/National Institute of General Medical Sciences Minority Biomedical Research Support-Research Initiative in Science Enhancement (MBRS-RISE) [GM60655]; National Institute on Deafness [DC00153]; Communication Disorders (NIDCD) FX This work was supported in part by a student internship provided to M.D.V. at the Southwest National Primate Research Center (SNPRC) at the Southwest Foundation for Biomedical Research in San Antonio, the Institute for Aging Research at UTSA, and NIH/NIDCD R03DC009050 (to R.R). One of the authors (M.D.V) was supported by the National Institute of Health/National Institute of General Medical Sciences Minority Biomedical Research Support-Research Initiative in Science Enhancement (MBRS-RISE) GM60655. Data-acquisition software was written by E.G.P while supported by research grant DC00153 awarded to D.M. by the National Institute on Deafness and other Communication Disorders (NIDCD). We would like to thank the SNPRC for their generous support, and in particular we thank Donna Layne-Colon and Dr. Suzette Tardif for their constant encouragement and assistance throughout this work. CR Abdala C, 1996, J ACOUST SOC AM, V100, P3726, DOI 10.1121/1.417234 Allen J. B, 1990, USER MANUAL CUBDIS D ALLEN JB, 1990, LECT NOTES BIOMATH, V87, P324 Barros M, 2007, PHARMACOL BIOCHEM BE, V86, P705, DOI 10.1016/j.pbb.2007.02.016 Bartlett EL, 2007, J NEUROPHYSIOL, V97, P1005, DOI 10.1152/jn.00593.2006 Bendor D, 2007, NAT NEUROSCI, V10, P763, DOI 10.1038/nn1888 Bowman DM, 2000, HEARING RES, V142, P1, DOI 10.1016/S0378-5955(99)00212-9 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 BROWN AM, 1990, J ACOUST SOC AM, V88, P840, DOI 10.1121/1.399733 BROWN AM, 1985, HEARING RES, V19, P191, DOI 10.1016/0378-5955(85)90138-8 BROWN AM, 1993, J ACOUST SOC AM, V93, P3291, DOI 10.1121/1.405713 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209 BROWN AM, 1990, LECT NOTES BIOMATH, V87, P164 Brown DK, 2000, HEARING RES, V145, P17, DOI 10.1016/S0378-5955(00)00064-2 CANLON B, 1993, J ACOUST SOC AM, V94, P3232, DOI 10.1121/1.407229 COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 Coro F, 2001, HEARING RES, V162, P126, DOI 10.1016/S0378-5955(01)00381-1 de la Mothe LA, 2006, J COMP NEUROL, V496, P27, DOI 10.1002/cne.20923 de la Mothe LA, 2006, J COMP NEUROL, V496, P72, DOI 10.1002/cne.20924 Dreisbach LE, 2001, J ACOUST SOC AM, V110, P2456, DOI 10.1121/1.1406497 Dunckley KT, 2004, EAR HEARING, V25, P554, DOI 10.1097/00003446-200412000-00004 Fahey PF, 2006, J ACOUST SOC AM, V119, P991, DOI 10.1121/1.2146088 FURST M, 1988, J ACOUST SOC AM, V84, P215, DOI 10.1121/1.396968 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 Gaskill SA, 1996, J ACOUST SOC AM, V100, P3268, DOI 10.1121/1.417210 Harel N, 1997, HEARING RES, V110, P25, DOI 10.1016/S0378-5955(97)00061-0 HARRIS FP, 1992, HEARING RES, V64, P133, DOI 10.1016/0378-5955(92)90175-M HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 Kanis LJ, 1997, J ACOUST SOC AM, V101, P1527, DOI 10.1121/1.418173 KEMP DT, 1983, HEARING PHYSL BASES, P82 Khvoles R, 1998, AUDIOL NEURO-OTOL, V3, P349, DOI 10.1159/000013805 KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 KOSSL M, 1994, HEARING RES, V22, P105 Lasky RE, 1998, J ACOUST SOC AM, V103, P981, DOI 10.1121/1.421215 LASKY RE, 1995, HEARING RES, V89, P35, DOI 10.1016/0378-5955(95)00120-1 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 MARTIN GK, 1988, HEARING RES, V33, P49, DOI 10.1016/0378-5955(88)90020-2 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 MATTHEWS JW, 1986, PERIPHERAL AUDITORY, P258 Mauermann M, 1999, J ACOUST SOC AM, V106, P3473, DOI 10.1121/1.428200 McFadden D, 2006, HORM BEHAV, V50, P285, DOI 10.1016/j.yhbeh.2006.03.013 McFadden D, 2006, HORM BEHAV, V50, P274, DOI 10.1016/j.yhbeh.2006.03.012 Meenderink SWF, 2004, HEARING RES, V192, P107, DOI 10.1016/j.heares.2004.01.015 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 Moulin A, 2000, J ACOUST SOC AM, V107, P1460, DOI 10.1121/1.428433 NEELY ST, 1997, DIVERSITY AUDITORY M, P258 NEELY ST, 1993, BIOPHYSICS HAIR CELL, P64 NIELSEN LH, 1993, SCAND AUDIOL, V22, P159, DOI 10.3109/01050399309047462 NORTON SJ, 1990, LECT NOTES BIOMATH, V87, P219 Parham K, 1997, HEARING RES, V112, P216, DOI 10.1016/S0378-5955(97)00124-X PARK JY, 1995, HEARING RES, V86, P147, DOI 10.1016/0378-5955(95)00065-C Power ML, 2006, AM J PRIMATOL, V68, P181, DOI 10.1002/ajp.20215 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 SCHMIEDT RA, 1986, J ACOUST SOC AM, V79, P1481, DOI 10.1121/1.393675 Schnupp JWH, 2006, J NEUROSCI, V26, P4785, DOI 10.1523/JNEUROSCI.4330-05.2006 SCHROTT A, 1991, HEARING RES, V52, P245, DOI 10.1016/0378-5955(91)90204-M Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 SIEDEN HR, 1957, THESIS PRINCETON U SMURZYNSKI J, 1990, ARCH OTOLARYNGOL, V116, P1309 SOCKALINGAM R, 1998, AUDIO NEUROOTOL, V3, P313 Spatz WB, 1999, NEUROSCI LETT, V270, P141, DOI 10.1016/S0304-3940(99)00493-0 SPATZ WB, 1995, HEARING RES, V86, P89, DOI 10.1016/0378-5955(95)00059-D STOVER L, 1994, ABSTR ASS RES OT, V17, P54 Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 Tardif SD, 2005, J CLIN ENDOCR METAB, V90, P335, DOI 10.1210/jc.2004-1064 van Hengel PWJ, 2000, RECENT DEV AUDITORY, P409, DOI 10.1142/9789812793980_0058 Varghese GI, 2005, HEARING RES, V209, P60, DOI 10.1016/j.heares.2005.06.006 Vassilakis PN, 2004, J ACOUST SOC AM, V116, P3713, DOI 10.1121/1.1811571 WEVER EG, 1961, P NATL ACAD SCI USA, V47, P739, DOI 10.1073/pnas.47.5.739 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2346, DOI 10.1121/1.411959 WIEDERHOLD ML, 1986, PERIPHERAL AUDITORY, P322 WILSON JP, 1980, PSYCHOPHYSICAL PHYSL, P4350 ZUREK PM, 1982, J ACOUST SOC AM, V72, P774, DOI 10.1121/1.388258 NR 77 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 57 EP 68 DI 10.1016/j.heares.2008.05.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900007 PM 18586424 ER PT J AU Stakhovskaya, O Hradek, GT Snyder, RL Leake, PA AF Stakhovskaya, Olga Hradek, Gary T. Snyder, Russell L. Leake, Patricia A. TI Effects of age at onset of deafness and electrical stimulation on the developing cochlear nucleus in cats SO HEARING RESEARCH LA English DT Article DE onset of deafness; deafening models; cochlear nucleus development; chronic electrical stimulation ID AUDITORY BRAIN-STEM; SENSORINEURAL HEARING-LOSS; SPIRAL GANGLION NEURONS; NEONATAL DEAFNESS; POSTNATAL-DEVELOPMENT; MORPHOLOGICAL-CHANGES; INFERIOR COLLICULUS; SPEECH-PERCEPTION; GM1 GANGLIOSIDE; CRITICAL PERIOD AB This study examined the effects of deafness and intracochlear electrical stimulation on the anatomy of the cochlear nucleus (CN) after a brief period of normal auditory development early in life. Kittens were deafened by systemic ototoxic drug injections either as neonates or starting at postnatal day 30. Total CN volume, individual CN subdivision volumes, and cross-sectional areas of spherical cell somata in the anteroventral CN (AVCN) were compared in neonatally deafened and 30-day deafened groups at 8 weeks of age and in young adults after similar to 6 months of electrical stimulation initiated at 8 weeks of age. Both neonatal and early acquired hearing loss resulted in a reduction in CN volume as compared to normal hearing cats. Comparison of 8- and 32-week old groups indicated that the CN continued to grow in both deafened groups despite the absence of auditory input. Preserving normal auditory input for 30 days resulted in a significant increase in both total CN volume and cross-sectional areas of spherical cell somata, as compared to neonatally deafened animals. Restoring auditory input in these developing animals by unilateral intracochlear electrical stimulation did not elicit any difference in CN volume between the two sides, but resulted in 7% larger spherical cell size on the stimulated side. Overall, the brief period of normal auditory development and subsequent electrical stimulation maintained CN volume at 80% of normal and spherical cell size at 86% of normal ipsilateral to the implant as compared to 67% and 74%, respectively, in the neonatally deafened group. (C) 2008 Elsevier B.V. All rights reserved. C1 [Stakhovskaya, Olga; Hradek, Gary T.; Snyder, Russell L.; Leake, Patricia A.] Univ Calif San Francisco, Epstein Lab, Dept Otolaryngol Head & Neck Surg, San Francisco, CA 94143 USA. RP Stakhovskaya, O (reprint author), Univ Calif San Francisco, Epstein Lab, Dept Otolaryngol Head & Neck Surg, 533 Parnassus Ave,Room U490, San Francisco, CA 94143 USA. EM ostakhovskaya@ohns.ucsf.edu FU National Institutes of Health, and Hearing Research, Inc [N01-DC-3-1006, HHS-N-263-2007-000540]; [5R01-DC00160] FX This research was supported by Grant 5R01-DC00160 and Contracts N01-DC-3-1006 and #HHS-N-263-2007-000540 C from the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health, and Hearing Research, Inc. The authors gratefully acknowledge the expert technical assistance of Steve Rebscher, who designed and fabricated the custom feline cochlear implants used in this study, and Beth Dwan who assisted in animal surgery, daily stimulation, and care of chronically implanted animals. CR ANSON BJ, 1981, SURG ANATOMY TEMPORA, P23 BIRNHOLZ JC, 1983, SCIENCE, V222, P516, DOI 10.1126/science.6623091 BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 Busby PA, 1999, J ACOUST SOC AM, V105, P1841, DOI 10.1121/1.426721 Chao TK, 2002, HEARING RES, V174, P196, DOI 10.1016/S0378-5955(02)00694-9 Connor CM, 2000, J SPEECH LANG HEAR R, V43, P1185 Connor CM, 2006, EAR HEARING, V27, P628, DOI 10.1097/01.aud.0000240640.59205.42 EGGERMONT JJ, 1983, AUDITORY DEV INFANCY FLECKEISEN CE, 1991, ACTA OTO-LARYNGOL, P23 FRIA TJ, 1984, EAR HEARING, V5, P361, DOI 10.1097/00003446-198411000-00008 FryaufBertschy H, 1997, J SPEECH LANG HEAR R, V40, P183 Geers AE, 2004, ARCH OTOLARYNGOL, V130, P634, DOI 10.1001/archotol.130.5.634 Gerhardt K J, 2000, J Perinatol, V20, pS21 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 Harris JA, 2006, HEARING RES, V216, P127, DOI 10.1016/j.heares.2006.03.016 Harrison RV, 2005, DEV PSYCHOBIOL, V46, P252, DOI 10.1002/dev.20052 HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402 HULTCRANTZ M, 1991, HEARING RES, V54, P272, DOI 10.1016/0378-5955(91)90121-O KIANG NYS, 1975, J COMP NEUROL, V162, P221, DOI 10.1002/cne.901620205 Kirk Karen Iler, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P69 LARSSON SA, 1984, ACTA MED SCAND, P1 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 Leake PA, 2007, J COMP NEUROL, V501, P837, DOI 10.1002/cne.21275 Leake PA, 2000, HEARING RES, V147, P221, DOI 10.1016/S0378-5955(00)00133-7 Leake PA, 2006, J COMP NEUROL, V497, P13, DOI 10.1002/cne.20968 Leake PA, 1997, HEARING RES, V113, P117, DOI 10.1016/S0378-5955(97)00133-0 LEAKE PA, 1995, HEARING RES, V82, P65 LUSTIG LR, 1994, HEARING RES, V74, P29, DOI 10.1016/0378-5955(94)90173-2 MANRIQUE M, 1999, J PEDIAT OTORHINOLAR, V49, pS193 MATSUSHIMA JI, 1991, HEARING RES, V56, P133, DOI 10.1016/0378-5955(91)90162-3 MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412 Moore JK, 1996, EAR HEARING, V17, P411, DOI 10.1097/00003446-199610000-00007 MOORE JK, 1994, AM J OTOL, V15, P588 Moore WS, 1998, P INDIAN AS-EARTH, V107, P343 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G Nicholas JG, 2006, EAR HEARING, V27, P286, DOI 10.1097/01.aud.0000215973.76912.c6 Niparko JK, 1997, OTOLARYNG HEAD NECK, V117, P229, DOI 10.1016/S0194-5998(97)70179-7 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 Osofsky MR, 2001, HEARING RES, V159, P23, DOI 10.1016/S0378-5955(01)00311-2 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419 Ryugo DK, 2006, HEARING RES, V216, P100, DOI 10.1016/j.heares.2006.01.007 Saada AA, 1996, BRAIN RES, V736, P315, DOI 10.1016/0006-8993(96)00719-6 SALAMY A, 1976, ELECTROEN CLIN NEURO, V40, P418, DOI 10.1016/0013-4694(76)90193-0 Svirsky MA, 2004, AUDIOL NEURO-OTOL, V9, P224, DOI 10.1159/000078392 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R Tomblin JB, 2005, J SPEECH LANG HEAR R, V48, P853, DOI 10.1044/1092-4388(2005/059) TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410 TYEMURRAY N, 1995, J SPEECH HEAR RES, V38, P327 Vollmer M, 1999, J NEUROPHYSIOL, V82, P2883 Werner L. A., 1998, DEV AUDITORY SYSTEM, P12 WILLOTT JF, 1994, HEARING RES, V74, P1, DOI 10.1016/0378-5955(94)90171-6 Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 NR 53 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 69 EP 77 DI 10.1016/j.heares.2008.05.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900008 PM 18590947 ER PT J AU Dai, C Gan, RZ AF Dai, Chenkai Gan, Rong Z. TI Change of middle ear transfer function in otitis media with effusion model of guinea pigs SO HEARING RESEARCH LA English DT Article DE middle ear mechanics; otitis media with effusion; laser measurement; guinea pig ID FLACCIDA DISPLACEMENT PATTERN; PARS FLACCIDA; TYMPANIC MEMBRANE; STATIC PRESSURE; INTERFEROMETRY MEASUREMENTS; MUCOCILIARY PATHOLOGY; KLEBSIELLA-PNEUMONIAE; TEMPORAL BONES; GERBIL; LIPOPOLYSACCHARIDE AB Otitis media with effusion (OME) is an inflammatory disease of the middle ear that causes most cases of conductive hearing loss observed in the pediatric population. With the long term goal of evaluating middle ear function with OME, the aim of the current study was to create an animal model of OME in which middle ear transfer functions could be measured. In guinea pigs, OME was created by injecting lipopolysaccharide (LPS) into the middle ear. Evidence of OME was assessed by otoscopy, tympanometry, histology, and by measuring the volume of fluid in the middle ear. Vibrations of the umbo and round window membrane were measured with a laser Doppler vibrometer at frequency range of 200-40 kHz in three groups of 3,7, and 14 days after injection of LPS. Changes in displacement of the umbo and round window membrane in response to 80 dB SPL sound in the ear canal were measured across the frequency range. Displacement of both the umbo and round window membrane was reduced at all time points following LPS injections. Further, the change of the displacement transmission ratio (DTR) from the tympanic membrane to the round window occurred mainly in chronic (e.g. 14 days post-LPS injection) OME ears. This study provides useful data for analyzing the change of middle ear transfer function in OME ears. (C) 2008 Elsevier B.V. All rights reserved. C1 Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA. Univ Oklahoma, Ctr Bioengn, Norman, OK 73019 USA. RP Gan, RZ (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, 865 Asp Ave,Room 200, Norman, OK 73019 USA. EM rgan@ou.edu RI dai, chenkai/A-8051-2010 FU Oklahoma Center for the Advancement of Science Technology [HR06-036]; NIH/NIDCD [RO1DC006632] FX This work was supported by Oklahoma Center for the Advancement of Science & Technology (HR06-036) and NIH/NIDCD RO1DC006632. The authors thank Don Nakmali at Hough Ear Institute for his expert technical assistance. We thank Dr. Ann Thompson at Health Sciences Center, University of Oklahoma for instruction of histology study and many useful suggestions to improve this paper. The authors want to thank the anonymous reviewers for their tremendous efforts to make this paper better understandable. CR Ar A, 2007, RESP PHYSIOL NEUROBI, V155, P167, DOI 10.1016/j.resp.2006.04.011 BEERY QC, 1975, ANN OTO RHINOL LARYN, V84, P56 Dai C, 2008, HEARING RES, V236, P22, DOI 10.1016/j.heares.2007.11.005 Dai C, 2007, HEARING RES, V230, P24, DOI 10.1016/j.heares.2007.03.006 Dai CK, 2007, OTOL NEUROTOL, V28, P551, DOI 10.1097/mao.0b013e318033f008 DIRCKX JJJ, 1992, HEARING RES, V62, P99, DOI 10.1016/0378-5955(92)90206-3 Gan RZ, 2006, J ACOUST SOC AM, V120, P3799, DOI 10.1121/1.2372451 Gan RZ, 2001, ANN OTO RHINOL LARYN, V110, P478 KARMA PH, 1989, INT J PEDIATR OTORHI, V17, P37, DOI 10.1016/0165-5876(89)90292-9 KEITHLEY EM, 1990, EUR ARCH OTO-RHINO-L, V247, P247 Larsson C, 2003, OTOL NEUROTOL, V24, P358, DOI 10.1097/00129492-200305000-00002 Larsson C, 2005, OTOL NEUROTOL, V26, P337, DOI 10.1097/01.mao.0000169770.31292.75 Lee CY, 2001, HEARING RES, V153, P146, DOI 10.1016/S0378-5955(00)00269-0 Murakami S, 1997, ACTA OTO-LARYNGOL, V117, P390, DOI 10.3109/00016489709113411 MUSSON RA, 1978, INFECT IMMUN, V21, P448 OHASHI Y, 1991, ACTA OTO-LARYNGOL, P105 OHASHI Y, 1988, AM J OTOLARYNG, V9, P83, DOI 10.1016/S0196-0709(88)80012-7 PAPARELLA MM, 1976, ANN OTO RHINOL LARYN, V85, P63 Ravicz ME, 2004, HEARING RES, V195, P103, DOI 10.1016/j.heares.2004.05.010 Rosowski JJ, 2002, HEARING RES, V174, P183, DOI 10.1016/S0378-5955(02)00655-X VONUNGE M, 1995, HEARING RES, V82, P184, DOI 10.1016/0378-5955(94)00017-K Wada H, 2002, J ACOUST SOC AM, V111, P2189, DOI 10.1121/1.1467671 NR 22 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 78 EP 86 DI 10.1016/j.heares.2008.05.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900009 PM 18586077 ER PT J AU Sha, SH Kanicki, A Dootz, G Talaska, AE Halsey, K Dolan, D Altschuler, R Schacht, J AF Sha, Su-Hua Kanicki, Ariane Dootz, Gary Talaska, Andra E. Halsey, Karin Dolan, David Altschuler, Richard Schacht, Jochen TI Age-related auditory pathology in the CBA/J mouse SO HEARING RESEARCH LA English DT Article DE age-related hearing loss; presbycusis; hair cells; stria vascularis; endocochlear potential; spiral ganglion neurons ID SENSORINEURAL HEARING-LOSS; INBRED STRAINS; OLD GERBILS; MICE; YOUNG; DEGENERATION; SENSITIVITY; POTASSIUM; GENOTYPES; C57BL/6J AB Commercially obtained aged male CBA/J mice presented a complex pattern of hearing loss and morphological changes. A significant threshold shift in auditory brainstem responses (ABR) occurred at 3 months of age at 4 kHz without apparent loss of hair cells, rising slowly at loiter ages accompanied by loss of apical hair cells. A delayed high-frequency deficit started at 24 kHz around the age of 12 months. At 20-26 months, threshold shifts at 12 and 24 kHz and the accompanying hair cell loss at the base of the cochlea were highly variable with some animals appearing almost normal and others showing large deficits. Spiral ganglion cells degenerated by 18 months in all regions of the cochlea, with cell density reduced by approximately 25%. There was no degeneration of the stria vascularis and the endocochlear potential remained stable from 3 to 25 months of age regardless of whether the animals had normal or highly elevated ABR thresholds. The slow high-frequency hearing loss combined with a modest reduction of ganglion cell density and an unchanged endocochlear potential suggest sensorineural presbycusis. The superimposed early hearing loss at low frequencies, which is not seen in animals bred in-house, may complicate the use of these animals as a presbycusis model. (C) 2008 Elsevier B.V. All rights reserved. C1 [Sha, Su-Hua; Kanicki, Ariane; Dootz, Gary; Talaska, Andra E.; Halsey, Karin; Dolan, David; Altschuler, Richard; Schacht, Jochen] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. RP Sha, SH (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, 1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM shasha@umich.edu FU National Institute on Aging [AG-025164]; National institute on Deafness [P30 DC-05188]; Other Communication Disorders, NIH FX This study was supported by program project grant AG-025164 from the National Institute on Aging and core grant P30 DC-05188 from the National institute on Deafness and Other Communication Disorders, NIH. CR Bronson RT, 1990, GENETIC EFFECTS AGIN, V2, P279 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 HENRY KR, 1980, AUDIOLOGY, V19, P369 Henry KR, 2004, HEARING RES, V190, P141, DOI 10.1016/S0378-5955(03)00401-5 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 JOHNSSON LG, 1967, SCIENCE, V157, P1454, DOI 10.1126/science.157.3795.1454 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X Ohlemiller KK, 2007, HEARING RES, V224, P34, DOI 10.1016/j.heares.2006.11.005 Ohlemiller KK, 2006, HEARING RES, V220, P10, DOI 10.1016/j.heares.2006.06.012 OHLEMILLER KK, 2007, ASS RES OT ABSTR, P454 PRAZMA J, 1990, ARCH OTOLARYNGOL, V116, P932 SADANAGA M, 1995, HEARING RES, V89, P155, DOI 10.1016/0378-5955(95)00133-X SAITOH Y, 1994, HEARING RES, V75, P27, DOI 10.1016/0378-5955(94)90052-3 Schmiedt RA, 1996, HEARING RES, V102, P125, DOI 10.1016/S0378-5955(96)00154-2 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 SMITH GS, 1973, J NATL CANCER I, V50, P1195 Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Suryadevara AC, 2001, HEARING RES, V161, P45, DOI 10.1016/S0378-5955(01)00340-9 Tadros SF, 2007, NEUROBIOL AGING, V28, P1112, DOI 10.1016/j.neurobiolaging.2006.05.021 WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5 Wu T, 2003, JARO, V4, P353, DOI 10.1007/s10162-002-3026-6 NR 32 TC 31 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 87 EP 94 DI 10.1016/j.heares.2008.06.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900010 PM 18573325 ER PT J AU Poznyakovskiy, AA Zahnert, T Kalaidzidis, Y Schmidt, R Fischer, B Baumgart, J Yarin, YM AF Poznyakovskiy, Anton A. Zahnert, Thomas Kalaidzidis, Yannis Schmidt, Rolf Fischer, Bjoern Baumgart, Johannes Yarin, Yury M. TI The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data SO HEARING RESEARCH LA English DT Article DE cochlea; image reconstruction; anisotropic diffusion; active contours; 3-D visualization ID GUINEA-PIG; ALGORITHM; COCHLEA; IMAGES; RECONSTRUCTION; SEGMENTATION; SPACE; ORGAN; CORTI; SNAKE AB The modeling of the mechanical process of hearing requires an accurate geometrical model of the inner ear (cochlea). The purpose of this study was the creation of a 3-D model of the fluid chambers of Guinea pig cochlea, which could serve as a basis for further mechanical modeling. Micro computer tomography used in this study is a noninvasive method to visualize bony structures. The visualization of the membranous labyrinth was achieved by additional staining of the specimen with OSO4. The resulting stack of images has been transformed into a cylindrical coordinate system. To suppress noise on tomography images, a nonlinear smoothing method, anisotropic diffusion, Were applied. A new approach has been proposed to estimate algorithm parameters automatically. Then, a segmentation using active contours (snakes) was performed. In this study, a new energy linking the contours on adjacent slices has been added to the standard approach. This compensates the inconsistencies between adjacent contours. The images segmented in this way were used as a basis for a 3-D reconstruction of the hearing organ. (C) 2008 Elsevier B.V. All rights reserved. C1 [Poznyakovskiy, Anton A.; Zahnert, Thomas; Yarin, Yury M.] Univ Klinikum Dresden, Dept Med, Otorhinolaryngol Clin, D-01307 Dresden, Germany. [Kalaidzidis, Yannis] Max Planck Inst Mol & Cell Biol, D-01307 Dresden, Germany. [Schmidt, Rolf] Tech Univ Dresden, Dept Mech Engn, Inst Solid Mech, D-01307 Dresden, Germany. [Fischer, Bjoern] Dresden Branch IZFP, Fraunhofer Inst Nondestruct Testing, D-01109 Dresden, Germany. [Baumgart, Johannes] Tech Univ Dresden, Dept Mech Engn, Inst Aerosp Engn, D-01307 Dresden, Germany. [Kalaidzidis, Yannis] Moscow MV Lomonosov State Univ, Belozersky Inst Phys Chem Biol, Moscow 117189, Russia. RP Yarin, YM (reprint author), Univ Klinikum Dresden, Dept Med, Otorhinolaryngol Clin, Fetscherstr 74, D-01307 Dresden, Germany. EM kalaidzi@mpi-cbg.de; rolf.schmidt@tu-dres-den.de; bjoern.fischer@izfp-d.fraunhofer.de; johannes.baumgart@tu-dresden.de; yury.yarin@uniklinikum-dresden.de RI Baumgart, Johannes/A-8547-2011 OI Baumgart, Johannes/0000-0001-7384-5715 FU DFG [ZA 249/4-2, HA 2075/9-2, GR 1388/14-2] FX We would like to acknowledge the kind assitance of Peter Kruger, Fraunhofer-Institut fur Zerstorungsfreie Pruverfahren (IZFP), with micro-CT recordings, and Brigitte Harmann, Institut fur Pathologie, Universitatsklinikum Dresden, with staining of specimens. This work was supported by the DFG, ZA 249/4-2, HA 2075/9-2, GR 1388/14-2. CR Adiga PSU, 2000, COMPUT METH PROG BIO, V61, P23 CHRISTENSEN GE, 1999, ACAD RADIOL, V10, P988 Counter SA, 2000, NEUROREPORT, V11, P3979, DOI 10.1097/00001756-200012180-00015 FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519 FURNESS DN, 1986, HEARING RES, V21, P243, DOI 10.1016/0378-5955(86)90222-4 HARADA T, 1990, EUR ARCH OTO-RHINO-L, V247, P348 Ji LL, 2002, PATTERN RECOGN, V35, P791, DOI 10.1016/S0031-3203(01)00085-1 Jin Z, 2006, HEARING RES, V219, P74, DOI 10.1016/j.heares.2006.06.001 Kang DJ, 1999, PATTERN RECOGN LETT, V20, P507 Kass M., 1988, INT J COMPUT VISION, V1, P321, DOI DOI 10.1007/BF00133570 Kawano A, 1996, ANN OTO RHINOL LARYN, V105, P701 Ladret P, 1999, SIGNAL PROCESS, V79, P197, DOI 10.1016/S0165-1684(99)00093-6 Lane JI, 2004, CLIN ANAT, V17, P607, DOI 10.1002/ca.20059 Li SF, 2006, ORL J OTO-RHINO-LARY, V68, P302, DOI 10.1159/000094378 LIM DJ, 1980, J ACOUST SOC AM, V67, P1686, DOI 10.1121/1.384295 Mascorro José A, 2007, Methods Mol Biol, V369, P19 PERONA P, 1990, IEEE T PATTERN ANAL, V12, P629, DOI 10.1109/34.56205 Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9 Sato M, 1999, HEARING RES, V127, P1, DOI 10.1016/S0378-5955(98)00143-9 Shinomori Y, 2001, ANN OTO RHINOL LARYN, V110, P91 Spoor F, 1998, Am J Phys Anthropol, VSuppl 27, P211 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 Tinz L, 2005, THESIS TU MUNCHEN Uzun H, 2007, ACTA OTO-LARYNGOL, V127, P568, DOI 10.1080/00016480600951509 Valverde FL, 2004, COMPUT METH PROG BIO, V73, P233, DOI 10.1016/S0169-2607(03)00043-9 Vogel U, 1999, ORL J OTO-RHINO-LARY, V61, P259, DOI 10.1159/000027683 Wong YY, 1998, PATTERN RECOGN, V31, P1669, DOI 10.1016/S0031-3203(98)00048-X Yoo SK, 2000, IEEE T BIO-MED ENG, V47, P1392, DOI 10.1109/10.871413 NR 28 TC 20 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 95 EP 104 DI 10.1016/j.heares.2008.06.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900011 PM 18625296 ER PT J AU Friedland, DR Eernisse, R Popper, P AF Friedland, David R. Eernisse, Rebecca Popper, Paul TI Identification of a novel Vamp1 splice variant in the cochlear nucleus SO HEARING RESEARCH LA English DT Article DE cochlear nucleus; synaptic vesicle; Vamp1; splice variant; auditory ID MEMBRANE PROTEIN-1 VAMP-1; GENE-EXPRESSION; NERVOUS-SYSTEM; RAT-BRAIN; PHOSPHORYLATION; SYNAPTOBREVIN; PATTERNS; ISOFORMS; DORSAL; MICE AB Cochlear nucleus neurons propagate auditory impulses to higher brain stem centers at rapid firing rates with high fidelity. Intrinsic to synaptic transmission are the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins engaged in vesicle fusion, release and recycling. Herein we report a novel splice variant of the SNARE protein Vamp1 (vesicle-associated membrane protein 1) within the cochlear nucleus. We previously demonstrated, through serial analysis of gene expression and microarray studies, that Vamp1 is differentially expressed among the subdivisions of the rat cochlear nucleus. The 3' end of this transcript, however, was poorly characterized and we could not initially confirm our findings. In this study, we designed RT-PCR primers using conserved 5' regions and the mouse 3' domain to validate the expression of Vamp1. Several species of Vamp] were subsequently amplified from a rat brain cDNA library including a full length clone of Vamp1as and a novel splice variant we termed Vamp1nv. Using regional brain libraries Vamp1nv showed expression in the medulla and lack of expression in the cortex, cerebellum and thalamus. Expression of Vamp1nv was further confirmed and characterized by RT-PCR and real-time PCR in each of the cochlear nucleus subdivisions. The predicted protein sequence for Vamp1nv demonstrates a unique modification of the carboxy-terminal end of the protein as compared to known variants. This includes the appearance of two intra-vesicular serine residues with high predicted potential as kinase phosphorylation sites. Such splice variants of Vamp1 may alter the kinetics of SNARE complex formation and vesicle release and impart unique features to expressing neurons. This may be important for central auditory function and contribute to the distinct physiological properties observed in auditory neurons. (C) 2008 Elsevier B.V. All rights reserved. C1 [Friedland, David R.; Eernisse, Rebecca; Popper, Paul] Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, Milwaukee, WI 53226 USA. RP Friedland, DR (reprint author), Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, 9200 W Wisconsin Ave, Milwaukee, WI 53226 USA. EM dfriedla@mcw.edu FU NIH [K08 DC006227]; National Institute on Deafness and Communication Disorders FX The authors thank Dr. Joseph Cioffi for his expertise and assistance throughout this study. We also thank Christy Erbe for technical assistance. Supported by NIH Grant K08 DC006227 from the National Institute on Deafness and Communication Disorders. CR Abril JF, 2005, GENOME RES, V15, P111, DOI 10.1101/gr.3108805 Berglund L, 1999, BIOCHEM BIOPH RES CO, V264, P777, DOI 10.1006/bbrc.1999.1588 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 Bowen M, 2006, P NATL ACAD SCI USA, V103, P8378, DOI 10.1073/pnas.0602644103 Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 ELFERINK LA, 1989, J BIOL CHEM, V264, P11061 Friedland DR, 2006, NEUROSCIENCE, V142, P753, DOI 10.1016/j.neuroscience.2006.06.060 Friedland DR, 2007, HEARING RES, V228, P31, DOI 10.1016/j.heares.2007.01.024 Isenmann S, 1998, MOL BIOL CELL, V9, P1649 Jacobsson G, 1998, EUR J NEUROSCI, V10, P301, DOI 10.1046/j.1460-9568.1998.00050.x Li JY, 1996, J NEUROSCI, V16, P137 Mandic R, 1997, GENE, V199, P173, DOI 10.1016/S0378-1119(97)00244-8 MARCHIORI F, 1988, BIOCHIM BIOPHYS ACTA, V971, P332 NIELANDER HB, 1995, J NEUROCHEM, V65, P1712 Oleskevich S, 2004, J PHYSIOL-LONDON, V560, P709, DOI 10.1113/jphysiol.2004.066652 Pyle RA, 2000, J BIOL CHEM, V275, P17195, DOI 10.1074/jbc.M000674200 Raptis A, 2005, J CHEM NEUROANAT, V30, P201, DOI 10.1016/j.jchemneu.2005.08.002 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 Risinger C, 1999, J NEUROCHEM, V72, P614, DOI 10.1046/j.1471-4159.1999.0720614.x Rossetto O, 1996, J CELL BIOL, V132, P167, DOI 10.1083/jcb.132.1.167 Sakaba T, 2005, SCIENCE, V309, P491, DOI 10.1126/science.1112645 Schoch S, 2001, SCIENCE, V294, P1117, DOI 10.1126/science.1064335 Siddiqui TJ, 2007, MOL BIOL CELL, V18, P2037, DOI 10.1091/mbc.E07-01-0049 Snyder DA, 2006, CELL BIOCHEM BIOPHYS, V45, P111, DOI 10.1385/CBB:45:1:111 Stabler SE, 1996, J NEUROPHYSIOL, V76, P1667 Sudhof TC, 2004, ANNU REV NEUROSCI, V27, P509, DOI 10.1146/annurev.neuro.26.041002.131412 Thiagarajan TC, 2002, NEURON, V36, P1103, DOI 10.1016/S0896-6273(02)01049-8 TRIMBLE WS, 1990, J NEUROSCI, V10, P1380 NR 28 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 105 EP 112 DI 10.1016/j.heares.2008.06.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900012 PM 18655825 ER PT J AU Remijn, GB Perez, E Nakajima, Y Ito, H AF Remijn, Gerard B. Perez, Elvira Nakajima, Yoshitaka Ito, Hiroyuki TI Frequency modulation facilitates (modal) auditory restoration of a gap SO HEARING RESEARCH LA English DT Article DE frequency modulated sound; steady-state sound; auditory restoration; sound edge; binding ID ILLUSORY CONTINUITY; TONE COMPONENTS; CORTEX; SOUNDS; PERCEPTION; PATTERNS; ONSETS; GLIDES; LEVEL; NOISE AB In this study we further investigated processes of auditory restoration (AR) in recently described stimulus types: the so-called gap-transfer stimulus, the shared-gap stimulus and the pseudo-continuous stimulus. The stimuli typically consist of two crossing sounds of unequal duration. In the shared-gap and pseudocontinuous stimuli, the two crossing sounds share a gap (<45 ms) at their crossing point. In the gap-transfer stimulus, only the long sound contains a gap (100 ms), whereas the short sound is physically continuous. Earlier research has shown that in these stimuli the long sound is subject to AR, in spite of the gap it contains, whereas the gap is perceived in the short sound. Experiment 1 of the present study showed that AR of the stimuli's long sound was facilitated when its slope increased from 0 to 1 oct/s. Experiment 2 showed that the effect of slope on AIR of the long sound also occurred when the slope relationship between the long and short sound was fixed. Implications for a tentative sound edge-binding explanation of AR as well as alternative explanations for the effect of slope on AR are discussed. (C) 2008 Elsevier B.V. All rights reserved. C1 [Remijn, Gerard B.] Kanazawa Univ, Fac Letters, Dept Psychol, Kanazawa, Ishikawa 9201192, Japan. [Perez, Elvira; Nakajima, Yoshitaka] Kyushu Univ, Fac Design, Dept Acoust Design, Fukuoka 8150033, Japan. [Ito, Hiroyuki] Kyushu Univ, Fac Design, Dept Visual Commun Design, Fukuoka 8150033, Japan. RP Remijn, GB (reprint author), Kanazawa Univ, Fac Letters, Dept Psychol, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan. EM remijn@staff.kanazawa-u.ac.jp; perez.elvira@googlemail.com; nakajima@design.kyushu-u.ac.jp; ito@design.kyushu-u.ac.jp FU Japan Society for the Promotion of Science [17-81005280, 1806800, 19103003] FX This study was supported by Grants-in-Aid provided by the Japan Society for the Promotion of Science (17-81005280 to HI and GBR in fiscal 2006-2007; 1806800 and 19103003 to YN in fiscal 2007). Further support came from Kyushu University's and Kanazawa University's COE Program. We thank two anonymous reviewers, Takayuki Sasaki and Gert ten Hoopen for their comments and advice on the project, and the students at Kyushu University for their participation in the experiments. CR BREGMAN AS, 1994, J ACOUST SOC AM, V96, P2694, DOI 10.1121/1.411277 Bregman AS., 1990, AUDITORY SCENE ANAL CIOCCA V, 1987, PERCEPT PSYCHOPHYS, V42, P476, DOI 10.3758/BF03209755 ELFNER L, 1965, J ACOUST SOC AM, V38, P543, DOI 10.1121/1.1909739 Harms MP, 2005, J NEUROPHYSIOL, V93, P210, DOI 10.1152/jn.00712.2004 Herdener M, 2007, NEUROIMAGE, V36, P194, DOI 10.1016/j.neuroimage.2007.01.050 HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048 Iwamiya S., 2003, Acoustical Science and Technology, V24, DOI 10.1250/ast.24.27 Kanafuka K, 2007, PERCEPT PSYCHOPHYS, V69, P641, DOI 10.3758/BF03193768 KANIZSA G, 1976, SCI AM, V234, P48 KURODA T, 2007, P 23 M INT SOC PSYCH, P119 Lehmann C, 2007, NEUROIMAGE, V34, P1637, DOI 10.1016/j.neuroimage.2006.11.011 MCPHERSON LM, 1994, PERCEPT PSYCHOPHYS, V55, P269, DOI 10.3758/BF03207598 Nakajima Y, 2000, PERCEPT PSYCHOPHYS, V62, P1413, DOI 10.3758/BF03212143 PEREZ E, AUDITORY GRAMM UNPUB PETERS RW, 1995, J ACOUST SOC AM, V97, P3791, DOI 10.1121/1.412394 Petkov CI, 2007, NEURON, V54, P153, DOI 10.1016/j.neuron.2007.02.031 Petkov CI, 2003, J NEUROSCI, V23, P9155 Phillips DP, 1997, J ACOUST SOC AM, V101, P3694, DOI 10.1121/1.419376 Qin L, 2007, J NEUROPHYSIOL, V97, P3421, DOI 10.1152/jn.00184.2007 RATCLIFF R, 1993, PSYCHOL BULL, V114, P510, DOI 10.1037/0033-2909.114.3.510 Remijn GB, 2007, PERCEPTION, V36, P898, DOI 10.1068/p5574 Remijn GB, 2005, J EXP PSYCHOL HUMAN, V31, P183, DOI 10.1037/0096-1523.31.1.183 Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565 Warren R. M., 1982, AUDITORY PERCEPTION WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392 WARREN RM, 1988, J ACOUST SOC AM, V84, P1338, DOI 10.1121/1.396632 WARREN RM, 1972, SCIENCE, V176, P1149, DOI 10.1126/science.176.4039.1149 NR 28 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 113 EP 120 DI 10.1016/j.heares.2008.06.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900013 PM 18620037 ER PT J AU Berkingali, N Warnecke, A Gomes, P Paasche, G Tack, J Lenarz, T Stover, T AF Berkingali, Nurdanat Warnecke, Athanasia Gomes, Priya Paasche, Gerrit Tack, Jan Lenarz, Thomas Stoever, Timo TI Neurite outgrowth on cultured spiral ganglion neurons induced by erythropoietin SO HEARING RESEARCH LA English DT Article DE EPO; BDNF; spiral ganglion neurons; neurite outgrowth; neuroprotection ID NEUROTROPHIC FACTOR; INDUCED APOPTOSIS; INNER-EAR; SURVIVAL; EXPRESSION AB The morphological correlate of deafness is the loss of hair cells with subsequent degeneration of spiral ganglion neurons (SGN). Neurotrophic factors have a neuroprotective effect, and especially brain-derived neurotrophic factor (BDNF) has been demonstrated to protect SGN in vitro and after ototoxic trauma in vivo. Erythropoietin (EPO) attenuates hair cell loss in rat cochlea explants that were treated with gentamycin. Recently, it has also been shown that EPO reduces the apoptose rate in hippocampal neurons. Therefore, the aim of the study was to examine the effects of EPO on SGN in vitro. Spiral ganglion cells were isolated from neonatal rats and cultured for 48 h in serum-free medium supplemented with EPO and/or BDNF. Results showed that survival rates of SGN were not significantly improved when cultivated with EPO alone. Also, EPO did not further increase BDNF-induced survival of SGN. However, significant elongation of neurites was determined when SGN were cultivated with EPO alone. Even though a less than additive effect was observed, combined treatment with BDNF and EPO led to a significant elongation of neurites when compared to individual treatment with BDNF or EPO. It can be concluded that EPO induces neurite outgrowth rather than promoting survival. Thus, EPO presents as an interesting candidate to enhance and modulate the regenerative effect of BDNF on SGN. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved. C1 [Berkingali, Nurdanat; Warnecke, Athanasia; Gomes, Priya; Paasche, Gerrit; Lenarz, Thomas; Stoever, Timo] Hannover Med Sch, Dept Otorhinolaryngol Head & Neck Surg, D-30625 Hannover, Germany. [Gomes, Priya; Tack, Jan] Katholieke Univ Leuven, Ctr Gastroenterol Res, B-3000 Louvain, Belgium. [Gomes, Priya] Funds Sci Res FWO, Flanders, Belgium. RP Stover, T (reprint author), Hannover Med Sch, Dept Otorhinolaryngol Head & Neck Surg, Carl Neuberg Str 1, D-30625 Hannover, Germany. EM warnecke.athanasia@mh-hannover.de; Stoever.Timo@mh-hannover.de CR Andreeva N, 2006, NEUROSCI LETT, V396, P86, DOI 10.1016/j.neulet.2005.11.013 ARISHIMA Y, 2006, SPINE, V21, P2432 Blamey PJ, 1996, HEARING RES, V99, P139, DOI 10.1016/S0378-5955(96)00095-0 Brines M, 2005, NAT REV NEUROSCI, V6, P484, DOI 10.1038/nrn1687 Caye-Thomasen P, 2005, HEARING RES, V203, P21, DOI 10.1016/j.heares.2004.11.017 Chong ZZ, 2003, J NEUROSCI RES, V71, P659, DOI 10.1002/jnr.10528 Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Fisher JW, 2003, EXP BIOL MED, V228, P1 Gillespie LN, 2005, EUR J NEUROSCI, V22, P2123, DOI 10.1111/j.1460-9568.2005.04430.x Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2 Hegarty JL, 1997, J NEUROSCI, V17, P1959 Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5 Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906 Marzella PL, 1999, HEARING RES, V138, P73, DOI 10.1016/S0378-5955(99)00152-5 MARZO F, 2008, J THROMB THROMB 0313 Monge A, 2006, LARYNGOSCOPE, V116, P312, DOI 10.1097/01.mlg.0000199400.08550.3f Nadol Joseph B Jr, 2006, Adv Otorhinolaryngol, V64, P31 Richardson RT, 2006, AUDIOL NEURO-OTOL, V11, P343, DOI 10.1159/000095896 Viviani B, 2005, J NEUROCHEM, V93, P412, DOI 10.1111/j.1471-4159.2005.03033.x Wefstaedt P, 2005, NEUROREPORT, V16, P2011, DOI 10.1097/00001756-200512190-00008 NR 20 TC 21 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2008 VL 243 IS 1-2 BP 121 EP 126 DI 10.1016/j.heares.2008.07.003 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 355NF UT WOS:000259714900014 PM 18672044 ER PT J AU Wilson, BS Dorman, MF AF Wilson, Blake S. Dorman, Michael F. TI Cochlear implants: A remarkable past and a brilliant future SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 9th International Conference on Cochlear Implants and Related Sciences CY JUN 14-17, 2006 CL Vienna, AUSTRIA DE auditory prosthesis; cochlear implant; cortical plasticity; deafness; electrical stimulation; hearing; neural prosthesis; speech perception ID SPEECH CODING STRATEGY; ELECTRIC-ACOUSTIC STIMULATION; SPIRAL GANGLION NEURONS; CROSS-MODAL PLASTICITY; AUDITORY-SYSTEM; PITCH PERCEPTION; FUNDAMENTAL-FREQUENCY; CORTICAL PLASTICITY; MELODY RECOGNITION; NERVE-STIMULATION AB The aims of this paper are to (i) provide a brief history of cochlear implants; (ii) present a status report on the current state of implant: engineering and the levels of speech understanding enabled by that engineering; (iii) describe limitations of current signal processing strategies: and (iv) suggest new directions for research. With current technology the "average" implant patient, when listening to predictable conversations in quiet, is able to communicate with relative ease. However, in an environment typical of a workplace the average patient has a great deal of difficulty. Patients who are "above average" in terms of speech understanding, can achieve 100% correct scores on the most difficult tests of speech understanding in quiet but also have significant difficulty when signals are presented in noise. The major factors in these outcomes appear to be (i) a loss of low-frequency, fine structure information possibly due to the envelope extraction algorithms common to cochlear implant signal processing; (ii) a limitation in the number of effective channels of stimulation due to overlap in electric fields from electrodes; and (iii) central processing deficits, especially for patients with poor speech understanding. Two recent developments, bilateral implants and combined electric and acoustic stimulation, have promise to remediate some of the difficulties experienced by patients in noise and to reinstate low-frequency fine structure information. If other possibilities are realized, e.g., electrodes that emit drugs to inhibit cell death following trauma and to induce the growth of neurites toward electrodes, then the future is very bright indeed. (C) 2008 Elsevier B.V. All rights reserved. C1 [Wilson, Blake S.] Duke Univ, Med Ctr, Dept Surg, Div Otolaryngol Head & Neck Surg, Durham, NC 27710 USA. [Dorman, Michael F.] Arizona State Univ, Dept Speech & Hearing Sci, Tempe, AZ 85287 USA. RP Wilson, BS (reprint author), Duke Univ, Med Ctr, Dept Surg, Div Otolaryngol Head & Neck Surg, Durham, NC 27710 USA. EM blake.wilson@duke.edu CR Anderson DJ, 2008, HEARING RES, V242, P31, DOI 10.1016/j.heares.2008.01.010 Arnoldner C, 2007, ACTA OTO-LARYNGOL, V127, P1298, DOI 10.1080/00016480701275261 Arts HA, 2003, ANN OTO RHINOL LARYN, V112, P20 Badi AN, 2007, OTOL NEUROTOL, V28, P16, DOI 10.1097/01.mao.0000244368.70190.38 Badi AN, 2003, LARYNGOSCOPE, V113, P833, DOI 10.1097/00005537-200305000-00012 Baumann U, 2004, HEARING RES, V196, P49, DOI 10.1016/j.heares.2004.06.008 Bavelier D, 2002, NAT REV NEUROSCI, V3, P443, DOI 10.1038/nrn848 Berenstein CK, 2008, EAR HEARING, V29, P250 Bilger R.C., 1977, ANN OTOL RHINOL S38, V86, P1 Blamey P, 1997, AM J OTOL, V18, pS11 Blamey P, 1996, Audiol Neurootol, V1, P293 BONHAM BH, 2008, HEARING RES, V242, P154 Boothroyd A., 1985, 10 RCI CIT U NEW YOR Brendel M, 2008, OTOL NEUROTOL, V29, P199, DOI 10.1097/mao.0b013e31816335c6 Buchner A, 2008, OTOL NEUROTOL, V29, P189, DOI 10.1097/mao.0b013e318162512c Buechner A, 2008, OTOL NEUROTOL, V29, P203, DOI 10.1097/mao.0b013e318163746 BURNS EM, 1981, J ACOUST SOC AM, V70, P1655, DOI 10.1121/1.387220 BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 BUSBY PA, 1993, J ACOUST SOC AM, V94, P124, DOI 10.1121/1.408212 Carroll J, 2007, HEARING RES, V231, P42, DOI 10.1016/j.heares.2007.05.004 CHATTERJEE M, 2007, HEARING RES, V235, P143 Cohen LT, 2006, HEARING RES, V212, P160, DOI 10.1016/j.heares.2005.11.005 Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362 Dorman Michael F., 1996, Journal of the Acoustical Society of America, V99, P1174, DOI 10.1121/1.414600 Dorman ME, 2004, AM SCI, V92, P436, DOI 10.1511/2004.5.436 Dorman M.F., 2006, COCHLEAR IMPLANTS, Vsecond, P193 Dorman MF, 2002, J SPEECH LANG HEAR R, V45, DOI 10.1044/1092-4388(2002/063) Dorman M.F., 2007, AUDIOL NEUROTOL, V13, P105 Drennan WR, 2008, JARO-J ASSOC RES OTO, V9, P138, DOI 10.1007/s10162-007-0107-6 Eggermont JJ, 2003, ACTA OTO-LARYNGOL, V123, P249, DOI 10.1080/0036554021000028098 Eisen M.D., 2006, COCHLEAR IMPLANTS, P1 EISEN MD, COCHLER IMP IN PRESS Fallon JB, 2008, HEARING RES, V238, P110, DOI 10.1016/j.heares.2007.08.004 FAVRE E, 1993, HEARING RES, V66, P150, DOI 10.1016/0378-5955(93)90136-O Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Finn R., 1998, DISCOVERY PATH RES H, V1998, P1 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3 FU QJ, 2008, HEARING RES, V242, P215 Gantz Bruce J, 2006, Audiol Neurootol, V11 Suppl 1, P63, DOI 10.1159/000095616 Gantz BJ, 2005, LARYNGOSCOPE, V115, P796, DOI 10.1097/01.MLG.0000157695.07536.D2 Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012 Gantz BJ, 2002, OTOL NEUROTOL, V23, P169, DOI 10.1097/00129492-200203000-00012 GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909 Garnham Carolyn, 2002, Ear and Hearing, V23, P540, DOI 10.1097/00003446-200212000-00005 Geurts L, 2001, J ACOUST SOC AM, V109, P713, DOI 10.1121/1.1340650 Geurts L, 2004, J ACOUST SOC AM, V115, P844, DOI 10.1121/1.1642623 Gfeller K, 2007, EAR HEARING, V28, P412, DOI 10.1097/AUD.0b013e3180479318 Gfeller Kate E, 2006, Audiol Neurootol, V11 Suppl 1, P12, DOI 10.1159/000095608 Gifford RH, 2008, AUDIOL NEURO-OTOL, V13, P193, DOI 10.1159/000113510 Gifford RH, 2007, J SPEECH LANG HEAR R, V50, P835, DOI 10.1044/1092-4388(2007/058) GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Grantham DW, 2007, EAR HEARING, V28, P524, DOI 10.1097/AUD.0b013e31806dc21a Green T, 2005, J ACOUST SOC AM, V118, P375, DOI 10.1121/1.1925827 Gstoettner W, 2004, ACTA OTO-LARYNGOL, V124, P348, DOI 10.1080/00016480410016432 Gstoettner Wolfgang K, 2006, Audiol Neurootol, V11 Suppl 1, P49, DOI 10.1159/000095614 Helms J, 1997, ORL J OTO-RHINO-LARY, V59, P23 HENDRICKS JL, 2008, HEARING RES, V242, P128 Hillman T, 2003, OTOL NEUROTOL, V24, P764, DOI 10.1097/00129492-200309000-00013 HINOJOSA R, 1983, ANN NY ACAD SCI, V405, P459, DOI 10.1111/j.1749-6632.1983.tb31662.x Hochmair Ingeborg, 2006, Trends Amplif, V10, P201, DOI 10.1177/1084713806296720 HOCHMAIRDESOYER IJ, 1983, ANN NY ACAD SCI, V405, P295, DOI 10.1111/j.1749-6632.1983.tb31642.x House W.F., 1991, COCHLEAR IMPLANTS PR, P9 Huttenbrink KB, 2002, OTOL NEUROTOL, V23, P187 James Chris J, 2006, Audiol Neurootol, V11 Suppl 1, P57, DOI 10.1159/000095615 Khan AM, 2005, LARYNGOSCOPE, V115, P672, DOI 10.1097/01.mlg.0000161335.62139.80 Kiefer J, 2000, ANN OTO RHINOL LARYN, V109, P1009 Kiefer J, 2002, COCHLEAR IMPLANTS - AN UPDATE, P569 Kiefer J, 2001, AUDIOLOGY, V40, P32 Kiefer J, 2005, AUDIOL NEURO-OTOL, V10, P134, DOI 10.1159/000084023 Koch DB, 2004, AUDIOL NEURO-OTOL, V9, P214, DOI 10.1159/000078391 Kong YY, 2005, J ACOUST SOC AM, V117, P1351, DOI 10.1121/1.1857526 Kral A, 2006, PROG BRAIN RES, V157, P283, DOI 10.1016/S0079-6123(06)57018-9 Kral A, 2007, BRAIN RES REV, V56, P259, DOI 10.1016/j.brainresrev.2007.07.021 Kwon BJ, 2006, J ACOUST SOC AM, V120, pEL1, DOI 10.1121/1.2208152 Laneau J, 2006, AUDIOL NEURO-OTOL, V11, P38, DOI 10.1159/000088853 Laszig R, 2004, OTOL NEUROTOL, V25, P958, DOI 10.1097/00129492-200411000-00016 LAWRENCE M, 1964, ARCHIV OTOLARYNGOL, V80, P367 LAWSON DT, 1996, N01DC52103 NIH LEAKE PA, 2004, AUDITORY PROSTHESES, P101 Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653 Lim HH, 2007, J NEUROSCI, V27, P13541, DOI 10.1523/JNEUROSCI.3123-07.2007 LIM HH, 2008, HEARING RES, V242, P81 Linkenhoker BA, 2002, NATURE, V419, P293, DOI 10.1038/nature01002 Litovsky R, 2006, EAR HEARING, V27, P714, DOI 10.1097/01.aud.0000246816.50820.42 LITVAK LM, 2008, Patent No. 7317945 LOEB GE, 1983, BIOL CYBERN, V47, P149, DOI 10.1007/BF00337005 Luo Xin, 2004, Journal of the Acoustical Society of America, V116, P3659, DOI 10.1121/1.1783352 MCCREERY DB, 2008, HEARING RES, V242, P68 MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475 McKay CM, 2005, INT REV NEUROBIOL, V70, P473, DOI 10.1016/S0074-7742(05)70012-X Middlebrooks JC, 2007, JARO-J ASSOC RES OTO, V8, P258, DOI 10.1007/s10162-007-0070-2 MIDDLEBROOKS JC, 2008, HEARING RES, V242, P56 Miura M, 2002, ANN OTO RHINOL LARYN, V111, P1059 Moore BCJ, 2003, OTOL NEUROTOL, V24, P243, DOI 10.1097/00129492-200303000-00019 Muller J, 2002, EAR HEARING, V23, P198 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 National Institutes of Health, 1995, NIH CONSENSUS STATE, V13, P1 National Institutes of Health, 1988, NIH CONSENSUS STATE, V7, P1 Nie KB, 2005, IEEE T BIO-MED ENG, V52, P64, DOI 10.1109/TBME.2004.839799 Niparko JK, 2000, COCHLEAR IMPLANTS, P103 Nobbe A, 2007, ACTA OTO-LARYNGOL, V127, P1266, DOI 10.1080/00016480701253078 Nogueira W, 2005, EURASIP J APPL SIG P, V2005, P3044, DOI 10.1155/ASP.2005.3044 Nopp P, 2004, EAR HEARING, V25, P205, DOI 10.1097/01.AUD.0000130793.20444.50 Otto SR, 2002, J NEUROSURG, V96, P1063, DOI 10.3171/jns.2002.96.6.1063 Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101 Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375 PFINGST BE, 2008, HEARING RES, V242, P187 Pfingst BE, 2004, JARO-J ASSOC RES OTO, V5, P11, DOI 10.1007/s10162-003-3051-0 PONTON CW, 2001, JARO-J ASSOC RES OTO, V2, P87 Qin MK, 2006, J ACOUST SOC AM, V119, P2417, DOI 10.1121/1.2178719 Ramsden R, 2005, OTOL NEUROTOL, V26, P988, DOI 10.1097/01.mao.0000185075.58199.22 RANCK JB, 1975, BRAIN RES, V98, P417, DOI 10.1016/0006-8993(75)90364-9 Rejali D, 2007, HEARING RES, V228, P180, DOI 10.1016/j.heares.2007.02.010 RICHTER CP, 2008, HEARING RES, V242, P44 Ricketts TA, 2006, EAR HEARING, V27, P763, DOI 10.1097/01.aud.0000240814.27151.b9 Roehm Pamela C, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P294, DOI 10.1097/01.moo.0000180919.68812.b9 SCHUKNECHT HF, 1974, ELECT STIMULATION AC Senn P, 2005, AUDIOL NEURO-OTOL, V10, P342, DOI 10.1159/000087351 Shannon R.V., 2004, ACTA OTO-LARYNGOL, V552, P50 Sharma A, 2002, NEUROREPORT, V13, P1365, DOI 10.1097/00001756-200207190-00030 Shepherd R. K., 2006, COCHLEAR IMPLANTS, P25 Shepherd RK, 2001, AUDIOL NEURO-OTOL, V6, P305, DOI 10.1159/000046843 SIMMONS FB, 1985, COCHLEAR IMPLANTS, P1 SIMMONS FB, 1966, ARCHIV OTOLARYNGOL, V84, P2 SKINNER MW, 1994, AM J OTOL, V15, P15 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Spahr AJ, 2007, EAR HEARING, V28, P260, DOI 10.1097/AUD.0b013e3180312607 Spelman FA, 2006, AUDIOL NEURO-OTOL, V11, P77, DOI 10.1159/000090680 Stevens SS, 1937, J ACOUST SOC AM, V8, P191, DOI 10.1121/1.1915894 Sucher CM, 2007, HEARING RES, V230, P80, DOI 10.1016/j.heares.2007.05.002 Summerfield A Q, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P105 Tobey EA, 2004, INT J AUDIOL, V43, pS52 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 TRAUTWEIN P, 2006, HIRES FIDELITY 120 S TURNER CW, 2008, HEARING RES, V242, P177 Tyler RS, 2007, EAR HEARING, V28, p86S, DOI 10.1097/AUD.0b013e31803153e2 van Hoesel RJM, 2003, J ACOUST SOC AM, V113, P1617, DOI 10.1121/1.1539520 Vieira M, 2007, HEARING RES, V230, P17, DOI 10.1016/j.heares.2007.03.005 von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695 Wei CG, 2004, HEARING RES, V197, P87, DOI 10.1016/j.heares.2004.06.002 Wilson BS, 2005, EAR HEARING, V26, p73S, DOI 10.1097/00003446-200508001-00009 WILSON BS, J REHABIL R IN PRESS WILSON BS, 2004, AUDITORY PROSTHESES, P14 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 WILSON BS, COMPUTATION IN PRESS Wilson B.S., 2006, COCHLEAR IMPLANTS PR, Vsecond, P21 WILSON BS, COCHLEAR IM IN PRESS Wilson B.S., 2006, COCHLEAR IMPLANTS, P48 Wilson BS, 1997, BRIT J AUDIOL, V31, P205 Wilson BS, 2008, IEEE SENS J, V8, P131, DOI 10.1109/JSEN.2007.912917 WILSON BS, 1988, LARYNGOSCOPE, V98, P1069 Wilson BS, 1997, AM J OTOL, V18, pS30 Wilson BS, 2007, IEEE T BIO-MED ENG, V54, P969, DOI 10.1109/TBME.2007.893505 Wilson BS, 2003, ANNU REV BIOMED ENG, V5, P207, DOI 10.1146/annurev.bioeng.5.040202.121645 Wise KD, 2008, HEARING RES, V242, P22, DOI 10.1016/j.heares.2008.04.002 Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 ZENG FG, 1995, AUDIOLOGY, V34, P61 Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401 Zwolan TA, 1996, AM J OTOL, V17, P717 NR 163 TC 155 Z9 157 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 3 EP 21 DI 10.1016/j.heares.2008.06.005 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000002 PM 18616994 ER PT J AU Wise, KD Bhatti, PT Wang, JB Friedrich, CR AF Wise, Kensall D. Bhatti, Pamela T. Wang, Jianbai Friedrich, Craig R. TI High-density cochlear implants with position sensing and control SO HEARING RESEARCH LA English DT Article DE high-density cochlear electrodes; MEMS; cochlear position sensing; dynamic insertion control; thin-film cochlear arrays ID CHRONIC ELECTRICAL-STIMULATION; INTRACOCHLEAR POSITION; AUDITORY PROSTHESES; INSERTION TRAUMA; ELECTRODE ARRAY; TEMPORAL CUES; RECOGNITION; SYSTEM; PERCEPTION; NERVE AB Silicon-based thin-film technology has been used to develop high-density cochlear electrode arrays with up to 32 sites and four parallel channels of simultaneous stimulation. The lithographically-defined arrays utilize a silicon-dielectric-metal-parylene structure with 180 mu m-diameter IrO sites on 250 mu m centers. Eight on-board strain gauges allow real-time imaging of array shape during insertion, and a tip sensor measures forces on any structures contacted in the scala tympani (e.g., the basilar membrane). The array can be pre-stressed to hug the modiolus, which provides position reference. Tip position can be resolved to better than 50 mu m. Circuitry mounted on the base of the array generates stimulating currents, records intra-cochlear responses and position information, and interfaces with a custom microcontroller and inductively-coupled wireless interface over an eight-lead ribbon cable. The circuitry delivers biphasic 500 mu A current pulses with 4 mu A resolution and a minimum pulse width of 4 mu s. Multiple sites can be driven in parallel to provide higher current levels. Backing structures and articulated insertion tools are being developed for dynamic closed-loop insertion control. (C) 2008 Elsevier B.V. All rights reserved. C1 [Wise, Kensall D.; Bhatti, Pamela T.; Wang, Jianbai] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. [Wise, Kensall D.; Bhatti, Pamela T.; Wang, Jianbai; Friedrich, Craig R.] Wireless Integrated Microsyst, Engn Res Ctr, Ann Arbor, MI 48109 USA. [Friedrich, Craig R.] Michigan Technol Univ, Dept Mech Engn & Engn Mech, Houghton, MI 49931 USA. RP Wise, KD (reprint author), Univ Michigan, Dept Elect Engn & Comp Sci, 2401 EECS Bldg,1301 Beal Ave, Ann Arbor, MI 48109 USA. EM wise@eecs.umich.edu; pamela.bhatti@ece.gate-ch.edu; jianbaiw@ti.com; craig@mtu.edu FU National Science Foundation [EEC-9986866] FX The authors are grateful to S. Lee and I. Bhatti for design support; M. Gulari, and K. Beach for assistance with array fabrication; A. Sodagar, B. Casey, and J. Hetke for work on system assembly; R. Tewari for his work on backing devices; and R. Gordenker, A. Sodagar, C. Ellinger, B. Pfingst, R. Snyder, and J. Middlebrooks for help with in vitro and in vivo testing. This work was supported by the National Science Foundation under cooperative agreement EEC-9986866 and by a gift from the late Ms. Polly V. Anderson of Cupertino, CA. CR Anderson DJ, 2008, HEARING RES, V242, P31, DOI 10.1016/j.heares.2008.01.010 ARCAND B, 2007, J MED DEV, V1, P70, DOI 10.1115/1.2358357 Bhatti PT, 2006, IEEE J SOLID-ST CIRC, V41, P2965, DOI 10.1109/JSSC.2006.884862 Bhatti P.T., 2006, THESIS U MICHIGAN BHATTI PT, 2003, P IEEE INT C SOL STA, P1750 Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006 Chen BK, 2003, MED ENG PHYS, V25, P141, DOI 10.1016/S1350-4533(02)00150-9 Georgiou J, 2005, IEEE J SOLID-ST CIRC, V40, P430, DOI 10.1109/JSSC.2004.840959 Gfeller K, 2007, EAR HEARING, V28, P412, DOI 10.1097/AUD.0b013e3180479318 GFELLER K, 1992, J MUSIC THER, V29, P18 HANEKOM T, 2005, MED BIOLOGICAL ENG C, V43, P45 Harpster TJ, 2005, IEEE T DEVICE MAT RE, V5, P458, DOI 10.1109/TDMR.2005.854374 KULKARNI A, 2006, THESIS MICHIGAN TU LI Y, 2005, IEEE SENS C Lim HH, 2008, HEARING RES, V242, P74, DOI 10.1016/j.heares.2008.02.003 MARSMAN ED, 2006, P IEEE INT S CIRC SY, P657 McCreery DB, 2008, HEARING RES, V242, P64, DOI 10.1016/j.heares.2007.11.014 Mitchell J., 2006, P SOL STAT SENS ACT, P376 *NIH, COCHL IMPL NAT I DEA Papageorgiou DP, 2006, J MICROELECTROMECH S, V15, P1025, DOI 10.1109/JMEMS.2005.863733 RODENHISER KL, 1995, IEEE T BIO-MED ENG, V42, P337, DOI 10.1109/10.376127 Sarpeshkar R, 2005, IEEE T BIO-MED ENG, V52, P711, DOI 10.1109/TBME.2005.844043 Shepherd RK, 1999, ACTA OTO-LARYNGOL, V119, P674, DOI 10.1080/00016489950180621 SODAGAR AM, 2007, INT C SOL STAT SENS, P69 Sodagar AM, 2006, IEEE CUST INTEGR CIR, P659, DOI 10.1109/CICC.2006.320862 Stark BH, 2001, 11 IEEE INT C SOL ST, P194 WANG J, 2006, IEEE INT C ENG MED B, P3170 WANG J, 2007, THESIS U MICHIGAN Wang J, 2005, INT EL DEVICES MEET, P129 Wardrop P, 2005, HEARING RES, V203, P68, DOI 10.1016/j.heares.2004.11.007 Wardrop P, 2005, HEARING RES, V203, P54, DOI 10.1016/j.heares.2004.11.006 Weiland JD, 2000, IEEE T BIO-MED ENG, V47, P911, DOI 10.1109/10.846685 Wise KD, 2004, P IEEE, V92, P76, DOI 10.1109/JPROC.2003.820544 Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 Xu L, 2008, HEARING RES, V242, P132, DOI 10.1016/j.heares.2007.12.010 Xu L, 2005, J ACOUST SOC AM, V117, P3255, DOI 10.1121/.1.1886405 YAO Y, 2005, IEEE INT C MED BIOL, P1293 Yoo SK, 2000, IEEE T BIO-MED ENG, V47, P1392, DOI 10.1109/10.871413 ZHANG J, 2002, P IEEE 45 MIDW S CIR, V2, P246 NR 39 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 22 EP 30 DI 10.1016/j.heares.2008.04.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000003 PM 18495392 ER PT J AU Anderson, DJ AF Anderson, David J. TI Penetrating multichannel stimulation and recording electrodes in auditory prosthesis research SO HEARING RESEARCH LA English DT Article DE multichannel electrode arrays; neural stimulation; single unit recordings; array data processing ID INDEPENDENT COMPONENT ANALYSIS; STOCHASTIC POINT PROCESSES; COCHLEAR-IMPLANT STIMULI; NEURONAL SPIKE TRAINS; MICROELECTRODE ARRAYS; INFERIOR COLLICULUS; CEREBRAL-CORTEX; THIN-FILM; CORTICAL IMAGES; UNIT RECORDINGS AB Microelectrode arrays offer the auditory systems physiologists many opportunities through a number of electrode technologies. In particular, silicon substrate electrode arrays offer a large design space including choice of layout plan, range of surface areas for active sites, a choice of site materials and high spatial resolution. Further, most designs can double as recording and stimulation electrodes in the same preparation. Scala tympani auditory prosthesis research has been aided by mapping electrodes in the cortex and the inferior colliculus to assess the CNS responses to peripheral stimulation. More recently silicon stimulation electrodes placed in the auditory nerve, cochlear nucleus and the inferior colliculus have advanced the exploration of alternative stimulation sites for auditory prostheses. Multiplication of results from experimental effort by simultaneously stimulating several locations, or by acquiring several streams of data synchronized to the same stimulation event, is a commonly sought after advantage. Examples of inherently multichannel functions which are not possible with single electrode sites include (I) current steering resulting in more focused stimulation, (2) improved signal-to-noise ratio (SNR) for recording when noise and/or neural signals appear on more than one site and (3) current source density (CSD) measurements. Still more powerful are methods that exploit closely-spaced recording and stimulation sites to improve detailed interrogation of the surrounding neural domain. Here, we discuss thin-film recording/stimulation arrays on silicon substrates. These electrode arrays have been shown to be valuable because of their precision coupled with reproducibility in an ever expanding design space. The shape of the electrode substrate can be customized to accommodate use in cortical, deep and peripheral neural structures while flexible cables. fluid delivery and novel coatings have been added to broaden their application. The use of iridium oxide as the neural interface site material has increased the efficiency of charge transfer for stimulation and lowered impedance for recording electrodes. (C) 2008 Elsevier B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Anderson, DJ (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM dja@umich.edu FU NIH FX Although this paper was not supported by any specific award, the author wishes to thank the NIH for the many years of development support for the Michigan probe through the NINDS's Neuroprosthesis Program and ten years of P41 support for the University of Michigan Center for Neural Communications Technology from NCRR and NIBIB. It should be noted that the author is a principle of NeuroNexus Technologies of Ann Arbor and stands to benefit financially from investigator use of the electrodes described herein. CR ABELES M, 1977, P IEEE, V65, P762, DOI 10.1109/PROC.1977.10559 ANDERSON DJ, 1989, IEEE T BIO-MED ENG, V36, P693, DOI 10.1109/10.32101 ANDERSON DJ, 2001, ACOUSTICS SPEECH SIG, V6, P3433 Badi AN, 2003, LARYNGOSCOPE, V113, P833, DOI 10.1097/00005537-200305000-00012 Bai Q, 2000, IEEE T BIO-MED ENG, V47, P281 BEMENT SL, 1986, IEEE T BIOMED ENG, V33, P693 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 Biran R, 2005, EXP NEUROL, V195, P115, DOI 10.1016/j.expneurol.2005.04.020 Blanche TJ, 2005, J NEUROPHYSIOL, V93, P2987, DOI 10.1152/jn.01023.2004 Bragin A, 2000, J NEUROSCI METH, V98, P77, DOI 10.1016/S0165-0270(00)00193-X Brown GD, 2001, TRENDS NEUROSCI, V24, P54, DOI 10.1016/S0166-2236(00)01683-0 Buzsaki G, 2004, NAT NEUROSCI, V7, P446, DOI 10.1038/nn1233 Chen JK, 1997, IEEE T BIO-MED ENG, V44, P760 Cui XY, 2001, SENSOR ACTUAT A-PHYS, V93, P8, DOI 10.1016/S0924-4247(01)00637-9 DRAKE KL, 1988, IEEE T BIO-MED ENG, V35, P719, DOI 10.1109/10.7273 EDELL DJ, 1986, IEEE T BIO-MED ENG, V33, P203, DOI 10.1109/TBME.1986.325892 EDELL DJ, 1992, IEEE T BIO-MED ENG, V39, P635, DOI 10.1109/10.141202 EDWARDS CE, 1997, TECHNIQUE IN VIVO MO, P351 EVANS DE, 1989, HEAD NECK-J SCI SPEC, V101, P651 Gingerich M. D., 2001, INT C SOL STAT SENS, P416 Gray CM, 1995, J NEUROSCI METH, V63, P43, DOI 10.1016/0165-0270(95)00085-2 Hassibi A, 2004, J APPL PHYS, V96, P1074, DOI 10.1063/1.1755429 HETKE JF, 1994, IEEE T BIO-MED ENG, V41, P314, DOI 10.1109/10.284959 JI J, 1992, IEEE J SOLID-ST CIRC, V27, P433, DOI 10.1109/4.121568 Johnson MD, 2005, IEEE T NEUR SYS REH, V13, P160, DOI 10.1109/TNSRE.2005.847373 Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549 Kandel A, 1997, J NEUROSCI, V17, P6783 Kim DH, 2006, BIOMATERIALS, V27, P3031, DOI 10.1016/j.biomaterials.2005.12.021 Kim YT, 2004, BIOMATERIALS, V25, P2229, DOI 10.1016/j.biomaterials.2003.09.010 Kipke DR, 2003, IEEE T NEUR SYS REH, V11, P151, DOI 10.1109/TNSRE.2003.814443 KOVACS GTA, 1998, MICROMACHINED TRANSD, P688 LEMPKA SF, 2006, P I EL EL 28 EMBS C Lim HH, 2006, J NEUROPHYSIOL, V96, P975, DOI 10.1152/jn.01112.2005 Lim HH, 2007, J NEUROPHYSIOL, V97, P1413, DOI 10.1152/jn.00384.2006 Lim HH, 2008, HEARING RES, V242, P74, DOI 10.1016/j.heares.2008.02.003 Martínez Santiesteban Francisco M, 2006, IEEE Trans Biomed Eng, V53, P547 Martinez-Santiesteban FM, 2007, PHYS MED BIOL, V52, P2073, DOI 10.1088/0031-9155/52/8/003 MAY GA, 1979, IEEE T ELECTRON DEV, V26, P1932, DOI 10.1109/T-ED.1979.19798 MCCREERY, 2008, HEAR RES, V242, P64 McCreery D, 2007, IEEE T BIO-MED ENG, V54, P1042, DOI 10.1109/TBME.2007.891167 MCNAUGHTON BL, 1983, J NEUROSCI METH, V8, P391, DOI 10.1016/0165-0270(83)90097-3 Mensinger AF, 2000, J NEUROPHYSIOL, V83, P611 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 Middlebrooks JC, 2007, JARO-J ASSOC RES OTO, V8, P258, DOI 10.1007/s10162-007-0070-2 Middlebrooks JC, 2002, J NEUROPHYSIOL, V87, P493 Moxon KA, 2004, IEEE T BIO-MED ENG, V51, P647, DOI 10.1109/TBME.2003.821037 MULLERPREUSS P, 1984, HEARING RES, V16, P133, DOI 10.1016/0378-5955(84)90003-0 NAJAFI K, 1985, IEEE T ELECTRON DEV, V32, P1206, DOI 10.1109/T-ED.1985.22102 NICHOLSON C, 1975, J NEUROPHYSIOL, V38, P356 Nicolelis MAL, 2003, P NATL ACAD SCI USA, V100, P11041, DOI 10.1073/pnas.1934665100 Otto KJ, 2006, IEEE T BIO-MED ENG, V53, P333, DOI 10.1109/TBME.2005.862530 Oweiss KG, 2007, EURASIP J ADV SIG PR, DOI 10.1155/2007/37485 Pang CL, 2005, P ANN INT IEEE EMBS, P7114 PERKEL DH, 1967, BIOPHYS J, V7, P391 PERKEL DH, 1967, BIOPHYS J, V7, P419 PICKARD RS, 1979, MED BIOL ENG COMPUT, V17, P261, DOI 10.1007/BF02440939 Prechtl JC, 2000, P NATL ACAD SCI USA, V97, P877, DOI 10.1073/pnas.97.2.877 PROHASKA OJ, 1986, IEEE T BIO-MED ENG, V33, P223, DOI 10.1109/TBME.1986.325894 Rathnasingham R, 2004, IEEE T BIO-MED ENG, V51, P138, DOI 10.1109/TBME.2003.820311 ROBBLEE LS, 1983, J ELECTROCHEM SOC, V130, P731, DOI 10.1149/1.2119793 ROBINSON DA, 1968, PR INST ELECTR ELECT, V56, P1065, DOI 10.1109/PROC.1968.6458 Rousche PJ, 1998, J NEUROSCI METH, V82, P1, DOI 10.1016/S0165-0270(98)00031-4 Rousche PJ, 2001, IEEE T BIO-MED ENG, V48, P361, DOI 10.1109/10.914800 Shain W, 2003, IEEE T NEUR SYS REH, V11, P186, DOI 10.1109/TNSRE.2003.814800 Snellings A, 2006, J NEUROSCI METH, V150, P254, DOI 10.1016/j.jneumeth.2005.06.022 Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5 Spataro L, 2005, EXP NEUROL, V194, P289, DOI 10.1016/j.expneurol.2004.08.037 Stark H., 1994, PROBABILITY RANDOM P STARR A, 1973, IEEE T BIO-MED ENG, VBM20, P291, DOI 10.1109/TBME.1973.324194 Szarowski DH, 2003, BRAIN RES, V983, P23, DOI 10.1016/S0006-8993(03)03023-3 TANGHE SJ, 1992, IEEE J SOLID-ST CIRC, V27, P1819, DOI 10.1109/4.173111 Vetter RJ, 2004, IEEE T BIO-MED ENG, V51, P896, DOI 10.1109/TBME.2004.826680 Weiland JD, 2000, IEEE T BIO-MED ENG, V47, P911, DOI 10.1109/10.846685 Wise KD, 2004, P IEEE, V92, P76, DOI 10.1109/JPROC.2003.820544 WISE KD, 1975, IEEE T BIO-MED ENG, VBM22, P212, DOI 10.1109/TBME.1975.324562 Wise KD, 2008, HEARING RES, V242, P22, DOI 10.1016/j.heares.2008.04.002 WISE KD, 1970, IEEE T BIO-MED ENG, VBM17, P238, DOI 10.1109/TBME.1970.4502738 YAO Y, 2007, P I EL EL EMBS C NEU, DOI UNSP FRD320 NR 78 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 31 EP 41 DI 10.1016/j.heares.2008.01.010 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000004 PM 18343062 ER PT J AU Richter, CP Bayon, R Izzo, AD Otting, M Suh, E Goyal, S Hotaling, J Walsh, JT AF Richter, Claus-Peter Bayon, Rodrigo Izzo, Agnella D. Otting, Margarete Suh, Eul Goyal, Sheila Hotaling, Jeffrey Walsh, Joseph T., Jr. TI Optical stimulation of auditory neurons: Effects of acute and chronic deafening SO HEARING RESEARCH LA English DT Article DE cochlea; cochlear implants; deafening; optical stimulation; spatial selectivity ID ELECTRICAL-STIMULATION; NERVE; EXCITATION; RESOLUTION; COCHLEA AB In developing neural prostheses, particular success has been realized with cochlear implants. These devices bypass damaged hair cells in the auditory system and electrically stimulate the auditory nerve directly. In contemporary cochlear implants, however, the injected electric current spreads widely along the scala tympani and across turns. Consequently, stimulation of spatially discrete spiral ganglion cell populations is difficult. In contrast to electrical stimulation, it has been shown that extremely spatially selective stimulation is possible using infrared radiation (e.g. [Izzo, A.D., Su, H.S., Pathria, J., Walsh Jr., J.T., Whitlon, D.S., Richter, C.-P., 2007a. Selectivity of neural stimulation in the auditory system: a comparison of optic and electric stimuli. J. Biomed. Opt. 12, 1-7]). Here, we explore the correlation between surviving spiral ganglion cells, following acute and chronic deafness induced by neomycin application into the middle ear, and neural stimulation using optical radiation and electrical current. In vivo experiments were conducted in gerbils. Before the animals were deafened, acoustic thresholds were obtained and neurons were stimulated with optical radiation at various pulse durations, radiation exposures, and pulse repetition rates. In one group of animals, measurements were made immediately after deafening, while the other group was tested at least four weeks after deafening. Deafness was confirmed by measuring acoustically evoked compound action potentials. Optically and electrically evoked compound action potentials and auditory brainstem responses were determined for different radiation exposures and for different electrical current amplitudes, respectively. After completion of the experiments, the animals were euthanized and the cochleae were harvested for histology. Acoustically evoked compound action potential thresholds were elevated by more than 40 dB after neomycin application in acutely deaf and more than 60 dB in chronically deaf animals. Compound action potential thresholds, which were determined with optical radiation pulses, were not significantly elevated in acutely deaf animals. However, in chronically deaf animals optically evoked CAP thresholds were elevated. Changes correlated with the number of surviving spiral ganglion cells and the optical parameters that were used for stimulation. (C) 2008 Elsevier B.V. All rights reserved. C1 [Richter, Claus-Peter] Northwestern Univ, Feinberg Sch Med, Dept Otolaryngol, Chicago, IL 60611 USA. [Izzo, Agnella D.; Walsh, Joseph T., Jr.] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA. [Richter, Claus-Peter] Northwestern Univ, Dept Commun Sci & Disorders, Auditory Physiol Lab, Hugh Knowles Ctr, Evanston, IL 60208 USA. RP Richter, CP (reprint author), Northwestern Univ, Feinberg Sch Med, Dept Otolaryngol, Searle Bldg 12-470,303 E Chicago Ave, Chicago, IL 60611 USA. EM cri529@northwestern.edu RI Walsh, Joseph/B-7636-2009 FU National Institute of Deafness and Other Communication Disorders; National Institutes of Health; Department of Health and Human Services [HHSN260-2006-00006-C/NIH, No. NO1-DC-6-0006] FX This project has been funded with Federal funds from the National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services, under Contract Nos. HHSN260-2006-00006-C/NIH No. NO1-DC-6-0006. CR Arsonval A.D., 1891, CR SOC BIOL, V43, P318 Arvanitaki A., 1961, NERVOUS INHIBITION Bekesy G., 1960, EXPT HEARING BLACK RC, 1983, ANN NY ACAD SCI, V405, P137, DOI 10.1111/j.1749-6632.1983.tb31626.x BUSBY PA, 1994, J ACOUST SOC AM, V95, P2658, DOI 10.1121/1.409835 Davis H, 1934, AM J PHYSIOL, V107, P311 Derbyshire AJ, 1935, AM J PHYSIOL, V113, P476 Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003 Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc FORK R, 1971, SCIENCE, P907 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HALL RD, 1990, HEARING RES, V49, P155, DOI 10.1016/0378-5955(90)90102-U IZZO AD, 2007, SPIE, V6435 Izzo AD, 2007, IEEE T BIO-MED ENG, V54, P1108, DOI 10.1109/TBME.2007.892925 IZZO AD, 2008, BIOPHYS J Izzo Agnella D, 2007, Journal of Biomedical Optics, V12, DOI 10.1117/1.2714296 Izzo AD, 2006, LASER SURG MED, V38, P745, DOI 10.1002/lsm.20358 Koch DB, 2007, EAR HEARING, V28, p38S, DOI 10.1097/AUD.0b013e31803150de Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 MILLER JM, 1983, ANN OTO RHINOL LARYN, V92, P599 Niemz M. H., 2004, LASER TISSUE INTERAC, Vthird Pearce M, 2001, J NEUROSCI METH, V106, P57, DOI 10.1016/S0165-0270(01)00329-6 SIMMONS FB, 1979, ANN OTO RHINOL LARYN, V88, P533 SMITH L, 1983, ANN OTO RHINOL LARYN, V92, P19 STYPULKOWSKI PH, 1986, OTOLARYNG CLIN N AM, V19, P249 Teudt IU, 2007, LARYNGOSCOPE, V117, P1641, DOI 10.1097/M1LG.0b013e318074ec00 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 Welch A. J., 1995, OPTICAL THERMAL RESP, V1st Wells J, 2005, J BIOMED OPT, V10, DOI 10.1117/1.2121772 Wells J, 2005, OPT LETT, V30, P504, DOI 10.1364/OL.30.000504 WELLS JD, 2007, BIOPHYS J, V92 NR 33 TC 49 Z9 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 42 EP 51 DI 10.1016/j.heares.2008.01.01 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000005 PM 18321670 ER PT J AU Middlebrooks, JC Snyder, RL AF Middlebrooks, John C. Snyder, Russell L. TI Intraneural stimulation for auditory prosthesis: Modiolar trunk and intracranial stimulation sites SO HEARING RESEARCH LA English DT Article DE auditory nerve; cat; cochlear implant; cochlear nerve; intracranial; inferior colliculus ID PENETRATING ELECTRODE ARRAY; COCHLEAR IMPLANT SUBJECTS; SUPERIOR OLIVARY COMPLEX; ELECTRICAL-STIMULATION; NERVE-STIMULATION; CHANNEL INTERACTIONS; GUINEA-PIG; CAT; RECOGNITION; ORGANIZATION AB We have demonstrated recently in an animal model that stimulation with a penetrating auditory nerve electrode array is a feasible means of activating the ascending auditory pathway for auditory prosthesis. Compared to a conventional intrascalar cochlear implant, intraneural stimulation provides access to fibers serving a broader frequency range, activation of more tonotopically restricted fiber populations, lower thresholds, and reduced interference between simultaneously stimulated channels. The spread of excitation by a single intraneural electrode is broader than that by an acoustic tone but narrower than that by a cochlear-implant electrode. In the present study, we compare in an animal model two sites of intraneural stimulation: the modiolar trunk of the nerve accessed using a transcochlear approach and the intracranial portion of the nerve accessed using a posterior fossa approach. The two stimulation sites offer very similar thresholds, spread of activation, and dynamic ranges. The intracranial site differed in that there was greater between-animal variation in tonotopic patterns. We discuss the implications of these results for possible improvements in hearing prosthesis for human subjects. (C) 2008 Elsevier B.V. All rights reserved. C1 [Middlebrooks, John C.] Univ Michigan, Dept Otolaryngol & Biomed Engn, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Snyder, Russell L.] Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, Epstein Lab, San Francisco, CA 94143 USA. [Snyder, Russell L.] Utah State Univ, Dept Psychol, Logan, UT 84322 USA. RP Middlebrooks, JC (reprint author), Univ Michigan, Dept Otolaryngol & Biomed Engn, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM jmidd@umich.edu; rsnyder@ohns.ucsf.edu FU NIDCD [N01-DC-5-0005, P30-DC05188] FX We thank Jim Wiler for his expert technical support and Zekiye Onsan for help with the figures. Dr. Bryan Pfingst and Alana Kirby provided useful comments on the manuscript. Supported by NIDCD N01-DC-5-0005 and P30-DC05188. CR ANDERSON DJ, 2000, HEARING RES, V242, P31 ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405 Arts HA, 2003, ANN OTO RHINOL LARYN, V112, P20 BADI AN, 2006, OTOL NEUROTOL, V28, P16 Badi AN, 2003, LARYNGOSCOPE, V113, P833, DOI 10.1097/00005537-200305000-00012 Badi AN, 2002, ARCH OTOLARYNGOL, V128, P1019 Baumann U, 2006, HEARING RES, V213, P34, DOI 10.1016/j.heares.2005.12.010 Boex C, 2003, J ACOUST SOC AM, V114, P2049, DOI 10.1121/1.1610451 Boex C, 2006, JARO-J ASSOC RES OTO, V7, P110, DOI 10.1007/s10162-005-0027-2 de Balthasar C, 2003, HEARING RES, V182, P77, DOI 10.1016/S0378-5955(03)00174-6 EDDINGTON DK, 1978, ANN OTOL RHINOL LA S, V53, P1 FAVRE E, 1993, HEARING RES, V66, P150, DOI 10.1016/0378-5955(93)90136-O GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GREEN DM, 1966, SIGNAL DETECTION THE GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 Hillman T, 2003, OTOL NEUROTOL, V24, P764, DOI 10.1097/00129492-200309000-00013 Kim SJ, 2007, LARYNGOSCOPE, V117, P1053, DOI 10.1097/MLG.0b013e31804714a7 LICKLIDER JCR, 1950, J ACOUST SOC AM, V22, P468, DOI 10.1121/1.1906629 MacMillan N. A., 2005, DETECTION THEORY USE MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 Middlebrooks JC, 2007, JARO-J ASSOC RES OTO, V8, P258, DOI 10.1007/s10162-007-0070-2 NIPARKO JK, 1989, OTOLARYNG HEAD NECK, V101, P344 NIPARKO JK, 1989, ANN OTO RHINOL LARYN, V98, P965 NUTTALL AL, 1977, ACTA OTO-LARYNGOL, V83, P393, DOI 10.3109/00016487709128863 OSEN KK, 1969, ACTA OTO-LARYNGOL, V67, P352, DOI 10.3109/00016486909125462 Rubinstein JT, 2003, ANN OTO RHINOL LARYN, V112, P14 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6 Simmons F. B., 1966, ARCH OTOLARYNGOL, V84, P24 SIMMONS FB, 1979, ANN OTO RHINOL LARYN, V88, P533 SIMMONS FB, 1979, ACTA OTO-LARYNGOL, V87, P170, DOI 10.3109/00016487909126403 SIMMONS FB, 1965, SCIENCE, V148, P104, DOI 10.1126/science.148.3666.104 SIMMONS FB, 1983, ANN NY ACAD SCI, V405, P259, DOI 10.1111/j.1749-6632.1983.tb31638.x SIMMONS FB, 1986, ANN OTO RHINOL LARYN, V95, P132 Skinner MW, 2002, JARO-J ASSOC RES OTO, V3, P332, DOI 10.1007/s101620020013 Wardrop P, 2005, HEARING RES, V203, P68, DOI 10.1016/j.heares.2004.11.007 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005 ZAPPIA JJ, 1990, OTOLARYNG HEAD NECK, V103, P575 Zeng FG, 1999, EAR HEARING, V20, P60, DOI 10.1097/00003446-199902000-00006 NR 40 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 52 EP 63 DI 10.1016/j.heares.2008.04.001 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000006 PM 18485635 ER PT J AU McCreery, DB AF McCreery, D. B. TI Cochlear nucleus auditory prostheses SO HEARING RESEARCH LA English DT Article DE cochlear nucleus; central auditory prostheses; humans; cats; electric stimulation ID BRAIN-STEM IMPLANT; DEGENERATION FOLLOWING LESIONS; SPIRAL GANGLION PROJECTIONS; INFERIOR COLLICULUS; ACOUSTIC STRIAE; AMPLITUDE-MODULATION; CORTICAL IMAGES; CHOPPER UNITS; OCTOPUS CELLS; NERVE FIBERS AB Persons who lack an auditory nerve cannot benefit from cochlear implants, but a prosthesis utilizing an electrode array implanted on the surface of the cochlear nucleus can restore some hearing. Worldwide, more than 500 persons have received these "auditory brainstem implants," most commonly after removal of the tumors that occur with Type 2 Neurofibromatosis (NF2). Typically, the ABIs provide these individuals with improved speech perception when combined with lip-reading and useful perception of environmental sounds, but little open-set speech recognition. The feasibility of supplementing the array of surface electrodes with penetrating microstimulating electrodes has been investigated in animal studies, and 10 persons with NF2 have received implants that include a surface array and an array of penetrating microelectrodes. Their speech perception is not significantly better than that of the NF2 patients who have only the surface arrays, but the findings do validate the concept of intranuclear stimulation and suggest how such prostheses might be improved by modifying the microstimulating array and also by optimizing the sound processing strategies. Recent publications have described ABI patients with deafness of etiologies other than NF2 who have achieved open-set speech recognition. This suggests that the cochlear nuclei of the NF2 patients are damaged by the disease process or during surgical removal of the tumor. (C) 2007 Published by Elsevier B.V. C1 Huntington Med Res Inst, Neural Engn Program, Pasadena, CA 91105 USA. RP McCreery, DB (reprint author), Huntington Med Res Inst, Neural Engn Program, 734 Fairmount Ave, Pasadena, CA 91105 USA. EM dougmc@hmri.org CR ADAMS JC, 1979, BRAIN RES, V177, P165, DOI 10.1016/0006-8993(79)90926-0 ADAMS JC, 1976, J COMP NEUROL, V170, P97, DOI 10.1002/cne.901700107 Alibardi L, 1998, ANN ANAT, V180, P427 Anderson DJ, 2008, HEARING RES, V242, P31, DOI 10.1016/j.heares.2008.01.010 Arenberg JG, 2000, JARO, V1, P183, DOI 10.1007/sl01620010036 Bal R, 2001, J NEUROPHYSIOL, V86, P2299 BANKS MI, 1991, J NEUROPHYSIOL, V65, P606 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 BOURK TR, 1981, HEARING RES, V4, P215, DOI 10.1016/0378-5955(81)90008-3 Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 COGAN SF, 2004, P 26 ANN INT C IEEE Colletti V, 2005, OTOLARYNG HEAD NECK, V133, P126, DOI 10.1016/j.otohns.2005.03.022 Colletti V, 2002, OTOLARYNG HEAD NECK, V127, P84, DOI 10.1067/mhn.2002.126723 Colletti V, 2005, LARYNGOSCOPE, V115, P1974, DOI 10.1097/01.mlg.0000178327.42926.ec Doucet JR, 1999, J COMP NEUROL, V408, P515 Egan CA, 1996, J NEUROL NEUROSUR PS, V61, P628, DOI 10.1136/jnnp.61.6.628 EVANS DE, 1989, HEAD NECK-J SCI SPEC, V101, P651 Evans DGR, 1999, J NEUROL NEUROSUR PS, V66, P764, DOI 10.1136/jnnp.66.6.764 EVANS DGR, 1992, J MED GENET, V29, P841, DOI 10.1136/jmg.29.12.841 Fayad Jose N, 2006, Adv Otorhinolaryngol, V64, P144 FEKETE DM, 1984, J COMP NEUROL, V229, P432, DOI 10.1002/cne.902290311 Ferragamo MJ, 2002, J NEUROPHYSIOL, V87, P2262, DOI 10.1152/jn.00587.2001 FRIAUF E, 1988, EXP BRAIN RES, V73, P263 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z Ghoshal S, 1996, ACTA OTO-LARYNGOL, V116, P280, DOI 10.3109/00016489609137841 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 KOLSTON J, 1992, ANAT EMBRYOL, V186, P443 Kuchta J, 2004, J NEUROSURG, V100, P16, DOI 10.3171/jns.2004.100.1.0016 LEAKE PA, 1989, J COMP NEUROL, V281, P612, DOI 10.1002/cne.902810410 Lenarz T, 2006, OTOL NEUROTOL, V27, P838, DOI 10.1097/01.mao.0000232010.01116.e9 LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205 Lim HH, 2008, HEARING RES, V242, P74, DOI 10.1016/j.heares.2008.02.003 Liu XG, 1997, HEARING RES, V114, P264, DOI 10.1016/S0378-5955(97)00170-6 Malmierca MS, 2005, NEUROSCIENCE, V136, P883, DOI 10.1016/j.neuroscience.2005.04.040 Malmierca MS, 2002, J NEUROSCI, V22, P10891 Marangos N, 2000, J Laryngol Otol Suppl, P27 McCreery D, 2007, IEEE T BIO-MED ENG, V54, P1042, DOI 10.1109/TBME.2007.891167 McCreery D B, 1998, IEEE Trans Rehabil Eng, V6, P391, DOI 10.1109/86.736153 MCCREERY DB, 1994, FEASIBILITY CENTRAL MCCREERY DB, 2001, C INPL AUD PROSTH AS MCCREERY DB, 1994, HEARING RES, V77, P105, DOI 10.1016/0378-5955(94)90258-5 McCreery DB, 2000, HEARING RES, V149, P223, DOI 10.1016/S0378-5955(00)00190-8 McCreery DB, 1997, IEEE T BIO-MED ENG, V44, P931, DOI 10.1109/10.634645 MCCREERY DB, 2005, COCHLEAR NUCL AUDITO MCCREERY DB, 2007, COCHLEAR NUCL AUDITO MCCREERY DB, 1992, HEARING RES, V62, P42, DOI 10.1016/0378-5955(92)90201-W Moller Aage R., 2006, V64, P1 MOORE JK, 1987, HEARING RES, V29, P1, DOI 10.1016/0378-5955(87)90202-4 MOORE JK, 1979, AM J ANAT, V154, P393, DOI 10.1002/aja.1001540306 Moore JK, 1996, J COMP NEUROL, V369, P497 MOORE JK, 1987, HEARING RES, V29, P33, DOI 10.1016/0378-5955(87)90203-6 MOORE JK, 2004, AUDITORY SYSTEM NIPARKO JK, 1989, OTOLARYNG HEAD NECK, V101, P344 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 Oertel D, 1997, NEURON, V19, P959, DOI 10.1016/S0896-6273(00)80388-8 Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497 OLIVER DL, 1987, J COMP NEUROL, V264, P24, DOI 10.1002/cne.902640104 Otto SR, 2002, J NEUROSURG, V96, P1063, DOI 10.3171/jns.2002.96.6.1063 Palmer AR, 1996, J NEUROPHYSIOL, V75, P780 Paolini AG, 1999, J NEUROPHYSIOL, V81, P2347 POWELL TPS, 1962, J ANAT, V96, P269 RHODE WS, 1994, HEARING RES, V77, P43, DOI 10.1016/0378-5955(94)90252-6 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 ROUILLER EM, 1984, J COMP NEUROL, V225, P167, DOI 10.1002/cne.902250203 Schofield BR, 1996, HEARING RES, V102, P1, DOI 10.1016/S0378-5955(96)00121-9 Schwartz MS, 2003, STEREOT FUNCT NEUROS, V81, P110, DOI 10.1159/000075113 Seki Yojiro, 2007, Brain and Nerve (Tokyo), V59, P323 SHANNON RV, 1990, HEARING RES, V47, P159, DOI 10.1016/0378-5955(90)90173-M SHNEIDERMAN A, 1985, HEARING RES, V19, P199, DOI 10.1016/0378-5955(85)90139-X SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 Snyder RL, 1997, J COMP NEUROL, V384, P293, DOI 10.1002/(SICI)1096-9861(19970728)384:2<293::AID-CNE9>3.0.CO;2-X Snyder RL, 1997, J COMP NEUROL, V379, P133, DOI 10.1002/(SICI)1096-9861(19970303)379:1<133::AID-CNE9>3.0.CO;2-5 Sollmann WP, 2000, J LARYNGOL OTOL, V114, P23 Sutherland DP, 1998, HEARING RES, V120, P86, DOI 10.1016/S0378-5955(98)00056-2 Sutherland DP, 1998, BEHAV BRAIN RES, V97, P1, DOI 10.1016/S0166-4328(98)00008-4 Svirsky MA, 2000, J ACOUST SOC AM, V107, P1521, DOI 10.1121/1.428459 Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477 WARR WB, 1972, BRAIN RES, V40, P247 WARR WB, 1966, EXP NEUROL, V14, P453, DOI 10.1016/0014-4886(66)90130-0 NR 83 TC 42 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 64 EP 73 DI 10.1016/j.heares.2007.11.014 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000007 PM 18207678 ER PT J AU Lim, HH Lenarz, T Anderson, DJ Lenarz, M AF Lim, Hubert H. Lenarz, Thomas Anderson, David J. Lenarz, Minoo TI The auditory midbrain implant: Effects of electrode location SO HEARING RESEARCH LA English DT Article DE auditory midbrain implant; auditory brainstem implant; central auditory pathways; deep brain stimulation; functional zones; inferior colliculus ID BRAIN-STEM IMPLANT; INFERIOR COLLICULUS; COCHLEAR IMPLANTS; ELECTRICAL-STIMULATION; GUINEA-PIG; SPEECH RECOGNITION; CENTRAL NUCLEUS; INTENSITY DISCRIMINATION; FUNCTIONAL-ORGANIZATION; MERIONES-UNGUICULATUS AB The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in patients who do not receive sufficient benefit from cochlear or brainstem prostheses. We have begun clinical trials in which three patients have been implanted with the AMI Although the intended target was the central nucleus of the inferior colliculus (ICC), the electrode array was implanted into different locations across patients (i.e., ICC, dorsal cortex of inferior colliculus, lateral lemniscus). In this paper, we will summarize the effects of electrical stimulation of these different midbrain regions on various psychophysical properties and speech perception performance. The patient implanted within the intended target, the ICC, exhibited the greatest improvements in hearing performance. However, this patient has not yet achieved open-set speech perception to the performance level typically observed for cochlear implant patients, which we believe is partially due to the location of the array within the ICC. We will present findings from previous AMI studies in guinea pigs demonstrating the existence of spatially distinct functional output regions within the ICC and suggesting that further improvements in performance may be achieved by stimulating within a rostral-ventral region. Remaining questions include if a similar organization exists in the human ICC and if stimulation of its rostral-ventral region with currently available strategies (i.e., those designed for cochlear implants) can restore sufficient speech perception. (C) 2008 Elsevier B.V. All rights reserved. C1 [Lim, Hubert H.; Lenarz, Thomas; Lenarz, Minoo] Hannover Med Sch, Dept Otorhinolaryngol, D-30625 Hannover, Germany. [Lim, Hubert H.; Anderson, David J.] Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Lim, HH (reprint author), HNO Klin, Med Hsch Hannover, Carl Neuberg Str 1,Gebaeude K5,Ebene 1,Raum 4010, D-30625 Hannover, Germany. EM hubertlim@aol.com; lenarz.thomas@mh-hanno-ver.de; dja@umich.edu; lenarz.minoo@mh-hannover.de FU NIH [P41 EB2030, P30 DC05188, T32 DC00011, F31 DC007009]; German Research Foundation [SFB 599]; Cochlear Ltd.; University of Michigan FX Human studies: We would like to thank Rolf-Dieter Battmer, Gert Joseph, Urte Rost, and Joerg Pesch for involvement with AMI patient testing and fitting; Madjid Samii, Amir Samii, and the International Neuroscience Institute (Hannover, Germany) for AMI surgery; and James F. Patrick, Frank Risi, and Cochlear Ltd. (Lane Cove, Australia) for AMI development and technical assistance. We also thank Hans-Joachim Kretschmann, Martin Bokemeyer, and the Anatomy and Neuroradiology Departments at Hannover Medical University for CT-MRI reconstructions and identification of the AMI array location in each patient. Funding was provided by Cochlear Ltd. Animal studies: We would like to thank James Wiler, Guenter Reuter, Alexandru C. Stan, Uta Reich, Gerrit Paasche, Nadine Marquardt, Marc N. Klingberg, and Anke Neuheiser for involvement with the electrophysiology and chronic studies; and Jamille Hetke and the University of Michigan Center for Neural Communication Technology (NIH P41 EB2030) for multi-site stimulation and recording probes. Funding was provided by NIH through P41 EB2030, P30 DC05188, T32 DC00011, and F31 DC007009; Cochlear Ltd.; German Research Foundation (SFB 599); and the University of Michigan Center for Wireless Integrated MicroSystems (NSF Engineering Research Center). CR Anderson DJ, 2008, HEARING RES, V242, P31, DOI 10.1016/j.heares.2008.01.010 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 BRACKMANN DE, 1993, OTOLARYNG HEAD NECK, V108, P624 Cant NB, 2006, J COMP NEUROL, V495, P511, DOI 10.1002/cne.20888 Cant NB, 2007, J COMP NEUROL, V503, P432, DOI 10.1002/cne.21391 Casseday JH, 2002, SPR HDB AUD, V15, P238 Colletti V, 2004, AUDIOL NEURO-OTOL, V9, P247, DOI 10.1159/000078394 Colletti V, 2007, OTOL NEUROTOL, V28, P39, DOI 10.1097/01.mao.0000247808.47712.02 Colletti V, 2005, LARYNGOSCOPE, V115, P1974, DOI 10.1097/01.mlg.0000178327.42926.ec DAHMEN JC, 2007, CURR OPIN NEUROBIOL Ehret G., 1997, CENTRAL AUDITORY SYS EVANS DGR, 1992, J MED GENET, V29, P841, DOI 10.1136/jmg.29.12.841 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Geniec P, 1971, Acta Otolaryngol Suppl, V295, P1 Green AL, 2006, PAIN, V124, P349, DOI 10.1016/j.pain.2006.05.005 GREEN DM, 1966, SIGNAL DETECTION THE Haberler C, 2000, ANN NEUROL, V48, P372, DOI 10.1002/1531-8249(200009)48:3<372::AID-ANA12>3.0.CO;2-0 Keuroghlian AS, 2007, PROG NEUROBIOL, V82, P109, DOI 10.1016/j.pneurobio.2007.03.005 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 Lenarz M, 2006, JARO-J ASSOC RES OTO, V7, P383, DOI 10.1007/s10162-006-0056-5 Lenarz M, 2007, OTOL NEUROTOL, V28, P1045 Lenarz T, 2006, OTOL NEUROTOL, V27, P838, DOI 10.1097/01.mao.0000232010.01116.e9 Lenarz T, 2001, OTOL NEUROTOL, V22, P823, DOI 10.1097/00129492-200111000-00019 Lim HH, 2006, J NEUROPHYSIOL, V96, P975, DOI 10.1152/jn.01112.2005 LIM HH, 2003, P 1 INT IEEE EMBS C, P193 Lim HH, 2007, J NEUROSCI, V27, P13541, DOI 10.1523/JNEUROSCI.3123-07.2007 LIM HH, NEUROSCIENC IN PRESS LIM HH, 2007, CIAP ABSTR, V13, P41 Lim HH, 2007, J NEUROSCI, V27, P8733, DOI 10.1523/JNEUROSCI.5127-06.2007 Loftus WC, 2004, J COMP NEUROL, V472, P330, DOI 10.1002/cne.20070 Loizou PC, 2000, EAR HEARING, V21, P25, DOI 10.1097/00003446-200002000-00006 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 Malmierca MS, 2005, EUR J NEUROSCI, V21, P2701, DOI 10.1111/j.1460-9568.2005.04103.x MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 Matthies C., 2000, J LARYNGOL OTOL S, V27, P32 MCCREERY DB, 2005, 3 NAT I DEAFN OTH CO McCreery DB, 2008, HEARING RES, V242, P64, DOI 10.1016/j.heares.2007.11.014 Nelson DA, 1996, J ACOUST SOC AM, V100, P2393, DOI 10.1121/1.417949 Oliver DL, 2005, INFERIOR COLLICULUS, P69, DOI 10.1007/0-387-27083-3_2 OLIVER DL, 1987, J COMP NEUROL, V264, P24, DOI 10.1002/cne.902640104 Otto SR, 2002, J NEUROSURG, V96, P1063, DOI 10.3171/jns.2002.96.6.1063 Owen SLF, 2007, ACTA NEUROCHIR SUPPL, V97, P111 Patrick James F, 2006, Trends Amplif, V10, P175, DOI 10.1177/1084713806296386 Perez-Gonzalez D, 2005, EUR J NEUROSCI, V22, P2879, DOI 10.1111/j.1460-9568.2005.04472.x PFINGST BE, 1983, J ACOUST SOC AM, V73, P1283, DOI 10.1121/1.389277 PFINGST BE, 2005, ASS RES OTOLARYNGOL, V28, P184 Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6 Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152 Rance G, 2002, EAR HEARING, V23, P239, DOI 10.1097/00003446-200206000-00008 RODRIGUESDAGAEFF C, 1989, HEARING RES, V39, P103, DOI 10.1016/0378-5955(89)90085-3 Saldana E, 2005, INFERIOR COLLICULUS, P155, DOI 10.1007/0-387-27083-3_5 Samii A, 2007, OTOL NEUROTOL, V28, P31, DOI 10.1097/01.mao.0000247819.16325.7d Schofield BR, 2005, INFERIOR COLLICULUS, P132, DOI 10.1007/0-387-27083-3_4 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X SHANNON RV, 1992, IEEE T BIO-MED ENG, V39, P424, DOI 10.1109/10.126616 Shannon Robert V, 2004, Acta Otolaryngol Suppl, P50 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426 Wichmann T, 2006, NEURON, V52, P197, DOI 10.1016/j.neuron.2006.09.022 Winer JA, 2005, INFERIOR COLLICULUS, P231, DOI 10.1007/0-387-27083-3_8 Zeng FG, 1999, EAR HEARING, V20, P60, DOI 10.1097/00003446-199902000-00006 NR 63 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 74 EP 85 DI 10.1016/j.heares.2008.02.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000008 PM 18348902 ER PT J AU Altschuler, RA O'Shea, KS Miller, JM AF Altschuler, Richard A. O'Shea, K. Sue Miller, Josef M. TI Stem cell transplantation for auditory nerve replacement SO HEARING RESEARCH LA English DT Article DE spiral ganglion neurons; cochlea; auditory; deafness; embryonic stem cells ID NEONATALLY DEAFENED CATS; INTRACOCHLEAR ELECTRICAL-STIMULATION; SENSORINEURAL HEARING-LOSS; NEURAL PROGENITOR CELLS; SPIRAL-GANGLION NEURONS; MOUSE INNER-EAR; COCHLEAR-IMPLANT; GUINEA-PIG; NEUROTROPHIC FACTORS; GROWTH-FACTOR AB The successful function of cochlear prostheses depends on activation of auditory nerve. The survival of auditory nerve neurons, however, can vary widely in candidates for cochlear implants and influence implant efficacy. Stem cells offer the potential for improving the function of cochlear prostheses and increasing the candidate pool by replacing lost auditory nerve. The first phase of studies for stem cell replacement of auditory nerve has examined the in vitro survival and differentiation as well as in vivo differentiation and survival of exogenous embryonic and tissue stem cells placed into scala tympani and/or modiolus. These studies are reviewed and new results on in vivo placement of B-5 mouse embryonic stem cells into scala tympani of the guinea pig cochleae with differentiation into a glutamatergic neuronal phenotype are presented. Research on the integration and connections of stem cell derived neurons in the cochlea is described. Finally, an alternative approach is considered, based on the use of endogenous progenitors rather than exogenous stem cells, with a review of promising findings that have identified stem cell-like progenitors in cochlear and vestibular tissues to provide the potential for auditory nerve replacement. (C) 2008 Elsevier B.V. All rights reserved. C1 [Altschuler, Richard A.; Miller, Josef M.] Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Altschuler, Richard A.; O'Shea, K. Sue] Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA. RP Altschuler, RA (reprint author), Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, 1150W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM shuler@umich.edu FU NIH [DC03820, GM069985 (KSO), NS04187 (KSO), P30 DC05188]; GM/UAW FX We would like to thank Mat Velkey, Diane Prieskorn and Noel Wys for their contributions to generating the new data described in this manuscript. These studies were supported by NIH grants DC03820 (RAA, JMM), GM069985 (KSO), NS04187 (KSO), P30 DC05188 and by GM/UAW funds. CR Altschuler RA, 1999, ANN NY ACAD SCI, V884, P305, DOI 10.1111/j.1749-6632.1999.tb08650.x Blamey P, 1997, AM J OTOL, V18, pS11 Blamey P, 1996, Audiol Neurootol, V1, P293 Coleman B, 2006, CELL TRANSPLANT, V15, P369, DOI 10.3727/000000006783981819 Coleman B, 2007, EXP CELL RES, V313, P232, DOI 10.1016/j.yexcr.2006.10.010 Corrales CE, 2006, J NEUROBIOL, V66, P1489, DOI 10.1002/neu.20310 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Falk A, 2002, EXP CELL RES, V279, P34, DOI 10.1006/excr.2002.5569 Gharabaghi A, 2005, ACT NEUR S, V93, P89 Hadjantonakis AK, 1998, MECH DEVELOP, V76, P79, DOI 10.1016/S0925-4773(98)00093-8 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 He ZG, 2004, ANNU REV NEUROSCI, V27, P341, DOI 10.1146/annurev.neuro.27.070203.144340 Hu ZQ, 2004, BRAIN RES, V1026, P68, DOI 10.1016/j.brainres.2004.08.013 Hu ZQ, 2005, EXP CELL RES, V302, P40, DOI 10.1016/j.yexer.2004.08.023 Iguchi F, 2003, NEUROREPORT, V14, P77, DOI 10.1097/01.wnr.0000050714.17082.9b Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 KILENY PR, 1991, ANN OTO RHINOL LARYN, V100, P563 Kondo T, 2005, P NATL ACAD SCI USA, V102, P4789, DOI 10.1073/pnas.0408239102 Koprivica V, 2005, SCIENCE, V310, P106, DOI 10.1126/science.1115462 LEAKE PA, 1992, HEARING RES, V64, P99, DOI 10.1016/0378-5955(92)90172-J LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X LEAKE PA, 1995, HEARING RES, V82, P65 Leake PA, 2008, HEARING RES, V242, P86, DOI 10.1016/j.heares.2008.06.002 Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 Lou XX, 2007, NEUROSCI LETT, V416, P28, DOI 10.1016/j.neulet.2006.12.061 LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836 Malgrange B, 1999, INT J PEDIATR OTORHI, V49, pS19, DOI 10.1016/S0165-5876(99)00126-3 Marzella PL, 1999, ACTA OTO-LARYNGOL, V119, P407 Matsumoto M, 2005, NEUROREPORT, V16, P787, DOI 10.1097/00001756-200505310-00001 Matsuoka AJ, 2006, LARYNGOSCOPE, V116, P1363, DOI 10.1097/01.mlg.0000225986.18790.75 McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50 Miller AL, 2003, BRAIN RES, V966, P218, DOI 10.1016/S0006-8993(02)04170-7 MILLER AL, 1998, CURR OPIN OTOLARYNGO, V6, P301, DOI 10.1097/00020840-199810000-00003 Miller J M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P57 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X Oshima K, 2007, JARO-J ASSOC RES OTO, V8, P18, DOI 10.1007/s10162-006-0058-3 Parker MA, 2007, HEARING RES, V232, P29, DOI 10.1016/j.heares.2007.06.007 PFINGST BE, 1981, ACTA OTO-LARYNGOL, V92, P1, DOI 10.3109/00016488109133232 PFINGST BE, 1983, ANN NY ACAD SCI, V405, P224, DOI 10.1111/j.1749-6632.1983.tb31635.x Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8 Rask-Andersen H, 2005, HEARING RES, V203, P180, DOI 10.1016/j.heares.2004.12.005 REYES JH, 2007, SOC NEUR ABST Rivolta Marcelo N., 2006, V330, P71 Rubinstein JT, 1999, AM J OTOL, V20, P445 SCHINDLER RA, 1995, AM J OTOL, V16, P304 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005 Sly DJ, 2007, EUR J NEUROSCI, V26, P510, DOI 10.1111/j.1460-9568.2007.05678.x Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 TAMURA T, 2004, ACTA OTO-LARYNGOL, V551, P65 Ulfendahl M, 2007, PHYSIOL BEHAV, V92, P75, DOI 10.1016/j.physbeh.2007.05.054 VandeWater TR, 1996, CIBA F SYMP, V196, P149 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 Yerukhimovich MV, 2007, DEV NEUROSCI-BASEL, V29, P251, DOI 10.1159/000096415 NR 57 TC 24 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 110 EP 116 DI 10.1016/j.heares.2008.06.004 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000011 PM 18585449 ER PT J AU Xu, L Pfingst, BE AF Xu, Li Pfingst, Bryan E. TI Spectral and temporal cues for speech recognition: Implications for auditory prostheses SO HEARING RESEARCH LA English DT Article DE speech recognition; spectral cues; temporal cues; cochlear implants ID MANDARIN TONE RECOGNITION; DESYNCHRONIZING PULSE TRAINS; COCHLEAR IMPLANT RECIPIENTS; SENSORINEURAL HEARING-LOSS; CONSONANT RECOGNITION; ELECTRICAL-STIMULATION; FUNDAMENTAL-FREQUENCY; VOWEL IDENTIFICATION; PROSODIC PERCEPTION; PHONEME RECOGNITION AB Features of stimulation important for speech recognition in people with normal hearing and in people using implanted auditory prostheses include spectral information represented by place of stimulation along the tonotopic axis and temporal information represented in low-frequency envelopes of the signal. The relative contributions of these features to speech recognition and their interactions have been studied using vocoder-like simulations of cochlear implant speech processors presented to listeners with normal hearing. In these studies, spectral/place information was manipulated by varying the number of channels and the temporal-envelope information was manipulated by varying the lowpass cutoffs of the envelope extractors. Consonant and vowel recognition in quiet reached plateau at 8 and 12 channels and lowpass cutoff frequencies of 16 Hz and 4 Hz, respectively. Phoneme (especially vowel) recognition in noise required larger numbers of channels. Lexical tone recognition required larger numbers of channels and higher lowpass cutoff frequencies. There was a tradeoff between spectral/place and temporal-envelope requirements. Most current auditory prostheses seem to deliver adequate temporal-envelope information, but the number of effective channels is suboptimal, particularly for speech recognition in noise. lexical tone recognition, and music perception. (C) 2007 Elsevier B.V. All rights reserved. C1 [Xu, Li] Ohio Univ, Sch Hearing Speech & Language Sci, Athens, OH 45701 USA. [Xu, Li; Pfingst, Bryan E.] Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Xu, L (reprint author), Ohio Univ, Sch Hearing Speech & Language Sci, Athens, OH 45701 USA. EM xul@ohio.edu FU NIH [R01 DC03808, T32 DC00011, F32 DC00470, R03 DC006161, P30 DC05188] FX We acknowledge the technical assistance from Cathy Thompson, Yuhjung Tsai, and Yunfang Zheng. Ning Zhou provided valuable comments on an earlier version of the manuscript. Supported by NIH Grants R01 DC03808, T32 DC00011, F32 DC00470, R03 DC006161, P30 DC05188, and Ohio University research awards. CR BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640 BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176 Baskent D, 2006, J ACOUST SOC AM, V120, P2908, DOI 10.1121/1.2354017 Boersma P., 2007, PRAAT DOING PHONETIC Boothroyd A, 1996, J ACOUST SOC AM, V100, P1807, DOI 10.1121/1.416000 Ciocca V, 2002, J ACOUST SOC AM, V111, P2250, DOI 10.1121/1.1471897 Dorman MF, 1997, J ACOUST SOC AM, V102, P2403, DOI 10.1121/1.419603 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836 Duanmu S., 2002, PHONOLOGY STANDARD C Dudley H.W, 1939, BELL LABS RECORD, V18, P122 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Friesen LM, 2005, AUDIOL NEURO-OTOL, V10, P169, DOI 10.1159/000084027 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2004, EAR HEARING, V25, P501, DOI 10.1097/01.aud.0000145125.50433.19 Fu QJ, 2000, J ACOUST SOC AM, V107, P589, DOI 10.1121/1.428325 Fu QJ, 2000, ASIA PACIFIC J SPEEC, V5, P45 Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941 Fujita S, 1999, ANN OTO RHINOL LARYN, V108, P634 Geurts L, 2001, J ACOUST SOC AM, V109, P713, DOI 10.1121/1.1340650 Geurts L, 2004, J ACOUST SOC AM, V115, P844, DOI 10.1121/1.1642623 Gfeller Kate, 2002, Cochlear Implants Int, V3, P29, DOI 10.1002/cii.50 Gfeller K, 2007, EAR HEARING, V28, P412, DOI 10.1097/AUD.0b013e3180479318 Green T, 2004, J ACOUST SOC AM, V116, P2298, DOI 10.1121/1.1785611 Green T, 2005, J ACOUST SOC AM, V118, P375, DOI 10.1121/1.1925827 Hamilton N, 2007, INT J AUDIOL, V46, P244, DOI 10.1080/14992020601053340 HILL FJ, 1968, J ACOUST SOC AM, V44, P13, DOI 10.1121/1.1911047 HILLENBRAND J, 1995, J ACOUST SOC AM, V97, P3099, DOI 10.1121/1.411872 Huang T S, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P294 Huang TS, 1996, AM J OTOL, V17, P46 Kong YY, 2006, J ACOUST SOC AM, V120, P2830, DOI 10.1121/1.2346009 Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F Laneau J, 2006, AUDIOL NEURO-OTOL, V11, P38, DOI 10.1159/000088853 Lee KYS, 2002, INT J PEDIATR OTORHI, V63, P137, DOI 10.1016/S0165-5876(02)00005-8 Litvak L, 2003, J ACOUST SOC AM, V114, P2099, DOI 10.1121/1.1612494 Litvak LM, 2003, J ACOUST SOC AM, V114, P2079, DOI 10.1121/1.1612493 Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492 Liu TC, 2004, ACTA OTO-LARYNGOL, V124, P1149, DOI 10.1080/00016480410017846 Loizou PC, 1999, J ACOUST SOC AM, V106, P2097, DOI 10.1121/1.427954 Luo Xin, 2004, Journal of the Acoustical Society of America, V116, P3659, DOI 10.1121/1.1783352 McDermott Hugh J, 2004, Trends Amplif, V8, P49, DOI 10.1177/108471380400800203 Nie K, 2006, EAR HEARING, V27, P208, DOI 10.1097/01.aud.0000202312.31837.25 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 REMEZ RE, 1981, SCIENCE, V212, P947, DOI 10.1126/science.7233191 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 Rubinstein Jay T, 2003, Ann Otol Rhinol Laryngol Suppl, V191, P14 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 SCHROEDER MR, 1966, P IEEE, V54, P352 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 Shannon R.V., 2004, ACTA OTO-LARYNGOL, V552, P50 SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Shannon RV, 1999, J ACOUST SOC AM, V106, pL71, DOI 10.1121/1.428150 Skinner MW, 2002, EAR HEARING, V23, p2S, DOI 10.1097/00003446-200202001-00002 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399 Sun JC, 1998, LARYNGOSCOPE, V108, P560, DOI 10.1097/00005537-199804000-00018 TERKEURS M, 1992, J ACOUST SOC AM, V91, P2872, DOI 10.1121/1.402950 TERKEURS M, 1993, J ACOUST SOC AM, V93, P1547, DOI 10.1121/1.406813 Turner CW, 1999, J SPEECH LANG HEAR R, V42, P773 Vandali AE, 2005, J ACOUST SOC AM, V117, P3126, DOI 10.1121/1.1874632 VANDALI AE, 2007, C IMPL AUD PROSTH AB, P204 van der Horst R, 1999, J ACOUST SOC AM, V105, P1801, DOI 10.1121/1.426718 VANTASELL DJ, 1987, J ACOUST SOC AM, V82, P1152, DOI 10.1121/1.395251 VILLCHUR E, 1977, J ACOUST SOC AM, V62, P665, DOI 10.1121/1.381579 Wei CG, 2007, EAR HEARING, V28, p62S, DOI 10.1097/AUD.0b013e318031512c Wei CG, 2004, HEARING RES, V197, P87, DOI 10.1016/j.heares.2004.06.002 Wei WI, 2000, ACTA OTO-LARYNGOL, V120, P218 WHALEN DH, 1992, PHONETICA, V49, P25 Wilson BS, 1997, AM J OTOL, V18, pS30 Wong AOC, 2004, OTOLARYNG HEAD NECK, V130, P751, DOI 10.1016/j.otohns.2003.09.037 Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786 Xu L, 2007, J ACOUST SOC AM, V122, P1758, DOI 10.1121/1.2767000 Xu L, 2002, J ACOUST SOC AM, V112, P247, DOI 10.1121/1.1487843 XU L, 2007, AS PAC S COCHL IMPL Xu L, 2005, J ACOUST SOC AM, V117, P3255, DOI 10.1121/.1.1886405 Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 Zeng FG, 1999, NEUROREPORT, V10, P3429, DOI 10.1097/00001756-199911080-00031 ZENG FG, 1995, AUDIOLOGY, V34, P61 NR 81 TC 29 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 132 EP 140 DI 10.1016/j.heares.2007.12.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000013 PM 18249077 ER PT J AU van Wieringen, A Macherey, O Carlyon, RP Deeks, JM Wouters, J AF van Wieringen, Astrid Macherey, Olivier Carlyon, Robert P. Deeks, John M. Wouters, Jan TI Alternative pulse shapes in electrical hearing SO HEARING RESEARCH LA English DT Article DE auditory prosthesis; cochlear implant; asymmetric pulse shapes; pulse polarity; spatial selectivity ID COCHLEAR IMPLANT USERS; CENTRAL-NERVOUS-SYSTEM; AUDITORY-NERVE; ACTION-POTENTIALS; MONOPHASIC STIMULATION; NEURAL STIMULATION; INTERPHASE GAP; WAVE-FORM; MODEL; DURATION AB Cochlear implants (CIs) stimulate the auditory nerve with trains of symmetric biphasic (BI) pulses. We review studies showing that more efficient stimulation can be achieved by modifying these pulses by (1) increasing the inter-phase gap (IPG) between the two phases of each pulse, thereby delaying the recovery of charge, (2) increasing the duration and decreasing the amplitude of one phase - so-called "pseudomonophasic (PS)" waveforms, and (3) combining the pseudomonophasic stimulus with an IPG in a "delayed pseudomonophasic" waveform (PS_IPG). These efficiency gains, measured using changes in threshold and loudness, occur at a wide range of pulse rates, including those commonly used in current Cl systems. In monopolar mode, dynamic ranges are larger for PS and for long-IPG pulse shapes than for BI pulses, but this increase in DR is not accompanied by a higher number of discriminable loudness steps, and hence, in a better coding of loudness. Moreover, waveforms with relatively short and long interphase gaps do not yield different patterns of excitation despite the relatively large differences in threshold. Two important findings are that, contrary to data obtained in animal experiments, anodic currents are more effective than cathodic stimulation for human CI patients and that the thresholds decrease with increases in IPG over a much longer time course (more than 3 ms) than for animals. In this review it is discussed how these alternative pulse shapes may be beneficial in terms of reducing power consumption and channel interactions, which issues remain to be addressed, and how models contribute to guiding our research. (C) 2008 Elsevier B.V. All rights reserved. C1 [van Wieringen, Astrid; Macherey, Olivier; Wouters, Jan] Katholieke Univ Leuven, Dept Neurosci, ExpORL, B-3000 Louvain, Belgium. [Macherey, Olivier; Carlyon, Robert P.; Deeks, John M.] MRC, Cognit & Brain Sci Unit, Cambridge CB2 7EF, England. RP van Wieringen, A (reprint author), Katholieke Univ Leuven, Dept Neurosci, ExpORL, Herestr 49,Bus 721, B-3000 Louvain, Belgium. EM astrid.vanwieringen@med.kuleuven.be RI Carlyon, Robert/A-5387-2010; Wouters, Jan/D-1800-2015 FU Kath-olieke Universiteit Leuven [OT/99/33, OT/03/58] FX This article was prepared while the first and second authors were supported by a Grant from the Research Council of the Kath-olieke Universiteit Leuven (OT/99/33, OT/03/58). CR Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712 Bonnet RM, 2004, ACTA OTO-LARYNGOL, V124, P371, DOI 10.1080/00016480410031084 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 BRUMMER SB, 1977, IEEE T BIO-MED ENG, V24, P59, DOI 10.1109/TBME.1977.326218 Carlyon RP, 2005, HEARING RES, V205, P210, DOI 10.1016/j.heares.2005.03.021 Cohen N, 2007, EAR HEARING, V28, p100S, DOI 10.1097/AUD.0b013e31803150f4 COLOMBO J, 1987, HEARING RES, V31, P287, DOI 10.1016/0378-5955(87)90197-3 Coste RL, 1996, J ACOUST SOC AM, V99, P3099, DOI 10.1121/1.414796 Eddington D.K., 2004, SPEECH PROCESSORS AU Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 Grill WM, 1996, IEEE T BIO-MED ENG, V43, P161, DOI 10.1109/10.481985 GRILL WM, 1995, IEEE ENG MED BIOL, V14, P375, DOI 10.1109/51.395310 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 MACHEREY O, 2007, THESIS KULEUVEN Macherey O, 2006, JARO-J ASSOC RES OTO, V7, P253, DOI 10.1007/s10162-006-0040-0 MACHEREY O, 2008, JARO-J ASSOC RES OTO, V5, P4, DOI DOI 10.1007/S10162-008-0112-4 Macherey O, 2007, JARO-J ASSOC RES OTO, V8, P84, DOI 10.1007/s10162-006-0066-3 McIntyre CC, 1999, BIOPHYS J, V76, P878, DOI 10.1016/S0006-3495(99)77251-6 McIntyre CC, 2000, ANN BIOMED ENG, V28, P219, DOI 10.1114/1.262 McIntyre CC, 2002, J NEUROPHYSIOL, V88, P1592, DOI 10.1152/jn.00147.2002 McKay CM, 2003, HEARING RES, V181, P94, DOI 10.1016/S0378-5955(03)00177-1 McKay CM, 1999, J ACOUST SOC AM, V106, P998, DOI 10.1121/1.428052 Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d Miller CA, 1995, HEARING RES, V92, P100, DOI 10.1016/0378-5955(95)00205-7 Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6 Nelson DA, 1996, J ACOUST SOC AM, V100, P2393, DOI 10.1121/1.417949 PFINGST BE, 1988, HEARING RES, V34, P243, DOI 10.1016/0378-5955(88)90005-6 Prado-Guitierrez P, 2006, HEARING RES, V215, P47, DOI 10.1016/j.heares.2006.03.006 RATTAY F, 1989, IEEE T BIO-MED ENG, V36, P676, DOI 10.1109/10.32099 RANCK JB, 1975, BRAIN RES, V98, P417, DOI 10.1016/0006-8993(75)90364-9 Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Rattay F, 1999, NEUROSCIENCE, V89, P335, DOI 10.1016/S0306-4522(98)00330-3 Robblee L S, 1990, NEURAL PROSTHESES FU, P25 RUBINSTEIN JT, 1993, IEEE T BIO-MED ENG, V40, P654, DOI 10.1109/10.237695 Rubinstein JT, 2001, IEEE T BIO-MED ENG, V48, P1065, DOI 10.1109/10.951508 SELIGMAN PM, 2004, NEUROPROSTHETICS THE SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X SHANNON RV, 1989, HEARING RES, V40, P197, DOI 10.1016/0378-5955(89)90160-3 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 Shepherd RK, 1999, ACTA OTO-LARYNGOL, V119, P674, DOI 10.1080/00016489950180621 van Wieringen A, 2005, HEARING RES, V200, P73, DOI 10.1016/j.heares.2004.08.006 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 VANDENHONERT C, 1979, ANN BIOMED ENG, V7, P117 van den Honert C, 2007, J ACOUST SOC AM, V121, P3703, DOI 10.1121/1.2722047 van Wieringen A, 2006, HEARING RES, V220, P49, DOI 10.1016/j.heares.2006.06.015 VANWIERINGEN A, 2005, C IMPL AUD PROSTH JU NR 52 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 154 EP 163 DI 10.1016/j.heares.2008.03.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000015 PM 18468821 ER PT J AU Turner, CW Reiss, LAJ Gantz, BJ AF Turner, Christopher W. Reiss, Lina A. J. Gantz, Bruce J. TI Combined acoustic and electric hearing: Preserving residual acoustic hearing SO HEARING RESEARCH LA English DT Article DE acoustic plus electric (A plus E); cochlear implant; sensorineural hearing loss ID COCHLEAR IMPLANT LISTENERS; SPEECH RECOGNITION; IMPAIRED LISTENERS; AUDITORY-SYSTEM; TEMPORAL CUES; LOW-FREQUENCY; STIMULATION; PERCEPTION; NOISE; PRESERVATION AB The topic of this review is the strategy of preserving residual acoustic hearing in the implanted ear to provide combined electrical stimulation and acoustic hearing as a rehabilitative strategy for sensorineural hearing loss. This chapter will concentrate on research done with the Iowa/Nucleus 10 mm Hybrid device, but we will also attempt to summarize strategies and results from other groups around the world who use slightly different approaches. A number of studies have shown that preserving residual acoustic hearing in the implanted ear is a realistic goal for many patients with severe high-frequency hearing loss. The addition of the electric stimulation to their existing acoustic hearing can provide increased speech recognition for these patients. In addition, the preserved acoustic hearing can offer considerable advantages, as compared to a traditional cochlear implant, for tasks such as speech recognition in backgrounds or appreciation of music and other situations where the poor frequency resolution of electric stimulation has been a disadvantage. (C) 2007 Elsevier B.V. All rights reserved. C1 [Turner, Christopher W.; Reiss, Lina A. J.] Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA. [Turner, Christopher W.; Gantz, Bruce J.] Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. RP Turner, CW (reprint author), Univ Iowa, Dept Speech Pathol & Audiol, 121B SHC Bldg, Iowa City, IA 52242 USA. EM christopher-turner@uiowa.edu FU NIDCD [R01 DC000377, P50 DC00242] FX This research was supported by Grants from the NIDCD (R01 DC000377, P50 DC00242). CR Brungart DS, 2001, J ACOUST SOC AM, V109, P1101, DOI 10.1121/1.1345696 Ching Teresa Y C, 2006, Audiol Neurootol, V11 Suppl 1, P6, DOI 10.1159/000095607 Ching TYC, 1998, J ACOUST SOC AM, V103, P1128, DOI 10.1121/1.421224 Ching TYC, 2001, EAR HEARING, V22, P365, DOI 10.1097/00003446-200110000-00002 Ciocca V, 2002, J ACOUST SOC AM, V111, P2250, DOI 10.1121/1.1471897 DOOLEY GJ, 1993, COMBINED ELECT ACOUS Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 FITZGERALD MB, OTOL NEUROL IN PRESS DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941 Fu QJ, 2002, J ACOUST SOC AM, V112, P1664, DOI 10.1121/1.1502901 Fu QJ, 1998, J ACOUST SOC AM, V104, P505, DOI 10.1121/1.423251 Gantz Bruce J, 2006, Audiol Neurootol, V11 Suppl 1, P63, DOI 10.1159/000095616 Gantz BJ, 2005, LARYNGOSCOPE, V115, P796, DOI 10.1097/01.MLG.0000157695.07536.D2 Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012 Gfeller K., 2002, COCHLEAR IMPLANTS IN, V3, P31, DOI DOI 10.1002/CII.50 Gfeller K, 1997, EAR HEARING, V18, P252, DOI 10.1097/00003446-199706000-00008 Gfeller Kate E, 2006, Audiol Neurootol, V11 Suppl 1, P12, DOI 10.1159/000095608 Gifford RH, 2007, J SPEECH LANG HEAR R, V50, P835, DOI 10.1044/1092-4388(2007/058) Gstoettner W, 2004, ACTA OTO-LARYNGOL, V124, P348, DOI 10.1080/00016480410016432 Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567 Hodges A, 1997, AM J OTOL, V18, P179 Hogan CA, 1998, J ACOUST SOC AM, V104, P432, DOI 10.1121/1.423247 James C, 2005, ACTA OTO-LARYNGOL, V125, P481, DOI 10.1080/00016480510026197 James Chris J, 2006, Audiol Neurootol, V11 Suppl 1, P57, DOI 10.1159/000095615 Kiefer J, 2005, AUDIOL NEURO-OTOL, V10, P134, DOI 10.1159/000084023 Kong YY, 2005, J ACOUST SOC AM, V117, P1351, DOI 10.1121/1.1857526 Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X LOEB GE, 1983, BIOL CYBERN, V47, P149, DOI 10.1007/BF00337005 McDermott Hugh J, 2004, Trends Amplif, V8, P49, DOI 10.1177/108471380400800203 MOK M, 2006, J SPEECH HEAR RES, V49, P339 Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 NI DF, 1992, HEARING RES, V62, P63, DOI 10.1016/0378-5955(92)90203-Y PENG S, EAR HEAR IN PRESS Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 REISS LA, OTOL NEUROL IN PRESS Reiss LAJ, 2007, JARO-J ASSOC RES OTO, V8, P241, DOI 10.1007/s10162-007-0077-8 Rubinstein JT, 1999, AM J OTOL, V20, P445 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SHANNON RV, 1990, J ACOUST SOC AM, V88, P741, DOI 10.1121/1.399777 Skarzynski H., 2003, MED SCI MONITOR, V9, P26 Turner CW, 2001, J ACOUST SOC AM, V109, P2999, DOI 10.1121/1.1371757 TURNER CW, J REHAB RES IN PRESS Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425 Turner Christopher W, 2006, Audiol Neurootol, V11 Suppl 1, P2, DOI 10.1159/000095606 Vickers DA, 2001, J ACOUST SOC AM, V110, P1164, DOI 10.1121/1.1381534 von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695 Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 Xu L, 2002, J ACOUST SOC AM, V112, P247, DOI 10.1121/1.1487843 Yao WN, 2006, J SPEECH LANG HEAR R, V49, P1085, DOI 10.1044/1092-4388(2006/077) ZAPPIA JJ, 1991, ANN OTO RHINOL LARYN, V100, P914 NR 53 TC 51 Z9 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 164 EP 171 DI 10.1016/j.heares.2007.11.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000016 PM 18164883 ER PT J AU Pfingst, BE Burkholder-Juhasz, RA Zwolan, TA Xu, L AF Pfingst, Bryan E. Burkholder-Juhasz, Rose A. Zwolan, Teresa A. Xu, Li TI Psychophysical assessment of stimulation sites in auditory prosthesis electrode arrays SO HEARING RESEARCH LA English DT Article DE auditory prosthesis; cochlear implant; psychophysics; detection threshold; electrode discrimination; modulation detection; channel interaction; speech recognition ID COCHLEAR IMPLANT USERS; MODULATION TRANSFER-FUNCTIONS; BRAIN-STEM IMPLANT; SPEECH RECOGNITION; STIMULUS LEVEL; ELECTRICAL-STIMULATION; INTENSITY DISCRIMINATION; NEURAL DEGENERATION; GAP DETECTION; CONFIGURATION AB Auditory prostheses use implanted electrode arrays that permit stimulation at many sites along the tonotopic axis of auditory neurons. Psychophysical studies demonstrate that measures of implant function, such as detection and discrimination thresholds, vary considerably across these sites, that the across-site patterns of these measures differ across subjects, and that the likely mechanisms underlying this variability differ across measures. Psychophysical and speech recognition studies suggest that not all stimulation sites contribute equally to perception with the prosthesis and that some sites might have negative effects on perception. Studies that reduce the number of active stimulation sites indicate that most cochlear implant users can effectively utilize a maximum of only about seven sites in their processors. These findings support a strategy for improving implant performance by selecting only the best stimulation sites for the processor map. Another approach is to revise stimulation parameters for ineffective sites in an effort to improve acuity at those sites. In this paper, we discuss data supporting these approaches and some potential pitfalls. (C) 2007 Elsevier B.V. All rights reserved. C1 [Pfingst, Bryan E.; Burkholder-Juhasz, Rose A.; Zwolan, Teresa A.; Xu, Li] Univ Michigan Hlth Syst, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Zwolan, Teresa A.] Univ Michigan Hlth Syst, Dept Otolaryngol, Hearing Rehabil Ctr, Ann Arbor, MI 48108 USA. [Xu, Li] Ohio Univ, Sch Hearing Speech & Language Sci, Athens, OH 45701 USA. RP Pfingst, BE (reprint author), Univ Michigan Hlth Syst, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. EM bpfingst@umich.edu FU NIH/NIDCD [R01 DC 03808, R01 DC 04312, T32 DC 00011, P30 DC05188] FX We express appreciation to Cathy Thompson and Gina Su for technical assistance and to the human subjects for their diligence and hard work in these experiments. Research reported from our laboratories was supported primarily by NIH/NIDCD Grants R01 DC 03808, R01 DC 04312, T32 DC 00011, and P30 DC05188. CR BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176 Baskent D, 2004, J ACOUST SOC AM, V116, P3130, DOI 10.1121/1.1804627 Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 BURKHOLDERJUHAS.RA, ASS RES OT IN PRESS BURKHOLDERJUHAS.RA, 2007, 2007 C IMPL AUD PROT, P103 CAZALS Y, 1994, J ACOUST SOC AM, V96, P2048, DOI 10.1121/1.410146 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2515, DOI 10.1121/1.422772 Colletti V, 2005, LARYNGOSCOPE, V115, P1974, DOI 10.1097/01.mlg.0000178327.42926.ec COLOMBO J, 1987, HEARING RES, V31, P287, DOI 10.1016/0378-5955(87)90197-3 Donaldson GS, 2000, J ACOUST SOC AM, V107, P1645, DOI 10.1121/1.428449 FAULKNER KF, 2007, 2007 C IMPL AUD PROT, P94 Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 FINLEY CC, 2007, 2007 C IMPL AUD PROT, P125 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Franck KH, 2003, JARO, V4, P49, DOI 10.1007/s10162-002-2047-5 Franck KH, 2001, EAR HEARING, V22, P289, DOI 10.1097/00003446-200108000-00004 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 1999, J ACOUST SOC AM, V105, P1889, DOI 10.1121/1.426725 Fu QJ, 2002, J ACOUST SOC AM, V112, P1664, DOI 10.1121/1.1502901 Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013 Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6 Gani M, 2007, JARO-J ASSOC RES OTO, V8, P69, DOI 10.1007/s10162-006-0065-4 Gstoettner W, 2004, ACTA OTO-LARYNGOL, V124, P348, DOI 10.1080/00016480410016432 Hanekom JJ, 1998, J ACOUST SOC AM, V104, P2372, DOI 10.1121/1.423772 Hartmann R., 1990, COCHLEAR IMPLANTS MO, P135 HINOJOSA R, 1980, ARCH OTOLARYNGOL, V106, P193 Hu N, 2003, HEARING RES, V185, P77, DOI 10.1016/S0378-5955(03)00261-2 Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128 LEHNHARDT E, 1992, ORL J OTO-RHINO-LARY, V54, P308 Le Prell CG, 2006, J ACOUST SOC AM, V120, P3889, DOI 10.1121/1.2359238 Lim HH, 2008, HEARING RES, V242, P74, DOI 10.1016/j.heares.2008.02.003 Lim HH, 2007, J NEUROSCI, V27, P8733, DOI 10.1523/JNEUROSCI.5127-06.2007 McCreery DB, 2008, HEARING RES, V242, P64, DOI 10.1016/j.heares.2007.11.014 McKay CM, 1999, HEARING RES, V136, P159, DOI 10.1016/S0378-5955(99)00121-5 Middlebrooks JC, 2007, JARO-J ASSOC RES OTO, V8, P258, DOI 10.1007/s10162-007-0070-2 Middlebrooks JC, 2008, HEARING RES, V242, P52, DOI 10.1016/j.heares.2008.04.001 Morris DJ, 2000, JARO, V1, P211, DOI 10.1007/s101620010022 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 Nelson DA, 1996, J ACOUST SOC AM, V100, P2393, DOI 10.1121/1.417949 Otto SR, 2002, J NEUROSURG, V96, P1063, DOI 10.3171/jns.2002.96.6.1063 PFINGST BE, 1983, J ACOUST SOC AM, V73, P1283, DOI 10.1121/1.389277 PFINGST BE, 2007, 2007 C IMPL AUD PROT, P98 PFINGST BE, 2006, J ACOUST SOC AM, V120, P3342 Pfingst BE, 2004, AUDIOL NEURO-OTOL, V9, P341, DOI 10.1159/000081283 Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501 PFINGST BE, 1990, HEARING RES, V50, P43, DOI 10.1016/0378-5955(90)90032-K Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6 PFINGST BE, 1994, HEARING RES, V78, P197, DOI 10.1016/0378-5955(94)90026-4 Pfingst BE, 1999, HEARING RES, V134, P105, DOI 10.1016/S0378-5955(99)00079-9 Pfingst BE, 2004, JARO-J ASSOC RES OTO, V5, P11, DOI 10.1007/s10162-003-3051-0 Pfingst BE, 2005, AUDIOL NEURO-OTOL, V10, P331, DOI 10.1159/000087350 Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Richardson LM, 1998, J ACOUST SOC AM, V104, P442, DOI 10.1121/1.423248 Arnoldner C, 2007, AUDIOL NEURO-OTOL, V12, P313, DOI 10.1159/000103212 RODENHISER KL, 1995, IEEE T BIO-MED ENG, V42, P337, DOI 10.1109/10.376127 Saunders E, 2002, EAR HEARING, V23, p28S SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHANNON RV, 1993, J ACOUST SOC AM, V93, P1651, DOI 10.1121/1.406799 Shannon RV, 2002, JARO, V3, P185, DOI 10.1007/s101620020021 SHANNON RV, 1989, J ACOUST SOC AM, V85, P2587, DOI 10.1121/1.397753 SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 Skinner MW, 1999, J SPEECH LANG HEAR R, V42, P814 Skinner MW, 1997, J ACOUST SOC AM, V101, P3766, DOI 10.1121/1.418383 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Somdas MA, 2007, AUDIOL NEURO-OTOL, V12, P277, DOI 10.1159/000103208 Spelman F A, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P131 STEVENS SS, 1937, J ACOUST SOC AM, V10, P183 VANCOMPERNOLLE D, 1985, G9067 STANF EL LABS VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 van den Honert C, 2007, J ACOUST SOC AM, V121, P3703, DOI 10.1121/1.2722047 van Hoesel RJM, 2007, J ACOUST SOC AM, V121, P2192, DOI 10.1121/1.2537300 WHITEN DM, 2007, 2007 C IMPL AUD PROT, P37 Xu L, 2007, J ACOUST SOC AM, V122, P1758, DOI 10.1121/1.2767000 Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401 Zwolan TA, 1996, AM J OTOL, V17, P717 NR 77 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 172 EP 183 DI 10.1016/j.heares.2007.11.007 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000017 PM 18178350 ER PT J AU Miller, CA Brown, CJ Abbas, PJ Chi, SL AF Miller, Charles A. Brown, Carolyn J. Abbas, Paul J. Chi, Siu-Ling TI The clinical application of potentials evoked from the peripheral auditory system SO HEARING RESEARCH LA English DT Article DE cochlear implant; evoked potentials; electric stimulation; compound action potential (CAP); auditory brainstem response (ABR) ID COCHLEAR IMPLANT USERS; NERVE ACTION-POTENTIALS; BRAIN-STEM RESPONSE; MULTICHANNEL ELECTRICAL-STIMULATION; SPIRAL GANGLION-CELLS; GUINEA-PIG; PSYCHOPHYSICAL MEASURES; CHANNEL INTERACTION; NEURAL EXCITATION; TEMPORAL INTEGRATION AB The auditory nerve is the obligatory pathway between the cochlea and the central nervous system. As the fibers of the mammalian auditory nerve share with each other many response properties when stimulated electrically (Kiang, 1965). it is reasonable to assume that the summed, or gross, electrical response of a fiber ensemble can provide researchers with meaningful information about nerve function. This chapter describes the gross responses of the auditory nerve that can be evoked by stimuli delivered by one or more electrodes implanted within the cochlea. Two manifestations of this potential - the electrically evoked compound action potential (ECAP) and the electrically evoked auditory brainstem response (EABR) - are introduced and compared. Some implant devices include systems that allow ECAPs to be routinely recorded from electrodes within the cochlea in clinical settings. While such systems have increased the popularity of the ECAP, unique advantages of the EABR are noted. Both potentials have assisted the clinical management of implant recipients and increase our understanding of how the human auditory system responds to electrical stimulation. The goals of this chapter are to review response characteristics of the whole-nerve response, the extent to which they provide information about underlying auditory nerve fiber activity, and limitations to their interpretation. This report will focus on describing and reviewing data collected from various clinical studies and interpreting these results on the basis of theoretical considerations and pertinent results from animal studies. Future research directions, which will likely involve the integration of various dimensions of the electrically evoked response that have been studied in isolation, are also suggested. (C) 2008 Elsevier B.V. All rights reserved. C1 [Miller, Charles A.; Brown, Carolyn J.; Abbas, Paul J.; Chi, Siu-Ling] Univ Iowa, Dept Otolaryngol, Iowa City, IA 52242 USA. [Brown, Carolyn J.; Abbas, Paul J.; Chi, Siu-Ling] Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA. RP Miller, CA (reprint author), Univ Iowa, Dept Otolaryngol, Iowa City, IA 52242 USA. EM charles-miller@uiowa.edu FU United States National Institute on Deafness and Other Communication Disorders [P50-DC00242, R01-DC006478] FX Aspects of this work were supported by grants from the United States National Institute on Deafness and Other Communication Disorders (P50-DC00242 and R01-DC006478). CR ABBAS PJ, 1991, HEARING RES, V51, P139, DOI 10.1016/0378-5955(91)90012-X Abbas PJ, 2004, AUDIOL NEURO-OTOL, V9, P203, DOI 10.1159/000078390 Abbas P.J., 2006, COCHLEAR IMPLANTS Bevington P R, 2003, DATA REDUCTION ERROR Blamey P, 1996, Audiol Neurootol, V1, P293 Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Briaire JJ, 2006, HEARING RES, V214, P17, DOI 10.1016/j.heares.2006.01.015 Brown CJ, 1998, AM J OTOL, V19, P320 BROWN CJ, 1995, EAR HEARING, V16, P439, DOI 10.1097/00003446-199510000-00001 Brown CJ, 1996, J SPEECH HEAR RES, V39, P453 Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009 BROWN CJ, 1990, J ACOUST SOC AM, V88, P2205, DOI 10.1121/1.400117 Brown C J, 1999, Ann Otol Rhinol Laryngol Suppl, V177, P50 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 BRUMMER SB, 1977, IEEE T BIO-MED ENG, V24, P436, DOI 10.1109/TBME.1977.326178 CHI SL, 2001, THESIS U IOWA Cohen LT, 2004, INT J AUDIOL, V43, P346, DOI 10.1080/14992020400050044 COHEN LT, 2007, 5 INT S OBJ MEAS COC Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 DORMAN MF, 1992, J SPEECH HEAR RES, V35, P1126 DUCKERT LG, 1983, LARYNGOSCOPE, V93, P841 EDDINGTON DK, 1980, J ACOUST SOC AM, V68, P885, DOI 10.1121/1.384827 EDDINGTON DK, 1983, ANN NY ACAD SCI, V405, P241, DOI 10.1111/j.1749-6632.1983.tb31637.x Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Finley C. C., 1990, COCHLEAR IMPLANTS MO FRANCK KH, 1999, THESIS U WASHINGTON Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 GANTZ BJ, 1988, LARYNGOSCOPE, V98, P1100 GARDI JN, 1981, ARCH OTOLARYNGOL, V107, P164 GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497 GYO K, 1980, ACTA OTO-LARYNGOL, V90, P25, DOI 10.3109/00016488009131694 HALL RD, 1990, HEARING RES, V49, P155, DOI 10.1016/0378-5955(90)90102-U Hay-McCutcheon MJ, 2005, J ACOUST SOC AM, V118, P2444, DOI 10.1121/1.2035593 Hughes ML, 2001, EAR HEARING, V22, P471, DOI 10.1097/00003446-200112000-00004 Hughes ML, 2004, EAR HEARING, V25, P431, DOI 10.1097/01.aud.0000145111.92825.cc Hughes ML, 2006, J ACOUST SOC AM, V119, P1527, DOI 10.1121/1.2163273 JYUNG RW, 1989, OTOLARYNG HEAD NECK, V101, P670 Kandel E. R., 2000, PRINCIPLES NEURAL SC Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313 Khan AM, 2005, HEARING RES, V205, P83, DOI 10.1016/j.heares.2005.03.003 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 Kiang NY-s, 1965, DISCHARGE PATTERNS S LEAKE P, 2000, PROTECTIVE EFFECTS P Leake PA, 2007, J COMP NEUROL, V501, P837, DOI 10.1002/cne.21275 MACHEREY O, J ASS RES O IN PRESS Macherey O, 2006, JARO-J ASSOC RES OTO, V7, P253, DOI 10.1007/s10162-006-0040-0 Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6 Meddis R, 2006, J ACOUST SOC AM, V119, P406, DOI 10.1121/1.2139628 Miller CA, 1995, HEARING RES, V92, P100, DOI 10.1016/0378-5955(95)00205-7 Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9 Miller CA, 1999, HEARING RES, V135, P1, DOI 10.1016/S0378-5955(99)00081-7 Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6 Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 MILLER CA, 1994, HEARING RES, V78, P11, DOI 10.1016/0378-5955(94)90039-6 MILLER JM, 1983, ANN OTO RHINOL LARYN, V92, P599 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 NAGEL D, 1974, ARCH OTO-RHINO-LARYN, V206, P293, DOI 10.1007/BF00460282 PFINGST BE, 1990, HEARING RES, V50, P225, DOI 10.1016/0378-5955(90)90047-S RATTAY F, 1986, IEEE T BIO-MED ENG, V33, P974, DOI 10.1109/TBME.1986.325670 Rosen S, 1999, J ACOUST SOC AM, V106, P3629, DOI 10.1121/1.428215 RUBINSTEIN JT, 1993, IEEE T BIO-MED ENG, V40, P654, DOI 10.1109/10.237695 SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 SHEPHERD RK, 1984, ACTA OTO-LARYNGOL, P71 SMITH L, 1983, ANN OTO RHINOL LARYN, V92, P19 Smith ZM, 2007, JARO-J ASSOC RES OTO, V8, P134, DOI 10.1007/s10162-006-0069-0 Smoorenburg GF, 2002, AUDIOL NEURO-OTOL, V7, P335, DOI 10.1159/000066154 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 van Wieringen A, 2008, HEARING RES, V242, P154, DOI 10.1016/j.heares.2008.03.005 VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 WALTZMAN SB, 1991, OTOLARYNG HEAD NECK, V105, P797 WHITE MW, 1984, ARCH OTOLARYNGOL, V110, P493 Wilson B., 1995, SPEECH PROCESSORS AU WILSON BS, 1994, SPEECH PROCESSORS AU WOO JH, 2007, 2007 C IMPL AUD PROS YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 Zhang F, 2007, JARO-J ASSOC RES OTO, V8, P356, DOI 10.1007/s10162-007-0086-7 NR 83 TC 31 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 184 EP 197 DI 10.1016/j.heares.2008.04.005 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000018 PM 18515023 ER PT J AU Fu, QJ Galvin, JJ AF Fu, Qian-Jie Galvin, John J., II TI Maximizing cochlear implant patients' performance with advanced speech training procedures SO HEARING RESEARCH LA English DT Article DE cochlear implants; targeted auditory training; auditory rehabilitation ID SPECTRALLY SHIFTED SPEECH; NORMAL-HEARING LISTENERS; CONSONANT RECOGNITION; PERCEPTUAL ADAPTATION; TEMPORAL RESOLUTION; PROCESSING STRATEGY; ELECTRIC HEARING; CODING STRATEGY; USERS; NOISE AB Advances in implant technology and speech processing have provided great benefit to many cochlear implant patients. However, some patients receive little benefit from the latest technology, even after many years' experience with the device. Moreover, even the best cochlear implant performers have great difficulty understanding speech in background noise, and music perception and appreciation remain major challenges. Recent studies have shown that targeted auditory training can significantly improve cochlear implant patients' speech recognition performance. Such benefits are not only observed in poorly performing patients, but also in good performers under difficult listening conditions (e.g., speech noise, telephone speech, music, etc.). Targeted auditory training has also been shown to enhance performance gains provided by new implant devices and/or speech processing strategies. These studies suggest that cochlear implantation alone may not fully meet the needs of many patients, and that additional auditory rehabilitation may be needed to maximize the benefits of the implant device. Continuing research will aid in the development of efficient and effective training protocols and materials, thereby minimizing the costs (in terms of time, effort and resources) associated with auditory rehabilitation while maximizing the benefits of cochlear implantation for all recipients. (C) 2007 Elsevier B.V. All rights reserved. C1 [Fu, Qian-Jie; Galvin, John J., II] House Ear Res Inst, Dept Auditory Implants & Percept, Los Angeles, CA 90057 USA. RP Fu, QJ (reprint author), House Ear Res Inst, Dept Auditory Implants & Percept, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM qfu@hei.org FU NIDCD [R01DC004792] FX Research was partially supported by NIDCD Grant R01DC004792. CR BUSBY P A, 1991, British Journal of Audiology, V25, P291, DOI 10.3109/03005369109076601 Busby PA, 1999, J ACOUST SOC AM, V105, P1841, DOI 10.1121/1.426721 CAZALS Y, 1994, J ACOUST SOC AM, V96, P2048, DOI 10.1121/1.410146 CAZALS Y, 1991, ANN OTO RHINOL LARYN, V100, P893 Cohen N L, 1989, Ann Otol Rhinol Laryngol Suppl, V142, P8 Dawson PW, 1997, EAR HEARING, V18, P488, DOI 10.1097/00003446-199712000-00007 Donaldson GS, 2000, J ACOUST SOC AM, V107, P1645, DOI 10.1121/1.428449 Dorman MF, 1997, EAR HEARING, V18, P147, DOI 10.1097/00003446-199704000-00007 DOWELL RC, 1987, ACTA OTO-LARYNGOL, V104, P439, DOI 10.3109/00016488709128272 Eggermont JJ, 2003, ACTA OTO-LARYNGOL, V123, P249, DOI 10.1080/0036554021000028098 FAULKNER A, 2006, AUDIOL NEUROOTOL S1, P21 Fitzgerald MB, 2005, J ACOUST SOC AM, V118, P3794, DOI 10.1121/1.2074687 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu Qian-Jie, 2006, Am J Audiol, V15, P127, DOI 10.1044/1059-0889(2006/016) Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3 Fu QJ, 2005, ACOUST RES LETT ONL, V6, P106, DOI 10.1121/1.1898345 Fu QJ, 2004, EAR HEARING, V25, P501, DOI 10.1097/01.aud.0000145125.50433.19 Fu QJ, 2000, ASIA PACIFIC J SPEEC, V5, P45 Fu Qian-Jie, 2007, Trends Amplif, V11, P193, DOI 10.1177/1084713807301379 Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941 Fu QJ, 2002, J ACOUST SOC AM, V112, P1664, DOI 10.1121/1.1502901 Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013 Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P180, DOI 10.1007/s10162-005-5061-6 Fu QJ, 1998, J ACOUST SOC AM, V104, P505, DOI 10.1121/1.423251 Galvin JJ, 2007, EAR HEARING, V28, P302, DOI 10.1097/01.aud.0000261689.35445.20 Garofolo J. S., 1993, DARPA TIMIT ACOUSTIC George C R, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P272 Gfeller K, 2000, J Am Acad Audiol, V11, P390 Gfeller Kate, 2002, J Am Acad Audiol, V13, P132 Gray R F, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P275 Hesse G, 2001, HNO, V49, P636, DOI 10.1007/s001060170061 HILLENBRAND J, 1995, J ACOUST SOC AM, V97, P3099, DOI 10.1121/1.411872 HOCHBERG I, 1992, EAR HEARING, V13, P263 Horng MJ, 2007, EAR HEARING, V28, p66S, DOI 10.1097/AUD.0b013e31803153bd IEEE Subcommittee, 1969, IEEE T AUDIO ELECTRO, V3, P225, DOI DOI 10.1109/TAU.1969.1162058 Ito J, 1999, OTOLARYNG HEAD NECK, V121, P802, DOI 10.1053/hn.1999.v121.a93864 JESTEADT W, 1980, PERCEPT PSYCHOPHYS, V28, P85, DOI 10.3758/BF03204321 Kelly AS, 2005, CLIN NEUROPHYSIOL, V116, P1235, DOI 10.1016/j.clinph.2005.02.011 Kiefer J, 1996, ORL J OTO-RHINO-LARY, V58, P127 Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F Li TH, 2007, JARO-J ASSOC RES OTO, V8, P32, DOI 10.1007/s10162-006-0059-2 Lin MC, 1988, CHINESE YUWEN, V204, P182 Loeb G E, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P290 McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177 Merzenich MM, 1996, SCIENCE, V271, P77, DOI 10.1126/science.271.5245.77 Milchard AJ, 2004, INT J AUDIOL, V43, P356, DOI 10.1080/14992020400050045 MUCHNIK C, 1994, SCAND AUDIOL, V23, P105, DOI 10.3109/01050399409047493 Müller-Deile J, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P303 Musiek F E, 1999, Scand Audiol Suppl, V51, P63 Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 Nogaki G, 2007, EAR HEARING, V28, P132, DOI 10.1097/AUD.0b013e3180312669 Pelizzone N, 1999, EAR HEARING, V20, P228 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 SHANNON RV, 1990, J ACOUST SOC AM, V87, P905, DOI 10.1121/1.398902 Shannon R.V., 2004, ACTA OTO-LARYNGOL, V552, P50 Shannon RV, 1999, J ACOUST SOC AM, V106, pL71, DOI 10.1121/1.428150 SKINNER MW, 1994, AM J OTOL, V15, P15 Smith MW, 2006, J ACOUST SOC AM, V120, P4019, DOI 10.1121/1.2359235 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a SPIVAK LG, 1990, J SPEECH HEAR RES, V33, P511 Svirsky MA, 2001, ACTA OTO-LARYNGOL, V121, P262 Sweetow Robert, 2005, J Am Acad Audiol, V16, P494, DOI 10.3766/jaaa.16.7.9 Tallal P, 1996, SCIENCE, V271, P81, DOI 10.1126/science.271.5245.81 Tremblay K, 1998, NEUROREPORT, V9, P3557 Tremblay K, 1997, J ACOUST SOC AM, V102, P3762, DOI 10.1121/1.420139 TYLER RS, 1997, AM J OTOL S6, V18, P157 WALTZMAN SB, 1986, LARYNGOSCOPE, V96, P1083 WANG RH, 1989, SPEECH SIGNAL PROCES, P37 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Wright BA, 2001, AUDIOL NEURO-OTOL, V6, P207, DOI 10.1159/000046834 Wright BA, 1997, J NEUROSCI, V17, P3956 Wright BA, 2007, EXP BRAIN RES, V180, P727, DOI 10.1007/s00221-007-0898-z WRIGHT BA, 2005, AUDITORY SIGNAL PROC WU JL, 2007, AUDIOL NEUROTOL, V12, P31 NR 76 TC 41 Z9 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2008 VL 242 IS 1-2 BP 198 EP 208 DI 10.1016/j.heares.2007.11.010 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 345TG UT WOS:000259019000019 PM 18295992 ER PT J AU Markaryan, A Nelson, EG Tretiakova, M Hinojosa, R AF Markaryan, Adam Nelson, Erik G. Tretiakova, Maria Hinojosa, Raul TI Technical report: Immunofluorescence and TUNEL staining of celloidin embedded human temporal bone tissues SO HEARING RESEARCH LA English DT Article DE human temporal bones; immunofluorescence staining; TUNEL staining ID INNER-EAR; IMMUNOHISTOCHEMISTRY; SECTIONS; PRESBYCUSIS; MEMBRANE; DNA AB The large archival human temporal bone collections of the world have been fixed in formalin and embedded in celloidin. These treatments have created challenges to the use of contemporary probes, which are routinely used in the evaluation of fresh and frozen tissues, for the analysis of archival temporal bone tissues. Formalin alters the configuration of proteins and can obscure antigens by modifying the epitopes recognized by antibodies. Celloidin embedding provides superior support of the delicate membranous structures of the inner ear to maintain tissue integrity during sectioning, however, inadequate removal of celloidin may limit tissue permeability resulting in poor penetration of large molecules. Methods are described in this manuscript that have allowed reproducible immunofluorescence and TUNEL (terminal deoxynucleotidyl transferase mediated dUTP nick end labeling) staining results in these archival tissues. To our knowledge, successful immunofluorescence staining of type I collagen, immunofluorescence staining of cytochrome c oxidase subunit III (COX 111), and TUNEL staining in archival human temporal bone tissues with confocal microscopy has not been previously reported. These results demonstrate the utility of developing techniques to evaluate the existing collections of archival temporal bones which remain our greatest source of tissue for investigating the causes of ear diseases. (C) 2008 Elsevier B.V. All rights reserved. C1 [Markaryan, Adam; Nelson, Erik G.; Hinojosa, Raul] Univ Chicago, Dept Surg, Sect Otolaryngol Head & Neck Surg, Chicago, IL 60637 USA. [Tretiakova, Maria] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA. RP Markaryan, A (reprint author), Univ Chicago, Dept Surg, Sect Otolaryngol Head & Neck Surg, 5841 S Maryland Ave,MC 1035, Chicago, IL 60637 USA. EM amarkary@surgery.bsd.uchicago.edu CR Bai U, 1997, AM J OTOL, V18, P449 KEITHLEY EM, 1994, ACTA OTO-LARYNGOL, V114, P613, DOI 10.3109/00016489409126114 Keithley EM, 2000, HEARING RES, V148, P192, DOI 10.1016/S0378-5955(00)00153-2 Keithley EM, 2001, HEARING RES, V157, P93, DOI 10.1016/S0378-5955(01)00281-7 KEITHLEY EM, 1995, ANN OTO RHINOL LARYN, V104, P858 Merchant SN, 2006, LARYNGOSCOPE, V116, P245, DOI 10.1097/01.mlg.0000192171.85406.47 Nelson EG, 2006, LARYNGOSCOPE, V116, P1, DOI 10.1097/01.mlg.0000236089.44566.62 Robertson NG, 2006, HUM MOL GENET, V15, P1071, DOI 10.1093/hmg/ddl022 SCHUKNECHT H F, 1987, Annals of Otology Rhinology and Laryngology, V96, P1 Schuknecht HF, 1993, PATHOLOGY EAR Shi SR, 1997, OTOLARYNG HEAD NECK, V117, pS195, DOI 10.1016/S0194-5998(97)70100-1 SHI SR, 1992, J HISTOCHEM CYTOCHEM, V40, P787 Shi Shan-Rong, 1998, Auris Nasus Larynx, V25, P425, DOI 10.1016/S0385-8146(98)00042-X Shi SR, 1997, J HISTOTECHNOL, V20, P145 Tian Q, 1999, ANN OTO RHINOL LARYN, V108, P47 Usami S, 1997, BRAIN RES, V747, P147, DOI 10.1016/S0006-8993(96)01243-7 WACKYM PA, 1993, LARYNGOSCOPE, V103, P583 WACKYM PA, 1990, LARYNGOSCOPE, V100, P447 Zehnder AF, 2005, ARCH OTOLARYNGOL, V131, P1007, DOI 10.1001/archotol.131.11.1007 NR 19 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2008 VL 241 IS 1-2 BP 1 EP 6 DI 10.1016/j.heares.2008.04.009 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 330ZK UT WOS:000257981200001 PM 18547759 ER PT J AU Farahbakhsh, NA Narins, PM AF Farahbakhsh, Nasser A. Narins, Peter M. TI Slow motility in hair cells of the frog amphibian papilla: Myosin light chain-mediated shape change SO HEARING RESEARCH LA English DT Article DE auditory hair cells; kinase/phosphatase dependence; iso-volumetric shortening ID DEPENDENT PROTEIN-KINASES; SMOOTH-MUSCLE MYOSIN; GUINEA-PIG COCHLEA; INTRACELLULAR CALCIUM; SOMATIC MOTILITY; PHOSPHORYLATION; ELECTROMOTILITY; ACETYLCHOLINE; INHIBITORS; CALMODULIN AB Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca2+/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment with several specific inhibitors, as well as their response to the calcium ionophore, ionomycin, were recorded and compared. These cells respond to ionomycin with a tri-phasic shape change: an initial phase of iso-volumetric length decrease; a period of concurrent shortening and swelling; and the final phase of increase in both length and volume. We found that both the myosin light chain kinase inhibitor, ML-7, and antagonists of the multifunctional Ca2+/CaM-dependent kinases, KN-62 and KN-93, inhibit the iso-volumetric shortening phase of the response to ionomycin. The type 1 protein phosphatase inhibitors, calyculin A and okadaic acid induce minor shortening on their own, but do not significantly alter phase I response. However, they appear to counter effects of the inhibitors of Ca2+/CaM-dependent kinases. We hypothesize that an active actomyosin-based process mediates the iso-volumetric shortening in the frog rostral amphibian papillar hair cells. (C) 2008 Elsevier B.V. All rights reserved. C1 [Farahbakhsh, Nasser A.; Narins, Peter M.] Univ Calif Los Angeles, Dept Physiol Sci, Los Angeles, CA 90095 USA. [Narins, Peter M.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. RP Farahbakhsh, NA (reprint author), Univ Calif Los Angeles, Dept Physiol Sci, 621 Charles E Yong Dr S, Los Angeles, CA 90095 USA. EM farahbak@ucla.edu CR ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 Bain J, 2003, BIOCHEM J, V371, P199, DOI 10.1042/BJ20021535 BERNARD C, 1986, J PHYSIOL-LONDON, V371, P17 Blanchet C, 1996, J NEUROSCI, V16, P2574 Borko R, 2005, HEARING RES, V207, P68, DOI 10.1016/j.heares.2005.04.004 CHERTOFF ME, 1994, AM J PHYSIOL, V266, pC467 Dallos P, 1997, J NEUROSCI, V17, P2212 Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 Davies SP, 2000, BIOCHEM J, V351, P95, DOI 10.1042/0264-6021:3510095 Deak L, 2005, J PHYSIOL-LONDON, V563, P483, DOI 10.1113/jphysiol.2004.078857 DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6 EDELMAN AM, 1990, MOL CELL BIOCHEM, V97, P87 ERDAHL WL, 1994, BIOPHYS J, V66, P1678 FARAHBAKHSH NA, 2007, ASS RES OTOLARYNGOL, P473 FARAHBAKHSH NA, 2004, ASS RES OTOLARYNGOL, P1275 Farahbakhsh NA, 2006, HEARING RES, V212, P140, DOI 10.1016/j.heares.2005.11.004 FARAHBAKHSH NA, 2006, ASS RES OTOLARYNGOL, P1222 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 Frolenkov GI, 2000, J NEUROSCI, V20, P5940 Frolenkov GI, 2003, CELL CALCIUM, V33, P185, DOI 10.1016/S0143-4160(02)00228-2 GRYNKIEWICZ G, 1985, J BIOL CHEM, V260, P3440 HANSON PI, 1994, NEURON, V12, P943, DOI 10.1016/0896-6273(94)90306-9 Hartshorne DJ, 2004, J BIOL CHEM, V279, P37211, DOI 10.1074/jbc.R400018200 He DZZ, 2003, J NEUROSCI, V23, P9089 He DZZ, 1999, P NATL ACAD SCI USA, V96, P8223, DOI 10.1073/pnas.96.14.8223 He DZZ, 2003, J PHYSIOL-LONDON, V546, P511, DOI 10.1113/jphysiol.2002.026070 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 Iida Y, 1997, AM J PHYSIOL-ENDOC M, V273, pE782 ISHIHARA H, 1989, BIOCHEM BIOPH RES CO, V159, P871, DOI 10.1016/0006-291X(89)92189-X IWASA KH, 1992, J ACOUST SOC AM, V92, P3169, DOI 10.1121/1.404194 Kalinec F, 2000, J BIOL CHEM, V275, P28000 KNIPPER M, 1995, HEARING RES, V86, P100, DOI 10.1016/0378-5955(95)00060-H Koppl C, 2004, J COMP NEUROL, V479, P149, DOI 10.1002/cne.20311 Koyama M, 1999, J HISTOCHEM CYTOCHEM, V47, P7 Lim D J, 1998, Kidney Int Suppl, V65, pS104 Means AR, 2000, MOL ENDOCRINOL, V14, P4, DOI 10.1210/me.14.1.4 Minamino M, 1998, BRAIN RES, V781, P275, DOI 10.1016/S0006-8993(97)01255-9 Miralem T, 1998, BIOCHEM J, V330, P651 OHTANI M, 1994, HEARING RES, V80, P167, DOI 10.1016/0378-5955(94)90108-2 Pfitzer G, 2001, J APPL PHYSIOL, V91, P497 Puschner B, 1997, HEARING RES, V110, P251, DOI 10.1016/S0378-5955(97)00086-5 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 SAGARA J, 1983, BIOCHEM J, V214, P839 SAITOH M, 1987, J BIOL CHEM, V262, P7796 SCHACHT J, 1995, ACTIVE HEARING, V65, P209 SCHULMAN H, 1993, NEUROCHEM RES, V18, P65, DOI 10.1007/BF00966924 Simmons D. D., 1995, AUDIT NEUROSCI, V1, P183 SUMI M, 1991, BIOCHEM BIOPH RES CO, V181, P968, DOI 10.1016/0006-291X(91)92031-E Sziklai I, 2001, ACTA OTO-LARYNGOL, V121, P153 Szonyi M, 2001, BRAIN RES, V922, P65, DOI 10.1016/S0006-8993(01)03150-X Szonyi M, 1999, ACTA OTO-LARYNGOL, V119, P185 Szonyi M, 1999, HEARING RES, V137, P29, DOI 10.1016/S0378-5955(99)00127-6 TANAKA E, 1986, J NEUROCHEM, V47, P254 TOKUMITSU H, 1990, J BIOL CHEM, V265, P4315 TSIEN RY, 1985, CELL CALCIUM, V6, P145, DOI 10.1016/0143-4160(85)90041-7 Zhang M, 2003, J BIOL CHEM, V278, P35644, DOI 10.1074/jbc.M301668200 NR 56 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2008 VL 241 IS 1-2 BP 7 EP 17 DI 10.1016/j.heares.2008.04.007 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 330ZK UT WOS:000257981200002 PM 18534795 ER PT J AU Tan, MN Robertson, D Hammond, GR AF Tan, Michael N. Robertson, Donald Hammond, Geoffrey R. TI Separate contributions of enhanced and suppressed sensitivity to the auditory attentional filter SO HEARING RESEARCH LA English DT Article DE auditory; attention; olivocochlear; cuing; detection; antimasking ID ACTIVE MICROMECHANICAL PROPERTIES; SINGLE OLIVOCOCHLEAR NEURONS; PROBE-SIGNAL METHOD; UNCERTAIN-FREQUENCY; VISUAL-ATTENTION; GUINEA-PIG; EVOKED-POTENTIALS; NERVE RESPONSE; MASKED TONES; NOISE AB Three experiments used a probe-signal method to determine the extent to which exposure-related changes in sensitivity result from an immediate effect of stimulation and from a cumulative effect of repeated stimulation. In the first experiment, a fixed-frequency cue was followed by a same-frequency target (on 75% of trials) or a different-frequency probe (on 25% of trials). In the second experiment, a cue frequency selected randomly from a set of five was followed by a same-frequency target, or one of four different-frequency probes. Targets and probes were randomly selected independently of the cue frequency and all were equiprobable (20%). Target detection showed an average 3.4 dB advantage over probe detection. In the third experiment, tones with a randomly selected frequency were detected better when cued by a tone of the same-frequency than when presented without a prior cue. The cued tones showed an average 2.6 dB advantage over the uncued tones. Together, these results suggest that two mechanisms contribute to changes in sensitivity following auditory stimulation: first, an immediate enhancement of target detection produced by an auditory cue and second, a suppression of non-target frequencies caused by the expectation of a target. (C) 2008 Elsevier B.V. All rights reserved. C1 [Tan, Michael N.; Robertson, Donald] Univ Western Australia, Auditory Lab, Sch Biomed Biomol & Chem Sci, Nedlands, WA 6009, Australia. [Hammond, Geoffrey R.] Univ Western Australia, Sch Psychol, Nedlands, WA 6009, Australia. RP Tan, MN (reprint author), Univ Western Australia, Auditory Lab, Sch Biomed Biomol & Chem Sci, Nedlands, WA 6009, Australia. EM tanm01@tartarus.uwa.edu.au RI Hammond, Geoff/H-9343-2014 CR BOTTE MC, 1995, J ACOUST SOC AM, V98, P2475, DOI 10.1121/1.414464 Brown MC, 1998, J NEUROPHYSIOL, V79, P3077 DAI HP, 1991, J ACOUST SOC AM, V89, P2837, DOI 10.1121/1.400721 DEWSON JH, 1968, J NEUROPHYSIOL, V31, P122 FROEHLICH P, 1990, BRAIN RES, V508, P286, DOI 10.1016/0006-8993(90)90408-4 GLENN JF, 1977, EXP NEUROL, V57, P34, DOI 10.1016/0014-4886(77)90042-5 GREEN DM, 1966, SIGNAL DETECTION THE GREEN DM, 1961, J ACOUST SOC AM, V33, P897, DOI 10.1121/1.1908839 GREENBER.GZ, 1968, J ACOUST SOC AM, V44, P1513, DOI 10.1121/1.1911290 Hafter ER, 2001, J ACOUST SOC AM, V110, P1489, DOI 10.1121/1.1394220 HAFTER ER, 1993, J ACOUST SOC AM, V94, P743, DOI 10.1121/1.408203 Hienz RD, 1998, HEARING RES, V116, P10, DOI 10.1016/S0378-5955(97)00197-4 HUBNER R, 1993, J MATH PSYCHOL, V37, P266, DOI 10.1006/jmps.1993.1016 Irvine DRF, 2005, INT REV NEUROBIOL, V70, P435, DOI 10.1016/S0074-7742(05)70013-1 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2519 Kawase T, 1995, HEARING RES, V91, P1, DOI 10.1016/0378-5955(95)00145-X KAWASE T, 1993, J NEUROPHYSIOL, V70, P2533 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 MACMILLAN NA, 1975, J ACOUST SOC AM, V58, P1051, DOI 10.1121/1.380764 May BJ, 1995, AUDIT NEUROSCI, V1, P385 May BJ, 2004, ARCH OTOLARYNGOL, V130, P660, DOI 10.1001/archotol.130.5.660 MERIC C, 1992, INT J PSYCHOPHYSIOL, V12, P233, DOI 10.1016/0167-8760(92)90061-F MERIC C, 1992, NEUROSCI BIOBEHAV R, V18, P215 Micheyl C, 1996, J ACOUST SOC AM, V99, P1604, DOI 10.1121/1.414734 MONDOR TA, 1994, PERCEPT PSYCHOPHYS, V56, P268, DOI 10.3758/BF03209761 Moore BCJ, 1996, J ACOUST SOC AM, V99, P542, DOI 10.1121/1.414512 OATMAN LC, 1976, EXP NEUROL, V51, P41, DOI 10.1016/0014-4886(76)90052-2 Ota Y, 2004, J NEUROPHYSIOL, V91, P2185, DOI 10.1152/jn.01155.2003 PENNER MJ, 1972, PERCEPT PSYCHOPHYS, V11, P198, DOI 10.3758/BF03206248 PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4 ROBERTSON D, 1985, HEARING RES, V20, P63, DOI 10.1016/0378-5955(85)90059-0 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 Scharf B, 2007, J ACOUST SOC AM, V121, P2149, DOI 10.1121/1.2537461 SCHARF B, 1987, PERCEPT PSYCHOPHYS, V42, P215, DOI 10.3758/BF03203073 SCHARF B, 1994, HEARING RES, V75, P11, DOI 10.1016/0378-5955(94)90051-5 Scharf B., 1998, ATTENTION, P75 SCHLAUCH RS, 1991, J ACOUST SOC AM, V90, P1332, DOI 10.1121/1.401925 SWETS JA, 1959, J ACOUST SOC AM, V31, P514, DOI 10.1121/1.1907745 Tanner Jr W. P., 1956, 30 U MICH EL DEF GRO WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 Wright BA, 2004, PERCEPT PSYCHOPHYS, V66, P508, DOI 10.3758/BF03194897 Wright BA, 2005, J ACOUST SOC AM, V117, P1299, DOI 10.1121/1.1855771 NR 43 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2008 VL 241 IS 1-2 BP 18 EP 25 DI 10.1016/j.heares.2008.04.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 330ZK UT WOS:000257981200003 PM 18524512 ER PT J AU Bielefeld, EC Coling, D Chen, GD Li, M Tanaka, C Hu, BH Henderson, D AF Bielefeld, Eric C. Coling, Donald Chen, Guang-Di Li, Manna Tanaka, Chiemi Hu, Bo-Hua Henderson, Donald TI Age-related hearing loss in the Fischer 344/NHsd rat substrain SO HEARING RESEARCH LA English DT Article DE presbycusis; Fischer 344 rat; endocochlear potential; compound action potential ID STRIA VASCULARIS; LATERAL WALL; COCHLEAR; DEGENERATION; PRESBYCUSIS; POTENTIALS; MICE; NA,K-ATPASE; PATHOLOGY; GENOTYPES AB Studies of the F344 rat have shown a variety of age-related auditory anatomy and physiology changes. The current study was undertaken to clarify the ARHL in the F344 rat, by examining the auditory pathway of the F344/NHsd substrain that is distributed by Harlan Laboratories for research in the United States. The F344/NHsd rat begins to lose its hearing at about 12 months, and by 24 months, there are 50-60 dB auditory brainstem response threshold shifts at 20 and 40 kHz and 20 dB losses at 5-10 kHz. Distortion product otoacoustic emissions (DPOAE) amplitudes at 1.8-12 kHz stimuli were depressed in the older (18-24 months) rats. Amplitude input-output functions of the compound action potential (CAP) were also depressed across frequency. The endocochlear potential (EP) was 90-100mV in the 3 month old rats. All but one of the 24 month old rats' EPs were in the +75-85 mV range. Tympanometry revealed no differences in middle ear function between the young and older rats. Collectively, these findings suggest damage to the outer hair cells, but anatomical examination of the outer hair cells revealed a relative lack of cell loss compared to the magnitude of the hearing and DPOAE loss. (C) 2008 Elsevier B.V. All rights reserved. C1 [Bielefeld, Eric C.; Coling, Donald; Chen, Guang-Di; Li, Manna; Tanaka, Chiemi; Hu, Bo-Hua; Henderson, Donald] SUNY Buffalo, Ctr Hearing & Deafness, Dept Commun Disorders & Sci, Buffalo, NY 14214 USA. RP Bielefeld, EC (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, Dept Commun Disorders & Sci, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM ecb2@buffalo.edu RI Bielefeld, Eric/D-2015-2012 CR Buckiova D, 2007, EXP GERONTOL, V42, P629, DOI 10.1016/j.exger.2007.02.007 Buckiova D, 2006, EXP GERONTOL, V41, P296, DOI 10.1016/j.exger.2005.11.010 *C RIV LAB, 2007, C RIV LAB RES MOD SE, P14 Chen GD, 2005, HEARING RES, V200, P1, DOI 10.1016/j.heares.2004.08.016 Chen GD, 2006, HEARING RES, V222, P54, DOI 10.1016/j.heares.2006.08.011 CONLEE JW, 1994, HEARING RES, V72, P108, DOI 10.1016/0378-5955(94)90211-9 Cruickshanks KJ, 1998, AM J EPIDEMIOL, V148, P879 Dazert S, 1996, HEARING RES, V100, P101, DOI 10.1016/0378-5955(96)00100-1 Desai M, 2001, Aging Trends, P1 GATES GA, 1990, EAR HEARING, V11, P247, DOI 10.1097/00003446-199008000-00001 Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8 *HS DAWL INC, 2008, F344 FISCH 344 ISO (International Organization for Standardization), 1999, AC DET OCC NOIS EXP KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 KEMP DT, 1990, EAR HEARING, V11, P93 Konishi T, 1968, Acta Otolaryngol, V65, P381, DOI 10.3109/00016486809120979 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Popelar J, 2006, NEUROBIOL AGING, V27, P490, DOI 10.1016/j.neurobiolaging.2005.03.001 Rao G.N., 1990, PATHOLOGY FISCHER RA, P5 SAITOH Y, 1994, HEARING RES, V75, P27, DOI 10.1016/0378-5955(94)90052-3 Schmiedt RA, 1996, HEARING RES, V102, P125, DOI 10.1016/S0378-5955(96)00154-2 SCHOEPFLE GM, 1963, AM J PHYSIOL, V204, P77 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Spicer SS, 2005, HEARING RES, V205, P225, DOI 10.1016/j.heares.2005.03.022 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Tawackoli W, 2001, NEUROTOXICOL TERATOL, V23, P157, DOI 10.1016/S0892-0362(01)00135-0 Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4 NR 33 TC 28 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2008 VL 241 IS 1-2 BP 26 EP 33 DI 10.1016/j.heares.2008.04.006 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 330ZK UT WOS:000257981200004 PM 18508213 ER PT J AU Musacchia, G Strait, D Kraus, N AF Musacchia, Gabriella Strait, Dana Kraus, Nina TI Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians SO HEARING RESEARCH LA English DT Article DE language; music; multisensory; auditory; visual; ABR; FFR; plasticity ID FREQUENCY-FOLLOWING RESPONSE; CORTICOFUGAL MODULATION; AUDITORY-SYSTEM; INFERIOR COLLICULUS; SELECTIVE ATTENTION; LANGUAGE; PITCH; NONMUSICIANS; PLASTICITY; CONNECTIONS AB Musicians have a variety of perceptual and cortical specializations compared to non-musicians. Recent studies have shown that potentials evoked from primarily brainstem structures are enhanced in musicians, compared to non-musicians. Specifically, musicians have more robust representations of pitch periodicity and faster neural timing to sound onset when listening to sounds or both listening to and viewing a speaker. However, it is not known whether musician-related enhancements at the subcortical level are correlated with specializations in the cortex. Does musical training shape the auditory system in a coordinated manner or in disparate ways at cortical and subcortical levels? To answer this question, we recorded simultaneous brainstem and cortical evoked responses in musician and non-musician subjects. Brainstem response periodicity was related to early cortical response timing across all subjects, and this relationship was stronger in musicians. Peaks of the brainstem response evoked by sound onset and timbre cues were also related to cortical timing. Neurophysiological measures at both levels correlated with musical skill scores across all subjects. In addition, brainstem and cortical measures correlated with the age musicians began their training and the years of musical practice. Taken together, these data imply that neural representations of pitch, timing and timbre cues and cortical response timing are shaped in a coordinated manner, and indicate corticofugal modulation of subcortical afferent circuitry. (C) 2008 Elsevier B.V. All rights reserved. C1 [Musacchia, Gabriella; Strait, Dana; Kraus, Nina] Northwestern Univ, Auditory Neurosci Lab, Dept Commun Sci, Evanston, IL 60208 USA. [Strait, Dana] Northwestern Univ, Sch Mus, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Dept Neurobiol, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Dept Physiol & Otolaryngol, Evanston, IL 60208 USA. RP Musacchia, G (reprint author), Northwestern Univ, Auditory Neurosci Lab, Dept Commun Sci, 2240 Campus Dr, Evanston, IL 60208 USA. EM g-musacchia@northwestern.edu CR Abrams DA, 2006, J NEUROSCI, V26, P11131, DOI 10.1523/JNEUROSCI.2744-06.2006 Ahissar M, 2004, TRENDS COGN SCI, V8, P457, DOI 10.1016/j.tics.2004.08.011 Ahissar M, 2001, P NATL ACAD SCI USA, V98, P11842, DOI 10.1073/pnas.221461598 Akhoun I, 2008, CLIN NEUROPHYSIOL, V119, P922, DOI 10.1016/j.clinph.2007.12.010 Banai K, 2007, INT J AUDIOL, V46, P524, DOI 10.1080/14992020701383035 Banai K, 2005, J NEUROSCI, V25, P9850, DOI 10.1523/JNEUROSCI.2373-05.2005 CELESIA GG, 1968, ARCH NEUROL-CHICAGO, V19, P430 COLWELL R, 1970, MUSICAL ACHIEVEMENT ELBERT T, 1995, SCIENCE, V270, P305, DOI 10.1126/science.270.5234.305 ERICKSON R, 1978, SOUND STRUCTURE MUSI Fujioka T, 2004, J COGNITIVE NEUROSCI, V16, P1010, DOI 10.1162/0898929041502706 Galbraith GC, 2003, NEUROREPORT, V14, P735, DOI 10.1097/01.wnr.0000064983.96259.49 Galbraith GC, 1997, ELECTROEN CLIN NEURO, V102, P46, DOI 10.1016/S0013-4694(96)96006-X GALBRAITH GC, 1995, INT J PSYCHOPHYSIOL, V19, P203, DOI 10.1016/0167-8760(95)00008-G Galbraith GC, 2000, INT J PSYCHOPHYSIOL, V36, P35, DOI 10.1016/S0167-8760(99)00096-3 Galbraith GC, 2004, NEUROREPORT, V15, P2057, DOI 10.1097/00001756-200409150-00012 Gaser C, 2003, J NEUROSCI, V23, P9240 Hall J, 1992, HDB AUDITORY EVOKED Hannon EE, 2007, TRENDS COGN SCI, V11, P466, DOI 10.1016/j.tics.2007.08.008 Hood L. J., 1998, CLIN APPL AUDITORY B HOORMANN J, 1992, HEARING RES, V59, P179, DOI 10.1016/0378-5955(92)90114-3 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Jacobson J., 1985, AUDITORY BRAINSTEM R Johnson KL, 2005, EAR HEARING, V26, P424, DOI 10.1097/01.aud.0000179687.71662.6e KELLY JP, 1981, BRAIN RES, V212, P1, DOI 10.1016/0006-8993(81)90027-5 Kincaid AE, 2002, PERCEPT MOTOR SKILL, V95, P245, DOI 10.2466/PMS.95.4.245-251 Kral A, 2007, BRAIN RES REV, V56, P259, DOI 10.1016/j.brainresrev.2007.07.021 Kraus N, 2005, TRENDS NEUROSCI, V28, P176, DOI 10.1016/j.tins.2005.02.003 Kraus N, 2007, CURR DIR PSYCHOL SCI, V16, P105, DOI 10.1111/j.1467-8721.2007.00485.x Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004 Magne C, 2006, J COGNITIVE NEUROSCI, V18, P199, DOI 10.1162/089892906775783660 Marques C, 2007, J COGNITIVE NEUROSCI, V19, P1453, DOI 10.1162/jocn.2007.19.9.1453 MOUSHEGI.G, 1973, ELECTROEN CLIN NEURO, V35, P665, DOI 10.1016/0013-4694(73)90223-X Munte TF, 2003, ANN NY ACAD SCI, V999, P131, DOI 10.1196/annals.1284.014 Musacchia G, 2006, EXP BRAIN RES, V168, P1, DOI 10.1007/s00221-005-0071-5 Musacchia G, 2007, P NATL ACAD SCI USA, V104, P15894, DOI 10.1073/pnas.0701498104 NOSOFSKY RM, 1986, J EXP PSYCHOL GEN, V115, P39, DOI 10.1037/0096-3445.115.1.39 Ohnishi T, 2001, CEREB CORTEX, V11, P754, DOI 10.1093/cercor/11.8.754 Pantev C, 2003, ANN NY ACAD SCI, V999, P438, DOI 10.1196/annals.1284.054 Pantev C, 2001, NEUROREPORT, V12, P169, DOI 10.1097/00001756-200101220-00041 Pasternak T, 2005, NAT REV NEUROSCI, V6, P97, DOI 10.1038/nrn1603 Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003 Russo NM, 2005, BEHAV BRAIN RES, V156, P95, DOI 10.1016/j.bbr.2004.05.012 RUSSO NM, CLIN NEUROP IN PRESS Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SCHLAUG G, 1995, NEUROPSYCHOLOGIA, V33, P1047, DOI 10.1016/0028-3932(95)00045-5 Schneider P, 2002, NAT NEUROSCI, V5, P688, DOI 10.1038/nn871 Seashore CE, 1919, PSYCHOL MUSICAL TALE SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4 SONG JH, 2008, J COGN NEUROSCI 0327 Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 Tervaniemi M, 2005, EXP BRAIN RES, V161, P1, DOI 10.1007/s00221-004-2044-5 Wible B, 2005, BRAIN, V128, P417, DOI 10.1093/brain/awh367 Wong PCM, 2007, NAT NEUROSCI, V10, P420, DOI 10.1038/nn1872 XU T, 2006, NEUROREPORT, V17, P1601 Yan W, 1998, NAT NEUROSCI, V1, P54, DOI 10.1038/255 Zhou XM, 2000, J NEUROPHYSIOL, V84, P3083 NR 57 TC 70 Z9 74 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2008 VL 241 IS 1-2 BP 34 EP 42 DI 10.1016/j.heares.2008.04.013 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 330ZK UT WOS:000257981200005 PM 18562137 ER PT J AU Bibikov, NG Chen, QC Wu, FJ AF Bibikov, N. G. Chen, Q. C. Wu, F. J. TI Responses of inferior colliculus neurons to sounds presented at different rates in anesthetized albino mouse SO HEARING RESEARCH LA English DT Article DE inferior colliculus; auditory units; duration tuning; stimulus repetition rate; mouse ID BIG BROWN BAT; DURATION TUNING CHARACTERISTICS; CAT AUDITORY-CORTEX; EPTESICUS-FUSCUS; GABAERGIC INHIBITION; REPETITION RATE; HOUSE MOUSE; SELECTIVITY; THRESHOLD; STIMULI AB We recorded extracellular activity from 402 single units located in the inferior colliculus (IC) of barbiturate-anesthetized albino mice. The stimuli were pure tones at characteristic frequency (CF) with durations of 10, 40 and 100 ms and intensities ranged from 5 to 25 dB above unit's minimum threshold (MT). The tones were presented with different repetition rates (RRs) ranging from 0.2 to 20.0 Hz. At low intensities (5 dB above MT, determined at RR of 0.5 Hz) the great majority of units exhibited a strong decline of their responses when the stimulus RR was increased. About one-half of the units did not respond to 40 ms tones when they were stimulated with the RR of 3.0 Hz. This effect was even more pronounced for 100 ms tones. Generally, the increase in stimulus intensity led to an increase in the high-frequency border of RR. Nevertheless, even at intensities of 20-30 dB above MT, some units showed no response when the RR exceeded 5.0 Hz. In many cases the band-pass or high-pass duration tuning of the single unit was transformed to low-pass or all-pass when the rate was low enough to guarantee the independence of successive presentations of the stimuli. Responses of a very small group of IC units, however, were enhanced when the RR was increased. Our data have shown that the changes in the RR radically modify many features of the neural response (number of spikes, latency, discharge pattern, duration selectivity). We suggest that long-lasting inhibitory processes may be induced by low intensity stimuli in many units of the IC. (C) 2008 Elsevier B.V. All rights reserved. C1 [Bibikov, N. G.; Chen, Q. C.; Wu, F. J.] Cent China Normal Univ, Coll Life Sci, Wuhan 430079, Peoples R China. [Bibikov, N. G.] NN Andreyev Acoust Inst, Moscow 117036, Russia. RP Wu, FJ (reprint author), Cent China Normal Univ, Coll Life Sci, Wuhan 430079, Peoples R China. EM wufj@mail.ccnu.edu.cn CR Anderson SE, 2006, HEARING RES, V213, P107, DOI 10.1016/j.heares.2005.12.011 BARKER JL, 1978, J PHYSIOL-LONDON, V280, P355 BARLETT EL, 2004, J NEUROPHYSIOL, V94, P83 BIBIKOV N G, 1973, Neirofiziologiya, V5, P13 Bibikov N, 2005, Neurosci Behav Physiol, V35, P59, DOI 10.1023/B:NEAB.0000049652.93984.da BIBIKOV NG, 2005, REV SENS SYST, V19, P229 BIBIKOV N G, 1971, Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, V7, P178 BIBIKOV NG, 1981, IM SETCHENOV J PHYSL, V67, P657 Brand A, 2000, J NEUROPHYSIOL, V84, P1790 Burger RM, 1998, J NEUROPHYSIOL, V80, P1686 CASSADAY JH, 1994, SCIENCE, V254, P847 Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475 Chen GD, 1998, HEARING RES, V122, P142, DOI 10.1016/S0378-5955(98)00103-8 CHEN QC, 1994, BRAIN RES, V654, P155, DOI 10.1016/0006-8993(94)91582-2 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 Eggermont JJ, 1999, J NEUROSCI, V19, P2780 Egorova M, 2001, EXP BRAIN RES, V140, P145, DOI 10.1007/s002210100786 EHRET G, 1985, J COMP PHYSIOL A, V156, P619, DOI 10.1007/BF00619111 EHRET G, 1992, DEV BRAIN RES, V67, P317, DOI 10.1016/0165-3806(92)90233-M Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 Faure PA, 2003, J NEUROSCI, V23, P3052 Franklin KBJ, 1997, MOUSE BRAIN STEREOTA, V1st Fremouw T, 2005, J NEUROPHYSIOL, V94, P1869, DOI 10.1152/jn.00253.2005 French-Mullen J. M. H., 1993, J NEUROSCI, V13, P3211 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 Fuzessery ZM, 1999, HEARING RES, V137, P137, DOI 10.1016/S0378-5955(99)00133-1 Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050 GOOLER DM, 1992, J NEUROPHYSIOL, V67, P1 HALL JC, 1991, J NEUROPHYSIOL, V66, P955 He JF, 1997, J NEUROSCI, V17, P2615 JEN PHS, 1993, BRAIN RES, V613, P152, DOI 10.1016/0006-8993(93)90466-Z Jen PHS, 2005, HEARING RES, V202, P222, DOI [10.1016/j.heares.2004.11.008, 10.1016/j.heures.2004.11.008] Jen PHS, 1999, J COMP PHYSIOL A, V184, P185, DOI 10.1007/s003590050317 Jen PHS, 1999, J COMP PHYSIOL A, V185, P471, DOI 10.1007/s003590050408 Jen PHS, 2002, BRAIN RES, V948, P159, DOI 10.1016/S0006-8993(02)03056-1 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 [栾瑞红 Luan Ruihong], 2002, [生物物理学报, Acta Biophysica Sinica], V18, P399 NARINS PM, 1980, BRAIN BEHAV EVOLUT, V17, P48, DOI 10.1159/000121790 Perez-Gonzalez D, 2006, J NEUROPHYSIOL, V95, P823, DOI 10.1152/jn.00741.2005 PIESMAN M, 1994, BRAIN RES, V657, P320, DOI 10.1016/0006-8993(94)90984-9 PINHEIRO AD, 1991, J COMP PHYSIOL A, V169, P69 POTTER HD, 1965, J NEUROPHYSIOL, V28, P1155 Ries CR, 1999, J NEUROPHYSIOL, V81, P1802 SCHLINGER MJ, 1979, J ADVERTISING RES, V19, P37 Shen JX, 1999, HEARING RES, V137, P174, DOI 10.1016/S0378-5955(99)00149-5 STIEBLER I, 1985, J COMP NEUROL, V238, P65, DOI 10.1002/cne.902380106 Toib A, 1998, J NEUROSCI, V18, P1893 Torterolo P, 2002, BRAIN RES, V935, P9, DOI 10.1016/S0006-8993(02)02235-7 Wan X, 2003, NEUROSCIENCE, V121, P947, DOI 10.1016/S0306-4522(03)00592-X Wan X, 2002, J NEUROPHYSIOL, V88, P3067, DOI 10.1152/jn.00365.2002 Wang X, 2007, BRAIN RES, V1167, P80, DOI 10.1016/j.brainres.2007.07.002 Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009 WILLOTT JF, 1986, BRAIN RES, V386, P105, DOI 10.1016/0006-8993(86)90146-0 WILLOTT JF, 1978, J COMP PHYSIOL, V127, P175 WILLOTT JF, 1981, J NEUROPHYSIOL, V45, P35 Wu CH, 2006, HEARING RES, V215, P56, DOI 10.1016/j.heares.2006.03.001 Wu CH, 2006, J COMP PHYSIOL A, V192, P985, DOI 10.1007/s00359-006-0133-6 Xia YF, 2000, ACTA OTO-LARYNGOL, V120, P638, DOI 10.1080/000164800750000478 YUAN KX, 2005, NEUROREPORT, V16, P1007 NR 59 TC 2 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2008 VL 241 IS 1-2 BP 43 EP 51 DI 10.1016/j.heares.2008.04.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 330ZK UT WOS:000257981200006 PM 18539419 ER PT J AU Kulesza, RJ AF Kulesza, Randy J., Jr. TI Cytoarchitecture of the human superior olivary complex: Nuclei of the trapezoid body and posterior tier SO HEARING RESEARCH LA English DT Article DE auditory; hearing; brainstem; periolivary ID CALCIUM-BINDING PROTEINS; AUDITORY BRAIN-STEM; SONG CONTROL-SYSTEM; INFERIOR COLLICULUS; PARAOLIVARY NUCLEUS; PERIOLIVARY CELLS; COCHLEAR NUCLEUS; MEDIAL NUCLEUS; FINE-STRUCTURE; GUINEA-PIGS AB The superior olivary complex (SOC) is a cluster of nuclei situated in the caudal brainstem tegmentum that forms an essential component of the auditory pathway. The SOC includes two principal nuclei, the medial and lateral superior olives (MSO and LSO respectively), that have clear roles in sound source localization. Surrounding the principal nuclei are a number of periolivary nuclei (PON) that vary significantly between mammalian species but function in multiple aspects of hearing. Although the PON have been studied in numerous laboratory animals, these nuclei have not been delineated in human. The major goal of this study is to, based on myeloarchitecture, location, neuronal morphology and cytoarchitecture, define the PON within the human SOC and provide estimates of neuronal number within these nuclei. Results from the study of twelve human brainstems provide evidence for six morphologically distinct cell groups: three within the trapezoid body and three along the posterior aspect of the SOC. Based on the analysis of human tissue stained for myelin, Nissl substance, or impregnated with silver, the human PON appear largely homologous to the PON described in other low-frequency hearing animals. (C) 2008 Elsevier B.V. All rights reserved. C1 Lake Erie Coll Osteopath Med, Auditory Res Ctr, Erie, PA 16509 USA. RP Kulesza, RJ (reprint author), Lake Erie Coll Osteopath Med, Auditory Res Ctr, Erie, PA 16509 USA. EM rkulesza@lecom.edu CR ADAMS JC, 1983, J COMP NEUROL, V215, P275, DOI 10.1002/cne.902150304 Bazwinsky I, 2005, J ANAT, V207, P745, DOI 10.1111/j.1469-7580.2005.00491.x Bazwinsky R, 2003, J COMP NEUROL, V456, P292, DOI 10.1002/cne.10526 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a CANT NB, 1984, J COMP NEUROL, V227, P63, DOI 10.1002/cne.902270108 Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x Peterson DC, 2007, HEARING RES, V232, P67, DOI 10.1016/j.heares.2007.06.009 EDWARDS SB, 1979, J COMP NEUROL, V184, P309, DOI 10.1002/cne.901840207 Fay R. R., 1988, HEARING VERTEBRATES FRIEDLAND DR, 2005, J NEUROSCI METH, V150, P90 Glendenning KK, 1998, BRAIN BEHAV EVOLUT, V51, P59, DOI 10.1159/000006530 GROTHE B, 1994, J NEUROPHYSIOL, V71, P706 GROTHE B, 1994, J COMP NEUROL, V343, P630, DOI 10.1002/cne.903430412 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 Harrison J M, 1970, Contrib Sens Physiol, V4, P95 HARRISON JM, 1962, J COMP NEUROL, V119, P341, DOI 10.1002/cne.901190306 Heffner R. S., 1990, COMP PERCEPTION, VI, P285 HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6 HELFERT RH, 1997, CENTRAL AUDITORY SYS INIGUEZ C, 1985, J NEUROSCI METH, V13, P77, DOI 10.1016/0165-0270(85)90045-7 Konigsmark BW, 1970, CONT RES METHODS NEU, P315 Kulesza RJ, 2002, HEARING RES, V168, P12, DOI 10.1016/S0378-5955(02)00374-X Kulesza RJ, 2007, HEARING RES, V225, P80, DOI 10.1016/j.heares.2006.12.006 Kulesza RJ, 2000, JARO, V1, P255, DOI 10.1007/s101620010054 KUWABARA N, 1991, J COMP NEUROL, V314, P707, DOI 10.1002/cne.903140406 Kuwabara N, 1999, BRAIN RES, V846, P59, DOI 10.1016/S0006-8993(99)01942-3 KUWABARA N, 1992, J COMP NEUROL, V324, P522, DOI 10.1002/cne.903240406 LAUTERBORN JC, 1993, MOL BRAIN RES, V17, P59, DOI 10.1016/0169-328X(93)90073-X LENN NJ, 1966, AM J ANAT, V118, P375, DOI 10.1002/aja.1001180205 LOTZ J, 1954, T NEW YORK ACAD SCI, V16, P373 MOORE JK, 1987, HEARING RES, V29, P1, DOI 10.1016/0378-5955(87)90202-4 Moore JK, 2000, MICROSC RES TECHNIQ, V51, P403, DOI 10.1002/1097-0029(20001115)51:4<403::AID-JEMT8>3.0.CO;2-Q Moore JK, 1999, AUDIOL NEURO-OTOL, V4, P311, DOI 10.1159/000013855 MOORE JK, 1971, FOLIA PRIMATOL, V16, P35, DOI 10.1159/000155390 MOREST D. KENT, 1968, BRAIN RES, V9, P288, DOI 10.1016/0006-8993(68)90235-7 NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203 Oliver DL, 2000, MICROSC RES TECHNIQ, V51, P355, DOI 10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J OLLO C, 1979, AM J ANAT, V155, P349, DOI 10.1002/aja.1001550306 OSEN KK, 1969, BRAIN RES, V16, P165, DOI 10.1016/0006-8993(69)90092-4 Paxinos G., 1995, ATLAS HUMAN BRAINSTE RICHTER EA, 1983, AM J ANAT, V168, P157, DOI 10.1002/aja.1001680205 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 Saldana E, 2000, ANAT EMBRYOL, V202, P265, DOI 10.1007/s004290000109 SCHOFIELD BR, 1991, J COMP NEUROL, V314, P645, DOI 10.1002/cne.903140403 Schofield BR, 2002, J COMP NEUROL, V453, P217, DOI 10.1002/cne.10402 Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 SCHWARTZ IR, 1977, NEUROSCIENCE, V2, P81, DOI 10.1016/0306-4522(77)90070-7 Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M Spangler K., 1991, NEUROBIOLOGY HEARING, P27 Spirou GA, 1996, J COMP NEUROL, V368, P100, DOI 10.1002/(SICI)1096-9861(19960422)368:1<100::AID-CNE7>3.0.CO;2-7 STROMINGER NL, 1976, J COMP NEUROL, V170, P485, DOI 10.1002/cne.901700407 TAGO H, 1989, BRAIN RES, V495, P271, DOI 10.1016/0006-8993(89)90221-7 Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X Thompson CK, 2005, J COMP NEUROL, V481, P276, DOI 10.1002/cne.20381 Tramontin AD, 1998, J COMP NEUROL, V396, P186, DOI 10.1002/(SICI)1096-9861(19980629)396:2<186::AID-CNE4>3.0.CO;2-X VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 WARR WB, 1975, J COMP NEUROL, V161, P159, DOI 10.1002/cne.901610203 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 Yao WP, 1998, MICROSC RES TECHNIQ, V41, P270, DOI 10.1002/(SICI)1097-0029(19980501)41:3<270::AID-JEMT10>3.0.CO;2-L YIN TCT, 1990, J COMP NEUROL, V295, P438, DOI 10.1002/cne.902950308 NR 60 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2008 VL 241 IS 1-2 BP 52 EP 63 DI 10.1016/j.heares.2008.04.010 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 330ZK UT WOS:000257981200007 PM 18547760 ER PT J AU Su, GL Colesa, DJ Pfingst, BE AF Su, Gina L. Colesa, Deborah J. Pfingst, Bryan E. TI Effects of deafening and cochlear implantation procedures on postimplantation psychophysical electrical detection thresholds SO HEARING RESEARCH LA English DT Article DE cochlear implant; electrical detection threshold; neomycin deafening; animal psychophysics; impedance; guinea pig ID GUINEA-PIG; STIMULATION; PERFUSION; SURVIVAL; NEOMYCIN; TIME AB Previous studies have shown large decreases in cochlear implant psychophysical detection thresholds during the weeks following the onset of electrical testing. The current study sought to determine the variables underlying these threshold decreases by examining the effects of four deafening and implantation procedures on detection thresholds and implant impedances. Thirty-two guinea pigs were divided into four matched groups. Group I was deafened and implanted Day 0 and began electrical testing Day 1. Group 11 was deafened and implanted Day 0 and began electrical testing Day 45. Group III was deafened Day 0, implanted Day 45 and began electrical testing Day 46. Group IV was not predeafened but was implanted Day 0 and began electrical testing Day 1. All groups showed threshold decreases over time but the magnitude of change, time course and final stable threshold levels depended on the type and time course of treatment. Impedances increased over the first two weeks following the onset of electrical testing except in Group II. Results suggest that multiple mechanisms underlie the observed threshold shifts including (1) recovery of the cochlea from a temporary pathology caused by the deafening and/or implantation procedures, (2) effects of electrical stimulation on the auditory pathway, and (3) tissue growth in the implanted cochlea. They also suggest that surviving hair cells influence electrical threshold levels. (C) 2008 Elsevier B.V. All rights reserved. C1 [Su, Gina L.; Colesa, Deborah J.; Pfingst, Bryan E.] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. RP Pfingst, BE (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, 1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM bpfingst@umich.edu CR Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040 DUCKERT LG, 1983, LARYNGOSCOPE, V93, P841 Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1 Hu N, 2003, HEARING RES, V185, P77, DOI 10.1016/S0378-5955(03)00261-2 IRVINE DRF, 1993, BIOMED RES-TOKYO, V14, P55 JUIZ JM, 1988, ACTA OTO-LARYNGOL, V106, P29, DOI 10.3109/00016488809107367 Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313 Kim YH, 2007, CELL CYCLE, V6, P612, DOI 10.4161/cc.6.5.3929 LEAKEJONES PA, 1980, SCANNING MICROSCOPY, V3, P426 MICHELSO.RP, 1971, ARCHIV OTOLARYNGOL, V93, P317 Middlebrooks JC, 2007, JARO-J ASSOC RES OTO, V8, P258, DOI 10.1007/s10162-007-0070-2 Miller AL, 2000, HEARING RES, V144, P175, DOI 10.1016/S0378-5955(00)00066-6 Miller AL, 2001, HEARING RES, V151, P1, DOI 10.1016/S0378-5955(00)00226-4 MILLER CA, 1995, HEARING RES, V92, P89 Newbold Carrie, 2004, J Neural Eng, V1, P218, DOI 10.1088/1741-2560/1/4/005 NUTTALL AL, 1977, ACTA OTO-LARYNGOL, V83, P393, DOI 10.3109/00016487709128863 PATRICK JF, 1985, COCHLEAR IMPLANTS, P93 PFINGST BE, 1981, ACTA OTO-LARYNGOL, V92, P1, DOI 10.3109/00016488109133232 PFINGST BE, 1979, ANN OTO RHINOL LARYN, V88, P613 PFINGST BE, 1990, HEARING RES, V50, P225, DOI 10.1016/0378-5955(90)90047-S Skinner Margaret W., 1995, Seminars in Hearing, V16, P228, DOI 10.1055/s-0028-1083720 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S NR 22 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2008 VL 241 IS 1-2 BP 64 EP 72 DI 10.1016/j.heares.2008.04.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 330ZK UT WOS:000257981200008 PM 18558467 ER PT J AU Bingabr, M Espinoza-Varas, B Loizou, PC AF Bingabr, Mohamed Espinoza-Varas, Blas Loizou, Philipos C. TI Simulating the effect of spread of excitation in cochlear implants SO HEARING RESEARCH LA English DT Article DE cochlear implant; monopolar; bipolar; current spread; vocoder ID SPEECH RECOGNITION; ELECTRODE CONFIGURATION; CURRENT DISTRIBUTIONS; ELECTRICAL-FIELD; AUDITORY-NERVE; STIMULATION; HEARING; NUMBER; PERFORMANCE; LISTENERS AB A model was developed to simulate acoustically the effects of excitation spread in cochlear implants (CI). Based on neurophysiologic data, the proposed model simulates the electrical-current decay rate associated with broad and narrow types of excitation, such as those produced by monopolar and bipolar electrode configurations. The effect of excitation spread on speech intelligibility was simulated in normal-hearing subjects by varying the slopes of the synthesis bands in the noise vocoder. Sentences and monosyllabic words processed via 4-16 channels of stimulation with varying degrees of excitation spread were presented to normal-hearing listeners for identification. Results showed significant interaction between spectral resolution (number of channels) and spread of excitation. The effect of narrowing the excitation spread was minimal when the spectral resolution was sufficiently good (>8 channels) but it was significant when the spectral resolution was poor (4 channels). A significant decrement in performance was observed for extremely narrow excitation spread. This outcome is partly consistent with behavioral data obtained with cochlear implant studies in that Cl users tend to do as well or better with monopolar stimulation than with bipolar stimulation. (C) 2008 Elsevier B.V. All rights reserved. C1 [Bingabr, Mohamed] Univ Cent Oklahoma, Dept Engn & Phys, Edmond, OK 73034 USA. [Espinoza-Varas, Blas] Univ Oklahoma, Hlth Sci Ctr, Dept Commun Sci & Disorders, Oklahoma City, OK 73104 USA. [Loizou, Philipos C.] Univ Texas Dallas, Dept Elect Engn, Richardson, TX 75083 USA. RP Bingabr, M (reprint author), Univ Cent Oklahoma, Dept Engn & Phys, 100 N Univ Dr, Edmond, OK 73034 USA. EM mbingabr@ucok.edu; Blas-Espinoza-varas@ouhsc.edu; loizou@utdallas.edu CR BLACK RC, 1983, ANN NY ACAD SCI, V405, P137, DOI 10.1111/j.1749-6632.1983.tb31626.x BLACK RC, 1981, IEEE T BIO-MED ENG, V28, P721, DOI 10.1109/TBME.1981.324668 Boex C, 2003, J ACOUST SOC AM, V114, P2049, DOI 10.1121/1.1610451 Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274 Dorman MF, 1997, AM J OTOL, V18, pS113 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu Q., 2004, JARO-J ASSOC RES OTO, V6, P19 Fu QJ, 2002, EAR HEARING, V23, P339, DOI 10.1097/01.AUD.0000027432.18827.07 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HARTMANN R, 1990, ACTA OTO-LARYNGOL, P128 KEURS M, 1992, J ACOUST SOC AM, V91, P2872 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128 LEHNHARDT E, 1992, TRANSPLANTS IMPLANTS, P283 Morris DJ, 2000, JARO, V1, P211, DOI 10.1007/s101620010022 Nelson DA, 2008, J ACOUST SOC AM, V123, P1522, DOI 10.1121/1.2836786 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 OLEARY SJ, 1985, HEARING RES, V18, P273, DOI 10.1016/0378-5955(85)90044-9 PETERSON GE, 1962, J SPEECH HEAR DISORD, V27, P62 Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6 Pfingst BE, 2001, JARO, V2, P87 Shannon RV, 1998, J ACOUST SOC AM, V104, P2467, DOI 10.1121/1.423774 Stickney GS, 2006, HEARING RES, V211, P33, DOI 10.1016/j.heares.2005.08.008 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 Zeng FG, 2002, J ACOUST SOC AM, V111, P377, DOI 10.1121/1.1423926 Zwolan TA, 1996, AM J OTOL, V17, P717 NR 27 TC 25 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2008 VL 241 IS 1-2 BP 73 EP 79 DI 10.1016/j.heares.2008.04.012 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 330ZK UT WOS:000257981200009 PM 18556160 ER PT J AU Heffner, RS Koay, G Heffner, HE AF Heffner, R. S. Koay, G. Heffner, H. E. TI Sound localization acuity and its relation to vision in large and small fruit-eating bats: II. Non-echolocating species, Eidolon helvum and Cynopterus brachyotis SO HEARING RESEARCH LA English DT Article DE localization acuity; megachiroptera; pteropodidae; yinpterochiroptera; echolocation; vision; evolution ID VISUAL-ACUITY; ROUSETTUS-AEGYPTIACUS; GANGLION-CELLS; BINAURAL CUES; HEARING; SENSITIVITY; EVOLUTION; MAMMALS; CAT AB Passive sound-localization acuity for 100-msec noise bursts was determined behaviorally for two species of non-echolocating bats: the Straw-colored fruit bat, Eidolon helvum, a large frugivore, and the Dog-faced fruit bat, Cynopterus brachyotis, a small frugivore. The mean minimum audible angle for two E. helvum was 11.7 degrees, and for two C brachyotis was 10.5 degrees. This places their passive sound-localization acuity near the middle of the range for echolocating bats as well as the middle of the range for other mammals. Sound-localization acuity varies widely among mammals, and the best predictor of this auditory function remains the width of the field of best vision (r = .89, p < .0001). Among echolocating and non-echolocating bats, as well as among other mammals, the use of hearing to direct the eyes to the source of a sound still appears to serve as an important selective factor for sound localization. Absolute visual acuity and the magnitude of the binaural locus cues available to a species remain unreliable predictors of sound-localization acuity. (C) 2008 Elsevier B.V. All rights reserved. C1 [Heffner, R. S.; Koay, G.; Heffner, H. E.] Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. RP Heffner, RS (reprint author), Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. EM Rickye.Heffner@utoledo.edu CR Barnard S.M, 1995, BATS IN CAPTIVITY Baron G, 1996, COMP NEUROBIOLOGY CH BELL GP, 1986, ANIM BEHAV, V34, P409, DOI 10.1016/S0003-3472(86)80110-5 BELLEVILLE S, 1986, VISION RES, V26, P1263, DOI 10.1016/0042-6989(86)90107-0 CASSEDAY JH, 1988, J COMP NEUROL, V278, P313, DOI 10.1002/cne.902780302 DEBRUYN EJ, 1980, VISION RES, V20, P315, DOI 10.1016/0042-6989(80)90018-8 Eklof J, 2003, THESIS GOTEBORG U SW FUZESSERY ZM, 1986, BRAIN BEHAV EVOLUT, V28, P95, DOI 10.1159/000118695 GRIFFIN DR, 1955, J EXP ZOOL, V130, P251, DOI 10.1002/jez.1401300205 GRINNELL AD, 1958, BIOL BULL, V114, P10, DOI 10.2307/1538961 Heffner H. E., 1995, METHODS COMP PSYCHOA, P79 Heffner H. E., 2006, CURRENT PROTOCOLS NE Heffner H.E., 2003, HDB RES METHODS EXPT, P413, DOI 10.1002/9780470756973.ch19 HEFFNER RS, 1992, J COMP NEUROL, V317, P219, DOI 10.1002/cne.903170302 HEFFNER RS, 1992, HEARING RES, V62, P206, DOI 10.1016/0378-5955(92)90188-S Heffner RS, 2007, HEARING RES, V234, P1, DOI 10.1016/j.heares.2007.06.001 HEFFNER RS, 1993, J COMP NEUROL, V331, P418, DOI 10.1002/cne.903310311 Heffner RS, 2006, HEARING RES, V221, P17, DOI 10.1016/j.heares.2006.06.008 Heffner RS, 1999, J COMP PSYCHOL, V113, P297, DOI 10.1037//0735-7036.113.3.297 HEFFNER RS, 1990, HEARING RES, V46, P239, DOI 10.1016/0378-5955(90)90005-A Heffner RS, 2001, J ACOUST SOC AM, V109, P412, DOI 10.1121/1.1329620 Hughes A., 1977, HDB SENSORY PHYSL, V5, P613 JACOBS GH, 1993, BIOL REV, V68, P413, DOI 10.1111/j.1469-185X.1993.tb00738.x JACOBS GH, 1991, NATURE, V353, P655, DOI 10.1038/353655a0 JACOBSON SG, 1976, VISION RES, V16, P1141, DOI 10.1016/0042-6989(76)90254-6 Jones G, 2007, P R SOC B, V274, P905, DOI 10.1098/rspb.2006.0200 Koay G, 1998, HEARING RES, V119, P37, DOI 10.1016/S0378-5955(98)00037-9 MAYR E, 1961, SCIENCE, V134, P1501, DOI 10.1126/science.134.3489.1501 Moss CF, 2003, CURR OPIN NEUROBIOL, V13, P751, DOI 10.1016/j.conb.2003.10.016 Muller B, 2007, BRAIN BEHAV EVOLUT, V70, P90, DOI 10.1159/000102971 NEUWEILER G, 1980, J ACOUST SOC AM, V68, P741, DOI 10.1121/1.384812 NEUWEILER G, 1962, Z VERGL PHYSIOL, V46, P13, DOI 10.1007/BF00340352 PETTIGREW JD, 1988, BRAIN BEHAV EVOLUT, V32, P39, DOI 10.1159/000116531 POLLAK GD, 1995, HEARING BATS, P481 Razak KA, 1999, J NEUROPHYSIOL, V81, P1438 SCHNITZLER HU, 1994, BEHAV ECOL SOCIOBIOL, V35, P327, DOI 10.1007/BF00184422 Simmons NB, 2008, NATURE, V451, P818, DOI 10.1038/nature06549 Springer MS, 2001, P NATL ACAD SCI USA, V98, P6241, DOI 10.1073/pnas.111551998 STONE J, 1981, WHOLEMOUNT HDB Waters DA, 2003, ACTA CHIROPTEROL, V5, P209 NR 40 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2008 VL 241 IS 1-2 BP 80 EP 86 DI 10.1016/j.heares.2008.05.001 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 330ZK UT WOS:000257981200010 PM 18571883 ER PT J AU Loebach, JL Wickesberg, RE AF Loebach, Jeremy L. Wickesberg, Robert E. TI The psychoacoustics of noise vocoded speech: A physiological means to a perceptual end SO HEARING RESEARCH LA English DT Article DE auditory nerve; noise vocoded speech; spectrally reduced speech; speech perception ID NORMAL-HEARING LISTENERS; AUDITORY-NERVE FIBERS; COCHLEAR IMPLANT USERS; DISCHARGE RATE REPRESENTATION; EVENT-RELATED POTENTIALS; STEADY-STATE VOWELS; VOICE-ONSET TIME; CONSONANT RECOGNITION; ENVIRONMENTAL SOUNDS; TEMPORAL CUES AB Noise vocoded speech tokens produce temporal patterns in the ensemble response of the auditory nerve similar to those of their naturally produced counterparts [Loebach, J.L., Wickesberg, R.E., 2006. The representation of noise vocoded speech in the auditory nerve of the chinchilla: Physiological correlates for the perception of spectrally reduced speech. Hear. Res. 213 (1-2), 130-144]. Moreover, the degree of pattern similarity increased as more noise bands were used to synthesize the vocoded stimuli, suggesting a relationship between the patterns that these stimuli evoke in the auditory nerve and their recognition by human subjects. In order to make a direct comparison between the psychoacoustic and physiological domains, the present study obtained the perceptual identification scores for these stimuli. A set of 120 stimuli containing the 16 tokens of interest was presented to 30 young normal hearing subjects, who identified the tokens in a closed set task. Overall, the perceptual identification of the tokens increased in accuracy with the addition of noise bands. The neural pattern similarity was quantified using dynamic time warping, and correlated with the perceptual identification scores for the target stimuli of interest. A significant linear relationship between the pattern similarity and perceptual identification scores was found, such that as neural pattern similarity increased, the accuracy of stimulus identification also increased. These findings suggest a possible physiological substrate for the recognition of noise vocoded consonants. (C) 2008 Elsevier B.V. All rights reserved. C1 [Loebach, Jeremy L.] Indiana Univ, Dept Psychol & Brain Sci, Bloomington, IN 47405 USA. [Loebach, Jeremy L.; Wickesberg, Robert E.] Univ Illinois, Dept Psychol, Champaign, IL 61820 USA. RP Loebach, JL (reprint author), Indiana Univ, Dept Psychol & Brain Sci, Bloomington, IN 47405 USA. EM jeremyloebach@gmail.com; wickesbe@uiuc.edu RI Imhof, Margarete/F-8471-2011 CR Casarotto S, 2005, IEEE ENG MED BIOL, V24, P68, DOI 10.1109/MEMB.2005.1384103 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P897, DOI 10.1121/1.390599 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 DELGUTTE B, 1980, J ACOUST SOC AM, V68, P843, DOI 10.1121/1.384824 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P887, DOI 10.1121/1.390598 Diehl RL, 2004, ANNU REV PSYCHOL, V55, P149, DOI 10.1146/annurev.psych.55.090902.142028 Dorman MF, 1997, AM J OTOL, V18, pS113 Dorman MF, 1997, J ACOUST SOC AM, V102, P2403, DOI 10.1121/1.419603 Dorman MF, 1998, EAR HEARING, V19, P162, DOI 10.1097/00003446-199804000-00008 Dorman MF, 1998, J ACOUST SOC AM, V104, P3583, DOI 10.1121/1.423940 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836 DRULLMAN R, 1995, J ACOUST SOC AM, V97, P585, DOI 10.1121/1.413112 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1054 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 FRENCH NR, 1947, J ACOUST SOC AM, V19, P90, DOI 10.1121/1.1916407 Fripp D, 2005, ANIM COGN, V8, P17, DOI 10.1007/s10071-004-0225-z Fu QJ, 2001, J ACOUST SOC AM, V109, P1166, DOI 10.1121/1.1344158 Fu QJ, 2004, JARO-J ASSOC RES OTO, V5, P253, DOI 10.1007/s10162-004-4046-1 Fu QJ, 2005, J ACOUST SOC AM, V118, P1711, DOI 10.1121/1.1985024 Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941 Gygi B, 2004, J ACOUST SOC AM, V115, P1252, DOI 10.1121/1.1635840 Keogh E, 2005, KNOWL INF SYST, V7, P358, DOI 10.1007/s10115-004-0154-9 Keogh EJ, 1999, LECT NOTES ARTIF INT, V1704, P1 KIANG NYS, 1980, J ACOUST SOC AM, V68, P830, DOI 10.1121/1.384822 Kogan JA, 1998, J ACOUST SOC AM, V103, P2185, DOI 10.1121/1.421364 Lenarz T, 1997, AM J OTOL, V18, pS2 Loebach JL, 2006, HEARING RES, V213, P130, DOI 10.1016/j.heares.2006.01.011 Loebach JL, 2008, J ACOUST SOC AM, V123, P1126, DOI 10.1121/1.2823453 LOEBACH JL, 2005, THESIS U ILLINOIS UR Loizou PC, 1999, J ACOUST SOC AM, V106, P2097, DOI 10.1121/1.427954 Middlebrooks JC, 2002, J NEUROPHYSIOL, V87, P493 Middlebrooks JC, 2005, CURR OPIN NEUROBIOL, V15, P488, DOI 10.1016/j.conb.2005.06.004 MILLER MI, 1983, J ACOUST SOC AM, V74, P502, DOI 10.1121/1.389816 Munson B, 2003, J ACOUST SOC AM, V113, P925, DOI 10.1121/1.1536630 PICTON T, 1988, ELECTROEN CLIN NEURO, V71, P212, DOI 10.1016/0168-5597(88)90006-8 RABINER LR, 1978, IEEE T ACOUST SPEECH, V26, P575, DOI 10.1109/TASSP.1978.1163164 Reed CM, 2005, EAR HEARING, V26, P48, DOI 10.1097/00003446-200502000-00005 REMEZ RE, 1994, PSYCHOL REV, V101, P129, DOI 10.1037/0033-295X.101.1.129 REMEZ RE, 1981, SCIENCE, V212, P947, DOI 10.1126/science.7233191 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SACHS MB, 1980, J ACOUST SOC AM, V68, P858, DOI 10.1121/1.384825 SAKOE H, 1978, IEEE T ACOUST SPEECH, V26, P43, DOI 10.1109/TASSP.1978.1163055 Shannon RV, 1998, J ACOUST SOC AM, V104, P2467, DOI 10.1121/1.423774 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SINEX DG, 1983, J ACOUST SOC AM, V73, P602, DOI 10.1121/1.389007 SINEX DG, 1989, J ACOUST SOC AM, V85, P1995, DOI 10.1121/1.397852 SINEX DG, 1988, J ACOUST SOC AM, V83, P1817, DOI 10.1121/1.396516 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a STEVENS C, 1999, CONT BRIT HIST, V13, P62 Stevens HE, 2002, HEARING RES, V173, P119, DOI 10.1016/S0378-5955(02)00608-1 STEVENS HE, 2003, THESIS U ILLINOIS UR Stevens K.N., 1998, ACOUSTIC PHONETICS TICE R, 1998, LEVEL 2 0 3 VANTASSELL DJ, 1992, J ACOUST SOC AM, V92, P1247, DOI 10.1121/1.403920 VANTASELL DJ, 1987, J ACOUST SOC AM, V82, P1152, DOI 10.1121/1.395251 Victor JD, 1996, J NEUROPHYSIOL, V76, P1310 Wang KM, 2001, CLIN NEUROPHYSIOL, V112, P1917, DOI 10.1016/S1388-2457(01)00640-X YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 NR 58 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2008 VL 241 IS 1-2 BP 87 EP 96 DI 10.1016/j.heares.2008.05.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 330ZK UT WOS:000257981200011 PM 18556159 ER PT J AU Ishigami, Y Phillips, DP AF Ishigami, Yoko Phillips, Dennis P. TI Effect of stimulus hemifield on free-field auditory saltation SO HEARING RESEARCH LA English DT Article DE auditory saltation; spatial misperception; perceptual processing times; clicks; inter-click interval ID CUTANEOUS RABBIT; SOUND LOCATION; ILLUSION; LOCALIZATION; PERCEPTION; TIME; CAT AB Auditory saltation is the orderly misperception of the spatial location of repetitive click stimuli emitted from two successive locations when the inter-click intervals (ICIs) are sufficiently short. The clicks are perceived as originating not only from the actual source locations, but also from locations between them. In two tasks, the present experiment compared free-field auditory saltation for 90 degrees excursions centered in the frontal, rear, left and right acoustic hemifields, by measuring the ICI at which subjects report 50% illusion strength (subjective task) and the ICI at which subjects could not distinguish real motion from saltation (objective task). A comparison of the saltation illusion for excursions spanning the midline (i.e. for frontal or rear hemifields) with that for stimuli in the lateral hemifields (left or right) revealed that the illusion was weaker for the midline-straddling conditions (i.e. the illusion was restricted to shorter ICIs). This may reflect the contribution of two perceptual channels to the task in the midline conditions (as opposed to one in the lateral hemifield conditions), or the fact that the temporal dynamics of localization differ between the midline and lateral hemifield conditions. A subsidiary comparison of saltation supported in the left and right auditory hemifields, and therefore by the right and left auditory forebrains, revealed no difference. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ishigami, Yoko; Phillips, Dennis P.] Dalhousie Univ, Dept Psychol, Halifax, NS B3H 4J1, Canada. RP Phillips, DP (reprint author), Dalhousie Univ, Dept Psychol, 1355 Oxford St, Halifax, NS B3H 4J1, Canada. EM dennis.phillips@dal.ca RI Phillips, Dennis/A-6496-2011 CR BAKER RJ, 2000, SPEECH HEARING LANGU, V12, P56 Boehnke SE, 1999, J ACOUST SOC AM, V106, P1948, DOI 10.1121/1.428037 Boehnke SE, 2005, PERCEPTION, V34, P371, DOI 10.1068/p5140 Bregman AS., 1990, AUDITORY SCENE ANAL BREMER CD, 1977, AM J PSYCHOL, V90, P645, DOI 10.2307/1421738 Brown S, 1997, PERCEPT PSYCHOPHYS, V59, P442, DOI 10.3758/BF03211910 Dennett D. C., 1991, CONSCIOUSNESS EXPLAI Eimer M, 2005, PERCEPT PSYCHOPHYS, V67, P458, DOI 10.3758/BF03193324 GELDARD FA, 1986, SCI AM, V255, P90 GELDARD FA, 1976, SENS PROCESS, V1, P77 Geldard F.A., 1975, SENSORY SALTATION ME GELDARD FA, 1972, SCIENCE, V178, P178, DOI 10.1126/science.178.4057.178 Getzmann S, 2007, EXP BRAIN RES, V179, P571, DOI 10.1007/s00221-006-0816-9 HARI R, 1995, NEUROSCI LETT, V189, P29, DOI 10.1016/0304-3940(95)11443-Z HARI R, 1996, NEUROSCI LETT, V205, P140 Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784 HUBEL DH, 1967, J NEUROPHYSIOL, V30, P1561 Kidd JC, 2004, J ACOUST SOC AM, V116, P1116, DOI 10.1121/1.1766054 Kidd JC, 2007, J SPEECH LANG HEAR R, V50, P982, DOI 10.1044/1092-4388(2007/069) LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 Phillips DP, 2002, PERCEPTION, V31, P875, DOI 10.1068/p3293 Phillips DP, 2008, HEARING RES, V238, P124, DOI 10.1016/j.heares.2007.09.007 Phillips DP, 2001, J ACOUST SOC AM, V110, P1539, DOI 10.1121/1.1396329 Phillips DP, 2005, HEARING RES, V202, P188, DOI [10.1016/j.heares.2004.11.001, 10.1016/j.heres.2004.11.001] SCHWARTZ J, 1980, SCIENCE, V207, P1380 Shore DI, 1998, J ACOUST SOC AM, V103, P3730, DOI 10.1121/1.423093 Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748 Wichmann FA, 2001, PERCEPT PSYCHOPHYS, V63, P1293, DOI 10.3758/BF03194544 NR 29 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2008 VL 241 IS 1-2 BP 97 EP 102 DI 10.1016/j.heares.2008.05.003 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 330ZK UT WOS:000257981200012 PM 18565705 ER PT J AU Kaiser, CL Chapman, BJ Guidi, JL Terry, CE Mangiardi, DA Cotanche, DA AF Kaiser, Christina L. Chapman, Brittany J. Guidi, Jessica L. Terry, Caitlin E. Mangiardi, Dominic A. Cotanche, Douglas A. TI Comparison of activated caspase detection methods in the gentamicin-treated chick cochlea SO HEARING RESEARCH LA English DT Article DE apoptosis; caspase; avian; aminoglycoside; cochlea; gentamicin; hair cells ID HAIR CELL-DEATH; VESTIBULAR SENSORY EPITHELIA; INNER-EAR; IN-VITRO; 2 MODES; APOPTOSIS; REGENERATION; PROGRESSION; NOISE; EXPRESSION AB Aminoglycoside antibiotics induce caspase-dependent apoptotic death in cochlear hair cells. Apoptosis, a regulated form of cell death, can be induced by many stressors, which activate signaling pathways that result in the controlled dismantling of the affected cell. The caspase family of proteases is activated in the apoptotic signaling pathway and is responsible for cellular destruction. The intiator caspase-9 and the effector caspase-3 are both activated in chick cochlear hair cells following aminoglycoside exposure. We have analyzed caspase activation in the avian cochlea during gentamicin-induced hair cell death of compare two different methods of caspase detection: caspase antibodies and CaspaTag kits. Caspase anti-bodies bind to the cleaved activated form of caspase-9 or caspase-3 in specific locations in fixed tissue. CaspaTag is fluorescent inhibitor that binds to a reactive cysteine residue on the large subunit of the caspase heterodimer in in fixed tissue. To induce cochlear hair cell loss, 1-2 week-old chickens received a single injection of gentamicin (300 mg/kg.) Chicks were caspase-9 or caspase-3 using either caspase-directed anitbodies or CapaTag kits. Ears were co-labeled with either phalloidin or myosin VI to visualize hair cells and to determine the progression of cochlear damage. The timing of caspase activation was similar for both assays; how-ever, caspase-9 and caspase-3 antibodies labeled only those cells currently undergoing apoptotic cells death. Conversely, CaspaTag-labeled all the cells that have undergone apoptotic cell death and ejection from the sensory epithelium, in addition to those that are currently in the cell death process. This makes CaspaTag ideal for showing an overall pattern or level of cell death over a period of time, while caspase antibodies provide a snapshot of cell death at a specific time point. (C) 2008 Elesvier B.V. All rights reserved. C1 [Kaiser, Christina L.; Chapman, Brittany J.; Guidi, Jessica L.; Terry, Caitlin E.; Mangiardi, Dominic A.; Cotanche, Douglas A.] Boston Univ, Med Ctr, Dept Otolaryngol, Lab Cellular & Mol Hearing Res, Boston, MA 02118 USA. [Kaiser, Christina L.; Cotanche, Douglas A.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA. [Mangiardi, Dominic A.] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA. RP Kaiser, CL (reprint author), Boston Univ, Med Ctr, Dept Otolaryngol, Lab Cellular & Mol Hearing Res, Evans 637,715 Albany St, Boston, MA 02118 USA. EM ckaiser@bu.edu CR BHAVE SA, 1995, J NEUROSCI, V15, P4618 Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004 Cheng AG, 2003, JARO, V4, P91, DOI 10.1007/s10162-002-3016-8 Collins JA, 1997, J HISTOCHEM CYTOCHEM, V45, P923 Cryns V, 1998, GENE DEV, V12, P1551, DOI 10.1101/gad.12.11.1551 Cunningham LL, 2002, J NEUROSCI, V22, P8532 Duncan LJ, 2006, J COMP NEUROL, V499, P691, DOI 10.1002/cne.21114 EPSTEIN JE, 1995, HEARING RES, V90, P31, DOI 10.1016/0378-5955(95)00141-9 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X HASSON T, 1995, P NATL ACAD SCI USA, V92, P9815, DOI 10.1073/pnas.92.21.9815 HASSON T, 1994, J CELL BIOL, V127, P425, DOI 10.1083/jcb.127.2.425 Hengartner MO, 2000, NATURE, V407, P770, DOI 10.1038/35037710 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Janas JD, 1995, HEARING RES, V92, P17, DOI 10.1016/0378-5955(95)00190-5 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129 Matsui JI, 2003, J NEUROSCI, V23, P6111 Matsui JI, 2002, J NEUROSCI, V22, P1218 Matsui JI, 2004, J NEUROBIOL, V61, P250, DOI 10.1002/neu.20054 Nakagawa T, 1997, ORL J OTO-RHINO-LARY, V59, P303 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9 Roberson DW, 2000, HEARING RES, V141, P155, DOI 10.1016/S0378-5955(99)00218-X ROBERTSON JD, 2002, ROLE MITOCHONDRIA TO, P491 Slee EA, 1999, J CELL BIOL, V144, P281, DOI 10.1083/jcb.144.2.281 Slee EA, 1999, CELL DEATH DIFFER, V6, P1067, DOI 10.1038/sj.cdd.4400601 Stone JS, 2007, INT J DEV BIOL, V51, P633, DOI 10.1387/ijdb.072408js Sugahara K, 2006, HEARING RES, V221, P128, DOI 10.1016/j.heares.2006.08.009 Torchinsky C, 1999, J NEUROCYTOL, V28, P913, DOI 10.1023/A:1007082424477 Wilkins HR, 2001, JARO-J ASSOC RES OTO, V2, P79, DOI 10.1007/101620010025 NR 32 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2008 VL 240 IS 1-2 BP 1 EP 11 DI 10.1016/j.heares.2008.03.0003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 324PW UT WOS:000257531500001 PM 18487027 ER PT J AU Faucher, K Aas-Hansen, O Damsgard, B Stenklev, NC AF Faucher, K. Aas-Hansen, O. Damsgard, B. Stenklev, N. C. TI Effects of systemic versus local gentamicin on the inner ear in the Atlantic cod, Gadus morhua (L.), relevance for fish hearing investigations SO HEARING RESEARCH LA English DT Article DE inner ear; hair cells; Atlantic cod Gadus morhua (L.); gentamicin; intrasaccular injection; intravenous injection ID LATERAL LINE ORGAN; HAIR-CELLS; AMINOGLYCOSIDE ANTIBIOTICS; DIRECTIONAL HEARING; DAMAGE; OTOTOXICITY; NEUROMASTS; EXPOSURE; RECOVERY; FIELD AB Fish models are increasingly being used for hearing research investigations. Aminoglycoside antibiotics that are used for damaging the inner ear hair cells can have systemic side effects leading to death of study animals. This study aimed to compare two methods: (i) systemic (intravenous) and (ii) local (intrasaccular) gentamicin administration for induction of inner ear hair cell damage in the Atlantic cod, Gadus morhua (L.). Hair cell damage was assessed using scanning electron microscopy; hair cell density, prevalence of immature hair cells and kinocilia length were measured. Gentamicin-treated fish were compared with control and sham fish. Intravenous gentamicin led to dose-dependent mortality caused by nephrotoxicity. The only visible effect after treatment was more immature hair cells and shorter kinocilia, the effect on hair cell density was equivocal. Following intrasaccular gentamicin treatment, fish mortality was negligible, and hair cells were damaged regardless of dose. Here, we observed decreased hair cell density, high prevalence of immature hair cells, and significantly shortened kinocilia. Conclusion: intrasaccular injection is preferable to intravenous injection of gentamicin for the study of ototoxicity in the Atlantic cod. (C) 2008 Elsevier B.V. All rights reserved. C1 [Faucher, K.; Stenklev, N. C.] Univ Tromso, Inst Clin Med, ENT Dept, Tromso, Norway. [Aas-Hansen, O.; Damsgard, B.] Norwegian Inst Fisheries & Aquaculture Res, N-9291 Tromso, Norway. RP Faucher, K (reprint author), Univ Tromso, Inst Clin Med, ENT Dept, Tromso, Norway. EM kfaucher@hotmail.fr CR Avallone B, 2008, HEARING RES, V235, P15, DOI 10.1016/j.heares.2007.09.009 CHAPMAN CJ, 1973, J COMP PHYSIOL, V85, P147, DOI 10.1007/BF00696473 DALE T, 1976, Norwegian Journal of Zoology, V24, P85 DULON D, 1988, ACTA OTO-LARYNGOL, V106, P219, DOI 10.3109/00016488809106429 ENGER PS, 1967, COMP BIOCHEM PHYSIOL, V22, P517, DOI 10.1016/0010-406X(67)90614-7 Faucher K, 2006, AQUAT TOXICOL, V76, P278, DOI 10.1016/j.aquatox.2005.10.004 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 GAILIUNAS P, 1978, ARCH INTERN MED, V138, P1621, DOI 10.1001/archinte.138.11.1621 HAWKINS AD, 1972, J PHYSL, V227, P47 HIEL H, 1993, AUDIOLOGY, V32, P78 HUDSPETH AJ, 1983, ANNU REV NEUROSCI, V6, P187, DOI 10.1146/annurev.ne.06.030183.001155 JACKSON GG, 1971, J INFECT DIS, V124, P130 KAUS S, 1987, ACTA OTO-LARYNGOL, V103, P291, DOI 10.3109/00016488709107796 KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 Liu MJ, 2002, GENE, V298, P129, DOI 10.1016/S0378-1119(02)00932-0 LOMBARTE A, 1993, HEARING RES, V64, P166, DOI 10.1016/0378-5955(93)90002-I MATSUURA S, 1971, JPN J PHYSIOL, V21, P579 Nakagawa T, 2003, HEARING RES, V176, P122, DOI 10.1016/S0378-5955(02)00768-2 PRESSON JC, 1990, HEARING RES, V46, P9, DOI 10.1016/0378-5955(90)90135-C ROUSE GW, 1991, P ROY SOC B-BIOL SCI, V246, P123, DOI 10.1098/rspb.1991.0133 SAND O, 1973, J EXP BIOL, V59, P405 Scholik AR, 2001, HEARING RES, V152, P17, DOI 10.1016/S0378-5955(00)00213-6 Schonleber J, 2004, ADV SPACE RES, V33, P1416, DOI 10.1016/j.asr.2003.12.006 SCHUIJF A, 1983, NATURE, V302, P143, DOI 10.1038/302143a0 SCHUIJF A, 1975, J COMP PHYSIOL, V98, P333 SCHUIJF A, 1975, J COMP PHYSIOL, V98, P307 Smith ME, 2006, J EXP BIOL, V209, P4193, DOI 10.1242/jeb.02490 Song JK, 1995, HEARING RES, V91, P63, DOI 10.1016/0378-5955(95)00170-0 WERSALL J, 1964, LIFE SCI, V3, P1151, DOI 10.1016/0024-3205(64)90132-8 YAN HY, 1991, P ROY SOC B-BIOL SCI, V245, P133, DOI 10.1098/rspb.1991.0099 NR 30 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2008 VL 240 IS 1-2 BP 12 EP 21 DI 10.1016/j.heares.2008.03.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 324PW UT WOS:000257531500002 PM 18485636 ER PT J AU Harrington, IA Stecker, GC Macpherson, EA Middlebrooks, JC AF Harrington, Ian A. Stecker, G. Christopher Macpherson, Ewan A. Middlebrooks, John C. TI Spatial sensitivity of neurons in the anterior, posterior, and primary fields of cat auditory cortex SO HEARING RESEARCH LA English DT Article DE sound localization; auditory cortex ID SOUND-SOURCE LOCATION; CORTICAL-NEURONS; SINGLE NEURONS; SUPERIOR COLLICULUS; RECEPTIVE-FIELDS; COOLING DEACTIVATION; REPRESENTATION; LOCALIZATION; ORGANIZATION; RESPONSES AB We assessed the spatial-tuning properties of units in the cat's anterior auditory field (AAF) and compared them with those observed previously in the primary (A1) and posterior auditory fields (PAF). Multi-channel, silicon-substrate probes were used to record single- and multi-unit activity from the right hemispheres of alpha-chloralose-anesthetized cats. Spatial tuning was assessed using broadband noise bursts that varied in azimuth or elevation. Response latencies were slightly, though significantly, shorter in AAF than A1, and considerably shorter in both of those fields than in PAF. Compared to PAF, spike counts and latencies were more poorly modulated by changes in stimulus location in AAF and A1, particularly at higher sound pressure levels. Moreover, units in AAF and At demonstrated poorer level tolerance than units in PAF with spike rates modulated as much by changes in stimulus intensity as changes in stimulus location. Finally, spike-pattern-recognition analyses indicated that units in AAF transmitted less spatial information, on average, than did units in PAF-an observation consistent with recent evidence that PAF is necessary for sound-localization behavior, whereas AAF is not. (C) 2008 Elsevier B.V. All rights reserved. C1 [Harrington, Ian A.; Stecker, G. Christopher; Macpherson, Ewan A.; Middlebrooks, John C.] Univ Michigan, Kresge Hearing Res Inst, Cent Syst Lab, Ann Arbor, MI 48109 USA. [Harrington, Ian A.] Augustana Coll, Dept Psychol, Rock Isl, IL 61201 USA. [Stecker, G. Christopher] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98195 USA. RP Middlebrooks, JC (reprint author), Univ Michigan, Kresge Hearing Res Inst, Cent Syst Lab, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM jmidd@umich.edu CR ANDERSON DJ, 1989, IEEE T BIO-MED ENG, V36, P693, DOI 10.1109/10.32101 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005 Furukawa S, 2002, J NEUROPHYSIOL, V87, P1749, DOI 10.1152/jn.00491.2001 Furukawa S, 2001, J NEUROPHYSIOL, V86, P226 Furukawa S, 2000, J NEUROSCI, V20, P1216 GHOSH J, 2001, RADIAL BASIS FUNCTIO, V2, P1 HE J, 1998, J COMP NEUROL, V300, P334 Heil P, 1998, J NEUROPHYSIOL, V79, P3041 Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 KING AJ, 1985, EXP BRAIN RES, V60, P492 Kitzes LM, 1996, HEARING RES, V100, P120, DOI 10.1016/0378-5955(96)00103-7 KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1 KORTE M, 1993, J NEUROPHYSIOL, V70, P1717 LEE CC, 2007, ASS RES OST ABS, V425 Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006 Lee CC, 2004, NEUROSCIENCE, V128, P871, DOI 10.1016/j.neuroscience.2004.06.062 Loftus WC, 2001, J NEUROPHYSIOL, V86, P475 Lomber SG, 1999, J NEUROSCI METH, V86, P109, DOI 10.1016/S0165-0270(98)00160-5 LOMBER SG, 2003, 4888 SOC NEUR Malhotra S, 2007, J NEUROPHYSIOL, V97, P26, DOI 10.1152/jn.00720.2006 Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003 MALHOTRA S, 2008, J NEUROPHYSIOL MASTERTON RB, 1984, ANNU REV PHYSIOL, V46, P275 MEREDITH MA, 1983, SCIENCE, V221, P389, DOI 10.1126/science.6867718 MEREDITH MA, 1986, J NEUROPHYSIOL, V56, P640 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 Mickey BJ, 2003, J NEUROSCI, V23, P8649 MIDDLEBROOKS JC, 1994, SCIENCE, V264, P842, DOI 10.1126/science.8171339 Middlebrooks JC, 1998, J NEUROPHYSIOL, V80, P863 MIDDLEBROOKS JC, 1983, J NEUROSCI, V3, P203 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 Middlebrooks JC, 2002, NEUROSCIENTIST, V8, P73 MIDDLEBROOKS JC, 2008, SENSES COMPREHENSIVE, V3, P781 MOREL A, 1987, J COMP NEUROL, V265, P119, DOI 10.1002/cne.902650109 NEFF WD, 1956, J NEUROPHYSIOL, V19, P500 Ouellette BG, 2006, EXP BRAIN RES, V175, P332, DOI 10.1007/s00221-006-0555-y PHILLIPS DP, 1995, J NEUROPHYSIOL, V73, P674 PHILLIPS DP, 1982, BRAIN RES, V248, P237, DOI 10.1016/0006-8993(82)90581-9 PHILLIPS DP, 1984, J NEUROPHYSIOL, V51, P147 PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 ROUILLER EM, 1991, EXP BRAIN RES, V86, P483 SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 SHINNCUNNINGHAM.BG, 2005, P FOR AC Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 Stecker GC, 2005, J NEUROPHYSIOL, V94, P1267, DOI 10.1152/jn.00104.2005 Stecker GC, 2003, BIOL CYBERN, V89, P341, DOI 10.1007/s00422-003-0439-1 Stecker GC, 2003, J NEUROPHYSIOL, V89, P2889, DOI 10.1152/jn.00980.2002 SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207 TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 Wasserman PD, 1993, ADV METHODS NEURAL C Winer JA, 2007, HEARING RES, V229, P3, DOI 10.1016/j.heares.2007.01.017 Xu L, 2000, J ACOUST SOC AM, V107, P1451, DOI 10.1121/1.428432 ZHOU B, 1992, J ACOUST SOC AM, V92, P1169, DOI 10.1121/1.404045 NR 60 TC 24 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2008 VL 240 IS 1-2 BP 22 EP 41 DI 10.1016/j.heares.2008.02.004 PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 324PW UT WOS:000257531500003 PM 18359176 ER PT J AU Basta, D Goetze, R Ernst, A AF Basta, Dietmar Goetze, Romy Ernst, Arne TI Effects of salicylate application on the spontaneous activity in brain slices of the mouse cochlear nucleus, medial geniculate body and primary auditory cortex SO HEARING RESEARCH LA English DT Article DE tinnitus; sodium salicylate; cochlear nucleus; medial geniculate body; auditory cortex; spontaneous activity; brain slice ID INFERIOR COLLICULUS NEURONS; SODIUM-SALICYLATE; GUINEA-PIG; ANIMAL-MODEL; SPINAL-CORD; RATS; TINNITUS; OTOTOXICITY; CAT; EXPRESSION AB Salicylate is a well-known substance to produce reversible tinnitus in animals and humans as well. It has been shown that systemic application of salicylate changes the neuronal spontaneous activity in several parts of the auditory pathway. The effects observed in central auditory structures in vivo could be based upon the changed afferent cochlear input to the central auditory system or in addition by a direct action of salicylate onto neurons within the auditory pathway. A direct influence of local salicylate application on spontaneous activity of central auditory neurons has already been described for the inferior colliculus (IC) in brain slice preparations. As spontaneous activity within all key structures of the central auditory pathway could play an important role in tinnitus generation, the present study investigated direct effects of salicylate superfusion on the spontaneous activity of the deafferented cochlear nucleus (CN), medial geniculate body (MGB), and auditory cortex (AC) in brain slices. Out of 72 neurons, 73.4% responded statistically significantly to the superfusate by changing their firing rates. 48.4% of them increased and 51.6% decreased their firing rates, respectively. The mean change of firing rate upon salicylate superfusion was 24.4%. All responses were not significantly different between the brain areas. The amount of neurons which responded to salicylate and the mean change of firing rate was much higher in the IC than in the CN, MGB and AC. This contributes to the hypothesis that salicylate-induced tinnitus is a phantom auditory perception mainly related to hyperexcitability of IC neurons. However, the present results suggest that the individual, specific salicylate sensitivity of CN, MGB and AC neurons can modulate the salicylate-induced generation of tinnitus. (C) 2008 Elsevier B.V. All rights reserved. C1 [Basta, Dietmar; Ernst, Arne] Univ Berlin, Charite Med Sch, Dept Otolaryngol, UKB, D-12683 Berlin, Germany. [Basta, Dietmar; Goetze, Romy] Humboldt Univ, Inst Biol, D-10115 Berlin, Germany. RP Basta, D (reprint author), Univ Berlin, Charite Med Sch, Dept Otolaryngol, UKB, Warener Str 7, D-12683 Berlin, Germany. EM dietmar.basta@rz.hu-berlin.de CR Akada S, 2003, ANESTH ANALG, V96, P407, DOI 10.1213/01.ANE.0000047208.22917.93 Basta D, 2004, NEUROSCI RES, V50, P237, DOI 10.1016/j.neures.2004.07.003 Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O DAY RO, 1989, BRIT J CLIN PHARMACO, V28, P695 DIDIER A, 1993, HEARING RES, V69, P199, DOI 10.1016/0378-5955(93)90108-D Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 EHRET G, 1991, BRAIN RES, V567, P350, DOI 10.1016/0006-8993(91)90819-H Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454 Evans E F, 1981, Ciba Found Symp, V85, P108 Guitton MJ, 2003, J NEUROSCI, V23, P3944 HALLA JT, 1988, ANN RHEUM DIS, V47, P134, DOI 10.1136/ard.47.2.134 HALLA JT, 1991, ANN RHEUM DIS, V50, P682, DOI 10.1136/ard.50.10.682 Hicks ML, 1999, J ACOUST SOC AM, V106, P1436, DOI 10.1121/1.427146 JAGER BV, 1946, AM J MED SCI, V211, P273, DOI 10.1097/00000441-194603000-00004 JARDINI L, 1978, RHEUMATOL REHABIL, P233 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 KAUBE H, 1993, HEADACHE, V33, P541, DOI 10.1111/j.1526-4610.1993.hed3310541.x Kenmochi M, 1997, HEARING RES, V113, P110, DOI 10.1016/S0378-5955(97)00137-8 KUMAGAI M, 1992, Hokkaido Journal of Medical Science, V67, P216 Liang Yong, 2002, Di Yi Jun Yi Da Xue Xue Bao, V22, P137 Liu JX, 2003, HEARING RES, V175, P45, DOI 10.1016/S0378-5955(02)00708-6 Liu YX, 2004, HEARING RES, V193, P68, DOI 10.1016/j.heares.2004.03.006 Liu YX, 2004, NEUROSCI LETT, V369, P115, DOI 10.1016/j.neulet.2004.07.037 Lue AJC, 1999, HEARING RES, V135, P163, DOI 10.1016/S0378-5955(99)00102-1 Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5 MCCAIN HW, 1987, CAN J PHYSIOL PHARM, V65, P558 MCFADDEN D, 1984, HEARING RES, P295 MOLLER AR, 1995, MECH TINNITUS, P181 MONGAN E, 1973, JAMA-J AM MED ASSOC, V226, P142, DOI 10.1001/jama.226.2.142 Muller M, 2003, HEARING RES, V183, P37, DOI 10.1016/S0378-5955(03)00217-X MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483 NAKASHIMA T, 1985, BRAIN RES BULL, V15, P459, DOI 10.1016/0361-9230(85)90036-X Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 ROUILLER EM, 1989, EXP BRAIN RES, V74, P220 RUSSELL IJ, 1995, AUDIT NEUROSCI, V1, P309 Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3 SATINOFF E, 1972, SCIENCE, V176, P532, DOI 10.1126/science.176.4034.532 SCHREINER CE, 1987, 3 INT TINN SEM HARSC, P100 See G., 1877, B ACAD NATL MED PARI, V6, p[689, 897] SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 Wang HT, 2006, HEARING RES, V215, P77, DOI 10.1016/j.heares.2006.03.004 Wu JL, 2003, HEARING RES, V176, P80, DOI 10.1016/S0378-5955(02)00747-5 YANG G, 2006, HEAR RS, V10 Yin Shi-Hua, 2006, Shengli Xuebao, V58, P449 Zheng YW, 2006, BRAIN RES, V1123, P201, DOI 10.1016/j.brainres.2006.09.045 NR 48 TC 12 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2008 VL 240 IS 1-2 BP 42 EP 51 DI 10.1016/j.heares.2008.02.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 324PW UT WOS:000257531500004 PM 18372130 ER PT J AU Izumikawa, M Batts, SA Miyazawa, T Swiderski, DL Raphael, Y AF Izumikawa, Masahiko Batts, Shelley A. Miyazawa, Toru Swiderski, Donald L. Raphael, Yehoash TI Response of the flat cochlear epithelium to forced expression of Atoh1 SO HEARING RESEARCH LA English DT Article DE cochlea; deafness; aminoglycosides; neomycin; adenovirus; guinea pig; Atoh1; gene transfer ID DAMAGED CHINCHILLA COCHLEA; MATURE GUINEA-PIGS; HAIR-CELLS; SUPPORTING CELLS; GENE-TRANSFER; INNER-EAR; IN-VIVO; REGENERATION; ORGAN; CORTI AB Following hair cell elimination in severely traumatized cochleae, differentiated supporting cells are often replaced by a simple epithelium with cuboidal or flat appearance. Atoh1 (previously Math1) is a basic helix-loop-helix transcription factor critical to hair cell differentiation during mammalian embryogenesis. Forced expression of Atoh1 in the differentiated supporting cell population can induce transdifferentiation leading to hair cell regeneration. Here, we examined the outcome of adenovirus mediated over-expression of Atoh1 in the non-sensory cells of the flat epithelium. We determined that seven days after unilateral elimination of hair cells with neomycin, differentiated supporting cells are absent, replaced by a flat epithelium. Nerve processes were also missing from the auditory epithelium, with the exception of infrequent looping nerve processes above the habenula perforata. We then inoculated an adenovirus vector with Atoh1 insert into the scala media of the deafened cochlea. The inoculation resulted in upregulation of Atoh1 in the flat epithelium. However, two months after the inoculation, Atoh1-treated ears did not exhibit clear signs of hair cell regeneration. Combined with previous data on induction of supporting cell to hair cell transdiffierentiation by forced expression of Atoh1, these results suggest that the presence of differentiated supporting cells in the organ of Corti is necessary for transdifferentiation to occur. (C) 2008 Elsevier B.V. All rights reserved. C1 [Izumikawa, Masahiko; Batts, Shelley A.; Miyazawa, Toru; Swiderski, Donald L.; Raphael, Yehoash] Univ Michigan, Kresge Hearing Res Inst, Sch Med, Ann Arbor, MI 48109 USA. [Izumikawa, Masahiko] Kansai Med Univ, Dept Otolaryngol, Osaka 5731191, Japan. [Miyazawa, Toru] Kanazawa Med Univ, Dept Otolaryngol, Uchinada, Ishikawa 9200293, Japan. RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, Sch Med, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM yoash@umich.edu CR Bhatt KA, 2001, ANN OTO RHINOL LARYN, V110, P1147 BOHNE BA, 1992, LARYNGOSCOPE, V102, P693, DOI 10.1288/00005537-199206000-00017 Brough DE, 1997, J VIROL, V71, P9206 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 Cotanche DA, 1995, HEARING RES, V91, P148, DOI 10.1016/0378-5955(95)00185-9 Forge A, 1998, J COMP NEUROL, V397, P69 Ishimoto S, 2002, HEARING RES, V173, P187, DOI 10.1016/S0378-5955(02)00579-8 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Jones JM, 2006, J NEUROSCI, V26, P550, DOI 10.1523/JNEUROSCI.3859-05.2006 JYUNG RW, 1989, OTOLARYNG HEAD NECK, V101, P670 Kawamoto K, 2003, J NEUROSCI, V23, P4395 Kim YH, 2007, CELL CYCLE, V6, P612, DOI 10.4161/cc.6.5.3929 Minoda R, 2007, HEARING RES, V232, P44, DOI 10.1016/j.heares.2007.06.005 NADOL JB, 1994, LARYNGOSCOPE, V104, P299 OSBORNE MP, 1991, SCANNING MICROSCOPY, V5, P555 Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6 Stone JS, 1998, CURR OPIN NEUROL, V11, P17, DOI 10.1097/00019052-199802000-00004 Stone JS, 2000, P NATL ACAD SCI USA, V97, P11714, DOI 10.1073/pnas.97.22.11714 Strominger RN, 1995, HEARING RES, V92, P52, DOI 10.1016/0378-5955(95)00196-4 Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1 WEBSTER DB, 1992, EXP NEUROL, V115, P27, DOI 10.1016/0014-4886(92)90216-D ZAPPIA JJ, 1989, HEARING RES, V40, P29, DOI 10.1016/0378-5955(89)90096-8 NR 23 TC 49 Z9 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2008 VL 240 IS 1-2 BP 52 EP 56 DI 10.1016/j.heares.2008.02.007 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 324PW UT WOS:000257531500005 PM 18430530 ER PT J AU Schaette, R Kempter, R AF Schaette, Roland Kempter, Richard TI Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type SO HEARING RESEARCH LA English DT Article DE dorsal cochlear nucleus; computational model; hearing loss; hyperactivity; auditory nerve; homeostatic plasticity ID HAIR CELL LOSS; ENRICHED ACOUSTIC ENVIRONMENT; DEAFNESS ASSOCIATED CHANGES; DOMAIN POTASSIUM CHANNELS; STEM AUDITORY NUCLEI; INFERIOR COLLICULUS; INTENSE SOUND; BRAIN-STEM; GUINEA-PIG; HOMEOSTATIC PLASTICITY AB Cochlear damage can change the spontaneous firing rates of neurons in the dorsal cochlear nucleus (DCN). Increased spontaneous firing rates (hyperactivity) after acoustic trauma have been observed in the DCN of rodents such as hamsters, chinchillas and rats. This hyperactivity has been interpreted as a neural correlate of tinnitus. In cats, however, the spontaneous firing rates of DCN neurons were not significantly elevated after acoustic trauma. Species-specific spontaneous firing rates after cochlear damage might be attributable to differences in the response types of DCN neurons: In gerbils, type III response characteristics are predominant, whereas in cats type IV responses are more frequent. To address the question of how the development of hyperactivity after cochlear damage depends on the response type of DCN neurons, we use a computational model of the basic circuit of the DCN. By changing the strength of two types of inhibition, we can reproduce salient features of the responses of DCN neurons. Simulated cochlear damage, which decreases the activity of auditory nerve fibers, is assumed to activate homeostatic plasticity in projection neurons (PNs) of the DCN. We find that the resulting spontaneous firing rates depend on the response type of DCN PNs: PNs with type III and type IV-T response characteristics may become hyperactive, whereas type IV PNs do not develop increased spontaneous firing rates after acoustic trauma. This theoretical framework for the mechanisms and circumstances of the development of hyperactivity in central auditory neurons might also provide new insights into the development of tinnitus. (C) 2008 Elsevier B.V. All rights reserved. C1 [Schaette, Roland; Kempter, Richard] Humboldt Univ, Dept Biol, Inst Theoret Biol, D-10115 Berlin, Germany. [Schaette, Roland; Kempter, Richard] Bernstein Ctr Computat Neurosci Berlin, D-10115 Berlin, Germany. [Schaette, Roland; Kempter, Richard] Charite Univ Med Berlin, Neurosci Res Ctr, D-10117 Berlin, Germany. RP Schaette, R (reprint author), Humboldt Univ, Dept Biol, Inst Theoret Biol, Invalidenstr 43, D-10115 Berlin, Germany. EM r.schaette@biologie.hu-berlin.de CR BLUM JJ, 1995, J ACOUST SOC AM, V98, P181, DOI 10.1121/1.414421 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Kirk EC, 2003, JARO-J ASSOC RES OTO, V4, P445 Cui YL, 2007, NEUROSCIENCE, V149, P421, DOI 10.1016/j.neuroscience.2007.05.054 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 Davis KA, 1996, J NEUROPHYSIOL, V76, P3012 Davis KA, 1996, J NEUROPHYSIOL, V75, P1411 Desai NS, 1999, NAT NEUROSCI, V2, P515 Ding J, 1999, J NEUROPHYSIOL, V82, P3434 Escabi MA, 2003, J NEUROSCI, V23, P11489 Franosch JMP, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.178103 Holt AG, 2006, HEARING RES, V216, P146, DOI 10.1016/j.heares.2006.03.009 JASTREBOFF PJ, 1993, BRIT J AUDIOL, V27, P7, DOI 10.3109/03005369309077884 KALTENBACH JA, 1992, HEARING RES, V59, P213, DOI 10.1016/0378-5955(92)90118-7 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 KALTENBACH JA, 2002, ASS RES OT ABS, P208 Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 Kaltenbach JA, 2007, HEARING RES, V226, P232, DOI 10.1016/j.heares.2006.07.001 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kilman V, 2002, J NEUROSCI, V22, P1328 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 Konig O, 2006, HEARING RES, V221, P59, DOI 10.1016/j.heares.2006.07.007 Kotak VC, 2005, J NEUROSCI, V25, P3908, DOI 10.1523/JNEUROSCI.5169-04.2005 LAUGHLIN S, 1981, Z NATURFORSCH C, V36, P910 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1 Ma WLD, 2006, HEARING RES, V216, P176, DOI 10.1016/j.heares.2006.03.011 Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 McFadden SL, 1998, HEARING RES, V120, P121, DOI 10.1016/S0378-5955(98)00052-5 Norena AJ, 2007, NEUROREPORT, V18, P1251, DOI 10.1097/WNR.0b013e3282202c35 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821 Quaranta N, 2004, INT J AUDIOL, V43, P245, DOI 10.1080/14992020400050033 REED MC, 1995, J ACOUST SOC AM, V97, P425, DOI 10.1121/1.412271 Reid MA, 2004, J NEUROSCI, V24, P733, DOI 10.1523/JNEUROSCI.3923-03.2004 Rhode WS, 1992, MAMMALIAN AUDITORY P, P94 Robertson D, 1999, HEARING RES, V136, P151, DOI 10.1016/S0378-5955(99)00120-3 Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x Shore SE, 2005, EUR J NEUROSCI, V21, P3334, DOI 10.1111/j.1460-9568.2005.04142.x Singh NC, 2003, J ACOUST SOC AM, V114, P3394, DOI 10.1121/1.1624067 Spirou GA, 1999, J NEUROPHYSIOL, V82, P648 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 Turrigiano GG, 1999, TRENDS NEUROSCI, V22, P221, DOI 10.1016/S0166-2236(98)01341-1 Turrigiano GG, 1998, NATURE, V391, P892, DOI 10.1038/36103 Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 YOUNG ED, 2002, SPRINGER HDB AUDITOR, V15, P121 YOUNG ED, 1980, BRAIN RES, V200, P23, DOI 10.1016/0006-8993(80)91091-4 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 Zhang JS, 2006, J NEUROSCI RES, V84, P819, DOI 10.1002/jnr.20985 Zheng XH, 2006, BIOL CYBERN, V95, P233, DOI 10.1007/s00422-006-0081-9 Zheng XH, 2006, ANN BIOMED ENG, V34, P697, DOI 10.1007/s10439-005-9073-5 Zhou JX, 2004, J NEUROSCI RES, V78, P901, DOI 10.1002/jnr.20343 NR 58 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2008 VL 240 IS 1-2 BP 57 EP 72 DI 10.1016/j.heares.2008.02.006 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 324PW UT WOS:000257531500006 PM 18396381 ER PT J AU Hsieh, IH Saberi, K AF Hsieh, I-Hui Saberi, Kourosh TI Dissociation of procedural and semantic memory in absolute-pitch processing SO HEARING RESEARCH LA English DT Article DE music; absolute-pitch; memory ID MUSICAL PITCH; CODING STRATEGIES; IDENTIFICATION; POSSESSORS AB We describe two memory-retrieval systems in absolute-pitch (AP) processing and propose existence of a universal internal pitch template to which subpopulations of musicians selectively gain access through the two systems. In Experiment 1, AP and control musicians adjusted the frequency of a pure tone to match the pitch of a visually displayed randomly selected musical note. In Experiment 11 the same subjects vocally produced within 2 s the pitch associated with a randomly selected musical note label. AP musicians, but not controls, were highly accurate in frequency matching. Surprisingly, both AP and non-AP groups were extremely accurate in voicing the target pitch as determined from an FFT of the recorded voiced notes (i.e., sigma = 0.97, 0.90 semitones, respectively). Spectrogram analysis showed that notes voiced by non-AP musicians are accurate from onset of voicing suggesting that pitch accuracy does not result from an auditory-motor feedback loop. Findings support existence of two memory-retrieval systems for musical pitch: a semantic associative form of memory used by AP musicians, and a more widespread form of procedural memory which allows precise access to internal pitch representations through the vocal-motor system. (C) 2008 Elsevier B.V. All rights reserved. C1 [Saberi, Kourosh] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA. Univ Calif Irvine, Ctr Cognit Neurosci, Irvine, CA 92697 USA. RP Saberi, K (reprint author), Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA. EM saberi@uci.edu CR Baharloo S, 1998, AM J HUM GENET, V62, P224, DOI 10.1086/301704 Deutsch D, 2002, CURR DIR PSYCHOL SCI, V11, P200, DOI 10.1111/1467-8721.00200 Deutsch D, 2006, J ACOUST SOC AM, V119, P719, DOI 10.1121/1.2151799 HALPERN AR, 1989, MEM COGNITION, V17, P572, DOI 10.3758/BF03197080 Hsieh IH, 2007, HEARING RES, V233, P108, DOI 10.1016/j.heares.2007.08.005 LEVITIN DJ, 1994, PERCEPT PSYCHOPHYS, V56, P414, DOI 10.3758/BF03206733 Levitin DJ, 2005, TRENDS COGN SCI, V9, P26, DOI 10.1016/j.tics.2004.11.007 MIYAZAKI K, 1989, MUSIC PERCEPT, V7, P1 MIYAZAKI K, 1990, MUSIC PERCEPT, V8, P177 Petran LA, 1932, PSYCHOL MONOGR, V42, P1 Rakowski A., 1978, P RES S PSYCH AC MUS, P45 Ross DA, 2004, J ACOUST SOC AM, V116, P1793, DOI 10.1121/1.1758973 SIEGEL JA, 1974, J EXP PSYCHOL, V103, P37, DOI 10.1037/h0036844 TAKEUCHI AH, 1991, MUSIC PERCEPT, V9, P27 VANKREVELEN A, 1951, J EXP PSYCHOL, V42, P207, DOI 10.1037/h0062795 WALDSTEIN RS, 1990, J ACOUST SOC AM, V88, P2099, DOI 10.1121/1.400107 Ward W. D., 1978, J RES SING, V1, P24 Wynn V T, 1973, Prog Neurobiol, V1, P111, DOI 10.1016/0301-0082(73)90018-X WYNN VT, 1972, J PHYSIOL-LONDON, V220, P627 ZATORRE RJ, 1989, MEM COGNITION, V17, P582, DOI 10.3758/BF03197081 Zatorre RJ, 2003, NAT NEUROSCI, V6, P692, DOI 10.1038/nn1085 Zatorre RJ, 1998, P NATL ACAD SCI USA, V95, P3172, DOI 10.1073/pnas.95.6.3172 NR 22 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2008 VL 240 IS 1-2 BP 73 EP 79 DI 10.1016/j.heares.2008.01.017 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 324PW UT WOS:000257531500007 PM 18430531 ER PT J AU Ealy, M Chen, WJ Ryu, GY Yoon, JG Welling, DB Hansen, M Madan, A Smith, RJH AF Ealy, Megan Chen, Wenjie Ryu, Gi-Yung Yoon, Jae-Geun Welling, D. Bradley Hansen, Marlan Madan, Anup Smith, Richard J. H. TI Gene expression analysis of human otosclerotic stapedial footplates SO HEARING RESEARCH LA English DT Article DE otosclerosis; stapes; microarray; gene expression ID ALPHA MESSENGER-RNA; MEASLES-VIRUS; HEARING-LOSS; BONE; COL1A1; LOCUS; TRANSCRIPTION; ASSOCIATION; PROMOTER; ETIOLOGY AB Otosclerosis is a complex disease that results in a common form of conductive hearing loss due to impaired mobility of the stapes. Stapedial motion becomes compromised secondary to invasion of otosclerotic foci into the stapedio-vestibular joint. Although environmental factors and genetic causes have been implicated in this process, the pathogenesis of otosclerosis remains poorly understood. To identify molecular contributors to otosclerosis we completed a microarray study of otosclerotic stapedial footplates. Stapes footplate samples from otosclerosis and control patients were used in the analysis. One-hundred-and-ten genes were found to be differentially expressed in otosclerosis samples. Ontological analysis of differentially expressed genes in otosclerosis provides evidence for the involvement of a number of pathways in the disease process that include interleukin signaling, inflammation and signal tramsduction, suggesting that aberrant regulation of these pathways leads to abnormal bone remodeling. Functional analyses of genes from this study will enhance our understanding of the pathogenesis of this disease. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ealy, Megan; Chen, Wenjie; Smith, Richard J. H.] Univ Iowa, Div Nephrol, Dept Otolaryngol Pediat & Internal Med, Mol Otolaryngol Res Labs, Iowa City, IA 52242 USA. [Ryu, Gi-Yung; Yoon, Jae-Geun; Madan, Anup] Univ Iowa, Dept Neurosurg, Neurogenom Res Lab, Iowa City, IA USA. [Welling, D. Bradley] Ohio State Univ, Dept Otolaryngol Head & Neck Surg, Columbus, OH 43210 USA. [Hansen, Marlan] Univ Iowa, Dept Otolaryngol, Iowa City, IA USA. [Madan, Anup] Inst Syst Biol, Seattle, WA USA. RP Smith, RJH (reprint author), Univ Iowa, Div Nephrol, Dept Otolaryngol Pediat & Internal Med, Mol Otolaryngol Res Labs, 200 Hawkins Dr,21151 PFP, Iowa City, IA 52242 USA. EM richard_smith@uiowa.edu CR ALI LBH, 2008, NEW LOCUS OTOSCLEROS, P9 ALTMANN F, 1967, ANN OTO RHINOL LARYN, V76, P377 BROWNING GG, 1984, ANN OTO RHINOL LARYN, V93, P13 Brownstein Z, 2006, ARCH OTOLARYNGOL, V132, P416, DOI 10.1001/archotol.132.4.416 Chen W, 2007, CLIN GENET, V71, P406, DOI 10.1111/j.1399-0004.2007.00794.x Chen W, 2002, J MED GENET, V39, P473, DOI 10.1136/jmg.39.7.473 Cohen MM, 2006, AM J MED GENET A, V140A, P2646, DOI 10.1002/ajmg.a.31368 Declau F, 2007, ADV OTO-RHINO-LARYNG, V65, P6, DOI 10.1159/000098663 Frisch T, 2000, ANN OTO RHINOL LARYN, V109, P33 GORDON MA, 1989, AM J OTOL, V10, P426 Grayeli AB, 1999, AM J PHYSIOL-ENDOC M, V277, pE1005 Karosi T, 2006, LARYNGOSCOPE, V116, P1427, DOI 10.1097/01.mlg.0000225928.35838.e5 Karosi T, 2005, LARYNGOSCOPE, V115, P1291, DOI 10.1097/01.MLG.0000165462.35495.DF Karst M, 2004, J CELL PHYSIOL, V200, P99, DOI 10.1002/jcp.20036 LEHNERDT G, 2007, ACTA CTOLARYNGOL, P1 MCKENNA MJ, 1990, ACTA OTO-LARYNGOL, P130 McKenna MJ, 1998, AM J OTOL, V19, P604 Menger DJ, 2003, CLIN OTOLARYNGOL, V28, P112, DOI 10.1046/j.1365-2273.2003.00675.x NIEDERMEYER H, 1994, ORL J OTO-RHINO-LARY, V56, P130 Ogata Y, 1997, J CELL BIOCHEM, V65, P501, DOI 10.1002/(SICI)1097-4644(19970615)65:4<501::AID-JCB6>3.0.CO;2-S RAMSAY HAW, 1994, AM J OTOL, V15, P536 Rodriguez L, 2004, AM J MED GENET A, V128A, P19, DOI 10.1002/ajmg.a.30074 SCHRAUWEN L, 2007, J BONE MINER RES SCHUKNECHT HF, 1985, LARYNGOSCOPE, V95, P1307 Storey JD, 2003, P NATL ACAD SCI USA, V100, P9440, DOI 10.1073/pnas.1530509100 Thomas PD, 2003, GENOME RES, V13, P2129, DOI 10.1101/gr.772403 THYS M, 2007, EUR J HUM GENET THYS M, 2007, HUM MOL GENET Tomek MS, 1998, HUM MOL GENET, V7, P285, DOI 10.1093/hmg/7.2.285 Van Den Bogaert K, 2004, J MED GENET, V41, P450, DOI 10.1136/jmg.2004.018671 Van den Bogaert K, 2001, AM J HUM GENET, V68, P495, DOI 10.1086/318185 WHITSON RH, 1991, J CELL BIOCHEM, V47, P31, DOI 10.1002/jcb.240470105 Yamauchi M, 1996, MATRIX BIOL, V15, P119, DOI 10.1016/S0945-053X(96)90153-5 NR 33 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2008 VL 240 IS 1-2 BP 80 EP 86 DI 10.1016/j.heares.2008.03.001 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 324PW UT WOS:000257531500008 PM 18430532 ER PT J AU Matos, TD Caria, H Simoes-Teixeira, H Aasen, T Dias, O Andrea, M Kelsell, DP Fialho, G AF Matos, T. D. Caria, H. Simoes-Teixeira, H. Aasen, T. Dias, O. Andrea, M. Kelsell, D. P. Fialho, G. TI A novel M163L mutation in connexin 26 causing cell death and associated with autosomal dominant hearing loss SO HEARING RESEARCH LA English DT Article DE connexin 26; dominant; GJB2; deafness ID GENE-MUTATIONS; DEAFNESS; GJB2; PATTERNS AB Mutations in GJB2 gene (encoding connexin 26) are the most common cause of hereditary non-syndromic sensorineural hearing loss (NSSHL) in different populations. The majority of GJB2 mutations are recessive, but a few dominant mutations have been associated with hearing loss either isolated or associated with skin disease. We describe a novel dominant pathogenic GJB2 mutation, identified in a Portuguese family affected with bilateral mild/moderate high-frequency NSSHL. In vitro functional studies demonstrate that the mutant protein (p.M163L) has defective trafficking to the plasma membrane and is associated with increased cell death. (C) 2008 Elsevier B.V. All rights reserved. C1 [Matos, T. D.; Aasen, T.; Kelsell, D. P.] Univ London, Barts & London Sch Med & Dent, Inst Cell & Mol Sci, Ctr Cutaneous Res, London E1 4AT, England. [Matos, T. D.; Caria, H.; Simoes-Teixeira, H.; Fialho, G.] Univ Lisbon, Fac Ciencias, Ctr Genet & Biol Mol, P-1749016 Lisbon, Portugal. [Caria, H.] Inst Politecn Setubal, Escola Super Saude, P-2914503 Setubal, Portugal. [Dias, O.; Andrea, M.] Hosp Santa Maria, Serv ORL, P-1649035 Lisbon, Portugal. RP Kelsell, DP (reprint author), Univ London, Barts & London Sch Med & Dent, Inst Cell & Mol Sci, Ctr Cutaneous Res, London E1 4AT, England. EM d.p.kelsell@qmul.ac.uk RI Aasen, Trond/B-5279-2013 OI Aasen, Trond/0000-0003-0763-2695 CR BALLANA E, 2008, CONNEXINS DEAFNESS H Bayazit YA, 2003, INT J PEDIATR OTORHI, V67, P1331, DOI 10.1016/j.ijporl.2003.08.003 Bruzzone R, 2003, FEBS LETT, V533, P79, DOI 10.1016/S0014-5793(02)03755-9 Clamp M, 2004, BIOINFORMATICS, V20, P426, DOI 10.1093/bioinformatics/btg430 Common JEA, 2004, J MED GENET, V41, P573, DOI 10.1136/jmg.2003.017632 COOPER DN, 2007, HUMAN GENE MUTATION Dalamon V, 2005, HEARING RES, V207, P43, DOI 10.1016/j.heares.2005.04.012 del Castillo FJ, 2005, J MED GENET, V42, P588, DOI 10.1136/jmg.2004.028324 Di WL, 2005, J CELL SCI, V118, P1505, DOI 10.1242/jcs.01733 Estivill X, 1998, AM J HUM GENET, V62, P27, DOI 10.1086/301676 FISCHELGHODSIAN N, 1995, AM J OTOLARYNG, V16, P403, DOI 10.1016/0196-0709(95)90078-0 Forge A, 2003, J COMP NEUROL, V467, P207, DOI 10.1002/cne.10916 Marlin S, 2001, ARCH OTOLARYNGOL, V127, P927 Marziano NK, 2003, HUM MOL GENET, V12, P805, DOI 10.1093/hmg/ddg076 Matos TD, 2007, J MED GENET, V44, P721, DOI 10.1136/jmg.2007.050682 Scott DA, 1998, HUM MUTAT, V11, P387, DOI 10.1002/(SICI)1098-1004(1998)11:5<387::AID-HUMU6>3.0.CO;2-8 Stong BC, 2006, LARYNGOSCOPE, V116, P2205, DOI 10.1097/01.mlg.0000241944.77192.d2 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 Zhao HB, 2006, J COMP NEUROL, V499, P506, DOI 10.1002/cne.21113 NR 19 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2008 VL 240 IS 1-2 BP 87 EP 92 DI 10.1016/j.heares.2008.03.004 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 324PW UT WOS:000257531500009 PM 18472371 ER PT J AU Vinay Moore, BCJ AF Vinay Moore, Brian C. J. TI Effects of activation of the efferent system on psychophysical tuning curves as a function of signal frequency SO HEARING RESEARCH LA English DT Article DE efferent system; psychophysical tuning curves; contralateral stimulation ID CROSSED OLIVOCOCHLEAR BUNDLE; BASILAR-MEMBRANE RESPONSES; AUDITORY-NERVE RESPONSE; GUINEA-PIG COCHLEA; INTENSITY DISCRIMINATION; ELECTRICAL-STIMULATION; NONLINEAR MECHANICS; CHINCHILLA COCHLEA; HUMANS; NOISE AB it has been shown that electrical stimulation of the efferent auditory system can influence neural tuning curves in animals. Here, we examined a psychophysical analog of this effect in humans. All of the 19 normally hearing subjects showed a reduction in the amplitude of otoacoustic emissions in one ear when contralateral broadband noise was presented, indicating a functioning efferent system. Psychophysical tuning curves (PTCs) were measured in simultaneous masking in the absence and presence of contralateral stimulation (CS). The CS was a continuous narrowband noise centered at the signal frequency and presented at a level of 50 or 60 dB SL. The CS had no consistent effect on the masker level at the tips of the PTCs. For the two highest signal frequencies (2000 and 4000 Hz), the CS reduced the masker level required for threshold on both the low- and high-frequency sides of the PTCs, and the sharpness of tuning, as measured by Q10, decreased significantly. For the two lowest signal frequencies (500 and 1000 Hz), the masker level required for threshold on the low-frequency sides of the PTCs increased with CS, and the Q10 values increased significantly. The general pattern of the results was consistent with that observed for electrical stimulation of the efferent system in animals. (C) 2008 Elsevier B.V. All rights reserved. C1 [Vinay] All India Inst Speech & Hearing, Mysore 570006, Karnataka, India. [Moore, Brian C. J.] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Vinay (reprint author), 231 Shri Vinyasa,9th Cross,5th Main Vijayanagar 1, Mysore 570017, Karnataka, India. EM shrivinyasa@gmail.com RI Moore, Brian/I-5541-2012 CR ANSI, 2004, S362004 ANSI British Society of Audiology, 2004, PUR TON AIR BON COND CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8 Chistovich L.A., 1957, BIOPHYSICS-USSR, V2, P743 CODY AR, 1982, J ACOUST SOC AM, V72, P280, DOI 10.1121/1.387993 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X FEX J, 1962, Acta Physiol Scand Suppl, V189, P1 Giraud AL, 1997, NEUROREPORT, V8, P1779 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103 GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5 Kawase T, 2000, HEARING RES, V142, P63, DOI 10.1016/S0378-5955(00)00010-1 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2533 Kluk K, 2005, HEARING RES, V200, P115, DOI 10.1016/j.heares.2004.09.003 Kluk K, 2004, HEARING RES, V194, P118, DOI 10.1016/j.heares.2004.04.012 Liberman MC, 1998, J COMMUN DISORD, V31, P471, DOI 10.1016/S0021-9924(98)00019-7 Maison S, 2000, HEARING RES, V140, P111, DOI 10.1016/S0378-5955(99)00196-3 Micheyl C, 1997, BEHAV NEUROSCI, V111, P801, DOI 10.1037/0735-7044.111.4.801 Micheyl C, 1996, J ACOUST SOC AM, V99, P1604, DOI 10.1121/1.414734 Moore BC., 2003, INTRO PSYCHOL HEARIN MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752 MOORE BCJ, 1984, J ACOUST SOC AM, V76, P1057, DOI 10.1121/1.391425 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K Plack CJ, 2003, JARO, V4, P405, DOI 10.1007/s10162-002-3056-0 Plack CJ, 2003, J ACOUST SOC AM, V113, P1574, DOI 10.1121/1.1538247 Quaranta N, 2005, ACTA OTO-LARYNGOL, V125, P520, DOI 10.1080/00016480510026214 Rhode WS, 1996, AUDIT NEUROSCI, V3, P101 Robles L, 2001, PHYSIOL REV, V81, P1305 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Russell IJ, 1997, J ACOUST SOC AM, V102, P1734, DOI 10.1121/1.420083 SMALL AM, 1959, J ACOUST SOC AM, V31, P1619, DOI 10.1121/1.1907670 Smith DW, 2000, J ACOUST SOC AM, V107, P933, DOI 10.1121/1.428274 WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5 WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 NR 36 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2008 VL 240 IS 1-2 BP 93 EP 101 DI 10.1016/j.heares.2008.03.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 324PW UT WOS:000257531500010 PM 18440738 ER PT J AU Adler, HJ Sanovich, E Brittan-Powell, EF Yan, K Dooling, RJ AF Adler, Henry J. Sanovich, Elena Brittan-Powell, Elizabeth F. Yan, Kai Dooling, Robert J. TI WDR1 presence in the songbird basilar papilla SO HEARING RESEARCH LA English DT Article DE RT-PCR; immunocytochemistry; confocal microscopy; Belgian Waterslager canary; hearing; acoustic trauma; genetic hearing loss ID ACTIN-INTERACTING PROTEIN-1; HAIR-CELL REGENERATION; CANARIES SERINUS-CANARIUS; CHICK INNER-EAR; LIGHT-MICROSCOPIC EVIDENCE; VESTIBULAR OTOLITH ORGANS; SEVERE ACOUSTIC TRAUMA; TECTORIAL MEMBRANE; INTENSE SOUND; DEPOLYMERIZING FACTOR/COFILIN AB WD40 repeat 1 protein (WDR1) was first reported in the acoustically injured chicken inner ear, and bio-informatics revealed that WDR1 has numerous WD40 repeats, important for protein-protein interactions. It has significant homology to actin interacting protein 1 (Aip1) in several lower species such as yeast, roundworm, fruitfly and frog. Several studies have shown that Aip1 binds cofilin/actin depolymerizing factor, and that these interactions are pivotal for actin disassembly via actin filament severing and actin monomer capping. However, the role of WDR1 in auditory function has yet to be determined. WDR1 is typically restricted to hair cells of the normal avian basilar papilla, but is redistributed towards supporting cells after acoustic overstimulation, suggesting that WDR1 may be involved in inner ear response to noise stress. One aim of the present study was to resolve the question as to whether stress factors, other than intense sound, could induce changes in WDR1 presence in the affected avian inner ear. Several techniques were used to assess WDR1 presence in the inner ears of songbird strains, including Belgian Waterslager (BW) canary, an avian strain with degenerative hearing loss thought to have a genetic basis. Reverse transcription, followed by polymerase chain reactions with WDR1-specific primers, confirmed WDR1 presence in the basilar papillae of adult BW, non-BW canaries, and zebra finches. Confocal microscopy examinations, following immunocytochemistry with anti-WDR1 antibody, localized WDR1 to the hair cell cytoplasm along the avian sensory epithelium. In addition, little, if any, staining by anti-WDR1 antibody was observed among supporting cells in the chicken or songbird ear. The present observations confirm and extend the early findings of WDR1 localization in hair cells, but not in supporting cells, in the normal avian basilar papilla. However, unlike supporting cells in the acoustically damaged chicken basilar papilla, the inner ear of the BW canary showed little, if any, WDR1 upregulation in supporting cells. This may be due to the fact that the BW canary already has established hearing loss and/or to the possibility that the mechanism(s) involved in BW hearing loss may not be related to WDR1. (C) 2008 Elsevier B.V. All rights reserved. C1 [Adler, Henry J.; Sanovich, Elena; Brittan-Powell, Elizabeth F.; Yan, Kai; Dooling, Robert J.] Univ Maryland, Ctr Comparat & Evolutionary Biol Hearing, College Pk, MD 20742 USA. [Adler, Henry J.; Yan, Kai] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. [Sanovich, Elena; Brittan-Powell, Elizabeth F.; Dooling, Robert J.] Univ Maryland, Dept Psychol, College Pk, MD 20742 USA. RP Adler, HJ (reprint author), Univ Maryland, Ctr Comparat & Evolutionary Biol Hearing, 4212 Biol Psychol Bldg, College Pk, MD 20742 USA. EM hadler@umd.edu CR ADLER HJ, 1993, HEARING RES, V71, P214, DOI 10.1016/0378-5955(93)90037-2 Adler H J, 1996, Audiol Neurootol, V1, P65 Adler HJ, 1999, GENOMICS, V56, P59, DOI 10.1006/geno.1998.5672 Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 ADLER HJ, 1992, ACTA OTO-LARYNGOL, V112, P444, DOI 10.3109/00016489209137425 ADLER HJ, 1995, J NEUROCYTOL, V24, P111, DOI 10.1007/BF01181554 ADLER HJ, 1995, SCANNING MICROSCOPY, V9, P825 Adler HJ, 1997, INT J DEV NEUROSCI, V15, P375, DOI 10.1016/S0736-5748(96)00098-6 ADLER HJ, 1995, HEARING RES, V86, P43, DOI 10.1016/0378-5955(95)00051-5 Aizawa H, 1999, GENES CELLS, V4, P311, DOI 10.1046/j.1365-2443.1999.00262.x Allwood EG, 2002, PLANT CELL, V14, P2915, DOI 10.1105/tpc.005363 Altschul SF, 1997, NUCLEIC ACIDS RES, V25, P3389, DOI 10.1093/nar/25.17.3389 AMBERG DC, 1995, STRUCT BIOL, V2, P28 Baird RA, 1996, ANN NY ACAD SCI, V781, P59, DOI 10.1111/j.1749-6632.1996.tb15693.x Balcer HI, 2003, CURR BIOL, V13, P2159, DOI 10.1016/j.cub.2003.11.051 BRITTANPOWELL EF, 2002, ABSTR ASS RES OT, V25, P947 Brittan-Powell EF, 2005, J ACOUST SOC AM, V118, P314, DOI 10.1121/1.1928767 Cho Younsook, 2004, Brain Res Mol Brain Res, V130, P134 Clark MG, 2006, MOL BIOL CELL, V17, P1971, DOI 10.1091/mbc.E05-10-0956 Clark MG, 2007, GENETICS, V176, P1527, DOI 10.1534/genetics.107.072066 COHEN GM, 1978, ACTA OTO-LARYNGOL, V86, P342, DOI 10.3109/00016487809107513 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 COTANCHE DA, 1987, HEARING RES, V30, P197, DOI 10.1016/0378-5955(87)90136-5 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 COTANCHE DA, 1992, EXP NEUROL, V115, P23, DOI 10.1016/0014-4886(92)90215-C Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 COTANCHE DA, 1991, CIBA F SYMP, V160, P131 COTANCHE DA, 1990, HEARING RES, V46, P29, DOI 10.1016/0378-5955(90)90137-E CRUZ RM, 1987, ARCH OTOLARYNGOL, V113, P1058 Dooling RJ, 2006, J ACOUST SOC AM, V119, P2524, DOI 10.1121/1.2171839 Dooling R. J., 2001, Acoustical Science and Technology, V22, DOI 10.1250/ast.22.93 Dooling RJ, 1997, P NATL ACAD SCI USA, V94, P14206, DOI 10.1073/pnas.94.25.14206 EPSTEIN JE, 1995, HEARING RES, V90, P31, DOI 10.1016/0378-5955(95)00141-9 Gerisch G, 2004, CELL MOTIL CYTOSKEL, V57, P18, DOI 10.1002/cm.10150 Gleich O, 1997, J COMP NEUROL, V377, P5, DOI 10.1002/(SICI)1096-9861(19970106)377:1<5::AID-CNE2>3.0.CO;2-8 GLEICH O, 1995, HEARING RES, V82, P100 GLEICH O, 1994, HEARING RES, V79, P123, DOI 10.1016/0378-5955(94)90134-1 Gong TWL, 1996, HEARING RES, V96, P20, DOI 10.1016/0378-5955(96)00013-5 Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x Iida K, 1999, GENES CELLS, V4, P21, DOI 10.1046/j.1365-2443.1999.00235.x Ketelaar T, 2004, CURR BIOL, V14, P145, DOI 10.1016/j.cub.2004.01.004 Kile BT, 2007, BLOOD, V110, P2371, DOI 10.1182/blood-2006-10-055087 Konzok A, 1999, J CELL BIOL, V146, P453, DOI 10.1083/jcb.146.2.453 Letunic I, 2006, NUCLEIC ACIDS RES, V34, pD257, DOI 10.1093/nar/gkj079 Li JY, 2007, NAT CELL BIOL, V9, P276, DOI 10.1038/ncb1541 Lomax MI, 2000, HEARING RES, V147, P293, DOI 10.1016/S0378-5955(00)00139-8 Lomax MI, 2001, NOISE HEALTH, V3, P19 MARSH RR, 1990, HEARING RES, V46, P229, DOI 10.1016/0378-5955(90)90004-9 Matsumoto S, 1998, J BIOCHEM-TOKYO, V124, P326 Mohri K, 2004, J BIOL CHEM, V279, P31697, DOI 10.1074/jbc.M403351200 Mohri K, 2003, J CELL SCI, V116, P4107, DOI 10.1242/jcs.00717 Mohri K, 2006, MOL BIOL CELL, V17, P2190, DOI 10.1091/mbc.E05-11-1.016 Ofsie MS, 1996, J COMP NEUROL, V370, P281 Oh SH, 2002, J COMP NEUROL, V448, P399, DOI 10.1002/cne.10265 Okada K, 2002, J BIOL CHEM, V277, P43011, DOI 10.1074/jbc.M203111200 Okada K, 1999, J CELL SCI, V112, P1553 Okada K, 2006, MOL BIOL CELL, V17, P2855, DOI 10.1091/mbc.E06-02-0135 OKANOYA K, 1987, J COMP PSYCHOL, V101, P213, DOI 10.1037/0735-7036.101.2.213 OKANOYA K, 1990, HEARING RES, V46, P271, DOI 10.1016/0378-5955(90)90008-D OKANOYA K, 1985, J ACOUST SOC AM, V78, P1170, DOI 10.1121/1.392885 Ono S, 2003, BIOCHEMISTRY-US, V42, P13363, DOI 10.1021/bi034600x Ono S, 2001, J CELL BIOL, V152, P1313, DOI 10.1083/jcb.152.6.1313 POJE CP, 1995, HEARING RES, V82, P197, DOI 10.1016/0378-5955(94)00177-R RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408 RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 Ren N, 2007, GENETICS, V176, P2223, DOI 10.1534/genetics.107.072959 Roberson DW, 1996, AUDIT NEUROSCI, V2, P195 Rodal AA, 1999, J CELL BIOL, V145, P1251, DOI 10.1083/jcb.145.6.1251 Rogers SL, 2003, J CELL BIOL, V162, P1079, DOI 10.1083/jcb.200303023 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 RYALS BM, 1995, HEARING RES, V83, P51, DOI 10.1016/0378-5955(94)00190-2 Ryals BM, 1999, HEARING RES, V131, P71, DOI 10.1016/S0378-5955(99)00022-2 Saunders JC, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P62 SAUNDERS JC, 1992, EXP NEUROL, V115, P13, DOI 10.1016/0014-4886(92)90213-A SCHULTZ J, 1998, P NATL ACAD SCI USA, V95, P5864 SHIMADA Y, 1992, CELL STRUCT FUNCT, V17, P301 Shin DH, 2004, NEUROSCI LETT, V367, P399, DOI 10.1016/j.neulet.2004.06.053 Smolders JWT, 1999, AUDIOL NEURO-OTOL, V4, P286, DOI 10.1159/000013853 Steyger PS, 1997, INT J DEV NEUROSCI, V15, P417, DOI 10.1016/S0736-5748(96)00101-3 Voegtli WC, 2003, J BIOL CHEM, V278, P34373, DOI 10.1074/jbc.M302773200 Wang Y, 1996, HEARING RES, V97, P11, DOI 10.1016/S0378-5955(96)80003-7 Warner SJ, 2003, DEV DYNAM, V226, P702, DOI 10.1002/dvdy.10262 Wright TF, 2004, P ROY SOC B-BIOL SCI, V271, pS409, DOI 10.1098/rsbl.2004.0204 NR 83 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2008 VL 240 IS 1-2 BP 102 EP 111 DI 10.1016/j.heares.2008.03.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 324PW UT WOS:000257531500011 PM 18514449 ER PT J AU Jump, RL Ries, DT AF Jump, Rebecca L. Ries, Dennis T. TI Effect of interaural level and phase cues on intervening interference in auditory working memory for loudness SO HEARING RESEARCH LA English DT Article DE intensity; loudness; just noticeable difference; auditory working memory ID SHORT-TERM-MEMORY; RECOGNITION MEMORY; PITCH-MEMORY; RETROACTIVE INTERFERENCE; TONAL PITCH; TONES; INTENSITY; EAR; REPETITION; INPUT AB The focus of this study was to gauge the influence of intervening interference on an intensity standard held within auditory working memory through measurement of the just noticeable difference (JND) for intensity. Additionally, the use of interaural phase differences and interaural level differences as spatial cues were employed to identify whether these indicators provided a means for release from interference. A series of tones, both with and without spatial cues, were presented to subjects and responses were obtained using the method of constant stimuli. The JND for intensity was measured in a control condition with a silent inter-comparison interval and three conditions containing intervening tones within the temporal gap between the standard and comparison stimuli. The presence of intervening interference produced a significant increase in the intensity difference needed for discrimination. Further, the provision of spatial cues did not result in a significant release from this interference. These results indicate that a release from interference is not obtained when listeners are required to rely entirely on information used for spatial location (i.e., overall intensity differences and interaural phase/intensity differences) without unique information identifying the sound source to aid in retention of relevant information within auditory working memory. (C) 2008 Elsevier B.V. All rights reserved. C1 [Jump, Rebecca L.; Ries, Dennis T.] Ohio Univ, Sch Hearing Speech & Language Sci, Auditory Percept Lab, Grover Ctr W241, Athens, OH 45701 USA. RP Jump, RL (reprint author), Ohio Univ, Sch Hearing Speech & Language Sci, Auditory Percept Lab, Grover Ctr W241, Athens, OH 45701 USA. EM rj151000@ohio.edu; ries@ohio.edu CR Berti S, 2006, EXP PSYCHOL, V53, P111, DOI 10.1027/1618-3169.53.2.111 BULL AR, 1972, PERCEPT PSYCHOPHYS, V11, P105, DOI 10.3758/BF03212696 Clement S, 1999, J ACOUST SOC AM, V106, P2805, DOI 10.1121/1.428106 Cowan N, 2005, COGNITIVE PSYCHOL, V51, P42, DOI 10.1016/j.cogpsych.2004.12.001 DEUTSCH D, 1978, Q J EXP PSYCHOL, V30, P283, DOI 10.1080/14640747808400675 DEUTSCH D, 1975, PERCEPT PSYCHOPHYS, V17, P320, DOI 10.3758/BF03203217 DEUTSCH D, 1972, J EXP PSYCHOL, V93, P156, DOI 10.1037/h0032496 DEUTSCH D, 1972, SCIENCE, V175, P1020, DOI 10.1126/science.175.4025.1020 DEUTSCH D, 1974, Q J EXP PSYCHOL, V26, P229, DOI 10.1080/14640747408400408 DEUTSCH D, 1975, MEM COGNITION, V3, P263, DOI 10.3758/BF03212909 DEUTSCH D, 1970, SCIENCE, V168, P1604, DOI 10.1126/science.168.3939.1604 DEUTSCH D, 1970, NATURE, V226, P286, DOI 10.1038/226286a0 DURLACH NI, 1969, J ACOUST SOC AM, V46, P372, DOI 10.1121/1.1911699 ELLIOTT LL, 1970, PERCEPT PSYCHOPHYS, V8, P379, DOI 10.3758/BF03212613 Engle RW, 1999, J EXP PSYCHOL GEN, V128, P309, DOI 10.1037/0096-3445.128.3.309 FEDDERSEN UE, 1957, J ACOUST SOC AM, V29, P988 KALLMAN HJ, 1987, MEM COGNITION, V15, P454, DOI 10.3758/BF03197735 Knudsen VO, 1923, PHYS REV, V21, P84, DOI 10.1103/PhysRev.21.84 KONIG E, 1957, J ACOUST SOC AM, V29, P606 MASSARO DW, 1970, J EXP PSYCHOL, V83, P32, DOI 10.1037/h0028566 PECHMANN T, 1992, MEM COGNITION, V20, P314, DOI 10.3758/BF03199668 Ries DT, 2007, HEARING RES, V230, P64, DOI 10.1016/j.heares.2007.04.003 RYAN TA, 1959, PSYCHOL BULL, V56, P394, DOI 10.1037/h0041280 SEMAL C, 1991, J ACOUST SOC AM, V89, P2404, DOI 10.1121/1.400928 SEMAL C, 1993, J ACOUST SOC AM, V94, P1315, DOI 10.1121/1.408159 STEWART JM, 1984, HEARING DISORDERS, P267 TURNER CW, 1989, J ACOUST SOC AM, V86, P109, DOI 10.1121/1.398329 Vuontela V, 2003, LEARN MEMORY, V10, P74, DOI 10.1101/lm.53503 WICKELGR.WA, 1969, J MATH PSYCHOL, V6, P13, DOI 10.1016/0022-2496(69)90028-5 WICKELGR.WA, 1966, J EXP PSYCHOL, V72, P250, DOI 10.1037/h0023438 NR 30 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2008 VL 240 IS 1-2 BP 112 EP 115 DI 10.1016/j.heares.2008.04.004 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 324PW UT WOS:000257531500012 PM 18514450 ER PT J AU Won, JH Schimmel, SM Drennan, WR Souza, PE Atlas, L Rubinstein, JT AF Won, Jong Ho Schimmel, Steven M. Drennan, Ward R. Souza, Pamela E. Atlas, Les Rubinstein, Jay T. TI Improving performance in noise for hearing aids and cochlear implants using coherent modulation filtering SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 149th Meeting of the Acoustical-Society-of-America CY MAY 16-20, 2005 CL Vancouver, CANADA SP Acoust Soc Amer DE coherent modulation filter; speech enhancement; hearing aids; cochlear implants ID AUDITORY-CORTEX; SPEECH RECOGNITION; FREQUENCY; AMPLITUDE; PERIODICITY; PERCEPTION; LISTENERS; CAT AB This study evaluated the maximal attainable performance of speech enhancement strategies based on coherent modulation filtering. An optimal adaptive coherent modulation filtering algorithm was designed to enhance known signals from a target talker in two-talker babble noise. The algorithm was evaluated in a closed-set, speech-recognition-in-noise task. The speech reception threshold (SRT) was measured using a one-down, one-up adaptive procedure. Five hearing-impaired subjects and five cochlear implant users were tested in three processing conditions: (1) original sounds; (2) fixed coherent modulation filtered sounds; and (3) optimal coherent modulation filtered sounds. Six normal-hearing subjects were tested with a 6-channel cochlear implant simulation of sounds processed in the same three conditions. Significant improvements in SRTs were observed when the signal was processed with the optimal coherent modulation filtering algorithm. There was no benefit when the signal was processed with the fixed modulation filter. The current study suggested that coherent modulation filtering might be a promising method for front-end processing in hearing aids and cochlear implants. An approach such as hidden Markov models could be used to generalize the optimal coherent modulation filtering algorithm to unknown utterances and to extend it to open-set speech.(c) 2008 Elsevier B.V. All rights reserved. C1 [Won, Jong Ho; Schimmel, Steven M.; Drennan, Ward R.; Souza, Pamela E.; Atlas, Les; Rubinstein, Jay T.] Univ Washington, VM Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. [Drennan, Ward R.; Rubinstein, Jay T.] Washington Univ, Dept Otolaryngol Head & Neck Surg, St Louis, MO 63130 USA. [Won, Jong Ho; Rubinstein, Jay T.] Washington Univ, Dept Bioengn, St Louis, MO 63130 USA. [Schimmel, Steven M.; Atlas, Les] Washington Univ, Dept Elect Engn, St Louis, MO 63130 USA. [Souza, Pamela E.] Washington Univ, Dept Speech & Hearing Sci, St Louis, MO 63130 USA. RP Won, JH (reprint author), Univ Washington, VM Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA. EM jhwon@u.washington.edu CR Arai T., 1996, Proceedings ICSLP 96. Fourth International Conference on Spoken Language Processing (Cat. No.96TH8206), DOI 10.1109/ICSLP.1996.607318 ATLAS L, 2004, P IEEE ICASSP ATLAS L, 2005, P IEEE ICASSP BACON SP, 1985, AUDIOLOGY, V24, P117 BILGER RC, 1984, J SPEECH HEAR RES, V27, P32 BROADBENT DE, 1957, J ACOUST SOC AM, V29, P708, DOI 10.1121/1.1909019 DARWIN CJ, 1986, J ACOUST SOC AM, V79, P838, DOI 10.1121/1.393474 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467 Dudley H, 1939, J ACOUST SOC AM, V11, P169, DOI 10.1121/1.1916020 DUGUNDJI J, 1958, IRE T INFORM THEOR, V4, P53, DOI 10.1109/TIT.1958.1057435 FORMBY C, 1992, J ACOUST SOC AM, V91, P293, DOI 10.1121/1.402772 Ghitza O, 2001, J ACOUST SOC AM, V110, P1628, DOI 10.1121/1.1396325 Greenberg S, 1997, INT CONF ACOUST SPEE, P1647, DOI 10.1109/ICASSP.1997.598826 Harris R. W., 1991, SPEECH AUDIOMETRY MA KOCHKIN S, 2000, HEAR REV, V7, P24 Kusumoto A, 2000, INT CONF ACOUST SPEE, P853 Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Levitt H, 2001, J REHABIL RES DEV, V38, P111 Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001 MOLLER AR, 1971, ACTA PHYSIOL SCAND, V81, P540, DOI 10.1111/j.1748-1716.1971.tb04931.x Nie KB, 2005, IEEE T BIO-MED ENG, V52, P64, DOI 10.1109/TBME.2004.839799 PATTERSON RD, 1977, PSYCHOPHYSICS PHYSL, P363 Rodenburg M., 1977, PSYCHOPHYSICS PHYSL, P429 SCHIMMEL SM, 2005, P ICASSP, P221 SCHIMMEL SM, 2006, P ICASSP, P261 SCHREINER CE, 1986, HEARING RES, V21, P227, DOI 10.1016/0378-5955(86)90221-2 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Smaragdis P, 2007, IEEE T AUDIO SPEECH, V15, P1, DOI 10.1109/TASL.2006.876726 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 Viemeister N.F., 1977, PSYCHOPHYSICS PHYSL, P419 VINTON MS, 2001, SCALABLE PROGR AUDIO, P3277 WON JH, 2007, JARO-J ASSOC RES OTO, V3, P384 NR 36 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2008 VL 239 IS 1-2 BP 1 EP 11 DI 10.1016/j.heares.2008.01.009 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 307KB UT WOS:000256316700001 PM 18295993 ER PT J AU Jaeger, R Kondrachuk, AV Haslwanter, T AF Jaeger, R. Kondrachuk, A. V. Haslwanter, T. TI The distribution of otolith polarization vectors in mammals: Comparison between model predictions and single cell recordings SO HEARING RESEARCH LA English DT Article DE otolith; hair cells; vestibular; modeling ID PERIPHERAL INNERVATION PATTERNS; VESTIBULAR SENSORY EPITHELIA; DIRECTIONAL SENSITIVITY; DISCHARGE PROPERTIES; UTRICULAR MACULA; SQUIRREL-MONKEY; HAIR BUNDLES; CHINCHILLA; ORGANS; NERVE AB The transformation of head-movements into neural signals represents a multi-stage process. It depends on orientation and movement of the head, the geometry and mechanics of the vestibular sensors, and the ensuing processing of the peripheral vestibular signals. While this process is well understood for the semicircular canals, where each canal transduces the angular velocity in the corresponding canal plane, the contributions of the individual otoliths, our linear acceleration sensors, are still under debate. This is in part due to the complex geometrical structure of the otoliths. To improve our understanding of the otoliths, we have developed a new technique to visualize otolith function: using measured 3D-shapes of human otoliths and the observed 2D patterns of hair cell orientation over the epithelia, morphological polarization vectors are predicted. To visualize the geometric distribution of these vectors, we have created distribution plots which indicate the density of hair cell polarization vectors for the different directions. In many respects, our results closely agree with earlier recordings of polarization vectors of vestibular afferents in squirrel monkeys: for example, hair cells on the saccule do not cover the sagittal plane equally, but show a strong concentration in the dorso-ventral directions. Some discrepancies exist in the density distribution of otolith, which could provide valuable information for future anatomical investigations of the otoliths. (c) 2008 Published by Elsevier B.V. C1 [Jaeger, R.] Univ Tubingen, Dept Theoret Astrophys, D-72076 Tubingen, Germany. [Kondrachuk, A. V.] Natl Acad Sci Ukraine, Inst Phys, Dept Theoret Phys, UA-03028 Kiev, Ukraine. [Haslwanter, T.] Upper Austrian Univ Appl Sci, A-4020 Linz, Austria. [Haslwanter, T.] Upper Austrian Res, Dept Med Informat, A-4020 Linz, Austria. RP Jaeger, R (reprint author), Univ Tubingen, Dept Theoret Astrophys, Morgenstelle 10, D-72076 Tubingen, Germany. EM rudijaeger@yahoo.com; kondr@kondr.kiev.ua; Thomas.Haslwanter@fh-linz.at CR BLANKS RHI, 1975, ACTA OTO-LARYNGOL, V80, P185, DOI 10.3109/00016487509121318 Curthoys IS, 1999, ANN NY ACAD SCI, V871, P27, DOI 10.1111/j.1749-6632.1999.tb09173.x DICKMAN JD, 1991, BRAIN RES, V556, P303 FERNANDEZ C, 1990, J NEUROPHYSIOL, V63, P767 FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P970 FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P985 FLOCK A, 1964, J CELL BIOL, V22, P413, DOI 10.1083/jcb.22.2.413 FLUUR E, 1969, ACTA OTO-LARYNGOL, V69, P17 GOLDBERG JM, 1990, J NEUROPHYSIOL, V63, P781 GOLDBERG JM, 1990, J NEUROPHYSIOL, V63, P791 Holstein GR, 2004, P NATL ACAD SCI USA, V101, P15766, DOI 10.1073/pnas.0402824101 KACHAR B, 1990, HEARING RES, V45, P179, DOI 10.1016/0378-5955(90)90119-A KONDRACHUK AV, 2001, J GRAVIT PHYSL, V8, P101 Kozlov AS, 2007, NAT NEUROSCI, V10, P87, DOI 10.1038/nn1818 Lindeman H H, 1969, Ergeb Anat Entwicklungsgesch, V42, P1 Nam JH, 2006, BIOPHYS J, V90, P2786, DOI 10.1529/biophysj.105.066027 Press W H, 1992, NUMERICAL RECIPES ROSENHALL U, 1975, ACTA OTO-LARYNGOL, V79, P67, DOI 10.3109/00016487509124657 ROSENHAL.U, 1972, ANN OTO RHINOL LARYN, V81, P339 ROSS MD, 1985, AVIAT SPACE ENVIR MD, V56, P338 Sans A, 2001, ADV OTO-RHINO-LARYNG, V58, P1 SHOTWELL SL, 1981, ANN NY ACAD SCI, V374, P1, DOI 10.1111/j.1749-6632.1981.tb30854.x TAKAGI A, 1988, OTOLARYNG HEAD NECK, V98, P195 Tribukait A, 2001, AUDIOL NEURO-OTOL, V6, P98, DOI 10.1159/000046815 WATANUKI K, 1976, ARCH OTOLARYNGOL, V102, P583 Xue JB, 2006, J NEUROPHYSIOL, V95, P171, DOI 10.1152/jn.00800.2005 NR 26 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2008 VL 239 IS 1-2 BP 12 EP 19 DI 10.1016/j.heares.2008.01.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 307KB UT WOS:000256316700002 PM 18316166 ER PT J AU Ma, KT Guan, BC Yang, YQ Zhao, H Jiang, ZG AF Ma, Ke-Tao Guan, Bing-Cai Yang, Yu-Qin Zhao, Hui Jiang, Zhi-Gen TI ACh-induced depolarization in inner ear artery is generated by activation of a TRP-like non-selective cation conductance and inactivation of a potassium conductance SO HEARING RESEARCH LA English DT Article DE membrane potential; intracellular recording; whole-cell recording; TRP channel; inward rectifier potassium channel; arteriole ID SMOOTH-MUSCLE-CELLS; SPIRAL MODIOLAR ARTERY; RECEPTOR POTENTIAL CHANNELS; ENDOTHELIAL-CELLS; COCHLEAR ARTERY; RABBIT AORTA; SUBSTANCE-P; K+ CHANNELS; MYOCYTES; INWARD AB Adequate cochlear blood supply by the spiral modiolar artery (SMA) is critical for normal hearing. ACh may play a role in neuroregulation of the SMA but several key issues including its membrane action mechanisms remain poorly understood. Besides its well-known endothelium-dependent hyperpolarizing action, ACh can induce a depolarization in vascular cells. Using intracellular and whole-cell recording techniques on cells in guinea pig in vitro SMA, we studied the ionic mechanism underlying the ACh-depolarization and found that: (1) ACh induced a DAMP-sensitive depolarization when intermediate conductance K-Ca channels were blocked by charybdotoxin or nitrendipine. The ACh-depolarization was associated with a decrease in input resistance (R-input) in high membrane potential (V,) (similar to-40 mV) cells but with no change or an increase in R-input in low V-m (similar to 75 mV) cells. ACh-depolarization was attenuated by background membrane depolarization from similar to-70 mV in the majority of cells; (2) ACh-induced inward current in smooth muscle cells embedded in a SMA segment often showed a U-shaped I/V curve, the reversal potential of its two arms being near E-K and 0 mV, respectively; (3) ACh-depolarization was reduced by low Na+, zero K+ or 20 mM K+ bath solutions; (4) ACh-depolarization was inhibited by La3+ in all cells tested, by 4-AP and flufenamic acid in low V-m cells, but was not sensitive to Cd2+, Ni2+, nifedipine, niflumic acid, DIDS, IAA94, linopirdine or amiloride. We conclude that ACh-induced vascular depolarization was generated mainly by activation of a TRP-like nonselective cation channel and by inactivation of an inward rectifier K+ channel. Published by Elsevier B.V. C1 [Ma, Ke-Tao; Guan, Bing-Cai; Yang, Yu-Qin; Zhao, Hui; Jiang, Zhi-Gen] Oregon Hlth & Sci Univ, Dept Otolaryngol, Oregon Hearing Res Ctr, Portland, OR 97239 USA. [Ma, Ke-Tao] Shihezi Univ Med Coll, Dept Physiol, Xinjiang, Peoples R China. [Ma, Ke-Tao] Wuhan Univ, Sch Basic Med Sci, Dept Physiol, Wuhan, Hubei, Peoples R China. [Zhao, Hui] Fudan Univ, Eye Ear Nose & Throat Hosp, Dept Otolaryngol, Shanghai 200433, Peoples R China. RP Jiang, ZG (reprint author), Oregon Hlth & Sci Univ, Dept Otolaryngol, Oregon Hearing Res Ctr, Portland, OR 97239 USA. EM jiangz@ohsu.edu CR Albert AP, 2006, J PHYSIOL-LONDON, V571, P361, DOI 10.1113/jphysiol.2005.102780 Albert AP, 2006, J PHYSIOL-LONDON, V570, P45, DOI 10.1113/jphysiol.2005.096875 Albert AP, 2003, J PHYSIOL-LONDON, V549, P143, DOI 10.1113/jphysiol.2002.038190 ARMSTRONG CM, 1992, METHOD ENZYMOL, V207, P100 AXELSSON A, 1988, AM J OTOLARYNG, V9, P278, DOI 10.1016/S0196-0709(88)80036-X Baguley DM, 2002, BRIT MED BULL, V63, P195, DOI 10.1093/bmb/63.1.195 BENY JL, 1988, J PHYSIOL-LONDON, V398, P277 Busse R, 2002, TRENDS PHARMACOL SCI, V23, P374, DOI 10.1016/S0165-6147(02)02050-3 Camello C, 1999, J PHYSIOL-LONDON, V516, P399, DOI 10.1111/j.1469-7793.1999.0399v.x Carr DB, 2007, J NEUROPHYSIOL, V97, P3432, DOI 10.1152/jn.00828.2006 Clapham DE, 2003, NATURE, V426, P517, DOI 10.1038/nature02196 Clapham DE, 2007, CELL, V129, P220, DOI 10.1016/j.cell.2007.03.034 Dobrzynski H, 2002, AM J PHYSIOL-HEART C, V283, pH615, DOI 10.1152/ajpheart.00130.2002 Goto K, 2007, J HYPERTENS, V25, P345, DOI 10.1097/HJH.0b013e328010d616 Griffith TM, 2004, BRIT J PHARMACOL, V141, P881, DOI 10.1038/sj.bjp.0705698 Guan BC, 2007, BRIT J PHARMACOL, V151, P1049, DOI 10.1038/sj.bjp.0707244 Hill AJ, 2006, CELL CALCIUM, V40, P29, DOI 10.1016/j.ceca.2006.03.007 HIRST GDS, 1989, PHYSIOL REV, V69, P546 Hofmann T, 2002, P NATL ACAD SCI USA, V99, P7461, DOI 10.1073/pnas.102596199 HULTCRANTZ E, 1988, AM J OTOLARYNG, V9, P317, DOI 10.1016/S0196-0709(88)80039-5 Inoue R, 2001, CIRC RES, V88, P325 INOUE R, 1993, J PHYSIOL-LONDON, V465, P427 Inoue R, 2006, CIRC RES, V99, P119, DOI 10.1161/01.RES.0000233356.10630.8a Jackson WF, 2005, MICROCIRCULATION, V12, P113, DOI 10.1080/10739680590896072 JAISWAL N, 1991, J PHARMACOL EXP THER, V258, P842 JIANG ZG, 1982, SCIENCE, V217, P739, DOI 10.1126/science.6179162 Jiang ZG, 2007, J PHARMACOL EXP THER, V320, P544, DOI 10.1124/jpet.106.115212 Jiang ZG, 2005, J PHYSIOL-LONDON, V564, P475, DOI 10.1113/jphysiol.2004.080960 Jiang ZG, 2001, J PHYSIOL-LONDON, V537, P829 JIANG ZG, 1981, BRAIN RES, V229, P203, DOI 10.1016/0006-8993(81)90758-7 Jiang ZG, 1999, HEARING RES, V138, P171, DOI 10.1016/S0378-5955(99)00166-5 Jung S, 2002, AM J PHYSIOL-CELL PH, V282, pC347 LINDAU M, 1988, PFLUG ARCH EUR J PHY, V411, P137, DOI 10.1007/BF00582306 MANABE K, 1995, J PHYSIOL-LONDON, V487, P407 NELSON MT, 1995, AM J PHYSIOL-CELL PH, V268, pC799 NUTTALL AL, 1999, NOISE HLTH, V5, P17 Peppiatt-Wildman CM, 2007, J PHYSIOL-LONDON, V580, P755, DOI 10.1113/jphysiol.2006.126656 Quayle JM, 1996, J PHYSIOL-LONDON, V494, P715 Robertson BE, 1996, AM J PHYSIOL-HEART C, V271, pH696 Saleh SN, 2006, J PHYSIOL-LONDON, V577, P479, DOI 10.1113/jphysiol.2006.119305 SCHUKNECHT HF, 1982, AM J OTOLARYNG, V3, P349, DOI 10.1016/S0196-0709(82)80009-4 SHEN KZ, 1992, J PHYSIOL-LONDON, V455, P471 Shi J, 2004, J PHYSIOL-LONDON, V561, P415, DOI 10.1113/jphysiol.2004.075051 Si JQ, 2002, HEARING RES, V171, P167, DOI 10.1016/S0378-5955(02)00497-5 SNYDER SH, 1980, SCIENCE, V209, P976, DOI 10.1126/science.6157191 THALMANN R, 1972, LARYNGOSCOPE, V82, P2249, DOI 10.1288/00005537-197212000-00013 VANRENTERGHEM C, 1995, J NEUROCHEM, V65, P1274 WANG Y, 1993, J PHYSIOL-LONDON, V462, P529 Xu XP, 1999, PFLUG ARCH EUR J PHY, V438, P187, DOI 10.1007/s004240050897 ZHANG H, 1994, PHARMACOL TOXICOL, V75, P327 Zholos AV, 2006, ACTA PHARMACOL SIN, V27, P833, DOI 10.1111/j.1745-7254.2006.00392.x NR 51 TC 2 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAY PY 2008 VL 239 IS 1-2 BP 20 EP 33 DI 10.1016/j.heares.2008.01.005 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 307KB UT WOS:000256316700003 PM 18313244 ER PT J AU Lineton, B Kuponiyi, O Thornton, ARD AF Lineton, Ben Kuponiyi, Omolara Thornton, A. Roger D. TI The effect of stimulus rate and time-separation on Volterra slices of otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE otoacoustic emissions; maximum length sequences; non-linearity temporal interaction; Volterra series ID MAXIMUM LENGTH SEQUENCES; ACOUSTIC EMISSIONS; AUDITORY-SYSTEM; NONLINEARITIES; HEARING; SERIES; CLICKS AB Volterra slices (VSs) of otoacoustic emissions are temporal non-linear interaction components which can be measured using the maximum length sequence technique of stimulation. Previous studies have found, but not explained, non-monotonic variations in the amplitude of VSs when stimulus rate is increased. In this study, a simple phenomenological model is investigated which provided possible insights into the effect of rate on VS amplitudes. Resulting theoretical considerations suggest that the effect of rate on VS amplitude is best examined when the time-separation parameter of the VS is held constant. To test these suggestions, data on VSs of order 2 and 3 were measured in 24 normal hearing ears in which the rate is varied while holding constant the time-separation. Under these conditions, the results reveal a monotonic reduction in the amplitude of the VSs with increasing rate. The phenomenological model offers a possible explanation of some of these results in terms of the derivatives of the input-output function of the non-linearity. In addition, measured cross-correlations between waveforms of VS of different order and slice number were obtained, revealing a complex dependence on time-separation that has not been explained. (c) 2008 Elsevier B.V. All rights reserved. C1 [Lineton, Ben; Kuponiyi, Omolara; Thornton, A. Roger D.] Royal S Hants Hosp, MRC Inst Hearing Res, Southampton SO14 0YG, Hants, England. RP Lineton, B (reprint author), Royal S Hants Hosp, MRC Inst Hearing Res, Southampton SO14 0YG, Hants, England. EM b.lineton@soton.ac.uk CR BRASS D, 1993, J ACOUST SOC AM, V93, P920, DOI 10.1121/1.405453 de Boer J, 2006, HEARING RES, V219, P121, DOI 10.1016/j.heares.2006.06.009 Hine JE, 2002, HEARING RES, V165, P128, DOI 10.1016/S0378-5955(02)00295-2 Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004 Kapadia S, 2001, BRIT J AUDIOL, V35, P103 Kapadia S, 2000, HEARING RES, V146, P101, DOI 10.1016/S0378-5955(00)00103-9 Kemp D., 1997, OTOACOUSTIC EMISSION, P1 KEMP DT, 1980, HEARING RES, V2, P213, DOI 10.1016/0378-5955(80)90059-3 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Lineton B, 2006, HEARING RES, V219, P24, DOI 10.1016/j.heares.2006.05.005 MAMMANO F, 1990, BIOL CYBERN, V63, P307, DOI 10.1007/BF00203454 Schetzen M., 1989, VOLTERRA WIENER THEO Shi Y, 1991, IEEE Trans Biomed Eng, V38, P834 Slaven A, 2003, HEARING RES, V179, P113, DOI 10.1016/S0378-5955(03)00101-1 Thornton ARD, 1997, BRIT J AUDIOL, V31, P493, DOI 10.3109/03005364000000043 Thornton ARD, 2001, CLIN NEUROPHYSIOL, V112, P768, DOI 10.1016/S1388-2457(01)00484-9 THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512 Thornton ARD, 2006, HEARING RES, V219, P56, DOI 10.1016/j.heares.2006.05.010 WRIGHT M, 1993, THESIS U SOUTHAMPTON NR 20 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2008 VL 239 IS 1-2 BP 34 EP 53 DI 10.1016/j.heares.2008.01.006 PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 307KB UT WOS:000256316700004 PM 18328651 ER PT J AU Patel, MR Stamat, JC Zdanski, CJ Ebert, CS Prazma, J AF Patel, Mihir R. Stamat, Jocelyn C. Zdanski, Carlton J. Ebert, Charles S., Jr. Prazma, Jiri TI Nitric oxide in glutamate-induced compound action potential threshold shifts SO HEARING RESEARCH LA English DT Article DE cochlea; excitatory amino acids; glutamate; nitric oxide; 7-nitroindazole; excitotoxicity ID KAINIC ACID; SODIUM-NITROPRUSSIDE; COCHLEAR POTENTIALS; CEREBRAL-ISCHEMIA; GUINEA-PIG; SYNTHASE; CELLS; EXCITOTOXICITY; PHARMACOLOGY; SUPEROXIDE AB Objective: Investigate the role of NO as a neuro transmitter in the gerbil cochlea and the effects of (7-NI) on compound action potential (CAP) threshold elevations induced by L-glutamate, an agonist at the NMDA glutamate receptor subtype, to further elucidate the role of NO in cochlear excitotoxicity. Method: In anesthetized gerbils, CAP thresholds were recorded before and after cochlear perfusions with a control solution of artificial perilymph (APS) and a test solution Of L-glutamate (GA) in three experimental groups. Results: The control group showed no CAP threshold elevations (p < 0.05) when APS was perfused after systemic pre-treatment with 7-NI. GA perfusion alone caused significant elevation (p < 0.05) of the mean cochlear CAP threshold (25 dB SPL +/- 5.8 dB to 78 dB SPL +/- 19.5 dB). The CAP threshold elevation was prevented (p < 0.05) when the animals were pretreated with 7-NI before GA perfusion (24 dB SPL +/- 4.2 dB to 27 dB SPL +/- 6.7 dB). Conclusion: NO mediates excitotoxicity when the cochlea is perfused with L-glutamate. (c) 2008 Published by Elsevier B.V. C1 [Patel, Mihir R.; Zdanski, Carlton J.; Ebert, Charles S., Jr.; Prazma, Jiri] Univ N Carolina, Sch Med, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. [Stamat, Jocelyn C.] Northwestern Univ, Mcgaw Med Ctr, Chicago, IL 60611 USA. RP Zdanski, CJ (reprint author), Univ N Carolina, Sch Med, Dept Otolaryngol Head & Neck Surg, Bioinformat Bldg CB 7070, Chapel Hill, NC 27599 USA. EM carlton_zdanski@med.unc.edu CR BECKMAN JS, 1990, P NATL ACAD SCI USA, V87, P1620, DOI 10.1073/pnas.87.4.1620 BLEDSOE SC, 1981, HEARING RES, V4, P109, DOI 10.1016/0378-5955(81)90040-X BOBBIN RP, 1978, ANN OTO RHINOL LARYN, V87, P185 BUISSON A, 1993, J NEUROCHEM, V61, P690 Dais CGD, 1996, HEARING RES, V99, P1 DAWSON VL, 1991, P NATL ACAD SCI USA, V88, P6368, DOI 10.1073/pnas.88.14.6368 EYBALIN M, 1993, PHYSIOL REV, V73, P309 GARTHWAITE J, 1991, TRENDS NEUROSCI, V14, P60, DOI 10.1016/0166-2236(91)90022-M HOGG N, 1992, BIOCHEM J, V281, P419 JENISON GL, 1986, COMP BIOCHEM PHYS C, V84, P385, DOI 10.1016/0742-8413(86)90110-6 Johnson KL, 1998, ACTA OTO-LARYNGOL, V118, P660 LEFEBVRE PP, 1991, BRAIN RES, V555, P75, DOI 10.1016/0006-8993(91)90862-P Martins-Pinge MC, 2007, AUTON NEUROSCI-BASIC, V131, P65, DOI 10.1016/j.autneu.2006.07.004 MONCADA S, 1991, PHARMACOL REV, V43, P109 MOORE PK, 1993, BRIT J PHARMACOL, V108, P296 NUTTALL AL, 1977, ACTA OTO-LARYNGOL, V83, P393, DOI 10.3109/00016487709128863 ONeill MJ, 1996, EUR J PHARMACOL, V310, P115, DOI 10.1016/0014-2999(96)00387-1 PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 PUJOL R, 1985, HEARING RES, V18, P145, DOI 10.1016/0378-5955(85)90006-1 ROTHMAN SM, 1995, TRENDS NEUROSCI, V18, P57 Ruel J, 2007, HEARING RES, V227, P19, DOI 10.1016/j.heares.2006.08.017 SCHUMAN EM, 1994, ANNU REV NEUROSCI, V17, P153, DOI 10.1146/annurev.neuro.17.1.153 SNYDER SH, 1992, SCI AM, V266, P68 Yamada M, 1996, J PHARMACOL TOXICOL, V35, P11, DOI 10.1016/1056-8719(95)00111-5 ZDANSKI CJ, 1994, HEARING RES, V79, P39, DOI 10.1016/0378-5955(94)90125-2 NR 25 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2008 VL 239 IS 1-2 BP 54 EP 59 DI 10.1016/j.heares.2008.01.007 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 307KB UT WOS:000256316700005 PM 18434048 ER PT J AU Gnansia, D Jourdes, V Lorenzi, C AF Gnansia, Dan Jourdes, Vincent Lorenzi, Christian TI Effect of masker modulation depth on speech masking release SO HEARING RESEARCH LA English DT Article DE speech intelligibility; background noise; masking release; glimpsing; modulation depth; temporal fine structure ID NORMAL-HEARING LISTENERS; COCHLEAR IMPLANT USERS; NERVE FIBER RESPONSES; FLUCTUATING NOISE; CONSONANT IDENTIFICATION; RECEPTION THRESHOLD; FINE-STRUCTURE; INTELLIGIBILITY INDEX; INTERFERING SPEECH; TEMPORAL DIPS AB Consonant identification was measured for normal-hearing listeners using nonsense Vowel-Consonant-Vowel (VCV) stimuli embedded in a steady-state or fluctuating noise masker and presented at a fixed, global signal-to-noise ratio (SNR) yielding 50% correct identification for steady noise. Fluctuations in the masker were obtained by applying sinusoidal amplitude modulation to the noise. VCVs and noise were either left intact (unprocessed) or degraded by removing temporal fine structure (TFS) cues within 32 frequency bands with bandwidths chosen to match psychophysical estimates of auditory filter bandwidth. For unprocessed stimuli, masking release (MR) - that is better identification in fluctuating than in steady noise - was observed at both masker frequencies tested (8 and 32 Hz). MR increased monotonically and similarly with the modulation depth in of the noise masker (from m = 12.5% to 100%) at both masker modulation frequencies. The effect of masker modulation depth on release was different for reception of place of articulation and reception of voicing and manner. The effect of masker modulation depth on release was also significantly affected when TFS cues were removed. These data provide evidence that listeners "glimpse" into noise valleys where maximum SNR may be as low as -5 dB (m = 12.5%), and suggest a specific contribution of TFS cues to the glimpsing process. (c) 2008 Elsevier B. V. All rights reserved. C1 [Gnansia, Dan; Lorenzi, Christian] Ecole Normale Super, Dept Etud Cognit, Equipe Audit, F-75005 Paris, France. [Gnansia, Dan; Lorenzi, Christian] Univ Paris 05, UMR CNRS 8158, Lab Psychol Percept, F-75006 Paris, France. [Gnansia, Dan; Jourdes, Vincent; Lorenzi, Christian] ENS, GDR CNRS GRAEC 2967, F-75005 Paris, France. [Gnansia, Dan; Jourdes, Vincent] Sophia Antipolis, MXM Neurelec, F-06224 Vallauris, France. RP Gnansia, D (reprint author), Ecole Normale Super, Dept Etud Cognit, Equipe Audit, 29 Rue Ulm, F-75005 Paris, France. EM dan.gnansia@ens.fr RI Lorenzi, Christian/F-5310-2012 CR ABBAS PJ, 1981, HEARING RES, V5, P69, DOI 10.1016/0378-5955(81)90027-7 ASSMANN PF, 1994, J ACOUST SOC AM, V95, P471, DOI 10.1121/1.408342 Bacon SP, 1998, J SPEECH LANG HEAR R, V41, P549 BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640 BRONKHORST AW, 1992, J ACOUST SOC AM, V92, P3132, DOI 10.1121/1.404209 Buss E, 2004, J ACOUST SOC AM, V115, P2278, DOI 10.1121/1.691035 Buss E, 2003, J ACOUST SOC AM, V113, P462, DOI 10.1121/1.1528927 Cooke M, 2003, J PHONETICS, V31, P579, DOI 10.1016/S0095-4470(03)00013-5 Cooke M, 2006, J ACOUST SOC AM, V119, P1562, DOI 10.1121/1.2166600 CULLING JF, 1994, J ACOUST SOC AM, V95, P1559, DOI 10.1121/1.408543 de Laat J. A. P. M., 1983, HEARING PHYSL BASES, P359 de Cheveigne A, 2002, J ACOUST SOC AM, V111, P1917, DOI 10.1121/1.1458024 DRULLMAN R, 1995, J ACOUST SOC AM, V97, P585, DOI 10.1121/1.413112 Dubno JR, 2002, J ACOUST SOC AM, V111, P2897, DOI 10.1121/1.1480421 Festen J. M., 1987, PSYCHOPHYSICS SPEECH, P461 FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859 Fullgrabe C, 2006, HEARING RES, V211, P74, DOI 10.1016/j.heares.2005.09.001 George ELJ, 2006, J ACOUST SOC AM, V120, P2295, DOI 10.1121/1.2266530 Gilbert G, 2006, J ACOUST SOC AM, V119, P2438, DOI 10.1121/1.2173522 GUSTAFSSON HA, 1994, J ACOUST SOC AM, V95, P518, DOI 10.1121/1.408346 Hohmann V, 2002, ACTA ACUST UNITED AC, V88, P433 HOWARDJONES PA, 1993, ACUSTICA, V78, P258 HOWARDJONES PA, 1993, J ACOUST SOC AM, V93, P2915, DOI 10.1121/1.405811 Kwon BJ, 2001, J ACOUST SOC AM, V110, P1130, DOI 10.1121/1.1384909 Lorenzi C, 1999, HEARING RES, V136, P131, DOI 10.1016/S0378-5955(99)00117-3 Lorenzi C, 2006, INT J AUDIOL, V45, P487, DOI 10.1080/14992020600753213 Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103 MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 Moore BCJ, 1999, J ACOUST SOC AM, V105, P400, DOI 10.1121/1.424571 MOORE BCJ, 1987, J ACOUST SOC AM, V82, P69, DOI 10.1121/1.395439 Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538 PATTERSON RD, 1987, M IOC SPEECH GROUP A Peters RW, 1998, J ACOUST SOC AM, V103, P577, DOI 10.1121/1.421128 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 Rhebergen KS, 2006, J ACOUST SOC AM, V120, P3988, DOI 10.1121/1.2358008 Rhebergen KS, 2005, J ACOUST SOC AM, V117, P2181, DOI 10.1121/1.1861713 RHODE WS, 1978, J NEUROPHYSIOL, V41, P692 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Simpson SA, 2005, J ACOUST SOC AM, V118, P2775, DOI 10.1121/1.2062650 Stickney GS, 2005, J ACOUST SOC AM, V118, P2412, DOI 10.1121/1.2031967 Summerfield Q., 2004, SPRINGER HDB AUDITOR, V18, P231, DOI 10.1007/0-387-21575-1_5 Summers V, 2004, J SPEECH LANG HEAR R, V47, P245, DOI 10.1044/1092-4388(2004/020) TAKAHASHI GA, 1992, J SPEECH HEAR RES, V35, P1410 TERKEURS M, 1993, J ACOUST SOC AM, V94, P1307, DOI 10.1121/1.408158 TERKEURS M, 1993, J ACOUST SOC AM, V93, P1547, DOI 10.1121/1.406813 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 NR 49 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2008 VL 239 IS 1-2 BP 60 EP 68 DI 10.1016/j.heares.2008.01.012 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 307KB UT WOS:000256316700006 PM 18434049 ER PT J AU Bektas, D Martin, GK Stagner, BB Lonsbury-Martin, BL AF Bektas, Devrim Martin, Glen K. Stagner, Barden B. Lonsbury-Martin, Brenda L. TI Noise-induced hearing loss in mice treated with antiretroviral drugs SO HEARING RESEARCH LA English DT Article DE CBA/CaJ mice; HIV; AIDS; ototoxicity; nucleoside reverse transcriptase inhibitors; zidovudine; lamivudine; distortion product otoacoustic emissions; octave-band noise exposure; auditory brainstem responses; synergistic effects ID ACQUIRED-IMMUNODEFICIENCY-SYNDROME; REVERSE-TRANSCRIPTASE INHIBITORS; MITOCHONDRIAL RIBOSOMAL-RNA; INFECTED PATIENTS; AUDITORY FUNCTION; INDUCED DEAFNESS; TEMPORAL BONE; OTOTOXICITY; VIRUS; INHERITANCE AB The results reported here for CBA/CaJ mice describe the effects of regular dosing with a common antiretroviral drug combination on outer hair cell (OHC) function using measures of 2f(1)-f(2) distortion product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs). Specifically, experimental mice were treated daily over a 3-mo period with the nucleoside reverse transcriptase inhibitors (NRTIs), zidovudine (ZDV) and lamivudine (3TC), dissolved in their drinking water, while their control counterparts received untreated water. DPOAE levels and ABR detection thresholds prior to and after 12 wk of NRTI treatment did not differ between experimental and control groups. To assess whether NRTI treatment potentiates the adverse effects of noise over-exposure on OHC function, both experimental and control mice were exposed I wk later, while still on the drug regimen, to a 10-kHz octave-band noise (OBN) at 105-dB SPL for I h. A major outcome of the sound over-exposure episode was that the NRTI-pretreated mice showed significantly greater permanent OBN-induced reductions in DPOAE levels at 2 wk postexposure than were observed for the untreated control animals. These findings support the notion that a synergistic relationship exists between certain NRTls and intense sounds in that such pre-exposure drug treatments produced greater noise-induced decreases in DPOAE activity than did noise exposure alone. This drug/noise interaction is consistent with the known harmful effects of NRTls on cellular mitochondrial activity. (c) 2008 Elsevier B. V. All rights reserved. C1 [Martin, Glen K.; Stagner, Barden B.; Lonsbury-Martin, Brenda L.] VA Loma Linda Healthcare Syst, Res Serv 151, Loma Linda, CA 92357 USA. [Bektas, Devrim] Karadeniz Tech Univ, Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Trabzon, Turkey. [Martin, Glen K.; Lonsbury-Martin, Brenda L.] Loma Linda Univ, Med Ctr, Dept Otolaryngol Head & Neck Surg, Loma Linda, CA USA. RP Martin, GK (reprint author), VA Loma Linda Healthcare Syst, Res Serv 151, 11201 Benton St, Loma Linda, CA 92357 USA. EM glen.martin2@va.gov CR Ayers KM, 1997, FUND APPL TOXICOL, V38, P195, DOI 10.1006/faat.1997.2342 BARREGARD L, 1984, SCAND AUDIOL, V13, P151, DOI 10.3109/01050398409043054 BILLETT TE, 1989, HEARING RES, V41, P189, DOI 10.1016/0378-5955(89)90010-5 BIRCHALL MA, 1992, CLIN OTOLARYNGOL, V17, P117, DOI 10.1111/j.1365-2273.1992.tb01056.x Bombard F, 2005, Noise Health, V7, P29 Brinkman K, 1998, AIDS, V12, P1735, DOI 10.1097/00002030-199814000-00004 Carr A, 2000, LANCET, V356, P1423, DOI 10.1016/S0140-6736(00)02854-3 Castro NM, 2000, REV CLIN ESP, V200, P271 Chandrasekhar SS, 2000, AM J OTOLARYNG, V21, P1, DOI 10.1016/S0196-0709(00)80117-9 Chang SJ, 2006, ENVIRON HEALTH PERSP, V114, P1283, DOI 10.1289/ehp.8959 Christensen L A, 1998, J Am Acad Audiol, V9, P292 Cortopassi GA, 2002, MECH AGEING DEV, V123, P851, DOI 10.1016/S0047-6374(02)00022-2 DAYAL VS, 1971, ANN OTO RHINOL LARYN, V80, P897 EDDY LB, 1976, ISA T, V15, P103 ENG RHK, 1986, AM J MED, V81, P19, DOI 10.1016/0002-9343(86)90176-2 Fechter LD, 2002, TOXICOL SCI, V66, P131, DOI 10.1093/toxsci/66.1.131 Fischel-Ghodsian N, 2003, EAR HEARING, V24, P303, DOI 10.1097/01.AUD.0000079802.82344.B5 GRIMALDI LME, 1993, J NEUROL, V240, P363, DOI 10.1007/BF00839968 Hariharan R, 1996, HOSP PRACT, V31, P159 HAWKINS JE, 1977, ACTA OTO-LARYNGOL, V83, P123, DOI 10.3109/00016487709128821 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 HIGASHI K, 1989, CLIN GENET, V35, P433 HU DN, 1991, J MED GENET, V28, P79, DOI 10.1136/jmg.28.2.79 Hutchin TP, 2000, CELL MOL LIFE SCI, V57, P1927, DOI 10.1007/PL00000673 JAUHIAIN.T, 1972, ACTA OTO-LARYNGOL, V73, P387, DOI 10.3109/00016487209138956 Jimenez AM, 2001, JARO, V2, P233 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 Kokotas H, 2007, CLIN GENET, V71, P379, DOI 10.1111/j.1399-0004.2007.00800.x KWARTLER JA, 1991, OTOLARYNG HEAD NECK, V104, P265 LALWANI AK, 1992, OTOLARYNG CLIN N AM, V25, P1183 Marra CM, 1997, ARCH NEUROL-CHICAGO, V54, P407 MARTIN GK, 2006, CURRENT PROTOCOL S34 Medina DJ, 1998, J VIROL METHODS, V71, P169, DOI 10.1016/S0166-0934(97)00212-7 Meynard JL, 1997, BIOMED PHARMACOTHER, V51, P461, DOI 10.1016/S0753-3322(97)82326-8 MICHAELS L, 1994, AM J OTOL, V15, P515 Moazzez AH, 1998, AM FAM PHYSICIAN, V57, P1813 Monte S, 1997, INT J STD AIDS, V8, P201, DOI 10.1258/0956462971919723 Morata T, 2002, NOISE HEALTH, V4, P15 NADOL JB, 1993, NEW ENGL J MED, V329, P1092, DOI 10.1056/NEJM199310073291507 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Note R, 2003, ANTIMICROB AGENTS CH, V47, P3384, DOI 10.1128/AAC.47.11.3384-3392.2003 POWDERLY WG, 1990, LANCET, V335, P1106, DOI 10.1016/0140-6736(90)92686-C PREZANT TR, 1993, NAT GENET, V4, P289, DOI 10.1038/ng0793-289 REAL R, 1987, OTOLARYNG HEAD NECK, V97, P409 Schaper M, 2003, ANN OCCUP HYG, V47, P493, DOI 10.1093/annhyg/meg058 Schouten JT, 2006, BMC INFECT DIS, V6, DOI 10.1186/1471-2334-6-28 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Simdon J, 2001, CLIN INFECT DIS, V32, P1623, DOI 10.1086/320522 VERNON J, 1977, AM ACAD OPHTHALMOL O, V84, P407 Vogeser M, 1998, EUR J CLIN MICROBIOL, V17, P215, DOI 10.1007/BF01691124 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 Xing GQ, 2007, CELL RES, V17, P227, DOI 10.1038/sj.cr.7310124 NR 52 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2008 VL 239 IS 1-2 BP 69 EP 78 DI 10.1016/j.heares.2008.01.016 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 307KB UT WOS:000256316700007 PM 18384985 ER PT J AU Guthrie, OW Li-Korotky, HS Durrant, JD Balaban, C AF Guthrie, O'neil W. Li-Korotky, Ha-Sheng Durrant, John D. Balaban, Carey TI Cisplatin induces cytoplasmic to nuclear translocation of nucleotide excision repair factors among spiral ganglion neurons SO HEARING RESEARCH LA English DT Article DE nucleotide excision repair; cisplatin; spiral ganglion neurons; xeroderma pigmentosum; ototoxicity; DNA adduct ID TEMPORAL BONE HISTOPATHOLOGY; PLATINUM-BASED CHEMOTHERAPY; GLUTATHIONE-S-TRANSFERASE; DNA-REPAIR; GENE-EXPRESSION; CANCER-PATIENTS; HUMAN-CELLS; ADDUCTS; DAMAGE; XPA AB Genomic DNA is a high-affinity target for the antineoplastic molecule cisplatin. Cell survival from cisplatin DNA damage is dependent on removal of cisplatin-DNA adducts by nucleotide excision repair (NER) pathways. The rate-limiting steps in the NER pathways are DNA damage identification and verification. These steps are accomplished by xeroderma pigmentosum complementation group C and A (XPC and XPA) and RNA polymerase II. Unlike RNA polymerase 11, XPC and XPA have no known cellular function beyond DNA repair. Cisplatin is known to damage spiral ganglion neurons at the basal coil of the cochlea therefore it was posited that cisplatin may target their DNA and mobilize XPC and XPA. Female Fisher344 rats were given two, four day cycles of cisplatin (2 mg/kg) or saline, separated by a 10 day rest period. A 2 x 3 x 2 factorial design, consisting of two treatment conditions (cisplatin and saline treatment), three survival times (5, 19 and 22 days) and two analysis methods (quantitative RT-PCR and immunohistochemistry) was employed to evaluate the expression and distribution of XPC and XPA. Quantitative RT-PCR revealed statistically significant differerices in cochlear XPC and XPA mRNA levels after cisplatin treatment at all times except day 22 for XPA. Immunohistochemistry revealed that a proportion (similar to 50%) of spiral ganglion neurons in control rats showed cytoplasmic expression of XPC and XPA. After cisplatin treatment, a similar proportion (similar to 50%) of spiral ganglion neurons showed increased nuclear expression of XPC and XPA, which appears to represent translocation from the cytoplasm. Basal coil spiral ganglion neurons translocated XPC and XPA at later treatment cycles and with less magnitude than apical coil neurons after cisplatin treatment. Therefore, it is suggested that cisplatin treatment induces nuclear translocation of NER proteins among spiral ganglion neurons and that this nuclear translocation is less efficient at the base relative to the apex. (c) 2008 Elsevier B.V. All rights reserved. C1 [Guthrie, O'neil W.] Duke Univ, French Family Sci Ctr, Dev Cell & Mol Biol Grp, Dept Biol, Durham, NC 27708 USA. [Guthrie, O'neil W.; Li-Korotky, Ha-Sheng; Durrant, John D.; Balaban, Carey] Univ Pittsburgh, Dept Commun Sci & Disorders, Pittsburgh, PA 15260 USA. [Guthrie, O'neil W.; Li-Korotky, Ha-Sheng; Durrant, John D.; Balaban, Carey] Univ Pittsburgh, Dept Otolaryngol, Pittsburgh, PA 15213 USA. [Balaban, Carey] Univ Pittsburgh, Dept Neurobiol, Pittsburgh, PA 15213 USA. RP Guthrie, OW (reprint author), Duke Univ, French Family Sci Ctr, Dev Cell & Mol Biol Grp, Dept Biol, Sci Dr,Rm 4337,POB 90338, Durham, NC 27708 USA. EM owg@duke.edu CR Boonstra A, 2001, J INVEST DERMATOL, V117, P141, DOI 10.1046/j.0022-202x.2001.01390.x Brooks PJ, 2000, J BIOL CHEM, V275, P22355, DOI 10.1074/jbc.M002259200 Chen ZW, 2003, CARCINOGENESIS, V24, P1111, DOI 10.1093/carcin/bgg051 Cheng PW, 2001, OTOLARYNG HEAD NECK, V125, P411, DOI 10.1067/mhn.2001.117408 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Costa RMA, 2003, BIOCHIMIE, V85, P1083, DOI 10.1016/j.biochi.2003.10.017 DABHOLKAR M, 1994, J CLIN INVEST, V94, P703, DOI 10.1172/JCI117388 de Laat WL, 1999, GENE DEV, V13, P768, DOI 10.1101/gad.13.7.768 D'Errico M, 2006, EMBO J, V25, P4305, DOI 10.1038/sj.emboj.7601277 EASTMAN A, 1986, BIOCHEMISTRY-US, V25, P3912, DOI 10.1021/bi00361a026 Ekborn A, 2000, HEARING RES, V140, P38, DOI 10.1016/S0378-5955(99)00190-2 Ferry KV, 2000, BIOCHEM PHARMACOL, V60, P1305, DOI 10.1016/S0006-2952(00)00441-X FICHTINGERSCHEPMAN AMJ, 1987, CANCER RES, V47, P3000 FRAVAL HNA, 1979, CANCER RES, V39, P1793 Giaccone G, 2000, DRUGS, V59, P9, DOI 10.2165/00003495-200059004-00002 Gillet LCJ, 2006, CHEM REV, V106, P253, DOI 10.1021/cr040483f Goto S, 1999, FREE RADICAL RES, V31, P549, DOI 10.1080/10715769900301121 Hoistad DL, 1998, OTOLARYNG HEAD NECK, V118, P825, DOI 10.1016/S0194-5998(98)70276-1 ISHIKAWA T, 1993, J BIOL CHEM, V268, P20116 Kartalou M, 2001, MUTAT RES-FUND MOL M, V478, P1, DOI 10.1016/S0027-5107(01)00142-7 Kelland LR, 2000, DRUGS, V59, P1, DOI 10.2165/00003495-200059004-00001 Koberle B, 1999, CURR BIOL, V9, P273, DOI 10.1016/S0960-9822(99)80118-3 Kuraoka I, 2000, P NATL ACAD SCI USA, V97, P3832, DOI 10.1073/pnas.070471597 Laine JP, 2006, TRENDS GENET, V22, P430, DOI 10.1016/j.tig.2006.06.006 Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8 LIPPARD SJ, 1982, SCIENCE, V218, P1075, DOI 10.1126/science.6890712 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077 Minami SB, 2004, HEARING RES, V198, P137, DOI 10.1016/j.heares.2004.07.016 Mone MJ, 2004, P NATL ACAD SCI USA, V101, P15933, DOI 10.1073/pnas.0403664101 PERA MF, 1981, CHEM-BIOL INTERACT, V37, P245, DOI 10.1016/0009-2797(81)90181-2 Politi A, 2005, MOL CELL, V19, P679, DOI 10.1016/j.molcel.2005.06.036 Rademakers S, 2003, MOL CELL BIOL, V23, P5755, DOI 10.1128/MCB.23.16.5755-5767.2003 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 Redon S, 2003, NUCLEIC ACIDS RES, V31, P1605, DOI 10.1093/nar/gkg259 REED E, 1987, P NATL ACAD SCI USA, V84, P5024, DOI 10.1073/pnas.84.14.5024 Riedl T, 2003, EMBO J, V22, P5293, DOI 10.1093/emboj/cdg489 Rosenberg E, 2001, CANCER RES, V61, P764 Schmittgen TD, 2000, ANAL BIOCHEM, V285, P194, DOI 10.1006/abio.2000.4753 Selvakumaran M, 2003, CANCER RES, V63, P1311 Siddik ZH, 2003, ONCOGENE, V22, P7265, DOI 10.1038/sj.onc.1206933 Slupphaug G, 2003, MUTAT RES-FUND MOL M, V531, P231, DOI 10.1016/j.mrfmmm.2003.06.002 STRAUSS M, 1983, LARYNGOSCOPE, V93, P1554, DOI 10.1288/00005537-198312000-00007 SZYMKOWSKI DE, 1992, P NATL ACAD SCI USA, V89, P10772, DOI 10.1073/pnas.89.22.10772 Thoma BS, 2003, MOL CARCINOGEN, V38, P1, DOI 10.1002/mc.10143 Thomas JP, 2006, MOL PHARMACOL, V70, P23, DOI 10.1124/mol.106.022244 Tornaletti S, 2003, J BIOL CHEM, V278, P35791, DOI 10.1074/jbc.M305394200 Touliatos JS, 2000, EUR ARCH OTO-RHINO-L, V257, P6, DOI 10.1007/PL00007509 van Ruijven MWM, 2005, HEARING RES, V203, P112, DOI 10.1016/j.heares.2004.12.007 Welsh C, 2004, INT J CANCER, V110, P352, DOI 10.1002/ijc.20134 Wu X, 2007, ONCOGENE, V26, P757, DOI 10.1038/sj.onc.1209828 Wu XM, 2003, CLIN CANCER RES, V9, P5874 Zastawny Tomasz H., 1993, Acta Biochimica Polonica, V40, P555 NR 53 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2008 VL 239 IS 1-2 BP 79 EP 91 DI 10.1016/j.heares.2008.01.013 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 307KB UT WOS:000256316700008 PM 18329831 ER PT J AU Ito, M Hatano, M Okoyama, S Kelly, JB AF Ito, Makoto Hatano, Miyako Okoyama, Shigeo Kelly, Jack B. TI Anatomical plasticity in brainstem auditory nuclei following unilateral ablation of the inferior colliculus in neonatal rats SO HEARING RESEARCH LA English DT Article DE inferior colliculus (IC); superior olivary complex (SOC); retrograde transport; [H-3]-glycine; fluoro-gold (FG) ID SUPERIOR OLIVARY COMPLEX; FERRET MUSTELA-PUTORIUS; NORTH-AMERICAN OPOSSUM; KAINIC ACID LESIONS; SOUND LOCALIZATION; LATERAL LEMNISCUS; ALBINO-RAT; ASCENDING PROJECTIONS; AFFERENT-PROJECTIONS; BINAURAL RESPONSES AB Anatomical plasticity of projections from brainstem auditory structures to the inferior colliculus (IC) was examined in albino rats to determine the effects of unilateral destruction of the IC during early development. The IC in the right hemisphere was destroyed by aspiration on postnatal day 3. Upon reaching adulthood, the rats were examined by retrograde tract tracing methods with fluoro-gold (FG) and [H-3]-glycine to determine patterns of brainstem projections to the undamaged left IC. In our FG experiments, the results confirmed the presence of aberrant crossed projections from the right medial superior olive (MSO) to the undamaged left IC. Following injections of [H-3]-glycine or FG into the undamaged left IC, however, no other aberrant projections were found in the superior olive, including those from the ipsilateral lateral superior olive (LSO) or the superior paraolivary nucleus (SPN). These results suggest that projections from the MSO to the IC may have the latent ability to create aberrant crossed projections during development. On the other hand, the neurons in LSO and SPN do not form aberrant projections following early unilateral IC lesions. (c) 2008 Elsevier B.V. All rights reserved. C1 [Ito, Makoto; Hatano, Miyako] Kanazawa Univ, Grad Sch Med Sci, Div Neurosci, Dept Otolaryngol, Kanazawa, Ishikawa 9208640, Japan. [Okoyama, Shigeo] Kanazawa Univ, Grad Sch Med Sci, Div Neuroanat, Ctr Biomed Res & Educ, Kanazawa, Ishikawa 9208640, Japan. [Kelly, Jack B.] Carleton Univ, Dept Psychol, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. RP Ito, M (reprint author), Kanazawa Univ, Grad Sch Med Sci, Div Neurosci, Dept Otolaryngol, 13-1 Takaramachi, Kanazawa, Ishikawa 9208640, Japan. EM makoto@med.kanazawa-u.ac.jp CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 AITKIN LM, 1986, BRAIN BEHAV EVOLUT, V29, P1, DOI 10.1159/000118668 AOKI E, 1988, BRAIN RES, V442, P63, DOI 10.1016/0006-8993(88)91432-1 BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 FRIAUF E, 1994, J COMP NEUROL, V349, P193, DOI 10.1002/cne.903490204 FRIAUF E, 1993, J COMP NEUROL, V334, P59, DOI 10.1002/cne.903340105 FRIAUF E, 1990, NEUROSCI LETT, V120, P58, DOI 10.1016/0304-3940(90)90167-8 GLENDENNING KK, 1983, J NEUROSCI, V3, P1521 Grothe B, 2000, MICROSC RES TECHNIQ, V51, P382, DOI 10.1002/1097-0029(20001115)51:4<382::AID-JEMT7>3.0.CO;2-7 HENKEL CK, 1993, J COMP NEUROL, V331, P458, DOI 10.1002/cne.903310403 Ito M, 1996, J NEUROPHYSIOL, V76, P3493 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 KAVANAGH GL, 1992, J NEUROPHYSIOL, V67, P1643 KELLY JB, 1993, BRAIN RES, V605, P237, DOI 10.1016/0006-8993(93)91746-F KELLY JB, 1994, J NEUROPHYSIOL, V71, P1078 Kelly JB, 1996, BEHAV NEUROSCI, V110, P1445, DOI 10.1037//0735-7044.110.6.1445 Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0 KUDO M, 1990, J COMP NEUROL, V298, P400, DOI 10.1002/cne.902980403 KUDO M, 1988, BRAIN RES, V463, P352, DOI 10.1016/0006-8993(88)90409-X KUDO M, 1990, NEUROSCI LETT, V117, P26, DOI 10.1016/0304-3940(90)90114-O Loftus WC, 2004, J COMP NEUROL, V472, P330, DOI 10.1002/cne.20070 MOORE DR, 1988, J COMP NEUROL, V269, P342, DOI 10.1002/cne.902690303 MOORE DR, 1995, J COMP NEUROL, V357, P204, DOI 10.1002/cne.903570203 NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203 OKOYAMA S, 1995, HEARING RES, V88, P65, DOI 10.1016/0378-5955(95)00100-I OKOYAMA S, 1995, HEARING RES, V88, P71, DOI 10.1016/0378-5955(95)00101-9 PARKS TN, 1978, J COMP NEUROL, V180, P439, DOI 10.1002/cne.901800303 Pollak GD, 2002, HEARING RES, V168, P60, DOI 10.1016/S0378-5955(02)00362-3 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B SAINTMARIE RL, 1989, J COMP NEUROL, V279, P382 SALLY SL, 1992, BRAIN RES, V572, P5, DOI 10.1016/0006-8993(92)90444-E van Adel BA, 1998, BEHAV NEUROSCI, V112, P432, DOI 10.1037/0735-7044.112.2.432 WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X WILLARD FH, 1984, BRAIN RES, V303, P171, DOI 10.1016/0006-8993(84)90225-7 WILLARD FH, 1983, NEUROSCIENCE, V10, P1203, DOI 10.1016/0306-4522(83)90109-4 WU SH, 1992, J NEUROPHYSIOL, V68, P1151 ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103 NR 40 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2008 VL 239 IS 1-2 BP 92 EP 98 DI 10.1016/j.heares.2008.01.014 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 307KB UT WOS:000256316700009 PM 18343611 ER PT J AU Hamernik, RP Qiu, W Davis, B AF Hamernik, Roger P. Qiu, Wei Davis, Bob TI The effectiveness of N-acetyl-L-CySteine (L-NAC) in the prevention of severe noise-induced hearing loss SO HEARING RESEARCH LA English DT Article DE L-NAC; hearing loss; noise trauma ID CHINCHILLA; ACETYLCYSTEINE; PROTECTION; EXPOSURES; COCHLEA AB Three groups of chinchillas were exposed to a nonGaussian continuous broadband noise at an Leq = 105 dB SPL, 8 h/d for 5 d. One group (N = 6) received only the noise. A second group (N = 6) received the noise and was additionally treated with L-NAC (325 mg/kg, i.p.). Treatment was administered twice daily for 2 d prior to exposure and for 2 d following the exposure. During exposure the animals received the L-NAC just prior to and immediately after each daily exposure. The third group (N = 4) was exposed to the noise and received saline injections on the same schedule as the L-NAC treated animals. Auditory evoked potential recordings from the inferior colliculus were used to estimate pure tone thresholds and surface preparations of the organ of Corti quantified the sensory cell population. In all three groups PTS exceeded 50 dB at 2.0 kHz and above with severe sensory cell loss in the basal half of the cochlea. There was no statistically significant difference among the three groups in all measures of noise-induced trauma. Treatment with L-NAC did not reduce the trauma produced by a high-level, long duration, broadband noise exposure. (c) 2008 Elsevier B.V. All rights reserved. C1 [Hamernik, Roger P.; Qiu, Wei; Davis, Bob] SUNY Coll Plattsburgh, Audit Res Lab, Plattsburgh, NY 12901 USA. RP Hamernik, RP (reprint author), SUNY Coll Plattsburgh, Audit Res Lab, 107 Beaumont Hall,101 Broad St, Plattsburgh, NY 12901 USA. EM roger.hamernik@plattsburgh.edu CR Bielefeld Eric C, 2005, Noise Health, V7, P24 Bielefeld EC, 2007, ACTA OTO-LARYNGOL, V127, P914, DOI 10.1080/00016480601110188 CANLON B, 2007, HEAR RES, V226 Coleman JKM, 2007, HEARING RES, V226, P104, DOI 10.1016/j.heares.2006.08.008 Department of Defense, 2005, TECHN READ ASS TRA D Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 Engstrom H, 1966, STRUCTURAL PATTERN O HSUEH KD, 1990, J ACOUST SOC AM, V87, P1207, DOI 10.1121/1.398795 Hamernik RP, 2003, J ACOUST SOC AM, V114, P386, DOI [10.1121/1.1582446, 10.1121/1.1-582446] HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321 HSUEH KD, 1991, NOISE CONTROL ENG, V36, P18, DOI 10.3397/1.2827778 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kramer S, 2006, J AM ACAD AUDIOL, V17, P265, DOI 10.3766/jaaa.17.4.5 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 SALVI RJ, 1982, AM J OTOLARYNG, V3, P408, DOI 10.1016/S0196-0709(82)80018-5 NR 17 TC 12 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2008 VL 239 IS 1-2 BP 99 EP 106 DI 10.1016/j.heares.2008.02.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 307KB UT WOS:000256316700010 PM 18329204 ER PT J AU Yin, SK Feng, YM Chen, ZN Wang, J AF Yin, Shan-Kai Feng, Yan-Mei Chen, Zheng-Nong Wang, Jian TI The effect of noise-induced sloping high-frequency hearing loss on the gap-response in the inferior colliculus and auditory cortex of guinea pigs SO HEARING RESEARCH LA English DT Article DE gap-evoked response; high-frequency hearing loss; acoustic over-stimulation; inferior colliculus; auditory cortex; guinea pig ID STARLING STURNUS-VULGARIS; ACUTE COCHLEAR DAMAGE; EAR OSSICLE REMOVAL; VOICE ONSET TIME; BRAIN-STEM; IMPAIRED LISTENERS; ACOUSTIC TRAUMA; INTENSITY DISCRIMINATION; TEMPORAL RESOLUTION; UNILATERAL COCHLEAR AB Gap detection has been used as an evaluation tool for temporal processing in subjects with sensorineural hearing loss (SNHL). However, the results from other reports are varied making it difficult to clearly define the impact of SNHL on the temporal processing ability of the auditory system. Specifically, we do not know if and how a high-frequency hearing loss impacts, presumably through off-channel interaction, the temporal processing in low-frequency channels where hearing sensitivity is virtually normal. In this experiment, gap-evoked responses in a low-frequency band (0.5-8 kHz) were recorded in the inferior colliculus (IC) and auditory cortex (AC) of guinea pigs through implanted electrodes, before and after a slopping high-frequency hearing loss, which was induced by over- stimulation using a 12-kHz-tone. The results showed that the gap thresholds in the low-frequency region increased gradually and became significantly higher 8 weeks after the induced high-frequency hearing loss. In addition, the response latency was slightly increased in the IC but this was not true for the AC. These results strongly indicate that a high-frequency hearing loss exerted an off-channel impact on temporal processing in the low-frequency region of the auditory system. (c) 2008 Elsevier B.V. All rights reserved. C1 [Yin, Shan-Kai; Feng, Yan-Mei; Chen, Zheng-Nong; Wang, Jian] Shanghai Jiao Tong Univ, Otorhinolaryngol Inst, Affiliated Peoples Hosp 6, Shanghai 200233, Peoples R China. [Wang, Jian] Dalhousie Univ, Sch Human Commun Disorder, Halifax, NS B3H 1R2, Canada. RP Wang, J (reprint author), Shanghai Jiao Tong Univ, Otorhinolaryngol Inst, Affiliated Peoples Hosp 6, Shanghai 200233, Peoples R China. EM jian.wang@dal.ca CR Aizawa N, 2006, JARO-J ASSOC RES OTO, V7, P71, DOI 10.1007/s10162-005-0026-3 BACON SP, 1987, J ACOUST SOC AM, V81, P1073, DOI 10.1121/1.395125 Barsz K, 1998, HEARING RES, V115, P13, DOI 10.1016/S0378-5955(97)00173-1 Benson CG, 1997, SYNAPSE, V25, P243 Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004 BUCHFELLNER E, 1989, J COMP PHYSIOL A, V164, P539, DOI 10.1007/BF00610447 Buonomano DV, 1998, ANNU REV NEUROSCI, V21, P149, DOI 10.1146/annurev.neuro.21.1.149 Burkard RF, 1999, J ACOUST SOC AM, V106, P304, DOI 10.1121/1.427058 Buus S, 1985, TIME RESOLUTION AUDI, P159 BUUS S, 1984, J ACOUST SOC AM, V76, P77, DOI 10.1121/1.391010 Chen GD, 2005, HEARING RES, V200, P1, DOI 10.1016/j.heares.2004.08.016 Chen GD, 2007, HEARING RES, V226, P14, DOI 10.1016/j.heares.2006.06.007 Chen GD, 2006, HEARING RES, V222, P54, DOI 10.1016/j.heares.2006.08.011 DUM N, 1983, ARCH OTO-RHINO-LARYN, V238, P251, DOI 10.1007/BF00453936 EGGERMONT JJ, 1995, NEUROREPORT, V6, P1645, DOI 10.1097/00001756-199508000-00014 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Eggermont JJ, 1999, J NEUROPHYSIOL, V81, P2570 FENG AS, 1994, J COMP PHYSIOL A, V175, P531 Feng Y, 2007, ACTA OTO-LARYNGOL, V127, P143, DOI 10.1080/00016480600740613 FITZGIBBONS PJ, 1982, J ACOUST SOC AM, V72, P761, DOI 10.1121/1.388256 FITZGIBBONS PJ, 1987, J ACOUST SOC AM, V81, P133, DOI 10.1121/1.395022 FLORENTINE M, 1993, J ACOUST SOC AM, V94, P2575, DOI 10.1121/1.407369 FLORENTINE M, 1984, J SPEECH HEAR RES, V27, P449 GAO WY, 1992, HEARING RES, V62, P27, DOI 10.1016/0378-5955(92)90200-7 Gilbert CD, 1996, P NATL ACAD SCI USA, V93, P615, DOI 10.1073/pnas.93.2.615 GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818 Glasberg B R, 1989, Scand Audiol Suppl, V32, P1 GLASBERG BR, 1987, J ACOUST SOC AM, V81, P1546, DOI 10.1121/1.394507 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HUMES LE, 1983, J SPEECH HEAR RES, V26, P425 Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 IRWIN RJ, 1981, AUDIOLOGY, V20, P234 Kadner A, 2008, NEUROSCIENCE, V151, P868, DOI 10.1016/j.neuroscience.2007.11.008 KLUMP GM, 1991, J COMP PHYSIOL A, V168, P469, DOI 10.1007/BF00199606 KLUMP GM, 1989, J COMP PHYSIOL A, V164, P531, DOI 10.1007/BF00610446 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 Lister JJ, 2000, EAR HEARING, V21, P141, DOI 10.1097/00003446-200004000-00008 MCFADDEN D, 1979, J ACOUST SOC AM, V65, pS118, DOI 10.1121/1.2016982 McFadden SL, 2005, HEARING RES, V202, P200, DOI 10.1016/j.heares.2004.10.011 MOORE BC, 1993, J ACOUST SOC AM, V93, P759 MOORE BCJ, 1993, ANN NY ACAD SCI, V682, P119, DOI 10.1111/j.1749-6632.1993.tb22964.x MOORE BCJ, 1989, J ACOUST SOC AM, V85, P1266, DOI 10.1121/1.397457 Moore BCJ, 1996, EAR HEARING, V17, P133, DOI 10.1097/00003446-199604000-00007 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1093, DOI 10.1121/1.396054 MOORE DR, 1994, J COMP NEUROL, V339, P301, DOI 10.1002/cne.903390209 NELSON DA, 1986, J ACOUST SOC AM, V79, P799, DOI 10.1121/1.393470 Norena A, 2002, HEARING RES, V166, P202, DOI 10.1016/S0378-5955(02)00329-5 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 OKANOYA K, 1990, HEARING RES, V50, P185, DOI 10.1016/0378-5955(90)90044-P Phillips DP, 1997, J ACOUST SOC AM, V101, P3694, DOI 10.1121/1.419376 PLOMP R, 1964, J ACOUST SOC AM, V36, P277, DOI 10.1121/1.1918946 Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641 Pourbakht A, 2003, HEARING RES, V181, P100, DOI 10.1016/S0378-5955(03)00178-3 RAHKO T, 1979, J LARYNGOL OTOL, V93, P123, DOI 10.1017/S0022215100086849 Rajan R, 2001, CEREB CORTEX, V11, P171, DOI 10.1093/cercor/11.2.171 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Rupp A, 2004, J NEUROPHYSIOL, V92, P2239, DOI 10.1152/jn.00163.2004 Rupp A, 2002, NEUROREPORT, V13, P2203, DOI 10.1097/01.wnr.0000045007.30898.39 Rybalko N, 2005, HEARING RES, V200, P63, DOI 10.1016/j.heares.2004.08.014 Salvi RJ, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P275 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SALVI RJ, 1985, J ACOUST SOC AM, V77, P1173, DOI 10.1121/1.392181 SALVI RJ, 1992, FUNCTIONAL CHANGES C, P47 SCHRODER AC, 1994, J ACOUST SOC AM, V96, P2683, DOI 10.1121/1.411276 SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407 SIMON HJ, 1993, EAR HEARING, V14, P190, DOI 10.1097/00003446-199306000-00006 SUN AH, 1991, ACTA OTO-LARYNGOL, V111, P684, DOI 10.3109/00016489109138400 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Tomita M, 2004, HEARING RES, V193, P39, DOI 10.1016/j.heares.2004.03.002 TREES DE, 1986, AUDIOLOGY, V25, P70 TURNER CW, 1982, J SPEECH HEAR RES, V25, P34 TYLER RS, 1982, J ACOUST SOC AM, V72, P740, DOI 10.1121/1.388254 Vollmer M, 2005, J NEUROPHYSIOL, V93, P3339, DOI 10.1152/jn.00900.2004 Walton JP, 1998, J NEUROSCI, V18, P2764 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 Wang J, 1996, J NEUROPHYSIOL, V75, P171 Wang J, 2006, INT J AUDIOL, V45, P521, DOI 10.1080/14992020600803869 Wang JA, 2002, HEARING RES, V168, P238, DOI 10.1016/S0378-5955(02)00360-X WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310 ZHANG W, 1990, HEARING RES, V46, P181, DOI 10.1016/0378-5955(90)90001-6 NR 85 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2008 VL 239 IS 1-2 BP 126 EP 140 DI 10.1016/j.heares.2008.02.002 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 307KB UT WOS:000256316700012 PM 18348901 ER PT J AU Manley, GA Koppl, C AF Manley, Geoffrey A. Koeppl, Christine TI What have lizard ears taught us about auditory physiology? SO HEARING RESEARCH LA English DT Article DE lizard; hearing; evolution of hearing; otoacoustic emission; tuning; cochlear prosthesis ID SPONTANEOUS OTOACOUSTIC EMISSIONS; HAIR-CELLS; ALLIGATOR LIZARD; BOBTAIL LIZARD; TONOTOPIC ORGANIZATION; BASILAR PAPILLA; GEKKO-GECKO; TOKAY GECKO; FREQUENCY-SELECTIVITY; COCHLEAR AMPLIFIER AB The structure of the basilar papilla of the inner ear of lizards is the most diverse among all vertebrates. Research on a variety of lizard ears, animals that are remarkably robust under laboratory conditions, has provided the field of auditory research with valuable information, particularly on the minimum structural requirements for sensitive, selective hearing and on the importance of the tectorial membrane and active processes in this regard. Despite the absence of a tuned basilar membrane, lizard ears produce highly frequency selective hearing through micromechanical tuning of small, resonant hair-cell-tectorial units or of free-standing hair bundles. These units are driven by an active process that also underlies spontaneous and other otoacoustic emissions. Lizard ears provided the first in vivo evidence that the active process is calcium-sensitive and ties within the stereovillar bundles of the hair cells. (C) 2007 Elsevier B.V. All rights reserved. C1 [Manley, Geoffrey A.] Tech Univ Munich, Lehrstuhl Zool, D-85747 Garching, Germany. [Koeppl, Christine] Univ Sydney, Dept Physiol, Sydney, NSW 2006, Australia. RP Manley, GA (reprint author), Tech Univ Munich, Lehrstuhl Zool, Lichtenbergstr 4, D-85747 Garching, Germany. EM geoffrey.manley@wzw.tum.de CR AUTHIER S, 1995, HEARING RES, V82, P1 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 EATOCK RA, 1981, J COMP PHYSIOL, V142, P203 FRISHKOPF LS, 1983, HEARING RES, V12, P393, DOI 10.1016/0378-5955(83)90008-4 HOLTON T, 1983, SCIENCE, V222, P508, DOI 10.1126/science.6623089 HOLTON T, 1983, J PHYSIOL-LONDON, V345, P241 Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765 Hudspeth AJ, 1997, CURR OPIN NEUROBIOL, V7, P480, DOI 10.1016/S0959-4388(97)80026-8 Koppl C, 1995, ADV HEARING RES, P207 KOPPL C, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P489 KOPPL C, 1994, HEARING RES, V72, P159, DOI 10.1016/0378-5955(94)90215-1 KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U Koppl C, 2004, J COMP NEUROL, V479, P149, DOI 10.1002/cne.20311 KOPPL C, 1990, J COMP PHYSIOL A, V167, P101 KOPPL C, 1995, HEARING RES, V82, P14 Koppl C, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P185, DOI 10.1142/9789812704931_0025 Manley G., 2000, COMP HEARING BIRDS R, P139 Manley GA, 2006, Auditory Mechanisms: Processes and Models, P369, DOI 10.1142/9789812773456_0060 Manley GA, 2006, HEARING RES, V212, P33, DOI 10.1016/j.heares.2005.10.007 MANLEY GA, 1988, HEARING RES, V33, P181, DOI 10.1016/0378-5955(88)90031-7 Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0 MANLEY GA, 1995, J ROY SOC MED, V88, P367 Manley GA, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P480, DOI 10.1142/9789812704931_0066 Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858 Manley GA, 2001, P NATL ACAD SCI USA, V98, P2826, DOI 10.1073/pnas.041604998 MANLEY GA, 1989, MECH HEARING, P143 Manley GA, 2004, HEARING RES, V189, P41, DOI 10.1016/S0378-5955(03)00367-8 Manley GA, 2005, AUDIOL NEURO-OTOL, V10, P248, DOI 10.1159/000085999 Manley GA, 2002, J NEUROBIOL, V53, P202, DOI 10.1002/neu.10115 Manley GA, 1999, HEARING RES, V131, P107, DOI 10.1016/S0378-5955(99)00021-0 Manley GA, 2004, J NEUROPHYSIOL, V92, P2685, DOI 10.1152/jn.00267.2004 Manley GA, 2001, J NEUROPHYSIOL, V86, P541 Manley GA, 2008, ACTIVE PROCESSES OTO MANLEY GA, 1990, PERIPHERAL HARING ME Manley GA, 1997, DIVERSITY AUDITORY M, P32 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 MANLEY GA, 2004, EVOLUTION VERTEBRATE, P200 Martin P., 2008, ACTIVE PROCESSES OTO MILLER MR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P463 PEAKE WT, 1980, J ACOUST SOC AM, V67, P1736, DOI 10.1121/1.384300 ROSOWSKI JJ, 1984, HEARING RES, V13, P141, DOI 10.1016/0378-5955(84)90105-9 Shatz LF, 2004, HEARING RES, V195, P41, DOI 10.1016/j.heares.2004.04.002 Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750 Taschenberger G, 1997, HEARING RES, V110, P61, DOI 10.1016/S0378-5955(97)00070-1 TURNER RG, 1987, HEARING RES, V26, P287, DOI 10.1016/0378-5955(87)90064-5 VADIJK P, 1998, J ACOUST SOC AM, V104, P1559 vanDijk P, 1996, J ACOUST SOC AM, V100, P2220, DOI 10.1121/1.417931 WEVER EG, 1978, REPTILE EAR Yates GK, 1998, J NEUROSCI, V18, P1996 NR 50 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 3 EP 11 DI 10.1016/j.heares.2007.09.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400002 PM 17983712 ER PT J AU Brugge, JF Volkov, IO Oya, H Kawasaki, H Reale, RA Fenoy, A Steinschneider, M Howard, MA AF Brugge, John F. Volkov, Igor O. Oya, Hiroyuki Kawasaki, Hiroto Reale, Richard A. Fenoy, Albert Steinschneider, Mitchell Howard, Matthew A., III TI Functional localization of auditory cortical fields of human: Click-train stimulation SO HEARING RESEARCH LA English DT Article DE human auditory cortex; Heschl's gyrus; auditory evoked potential ID SUPERIOR TEMPORAL GYRUS; TIME PHONETIC PARAMETER; EVOKED-POTENTIALS; HUMAN BRAIN; TONOTOPIC ORGANIZATION; EEG RECORDINGS; HESCHLS GYRUS; HUMAN CORTEX; AREAS; MONKEY AB Averaged auditory evoked potentials (AEPs) to bilaterally presented 100 Hz click trains were recorded from multiple sites simultaneously within Heschl's gyrus (HG) and on the posterolateral surface of the superior temporal gyrus (STG) in epilepsy-surgery patients. Three auditory fields were identified based on AEP waveforms and their distribution. Primary (core) auditory cortex was localized to posteromedial HG. Here the AEP was characterized by a robust polyphasic low-frequency field potential having a short onset latency and on which was superimposed a smaller frequency-following response to the click train. Core AEPs exhibited the lowest response threshold and highest response amplitude at one HG site with threshold rising and amplitude declining systematically on either side of it. The AEPs recorded anterolateral to the core, if present, were typically of low amplitude, with little or no evidence of short-latency waves or the frequency-following response that characterized core AEPs. We suggest that this area is part of a lateral auditory belt system. Robust AEPs, with waveforms demonstrably different from those of the core or lateral belt, were localized to the posterolateral surface of the STG and conform to previously described field PLST. (C) 2008 Elsevier B.V. All rights reserved. C1 [Brugge, John F.; Reale, Richard A.] Univ Wisconsin, Dept Psychol, Madison, WI 53705 USA. [Brugge, John F.; Volkov, Igor O.; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A.; Fenoy, Albert; Howard, Matthew A., III] Univ Iowa, Coll Med, Dept Neurosurg, Iowa City, IA 52242 USA. [Brugge, John F.] Univ Wisconsin, Dept Physiol, Madison, WI 53705 USA. [Steinschneider, Mitchell] Albert Einstein Coll Med, Dept Neurol, Bronx, NY 10461 USA. [Steinschneider, Mitchell] Albert Einstein Coll Med, Dept Neurosci, Bronx, NY 10461 USA. RP Brugge, JF (reprint author), Univ Wisconsin, Dept Psychol, Brogden Hall,1210 W Johnson St, Madison, WI 53705 USA. EM Brugge@physiology.wisc.edu CR AREZZO J, 1975, BRAIN RES, V90, P57, DOI 10.1016/0006-8993(75)90682-4 Bailey P, 1951, ISOCORTEX MAN Bidet-Caulet A, 2007, J NEUROSCI, V27, P9252, DOI 10.1523/JNEUROSCI.1402-07.2007 Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512 Brodmann K, 1909, VERGLEICHENDE LOAKAL Brugge JF, 2003, J NEUROPHYSIOL, V90, P3750, DOI 10.1152/jn.00500.2003 Brugge JF, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P145 CELESIA GG, 1971, ELECTROEN CLIN NEURO, V31, P603, DOI 10.1016/0013-4694(71)90076-9 CELESIA GG, 1968, ELECTROEN CLIN NEURO, V24, P458, DOI 10.1016/0013-4694(68)90105-3 CELESIA GG, 1969, NEUROLOGY, V19, P211 CELESIA GG, 1976, BRAIN, V99, P403, DOI 10.1093/brain/99.3.403 CHATRIAN GE, 1960, ELECTROEN CLIN NEURO, V12, P479, DOI 10.1016/0013-4694(60)90024-9 Fishman YI, 2001, J NEUROPHYSIOL, V86, P2761 Formisano E, 2003, NEURON, V40, P859, DOI 10.1016/S0896-6273(03)00669-X Fullerton BC, 2007, J COMP NEUROL, V504, P470, DOI 10.1002/cne.21432 GALABURDA A, 1980, J COMP NEUROL, V190, P597, DOI 10.1002/cne.901900312 Godey B, 2001, CLIN NEUROPHYSIOL, V112, P1850, DOI 10.1016/S1388-2457(01)00636-8 Griffiths TD, 2004, TRENDS NEUROSCI, V27, P181, DOI 10.1016/j.tins.2004.02.005 Hackett T. A., 2003, PRIMATE AUDITION ETH, P199 Hackett TA, 2001, J COMP NEUROL, V441, P197, DOI 10.1002/cne.1407 Hickok G, 2004, COGNITION, V92, P67, DOI 10.1016/j.cognition.2003.10.011 Hickok G, 2007, NAT REV NEUROSCI, V8, P393, DOI 10.1038/nrn2113 Howard MA, 1996, J NEUROSURG, V84, P129, DOI 10.3171/jns.1996.84.1.0129 Howard MA, 1996, BRAIN RES, V724, P260, DOI 10.1016/0006-8993(96)00315-0 Howard M.A., 2000, J COMP NEUROL, V416, P76 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 LEE YS, 1984, BRAIN, V107, P115, DOI 10.1093/brain/107.1.115 Leonard CM, 1998, CEREB CORTEX, V8, P397, DOI 10.1093/cercor/8.5.397 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 LIEGEOISCHAUVEL C, 1991, BRAIN, V114, P139 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 Morosan P, 2001, NEUROIMAGE, V13, P684, DOI 10.1006/nimg.2000.0715 Petkov CI, 2006, PLOS BIOL, V4, P1213, DOI 10.1371/journal.pbio.0040215 PULETTI F, 1970, J NEUROSURG, V32, P244, DOI 10.3171/jns.1970.32.2.0244 RADEMACHER J, 1993, CEREB CORTEX, V3, P313, DOI 10.1093/cercor/3.4.313 Rademacher J, 2001, NEUROIMAGE, V13, P669, DOI 10.1006/nimg.2000.0714 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Rauschecker JP, 1998, CURR OPIN NEUROBIOL, V8, P516, DOI 10.1016/S0959-4388(98)80040-8 Reale RA, 2007, NEUROSCIENCE, V145, P162, DOI 10.1016/j.neuroscience.2006.11.036 Rivier F, 1997, NEUROIMAGE, V6, P288, DOI 10.1006/nimg.1997.0304 ROSE JE, 1949, J COMP NEUROL, V91, P441, DOI 10.1002/cne.900910306 ROSE JE, 1949, J COMP NEUROL, V91, P409, DOI 10.1002/cne.900910305 Scott SK, 2005, CURR OPIN NEUROBIOL, V15, P197, DOI 10.1016/j.conb.2005.03.009 SEMJACOBSEN CW, 1956, ELECTROEN CLIN NEURO, V8, P263, DOI 10.1016/0013-4694(56)90118-3 STEINSCHNEIDER M, 1992, ELECTROEN CLIN NEURO, V84, P196, DOI 10.1016/0168-5597(92)90026-8 Steinschneider M, 1999, J NEUROPHYSIOL, V82, P2346 Steinschneider M, 2005, CEREB CORTEX, V15, P170, DOI 10.1093/cercor/bhh120 Steinschneider M, 1998, J ACOUST SOC AM, V104, P2935, DOI 10.1121/1.423877 Sweet RA, 2005, J COMP NEUROL, V491, P270, DOI 10.1002/cne.20702 Talavage TM, 2004, J NEUROPHYSIOL, V91, P1282, DOI 10.1152/jn.01125.2002 Trebuchon-Da Fonseca A, 2005, NEUROIMAGE, V27, P1, DOI 10.1016/j.neuroimage.2004.12.064 Wallace MN, 2002, EXP BRAIN RES, V143, P499, DOI 10.1007/s00221-002-1014-z Wessinger CM, 2001, J COGNITIVE NEUROSCI, V13, P1, DOI 10.1162/089892901564108 Yvert B, 2005, NEUROIMAGE, V28, P140, DOI 10.1016/j.neuroimage.2005.05.056 Yvert B, 2002, EUR J NEUROSCI, V16, P1146, DOI 10.1046/j.1460-9568.2002.02162.x NR 55 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 12 EP 24 DI 10.1016/j.heares.2007.11.012 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400003 PM 18207680 ER PT J AU Heil, P Neubauer, H Brown, M Irvine, DRF AF Heil, Peter Neubauer, Heinrich Brown, Mel Irvine, Dexter R. F. TI Towards a unifying basis of auditory thresholds: Distributions of the first-spike latencies of auditory-nerve fibers SO HEARING RESEARCH LA English DT Article DE auditory nerve; spike timing; ribbon synapse; hair cell; Poisson process; variability; latency; distribution; absolute threshold; rate-level function ID TEMPORAL INTEGRATION; HEARING-LOSS; GUINEA-PIG; ABSOLUTE THRESHOLD; LEVEL FUNCTIONS; COMPUTER-MODEL; HAIR-CELLS; CAT; RESPONSES; DEPENDENCE AB Detecting sounds in quiet is the simplest task performed by the auditory system, but the neural mechanisms underlying perceptual detection thresholds for sounds in quiet are still not understood. Heil and Neubauer [Heil, P., Neubauer, H., 2003. A unifying basis of auditory thresholds based on temporal summation. Proc. Natl. Acad. Sci. USA 100, 6151-6156] have provided evidence for a simple probabilistic model according to which the stimulus, at any point in time, has a certain probability of exceeding threshold and being detected. Consequently, as stimulus duration increases, the cumulative probability of detection events increases, performance improves, and threshold amplitude decreases. The origin of these processes was traced to the first synapse in the auditory system, between the inner hair cell and the afferent auditory-nerve fiber (ANF). Here we provide further support for this probabilistic "continuous-look" model. It is derived from analyses of the distributions of the latencies of the first spikes of cat ANFs with very low spontaneous discharge rates to tones of different amplitudes. The first spikes in these fibers can be considered detection events. We show that, as predicted, the distributions can be explained by the joint probability of the occurrence of three independent sub-events, where the probability of each of those occurring is proportional to the low-pass filtered stimulus amplitude. The "temporal integration" functions of individual ANFs, derived from their first-spike latencies, are remarkably similar in shape to "temporal integration" functions, which relate threshold sound pressure level at the perceptual level to stimulus duration. This further supports a close link between the mechanisms determining the timing of the first (and other) evoked spikes at the level of the auditory nerve and detection thresholds at the perceptual level. The possible origin and some functional consequences of the expansive power-law non-linearity are discussed. (C) 2007 Elsevier B.V. All rights reserved. C1 [Heil, Peter; Neubauer, Heinrich] Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany. [Brown, Mel; Irvine, Dexter R. F.] Monash Univ, Sch Psychol Psychiat & Psychol Med, Clayton, Vic 3800, Australia. RP Heil, P (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany. EM peter.heil@ifn-magdeburg.de; Heinrich.neubauer@ifn-magdeburg.de; melbrown40@hotmail.com; Dexter.Irvine@med.monash.edu.au RI Irvine, Dexter/F-7474-2011 CR Brandt A, 2005, J NEUROSCI, V25, P11577, DOI 10.1523/JNEUROSCI.3411-05.2005 CARIANI P, 1995, COMMUN COGNIT ARTIF, V12, P161 Chase SM, 2007, P NATL ACAD SCI USA, V104, P5175, DOI 10.1073/pnas.0610368104 Eddins AC, 1998, HEARING RES, V119, P135, DOI 10.1016/S0378-5955(98)00035-5 COSTALUPES JA, 1983, HEARING RES, V9, P43, DOI 10.1016/0378-5955(83)90133-8 de Boer E, 1985, TIME RESOLUTION AUDI, P141 DUNIA R, 1989, HEARING RES, V39, P287, DOI 10.1016/0378-5955(89)90048-8 EATOCK RA, 1991, J NEUROPHYSIOL, V65, P1580 FAY RR, 1983, HEARING RES, V10, P69, DOI 10.1016/0378-5955(83)90018-7 FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229 FLANAGAN JL, 1961, J ACOUST SOC AM, V33, P1540, DOI 10.1121/1.1908494 Furukawa S, 2002, J NEUROPHYSIOL, V87, P1749, DOI 10.1152/jn.00491.2001 Geisler CD, 1997, HEARING RES, V114, P43, DOI 10.1016/S0378-5955(97)00144-5 GEISLER CD, 1990, HEARING RES, V44, P1, DOI 10.1016/0378-5955(90)90017-J GEISLER CD, 1985, J ACOUST SOC AM, V77, P1102, DOI 10.1121/1.392228 GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726 Gleich O, 2007, HEARING RES, V224, P101, DOI 10.1016/j.heares.2006.12.002 Green DM, 1985, TIME RESOLUTION AUDI, P122 Heil P, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P207 Heil P, 2001, J NEUROSCI, V21, P7404 Heil P, 2003, SPEECH COMMUN, V41, P123, DOI 10.1016/S0167-6393(02)00099-7 Heil P, 2006, JARO-J ASSOC RES OTO, V7, P279, DOI 10.1007/00162-0015-0042-y Heil P, 2003, P NATL ACAD SCI USA, V100, P6151, DOI 10.1073/pnas.1030017100 Heil P, 2007, J NEUROSCI, V27, P8457, DOI 10.1523/JNEUROSCI.1512-07.2007 Heil P, 2004, CURR OPIN NEUROBIOL, V14, P461, DOI 10.1016/j.conb.2004.07.002 Heil P, 1997, J NEUROPHYSIOL, V78, P2438 Heinz MG, 2005, JARO-J ASSOC RES OTO, V6, P91, DOI 10.1007/s10162-004-5043-0 Jenison RL, 2001, NEUROCOMPUTING, V38, P239, DOI 10.1016/S0925-2312(01)00355-1 Johnson SL, 2005, J PHYSIOL-LONDON, V563, P177, DOI 10.1113/jphysiol.2004.074740 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1037 Keen EC, 2006, P NATL ACAD SCI USA, V103, P5537, DOI 10.1073/pnas.0601103103 KIANG NYS, 1965, DISCHARGE PATTERNS S, V35 KITZES LM, 1978, J NEUROPHYSIOL, V41, P1165 Krishna BS, 2006, J ACOUST SOC AM, V120, P591, DOI 10.1121/1.2213569 Krishna BS, 2002, J COMPUT NEUROSCI, V13, P71, DOI 10.1023/A:1020116122533 Krumbholz K, 1998, HEARING RES, V124, P155, DOI 10.1016/S0378-5955(98)00134-8 Lennie P, 2003, CURR BIOL, V13, P493, DOI 10.1016/S0960-9822(03)00135-0 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Meddis R, 2006, J ACOUST SOC AM, V119, P406, DOI 10.1121/1.2139628 Meinrenken CJ, 2003, J PHYSIOL-LONDON, V547, P665, DOI 10.1113/jphsiol.2002.032714 Moore BC., 2003, INTRO PSYCHOL HEARIN Moore BCJ, 1996, EAR HEARING, V17, P133, DOI 10.1097/00003446-199604000-00007 MULLER M, 1991, HEARING RES, V55, P50, DOI 10.1016/0378-5955(91)90091-M Neubauer H, 2008, BRAIN RES, V1220, P208, DOI 10.1016/j.brainres.2007.08.081 Neubauer H, 2004, JARO-J ASSOC RES OTO, V5, P436, DOI 10.1007/s10162-004-5031-4 O'Connor KN, 1999, J ACOUST SOC AM, V106, P954, DOI 10.1121/1.427108 Raybould NP, 2001, JARO-J ASSOC RES OTO, V2, P362, DOI 10.1007/s101620010087 RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 SMITH RL, 1980, BRAIN RES, V184, P499, DOI 10.1016/0006-8993(80)90817-3 SMITH RL, 1980, PSYCHOPHYSICAL PHYSL, P312 SOKOLICH WG, 1981, Patent No. 4251686 SOLECKI JM, 1990, J ACOUST SOC AM, V88, P779, DOI 10.1121/1.399727 VIEMEISTER NF, 1992, ADV BIOSCI, V83, P323 VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 YATES GK, 1985, HEARING RES, V17, P1, DOI 10.1016/0378-5955(85)90124-8 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M YATES GK, 1991, HEARING RES, V57, P57, DOI 10.1016/0378-5955(91)90074-J ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276 NR 61 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 25 EP 38 DI 10.1016/j.heares.2007.09.014 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400004 PM 18077116 ER PT J AU Sinex, DG AF Sinex, Donal G. TI Responses of cochlear nucleus neurons to harmonic and mistuned complex tones SO HEARING RESEARCH LA English DT Article DE cochlear nucleus; chinchilla; complex sounds; spectral segregation; auditory scene analysis ID AUDITORY-NERVE FIBERS; CONCURRENT VOWEL IDENTIFICATION; FUNDAMENTAL FREQUENCIES; PERCEPTUAL SEGREGATION; INFERIOR COLLICULUS; DISCHARGE PATTERNS; PITCH; REPRESENTATION; COMPONENTS; SOUNDS AB Preliminary measurements of the representation in the cochlear nucleus (CN) of harmonic tones, harmonic tones with mistuned components, and double harmonic tones are reported. These data indicate that, unlike auditory nerve fibers and IC neurons, neurons in the CN may exhibit one of several qualitatively different response patterns when stimulated with mistuned tones. Primary-like neurons synchronized their discharges to 2-3 individual stimulus components, much like auditory nerve fibers do. Chopper neurons tended to respond with the periodicity of envelopes produced by interactions between adjacent stimulus components but exhibited little or no response synchronized to individual stimulus components. A small proportion of CN neurons exhibited complex slowly-modulated discharge patterns similar to those that are commonly observed in the inferior colliculus (IC). The patterns obtained from CN neurons with different pure tone discharge patterns were generally consistent with expectations based on previous studies with other stimuli. The measurements provided additional insight into the hierarchical processing stages that result in the highly patterned responses of IC neurons to harmonic and mistuned tones. (C) 2007 Elsevier B.V. All rights reserved. C1 Utah State Univ, Dept Psychol, Logan, UT 84322 USA. RP Sinex, DG (reprint author), Utah State Univ, Dept Psychol, 2810 Old Main Hill, Logan, UT 84322 USA. EM don.sinex@usu.edu CR ASSMANN PF, 1990, J ACOUST SOC AM, V88, P680, DOI 10.1121/1.399772 ASSMANN PF, 1989, J ACOUST SOC AM, V85, P327, DOI 10.1121/1.397684 BEERENDS JG, 1989, J ACOUST SOC AM, V85, P813, DOI 10.1121/1.397974 BLACKBURN CC, 1990, J NEUROPHYSIOL, V63, P1191 Bourk TR, 1976, THESIS MIT CAMBRIDGE Bregman AS., 1990, AUDITORY SCENE ANAL Carlyon RP, 2004, TRENDS COGN SCI, V8, P465, DOI 10.1016/j.tics.2004.08.008 CARLYON RP, 1994, J ACOUST SOC AM, V95, P3541, DOI 10.1121/1.409971 Carlyon RP, 1996, J ACOUST SOC AM, V99, P517, DOI 10.1121/1.414510 CHALIKIA MH, 1989, PERCEPT PSYCHOPHYS, V46, P487, DOI 10.3758/BF03210865 CHALIKIA MH, 1993, PERCEPT PSYCHOPHYS, V53, P125, DOI 10.3758/BF03211722 Darwin C. J., 1995, P387, DOI 10.1016/B978-012505626-7/50013-3 de Cheveigne A, 1999, J ACOUST SOC AM, V106, P327, DOI 10.1121/1.427059 DECHEVEIGNE A, 1993, J ACOUST SOC AM, V93, P3271 deCheveigne A, 1997, J ACOUST SOC AM, V101, P2857, DOI 10.1121/1.419480 FENG JJ, 1994, J COMP NEUROL, V346, P1, DOI 10.1002/cne.903460102 Hartmann W. M., 1988, AUDITORY FUNCTION, P623 Irvine D.R.F., 1986, AUDITORY BRAINSTEM R JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 Keilson SE, 1997, J ACOUST SOC AM, V102, P1056, DOI 10.1121/1.419859 Lin JY, 1998, J ACOUST SOC AM, V103, P2608, DOI 10.1121/1.422781 Micheyl C, 2006, J ACOUST SOC AM, V120, P1493, DOI 10.1121/1.2221396 MOORE BCJ, 1986, J ACOUST SOC AM, V80, P479, DOI 10.1121/1.394043 Nuding SC, 1999, HEARING RES, V131, P89, DOI 10.1016/S0378-5955(99)00023-4 PALMER AR, 1990, J ACOUST SOC AM, V88, P1412, DOI 10.1121/1.400329 Plack C. J., 2005, PITCH NEURAL CODING, P278 RHODE WS, 1986, J NEUROPHYSIOL, V56, P287 Rhode WS, 1992, MAMMALIAN AUDITORY P, P94 Roberts B, 2001, J ACOUST SOC AM, V110, P2479, DOI 10.1121/1.1410965 Roberts B, 2005, ACTA ACUST UNITED AC, V91, P945 Roberts B, 1998, J ACOUST SOC AM, V104, P2326, DOI 10.1121/1.423771 Shofner WP, 1999, J NEUROPHYSIOL, V81, P2662 Sinex DG, 2005, J NEUROPHYSIOL, V94, P3523, DOI 10.1152/jn.01194.2004 SINEX DG, 2005, AUDITORY SPECTRAL PR, P371 Sinex DG, 2003, HEARING RES, V182, P130, DOI 10.1016/S0378-5955(03)00189-8 SINEX DG, J NEUROPHYSIOL Sinex DG, 2002, HEARING RES, V168, P150, DOI 10.1016/S0378-5955(02)00366-0 SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750 YOST WA, 1993, HUMAN PSYCHOPHYSICS, P1 Yost WA, 1993, HUMAN PSYCHOPHYSICS, P193 Young E. D., 2002, INTEGRATIVE FUNCTION, P160 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 NR 43 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 39 EP 48 DI 10.1016/j.heares.2007.11.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400005 PM 18078726 ER PT J AU Joris, PX Michelet, P Franken, TP Mc Laughlin, M AF Joris, Philip X. Michelet, Pascal Franken, Tom P. Mc Laughlin, Myles TI Variations on a Dexterous theme: Peripheral time-intensity trading SO HEARING RESEARCH LA English DT Article DE time-intensity trading; phase-locking; temporal; correlogram; fine-structure; binaural ID LATERAL SUPERIOR OLIVE; AUDITORY-NERVE FIBERS; LOW-FREQUENCY NEURONS; COCHLEAR NUCLEAR COMPLEX; INTERAURAL TIME; INFERIOR COLLICULUS; BINAURAL INTERACTION; PHASE-LOCKING; LEVEL DISCRIMINATION; SOUND LOCALIZATION AB Sound pressure level changes can affect the timing of spiketrains. Timing of spiketrains is critical for sensitivity to interaural timing differences (ITDs). Interaural level differences (ILDs) can therefore affect the ITD cue. It has been hypothesized that ILDs may be coded indirectly through a peripheral conversion of level to time (but it should be cautioned that the changes in phase with SPL in low-CF AN fibers of the cat are more complicated) (Jeffress, L.A., 1948. A place theory of sound localization. J. Comp. Physiol. Psychol. 41, 35-39). We tested this conversion by recording from auditory nerve fibers to broadband noise at different SPLs. For each fiber, correlograms were constructed to compare timing to tine-structure across SPLs. We find generally a decrease in the time delay between spikes and the stimulus with increasing SPL. However, the magnitudes of the shift in time are surprisingly small, and dependent on characteristic frequency (CF): the largest shifts are approximately 10 mu s/dB and occur at the lowest Us. Nevertheless, the effects of level on spike timing are systematic and of a magnitude to which the binaural system is sensitive. Thus, even though the results indicate that ILD is not traded for ITD in a simple way, the possibility that low-frequency ILDs affect the binaural percept via a peripheral level-to-time conversion cannot be excluded. (C) 2007 Elsevier B.V. All rights reserved. C1 [Joris, Philip X.; Michelet, Pascal; Franken, Tom P.; Mc Laughlin, Myles] Katholieke Univ Leuven, Sch Med, Lab Auditory Neurophysiol, B-3000 Louvain, Belgium. RP Joris, PX (reprint author), Katholieke Univ Leuven, Sch Med, Lab Auditory Neurophysiol, Campus Gasthuisberg O&N2,Herestr 49,Bus 1021, B-3000 Louvain, Belgium. EM philip.joris@med.kuleuven.be; pascal.michelet@student.kuleuven.be; tom.franken@student.kuleuven.be; myles.mclaughlin@med.kuleuven.be RI Joris, Philip/D-9608-2011 CR ALLEN JB, 1983, J ACOUST SOC AM, V73, P2071, DOI 10.1121/1.389575 ANDERSON DJ, 1971, J ACOUST SOC AM, V49, P1131, DOI 10.1121/1.1912474 BATRA R, 1993, J NEUROPHYSIOL, V70, P64 Bonham BH, 1999, J ACOUST SOC AM, V106, P281, DOI 10.1121/1.427056 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a Breebaart J, 2001, J ACOUST SOC AM, V110, P1074, DOI 10.1121/1.1383297 Brungart DS, 1999, J ACOUST SOC AM, V106, P1465, DOI 10.1121/1.427180 CARNEY LH, 1994, HEARING RES, V76, P31, DOI 10.1016/0378-5955(94)90084-1 CARNEY LH, 1988, J NEUROPHYSIOL, V60, P1653 Colburn HS, 1996, AUDITORY COMPUTATION, P332 Colburn HS, 2003, JARO, V4, P294, DOI 10.1007/s10162-002-1090-6 CROW G, 1978, J ACOUST SOC AM, V64, P493, DOI 10.1121/1.381999 DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561 DOMNITZ R, 1973, J ACOUST SOC AM, V53, P1549, DOI 10.1121/1.1913500 DOMNITZ RH, 1977, J ACOUST SOC AM, V61, P1586, DOI 10.1121/1.381472 Durlach N. I., 1978, HDB PERCEPTION, V4, P365 Eggermont JJ, 1976, HDB SENSORY PHYSL, P625 Evans EF, 1977, PSYCHOPHYSICS PHYSL, P185 FINLAYSON PG, 1991, J NEUROPHYSIOL, V65, P598 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 Green D.M., 1976, INTRO HEARING Green D M, 1969, Annu Rev Psychol, V20, P105, DOI 10.1146/annurev.ps.20.020169.000541 HAFTER ER, 1972, J ACOUST SOC AM, V51, P1852, DOI 10.1121/1.1913044 Hancock KE, 2004, J NEUROSCI, V24, P7110, DOI 10.1523/JNEUROSCI.0762-04.2004 Heinz MG, 2001, J ACOUST SOC AM, V110, P2065, DOI 10.1121/1.1404977 HIRSCH JA, 1985, J NEUROPHYSIOL, V53, P726 Irvine DRF, 2001, J NEUROPHYSIOL, V86, P2647 IRVINE DRF, 1995, HEARING RES, V85, P127, DOI 10.1016/0378-5955(95)00040-B JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 JORIS P, 2007, ASS RES OTOLARYNGOL, V30, P213 Joris PX, 2006, P NATL ACAD SCI USA, V103, P12917, DOI 10.1073/pnas.0601396103 Joris PX, 2006, HEARING RES, V216, P19, DOI 10.1016/j.heares.2006.03.010 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Joris PX, 2003, J NEUROSCI, V23, P6345 JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 Kiang NYS, 1965, RES MONOGRAPH, V35 KITZES LM, 1978, J NEUROPHYSIOL, V41, P1165 Koppl C, 1997, J NEUROSCI, V17, P3312 KUWADA S, 1983, J NEUROPHYSIOL, V50, P981 LAVINE RA, 1971, J NEUROPHYSIOL, V34, P467 Louage DHG, 2004, J NEUROPHYSIOL, V91, P2051, DOI 10.1152/jn.00816.2003 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 McAlpine D, 1996, HEARING RES, V97, P136 MOLLER AR, 1975, J NEUROPHYSIOL, V38, P812 MOUSHEGIAN G, 1959, J ACOUST SOC AM, V31, P1441, DOI 10.1121/1.1907647 Palmer AR, 2007, HEARING RES, V223, P105, DOI 10.1016/j.heares.2006.10.005 Park TJ, 1996, J NEUROSCI, V16, P6554 POLLAK GD, 1988, HEARING RES, V36, P107, DOI 10.1016/0378-5955(88)90054-8 Recio-Spinoso A, 2005, J NEUROPHYSIOL, V93, P3615, DOI 10.1152/jn.00882.2004 Robles L, 2001, PHYSIOL REV, V81, P1305 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 SHAMMA SA, 1989, J ACOUST SOC AM, V86, P989, DOI 10.1121/1.398734 SHAMMA SA, 1985, J ACOUST SOC AM, V78, P1622, DOI 10.1121/1.392800 STERN RM, 1988, J ACOUST SOC AM, V84, P156, DOI 10.1121/1.396982 STERN RM, 1997, BINAURAL SPATIAL HEA, P499 Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005 TRAHIOTIS C, 1978, J ACOUST SOC AM, V64, P1041, DOI 10.1121/1.382087 van der Heijden M, 2006, ASS RES OT ABSTR, V29, P28 van der Heijden M, 2006, J NEUROSCI, V26, P11462, DOI 10.1523/JNEUROSCI.1882-06.2006 Viete S, 1997, J NEUROSCI, V17, P1815 YIN TCT, 1985, J NEUROPHYSIOL, V53, P746 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YIN TCT, 1986, J NEUROPHYSIOL, V55, P280 NR 65 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 49 EP 57 DI 10.1016/j.heares.2007.11.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400006 PM 18187277 ER PT J AU Park, TJ Brand, A Koch, U Ikebuchi, M Grothe, B AF Park, Thomas J. Brand, Antje Koch, Ursula Ikebuchi, Maki Grothe, Benedikt TI Dynamic changes in level influence spatial coding in the lateral superior olive SO HEARING RESEARCH LA English DT Article DE binaural; sound localization; interaural level difference ID INFERIOR COLLICULUS NEURONS; BINAURAL RESPONSE PROPERTIES; INTERAURAL PHASE DISPARITY; PRIMARY AUDITORY-CORTEX; DORSAL NUCLEUS; COCHLEAR NUCLEUS; GABAERGIC INHIBITION; SOUND LOCALIZATION; RECEPTIVE-FIELDS; CAT AB It is well established that the responses of binaural auditory neurons can adapt and change dramatically depending on the nature of a preceding sound. Examples of how the effects of ensuing stimuli play a functional role in auditory processing include motion sensitivity and precedence-like effects. To date, these types of effects have been documented at the level of the midbrain and above. Little is known about sensitivity to ensuing stimuli below in the superior olivary nuclei where binaural response properties are first established. Here we report on single cell responses in the gerbil lateral superior olive, the initial site where sensitivity to interaural level differences is established. In contrast to our expectations we found a robust sensitivity to ensuing stimuli. The majority of the cells we tested (86%), showed substantial suppression and/or enhancement to a designated target stimulus, depending on the nature of a preceding stimulus. Hence, sensitivity to ensuing stimuli is already established at the first synaptic station of binaural processing. (C) 2007 Elsevier B.V. All rights reserved. C1 [Park, Thomas J.] Univ Illinois, Dept Biol Sci, Lab Integrat Neurosci, Chicago, IL 60607 USA. [Park, Thomas J.; Brand, Antje; Koch, Ursula; Ikebuchi, Maki; Grothe, Benedikt] Max Planck Inst Neurobiol, D-82152 Martinsried, Germany. [Koch, Ursula; Grothe, Benedikt] Univ Munich, Div Neurobiol, Dept Biol 2, D-82152 Martinsried, Germany. [Ikebuchi, Maki] Univ Tokyo, Dept Cognit & Behav Sci, Tokyo 1538902, Japan. RP Park, TJ (reprint author), Univ Illinois, Dept Biol Sci, Lab Integrat Neurosci, Chicago, IL 60607 USA. EM Tpark@uic.edu RI Grothe, Benedikt/A-7877-2010 CR Argence M, 2006, NEUROSCIENCE, V141, P1193, DOI 10.1016/j.neuroscience.2006.04.058 Bao SW, 2003, J NEUROSCI, V23, P10765 Behrend O, 2002, J NEUROPHYSIOL, V87, P2915, DOI 10.1152/jn.01018.2002 BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442 Bregman A. S., 1993, THINKING SOUND COGNI, P10 Brune JN, 2006, GEOLOGY, V34, P137, DOI 10.1130/G22127.1 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 Burger RM, 2001, J NEUROSCI, V21, P4830 CAIRD D, 1983, EXP BRAIN RES, V52, P385 Chen L, 2007, CURR OPIN NEUROBIOL, V17, P53, DOI 10.1016/j.conb.2006.11.001 Darrow KN, 2006, NAT NEUROSCI, V9, P1474, DOI 10.1038/mn1807 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K Finlayson PG, 1997, ACTA OTO-LARYNGOL, V117, P187, DOI 10.3109/00016489709117766 Finlayson PG, 1997, HEARING RES, V103, P1, DOI 10.1016/S0378-5955(96)00158-X Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 Fritz JB, 2007, HEARING RES, V229, P186, DOI 10.1016/j.heares.2007.01.009 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 HENKEL CK, 1993, J COMP NEUROL, V331, P458, DOI 10.1002/cne.903310403 Hurley LM, 2001, J NEUROPHYSIOL, V85, P828 HUTSON KA, 1991, J COMP NEUROL, V312, P105, DOI 10.1002/cne.903120109 KOSSL M, 1989, J NEUROSCI, V9, P4169 LESICA NA, 2006, ADAPTATION BACKGROUN LI L, 1992, J NEUROSCI, V12, P4530 Loquet G, 2003, EXP BRAIN RES, V153, P436, DOI 10.1007/s00221-003-1689-9 MAGNUSSON AK, 2006, FOR EUR NEUR SOC ABS McAlpine D, 2000, J NEUROPHYSIOL, V83, P1356 McAlpine D, 1997, J NEUROPHYSIOL, V78, P767 McAlpine D, 2002, J NEUROSCI, V22, P1443 Nagel KI, 2006, NEURON, V51, P845, DOI 10.1016/j.neuron.2006.08.030 Nakamoto KT, 2006, J NEUROPHYSIOL, V95, P1897, DOI 10.1152/jn.00625.2005 Needham K, 2007, BRAIN RES, V1134, P113, DOI 10.1016/j.brainres.2006.11.058 Nouvian R, 2006, J MEMBRANE BIOL, V209, P153, DOI 10.1007/s00232-005-0854-4 OLIVER DL, 1995, J COMP NEUROL, V360, P17, DOI 10.1002/cne.903600103 Park TJ, 2004, J NEUROPHYSIOL, V92, P289, DOI 10.1152/jn.00961.2003 PARK TJ, 1993, J NEUROSCI, V13, P2050 PARK TJ, 1994, J NEUROPHYSIOL, V72, P1080 Pecka M, 2007, J NEUROSCI, V27, P1782, DOI 10.1523/JNEUROSCI.5335-06.2007 Pollak GD, 2002, HEARING RES, V168, P60, DOI 10.1016/S0378-5955(02)00362-3 Sanes DH, 1998, J NEUROSCI, V18, P794 SANES DH, 1988, J NEUROSCI, V8, P682 Schofield BR, 1996, J COMP NEUROL, V375, P128, DOI 10.1002/(SICI)1096-9861(19961104)375:1<128::AID-CNE8>3.0.CO;2-5 Siveke I, 2006, J NEUROPHYSIOL, V96, P1425, DOI 10.1152/jn.00713.2005 Spitzer MW, 1998, J NEUROPHYSIOL, V80, P3062 SPITZER MW, 1993, J NEUROPHYSIOL, V69, P1245 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X Thornton SK, 1999, EUR J NEUROSCI, V11, P1414, DOI 10.1046/j.1460-9568.1999.00558.x VATER M, 1992, J COMP PHYSIOL A, V171, P541 Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786 Yan J, 2005, J NEUROPHYSIOL, V93, P71, DOI 10.1152/jn.00348.2004 YANG L, 1994, AUDIT NEUROSCI, V1, P1 YIN TCT, 1994, J NEUROSCI, V14, P5170 ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103 NR 54 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 58 EP 67 DI 10.1016/j.heares.2007.10.009 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400007 PM 18162347 ER PT J AU Kitzes, L AF Kitzes, Leonard TI Binaural interactions shape binaural response structures and frequency response functions in primary auditory cortex SO HEARING RESEARCH LA English DT Article DE frequency response function; binaural interactions; cortex; azimuth; localization ID SOUND PRESSURE LEVEL; SPECTROTEMPORAL RECEPTIVE-FIELDS; INTERAURAL INTENSITY DIFFERENCES; UNIT AZIMUTH SENSITIVITY; SPATIAL SENSITIVITY; INFERIOR COLLICULUS; CAT; NEURONS; REPRESENTATION; AI AB The overall purpose of this study is to examine the behavior of primary auditory cortex (AI) units in the three-dimensional stimulus space that resembles normal listening conditions, viz., level at the two ears and frequency. A binaural-level response area (LRA) is the response to a matrix of contralateral and ipsilateral stimuli presented at a single frequency. LRAs have been examined in the inferior colliculus and AI and found to be highly organized response patterns that are shaped by binaural interactions. The aggregate of LRAs across frequency is the binaural response structure (BRS), a new concept that captures unit behavior in this three-dimensional stimulus space. Since binaural interactions contribute greatly to configuring component LRAs, it is clear that binaural interactions help shape the aggregate BRS. The BRS contains the data required to generate binaural frequency response functions. The frequency range and magnitude of these functions depend on the level of the stimulus at each ear and the configuration of the BRS. Changing either level can greatly alter the binaural frequency response function. Thus, in addition to their classic role in localization, binaural interactions play a fundamentally important role in determining the frequency domain of units in AI. (C) 2008 Elsevier B.V. All rights reserved. C1 Univ Calif Irvine, Dept Anat & Neurobiol, Irvine, CA 92697 USA. RP Kitzes, L (reprint author), Univ Calif Irvine, Dept Anat & Neurobiol, Irvine, CA 92697 USA. EM lmkitzes@uci.edu CR CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106 Chang TR, 2005, BIOSYSTEMS, V79, P213, DOI 10.1016/j.biosystems.2004.09.027 CLAREY JC, 1994, J NEUROPHYSIOL, V72, P2383 De Ribaupierre F, 1972, Brain Res, V48, P185, DOI 10.1016/0006-8993(72)90178-3 Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220 Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 HAPLEA S, 1994, J COMP PHYSIOL A, V174, P671 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 IRVINE DRF, 1987, HEARING RES, V30, P169, DOI 10.1016/0378-5955(87)90134-1 Irvine D. R. F., 1986, PROGR SENSORY PHYSL, P1 Irvine DRF, 1996, J NEUROPHYSIOL, V75, P75 Klein DJ, 2006, J COMPUT NEUROSCI, V20, P111, DOI 10.1007/s10827-005-3589-4 Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002 Machens CK, 2004, J NEUROSCI, V24, P1089, DOI 10.1523/JNEUROSCI.4445-03.2004 MATSUBARA JA, 1988, J COMP NEUROL, V268, P38, DOI 10.1002/cne.902680105 MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 MIDDLEBROOKS JC, 1994, SCIENCE, V264, P842, DOI 10.1126/science.8171339 Nakamoto KT, 2004, J NEUROPHYSIOL, V91, P118, DOI 10.1152/jn.00171.2003 Nakamoto KT, 2006, J NEUROPHYSIOL, V95, P1897, DOI 10.1152/jn.00625.2005 PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48 Qiu AQ, 2003, J NEUROPHYSIOL, V90, P456, DOI 10.1152/jn.00851.2002 RAJAN R, 1990, J NEUROPHYSIOL, V64, P872 ROSE JE, 1971, J NEUROPHYSIOL, V34, P685 SAMSON FK, 1993, J NEUROPHYSIOL, V70, P492 SAMSON FK, 1994, J NEUROPHYSIOL, V71, P2194 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442 SEMPLE MN, 1993, J NEUROPHYSIOL, V69, P449 SEMPLE MN, 1987, J NEUROPHYSIOL, V57, P1130 Shechter B, 2007, NEUROSCIENCE, V148, P806, DOI 10.1016/j.neuroscience.2007.06.027 Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 Stecker GC, 2005, J NEUROPHYSIOL, V94, P1267, DOI 10.1152/jn.00104.2005 Stecker GC, 2003, BIOL CYBERN, V89, P341, DOI 10.1007/s00422-003-0439-1 Stecker GC, 2003, J NEUROPHYSIOL, V89, P2889, DOI 10.1152/jn.00980.2002 SUGA N, 1982, J NEUROPHYSIOL, V47, P225 Tomita M, 2005, J NEUROPHYSIOL, V93, P378, DOI 10.1152/jn.00643.2004 Valentine PA, 2004, HEARING RES, V196, P119, DOI 10.1016/j.heares.2004.05.011 WALLACE MN, 1991, EXP BRAIN RES, V86, P527 WALLACE MN, 1991, EXP BRAIN RES, V86, P518 Xu L, 1998, J NEUROPHYSIOL, V80, P882 Zhang JP, 2005, J NEUROPHYSIOL, V94, P2263, DOI 10.1152/jn.01207.2004 Zhang JP, 2004, J NEUROPHYSIOL, V91, P101, DOI 10.1152/jn.00166.2003 NR 43 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 68 EP 76 DI 10.1016/j.heares.2008.01.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400008 PM 18295994 ER PT J AU May, BJ Anderson, M Roos, M AF May, Bradford J. Anderson, Michael Roos, Matthew TI The role of broadband inhibition in the rate representation of spectral cues for sound localization in the inferior colliculus SO HEARING RESEARCH LA English DT Article DE head-related transfer function; spatial tuning; spectral integration; level tolerance; monaural hearing ID DORSAL COCHLEAR NUCLEUS; AUDITORY-NERVE FIBERS; LATERAL SUPERIOR OLIVE; TEMPORAL RECEPTIVE-FIELD; FREQUENCY-RESPONSE AREAS; SINGLE-UNIT RESPONSES; STEADY-STATE VOWELS; DISCHARGE RATE; DECEREBRATE CATS; BASILAR-MEMBRANE AB Previous investigations have shown that a subset of inferior colliculus neurons, which have been designated type 0 units, respond selectively to isolated features of the cat's head-related transfer functions (HRTFs: the directional transformation of a free-field sound as it propagates from the head to the eardrum). Based on those results, it was hypothesized that type 0 units would show enhanced spatial tuning in a virtual sound field that conveyed the full complement of HRTF-based localization cues. As anticipated, a number of neurons produced representations of virtual sound source locations that were spatially tuned, level tolerant, and effective under monaural conditions. Preferred locations were associated with spectral cues that complemented the highly individualized broadband inhibitory patterns of tuned neurons. That is, higher response magnitudes were achieved when spectral peaks coincided with excitatory influences at best frequency (BF: the most sensitive frequency) and spectral notches fell within flanking inhibitory regions. The directionally dependent modulation of narrowband ON-BF excitation by broadband OFF-BF inhibition was not a unique property of type 0 units. (C) 2008 Elsevier B.V. All rights reserved. C1 [May, Bradford J.] Johns Hopkins Univ, Dept Otolaryngol Head & Neck Surg, Ctr Hearing & Balance, Baltimore, MD 21205 USA. [Anderson, Michael] Johns Hopkins Univ, Dept Biomed Engn, Ctr Hearing & Balance, Baltimore, MD 21205 USA. [Roos, Matthew] Johns Hopkins Univ, Dept Neurosci, Ctr Hearing & Balance, Baltimore, MD 21205 USA. RP May, BJ (reprint author), Johns Hopkins Univ, Dept Otolaryngol Head & Neck Surg, Ctr Hearing & Balance, Traylor Bldg,Room 521,720 Rutland Ave, Baltimore, MD 21205 USA. EM bmay@jhu.edu CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 AERTSEN AMHJ, 1981, BIOL CYBERN, V42, P133, DOI 10.1007/BF00336731 BATRA R, 1989, J NEUROPHYSIOL, V61, P257 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 BULLOCK TH, 1986, BRAIN BEHAV EVOLUT, V28, P145, DOI 10.1159/000118699 Burger RM, 2001, J NEUROSCI, V21, P4830 BUTLER RA, 1977, J ACOUST SOC AM, V61, P1264, DOI 10.1121/1.381427 CANT NB, 1981, NEUROSCIENCE, V6, P2643, DOI 10.1016/0306-4522(81)90109-3 Carney LH, 1998, J NEUROSCI, V18, P1096 CASSEDAY JH, 1975, J NEUROPHYSIOL, V38, P842 Chase SM, 2005, J NEUROSCI, V25, P7575, DOI 10.1523/JNEUROSCI.0915-05.2005 COSTALUPES JA, 1984, J NEUROPHYSIOL, V51, P1326 COVEY E, 1991, J NEUROSCI, V11, P3456 Davis KA, 2005, INT REV NEUROBIOL, V70, P169, DOI 10.1016/S0074-7742(05)70006-4 Davis KA, 2003, JARO, V4, P148, DOI 10.1007/s10162-002-2002-5 Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001 Davis KA, 1999, J NEUROPHYSIOL, V82, P164 Dean I, 2005, NAT NEUROSCI, V8, P1684, DOI 10.1038/nn1541 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 EGGERMONT JJ, 1983, HEARING RES, V10, P167, DOI 10.1016/0378-5955(83)90052-7 Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3 Escabi MA, 2002, J NEUROSCI, V22, P4114 EVANS EF, 1973, EXP BRAIN RES, V17, P402 FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K FLECKNELL PA, 2000, IACUC HDB, P221 Furst M, 2000, HEARING RES, V143, P29, DOI 10.1016/S0378-5955(00)00019-8 GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E HALL JL, 1977, J ACOUST SOC AM, V61, P802, DOI 10.1121/1.381369 HEBRANK J, 1974, J ACOUST SOC AM, V56, P1829, DOI 10.1121/1.1903520 Hernandez O, 2006, NEUROREPORT, V17, P1611, DOI 10.1097/01.wnr.0000236857.70715.be Huang AY, 1996, J ACOUST SOC AM, V100, P2341, DOI 10.1121/1.417943 Huang AY, 1996, J ACOUST SOC AM, V100, P1070, DOI 10.1121/1.416293 Imig TJ, 2000, J NEUROPHYSIOL, V83, P907 Irvine DR, 1986, AUDITORY BRAINSTEM Joris PX, 1996, J NEUROPHYSIOL, V76, P2137 KIANG NYS, 1980, J ACOUST SOC AM, V68, P830, DOI 10.1121/1.384822 KIM DO, 1979, J NEUROPHYSIOL, V42, P16 KIM PJ, 1994, J ACOUST SOC AM, V95, P410, DOI 10.1121/1.408335 Kolomiets BP, 2001, J NEUROSCI, V21, P5764 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 LEPAGE EL, 1980, HEARING RES, V2, P183, DOI 10.1016/0378-5955(80)90056-8 LePrell G, 1996, AUDIT NEUROSCI, V2, P275 LI L, 1992, J NEUROSCI, V12, P4530 MAJOROSSY K, 1994, ACTA BIOL HUNG, V45, P347 Malmierca MS, 2005, EUR J NEUROSCI, V21, P2701, DOI 10.1111/j.1460-9568.2005.04103.x Malmierca MS, 2003, EXP BRAIN RES, V153, P522, DOI 10.1007/s00221-003-1615-1 Malmierca MS, 1998, J NEUROSCI, V18, P10603 May BJ, 1997, J ACOUST SOC AM, V101, P2705, DOI 10.1121/1.418559 May BJ, 2000, HEARING RES, V148, P74, DOI 10.1016/S0378-5955(00)00142-8 MAY BJ, 2007, SENSES COMPREHENSIVE May BJ, 1998, J NEUROPHYSIOL, V79, P1755 Mayer-Kress G, 1998, Z NATURFORSCH C, V53, P677 Merchan M, 2005, NEUROSCIENCE, V136, P907, DOI 10.1016/j.neuroscience.2004.12.030 MIDDLEBROOKS JC, 1992, J ACOUST SOC AM, V92, P2607, DOI 10.1121/1.404400 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 MIDDLEBROOKS JC, 1990, J ACOUST SOC AM, V87, P2149, DOI 10.1121/1.399183 NEFF WD, 1977, ANN OTO RHINOL LARYN, V86, P500 NELKEN I, 1994, J NEUROPHYSIOL, V71, P2446 Nelken I, 1997, J NEUROPHYSIOL, V78, P800 Oertel D, 2002, INTEGRATIVE FUNCTION, P207 Oliver DL, 2003, J NEUROSCI, V23, P7438 OLIVER DL, 1987, J COMP NEUROL, V264, P24, DOI 10.1002/cne.902640104 PALMER AR, 1982, HEARING RES, V7, P305, DOI 10.1016/0378-5955(82)90042-9 Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 PHILLIPS DP, 1982, HEARING RES, V8, P13, DOI 10.1016/0378-5955(82)90031-4 Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152 Ramachandran R, 2002, J NEUROPHYSIOL, V88, P2251, DOI 10.1152/jn.00356.2002 REISS LA, 2007, J NEUROPHYSIOLOGY RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SACHS MB, 1980, J ACOUST SOC AM, V68, P858, DOI 10.1121/1.384825 SaintMarie RL, 1997, J COMP NEUROL, V389, P264 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 SINEX DG, 1993, J ACOUST SOC AM, V94, P1351, DOI 10.1121/1.408163 SMITH RL, 1988, AUDITORY FUNCTION NE SOMJEN GG, 1967, SCIENCE, V158, P399, DOI 10.1126/science.158.3799.399 SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750 Sutherland DP, 1998, BEHAV BRAIN RES, V97, P1, DOI 10.1016/S0166-4328(98)00008-4 THORNTON SK, 2001, PHYSL PSYCHOPHYSICAL, P298 TSUCHITANI C, 1988, J NEUROPHYSIOL, V59, P164 VIEMEISTER NF, 1988, HEARING RES, V34, P267, DOI 10.1016/0378-5955(88)90007-X WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302 Xu L, 2000, J ACOUST SOC AM, V107, P1451, DOI 10.1121/1.428432 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 Young E. D., 1988, AUDITORY FUNCTION NE, P277 YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X Young ED, 2005, INT REV NEUROBIOL, V70, P135, DOI 10.1016/S0074-7742(05)70005-2 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 Yu JJ, 2000, P NATL ACAD SCI USA, V97, P11780, DOI 10.1073/pnas.97.22.11780 Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5 NR 98 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 77 EP 93 DI 10.1016/j.heares.2008.01.008 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400009 PM 18295420 ER PT J AU Moore, JM Tollin, DJ Yin, TCT AF Moore, Jordan M. Tollin, Daniel J. Yin, Tom C. T. TI Can measures of sound localization acuity be related to the precision of absolute location estimates? SO HEARING RESEARCH LA English DT Article DE minimum audible angle (MAA); auditory space map; cat ID MINIMUM AUDIBLE ANGLE; AUDITORY SPATIAL ACUITY; DORSAL COCHLEAR NUCLEUS; CAT SUPERIOR COLLICULUS; BARN OWLS; RECEPTIVE-FIELDS; VERTICAL PLANES; HUMAN LISTENERS; SPECTRAL CUES; EYE POSITION AB Studies of sound localization use relative or absolute psychoacoustic paradigms. Relative tasks assess acuity by determining the smallest angle separating two sources that subjects can discriminate, the minimum audible angle (MAA), whereas absolute tasks measure subjects' abilities to indicate sound location. It is unclear whether or how measures from the two tasks are related, though the belief that the MAA is specifically related to the precision of absolute localization is common. The present study aimed to investigate the basis of this relationship by comparing the precision of absolute location estimates with a measure of spatial acuity computed from the same data. Three cats were trained to indicate apparent sound source locations that varied in azimuth and elevation via orienting gaze shifts (combined eye and head movements). The precision of these absolute responses, as measured by their standard deviation, was compared with acuity thresholds derived from receiver operating characteristic (ROC) analyses of the cumulative distributions. Surprisingly, the acuity measures were occasionally very poor indicators of absolute localization precision. Incongruent results were attributed to errors in mean accuracy, which are disregarded in analyses of traditional relative tasks. Discussion focuses on the potential for internal biases to affect measures of localization acuity. (C) 2007 Elsevier B.V. All rights reserved. C1 [Moore, Jordan M.; Tollin, Daniel J.; Yin, Tom C. T.] Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA. RP Moore, JM (reprint author), Cornell Univ, Dept Neurobiol & Behav, W345 Mudd Hall,Tower Rd, Ithaca, NY 14853 USA. EM jmm256@cornell.edu; Daniel.Tollin@UCHSC.edu; yin@physiology.wisc.edu CR Bala ADS, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000675 Bala ADS, 2003, NATURE, V424, P771, DOI 10.1038/nature01835 Blauert J., 1997, SPATIAL HEARING PSYC CASSEDAY JH, 1975, J NEUROPHYSIOL, V38, P842 CHANDLER DW, 1992, J ACOUST SOC AM, V91, P1624, DOI 10.1121/1.402443 DURLACH NI, 1969, J ACOUST SOC AM, V46, P372, DOI 10.1121/1.1911699 FUCHS AF, 1966, J APPL PHYSIOL, V21, P1068 GORDON B, 1973, J NEUROPHYSIOL, V36, P157 Grantham DW, 2003, J ACOUST SOC AM, V114, P1009, DOI 10.1121/1.1590970 GREEN DM, 1966, SIGNAL DETECTION THE Hartmann WM, 1998, J ACOUST SOC AM, V104, P3546, DOI 10.1121/1.423936 HARTMANN WM, 1989, J ACOUST SOC AM, V85, P2031, DOI 10.1121/1.397855 Heffner HE, 2005, J NEUROPHYSIOL, V94, P3653, DOI 10.1152/jn.00720.2005 HEFFNER RS, 1992, J COMP NEUROL, V317, P219, DOI 10.1002/cne.903170302 HEFFNER RS, 1988, HEARING RES, V36, P221, DOI 10.1016/0378-5955(88)90064-0 Huang AY, 1996, J ACOUST SOC AM, V100, P2341, DOI 10.1121/1.417943 JAY MF, 1984, NATURE, V309, P345, DOI 10.1038/309345a0 King AJ, 1999, EUR J NEUROSCI, V11, P3945, DOI 10.1046/j.1460-9568.1999.00821.x KNUDSEN EI, 1979, J COMP PHYSIOL, V133, P1 KNUDSEN EI, 1978, SCIENCE, V200, P795, DOI 10.1126/science.644324 KNUDSEN EI, 1981, SCI AM, V245, P112 KNUDSEN EI, 1985, SCIENCE, V230, P545, DOI 10.1126/science.4048948 MAKOUS JC, 1990, J ACOUST SOC AM, V87, P2188, DOI 10.1121/1.399186 MARTIN RL, 1987, HEARING RES, V30, P239, DOI 10.1016/0378-5955(87)90140-7 May BJ, 2000, HEARING RES, V148, P74, DOI 10.1016/S0378-5955(00)00142-8 MIDDLEBROOKS JC, 1992, J ACOUST SOC AM, V92, P2607, DOI 10.1121/1.404400 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 MIDDLEBROOKS JC, 1989, J ACOUST SOC AM, V86, P89, DOI 10.1121/1.398224 MIDDLEBROOKS JC, 1984, J NEUROSCI, V4, P2621 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 OLDFIELD SR, 1984, PERCEPTION, V13, P581, DOI 10.1068/p130581 PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0 PERROTT DR, 1969, J ACOUST SOC AM, V45, P436, DOI 10.1121/1.1911392 PERROTT DR, 1987, J ACOUST SOC AM, V82, P1637, DOI 10.1121/1.395155 PERROTT DR, 1984, J ACOUST SOC AM, V75, P1201, DOI 10.1121/1.390771 PERROTT DR, 1989, J ACOUST SOC AM, V85, P2669, DOI 10.1121/1.397764 PERROTT DR, 1990, J ACOUST SOC AM, V87, P1728, DOI 10.1121/1.399421 Populin LC, 2004, J NEUROPHYSIOL, V92, P2151, DOI 10.1152/jn.00453.2004 Populin LC, 1998, J NEUROSCI, V18, P2147 Rayleigh L., 1907, PHILOS MAG, V6, P214, DOI 10.1080/14786440709463595 Recanzone GH, 1998, J ACOUST SOC AM, V103, P1085, DOI 10.1121/1.421222 SANDEL TT, 1955, J ACOUST SOC AM, V27, P842, DOI 10.1121/1.1908052 Shinn-Cunningham BG, 1998, J ACOUST SOC AM, V103, P3656, DOI 10.1121/1.423088 Sparks DL, 2005, J NEUROPHYSIOL, V93, P1136, DOI 10.1152/jn.01109.2004 Spitzer MW, 2006, J NEUROPHYSIOL, V95, P3571, DOI 10.1152/jn.00982.2005 Spitzer MW, 2003, J ACOUST SOC AM, V113, P1631, DOI 10.1121/1.1548152 Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748 Strybel TZ, 2000, J ACOUST SOC AM, V108, P3092, DOI 10.1121/1.1323720 Tollin DJ, 2003, J NEUROPHYSIOL, V90, P525, DOI 10.1152/jn.00107.2003 Tollin DJ, 2003, J NEUROPHYSIOL, V90, P2149, DOI 10.1152/jn.00381.2003 Tollin DJ, 2005, J NEUROPHYSIOL, V93, P1223, DOI 10.1152/jn.00747.2004 VanTrees H, 1968, DETECTION ESTIMATI 1 Wallach H, 1939, J ACOUST SOC AM, V10, P270, DOI 10.1121/1.1915985 Wichmann FA, 2001, PERCEPT PSYCHOPHYS, V63, P1293, DOI 10.3758/BF03194544 Wightman F. L., 1993, HUMAN PSYCHOPHYSICS, P155 WISE LZ, 1983, J NEUROPHYSIOL, V49, P674 YIN TCT, 2002, HDB AUDITORY RES INT, P99 YOUNG ED, 1992, PHILOS T ROY SOC B, V336, P407, DOI 10.1098/rstb.1992.0076 Zwiers MP, 2003, NAT NEUROSCI, V6, P175, DOI 10.1038/nn999 NR 59 TC 23 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 94 EP 109 DI 10.1016/j.heares.2007.11.006 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400010 PM 18178351 ER PT J AU Martin, RL McAnally, KI AF Martin, Russell L. McAnally, Ken I. TI Spectral integration time of the auditory localisation system SO HEARING RESEARCH LA English DT Article DE sound localisation; time window; temporal window ID SOUND LOCALIZATION; TEMPORAL WINDOW; THRESHOLDS; AUDIO; PLANE; SHAPE; AGE AB For the elevation and front-versus-back hemifield of a sound source to be accurately determined, the sound must contain a broad range of frequencies. Experiment 1 of this study examined the spectral integration time of the auditory localisation system by measuring the accuracy with which frequency-modulated (FM) tones of modulation periods ranging from 0.5 to 200 ms can be localised. For each of the four participants, judgements of sound-source elevation and front-back hemifield were most accurate for a modulation period of 5 ms. Accuracy levels for the 5 ms modulation period approached those for a pink-noise stimulus. This suggests that the spectral integration time of the auditory localisation system is around 5 ms. Supporting evidence for this conclusion was sought in experiment 2, in which two participants localised noise stimuli that had magnitude spectra identical to those of 5 ms equivalent-rectangular-duration samples of the FM tones from experiment 1. For both participants, functions relating localisation error measures (i.e., elevation error and frequency of front-back confusion) to modulation period for spectrally matched noises were similar to those for FM tones. Crown Copyright (C) 2007 Published by Elsevier B.V. All rights reserved. C1 [Martin, Russell L.; McAnally, Ken I.] Def Sci & Technol Org, Air Operat Div, Melbourne, Vic 3001, Australia. RP Martin, RL (reprint author), Def Sci & Technol Org, Air Operat Div, POB 4331, Melbourne, Vic 3001, Australia. EM russell.martin@dsto.defence.gov.au; ken.mcanally@dsto.defence.gov.au CR CORSO JF, 1963, ARCHIV OTOLARYNGOL, V77, P385 HEBRANK J, 1974, J ACOUST SOC AM, V56, P1829, DOI 10.1121/1.1903520 Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784 King RB, 1997, HUM FACTORS, V39, P287, DOI 10.1518/001872097778543895 MACPHERSON EA, 1996, J ACOUST SOC AM, V99, P2515, DOI 10.1121/1.415731 MAKOUS JC, 1990, J ACOUST SOC AM, V87, P2188, DOI 10.1121/1.399186 Martin RL, 2001, J AUDIO ENG SOC, V49, P14 MCANALLY KI, 2000, P AUST NEUROSCI SOC, V11, P145 Mills A, 1972, FDN MODERN AUDITORY, P303 Moore BCJ, 1996, J ACOUST SOC AM, V99, P3669, DOI 10.1121/1.414964 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1102, DOI 10.1121/1.396055 OLDFIELD SR, 1984, PERCEPTION, V13, P581, DOI 10.1068/p130581 PLACK CJ, 1990, J ACOUST SOC AM, V87, P2178, DOI 10.1121/1.399185 ROFFLER SK, 1968, J ACOUST SOC AM, V43, P1255, DOI 10.1121/1.1910976 STELMACHOWICZ PG, 1989, J ACOUST SOC AM, V86, P1384, DOI 10.1121/1.398698 Watson DB, 2000, AVIAT SPACE ENVIR MD, V71, P791 Wightman FL, 1997, J ACOUST SOC AM, V101, P1050, DOI 10.1121/1.418029 WOODWORTH RS, 1954, EXPT PSYCHOL, P352 ZHOU B, 1992, J ACOUST SOC AM, V92, P1169, DOI 10.1121/1.404045 NR 19 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 118 EP 123 DI 10.1016/j.heares.2007.08.006 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400012 PM 17996410 ER PT J AU Phillips, DP AF Phillips, Dennis P. TI A perceptual architecture for sound lateralization in man SO HEARING RESEARCH LA English DT Article DE sound lateralization; sound localization; neural models; mammalian hearing; psychophysics ID PRIMARY AUDITORY-CORTEX; INTERAURAL TIME DIFFERENCES; SPATIAL RECEPTIVE-FIELDS; SUPERIOR OLIVARY COMPLEX; LOW-FREQUENCY NEURONS; OWLS BRAIN-STEM; INFERIOR COLLICULUS; DELAY-LINES; BINAURAL INTERACTIONS; INTENSITY DIFFERENCES AB There are two general neurophysiological models of sound lateralization mechanisms which may be active in man. Both of the models are derived from studies in animals (one in barn owls, and one in mammals), and both have displayed some weakness in generalizability. One model advocates a population of neurons narrowly tuned to different interaural disparity values across the behaviorally relevant range, so that the cue value, and therefore the source azimuth, is represented by which neurons of the array are activated by the stimulus. The second model posits the existence of only two neural channels, each broadly tuned to interaural cue values favoring one acoustic hemifield, so that, especially for sources near the midline, cue value and therefore source azimuth is encoded by the relative activation of the two neural populations. The present article reviews three recent psychophysical studies, each using selective adaptation paradigms to probe sound lateralization mechanisms based on interaural disparities in normal human listeners. These experiments provided evidence on the frequency-specificity of interaural disparity coding and revealed its sensitivity to recent stimulus history. The data from those studies, however, also help distinguish the two lateralization models, and favor a perceptual architecture for sound lateralization in man based on the activity of two, hemifield-tuned azimuthal channels. (C) 2007 Elsevier B.V. All rights reserved. C1 Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada. RP Phillips, DP (reprint author), Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada. EM dennis.phillips@dal.ca RI Phillips, Dennis/A-6496-2011 CR BEAR MF, 2006, EXPLORING BRAIN Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 Boehnke SE, 1999, J ACOUST SOC AM, V106, P1948, DOI 10.1121/1.428037 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a BRUGGE JF, 1973, J NEUROPHYSIOL, V36, P1138 Brugge JF, 1996, J NEUROSCI, V16, P4420 CALFORD MB, 1985, J COMP PHYSIOL A, V157, P149, DOI 10.1007/BF01350024 Carlile S, 2001, J ACOUST SOC AM, V110, P416, DOI 10.1121/1.1375843 CARR CE, 1988, P NATL ACAD SCI USA, V85, P8311, DOI 10.1073/pnas.85.21.8311 COOPER WE, 1974, J ACOUST SOC AM, V56, P617, DOI 10.1121/1.1903300 Delgutte B, 1999, J NEUROPHYSIOL, V81, P2833 EIMAS PD, 1973, COGNITIVE PSYCHOL, V4, P99, DOI 10.1016/0010-0285(73)90006-6 Gazzaniga MS, 2002, COGNITIVE NEUROSCIEN, V2nd GRANTHAM DW, 1979, PERCEPT PSYCHOPHYS, V26, P403, DOI 10.3758/BF03204166 Heffner HE, 1997, ACTA OTO-LARYNGOL, P22 HEFFNER HE, 1984, BEHAV NEUROSCI, V98, P541, DOI 10.1037//0735-7044.98.3.541 HEFFNER RS, 1990, HEARING RES, V48, P231, DOI 10.1016/0378-5955(90)90063-U HEFFNER RS, 1989, BRAIN BEHAV EVOLUT, V33, P248, DOI 10.1159/000115932 HEFFNER RS, 1986, BEHAV NEUROSCI, V100, P93, DOI 10.1037/0735-7044.100.1.93 HEFFNER RS, 1983, BEHAV NEUROSCI, V97, P299, DOI 10.1037/0735-7044.97.2.299 HEFFNER RS, 1988, HEARING RES, V36, P221, DOI 10.1016/0378-5955(88)90064-0 Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 IRVINE DRF, 1987, HEARING RES, V26, P267, DOI 10.1016/0378-5955(87)90063-3 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 Joris PX, 1998, NEURON, V21, P1235, DOI 10.1016/S0896-6273(00)80643-1 KANDEL ER, 2000, PRINCIPLES NEUROAL S Kashino M, 1998, J ACOUST SOC AM, V103, P3597, DOI 10.1121/1.423064 KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746 KELLY JB, 1991, HEARING RES, V55, P39, DOI 10.1016/0378-5955(91)90089-R KITZES LM, 1980, J COMP NEUROL, V192, P455, DOI 10.1002/cne.901920306 KNUDSEN EI, 1978, J NEUROPHYSIOL, V41, P870 KNUDSEN EI, 1981, SCI AM, V245, P112 KONISHI M, 1993, SCI AM, V268, P66 KUWADA S, 1983, J NEUROPHYSIOL, V50, P981 MAKOUS JC, 1990, J ACOUST SOC AM, V87, P2188, DOI 10.1121/1.399186 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1 MIDDLEBROOKS JC, 1990, J ACOUST SOC AM, V87, P2149, DOI 10.1121/1.399183 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 MOISEFF A, 1983, J NEUROSCI, V3, P2553 ORMAN SS, 1984, J NEUROPHYSIOL, V51, P1028 Phillips DP, 1997, J ACOUST SOC AM, V101, P3694, DOI 10.1121/1.419376 Phillips D P, 2003, J Am Acad Audiol, V14, P518, DOI 10.3766/jaaa.14.9.7 PHILLIPS DP, 1981, HEARING RES, V4, P299, DOI 10.1016/0378-5955(81)90014-9 Phillips DP, 2006, HEARING RES, V211, P96, DOI 10.1016/j.heares.2005.10.005 PHILLIPS DP, 1985, ANNU REV PSYCHOL, V36, P245 Phillips DP, 2007, PERCEPTION, V36, P918, DOI 10.1068/p5581 Phillips DP, 2005, HEARING RES, V202, P188, DOI [10.1016/j.heares.2004.11.001, 10.1016/j.heres.2004.11.001] Purves D, 2004, NEUROSCIENCE RAJAN R, 1990, J NEUROPHYSIOL, V64, P872 Recanzone GH, 1998, J ACOUST SOC AM, V103, P1085, DOI 10.1121/1.421222 ROSE JE, 1966, J NEUROPHYSIOL, V29, P288 ROTH GL, 1980, J ACOUST SOC AM, V68, P1643, DOI 10.1121/1.385196 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 SULLIVAN WE, 1984, J NEUROSCI, V4, P1787 TAKAHASHI T, 1986, J NEUROSCI, V6, P3413 TAKAHASHI T, 1984, J NEUROSCI, V4, P1781 Vigneault-MacLean BK, 2007, HEARING RES, V224, P93, DOI 10.1016/j.heares.2006.12.001 VOLMAN SF, 1989, J NEUROSCI, V9, P3083 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1020 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 NR 65 TC 18 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 124 EP 132 DI 10.1016/j.heares.2007.09.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400013 PM 17980984 ER PT J AU Wester, K AF Wester, Knut TI Auditory based neuropsychology in neurosurgery SO HEARING RESEARCH LA English DT Article DE arachnoid cyst; auditory system; cognition; dichotic listening; Parkinson's disease; thalamus ID INTRACRANIAL ARACHNOID CYSTS; DEEP BRAIN-STIMULATION; DECOMPRESSION; LATERALITY; HEMORRHAGE; DISORDERS; ASYMMETRY; ATTENTION; LANGUAGE; THALAMUS AB In this article, an account is given on the author's experience with auditory based neuropsychology in a clinical, neurosurgical setting. The patients that were included in the studies are patients with traumatic or vascular brain lesions, patients undergoing brain surgery to alleviate symptoms of Parkinson's disease, or patients harbouring an intracranial arachnoid cyst affecting the temporal or the frontal lobe. The aims of these investigations were to collect information about the location of cognitive processes in the human brain, or to disclose dyscognition in patients with an arachnoid cyst. All the patients were tested with the DL technique. In addition, the cyst patients were subjected to a number of non-auditory, standard neuropsychological tests, such as Benton Visual Retention Test, Street Gestalt Test, Stroop Test and Trails Test A and B. The neuropsychological tests revealed that arachnoid cysts in general cause dyscognition that also includes auditory processes, and more importantly, that these cognition deficits normalise after surgical removal of the cyst. These observations constitute strong evidence in favour of surgical decompression. (C) 2007 Elsevier B.V. All rights reserved. C1 [Wester, Knut] Univ Bergen, Dept Surg Sci, Neurosurg Sect, N-5021 Bergen, Norway. [Wester, Knut] Haukeland Hosp, Dept Neurosurg, N-5021 Bergen, Norway. RP Wester, K (reprint author), Univ Bergen, Dept Surg Sci, Neurosurg Sect, N-5021 Bergen, Norway. EM kgwe@helse-bergen.no CR BENABID AL, 1991, LANCET, V337, P403, DOI 10.1016/0140-6736(91)91175-T Gabriels L, 2003, ACTA PSYCHIAT SCAND, V107, P275, DOI 10.1034/j.1600-0447.2003.00066.x Gundersen H, 2007, J NEUROL, V254, P60, DOI 10.1007/s00415-006-0280-2 Helland CA, 2006, J NEUROSURG, V105, P385, DOI 10.3171/ped.2006.105.5.385 Helland CA, 2007, J NEUROL NEUROSUR PS, V78, P1129, DOI 10.1136/jnnp.2006.107995 HUGDAHL K, 1991, BRAIN LANG, V41, P465, DOI 10.1016/0093-934X(91)90167-Y HUGDAHL K, 1990, INT J NEUROSCI, V54, P139, DOI 10.3109/00207459008986629 HUGDAHL K, 1992, INT J NEUROSCI, V63, P17 HUGDAHL K, 1990, BRAIN LANG, V39, P1, DOI 10.1016/0093-934X(90)90001-W IRVINE DR, 1973, CLIN NEUROPHYSIOL, V34, P80 IRVINE DRF, 1974, ACTA PHYSIOL SCAND, V91, P482, DOI 10.1111/j.1748-1716.1974.tb05704.x Kimura D., 1967, CORTEX, V3, P163 Kopell BH, 2004, J CLIN NEUROPHYSIOL, V21, P51, DOI 10.1097/00004691-200401000-00007 LANG W, 1985, EUR ARCH PSY CLIN N, V235, P38, DOI 10.1007/BF00380967 Lebowitz BK, 2006, NEUROCASE, V12, P339, DOI 10.1080/13554790601087165 OJEMANN GA, 1975, BRAIN LANG, V2, P101, DOI 10.1016/S0093-934X(75)80057-5 Raeder MB, 2005, NEUROLOGY, V64, P160 Tervaniemi M, 2003, BRAIN RES REV, V43, P231, DOI 10.1016/j.brainresrev.2003.08.004 Uc EY, 2007, SEMIN NEUROL, V27, P170, DOI 10.1055/s-2007-971175 WESTER K, 1991, PERCEPT MOTOR SKILL, V72, P151, DOI 10.2466/PMS.72.1.151-159 Wester K, 2001, J NEUROL, V248, P676, DOI 10.1007/s004150170113 WESTER K, 1995, J NEUROL NEUROSUR PS, V59, P293, DOI 10.1136/jnnp.59.3.293 Wester K, 2003, J NEUROL, V250, P36, DOI 10.1007/s00415-003-0941-3 WESTER KG, 1974, BRAIN RES, V76, P493, DOI 10.1016/0006-8993(74)90825-7 NR 24 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 133 EP 138 DI 10.1016/j.heares.2007.09.012 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400014 PM 18024027 ER PT J AU Eramudugolla, R McAnally, KI Martin, RL Irvine, DRF Mattingley, JB AF Eramudugolla, Ranmalee McAnally, Ken I. Martin, Russell L. Irvine, Dexter R. F. Mattingley, Jason B. TI The role of spatial location in auditory search SO HEARING RESEARCH LA English DT Article DE auditory perception; change detection; head-related transfer function; attention ID COCKTAIL PARTY PHENOMENON; SPEECH-INTELLIGIBILITY; FREQUENCY; ATTENTION; AUDIO; CUES; ADVANTAGE; SOUNDS; TIME; TASK AB The majority of research findings to date indicate that spatial cues play a minor role in enhancing listeners' ability to parse and detect a sound of interest when it is presented in a complex auditory scene comprising multiple simultaneous sounds. Frequency and temporal differences between sound streams provide more reliable cues for scene analysis as well as for directing attention to relevant auditory 'objects' in complex displays. The present study used naturalistic sounds with varying spectro-temporal profiles to examine whether spatial separation of sound sources can enhance target detection in an auditory search paradigm. The arrays of sounds were presented in virtual auditory space over headphones. The results of Experiment I suggest that target detection is enhanced when sound sources are spatially separated relative to when they are presented at the same location. Experiment 2 demonstrated that this effect is most prominent within the first 250 ms of exposure to the array of sounds. These findings suggest that spatial cues may be effective for enhancing early processes such as stream segregation, rather than simply directing attention to objects that have already been segmented. (C) 2007 Elsevier B.V. All rights reserved. C1 [Eramudugolla, Ranmalee; Mattingley, Jason B.] Univ Queensland, Sch Psychol, Brisbane, Qld 4072, Australia. [Eramudugolla, Ranmalee; Mattingley, Jason B.] Univ Queensland, Queensland Brian Inst, Cognit Neurosci Lab, Brisbane, Qld 4072, Australia. [McAnally, Ken I.; Martin, Russell L.] Def Sci & Technol Org, Air Operat Div, Port Melbourne, Vic 3207, Australia. [Irvine, Dexter R. F.] Monash Univ, Sch Psychol Psychiat & Psychol Med, Clayton, Vic 3800, Australia. RP Eramudugolla, R (reprint author), Univ Queensland, Sch Psychol, Brisbane, Qld 4072, Australia. EM ranmalee@psy.uq.edu.au RI Irvine, Dexter/F-7474-2011; Mattingley, Jason/J-1537-2014 OI Mattingley, Jason/0000-0003-0929-9216 CR ANSTIS S, 1985, J EXP PSYCHOL HUMAN, V11, P257, DOI 10.1037/0096-1523.11.3.257 ASEMI N, 2000, J ACOUST SOC AM, V107, P2850, DOI 10.1121/1.429218 Asemi N., 2003, Acoustical Science and Technology, V24 Bolia RS, 2001, HUM FACTORS, V43, P208, DOI 10.1518/001872001775900887 BREGMAN AS, 1975, J EXP PSYCHOL HUMAN, V1, P263, DOI 10.1037//0096-1523.1.3.263 Bregman AS., 1990, AUDITORY SCENE ANAL BROADBENT DE, 1954, J EXP PSYCHOL, V47, P191, DOI 10.1037/h0054182 Broadbent D.E., 1958, PERCEPTION COMMUNICA Bronkhorst AW, 2000, ACUSTICA, V86, P117 Brungart DS, 2004, J ACOUST SOC AM, V115, P301, DOI 10.1121/1.1628683 BUELL TN, 1991, J ACOUST SOC AM, V90, P1894, DOI 10.1121/1.401668 Carlyon RP, 2004, TRENDS COGN SCI, V8, P465, DOI 10.1016/j.tics.2004.08.008 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 Conway ARA, 2001, PSYCHON B REV, V8, P331, DOI 10.3758/BF03196169 CULLING JF, 1995, J ACOUST SOC AM, V98, P785, DOI 10.1121/1.413571 Darwin CJ, 2000, J ACOUST SOC AM, V107, P970, DOI 10.1121/1.428278 DARWIN CJ, 1981, Q J EXP PSYCHOL-A, V33, P185 Darwin CJ, 1997, TRENDS COGN SCI, V1, P327, DOI 10.1016/S1364-6613(97)01097-8 Darwin CJ, 1999, J EXP PSYCHOL HUMAN, V25, P617, DOI 10.1037/0096-1523.25.3.617 DARWIN CJ, 1977, J EXP PSYCHOL HUMAN, V3, P665, DOI 10.1037/0096-1523.3.4.665 Drullman R, 2000, J ACOUST SOC AM, V107, P2224, DOI 10.1121/1.428503 Eramudugolla R, 2005, CURR BIOL, V15, P1108, DOI 10.1016/j.cub.2005.05.051 GREEN DM, 1966, SIGNAL DETECTION THE Hill N. J., 1993, J ACOUST SOC AM, V93, P2307, DOI 10.1121/1.406429 HURON D, 1989, MUSIC PERCEPT, V6, P361 KIDD G, 1995, J ACOUST SOC AM, V98, P1977, DOI 10.1121/1.414459 Kidd G, 2005, J ACOUST SOC AM, V118, P3804, DOI 10.1121/1.2109187 Lee MD, 2001, HUM FACTORS, V43, P328, DOI 10.1518/001872001775900959 Mack A., 1998, INATTENTIONAL BLINDN Martin RL, 2001, J AUDIO ENG SOC, V49, P14 McAnally KI, 2007, HUM FACTORS, V49, P688, DOI 10.1518/001872007X215764 MORAY N, 1959, Q J EXP PSYCHOL, V11, P56, DOI 10.1080/17470215908416289 NELSON TW, 1999, HUM FACT ERG SOC 43 Scharf B., 1998, ATTENTION, P75 SHINNCUNIGHAM B, 2004, 10 INT C AUD DISPL S TREISMAN A, 1988, PSYCHOL REV, V95, P15, DOI 10.1037//0033-295X.95.1.15 TREISMAN A, 1966, ADV SCI, P600 TREISMAN AM, 1960, Q J EXP PSYCHOL, V12, P242, DOI 10.1080/17470216008416732 Wolfe J. M., 1998, ATTENTION NR 39 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 139 EP 146 DI 10.1016/j.heares.2007.10.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400015 PM 18082346 ER PT J AU Moore, DR Ferguson, MA Halliday, LF Riley, A AF Moore, David R. Ferguson, Melanie A. Halliday, Lorna F. Riley, Alison TI Frequency discrimination in children: Perception, learning and attention SO HEARING RESEARCH LA English DT Article DE auditory processing; vision; development; training; mainstream school ID PSYCHOMETRIC FUNCTIONS; MASKING; SPEECH AB It is generally believed that both sensory immaturity and inattention contribute to the poor listening of some children. However, the relative contribution of each factor, within and between individuals, and the nature of the inattention are poorly understood. In three experiments we examined the threshold and response variability of 6-11 y.o. children on pure tone frequency discrimination (1713) tasks. We first confirmed that younger children had both higher thresholds and greater within- and between-listener variability than older children and adults. Higher thresholds were mostly attributed to high response variability due to poor sustained attention. We next compared performance on the auditory FD task with that on visual spatial FD. No correlation was found between the thresholds or variability of individuals on the two tasks, suggesting involvement of modality-specific attention. Finally, we found lower thresholds for 8-9 y.o. children performing auditory FD training in a classroom than in the laboratory, possibly due to training session length or to a more familiar, motivating and focussed training environment. The adult-like performance of many younger children at times during their testing or training, together with the high response variability of immature performers, suggested that most elevated FD thresholds in children are due to inattention. (C) 2007 Published by Elsevier B.V. C1 [Moore, David R.; Ferguson, Melanie A.; Halliday, Lorna F.; Riley, Alison] MRC, Inst Hearing Res, Nottingham NG7 2RD, England. RP Moore, DR (reprint author), MRC, Inst Hearing Res, Nottingham NG7 2RD, England. EM davem@ihr.mrc.ac.uk CR ALLEN P, 1994, J SPEECH HEAR RES, V37, P205 Amitay S, 2006, NAT NEUROSCI, V9, P1446, DOI 10.1038/nn1787 BARGONES JY, 1995, J ACOUST SOC AM, V98, P99, DOI 10.1121/1.414446 COWAN JA, 2005, ASS RES OT ABS, V28, P169 FERGUSON MA, 2007, APD 30 YEARS PROGR U HALLIDAY L, 2007, ASS RES OT ABS, V30, P579 Hawkey DJC, 2004, NAT NEUROSCI, V7, P1055, DOI 10.1038/nn1315 Litovsky RY, 2005, J ACOUST SOC AM, V117, P3091, DOI 10.1121/1.1873913 Manly T, 2001, J CHILD PSYCHOL PSYC, V42, P1065, DOI 10.1111/1469-7610.00806 Merzenich MM, 1996, SCIENCE, V271, P77, DOI 10.1126/science.271.5245.77 Moore DR, 2005, BRAIN LANG, V94, P72, DOI 10.1016/j.bundl.2004.11.009 Moore David R., 2007, Seminars in Hearing, V28, P99, DOI 10.1055/s-2007-973436 Oh EL, 2001, J ACOUST SOC AM, V109, P2888, DOI 10.1121/1.1371764 PATEL A, 2007, THESIS MCMASTER U Spence C., 2001, ATTENTION DISTRACTIO, P231 Stellmack MA, 1997, J ACOUST SOC AM, V101, P2811, DOI 10.1121/1.419479 WIGHTMAN F, 1989, CHILD DEV, V60, P611, DOI 10.1111/j.1467-8624.1989.tb02742.x Wightman FL, 2005, J ACOUST SOC AM, V118, P3164, DOI 10.1121/1.2082567 Wright BA, 2006, INT J AUDIOL, V45, pS92, DOI 10.1080/14992020600783004 NR 19 TC 35 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 147 EP 154 DI 10.1016/j.heares.2007.11.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400016 PM 18222053 ER PT J AU Cainer, KE James, C Rajan, R AF Cainer, Kathryn E. James, C. Rajan, R. TI Learning speech-in-noise discrimination in adult humans SO HEARING RESEARCH LA English DT Article DE speech; speech-in-noise discrimination; noise type; learning ID GAP DURATION DISCRIMINATION; AGE-RELATED-CHANGES; HEARING-LOSS; ELDERLY LISTENERS; WORD RECOGNITION; TIME-COURSE; RECEPTION THRESHOLD; COGNITIVE-FACTORS; OLDER ADULTS; INTELLIGIBILITY AB This manuscript reports the results of two studies on development of a test bank of sentences for use in study of learning of speeeb-in-noise (SIN) discrimination. Sentences were derived from the sentence lists of Bench et al., 1979 [Bench, J., Kowal, angstrom., Bamford, J., 1979. The BKB (Bamford-Kowal-Bench) sentence lists for partially-hearing children. Brit. J. Audiol. 13, 108-112]. In the first study these sentences were grouped into three different lists (each of 40 sentences) based on their previously-determined speech reception thresholds (SRTs), and used to study SIN discrimination. In each test with 40 sentences in the SIN task, within-session performance asymptoted rapidly, independent of masker type, sex of subjects, and type of sentence. Then, in a second study, six lists of sentences were created to study learning of SIN discrimination, in a new group of subjects. It was found that across-session learning was rapid regardless of noise type, and the same general pattern of learning occurred regardless of noise type; however the amount of learning differed, with a slightly greater amount of learning occurring in the condition with the more difficult noise masker. (C) 2007 Elsevier B.V. All rights reserved. C1 [Cainer, Kathryn E.; James, C.; Rajan, R.] Monash Univ, Dept Physiol, Clayton, Vic 3800, Australia. RP Rajan, R (reprint author), Monash Univ, Dept Physiol, Clayton, Vic 3800, Australia. EM ramesh.rajan@med.monash.edu.au CR Amitay S, 2006, J ACOUST SOC AM, V119, P1616, DOI 10.1121/1.2164988 Atienza M, 2002, LEARN MEMORY, V9, P138, DOI 10.1101/lm.46502 Barrenas ML, 2000, EAR HEARING, V21, P569, DOI 10.1097/00003446-200012000-00004 Bench J, 1979, Br J Audiol, V13, P108, DOI 10.3109/03005367909078884 Bentler R A, 2000, Am J Audiol, V9, P84, DOI 10.1044/1059-0889(2000/010) Bergeson T. R., 2001, Canadian Acoustics, V29 BERGMAN M, 1971, AUDIOLOGY, V10, P164 Braun C, 2001, BRAIN, V124, P2259, DOI 10.1093/brain/124.11.2259 Bronkhorst AW, 2000, ACUSTICA, V86, P117 Brungart DS, 2001, J ACOUST SOC AM, V109, P1101, DOI 10.1121/1.1345696 Brungart DS, 2001, J ACOUST SOC AM, V110, P2527, DOI 10.1121/1.1408946 Committee on Hearing Bioacoustics and Biomechanics (CHABA), 1988, J ACOUST SOC AM, V83, P859 DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011 Dubno JR, 1997, J SPEECH LANG HEAR R, V40, P444 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P1136, DOI 10.1121/1.390037 DUQUESNOY AJ, 1980, J ACOUST SOC AM, V68, P537, DOI 10.1121/1.384767 Eisner F, 2005, PERCEPT PSYCHOPHYS, V67, P224, DOI 10.3758/BF03206487 Fenn KM, 2003, NATURE, V425, P614, DOI 10.1038/nature01951 FOSTER J R, 1987, British Journal of Audiology, V21, P165, DOI 10.3109/03005368709076402 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 GELFAND SA, 1988, J ACOUST SOC AM, V83, P248, DOI 10.1121/1.396426 GICK ML, 1988, MEM COGNITION, V16, P353, DOI 10.3758/BF03197046 Goldinger SD, 1996, J EXP PSYCHOL LEARN, V22, P1166, DOI 10.1037/0278-7393.22.5.1166 Goldstone RL, 1998, ANNU REV PSYCHOL, V49, P585, DOI 10.1146/annurev.psych.49.1.585 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 GREENSPAN SL, 1988, J EXP PSYCHOL LEARN, V14, P421, DOI 10.1037/0278-7393.14.3.421 Grose JH, 2001, JARO, V2, P388, DOI 10.1007/s101620010067 HAGERMAN B, 1982, SCAND AUDIOL, V11, P79, DOI 10.3109/01050398209076203 HALL JW, 1995, SCI BASIS NOISE INDU, P243 Heinrich A, 2006, J ACOUST SOC AM, V119, P2316, DOI 10.1121/1.2173524 Humes L E, 1996, J Am Acad Audiol, V7, P161 HYDE JS, 1988, PSYCHOL BULL, V104, P53, DOI 10.1037/0033-2909.104.1.53 *ISO, 1989, 82531989 ISO KALIKOW DN, 1977, J ACOUST SOC AM, V61, P1337, DOI 10.1121/1.381436 Killion MC, 2004, J ACOUST SOC AM, V116, P2395, DOI 10.1121/1.1784440 Kraljic T, 2005, COGNITIVE PSYCHOL, V51, P141, DOI 10.1016/j.cogpsych.2005.05.001 Kraljic T, 2006, PSYCHON B REV, V13, P262, DOI 10.3758/BF03193841 Kraus N, 1998, AUDIOL NEURO-OTOL, V3, P168, DOI 10.1159/000013788 LESHOWITZ B, 1977, 12 IPO LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LEWIS HD, 1988, J SPEECH HEAR RES, V31, P108 Lister J, 2002, J ACOUST SOC AM, V111, P2793, DOI 10.1121/1.1476685 Lister J, 2004, J SPEECH LANG HEAR R, V47, P257, DOI 10.1044/1092-4388(2004/021) Lister JJ, 2000, EAR HEARING, V21, P141, DOI 10.1097/00003446-200004000-00008 LUTFI RA, 1990, J ACOUST SOC AM, V88, P2607, DOI 10.1121/1.399980 LYREGAARD P, 1997, SPEECH AUDIOMETRY Martin JS, 2005, J REHABIL RES DEV, V42, P25, DOI 10.1682/JRRD.2004.12.0164 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 NITTROUER S, 1990, J ACOUST SOC AM, V87, P2705, DOI 10.1121/1.399061 Norris D, 2003, COGNITIVE PSYCHOL, V47, P204, DOI 10.1016/S0010-0285(03)00006-9 Nygaard LC, 1998, PERCEPT PSYCHOPHYS, V60, P355, DOI 10.3758/BF03206860 PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 Pichora-Fuller MK, 2003, INT J AUDIOL, V42, pS59 Pichora-Fuller MK, 2006, J ACOUST SOC AM, V119, P1143, DOI 10.1121/1.2149837 PLANT G, 1997, SPEECH AUDIOMETRY PLOMP R, 1979, J ACOUST SOC AM, V66, P1333, DOI 10.1121/1.383554 Rhebergen KS, 2005, J ACOUST SOC AM, V117, P2181, DOI 10.1121/1.1861713 Roberts RA, 2004, J SPEECH LANG HEAR R, V47, P965, DOI 10.1044/1092-4388(2004/071) ROBINSON K, 1996, EAR HEARING, V17, P51 Schneider B, 1998, CAN J EXP PSYCHOL, V52, P184, DOI 10.1037/h0087291 Snell KB, 2002, J ACOUST SOC AM, V112, P720, DOI 10.1121/1.1487841 Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446 Sommers MS, 1997, J AM GERIATR SOC, V45, P633 Tremblay K, 1998, NEUROREPORT, V9, P3557 VANROOIJ JCGM, 1990, J ACOUST SOC AM, V88, P2611, DOI 10.1121/1.399981 VANROOIJ JCGM, 1989, J ACOUST SOC AM, V86, P1294, DOI 10.1121/1.398744 van Wijngaarden SJ, 2002, J ACOUST SOC AM, V111, P1906, DOI 10.1121/1.1456928 WATSON CS, 1980, ANN OTO RHINOL LARYN, V89, P96 Wingfield A, 1996, J Am Acad Audiol, V7, P175 NR 70 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2008 VL 238 IS 1-2 BP 155 EP 164 DI 10.1016/j.heares.2007.10.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 293HD UT WOS:000255325400017 PM 18024026 ER PT J AU Hutson, KA Durham, D Imig, T Tucci, DL AF Hutson, K. A. Durham, D. Imig, T. Tucci, D. L. TI Consequences of unilateral hearing loss: Cortical adjustment to unilateral deprivation SO HEARING RESEARCH LA English DT Article DE auditory cortex; medial geniculate; inferior colliculus; 2-deoxyglucose; conductive hearing loss; cochlear ablation; gerbil ID PRIMARY AUDITORY-CORTEX; GERBIL MERIONES-UNGUICULATUS; MEDIAL GENICULATE-BODY; FREQUENCY-MODULATED TONES; VENTRAL COCHLEAR NUCLEUS; MIDDLE-EAR DESTRUCTION; INFERIOR COLLICULUS; MONGOLIAN GERBIL; FUNCTIONAL-ORGANIZATION; RESPONSE PROPERTIES AB The effect of unilateral hearing loss on 2-deoxyglucose (2-DG) uptake in the central auditory system was studied in postnatal day 21 gerbils. Three weeks following a unilateral conductive hearing loss (CHL) or cochlear ablation (CA), animals were injected with 2-DG and exposed to an alternating auditory stimulus (I and 2 kHz tones). Uptake of 2-DG was measured in the inferior colliculus (IC), medial geniculate (MG), and auditory cortex (fields AI and AAF) of both sides of the brain in experimental animals and in anesthesia-only sham animals (SH). Significant differences in uptake, compared to SH, were found in the IC contralateral to the manipulated ear (CHL or CA) and in AAF contralateral to the CHL ear. We hypothesize that these findings may result from loss of functional inhibition in the IC contralateral to CA, but not CHL. Altered states of inhibition at the IC may affect activity in pathways ascending to auditory cortex, and ultimately activity in auditory cortex itself. Altered levels of activity in auditory cortex may explain some auditory processing deficits experienced by individuals with CHL. (C) 2007 Elsevier B.V. All rights reserved. C1 [Hutson, K. A.; Tucci, D. L.] Duke Univ, Med Ctr, Dept Surg, Div Otolaryngol Head & Neck Surg, Durham, NC 27710 USA. [Durham, D.] Univ Kansas, Med Ctr, Dept Otolaryngol, Kansas City, KS 66160 USA. [Imig, T.] Univ Kansas, Med Ctr, Dept Physiol, Kansas City, KS 66160 USA. RP Tucci, DL (reprint author), Duke Univ, Med Ctr, Dept Surg, Div Otolaryngol Head & Neck Surg, Box 3805, Durham, NC 27710 USA. EM tucci001@mc.duke.edu CR AITKIN LM, 1968, J NEUROPHYSIOL, V31, P44 AITKIN LM, 1974, J NEUROPHYSIOL, V37, P512 AITKIN LM, 1972, J NEUROPHYSIOL, V35, P365 ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312 ANDERSEN RA, 1980, J COMP NEUROL, V194, P649, DOI 10.1002/cne.901940311 WallhausserFranke E, 1996, NEUROREPORT, V7, P1585, DOI 10.1097/00001756-199607080-00010 Brown M, 1997, HEARING RES, V104, P73, DOI 10.1016/S0378-5955(96)00186-4 BRUCKNER S, 1995, HEARING RES, V86, P1, DOI 10.1016/0378-5955(95)00048-9 Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x CAIRD D, 1991, J COMP PHYSIOL A, V168, P13, DOI 10.1007/BF00217100 CALFORD MB, 1983, J NEUROSCI, V3, P2350 Calford MB, 2002, NEUROSCIENCE, V111, P709, DOI 10.1016/S0306-4522(02)00022-2 Cant NB, 2005, HEARING RES, V206, P12, DOI 10.1016/j.heares.2005.02.014 Cant NB, 2006, J COMP NEUROL, V495, P511, DOI 10.1002/cne.20888 CHERUBINI E, 1991, TRENDS NEUROSCI, V14, P515, DOI 10.1016/0166-2236(91)90003-D CLOPTON BM, 1978, EXP BRAIN RES, V32, P39 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 2003, AURIS NASUS LARYNX S, V30, P7, DOI 10.1016/S0385-8146(02)00122-0 FINCK A, 1972, J COMP PHYSIOL PSYCH, V78, P375, DOI 10.1037/h0032373 Gao WJ, 1999, J COMP NEUROL, V409, P261, DOI 10.1002/(SICI)1096-9861(19990628)409:2<261::AID-CNE7>3.0.CO;2-R Hosokawa Y, 1999, HEARING RES, V134, P123, DOI 10.1016/S0378-5955(99)00073-8 HUTSON K, 2004, ANATOMICAL DEFINITIO Hutson KA, 1997, ADV PSYCHOL, V123, P383 Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003 IMIG TJ, 1980, J COMP NEUROL, V192, P293, DOI 10.1002/cne.901920208 IMIG TJ, 1983, ANNU REV NEUROSCI, V6, P95, DOI 10.1146/annurev.ne.06.030183.000523 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Irvine DRF, 2003, J COMP NEUROL, V467, P354, DOI 10.1002/ene.10921 Irvine DRF, 2007, HEARING RES, V229, P158, DOI 10.1016/j.heares.2007.01.006 Jen PHS, 2002, HEARING RES, V174, P249, DOI 10.1016/S0378-5955(02)00699-8 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 KAUER JS, 1982, LARYNGOSCOPE, V92, P1401 KELLY JB, 1986, J COMP PSYCHOL, V100, P37 KELLY JB, 1988, J NEUROPHYSIOL, V59, P1756 Kilgard MP, 2007, HEARING RES, V229, P171, DOI 10.1016/j.heares.2007.01.005 Kilman V, 2002, J NEUROSCI, V22, P1328 KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1 Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006 Lee CC, 2004, NEUROSCIENCE, V128, P871, DOI 10.1016/j.neuroscience.2004.06.062 Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002 Lomber SG, 2007, HEARING RES, V229, P31, DOI 10.1016/j.heares.2007.01.013 McAlpine D, 1997, J NEUROPHYSIOL, V78, P767 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 MOORE RY, 1963, J COMP NEUROL, V121, P109, DOI 10.1002/cne.901210109 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 MOREL A, 1987, J COMP NEUROL, V265, P119, DOI 10.1002/cne.902650109 Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X NUDO RJ, 1986, J COMP NEUROL, V245, P553, DOI 10.1002/cne.902450410 PHILLIPS DP, 1982, BRAIN RES, V248, P237, DOI 10.1016/0006-8993(82)90581-9 Pienkowski M, 2005, J NEUROPHYSIOL, V93, P454, DOI 10.1152/jn.00569.2004 POPELAR J, 1994, HEARING RES, V72, P125, DOI 10.1016/0378-5955(94)90212-7 Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 REALE RA, 1986, J NEUROPHYSIOL, V56, P663 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 RECANZONE GH, 1993, J NEUROSCI, V13, P87 Rutkowski RG, 2003, HEARING RES, V181, P116, DOI 10.1016/S0378-5955(03)00182-5 RYAN AF, 1993, DEV AUDITORY VESTIBU, V11, P243 Rybalko N, 2006, EUR J NEUROSCI, V23, P1614, DOI 10.1111/j.1460-9568.2006.04688.x SASAKI CT, 1980, BRAIN RES, V194, P511, DOI 10.1016/0006-8993(80)91233-0 Scheich H, 2007, HEARING RES, V229, P213, DOI 10.1016/j.heares.2007.01.025 SCHEICH H, 1993, EUR J NEUROSCI, V5, P898, DOI 10.1111/j.1460-9568.1993.tb00941.x SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 Schulze H, 1997, J COMP PHYSIOL A, V181, P573, DOI 10.1007/s003590050141 Sperling NM, 1999, LARYNGOSCOPE, V109, P1386, DOI 10.1097/00005537-199909000-00004 STANFORD TR, 1992, J NEUROSCI, V12, P3200 Stanton SG, 2000, J COMP NEUROL, V426, P117, DOI 10.1002/1096-9861(20001009)426:1<117::AID-CNE8>3.0.CO;2-S Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140 Stuermer IW, 2000, HEARING RES, V146, P185, DOI 10.1016/S0378-5955(00)00113-1 Sumner CJ, 2005, J NEUROPHYSIOL, V94, P4234, DOI 10.1152/jn.00401.2005 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Takahashi H, 2005, HEARING RES, V210, P9, DOI 10.1016/j.heares.2005.05.014 Takahashi K, 2006, EUR J NEUROSCI, V23, P1365, DOI 10.1111/j.1460-9568.2006.04662.x THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 Tucci DL, 1999, LARYNGOSCOPE, V109, P1359, DOI 10.1097/00005537-199909000-00001 Tucci DL, 2001, JARO-J ASSOC RES OTO, V3, P89 Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x Wallace MN, 1997, EXP BRAIN RES, V117, P488, DOI 10.1007/s002210050245 WEBSTER DB, 1986, BILATERAL ASYMMETRIC Weinberger NM, 2007, HEARING RES, V229, P54, DOI 10.1016/j.heares.2007.01.004 Wetzel W, 1998, NEUROSCI LETT, V252, P115, DOI 10.1016/S0304-3940(98)00561-8 WILMINGTON D, 1994, HEARING RES, V74, P99, DOI 10.1016/0378-5955(94)90179-1 WOOLF NK, 1984, HEARING RES, V13, P277, DOI 10.1016/0378-5955(84)90081-9 WOOLF NK, 1983, BRAIN RES, V271, P119 WOOLF NK, 1985, DEV BRAIN RES, V17, P131, DOI 10.1016/0165-3806(85)90138-5 Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007 Xu LJ, 2001, HEARING RES, V159, P1, DOI 10.1016/S0378-5955(01)00304-5 Yu ZY, 2006, BRAIN RES, V1099, P73, DOI 10.1016/j.brainres.2006.04.118 Zatorre RJ, 2007, HEARING RES, V229, P24, DOI 10.1016/j.heares.2007.01.018 NR 90 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2008 VL 237 IS 1-2 BP 19 EP 31 DI 10.1016/j.heares.2007.12.007 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 289IU UT WOS:000255049000002 PM 18261867 ER PT J AU Yin, SK Chen, ZN Yu, DZ Feng, YM Wang, J AF Yin, Shankai Chen, Zhengnong Yu, Dongzhen Feng, Yanmel Wang, Jian TI Local inhibition shapes duration tuning in the inferior colliculus of guinea pigs SO HEARING RESEARCH LA English DT Article DE gamma-aminobutyric acid; glycine; auditory; duration coding; inferior colliculus; guinea pigs ID BIG BROWN BAT; INTERAURAL TIME DIFFERENCES; SOUND-DURATION; EPTESICUS-FUSCUS; RESPONSE PROPERTIES; AUDITORY-CORTEX; BRAIN-STEM; GLYCINERGIC INHIBITION; TEMPORAL INTEGRATION; IDENTIFIED NEURONS AB Neural tuning to sound durations is a useful filter for the identification of a variety of sounds. Previous studies have shown that the interaction between excitatory and inhibitory inputs plays a role in duration selectivity in echolocating bats. However, this has not been investigated in non-echolocating mammals. In the inferior colliculus (IC) of these mammals, it is recognized that the excitatory responses to sounds are mediated through AMPA and NMDA receptors while the inhibitory input is mediated through gamma-aminobutyric acid (GABA) and glycine receptors. The present study explores the potential interplay between inhibitory and excitatory inputs and its role in the duration selectivity of IC neurons in guinea pigs. It was found that the application of bicuculline (BIC, a GABA(A) blocker) and/or strychnine (STRY, a glycine blocker) eliminated or reduced duration tuning in most units that were duration tuned (32 out of 39 for BIC, 50 out of 64 for STRY, respectively). The inhibitory input (either by GABA or by glycine) appeared to have a stronger regulating effect on the early excitation mediated by AMPA than on later excitation by NMDA. This is more distinguishable in neurons that show duration selectivity. In conclusion, the inhibitory effect on the early responses appears to be the main contributor for the duration selectivity of the IC in guinea pigs; potential mechanisms for this duration selectivity are also discussed. (C) 2008 Elsevier B.V. All rights reserved. C1 [Yin, Shankai; Chen, Zhengnong; Yu, Dongzhen; Feng, Yanmel; Wang, Jian] Shanghai Jiao Tong Univ, Otolaryngol Inst, Affiliated Peoples Hosp 6, Shanghai 200233, Peoples R China. [Wang, Jian] Dalhousie Univ, Sch Human Commun Disorders, Halifax, NS, Canada. RP Wang, J (reprint author), Shanghai Jiao Tong Univ, Otolaryngol Inst, Affiliated Peoples Hosp 6, 600 Yishan Rd,7th Bldg Rm220, Shanghai 200233, Peoples R China. EM jian.wang@dal.ca CR Brand A, 2000, J NEUROPHYSIOL, V84, P1790 Burger RM, 1998, J NEUROPHYSIOL, V80, P1686 CARNEY LH, 1989, J NEUROPHYSIOL, V62, P144 CASPARY DM, 1979, BRAIN RES, V172, P179, DOI 10.1016/0006-8993(79)90909-0 Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Chen GD, 1998, HEARING RES, V122, P142, DOI 10.1016/S0378-5955(98)00103-8 CONDON CJ, 1991, J COMP PHYSIOL A, V168, P709 Covey E, 1996, J NEUROSCI, V16, P3009 Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 FAINGOLD CL, 1989, HEARING RES, V40, P127, DOI 10.1016/0378-5955(89)90106-8 Faure PA, 2003, J NEUROSCI, V23, P3052 FELDMAN DE, 1994, J NEUROSCI, V14, P5939 FENG AS, 1990, PROG NEUROBIOL, V34, P313, DOI 10.1016/0301-0082(90)90008-5 Fremouw T, 2005, J NEUROPHYSIOL, V94, P1869, DOI 10.1152/jn.00253.2005 Fubara BM, 1996, J COMP NEUROL, V369, P83 Fuzessery ZM, 1997, HEARING RES, V109, P46, DOI 10.1016/S0378-5955(97)00053-1 Fuzessery ZA, 2003, JARO, V4, P60, DOI 10.1007/s10162-002-2054-6 FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061 Fuzessery ZM, 1999, HEARING RES, V137, P137, DOI 10.1016/S0378-5955(99)00133-1 Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050 GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210 HALL JC, 1991, J NEUROPHYSIOL, V66, P955 HAPLEA S, 1994, J COMP PHYSIOL A, V174, P671 HAPPER IV, 1976, BIOL GUINEA PIG, P31 HAVEY DC, 1980, ELECTROEN CLIN NEURO, V48, P249, DOI 10.1016/0013-4694(80)90313-2 He JF, 2002, J NEUROPHYSIOL, V88, P2377, DOI 10.1152/jn.00083.2002 He JF, 1997, J NEUROSCI, V17, P2615 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HIRSCH JA, 1985, J NEUROPHYSIOL, V53, P726 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Jen PHS, 2000, BRAIN RES, V862, P127, DOI 10.1016/S0006-8993(00)02098-9 Jen PHS, 1999, J COMP PHYSIOL A, V184, P185, DOI 10.1007/s003590050317 Jen PHS, 1999, J COMP PHYSIOL A, V185, P471, DOI 10.1007/s003590050408 Klug A, 2000, HEARING RES, V148, P107, DOI 10.1016/S0378-5955(00)00146-5 KLUG A, 1995, J NEUROPHYSIOL, V74, P1701 Koch U, 1998, J NEUROPHYSIOL, V80, P71 Kossl M, 1999, J MAMMAL, V80, P929, DOI 10.2307/1383262 Kuwada S, 1997, J NEUROSCI, V17, P7565 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 Lu Y, 1997, J COMP PHYSIOL A, V181, P331, DOI 10.1007/s003590050119 Lu Y, 2001, EXP BRAIN RES, V141, P331, DOI 10.1007/s002210100885 Lu Y, 1998, J NEUROPHYSIOL, V79, P2303 Lu Y, 2002, HEARING RES, V169, P140, DOI 10.1016/S0378-5955(02)00457-4 Ma CL, 2002, HEARING RES, V168, P25, DOI 10.1016/S0378-5955(02)00370-2 Moore DR, 1998, J NEUROPHYSIOL, V80, P2229 Mora EC, 2004, J NEUROPHYSIOL, V91, P2215, DOI 10.1152/jn.01127.2003 NARINS PM, 1980, BRAIN BEHAV EVOLUT, V17, P48, DOI 10.1159/000121790 NELSON PG, 1963, J NEUROPHYSIOL, V26, P908 PARK TJ, 1993, J NEUROSCI, V13, P2050 Perez-Gonzalez D, 2006, J NEUROPHYSIOL, V95, P823, DOI 10.1152/jn.00741.2005 PINHEIRO AD, 1991, J COMP PHYSIOL A, V169, P69 POLLAK GD, 1988, HEARING RES, V36, P107, DOI 10.1016/0378-5955(88)90054-8 POTTER HD, 1965, J NEUROPHYSIOL, V28, P1155 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 SAITOH I, 1995, J NEUROPHYSIOL, V74, P1 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SANES DH, 1987, J NEUROSCI, V7, P3793 SIVILOTTI L, 1991, PROG NEUROBIOL, V36, P35, DOI 10.1016/0301-0082(91)90036-Z Sun H, 2006, NEUROSCI LETT, V399, P151, DOI 10.1016/j.neulet.2006.01.049 Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002 Syka J, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P431, DOI 10.1007/978-1-4419-8712-9_39 SZCZEPANIAK WS, 1995, NEUROSCI LETT, V196, P77, DOI 10.1016/0304-3940(95)11851-M Wagner T, 1996, EUR J NEUROSCI, V8, P1231, DOI 10.1111/j.1460-9568.1996.tb01291.x WAGNER T, 1994, NEUROREPORT, V6, P89, DOI 10.1097/00001756-199412300-00024 Wang J, 2006, BRAIN RES, V1114, P63, DOI 10.1016/j.brainres.2006.07.046 Winer JA, 1998, J COMP NEUROL, V400, P147 Wu SH, 2004, J NEUROSCI, V24, P4625, DOI 10.1523/JNEUROSCI.0318-04.2004 Xia YF, 2000, ACTA OTO-LARYNGOL, V120, P638, DOI 10.1080/000164800750000478 Zhang HM, 2001, J NEUROPHYSIOL, V86, P871 Zhou XM, 2001, J COMP PHYSIOL A, V187, P63, DOI 10.1007/s003590000179 NR 73 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2008 VL 237 IS 1-2 BP 32 EP 48 DI 10.1016/j.heares.2007.12.008 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 289IU UT WOS:000255049000003 PM 18255245 ER PT J AU Jonsson, R Hanekom, T Hanekom, JJ AF Joensson, R. Hanekom, T. Hanekom, J. J. TI Initial results from a model of ephaptic excitation in the electrically excited peripheral auditory nervous system SO HEARING RESEARCH LA English DT Article DE Hodgkin-Huxley model; ephaptic excitation; cochlear implant; spread of neural excitation ID SPIRAL GANGLION; INFERIOR COLLICULUS; STIMULATION; CELLS; CAT AB This article reports on a study performed to investigate the occurrence and effect of ephaptic excitation in electrical stimulation of the auditory system. The objective of the study was to quantify the influence of ephaptic excitation on nerve stimulation and determine whether it is a necessary factor in neuromodeling. It was shown with a simple model that ephaptic excitation could be important at stimulus intensities close to threshold. The results show that the contribution of ephaptic excitation is significant up to at least 6-7 dB above threshold. Cochlear implant patients normally have a small dynamic range (average of 7 dB), indicating that the ephaptic effect might be important in models of the implanted cochlea. (C) 2008 Elsevier B.V. All rights reserved. C1 [Joensson, R.; Hanekom, T.; Hanekom, J. J.] Univ Pretoria, Elect Elect & Computer Engn Bioengn Grp, ZA-0002 Pretoria, Gauteng, South Africa. RP Hanekom, T (reprint author), Univ Pretoria, Elect Elect & Computer Engn Bioengn Grp, Lynnwood Rd, ZA-0002 Pretoria, Gauteng, South Africa. EM tania.hanekom@up.ac.za CR Brown M, 1997, HEARING RES, V104, P73, DOI 10.1016/S0378-5955(96)00186-4 DALKARA T, 1986, NEUROSCIENCE, V17, P361, DOI 10.1016/0306-4522(86)90252-6 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 Hanekom T, 2001, EAR HEARING, V22, P300, DOI 10.1097/00003446-200108000-00005 Holt GR, 1999, J COMPUT NEUROSCI, V6, P169, DOI 10.1023/A:1008832702585 Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0 KEITHLEY EM, 1987, J ACOUST SOC AM, V81, P1036, DOI 10.1121/1.394675 KIMURA RS, 1987, ACTA OTO-LARYNGOL, P1 Koop G, 2006, KLIN MONATSBL AUGENH, V223, P247, DOI 10.1055/s-2005-858869 McCormick DA, 2001, ANNU REV PHYSIOL, V63, P815, DOI 10.1146/annurev.physiol.63.1.815 Moore CM, 2002, HEARING RES, V164, P82, DOI 10.1016/S0378-5955(01)00415-4 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 REILLY JP, 1985, IEEE T BIO-MED ENG, V32, P1001, DOI 10.1109/TBME.1985.325509 SHINICHI H, 1990, RHINOLOGY LARYNGOLOG, V99, P871 SPOENDLIN H, 1989, HEARING RES, V43, P25, DOI 10.1016/0378-5955(89)90056-7 TURNER RW, 1991, NEUROSCIENCE, V42, P125, DOI 10.1016/0306-4522(91)90153-F Tylstedt S, 2001, J NEUROCYTOL, V30, P465, DOI 10.1023/A:1015628831641 YIM CC, 1986, J NEUROPHYSIOL, V56, P99 NR 18 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2008 VL 237 IS 1-2 BP 49 EP 56 DI 10.1016/j.heares.2007.12.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 289IU UT WOS:000255049000004 PM 18255244 ER PT J AU Williamson, RE Darrow, KN Giersch, ABS Resendes, BL Huang, M Conrad, GW Chen, ZY Liberman, MC Morton, CC Tasheva, ES AF Williamson, Robin E. Darrow, Keith N. Giersch, Anne B. S. Resendes, Barbara L. Huang, Mingqian Conrad, Gary W. Chen, Zheng-Yi Liberman, M. Charles Morton, Cynthia C. Tasheva, Elena S. TI Expression studies of osteoglycin/mimecan (OGN) in the cochlea and auditory phenotype of Ogn-deficient mice SO HEARING RESEARCH LA English DT Article DE mimecan/osteoglycin; proteoglycan; hearing loss ID RECESSIVE ALPORT SYNDROME; PROGRESSIVE HEARING-LOSS; COL4A5 COLLAGEN GENE; AUTOSOMAL-DOMINANT; INNER-EAR; STICKLER-SYNDROME; OSTEOGENESIS IMPERFECTA; NONSYNDROMIC DEAFNESS; MENIERES-DISEASE; CDNA LIBRARY AB Genes involved in the hearing process have been identified through both positional cloning efforts following genetic linkage studies of families with heritable deafness and by candidate gene approaches based on known functional properties or inner ear expression. The latter method of gene discovery may employ a tissue- or organ-specific approach. Through characterization of a human fetal cochlear cDNA library, we have identified transcripts that are preferentially and/or highly expressed in the cochlea. High expression in the cochlea may be suggestive of a fundamental role for a transcript in the auditory system. Herein we report the identification and characterization of a transcript from the cochlear cDNA library with abundant cochlear expression and unknown function that was subsequently determined to represent osteoglycin (OGN). Ogn-deficient mice, when analyzed by auditory brainstem response and distortion product otoacoustic emissions, have normal hearing thresholds. (C) 2007 Elsevier B.V. All rights reserved. C1 [Giersch, Anne B. S.; Resendes, Barbara L.; Morton, Cynthia C.] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA. [Williamson, Robin E.] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA. [Darrow, Keith N.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Darrow, Keith N.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA USA. [Morton, Cynthia C.] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Obstet Gynecol & Reprod Biol, Boston, MA 02115 USA. [Chen, Zheng-Yi] Massachusetts Gen Hosp, Ctr Nervous Syst Repair, Neurol Serv, Boston, MA 02114 USA. [Conrad, Gary W.] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. [Tasheva, Elena S.] Kansas State Univ, Dept Anat & Physiol, Manhattan, KS 66506 USA. RP Morton, CC (reprint author), Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Pathol, NRB 160,77 Ave Louis Pasteur, Boston, MA 02115 USA. EM cmorton@partners.org CR Abe S, 2003, AM J HUM GENET, V72, P73, DOI 10.1086/345398 AHMAD NN, 1991, P NATL ACAD SCI USA, V88, P6624, DOI 10.1073/pnas.88.15.6624 BARKER DF, 1990, SCIENCE, V248, P1224, DOI 10.1126/science.2349482 Beecher N, 2005, INVEST OPHTH VIS SCI, V46, P4046, DOI 10.1167/iovs.05-0325 Beisel KW, 2004, GENOMICS, V83, P1012, DOI 10.1016/j,ygeno.2004.01.006 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 CHIRGWIN JM, 1979, BIOCHEMISTRY-US, V18, P5294, DOI 10.1021/bi00591a005 Clark AG, 2003, SCIENCE, V302, P1960, DOI 10.1126/science.1088821 Collin RWJ, 2006, AM J MED GENET A, V140A, P1791, DOI 10.1002/ajmg.a.31354 de Kok YJM, 1999, HUM MOL GENET, V8, P361, DOI 10.1093/hmg/8.2.361 Fransen E, 1999, HUM MOL GENET, V8, P1425, DOI 10.1093/hmg/8.8.1425 Funderburgh JL, 1997, J BIOL CHEM, V272, P28089, DOI 10.1074/jbc.272.44.28089 Ge GX, 2004, J BIOL CHEM, V279, P41626, DOI 10.1074/jbc.M406630200 Kamarinos M, 2001, Hum Mutat, V17, P351, DOI 10.1002/humu.37 Kemperman MH, 2005, OTOL NEUROTOL, V26, P926, DOI 10.1097/01.mao.0000185062.12458.87 LEMMINK HH, 1994, HUM MOL GENET, V3, P317, DOI 10.1093/hmg/3.2.317 LEMMINK HH, 1994, HUM MOL GENET, V3, P1269, DOI 10.1093/hmg/3.8.1269 Li J, 2001, Genome Inform, V12, P3 Makishima T, 2005, HUM GENET, V118, P29, DOI 10.1007/s00439-005-0001-4 McGuirt WT, 1999, NAT GENET, V23, P413 MOCHIZUKI T, 1994, NAT GENET, V8, P77, DOI 10.1038/ng0994-77 Morton CC, 2006, NEW ENGL J MED, V354, P2151, DOI 10.1056/NEJMra050700 Nagy I, 2004, J MED GENET, V41, DOI 10.1136/jmg.2003.012286 Pauw RJ, 2007, ANN OTO RHINOL LARYN, V116, P349 PIHLAJANIEMI T, 1984, J BIOL CHEM, V259, P2941 POPE FM, 1985, J MED GENET, V22, P466, DOI 10.1136/jmg.22.6.466 Renieri Alessandra, 1992, Human Molecular Genetics, V1, P127, DOI 10.1093/hmg/1.2.127 RENIERI A, 1992, HUM GENET, V89, P120, DOI 10.1007/BF00207059 Resendes BL, 2004, JARO-J ASSOC RES OTO, V5, P185, DOI 10.1007/s10162-003-4042-x Resendes BL, 2002, JARO, V3, P45, DOI 10.1007/s101620020005 Richards AJ, 1996, HUM MOL GENET, V5, P1339, DOI 10.1093/hmg/5.9.1339 Robertson NG, 2000, GENOMICS, V66, P242, DOI 10.1006/geno.2000.6224 Robertson NG, 1997, GENOMICS, V46, P345, DOI 10.1006/geno.1997.5067 ROBERTSON NG, 1994, GENOMICS, V23, P42, DOI 10.1006/geno.1994.1457 Robertson NG, 1998, NAT GENET, V20, P299 Sajan SA, 2007, GENETICS, V177, P631, DOI 10.1534/genetics.107.078584 Skvorak AB, 1999, HUM MOL GENET, V8, P439, DOI 10.1093/hmg/8.3.439 Skvorak AB, 1997, GENOMICS, V46, P191, DOI 10.1006/geno.1997.5026 SMEETS HJM, 1992, KIDNEY INT, V42, P83, DOI 10.1038/ki.1992.264 Street VA, 2005, AM J MED GENET A, V139A, P86, DOI 10.1002/ajmg.a.30980 Svensson L, 1999, J BIOL CHEM, V274, P9636, DOI 10.1074/jbc.274.14.9636 Tasheva ES, 2002, MOL VIS, V8, P407 Toriello HV, 2004, HEREDITARY HEARING L Usami S, 2003, EUR J HUM GENET, V11, P744, DOI 10.1038/sj.ejhg.5201043 Van Camp G, 2006, AM J HUM GENET, V79, P449, DOI 10.1086/506478 VIKKULA M, 1995, CELL, V80, P431, DOI 10.1016/0092-8674(95)90493-X NR 46 TC 7 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2008 VL 237 IS 1-2 BP 57 EP 65 DI 10.1016/j.heares.2007.12.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 289IU UT WOS:000255049000005 PM 18243607 ER PT J AU Sun, XM AF Sun, Xiao-Ming TI Contralateral suppression of distortion product otoacoustic emissions and the middle-ear muscle reflex in human ears SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emission; DPOAE contralateral suppression; medial olivocochlear bundle; middle-ear muscle; acoustic reflex; contralateral acoustic stimulation ID COCHLEAR MICROMECHANICAL PROPERTIES; ACOUSTIC-REFLEX; ENERGY REFLECTANCE; SOUND STIMULATION; FREQUENCY; ADAPTATION; SYSTEM; THRESHOLDS; 2F(1)-F(2); IMPEDANCE AB Distortion product otoacoustic emissions (DPOAEs) were measured in the absence and presence of contralateral noise at five levels-below, equal to, and above the middle-car muscle (MEM) reflex threshold. The resultant changes in DPOAE level and phase were dependent on stimulus frequency and noise level. Both low-level noise, believed to elicit the medial olivocochlear (MOC) reflex, and high-level noise, thought to activate both MOC and MEM reflexes, significantly decreased the DPOAE level. However, the shift from sole MOC effect to mixed MOC and MEM effects was not as dramatic as we thought. While low-level noise resulted in a minimum DPOAE phase change, high-level noise caused a substantial phase lead for 1 and 2 kHz. With increasing frequency, phase lag became more notable. The present study suggests the following: (1) DPOAE contralateral suppression by low-level sound most likely does not involve the effect of the MEM reflex and signal crossover; and (2) combined analysis of DPOAE level and phase changes warrants further investigations to overcome the difficulty in separating the effects of MOC efferents and MEM contraction. The results also imply that OAE measurement has the potential for being used to investigate the effect of the MEM reflex on sound transmission. (C) 2007 Elsevier B.V. All rights reserved. C1 Wichita State Univ, Dept Commun Sci & Disorders, Wichita, KS 67260 USA. RP Sun, XM (reprint author), Wichita State Univ, Dept Commun Sci & Disorders, 1845 Fairmt St, Wichita, KS 67260 USA. EM xiao-ming.sun@wichita.edu CR BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S BORG E, 1972, ACTA PHYSIOL SCAND, V86, P366, DOI 10.1111/j.1748-1716.1972.tb05343.x Borg E, 1968, Acta Otolaryngol, V66, P461, DOI 10.3109/00016486809126311 BORG E, 1972, ACTA OTO-LARYNGOL, V74, P163, DOI 10.3109/00016487209128437 Buki B, 2000, BRAIN RES, V852, P140, DOI 10.1016/S0006-8993(99)02227-1 BURNS EM, 1993, HEARING RES, V67, P117, DOI 10.1016/0378-5955(93)90239-W CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P128, DOI 10.1044/1092-4388(2003/010) Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 Goodman SS, 2006, JARO-J ASSOC RES OTO, V7, P125, DOI 10.1007/s10162-006-0028-9 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3 HOOD LJ, 2007, OTOACOUSTIC EMISSION, P297 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 Liberman MC, 1998, J COMMUN DISORD, V31, P471, DOI 10.1016/S0021-9924(98)00019-7 MCMILLAN PM, 1985, ANN OTO RHINOL LARYN, V94, P145 MOLLER A R, 1965, Acta Otolaryngol, V60, P129, DOI 10.3109/00016486509126996 MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K Muller-Wehlau M, 2005, J ACOUST SOC AM, V117, P3016, DOI 10.1121/1.1867932 Neumann J, 1996, Audiol Neurootol, V1, P359 Pilz PKD, 1997, HEARING RES, V105, P171, DOI 10.1016/S0378-5955(96)00206-7 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 RABINOWITZ WM, 1977, ACOUSTICREFLEX EFFEC Rawool VW, 1998, ACTA OTO-LARYNGOL, V118, P307, DOI 10.1080/00016489850183377 Silman S., 1984, ACOUSTIC REFLEX BASI SKLARE DA, 1987, EAR HEARING, V8, P298, DOI 10.1097/00003446-198710000-00008 SUN XM, 2003, DISTINCTIVE CONTRIBU, P9 SUN XM, 2007, STUDY IMPROVING DPOA, P277 SUN XM, 2000, J ACOUST SOC AM, V107, P2916, DOI 10.1121/1.428862 Sun XM, 1999, J ACOUST SOC AM, V105, P3399, DOI 10.1121/1.424668 SUN XM, 2002, ASHA LEADER, V15, P238 Velenovsky DS, 2007, OTOACOUSTIC EMISSION, P131 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WHITEHEAD ML, 1991, HEARING RES, V51, P55, DOI 10.1016/0378-5955(91)90007-V WILLIAMS EA, 1994, ACTA OTO-LARYNGOL, V114, P121, DOI 10.3109/00016489409126029 WILSON RH, 1978, J ACOUST SOC AM, V63, P147, DOI 10.1121/1.381706 WILSON RH, 1978, J ACOUST SOC AM, V64, P782, DOI 10.1121/1.382043 NR 43 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2008 VL 237 IS 1-2 BP 66 EP 75 DI 10.1016/j.heares.2007.12.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 289IU UT WOS:000255049000006 PM 18258398 ER PT J AU Marcon, S Patuzzi, R AF Marcon, Simon Patuzzi, Robert TI Changes in cochlear responses in guinea pig with changes in perilymphatic K+. Part 1: Summating potentials, compound action potentials and DPOAEs SO HEARING RESEARCH LA English DT Article DE potassium; compound action potential; summating potential; distortion product; tinnitus; deafness ID OUTER HAIR-CELLS; AUDITORY-NERVE FIBERS; POTASSIUM CONCENTRATION; VOLUME REGULATION; CAT; ACETYLCHOLINE; MECHANISM; PERFUSION; RUBIDIUM AB We have measured the effects of changing perilymphatic K+ by perfusing Scala tympani in guinea pigs with salt solutions high or low in K+, while monitoring the distortion product otoacoustic emissions (DPOAEs) in the ear canal (a measure of mechanical vibration of the organ of Corti), the summating potential (SP) evoked by high-frequency tone-bursts (taken to be a measure of pre-synaptic electrical activity of the inner hair cells) and the compound action potential (CAP) of the auditory nerve (taken to be a measure of post-synaptic neural activity). We have attempted to investigate the osmotic effects of our perfusates by comparison with simple hyperosmotic sucrose perfusates and iso-osmotic versions of perfusates, and for the effects of changes in other ions (e.g. Na+ and Cl-) by keeping these constant in some perfusates while elevating K+. We have found that changing the K+ concentration over the range 0-30 mM elevated the SP and CAP thresholds almost equally in normal animals, and not at all in animals devoid of outer hair cells (OHCs), showing that OHCs are sensitive to the perfusates we have used, but the inner hair cells (IHCs) and the type I afferent dendrites are not, presumably because IHCs are shielded from perilymph by supporting cells, and the membranes of the afferent dendrite membranes exposed directly to our perfusates are dominated by Cl- permeability, rather than by K+ permeability. This view is supported by experiments in which the perilymphatic Cl- concentration was reduced, producing a large elevation in CAP threshold, but a much smaller elevation of SP threshold, suggesting disruption of action potential initiation. The view that threshold elevations with changes in perilymphatic K+ are due almost solely to a disruption of OHC function and a consequent change in the mechanical sensitivity of the organ of Corti was supported by measurements of amplitude of the 2f(1)-f(2) distortion product otoacoustic emission. During elevations in K+, DPOAEs followed a similar time-course to that for SP and CAP, although the changes were less for DPOAEs. The lack of a 1:1 relationship between DPOAEs and SP and CAP is probably because the iso-input DPOAE measure used is a more complex indicator of mechanical sensitivity than the iso-output measure used by others. Taken together, these results suggest that changes in K+ in pathological conditions probably produce a hearing loss by disrupting IHCs rather than OHC or neurotics, and that OHC disruption in our experiments was due to a mixture of osmotic, K+ and possibly Cl- effects. (C) 2008 Elsevier B.V. All rights reserved. C1 Univ Western Australia, Sch Biomed Biomol & Chem Sci, Nedlands, WA 6009, Australia. RP Patuzzi, R (reprint author), Univ Western Australia, Sch Biomed Biomol & Chem Sci, 35 Stirling Highway, Nedlands, WA 6009, Australia. EM rpatuzzi@cyllene.uwa.edu.au CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 AVAN P, 1988, HEARING RES, V35, P159, DOI 10.1016/0378-5955(88)90115-3 CRIST JR, 1993, HEARING RES, V69, P194, DOI 10.1016/0378-5955(93)90107-C DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 DESMEDT JE, 1975, J PHYSIOL-LONDON, V247, P407 DOI T, 1993, HEARING RES, V67, P179, DOI 10.1016/0378-5955(93)90245-V DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6 EVANS EF, 1982, J PHYSIOL-LONDON, V331, P385 FARKASIDY J., 1963, LARYNGOSCOPE, V73, P713 Frolenkov GI, 2006, J PHYSIOL-LONDON, V576, P43, DOI 10.1113/jphysiol.2006.114975 HARADA N, 1993, ACTA OTO-LARYNGOL, P39 HAWKINS JE, 1962, ACTA OTO-LARYNGOL, V188, P100 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 JOHNSTONE BM, 1990, COCHLEAR MECHANISMS, V7, P55 KATZUKI Y, 1966, SCIENCE, V151, P1544 KONISHI T, 1973, ACTA OTO-LARYNGOL, V76, P410, DOI 10.3109/00016487309121529 LENG G, 1979, ACTA OTO-LARYNGOL, V87, P39, DOI 10.3109/00016487909126385 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 MARCUS DC, 1979, ARCH OTO-RHINO-LARYN, V224, P155, DOI 10.1007/BF01108773 PATUZZI R, UNPUB CHANGES COCHLE Patuzzi R, 1998, HEARING RES, V125, P71, DOI 10.1016/S0378-5955(98)00124-5 Patuzzi R, 1996, COCHLEA PATUZZI R, 1988, PHYSIOL REV, V68, P1009 PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U SALT AN, 1979, EXP BRAIN RES, V36, P87 SANTOSSACCHI J, 2006, J NEUROSCI, V12, P3992 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 Song L, 2005, BIOPHYS J, V88, P2350, DOI 10.1529/biophysj.104.053579 SUNOSE H, 1992, HEARING RES, V62, P237, DOI 10.1016/0378-5955(92)90190-X TASAKI I, 1954, J ACOUST SOC AM, V26, P765, DOI 10.1121/1.1907415 TASAKI I, 1952, J NEUROPHYSIOL, V15, P497 WADA J, 1979, ARCH OTO-RHINO-LARYN, V225, P79, DOI 10.1007/BF00455206 WARD PH, 1961, ANN OTO RHINOL LARYN, V70, P132 NR 36 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2008 VL 237 IS 1-2 BP 76 EP 89 DI 10.1016/j.heares.2007.12.011 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 289IU UT WOS:000255049000007 PM 18262371 ER PT J AU Megerian, CA Semaan, MT Aftab, S Kisley, LB Zheng, QY Pawlowski, KS Wright, CG Alagramam, KN AF Megerian, Cliff A. Semaan, Maroun T. Aftab, Saba Kisley, Lauren B. Zheng, Qing Yin Pawlowski, Karen S. Wright, Charles G. Alagramam, Kumar N. TI A mouse model with postnatal endolymphatic hydrops and hearing loss SO HEARING RESEARCH LA English DT Article DE endolymphatic hydrops; Meniere's disease; Phex mutant ID INNER-EAR; MENIERES-DISEASE; COCHLEAR NEURONS; MICE; DEAFNESS; DEFECTS; GENE; DEGENERATION; PATHOGENESIS; MUTATION AB Endolymphatic hydrops (ELH), hearing loss and neuronal degeneration occur together in a variety of clinically significant disorders, including Meniere's disease (MD). However, the sequence of these pathological changes and their relationship to each other are not well understood. In this regard, an animal model that spontaneously develops these features postnatally would be useful for research purposes. A search for such a model led us to the Phex(Hyp-Duk) mouse, a mutant allele of the Phex gene causing X-linked hypophosphatemic rickets. The hemizygous male (Phex(Hyp-Duk)/Y) was previously reported to exhibit various abnormalities during adulthood, including thickening of bone, ELH and hearing loss. The reported inner-ear phenotype was suggestive of progressive pathology and spontaneous development of ELH postnatally, but not conclusive. The main focuses of this report are to further characterize the inner ear phenotype in Phex(Hyp-Duk)/Y mice and to test the hypotheses that (a) the Phex(Hyp-Duk)/Y mouse develops ELH and hearing loss postnatally, and (b) the development of ELH in the Phex(Hyp-Duk)/Y mouse is associated with obstruction of the endolymphatic duct (ED) due to thickening of the surrounding bone. Auditory brainstem response (ABR) recordings at various times points and histological analysis of representative temporal bones reveal that Phex(Hyp-Duk)/Y mice typically develop adult onset, asymmetric, progressive hearing loss closely followed by the onset of ELH. ABR and histological data show that functional degeneration precedes structural degeneration. The major degenerative correlate of hearing loss and ELH in the mutants is the primary loss of spiral ganglion cells. Further, Phex(Hyp-Duk)/Y mice develop ELH without evidence of ED obstruction, supporting the idea that ELH can be induced by a mechanism other than the blockade of longitudinal flow of endolymphatic fluid, and occlusion of ED is not a prerequisite for the development of ELH in patients. (C) 2008 Elsevier B.V. All rights reserved. C1 [Megerian, Cliff A.; Semaan, Maroun T.; Aftab, Saba; Kisley, Lauren B.; Zheng, Qing Yin; Wright, Charles G.; Alagramam, Kumar N.] Case Western Reserve Univ, Univ Hosp Case Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, Cleveland, OH 44106 USA. [Pawlowski, Karen S.; Wright, Charles G.] Univ Texas SW Med Ctr Dallas, Dallas, TX 75390 USA. RP Alagramam, KN (reprint author), Case Western Reserve Univ, Univ Hosp Case Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, 11100 Euclid Ave, Cleveland, OH 44106 USA. EM cliff.megerian@uhhospitals.org; maroun.semaan@uhhospitals.org; saba.aftab@uhhospi-tals.org; lauren.kisley@case.edu; qyz@case.edu; Pawlowski@UTSouthwestern.edu; cgwrigh@utdallas.edu; kna3@cwru.edu RI Zheng, Qing/C-1731-2012 CR Alagramam KN, 2005, JARO-J ASSOC RES OTO, V6, P106, DOI 10.1007/s10162-005-5032-3 Alagramam KN, 2000, HEARING RES, V148, P181, DOI 10.1016/S0378-5955(00)00152-0 ARAN JM, 1984, ACTA OTO-LARYNGOL, V97, P547, DOI 10.3109/00016488409132933 ARENBERG IK, 1970, ACTA OTO-LARYNGOL, P1 Belal A Jr, 1980, Am J Otolaryngol, V1, P275, DOI 10.1016/S0196-0709(80)80030-5 Dodson KM, 2007, AM J MED GENET A, V143A, P1661, DOI 10.1002/ajmg.a.31741 Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153 Fishman G, 2004, EUR J PEDIATR, V163, P622, DOI 10.1007/s00431-004-1504-z FRAYSSE BG, 1980, ANN OTO RHINOL LARYN, V89, P2 Hallpike C. S., 1938, J LARYNG, V53, P625, DOI 10.1017/S0022215100003947 HORNER KC, 1995, OTOLARYNGOL HEAD NEC, V112, P8449 Hott ME, 2003, OTOL NEUROTOL, V24, P64, DOI 10.1097/00129492-200301000-00014 Hulander M, 2003, DEVELOPMENT, V130, P2013, DOI 10.1242/dev.00376 Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4 KIMURA RS, 1965, PRACT-OTO-RHINO-LARY, V27, P343 KUNIEDA T, 1992, BIOL REPROD, V46, P692, DOI 10.1095/biolreprod46.4.692 Lorenz-Depiereux B, 2004, MAMM GENOME, V15, P151, DOI 10.1007/s00335-003-2310-z Mahmud MR, 2003, ANN OTO RHINOL LARYN, V112, P979 Murata J, 2006, ACTA OTO-LARYNGOL, V126, P548, DOI 10.1080/00016480500437369 NADOL JB, 1990, HEARING RES, V49, P141, DOI 10.1016/0378-5955(90)90101-T NADOL JB, 1995, ACTA OTO-LARYNGOL, P47 NADOL JB, 1987, ANN OTO RHINOL LARYN, V96, P449 Ohlemiller KK, 2004, J COMP NEUROL, V479, P103, DOI 10.1002/cne.20326 PAPARELLA MM, 1984, ACTA OTO-LARYNGOL, P10 Phippard D, 1999, J NEUROSCI, V19, P5980 SCHUKNECHT HF, 1976, ARCH OTO-RHINO-LARYN, V212, P253, DOI 10.1007/BF00453673 Willott JF, 1998, HEARING RES, V119, P27, DOI 10.1016/S0378-5955(98)00029-X Xia AP, 2002, HEARING RES, V166, P150, DOI 10.1016/S0378-5955(02)00309-X Yamakawa K, 1938, J OTORHINOLARYNGOL S, V4, P2310 Zheng QY, 2006, HEARING RES, V219, P110, DOI 10.1016/j.heares.2006.06.010 NR 30 TC 23 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2008 VL 237 IS 1-2 BP 90 EP 105 DI 10.1016/j.heares.2008.01.002 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 289IU UT WOS:000255049000008 PM 18289812 ER PT J AU Breuskin, I Bodson, M Thelen, N Thiry, M Nguyen, L Belachew, S Lefebvre, PP Malgrange, B AF Breuskin, Ingrid Bodson, Morgan Thelen, Nicolas Thiry, Marc Nguyen, Laurent Belachew, Shibeshih Lefebvre, Philippe P. Malgrange, Brigitte TI Strategies to regenerate hair cells: Identification of progenitors and critical genes SO HEARING RESEARCH LA English DT Article DE inner ear; cochlea; development; regeneration ID MAMMALIAN INNER-EAR; CYCLIN-DEPENDENT KINASES; NOTCH SIGNALING PATHWAY; EMBRYONIC STEM-CELLS; MATURE GUINEA-PIGS; HEARING-LOSS; RETINOBLASTOMA PROTEIN; SENSORY EPITHELIUM; MUTANT MICE; IN-VIVO AB Deafness commonly results from a lesion of the sensory cells and/or of the neurons of the auditory part of the inner ear. There are currently no treatments designed to halt or reverse the progression of hearing loss. A key goal in developing therapy for sensorineural deafness is the identification of strategies to replace lost hair cells. In amphibians and birds, a spontaneous post-injury regeneration of all inner ear sensory hair cells occurs. In contrast, in the mammalian cochlea, hair cells are only produced during embryogenesis. Many studies have been carried out in order to demonstrate the persistence of endogenous progenitors. The present review is first focused on the occurrence of spontaneous supernumerary hair cells and on nestin positive precursors found in the organ of Corti. A second approach to regenerating hair cells would be to find genes essential for their differentiation. This review will also focus on critical genes for embryonic hair cell formation such as the cell cycle related proteins, the Atoh1 gene and the Notch signaling pathway. Understanding mechanisms that underlie hair cell production is an essential prerequisite to defining therapeutic strategies to regenerate hair cells in the mature inner ear. (c) 2007 Elsevier B.V. All rights reserved. C1 [Breuskin, Ingrid; Bodson, Morgan; Nguyen, Laurent; Belachew, Shibeshih; Lefebvre, Philippe P.; Malgrange, Brigitte] Univ Liege, Dev Neurobiol Unit, Ctr Cellular & Mol Neurosci, B-4000 Liege, Belgium. [Breuskin, Ingrid; Lefebvre, Philippe P.] Univ Liege, Dept Otorhinolaryngol, B-4000 Liege, Belgium. [Thelen, Nicolas; Thiry, Marc] Univ Liege, Cell Biol Unit, Ctr Cellular & Mol Neurosci, B-4000 Liege, Belgium. [Belachew, Shibeshih] Univ Liege, Dept Neurol, B-4000 Liege, Belgium. RP Malgrange, B (reprint author), Univ Liege, Dev Neurobiol Unit, Ctr Cellular & Mol Neurosci, B-4000 Liege, Belgium. EM bmalgrange@ulg.ac.be CR ABDOUH A, 1993, NEUROREPORT, V5, P33, DOI 10.1097/00001756-199310000-00008 Artavanis-Tsakonas S, 1999, SCIENCE, V284, P770, DOI 10.1126/science.284.5415.770 Baird RA, 2000, P NATL ACAD SCI USA, V97, P11722, DOI 10.1073/pnas.97.22.11722 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Brooker R, 2006, DEVELOPMENT, V133, P1277, DOI 10.1242/dev.02284 Chen P, 2003, NAT CELL BIOL, V5, P422, DOI 10.1038/ncb976 Chen P, 2002, DEVELOPMENT, V129, P2495 Chen P, 1999, DEVELOPMENT, V126, P1581 CHEN ZY, 2006, CELL CYCLE, P5 Daudet N, 2005, DEVELOPMENT, V132, P541, DOI 10.1242/dev.01589 Dong S, 2002, GENOMICS, V79, P777, DOI 10.1006/geno.2002.6783 DOYLE KL, 2006, STEM CELLS FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Greenwald I, 1998, GENE DEV, V12, P1751, DOI 10.1101/gad.12.12.1751 HAWKINS JE, 1976, ACTA OTO-LARYNGOL, V81, P337, DOI 10.3109/00016487609119971 Hertzano R, 2004, HUM MOL GENET, V13, P2143, DOI 10.1093/hmg/ddh218 Huang EJ, 2001, DEVELOPMENT, V128, P2421 Iso T, 2003, J CELL PHYSIOL, V194, P237, DOI 10.1002/jcp.10208 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Jeon SJ, 2007, MOL CELL NEUROSCI, V34, P59, DOI 10.1016/j.mcn.2006.10.003 Jiang RL, 1998, GENE DEV, V12, P1046, DOI 10.1101/gad.12.7.1046 Jones JM, 2006, J NEUROSCI, V26, P550, DOI 10.1523/JNEUROSCI.3859-05.2006 Kawamoto K, 2003, J NEUROSCI, V23, P4395 Kiernan AE, 2006, PLOS GENET, V2, P27, DOI 10.1371/journal.pgen.0020004 Kiernan AE, 2005, DEVELOPMENT, V132, P4353, DOI 10.1242/dev.02002 Kiernan AE, 2005, NATURE, V434, P1031, DOI 10.1038/nature03487 Kiernan AE, 2001, P NATL ACAD SCI USA, V98, P3873, DOI 10.1073/pnas.071496998 KOJIMA K, 2004, ACTA OTO-LARYNGOL, V551, P26 Kuntz AL, 1998, J COMP NEUROL, V399, P413 Lambert PR, 1997, AM J OTOL, V18, P637 Lanford Pamela J., 2000, JARO Journal of the Association for Research in Otolaryngology, V1, P161, DOI 10.1007/s101620010023 Lanford PJ, 1999, NAT GENET, V21, P289 Lee YS, 2006, DEVELOPMENT, V133, P2817, DOI 10.1242/dev.02453 LENDAHL U, 1990, CELL, V60, P585, DOI 10.1016/0092-8674(90)90662-X Lewis AK, 1998, MECH DEVELOP, V78, P159, DOI 10.1016/S0925-4773(98)00165-8 Li HW, 2003, P NATL ACAD SCI USA, V100, P13495, DOI 10.1073/pnas.2334503100 Li HW, 2004, TRENDS MOL MED, V10, P309, DOI 10.1016/j.molmed.2004.05.008 Lim DJ, 1992, STRUCTURAL DEV COCHL, P33 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 Lopez IA, 2004, INT J DEV NEUROSCI, V22, P205, DOI 10.1016/j.ijdevneu.2004.04.006 Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084 Malgrange B, 2002, CELL MOL LIFE SCI, V59, P1744, DOI 10.1007/PL00012502 Malgrange B, 2003, FASEB J, V17, P2136, DOI 10.1096/fj.03-0035fje Malgrange B, 2002, MECH DEVELOP, V112, P79, DOI 10.1016/S0925-4773(01)00642-6 Mantela J, 2005, DEVELOPMENT, V132, P2377, DOI 10.1242/dev.01834 Minoda R, 2004, NEUROREPORT, V15, P1089, DOI 10.1097/01.wnr.0000126216.79493.8d Morrison A, 1999, MECH DEVELOP, V84, P169, DOI 10.1016/S0925-4773(99)00066-0 Morsli H, 1998, J NEUROSCI, V18, P3327 Mumm JS, 2000, DEV BIOL, V228, P151, DOI 10.1006/dbio.2000.9960 Ofsie MS, 1996, J COMP NEUROL, V370, P281 Pauley S, 2006, DEV DYNAM, V235, P2470, DOI 10.1002/dvdy.20839 Qian D, 2006, DEV DYNAM, V235, P1689, DOI 10.1002/dvdy.20736 Raff M, 2003, ANNU REV CELL DEV BI, V19, P1, DOI 10.1146/annurev.cellbio.19.111301.143037 Rivolta Marcelo N., 2006, V330, P71 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 Sage C, 2005, SCIENCE, V307, P1114, DOI 10.1126/science.1106642 Sage C, 2006, P NATL ACAD SCI USA, V103, P7345, DOI 10.1073/pnas.0510631103 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 SCHACHT J, 1986, HEARING RES, V22, P297, DOI 10.1016/0378-5955(86)90105-X SHERR CJ, 1995, GENE DEV, V9, P1149, DOI 10.1101/gad.9.10.1149 Sherr CJ, 1999, GENE DEV, V13, P1501, DOI 10.1101/gad.13.12.1501 SOBKOWICZ HM, 1990, J ELECTRON MICR TECH, V15, P301, DOI 10.1002/jemt.1060150309 SOBKOWICZ HM, 1993, ACTA OTO-LARYNGOL, P3 SOBKOWICZ HM, 1975, J NEUROCYTOL, V4, P543, DOI 10.1007/BF01351537 Tsai H, 2001, HUM MOL GENET, V10, P507, DOI 10.1093/hmg/10.5.507 Wang Y, 1996, HEARING RES, V97, P11, DOI 10.1016/S0378-5955(96)80003-7 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 WEINBERG RA, 1995, CELL, V81, P323, DOI 10.1016/0092-8674(95)90385-2 Weinmaster G, 1998, CURR OPIN GENET DEV, V8, P436, DOI 10.1016/S0959-437X(98)80115-9 White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849 Wood HB, 1999, MECH DEVELOP, V86, P197, DOI 10.1016/S0925-4773(99)00116-1 Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349 Xiang MQ, 1997, P NATL ACAD SCI USA, V94, P9445, DOI 10.1073/pnas.94.17.9445 Xiang MQ, 1998, DEVELOPMENT, V125, P3935 Xiang MQ, 2003, BMC NEUROSCI, V4, DOI 10.1186/1471-2202-4-2 YAMASOBA T, 2006, ASSOC RES OTOLARYNGO, P963 Zhang N, 2000, CURR BIOL, V10, P659, DOI 10.1016/S0960-9822(00)00522-4 Zheng JL, 2000, NAT NEUROSCI, V3, P580 Zheng JL, 2000, DEVELOPMENT, V127, P4551 Zhu L, 2001, CURR OPIN GENET DEV, V11, P91, DOI 10.1016/S0959-437X(00)00162-3 ZINC A, 2001, J NEUROSCI, V21, P4712 Zine A, 2000, DEVELOPMENT, V127, P3373 Zine A, 2002, HEARING RES, V170, P22, DOI 10.1016/S0378-5955(02)00449-5 NR 83 TC 9 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2008 VL 236 IS 1-2 BP 1 EP 10 DI 10.1016/j.heares.2007.08.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 277WL UT WOS:000254245300001 PM 17920797 ER PT J AU Hu, BH Henderson, D Yang, WP AF Hu, Bo Hua Henderson, Donald Yang, Wei Ping TI The impact of mitochondrial energetic dysfunction on apoptosis in outer hair cells of the cochlea following exposure to intense noise SO HEARING RESEARCH LA English DT Article DE apoptosis; necrosis; mitochondria; impulse noise; outer hair cell; succinate dehydrogenase ID INDUCED HEARING-LOSS; ATP-DEPENDENT STEPS; SUCCINATE-DEHYDROGENASE; GUINEA-PIG; CHINCHILLA COCHLEA; IMPULSE NOISE; DEATH; NECROSIS; 3-NITROPROPIONATE; PATHWAY AB Previous studies have shown that exposure to intense noise causes outer hair cells (OHCs) to die, primarily through the process of apoptotic degeneration. The current study was designed to examine the regulatory role of mitochondrial bioenergetic function in controlling the initiation and execution of the apoptotic process of OHCs. Chinchilla cochleae were treated with 3-nitropropionic acid (3-NP, 20 or 50 mM), an irreversible inhibitor of succinate dehydrogenase (SDH), to inhibit the mitochondrial energy production before and after exposure to 75 pairs of impulses at 155 dB pSPL. Comparison of the noise-exposed cochleae treated with and without 3-NP revealed that the inhibition of SDH activity delayed nuclear degradation in apoptotic OHCs. However, the initiation of apoptosis appeared to be undeterred. There was no major shift of cell death pathways from apoptosis to necrosis, although a small portion of OHCs showed signs of secondary necrosis. Collectively, the results of the study suggest that, while the mitochondrial energetic function plays an important role in regulating the apoptotic process, its dysfunction has a limited influence on the suppression of apoptotic induction in OHCs following exposure to intense noise. (c) 2007 Elsevier B.V. All rights reserved. C1 [Hu, Bo Hua; Henderson, Donald] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. [Yang, Wei Ping] Peoples Liberat Army Gen Hosp, Inst Otolaryngol, Beijing 1000853, Peoples R China. RP Hu, BH (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM bhu@acsu.buffalo.edu; donald@acsu.buffalo.edu; yangwp2002@yahoo.com CR ALSTON TA, 1977, P NATL ACAD SCI USA, V74, P3767, DOI 10.1073/pnas.74.9.3767 Atlante A, 2005, BBA-BIOENERGETICS, V1708, P50, DOI 10.1016/j.bbabio.2005.01.009 Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004 Chen GD, 2000, HEARING RES, V145, P91, DOI 10.1016/S0378-5955(00)00076-9 COLES CJ, 1979, J BIOL CHEM, V254, P5161 Eguchi Y, 1997, CANCER RES, V57, P1835 Eguchi Y, 1999, CANCER RES, V59, P2174 HAMERNIK RP, 1974, J ACOUST SOC AM, V55, P117, DOI 10.1121/1.1928141 Harris KC, 2005, HEARING RES, V208, P14, DOI 10.1016/j.heares.2005.04.009 Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006 HU BH, 2007, APOPTOSIS Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Janicke RU, 1998, J BIOL CHEM, V273, P9357, DOI 10.1074/jbc.273.16.9357 Kellerhals B, 1972, Adv Otorhinolaryngol, V18, P91 Leist M, 1997, J EXP MED, V185, P1481, DOI 10.1084/jem.185.8.1481 Leist M, 1999, BIOCHEM BIOPH RES CO, V258, P215, DOI 10.1006/bbrc.1999.0491 LUDOLPH AC, 1992, ANN NY ACAD SCI, V648, P300, DOI 10.1111/j.1749-6632.1992.tb24562.x MAJNO G, 1995, AM J PATHOL, V146, P3 Nicotera Pierluigi, 1998, Toxicology Letters (Shannon), V102-103, P139, DOI 10.1016/S0378-4274(98)00298-7 Nicotera T., 2001, NOISE INDUCED HEARIN, P99 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Niu XZ, 2003, NEUROREPORT, V14, P1025, DOI 10.1097/01.wnr.0000070830.57864.32 Pang Z, 1997, J NEUROSCI, V17, P3064 Puschner B, 1997, HEARING RES, V114, P102, DOI 10.1016/S0378-5955(97)00163-9 Shizuki K, 2002, NEUROSCI LETT, V320, P73, DOI 10.1016/S0304-3940(02)00059-9 Sokolova IM, 2004, J EXP BIOL, V207, P3369, DOI 10.1242/jcb.01152 Volbracht C, 1999, MOL MED, V5, P477 Wang J, 2002, NEUROSCIENCE, V111, P635 Woo M, 1998, GENE DEV, V12, P806, DOI 10.1101/gad.12.6.806 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 Ylikoski J, 2002, HEARING RES, V166, P33, DOI 10.1016/S0378-5955(01)00388-4 NR 33 TC 13 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2008 VL 236 IS 1-2 BP 11 EP 21 DI 10.1016/j.heares.2007.11.002 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 277WL UT WOS:000254245300002 PM 18082984 ER PT J AU Dai, C Wood, MW Gan, RZ AF Dai, Chenkal Wood, Mark W. Gan, Rong Z. TI Combined effect of fluid and pressure on middle ear function SO HEARING RESEARCH LA English DT Article DE laser vibrometer; middle ear mechanics; otitis media; temporal bone; tympanometry ID STATIC PRESSURE; PARS FLACCIDA; INTERFEROMETRY MEASUREMENTS; TYMPANIC MEMBRANE; OTITIS-MEDIA; GERBIL; TYMPANOMETRY; DISPLACEMENT; EFFUSION AB In our previous studies, the effects of effusion and pressure on sound transmission were investigated separately. The aim of this study is to investigate the combined effect of fluid and pressure on middle ear function. An otitis media with effusion model was created by injecting saline solution and air pressure simultaneously into the middle ear of human temporal bones. Tympanic membrane displacement in response to 90 dB SPL sound input was measured by a laser vibrometer and the compliance of the middle ear was measured by a tympanometer. The movement of the tympanic membrane at the umbo was reduced up to 17 dB by the combination of fluid and pressure in the middle ear over the auditory frequency range. The fluid and pressure effects on the umbo movement in the fluid-pressure combination are not additive. The combined effect of fluid and pressure on the umbo movement is different compared with that of only fluid or pressure change in the middle ear. Negative pressure in fluid-pressure combination had more effect on middle ear function than positive pressure. Tympanometry can detect the middle ear pressure of the fluid pressure combination. This study provides quantitative information for analysis of the combined effect of fluid and pressure on tympanic membrane movement. (c) 2007 Elsevier B.V. All rights reserved. C1 [Dai, Chenkal; Gan, Rong Z.] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA. [Dai, Chenkal; Gan, Rong Z.] Univ Oklahoma, Ctr Bioengn, Norman, OK 73019 USA. [Wood, Mark W.] House Ear Res Inst, Oklahoma City, OK 73112 USA. RP Gan, RZ (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, 865 Asp Ave,Room 200, Norman, OK 73019 USA. EM rgan@ou.edu RI dai, chenkai/A-8051-2010 CR Dai CK, 2007, OTOL NEUROTOL, V28, P551, DOI 10.1097/mao.0b013e318033f008 DIRCKX JJJ, 1992, HEARING RES, V62, P99, DOI 10.1016/0378-5955(92)90206-3 Gan RZ, 2006, J ACOUST SOC AM, V120, P3799, DOI 10.1121/1.2372451 Gan RZ, 2001, ANN OTO RHINOL LARYN, V110, P478 Gan TZ, 2004, OTOL NEUROTOL, V25, P423 GOODHILL V, 1958, Acta Otolaryngol, V49, P38, DOI 10.3109/00016485809134725 HUTTENBRINK KB, 1998, ACTA OTO-LARYNGOL, V451, P1 Lee CY, 2001, HEARING RES, V153, P146, DOI 10.1016/S0378-5955(00)00269-0 MAJIMA Y, 1988, ANN OTO RHINOL LARYN, V97, P272 Murakami S, 1997, ACTA OTO-LARYNGOL, V117, P390, DOI 10.3109/00016489709113411 Onusko E, 2004, AM FAM PHYSICIAN, V70, P1713 Ravicz ME, 2004, HEARING RES, V195, P103, DOI 10.1016/j.heares.2004.05.010 Rosowski JJ, 2002, HEARING RES, V174, P183, DOI 10.1016/S0378-5955(02)00655-X Teoh SW, 1997, HEARING RES, V106, P39, DOI 10.1016/S0378-5955(97)00002-6 VONUNGE M, 1995, HEARING RES, V82, P184, DOI 10.1016/0378-5955(94)00017-K NR 15 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2008 VL 236 IS 1-2 BP 22 EP 32 DI 10.1016/j.heares.2007.11.005 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 277WL UT WOS:000254245300003 PM 18162348 ER PT J AU Severinsen, SA Raarup, MK Ulfendahl, M Wogensen, L Nyengaard, JR Kirkegaard, M AF Severinsen, Stig A. Raarup, Merete K. Ulfendahl, Mats Wogensen, Lise Nyengaard, Jens R. Kirkegaard, Mette TI Type I hair cell degeneration in the utricular macula of the waltzing guinea pig SO HEARING RESEARCH LA English DT Article DE inner ear; waltzing guinea pig; stereology; utricular macula ID UNBIASED STEREOLOGICAL ESTIMATION; POSTNATAL-DEVELOPMENT; COCHLEAR POTENTIALS; STRAIN; MOUSE; PATHOLOGY; ACTIN; MORPHOLOGY; DEAFNESS; NUMBER AB Waltzing guinea pigs are an inbred guinea pig strain with a congenital and progressive balance and hearing disorder. A unique rod-shaped structure is found in the type I vestibular hair cells, that traverses the cell in an axial direction, extending towards the basement membrane. The present study estimates the total number of utricular hair cells and supporting cells in waltzing guinea pigs and age-matched control animals using the optical fractionator method. Animals were divided into four age groups (1, 7, 49 and 343 day-old). The Dumber of type I hair cells decreased by 20% in the 343 day-old waltzing guinea pigs compared to age-matched controls and younger animals. Two-photon confocal laser scanning microscopy using antibodies against fimbrin and beta III-tubulin showed that the rods were exclusive to type I hair cells. There was no significant change in the length of the filament rods with age. Taken together, our data show that despite rod formation in the type I hair cells and deformation of hair bundles being present at birth, the type I hair cell population is not affected quantitatively until a year after birth. (c) 2007 Elsevier B.V. All rights reserved. C1 [Ulfendahl, Mats; Kirkegaard, Mette] Karolinska Inst, Dept Clin Neurosci, Ctr Hearing & Commun Res, Stockholm, Sweden. [Severinsen, Stig A.; Raarup, Merete K.; Nyengaard, Jens R.] Univ Aarhus, Inst Clin Med, Mind Ctr, DK-8000 Aarhus C, Denmark. [Severinsen, Stig A.; Raarup, Merete K.; Nyengaard, Jens R.] Univ Aarhus, Inst Clin Med, Stereol & Electron Microscopy Res Lab, DK-8000 Aarhus, Denmark. [Ulfendahl, Mats; Kirkegaard, Mette] Karolinska Univ Hosp, Dept Otolaryngol, SE-17176 Stockholm, Sweden. [Wogensen, Lise] Aarhus Univ, Inst Clin Med, Res Lab Biochem Pathol, DK-8000 Aarhus C, Denmark. RP Kirkegaard, M (reprint author), Karolinska Inst, Dept Clin Neurosci, Ctr Hearing & Commun Res, Stockholm, Sweden. EM mette.kirkegaard@ki.se CR Beyer LA, 2000, J NEUROCYTOL, V29, P227, DOI 10.1023/A:1026515619443 CANLON B, 1993, J CELL SCI, V104, P1137 CANLON B, 1993, J ACOUST SOC AM, V94, P3232, DOI 10.1121/1.407229 Daudet N, 2002, CELL MOTIL CYTOSKEL, V53, P326, DOI 10.1002/cm.10092 Desai SS, 2005, J NEUROPHYSIOL, V93, P251, DOI 10.1152/jm.00746.2003 Dorph-Petersen KA, 2001, J MICROSC-OXFORD, V204, P232, DOI 10.1046/j.1365-2818.2001.00958.x ERNSTSON S, 1970, ACTA OTO-LARYNGOL, V69, P358, DOI 10.3109/00016487009123377 ERNSTON S, 1971, ACTA OTO-LARYNGOL, V72, P303, DOI 10.3109/00016487109122487 ERNSTSON S, 1969, ACTA OTO-LARYNGOL, V67, P521, DOI 10.3109/00016486909125480 ERNSTSON S, 1998, ASSOC RES OTOLARYNGO, P229 Flock A, 1979, Adv Otorhinolaryngol, V25, P12 Gundersen HJG, 1999, J MICROSC-OXFORD, V193, P199, DOI 10.1046/j.1365-2818.1999.00457.x GUNDERSEN HJG, 1986, J MICROSC-OXFORD, V143, P3 IBSEN LH, 1929, ANAT REC, V44, P294 Jin Z, 2006, HEARING RES, V219, P74, DOI 10.1016/j.heares.2006.06.001 Kanzaki S, 2002, AUDIOL NEURO-OTOL, V7, P289, DOI 10.1159/000064447 Kirkegaard M, 2005, J COMP NEUROL, V492, P132, DOI 10.1002/cne.20736 Kirkegaard M., 2005, Image Analysis & Stereology, V24 Lindeman H H, 1969, J Laryngol Otol, V83, P1 Lindeman H H, 1969, Ergeb Anat Entwicklungsgesch, V42, P1 MARCUS DC, 1983, HEARING RES, V12, P17, DOI 10.1016/0378-5955(83)90116-8 Mburu P, 2003, NAT GENET, V34, P421, DOI 10.1038/ng1208 MUSTAPHA M, 2007, J ASSOC RES OTOLARYN NORDEMAR H, 1983, ACTA OTO-LARYNGOL, V96, P447, DOI 10.3109/00016488309132731 Nyengaard JR, 1999, J AM SOC NEPHROL, V10, P1100 Rusch A, 1998, J NEUROSCI, V18, P7487 SANCHEZFERNANDEZ JM, 1983, AM J OTOL, V5, P44 Skjonsberg A, 2005, AUDIOL NEURO-OTOL, V10, P323, DOI 10.1159/000087349 SOBIN A, 1983, ACTA OTO-LARYNGOL, V96, P397, DOI 10.3109/00016488309132725 SOBIN A, 1986, AM J OTOL, V7, P449 SOBIN A, 1982, ARCH OTO-RHINO-LARYN, V236, P1, DOI 10.1007/BF00464051 SOBIN A, 1981, ACTA OTO-LARYNGOL, V91, P247, DOI 10.3109/00016488109138505 Sobin A, 1983, Acta Otolaryngol Suppl, V396, P1 SOBIN A, 1983, ACTA OTO-LARYNGOL, V96, P407, DOI 10.3109/00016488309132726 Wang AH, 1998, SCIENCE, V280, P1447, DOI 10.1126/science.280.5368.1447 WERNER CL. F., 1933, ZEITSCHR GES ANAT ABT I ZEITSCHR ANAT U ENTWICK LUNGSGESCH, V99, P696, DOI 10.1007/BF02118586 WEST MJ, 1991, ANAT REC, V231, P482, DOI 10.1002/ar.1092310411 WIT HP, 1984, HEARING RES, V15, P159, DOI 10.1016/0378-5955(84)90047-9 NR 38 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2008 VL 236 IS 1-2 BP 33 EP 41 DI 10.1016/j.heares.2007.11.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 277WL UT WOS:000254245300004 PM 18191927 ER PT J AU Wang, HT Luo, B Huang, YN Zhou, KQ Chen, L AF Wang, Hai-Tao Luo, Bin Huang, Yi-Na Zhou, Ke-Qing Chen, Lin TI Sodium salicylate suppresses serotonin-induced enhancement of GABAergic spontaneous inhibitory postsynaptic currents in rat inferior colliculus in vitro SO HEARING RESEARCH LA English DT Article DE serotonin; GABAergic spontaneous inhibitory postsynaptic current; tinnitus; sodium salicylate; brain slice; inferior colliculus ID PREFRONTAL CORTEX; AUDITORY-CORTEX; CEREBRAL-CORTEX; INDUCED TINNITUS; 5-HT3 RECEPTORS; NEURAL ACTIVITY; ANIMAL-MODEL; NEURONS; INTERNEURONS; GABA AB Available evidence suggests that sodium salicylate (SS) may produce tinnitus through altering the balance between inhibition and excitation in the central auditory system. Since serotonin (5-hydroxytryptamine, 5-HT) containing fibers preferentially innervate inhibitory GABA neurons, there exists a possibility that SS causes the imbalance between inhibition and excitation through influencing serotonergic modulation of the GABAergic synaptic transmission. In the present study, we examined the effects of SS on 5-HT-mediated GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) from neurons of the central nucleus of rat inferior colliculus with whole-cell patch-clamp technique and brain slice preparation. Perfusion of 40 mu M 5-HT robustly enhanced both frequency and amplitude of GABAergic sIPSCs and this 5-HT-induced enhancement of GABAergic sIPSCs could be suppressed by 1.4 mM SS. Tetrodotoxin at 0.5 mu M produced a similar effect as SS did, suggesting that SS suppresses the 5-HT-induced enhancement of GABAergic sIPSCs through depressing spontaneous action potentials of GABA neurons. Our findings suggest that SS may preferentially target GABA neurons and consequently interrupt a normal level of GABAergic synaptic transmissions maintained by the serotonergic system in SS-induced tinnitus. (c) 2007 Elsevier B.V. All rights reserved. C1 [Wang, Hai-Tao; Luo, Bin; Huang, Yi-Na; Chen, Lin] Univ Sci & Technol China, Sch Life Sci, Auditory Res Lab, Hefei 230027, Peoples R China. [Wang, Hai-Tao; Luo, Bin; Huang, Yi-Na; Chen, Lin] Univ Sci & Technol China, Hefei Nat Lab Phys Sci Microscale, Hefei 230027, Peoples R China. [Zhou, Ke-Qing] Univ Sci & Technol China, Lab Receptor Pharmacol, Hefei 230027, Peoples R China. RP Chen, L (reprint author), Univ Sci & Technol China, Sch Life Sci, Auditory Res Lab, Hefei 230027, Peoples R China. EM linchen@ustc.edu.cn RI Chen, Lin/N-8327-2013 OI Chen, Lin/0000-0002-5847-2989 CR Basta D, 2004, NEUROSCI RES, V50, P237, DOI 10.1016/j.neures.2004.07.003 Beique JC, 2004, J NEUROSCI, V24, P4807, DOI 10.1523/JNEUROSCI.5113-03.2004 Beique JC, 2004, J PHYSIOL-LONDON, V556, P739, DOI 10.1113/j.physiol.2003.051284 Bennett BD, 1998, J NEUROPHYSIOL, V79, P937 Brozoski TJ, 2007, JARO-J ASSOC RES OTO, V8, P105, DOI 10.1007/s10162-006-0067-2 CASPARY DM, 1990, J NEUROSCI, V10, P2363 Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113 Christophe E, 2002, J NEUROPHYSIOL, V88, P1318, DOI 10.1152/jn.00199.2002 DEER BC, 1982, J OTOLARYNGOL, V11, P260 DeFelipe J, 1991, CEREB CORTEX, V1, P117, DOI 10.1093/cercor/1.2.117 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 2005, DRUG DISCOV TODAY, V10, P1283, DOI 10.1016/S1359-6446(05)03542-7 Eggermont JJ, 2003, AURIS NASUS LARYNX S, V30, P7, DOI 10.1016/S0385-8146(02)00122-0 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 Fitzgerald KK, 1999, J NEUROPHYSIOL, V81, P2743 Folmer Robert L, 2004, Ear Nose Throat J, V83, P107 Gao WJ, 2003, J NEUROSCI, V23, P1622 Gorelova N, 2002, J NEUROPHYSIOL, V88, P3150, DOI 10.1152/jn.00335.2002 Guitton MJ, 2005, EUR J NEUROSCI, V22, P2675, DOI 10.1111/j.1460-9568.2005.04436.x HORNUNG JP, 1992, J COMP NEUROL, V320, P457, DOI 10.1002/cne.903200404 Hurley LM, 2001, J NEUROPHYSIOL, V85, P828 Hurley LM, 2002, HEARING RES, V168, P1, DOI 10.1016/S0378-5955(02)00365-9 Hurley LM, 2006, J NEUROPHYSIOL, V96, P2177, DOI 10.1152/jn.00046.2006 Hurley LM, 2001, J COMP NEUROL, V435, P78, DOI 10.1002/cne.1194 Jakab RL, 2000, J COMP NEUROL, V417, P337, DOI 10.1002/(SICI)1096-9861(20000214)417:3<337::AID-CNE7>3.0.CO;2-O JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1986, ARCH OTOLARYNGOL, V112, P1050 Jeanmonod D, 1996, BRAIN, V119, P363, DOI 10.1093/brain/119.2.363 Liu JX, 2003, HEARING RES, V175, P45, DOI 10.1016/S0378-5955(02)00708-6 Liu YX, 2004, HEARING RES, V193, P68, DOI 10.1016/j.heares.2004.03.006 Liu YX, 2005, HEARING RES, V205, P271, DOI 10.1016/j.heares.2005.03.028 Liu YX, 2004, NEUROSCI LETT, V369, P115, DOI 10.1016/j.neulet.2004.07.037 Lobarinas E, 2006, Acta Otolaryngol Suppl, P13 Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395 Lockwood AH, 1998, NEUROLOGY, V50, P114 McMahon LL, 1997, J NEUROPHYSIOL, V78, P2493 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 PAUL A, 2007, ABSTR 30 MID WINT M Peng BG, 2003, NEUROSCI LETT, V343, P21, DOI 10.1016/S0304-3940(03)00296-9 Peruzzi D, 2004, BRAIN RES, V998, P247, DOI 10.1016/j.brainres.2003.10.059 Puig MV, 2004, CEREB CORTEX, V14, P1365, DOI 10.1093/cercor/bhh097 Shemen L, 1998, OTOLARYNG HEAD NECK, V118, P421, DOI 10.1016/S0194-5998(98)70332-8 SILVERST.H, 1967, ANN OTO RHINOL LARYN, V76, P118 Simpson JJ, 2000, HEARING RES, V145, P1, DOI 10.1016/S0378-5955(00)00093-9 Smiley JF, 1996, J COMP NEUROL, V367, P431, DOI 10.1002/(SICI)1096-9861(19960408)367:3<431::AID-CNE8>3.0.CO;2-6 Stanford IM, 1996, J NEUROSCI, V16, P7566 THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9 Wang HT, 2006, HEARING RES, V215, P77, DOI 10.1016/j.heares.2006.03.004 Xu H, 2005, NEUROREPORT, V16, P813, DOI 10.1097/00001756-200505310-00007 Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 Yigit M, 2003, NEUROPHARMACOLOGY, V45, P504, DOI 10.1016/S0028-3908(03)00197-7 Zhou FM, 1999, J NEUROPHYSIOL, V82, P2989 NR 53 TC 25 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2008 VL 236 IS 1-2 BP 42 EP 51 DI 10.1016/j.heares.2007.11.015 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 277WL UT WOS:000254245300005 PM 18222054 ER PT J AU Qi, WD Ding, DL Salvi, RJ AF Qi, Weidong Ding, Dalian Salvi, Richard J. TI Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures SO HEARING RESEARCH LA English DT Article DE dimethyl sulphoxide; hair cells; cochlear organotypic culture; apoptosis; caspase-8; caspase-9; mitochondria; TUNEL ID HAIR CELL ELECTROMOTILITY; INDUCED HEARING-LOSS; INTRACELLULAR CALCIUM; PROTECTS COCHLEAR; INDUCED APOPTOSIS; LYMPHOMA-CELLS; ION-TRANSPORT; DIMETHYLSULFOXIDE; CISPLATIN; DEATH AB The amphipathic molecule dimethyl sulphoxide (DMSO) is a solvent often used to dissolve compounds applied to the inner ear; however, little is known about its potential cytotoxic side effects. To address this question, we applied 0.1-6% DMSO for 24 h to cochlear organotypic cultures from postnatal day 3 rats and examined its cytotoxic effects. DMSO concentrations of 0.1% and 0.25% caused little or no damage. However, concentrations between 0.5% and 6% resulted in stereocilia damage, hair cell swelling and a dose-dependent loss of hair cells. Hair cell damage began in the basal turn of the cochlea and spread towards the apex with increasing concentration. Surprisingly, DMSO-induced damage was greater for inner hair cells than outer hair cell whereas nearby supporting cells were largely unaffected. Most hair cell death was associated with nuclear shrinkage and fragmentation, morphological features consistent with apoptosis. DMSO treatment induced TUNEL-positive staining in many hair cells and activated both initiator caspase-9 and caspase-8 and executioner caspase-3; this suggests that apoptosis is initiated by both intrinsic mitochondrial and extrinsic membrane cell death signaling pathways. (c) 2007 Elsevier B.V. All rights reserved. C1 [Qi, Weidong; Ding, Dalian; Salvi, Richard J.] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. [Qi, Weidong; Ding, Dalian] Fudan Univ, Huashan Hosp, Dept Otolaryngol Head & Neck Surg, Shanghai 200040, Peoples R China. RP Salvi, RJ (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall, Buffalo, NY 14214 USA. EM salvi@buffalo.edu CR Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338 BOLME BA, 2007, HEARING RES, V223, P61 BROADWELL RD, 1982, SCIENCE, V217, P164, DOI 10.1126/science.7089551 Burgess JL, 1998, VET HUM TOXICOL, V40, P87 CANTON B, 1993, J CELL SCI, V104, P1137 Corbacella E, 2004, HEARING RES, V197, P11, DOI 10.1016/j.heares.2004.03.012 Da Violante G, 2002, BIOL PHARM BULL, V25, P1600, DOI 10.1248/bpb.25.1600 DAVIS JM, 1990, BLOOD, V75, P781 Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8 Ding DL, 2007, HEARING RES, V226, P129, DOI 10.1016/j.heares.2006.07.015 Guitton MJ, 2003, J NEUROSCI, V23, P3944 HAMEROFF SR, 1983, ANN NY ACAD SCI, V411, P94, DOI 10.1111/j.1749-6632.1983.tb47289.x Han JY, 2005, CARDIOVASC DIABETOL, V4, DOI 10.1186/1475-2840-4-12 Harris KC, 2005, HEARING RES, V208, P14, DOI 10.1016/j.heares.2005.04.009 IKEDA Y, 1990, ACT NEUR S, V51, P74 IWASAKI T, 1994, ACTA HAEMATOL-BASEL, V91, P91 Jaeschke H, 2003, GASTROENTEROLOGY, V125, P1246, DOI 10.1053/S0016-5085(03)01209-5 Kamimura T, 1999, HEARING RES, V131, P117, DOI 10.1016/S0378-5955(99)00017-9 Lanzoni I., 2005, AUDIOL MED, V3, P82, DOI 10.1080/16513860510033800 Lee JH, 2001, HEARING RES, V158, P123, DOI 10.1016/S0378-5955(01)00316-1 Lee JH, 2002, AUDIOL NEURO-OTOL, V7, P100, DOI 10.1159/000057657 LIN CKE, 1995, EXP CELL RES, V216, P403, DOI 10.1006/excr.1995.1051 Liu J, 2001, INT IMMUNOPHARMACOL, V1, P63, DOI 10.1016/S1567-5769(00)00016-3 Liu Jian-Ping, 2006, Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, V41, P851 MAJNO G, 1995, AM J PATHOL, V146, P3 Matsui JI, 2002, J NEUROSCI, V22, P1218 McCammon KA, 1998, UROLOGY, V52, P1136, DOI 10.1016/S0090-4295(98)00347-1 Morassi P, 1989, Minerva Med, V80, P65 Mueller KL, 2002, J NEUROSCI, V22, P9368 REPINE JE, 1981, P NATL ACAD SCI-BIOL, V78, P1001, DOI 10.1073/pnas.78.2.1001 Reynaud D, 1999, FEBS LETT, V446, P236, DOI 10.1016/S0014-5793(99)00225-2 Saldanha C, 2002, J MEMBRANE BIOL, V190, P75, DOI 10.1007/s00232-002-1025-5 SALIM AS, 1992, CHEMOTHERAPY, V38, P135 SALIM AS, 1992, J LAB CLIN MED, V119, P702 Santos NC, 2002, CELL CALCIUM, V31, P183, DOI 10.1054/ceca.2002.0271 Sha SH, 1998, NEUROREPORT, V9, P3893, DOI 10.1097/00001756-199812010-00023 Slofstra SH, 2005, CRIT CARE MED, V33, P1365, DOI 10.1097/CCM.0000166370.94927.B6 SMITH DM, 1987, BONE MARROW TRANSPL, V2, P195 So HS, 2005, HEARING RES, V204, P127, DOI 10.1016/j.heares.2005.01.011 Somei K, 1995, METHOD FIND EXP CLIN, V17, P571 STRONCEK DF, 1991, TRANSFUSION, V31, P521, DOI 10.1046/j.1537-2995.1991.31691306250.x Szonyi M, 2001, BRAIN RES, V922, P65, DOI 10.1016/S0006-8993(01)03150-X Szonyi M, 1999, HEARING RES, V137, P29, DOI 10.1016/S0378-5955(99)00127-6 TRUMBLE TE, 1992, J RECONSTR MICROSURG, V8, P53, DOI 10.1055/s-2007-1006684 Zhang M, 2003, NEUROSCIENCE, V120, P191, DOI 10.1016/S0306-4522(03)00286-0 Zhang XQ, 1999, BRAIN RES, V818, P118, DOI 10.1016/S0006-8993(98)01249-9 NR 46 TC 45 Z9 52 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2008 VL 236 IS 1-2 BP 52 EP 60 DI 10.1016/j.heares.2007.12.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 277WL UT WOS:000254245300006 PM 18207679 ER PT J AU Sussman, E Stemschneider, M Gumenyuk, V Grushko, J Lawson, K AF Sussman, E. Stemschneider, M. Gumenyuk, V. Grushko, J. Lawson, K. TI The maturation of human evoked brain potentials to sounds presented at different stimulus rates SO HEARING RESEARCH LA English DT Article DE auditory; event-related potentials (ERPs); maturation; cortex; children; adolescents ID AUDITORY-SYSTEM ACTIVITY; EVENT-RELATED POTENTIALS; AGE-RELATED-CHANGES; DEVELOPMENTAL-CHANGES; LANGUAGE-DEVELOPMENT; GAP DETECTION; N1 WAVE; CHILDREN; COMPONENT; RESPONSES AB The current study assessed the normal development of cortical auditory evoked potentials (CAEPs) in humans presented with pure tone stimuli at relatively fast stimulus rates. Traditionally, maturation of sound processing indexed by CAEPs has been studied in paradigms using inter-stimulus intervals (ISIs) generally slower than 1 Hz. While long ISIs may enhance the amplitude of CAEP components, speech information generally occurs at more rapid rates. These slower rates of sound presentation may not accurately assess auditory cortical functions in more realistic sound environments. We examined the effect of temporal rate on the elicitation of the P1-N1-P2-N2 components to unattended sounds at four levels of stimulus onset asynchrony (SOA, onset to onset, 200, 400, 600, and 800 ms) in children grouped separately by year (ages 8, 9, 10, 11 years), in adolescents (age 16 years) and in one group of young adults (ages 22-40 years). We found that both age and stimulus rate produced profound changes in CAEP morphology. Between the ages of 8-11 years, the P1 and N2 components dominated the ERP waveform at all stimulus rates. N1, the dominant CAEP component in adults, appeared as a bifurcation in a broad positive peak at earlier ages, and did not emerge as a separate component until adolescence. While the P1-N1-P2 components are more "adult-like" than "child-like" in the adolescent subjects, the N2 component, a hallmark of the child obligatory response, was still present. Faster rates resulted in the suppression of discrete components such that by 200 ms, only P1 in the adults and adolescents, and both P1 and N2 in the youngest children were discernable. We conclude that both age and ISI are important variables in the assessment of auditory cortex function and maturation. The presence of N2 in adolescents indicates that auditory cortical maturation persists into teen years. (c) 2007 Elsevier B.V. All rights reserved. C1 [Sussman, E.; Stemschneider, M.; Gumenyuk, V.; Grushko, J.] Albert Einstein Coll Med, Dept Neurosci, Bronx, NY 10461 USA. [Sussman, E.] Albert Einstein Coll Med, Dept Otorhinolaryngol HNS, Bronx, NY 10461 USA. [Stemschneider, M.] Albert Einstein Coll Med, Dept Neurol, Bronx, NY 10461 USA. [Lawson, K.] Albert Einstein Coll Med, Dept Pediat, Bronx, NY 10461 USA. RP Sussman, E (reprint author), Albert Einstein Coll Med, Dept Neurosci, 1410 Pelham Pkwy S, Bronx, NY 10461 USA. EM esussman@aecom.yu.edu CR Benasich AA, 2002, DEV PSYCHOBIOL, V40, P278, DOI 10.1002/dev.10032 Bruneau N, 1997, PSYCHOPHYSIOLOGY, V34, P32, DOI 10.1111/j.1469-8986.1997.tb02413.x Cardy JEO, 2005, NEUROREPORT, V16, P329 Ceponiene R, 1998, EVOKED POTENTIAL, V108, P345, DOI 10.1016/S0168-5597(97)00081-6 Crowley KE, 2004, CLIN NEUROPHYSIOL, V115, P732, DOI 10.1016/j.clinph.2003.11.021 DARWIN CJ, 1984, J ACOUST SOC AM, V76, P1636, DOI 10.1121/1.391610 DARWIN CJ, 1981, Q J EXP PSYCHOL-A, V33, P185 EGGERMONT JJ, 1985, ACTA OTO-LARYNGOL, P41 EGGERMONT JJ, 1988, ELECTROEN CLIN NEURO, V70, P293, DOI 10.1016/0013-4694(88)90048-X Gilley PM, 2005, CLIN NEUROPHYSIOL, V116, P648, DOI 10.1016/j.clinph.2004.09.009 Godey B, 2001, CLIN NEUROPHYSIOL, V112, P1850, DOI 10.1016/S1388-2457(01)00636-8 Gomes H, 1999, DEV PSYCHOL, V35, P294, DOI 10.1037//0012-1649.35.1.294 GOODIN DS, 1978, PSYCHOPHYSIOLOGY, V15, P360, DOI 10.1111/j.1469-8986.1978.tb01392.x Guiraud J, 2007, J NEUROSCI, V27, P7838, DOI 10.1523/JNEUROSCI.0154-07.2007 Gutschalk A, 2005, J NEUROSCI, V25, P5382, DOI 10.1523/JNEUROSCI.0374-05.2005 Heath SM, 1999, J CHILD PSYCHOL PSYC, V40, P637, DOI 10.1017/S0021963099003947 Herdman AT, 2002, J ACOUST SOC AM, V112, P1569, DOI 10.1121/1.1506367 Hirose H, 2005, NEUROREPORT, V16, P1775, DOI 10.1097/01.wnr.0000183906.00526.51 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P370, DOI DOI 10.1016/0013-4694(58)90053-1 Johnstone SJ, 1996, INT J PSYCHOPHYSIOL, V24, P223, DOI 10.1016/S0167-8760(96)00065-7 Kotchoubey B, 2005, PROG BRAIN RES, V150, P427, DOI 10.1016/S0079-6123(05)50030-X Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 Kraus N, 1999, INT J PEDIATR OTORHI, V47, P123, DOI 10.1016/S0165-5876(98)00130-X Krause JC, 2002, J ACOUST SOC AM, V112, P2165, DOI 10.1121/1.1509432 LEHMANN D, 1984, PROG NEUROBIOL, V23, P227, DOI 10.1016/0301-0082(84)90003-0 LEHMANN D, 1980, ELECTROEN CLIN NEURO, V48, P609, DOI 10.1016/0013-4694(80)90419-8 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 McArthur G M, 2001, Dyslexia, V7, P150, DOI 10.1002/dys.200 Michel CM, 2004, CLIN NEUROPHYSIOL, V115, P2195, DOI 10.1016/j.clinph.2004.06.001 Moore JK, 2001, JARO, V2, P297, DOI 10.1007/s101620010052 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Oades RD, 1997, PSYCHOPHYSIOLOGY, V34, P677, DOI 10.1111/j.1469-8986.1997.tb02143.x OHLRICH ES, 1978, ELECTROEN CLIN NEURO, V44, P411 Pang EW, 2000, CLIN NEUROPHYSIOL, V111, P388, DOI 10.1016/S1388-2457(99)00259-X PERRIN F, 1989, ELECTROEN CLIN NEURO, V72, P184, DOI 10.1016/0013-4694(89)90180-6 PLOURDE G, 1991, ANESTH ANALG, V72, P342 Ponton C, 2002, CLIN NEUROPHYSIOL, V113, P407, DOI 10.1016/S1388-2457(01)00733-7 Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9 Ponton CW, 2001, AUDIOL NEURO-OTOL, V6, P363, DOI 10.1159/000046846 Poulsen C, 2007, CEREB CORTEX, V17, P1454, DOI 10.1093/cercor/bhl056 Rosburg T, 2004, NEUROSCI LETT, V372, P245, DOI 10.1016/j.neulet.2004.09.047 Seither-Preisler A, 2006, HEARING RES, V213, P88, DOI 10.1016/j.heares.2006.01.003 Shafer VL, 2007, CLIN NEUROPHYSIOL, V118, P1230, DOI 10.1016/j.clinph.2007.02.023 Shafer VL, 2000, EAR HEARING, V21, P242, DOI 10.1097/00003446-200006000-00008 Sharma Anu, 2002, Ear and Hearing, V23, P532, DOI 10.1097/00003446-200212000-00004 Sharma A, 1997, EVOKED POTENTIAL, V104, P540, DOI 10.1016/S0168-5597(97)00050-6 Sharma Anu, 2005, J Am Acad Audiol, V16, P564, DOI 10.3766/jaaa.16.8.5 Takeshita K, 2002, CLIN NEUROPHYSIOL, V113, P1470, DOI 10.1016/S1388-2457(02)00202-X TALLAL P, 1976, J SPEECH HEAR RES, V19, P561 Tallal P, 2004, NAT REV NEUROSCI, V5, P721, DOI 10.1038/nrn1499 TONNQUISTUHLEN I, 1995, ELECTROEN CLIN NEURO, V95, P34, DOI 10.1016/0013-4694(95)00044-Y TREHUB SE, 1995, J ACOUST SOC AM, V98, P2532, DOI 10.1121/1.414396 Vidal J, 2005, NEUROSCI LETT, V378, P145, DOI 10.1016/j.neulet.2004.12.022 Wang WJ, 2005, CLIN NEUROPHYSIOL, V116, P1695, DOI 10.1016/j.clinph.2005.03.008 WERNER LA, 1992, CHILD DEV, V63, P260, DOI 10.1111/j.1467-8624.1992.tb01625.x WOLPAW JR, 1977, ELECTROEN CLIN NEURO, V43, P99, DOI 10.1016/0013-4694(77)90200-0 Wunderlich JL, 2006, HEARING RES, V212, P185, DOI 10.1016/j.heares.2005.11.010 Wunderlich JL, 2006, HEARING RES, V212, P212, DOI 10.1016/j.heares.2005.11.008 Yvert B, 2005, NEUROIMAGE, V28, P140, DOI 10.1016/j.neuroimage.2005.05.056 NR 59 TC 76 Z9 82 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2008 VL 236 IS 1-2 BP 61 EP 79 DI 10.1016/j.heares.2007.12.001 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 277WL UT WOS:000254245300007 PM 18207681 ER PT J AU Torkos, A Wissel, K Warnecke, A Lenarz, T Stover, T AF Torkos, Attila Wissel, Kirsten Warnecke, Athanasia Lenarz, Thomas Stoever, Timo TI Technical report: Laser microdissection and pressure catapulting is superior to conventional manual dissection for isolating pure spiral ganglion fractions from the cochlea SO HEARING RESEARCH LA English DT Article DE cochlea; gene expression analysis; laser microdissection pressure catapulting; manual dissection; spiral ganglion cells ID POLYMERASE CHAIN-REACTION; MATURE RAT COCHLEA; OUTER HAIR-CELLS; NEUROTROPHIC FACTOR; INNER-EAR; CAPTURE MICRODISSECTION; EXPRESSION; NEUROFILAMENT; TISSUE; PROTEINS AB Isolating cells from the cochlea to perform molecular biology assessment presents a challenge, because it is not possible to dissect pure cell pools by conventional methods. Thus, we set out to demonstrate that laser microdissection and pressure catapulting (LMPC) is superior to conventional manual cochlea dissection for this purpose. Spiral ganglions (SG) were isolated from neonatal rat cochleae by manual dissection and LMPC. Also, modioli were manually dissected. Total RNA was isolated from all three cell pools. In order to demonstrate contamination of the dissected cell pool, we determined the expression of type II iodothyronine deiodinase (D2), claudin 11 (Cld-11), neurofilament light chain (NF-L) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) transcripts by RT-PCR. The results showed that LMPC is not only a suitable method for selectively dissecting cochlear tissues, but in addition the molecular markers confirmed pure spiral ganglion cell pools without indication for any contamination by other cells. This indicates that LMPC is capable of providing a pure SG cell pool in contrast to conventional manual dissection. Therefore, LMPC presents a new technique for cochlear tissue separation improving the validity of molecular biological studies of the inner ear. (C) 2007 Elsevier B.V. All rights reserved. C1 [Torkos, Attila; Wissel, Kirsten; Warnecke, Athanasia; Lenarz, Thomas; Stoever, Timo] Hannover Med Sch, Dept Otorhinolaryngol, D-30625 Hannover, Germany. [Torkos, Attila] Univ Szeged, Dept Otorhinolaryngol & Head & Neck Surg, H-6725 Szeged, Hungary. RP Wissel, K (reprint author), Hannover Med Sch, Dept Otorhinolaryngol, Carl Neuberg Str 1, D-30625 Hannover, Germany. EM kirsten.wissel@gmx.de CR Anderson CT, 2007, J NEUROSCI METH, V162, P229, DOI 10.1016/j.jneumeth.2007.01.017 BERGLUND AM, 1991, J COMP NEUROL, V306, P393, DOI 10.1002/cne.903060304 Burgemeister R, 2005, J HISTOCHEM CYTOCHEM, V53, P409, DOI 10.1369/jhc.4B6421.2005 Campos-Barros A, 2000, P NATL ACAD SCI USA, V97, P1287, DOI 10.1073/pnas.97.3.1287 Cristobal R, 2004, OTOLARYNG HEAD NECK, V131, P590, DOI 10.1016/j.otohns.2004.06.700 Goldsworthy SM, 1999, MOL CARCINOGEN, V25, P86, DOI 10.1002/(SICI)1098-2744(199906)25:2<86::AID-MC2>3.0.CO;2-4 Gow A, 2004, J NEUROSCI, V24, P7051, DOI 10.1523/JNEUROSCI.1640-04.2004 HAFIDI A, 1990, J COMP NEUROL, V300, P153, DOI 10.1002/cne.903000202 He DZZ, 2000, HEARING RES, V145, P156, DOI 10.1016/S0378-5955(00)00084-8 Kitajiri S, 2004, HEARING RES, V187, P25, DOI 10.1016/S0378-5955(03)00338-1 NISHIZAKI K, 1995, ORL J OTO-RHINO-LARY, V57, P177 Pagedar NA, 2006, BRAIN RES, V1091, P289, DOI 10.1016/j.brainres.2006.01.057 SHIBATA D, 1992, AM J PATHOL, V141, P539 Stover T, 2001, HEARING RES, V155, P143, DOI 10.1016/S0378-5955(01)00227-1 Stover T, 2000, MOL BRAIN RES, V76, P25, DOI 10.1016/S0169-328X(99)00328-9 WHETSELL L, 1992, ONCOGENE, V7, P2355 Wissel K, 2006, NEUROREPORT, V17, P1297, DOI 10.1097/01.wnr.0000233088.92839.23 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X NR 19 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 8 EP 14 DI 10.1016/j.heares.2007.09.004 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000002 PM 17980526 ER PT J AU Avallone, B Fascio, U Balsamo, G Marino, F AF Avallone, Bice Fascio, Umberto Balsamo, Giuseppe Marino, Francesco TI Gentamicin ototoxicity in the saccule of the lizard Podarcis Sicula induces hair cell recovery and regeneration SO HEARING RESEARCH LA English DT Article DE aminoglycoside antibiotics; calbindin; BrdU; inner ear; recovery ID PERIPHERAL VESTIBULAR SYSTEM; AVIAN INNER-EAR; ACOUSTIC TRAUMA; AMINOGLYCOSIDE TOXICITY; CRISTA-AMPULLARIS; BASILAR PAPILLA; OTOLITH ORGANS; CHICK COCHLEA; GUINEA-PIG; LOCALIZATION AB There is little information available on the susceptibility of reptilian saccule hair cells to ototoxin-induced sensory damage. In this study, we report morphological evidence of hair cell recovery and regeneration after damage induced by gentamicin in the saccule of a lizard. We perform morphological analysis using scanning electron microscopy and confocal laser scanning microscopy with actin and calbindin as markers for hair cells and tubulin as a marker for supporting cells. The data were consistent: gentamicin induced damage in the hair cells, and the damage increased with increasing duration of treatment. Initially, the saccule appeared unhealthy. Subsequently, the sensory hair cells became compromised, with fused stereovilli, followed by widespread loss of hair cell bundles from the hair cells. Finally, numerous hair cells were lost. Morphologically, the saccule appeared normal 28 days after gentamicin treatment. Using a mitogenic marker, we tested whether or not there is hair cell regeneration following administration of gentamicin. We found evidence of bromodeoxyuridine incorporation first in supporting cell nuclei and subsequently in hair cell nuclei. This indicates that a process of sensory epithelium repair and hair cell regeneration occurred, in both extrastriolar and striolar regions, and that the recovery was due to both the proliferation of supporting cells and, as seems likely, self-repair of hair cell bundles. (C) 2007 Elsevier B.V. All rights reserved. C1 [Avallone, Bice; Balsamo, Giuseppe; Marino, Francesco] Univ Naples Federico 2, Dept Biol Sci, Mol Genet & Mol Biol, I-80134 Naples, Italy. [Fascio, Umberto] Univ Milan, CIMA, I-20133 Milan, Italy. RP Avallone, B (reprint author), Univ Naples Federico 2, Dept Biol Sci, Mol Genet & Mol Biol, Via Mezzocannone 8, I-80134 Naples, Italy. EM bice.avallone@unina.it CR Avallone B, 2003, HEARING RES, V178, P79, DOI 10.1016/S0378-5955(03)00040-6 BAGGERSJOBACK D, 1976, ACTA OTO-LARYNGOL, V81, P57, DOI 10.3109/00016487609107477 BAIRD RA, 1993, HEARING RES, V65, P164, DOI 10.1016/0378-5955(93)90211-I BALAK KJ, 1990, J NEUROSCI, V10, P2502 Balsamo G, 2000, HEARING RES, V148, P1, DOI 10.1016/S0378-5955(00)00094-0 BALSAMO G, 1995, SCANNING MICROSCOPY, V9, P493 Carranza A, 1997, LARYNGOSCOPE, V107, P137, DOI 10.1097/00005537-199701000-00025 CELIO MR, 1990, NEUROSCIENCE, V35, P375, DOI 10.1016/0306-4522(90)90091-H CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 Daudet N, 1998, J COMP NEUROL, V401, P145 DECHESNE CJ, 1991, BRAIN RES, V560, P139, DOI 10.1016/0006-8993(91)91224-O DECHESNE CJ, 1988, HEARING RES, V33, P273, DOI 10.1016/0378-5955(88)90157-8 DEMEMES D, 1993, CELL TISSUE RES, V274, P487, DOI 10.1007/BF00314545 FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339 Gale JE, 2002, J NEUROBIOL, V50, P81, DOI 10.1002/neu.10002 GIROD DA, 1989, HEARING RES, V42, P175, DOI 10.1016/0378-5955(89)90143-3 Gleich O, 1997, J COMP NEUROL, V377, P5, DOI 10.1002/(SICI)1096-9861(19970106)377:1<5::AID-CNE2>3.0.CO;2-8 GRATZNER HG, 1982, SCIENCE, V218, P475 HASHINO E, 1993, J CELL SCI, V105, P23 Kil J, 1997, HEARING RES, V114, P117, DOI 10.1016/S0378-5955(97)00166-4 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 MACARTNEY JC, 1980, NATURE, V288, P491, DOI 10.1038/288491a0 Ogata Y, 1998, J VESTIBUL RES-EQUIL, V8, P209 Ogata Y, 1999, HEARING RES, V133, P53, DOI 10.1016/S0378-5955(99)00057-X Piscopo M, 2004, HEARING RES, V189, P76, DOI 10.1016/S0378-5955(03)00366-6 Piscopo M, 2003, HEARING RES, V178, P89, DOI 10.1016/S0378-5955(03)00053-4 Presson JC, 1996, HEARING RES, V100, P10, DOI 10.1016/0378-5955(96)00109-8 RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 SANS A, 1987, BRAIN RES, V435, P293, DOI 10.1016/0006-8993(87)91612-X SLEPECKY N, 1985, HEARING RES, V20, P245, DOI 10.1016/0378-5955(85)90029-2 SLEPECKY N, 1982, CELL TISSUE RES, V224, P15, DOI 10.1007/BF00217262 Steyger PS, 1997, INT J DEV NEUROSCI, V15, P417, DOI 10.1016/S0736-5748(96)00101-3 STONE JS, 1994, J COMP NEUROL, V341, P50, DOI 10.1002/cne.903410106 Stone JS, 1996, J NEUROSCI, V16, P6157 TSUE TT, 1994, P NATL ACAD SCI USA, V91, P1584, DOI 10.1073/pnas.91.4.1584 USAMI S, 1995, ORL J OTO-RHINO-LARY, V57, P94 NR 36 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 15 EP 22 DI 10.1016/j.heares.2007.09.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000003 PM 17980524 ER PT J AU Snyder, RL Middlebrooks, JC Bonham, BH AF Snyder, Russell L. Middlebrooks, John C. Bonham, Ben H. TI Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity SO HEARING RESEARCH LA English DT Article DE cochlear implant; cochlear prosthesis; deafness; auditory nervous system; multichannel recording; auditory prosthesis; inferior colliculus ID INTRACOCHLEAR ELECTRICAL-STIMULATION; ROTATIONALLY SYMMETRICAL MODEL; AUDITORY-NERVE; EXCITATION PATTERNS; NEURAL EXCITATION; PITCH RANKING; INFERIOR COLLICULUS; SPEECH-RECOGNITION; INSERTION TRAUMA; TEMPORAL BONE AB The multichannel design of contemporary cochlear implants (CIs) is predicated on the assumption that each channel activates a relatively restricted and independent sector of the deaf auditory nerve array, just as a sound within a restricted frequency band activates a restricted region of the normal cochlea The independence of CI channels, however, is limited; and the factors that determine their independence, the relative overlap of the activity patterns that they evoke, are poorly understood. In this study, we evaluate the spread of activity evoked by cochlear implant channels by monitoring activity at 16 sites along the tonotopic axis of the guinea pig inferior colliculus (IC). "Spatial tuning curves" (STCs) measured in this way serve as an estimate of activation spread within the cochlea and the ascending auditory pathways. We contrast natural stimulation using acoustic tones with two kinds of electrical stimulation either (1) a loose fitting banded array consisting of a cylindrical silicone elastomer carrier with a linear series of ring contacts; or (2) a space-filling array consisting of a tapered silicone elastomer carrier that is designed to fit snugly into the guinea pig scala tympani with a linear series of ball contacts positioned along it Spatial tuning curves evoked by individual acoustic tones, and by activation of each contact of each array as a monopole, bipole or tripole were recorded. Several channel configurations and a wide range of electrode separations were tested for each array, and their thresholds and selectivity were estimated. The results indicate that the tapered space-filling arrays evoked more restricted activity patterns at lower thresholds than did the banded arrays. Monopolar stimulation (one intracochlear contact activated with an extracochlear return) using either array evoked broad activation patterns that involved the entire recording array at current levels <6 dB SL, but at relatively low thresholds. Bi- and tri-polar configurations of both array types evoked more restricted activity patterns, but their thresholds were higher than those of monopolar configurations. Bipolar and tripolar configurations with closely spaced contacts evoked activity patterns that were comparable to those evoked by pure tones. As the spacing of bipolar electrodes was increased (separations >1 mm), the activity patterns became broader and evoked patterns with two distinct threshold minima, one associated with each contact. Published by Elsevier B.V. C1 [Snyder, Russell L.; Bonham, Ben H.] Univ Calif San Francisco, Dept Otolaryngol HNS, Epstein Lab, San Francisco, CA 94143 USA. [Middlebrooks, John C.] Univ Michigan, Kresge Hearing Res Inst, Neurosci Program, Ann Arbor, MI 48109 USA. [Snyder, Russell L.] Utah State Univ, Dept Psychol, Logan, UT 84322 USA. RP Snyder, RL (reprint author), Univ Calif San Francisco, Dept Otolaryngol HNS, Epstein Lab, Box 0526,U490, San Francisco, CA 94143 USA. EM rsnyder@itsa.ucsf.edu CR Balkany TJ, 2002, ACTA OTO-LARYNGOL, V122, P363, DOI 10.1080/00016480260000021 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 BLACK RC, 1983, ANN NY ACAD SCI, V405, P137, DOI 10.1111/j.1749-6632.1983.tb31626.x Boex C, 2003, J ACOUST SOC AM, V114, P2058, DOI 10.1121/1.1610452 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Briaire JJ, 2006, HEARING RES, V214, P17, DOI 10.1016/j.heares.2006.01.015 Brown CJ, 1996, J SPEECH HEAR RES, V39, P453 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 Chatterjee Monita, 2000, Journal of the Acoustical Society of America, V107, P1637, DOI 10.1121/1.428448 CHATTERJEE M, 2005, JARO-J ASSOC RES OTO, V4, P1 Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 COHEN LT, 2005, INT J AUDIOL, V10, P559 Cohen L T, 1996, Audiol Neurootol, V1, P265 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Collins LM, 1997, J ACOUST SOC AM, V101, P440, DOI 10.1121/1.417989 EDDINGTON DK, 1987, T AM SOC ART INT ORG, V24, P1 EDDINGTON DK, 1987, LARYNGOL S53, V87, P1 Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55 FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 Hanekom JJ, 1998, J ACOUST SOC AM, V104, P2372, DOI 10.1121/1.423772 Hanekom T, 2001, EAR HEARING, V22, P300, DOI 10.1097/00003446-200108000-00005 HARTMANN R, 1990, ACTA OTO-LARYNGOL, P128 Hughes ML, 2006, J ACOUST SOC AM, V119, P1538, DOI 10.1121/1.2164969 HUKUBE T, 1987, IEEE T BIOMED ENG, V34, P883 Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549 Khan AM, 2005, HEARING RES, V205, P83, DOI 10.1016/j.heares.2005.03.003 KIM DO, 1991, HEARING RES, V52, P167, DOI 10.1016/0378-5955(91)90196-G KIM DO, 1979, J NEUROPHYSIOL, V42, P16 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128 LEAKE PA, 1992, HEARING RES, V64, P99, DOI 10.1016/0378-5955(92)90172-J LEAKEJONES PA, 1982, HEARING RES, V8, P225, DOI 10.1016/0378-5955(82)90076-4 Liang DH, 1999, IEEE T BIO-MED ENG, V46, P35, DOI 10.1109/10.736751 LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732 McDermott HJ, 2006, HEARING RES, V218, P81, DOI 10.1016/j.heares.2006.05.002 MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475 McKay CM, 1996, J ACOUST SOC AM, V99, P1079, DOI 10.1121/1.414594 McKay CM, 1999, HEARING RES, V136, P159, DOI 10.1016/S0378-5955(99)00121-5 Miller AL, 2001, HEARING RES, V152, P55, DOI 10.1016/S0378-5955(00)00236-7 Nadol Joseph B Jr, 2006, Adv Otorhinolaryngol, V64, P31 Pfingst BE, 1999, HEARING RES, V134, P105, DOI 10.1016/S0378-5955(99)00079-9 Pfingst BE, 2001, JARO, V2, P87 Pfingst B E, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P127 Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4 Rebscher SJ, 2001, J ACOUST SOC AM, V109, P2035, DOI 10.1121/1.1365115 REBSCHER SJ, 2007, J NEUROSCI METH SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Spelman F. A., 1995, Annals of Otology Rhinology and Laryngology, V104, P131 Spelman F A, 1982, Ann Otol Rhinol Laryngol Suppl, V98, P3 Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426 Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 Tykocinski M, 2000, AM J OTOL, V21, P205, DOI 10.1016/S0196-0709(00)80010-1 Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 Wardrop P, 2005, HEARING RES, V203, P68, DOI 10.1016/j.heares.2004.11.007 Wardrop P, 2005, HEARING RES, V203, P54, DOI 10.1016/j.heares.2004.11.006 Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401 NR 62 TC 41 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 23 EP 38 DI 10.1016/j.heares.2007.09.013 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000004 PM 18037252 ER PT J AU Miko, IJ Henkemeyer, M Cramer, KS AF Miko, Ilona J. Henkemeyer, Mark Cramer, Karina S. TI Auditory brainstem responses are impaired in EphA4 and ephrin-B2 deficient mice SO HEARING RESEARCH LA English DT Article DE brainstem; ABR; Eph receptor; ephrin; mouse ID MOUSE INNER-EAR; AXONAL GROWTH; CELL BEHAVIOR; HEARING-LOSS; MUTANT MICE; GUINEA-PIG; RECEPTORS; EPHB2; EXPRESSION; SYSTEM AB The Eph receptor tyrosine kinases and their membrane-anchored ligands, ephrins, are signaling proteins that act as axon guidance molecules during chick auditory brainstem development. We recently showed that Eph proteins also affect patterns of neural activation in the mammalian brainstem. However, functional deficits in the brainstems of mutant mice have not been assessed physiologically. The present study characterizes neural activation in Eph protein deficient mice in the auditory brainstem response (ABR). We recorded the A BR of EphA4 and ephrin-B2 mutant mice, aged postnatal day 18-20, and compared them to wild type controls. The peripheral hearing threshold of EphA4(-/-) mice was 75% higher than that of controls. Waveform amplitudes of peak 1 (P1) were 54% lower in EphA4(-/-) mice than in controls. The peripheral hearing thresholds in ephrin-B2(lacZI+) mice were also elevated, with a mean value 20% higher than that of controls. These ephrin-B2(lacZI+) mice showed a 38% smaller P1 amplitude. Significant differences in latency to waveform peaks were also observed. These elevated thresholds and reduced peak amplitudes provide evidence for hearing deficits in both of these mutant mouse lines, and further emphasize an important role for Eph family proteins in the formation of functional auditory circuitry. (C) 2007 Elsevier B.V. All rights reserved. C1 [Miko, Ilona J.; Cramer, Karina S.] Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA. [Henkemeyer, Mark] UT SW Med Ctr, Dept Dev Biol, Dallas, TX USA. RP Cramer, KS (reprint author), Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA. EM cramerk@uci.edu CR Abraira VE, 2007, J NEUROSCI, V27, P4273, DOI 10.1523/JNEUROSCI.3477-06.2007 Benson MD, 2005, P NATL ACAD SCI USA, V102, P10694, DOI 10.1073/pnas.0504021102 Bianchi LM, 1998, HEARING RES, V117, P161, DOI 10.1016/S0378-5955(98)00010-0 Bianchi LM, 2002, EUR J NEUROSCI, V16, P1499, DOI 10.1046/j.1460-9568.2002.02248.x Blaesse P, 2006, J NEUROSCI, V26, P10407, DOI 10.1523/JNEUROSCI.3257-06.2006 Blauwkamp MN, 2007, HEARING RES, V225, P71, DOI 10.1016/j.heares.2006.12.010 Brors D, 2003, J COMP NEUROL, V462, P90, DOI 10.1002/cne.10707 Contractor A, 2002, SCIENCE, V296, P1864, DOI 10.1126/science.1069081 Cramer KS, 2005, HEARING RES, V206, P42, DOI 10.1016/j.heares.2004.11.024 Cramer KS, 2004, DEV BIOL, V269, P26, DOI 10.1016/j.ydbio.2004.01.002 Cramer KS, 2006, DEV BIOL, V295, P76, DOI 10.1016/j.ydbio.2006.03.010 Dalva MB, 2007, NAT REV NEUROSCI, V8, P206, DOI 10.1038/nrn2075 Dravis C, 2004, DEV BIOL, V271, P272, DOI 10.1016/j.ydbio.2004.03.027 Dravis C, 2007, HEARING RES, V223, P93, DOI 10.1016/j.heares.2006.10.007 *EPH NOM COMM, 1997, UN NOM EPH FAM REC T, V90, P403 Friauf E, 1997, J COMP NEUROL, V385, P117, DOI 10.1002/(SICI)1096-9861(19970818)385:1<117::AID-CNE7>3.0.CO;2-5 Gale NW, 1996, NEURON, V17, P9, DOI 10.1016/S0896-6273(00)80276-7 Goldshmit Y, 2006, BRAIN RES REV, V52, P327, DOI 10.1016/j.brainresrev.2006.04.006 Happe H Kevin, 2004, Brain Res Dev Brain Res, V153, P29 Henderson JT, 2001, NEURON, V32, P1041, DOI 10.1016/S0896-6273(01)00553-0 Himanen JP, 2004, NAT NEUROSCI, V7, P501, DOI 10.1038/nn1237 Howard MA, 2003, HEARING RES, V178, P118, DOI 10.1016/S0378-5955(03)00068-6 Hsieh CY, 2007, J COMP NEUROL, V504, P508, DOI 10.1002/cne.21465 Huffman KJ, 2007, DEV NEUROBIOL, V67, P1655, DOI 10.1002/dneu.20535 KEITH RW, 1987, AM J OTOL, V8, P406 Kermany MH, 2006, HEARING RES, V220, P76, DOI 10.1016/j.heares.2006.07.011 Krull CE, 1997, CURR BIOL, V7, P571, DOI 10.1016/S0960-9822(06)00256-9 Kullander K, 2002, NAT REV MOL CELL BIO, V3, P475, DOI 10.1038/nrm856 Leighton PA, 2001, NATURE, V410, P174, DOI 10.1038/35065539 Liu BP, 2006, PHILOS T R SOC B, V361, P1593, DOI 10.1098/rstb.2006.1891 Mellitzer G, 2000, CURR OPIN NEUROBIOL, V10, P400, DOI 10.1016/S0959-4388(00)00095-7 MIKO IJ, J COMP NEUROL MOLLER A, 1985, AUDITORY BRAINSTEM R Murai KK, 2003, J CELL SCI, V116, P2823, DOI 10.1242/jcs.00625 Parham K, 1997, HEARING RES, V112, P216, DOI 10.1016/S0378-5955(97)00124-X Pasquale EB, 2005, NAT REV MOL CELL BIO, V6, P462, DOI 10.1038/nrm1662 Pickles JO, 2002, J COMP NEUROL, V449, P207, DOI 10.1002/cne.10231 Pickles JO, 2003, HEARING RES, V178, P44, DOI 10.1016/S0378-5955(03)00029-7 Polley DB, 2006, HEARING RES, V214, P84, DOI 10.1016/j.heares.2006.02.008 Sanes D H, 1985, Brain Res, V354, P255 Song L, 2006, BRAIN RES, V1101, P59, DOI 10.1016/j.brainres.2006.05.027 van Heumen WRA, 2000, HEARING RES, V139, P42, DOI 10.1016/S0378-5955(99)00158-6 WADA SI, 1989, ELECTROEN CLIN NEURO, V72, P535, DOI 10.1016/0013-4694(89)90231-9 WALSH EJ, 1986, J ACOUST SOC AM, V79, P745, DOI 10.1121/1.393463 Wilkinson DG, 2001, NAT REV NEUROSCI, V2, P155, DOI 10.1038/35058515 NR 45 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 39 EP 46 DI 10.1016/j.heares.2007.09.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000005 PM 17967521 ER PT J AU Smith, JL Sterns, AR Prieve, BA Woods, CI AF Smith, Joseph L., II Sterns, Anita R. Prieve, Beth A. Woods, Charles I. TI Effects of anesthesia on DPOAE level and phase in rats SO HEARING RESEARCH LA English DT Article DE DPOAEs; DPOAE onset adaptation; contralateral suppression; middle ear muscle reflex; rat; anesthesia; medial olivocochlear reflex ID PRODUCT OTOACOUSTIC EMISSIONS; SINGLE OLIVOCOCHLEAR NEURONS; COMPOUND ACTION-POTENTIALS; GUINEA-PIG; INFERIOR COLLICULUS; MIDDLE-EAR; RESPONSE PROPERTIES; ACOUSTIC REFLEX; ADAPTATION; SOUND AB Many studies of the auditory system are performed on animals under general anesthesia. A concern for researchers is that these agents may significantly alter the underlying neurophysio logic mechanisms being studied. The effects may very across species, and even among individuals within a species. An investigation was undertaken to study whether DPOAE measures differ using three different anesthetic regimens: acetylpromazine-ketamine, xylazine-ketamine, and sodium pentobarbital. The same rat was anesthetized in three consecutive weeks using a different anesthetic regimen each week. DPOAE magnitude and phase temporal responses were recorded from which several measures were taken: DPOAE levels at the onset of the primaries, changes in DPOAE level as a function of time during presentation of the primaries (Delta LI) and changes in DPOAE level (Delta LC) and phase (Delta PC) during presentation of a broad-band noise presented contralateral to the probe. Each week the same measurements were repeated with the rat anesthetized using a different regimen and at the end of the third week, the middle ear muscles were sectioned and the measurements repeated once again. Results showed that the anesthetic regimens did not differentially alter the DPOAE onset levels. When sodium pentobarbital was used as the anesthetic regimen, Delta LC and Delta PC were significantly smaller relative to those measured when the rats were anesthetized with acetylpromazine-ketamine and xylazine-ketamine. Based on the assumption that large, positive (Delta PC) values are related to middle ear muscle activation, the middle ear muscle reflex remained at least partially active in some rats under sodium pentobarbital anesthesia. The Delta LI measures were significantly smaller when the animals were anesthetized with xylazine-ketamine and sodium pentobarbital than when they were anesthetized with acetylpromazine-ketamine. Recordings taken after sectioning the middle ear muscles suggested that the middle ear muscle reflex substantially contributes to Delta LC and Delta PC measures under the anesthetic regimens xylazine-ketamine and acetylpromazine-ketamine. Data indicated that anesthetic agents variably alter neurophysiologic mechanisms involved with the complex control of the auditory signal even among individuals in the same species. Extreme care should be taken when comparing Delta LI, Delta LC and Delta PC across studies when different anesthetic regimens are used within and across species. (C) 2007 Elsevier B.V. All rights reserved. C1 [Sterns, Anita R.; Prieve, Beth A.; Woods, Charles I.] Syracuse Univ, Inst Sensory Res, Syracuse, NY 13244 USA. [Smith, Joseph L., II; Woods, Charles I.] Upstate Med Univ, Dept Otolaryngol & Commun Sci, Syracuse, NY USA. [Prieve, Beth A.] Dept Commun Sci & Disorders, Syracuse, NY USA. RP Prieve, BA (reprint author), Syracuse Univ, Inst Sensory Res, 621 Skytop Rd, Syracuse, NY 13244 USA. EM baprieve@syr.edu CR BORG E, 1975, ACTA PHYSIOL SCAND, V94, P327, DOI 10.1111/j.1748-1716.1975.tb05893.x Boyev KP, 2002, JARO, V3, P362, DOI 10.1007/s101620020044 Brown MC, 1998, J NEUROPHYSIOL, V79, P3077 BROWN MC, 1989, HEARING RES, V40, P93, DOI 10.1016/0378-5955(89)90103-2 BROWN MC, 1983, HEARING RES, V10, P345, DOI 10.1016/0378-5955(83)90097-7 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E FAY RR, 1988, HEARING VERTEBRATES, P363 FAYELUND H, 1986, ANAT EMBRYOL, V175, P35, DOI 10.1007/BF00315454 Gehr DD, 2004, HEARING RES, V193, P9, DOI 10.1016/j.heares.2004.03.018 Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3 Guinan Jr J.J., 1996, COCHLEA, P435 Harel N, 1997, HEARING RES, V110, P25, DOI 10.1016/S0378-5955(97)00061-0 Hatzopoulos S, 2001, AUDIOLOGY, V40, P253 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2519 KRAUS N, 1985, ELECTROEN CLIN NEURO, V62, P219, DOI 10.1016/0168-5597(85)90017-6 Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 KUWADA S, 1989, J NEUROPHYSIOL, V61, P269 LAHTINEN LA, 2006, EFFECT CONTRALATERAL, P8 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 Luebke AE, 2002, JARO, V3, P16, DOI 10.1007/s101620010089 Luebke AE, 2002, J NEUROSCI, V22, P4241 Maison SF, 2000, J NEUROSCI, V20, P4701 MCCURNIN DM, 2005, CLIN TXB VET TECHNIC, P625 Mulders WHA, 2000, HEARING RES, V149, P11, DOI 10.1016/S0378-5955(00)00157-X Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 Muller J, 2005, J ACOUST SOC AM, V118, P3747, DOI 10.1121/1.2109127 PRIEVE BA, 2000, INFERRING OLIVOCOCHL PUEL JL, 1990, J ACOUST SOC AM, V87, P160 Relkin EM, 2005, JARO-J ASSOC RES OTO, V6, P119, DOI 10.1007/s10162-004-5047-9 ROBERTSON D, 1985, HEARING RES, V20, P63, DOI 10.1016/0378-5955(85)90059-0 SIEGEL JH, 1994, HEARING RES, V80, P146, DOI 10.1016/0378-5955(94)90106-6 SIMS MH, 1986, AM J VET RES, V47, P102 SPARKS DL, 1975, ANESTH ANALG, V54, P189 VICARIO DS, 1993, J NEUROBIOL, V24, P488, DOI 10.1002/neu.480240407 Wagner W, 2007, HEARING RES, V223, P83, DOI 10.1016/j.heares.2006.10.001 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WHITEHEAD ML, 1991, HEARING RES, V51, P55, DOI 10.1016/0378-5955(91)90007-V Wixon SK, 1997, ANESTHESIA ANALGESIA, P165 Zheng YL, 1997, HEARING RES, V112, P167, DOI 10.1016/S0378-5955(97)00118-4 NR 41 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 47 EP 59 DI 10.1016/j.heares.2007.09.010 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000006 PM 18023304 ER PT J AU Willott, JF VandenBosche, J Shimizu, T Ding, DL Salvi, R AF Willott, James F. VandenBosche, Justine Shimizu, Toru Ding, Da-Lian Salvi, Richard TI Effects of exposing C57BL/6J mice to high- and low-frequency augmented acoustic environments: Auditory brainstem response thresholds, cytocochleograms, anterior cochlear nucleus morphology and the role of gonadal hormones SO HEARING RESEARCH LA English DT Article DE mouse; ABR; augmented acoustic environment; hearing loss; cochleograms; hair cells; gonadal hormones; sex differences ID PRODUCT OTOACOUSTIC EMISSIONS; INDUCED HEARING-LOSS; AGING C57BL-6J MICE; SEX-DIFFERENCES; PROLONGED EXPOSURE; IMPULSE NOISE; MOUSE MODELS; DBA/2J MICE; AGE; ESTRADIOL AB Gonadectomized and intact adult C57BL/6J (136) mice of both sexes were exposed for 12 It nightly to an augmented acoustic environment (AAE): repetitive bursts of a 70 dB SPL noise band. The high-frequency AAE (HAAE) was a half-octave band centered at 20 kHz; the low-frequency AAE (LAAE) was a 2-8 kHz band. The effects of sex, gonadectomy, and AAE treatment on genetic progressive hearing loss (a trait of B6 mice) were evaluated by obtaining auditory brainstem response (ABR) thresholds at ages 3-, 6-, and 9-months. At 9-months of age, hair cell counts (cytocochleograms) were obtained, and morphometric measures of the anteroventral cochlear nucleus (AVCN) were obtained. LAAE treatment caused elevation in ABR thresholds (8-24 kHz), with the highest thresholds occurring in intact females. LAAE treatment caused some loss of outer hair cells in the basal half of the cochlea (in addition to losses normally occurring in 136 mice), with intact females losing more cells than intact males. The loss of AWN neurons and shrinkage of tissue volume that typically occur in 9-month-old B6 mice was lessened by LAAE treatment in intact (but not gonadectomized) male mice, whereas the degenerative changes were exacerbated in intact (but not gonadectomized) females. These LAAE effects were prominent in, but not restricted to, the tonotopic low-frequency (ventral) AWN. HAAE treatment resulted in some loss of neurons in the high-frequency (dorsal) AWN. In general, LAAE treatment plus male gonadal hormones (intact males) had an ameliorative effect whereas HAAE or LAAE treatment plus ovarian hormones (intact females) had a negative effect on age-related changes in the B6 auditory system. (C) 2007 Elsevier B.V. All rights reserved. C1 [Willott, James F.; VandenBosche, Justine; Shimizu, Toru] Univ S Florida, Dept Psychol, Tampa, FL 33620 USA. [Willott, James F.] Jackson Lab, Bar Harbor, ME 04609 USA. [Ding, Da-Lian] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Willott, JF (reprint author), Univ S Florida, Dept Psychol, 4202 E Fowler Ave PCD4118G, Tampa, FL 33620 USA. EM jimw@niu.edu CR BERGLUND AM, 1994, HEARING RES, V75, P121, DOI 10.1016/0378-5955(94)90063-9 Cajal SRy, 1909, HISTOLOGIE SYSTEME N COLEMAN JR, 1994, HEARING RES, V80, P209, DOI 10.1016/0378-5955(94)90112-0 COLVIN I, 2007, NOISE ITS EFFECTS, P182 Davis R R, 2003, Noise Health, V5, P19 DAVIS RR, 2001, HDB MOUSE AUDITORY R, P477, DOI 10.1201/9781420038736.sec5 Ding DL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P189, DOI 10.1201/9781420038736.ch13 Ding DL, 1999, AUDIOL NEURO-OTOL, V4, P55, DOI 10.1159/000013822 Garcia-Segura LM, 2001, PROG NEUROBIOL, V63, P29, DOI 10.1016/S0301-0082(00)00025-3 GLORIG A, 1954, OTOLARYNGOL, V61, P160 Guimaraes P, 2004, HEARING RES, V192, P83, DOI 10.1016/j.heares.2004.01.013 HARDING GW, 2004, HEARING RES, V204, P90 Henry KR, 2002, HEARING RES, V170, P107, DOI 10.1016/S0378-5955(02)00391-X Henry KR, 2004, HEARING RES, V190, P141, DOI 10.1016/S0378-5955(03)00401-5 HINCHCLIFFE R, 1968, INT AUDIOL, V7, P239, DOI 10.3109/05384916809074330 Holme RH, 2004, JARO-J ASSOC RES OTO, V5, P66, DOI 10.1007/s10162-003-4021-2 Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617 McFadden SL, 2000, J ACOUST SOC AM, V107, P2162, DOI 10.1121/1.428497 McFadden SL, 1999, EAR HEARING, V20, P164, DOI 10.1097/00003446-199904000-00007 MOSCICKI EK, 1985, EAR HEARING, V6, P184, DOI 10.1097/00003446-198507000-00003 NELSON JF, 1992, ENDOCRINOLOGY, V130, P805, DOI 10.1210/en.130.2.805 NELSON JF, 1981, BIOL REPROD, V24, P784, DOI 10.1095/biolreprod24.4.784 NELSON JF, 1975, ACTA ENDODRINOL, V80, P742 NELSON JF, 1982, BIOL REPROD, V27, P327, DOI 10.1095/biolreprod27.2.327 Picazo O, 2003, BRAIN RES, V990, P20, DOI 10.1016/S0006-8993(03)03380-8 RALLS K, 1967, ANIM BEHAV, V15, P123, DOI 10.1016/S0003-3472(67)80022-8 RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0 Shen HY, 2007, HEARING RES, V226, P52, DOI 10.1016/j.heares.2006.12.011 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Trettel J, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P279, DOI 10.1201/9781420038736.ch19 Turner JG, 1998, HEARING RES, V118, P101, DOI 10.1016/S0378-5955(98)00024-0 Vazquez AE, 2004, HEARING RES, V194, P87, DOI 10.1016/j.heares.2004.03.017 WILLOTT JF, 2005, JARO-J ASSOC RES OTO, V28, P1 Willott JF, 2006, HEARING RES, V221, P73, DOI 10.1016/j.heares.2006.07.016 Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5 WILLOTT JF, 2006, HEARING RES, P138 Willott JF, 2000, HEARING RES, V142, P79, DOI 10.1016/S0378-5955(00)00014-9 Willott JF, 2004, J COMP NEUROL, V472, P358, DOI 10.1002/cne.20065 WILLOTT JF, 1982, NEUROSCI LETT, V34, P13, DOI 10.1016/0304-3940(82)90085-4 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 Willott JF, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P205 Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 NR 42 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 60 EP 71 DI 10.1016/j.heares.2007.10.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000007 PM 18077117 ER PT J AU Eckrich, T Foeller, E Stuermer, IW Gaese, BH Kossl, M AF Eckrich, Tobias Foeller, Elisabeth Stuermer, Ingo W. Gaese, Bernhard H. Koessl, Manfred TI Strain-dependence of age-related cochlear hearing loss in wild and domesticated Mongolian gerbils SO HEARING RESEARCH LA English DT Article DE DPOAE; Otoacoustic emission; cochlear mechanics; Meriones unguiculatus ID PRODUCT OTOACOUSTIC EMISSIONS; AUDITORY-EVOKED POTENTIALS; MERIONES-UNGUICULATUS; MOUSTACHED BAT; PTERONOTUS-PARNELLII; LABORATORY GERBILS; F1-HYBRID STRAINS; CBA MICE; SENSITIVITY; QUIET AB The Mongolian gerbil (Meriones unguiculatus) is one of the animal models in auditory research that has been used in several studies on age-related hearing loss. The standard laboratory strain is domesticated as it was bred in captivity for more than 70 years. We compared properties of distortion product otoacoustic emissions (DPOAEs) in domesticated gerbils with wild-type gerbils from F6-F7 generations of a strain originating from animals trapped in Central Asia in 1995. Up to an age of 9 months, DPOAE thresholds were comparable between both strains and were below 10 dB SPL for f2 frequencies between 4 and 44 kHz. In older domesticated animals, the thresholds were increased by up to 12 dB. Significant increases were found at stimulus frequencies of 2 kHz, 12-20 kHz, and 5660 kHz. The best frequency ratio f2/f1 to evoke maximum DPOAE amplitude was larger in domesticated animals at the age of 9 months or older. While these data show that there is a deterioration of cochlear sensitivity due to domestication, the magnitude of the described changes is small. Thus, the general suitability of domesticated gerbils for auditory research seems not to be affected. (C) 2007 Elsevier B.V. All rights reserved. C1 [Eckrich, Tobias; Foeller, Elisabeth; Gaese, Bernhard H.; Koessl, Manfred] Univ Frankfurt, Inst Zellbiol & Neurowissenschaft, D-60323 Frankfurt, Germany. [Stuermer, Ingo W.] Univ Gottingen, Johann Friedrich Blumenbach Inst Zool & Anthropol, Dept Morphol Syst & Biol Evolut, Mammalian Res Grp, D-37073 Gottingen, Germany. RP Gaese, BH (reprint author), Univ Frankfurt, Inst Zellbiol & Neurowissenschaft, Siesmayerstr 70A, D-60323 Frankfurt, Germany. EM gaese@bio.uni-frankfurt.de CR BLOTTNER S, 2006, ANIM SCI, V82, P388 Blottner S, 2000, J ZOOL, V250, P461, DOI 10.1017/S0952836900004040 Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 BOETTCHER FA, 1993, HEARING RES, V71, P137, DOI 10.1016/0378-5955(93)90029-Z Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 BROWN AM, 1992, P ROY SOC B-BIOL SCI, V250, P29, DOI 10.1098/rspb.1992.0126 CHEAL M, 1986, EXP AGING RES, V12, P3 Drexl M, 2003, JARO-J ASSOC RES OTO, V4, P555, DOI 10.1007/s10162-002-3043-5 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X Faulstich M., 2000, Hearing Research, V140, P99, DOI 10.1016/S0378-5955(99)00189-6 Gleich O, 2000, J COMP NEUROL, V428, P609, DOI 10.1002/1096-9861(20001225)428:4<609::AID-CNE2>3.0.CO;2-F Guimaraes P, 2004, HEARING RES, V192, P83, DOI 10.1016/j.heares.2004.01.013 Hamann I, 2002, HEARING RES, V171, P82, DOI 10.1016/S0378-5955(02)00454-9 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N HENRY KR, 1980, AUDIOLOGY, V19, P369 Jacobson M, 2003, LARYNGOSCOPE, V113, P1707, DOI 10.1097/00005537-200310000-00009 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 Kossl M, 1996, NATURWISSENSCHAFTEN, V83, P89 KOSSL M, 1992, NATURWISSENSCHAFTEN, V79, P425, DOI 10.1007/BF01138579 KOSSL M, 1994, HEARING RES, V72, P59, DOI 10.1016/0378-5955(94)90206-2 Kossl M, 2000, JARO, V1, P300, DOI 10.1007/s101620010046 Miller RA, 2002, EXP BIOL MED, V227, P500 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 Mills DM, 2001, JARO-J ASSOC RES OTO, V2, P130, DOI 10.1007/s101620010059 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 MOLLER J, 1979, VERH DTSCH ZOO GES, V224 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Sinnott JM, 1997, HEARING RES, V112, P235, DOI 10.1016/S0378-5955(97)00125-1 Stuermer I. W., 1997, Society for Neuroscience Abstracts, V23, P2067 Stuermer IW, 2003, ZOOL ANZ, V242, P249, DOI 10.1078/0044-5231-00102 Stuermer IW, 2006, ANIM SCI, V82, P377, DOI 10.1079/ASC200638 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Wittekindt A, 2005, J COMP PHYSIOL A, V191, P31, DOI 10.1007/s00359-004-0564-x YAPA WB, 1994, THESIS LUDWIG MAXIMI NR 40 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 72 EP 79 DI 10.1016/j.heares.2007.10.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000008 PM 18037594 ER PT J AU Jedrzejczak, WW Smurzynski, J Blinowska, KJ AF Jedrzejczak, W. Wiktor Smurzynski, Jacek Blinowska, Katarzyna J. TI Origin of suppression of otoacoustic emissions evoked by two-tone bursts SO HEARING RESEARCH LA English DT Article DE otoacoustic emissions; two-tone suppression; time-frequency distribution; adaptive approximations ID FREQUENCY; PERCEPTION; MECHANICS; NOISE; MODEL; EARS AB Otoacoustic emission (OAE) data recorded for tone bursts presented separately and as a two-tone burst complex, that had been reported previously [Yoshikawa, H., Smurzynski, J., Probst R., 2000. Suppression of tone burst evoked otoacoustic emissions in relation to frequency separation. Hear. Res. 148, 95-106], were re-processed using the method of adaptive approximations by matching pursuit (MP). Two types of stimuli were applied to record tone burst OAEs (TBOAEs): (a) cosine-windowed tone bursts of 5-ms duration with center frequencies of 1, 1.5, 2 and 3 kHz, (b) complex stimuli consisting of a digital addition of the 1 -kHz tone burst together with either the 1.5-, 2- or 3-kHz tone burst. The MP method allowed decomposition of signals into waveforms of defined frequency, latency, time span, and amplitude. This approach provided a high time-frequency (t-f) resolution and identified patterns of resonance modes that were characteristic for TBOAEs recorded in each individual ear. Individual responses to single-tone bursts were processed off-line to form,sum of singles' responses. The results confirmed linear superposition behavior for a frequency separation of two-tone bursts of 2 kHz (the 1-kHz and 3-kHz condition). For the 1, 1.5-kHz condition, the MP results revealed the existence of closely positioned resonance modes associated with responses recorded individually with the stimuli differing in frequency by 500 Hz. Then, the differences between t-f distributions calculated for dual (two-tone bursts) and sum-of-singles conditions exhibited mutual suppression of resonance modes common to both stimuli. The degree of attenuation depended on the individual pattern of characteristic resonance modes, i.e., suppression occurred when two resonant modes excited by both stimuli overlapped. It was postulated that the suppression observed in case of dual stimuli with closely-spaced components is due to mutual attenuation of the overlapping resonance modes. (C) 2007 Elsevier B.V. All rights reserved. C1 [Jedrzejczak, W. Wiktor] Inst Physiol & Pathol Hearing, PL-01943 Warsaw, Poland. [Smurzynski, Jacek] E Tennessee State Univ, Dept Commun Disorders, Johnson City, TN 37614 USA. [Blinowska, Katarzyna J.] Warsaw Univ, Inst Expt Phys, Dept Biomed Phys, PL-00681 Warsaw, Poland. RP Jedrzejczak, WW (reprint author), Inst Physiol & Pathol Hearing, Ul Zgrupowania AK Kampinos 1, PL-01943 Warsaw, Poland. EM w.jedrzejczak@ifps.org.pl CR Bian L, 2007, J ACOUST SOC AM, V122, P1681, DOI 10.1121/1.2764467 Blinowska K.J., 1994, INTELLIGENT ENG SYST, V4, P535 Cooper NP, 1996, J ACOUST SOC AM, V99, P3087, DOI 10.1121/1.414795 Glattke T. J., 2007, OTOACOUSTIC EMISSION, P87 HARRIS F P, 1992, Seminars in Hearing, V13, P67, DOI 10.1055/s-0028-1085142 Jedrzejczak WW, 2004, J ACOUST SOC AM, V115, P2148, DOI 10.1121/1.1690077 Jedrzejczak WW, 2006, J ACOUST SOC AM, V119, P2226, DOI 10.1121/1.2178718 Jedrzejczak WW, 2005, HEARING RES, V205, P249, DOI 10.1016/j.heares.2005.03.024 Kittel M, 2002, HEARING RES, V164, P69, DOI 10.1016/S0378-5955(01)00411-7 MALLAT SG, 1993, IEEE T SIGNAL PROCES, V41, P3397, DOI 10.1109/78.258082 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 NIEMIEC AJ, 1992, J ACOUST SOC AM, V92, P2636, DOI 10.1121/1.404380 PATTERSON RD, 1987, J ACOUST SOC AM, V82, P1560, DOI 10.1121/1.395146 PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8 Rhode WS, 2001, J ACOUST SOC AM, V110, P981, DOI 10.1121/1.1377050 Robles L, 2001, PHYSIOL REV, V81, P1305 RUSSELL LJ, 1997, P NATL ACAD SCI USA, V94, P2660 SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 Smurzynski J, 1998, HEARING RES, V115, P197, DOI 10.1016/S0378-5955(97)00193-7 Souter M, 1995, HEARING RES, V91, P167, DOI 10.1016/0378-5955(95)00187-5 TAVARTKILADZE GA, 1994, BRIT J AUDIOL, V28, P193, DOI 10.3109/03005369409086568 Uppenkamp S, 2001, HEARING RES, V158, P71, DOI 10.1016/S0378-5955(01)00299-4 van der Heijden M, 2005, J ACOUST SOC AM, V117, P1223, DOI 10.1121/1.1856375 Velenovsky DS, 2007, OTOACOUSTIC EMISSION, P131 XU L, 1994, HEARING RES, V74, P173 Yoshikawa H, 2000, HEARING RES, V148, P95, DOI 10.1016/S0378-5955(00)00144-1 NR 26 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 80 EP 89 DI 10.1016/j.heares.2007.10.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000009 PM 18082347 ER PT J AU Tan, XD Wang, X Yang, WG Xiao, ZJ AF Tan, Xiaodong Wang, Xiao Yang, Weiguo Xiao, Zhonju TI First spike latency and spike count as functions of tone amplitude and frequency in the inferior colliculus of mice SO HEARING RESEARCH LA English DT Article DE spike rate; neuron; auditory system ID PRIMARY AUDITORY-CORTEX; SINGLE-UNIT RESPONSES; MEDIAL GENICULATE-BODY; DORSAL COCHLEAR NUCLEUS; RATE-LEVEL FUNCTIONS; NERVE FIBERS; DISCHARGE CHARACTERISTICS; LATERAL LEMNISCUS; BASILAR-MEMBRANE; ECHOLOCATING BAT AB Spike counts (SC) or, spike rate and first spike latency (FSL), are both used to evaluate the responses of neurons to amplitudes and frequencies of acoustic stimuli. However, it is unclear which one is more suitable as a parameter for evaluating the responses of neurons to acoustic amplitudes and frequencies, since systematic comparisons between SC and FSL tuned to different amplitudes and frequencies, are scarce. This study systematically compared the precision and stability (i.e., the resolution and the coefficient variation, CV) of SC- and FSL-function as frequencies and amplitudes in the inferior colliculus of mice. The results showed that: (1) the SC-amplitude functions were of diverse shape (monotonic, nonmonotonic and saturated) whereas the FSL-amplitude functions were in close registration, in which FSL decreased with the increase of amplitude and no paradoxical (an increase in FSL with increasing amplitude) or constant (an independence of FSL on amplitude) neuron was observed; (2) the discriminability (resolution) of differences in amplitude and frequency based on FSL are higher than those based on SC; (3) the CVs of FSL for low amplitude stimuli were smaller than those of SC; (4) the fraction of neurons for which BF = CF (within +/-500 Hz) obtained from FSL was higher than that from SC at any amplitude of sound. Therefore, SC and FSL may vary, independent from each other and represent different parameters of an acoustic stimulus, but FSL with its precision and stability appears to be a better parameter than SC in evaluation of the response of a neuron to frequency and amplitude in mouse inferior colliculus. (C) 2007 Elsevier B.V. All rights reserved. C1 [Tan, Xiaodong; Wang, Xiao; Yang, Weiguo; Xiao, Zhonju] So Med Univ, Basic Med Sch, Dept Physiol, Guangzhou 510515, Guangdong, Peoples R China. RP Xiao, ZJ (reprint author), So Med Univ, Basic Med Sch, Dept Physiol, Guangzhou 510515, Guangdong, Peoples R China. EM xiaozj@fimmu.com CR Adrian ED, 1926, J PHYSIOL-LONDON, V61, P151 AITKIN L, 1991, J NEUROPHYSIOL, V65, P383 AITKIN L, 1990, HEARING RES, V50, P97, DOI 10.1016/0378-5955(90)90036-O AITKIN LM, 1968, J NEUROPHYSIOL, V31, P44 AITKIN LM, 1970, J NEUROPHYSIOL, V33, P421 AITKIN LM, 1972, J NEUROPHYSIOL, V35, P365 Barone P, 1996, J NEUROPHYSIOL, V75, P1206 BERKOWITZ A, 1989, HEARING RES, V41, P255, DOI 10.1016/0378-5955(89)90017-8 BLATCHLEY BJ, 1990, J NEUROPHYSIOL, V64, P582 BODENHAMER RD, 1981, HEARING RES, V5, P317, DOI 10.1016/0378-5955(81)90055-1 Bonnet C, 1999, PHYSIOL BEHAV, V66, P549, DOI 10.1016/S0031-9384(98)00209-1 BRUGGE JF, 1973, J NEUROPHYSIOL, V36, P1138 BRUGGE JF, 1969, J NEUROPHYSIOL, V32, P386 BRUGGE JF, 1969, J NEUROPHYSIOL, V32, P1005 Chase SM, 2006, J NEUROSCI, V26, P3889, DOI 10.1523/JNEUROSCI.4986-05.2006 CLAREY JC, 1993, MAMMALIAN AUDITORY P, P232 COVEY E, 1991, J NEUROSCI, V11, P3456 COVEY E, 1993, J NEUROPHYSIOL, V69, P842 DEATHERAGE BH, 1959, J ACOUST SOC AM, V31, P479, DOI 10.1121/1.1907739 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2133 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S Furukawa S, 2002, J NEUROPHYSIOL, V87, P1749, DOI 10.1152/jn.00491.2001 Galazyuk AV, 2001, J NEUROSCI, V21, part. no. Gawne TJ, 1996, J NEUROPHYSIOL, V76, P1356 GOLDBERG JM, 1973, BRAIN RES, V64, P35, DOI 10.1016/0006-8993(73)90169-8 GREENWOO.DD, 1965, J NEUROPHYSIOL, V28, P863 GROTHE B, 1994, J NEUROPHYSIOL, V71, P706 Heil P, 2001, J NEUROSCI, V21, P7404 Heil P, 2003, SPEECH COMMUN, V41, P123, DOI 10.1016/S0167-6393(02)00099-7 Heil P, 2006, JARO-J ASSOC RES OTO, V7, P279, DOI 10.1007/00162-0015-0042-y Heil P, 1997, J NEUROPHYSIOL, V77, P2616 HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X Heil P, 2003, P NATL ACAD SCI USA, V100, P6151, DOI 10.1073/pnas.1030017100 Heil P, 2004, CURR OPIN NEUROBIOL, V14, P461, DOI 10.1016/j.conb.2004.07.002 Heil P, 1997, J NEUROPHYSIOL, V77, P2642 HEIL P, 1992, HEARING RES, V63, P108, DOI 10.1016/0378-5955(92)90080-7 Heil P, 1997, J NEUROPHYSIOL, V78, P2438 HIND JE, 1963, J NEUROPHYSIOL, V26, P321 IRVINE DRF, 1990, J NEUROPHYSIOL, V63, P570 KITZES LM, 1978, J NEUROPHYSIOL, V41, P1165 Klug A, 2000, HEARING RES, V148, P107, DOI 10.1016/S0378-5955(00)00146-5 Lu T, 2004, J NEUROPHYSIOL, V91, P301, DOI 10.1152/jn.00022.2003 Mickey BJ, 2003, J NEUROSCI, V23, P8649 Narayan SS, 1998, SCIENCE, V282, P1882, DOI 10.1126/science.282.5395.1882 Nelken I, 2005, J COMPUT NEUROSCI, V19, P199, DOI 10.1007/s10827-005-1739-3 Neubauer H, 2004, JARO-J ASSOC RES OTO, V5, P436, DOI 10.1007/s10162-004-5031-4 PHILLIPS DP, 1987, J ACOUST SOC AM, V82, P1, DOI 10.1121/1.395547 PHILLIPS DP, 1985, HEARING RES, V19, P253, DOI 10.1016/0378-5955(85)90145-5 PHILLIPS DP, 1988, J NEUROPHYSIOL, V59, P1524 PHILLIPS DP, 1995, J NEUROPHYSIOL, V73, P674 PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748 PHILLIPS DP, 1985, HEARING RES, V18, P73, DOI 10.1016/0378-5955(85)90111-X PHILLIPS DP, 1990, J ACOUST SOC AM, V88, P1403, DOI 10.1121/1.399718 PHILLIPS DP, 1991, HEARING RES, V53, P17, DOI 10.1016/0378-5955(91)90210-Z PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48 PLERON H, 1920, ANN PSYCHOL, V22, P58 POPELAR J, 1982, HEARING RES, V8, P273, DOI 10.1016/0378-5955(82)90019-3 Qiu Q, 2007, SCI CHINA SER C, V50, P258, DOI 10.1007/s11427-007-0020-6 Recio-Spinoso A, 2005, J NEUROPHYSIOL, V93, P3615, DOI 10.1152/jn.00882.2004 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 ROBLES L, 1991, NATURE, V349, P413, DOI 10.1038/349413a0 ROSE JE, 1963, J NEUROPHYSIOL, V26, P294 ROUILLER E, 1983, HEARING RES, V11, P235, DOI 10.1016/0378-5955(83)90081-3 Ruggero MA, 2000, P NATL ACAD SCI USA, V97, P11744, DOI 10.1073/pnas.97.22.11744 SANES DH, 1988, J NEUROSCI, V8, P682 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 SEMPLE MN, 1985, J NEUROPHYSIOL, V53, P1467 SHAMMA SA, 1985, HEARING RES, V19, P1, DOI 10.1016/0378-5955(85)90094-2 Stafford T, 2004, PSYCHON B REV, V11, P975, DOI 10.3758/BF03196729 SUGA N, 1970, SCIENCE, V170, P452 SUGA N, 1971, J PHYSIOL-LONDON, V217, P159 SUGA N, 1977, SCIENCE, V196, P64, DOI 10.1126/science.190681 SULLIVAN WE, 1982, J NEUROPHYSIOL, V48, P1033 SUTTER ML, 1995, J NEUROPHYSIOL, V73, P190 Thorpe S, 1996, NATURE, V381, P520, DOI 10.1038/381520a0 VanRullen R, 2005, TRENDS NEUROSCI, V28, P1, DOI 10.1016/j.tins.2004.10.010 VOIGT HF, 1980, J NEUROPHYSIOL, V44, P76 Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 Wu M, 1991, Chin J Physiol, V34, P145 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 Zheng W, 2000, J COMP PHYSIOL A, V186, P661, DOI 10.1007/s003590000119 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 82 TC 11 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 90 EP 104 DI 10.1016/j.heares.2007.10.002 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000010 PM 18037595 ER PT J AU Menard, M Gallego, S Berger-Vachon, C Collet, L Thai-Van, H AF Menard, Mikael Gallego, Stephane Berger-Vachon, Christian Collet, Lionel Thai-Van, Hung TI Relationship between loudness growth function and auditory steady-state response in normal-hearing subjects SO HEARING RESEARCH LA English DT Article DE objective responses; psychoacoustic measures; loudness level ID BRAIN-STEM RESPONSE; OTOACOUSTIC EMISSIONS; OBJECTIVE ESTIMATION; EVOKED-POTENTIALS; MODULATED TONES; 80 HZ; FREQUENCY; THRESHOLDS; AMPLITUDE; AUDIOMETRY AB The present study investigates the relationship between auditory steady-state responses (ASSRs) and loudness growth function. ASSR amplitudes were compared to the perceived loudness level at frequencies of 500 and 2000 Hz in 11 normal-hearing subjects. As a first step, loudness growth function was estimated for the two test frequencies. Then ASSR amplitude was recorded for each of the two frequencies at different stimulus intensities, each corresponding to a loudness level as given by the first part of the study. Normalized results show that the ASSR amplitude correlates well with the loudness function (R-2 = 0.81). A stepwise multiple linear regression confirmed these results with loudness explaining almost all the ASSR amplitude (loudness R 2 = 0.81,p < 0.001, f = 562 and for intensity f = 1.1, p = 0.29). The non-linearity of the ASSR amplitude for low loudness levels can be explained by both the active amplification in the cochlea and the noise in the recording. The results suggest that ASSRs can be used for "objective" loudness measurement. (C) 2007 Elsevier B.V. All rights reserved. C1 [Menard, Mikael; Berger-Vachon, Christian; Collet, Lionel; Thai-Van, Hung] Univ Lyon, F-69003 Lyon, France. [Menard, Mikael; Berger-Vachon, Christian; Collet, Lionel; Thai-Van, Hung] Univ Lyon 1, F-69003 Lyon, France. [Gallego, Stephane; Berger-Vachon, Christian; Collet, Lionel; Thai-Van, Hung] Hop Edouard Herriot, Hosp Civils Lyon, Serv Audiol & Explorat Orofaciales, F-69003 Lyon, France. [Menard, Mikael; Berger-Vachon, Christian; Collet, Lionel; Thai-Van, Hung] CNRS, UMR 5020, F-69007 Lyon, France. [Menard, Mikael; Berger-Vachon, Christian; Collet, Lionel; Thai-Van, Hung] Inst Fed Neurosci Lyon, F-69677 Bron, France. [Menard, Mikael] Lab MXM, F-06224 Vallauris, France. RP Menard, M (reprint author), Hop Edouard Herriot, CNRS, UMR 5020, Pavillon U,Pl Arsonval, F-69437 Lyon 03, France. EM mmenard@olfac.univ-lyon CR ALLEN JB, 1990, J ACOUST SOC AM, V88, P745, DOI 10.1121/1.399778 AOYAGI M, 1993, HEARING RES, V65, P253, DOI 10.1016/0378-5955(93)90218-P BAUER JW, 1975, J ACOUST SOC AM, V57, P165, DOI 10.1121/1.380410 COHEN LT, 1991, J ACOUST SOC AM, V90, P2467, DOI 10.1121/1.402050 Cone-Wesson Barbara, 2002, J Am Acad Audiol, V13, P173 DARLING RM, 1990, EAR HEARING, V11, P289, DOI 10.1097/00003446-199008000-00006 Dillon H, 1996, EAR HEARING, V17, P287, DOI 10.1097/00003446-199608000-00001 Dimitrijevic A, 2001, EAR HEARING, V22, P100, DOI 10.1097/00003446-200104000-00003 Dimitrijevic Andrew, 2002, J Am Acad Audiol, V13, P205 Epstein M, 2005, J ACOUST SOC AM, V117, P263, DOI 10.1121/1.1830670 GALAMBOS R, 1978, OTOLARYNG CLIN N AM, V11, P709 GALAMBOS R, 1981, NICOLET POTENT, P1 Gallego S, 1999, ACTA OTO-LARYNGOL, V119, P234, DOI 10.1080/00016489950181738 GEISLER CD, 1958, SCIENCE, V128, P1210, DOI 10.1126/science.128.3333.1210 GORGA MP, 1985, EAR HEARING, V6, P105, DOI 10.1097/00003446-198503000-00008 Herdman AT, 2002, BRAIN TOPOGR, V15, P69, DOI 10.1023/A:1021470822922 Herdman AT, 2001, SCAND AUDIOL, V30, P41, DOI 10.1080/010503901750069563 John MS, 2000, COMPUT METH PROG BIO, V61, P125, DOI 10.1016/S0169-2607(99)00035-8 John MS, 2003, EAR HEARING, V24, P406, DOI 10.1097/01.AUD.0000090442.37624.BE John MS, 1998, AUDIOLOGY, V37, P59 Kaf WA, 2006, INT J AUDIOL, V45, P477, DOI 10.1080/14992020600753197 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Kiessling J, 1996, SCAND AUDIOL, V25, P153, DOI 10.3109/01050399609047998 Lins OG, 1996, EAR HEARING, V17, P81, DOI 10.1097/00003446-199604000-00001 LINS OG, 1995, J ACOUST SOC AM, V97, P3051, DOI 10.1121/1.411869 Menard M, 2004, INT J AUDIOL, V43, pS39 Moore B. C. J., 1989, INTRO PSYCHOL HEARIN MOORE BC, 1995, PERCEPTUAL COCHLEAR Muller J, 2004, J ACOUST SOC AM, V115, P3081, DOI 10.1121/1.1736292 Neely ST, 2003, J ACOUST SOC AM, V114, P1499, DOI 10.1121/1.1604122 Perez-Abalo MC, 2001, EAR HEARING, V22, P200, DOI 10.1097/00003446-200106000-00004 Picton Terence W, 2005, J Am Acad Audiol, V16, P140, DOI 10.3766/jaaa.16.3.3 Picton TW, 2003, INT J AUDIOL, V42, P177, DOI 10.3109/14992020309101316 PICTON TW, 1977, J OTOLARYNGOL, V6, P90 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 PRATT H, 1977, CLIN NEUROPHYSIOL, V43, P802 Ross B, 2003, HEARING RES, V186, P57, DOI 10.1016/S0378-5955(03)00299-5 Serpanos YC, 1997, EAR HEARING, V18, P409, DOI 10.1097/00003446-199710000-00006 Sherlock LaGuinn P, 2005, J Am Acad Audiol, V16, P85, DOI 10.3766/jaaa.16.2.4 STAPELLS DR, 1984, EAR HEARING, V5, P105 THORNTON ARD, 1987, SCAND AUDIOL, V16, P219, DOI 10.3109/01050398709074944 THORNTON ARD, 1989, SCAND AUDIOL, V18, P225, DOI 10.3109/01050398909042199 Tlumak AI, 2007, INT J AUDIOL, V46, P26, DOI 10.1080/14992020601078008 NR 43 TC 13 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 105 EP 113 DI 10.1016/j.heares.2007.10.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000011 PM 18093768 ER PT J AU Dai, CF Steyger, PS AF Dai, Chun Fu Steyger, Peter S. TI A systemic gentamicin pathway across the stria vascularis SO HEARING RESEARCH LA English DT Article DE blood-labyrinth barrier; ototoxicity; aminoglycosides; cochlea; hair cells; stria vascularis ID INNER-EAR DYSFUNCTION; COCHLEAR HAIR-CELLS; AMINOGLYCOSIDE ANTIBIOTICS; ETHACRYNIC-ACID; GUINEA-PIG; CELLULAR UPTAKE; SENSORY CELLS; LATERAL-LINE; IN-VIVO; OTOTOXICITY AB The mechanism(s) by which systemically-administered aminoglycosides enter the cochlea remain poorly understood. To elucidate which mechanisms may be involved, we co-administered different molar ratios of gentamicin and fluorescent gentamicin (GTTR) to mice in three different regimens: (1) gentamicin (150, 300 or 600 mg/kg) containing a constant 300:1 molar ratio of gentamicin:GTTR; (2) 300 mg/kg gentamicin containing a variable molar ratio of gentamicin:GTTR (150:1-600:1), or (3) an increasing dose of gentamicin (150-900 mg/kg), each dose containing 1.7 mg/kg GTTR. Three hours later, cochleae were fixed and examined by confocal microscopy. First, increasing doses of a constant molar ratio of gentamicin:GTTR, resulted in increasing intensities of GTTR fluorescence in hair cells and strial tissues. Second, a fixed gentamicin dose with increasing molar dilution of GTTR led to decreasing GTTR fluorescence in hair cells and strial tissues. Third, a fixed GTTR dose with increasing molar dilution by gentamicin led to decreased GTTR uptake in hair cells and marginal cells, but not intra-strial tissues and capillaries. Thus, only hair cell and marginal cell uptake of GTTR is competitively inhibited by gentamicin, suggesting that a regulatable barrier for gentamicin entry into endolymph exists at the interface between marginal cells, the intra-strial space and intermediate cells. (C) 2007 Elsevier B.V. All rights reserved. C1 [Dai, Chun Fu; Steyger, Peter S.] Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA. [Dai, Chun Fu] Fudan Univ, Eye Ear Nose & Throat Hosp, Dept Otolaryngol, Shanghai 200031, Peoples R China. RP Steyger, PS (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM steygerp@ohsu.edu CR Aran JM, 1999, ANN NY ACAD SCI, V884, P60, DOI 10.1111/j.1749-6632.1999.tb08636.x Aran J M, 1993, Rev Laryngol Otol Rhinol (Bord), V114, P125 BERNARD PA, 1981, LARYNGOSCOPE, V91, P1985 BRUMMETT RE, 1981, REV INFECT DIS, V3, pS216 Dai CF, 2006, HEARING RES, V213, P64, DOI 10.1016/j.heares.2005.11.011 Dehne N, 2002, HEARING RES, V169, P47, DOI 10.1016/S0378-5955(02)00338-6 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 DULON D, 1986, ANTIMICROB AGENTS CH, V30, P96 DULON D, 1993, CR ACAD SCI III-VIE, V316, P682 Ehret G, 1976, J Am Audiol Soc, V1, P179 Gale JE, 2001, J NEUROSCI, V21, P7013 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6 HAYASHIDA T, 1989, ACTA OTO-LARYNGOL, V108, P404, DOI 10.3109/00016488909125546 HENRY KR, 1981, ARCH OTOLARYNGOL, V107, P92 HIEL H, 1992, ACTA OTO-LARYNGOL, V112, P272 HUY PTB, 1983, ANTIMICROB AGENTS CH, V23, P344 HUY PTB, 1986, J CLIN INVEST, V77, P1492 Juhn S K, 2001, Int Tinnitus J, V7, P72 Koo JW, 2006, CEPHALALGIA, V26, P1310, DOI 10.1111/j.1468-2982.2006.01208.x Lang F, 2007, AM J PHYSIOL-CELL PH, V293, pC1187, DOI 10.1152/ajpcell.00024.2007 Laurell G, 2000, ACTA OTO-LARYNGOL, V120, P796 LENOIR M, 1983, ACTA OTO-LARYNGOL, P1 Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951 Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403 MATHOG RH, 1977, ANN OTO RHINOL LARYN, V86, P158 Meyers JR, 2003, J NEUROSCI, V23, P4054 Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002 Owens KN, 2007, J COMP NEUROL, V502, P522, DOI 10.1002/cne.21345 PUJOL R, 1986, ACTA OTO-LARYNGOL, P29 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E RYBAK LP, 1982, J OTOLARYNGOL, V11, P127 SAKAGAMI M, 1982, CELL TISSUE RES, V226, P511 Sandoval R, 1998, J AM SOC NEPHROL, V9, P167 Shnerson A, 1981, Brain Res, V254, P65 Steyger PS, 2005, VOLTA REV, V105, P299 Takeuchi S, 2001, HEARING RES, V155, P103, DOI 10.1016/S0378-5955(01)00252-0 Takeuchi S, 1998, CELL TISSUE RES, V293, P271, DOI 10.1007/s004410051118 Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005 HUY PTB, 1983, HEARING RES, V11, P191, DOI 10.1016/0378-5955(83)90078-3 Vass Z, 2001, NEUROSCIENCE, V103, P189, DOI 10.1016/S0306-4522(00)00521-2 Wangemann P, 2006, J PHYSIOL-LONDON, V576, P11, DOI 10.1113/jphysiol.2006.112888 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 Wu WJ, 2002, AUDIOL NEURO-OTOL, V7, P171, DOI 10.1159/000058305 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 YAMANE H, 1988, ACTA OTO-LARYNGOL, P28 NR 46 TC 25 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 114 EP 124 DI 10.1016/j.heares.2007.10.010 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000012 PM 18082985 ER PT J AU Ozimek, E Konleczny, J Sone, T AF Ozimek, Edward Konleczny, Jacek Sone, Toshio TI Binaural perception of the modulation depth of AM signals SO HEARING RESEARCH LA English DT Article DE binaural perception; AM signals; loudness summation ID INTENSITY DISCRIMINATION; SPEECH-INTELLIGIBILITY; TEMPORAL INTEGRATION; AMPLITUDE-MODULATION; LOUDNESS FUNCTION; PURE-TONES; SUMMATION; RESPONSES; SOUNDS; LEVEL AB The purpose of this study was to determine the binaurally perceived modulation depth (m) of the low rate amplitude modulated (AM) signals, under conditions of their dichotic presentation, i.e., when the AM signals presented to the left and the right ear had different modulation depths. The modulation depth was determined as a point of subjective equality between the sensations of the modulation depth of AM signals presented to the left and right ear, using a one-up, one-down adaptive procedure. Measurements were made for the carrier frequencies (f(c)) of 250, 1000, and 4000 Hz, and the modulation frequency (f(m)) of 4 Hz. Experimental data showed that, for sufficiently small interaural difference in modulation depth (Delta m), the perceived modulation approximated the mean of the modulation depths presented to the left and the right ear. However, for moderate and large Delta m, the binaurally perceived modulation was lower than the mean of m(l) and m(r) and the steepness of the function m =f(Delta m) gradually decreased with an increase of Delta m. Results of the calculation of the binaurally perceived modulation depth, obtained on the assumption of binaural loudness summation, were found to be consistent within the limit of standard deviation, with the experimental data for relatively wide range of Delta m. (C) 2007 Elsevier B.V. All rights reserved. C1 [Ozimek, Edward; Konleczny, Jacek] Adam Mickiewicz Univ Poznan, Inst Acoust, PL-61614 Poznan, Poland. [Sone, Toshio] Akita Prefectural Univ, Fac Elect & Informat Syst, Tsuchiya, Honjo 0150055, Japan. RP Ozimek, E (reprint author), Adam Mickiewicz Univ Poznan, Inst Acoust, Umultowska 85, PL-61614 Poznan, Poland. EM ozimaku@amu.edu.pl; komaku@amu.edu.pl; tsoiie@akita-pu.ae.jp CR ALGOM D, 1989, PERCEPT PSYCHOPHYS, V46, P567, DOI 10.3758/BF03208154 ALTSCHULER R, 1991, NEUROBIOLOGY HEARING ATKIN LM, 1984, HDB PHYSL NERVOUS SY, P675 Bauch H., 1956, Acustica, V6 Blauert J., 1983, SPATIAL HEARING Bregman AS., 1990, AUDITORY SCENE ANAL Buus S, 1998, J ACOUST SOC AM, V104, P399, DOI 10.1121/1.423295 Buus S, 1997, J ACOUST SOC AM, V101, P669, DOI 10.1121/1.417959 Carlyon RP, 1997, J ACOUST SOC AM, V101, P3636, DOI 10.1121/1.418324 COLBURN HS, 1995, AUDITORY COMPUTATION, P332 Florentine M, 1996, J ACOUST SOC AM, V99, P1633, DOI 10.1121/1.415236 Green DM, 1993, HUMAN PSYCHOPHYSICS, P13 Grimm G, 2002, ACTA ACUST UNITED AC, V88, P359 HARTMANN WM, 1997, SIGNALS SOUND SENSAT HELLMAN RP, 1963, J ACOUST SOC AM, V35, P856, DOI 10.1121/1.1918619 HELLMAN WS, 1990, J ACOUST SOC AM, V87, P1255, DOI 10.1121/1.398801 HOUTGAST T, 1985, J ACOUST SOC AM, V77, P1061 HOUTGAST T, 1980, ACUSTICA, V46, P60 Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 KITZES LM, 1980, J COMP NEUROL, V192, P455, DOI 10.1002/cne.901920306 KUWADA S, 1983, J NEUROPHYSIOL, V50, P981 Kuwada S., 1997, BINAURAL SPATIAL HEA, P399 MARKS LE, 1978, J ACOUST SOC AM, V64, P107, DOI 10.1121/1.381976 MCGILL WJ, 1968, PERCEPT PSYCHOPHYS, V4, P105, DOI 10.3758/BF03209518 MIYATA H, 1991, ACUSTICA, V73, P200 MONCUR JP, 1967, ACUSTICA, V34, P200 Moore BCJ, 2007, J ACOUST SOC AM, V121, P1604, DOI 10.1121/1.2431331 Moore BCJ, 1996, J ACOUST SOC AM, V100, P481, DOI 10.1121/1.415861 Moore BCJ, 1999, J ACOUST SOC AM, V105, P2757, DOI 10.1121/1.426893 NABELEK AK, 1982, J ACOUST SOC AM, V71, P1242 Ozimek E, 1996, ACUSTICA, V82, P114 OZIMEK E, 2001, 17 INT C AC ROM SEPT, V49, P53 OZIMEK E, 1997, P 13 ANN M INT SOC P, P73 PHILLIPS DP, 1991, NEUROBIOLOGY HEARING, P335 Plack Christopher J., 1995, P123, DOI 10.1016/B978-012505626-7/50006-6 REYNOLDS GS, 1960, J ACOUST SOC AM, V32, P1337, DOI 10.1121/1.1907903 SCHARF B, 1970, J EXP PSYCHOL, V86, P374, DOI 10.1037/h0030159 SCHLAUCH RS, 1994, J ACOUST SOC AM, V95, P2171, DOI 10.1121/1.410017 Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 Stern Richard M., 1995, P347, DOI 10.1016/B978-012505626-7/50012-1 SUGA N, 1992, J ACOUST SOC AM, V66, P1364 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 WANG X, 1992, PROCESSING COMPLEX S, P105 Wojtczak M, 1999, J ACOUST SOC AM, V106, P1917, DOI 10.1121/1.427940 YIN TCT, 1984, DYNAMIC ASPECTS NEOC, P263 Zhang CY, 1997, J ACOUST SOC AM, V102, P2925, DOI 10.1121/1.420347 Zwicker E, 1999, PSYCHOACOUSTICS FACT ZWICKER E, 1991, J ACOUST SOC AM, V89, P756, DOI 10.1121/1.1894635 NR 49 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 125 EP 133 DI 10.1016/j.heares.2007.10.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000013 PM 18082983 ER PT J AU Ebert, CS Blanks, DA Patel, MR Coffey, CS Marshall, AF Fitzpatrick, DC AF Ebert, Charles S., Jr. Blanks, Deldra A. Patel, Mihir R. Coffey, Charles S. Marshall, Allen F. Fitzpatrick, Douglas C. TI Behavioral sensitivity to interaural time differences in the rabbit SO HEARING RESEARCH LA English DT Article DE sound localization; animal psychoacoustics; neural discrimination ID SUPERIOR OLIVARY COMPLEX; INFERIOR COLLICULUS; SOUND-LOCALIZATION; UNANESTHETIZED RABBIT; AUDITORY-CORTEX; PSYCHOMETRIC FUNCTION; CHANGING FREQUENCY; JEFFRESS MODEL; HEARING-LOSS; SPATIAL CUE AB An important cue for sound localization and separation of signals from noise is the interaural time difference (ITD). Humans are able to localize sounds within 1-2 degrees and can detect very small changes in the ITD (10-20 mu s). In contrast, many animals localize sounds with less precision than humans. Rabbits, for example, have sound localization thresholds of similar to 22 degrees. There is only limited information about behavioral ITD discrimination in animals with poor sound localization acuity that are typically used for the neural recordings. For this study, we measured behavioral discrimination of ITDs in the rabbit for a range of reference ITDs from 0 to +/- 300 mu s. The behavioral task was conditioned avoidance and the stimulus was band-limited noise (500-1500 Hz). Across animals, the average discrimination threshold was 50-60 mu s for reference ITDs of 0 to +/-200 mu s. There was no trend in the thresholds across this range of reference ITDs. For a reference ITD of +/-300 mu s, which is near the limit of the physiological window defined by the head width in this species, the discrimination threshold increased to similar to 100 mu s. The ITD discrimination in rabbits less acute than in cats, which have a similar head size. This result supports the suggestion that ITD discrimination, like sound localization [see Heffner, 1997. Acta Otolaryngol. 532 (Suppl.), 46-53] is determined by factors other than head size. (C) 2007 Elsevier B.V. All rights reserved. C1 [Ebert, Charles S., Jr.; Blanks, Deldra A.; Patel, Mihir R.; Coffey, Charles S.; Marshall, Allen F.; Fitzpatrick, Douglas C.] Univ N Carolina, Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. RP Fitzpatrick, DC (reprint author), Univ N Carolina, Sch Med, Dept Otorhinolaryngol Head & Neck Surg, CB 7070, Chapel Hill, NC 27599 USA. EM dcf@med.unc.edu CR Bala ADS, 2003, NATURE, V424, P771, DOI 10.1038/nature01835 BARGONES JY, 1995, J ACOUST SOC AM, V98, P99, DOI 10.1121/1.414446 BORG E, 1983, ACTA OTO-LARYNGOL, V95, P19, DOI 10.3109/00016488309130911 BROWN CH, 1980, J ACOUST SOC AM, V68, P127, DOI 10.1121/1.384638 Coffey CS, 2006, HEARING RES, V221, P1, DOI 10.1016/j.jheares.2006.06.005 Early SJ, 2001, BEHAV NEUROSCI, V115, P650, DOI 10.1037//0735-7044.115.3.650 Fitzpatrick DC, 2002, HEARING RES, V168, P79, DOI 10.1016/S0378-5955(02)00359-3 Fitzpatrick DC, 1997, NATURE, V388, P871, DOI 10.1038/42246 Fitzpatrick DC, 2000, J NEUROSCI, V20, P1605 GANDY RA, 1995, ASS RES OTOLARYNGOL, P64 HAFTER ER, 1975, J ACOUST SOC AM, V57, P181, DOI 10.1121/1.380412 Hancock KE, 2004, J NEUROSCI, V24, P7110, DOI 10.1523/JNEUROSCI.0762-04.2004 Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768 HEFFNER H, 1980, J ACOUST SOC AM, V68, P1584, DOI 10.1121/1.385213 HEFFNER HE, 1986, J NEUROPHYSIOL, V55, P256 Heffner RS, 1997, ACTA OTO-LARYNGOL, P46 HEFFNER RS, 1988, HEARING RES, V36, P221, DOI 10.1016/0378-5955(88)90064-0 HEFNER HE, 1995, METHODS COMP PSYCHOA, P79 IVARSSON C, 1981, NEURONAL MECH HEARIN, P245 Klein SA, 2001, PERCEPT PSYCHOPHYS, V63, P1421, DOI 10.3758/BF03194552 KLUMPP RG, 1956, J ACOUST SOC AM, V28, P859, DOI 10.1121/1.1908493 KLUMPP RG, 1953, J ACOUST SOC AM, V25, P823, DOI 10.1121/1.1917665 KNUDSEN EI, 1978, J NEUROPHYSIOL, V41, P870 Koppl C, 1997, J NEUROSCI, V17, P3312 KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498 KUWADA S, 1987, J NEUROPHYSIOL, V57, P1338 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Maki K, 2005, J ACOUST SOC AM, V118, P872, DOI 10.1121/1.1944647 MARTIN JP, 1980, LIGNIN BIODEGRADATIO, V2, P78 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 MILLS AW, 1958, J ACOUST SOC AM, V65, P991 Mossop JE, 1998, J ACOUST SOC AM, V104, P1574, DOI 10.1121/1.424369 PALMER AR, 1990, HEARING RES, V50, P71, DOI 10.1016/0378-5955(90)90034-M ROTH GL, 1980, J ACOUST SOC AM, V68, P1643, DOI 10.1121/1.385196 Saberi K, 1996, J ACOUST SOC AM, V100, P528, DOI 10.1121/1.415865 SABERI K, 1995, J ACOUST SOC AM, V98, P1803, DOI 10.1121/1.413379 Scott BH, 2007, J NEUROSCI, V27, P6489, DOI 10.1523/JNEUROSCI.0016-07.2007 SHACKLETON TM, 2005, JARO-J ASSOC RES OTO, P1 Shackleton TM, 2003, J NEUROSCI, V23, P716 Skottun BC, 2001, P NATL ACAD SCI USA, V98, P14050, DOI 10.1073/pnas.241513998 SMOSKI WJ, 1986, J ACOUST SOC AM, V79, P1541, DOI 10.1121/1.393680 Spezio ML, 2000, HEARING RES, V144, P73, DOI 10.1016/S0378-5955(00)00050-2 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 STANFORD TR, 1992, J NEUROSCI, V12, P3200 Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 Sterbing SJ, 2003, J NEUROPHYSIOL, V90, P2648, DOI 10.1152/jn.00348.2003 Tollin DJ, 2005, J NEUROPHYSIOL, V93, P1223, DOI 10.1152/jn.00747.2004 WAKEFORD OS, 1974, J ACOUST SOC AM, V55, P649, DOI 10.1121/1.1914577 WERNER LA, 1991, ARO ABSTR, V14, P105 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1020 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YIN TCT, 1987, J NEUROPHYSIOL, V58, P562 ZWISLOCKI J, 1956, J ACOUST SOC AM, V28, P860, DOI 10.1121/1.1908495 NR 53 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 134 EP 142 DI 10.1016/j.heares.2007.11.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000014 PM 18093767 ER PT J AU Chatterjee, M Peng, SC AF Chatterjee, Monita Peng, Shu-Chen TI Processing F0 with cochlear implants: Modulation frequency discrimination and speech intonation recognition SO HEARING RESEARCH LA English DT Article DE modulation frequency discrimination; speech intonation; prosody; cochlear implants; voice pitch ID CURRENT PULSE TRAINS; TEMPORAL CUES; VOWEL IDENTIFICATION; PITCH PERCEPTION; ENVELOPE; LISTENERS; STIMULATION; SIMULATIONS; HEARING; STRESS AB Fundamental frequency (F0) processing by cochlear implant (CI) listeners was measured using a psychophysical task and a speech intonation recognition task. Listeners' Weber fractions for modulation frequency discrimination were measured using an adaptive, 3-interval, forced-choice paradigm: stimuli were presented through a custom research interface. In the speech intonation recognition task, listeners were asked to indicate whether resynthesized bisyllabic words, when presented in the free field through the listeners' everyday speech processor, were question-like or statement-like. The resynthesized tokens were systematically manipulated to have different initial-F0s to represent male vs. female voices, and different F0 contours (i.e. falling, flat, and rising) Although the CI listeners showed considerable variation in performance on both tasks, significant correlations were observed between the CI listeners' sensitivity to modulation frequency in the psychophysical task and their performance in intonation recognition. Consistent with their greater reliance on temporal cues, the CI listeners' performance in the intonation recognition task was significantly poorer with the higher initial-F0 stimuli than with the lower initial-F0 stimuli. Similar results were obtained with normal hearing listeners attending to noiseband-vocoded CI simulations with reduced spectral resolution. (C) 2007 Elsevier B.V. All rights reserved. C1 [Chatterjee, Monita; Peng, Shu-Chen] Univ Maryland, Dept Speech & Hearing Sci, Cochlear Implants & Psychophys Lab, College Pk, MD 20742 USA. RP Chatterjee, M (reprint author), Univ Maryland, Dept Speech & Hearing Sci, Cochlear Implants & Psychophys Lab, 0100 LeFrak Hall, College Pk, MD 20742 USA. EM mchatterjee@hesp.umd.edu RI Imhof, Margarete/F-8471-2011 CR ASSMANN PF, 1990, J ACOUST SOC AM, V88, P680, DOI 10.1121/1.399772 BOERSMA P, 2004, I PHONETIC SCI BROKX JPL, 1982, J PHONETICS, V10, P23 BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 Carlyon RP, 2002, J ACOUST SOC AM, V112, P1009, DOI 10.1121/1.1496766 Chatterjee M, 2003, J ACOUST SOC AM, V113, P2042, DOI 10.1121/1.1555613 Chatterjee M, 2004, JARO-J ASSOC RES OTO, V5, P360, DOI 10.1007/s10162-004-4050-5 Chen HB, 2004, J ACOUST SOC AM, V116, P2269, DOI 10.1121/1.1785833 Cooper W. E., 1981, FUNDAMENTAL FREQUENC Darwin C. J., 1995, HEARING FREEMAN FJ, 1982, SPEECH LANGUAGE HEAR, V2 FRY DB, 1955, J ACOUST SOC AM, V27, P765, DOI 10.1121/1.1908022 FRY DB, 1958, LANG SPEECH, V1, P126 Fu QJ, 2004, JARO-J ASSOC RES OTO, V5, P253, DOI 10.1007/s10162-004-4046-1 Fu QJ, 1998, J ACOUST SOC AM, V104, P505, DOI 10.1121/1.423251 Geurts L, 2001, J ACOUST SOC AM, V109, P713, DOI 10.1121/1.1340650 Green T, 2004, J ACOUST SOC AM, V116, P2298, DOI 10.1121/1.1785611 Green T, 2002, J ACOUST SOC AM, V112, P2155, DOI 10.1121/1.1506688 Green T, 2005, J ACOUST SOC AM, V118, P375, DOI 10.1121/1.1925827 GUERTS L, 2004, J ACOUST SOC AM, V115, P844 HILLENBRAND J, 1995, J ACOUST SOC AM, V97, P3099, DOI 10.1121/1.411872 Ladd D. R., 1996, INTONATIONAL PHONOLO Lehiste I., 1970, SUPRASEGMENTALS LEHISTE I, 1976, CONT ISSUES EXPT PHO Lin YS, 2007, ACTA OTO-LARYNGOL, V127, P505, DOI 10.1080/00016480600951434 Luo Xin, 2004, Journal of the Acoustical Society of America, V116, P3659, DOI 10.1121/1.1783352 Luo X, 2006, J ACOUST SOC AM, V120, P2260, DOI 10.1121/1.2336990 MacMillan N. A., 2005, DETECTION THEORY USE MCKAY CM, 1994, J ACOUST SOC AM, V96, P2664, DOI 10.1121/1.411377 MCKAY CM, 1995, J ACOUST SOC AM, V97, P1777, DOI 10.1121/1.412054 McKay CM, 1999, J ACOUST SOC AM, V105, P347, DOI 10.1121/1.424553 Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101 Peng S. C, 2005, THESIS U IOWA IOWA C Pfingst BE, 2004, AUDIOL NEURO-OTOL, V9, P341, DOI 10.1159/000081283 Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501 Qin MK, 2005, EAR HEARING, V26, P451, DOI 10.1097/01.aud.0000179689.79868.06 ROBERT ME, 2002, HOUSE EAR I NUCLES R Shanley A, 1999, CHEM ENG-NEW YORK, V106, P74 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 Vandali AE, 2005, J ACOUST SOC AM, V117, P3126, DOI 10.1121/1.1874632 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 Wei CG, 2007, EAR HEARING, V28, p62S, DOI 10.1097/AUD.0b013e318031512c Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 NR 47 TC 45 Z9 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2008 VL 235 IS 1-2 BP 143 EP 156 DI 10.1016/j.heares.2007.11.004 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 263WA UT WOS:000253246000015 PM 18093766 ER PT J AU Heffner, RS Koay, G Heffner, HE AF Heffner, R. S. Koay, G. Heffner, H. E. TI Sound-localization acuity and its relation to vision in large and small fruit-eating bats: I. Echolocating species, Phyllostomus hastatus and Carollia perspicillata SO HEARING RESEARCH LA English DT Article DE sound localization; vision; echolocation ID SUPERIOR OLIVARY COMPLEX; LEAF-NOSED BATS; BINAURAL CUES; VISUAL-ACUITY; EPTESICUS-FUSCUS; GANGLION-CELLS; HEARING; ORIENTATION; CAT; CHIROPTERA AB Passive sound-localization acuity for 100-ms noise bursts was determined behaviorally for two species of bats: Phyllostomus hastatus, a large bat that eats fruit and vertebrates, and Carollia perspicillata, a small species that eats fruit and nectar. The mean minimum audible angle for two P. hastatus was 9 degrees, and that for two C perspicillata was 14.8 degrees. This places their passive sound-localization acuity near the middle of the range for mammals. Sound localization varies widely among mammals and the best predictor of a species' acuity remains the width of the field of best vision (r =.89, p < .0001). The five echolocating bats that have been tested do not deviate from this relationship suggesting that despite their specialization for echolocation, the use of hearing to direct the eyes to the source of a sound still serves as an important selective factor for sound localization. (C) 2007 Elsevier B.V. All rights reserved. C1 [Heffner, R. S.; Koay, G.; Heffner, H. E.] Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. RP Heffner, RS (reprint author), Univ Toledo, Dept Psychol, 2801 W Bancroft St, Toledo, OH 43606 USA. EM Rickye.Heffner@utoledo.edu CR Barnard S.M, 1995, BATS IN CAPTIVITY BELL GP, 1986, ANIM BEHAV, V34, P409, DOI 10.1016/S0003-3472(86)80110-5 BELLEVILLE S, 1986, VISION RES, V26, P1263, DOI 10.1016/0042-6989(86)90107-0 BUCHLER ER, 1982, J MAMMAL, V63, P243, DOI 10.2307/1380633 CONESA J, 1992, ASS RES OTOLARYNGOL, V15, P146 DEBRUYN EJ, 1980, VISION RES, V20, P315, DOI 10.1016/0042-6989(80)90018-8 Eklof J., 2003, THESIS GOTEBORG U GREEN DM, 1995, J ACOUST SOC AM, V97, P3749, DOI 10.1121/1.412390 HAFTER ER, 1975, J ACOUST SOC AM, V57, P181, DOI 10.1121/1.380412 HEFFNER H, 1978, J NEUROPHYSIOL, V41, P963 Heffner H. E., 1995, METHODS COMP PSYCHOA, P73 Heffner H.E., 2003, HDB RES METHODS EXPT, P413, DOI 10.1002/9780470756973.ch19 HEFFNER HE, 1985, HEARING RES, V19, P151, DOI 10.1016/0378-5955(85)90119-4 HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P915 Heffner R. S., 2001, AUDITORY BIOL LAB MO, P31 HEFFNER RS, 1992, J COMP NEUROL, V317, P219, DOI 10.1002/cne.903170302 HEFFNER RS, 1988, BEHAV NEUROSCI, V102, P422, DOI 10.1037/0735-7044.102.3.422 HEFFNER RS, 1989, BRAIN BEHAV EVOLUT, V33, P248, DOI 10.1159/000115932 HEFFNER RS, 1992, HEARING RES, V62, P206, DOI 10.1016/0378-5955(92)90188-S HEFFNER RS, 2006, CURRENT PROTOCOLS NE HEFFNER RS, 1993, J COMP NEUROL, V331, P418, DOI 10.1002/cne.903310311 Heffner RS, 1999, J COMP PSYCHOL, V113, P297, DOI 10.1037//0735-7036.113.3.297 HEFFNER RS, 1992, J COMP PSYCHOL, V106, P107, DOI 10.1037//0735-7036.106.2.107 HEFFNER RS, 1987, BEHAV NEUROSCI, V101, P701, DOI 10.1037/0735-7044.101.5.701 HEFFNER RS, 1988, J COMP PSYCHOL, V102, P66, DOI 10.1037/0735-7036.102.1.66 HEFFNER RS, 1990, HEARING RES, V46, P239, DOI 10.1016/0378-5955(90)90005-A HEFFNER RS, 1988, HEARING RES, V36, P221, DOI 10.1016/0378-5955(88)90064-0 Heffner RS, 2001, J ACOUST SOC AM, V109, P412, DOI 10.1121/1.1329620 HEFFNER RS, 1994, HEARING RES, V80, P247, DOI 10.1016/0378-5955(94)90116-3 HESSEL K, 1994, FOLIA ZOOL, V43, P339 Holler P, 1996, J COMP PHYSIOL A, V179, P245 Hughes A., 1977, HDB SENSORY PHYSL, V5, P613 Izraeli R, 2002, EUR J NEUROSCI, V15, P693, DOI 10.1046/j.1460-9568.2002.01902.x JACOBSON SG, 1976, VISION RES, V16, P1141, DOI 10.1016/0042-6989(76)90254-6 KAVANAGH GL, 1992, J NEUROPHYSIOL, V67, P1643 Koay G, 2003, HEARING RES, V178, P27, DOI 10.1016/S0378-5955(03)00025-X Koay G, 2002, HEARING RES, V171, P96, DOI 10.1016/S0378-5955(02)00458-6 Koay G, 1998, HEARING RES, V119, P37, DOI 10.1016/S0378-5955(98)00037-9 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 PETTIGREW JD, 1988, BRAIN BEHAV EVOLUT, V32, P39, DOI 10.1159/000116531 Pumphrey R. J., 1950, PHYSL MECHANISMS ANI, V4, P3 RAVIZZA RJ, 1972, J NEUROPHYSIOL, V35, P344 STONE J, 1981, WHOLEAMOUNT HDB SUTHERS RA, 1966, SCIENCE, V152, P1102, DOI 10.1126/science.152.3725.1102 WHITTINGTON DA, 1981, EXP BRAIN RES, V41, P358 WILLIAMS TC, 1970, ANIM BEHAV, V18, P302, DOI 10.1016/S0003-3472(70)80042-2 NR 46 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2007 VL 234 IS 1-2 BP 1 EP 9 DI 10.1016/j.heares.2007.06.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 244WK UT WOS:000251895800001 PM 17630232 ER PT J AU Noben-Trauth, K Neely, H Brady, RO AF Noben-Trauth, Konrad Neely, Harold Brady, Roscoe O. TI Normal hearing in alpha-galactosidase A-deficient mice, the mouse model for Fabry disease SO HEARING RESEARCH LA English DT Article DE alpha-galactosidase A; Fabry disease; hearing ID STRAINS AB Fabry disease (OMIM 301500) is a rare X-linked recessive disorder caused by mutations in the alpha-galactosidase gene (Gla). Loss of Gla activity leads to the abnormal accumulation of glycosphingolipids in lysosomes of predominantly vascular endothelial cells. Clinically the disorder presents with angiokeratomas, clouding of the cornea, and renal, cardiac, and cerebrovascular complications. In addition, there is an increased incidence of sensorineural hearing loss in Fabry patients. In this study, we investigated the loss of alpha-galactosidase A activity on hearing function in Gla-deficient mice (Gla(tm1Kul)). Gla mRNA was readily detected in the cochlea of 2- and 12-month old C57BL/6J and C3HeB/FeJ mice. The targeted allele was introgressed to the normal hearing C3HeB/FeJ strain to eliminate confounding genetic background effects. Auditory brain stem responses (ABR) to click, 8-, 16-, and 32 kHz stimuli measured at regular intervals from animals at the N4 backcross generation and from N4F1 hybrids demonstrated normal hearing in hemizygous and homozygous mutant mice up to 76 weeks of age. By histological criteria, the cyto-architecture of the mutant cochlea showed a normal appearance. The data demonstrate that in the mouse the loss of alpha-galactosidase A activity is genetically or biochemically buffered and not sufficient per se to cause an appreciable degree of hearing impairment. Published by Elsevier B.V. C1 [Noben-Trauth, Konrad; Neely, Harold] Natl Inst Deafness & Other Commun Disorders, Neurogenet Sect, Mol Biol Lab, NIH, Rockville, MD 20855 USA. [Brady, Roscoe O.] NINDS, Dev & Metab Neurol Branch, NIH, Bethesda, MD 20892 USA. RP Noben-Trauth, K (reprint author), Natl Inst Deafness & Other Commun Disorders, Neurogenet Sect, Mol Biol Lab, NIH, 5 Res Court, Rockville, MD 20855 USA. EM nobentk@nidcd.nih.gov CR BRADY RO, 1967, NEW ENGL J MED, V276, P1163, DOI 10.1056/NEJM196705252762101 Gao JG, 2004, MOL BRAIN RES, V132, P192, DOI 10.1016/j.molbrainres.2004.06.035 Germain Dominique P, 2002, BMC Med Genet, V3, P10, DOI 10.1186/1471-2350-3-10 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X MacDermot KD, 2001, J MED GENET, V38, P750, DOI 10.1136/jmg.38.11.750 Meikle PJ, 1999, JAMA-J AM MED ASSOC, V281, P249, DOI 10.1001/jama.281.3.249 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ohshima T, 1999, P NATL ACAD SCI USA, V96, P6423, DOI 10.1073/pnas.96.11.6423 Ohshima T, 1997, P NATL ACAD SCI USA, V94, P2540, DOI 10.1073/pnas.94.6.2540 RAHMAN AN, 1961, T ASSOC AM PHYSICIAN, V74, P366 Ries M, 2007, BRAIN, V130, P143, DOI 10.1093/brain/awl310 SCHACHERN PA, 1989, ANN OTO RHINOL LARYN, V98, P359 SCHIBANO.JM, 1969, J LIPID RES, V10, P515 STEWARD V W, 1968, Pathologia Europaea, V3, P377 SWEELEY CC, 1963, J BIOL CHEM, V238, P3148 Trune DR, 1996, HEARING RES, V96, P41, DOI 10.1016/0378-5955(96)00017-2 Vibert D, 2006, ANN OTO RHINOL LARYN, V115, P412 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 18 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2007 VL 234 IS 1-2 BP 10 EP 14 DI 10.1016/j.heares.2007.08.009 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 244WK UT WOS:000251895800002 PM 17933476 ER PT J AU DiGiovanni, JJ Nair, P AF DiGiovanni, Jeffrey J. Nair, Padmaja TI Response growth using a low-frequency suppressor SO HEARING RESEARCH LA English DT Article DE suppression; psychoacoustics; psychophysics; basilar membrane; forward masking; masking ID 2-TONE SUPPRESSION; AUDITORY-NERVE AB Numerous psychophysical studies on two-tone suppression have been carried out. More recently, researchers have attempted to relate the magnitude of suppression to the level of suppressee. [Wojtczak, M., Viemeister, N.F., 2005. Psychophysical response growth under suppression. In: Pressnitzer, D., de Cheveigne, A., McAdams, S., Collet, L. (Eds.), Auditory Signal Processing: Physiology, Psychoaccoustics, and Models. Springer, New York, pp. 67-74] demonstrated that the magnitude of suppression for a higher-frequency, fixed-level suppressor decreases with increasing level of the suppressee. This suggests a linearization of the basilar membrane response in presence of a high-frequency suppressor. The present study expands these results to a low-frequency suppressor of varying intensity levels. Detection of a 10-ms, 4.0-kHz probe was measured under different forward-masking conditions: one with a 200-ms, 4.0-kHz masker (suppressee) presented with no suppressor and another with the same masker paired with a 2.2-kHz, 200-ms suppressor. The 4.0-kHz masker level was varied adaptively and a range of probe levels was used to measure the growth of suppression. Results indicate that (1) the magnitude of suppression increases with increasing suppressor level and (2) generally, the probe level was not related to the magnitude of suppression. (C) 2007 Elsevier B.V. All rights reserved. C1 [DiGiovanni, Jeffrey J.; Nair, Padmaja] Ohio Univ, Auditory Psychophys & Signal Proc Lab, Sch Hearing Speech & Language Sci, Athens, OH 45701 USA. RP DiGiovanni, JJ (reprint author), Ohio Univ, Auditory Psychophys & Signal Proc Lab, Sch Hearing Speech & Language Sci, W151A Grover Ctr, Athens, OH 45701 USA. EM digiovan@ohio.edu CR DUIFHUIS H, 1980, J ACOUST SOC AM, V67, P914, DOI 10.1121/1.383971 JAVEL E, 1978, J ACOUST SOC AM, V63, P1093, DOI 10.1121/1.381817 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 SHANNON RV, 1980, J ACOUST SOC AM, V68, pS37 SHANNON RV, 1976, J ACOUST SOC AM, V59, P1460, DOI 10.1121/1.381007 Stoop R, 2004, P NATL ACAD SCI USA, V101, P9179, DOI 10.1073/pnas.0308446101 Wojtczak M, 2005, AUDITORY SIGNAL PROCESSINGP: PHYSIOLOGY, PSYCHOACOUSTICS, AND MODELS, P67, DOI 10.1007/0-387-27045-0_9 NR 8 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2007 VL 234 IS 1-2 BP 15 EP 20 DI 10.1016/j.heares.2007.08.008 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 244WK UT WOS:000251895800003 PM 17923348 ER PT J AU Longo-Guess, C Gagnon, LH Bergstrom, DE Johnson, KR AF Longo-Guess, Chantal Gagnon, Leona H. Bergstrom, David E. Johnson, Kenneth R. TI A missense mutation in the conserved C2B domain of otoferlin causes deafness in a new mouse model of DFNB9 SO HEARING RESEARCH LA English DT Article DE otoferlin; mutation; deafness; mouse; ABR; VsEP ID RECESSIVE AUDITORY NEUROPATHY; GRAVITY RECEPTOR FUNCTION; HAIR-CELLS; ENCODING OTOFERLIN; HEARING-LOSS; MUTANT MICE; OTOF; STRAINS; GENE; FORM AB Mutations of the otoferlin gene have been shown to underlie deafness disorders in humans and mice. Analyses of genetically engineered mice lacking otoferlin have demonstrated an essential role for this protein in vesicle exocytosis at the inner hair cell afferent synapse. Here, we report on the molecular and phenotypic characterization of a new ENU-induced missense mutation of the mouse otoferlin gene designated Otof(deaf5Jcs). The mutation is a single T to A base substitution in exon 10 of Otof that causes a non-conservative amino acid change of isoleucine to asparagine in the C2B domain of the protein. Although strong immunoreactivity with an otoferlin-specific antibody was detected in cochlear hair cells of wildtype mice, no expression was detected in mutant mice, indicating that the missense mutation has a severe effect on the stability of the protein and potentially its localization. Auditory brainstem response (ABR) analysis demonstrated that mice homozygous for the missense mutation are profoundly deaf, consistent with an essential role for otoferlin in inner hair cell neurotransmission. Vestibular-evoked potentials (VsEPs) of mutant mice, however, were equivalent to those of wildtype mice, indicating that otoferlin is unnecessary for vestibular function even though it is highly expressed in both vestibular and cochlear hair cells. (C) 2007 Elsevier B.V. All rights reserved. C1 [Longo-Guess, Chantal; Gagnon, Leona H.; Bergstrom, David E.; Johnson, Kenneth R.] Jackson Lab, Bar Harbor, ME 04609 USA. RP Johnson, KR (reprint author), Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA. EM ken.johnson@jax.org CR Beyer LA, 2000, J NEUROCYTOL, V29, P227, DOI 10.1023/A:1026515619443 Brandt N, 2007, J NEUROSCI, V27, P3174, DOI 10.1523/JNEUROSCI.3965-06.2007 de Caprona MDC, 2004, BRAIN RES BULL, V64, P289, DOI 10.1016/j.brainresbull.2004.08.004 Goldberg JM, 1996, J NEUROPHYSIOL, V76, P1942 Jones SM, 1999, HEARING RES, V135, P56, DOI 10.1016/S0378-5955(99)00090-8 Jones SM, 2005, JARO-J ASSOC RES OTO, V6, P297, DOI 10.1007/s10162-005-0009-1 Jones SM, 2004, HEARING RES, V191, P34, DOI 10.1016/j.heares.2004.01.008 Jones SM, 2006, BRAIN RES, V1091, P40, DOI 10.1016/j.brainres.2006.01.066 Migliosi V, 2002, J MED GENET, V39, P502, DOI 10.1136/jmg.39.7.502 Mirghomizadeh F, 2002, NEUROBIOL DIS, V10, P157, DOI 10.1006/nbdi.2002.0488 Parsons TD, 2006, NATURE, V444, P1013, DOI 10.1038/4441013a Rizo J, 1998, J BIOL CHEM, V273, P15879, DOI 10.1074/jbc.273.26.15879 Roberts WM, 2006, CELL, V127, P258, DOI 10.1016/j.cell.2006.10.010 Rodriguez-Ballesteros M, 2003, HUM MUTAT, V22, P451, DOI 10.1002/humu.10274 Roux I, 2006, CELL, V127, P277, DOI 10.1016/j.cell.2006.08.040 Safieddine S, 1997, J NEUROSCI, V17, P7523 Schug N, 2006, EUR J NEUROSCI, V24, P3372, DOI 10.1111/j.1460-9568.2006.05225.x Schwander M, 2007, J NEUROSCI, V27, P2163, DOI 10.1523/JNEUROSCI.4975-06.2007 Tekin M, 2005, AM J MED GENET A, V138A, P6, DOI 10.1002/ajmg.a.30907 Truett GE, 2000, BIOTECHNIQUES, V29, P52 Varga R, 2006, J MED GENET, V43, P576, DOI 10.1136/jmg.2005.038612 Varga R, 2003, J MED GENET, V40, P45, DOI 10.1136/jmg.40.1.45 Wilson L, 2005, GENOME RES, V15, P1095, DOI 10.1101/gr.3826505 Yasunaga S, 1999, NAT GENET, V21, P363 Yasunaga S, 2000, AM J HUM GENET, V67, P591, DOI 10.1086/303049 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 26 TC 27 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2007 VL 234 IS 1-2 BP 21 EP 28 DI 10.1016/j.heares.2007.09.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 244WK UT WOS:000251895800004 PM 17967520 ER PT J AU Wang, X Jia, SP Currall, B Yang, SM He, DZZ AF Wang, Xiang Jia, Shuping Currall, Benjamin Yang, Shiming He, David Z. Z. TI Streptomycin and gentamicin have no immediate effect on outer hair cell electromotility SO HEARING RESEARCH LA English DT Article DE ototoxicity; outer hair cells; somatic motility; gerbils ID RIBOSOMAL-RNA GENE; AMINOGLYCOSIDE ANTIBIOTICS; BULLFROGS SACCULUS; VOLTAGE SENSOR; BUNDLE MOTION; MOTOR PROTEIN; MOTILITY; CHANNELS; DEAFNESS; PRESTIN AB The cochlear outer hair cell (OHC), which plays a crucial role in mammalian hearing through its unique voltage-dependent motility, has been established as a primary target of the ototoxicity of aminoglycoside antibiotics. These polycationic drugs are also known to block a wide variety of ion channels, purinergic ionotropic channels, and nicotinic ACh receptors in hair cells in vitro. The OHC motor protein, prestin, is a voltage-sensitive transmembrane protein containing several negatively charged residues on both intra- and extracellular surface. The acidic sites may be susceptible to polycationic-charged aminoglycoside binding, which may result in disruption of motility. We attempted to examine whether aminoglycosides such as streptomycin and gentamicin could affect OHC motility and its electrical signature, the nonlinear capacitance (NLC) in adult gerbil OHCs. Somatic motility and NLC were measured under the whole-cell voltage-clamp mode. Streptomycin and gentamicin were applied extracellularly or intracellularly. Results show that streptomycin and gentamicin did not change either the magnitude of motility or the NLC. Theses results suggest that, although streptomycin and gentamicin can block mechanotransduction channels as well as ACh receptors in hair cells, they have no direct affect on OHC somatic motility. (C) 2007 Elsevier B.V. All rights reserved. C1 [Wang, Xiang; Jia, Shuping; Currall, Benjamin; He, David Z. Z.] Creighton Univ, Sch Med, Dept Biomed Sci, Omaha, NE 68178 USA. [Yang, Shiming] Peoples Liberat Army Gen Hosp, Dept Otolaryngol Head & Neck Surg, Beijing 100853, Peoples R China. RP He, DZZ (reprint author), Creighton Univ, Sch Med, Dept Biomed Sci, 2500 Calif Plaza, Omaha, NE 68178 USA. EM hed@creighton.edu CR Amici M, 2005, NEUROPHARMACOLOGY, V49, P627, DOI 10.1016/j.neuropharm.2005.04.015 ARMSTRON.CM, 1974, J GEN PHYSIOL, V63, P533, DOI 10.1085/jgp.63.5.533 Ashmore J. F., 1989, MECH HEARING, P107 BACINO C, 1995, PHARMACOGENETICS, V5, P165, DOI 10.1097/00008571-199506000-00005 Blanford Simon, 2000, Agricultural and Forest Entomology, V2, P3, DOI 10.1046/j.1461-9563.2000.00043.x BRASSEUR R, 1984, BIOCHEM PHARMACOL, V33, P629, DOI 10.1016/0006-2952(84)90319-8 BRAZIL OV, 1969, ARCH INT PHARMACOD T, V179, P65 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 DULON D, 1993, CR ACAD SCI III-VIE, V316, P682 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Guan MX, 2004, ANN NY ACAD SCI, V1011, P259, DOI 10.1196/annals.1293.025 Hashino E, 2000, BRAIN RES, V887, P90, DOI 10.1016/S0006-8993(00)02971-1 HE DZZ, 1994, HEARING RES, V78, P77, DOI 10.1016/0378-5955(94)90046-9 He DZZ, 2003, J NEUROSCI, V23, P9089 He DZZ, 1999, P NATL ACAD SCI USA, V96, P8223, DOI 10.1073/pnas.96.14.8223 He DZZ, 2004, NATURE, V429, P766, DOI 10.1038/nature02591 HUANG GJ, 1994, P NATL ACAD SCI USA, V91, P12268, DOI 10.1073/pnas.91.25.12268 Jia SP, 2005, NAT NEUROSCI, V8, P1028, DOI 10.1038/nn1509 Kakehata S, 1996, J NEUROSCI, V16, P4881 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 Kennedy HJ, 2006, J NEUROSCI, V26, P2757, DOI 10.1523/JNEUROSCI.3808-05.2006 KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Lin Xi, 1993, Journal of Neurophysiology (Bethesda), V70, P1593 Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951 Martin P, 2003, J NEUROSCI, V23, P4533 Mead FC, 2004, BIOPHYS J, V87, P3814, DOI 10.1529/biophysj.104.049338 Nakashima T, 2000, ACTA OTO-LARYNGOL, V120, P904, DOI 10.1080/00016480050218627 NOMURA K, 1990, J MEMBRANE BIOL, V115, P241, DOI 10.1007/BF01868639 OHMORI H, 1985, J PHYSIOL-LONDON, V359, P189 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 Pichler M, 1996, BIOCHEMISTRY-US, V35, P14659, DOI 10.1021/bi961657t PRADO WA, 1978, ARCH INT PHARMACOD T, V231, P297 PREZANT TR, 1993, NAT GENET, V4, P289, DOI 10.1038/ng0793-289 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 Santos-Sacchi J, 1998, J PHYSIOL-LONDON, V510, P225, DOI 10.1111/j.1469-7793.1998.225bz.x WILLIAMS SE, 1987, HEARING RES, V30, P11, DOI 10.1016/0378-5955(87)90177-8 Zhao H, 2004, AM J HUM GENET, V74, P139, DOI 10.1086/381133 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 40 TC 4 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2007 VL 234 IS 1-2 BP 52 EP 58 DI 10.1016/j.heares.2007.09.001 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 244WK UT WOS:000251895800006 PM 17964097 ER PT J AU Martin, GK Vazquez, AE Jimenez, AM Stagner, BB Howard, MA Lonsbury-Martin, BL AF Martin, Glen K. Vazquez, Ana E. Jimenez, Ana M. Stagner, Barden B. Howard, MacKenzie A. Lonsbury-Martin, Brenda L. TI Comparison of distortion product otoacoustic emissions in 28 inbred strains of mice SO HEARING RESEARCH LA English DT Article DE inbred mouse strains; distortion product otoacoustic emissions; cochlea; outer hair cell; age-related hearing loss; mouse hearing screening ID HEARING-LOSS; COCHLEAR FUNCTION; NOISE EXPOSURE; CBA/J MOUSE; AHL; MECHANICS; GENETICS; MODEL; MAP AB Cochlear function was evaluated in a longitudinal study of 28 inbred strains of mice at 3 and 5 mo of age using measures of distortion product otoacoustic emissions (DPOAEs) in response to a federal initiative to develop rapid mouse phenotyping methodologies. DP-grams at f(2) frequencies ranging from 6.3 to 54.2 kHz were obtained in about 3 min/ear by eliciting 2f(1) - f(2) DPOAEs in 0.1-octave steps of f(2) with primary tones at L-1 = L-2 = 55, 65, and 75 dB SPL. CBA/CaJ mice exhibited average levels of similar to 26 dB SPL and this strain was selected as the normal reference strain against which the others were compared. Based upon the configurations of their DP-grams, the 28 mouse strains could be categorized into four distinct groups. That is, nine of the strains including the CBA were designated as the CBA-like group because these mice displayed robust DPOAE levels across frequency. In contrast, the remaining three groups all exhibited irregular DP-gram patterns. Specifically, eight of the remaining 19 strains showed a progressive high- to low-frequency reduction in DPOAE levels that was typical of age-related hearing loss (AHL) associated with mouse strains homozygous for the ahl allele and were labeled as AHL-like strains. Seven strains demonstrating relatively even patterns of reduced DPOAE levels across the frequency-test range were designated as Flat-loss strains. Finally, the remaining four strains exhibited no measurable DPOAEs at either 3 or 5 mo of age and thus were classified as Absent strains. Extending the f(2) test frequencies up to similar to 54 kHz led to the detection of very early-onset reductions in cochlear function in non-CBA-like groups so that all strains could be categorized by 3 mo of age. Predictably, the AHL-like strains showed more pronounced DPOAE losses at 5 mo than at 3 mo. A similar deterioration in DPOAE levels was not apparent for the Flat-loss strains. Both the AHL-like and Flat-loss strains showed considerably more variability in DPOAE levels than did the CBA-like strains. Together, these findings indicate that DP-grams adequately reveal both frequency-specific loss patterns and details of inbred strain variability. (C) 2007 Elsevier B.V. All rights reserved. C1 [Martin, Glen K.; Stagner, Barden B.; Lonsbury-Martin, Brenda L.] Jerry L Pettis Mem Vet Adm Med Ctr, Res Serv, Loma Linda, CA 92357 USA. [Vazquez, Ana E.] Loma Linda Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Loma Linda, CA USA. [Vazquez, Ana E.] Univ Calif Davis, Dept Otolaryngol, Davis, CA 95616 USA. [Vazquez, Ana E.] Univ Calif Davis, Ctr Neurosci, Davis, CA 95616 USA. [Jimenez, Ana M.] Nova SE Univ, Coll Med Sci, Hlth Profess Div, Ft Lauderdale, FL 33314 USA. [Howard, MacKenzie A.] Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. RP Martin, GK (reprint author), Jerry L Pettis Mem Vet Adm Med Ctr, Res Serv, 11201 Benton St, Loma Linda, CA 92357 USA. EM glen.martin2@va.gov CR Beck JA, 2000, NAT GENET, V24, P23, DOI 10.1038/71641 Candreia C, 2004, HEARING RES, V194, P109, DOI 10.1016/j.heares.2004.04.007 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H HENRY KR, 1980, AUDIOLOGY, V19, P369 Herndon LA, 2002, NATURE, V419, P808, DOI 10.1038/nature01135 HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 Jimenez AM, 2001, JARO, V2, P233 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Johnson KR, 2006, BRAIN RES, V1091, P79, DOI 10.1016/j.brainres.2006.02.021 Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4 Le Calvez S, 1998, HEARING RES, V120, P37, DOI 10.1016/S0378-5955(98)00050-1 Liberman MC, 2004, J ACOUST SOC AM, V116, P1649, DOI 10.1121/1.1775275 MARTIN GK, 2006, CURRENT PROTOCOLS S, V34, P8 MARTIN GK, 2001, ASSN RES OTOLARYNGOL, V24, P11 Mchugh RK, 2006, ANAT REC PART A, V288A, P370, DOI 10.1002/ar.a.20297 Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 Parham K, 1997, HEARING RES, V112, P216, DOI 10.1016/S0378-5955(97)00124-X Parham K, 1999, HEARING RES, V134, P29, DOI 10.1016/S0378-5955(99)00059-3 Salvi RJ, 2000, NOISE HEALTH, V2, P9 Silver L. M., 1995, MOUSE GENETICS CONCE Vazquez AE, 2004, HEARING RES, V194, P87, DOI 10.1016/j.heares.2004.03.017 Vazquez AE, 2001, HEARING RES, V156, P31, DOI 10.1016/S0378-5955(01)00265-9 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 29 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2007 VL 234 IS 1-2 BP 59 EP 72 DI 10.1016/j.heares.2007.09.002 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 244WK UT WOS:000251895800007 PM 17997239 ER PT J AU Thai-Van, H Micheyl, C Norena, A Veuillet, E Gabriel, D Collet, L AF Thai-Van, Hung Micheyl, Christophe Norena, Arnaud Veuillet, Evelyne Gabriel, Damien Collet, Lionel TI Enhanced frequency discrimination in hearing-impaired individuals: A review of perceptual correlates of central neural plasticity induced by cochlear damage SO HEARING RESEARCH LA English DT Article DE auditory plasticity; hearing loss; frequency discrimination; cochlear dead regions; hearing aids ID PRIMARY AUDITORY-CORTEX; ENRICHED ACOUSTIC ENVIRONMENT; DEAD REGIONS; PITCH PERCEPTION; BRAILLE READERS; ADULT CATS; CORTICAL REPRESENTATION; TONOTOPIC ORGANIZATION; LOSS CUTOFF; LESIONS AB Cochlear damages have been shown to induce changes in tonotopic maps in the central auditory system of animals; neurons deprived from peripheral inputs start to respond to stimuli with frequencies close to the cutoff frequency (Fc) or "edge" of the hearing loss, which then become over-represented at the neural level. Here, we review findings, which reveal a possible psychophysical correlate of such central over-representation in human listeners with sensorineural hearing loss. These findings concur to demonstrate a local improvement in difference limens for frequency (DLFs) at or near Fc. This effect has now been observed in several studies and subjects with varied audiometric characteristics, including high- and low-frequency, and symmetric and asymmetric hearing losses. The presence of cochlear dead region or a steeply sloping hearing loss appear as a necessary condition for its occurrence. The effect cannot be explained simply by more prominent loudness cues or spontaneous otoacoustic emissions (SOAEs) near the audiogram edge. Overall, the data are consistent with local changes in pitch discrimination performance near the hearing-loss cutoff frequency being a result of the neural over-representation of that frequency region in the central auditory system. Further work is needed to confirm this hypothesis, and investigate other possible perceptual correlates of injury-related cortical plasticity in both humans and animals. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Lyon 1, F-69003 Lyon, France. CNRS, UMR Neurosci Sensorielles Comportement Cognit 502, F-69007 Lyon, France. Hop Edouard Herriot, Serv Audiol & Explorat Orofaciales, Hosp Civils Lyon, F-69003 Lyon, France. Inst Federat Neurosci Lyon, F-69677 Lyon, France. Univ Minnesota, Dept Psychol, Auditory Percept & Cognit Grp, Minneapolis, MN 55455 USA. Univ Aix Marseille 1, F-13331 Marseille 03, France. CNRS, UMR Neurobiol Integrat & Adaptat 6149, F-13331 Marseille 03, France. RP Thai-Van, H (reprint author), CHU Edouard Herriot, Audiol Grp, CNRS, Serv Audiol & Explorat Orofaciales,UMR 5020, Pavillon U,Pl Arsonval, F-69437 Lyon 03, France. EM hung.thai-van@chu-lyon.fr CR Bjorkman A, 2004, EUR J NEUROSCI, V20, P2733, DOI 10.1111/j.1460-9568.2004.03742.x Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056 Buss E, 1998, HEARING RES, V125, P98, DOI 10.1016/S0378-5955(98)00131-2 Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9 ELBERT T, 1995, SCIENCE, V270, P305, DOI 10.1126/science.270.5234.305 Engelien A, 2000, HEARING RES, V148, P153, DOI 10.1016/S0378-5955(00)00148-9 Fabijanska A., 1999, P 6 INT TINN SEM, P569 FRANOWICZ MN, 1995, J NEUROPHYSIOL, V74, P96 Gabriel D, 2006, HEARING RES, V213, P49, DOI 10.1016/j.heares.2005.12.007 GILBERT CD, 1992, NATURE, V356, P150, DOI 10.1038/356150a0 Gutschalk A, 1999, CLIN NEUROPHYSIOL, V110, P856, DOI 10.1016/S1388-2457(99)00019-X Hughson W., 1944, T AM ACADEMY OPHTH S, V48, P1 Huss M, 2005, J ACOUST SOC AM, V117, P3841, DOI 10.1121/1.1920167 Huss M, 2003, J ACOUST SOC AM, V114, P3283, DOI 10.1121/1.162400 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 IRVINE DRF, 1995, ADV HEARING RES, P3 Irvine DRF, 2003, J COMP NEUROL, V467, P354, DOI 10.1002/ene.10921 Jones EG, 1998, SCIENCE, V282, P1121, DOI 10.1126/science.282.5391.1121 KAAS JH, 1991, ANNU REV NEUROSCI, V14, P137, DOI 10.1146/annurev.neuro.14.1.137 KAAS JH, 1990, SCIENCE, V248, P229, DOI 10.1126/science.2326637 Kamke MR, 2003, J COMP NEUROL, V459, P355, DOI 10.1002/cne.10586 KARMOS G, 1993, NEW DEVELOPMENTS IN EVENT-RELATED POTENTIALS, P87 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Kluk K, 2006, HEARING RES, V222, P1, DOI 10.1016/j.heares.2006.06.020 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Norena A, 2002, HEARING RES, V171, P66, DOI 10.1016/S0378-5955(02)00388-X Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Norena AJ, 2006, NAT NEUROSCI, V9, P932, DOI 10.1038/nn1720 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 PARSONS CH, 2006, P AUSTR NEUR SOC, V16, P28 PASCUALLEONE A, 1993, BRAIN, V116, P39, DOI 10.1093/brain/116.1.39 Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RAMACHANDRAN VS, 1993, P NATL ACAD SCI USA, V90, P10413, DOI 10.1073/pnas.90.22.10413 Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4 RECANZONE GH, 1993, J NEUROSCI, V13, P87 RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1071 RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1057 SCHWABER MK, 1993, AM J OTOL, V14, P252 Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X Sterr A, 1998, NATURE, V391, P134, DOI 10.1038/34322 Sterr A, 1998, J NEUROSCI, V18, P4417 Talwar SK, 2001, J NEUROPHYSIOL, V86, P1555 Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044 Thai-Van H, 2003, BRAIN, V126, P2235, DOI 10.1093/brain/awg228 Tramo MJ, 2005, ANN NY ACAD SCI, V1060, P148, DOI 10.1196/annals.1360.011 Tramo MJ, 2002, J NEUROPHYSIOL, V87, P122 Vickers DA, 2001, J ACOUST SOC AM, V110, P1164, DOI 10.1121/1.1381534 Weinberger NM, 2003, NEUROBIOL LEARN MEM, V80, P268, DOI 10.1016/S1074-7427(03)00072-8 Werhahn KJ, 2002, NAT NEUROSCI, V5, P936, DOI 10.1038/nn917 Wienbruch C, 2006, NEUROIMAGE, V33, P180, DOI 10.1016/j.neuroimage.2006.06.023 NR 55 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 14 EP 22 DI 10.1016/j.heares.2007.06.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000002 PM 17658232 ER PT J AU Chen, W Cacclabue-Rivolta, DI Moore, HD Rivolta, MN AF Chen, Wei Cacclabue-Rivolta, Daniela I. Moore, Harry D. Rivolta, Marcelo N. TI The human fetal cochlea can be a source for auditory progenitors/stem cells isolation SO HEARING RESEARCH LA English DT Article DE human fetal cochlea; human auditory stem cells; regeneration ID MAMMALIAN INNER-EAR; PLURIPOTENT STEM-CELLS; HAIR-CELLS; RETINOIC ACID; IN-VITRO; GROWTH-FACTOR; HEARING-LOSS; GUINEA-PIG; MOUSE; DIFFERENTIATION AB The development of new stem cell-based technologies is creating new hopes in regenerative medicine. Hearing-impaired individuals should benefit greatly from the development of a cell-based regenerative strategy to treat deafness. An important achievement would be to develop a human-based system that could bring the advances made in animal models closer to clinical application. In this work, we have explored the suitability of the developing fetal cochlea to be used as a source for the extraction of auditory progenitor/stem cells. We have established cultures that express critical markers such as NESTIN, SOX2, GATA3 and PAX2. These cultures can be expanded in vitro for several months and differentiating markers such as ATOH1/HATH1 and POU4F3/BRN3C can be induced by manipulating the culture conditions using specific growth factors such as bFGF, EGF and retinoic acid. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Sheffield, Dept Biomed Sci, Ctr Stem Cell Biol, Sheffield S10 2TN, S Yorkshire, England. RP Rivolta, MN (reprint author), Univ Sheffield, Dept Biomed Sci, Ctr Stem Cell Biol, Sheffield S10 2TN, S Yorkshire, England. EM m.n.rivolta@sheffield.ac.uk CR Alsina B, 2004, DEV BIOL, V267, P119, DOI 10.1016/j.ydbio.2003.11.012 Avraham KB, 2003, EAR HEARING, V24, P332, DOI 10.1097/01.AUD.0000079840.96472.DB Burton Q, 2004, DEV BIOL, V272, P161, DOI 10.1016/j.ydbio.2004.04.024 CATTANEO E, 1990, NATURE, V347, P762, DOI 10.1038/347762a0 Dame C, 2002, BRIT J HAEMATOL, V119, P510, DOI 10.1046/j.1365-2141.2002.03816.x Doetzlhofer A, 2004, DEV BIOL, V272, P432, DOI 10.1016/j.ydbio.2004.05.013 Germiller JA, 2004, DEV DYNAM, V231, P815, DOI 10.1002/dvdy.20186 Ginis I, 2004, DEV BIOL, V269, P360, DOI 10.1016/j.ydbio.2003.12.034 Hans F, 2001, ONCOGENE, V20, P3021, DOI 10.1038/sj.onc.1204326 Harper DB, 2003, HANDB ENVIRON CHEM, V3, P17 Hawkins RD, 2003, HUM MOL GENET, V12, P1261, DOI 10.1093/hmg/ddg150 Helyer R, 2007, EUR J NEUROSCI, V25, P957, DOI 10.1111/j.1460-9568.2007.05338.x Hossain WA, 2000, J NEUROSCI RES, V62, P40, DOI 10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L JEON SJ, 2006, MOL CELL NEUROSCI, V34, P59 Johe KK, 1996, GENE DEV, V10, P3129, DOI 10.1101/gad.10.24.3129 Kiernan AE, 2005, NATURE, V434, P1031, DOI 10.1038/nature03487 Kiernan AE, 2000, ADV OTO-RHINO-LARYNG, V56, P233 Kojima Ken, 2004, Acta Otolaryngol Suppl, P14 Kondo T, 2005, P NATL ACAD SCI USA, V102, P4789, DOI 10.1073/pnas.0408239102 KUIJPERS W, 1991, HEARING RES, V52, P133, DOI 10.1016/0378-5955(91)90193-D KUIJPERS W, 1991, HISTOCHEMISTRY, V96, P511, DOI 10.1007/BF00267077 Lawoko-Kerali G, 2004, DEV DYNAM, V231, P801, DOI 10.1002/dvdy.20187 Lawoko-Kerali G, 2004, MECH DEVELOP, V121, P287, DOI 10.1016/j.mod.2003.12.006 LeblondFrancillard M, 1997, J CLIN ENDOCR METAB, V82, P89, DOI 10.1210/jc.82.1.89 Lefebvre PP, 2000, ACTA OTO-LARYNGOL, V120, P142 LENDAHL U, 1990, CELL, V60, P585, DOI 10.1016/0092-8674(90)90662-X Li HW, 2003, P NATL ACAD SCI USA, V100, P13495, DOI 10.1073/pnas.2334503100 Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 Lopez IA, 2004, INT J DEV NEUROSCI, V22, P205, DOI 10.1016/j.ijdevneu.2004.04.006 Malgrange B, 2002, MECH DEVELOP, V112, P79, DOI 10.1016/S0925-4773(01)00642-6 Megiorni F, 2005, NEUROSCI LETT, V373, P105, DOI 10.1016/j.neulet.2004.09.070 Nicholl AJ, 2005, EUR J NEUROSCI, V22, P343, DOI 10.1111/j.1460-9568.2005.04213.x OSHIMA K, 2006, JARO-J ASSOC RES OTO, V8, P18 Ozeki M, 2003, HEARING RES, V179, P43, DOI 10.1016/S0378-5955(03)00077-7 Partanen J, 2007, J NEUROCHEM, V101, P1185, DOI 10.1111/j.1471-4159.2007.04463.x Pollard SM, 2006, CEREB CORTEX S1, V16, pi112 Rask-Andersen H, 2005, HEARING RES, V203, P180, DOI 10.1016/j.heares.2004.12.005 REPRESA J, 1990, DEVELOPMENT, V110, P1081 Rivolta MN, 2002, J NEUROBIOL, V53, P306, DOI 10.1002/neu.10111 RIVOLTA MN, 2005, EMBRYONIC STEM CELLS Rivolta MN, 1998, P ROY SOC B-BIOL SCI, V265, P1595 Tavassoli K, 1997, HUM GENET, V101, P371, DOI 10.1007/s004390050644 Vahava O, 1998, SCIENCE, V279, P1950, DOI 10.1126/science.279.5358.1950 Westerman BA, 2002, MECH DEVELOP, V113, P85, DOI 10.1016/S0925-4773(01)00665-7 Whitfield TT, 2002, J NEUROBIOL, V53, P157, DOI 10.1002/neu.10123 NR 45 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 23 EP 29 DI 10.1016/j.heares.2007.06.006 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000003 PM 17646067 ER PT J AU Traboulsi, R Avan, P AF Traboulsi, Raghida Avan, Paul TI Transmission of infrasonic pressure waves from cerebrospinal to intralabyrinthine fluids through the human cochlear aqueduct: Non-invasive measurements with otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE otoacoustic emissions; distortion; intralabyrinthine pressure; respiration; cochlear aqueduct; cerebrospinal fluid ID INTRACRANIAL-PRESSURE; GUINEA-PIG; DEHISCENCE; FREQUENCY; DYNAMICS; STAPES AB The cochlear aqueduct connecting intralabyrinthine and cerebrospinal fluids (CSF) acts as a low-pass filter that should be able to transmit infrasonic pressure waves from CSF to cochlea. Recent experiments have shown that otoacoustic emissions generated at 1 kHz respond to pressure-related stapes impedance changes with a change in phase relative to the generator tones, and provide a non-invasive means of assessing intracochlear pressure changes. In order to characterize the transmission to the cochlea of CSF pressure waves due to respiration, the distortion-product otoacoustic emissions (DPOAE) of 12 subjects were continuously monitored around I kHz at a rate of 6.25 epochs/s, and their phase relative to the stimulus tones was extracted. The subjects breathed normally, in different postures, while thoracic movements were recorded so as to monitor respiration. A correlate of respiration was found in the time variation of DPOAE phase, with an estimated mean amplitude of 10 degrees, i.e. 60 mm water, suggesting little attenuation across the aqueduct. Its phase lag, relative to thoracic movements varied between 0 degrees and -270 degrees. When fed into a two-compartment model of CSF and labyrinthine spaces, these results suggest that respiration rate at rest is just above the resonance frequency of the CSF compartment, and just below the corner frequency of the cochlear-aqueduct low-pass filter, in line with previous estimates from temporal bone and intracranial measurements. The fact that infrasonic CSF waves can be monitored through the cochlea opens diagnostic possibilities in neurology. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Auvergne, Sch Med, Lab Sensory Biophys, F-63000 Clermont Ferrand, France. RP Traboulsi, R (reprint author), Univ Auvergne, Sch Med, Lab Sensory Biophys, 28 Pl Henri Dunant, F-63000 Clermont Ferrand, France. EM rtraboulsi@yahoo.fr; paul.avan@u-clermontl.fr CR ALLEN GEORGE W., 1962, LARYNGOSCOPE, V72, P423 ASTOLA J, 1997, SIGNAL PROCESS, V17, P95 Avan P, 2000, HEARING RES, V140, P189, DOI 10.1016/S0378-5955(99)00201-4 BEENTJES BI, 1972, ACTA OTO-LARYNGOL, V73, P112, DOI 10.3109/00016487209138919 BELL A, 1992, HEARING RES, V58, P91, DOI 10.1016/0378-5955(92)90012-C BOHMER A, 1993, ACTA OTO-LARYNGOL, V507, P1 Buki B, 1996, HEARING RES, V94, P125, DOI 10.1016/0378-5955(96)00015-9 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 HARA A, 1989, HEARING RES, V42, P265 KLOCKHOFF I, 1964, INT AUDIOL, V4, P45 Long GR, 1997, J ACOUST SOC AM, V102, P2831, DOI 10.1121/1.420339 LUNDBERG N, 1960, ACTA PSYCHIAT NEUR S, V36, P149 MAGNAES B, 1976, J NEUROSURG, V44, P687, DOI 10.3171/jns.1976.44.6.0687 MARCHBANKS R J, 1990, British Journal of Audiology, V24, P179, DOI 10.3109/03005369009076554 Merchant SN, 1996, HEARING RES, V97, P30 Minor LB, 2003, OTOL NEUROTOL, V24, P270, DOI 10.1097/00129492-200303000-00023 NORTH B, 1990, RAISED INTRACRANIAL OTAHAL J, IN PRESS ADV ENG SOF PHILLIPS AJ, 1992, BRIT J AUDIOL, V26, P339, DOI 10.3109/03005369209076657 Rosowski JJ, 2004, OTOL NEUROTOL, V25, P323, DOI 10.1097/00129492-200405000-00021 SAXENA RK, 1969, ACTA OTO-LARYNGOL, V68, P402, DOI 10.3109/00016486909121578 Thalen EO, 2001, ACTA OTO-LARYNGOL, V121, P470, DOI 10.1080/000164801300366606 Tukey J.W., 1977, EXPLORATORY DATA ANA Ursino M, 1997, J APPL PHYSIOL, V82, P1270 Wit HP, 2003, HEARING RES, V175, P190, DOI 10.1016/S0378-5955(02)00738-4 WLODYKA J, 1978, ANN OTO RHINOL LARYN, V87, P22 NR 26 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 30 EP 39 DI 10.1016/j.heares.2007.06.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000004 PM 17716844 ER PT J AU Spicer, SS Qu, C Smythe, N Schulte, BA AF Spicer, Samuel S. Qu, Chunyan Smythe, Nancy Schulte, Bradley A. TI Mitochondria-activated cisternae generate the cell specific vesicles in auditory hair cells SO HEARING RESEARCH LA English DT Article DE vesiculogenesis; hearing; cochlea; granular reticulum; ATPase; mitochondria ID LIPID ASYMMETRY; MEMBRANE; GERBIL AB A dense population of vesicles largely fills the infranuclear compartment of gerbil inner hair cells (IHCs). Although the nature of the cargo in these vesicles has not been determined, the absence of a Golgi apparatus from the IHC's basal compartment suggests that the vesicles lack the glycosylated protein that Golgi cisternae would provide. Instead, they likely possess neurotransmitter and function as synaptic vesicles. The morphologic mechanism for generating the vesicles also remains unexplained. Ultrastructural examination revealed a few discrete clusters of mitochondria in the IHC's basal compartment. The clustered mitochondria made contact either with intermingling single cisternae or with one end of an unique set of polarized parallel cisternae. Both of these cisternal forms belong to a novel, mitochondria-activated category of cisternae which transforms into aligned segments where contactin mitochondria. Mitochondria-activated cisternae also envelope the vesicles in Hensen bodies of outer hair cells (OHCs). Coexistence of the mitochondria-activated cisternae with a specialized population of cytoplasmic vesicles in both IHCs and OHCs implicated this type of cisterna in synthesis of the cell specific vesicles. Assumedly, the mitochondria-activated cisternae possess an ATPase of the Class IV type. This class of enzymes, also designated flippases, translocates aminophospholipid from the outer to inner leaflet of the lipid bilayer and appears thereby to induce a lipid asymmetry which leads to cisternal segmentation and then vesiculation. In support of such an interpretation, RT-PCR analysis demonstrated the presence of Class IV ATPase in the Organ of Corti. (C) 2007 Elsevier B.V. All Fights reserved. C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. RP Spicer, SS (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 165 Ashley Ave,Suite 309,POB 250908, Charleston, SC 29425 USA. EM schulteb@musc.edu CR BRETSCHE.MS, 1972, NATURE-NEW BIOL, V236, P11 BRETSCHE.MS, 1972, J MOL BIOL, V71, P523, DOI 10.1016/0022-2828(72)90028-4 BRETSCHE.MS, 1973, SCIENCE, V181, P622, DOI 10.1126/science.181.4100.622 Daleke DL, 2000, BBA-MOL CELL BIOL L, V1486, P108, DOI 10.1016/S1388-1981(00)00052-4 DEBRUIJN WC, 1968, P 4 EUR REG C EL MIC, P65 ENGSTROM H, 1973, ULTRASTRUCTURE SENSO, P83 Karnosky M., 1971, P 11 M AM SOC CELL B, P146 KUHLBRANDT K, 2004, NATURE REV MOL BIOL, V5, P283 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 OPDENKAMP JAF, 1979, ANNU REV BIOCHEM, V48, P47, DOI 10.1146/annurev.bi.48.070179.000403 Pomorski T, 2003, MOL BIOL CELL, V14, P1240, DOI 10.1091/mbc.E02-08-0501 ROSTGAARD J, 1980, CELL TISSUE RES, V212, P17 ROTHMAN JE, 1977, SCIENCE, V195, P743, DOI 10.1126/science.402030 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 Spicer SS, 1999, J COMP NEUROL, V409, P424 SPOENDLIN H, 1970, ULTRASTRUCTURE PERI, P452 VERKLEIJ AJ, 1973, BIOCHIM BIOPHYS ACTA, V323, P178, DOI 10.1016/0005-2736(73)90143-0 ZACHOWSKI A, 1989, NATURE, V340, P75, DOI 10.1038/340075a0 NR 18 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 40 EP 45 DI 10.1016/j.heares.2007.07.005 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000005 PM 17825509 ER PT J AU Ou, HC Raible, DW Rubel, EW AF Ou, Henry C. Raible, David W. Rubel, Edwin W. TI Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line SO HEARING RESEARCH LA English DT Article DE hair cell; cisplatin; zebrafish; ototoxicity; cell death; lateral line ID INDUCED OTOTOXICITY; D-METHIONINE; IN-VITRO; UNCHANGED CISPLATIN; ANIMAL-MODEL; GUINEA-PIGS; DEATH; PHARMACOKINETICS; CARBOPLATIN; GENTAMICIN AB We have used time-lapse imaging to study cisplatin-induced hair cell death in lateral line neuromasts of zebrafish larvae in vivo. We found that cisplatin-induced hair cell death occurred Much more slowly than had been shown to occur in aminoglycoside-induced hair cell death. By prelabeling hair cells with FM1-43FX, and assessing hair cell damage, it was established that cisplatin causes hair cell loss in the lateral line in a dose-dependent fashion. The kinetics of hair cell loss during exposure to different concentrations of cisplatin was also assessed and it was found that the onset of hair cell loss correlated with the accumulated dose of cisplatin. These data demonstrate the feasibility and repeatability of cisplatin damage protocols in the zebrafish lateral line and set the stage for future evaluations of modulation of cisplatin-induced hair cell death. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA. Childrens Hosp & Reg Med Ctr, Seattle, WA 98105 USA. RP Ou, HC (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA. EM henrylou@u.washington.edu CR Bokemeyer C, 1998, WORLD J UROL, V16, P155, DOI 10.1007/s003450050044 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2 Cardinaal RM, 2000, HEARING RES, V144, P147, DOI 10.1016/S0378-5955(00)00060-5 Cardinaal RM, 2000, HEARING RES, V144, P157, DOI 10.1016/S0378-5955(00)00061-7 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x HELSON L, 1978, CLIN TOXICOL, V13, P469 Hirose K, 1999, ANN NY ACAD SCI, V884, P389, DOI 10.1111/j.1749-6632.1999.tb08657.x Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Holzer AK, 2006, MOL PHARMACOL, V70, P1390, DOI 10.1124/mol.106.022624 Li GM, 2002, LAB INVEST, V82, P585, DOI 10.1038/labinvest.3780453 Linbo TL, 2006, ENVIRON TOXICOL CHEM, V25, P597, DOI 10.1897/05-241R.1 Mackenzie NC, 2004, GENE, V328, P113, DOI 10.1016/j.gene.2003.11.019 Minami SB, 2004, HEARING RES, V198, P137, DOI 10.1016/j.heares.2004.07.016 Murakami SL, 2003, HEARING RES, V186, P47, DOI 10.1016/S0378-5955(03)00259-4 Nagai N, 1997, CANCER CHEMOTH PHARM, V40, P11, DOI 10.1007/s002800050618 Nagai N, 1996, CANCER CHEMOTH PHARM, V39, P131, DOI 10.1007/s002800050548 OU HC, 2006, MIDW RES M ASS RES O Owens KN, 2007, J COMP NEUROL, V502, P522, DOI 10.1002/cne.21345 OZAWA S, 1988, CANCER CHEMOTH PHARM, V21, P185 Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K Ramirez-Camacho R, 2004, LARYNGOSCOPE, V114, P533 REDDEL RR, 1982, CANCER TREAT REP, V66, P19 Rybak LP, 2007, HEARING RES, V226, P157, DOI 10.1016/j.heares.2006.09.015 Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173 Saito T, 1997, EUR ARCH OTO-RHINO-L, V254, P281, DOI 10.1007/BF02905989 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 Santos F, 2006, HEARING RES, V213, P25, DOI 10.1016/j.heares.2005.12.009 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Sidi S, 2003, SCIENCE, V301, P96, DOI 10.1126/science.1084370 Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 THOMPSON SW, 1984, CANCER, V54, P1269, DOI 10.1002/1097-0142(19841001)54:7<1269::AID-CNCR2820540707>3.0.CO;2-9 Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 Wang J, 2004, CANCER RES, V64, P9217, DOI 10.1158/0008-5472.CAN-04-1581 Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3 ZHENG JL, 1995, J NEUROSCI, V15, P5079 NR 38 TC 58 Z9 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 46 EP 53 DI 10.1016/j.heares.2007.07.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000006 PM 17709218 ER PT J AU Dammeijer, PFM Van Dijk, P Chenault, MN Manni, JJ Van Maineren, H AF Dammeijer, Patrick F. M. Van Dijk, Paul Chenault, Michelene N. Manni, Johannes J. Van Maineren, Henk TI Stapedius muscle fibre characterization in the noise exposed and auditory deprived rat SO HEARING RESEARCH LA English DT Article DE stapedius; myosin ATPase liability; myosin heavy chain; noise exposure; auditory deprivation; rat ID MYOSIN HEAVY-CHAINS; SKELETAL-MUSCLE; FAST-TWITCH; SOUND-TRANSMISSION; INNER-EAR; REFLEX; EXPRESSION; ATPASE; RESPONSES; IDENTIFICATION AB In skeletal muscle, interventions that unload the muscle cause slow-to-fast myosin heavy chain (MHC) conversions, whereas fast-to-slow conversions are seen when the muscles are engaged in resistance training and endurance exercise. The stapedius muscle (SM) is reported to prevent cochlear damage by noise. This theory may be supported by showing comparable changes of muscle fibre composition when ears are exposed to longstanding noise (SM training). Comparable changes after sound deprivation (SM unloading) would suggest that the SM needs a certain degree of daily activity evoked by environmental sound to sustain its normal composition. We investigated the difference in myosin composition of SM fibres from rats exposed to noise, from auditory deprived rats and from rats exposed to low level ambient noise (control group). Consecutive complete SM cross-sections were processed by enzymehistochemistry to determine acid/alkali lability of myofibrillar adenosine triphosphatase (mATPase) and by immunohistochemistry using MHC antibodies. Fibres were assigned to mATPase type I, IIA, IIX or 'Miscellaneous' categories. Per mATPase category, the fibres were attributed to groups with specific MHC isoform compositions. Auditory deprivation lasting nine weeks was accomplished by closure of the external meatus at the age of three weeks. A slow-to-fast shift was seen in these rats when compared to the control group. The noise exposed group was exposed to 65-90 dB sound pressure level during a period lasting nine weeks from the age of three weeks onwards. A shift from an overwhelming presence of type mATPase IIX, as seen in the control group, to type mATPase IIA occurred in the noise exposed group. Also, more MHC IIA/IIX hybrid fibres were found in the mATPase IIX category. An adaptive response to the acoustic environment in the characteristics of the fibres of the SM, comparable to the response in skeletal muscles on unloading and training activity, can be ascertained. This supports the theory that the SM plays an active role in modulating external acoustic energy on entry to the cochlea. Our results are also in favour of another postulated function of the SM, the unmasking of high-frequency signals in low-frequency background noise. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Hosp Maastricht, Dept Otolaryngol Head & Neck Surg, NL-6202 AZ Maastricht, Netherlands. Univ Maastricht, Dept Anat Embryol, NL-6200 MD Maastricht, Netherlands. Dept Methodol & Stat, NL-6200 MD Maastricht, Netherlands. RP Dammeijer, PFM (reprint author), VieCuri Teaching Hosp, Dept Otolaryngol Head & Neck Surg, POB 1926, NL-5900 BX Venlo, Netherlands. EM pdammeijer@viecuri.nl; p.vandijk@ae.unimaas.ni; mche@skno.azm.nl; jman@skno.azm.nl; h.vanmameren@ae.unimaas.nl CR ANDERSEN P, 1977, ACTA PHYSIOL SCAND, V99, P123, DOI 10.1111/j.1748-1716.1977.tb10361.x BORG E, 1980, ACTA OTO-LARYNGOL, V90, P1, DOI 10.3109/00016488009131691 BORG E, 1984, ACOUSTIC REFLEX BASI, P50 BORG E, 1983, ACTA OTO-LARYNGOL, V96, P361, DOI 10.3109/00016488309132721 BREDMAN JJ, 1992, HISTOCHEM J, V24, P260, DOI 10.1007/BF01046840 Briere J., 1996, CHILD MALTREATMENT, V1, P6, DOI [10.1177/1077559596001001002, DOI 10.1177/1077559596001001002] BROOKE MH, 1970, ARCH NEUROL-CHICAGO, V23, P369 Caiozzo VJ, 2002, MUSCLE NERVE, V26, P740, DOI 10.1002/mus.10271 Caiozzo VJ, 2003, AM J PHYSIOL-REG I, V285, pR570, DOI 10.1152/ajpregu.00646.2002 CHALMERS GR, 1992, J APPL PHYSIOL, V73, P631 Chilibeck PD, 1998, CAN J APPL PHYSIOL, V23, P74 Dammeijer PFM, 2002, ACTA OTO-LARYNGOL, V122, P703, DOI 10.1080/003655402/000028038 Dammeijer PFM, 2000, HEARING RES, V141, P169, DOI 10.1016/S0378-5955(99)00220-8 Dammeijer PFM, 2006, HEARING RES, V219, P48, DOI 10.1016/j.heares.2006.05.003 DELP MD, 1994, CELL TISSUE RES, V277, P363, DOI 10.1007/s004410050163 Demirel HA, 1999, J APPL PHYSIOL, V86, P1002 FERRETTI P, 1981, RES COMMUN SUBSTANCE, V2, P1 GORZA L, 1990, J HISTOCHEM CYTOCHEM, V38, P257 GUTH L, 1970, EXP NEUROL, V28, P365, DOI 10.1016/0014-4886(70)90244-X HENSELMAN LW, 1994, HEARING RES, V78, P1, DOI 10.1016/0378-5955(94)90038-8 Lucas CA, 2000, BIOCHEM BIOPH RES CO, V272, P303, DOI 10.1006/bbrc.2000.2768 MABUCHI K, 1982, AM J PHYSIOL, V242, pC373 MAIER A, 1986, CELL TISSUE RES, V244, P635 MOLLER AR, 2000, HEARING ITS PHYSL PA, P345 MOLLER A R, 1965, Acta Otolaryngol, V60, P129, DOI 10.3109/00016486509126996 MOORMAN AFM, 1984, CELL DIFFER DEV, V14, P113, DOI 10.1016/0045-6039(84)90036-8 OGILVIE RW, 1990, STAIN TECHNOL, V65, P231 Pang XD, 1997, J ACOUST SOC AM, V102, P3576, DOI 10.1121/1.420399 PEREIRA JAAS, 1995, HISTOCHEM J, V27, P715 Perie S, 2000, ANN OTO RHINOL LARYN, V109, P216 Pette D, 2002, CAN J APPL PHYSIOL, V27, P423 Pette D, 1997, Int Rev Cytol, V170, P143, DOI 10.1016/S0074-7696(08)61622-8 Pette D, 1990, Rev Physiol Biochem Pharmacol, V116, P1 Pilz PKD, 1997, HEARING RES, V105, P171, DOI 10.1016/S0378-5955(96)00206-7 Putman CT, 1999, J MUSCLE RES CELL M, V20, P155, DOI 10.1023/A:1005430115402 Quaranta A, 1998, Scand Audiol Suppl, V48, P75 Quiroz-Rothe E, 2004, MICROSC RES TECHNIQ, V65, P43, DOI 10.1002/jemt.20090 Rivero JLL, 1998, J MUSCLE RES CELL M, V19, P733, DOI 10.1023/A:1005482816442 Roy RR, 1997, J APPL PHYSIOL, V83, P280 Sant'ana Pereira J A, 1995, J Muscle Res Cell Motil, V16, P21 Schiaffino S, 1996, PHYSIOL REV, V76, P371 SCHIAFFINO S, 1989, J MUSCLE RES CELL M, V10, P197, DOI 10.1007/BF01739810 Schuler M, 1996, CELL TISSUE RES, V285, P297, DOI 10.1007/s004410050647 STARON RS, 1993, HISTOCHEMISTRY, V100, P149, DOI 10.1007/BF00572901 Stephenson GM, 2001, CLIN EXP PHARMACOL P, V28, P692, DOI 10.1046/j.1440-1681.2001.03505.x Talmadge RJ, 2000, MUSCLE NERVE, V23, P661, DOI 10.1002/(SICI)1097-4598(200005)23:5<661::AID-MUS3>3.0.CO;2-J TIKKANEN HO, 1995, EUR J APPL PHYSIOL O, V70, P281, DOI 10.1007/BF00865023 VANBUREN P, 1995, CIRC RES, V77, P439 VANDENBERGE H, 1990, HEARING RES, V48, P209, DOI 10.1016/0378-5955(90)90061-S VANDENBERGE H, 1989, J ANAT, V166, P157 Weiss A, 1999, P NATL ACAD SCI USA, V96, P2958, DOI 10.1073/pnas.96.6.2958 WIECZOREK DF, 1985, J CELL BIOL, V101, P618, DOI 10.1083/jcb.101.2.618 WORMALD PJ, 1995, CLIN OTOLARYNGOL, V20, P59, DOI 10.1111/j.1365-2273.1995.tb00013.x ZAKRISSON JE, 1975, ACTA OTO-LARYNGOL, V79, P1, DOI 10.3109/00016487509124648 NR 54 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 54 EP 66 DI 10.1016/j.lieares.2007.07.007 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000007 PM 17890031 ER PT J AU Hensel, J Scholz, G Hurttig, U Mrowinski, D Janssen, T AF Hensel, Johannes Scholz, Guenther Hurttig, Ulrike Mrowinski, Dieter Janssen, Thomas TI Impact of infrasound on the human cochlea SO HEARING RESEARCH LA English DT Article DE infrasound biasing; modulated DPOAEs; human cochlear mechanics ID PRODUCT OTOACOUSTIC EMISSIONS; LOW-FREQUENCY MODULATION; MASKING-PERIOD PATTERNS; AMPLIFIER; LEVEL; NOISE; DIAGNOSTICS; DEPENDENCE; 2F(1)-F(2); RESPONSES AB Low-frequency tones were reported to modulate the amplitude of distortion product otoacoustic emissions (DPOAEs) indicating periodic changes of the operating point of the cochlear amplifier. The present study investigates potential differences between infrasound and low-frequency sounds in their ability to modulate human DPOAEs. DPOAEs were recorded in 12 normally hearing subjects in the presence of a biasing tone with f(B) = 6 Hz and a level L-B = 130 dB SPL. Primary frequencies were fixed at f(1) = 1.6 and f(2) = 2.0 kHz with fixed levels L-1 = 51 and L-2 = 30 dB SPL. A new measure, the modulation index (MI), was devised to characterise the degree of DPOAE modulation. In subsequent measurements with biasing tones of f(B) = 12, 24 and 50 Hz, L-B was adjusted to maintain the MI as obtained individually at 6 Hz. Modulation patterns lagged with increasing f(B). The necessary L-B decreased by 12 dB/octave with increasing f(B) and ran almost parallel to the published infrasound detection threshold. No signs of an abrupt change in transmission into the cochlea were found between infra- and low-frequency sounds. The results show clearly that infrasound enters the inner ear, and can alter cochlear processing. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Med Berlin, Charite, Dept Otolaryngol, D-10117 Berlin, Germany. Tech Univ Munich, Dept Otolaryngol, D-81675 Munich, Germany. RP Hensel, J (reprint author), Univ Med Berlin, Charite, Dept Otolaryngol, Schumannstr 20, D-10117 Berlin, Germany. EM johannes.hensel@charite.de; scholz@charite.de; uli_hurttig@web.de; dieter.mrowinski@t-online.de; T.Janssen@lrz.tu-muenchen.de CR Bian L, 2002, J ACOUST SOC AM, V112, P198, DOI 10.1121/1.1488943 Bian L, 2004, J ACOUST SOC AM, V115, P2159, DOI 10.1121/1.1690081 Bian L, 2006, J ACOUST SOC AM, V119, P3872, DOI 10.1121/1.2200068 Bian L, 2004, J ACOUST SOC AM, V116, P3559, DOI 10.1121/1.1819501 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 DALLOS P, 1970, J ACOUST SOC AM, V48, P489, DOI 10.1121/1.1912163 Feldmann J, 2004, Noise Health, V7, P23 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 Frank G, 1997, HEARING RES, V113, P57, DOI 10.1016/S0378-5955(97)00131-7 Harding GW, 2004, HEARING RES, V196, P94, DOI 10.1016/j.heares.2004.03.011 Harding GW, 2007, HEARING RES, V225, P128, DOI 10.1016/j.heares.2007.01.016 HARRIS C, 1976, AVIATION SPACE ENV M, V47, P582 Hirschfelder A, 2005, HNO, V53, P612, DOI 10.1007/s00106-004-1171-4 Janssen T, 2006, ORL J OTO-RHINO-LARY, V68, P334, DOI 10.1159/000095275 Janssen T, 2005, HNO, V53, P121, DOI 10.1007/s00106-004-1179-9 JERGER J, 1966, J SPEECH HEAR RES, V9, P150 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 Kummer P, 2000, HEARING RES, V146, P47, DOI 10.1016/S0378-5955(00)00097-6 Leventhall G., 2003, REV PUBLISHED RES LO Leventhall H G, 2004, Noise Health, V6, P59 LEVENTHALL HG, 2007, PROG BIOPHYS MOL BIO, V93, P130 Lukashkin AN, 2005, HEARING RES, V203, P45, DOI 10.1016/j.heares.2004.11.011 Marquardt T, 2007, J ACOUST SOC AM, V121, P3628, DOI 10.1121/1.2722506 MOHR GC, 1965, AEROSPACE MED, V36, P817 Møller H, 2004, Noise Health, V6, P37 MROWINSKI D, 1995, HEARING RES, V85, P95, DOI 10.1016/0378-5955(95)00033-Z Schaaf H, 2003, HNO, V51, P1005, DOI 10.1007/s00106-003-0967-y Scholz G, 1999, HEARING RES, V130, P189, DOI 10.1016/S0378-5955(99)00010-6 VANDENBERG GP, 2001, P INT HAG ZWICKER E, 1981, HEARING RES, V4, P195, DOI 10.1016/0378-5955(81)90006-X ZWICKER E, 1977, J ACOUST SOC AM, V61, P1031, DOI 10.1121/1.381387 NR 32 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 67 EP 76 DI 10.1016/j.heares.2007.07.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000008 PM 17761395 ER PT J AU Uzun-Coruhlu, H Curthoys, IS Jones, AS AF Uzun-Coruhlu, Hilal Curthoys, Ian S. Jones, Allan S. TI Attachment of the utricular and saccular maculae to the temporal bone SO HEARING RESEARCH LA English DT Article DE utricular; saccular; otolith; inner ear; labyrinth; axial; x-ray; micro-tomography ID 3-DIMENSIONAL ANALYSIS; MORPHOLOGICAL ASPECTS; OTOLITH RESPONSES; INNER-EAR; TOMOGRAPHY; STIMULATION AB The present investigation concerns the true morphology of the attachment of the two otolith receptor organs the utricular and the saccular maculae in two and three dimensions. By applying a new visualization method, which utilized the application of X-ray microtomography and a method of contrast enhancement based on en-bloc staining in osmium tetroxide, we were able to overcome problems of artefact production such as tissue distortion and loss of valuable information that was present in previous studies. A series of more than 1000 axial sections were obtained for each of the specimens, which subsequently formed the basis for detailed 2D and 3D visualizations. Our interpretations of these data reveal that the saccular maculae are closely attached to the curved bony surface of the temporal bone as traditionally believed, but the utricular macula is attached to the temporal bone only at the anterior region of the macula. Crown Copyright (C) 2007 Published by Elsevier B.V. All rights reserved. C1 Univ Sydney, Australian Key Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia. Univ Sydney, Sch Psychol, Sydney, NSW 2006, Australia. RP Uzun-Coruhlu, H (reprint author), Univ Sydney, Australian Key Ctr Microscopy & Microanal, Madsen Bldg F09, Sydney, NSW 2006, Australia. EM hilal@emu.usyd.edu.au; ianc@psych.usyd.edu.an; allan.jones@emu.usyd.edu.au CR Ananda S, 2006, J ELECTRON MICROSC, V55, P151, DOI [10.1093/jmicro/dfl015, 10.1093/jmicro/df1015] ANNIKO M, 1977, ARCH OTO-RHINO-LARYN, V218, P67, DOI 10.1007/BF00469735 Anson B. J., 1967, SURG ANATOMY TEMPORA Curthoys IS, 1999, ANN NY ACAD SCI, V871, P27, DOI 10.1111/j.1749-6632.1999.tb09173.x DAI MJ, 1989, BIOL CYBERN, V60, P185 Dame Carroll J R, 2006, Eur Respir J, V28, P712, DOI 10.1183/09031936.06.00012405 DONALDSON JA, 1967, SURG ANATOMY TEMPORA GRANT JW, 1986, ANN BIOMED ENG, V14, P241, DOI 10.1007/BF02584273 GRANT JW, 1993, J VESTIBUL RES-EQUIL, V2, P137 Grant J W, 1990, J Vestib Res, V1, P139 Harris DA, 2006, AM J ORTHOD DENTOFAC, V130, P639, DOI 10.1016/j.ajodo.2005.01.029 Jaeger R, 2002, HEARING RES, V173, P29, DOI 10.1016/S0378-5955(02)00485-9 Jaeger R, 2004, BIOL CYBERN, V90, P165, DOI 10.1007/s00422-003-0456-0 Kondrachuk AV, 2000, HEARING RES, V143, P130, DOI 10.1016/S0378-5955(00)00034-4 Langheinrich AC, 2004, RADIOLOGY, V233, P165, DOI 10.1148/radiol.2331031340 LI SF, 2006, J OTORHINOLARYNGOL R, V68, P302 Lindeman H H, 1969, Ergeb Anat Entwicklungsgesch, V42, P1 Naganuma H, 2003, ANN OTO RHINOL LARYN, V112, P419 Naganuma H, 2001, ANN OTO RHINOL LARYN, V110, P1017 RETZIUS G, 1881, GEHORORGAN WIRBELT 2 Rother T, 2003, HEARING RES, V185, P22, DOI 10.1016/S0378-5955(03)00255-7 Schuknecht H. F., 1974, PATHOLOGY EAR Severinsen SA, 2003, JARO-J ASSOC RES OTO, V4, P505 Spoendlin H, 1966, VESTIBULAR SYSTEM IT, P39 Uzun H, 2007, ACTA OTO-LARYNGOL, V127, P568, DOI 10.1080/00016480600951509 NR 25 TC 33 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 77 EP 85 DI 10.1016/j.heares.2007.07.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000009 PM 17919861 ER PT J AU De Boer, J Brennan, S Lineton, B Stevens, J Thornton, ARD AF De Boer, Jessica Brennan, Siobhan Lineton, Ben Stevens, John Thornton, A. Roger D. TI Click-evoked otoacoustic emissions (CEOAEs) recorded from neonates under 13 hours old using and maximum length sequence (MLS) conventional stimulation SO HEARING RESEARCH LA English DT Article DE evoked otoacoustic emissions; neonatal screening; maximum length sequence ID EAR; SUPPRESSION; NONLINEARITIES; HUMANS; INFANT AB Maximum length sequence (MLS) stimulation allows click evoked otoacoustic emissions (CEOAEs) to be averaged at very high stimulation rates. This enables a faster reduction of noise contamination of the response, and has been shown to improve the signal-to-noise ratio (SNR) of CEOAEs recorded from adult subjects. This study set out to investigate whether MLS averaging can enhance the SNR of CEOAEs recorded in newborns within the first day after birth, and so improve the pass rates for OAE screening in this period, when false alarm rates are very high. CEOAEs were recorded in a neonatal ward from 57 ears in 37 newborns ranging from 6 to 13 h old, using both conventional (50/s) and high rate (5000/s) MLS averaging. SNR values and pass rates were compared for responses obtained within equal recording times at both rates. MLS averaging produced an SNR improvement of up to 3.8 dB, with the greatest improvement found in higher frequency bands. This SNR advantage resulted in pass rate improvement between 5% and 10%, depending on pass criterion. A significant effect of age was found on both SNR and pass rate, with newborns between 6 and 10 h old showing significantly lower values than those tested between 10 and 13 h after birth, as well as a much greater improvement due to MLS averaging. The findings show that MLS averaging can reduce false alarm rates by up to 15% in very young neonates in a neonatal ward setting. (C) 2007 Published by Elsevier B.V. C1 Royal S Hants Hosp, MRC Inst Hearing Res, Southhampton Outstn, Southampton SO14 0YG, Hants, England. Cent Sheffield Univ Hosp, Dept Med Phys, Sheffield, S Yorkshire, England. Univ Southampton, Inst Sound & Vibrat Res, Southampton SO9 5NH, Hants, England. RP De Boer, J (reprint author), Royal S Hants Hosp, MRC Inst Hearing Res, Southhampton Outstn, Brintons Terrace,Mailpoint OAU, Southampton SO14 0YG, Hants, England. EM jdb@soton.ac.uk CR Abdala C, 2003, J ACOUST SOC AM, V114, P932, DOI 10.1121/1.1590973 Abdala C, 2006, J ACOUST SOC AM, V120, P3832, DOI 10.1121/1.2359237 Abdala C, 2003, J ACOUST SOC AM, V114, P3239, DOI 10.1121/1.1625930 BRASS D, 1994, EAR HEARING, V15, P467, DOI 10.1097/00003446-199412000-00008 BRASS D, 1994, EAR HEARING, V15, P378, DOI 10.1097/00003446-199410000-00005 CHANG KW, 1993, ARCH OTOLARYNGOL, V119, P276 Hine JE, 2001, HEARING RES, V156, P104, DOI 10.1016/S0378-5955(01)00271-4 Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004 Johannesen PT, 1998, SCAND AUDIOL, V27, P37, DOI 10.1080/010503998419687 Kapadia S, 2001, BRIT J AUDIOL, V35, P103 Keefe DH, 2003, J ACOUST SOC AM, V113, P389, DOI 10.1121/1.1523387 Keefe DH, 2007, J ACOUST SOC AM, V121, P978, DOI 10.1121/1.2427128 Lineton B, 2006, HEARING RES, V219, P24, DOI 10.1016/j.heares.2006.05.005 McNellis EL, 1997, OTOLARYNG HEAD NECK, V116, P431, DOI 10.1016/S0194-5998(97)70290-0 McPherson B, 2006, EAR HEARING, V27, P256, DOI 10.1097/01.aud.0000215971.18998.9d Popelka GR, 1998, EAR HEARING, V19, P319, DOI 10.1097/00003446-199808000-00007 Rasmussen AN, 1998, BRIT J AUDIOL, V32, P355, DOI 10.3109/03005364000000087 Slaven A, 1998, EAR HEARING, V19, P103, DOI 10.1097/00003446-199804000-00002 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P109, DOI 10.3109/03005369309077900 THORNTON ARD, 1999, OTOACOUSTIC EMISSION, V1, P21 Thornton ARD, 2003, HEARING RES, V182, P65, DOI 10.1016/S0378-5955(03)00173-4 Thornton ARD, 2001, CLIN NEUROPHYSIOL, V112, P768, DOI 10.1016/S1388-2457(01)00484-9 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P319, DOI 10.3109/03005369309076710 THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512 THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090 Tognola G, 2001, J ACOUST SOC AM, V109, P283, DOI 10.1121/1.1326949 VANZANTEN BGA, 1995, INT J PEDIATR OTORHI, V32, pS187, DOI 10.1016/0165-5876(94)01158-T Vento BA, 2004, J ACOUST SOC AM, V115, P2138, DOI 10.1121/1.1675819 Welch D, 1996, AUDIOLOGY, V35, P143 NR 29 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 86 EP 96 DI 10.1016/j.heares.2007.07.006 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000010 PM 17850998 ER PT J AU Gordon, KA Valero, J Papsin, BC AF Gordon, K. A. Valero, J. Papsin, B. C. TI Auditory brainstem activity in children with 9-30 months of bilateral cochlear implant use SO HEARING RESEARCH LA English DT Article DE deafness; auditory brainstem response; binaural interaction component; binaural difference response; evoked potential; auditory development and plasticity ID DELAY-DEPENDENT CHANGES; CROSS-MODAL PLASTICITY; BINAURAL INTERACTION COMPONENT; EVOKED-POTENTIALS; CLICK LATERALIZATION; CRITICAL PERIOD; MULTIPLE-SCLEROSIS; SPEECH-PERCEPTION; MIDDLE-LATENCY; DEAF-CHILDREN AB Bilateral cochlear implants aim to restore binaural processing along the auditory pathways in children with bilateral deafness. We assessed auditory brainstem activity evoked by single biphasic pulses delivered by an apical or basal electrode from the left, right and both cochlear implants in 13 children. Repeated measures were made over the first 9-30 months of bilateral implant use. In children with short or long periods of unilateral implant use prior to the second implantation, Wave eV of the auditory brainstem response was initially prolonged when evoked by the naive versus experienced side. These differences tended to resolve in children first implanted <3 years of age but not in children implanted at older ages with long delays between implants. Latency differences were projected to persist for longer periods in children with long delays between implants compared with children with short delays. No differences in right versus left evoked eV latency were found in 2 children receiving bilateral implants simultaneously and their response latencies decreased over time. Binaural interaction responses showed effects of stimulating electrode position (responses were more detectable when evoked by an apical than basal pair of implant electrodes), and duration of delay between implants (measured by latency delays). The trends shown here suggest a negative impact of unilateral implant use on bilateral auditory brainstem plasticity. (C) 2007 Elsevier B.V. All rights reserved. C1 Hosp Sick Children, Cochlear Implant Lab, Toronto, ON M5G 1X8, Canada. Univ Toronto, Dept Otolaryngol Head & Neck Surg, Toronto, ON M5G 2N2, Canada. Univ Toronto, Inst Med Sci, Toronto, ON M5S 1A8, Canada. RP Gordon, KA (reprint author), Hosp Sick Children, Cochlear Implant Lab, Room 6 D08,555 Univ Ave, Toronto, ON M5G 1X8, Canada. EM karen.gordon@utoronto.ca CR CLOPTON BM, 1977, J NEUROPHYSIOL, V40, P1275 ConeWesson B, 1997, HEARING RES, V106, P163, DOI 10.1016/S0378-5955(97)00016-6 Connor CM, 2006, EAR HEARING, V27, P628, DOI 10.1097/01.aud.0000240640.59205.42 Doucet ME, 2006, BRAIN, V129, P3376, DOI 10.1093/brain/awl264 EGGERMONT JJ, 1988, ELECTROEN CLIN NEURO, V70, P293, DOI 10.1016/0013-4694(88)90048-X Fine I, 2005, J COGNITIVE NEUROSCI, V17, P1621, DOI 10.1162/089892905774597173 FURST M, 1995, HEARING RES, V82, P109 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 FURST M, 1990, HEARING RES, V49, P347, DOI 10.1016/0378-5955(90)90113-4 Furst M, 2000, HEARING RES, V143, P29, DOI 10.1016/S0378-5955(00)00019-8 Furst M, 2004, HEARING RES, V187, P63, DOI 10.1016/S0378-5955(03)00331-9 Giraud AL, 2001, NEURON, V30, P657, DOI 10.1016/S0896-6273(01)00318-X Goksoy C, 2005, BRAIN RES, V1054, P183, DOI 10.1016/j.brainres.2005.06.083 Gordon KA, 2005, HEARING RES, V204, P78, DOI 10.1016/j.heares.2005.01.003 Gordon KA, 2003, EAR HEARING, V24, P485, DOI 10.1097/01.AUD.0000100203.65990.D4 Gordon KA, 2007, NEUROREPORT, V18, P613, DOI 10.1097/WNR.0b013e3280b10c15 Gordon KA, 2006, AUDIOL NEURO-OTOL, V11, P7, DOI 10.1159/000088851 Harrison RV, 2005, DEV PSYCHOBIOL, V46, P252, DOI 10.1002/dev.20052 Illing RB, 1999, J COMP NEUROL, V412, P353, DOI 10.1002/(SICI)1096-9861(19990920)412:2<353::AID-CNE12>3.0.CO;2-W Lambertz N, 2005, COGNITIVE BRAIN RES, V25, P884, DOI 10.1016/j.cogbrainres.2005.09.010 Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653 MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z Melcher JR, 1996, HEARING RES, V95, P144, DOI 10.1016/0378-5955(96)00032-9 NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 Polyakov A, 1999, AUDIOLOGY, V38, P321 Ponton CW, 2001, HEARING RES, V154, P32, DOI 10.1016/S0378-5955(01)00214-3 Riedel H, 2006, HEARING RES, V218, P5, DOI 10.1016/j.heares.2006.03.018 Schmithorst VJ, 2005, NEUROREPORT, V16, P463, DOI 10.1097/00001756-200504040-00009 Sharma Anu, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P38 Sharma Anu, 2002, Ear and Hearing, V23, P532, DOI 10.1097/00003446-200212000-00004 SILVERMAN MS, 1977, J NEUROPHYSIOL, V40, P1266 Sininger YS, 2006, HEARING RES, V212, P203, DOI 10.1016/j.heares.2005.12.003 Smith ZM, 2007, JARO-J ASSOC RES OTO, V8, P134, DOI 10.1007/s10162-006-0069-0 Thai-Van H, 2007, CLIN NEUROPHYSIOL, V118, P676, DOI 10.1016/j.clinph.2006.11.010 Thai-Van H, 2002, ANN OTO RHINOL LARYN, V111, P1008 Ungan P, 1997, HEARING RES, V106, P66, DOI 10.1016/S0378-5955(97)00003-8 WEBSTER DB, 1983, INT J PEDIATR OTORHI, V6, P107 ZAAROOR M, 1991, ELECTROEN CLIN NEURO, V80, P422, DOI 10.1016/0168-5597(91)90091-B NR 38 TC 30 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 97 EP 107 DI 10.1016/j.heares.2007.08.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000011 PM 17850999 ER PT J AU Hsieh, IH Saberi, K AF Hsieh, I-Hui Saberi, Kourosh TI Temporal integration in absolute identification of musical pitch SO HEARING RESEARCH LA English DT Article DE pitch; music; memory; temporal integration; psychophysics ID HEARING-IMPAIRED LISTENERS; ITERATED RIPPLED NOISE; FREQUENCY DISCRIMINATION; SHORT-DURATION; VIRTUAL PITCH; MODEL; TONES; PERCEPTION; SIGNALS; SINGLE AB The effect of stimulus duration on absolute identification of musical pitch was measured in a single-interval 12-alternative forced-choice task. Stimuli consisted of pure tones selected randomly on each trial from a set of 60 logarithmically spaced musical note frequencies from 65.4 to 1975.5 Hz (C2-B6). Stimulus durations were 5, 10, 25, 50, 100, and 1000 ins. Six absolute-pitch musicians identified the pitch of pure tones without feedback, reference sounds, or practice trials. Results showed that a 5 ins stimulus is sufficient for producing statistically significant above chance performance. Performance monotonically increased up to the longest duration tested (1000 ms). Higher octave stimuli produced better performance, though the rate of improvement declined with increasing octave number. Normalization by the number of waveform cycles showed that 4 cycles are sufficient for absolute-pitch identification. Restricting stimuli to a fixed-cycle waveform instead of a fixed-duration still produced monotonic improvements in performance as a function of stimulus octave, demonstrating that better performance at higher frequencies does not exclusively result from a larger number of waveform cycles. Several trends in the data were well predicted by an autocorrelation model of pitch extraction, though the model outperformed observed performance at short durations suggesting an inability to make optimal use of available periodicity information in very brief tones. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Irvine, Dept Cognit Sci, Ctr Cognit Neurosci, Irvine, CA 92697 USA. RP Saberi, K (reprint author), Univ Calif Irvine, Dept Cognit Sci, Ctr Cognit Neurosci, Irvine, CA 92697 USA. EM saberi@uci.edu CR Baharloo S, 1998, AM J HUM GENET, V62, P224, DOI 10.1086/301704 BEERENDS JG, 1989, J ACOUST SOC AM, V86, P1835, DOI 10.1121/1.398562 Beutelmann R, 2006, J ACOUST SOC AM, V120, P331, DOI 10.1121/1.2202888 BILSEN FA, 1974, J ACOUST SOC AM, V55, P292, DOI 10.1121/1.1914500 CAMPBELL RA, 1963, J ACOUST SOC AM, V35, P1193, DOI 10.1121/1.1918673 Deutsch D, 2006, J ACOUST SOC AM, V119, P719, DOI 10.1121/1.2151799 DOUGHTY JM, 1948, J EXP PSYCHOL, V38, P478, DOI 10.1037/h0057850 DOUGHTY JM, 1947, J EXP PSYCHOL, V37, P351, DOI 10.1037/h0061516 Durlach NI, 2005, J ACOUST SOC AM, V118, P2482, DOI 10.1121/1.2032748 FREYMAN RL, 1986, J ACOUST SOC AM, V79, P1034, DOI 10.1121/1.393375 Fujisaki W., 2002, Acoustical Science and Technology, V23, DOI 10.1250/ast.23.77 GABOR D, 1947, NATURE, V159, P591, DOI 10.1038/159591a0 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Gockel H, 2005, J ACOUST SOC AM, V117, P1326, DOI 10.1121/1.1853111 HENNING GB, 1970, FREQUENCY ANAL PERIO HOLDSWORTH J, 1988, 2341 SVOC MRC APU LEVITIN DJ, 1994, PERCEPT PSYCHOPHYS, V56, P414, DOI 10.3758/BF03206733 GOLAY MJE, 1961, IRE T INFORM THEOR, V7, P82, DOI 10.1109/TIT.1961.1057620 MARK HE, 1990, J ACOUST SOC AM, V88, P560, DOI 10.1121/1.399883 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 METTERS PJ, 1973, J SOUND VIB, V26, P432, DOI 10.1016/S0022-460X(73)80198-1 MIYAZAKI K, 1989, MUSIC PERCEPT, V7, P1 MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640 PARNCUTT R, 1994, J NEW MUSIC RES, V23, P145, DOI 10.1080/09298219408570653 PATTERSON RD, 1983, PHYSL BASES PSYCHOPH Pitman J., 1993, PROBABILITY POLLACK I, 1967, J ACOUST SOC AM, V42, P895, DOI 10.1121/1.1910663 RITSMA RJ, 1966, IPO ANN PROG REP, V1, P12 ROBINSON K, 1995, J ACOUST SOC AM, V98, P1858, DOI 10.1121/1.414405 RONKEN DA, 1971, J ACOUST SOC AM, V49, P1232, DOI 10.1121/1.1912486 Ross DA, 2004, J ACOUST SOC AM, V116, P1793, DOI 10.1121/1.1758973 Saberi K, 2005, J THEOR BIOL, V235, P45, DOI 10.1016/j.jtbi.204.12.018 Saberi K, 1997, PERCEPT PSYCHOPHYS, V59, P867, DOI 10.3758/BF03205504 Saberi K, 1996, J ACOUST SOC AM, V100, P528, DOI 10.1121/1.415865 SEKEY ANDREW, 1963, JOUR ACOUSTICAL SOC AMER, V35, P682, DOI 10.1121/1.1918587 SERGEANT D, 1969, J RES MUSIC EDUC, V17, P135, DOI 10.2307/3344200 SIEBERT WM, 1970, PR INST ELECTR ELECT, V58, P723, DOI 10.1109/PROC.1970.7727 SIEGEL JA, 1972, STUDIES PSYCHOL MUSI, V8, P65 SIPOVSKI.AV, 1972, BIOFIZIKA+, V17, P495 SPIEGEL MF, 1981, J ACOUST SOC AM, V70, P69, DOI 10.1121/1.386583 TERHARDT E, 1986, ACUSTICA, V61, P57 TERHARDT E, 1979, HEARING RES, V1, P155, DOI 10.1016/0378-5955(79)90025-X WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592 Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873 Zatorre RJ, 2003, NAT NEUROSCI, V6, P692, DOI 10.1038/nn1085 Zatorre RJ, 1998, P NATL ACAD SCI USA, V95, P3172, DOI 10.1073/pnas.95.6.3172 ZHOU B, 1992, J ACOUST SOC AM, V92, P1169, DOI 10.1121/1.404045 NR 48 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 108 EP 116 DI 10.1016/j.heares.2007.08.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000012 PM 17919863 ER PT J AU De Boer, J Thornton, ARD AF De Boer, Jessica Thornton, A. Roger D. TI Effect of subject task on contralateral suppression of click evoked otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE medial olivocochlear bundle; otoacoustic emission; contralateral suppression; subject task ID PERIPHERAL AUDITORY LATERALIZATION; MEDIAL OLIVOCOCHLEAR SYSTEM; INFERIOR COLLICULUS; SELECTIVE ATTENTION; EFFERENT ACTIVITY; NON-MUSICIANS; HUMANS; NOISE; ASYMMETRY; COCHLEA AB Contralateral suppression of click evoked otoacoustic emissions (CEOAEs) is widely used as a non-invasive measure of the activity of the (uncrossed) medial olivocochlear bundle (MOCB). There is evidence that the uMOCB receives descending input from the cortex, potentially mediating top-down control during higher order processing. This study investigated whether the contralateral suppression measure is affected by top-down influences during different tasks performed by the participants during recording. Suppression of CEOAEs evoked at 50 and 60 dB SPL was measured under four different task conditions: (1) no task; (2) passive visual (watching a silent subtitled DVD); (3) active visual (responding to visually presented sums); (4) active auditory (detecting tone pips embedded in the evoking click train). The most significant effect of task was found on the recording noise, with both the passive visual and the active auditory task producing significantly lower noise levels than the no task condition. In the passive visual task, this was associated with a reduced inter-subject variability, which enhanced the effect size relative to the no task condition. A main effect of subject task was also found on the change in CEOAE I/O slope due to contralateral noise. This effect reflected a significantly smaller suppression during the active auditory task compared to the no task condition, leading to a reduced effect size. No significant difference in suppression strength between the no task condition and the two non-auditory tasks was observed, suggesting that the main effect of task reflects a specific effect of auditory attention. The data suggest that MOCB activity is inhibited due to top-down influences when selective attention is focussed on the ipsilateral ear. (C) 2007 Elsevier B.V. All rights reserved. C1 Royal S Hants Hosp, MRC Inst Hearing Res, Southampton SO14 0YG, Hants, England. RP De Boer, J (reprint author), Royal S Hants Hosp, MRC Inst Hearing Res, Brintons Terrace,Mailpoint OAU, Southampton SO14 0YG, Hants, England. EM jdb@soton.ac.uk CR Bar-Haim Y, 2004, BIOL PSYCHIAT, V55, P1061, DOI 10.1016/j.biopsych.2004.02.021 FERBERVIART C, 1995, PHYSIOL BEHAV, V57, P1075, DOI 10.1016/0031-9384(95)00012-8 FROEHLICH P, 1993, HEARING RES, V66, P1, DOI 10.1016/0378-5955(93)90254-X Giard M. H., 2000, FRONT BIOSCI, V5, P84 GIARD MH, 1994, BRAIN RES, V633, P353, DOI 10.1016/0006-8993(94)91561-X Giraud AL, 1997, NEUROREPORT, V8, P1779 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 Khalfa S, 2001, EUR J NEUROSCI, V13, P628, DOI 10.1046/j.1460-9568.2001.01423.x Khalfa S, 1998, HEARING RES, V121, P29, DOI 10.1016/S0378-5955(98)00062-8 Khalfa S, 2001, NEUROSCIENCE, V104, P347, DOI 10.1016/S0306-4522(01)00072-0 Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008 Kumar UA, 2004, EAR HEARING, V25, P142, DOI 10.1097/01.AUD.0000120363.56591.E6 Maison S, 2001, PSYCHOPHYSIOLOGY, V38, P35, DOI 10.1017/S0048577201990109 Meric C., 1996, Physiology and Behavior, V59, P1, DOI 10.1016/0031-9384(95)02008-X Micheyl C, 1996, J ACOUST SOC AM, V99, P1604, DOI 10.1121/1.414734 Micheyl C, 1997, NEUROREPORT, V8, P1047, DOI 10.1097/00001756-199703030-00046 MICHEYL C, 1995, ACTA OTO-LARYNGOL, V115, P178, DOI 10.3109/00016489509139286 Michie PT, 1996, HEARING RES, V98, P54, DOI 10.1016/0378-5955(96)00059-7 Morand-Villeneuve N, 2005, HEARING RES, V208, P101, DOI 10.1016/j.heares.2005.05.003 Muchnik C, 2004, AUDIOL NEURO-OTOL, V9, P107, DOI 10.1159/000076001 Mulders WHA, 2000, HEARING RES, V149, P11, DOI 10.1016/S0378-5955(00)00157-X Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 Mulders WHAM, 2002, HEARING RES, V167, P206, DOI 10.1016/S0378-5955(02)00395-7 Murugasu E, 1996, J NEUROSCI, V16, P325 PERROT X, 2006, CEREBRAL CORTEX Perrot X, 1999, NEUROSCI LETT, V262, P167, DOI 10.1016/S0304-3940(99)00044-0 Philibert B, 1998, NEUROSCI LETT, V253, P99, DOI 10.1016/S0304-3940(98)00615-6 Sanches SGG, 2006, AUDIOL NEURO-OTOL, V11, P366, DOI 10.1159/000095898 Spangler K., 1991, NEUROBIOLOGY HEARING, P27 THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512 Veuillet E, 2001, J NEUROL NEUROSUR PS, V70, P88, DOI 10.1136/jnnp.70.1.88 Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786 NR 32 TC 31 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 117 EP 123 DI 10.1016/j.heares.2007.08.002 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000013 PM 17910996 ER PT J AU Hutson, KA Durham, D Tucci, DL AF Hutson, K. A. Durham, D. Tucci, D. L. TI Consequences of unilateral hearing loss: Time dependent regulation of protein synthesis in auditory brainstem nuclei SO HEARING RESEARCH LA English DT Article ID VENTRAL COCHLEAR NUCLEUS; SUPERIOR OLIVARY COMPLEX; EAR OSSICLE REMOVAL; GUINEA-PIG; AFFERENT INFLUENCES; INFERIOR COLLICULUS; MONGOLIAN GERBIL; ACOUSTIC CHIASM; CELL-SIZE; DIRECTIONAL RESPONSES AB Conductive hearing impairment results in marked changes in neuronal activity in the central auditory system, particularly in young animals [Tucci, D-L.. Cant, N.B., Durham. D., 1999. Conductive hearing loss results in a decrease in central auditory system activity in the young gerbil. Laryngoscope 109, 1359-1371]. To better understand the effects of conductive hearing loss (CHL) on cellular metabolism, incorporation of H-3-leucine was used as a measure of protein synthesis in immature postnatal day 21 gerbils subjected to either unilateral CHL by malleus removal or profound sensorineural hearing loss by cochlear ablation. H-3-leucine uptake was measured after survival times of 6 or 48 h. Protein synthesis values were standardized to measurements from the abducens nucleus and compared with measurements from sham animals at similar age/survival times. Protein synthesis in the media] superior olive (MSO) was found to be significantly down-regulated (bilaterally) after CHL in animals surviving 48 h. However, 6 h after CHL manipulation, protein synthesis is up-regulated in MSO (bilaterally) and in the ipsilateral medial nucleus of the trapezoid body. (C) 2007 Elsevier B.V. All rights reserved. C1 Duke Univ, Med Ctr, Dept Surg, Div Otolaryngol Head & Neck Surg, Durham, NC 27710 USA. Univ Kansas, Med Ctr, Dept Otolaryngol, Kansas City, KS 66160 USA. RP Tucci, DL (reprint author), Duke Univ, Med Ctr, Dept Surg, Div Otolaryngol Head & Neck Surg, Box 3805, Durham, NC 27710 USA. EM tucci001@mc.duke.edu CR Alvarado JC, 2004, J COMP NEUROL, V470, P63, DOI 10.1002/cne.11038 Benson CG, 1997, SYNAPSE, V25, P243 BLATCHLEY BJ, 1983, EXP NEUROL, V80, P81, DOI 10.1016/0014-4886(83)90008-0 BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A BORN DE, 1988, J NEUROSCI, V8, P901 Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8 Caicedo A, 1996, ANAT EMBRYOL, V194, P465 CANT NB, 1984, HEARING SCI RECENT A, P371 CLEMENTS M, 1978, J COMP PHYSIOL PSYCH, V92, P34, DOI 10.1037/h0077424 COLEMAN JR, 1979, EXP NEUROL, V64, P553, DOI 10.1016/0014-4886(79)90231-0 DODSON HC, 1994, DEV BRAIN RES, V80, P261, DOI 10.1016/0165-3806(94)90111-2 DOYLE WJ, 1991, HEARING RES, V54, P145, DOI 10.1016/0378-5955(91)90144-X FENG AS, 1980, BRAIN RES, V189, P530, DOI 10.1016/0006-8993(80)90112-2 FINCK A, 1972, J COMP PHYSIOL PSYCH, V78, P375, DOI 10.1037/h0032373 Forster CR, 2000, J COMP NEUROL, V416, P173, DOI 10.1002/(SICI)1096-9861(20000110)416:2<173::AID-CNE4>3.0.CO;2-V Fuentes-Santamaria V, 2005, J COMP NEUROL, V483, P458, DOI 10.1002/cne.20437 GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210 GLENDENNING KK, 1983, J NEUROSCI, V3, P1521 HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402 Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x HYSON RL, 1989, J NEUROSCI, V9, P2835 Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4 Illing RB, 2000, MICROSC RES TECHNIQ, V51, P364, DOI 10.1002/1097-0029(20001115)51:4<364::AID-JEMT6>3.0.CO;2-E JEANBAPTISTE M, 1975, J COMP NEUROL, V162, P111, DOI 10.1002/cne.901620107 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 Jin YM, 2006, J NEUROSCI RES, V83, P157, DOI 10.1002/jnr.20706 KELLY JB, 1986, J COMP PSYCHOL, V100, P37 KILLACKEY HP, 1977, ANAT REC, V187, P624 Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 KNUDSEN EI, 1984, J NEUROSCI, V4, P1012 Knudsen EI, 1999, J COMP PHYSIOL A, V185, P305, DOI 10.1007/s003590050391 Kraus KS, 2004, J COMP NEUROL, V475, P374, DOI 10.1002/cne.2080 KUPFER C, 1967, J NEUROCHEM, V14, P257, DOI 10.1111/j.1471-4159.1967.tb09522.x LESPERANCE MM, 1995, HEARING RES, V86, P77, DOI 10.1016/0378-5955(95)00056-A Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348 Mo ZC, 2006, J NEUROSCI RES, V83, P1323, DOI 10.1002/jnr.20820 MOORE DR, 1989, J NEUROSCI, V9, P1213 MOORE DR, 1992, NEUROREPORT, V3, P269, DOI 10.1097/00001756-199203000-00014 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 PASIC TR, 1994, J COMP NEUROL, V348, P111, DOI 10.1002/cne.903480106 POTASH M, 1980, J COMP PHYSIOL PSYCH, V94, P864, DOI 10.1037/h0077819 Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641 Poulsen C, 2007, CEREB CORTEX, V17, P1454, DOI 10.1093/cercor/bhl056 POWELL TPS, 1962, J ANAT, V96, P249 ROGOWSKI BA, 1981, J COMP NEUROL, V196, P85, DOI 10.1002/cne.901960108 Russell FA, 1999, EUR J NEUROSCI, V11, P1379, DOI 10.1046/j.1460-9568.1999.00547.x Russell FA, 2002, HEARING RES, V173, P43, DOI 10.1016/S0378-5955(02)00606-8 RYAN AF, 1993, DEV AUDITORY VESTIBU, V2, P43 SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407 STEWARD O, 1985, J COMP NEUROL, V231, P385, DOI 10.1002/cne.902310308 Sumner CJ, 2005, J NEUROPHYSIOL, V94, P4234, DOI 10.1152/jn.00401.2005 Suneja SK, 2000, EXP NEUROL, V165, P355, DOI 10.1006/exnr.2000.7471 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 2003, J NEUROSCI RES, V73, P235, DOI 10.1002/jnr.10644 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R TRUNE DR, 1988, HEARING RES, V35, P259, DOI 10.1016/0378-5955(88)90122-0 TRUNE DR, 1988, HEARING RES, V33, P141, DOI 10.1016/0378-5955(88)90027-5 TRUNE DR, 1988, DEV BRAIN RES, V470, P304 Tucci DL, 2002, JARO, V3, P89, DOI 10.1007/s101620010091 TUCCI DL, 2005, NEUROTOLOGY, P563, DOI 10.1016/B978-0-323-01830-2.50042-0 Tucci DL, 1999, LARYNGOSCOPE, V109, P1359, DOI 10.1097/00005537-199909000-00001 TUCCI DL, 1985, J COMP NEUROL, V238, P371, DOI 10.1002/cne.902380402 TUCCI DL, 1987, ANN OTO RHINOL LARYN, V96, P343 WALSH ME, 1994, HEARING RES, V75, P54, DOI 10.1016/0378-5955(94)90055-8 WEBSTER DB, 1977, ARCH OTOLARYNGOL, V103, P392 WEBSTER DB, 1983, EXP NEUROL, V79, P130, DOI 10.1016/0014-4886(83)90384-9 WEBSTER DB, 1983, INT J PEDIATR OTORHI, V6, P107 WEBSTER DB, 1979, ANN OTO RHINOL LARYN, V88, P684 WEBSTER DB, 1983, HEARING RES, V12, P145, DOI 10.1016/0378-5955(83)90123-5 WILMINGTON D, 1994, HEARING RES, V74, P99, DOI 10.1016/0378-5955(94)90179-1 WOOLF NK, 1984, HEARING RES, V13, P277, DOI 10.1016/0378-5955(84)90081-9 WOOLF NK, 1985, DEV BRAIN RES, V17, P131, DOI 10.1016/0165-3806(85)90138-5 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 Zhandarov S, 2004, COMPOS INTERFACE, V11, P361, DOI 10.1163/1568554042246233 Zhang J, 2003, EXP NEUROL, V182, P75, DOI 10.1016/S0014-4886(03)00021-3 Zhang J, 2002, EXP NEUROL, V175, P245, DOI 10.1006/exnr.2002.7890 Zhang J, 2004, J NEUROSCI RES, V75, P361, DOI 10.1002/jnr.10850 NR 80 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2007 VL 233 IS 1-2 BP 124 EP 134 DI 10.1016/j.heares.2007.08.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 228QG UT WOS:000250744000014 PM 17919862 ER PT J AU Hordichok, AJ Steyger, PS AF Hordichok, Andrew J. Steyger, Peter S. TI Closure of supporting cell scar formations requires dynamic actin mechanisms SO HEARING RESEARCH LA English DT Article DE hair cell; extrusion; cell death; actin; myosin; microtubules; supporting cells; inner ear; saccule; vestibular system; in vitro ID VESTIBULAR SENSORY EPITHELIA; CHICK BASILAR PAPILLA; OUTER HAIR-CELLS; INNER-EAR; ACOUSTIC TRAUMA; AMINOGLYCOSIDE TOXICITY; CARCINOSARCOMA CELLS; COCHLEAR EPITHELIUM; OTOLITH ORGANS; IN-VITRO AB In many vertebrate inner ear sensory epithelia, dying sensory hair cells are extruded, and the apices of surrounding supporting cells converge to re-seal the epithelial barrier between the electrochemically-distinct endolymph and perilymph. These cellular mechanisms remain poorly understood. Dynamic microtubular mechanisms have been proposed for hair cell extrusion; while contractile actomyosin-based mechanisms are required for cellular extrusion and closure in epithelial monolayers. The hypothesis that cytoskeletal mechanisms are required for hair cell extrusion and supporting cell scar formation was tested using bullfrog saccules incubated with gentamicin (6 h), and allowed to recover (18 h). Explants were then fixed, labeled for actin and cytokeratins, and viewed with confocal microscopy. To block dynamic cytoskeletal processes, disruption agents for microtubules (colchicine, paclitaxel) myosin (Y-27632, ML-9) or actin (cytochalasin D, latrunctilin A) were added during treatment and recovery. Microtubule disruption agents had no effect on hair cell extrusion or supporting cell scar formation. Myosin disruption agents appeared to slow down scar formation but not hair cell extrusion. Actin disruption agents blocked scar formation, and largely prevented hair cell extrusion. These data Suggest that actin-based cytoskeletal processes are required for hair cell extrusion and supporting cell scar formation in bullfrog saccules. (C) 2007 Elsevier B.V. All rights reserved. C1 Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA. RP Steyger, PS (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM steygerp@ohsu.edu CR Abrashkin KA, 2006, HEARING RES, V218, P20, DOI 10.1016/j.heares.2006.04.001 ARNAL I, 1995, CURR BIOL, V5, P900, DOI 10.1016/S0960-9822(95)00180-1 Baird RA, 1996, ANN NY ACAD SCI, V781, P59, DOI 10.1111/j.1749-6632.1996.tb15693.x Bement WM, 2002, CURR BIOL, V12, pR12, DOI 10.1016/S0960-9822(01)00639-X Bement WM, 1999, CURR BIOL, V9, P579, DOI 10.1016/S0960-9822(99)80261-9 BERGEN LG, 1983, J BIOL CHEM, V258, P4190 BRENNER SL, 1979, J BIOL CHEM, V254, P9982 Brown BK, 2001, TRAFFIC, V2, P414, DOI 10.1034/j.1600-0854.2001.002006414.x CASELLA JF, 1981, NATURE, V293, P302, DOI 10.1038/293302a0 Caulin C, 1997, J CELL BIOL, V138, P1379, DOI 10.1083/jcb.138.6.1379 Connell LE, 2006, J CELL SCI, V119, P2269, DOI 10.1242/jcs.02926 COTANCHE DA, 1990, HEARING RES, V46, P29, DOI 10.1016/0378-5955(90)90137-E COUE M, 1987, FEBS LETT, V213, P316, DOI 10.1016/0014-5793(87)81513-2 Cyr JL, 2000, P NATL ACAD SCI USA, V97, P4908, DOI 10.1073/pnas.070050797 Dent EW, 2001, J NEUROSCI, V21, P9757 Duncan LJ, 2006, J COMP NEUROL, V499, P691, DOI 10.1002/cne.21114 Duncan RK, 2001, J ANAT, V198, P103, DOI 10.1046/j.1469-7580.2001.19810103.x DUVALL A J, 1964, Acta Otolaryngol, V57, P581, DOI 10.3109/00016486409137120 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Gale JE, 2002, J NEUROBIOL, V50, P81, DOI 10.1002/neu.10002 GIGI O, 1982, EMBO J, V1, P1429 GRUBAUER G, 1986, J INVEST DERMATOL, V87, P466, DOI 10.1111/1523-1747.ep12455510 HOUGHTON DC, 1978, CLIN NEPHROL, V10, P140 Humes HD, 1999, ANN NY ACAD SCI, V884, P15 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 Jiang H, 2006, J NEUROSCI RES, V83, P1544, DOI 10.1002/jnr.20833 Jung HI, 1997, MOL CELLS, V7, P431 Keller H, 2002, EXP CELL RES, V277, P161, DOI 10.1006/excr.2002.5552 KELLER HU, 1986, INVAS METAST, V6, P33 Kil J, 1997, HEARING RES, V114, P117, DOI 10.1016/S0378-5955(97)00166-4 Kim JA, 2002, NEUROPHARMACOLOGY, V42, P1109, DOI 10.1016/S0028-3908(02)00052-7 Ku NO, 1997, J BIOL CHEM, V272, P33197, DOI 10.1074/jbc.272.52.33197 KUMAR N, 1981, J BIOL CHEM, V256, P435 Lang HN, 1997, HEARING RES, V111, P177, DOI 10.1016/S0378-5955(97)00098-1 Leers MPG, 1999, J PATHOL, V187, P567, DOI 10.1002/(SICI)1096-9896(199904)187:5<567::AID-PATH288>3.0.CO;2-J Leonova EV, 1997, HEARING RES, V113, P14, DOI 10.1016/S0378-5955(97)00130-5 Li HW, 2003, P NATL ACAD SCI USA, V100, P13495, DOI 10.1073/pnas.2334503100 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 LI LW, 1995, J CELL PHYSIOL, V163, P105, DOI 10.1002/jcp.1041630112 Li XW, 2002, J BIOL CHEM, V277, P15309, DOI 10.1074/jbc.M201253200 Mandato CA, 2003, CURR BIOL, V13, P1096, DOI 10.1016/S0960-9822(03)00420-2 MEITELES LZ, 1994, HEARING RES, V79, P26, DOI 10.1016/0378-5955(94)90124-4 MILLER JJ, 1985, HDB OTOTOXICITY MOLL R, 1982, CELL, V31, P11, DOI 10.1016/0092-8674(82)90400-7 Morton WM, 2000, NAT CELL BIOL, V2, P376 Pillers DM, 2002, MOL GENET METAB, V76, P217, DOI 10.1016/S1096-7192(02)00039-2 Platts SH, 1999, AM J PHYSIOL-HEART C, V277, pH100 RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408 RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 RAPHAEL Y, 1987, DIFFERENTIATION, V35, P151, DOI 10.1111/j.1432-0436.1987.tb00163.x RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 Rodriguez OC, 2003, NAT CELL BIOL, V5, P599, DOI 10.1038/ncb0703-599 Rosenblatt J, 2001, CURR BIOL, V11, P1847, DOI 10.1016/S0960-9822(01)00587-5 Rzadzinska AK, 2004, J CELL BIOL, V164, P887, DOI 10.1083/jcb.200310055 Schutz K, 1998, EUR J CELL BIOL, V77, P100 Sheard MA, 2002, J CELL BIOCHEM, V85, P670, DOI 10.1002/jcb.10173 Shi XR, 2005, AM J PHYSIOL-CELL PH, V288, pC1332, DOI 10.1152/ajpcell.00522.2004 Steel KP, 1999, SCIENCE, V285, P1363, DOI 10.1126/science.285.5432.1363 Steyger PS, 1998, J NEUROSCI, V18, P4603 Steyger PS, 1997, INT J DEV NEUROSCI, V15, P417, DOI 10.1016/S0736-5748(96)00101-3 Stone JS, 1996, J NEUROSCI, V16, P6157 TOUBEAU G, 1986, VIRCHOWS ARCH B, V51, P475, DOI 10.1007/BF02899053 VASILIEV JM, 1970, J EMBRYOL EXP MORPH, V24, P625 Warchol ME, 2002, J NEUROSCI, V22, P2607 WOLF K, 1964, SCIENCE, V144, P1578, DOI 10.1126/science.144.3626.1578 Zhi M, 2007, HEARING RES, V228, P95, DOI 10.1016/j.heares.2007.02.007 NR 66 TC 16 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2007 VL 232 IS 1-2 BP 1 EP 19 DI 10.1016/j.heares.2007.06.011 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 223JA UT WOS:000250364900001 PM 17716843 ER PT J AU Li, H Lim, KM AF Li, Hailong Lim, Kian-Meng TI Contribution of outer hair cell bending to stereocilium deflection in the cochlea SO HEARING RESEARCH LA English DT Article DE outer hair cell; vibration modes; bending; stereocilium deflection ID MECHANICAL RESPONSES; CORTI KINEMATICS; FORCE GENERATION; GUINEA-PIG; ORGAN; AMPLIFIER; MOTILITY; MODEL; TRANSDUCTION; MEMBRANE AB The outer hair cell (OHC) in the cochlea is believed to actively enhance the cochlear sensitivity and frequency selectivity. Besides the well-known axial length change of the OHC, the bending mode of the OHC may also contribute to the stereocilium deflection. To investigate the contribution of the OHC bending to the stereocilium deflection, and the active process in the cochlea, we develop a simple kinematic model of the organ of Corti, consisting of the reticular lamina, the stereocilia and tectorial membrane. The electrically evoked axial length change and bending of the OHC are simulated, and their contributions to the stereocilium deflection are obtained. At the apical turn of the cochlea, the bending mode of the OHC results in stereocilium deflection comparable to that due to the axisymmetric length change of the OHC. At the basal turn, the contribution of the bending mode to the stereocilium deflection becomes insignificant compared to that of the axisymmetric mode. (C) 2007 Elsevier B.V. All rights reserved. C1 Natl Univ Singapore, Dept Mech Engn, Singapore 117576, Singapore. Singapore MIT Alliance, Singapore 117576, Singapore. RP Li, H (reprint author), Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117576, Singapore. EM g0306044@nus.edu.sg; limkm@nus.edu.sg RI Lim, Kian-Meng/B-2556-2010 OI Lim, Kian-Meng/0000-0003-4311-9223 CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Chan DK, 2005, BIOPHYS J, V89, P4382, DOI 10.1529/biophysj.105.070474 CURRIE IG, 2003, FUNDAMENTALS MECH FL Dallos P., 1996, COCHLEA, P1 DALLOS P, 1985, J NEUROSCI, V5, P1591 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 Dallos P, 2006, J PHYSIOL-LONDON, V576, P37, DOI 10.1113/jphysiol.2006.114652 Dallos P, 2003, JARO, V4, P416, DOI 10.1007/s0162-002-3049-z Edge RM, 1998, HEARING RES, V124, P1, DOI 10.1016/S0378-5955(98)00090-2 Fettiplace R, 2001, TRENDS NEUROSCI, V24, P169, DOI 10.1016/S0166-2236(00)01740-9 Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420 FRANK G, 1999, P INT S REC DEV AUD, P151 Fridberger A, 2002, J NEUROSCI, V22, P9850 Fridberger A, 2006, P NATL ACAD SCI USA, V103, P1918, DOI 10.1073/pnas.0507231103 Frolenkov GI, 1998, MOL BIOL CELL, V9, P1961 Frolenkov GI, 1997, BIOPHYS J, V73, P1665 Hu XT, 1999, J NEUROPHYSIOL, V82, P2798 Jia SP, 2006, Auditory Mechanisms: Processes and Models, P261, DOI 10.1142/9789812773456_0045 Jia SP, 2005, NAT NEUROSCI, V8, P1028, DOI 10.1038/nn1509 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 Kennedy HJ, 2005, NATURE, V433, P880, DOI 10.1038/nature03367 Liao ZJ, 2005, JARO-J ASSOC RES OTO, V6, P378, DOI 10.1007/s10162-005-0015-6 Liao ZJ, 2005, J ACOUST SOC AM, V117, P2147, DOI 10.1121/1.1863732 LIM DJ, 1980, J ACOUST SOC AM, V67, P1686, DOI 10.1121/1.384295 Lim KM, 2007, J BIOMECH, V40, P1362, DOI 10.1016/j.jbiomech.2006.05.009 Lim KM, 2007, COMPUT STRUCT, V85, P911, DOI 10.1016/j.compstruc.2007.01.003 MAMMANO F, 1993, NATURE, V365, P838, DOI 10.1038/365838a0 RATNANATHER JT, 1996, P C DIV AUD MECH, P601 RHODE WS, 1967, J ACOUST SOC AM, V42, P185, DOI 10.1121/1.1910547 RICHTER CP, 2005, AUDITORY MECH PROCES, P70 Scherer MP, 2004, BIOPHYS J, V87, P1378, DOI 10.1529/biophysj.103.037184 Spector AA, 2002, BIOMECH MODEL MECHAN, V1, P123, DOI 10.1007/s10237-002-0012-1 Tolomeo JA, 1998, J ACOUST SOC AM, V103, P524, DOI 10.1121/1.421126 WRIGHT A, 1984, HEARING RES, V13, P89, DOI 10.1016/0378-5955(84)90099-6 ZENNER HP, 1988, HEARING RES, V34, P233, DOI 10.1016/0378-5955(88)90003-2 NR 36 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2007 VL 232 IS 1-2 BP 20 EP 28 DI 10.1016/j.heares.2007.05.012 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 223JA UT WOS:000250364900002 PM 17629426 ER PT J AU Parker, MA Corliss, DA Gray, B Anderson, JK Bobbin, RP Snyder, EY Cotanche, DA AF Parker, Mark A. Corliss, Deborah A. Gray, Brianna Anderson, Julia K. Bobbin, Richard P. Snyder, Evan Y. Cotanche, Douglas A. TI Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells SO HEARING RESEARCH LA English DT Article DE stem cell; hearing loss; spiral ganglion; hair cell ID INNER-EAR; ACOUSTIC TRAUMA; MOUSE COCHLEA; GENE-THERAPY; GUINEA-PIGS; NEURONS; REPLACEMENT; TRANSPLANTATION; REGENERATION; REPAIR AB Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, spiral ganglion, and Schwann cells) and cells of the organ of Corti (hair cells, supporting cells). Additionally, noise-exposed, stem cell-injected animals exhibited a small but significant increase in the number of satellite cells and Type I spiral ganglion neurons compared to non-injected noise-exposed animals. These results indicate that cells of this neural stem cell line migrate from the scala tympani to Rosenthal's canal and the organ of Corti. Moreover, they suggest that cells of this neural stem cell line may derive some information needed from the microenvironment of the cochlea to differentiate into replacement cells in the cochlea. (C) 2007 Elsevier B.V. All rights reserved. C1 Emerson Coll, Dept Commun Sci & Disorders, Boston, MA 02116 USA. Childrens Hosp, Boston, MA 02115 USA. Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. LSU Hlth Sci Ctr, Dept Otolaryngol, Kresge Hearing Res Labs, New Orleans, LA USA. Burnham Inst, La Jolla, CA 92037 USA. Hlth Sci & Technol Program, Boston, MA USA. RP Parker, MA (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM Mark_Parker@meei.harvard.edu CR Berlin CI, 2003, PEDIATR CLIN N AM, V50, P331, DOI 10.1016/S0031-3955(03)00031-2 Bobbin RP, 2003, HEARING RES, V184, P51, DOI 10.1016/S0378-5955(03)00230-2 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 D'Andrea P, 2002, BIOCHEM BIOPH RES CO, V296, P685, DOI 10.1016/S0006-291X(02)00891-4 Deb A, 2003, CIRCULATION, V107, P1247, DOI 10.1161/01.CIR.0000061910.39145.F0 Doering LC, 2000, J NEUROSCI RES, V61, P597, DOI 10.1002/1097-4547(20000915)61:6<597::AID-JNR3>3.0.CO;2-L Glastonbury CM, 2002, AM J NEURORADIOL, V23, P635 HASKO JA, 1990, HEARING RES, V45, P63, DOI 10.1016/0378-5955(90)90183-P Himes BT, 2001, J NEUROSCI RES, V65, P549, DOI 10.1002/jnr.1185 Holley MC, 2002, BRIT MED BULL, V63, P157, DOI 10.1093/bmb/63.1.157 Ismail M, 2002, CLIN LAB HAEMATOL, V24, P329, DOI 10.1046/j.1365-2257.2002.00463.x Ito J, 2001, ACTA OTO-LARYNGOL, V121, P140 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Jensen-Smith HC, 2003, J NEUROCYTOL, V32, P185, DOI 10.1023/B:NEUR.0000005602.18713.02 Jiang SG, 2004, P NATL ACAD SCI USA, V101, P16891, DOI 10.1073/pnas.0404398101 Kanzaki S, 2002, AUDIOL NEURO-OTOL, V7, P161, DOI 10.1159/000058303 Kawamoto K, 2003, J NEUROSCI, V23, P4395 Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 Mi RF, 2005, EXP NEUROL, V194, P301, DOI 10.1016/j.expneurol.2004.07.011 Ng IOL, 2003, HEPATOLOGY, V38, P989, DOI 10.1053/jhep.2003.50395 Ourednik J, 2002, NAT BIOTECHNOL, V20, P1103, DOI 10.1038/nbt750 Park KI, 2002, NAT BIOTECHNOL, V20, P111 Parker MA, 2004, AUDIOL NEURO-OTOL, V9, P72, DOI 10.1159/000075998 Parker MA, 2005, EXP NEUROL, V194, P320, DOI 10.1016/j.expneurol.2005.04.018 Rio C, 2002, J COMP NEUROL, V442, P156, DOI 10.1002/cne.10085 Rivolta MN, 1998, P ROY SOC B-BIOL SCI, V265, P1595 Rosario CM, 1997, DEVELOPMENT, V124, P4213 RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Sakaguchi N, 1998, J HISTOCHEM CYTOCHEM, V46, P29 Sato Y, 2005, BLOOD, V106, P756, DOI 10.1182/blood-2005-02-0572 Shinomori Y, 2001, ANN OTO RHINOL LARYN, V110, P91 Snyder EY, 1997, P NATL ACAD SCI USA, V94, P11663, DOI 10.1073/pnas.94.21.11663 SNYDER EY, 1992, CELL, V68, P33, DOI 10.1016/0092-8674(92)90204-P Teng YD, 2002, P NATL ACAD SCI USA, V99, P3024, DOI 10.1073/pnas.052678899 Trautwein P G, 2000, J Am Acad Audiol, V11, P309 Vogel G, 2004, SCIENCE, V305, P27 Wagner J, 1999, NAT BIOTECHNOL, V17, P653 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Weimann JM, 2003, P NATL ACAD SCI USA, V100, P2088, DOI 10.1073/pnas.0337659100 Yandava BD, 1999, P NATL ACAD SCI USA, V96, P7029, DOI 10.1073/pnas.96.12.7029 Yang M, 2002, EXP NEUROL, V177, P50, DOI 10.1006/exnr.2002.7989 Ying QL, 2002, NATURE, V416, P545, DOI 10.1038/nature729 NR 44 TC 38 Z9 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2007 VL 232 IS 1-2 BP 29 EP 43 DI 10.1016/j.heares.2007.06.007 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 223JA UT WOS:000250364900003 PM 17659854 ER PT J AU Minoda, R Izumikawa, M Kawamoto, K Zhang, H Raphael, Y AF Minoda, Ryosei Izumikawa, Masahiko Kawamoto, Kohei Zhang, Hui Raphael, Yehoash TI Manipulating cell cycle regulation in the mature cochlea SO HEARING RESEARCH LA English DT Article DE adenovirus; gene transfer; p27Kip1; Atoh1; Skp2; guinea pig; hair cell; supporting cell; BrdU ID MAMMALIAN INNER-EAR; HAIR-CELLS; ACOUSTIC TRAUMA; CHICK COCHLEA; GENE-TRANSFER; HEARING-LOSS; IN-VIVO; PROLIFERATION; REGENERATION; P27(KIP1) AB Sensorineural hearing loss, which is often caused by degeneration of hair cells in the auditory epithelium, is permanent because lost hair cells are not replaced. Several conceptual approaches can be used to place new hair cells in the auditory epithelium. One possibility is to enhance proliferation of non-sensory cells that remain in the deaf ear and induce transdifferentiation of some of these cells into the hair cell phenotype. Several genes, including p27(kipl), have been shown to regulate proliferation and differentiation in the developing auditory epithelium. The role of p27(Kipl) in the mature ear is not well characterized. We now show that p2(Kipl) is present in the nuclei of nonsensory cells of the mature auditory epithelium. We determined that forced expression of Skp2 using a recombinant adenovirus vector, resulted in presence of BrdU-positive cells in the auditory epithelium. When SKP2 over-expression was combined with forced expression of Atohl, ectopic hair cells were found in the auditory epithelium in greater numbers than were seen with Atohl alone. Skp2 over-expression alone did not result in ectopic hair cells. These findings suggest that the p271(Kipl) protein remains in the mature auditory epithelium and therefore P27(Kipl) can serve as a target for gene manipulation. The data also suggest that induced proliferation, by itself, does not generate new hair cells in the cochlea. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Kumamoto Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Kumamoto 8608556, Japan. Kansai Med Univ, Dept Otolaryngol Head & Neck Surg, Osaka 5708506, Japan. Yale Univ, Sch Med, Dept Genet, New Haven, CT 06520 USA. RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, MSRB 3,Rm 9303 1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM yoash@umich.edu CR Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 BROUGH DE, 1996, J VIROL, V70 Chen P, 2003, NAT CELL BIOL, V5, P422, DOI 10.1038/ncb976 Chen P, 2002, DEVELOPMENT, V129, P2495 Chen P, 1999, DEVELOPMENT, V126, P1581 Cotanche D A, 1997, Ann Otol Rhinol Laryngol Suppl, V168, P9 Dong YY, 2003, NEUROREPORT, V14, P759, DOI 10.1097/01.wnr.0000066199.94941.ed Dooling RJ, 1997, P NATL ACAD SCI USA, V94, P14206, DOI 10.1073/pnas.94.25.14206 Gervais JLM, 1998, J BIOL CHEM, V273, P19207, DOI 10.1074/jbc.273.30.19207 HARADA KS, 2005, INT J ONCOL, V27, P627 Harper JW, 2001, CURR BIOL, V11, pR431, DOI 10.1016/S0960-9822(01)00253-6 HASHINO E, 1993, J CELL SCI, V105, P23 He TC, 1998, P NATL ACAD SCI USA, V95, P2509, DOI 10.1073/pnas.95.5.2509 Ishimoto S, 2002, HEARING RES, V173, P187, DOI 10.1016/S0378-5955(02)00579-8 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Ji P, 2005, CELL CYCLE, V4, P373, DOI 10.4161/cc.4.3.1535 Kanzaki S, 2006, HEARING RES, V214, P28, DOI 10.1016/j.heares.2006.01.014 Kawamoto K, 2003, J NEUROSCI, V23, P4395 Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084 MAREAN GC, 1995, HEARING RES, V82, P267, DOI 10.1016/0378-5955(94)00183-Q Nakayama K, 2000, EMBO J, V19, P2069, DOI 10.1093/emboj/19.9.2069 Nakayama K, 2001, BIOCHEM BIOPH RES CO, V282, P853, DOI 10.1006/bbrc.2001.4627 Nelsen CJ, 2001, ONCOGENE, V20, P1825, DOI 10.1038/sj.onc.1204248 NIEMIEC AJ, 1994, HEARING RES, V79, P1, DOI 10.1016/0378-5955(94)90122-8 RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 Sage C, 2005, SCIENCE, V307, P1114, DOI 10.1126/science.1106642 SAUNDERS JC, 1992, EXP NEUROL, V115, P13, DOI 10.1016/0014-4886(92)90213-A Sherr CJ, 1999, GENE DEV, V13, P1501, DOI 10.1101/gad.13.12.1501 Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6 STONE JS, 1994, J COMP NEUROL, V341, P50, DOI 10.1002/cne.903410106 Stone JS, 2000, P NATL ACAD SCI USA, V97, P11714, DOI 10.1073/pnas.97.22.11714 Sumimoto H, 2005, GENE THER, V12, P95, DOI 10.1038/sj.gt.3302391 Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349 Zheng JL, 2000, NAT NEUROSCI, V3, P580 Zheng JL, 2000, DEVELOPMENT, V127, P4551 Zine A, 2001, J NEUROSCI, V21, P4712 NR 36 TC 22 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2007 VL 232 IS 1-2 BP 44 EP 51 DI 10.1016/j.heares.2007.06.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 223JA UT WOS:000250364900004 PM 17658230 ER PT J AU Buchholz, JM AF Buchholz, Joerg M. TI Characterizing the monaural and bincaural processes underlying reflection masking SO HEARING RESEARCH LA English DT Article DE auditory masking; binaural hearing; models of auditory function; precedence effect ID SIGNAL-DEPENDENT COMPRESSION; REPRODUCED SOUND; TIMBRAL ASPECTS; SMALL ROOMS; MODEL; COLORATION; PERCEPTION; FIELDS AB Reflection masked thresholds (RMTs) for the simple scenario of a test reflection masked by the direct sound (200 ms long broadband noise) were measured as a function of reflection delay for diotic and dichotic stimulus presentations. In order to discriminate between contributions to reflection masking from simultaneous versus forward masking, the simultaneous RMT was measured in addition to the traditional RMT. Simultaneous RM was realized by truncating the offset of the test reflection such that the test reflection and the direct sound had a common offset. By comparing the experimental results for the two RMTs, it is shown that forward masking effects only have a significant effect on reflection masking for delays above 7-10 ms. Moreover, binaural mechanisms were revealed which deteriorate auditory detection of test reflections for delays below 7-10 ms and enhance detection for larger delays. The monaural and binaural processes that may underlie reflection masking are discussed in terms of auditory-modelling concepts. (C) 2007 Elsevier B.V. All rights reserved. C1 Ctr Appl Hearing Res Acoust Technol, DK-2800 Lyngby, Denmark. RP Buchholz, JM (reprint author), Ctr Appl Hearing Res Acoust Technol, Bldg 352, DK-2800 Lyngby, Denmark. EM jb@oersted.dtu.dk CR ANDO Y, 1982, J ACOUST SOC AM, V71, P616, DOI 10.1121/1.387534 ATAL BS, 1962, 4 INT C AC COP BARRON M, 1971, J SOUND VIB, V15, P475, DOI 10.1016/0022-460X(71)90406-8 BECH S, 1995, J ACOUST SOC AM, V97, P1717, DOI 10.1121/1.413047 Bech S, 1996, J ACOUST SOC AM, V99, P3539, DOI 10.1121/1.414952 BERSTEIN LR, 1996, J ACOUST SOC AM, V100, P3774 BILSEN FA, 1973, ACUSTICA, V28, P131 Blauert J., 1997, SPATIAL HEARING PSYC Breebaart J, 2001, J ACOUST SOC AM, V110, P1074, DOI 10.1121/1.1383297 BRUGGEN M, 2001, KLANGVERFARBUNG RUCK BRUGTORF W, 1964, ACUSTICA, P254 BUCHHOLZ JM, 2003, FORTSCHR AKUST DTSCH, P184 BUCHHOLZ JM, 2001, 110 CONV AUD ENG SOC Buchholz JM, 2004, ACTA ACUST UNITED AC, V90, P887 Buchholz JM, 2004, ACTA ACUST UNITED AC, V90, P873 Burgtorf W., 1961, Acustica, V11 BURGTORF W, 1967, ACUSTICA, V19, P72 Burgtorf W., 1963, Acustica, V13 Dau T, 1996, J ACOUST SOC AM, V99, P3615, DOI 10.1121/1.414959 DURLACH NI, 1963, J ACOUST SOC AM, V35, P1206, DOI 10.1121/1.1918675 HAAS H, 1951, ACUSTICA, V1, P49 KATES JM, 1985, J ACOUST SOC AM, V77, P1529, DOI 10.1121/1.391995 KOHLRAUSCH A, 1997, BINAURAL SPATIAL HEA, P169 KONIG AH, 1950, J ACOUST SOC AM, V22, P61 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 Lochner J.P.A., 1958, Acustica, V8 OLIVE SE, 1989, J AUDIO ENG SOC, V37, P539 Orfanidis SJ, 1996, INTRO SIGNAL PROCESS PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 REICHARD.W, 1967, ACUSTICA, V18, P274 RUBAK P, 2003, P 23 INT C AUD ENG S, P171 RUGGERO MA, 1997, J ACOUST SOC AM, V101, P2152 SALOMONS AM, 1995, COLORATION BINAURAL Seraphim H.P., 1963, Acustica, V13 Seraphim H.P., 1961, Acustica, V11 ZUREK PM, 1979, J ACOUST SOC AM, V66, P1750, DOI 10.1121/1.383648 Zwicker E, 1999, PSYCHOACOUSTICS FACT NR 38 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2007 VL 232 IS 1-2 BP 52 EP 66 DI 10.1016/j.heares.2007.06.008 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 223JA UT WOS:000250364900005 PM 17664048 ER PT J AU Peterson, DC Schofield, BR AF Peterson, Diana Coomes Schofield, Brett R. TI Projections from auditory cortex contact ascending pathways that originate in the superior olive and inferior colliculus SO HEARING RESEARCH LA English DT Article DE medial geniculate; corticofugal; feedback loops; efferent system; descending pathways ID BIG BROWN BAT; GUINEA-PIG; CORTICOFUGAL MODULATION; EPTESICUS-FUSCUS; PARAOLIVARY NUCLEUS; COCHLEAR NUCLEUS; MOUSTACHED BAT; RAT; NEURONS; COMPLEX AB The superior olivary complex (SOC) and inferior colliculus (IC) are targets of cortical projections as well as sources of major ascending auditory pathways. This study examines whether the cortical projections contact cells in the SOC or IC that project to higher levels. First, we placed an anterograde tracer into the auditory cortex to label cortico-olivary axons and a retrograde tracer into the IC to label olivocollicular cells in guinea pigs. Cortical axons contacted many labeled cells in the ipsilateral SOC and fewer labeled cells in the contralateral SOC. Contacted cells projected to the ipsilateral or contralateral IC. In a second experiment, we labeled corticocollicular axons with an anterograde tracer and injected retrograde tracers into the medial geniculate (MG) to label colliculogeniculate cells. In the IC ipsilateral to the cortical injection, many cortical axons contacted colliculogeniculate cells in the dorsal cortex and external cortex of the IC. The contacted cells projected to the ipsilateral MG or, less often, to the contralateral MG. The results indicate that cortical projections are likely to contact cells in the SOC and IC that project to higher centers. This suggests that auditory cortex can modulate the ascending auditory pathways at multiple levels of the brainstem. (C) 2007 Elsevier B.V. All rights reserved. C1 Northeastern Ohio Univ Coll Med & Pharm, Dept Neurobiol, Rootstown, OH 44272 USA. RP Peterson, DC (reprint author), Northeastern Ohio Univ Coll Med & Pharm, Dept Neurobiol, 4209 State Route 44,POB 95, Rootstown, OH 44272 USA. EM dcoomes@neoucom.edu; bschofie@ncoucom.edu CR ANDERSEN RA, 1980, J COMP NEUROL, V194, P649, DOI 10.1002/cne.901940311 Bajo VM, 2005, J COMP NEUROL, V486, P101, DOI 10.1002/cne.20542 Bartlett EL, 2000, NEUROSCIENCE, V100, P811, DOI 10.1016/S0306-4522(00)00340-7 Bledsoe SC, 2003, EXP BRAIN RES, V153, P530, DOI 10.1007/s00221-003-1671-6 Casseday JH, 2002, SPR HDB AUD, V15, P238 Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x deRibaupierre F, 1997, CENTRAL AUDITORY SYS, P317 Doucet JR, 2002, BRAIN RES, V925, P28, DOI 10.1016/S0006-8993(01)03248-6 DRUGA R, 1988, AUDITORY PATHWAY STR, P293 FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050 FELICIANO M, 1995, J NEUROCHEM, V65, P1348 GOLDSTEINDARUEC.N, 2002, HEARING RES, V3896, P1 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E Granstrem E E, 1984, Neurosci Behav Physiol, V14, P296, DOI 10.1007/BF01149614 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Jen PHS, 2003, HEARING RES, V184, P91, DOI 10.1016/S0378-5955(03)00237-5 Jen PHS, 2002, HEARING RES, V168, P196, DOI 10.1016/S0378-5955(02)00358-1 Jen PHS, 2001, EXP BRAIN RES, V137, P292 JONES EG, 1972, J COMP NEUROL, V147, P93 Kelly JB, 2005, INFERIOR COLLICULUS, P248, DOI 10.1007/0-387-27083-3_9 Kulesza RJ, 2003, J NEUROPHYSIOL, V89, P2299, DOI 10.1152/jn.00547.2002 Kulesza RJ, 2000, JARO, V1, P255, DOI 10.1007/s101620010054 Ma XF, 2001, P NATL ACAD SCI USA, V98, P14060, DOI 10.1073/pnas.241517098 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MITANI A, 1983, NEUROSCI LETT, V42, P185, DOI 10.1016/0304-3940(83)90404-4 Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 Nwabueze-Ogbo FC, 2002, PHYSIOL RES, V51, P95 Popelar J, 2003, PHYSIOL RES, V52, P615 REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B Saldana E, 2000, ANAT EMBRYOL, V202, P265, DOI 10.1007/s004290000109 SCHOFIELD BR, 2006, HEARING RES, P81 SCHOFIELD BR, 1991, J COMP NEUROL, V314, P645, DOI 10.1002/cne.903140403 Schofield BR, 2005, HEARING RES, V206, P3, DOI 10.1016/j.heares.2005.03.005 SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409 Schofield BR, 2006, JARO-J ASSOC RES OTO, V7, P95, DOI 10.1007/s10162-005-0025-4 Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 Spangler K., 1991, NEUROBIOLOGY HEARING, P27 Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 Sun XD, 1996, NEUROSCI LETT, V212, P131, DOI 10.1016/0304-3940(96)12788-9 SYKA J, 1988, AUDITORY PATHWAY STR, P279 SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3 Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Winer JA, 1998, J COMP NEUROL, V400, P147 Yan J, 2005, J NEUROPHYSIOL, V93, P71, DOI 10.1152/jn.00348.2004 Yan J, 1999, J NEUROPHYSIOL, V81, P817 Yan J, 1996, SCIENCE, V273, P1100, DOI 10.1126/science.273.5278.1100 Yan J, 1996, HEARING RES, V93, P102, DOI 10.1016/0378-5955(95)00209-X Zhou XM, 2005, HEARING RES, V203, P201, DOI 10.1016/j.heares.2004.12.008 NR 52 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2007 VL 232 IS 1-2 BP 67 EP 77 DI 10.1016/j.heares.2007.06.009 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 223JA UT WOS:000250364900006 ER PT J AU Salt, AN Sirjani, DB Hartsock, JJ Gill, RM Plontke, SK AF Salt, Alec N. Sirjani, Davud B. Hartsock, Jared J. Gill, Ruth M. Plontke, Stefan K. TI Marker retention in the cochlea following injections through the round window membrane SO HEARING RESEARCH LA English DT Article DE drug delivery; round window membrane; perilymph; pharmacokinetics; inner ear ID GUINEA-PIG; SCALA TYMPANI; INNER-EAR; INTRACOCHLEAR INFUSION; CONCENTRATION GRADIENT; DRUG-DELIVERY; GENE-TRANSFER; NEUROTROPHINS; COCHLEOSTOMY; GENTAMICIN AB Local delivery of drugs to the inner ear is increasingly being used in both clinical and experimental studies. Although direct injection of drugs into perilymph appears to be the most promising way of administering drugs quantitatively, no studies have yet demonstrated the pharmacokinetics in perilymph following direct injections. In this study, we have investigated the retention of substance in perilymph following a single injection into the basal turn of scala tympani (ST). The substance injected was a marker, trimethylphenylammonium (TMPA) that can be detected in low concentrations with ion-selective microelectrodes. Perilymph pharmacokinetics of TMPA was assessed using sequential apical sampling to obtain perilymph for analysis. The amount of TMPA retained in perilymph was compared for different injection and sampling protocols. TMPA concentrations measured in fluid samples were close to those predicted by simulations when the injection pipette was sealed into the bony wall of ST but were systematically lower when the injection pipette was inserted through the round window membrane (RWM). In the latter condition, it was estimated that over 60% of the injected TMPA was lost due to leakage of perilymph around the injection pipette at a rate estimated to be 0.09 mu L/min. The effects of leakage during and after injections through the RWM were dramatically reduced when the round window niche was filled with 1% sodium hyaluronate gel before penetrating the RWM with the injection pipette. The findings demonstrate that in order to perform quantitative drug injections into perilymph, even small rates of fluid leakage at the injection site must be controlled. (C) 2007 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. Univ Tubingen, Dept Otolaryngol Head & Neck Surg, D-72076 Tubingen, Germany. Univ Tubingen, Tubingen Hearing Res Ctr, D-72076 Tubingen, Germany. RP Salt, AN (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115,660 S Euclid Ave, St Louis, MO 63110 USA. EM salta@msnotes.wustl.edu CR BOHMER A, 1993, ACTA OTO-LARYNGOL, V507, P6 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T Carvalho GJ, 1999, AM J OTOL, V20, P87 Chelikh L, 2003, ACTA OTO-LARYNGOL, V123, P199, DOI 10.1080/00016480310001042 Chen ZQ, 2005, J CONTROL RELEASE, V110, P1, DOI 10.1016/j.jconrel.2005.09.003 ENGSTROM B, 1987, ACTA OTO-LARYNGOL, P66 Goycoolea MV, 1997, MICROSC RES TECHNIQ, V36, P201, DOI 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R Hahn H, 2006, HEARING RES, V212, P236, DOI 10.1016/j.heares.2005.12.001 Laurent C, 1992, Acta Otolaryngol Suppl, V493, P63 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mynatt R, 2006, JARO-J ASSOC RES OTO, V7, P182, DOI 10.1007/a10162-0006-0034-y Nair TS, 1997, HEARING RES, V107, P93, DOI 10.1016/S0378-5955(97)00024-5 Paasche G, 2006, HEARING RES, V212, P74, DOI 10.1016/j.heares.2005.10.013 Plontke SK, 2007, LARYNGOSCOPE, V117, P1191, DOI 10.1097/MLG.0b013e318058a06b Praetorius M, 2007, HEARING RES, V227, P53, DOI 10.1016/j.heares.2006.07.002 Salt AN, 2004, HEARING RES, V191, P90, DOI 10.1016/j.heares.2003.12.018 Salt AN, 2006, J NEUROSCI METH, V153, P121, DOI 10.1016/j.jneumeth.2005.10.008 Sheppard WM, 2004, OTOLARYNG HEAD NECK, V131, P890, DOI 10.1016/j.otohns.2004.05.021 Stover T, 2000, GENE THER, V7, P377, DOI 10.1038/sj.gt.3301108 Stover T, 1999, HEARING RES, V136, P124, DOI 10.1016/S0378-5955(99)00115-X Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 Wareing M, 1999, HEARING RES, V128, P61, DOI 10.1016/S0378-5955(98)00196-8 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 NR 23 TC 11 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2007 VL 232 IS 1-2 BP 78 EP 86 DI 10.1016/j.heares.2007.06.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 223JA UT WOS:000250364900007 PM 17662546 ER PT J AU Nourski, KV Abbas, PJ Miller, CA Robinson, BK Jeng, FC AF Nourski, Kirill V. Abbas, Paul J. Miller, Charles A. Robinson, Barbara K. Jeng, Fuh-Cherng TI Acoustic-electric interactions in the guinea pig auditory nerve: Simultaneous and forward masking of the electrically evoked compound action potential SO HEARING RESEARCH LA English DT Article DE adaptation; cochlear implant; deafening; electric-acoustic stimulation; guinea pig; recovery ID SHORT-TERM ADAPTATION; PULSE TRAINS; COCHLEAR IMPLANTATION; FIBER RESPONSES; HEARING-LOSS; HAIR-CELLS; STIMULATION; FUROSEMIDE; OTOTOXICITY; RECORDINGS AB The Study investigated the time course of the effects of acoustic and electric stimulation on the electrically evoked compound action potential (ECAP). Adult guinea pigs were used in acute experimental sessions. Bursts of acoustic noise and high-rate (5000 pulses/s) electric pulse trains were used as maskers. Biphasic electric pulses were used as probes. ECAPs were recorded from the auditory nerve trunk. Simultaneous masking of the ECAP with acoustic noise featured an onset effect and a decrease in the amount of masking to a steady state. It was characterized by a two-component exponential function. The amount of masking increased with masker level and decreased with probe level. Post-stimulatory ECAP recovery often featured a non-monotonic time course, described by a three-component exponent. Electric maskers produced similar post-stimulatory effects in hearing and acutely deafened subjects. Acoustic stimulation affects the ECAP in a level- and time-dependent manner. Simultaneous masking follows a time course comparable to that of adaptation to an acoustic stimulus. Refractoriness, spontaneous activity, and adaptation are suggested to play a role in ECAP recovery. Post-stimulatory changes in synchrony, possibly due to recovery of spontaneous activity and an additional hair-cell independent mechanism, are hypothesized to contribute to the observed non-monotonicity of recovery. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA. RP Nourski, KV (reprint author), Univ Iowa, Dept Neurosurg, 3024 Boyd Tower, Iowa City, IA 52242 USA. EM kirill-nourski@uiowa.edu CR ABBAS PJ, 2001, EFFECTS REMAINING HA ABBAS PJ, 2003, EFFECTS REMAINING HA Abbas PJ, 2004, EFFECTS REMAINING HA ABBAS PJ, 2005, 4 INT S WORKSH OBJ M ANNIKO M, 1978, ACTA OTO-LARYNGOL, V86, P201, DOI 10.3109/00016487809124737 Brown CJ, 1998, AM J OTOL, V19, P320 Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009 Cohen NL, 2004, AUDIOL NEURO-OTOL, V9, P197, DOI 10.1159/000078389 Copeland BJ, 2004, ANNU REV MED, V55, P157, DOI 10.1146/annurev.med.55.091902.105251 Dorman MF, 2005, EAR HEARING, V26, P371, DOI 10.1097/00003446-200508000-00001 Eisen MD, 2004, EAR HEARING, V25, P528, DOI 10.1097/00003446-200412000-00002 Gantz Bruce J, 2006, Audiol Neurootol, V11 Suppl 1, P63, DOI 10.1159/000095616 Gantz BJ, 2004, ACTA OTO-LARYNGOL, V124, P344, DOI 10.1080/00016480410016423 Gstoettner Wolfgang K, 2006, Audiol Neurootol, V11 Suppl 1, P49, DOI 10.1159/000095614 Haenggeli A, 1998, AUDIOLOGY, V37, P353 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 Hinojosa R, 2001, LARYNGOSCOPE, V111, P1797, DOI 10.1097/00005537-200110000-00025 HINOJOSA R, 1995, AM J OTOL, V16, P731 Hu N, 2003, HEARING RES, V185, P77, DOI 10.1016/S0378-5955(03)00261-2 James C, 2005, ACTA OTO-LARYNGOL, V125, P481, DOI 10.1080/00016480510026197 Kiang NYS, 1965, RES MONOGRAPH, V35 Kiefer J, 2002, COCHLEAR IMPLANTS - AN UPDATE, P569 Kiefer J, 2005, AUDIOL NEURO-OTOL, V10, P134, DOI 10.1159/000084023 KILLIAN MJP, 1994, THESIS U UTRECHT UTR KILLIAN MJP, 1994, HEARING RES, V81, P66, DOI 10.1016/0378-5955(94)90154-6 LEAKEJONES PA, 1982, HEARING RES, V8, P225, DOI 10.1016/0378-5955(82)90076-4 Litvak L, 2001, J ACOUST SOC AM, V110, P368, DOI 10.1121/1.1375140 Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492 Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6 MILLER C, 2005, ASS RES OTOLARYNGOL, P357 Miller CA, 2006, JARO-J ASSOC RES OTO, V7, P195, DOI 10.1007/s10162-006-0036-9 MILLER CA, 2003, EFFECTS REMAINING HA Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X MILLER CA, 2004, EFFECTS REMAINING HA MILLER CA, 2000, EFFECTS REMAINING HA MILLER CA, 2005, EFFECTS REMAINING HA Miller RG, 2001, AMYOTROPH LATERAL SC, V2, P3 MOXON EC, 1971, THESIS MIT BOSTON MA National Institutes of Health, 1995, NIH CONSENSUS STATE, V13, P1 NOURSKI K, 2006, ASS RES OTOLARYNGOL NOURSKI K, 2005, ASS RES OTOLARYNGOL Nourski KV, 2005, HEARING RES, V202, P141, DOI [10.1016/j.heares.2004.10.001, 10.1016/j.heares.2004.11.001] NOURSKI KV, 2005, 2005 C IMPL AUD PROS, P102 PIKE DA, 1980, HEARING RES, V3, P79, DOI 10.1016/0378-5955(80)90009-X Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 Searchfield GD, 2004, HEARING RES, V192, P23, DOI 10.1016/j.heares.2004.02.006 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Skarzynski H, 2006, ACTA OTO-LARYNGOL, V126, P934, DOI 10.1080/00016480600606632 SKARZYNSKI H, 2003, MED SCI MONITOR, V9, pCS26 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 WILSON B, 2002, SPEECH PROCESSORS AU Wilson BS, 2003, ANNU REV BIOMED ENG, V5, P207, DOI 10.1146/annurev.bioeng.5.040202.121645 NR 60 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2007 VL 232 IS 1-2 BP 87 EP 103 DI 10.1016/j.heares.2007.07.001 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 223JA UT WOS:000250364900008 PM 17723284 ER PT J AU Versnel, H Agterberg, MJH de Groot, JCMJ Smoorenburg, GF Klis, SFL AF Versnel, Huib Agterberg, Martijn J. H. de Groot, John C. M. J. Smoorenburg, Guido F. Klis, Sjaak F. L. TI Time course of cochlear electrophysiology and morphology after combined administration of kanamycin and furosemide SO HEARING RESEARCH LA English DT Article DE deafness; ototoxicity; recovery; cochlear hair cells; spiral ganglion cells; electrocochleography ID ALBINO GUINEA-PIG; SPIRAL GANGLION NEURONS; HAIR CELL LOSS; ETHACRYNIC-ACID; NEUROTROPHIC FACTOR; HEARING-LOSS; ELECTRICAL-STIMULATION; CISPLATIN OTOTOXICITY; SURVIVAL; DEGENERATION AB In animal models of deafness, administration of an aminoglycoside in combination with a loop diuretic is often applied to produce a rapid loss of cochlear hair cells. However, the extent to which surviving hair cells remain functional after such a deafening procedure varies. In a longitudinal electrocochleographical study, we investigated the variability of cochlear function between and within guinea pigs after combined administration of kanamycin and furosemide. Concurrently, histological data were obtained at 1, 2, 4 and 8 weeks after deafening treatment. The main measures in our study were compound action potential (CAP) thresholds, percentage of surviving hair cells and packing density of spiral ganglion cells (SGCs). One day after deafening treatment, we found threshold shifts widely varying among animals from 0 to 100 dB. The variability decreased after 2 days, and in 18 out of 20 animals threshold shifts greater than 55 dB were found 4-7 days after deafening. Remarkably, in the majority of animals, thresholds decreased by up to 25 dB after 7 days indicating functional recovery. As expected, final thresholds were negatively correlated to the percentage of surviving hair cells. Notably, the percentage of surviving hair cells might be predicted on the basis of thresholds observed one day after deafening. SGC packing density, which rapidly decreased with the period after deafening treatment and correlated to the percentage of surviving inner hair cells, was not a determining factor for the CAP thresholds. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Otorhinolaryngol, NL-3508 GA Utrecht, Netherlands. RP Versnel, H (reprint author), Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Otorhinolaryngol, POB 85500, NL-3508 GA Utrecht, Netherlands. EM h.versnel@umcutrecht.nl; M.J.H.Agterberg@umcutrecht.nl; J.C.M.J.deGroot@umcutrecht.nl; guido.smoorenburg@wanadoo.fr RI Agterberg, Martijn/K-2956-2012 CR ARAN JM, 1975, ACTA OTO-LARYNGOL, V79, P24, DOI 10.3109/00016487509124650 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040 Dodson HC, 2000, J NEUROCYTOL, V29, P525, DOI 10.1023/A:1007201913730 Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Hamers FPT, 2003, AUDIOL NEURO-OTOL, V8, P305, DOI 10.1159/000073515 Hu N, 2003, HEARING RES, V185, P77, DOI 10.1016/S0378-5955(03)00261-2 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7 Leake P.A., 2004, COCHLEAR IMPLANTS AU, P101 LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836 McFadden SL, 2004, BRAIN RES, V997, P40, DOI 10.1016/j.brainres.2003.10.031 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X Nourski KV, 2004, HEARING RES, V187, P131, DOI 10.1016/S0378-5955(03)00336-8 RUSSELL NJ, 1979, ACTA OTO-LARYNGOL, V88, P369, DOI 10.3109/00016487909137181 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 vanEmst MG, 1997, HEARING RES, V114, P93, DOI 10.1016/S0378-5955(97)00156-1 van Ruijven MWM, 2004, HEARING RES, V197, P44, DOI 10.1016/j.heares.2004.07.014 van Ruijven MWM, 2005, HEARING RES, V205, P241, DOI 10.1016/j.heares.2005.03.023 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X YLIKOSKI J, 1974, ACTA OTO-LARYNGOL, P23 NR 30 TC 36 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2007 VL 231 IS 1-2 BP 1 EP 12 DI 10.1016/j.heares.2007.03.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 208NU UT WOS:000249327300001 PM 17475424 ER PT J AU Sellick, PM AF Sellick, Peter M. TI Long term effects of BAPTA in scala media on cochlear function SO HEARING RESEARCH LA English DT Article DE cochlea; tip links; BAPTA; outer hair cells; permanent threshold shifts ID PRODUCT OTOACOUSTIC EMISSIONS; SENSORY HAIR BUNDLES; CELL TRANSDUCTION CHANNELS; TEMPORARY THRESHOLD SHIFT; GUINEA-PIG; TIP LINKS; CALCIUM CHELATION; MECHANICAL TRANSDUCTION; LOUD SOUND; LOW-LEVEL AB BAPTA was iontophoresed or allowed to diffuse into the scala media of the first turn of the guinea pig cochlea via pipettes inserted through the round window and basilar membrane. Cochlear action potential (CAP) thresholds for basal turn frequencies were elevated, scala media cochlear microphonic in response to a 207 Hz tone were drastically reduced and the distortion products 2f1-f2 and f2-f2 in response to primaries set at 18 and 21.6 kHz were eliminated or severely reduced. The animals were recovered and the above measurements repeated between 24 and 240 It after the application of BAPTA. In all animals thresholds for basal turn frequencies remained elevated, and the distortion components were severely reduced. The endolymphatic potential (EP), measured through the basilar membrane on recovery, was not significantly different from the values measured before BAPTA was applied. If the effect of BAPTA, in lowering endolymphatic Ca2+ concentration, is restricted to the destruction of tip links, as has been shown in many other preparations, then these results suggest that this effect has permanent consequences, either because the tip links failed to regenerate or because their destruction precipitated the degeneration of OHCs. These results may have a bearing on the mechanisms behind permanent threshold shift. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Western Australia, Sch Biomed Biomol & Chem Sci, Discipline Physiol, Auditory Lab, Nedlands, WA 6009, Australia. RP Sellick, PM (reprint author), Univ Western Australia, Sch Biomed Biomol & Chem Sci, Discipline Physiol, Auditory Lab, Nedlands, WA 6009, Australia. EM psellick@cyllene.uwa.edu.au CR Ahmed ZM, 2006, J NEUROSCI, V26, P7022, DOI 10.1523/JNEUROSCI.1163-06.2006 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X Avan P, 2003, J ACOUST SOC AM, V113, P430, DOI 10.1121/1.1525285 Bashtanov ME, 2004, J PHYSIOL-LONDON, V559, P287, DOI 10.1113/jphysiol.2004.065565 BROWN AM, 1993, HEARING RES, V70, P160, DOI 10.1016/0378-5955(93)90154-S COMIS SD, 1985, J NEUROCYTOL, V14, P113, DOI 10.1007/BF01150266 DAVIS BQW, 2003, HEARING RES, V187, P12 DENK W, 1989, P NATL ACAD SCI USA, V86, P5371, DOI 10.1073/pnas.86.14.5371 Gale JE, 2001, J NEUROSCI, V21, P7013 Goodyear R, 1999, J NEUROSCI, V19, P3761 Goodyear RJ, 2005, J COMP NEUROL, V485, P75, DOI 10.1002/cne.20513 Goodyear RJ, 2003, J NEUROSCI, V23, P4878 Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336 Lukashkin AN, 2002, J ACOUST SOC AM, V111, P2740, DOI 10.1121/1.1479151 Meyer J, 1998, J NEUROSCI, V18, P6748 Mills DM, 2002, J ACOUST SOC AM, V112, P1545, DOI 10.1121/1.1505021 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 Mills DM, 2003, J ACOUST SOC AM, V113, P914, DOI 10.1121/1.1535942 OSBORNE MP, 1984, CELL TISSUE RES, V237, P43 Patuzzi R, 1998, HEARING RES, V125, P39, DOI 10.1016/S0378-5955(98)00127-0 Patuzzi R, 1998, HEARING RES, V125, P17, DOI 10.1016/S0378-5955(98)00126-9 PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 PICKLES JO, 1987, HEARING RES, V25, P173, DOI 10.1016/0378-5955(87)90089-X Rzadzinska AK, 2004, J CELL BIOL, V164, P887, DOI 10.1083/jcb.200310055 Sellick PM, 2007, HEARING RES, V224, P84, DOI 10.1016/j.heares.2006.11.011 Sellick PM, 2006, HEARING RES, V211, P7, DOI 10.1016/j.heares.2005.05.016 Thorne PR, 2004, JARO-J ASSOC RES OTO, V5, P58, DOI 10.1007/s10162-003-4003-4 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 NR 30 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2007 VL 231 IS 1-2 BP 13 EP 22 DI 10.1016/j.heares.2007.04.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 208NU UT WOS:000249327300002 PM 17509783 ER PT J AU Zheng, QY Tong, YCI Alagramam, KN Yu, HP AF Zheng, Qing Yin Tong, Yi-Cai Isaac Alagramam, Kumar N. Yu, Heping TI Tympanometry assessment of 61 inbred strains of mice SO HEARING RESEARCH LA English DT Article DE tympanometry; mouse models; middle ear; otitis media ID ACUTE OTITIS-MEDIA; BRAIN-STEM RESPONSES; MIDDLE-EAR; LP/J MICE; TYMPANIC MEMBRANE; HEARING-LOSS; MOUSE MODEL; ABORIGINAL CHILDREN; GENE; EFFUSION AB Otitis media (OM) accounts for more than 20 million clinic visits in the United States every year. Resistance to antibiotics has hampered current management of the disease. Identification of genetic factors underlying susceptibility to OM is greatly needed in order to develop alternative treatment strategies. Genetically defined inbred mouse strains offer a powerful tool for dissecting genetic and environmental factors that may lead to OM in mice. Here, we report a study of middle ear function of 61 genetically diverse inbred strains of mice using tympanometry. Of the 61 inbred strains tested, the 129PI/ReJ, 129P3/J, 129SI/SvImJ, 129XI/SvJ, A/HeJ, BALB/0, BUB/BnJ, C57L/3, EL/SuzSeyFrkJ, FVB/NJ, I/LnJ, LP/J, NZB/BINJ, PL/J and YBR/Ei strains exhibited tympanograms that were statistically different from other healthy strains according to parameters including middle ear pressure, volume and compliance. These differences are most likely the result of genetic factors that, when understood, will facilitate prevention and treatment of otitis media in humans. In addition, a negative correlation between age and compliance of the tympanic membrane was discovered. This is the first report to successfully use tympanometry to measure mouse middle ear function, which has been a challenge for the hearing research field because of the mouse's tiny ear size. (c) 2007 Elsevier B.V. All rights reserved. C1 Case Western Reserve Univ, Dept Otolaryngol Head & Neck Surg, Cleveland, OH 44106 USA. Jackson Lab, Bar Harbor, ME 04609 USA. RP Zheng, QY (reprint author), Case Western Reserve Univ, Dept Otolaryngol Head & Neck Surg, 11100 Euclid Ave,LKS 5045, Cleveland, OH 44106 USA. EM qyz@case.edu RI Zheng, Qing/C-1731-2012 CR Bakaletz LO, 1998, CLIN DIAGN LAB IMMUN, V5, P219 BERNIUS M, 2006, CLIN N AM, V53, P195 BIKHAZI P, 1995, LARYNGOSCOPE, V105, P629, DOI 10.1288/00005537-199506000-00013 Blake JA, 2002, NUCLEIC ACIDS RES, V30, P113, DOI 10.1093/nar/30.1.113 BRODIE HA, 1987, AM J OTOLARYNG, V8, P342, DOI 10.1016/S0196-0709(87)80053-4 BROWN PM, 1989, CLIN OTOLARYNGOL, V14, P241, DOI 10.1111/j.1365-2273.1989.tb00368.x Casselbrant ML, 1999, JAMA-J AM MED ASSOC, V282, P2125, DOI 10.1001/jama.282.22.2125 CHAMBERS RD, 1989, ARCH OTOLARYNGOL, V115, P452 CHOLE RA, 1983, SCIENCE, V221, P881, DOI 10.1126/science.6879187 CHOLE RA, 1985, ANN OTO RHINOL LARYN, V94, P366 CHOLE RA, 1989, ANN OTO RHINOL LARYN, V98, P461 Clark JM, 2000, LARYNGOSCOPE, V110, P1511 Coates HL, 2002, MED J AUSTRALIA, V177, P177 Cook RD, 1999, J OTOLARYNGOL, V28, P325 CRAMER HB, 1986, ANN OTO RHINOL LARYN, V95, P169 Di Palma F, 2001, NAT GENET, V27, P103 Doan DE, 1996, HEARING RES, V97, P174, DOI 10.1016/0378-5955(96)00060-3 Ebmeyer J, 2005, J ALLERGY CLIN IMMUN, V116, P1129, DOI 10.1016/j.jaci.2005.07.026 FINITZO T, 1992, INT J PEDIATR OTORHI, V24, P101, DOI 10.1016/0165-5876(92)90136-D Fowler C. G., 2002, HDB CLIN AUDIOLOGY, P175 FRIA TJ, 1980, ANN OTO RHINOL LARYN, V89, P200 Gaihede M, 1997, ACTA OTO-LARYNGOL, V117, P382, DOI 10.3109/00016489709113410 Gaihede M, 2000, AUDIOL NEURO-OTOL, V5, P53, DOI 10.1159/000013867 Gaihede M, 1996, HEARING RES, V102, P28, DOI 10.1016/S0378-5955(96)00146-3 GATES GA, 1990, EAR HEARING, V11, P247, DOI 10.1097/00003446-199008000-00001 Giebink GS, 1999, MICROB DRUG RESIST, V5, P57, DOI 10.1089/mdr.1999.5.57 Goodwin Joseph H, 2002, Curr Allergy Asthma Rep, V2, P304, DOI 10.1007/s11882-002-0055-5 Hardisty-Hughes RE, 2006, HUM MOL GENET, V15, P3273, DOI 10.1093/hmg/ddl403 Harris SB, 1998, CAN FAM PHYSICIAN, V44, P1869 HERTZANO R, 2004, 2004 ARO MID WIN M A HOLTE L, 1990, J PEDIATR-US, V117, P77, DOI 10.1016/S0022-3476(05)82448-5 Jaisinghami VJ, 2000, LARYNGOSCOPE, V110, P1726, DOI 10.1097/00005537-200010000-00031 Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Johnson KR, 2001, NAT GENET, V27, P191, DOI 10.1038/84831 Johnson KR, 2003, HUM MOL GENET, V12, P3075, DOI 10.1093/hmg/ddg332 Kubba H, 2000, CLIN OTOLARYNGOL, V25, P181, DOI 10.1046/j.1365-2273.2000.00350.x MacArthur CJ, 2006, LARYNGOSCOPE, V116, P1071, DOI 10.1097/01.mlg.0000224527.41288.c4 Margolis Robert H, 2003, J Am Acad Audiol, V14, P383 McConaghy JR, 2001, J FAM PRACTICE, V50, P457 Melhus A, 2003, APMIS, V111, P989, DOI 10.1034/j.1600-0463.2003.1111012.x Onusko E, 2004, AM FAM PHYSICIAN, V70, P1713 Parkinson N, 2006, PLOS GENET, V2, P1556, DOI 10.1371/journal.pgen.0020149 PRON G, 1993, CLEFT PALATE-CRAN J, V30, P97, DOI 10.1597/1545-1569(1993)030<0097:EMAHLI>2.3.CO;2 Pugh KC, 2004, INT J PEDIATR OTORHI, V68, P753, DOI 10.1016/j.ijporl.2004.01.002 Richardson MP, 1997, J LARYNGOL OTOL, V111, P913 Rivkin AZ, 2005, HEARING RES, V207, P110, DOI 10.1016/j.heares.2005.04.010 Rosowski JJ, 2003, JARO, V4, P371, DOI 10.1007/s10162-002-3047-1 RUAH CB, 1991, ARCH OTOLARYNGOL, V117, P627 Ryan A F, 1989, Ann Otol Rhinol Laryngol Suppl, V139, P33 Ryding M, 2002, ANN OTO RHINOL LARYN, V111, P261 Stenklev NC, 2004, ACTA OTO-LARYNGOL, V124, P69, DOI 10.1080/00016480310002212 STREISSGUTH AP, 1985, LANCET, V10, P85 ZHENG QY, 1999, ANN MISW M ASS RES O Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 Zheng QY, 2001, HEARING RES, V154, P45, DOI 10.1016/S0378-5955(01)00215-5 ZHENG QY, 1998, ANN MIDW M ASS RES O Zheng QY, 2006, HEARING RES, V219, P110, DOI 10.1016/j.heares.2006.06.010 NR 57 TC 8 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2007 VL 231 IS 1-2 BP 23 EP 31 DI 10.1016/j.heares.2007.05.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 208NU UT WOS:000249327300003 PM 17611057 ER PT J AU Gaudrain, E Grimault, N Healy, EW Bera, JC AF Gaudrain, Etienne Grimault, Nicolas Healy, Eric W. Bera, Jean-Christophe TI Effect of spectral smearing on the perceptual segregation of vowel sequences SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 12th International Symposium on Audiological Medicine CY MAR, 2005 CL Lyon, FRANCE DE streaming; vowel sequences; hearing impairment; spectral smearing ID AUDITORY STREAM SEGREGATION; HEARING-IMPAIRED LISTENERS; COMPLEX-TONE SEQUENCES; FUNDAMENTAL-FREQUENCY; NORMALLY HEARING; TEMPORAL ORDER; SPEECH; ORGANIZATION; DISCRIMINATION; SELECTIVITY AB Although segregation of both simultaneous and sequential speech items may be involved in the reception of speech in noisy environments, research on the latter is relatively sparse. Further, previous studies examining the ability of hearing-impaired listeners to form distinct auditory streams have produced mixed results. Finally, there is little work investigating streaming in cochlear implant recipients, who also have poor frequency resolution. The present study focused on the mechanisms involved in the segregation of vowel sequences and potential limitations to segregation associated with poor frequency resolution. An objective temporal-order paradigm was employed in which listeners reported the order of constituent vowels within a sequence. In Experiment 1, it was found that fundamental frequency based mechanisms contribute to segregation. In Experiment 2, reduced frequency tuning often associated with hearing impairment was simulated in normal-hearing listeners. In that experiment, it was found that spectral smearing of the vowels increased accurate identification of their order, presumably by reducing the tendency to form separate auditory streams. These experiments suggest that a reduction in spectral resolution may result in a reduced ability to form separate auditory streams, which may contribute to the difficulties of hearing-impaired listeners, and probably cochlear implant recipients as well, in multi-talker cocktail-party situations. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Lyon 1, CNRS, UMR 5020, Lyon, France. Univ S Carolina, Dept Commun Sci & Disorders, Speech Psychoacoust Lab, Columbia, SC 29208 USA. INSERM, U556, F-69008 Lyon, France. RP Grimault, N (reprint author), Univ Lyon 1, CNRS, UMR 5020, Lyon, France. EM ngrimault@olfac.univ-lyon1.fr RI Gaudrain, Etienne/C-6713-2013 OI Gaudrain, Etienne/0000-0003-0490-0295 CR Arehart KH, 1997, J SPEECH LANG HEAR R, V40, P1434 Bacon S. P., 2004, COMPRESSION COCHLEA BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176 BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380 BREGMAN AS, 1990, CAN J PSYCHOL, V44, P400, DOI 10.1037/h0084255 BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163 Bregman AS., 1990, AUDITORY SCENE ANAL Carlyon RP, 2007, JARO-J ASSOC RES OTO, V8, P119, DOI 10.1007/s10162-006-0068-1 Chatterjee M, 2006, HEARING RES, V222, P100, DOI 10.1016/j.heares.2006.09.001 Cooper HR, 2007, HEARING RES, V225, P11, DOI 10.1016/j.heares.2006.11.010 DARWIN CJ, 1977, J EXP PSYCHOL HUMAN, V3, P665, DOI 10.1037/0096-1523.3.4.665 de Boer B, 2000, J PHONETICS, V28, P441, DOI 10.1006/jpho.2000.0125 de Cheveigne A, 1999, J ACOUST SOC AM, V106, P2959, DOI 10.1121/1.428115 Dorman M F, 1975, J Exp Psychol Hum Percept Perform, V104, P147 Grimault N, 2001, BRIT J AUDIOL, V35, P173 Grimault N, 2000, J ACOUST SOC AM, V108, P263, DOI 10.1121/1.429462 Grose JH, 1996, J SPEECH HEAR RES, V39, P1149 HARTMANN WM, 1991, MUSIC PERCEPT, V9, P115 HIRSH IJ, 1959, J ACOUST SOC AM, V31, P759, DOI 10.1121/1.1907782 Hong RS, 2006, J ACOUST SOC AM, V120, P360, DOI 10.1121/1.2204450 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 LACKNER JR, 1974, J ACOUST SOC AM, V56, P1651, DOI 10.1121/1.1903493 Mackersie CL, 2001, J SPEECH LANG HEAR R, V44, P19, DOI 10.1044/1092-4388(2001/002) Moore B., 1998, COCHLEAR HEARING LOS Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320 Nooteboom S.G., 1978, STUDIES PERCEPTION L, P75 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 Patterson RD, 1986, FREQUENCY SELECTIVIT Qin MK, 2005, EAR HEARING, V26, P451, DOI 10.1097/01.aud.0000179689.79868.06 REMEZ RE, 1994, PSYCHOL REV, V101, P129, DOI 10.1037/0033-295X.101.1.129 Roberts B, 2002, J ACOUST SOC AM, V112, P2074, DOI 10.1121/1.1508784 Rogers CF, 2006, J ACOUST SOC AM, V119, P2276, DOI 10.1121/1.2167150 Rose MM, 1997, J ACOUST SOC AM, V102, P1768, DOI 10.1121/1.420108 Rose MM, 2005, HEARING RES, V204, P16, DOI 10.1016/j.heares.2004.12.004 SINGH PG, 1987, J ACOUST SOC AM, V82, P886, DOI 10.1121/1.395287 Singh PG, 1997, J ACOUST SOC AM, V102, P1943, DOI 10.1121/1.419688 Stainsby TH, 2004, HEARING RES, V192, P119, DOI 10.1016/j.heares.2004.02.003 Stainsby TH, 2004, J ACOUST SOC AM, V115, P1665, DOI [10.1121/1.1650288, 10.1121/1.1650288]] STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 Summers V, 1998, J SPEECH LANG HEAR R, V41, P1294 TESSIER E, 2001, THESIS I NATL POLYT THOMAS IB, 1970, J ACOUST SOC AM, V48, P1010, DOI 10.1121/1.1912221 van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T Vliegen J, 1999, J ACOUST SOC AM, V106, P938, DOI 10.1121/1.427140 Vliegen J, 1999, J ACOUST SOC AM, V105, P339, DOI 10.1121/1.424503 WARREN RM, 1969, SCIENCE, V164, P586, DOI 10.1126/science.164.3879.586 NR 46 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2007 VL 231 IS 1-2 BP 32 EP 41 DI 10.1016/j.heares.2007.05.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 208NU UT WOS:000249327300004 PM 17597319 ER PT J AU Carroll, J Zeng, FG AF Carroll, Jeff Zeng, Fan-Gang TI Fundamental frequency discrimination and speech perception in noise in cochlear implant simulations SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 28th Midwinter Meeting of the Association-of-Research-in-Otolaryngology CY FEB 19-24, 2005 CL New Orleans, LA SP Assoc Res Otolaryngol DE speech in noise; segregation; vocoder; spectral resolution ID ACOUSTIC HEARING; INSTANTANEOUS-FREQUENCY; VOWEL IDENTIFICATION; TEMPORAL CUES; RECOGNITION; PITCH; STIMULATION; AMPLITUDE; NUMBER; PROCESSORS AB Increasing the number of channels at low frequencies improves discrimination of fundamental frequency (170) in cochlear implants (Geurts, L., Wouters, J., 2004. Better place-coding of the fundamental frequency in cochlear implants. J. Acoust. Soc. Am. 115 (2), 844-852). We conducted three experiments to test whether improved F0 discrimination can be translated into increased speech intelligibility in noise in a cochlear implant simulation. The first experiment measured F0 discrimination and speech intelligibility in quiet as a function of channel density over different frequency regions. The results from this experiment showed a tradeoff in performance between F0 discrimination and speech intelligibility with a limited number of channels. The second experiment tested whether improved F0 discrimination and optimizing this tradeoff could improve speech performance with a competing talker. However, improved F0 discrimination did not improve speech intelligibility in noise. The third experiment identified the critical number of channels needed at low frequencies to improve speech intelligibility in noise. The result showed that, while 16 channels below 500 Hz were needed to observe any improvement in speech intelligibility in noise, even 32 channels did not achieve normal performance. Theoretically, these results suggest that without accurate spectral coding, F0 discrimination and speech perception in noise are two independent processes. Practically, the present results illustrate the need to increase the number of independent channels in cochlear implants. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Irvine, Dept Biomed Engn, Hearing & Speech Res Lab, Irvine, CA 92697 USA. Univ Calif Irvine, Dept Anat & Neurobiol, Hearing & Speech Res Lab, Irvine, CA 92697 USA. Univ Calif Irvine, Dept Cognit Sci, Hearing & Speech Res Lab, Irvine, CA 92697 USA. Univ Calif Irvine, Dept Otolaryngol Head & Neck Surg, Hearing & Speech Res Lab, Irvine, CA 92697 USA. RP Carroll, J (reprint author), Univ Calif Irvine, Dept Biomed Engn, Hearing & Speech Res Lab, Irvine, CA 92697 USA. EM carrollj@uci.edu; fzeng@uci.edu RI Zeng, Fan-Gang/G-4875-2012 CR ANANTHARAMAN JN, 1993, J ACOUST SOC AM, V94, P723, DOI 10.1121/1.406889 BROKX JPL, 1982, J PHONETICS, V10, P23 BURNS EM, 1981, J ACOUST SOC AM, V70, P1655, DOI 10.1121/1.387220 BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 CHANG JE, IN PRESS IEEE T BIOM Clopton Ben M, 2003, Ann Otol Rhinol Laryngol Suppl, V191, P26 Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362 Dorman MF, 2005, EAR HEARING, V26, P371, DOI 10.1097/00003446-200508000-00001 Dorman MF, 1997, J ACOUST SOC AM, V102, P2403, DOI 10.1121/1.419603 FAULKNER A, 1990, British Journal of Audiology, V24, P381, DOI 10.3109/03005369009076579 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 FU Q, 1998, J ACOUST SOC AM, V104, P1 Geurts L, 2001, J ACOUST SOC AM, V109, P713, DOI 10.1121/1.1340650 Geurts L, 2004, J ACOUST SOC AM, V115, P844, DOI 10.1121/1.1642623 Green T, 2005, J ACOUST SOC AM, V118, P375, DOI 10.1121/1.1925827 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HILLENBRAND J, 1995, J ACOUST SOC AM, V97, P3099, DOI 10.1121/1.411872 Kawahara H, 1999, SPEECH COMMUN, V27, P187, DOI 10.1016/S0167-6393(98)00085-5 Kohlrausch A, 2000, J ACOUST SOC AM, V108, P723, DOI 10.1121/1.429605 Kong YY, 2005, J ACOUST SOC AM, V117, P1351, DOI 10.1121/1.1857526 Laneau J, 2006, AUDIOL NEURO-OTOL, V11, P38, DOI 10.1159/000088853 Leigh Jaime R, 2004, J Am Acad Audiol, V15, P574, DOI 10.3766/jaaa.15.8.5 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Luo Xin, 2004, Journal of the Acoustical Society of America, V116, P3659, DOI 10.1121/1.1783352 MCKAY CM, 1994, J ACOUST SOC AM, V96, P2664, DOI 10.1121/1.411377 Nie K, 2006, EAR HEARING, V27, P208, DOI 10.1097/01.aud.0000202312.31837.25 Nie KB, 2005, IEEE T BIO-MED ENG, V52, P64, DOI 10.1109/TBME.2004.839799 Qin MK, 2005, EAR HEARING, V26, P451, DOI 10.1097/01.aud.0000179689.79868.06 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 Qin MK, 2006, J ACOUST SOC AM, V119, P2417, DOI 10.1121/1.2178719 Rothauser E. H., 1969, IEEE T AUDIO ELECTRO, V17, P225, DOI DOI 10.1109/TAU.1969.1162058 SHAHHON RV, 1999, J ACOUST SOC AM, V106, pL71 SHANNON RV, 1993, COCHLEAR IMPLANTS AU, P357 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399 STICKNEY GS, UNPUB EFFECTS COCHLE Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425 von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695 Wegel RL, 1924, PHYS REV, V23, P266, DOI 10.1103/PhysRev.23.266 Whalen DH, 2004, LANG SPEECH, V47, P155 Wilson BS, 2005, EAR HEARING, V26, p73S, DOI 10.1097/00003446-200508001-00009 Xu L, 2002, J ACOUST SOC AM, V112, P247, DOI 10.1121/1.1487843 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 Zeng Fan-Gang, 2004, VVolume 17, P184 NR 45 TC 20 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2007 VL 231 IS 1-2 BP 42 EP 53 DI 10.1016/j.heares.2007.05.004 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 208NU UT WOS:000249327300005 PM 17604581 ER PT J AU Jedrzejczak, WW Hatzopoulos, S Martini, A Blinowska, KJ AF Jedrzejczak, W. Wiktor Hatzopoulos, Stavros Martini, Alessandro Blinowska, Katarzyna J. TI Otoacoustic emissions latency difference between full-term and preterm neonates SO HEARING RESEARCH LA English DT Article DE otoacoustic emissions; preterm newborn; time-frequency distribution; adaptive approximations ID TIME-FREQUENCY ANALYSIS; DISTORTION-PRODUCT; LONGITUDINAL MEASUREMENTS; MIDDLE-EAR; INFANTS; IDENTIFICATION; NOISE AB Transiently evoked otoacoustic emissions (TEOAEs) were recorded from full-term and preterm neonates. The responses were decomposed, by means of an adaptive approximation method, into waveforms of defined frequencies, amplitudes, latencies and time spans. Statistically significant differences in the latency values were found between the tested groups. Differences were also found in the time spans of the TEOAEs components. For the preterm neonates the contribution of long-duration components (i.e. long-time span) was higher. Those components were characterized by narrow frequency band and contrary to the short-time span components their latencies did not depend on frequency. The removal of the long-duration components, from the pool of analyzed data, decreased the latency differences between the tested groups. The results indicate that the origin of the longer latency values for preterm. neonates (with a post conceptional age up to 33 weeks) in respect to full-term neonates can be attributed to the presence of long-lasting components. The correspondence, which was found between frequencies of long-duration components and the spectral peaks of spontaneous otoacoustic emissions (SOAEs), suggests that those components may be connected with SOAEs. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Warsaw, Inst Expt Phys, Dept Biomed Phys, PL-00681 Warsaw, Poland. Inst Physiol & Pathol Hearing, PL-01943 Warsaw, Poland. Univ Ferrara, Dept Audiol, I-44100 Ferrara, Italy. RP Jedrzejczak, WW (reprint author), Univ Warsaw, Inst Expt Phys, Dept Biomed Phys, Ul Hoza 69, PL-00681 Warsaw, Poland. EM wieslaw.jedrzejczak@fuw.edu.pl CR Abdala C, 2006, J ACOUST SOC AM, V120, P3832, DOI 10.1121/1.2359237 Aidan D, 1997, ACTA OTO-LARYNGOL, V117, P25, DOI 10.3109/00016489709117986 BRASS D, 1994, EAR HEARING, V15, P371, DOI 10.1097/00003446-199410000-00004 Brienesse P, 1998, AUDIOLOGY, V37, P278 Brienesse P, 1996, AUDIOLOGY, V35, P296 BURNS EM, 1994, J ACOUST SOC AM, V95, P385, DOI 10.1121/1.408330 CHENG J, 1995, SCAND AUDIOL, V24, P91, DOI 10.3109/01050399509047520 CHUANG SW, 1993, INT J PEDIATR OTORHI, V26, P39, DOI 10.1016/0165-5876(93)90194-8 Hatzopoulos S, 2001, ACTA OTO-LARYNGOL, V121, P269 Hatzopoulos S, 1995, AUDIOLOGY, V34, P248 Hatzopoulos S., 2002, IJA, V42, P339 HAUSER R, 1993, HEARING RES, V69, P133, DOI 10.1016/0378-5955(93)90101-6 Jedrzejczak WW, 2004, J ACOUST SOC AM, V115, P2148, DOI 10.1121/1.1690077 Jedrzejczak WW, 2006, J ACOUST SOC AM, V119, P2226, DOI 10.1121/1.2178718 Jedrzejczak WW, 2005, HEARING RES, V205, P249, DOI 10.1016/j.heares.2005.03.024 KEEFE DH, 1993, J ACOUST SOC AM, V94, P2617, DOI 10.1121/1.407347 KOK MR, 1993, HEARING RES, V69, P115, DOI 10.1016/0378-5955(93)90099-M MALLAT SG, 1993, IEEE T SIGNAL PROCES, V41, P3397, DOI 10.1109/78.258082 Moleti A, 2002, HEARING RES, V174, P290, DOI 10.1016/S0378-5955(02)00703-7 Moleti A, 2005, J ACOUST SOC AM, V118, P1576, DOI 10.1121/1.2000769 MORLET T, 1995, HEARING RES, V90, P44, DOI 10.1016/0378-5955(95)00144-4 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Sisto R, 2001, J ACOUST SOC AM, V109, P638, DOI 10.1121/1.1336502 Sisto R, 2002, J ACOUST SOC AM, V111, P297, DOI 10.1121/1.1428547 SMURZYNSKI J, 1993, EAR HEARING, V14, P258, DOI 10.1097/00003446-199308000-00005 SMURZYNSKI J, 1994, EAR HEARING, V15, P210, DOI 10.1097/00003446-199406000-00002 STEVENS JC, 1990, EAR HEARING, V11, P128, DOI 10.1097/00003446-199004000-00007 Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5 Tognola G, 2005, HEARING RES, V199, P71, DOI 10.1016/j.heares.2004.08.005 Wada H, 1995, AUDIOLOGY, V34, P161 Wilson J P, 1981, Ciba Found Symp, V85, P82 ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 NR 32 TC 16 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2007 VL 231 IS 1-2 BP 54 EP 62 DI 10.1016/j.heares.2007.05.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 208NU UT WOS:000249327300006 PM 17606343 ER PT J AU Caicci, F Burighel, P Manni, L AF Caicci, F. Burighel, P. Manni, L. TI Hair cells in an ascidian (Tunicata) and their evolution in chordates SO HEARING RESEARCH LA English DT Article DE ascidians; coronal organ; neural placodes; oral siphon; sensory system; tentacles ID NERVOUS-SYSTEM; NEURAL CREST; SENSORY CELLS; LATERAL-LINE; PLACODES; ORIGIN; ORGAN; ORGANIZATION AB In ascidians, mechanoreceptors of the oral area are involved in monitoring the incoming water flow. Sensory cells are represented by scattered, ciliated primary cells (sending their own axons to the cerebral ganglion) or secondary sensory cells (axonless cells forming afferent and efferent synapses with neurons, whose somata are located in the ganglion) of the coronal organ. Coronal cells have varying morphologies: in species of the Enterogona order, they are multiciliate, whereas those of Pleurogona possess an apical apparatus composed of one or two cilia accompanied by stereovilli, in some cases also graded in length. The coronal organ has been proposed as a homologue to the vertebrate octavo-lateralis system, because coronal cells resemble vertebrate hair cells for morphology, embryonic origin and arrangement. In the ascidian Molgula socialis (Pleurogona), we now describe the morphology of the coronal organ, which contains a few associated rows of sensory cells that run the whole length of the oral velum and the branched tentacles. Three kinds of sensory cells, accompanied by specialised supporting cells, are present. Comparisons between the coronal organ and other chordate mechanosensory structures suggest that hair cells originated in the common ancestor of chordates. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Padua, Dept Biol, I-35131 Padua, Italy. RP Manni, L (reprint author), Univ Padua, Dept Biol, Via U Bassi 58-B, I-35131 Padua, Italy. EM federico.caicci@unipd.it; paolo.burighel@unipd.it; lucia.manni@unipd.it CR ARKETT SA, 1989, CELL TISSUE RES, V257, P285, DOI 10.1007/BF00261832 Baker CVH, 2005, J EXP ZOOL PART B, V304B, P269, DOI 10.1002/jez.b.21060 Bone Q., 1982, P473 Bone Q., 1998, P55 BONE Q, 1978, J MAR BIOL ASSOC UK, V58, P479 BONE Q, 1978, J ZOOL, V186, P417 Burighel P, 2001, INVERTEBR BIOL, V120, P185, DOI 10.1111/j.1744-7410.2001.tb00123.x BURIGHEL P, 1997, HEMICHRODATA CHAETOG, V16, P221 Burighel P, 2003, J COMP NEUROL, V461, P236, DOI 10.1002/cne.10666 Coffin A., 2004, EVOLUTION VERTEBRATE, P55 Delsuc F, 2006, NATURE, V439, P965, DOI 10.1038/nature04336 Dufour HD, 2006, P NATL ACAD SCI USA, V103, P8727, DOI 10.1073/pnas.0600805103 Gillespie PG, 2005, CURR OPIN NEUROBIOL, V15, P389, DOI 10.1016/j.conb.2005.06.007 Jeffery WR, 2004, NATURE, V431, P696, DOI 10.1038/nature02975 JEFFERY WR, 2006, J EXP ZOOL PART B, V15, P470 Lacalli TC, 1999, P ROY SOC B-BIOL SCI, V266, P1461 Lacalli TC, 2004, BRAIN BEHAV EVOLUT, V64, P148, DOI 10.1159/000079744 Mackie GO, 2004, INVERTEBR BIOL, V123, P269 Mackie GO, 2006, CAN J ZOOL, V84, P1146, DOI 10.1139/Z06-106 Mackie GO, 2003, BRAIN BEHAV EVOLUT, V61, P45, DOI 10.1159/000068878 Mackie GO, 2005, CAN J ZOOL, V83, P151, DOI 10.1139/Z04-177 MANLEY GA, SENSES COMPREHENSIVE Manni L, 2004, EVOL DEV, V6, P379, DOI 10.1111/j.1525-142X.2004.04046.x Manni L, 2006, J COMP NEUROL, V495, P363, DOI 10.1002/cne.20867 Manni L, 2004, J EXP ZOOL PART B, V302B, P483, DOI 10.1002/jez.b.21013 Manni L, 2001, EVOL DEV, V3, P297, DOI 10.1046/j.1525-142X.2001.01040.x Mazet F, 2005, DEV BIOL, V282, P494, DOI 10.1016/j.ydbio.2005.02.021 Schlosser G, 2004, DEV BIOL, V271, P439, DOI 10.1016/j.ydbio.2004.04.013 Shimeld SM, 2000, P NATL ACAD SCI USA, V97, P4449, DOI 10.1073/pnas.97.9.4449 Thurm U., 1998, STRUCTURE INFORM SEN, P228 Wada H, 1996, NATURE, V384, P123, DOI 10.1038/384123a0 Wada H, 1998, DEVELOPMENT, V125, P1113 Zaniolo G, 2002, J COMP NEUROL, V443, P124, DOI 10.1002/cne.10097 NR 33 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2007 VL 231 IS 1-2 BP 63 EP 72 DI 10.1016/j.heares.2007.05.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 208NU UT WOS:000249327300007 PM 17611058 ER PT J AU Mazurek, B Haupt, H Amarjargal, N Yarin, YM Machulik, A Gross, J AF Mazurek, Birgit Haupt, Heidemarle Amarjargal, Nyamaa Yarin, Yuri M. Machulik, Astrid Gross, Johann TI Up-regulation of prestin mRNA expression in the organs of corti of guinea pigs and rats following unilateral impulse noise exposure SO HEARING RESEARCH LA English DT Article DE guinea pig; impulse noise-induced hearing loss; otoacoustic emission; outer hair cell; prestin mRNA; rat ID OUTER HAIR-CELLS; INDUCED HEARING-LOSS; ACUTE ACOUSTIC TRAUMA; MOTOR PROTEIN; GENE-EXPRESSION; OTOACOUSTIC EMISSIONS; COCHLEA; ACETYLCHOLINE; TINNITUS; ELECTROMOTILITY AB Prestin is the motor protein of the outer hair cells (OHCs) and is required for both their electromotility and for cochlear amplification. We investigated the prestin mRNA expression in guinea pigs and rats in relation to the degree of noise-induced hearing loss (NIHL) induced by unilateral impulse noise exposure (167 dB peak SPL) for 2.5-5 min. Distortion product otoacoustic emissions (DPOAE) and auditory brainstem responses were recorded before and one week post exposure. Prestin mRNA was examined by quantitative reverse transcription-polymerase chain reaction. Either the whole organs of Corti or the apical, middle and basal parts were examined separately. The specimens were pooled and grouped according to the degree of NIHL measured in the exposed ears. In rats, the number of hair cells was counted. A clear base-to-apex gradient in the prestin mRNA expression was found to exist in guinea pig and rat controls. In both species, there was an increase in the number of prestin RNA transcripts at a mean NIHL of about 15-25 dB indicating an upregulation in the remaining intact cells. In rats, this degree of NIHL corresponded to an OHC loss of about 40%. Interestingly, the contralateral ears also revealed an up-regulation of prestin mRNA accompanied by significant DPOAE improvements. (c) 2007 Elsevier B.V. All rights reserved. C1 Charite Univ Med Berlin, Dept Otorhinolaryngol, Mol Biol Res Lab, D-10117 Berlin, Germany. Univ Hosp Dresden, Dept Otorhinolaryngol, D-01307 Dresden, Germany. RP Mazurek, B (reprint author), Charite Univ Med Berlin, Dept Otorhinolaryngol, Mol Biol Res Lab, Campus Charite Mitte,Charitepl 1, D-10117 Berlin, Germany. EM birgit.mazurek@charite.de CR Abrashkin KA, 2006, HEARING RES, V218, P20, DOI 10.1016/j.heares.2006.04.001 AVAN P, 1992, HEARING RES, V59, P59, DOI 10.1016/0378-5955(92)90102-S Belyantseva IA, 2000, J NEUROSCI, V20, part. no. Borg E, 1995, Scand Audiol Suppl, V40, P1 Chawla S, 2002, EUR J PHARMACOL, V447, P131, DOI 10.1016/S0014-2999(02)01837-X Cheatham MA, 2005, J PHYSIOL-LONDON, V569, P229, DOI 10.1113/jphysiol.2005.093518 Chen C, 1997, HEARING RES, V110, P87, DOI 10.1016/S0378-5955(97)00069-5 Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X Chen GD, 2007, HEARING RES, V226, P14, DOI 10.1016/j.heares.2006.06.007 Chen GD, 2006, HEARING RES, V222, P54, DOI 10.1016/j.heares.2006.08.011 Cho YS, 2004, MOL BRAIN RES, V130, P134, DOI 10.1016/j.molbrainres.2004.07.017 Coleman JKM, 2007, HEARING RES, V226, P70, DOI 10.1016/j.heares.2006.05.006 Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 Geleoc GSG, 2003, TRENDS NEUROSCI, V26, P115, DOI 10.1016/S0166-2236(03)00030-4 Ghosh D, 2000, NUCLEIC ACIDS RES, V28, P308, DOI 10.1093/nar/28.1.308 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Gross J, 2005, HEARING RES, V204, P183, DOI 10.1016/j.heares.2005.02.001 HAMERNIK RP, 1988, J ACOUST SOC AM, V84, P941, DOI 10.1121/1.396663 Haupt H, 2002, MAGNESIUM RES, V15, P17 HAUPT H, 2003, RELAT SPECTROSC, V65, P134 HENDERSON D, 1986, J ACOUST SOC AM, V80, P569, DOI 10.1121/1.394052 Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006 Judice TN, 2002, BRAIN RES PROTOC, V9, P65, DOI 10.1016/S1385-299X(01)00138-6 Kaufer D, 1998, NATURE, V393, P373 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kummer P, 2000, Schweiz Med Wochenschr, VSuppl 125, p77S Liberi G, 2004, CELL, V116, P3, DOI 10.1016/S0092-8674(03)01072-9 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498 Lukashkin AN, 2002, J ACOUST SOC AM, V111, P2740, DOI 10.1121/1.1479151 Lustig LR, 2006, ANAT REC PART A, V288A, P424, DOI 10.1002/ar.a.20302 Maison SF, 2007, J NEUROPHYSIOL, V97, P2930, DOI 10.1152/jn.01183.2006 Mazurek B, 2003, HEARING RES, V182, P2, DOI 10.1016/S0378-5955(03)00134-5 Mrena R, 2002, AUDIOL NEURO-OTOL, V7, P122, DOI 10.1159/000057660 Mu MY, 1997, DEV BRAIN RES, V99, P29, DOI 10.1016/S0165-3806(96)00194-0 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 Nakayama H, 2001, J NEUROCHEM, V79, P489, DOI 10.1046/j.1471-4159.2001.00602.x Nottet JB, 2006, LARYNGOSCOPE, V116, P970, DOI 10.1097/01.MLG.0000216823.77995.13 Peng HS, 2004, LIFE SCI, V76, P263, DOI 10.1016/j.lfs.2004.05.031 Qiu Jian-xin, 2004, Zhonghua Er Bi Yan Hou Ke Za Zhi, V39, P472 Saunders JE, 1998, OTOLARYNG HEAD NECK, V118, P228, DOI 10.1016/S0194-5998(98)80021-1 Scheibe F, 2000, EUR ARCH OTO-RHINO-L, V257, P10, DOI 10.1007/PL00007505 Simmons D D, 1998, Brain Res Mol Brain Res, V56, P287 Sułkowski W, 1999, Int J Occup Med Environ Health, V12, P177 Viberg A, 2004, HEARING RES, V197, P1, DOI 10.1016/j.heares.2004.04.016 Wallhausser-Franke E, 2003, EXP BRAIN RES, V153, P649, DOI 10.1007/s00221-003-1614-2 Weber T, 2002, P NATL ACAD SCI USA, V99, P2901, DOI 10.1073/pnas.052609899 WEBER U, 1997, ANTISENSE TECHNOLOGY, P75 ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zheng J, 2002, AUDIOL NEURO-OTOL, V7, P9, DOI 10.1159/000046855 Zheng J, 2003, MAMM GENOME, V14, P87, DOI 10.1007/s00335-002-2227-y Zimmermann U, 1996, ACTA OTO-LARYNGOL, V116, P395, DOI 10.3109/00016489609137863 NR 53 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2007 VL 231 IS 1-2 BP 73 EP 83 DI 10.1016/j.heares.2007.05.008 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 208NU UT WOS:000249327300008 PM 17592749 ER PT J AU Hof-Duin, NJ Wit, HP AF Hof-Duin, Nanda J. Wit, Hero P. TI Evaluation of low-frequency biasing as a diagnostic tool in Meniere patients SO HEARING RESEARCH LA English DT Article DE Meniere; endolymphatic hydrops; low frequency biasing; modulation depth; cochlear amplifier ID ENDOLYMPHATIC HYDROPS; IN-VIVO; BASILAR-MEMBRANE; MASKING; MODULATION; COCHLEA; HEARING; DISEASE; TONES AB Although it is generally accepted that endolymphatic hydrops is the cause of complaints in patients suffering from Meniere's disease, it has not been possible up to now to prove the presence of an endolymphatic hydrops in living humans. This study evaluated the psychophysical method introduced by Mrowinski et al. [Mrowinski D., Gerull G., Nubel K., Scholz G., 1995. Masking and pitch shift of tone bursts and clicks by low-frequency tones. Hear. Res. 85, 95-102; Mrowinski D., Scholz G., Krompass S., Nubel K., 1996. Diagnosis of endolymphatic hydrops by low-frequency masking. Audiol. Neurootol. 1, 125-134] to diagnose endolymphatic hydrops. These authors used low frequency biasing to differentiate between individuals with and individuals without Meniere's disease. In the present study no statistically significant differences in masking parameters could be found between a large number (n = 91) of ears with Meniere's disease and ears (n = 52) with comparable sensorineural hearing losses, but without symptoms of Meniere's disease. Our results support the idea that results deviating from normal in low frequency biasing measurements are not due to endolymphatic hydrops itself, but to other pathological changes of the inner ear. An explanation could be that with increasing hearing loss the gain of the cochlear amplifier decreases, leading to smaller modulation depths. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Groningen, Fac Med, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands. RP Hof-Duin, NJ (reprint author), Univ Groningen, Fac Med, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands. EM nj.hof@kno.umcg.nl CR Bian L, 2004, J ACOUST SOC AM, V116, P3559, DOI 10.1121/1.1819501 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 Hallpike C. S., 1938, J LARYNG, V53, P625, DOI 10.1017/S0022215100003947 HOHMANN D, 1990, MED PROG TECHNOL, V16, P219 HOHMANN D, 1993, HNO, V41, P426 Kabudwand EA, 1998, HEARING RES, V116, P131, DOI 10.1016/S0378-5955(97)00201-3 KLIS JFL, 1988, HEARING RES, V32, P175, DOI 10.1016/0378-5955(88)90089-5 Merchant SN, 2005, OTOL NEUROTOL, V26, P74, DOI 10.1097/00129492-200501000-00013 MORIZONO T, 1984, ANN OTO RHINOL LARYN, V93, P225 Mrowinski D, 1996, Audiol Neurootol, V1, P125 MROWINSKI D, 1995, HEARING RES, V85, P95, DOI 10.1016/0378-5955(95)00033-Z Niyazov DM, 2001, OTOL NEUROTOL, V22, P813, DOI 10.1097/00129492-200111000-00017 RUSSELL IJ, 1992, J NEUROSCI, V12, P1587 Silver RD, 2002, LARYNGOSCOPE, V112, P1737, DOI 10.1097/00005537-200210000-00005 Takumida M, 2006, ACTA OTO-LARYNGOL, V126, P921, DOI 10.1080/00016480500535204 van Cruijsen N, 2005, OTOL NEUROTOL, V26, P1214, DOI 10.1097/01.mao.0000179528.24909.ba YAMAKAWA K, 1938, P 42 JPN OT SOC, V44, P181 Zou J, 2003, ANN OTO RHINOL LARYN, V112, P1059 Zou J, 2005, AUDIOL NEURO-OTOL, V10, P145, DOI 10.1159/000084024 ZWICKER E, 1977, J ACOUST SOC AM, V61, P1031, DOI 10.1121/1.381387 ZWICKER E, 1979, BIOL CYBERN, V35, P243, DOI 10.1007/BF00344207 NR 21 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2007 VL 231 IS 1-2 BP 84 EP 89 DI 10.1016/j.heares.2007.06.004 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 208NU UT WOS:000249327300009 PM 17658231 ER PT J AU Cooke, JE Zhang, HM Kelly, JB AF Cooke, James E. Zhang, Huiming Kelly, Jack B. TI Detection of sinusoidal amplitude modulated sounds: Deficits after bilateral lesions of auditory cortex in the rat SO HEARING RESEARCH LA English DT Article DE auditory cortex; temporal coding; amplitude modulation; central processing disorders; cortical damage; behavioral thresholds ID INFERIOR COLLICULUS; GAP-DETECTION; TEMPORAL CORTEX; NEURONAL RESPONSES; CORTICAL-LESIONS; NEURAL RESPONSES; ALBINO-RAT; CBA MOUSE; CAT; FREQUENCY AB The ability of rats to detect the presence of sinusoidal amplitude modulation (AM) of a broadband noise carrier was determined before and after bilateral ablation of auditory cortex. The rats were trained to withdraw from a drinking spout to avoid a shock when they detected a modulation of the sound. Sensitivity was evaluated by testing the rats at progressively smaller depths of modulation. Psychophysical curves were produced to describe the limits of detection at modulation rates of 10, 100 and 1000 Hz. Performance scores were based on the probability of withdrawal from the spout during AM (warning periods) relative to withdrawal during the un-modulated noise (safe periods). A threshold was defined as the depth of modulation that produced a score halfway between perfect avoidance and no avoidance (performance score = 0.5). Bilateral auditory cortical lesions resulted in significant elevations in threshold for detection of AM at rates of 100 and 1000 Hz. No significant shift was found at a modulation rate of 10 Hz. The magnitude of the deficit for AM rates of 100 and 1000 Hz was positively correlated with the size of the cortical lesion. Substantial deficits were found only in animals with lesions that included secondary as well as primary auditory cortical areas. The results show that the rat's auditory cortex is important for processing sinusoidal AM and that its contribution is most apparent at high modulation rates. The data suggest that the auditory cortex is a crucial structure for maintaining normal sensitivity to temporal modulation of an auditory stimulus. (c) 2007 Elsevier B.V. All rights reserved. C1 Carleton Univ, Dept Psychol, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. RP Kelly, JB (reprint author), Carleton Univ, Dept Psychol, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. EM jkelly@ccs.carleton.ca CR Anderson SE, 2006, HEARING RES, V213, P107, DOI 10.1016/j.heares.2005.12.011 ARNAULT P, 1990, J COMP NEUROL, V302, P110, DOI 10.1002/cne.903020109 Bendor D, 2006, CURR OPIN NEUROBIOL, V16, P391, DOI 10.1016/j.conb.2006.07.001 Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 Bieser A, 1996, EXP BRAIN RES, V108, P273 Bowen GP, 2003, CEREB CORTEX, V13, P815, DOI 10.1093/cercor/13.8.815 De Ribaupierre F, 1972, Brain Res, V48, P205, DOI 10.1016/0006-8993(72)90179-5 DIAMOND IT, 1957, J NEUROPHYSIOL, V20, P300 Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412 Doron NN, 2000, J COMP NEUROL, V425, P257 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 Fay R. R., 1988, HEARING VERTEBRATES FIRCH RH, 2003, BEHAV COGN NEUROSCI, V2, P155 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 GAESE BH, 1995, EUR J NEUROSCI, V7, P438, DOI 10.1111/j.1460-9568.1995.tb00340.x Gaese BH, 2003, EUR J NEUROSCI, V18, P2638, DOI 10.1046/j.1460-9568.2003.03007.x GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818 GRIGORIEVA TI, 1981, ZH VYSSH NERV DEYAT+, V31, P284 Heffner H. E., 1995, METHODS COMP PSYCHOA, P79 HEFFNER RS, 1988, J COMP PSYCHOL, V102, P66, DOI 10.1037/0735-7036.102.1.66 HENDERSON D, 1984, J ACOUST SOC AM, V75, P1177, DOI 10.1121/1.390767 ISON JR, 1991, BEHAV NEUROSCI, V105, P33, DOI 10.1037//0735-7044.105.1.33 ISON JR, 1982, J COMP PHYSIOL PSYCH, V96, P945, DOI 10.1037/0735-7036.96.6.945 Jerger J, 1969, Acta Otolaryngol Suppl, V258, P1 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 KAY RH, 1982, PHYSIOL REV, V62, P894 KELLY JB, 1971, J NEUROPHYSIOL, V34, P802 Kelly JB, 2006, J COMP PSYCHOL, V120, P98, DOI 10.1037/0735-7036.120.2.98 Kelly JB, 1996, BEHAV NEUROSCI, V110, P542 KELLY JB, 1973, BRAIN RES, V62, P71, DOI 10.1016/0006-8993(73)90620-3 Kelly J.B., 1990, CEREBRAL CORTEX RAT, P381 Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1 Krishna BS, 2000, J NEUROPHYSIOL, V84, P255 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LEDOUX JE, 1985, J COMP NEUROL, V242, P182, DOI 10.1002/cne.902420204 LEITNER DS, 1993, PERCEPT PSYCHOPHYS, V54, P394 LU T, 2004, J NEUROPHYSIOL, V91, P236 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 McAnally KI, 1997, J SPEECH LANG HEAR R, V40, P939 Menell P, 1999, J SPEECH LANG HEAR R, V42, P797 Neff W. D., 1975, HDB SENSORY PHYSL, V2, P307 PALMER AR, 1982, ARCH OTOLARYNGOL, V236, P97 Palmer Alan R., 1995, P75, DOI 10.1016/B978-012505626-7/50005-4 Paxinos G, 1987, RAT BRAIN STEREOTAXI PHILLIPS DP, 1987, EXP BRAIN RES, V67, P479 PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748 PHILLIPS DP, 1990, BEHAV BRAIN RES, V40, P85, DOI 10.1016/0166-4328(90)90001-U Polley DB, 2007, J NEUROPHYSIOL, V97, P3621, DOI 10.1152/jn.01298.2006 Poth EA, 2001, HEARING RES, V161, P81, DOI 10.1016/S0378-5955(01)00352-5 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851 Rutkowski RG, 2003, HEARING RES, V181, P116, DOI 10.1016/S0378-5955(03)00182-5 SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 SCHARLOC.DP, 1965, J NEUROPHYSIOL, V28, P673 SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 Schreiner CE, 1997, ACTA OTO-LARYNGOL, P54 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P123 SCHREINER CE, 1986, HEARING RES, V21, P227, DOI 10.1016/0378-5955(86)90221-2 Schulze H, 1997, J COMP PHYSIOL A, V181, P651, DOI 10.1007/s003590050147 Schulze H, 1999, J COMP PHYSIOL A, V185, P493, DOI 10.1007/s003590050410 Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446 SWISHER L, 1972, NEUROPSYCHOLOGIA, V10, P137, DOI 10.1016/0028-3932(72)90053-X Syka J, 2002, HEARING RES, V172, P151, DOI 10.1016/S0378-5955(02)00578-6 TALLAL P, 1980, BRAIN LANG, V9, P182, DOI 10.1016/0093-934X(80)90139-X TALLAL P, 1993, ANN NY ACAD SCI, V682, P27, DOI 10.1111/j.1749-6632.1993.tb22957.x Viemeister N. F., 1993, HUMAN PSYCHOPHYSICS, P116 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 Walton JP, 2002, J NEUROPHYSIOL, V88, P565, DOI 10.1152/jn.00945.2001 Walton JP, 1998, J NEUROSCI, V18, P2764 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 Wang XQ, 2003, SPEECH COMMUN, V41, P107, DOI 10.1016/S0167-6393(02)00097-3 Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0 Wright BA, 2000, CURR OPIN NEUROBIOL, V10, P482, DOI 10.1016/S0959-4388(00)00119-7 [张宏元 ZHANG Hongyuan], 2007, [干旱区地理, Arid Land Geography], V30, P135 Zhang HM, 2003, J NEUROPHYSIOL, V90, P477, DOI 10.1152/jn.01084.2002 NR 77 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2007 VL 231 IS 1-2 BP 90 EP 99 DI 10.1016/j.heares.2007.06.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 208NU UT WOS:000249327300010 PM 17629425 ER PT J AU Andrianov, GN Nozdrachev, AD Ryzhova, IV AF Andrianov, G. N. Nozdrachev, A. D. Ryzhova, I. V. TI The role of defensins in the excitability of the peripheral vestibular system in the frog: Evidence for the presence of communication between the immune and nervous systems SO HEARING RESEARCH LA English DT Article DE defensins; neuromodulation afferent synapse; hair cells; semicircular canal; frog ID METABOTROPIC GLUTAMATE RECEPTORS; HAIR-CELLS; OPIOID RECEPTORS; ANTIMICROBIAL PEPTIDES; TRANSMITTER RELEASE; MEDIATED RESPONSE; RANA-PIPIENS; ORGANS; INTERFERON; RAT AB Defensins are one of the major groups of endogenous peptides that are considered to be important antibiotic-like effectors of host innate and adaptive antimicrobial immunity. The current study investigated the electrophysiological effects of externally applied human and rabbit defensins (HNP-1 and RNP-1, correspondingly) on afferent neurotransmission in the frog semicircular canals (SCC). Application of HNP-1 and RNP-1 induces a concentration-dependent decrease in resting activity. Threshold concentrations for both substances were of the order of 0.0001 nM. The firing evoked by L-glutamate (L-Glu) and its agonists alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), kainate and N-methyl-D-aspartate (NMDA) and (1S, 3R)-1-aminocyclopentane-trans- 1,3-dicarboxilic acid (ACPD) could be inhibited by HNP-1, suggesting that defensins exert inhibitory control over both ionotropic and metabotropic glutamate receptors. HNP-1 considerably inhibited the L-glutamate/high Mg2+- induced increase in frequency, thus, demonstrating its postsynaptic site of action. Acetylcholine (ACh) responses under HNP-1 did not differ from the frequency increase induced by ACh alone, and the ACh antagonist atropine left the response to HNP-1 intact. The specific opioid receptor antagonist naloxone (Nal) antagonized the inhibitory response evoked by HNP-1. The results obtained support the evidence for the recruitment of defensins in communication between the immune and nervous systems, and on the potential of sensory receptors to participate in the inflammatory response. (c) 2007 Elsevier B.V. All rights reserved. C1 Russian Acad Sci, IP Pavlov Physiol Inst, Lab Physiol Recept, St Petersburg 199034, Russia. RP Andrianov, GN (reprint author), Russian Acad Sci, IP Pavlov Physiol Inst, Lab Physiol Recept, Nab Makarova 6, St Petersburg 199034, Russia. EM andryu@infran.ru CR AGUET M, 1980, NATURE, V284, P459, DOI 10.1038/284459a0 AKOEV GN, 1993, SENSORY HAIR CELLS S, P194 ANDRIANOV GN, 1992, COMP BIOCHEM PHYS C, V103, P65, DOI 10.1016/0742-8413(92)90229-Z Andrianov GN, 2005, HEARING RES, V204, P200, DOI 10.1016/j.heares.2005.02.003 Andrianov GN, 2003, NEUROSIGNALS, V12, P310, DOI 10.1159/000075313 Andrianov GN, 1999, NEUROSCIENCE, V93, P801, DOI 10.1016/S0306-4522(99)00159-1 Andrianov GN, 2000, NEUROREPORT, V11, P183, DOI 10.1097/00001756-200001170-00036 ANNONI JM, 1984, J NEUROSCI, V4, P2106 BLALOCK JE, 1981, BIOCHEM BIOPH RES CO, V101, P472, DOI 10.1016/0006-291X(81)91284-5 Bledsoe Jr S.C., 1988, PHYSL HEARING, P385 Boman HG, 2003, J INTERN MED, V254, P197, DOI 10.1046/j.1365-2796.2003.01228.x Dememes D, 1997, HEARING RES, V114, P252, DOI 10.1016/S0378-5955(97)00174-3 Derbenev AV, 2005, J NEUROPHYSIOL, V94, P3134, DOI 10.1152/jn.00131.2005 GUTH PS, 1986, ACTA OTO-LARYNGOL, V102, P194, DOI 10.3109/00016488609108666 Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3 GUTH PS, 1994, HEARING RES, V75, P225, DOI 10.1016/0378-5955(94)90073-6 Guth PS, 1998, HEARING RES, V125, P154, DOI 10.1016/S0378-5955(98)00145-2 Hancock REW, 2000, TRENDS MICROBIOL, V8, P402, DOI 10.1016/S0966-842X(00)01823-0 Hancock REW, 1998, TRENDS BIOTECHNOL, V16, P82, DOI 10.1016/S0167-7799(97)01156-6 Hendricson AW, 2002, NEUROREPORT, V13, P1765, DOI 10.1097/00001756-200210070-00014 Hendricson AW, 2002, HEARING RES, V172, P99, DOI 10.1016/S0378-5955(02)00519-1 Holt JC, 2001, HEARING RES, V152, P25, DOI 10.1016/S0378-5955(00)00225-2 Im HJ, 1999, BRAIN RES, V829, P174, DOI 10.1016/S0006-8993(99)01364-5 LADURON PM, 1984, BRAIN RES, V294, P157, DOI 10.1016/0006-8993(84)91322-2 Lioudyno MI, 2000, HEARING RES, V149, P167, DOI 10.1016/S0378-5955(00)00180-5 McCarthy L, 2001, DRUG ALCOHOL DEPEN, V62, P111, DOI 10.1016/S0376-8716(00)00181-2 NINKOVIC M, 1982, BRAIN RES, V241, P197, DOI 10.1016/0006-8993(82)91056-3 NORRIS CH, 1988, HEARING RES, V32, P197, DOI 10.1016/0378-5955(88)90092-5 Peschel A, 2002, TRENDS MICROBIOL, V10, P179, DOI 10.1016/S0966-842X(02)02333-8 Plakhova V B, 2002, Neurosci Behav Physiol, V32, P409, DOI 10.1023/A:1015884312094 Popper P, 2004, NEUROSCIENCE, V129, P225, DOI 10.1016/j.neuroscience.2004.08.008 PRIGIONI I, 1995, AMINO ACIDS, V9, P265, DOI 10.1007/BF00805957 Raj PA, 2002, FEMS MICROBIOL LETT, V206, P9, DOI 10.1016/S0378-1097(01)00496-7 Rogers TJ, 2003, TRENDS IMMUNOL, V24, P116, DOI 10.1016/S1471-4906(03)00003-6 Salzet M, 2001, DEV COMP IMMUNOL, V25, P177, DOI 10.1016/S0145-305X(00)00047-1 Schneider JJ, 2005, J MOL MED-JMM, V83, P587, DOI 10.1007/s00109-005-0657-1 VEGA R, 1991, Society for Neuroscience Abstracts, V17, P317 Vega R, 2003, NEUROSCIENCE, V118, P75, DOI 10.1016/S0306-4522(02)00971-5 Wang JY, 2006, NEUROSCI LETT, V397, P254, DOI 10.1016/j.neulet.2005.12.046 NR 39 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2007 VL 230 IS 1-2 BP 1 EP 8 DI 10.1016/j.heares.2007.05.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203KH UT WOS:000248973000001 PM 17606342 ER PT J AU Aarnisalo, AA Pietola, L Joensuu, J Isosomppi, J Aarnisalo, P Dinculescu, A Lewin, AS Flannery, J Hauswirth, WW Sankila, EM Jero, J AF Aarnisalo, A. A. Pietola, L. Joensuu, J. Isosomppi, J. Aarnisalo, P. Dinculescu, A. Lewin, A. S. Flannery, J. Hauswirth, W. W. Sankila, E.-M. Jero, J. TI Anti-clarin-1 AAV-delivered ribozyme induced apoptosis in the mouse cochlea SO HEARING RESEARCH LA English DT Article DE clarin-1; Usher type 3; organ of corti; apoptosis ID SYNDROME TYPE-III; RECOMBINANT ADENOASSOCIATED VIRUS; GUINEA-PIG COCHLEA; GENE-THERAPY; TRANSGENE EXPRESSION; PHOTORECEPTOR CELLS; AUDITORY FUNCTION; CHROMOSOME 3Q; USH3 GENE; PROTEIN AB Usher syndrome type 3 is caused by mutations in the USH3A gene, which encodes the protein clarin-1. Clarin-1 is a member of the tetraspanin superfamily (TM4SF) of transmembrane proteins, expressed in the organ of Corti and spiral ganglion cells of the mouse ear. We have examined whether the AAV-mediated anti-clarin ribozyme delivery causes apoptotic cell death in vivo in the organ of Corti. We used an AAV-2 vector delivered hammerhead ribozyme, AAV-CBA-Rz, which specifically recognizes and cleaves wild type mouse clarin-1 mRNA. Cochleae of CD-1 mice were injected either with 1 mu l of the AAV-CBA-Rz, or control AAV vectors containing the green fluorescent protein (GFP) marker gene (AAV-CBA-GFP). Additional controls were performed with saline only. At one-week and one-month post-injection, the animals were sacrificed and the cochleae were studied by histology and fluorescence imaging. Mice injected with AAV-CBA-GFP displayed GFP reporter expression of varying fluorescence intensity throughout the length of the cochlea in the outer and inner hair cells and stria vascularis, and to a lesser extent, in vestibular epithelial cells. GFP expression was not detectable in the spiral ganglion. The pro-apoptotic effect of AAV-CBA-delivered anti-clarin-1 ribozymes was evaluated by TUNEL-staining. We observed in the AAV-CBA-Rz, AAV-CBA-GFP and saline control groups apoptotic nuclei in the outer and inner hair cells and in the stria vascularis one week after the microinjection. The vestibular epithelium was also observed to contain apoptotic cells. No TUNEL-positive spiral ganglion neurons were detected. After one-month post-injection, the AAV-CBA-Rz-injected group had significantly more apoptotic outer and inner hair cells and cells of the stria vascularis than the AAV-CBA-GFP group. In this study, we demonstrate that AAV-CBA mediated clarin-1 ribozyme may induce apoptosis of the cochlear hair cells and cells of the stria vascularis. Surprisingly, we did not observe apoptosis in spiral ganglion cells, which should also be susceptible to clarin-1 mRNA cleavage. This result may be due to the injection technique, the promoter used, or tropism of the AAV serotype 2 viral vector. These results suggest the role of apoptosis in the progression of USH3A hearing loss warrants further evaluation. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Helsinki, Dept Otorhinolaryngol, Helsinki, Finland. Biomed Helsinki Folkhalsan Inst Genet, Helsinki, Finland. Univ Helsinki, Dept Clin Chem, SF-00100 Helsinki, Finland. Univ Florida, Dept Ophthalmol & Mol Genet, Gainesville, FL USA. Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. Univ Helsinki, Dept Ophthalmol, Helsinki, Finland. RP Aarnisalo, AA (reprint author), Univ Helsinki, Dept Otorhinolaryngol, Helsinki, Finland. EM antti.aarnisalo@hus.fi CR Adato A, 2002, EUR J HUM GENET, V10, P339, DOI 10.1038/sj.ejhg.5200831 Bedrosian JC, 2006, MOL THER, V14, P328, DOI 10.1016/j.ymthe.2006.04.003 Birikh KR, 1997, RNA, V3, P429 Fields RR, 2002, AM J HUM GENET, V71, P607, DOI 10.1086/342098 Glotzer JB, 2000, NATURE, V407, P207 Hauswirth WW, 2000, CLIN CHEM LAB MED, V38, P147, DOI 10.1515/CCLM.2000.022 Hemler ME, 2001, J CELL BIOL, V155, P1103, DOI 10.1083/jcb.200108061 Jero J, 2001, HEARING RES, V151, P106, DOI 10.1016/S0378-5955(00)00216-1 Jero J, 2001, HUM GENE THER, V12, P539, DOI 10.1089/104303401300042465 Joensuu T, 2000, GENOMICS, V63, P409, DOI 10.1006/geno.1999.6096 KAPLITT MG, 1994, NAT GENET, V8, P148, DOI 10.1038/ng1094-148 KARJALAINEN S, 1985, ADV AUDIOL, V3, P32 Kawamoto K, 2001, MOL THER, V4, P575, DOI 10.1006/mthe.2001.0490 Khan Z, 2004, NEUROSCIENCE, V127, P785, DOI 10.1016/j.neuroscience.2004.05.052 Kho ST, 2000, EUR ARCH OTO-RHINO-L, V257, P469, DOI 10.1007/s004050000280 Klein RL, 2002, EXP NEUROL, V176, P66, DOI 10.1006/exnr.2002.7942 Lalwani AK, 1998, AM J OTOL, V19, P390 Lalwani AK, 1998, GENE THER, V5, P277, DOI 10.1038/sj.gt.3300573 Lalwani AK, 1996, GENE THER, V3, P588 Lalwani AK, 2002, AUDIOL NEURO-OTOL, V7, P146, DOI 10.1159/000058300 Lalwani AK, 2003, EAR HEARING, V24, P342, DOI 10.1097/01.AUD.0000079798.24346.35 LaVail MM, 2000, P NATL ACAD SCI USA, V97, P11488, DOI 10.1073/pnas.210319397 Lewin AS, 1998, NAT MED, V4, P967, DOI 10.1038/nm0898-967 Liu YH, 2005, MOL THER, V12, P725, DOI 10.1016/j.ymthe.2005.03.021 Luebke AE, 2001, HUM GENE THER, V12, P773, DOI 10.1089/104303401750148702 Ohgitani E, 1999, J GEN VIROL, V80, P63 PAKARINEN L, 1995, SCAND J LOG PHON, V20, P141 SANKILA EM, 1995, HUM MOL GENET, V4, P93 Song S, 1998, P NATL ACAD SCI USA, V95, P14384, DOI 10.1073/pnas.95.24.14384 Staecker H, 2004, OTOLARYNG CLIN N AM, V37, P1091, DOI 10.1016/j.otc.2004.05.001 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 Wareing M, 1999, HEARING RES, V128, P61, DOI 10.1016/S0378-5955(98)00196-8 NR 32 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2007 VL 230 IS 1-2 BP 9 EP 16 DI 10.1016/j.heares.2007.03.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203KH UT WOS:000248973000002 PM 17493778 ER PT J AU Vieira, M Christensen, BL Wheeler, BC Feng, AS Kollmar, R AF Vieira, Mauricio Christensen, Barbara L. Wheeler, Bruce C. Feng, Albert S. Kollmar, Richard TI Survival and stimulation of neurite outgrowth in a serum-free culture of spiral ganglion neurons from adult mice SO HEARING RESEARCH LA English DT Article DE adult; cell culture techniques; mice; neurites; neurons; spiral ganglion ID VOLTAGE-DEPENDENT CURRENTS; AUDITORY NEURONS; IN-VITRO; HIPPOCAMPAL-NEURONS; HAIR-CELLS; INNER-EAR; COCHLEA; MOUSE; NERVE; NEUROTROPHINS AB We have developed a reliable protocol for the serum-free dissociation and culture of spiral ganglion neurons from adult mice, an important animal model for patients with post-lingual hearing loss. Pilot experiments indicated that the viability of spiral ganglion cells in vitro depended critically on the use of Hibernate medium with B27 supplement. With an optimized protocol, we obtained 2 x 10(3) neurons immediately after dissociation, or about one-fifth of those present in the intact spiral ganglion. After four days in culture, 4% of the seeded neurons survived without any exogenous growth factors other than insulin. This yield was highly reproducible in five independent experiments and enabled us to measure systematically the numbers and lengths of the regenerating neurites. Furthermore, the survival rate compared well to the few published protocols for culturing adult spiral ganglion neurons from other species. Enhanced survival and neurite outgrowth upon the addition of brain-derived neurotrophic factor and leukemia inhibitory factor demonstrated that both are potent stimulants for damaged spiral ganglion neurons in adults. This responsiveness to exogenous growth factors suggested that our culture protocol will facilitate the screening of molecular compounds as potential treatments for sensorineural hearing loss. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Illinois, Dept Mol & Integrat Physiol, Urbana, IL 61801 USA. Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA. Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA. Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. RP Kollmar, R (reprint author), Univ Illinois, Dept Mol & Integrat Physiol, 407 S Goodwin Ave,MC-114, Urbana, IL 61801 USA. EM vieira@uiuc.edu; bichris@uiuc.edu; bwheeler@uiuc.edu; afeng1@uiuc.edu; rkollmar@uiuc.edu CR Anderson M, 2006, HEARING RES, V215, P97, DOI 10.1016/j.heares.2006.03.014 Balazs R, 2006, CURR TOP MED CHEM, V6, P961, DOI 10.2174/156802606777323700 Banker G, 1998, CULTURING NERVE CELL Bianchi L. M., 2004, Current Drug Targets - CNS and Neurological Disorders, V3, P195, DOI 10.2174/1568007043337454 Bottenstein J. E., 1985, CELL CULTURE NEUROSC Brewer GJ, 1997, J NEUROSCI METH, V71, P143, DOI 10.1016/S0165-0270(96)00136-7 Brewer GJ, 1996, NEUROREPORT, V7, P1509, DOI 10.1097/00001756-199606170-00014 BREWER GJ, 1993, J NEUROSCI RES, V35, P567, DOI 10.1002/jnr.490350513 Collins J G, 1997, Vital Health Stat 10, P1 Dazert S, 1998, J CELL PHYSIOL, V177, P123, DOI 10.1002/(SICI)1097-4652(199810)177:1<123::AID-JCP13>3.0.CO;2-E EHRET G, 1979, J COMP NEUROL, V183, P73, DOI 10.1002/cne.901830107 Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 Gillespie LN, 2005, EUR J NEUROSCI, V22, P2123, DOI 10.1111/j.1460-9568.2005.04430.x Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019 Hallworth R, 2000, HEARING RES, V148, P161, DOI 10.1016/S0378-5955(00)00149-0 Harlow E, 1999, USING ANTIBODIES LAB Hegarty JL, 1997, J NEUROSCI, V17, P1959 Holley MC, 2002, BRIT MED BULL, V63, P157, DOI 10.1093/bmb/63.1.157 Kita T, 2005, NEUROREPORT, V16, P689, DOI 10.1097/00001756-200505120-00007 Konur S, 2005, NEURON, V46, P401, DOI 10.1016/j.neuron.2005.04.022 LEFEBVRE PP, 1994, NEUROREPORT, V5, P865, DOI 10.1097/00001756-199404000-00003 LEFEBVRE PP, 1990, HEARING RES, V47, P83, DOI 10.1016/0378-5955(90)90168-O LEFEBVRE PP, 1990, BRAIN RES, V507, P254, DOI 10.1016/0006-8993(90)90279-K LEFEBVRE PP, 1991, BRAIN RES, V567, P306, DOI 10.1016/0006-8993(91)90809-A Lin X, 1998, J NEUROPHYSIOL, V79, P2503 Lin X, 1997, HEARING RES, V108, P157, DOI 10.1016/S0378-5955(97)00050-6 Lopez IA, 2004, INT J DEV NEUROSCI, V22, P205, DOI 10.1016/j.ijdevneu.2004.04.006 Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016 Marzella PL, 1997, NEUROREPORT, V8, P1641, DOI 10.1097/00001756-199705060-00017 Meijering E, 2004, CYTOM PART A, V58A, P167, DOI 10.1002/cyto.a.20022 Mo ZL, 1997, J NEUROPHYSIOL, V77, P1294 Mou K, 1997, J COMP NEUROL, V386, P529 NADOL JB, 1988, HEARING RES, V34, P253, DOI 10.1016/0378-5955(88)90006-8 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Oshima K, 2007, JARO-J ASSOC RES OTO, V8, P18, DOI 10.1007/s10162-006-0058-3 Perry SW, 2004, J NEUROSCI RES, V78, P485, DOI 10.1002/jnr.20272 PUJOL R, 1992, NEUROREPORT, V3, P299, DOI 10.1097/00001756-199204000-00002 RABEJAC D, 1994, BRAIN RES, V652, P249, DOI 10.1016/0006-8993(94)90234-8 Rask-Andersen H, 2005, HEARING RES, V203, P180, DOI 10.1016/j.heares.2004.12.005 Ripoll C, 1997, J NEUROSCI METH, V73, P123, DOI 10.1016/S0165-0270(96)02217-0 Rome C, 1999, BRAIN RES, V846, P196, DOI 10.1016/S0006-8993(99)02034-X VAZQUEZ E, 1994, ANAT EMBRYOL, V189, P157 Webber A, 2006, ANAT REC PART A, V288A, P390, DOI 10.1002/ar.a.20299 Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030 Willott JF, 2001, HDB MOUSE AUDITORY R YAMAGUCHI K, 1990, J PHYSIOL-LONDON, V420, P185 Zhao HB, 2001, NEUROSCI LETT, V315, P73, DOI 10.1016/S0304-3940(01)02357-6 ZHENG JL, 1995, J NEUROSCI, V15, P5079 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 49 TC 22 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2007 VL 230 IS 1-2 BP 17 EP 23 DI 10.1016/j.heares.2007.03.005 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203KH UT WOS:000248973000003 PM 17521837 ER PT J AU Dai, C Cheng, T Wood, MW Gan, RZ AF Dai, Chenkal Cheng, Tao Wood, Mark W. Gan, Rong Z. TI Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: Experiment and modeling SO HEARING RESEARCH LA English DT Article DE middle ear ligament; laser interferometry; temporal bone; finite element model; middle ear mechanics ID MALLEUS FIXATION; DIAGNOSIS; SOUND AB The aim of this study is to investigate the function of the superior malleolar ligament (SML) and the anterior malleolar ligament (AML) in human middle ear for sound transmission through simulations of fixation and detachment of these ligaments in human temporal bones and a finite element (FE) ear model. Two laser vibrometers were used to measure the vibrations of the tympanic membrane (TM) and stapes footplate. A 3-D FE ear model was used to predict the transfer function of the middle ear with ligament fixation and detachment. The results demonstrate that fixations and detachments of the SML and AML had different effects on TM and stapes footplate movements. Fixation of the SML resulted in a reduction of displacement of the TM (umbo) and the footplate at low frequencies (f < 1000 Hz), but also caused a shift of displacement peak to higher frequencies. Fixation of both SML and ANIL caused a reduction of 15 dB at umbo or stapes at low frequencies. Detachment of the SML had almost no effect on TM and footplate mobility, but AML detachment had a minor effect on TM and footplate movement. The FE model was able to predict the effects of SML and AML fixation and detachment. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA. House Ear Res Inst, Oklahoma City, OK 73112 USA. RP Gan, RZ (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, 865 Asp Ave,Room 200, Norman, OK 73019 USA. EM rgan@ou.edu RI dai, chenkai/A-8051-2010 CR AKACHE F, 2007, AUDIOL NEUROTOL, V12, P59 Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53 GAN RZ, 2006, P 4 INT S MIDDL EAR Gan RZ, 2004, ASS RES OT ARO MIDW, V27, P823 Gan TZ, 2004, OTOL NEUROTOL, V25, P423 GOODHILL V, 1966, ARCH OTOLARYNGOL, V90, P107 Huber A, 2003, ANN OTO RHINOL LARYN, V112, P348 HUTTENBRINK KB, 1989, LARYNGO RHINO OTOL, V68, P146 Mehta RP, 2002, ANN OTO RHINOL LARYN, V111, P246 MOON CN, 1981, LARYNGOSCOPE, V91, P1298 Nakajima HH, 2005, LARYNGOSCOPE, V115, P147, DOI 10.1097/01.mlg.0000150692.23506.b7 Nakajima HH, 2005, HEARING RES, V204, P60, DOI 10.1016/j.heares.2005.01.002 Nandapalan V, 2002, OTOL NEUROTOL, V23, P854, DOI 10.1097/00129492-200211000-00008 Schuknecht HF, 1993, PATHOLOGY EAR TONNDORF J, 1972, J ACOUST SOC AM, V52, P1221, DOI 10.1121/1.1913236 NR 15 TC 14 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2007 VL 230 IS 1-2 BP 24 EP 33 DI 10.1016/j.heares.2007.03.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203KH UT WOS:000248973000004 PM 17517484 ER PT J AU Lataye, R Maguin, K Campo, P AF Lataye, Robert Maguin, Katy Campo, Pierre TI Increase in cochlear microphonic potential after toluene administration SO HEARING RESEARCH LA English DT Article DE cochlear microphonic potential; toluene; solvent; auditory efferent system ID HAIR CELL-FUNCTION; OCCUPATIONAL EXPOSURE; HEARING FUNCTION; GUINEA-PIGS; ALBINO-RAT; NOISE; STYRENE; OTOTOXICITY; GENTAMICIN; METABOLISM AB Human and animal studies have shown that toluene can cause hearing loss. In the rat, the outer hair cells are first disrupted by the ototoxicant. Because of their particular sensitivity to toluene, the cochlear microphonic potential (CMP) was used for monitoring the cochlea activity of anesthetized rats exposed to both noise (band noise centered at 4 kHz) and toluene. In the present experiment, the conditions were specifically designed to study the toluene effects on CMP and not those of its metabolites. To this end, 100-mu L injections of a vehicle containing different concentrations of solvent were made into the carotid artery connected to the tested cochlea. Interestingly, an injection of 116.2-mM toluene dramatically increased in the CMP amplitude (similar to 4 dB) in response to an 85-dB SPL noise. Moreover, the rise in CMP magnitude was intensity dependent at this concentration suggesting that toluene could inhibit the auditory efferent system involved in the inner-ear or/and middle-ear acoustic reflexes. Because acetylcholine is the neurotransmitter mediated by the auditory efferent bundles, injections of antagonists of cholinergic receptors (AchRs) such as atropine, 4-diphenylacetoxy-N-methylpiperidine-methiodide (mAchR antagonist) and dihydro-beta-erythroidine (nAchR antagonist) were also tested in this investigation. They all provoked rises in CMP having amplitudes as large as those obtained with toluene. The results showed for the first time in an in vivo study that toluene mimics the effects of AchR antagonists. It is likely that toluene might modify the response of protective acoustic reflexes. (c) 2007 Elsevier B.V. All rights reserved. C1 Inst Natl Rech & Secur, Lab Neurotoxicite, F-54501 Vandoeuvre Les Nancy, France. RP Campo, P (reprint author), Inst Natl Rech & Secur, Lab Neurotoxicite, Ave Bourgogne,BP 27, F-54501 Vandoeuvre Les Nancy, France. EM Pierre.campo@mrs.fr CR Bale AS, 2005, TOXICOL APPL PHARM, V205, P77, DOI 10.1016/j.taap.2004.09.011 BONFILS P, 1986, HEARING RES, V24, P285, DOI 10.1016/0378-5955(86)90027-4 Campo P, 2001, HEARING RES, V154, P170, DOI 10.1016/S0378-5955(01)00218-0 Campo P, 1998, NEUROTOXICOL TERATOL, V20, P321, DOI 10.1016/S0892-0362(97)00093-7 Campo P, 2006, ENVIRON TOXICOL PHAR, V21, P276, DOI 10.1016/j.etap.2005.09.004 Cooper NP, 2003, J PHYSIOL-LONDON, V548, P307, DOI 10.1113/jphysiol.2003.039081 CROFTON KM, 1994, HEARING RES, V80, P25, DOI 10.1016/0378-5955(94)90005-1 CROWLEY DE, 1965, J AUD RES, V5, P307 DANCER A, 1980, HEARING RES, V2, P191, DOI 10.1016/0378-5955(80)90057-X EYBALIN M, 1987, EXP BRAIN RES, V65, P261 Franks NP, 1997, NATURE, V389, P334, DOI 10.1038/38614 Furman GM, 1998, J TOXICOL ENV HEAL A, V54, P633 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 HUANG MY, 1994, OCCUP ENVIRON MED, V51, P42 JOHNSON AC, 1994, HEARING RES, V75, P201, DOI 10.1016/0378-5955(94)90071-X KASTIN AJ, 1976, BRAIN RES BULL, V1, P19, DOI 10.1016/0361-9230(76)90045-9 Lataye R, 1997, NEUROTOXICOL TERATOL, V19, P373, DOI 10.1016/S0892-0362(97)00049-4 Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 Lee DJ, 2006, ANAT REC PART A, V288A, P358, DOI 10.1002/ar.a.20296 Lohuis PJFM, 2000, HEARING RES, V143, P189, DOI 10.1016/S0378-5955(00)00043-5 Maguin K, 2006, NEUROTOXICOL TERATOL, V28, P648, DOI 10.1016/j.ntt.2006.08.007 MEEK ME, 1994, ENVIRON CARCIN ECO R, V12, P507 Morata T, 2001, NOISE INDUCED HEARIN, P293 MORATA TC, 1994, ARCH ENVIRON HEALTH, V49, P359 MURATA K, 1986, HEARING RES, V23, P169, DOI 10.1016/0378-5955(86)90014-6 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 PUEL JL, 1988, HEARING RES, V37, P65, DOI 10.1016/0378-5955(88)90078-0 PUJOL R, 1994, BRIT J AUDIOL, V28, P185, DOI 10.3109/03005369409086567 Sliwinska-Kowalska M, 2003, J OCCUP ENVIRON MED, V45, P15, DOI 10.1097/01.jom.0000048169.87707.c2 SMITH DW, 1994, BRAIN RES, V652, P243, DOI 10.1016/0006-8993(94)90233-X Tsuga H, 2002, JPN J PHARMACOL, V89, P282, DOI 10.1254/jjp.89.282 WARR WB, 1986, NEUROBIOLOGY HEARING, P33 WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 Withnell RH, 2001, EAR HEARING, V22, P75, DOI 10.1097/00003446-200102000-00008 Woodward JJ, 2004, MOL BRAIN RES, V125, P86, DOI 10.1016/j.molbrainres.2004.03.005 Yamamoto H, 2003, HEARING RES, V186, P69, DOI 10.1016/S0378-5955(03)00310-1 Yoshida N, 1999, J NEUROPHYSIOL, V82, P3168 NR 37 TC 14 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2007 VL 230 IS 1-2 BP 34 EP 42 DI 10.1016/j.heares.2007.04.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203KH UT WOS:000248973000005 PM 17555896 ER PT J AU Roehm, P Hoffer, M Balaban, CD AF Roehm, Pamela Hoffer, Michael Balaban, Carey D. TI Gentamicin uptake in the chinchilla inner ear SO HEARING RESEARCH LA English DT Article DE spiral ganglion; vestibular ganglion; cochlear aqueduct; transtympanic gentamicin; uptake ID VESTIBULAR HAIR-CELLS; COCHLEAR GENE-TRANSFER; ADENOASSOCIATED VIRUS; GUINEA-PIGS; KANAMYCIN CHALLENGE; DEPENDENT RESPONSE; SPIRAL GANGLION; AMINOGLYCOSIDES; STREPTOMYCIN; OTOTOXICITY AB Studies of transtympanic gentamicin have focused oil clinical use and outcomes. This study presents evidence of bilateral uptake and retention of gentamicin in certain inner ear cells and structures following transtympanic gentamicin application. Middle ear application of gentamicin was performed by either minipump (Alza model, 2002) or transtympanic injection in a chinchilla model. Histological sections of decalcified temporal bones were stained to identify the distribution of gentamicin. Using both anti-gentamicin immunohistochemistry and autoradiography of tracer amounts of tritiated gentamicin, Scarpa's and spiral ganglion cells, stria vascularis, and vestibular dark cells of the injected ear were found to have higher levels of gentamicin and retain it within cell bodies while staining levels fell to background levels in the rest of the injected ear over the course of 14 days. There was no evidence of an apical to basal gradient of anti-gentamicin staining within the spiral ganglion. Contralateral inner ear cells showed light anti-gentamicin staining. Cell bodies in the ipsilateral dorsal cochlear nucleus bordering tile cochlear aqueduct (CA) showed a lateral to medial gradient of gentamicin staining, suggesting the CA as a potential site of transfer of gentamicin to the contralateral ear. Direct effects of aminoglycosides oil ganglion cells may have implications oil both the success of cochlear implantation in patients deafened following systemic aminoglycoside therapy and oil the advisability of clinical practices of transtympanic gentamicin therapy and ototopic aminoglycoside treatment. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Pittsburgh, Sch Med, Dept Otolaryngol, Pittsburgh, PA 15213 USA. NYU, Sch Med, Dept Otolaryngol, New York, NY 10003 USA. Natl Naval Med Ctr, Dept Otolaryngol, Bethesda, MD USA. Univ Pittsburgh, Dept Neurobiol, Pittsburgh, PA 15213 USA. Univ Pittsburgh, Dept Commun Sci & Disorders, Pittsburgh, PA 15213 USA. Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15213 USA. RP Balaban, CD (reprint author), Univ Pittsburgh, Sch Med, Dept Otolaryngol, 107 Eye & Ear Inst,203Lothrop St, Pittsburgh, PA 15213 USA. EM cbalaban@pitt.edu CR BAHUY T, 1986, J CLIN INVEST, V77, P1492 Balaban CD, 2005, VOLTA REV, V105, P335 Bath AP, 1999, LARYNGOSCOPE, V109, P1088, DOI 10.1097/00005537-199907000-00015 Blakley BW, 2000, LARYNGOSCOPE, V110, P236, DOI 10.1097/00005537-200002010-00009 Chen JK, 1999, ACTA MECH SOLIDA SIN, V12, P1 Cunningham LL, 2002, J NEUROSCI, V22, P8532 DOYLE WJ, 1985, ARCH OTOLARYNGOL, V111, P305 FLOBERG LE, 1949, ACTA OTO-LARYNGOL, V75, P36 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Ghiz AF, 2001, HEARING RES, V162, P105, DOI 10.1016/S0378-5955(01)00375-6 HARADA Y, 1991, ACTA OTO-LARYNGOL, P135 HAYASHIDA T, 1985, ARCH OTO-RHINO-LARYN, V242, P257, DOI 10.1007/BF00453548 Hilton M, 2002, CLIN OTOLARYNGOL, V27, P529, DOI 10.1046/j.1365-2273.2002.00614.x Hoffer ME, 2001, LARYNGOSCOPE, V111, P1343, DOI 10.1097/00005537-200108000-00007 Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8 Imamura S, 2003, JARO, V4, P196, DOI 10.1007/s10162-002-2037-7 Kho ST, 2000, MOL THER, V2, P368, DOI 10.1006/mthe.2000.0129 Kitahara T, 2005, NEUROSCIENCE, V135, P639, DOI 10.1016/j.neuroscience.2005.06.056 Kitahara T, 2005, HEARING RES, V201, P132, DOI 10.1016/j.heares.2004.09.007 KOHONEN A, 1965, ACTA OTOLARYNGOL S S, V208, P9 Lalwani AK, 1998, AM J OTOL, V19, P390 Lalwani AK, 1996, GENE THER, V3, P588 Myrdal SE, 2005, HEARING RES, V204, P170, DOI 10.1016/j.heares.2005.02.005 Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 Nakagawa T, 1998, ACTA OTO-LARYNGOL, P32 Nakagawa T, 1998, ACTA OTO-LARYNGOL, V118, P530, DOI 10.1080/00016489850154676 Nakagawa T, 1997, EUR ARCH OTO-RHINO-L, V254, P9, DOI 10.1007/BF02630749 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P451 Steyger PS, 2005, VOLTA REV, V105, P299 Stover T, 2000, GENE THER, V7, P377, DOI 10.1038/sj.gt.3301108 Vago P, 1998, NEUROREPORT, V9, P431, DOI 10.1097/00001756-199802160-00014 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 WICKE W, 1977, ACTA OTO-LARYNGOL, V85, P360 NR 36 TC 16 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2007 VL 230 IS 1-2 BP 43 EP 52 DI 10.1016/j.heares.2007.04.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203KH UT WOS:000248973000006 PM 17616288 ER PT J AU Mckay, SM Oleskevich, S AF Mckay, Sarah M. Oleskevich, Sharon TI The role of spontaneous activity in development of the endbulb of Held synapse SO HEARING RESEARCH LA English DT Article DE endbulb of held; auditory; development; AMPA; dn/dn; spontaneous ID ANTEROVENTRAL COCHLEAR NUCLEUS; AUDITORY BRAIN-STEM; CONGENITALLY DEAF MICE; RELEASE PROBABILITY; POSTSYNAPTIC EXPRESSION; HOMEOSTATIC PLASTICITY; HEARING-LOSS; BUSHY CELLS; TIME-COURSE; NEURONS AB In the mouse brainstem cochlear nucleus, the auditory nerve to bushy cell synapse (endbulb of Held) is specialised for rapid, high-fidelity transmission. Development of this synapse is modulated by auditory nerve activity. Here we investigate the role of spontaneous auditory nerve activity in synaptic transmission using deafness (dn/dn) mutant mice that have abnormal hair cells and lack spontaneous auditory nerve activity. Evoked and miniature alpha amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor-mediated excitatory post-synaptic currents (eEPSCs, mEPSCs) were compared in deafness and normal mice before the age of hearing onset (postnatal day 7-11: P7-11) using variance-mean, miniature event and tetanic depression analyses. Amplitudes were significantly greater in deafness mice for eEPSCs (2.1-fold), mEPSCs (1.4-fold) and quantal amplitudes (1.5-fold). eEPSCs in deafness mice decayed more rapidly with increasing age, indicating an input-independent transition in post-synaptic AMPA receptor properties. A comparison of normal mice before and after the onset of hearing showed a change in synaptic parameters with an increase in eEPSC (1.7-fold), mEPSC (1.6-fold) and quantal amplitude (1.7-fold) after hearing onset while release probability remained constant (0.5). Overall, the results in deafness mice suggest that synaptic strength is altered in the absence of spontaneous auditory nerve activity. Crown Copyright (c) 2007 Published by Elsevier B.V. All rights reserved. C1 Garvan Inst Med Res, Neurosci Res Program, Sydney, NSW 2010, Australia. Univ New S Wales, Sydney, NSW 2052, Australia. RP Oleskevich, S (reprint author), Garvan Inst Med Res, Neurosci Res Program, Sydney, NSW 2010, Australia. EM s.mckay@garvan.org.au; s.oleskevich@garvan.org.au CR Bellingham MC, 1998, J PHYSIOL-LONDON, V511, P861, DOI 10.1111/j.1469-7793.1998.861bg.x BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406 Brenowitz S, 2001, J NEUROSCI, V21, P9487 Brenowitz S, 1998, NEURON, V20, P135, DOI 10.1016/S0896-6273(00)80441-9 Brenowitz S, 2001, J NEUROSCI, V21, P1857 Burrone J, 2003, CURR OPIN NEUROBIOL, V13, P560, DOI 10.1016/j.conb.2003.09.007 Clements JD, 2000, TRENDS NEUROSCI, V23, P105, DOI 10.1016/S0166-2236(99)01520-9 Clements JD, 1997, BIOPHYS J, V73, P220 Desai NS, 2002, NAT NEUROSCI, V5, P783, DOI 10.1038/nn878 DURHAM D, 1989, HEARING RES, V43, P39, DOI 10.1016/0378-5955(89)90057-9 ELMQVIST D, 1965, J PHYSIOL-LONDON, V178, P505 Faddis BT, 1998, HEARING RES, V115, P6, DOI 10.1016/S0378-5955(97)00172-X Gardner SM, 1999, J NEUROSCI, V19, P8721 Gardner SM, 2001, J NEUROSCI, V21, P7428 HABETS RL, 2006, J NEUROPHYSIOL Isaacson JS, 1996, J NEUROPHYSIOL, V76, P1566 ISAACSON JS, 1995, NEURON, V15, P875, DOI 10.1016/0896-6273(95)90178-7 Jones TA, 2001, J NEUROSCI, V21, P8129 Kamiya K, 2001, BRAIN RES, V901, P296, DOI 10.1016/S0006-8993(01)02300-9 Kurima K, 2002, NAT GENET, V30, P277, DOI 10.1038/ng842 Lawrence JJ, 2000, J NEUROSCI, V20, P4864 Leao RN, 2005, EUR J NEUROSCI, V22, P147, DOI 10.1111/j.1460-9568.2005.04185.x Leao RN, 2006, J PHYSIOL-LONDON, V571, P563, DOI 10.1113/jphysiol.2005.098780 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032 LIPPE WR, 1994, J NEUROSCI, V14, P1486 Lissin DV, 1998, P NATL ACAD SCI USA, V95, P7097, DOI 10.1073/pnas.95.12.7097 Lu Y, 2007, J NEUROPHYSIOL, V97, P635, DOI 10.1152/jn.00915.2006 Maffei A, 2004, NAT NEUROSCI, V7, P1353, DOI 10.1038/nn1351 Marcotti W, 2006, J PHYSIOL-LONDON, V574, P677, DOI 10.1113/jphysiol.2005.095661 National Health and Medical Research Council, 2004, AUSTR COD PRACT CAR O'Brien RJ, 1998, NEURON, V21, P1067 Oleskevich S, 2000, J PHYSIOL-LONDON, V524, P513, DOI 10.1111/j.1469-7793.2000.00513.x Oleskevich S, 2004, J PHYSIOL-LONDON, V560, P709, DOI 10.1113/jphysiol.2004.066652 Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821 PUJOL R, 1983, HEARING RES, V12, P57, DOI 10.1016/0378-5955(83)90118-1 Reid CA, 1999, J PHYSIOL-LONDON, V518, P121, DOI 10.1111/j.1469-7793.1999.0121r.x Romand R., 1983, DEV AUDITORY VESTIBU, P47 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 RYUGO DK, 1991, J COMP NEUROL, V305, P35, DOI 10.1002/cne.903050105 Ryugo DK, 2006, HEARING RES, V216, P100, DOI 10.1016/j.heares.2006.01.007 Schneggenburger R, 1999, NEURON, V23, P399, DOI 10.1016/S0896-6273(00)80789-8 STEEL KP, 1980, NATURE, V288, P159, DOI 10.1038/288159a0 Taschenberger H, 2002, NEURON, V36, P1127, DOI 10.1016/S0896-6273(02)01137-6 Taschenberger H, 2000, J NEUROSCI, V20, P9162 TUCCI DL, 1987, ANN OTO RHINOL LARYN, V96, P343 Turrigiano GG, 2004, NAT REV NEUROSCI, V5, P97, DOI 10.1038/nrn1327 Turrigiano GG, 1998, NATURE, V391, P892, DOI 10.1038/36103 WALMSLEY B, 2006, J PHYSL Wang XY, 2004, J NEUROSCI, V24, P10687, DOI 10.1523/JNEUROSCI.2755-04.2004 Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005 WEBSTER DB, 1992, EXP NEUROL, V115, P27, DOI 10.1016/0014-4886(92)90216-D Wierenga CJ, 2005, J NEUROSCI, V25, P2895, DOI 10.1523/JNEUROSCI.5217-04.2005 Wu LG, 1999, NEURON, V23, P821, DOI 10.1016/S0896-6273(01)80039-8 WU SH, 1987, HEARING RES, V30, P99 Youssoufian M, 2005, J NEUROPHYSIOL, V94, P3168, DOI 10.1152/jn.00342.2005 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 ZUCKER RS, 1989, ANNU REV NEUROSCI, V12, P13, DOI 10.1146/annurev.neuro.12.1.13 NR 58 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2007 VL 230 IS 1-2 BP 53 EP 63 DI 10.1016/j.heares.2007.05.006 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203KH UT WOS:000248973000007 PM 17590547 ER PT J AU Ries, DT DiGiovanni, JJ AF Ries, Dennis T. DiGiovanni, Jeffery J. TI Release from interference in auditory working memory for pitch SO HEARING RESEARCH LA English DT Article DE pitch; difference limen; auditory; working memory; frequency ID SHORT-TERM-MEMORY; INTERAURAL TIME DIFFERENCES; RECOGNITION MEMORY; OCTAVE-ILLUSION; RETROACTIVE INTERFERENCE; PREFRONTAL CORTEX; TONAL PITCH; TONES; ATTENTION; EAR AB The purpose of this study was to quantify the effect of interpolated tones upon a pitch standard held within auditory working memory through measurement of the difference limen Oust noticeable difference) for frequency and the usefulness of "Where" cues to ameliorate the interference produced by these intervening stimuli. To this end, we measured the degree to which tones, containing identical and disparate localization cues, presented within the retention interval altered differential sensitivity for frequency via the method of constant stimuli. The difference limen for frequency nearly tripled when tones were presented within the retention interval and sound localization cues produced a significant partial release from interference within the short-term pitch store. Interference produced by "Where" cues ranged from 4.0 to 5.2 Hz. These findings indicate that there is a possible integrative use of the "What" and "Where" pathways in forming and maintaining pitch information within the pitch array within auditory working memory. (c) 2007 Elsevier B.V. All rights reserved. C1 Ohio Univ, Sch Hearing Speech & Language Sci, Grover Ctr W241, Auditory Precept Lab, Athens, OH 45701 USA. Ohio Univ, Sch Hearing Speech & Language Sci, Grover Ctr W151a, Auditory Psychophys & Signal Proc Lab, Athens, OH 45701 USA. RP Ries, DT (reprint author), Ohio Univ, Sch Hearing Speech & Language Sci, Grover Ctr W221, Athens, OH 45701 USA. EM ries@ohio.edu; digiovan@ohio.edu CR Alain C, 2001, P NATL ACAD SCI USA, V98, P12301, DOI 10.1073/pnas.211209098 Anourova I, 1999, NEUROREPORT, V10, P3543, DOI 10.1097/00001756-199911260-00015 Arnott SR, 2005, J COGNITIVE NEUROSCI, V17, P819, DOI 10.1162/0898929053747612 Baddeley A. D., 1986, WORKING MEMORY BADDELEY AD, 1992, Q J EXP PSYCHOL, V44, P5 Berti S, 2006, EXP PSYCHOL, V53, P111, DOI 10.1027/1618-3169.53.2.111 Braver TS, 1997, NEUROIMAGE, V5, P49, DOI 10.1006/nimg.1996.0247 BULL AR, 1972, PERCEPT PSYCHOPHYS, V11, P105, DOI 10.3758/BF03212696 Carlson S, 1998, CEREB CORTEX, V8, P743, DOI 10.1093/cercor/8.8.743 CASEY BJ, 1995, NEUROIMAGE, V2, P221, DOI 10.1006/nimg.1995.1029 Clement S, 1999, J ACOUST SOC AM, V106, P2805, DOI 10.1121/1.428106 Cowan N, 2005, COGNITIVE PSYCHOL, V51, P42, DOI 10.1016/j.cogpsych.2004.12.001 Darwin CJ, 1999, J EXP PSYCHOL HUMAN, V25, P617, DOI 10.1037/0096-1523.25.3.617 Demany L, 2004, PERCEPT PSYCHOPHYS, V66, P609, DOI 10.3758/BF03194905 DEUTSCH D, 1978, J ACOUST SOC AM, V63, P184, DOI 10.1121/1.381710 DEUTSCH D, 1976, J EXP PSYCHOL HUMAN, V2, P23, DOI 10.1037//0096-1523.2.1.23 DEUTSCH D, 1988, J ACOUST SOC AM, V83, P365, DOI 10.1121/1.396249 DEUTSCH D, 1978, Q J EXP PSYCHOL, V30, P283, DOI 10.1080/14640747808400675 DEUTSCH D, 1974, J EXP PSYCHOL, V26, P229 Deutsch D, 2004, J EXP PSYCHOL HUMAN, V30, P355, DOI 10.1037/0096-1523.30.2.355 DEUTSCH D, 1975, PERCEPT PSYCHOPHYS, V17, P320, DOI 10.3758/BF03203217 DEUTSCH D, 1972, J EXP PSYCHOL, V93, P156, DOI 10.1037/h0032496 Deutsch D., 1999, PSYCHOL MUSIC, P349, DOI 10.1016/B978-012213564-4/50011-1 DEUTSCH D, 1972, SCIENCE, V175, P1020, DOI 10.1126/science.175.4025.1020 DEUTSCH D, 1980, J ACOUST SOC AM, V67, P220, DOI 10.1121/1.383731 DEUTSCH D, 1975, MEM COGNITION, V3, P263, DOI 10.3758/BF03212909 DEUTSCH D, 1974, NATURE, V251, P307, DOI 10.1038/251307a0 DEUTSCH D, 1970, SCIENCE, V168, P1604, DOI 10.1126/science.168.3939.1604 DEUTSCH D, 1970, NATURE, V226, P286, DOI 10.1038/226286a0 ELLIOTT LL, 1970, PERCEPT PSYCHOPHYS, V8, P379, DOI 10.3758/BF03212613 Engle RW, 1999, J EXP PSYCHOL GEN, V128, P309, DOI 10.1037/0096-3445.128.3.309 HARRIS JD, 1952, J EXP PSYCHOL, V43, P96, DOI 10.1037/h0057373 KALLMAN HJ, 1987, MEM COGNITION, V15, P454, DOI 10.3758/BF03197735 KOESTER T, 1945, ARCH PSYCHOL, V297 KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498 Maeder PP, 2001, NEUROIMAGE, V14, P802, DOI 10.1006/nimg.2001.0888 Martinkauppi S, 2000, CEREB CORTEX, V10, P889, DOI 10.1093/cercor/10.9.889 MASSARO DW, 1970, J EXP PSYCHOL, V83, P32, DOI 10.1037/h0028566 PECHMANN T, 1992, MEM COGNITION, V20, P314, DOI 10.3758/BF03199668 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 RYAN TA, 1959, PSYCHOL BULL, V56, P394, DOI 10.1037/h0041280 SEMAL C, 1991, J ACOUST SOC AM, V89, P2404, DOI 10.1121/1.400928 SEMAL C, 1993, J ACOUST SOC AM, V94, P1315, DOI 10.1121/1.408159 Vuontela V, 2003, LEARN MEMORY, V10, P74, DOI 10.1101/lm.53503 WICKELGR.WA, 1969, J MATH PSYCHOL, V6, P13, DOI 10.1016/0022-2496(69)90028-5 WICKELGR.WA, 1966, J EXP PSYCHOL, V72, P250, DOI 10.1037/h0023438 ZWICKER T, 1984, ACUSTICA, V55, P128 NR 47 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2007 VL 230 IS 1-2 BP 64 EP 72 DI 10.1016/j.heares.2007.04.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203KH UT WOS:000248973000008 PM 17574355 ER PT J AU Thornton, ARD Harmer, M Lavoie, BA AF Thornton, A. Roger D. Harmer, Matthew Lavoie, Brigitte A. TI Selective attention increases the temporal precision of the auditory N-100 event-related potential SO HEARING RESEARCH LA English DT Article DE correlation; latency jitter; neural dynamics; single trial; synchronization ID CAT VISUAL-CORTEX; ADAPTIVE FILTER; RESPONSES; CHILDREN; OSCILLATIONS; MODULATION; DYNAMICS; ADULTS AB Selective attention increases the amplitude of the averaged N-100 event-related potential (ERP). This increase may result from more neurons responding to the stimulus or from the same number of neurons better synchronised with the stimulus, or both. We investigated the synchronization mechanism using a new response latency jitter measurement algorithm that performed well for all the signal-to-noise ratios obtained in the experiment. We found that the significantly increased N100 amplitude is accounted for by a significantly decreased latency jitter variance for the attended stimuli. (c) 2007 Elsevier B.V. All rights reserved. C1 Royal S Hants Hosp, MRC Inst Hearing Res, Southampton SO14 0YG, Hants, England. Univ Southampton, Southampton SO9 5NH, Hants, England. RP Thornton, ARD (reprint author), Royal S Hants Hosp, MRC Inst Hearing Res, Southampton SO14 0YG, Hants, England. EM ardt@soton.ac.uk CR AUNON JI, 1978, MED BIOL ENG COMPUT, V16, P642, DOI 10.1007/BF02442443 Coch D, 2005, J COGNITIVE NEUROSCI, V17, P605, DOI 10.1162/0898929053467631 GRAY CM, 1989, P NATL ACAD SCI USA, V86, P1698, DOI 10.1073/pnas.86.5.1698 GRAY CM, 1989, NATURE, V338, P334, DOI 10.1038/338334a0 HANSEN JC, 1980, ELECTROEN CLIN NEURO, V49, P277, DOI 10.1016/0013-4694(80)90222-9 HILLYARD SA, 1985, TRENDS NEUROSCI, V8, P400, DOI 10.1016/0166-2236(85)90142-0 HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177 JOLIOT M, 1994, P NATL ACAD SCI USA, V91, P11748, DOI 10.1073/pnas.91.24.11748 Kreiter AK, 2001, ZOOL-ANAL COMPLEX SY, V104, P241, DOI 10.1078/0944-2006-00030 Maatta S, 2005, CLIN NEUROPHYSIOL, V116, P129, DOI 10.1016/j.clinph.2004.07.023 Makeig S, 2004, TRENDS COGN SCI, V8, P204, DOI 10.1016/j.tics.2004.03.008 Makinen V, 2004, NEUROIMAGE, V21, P701, DOI 10.1016/j.neuroimage.2003.10.009 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Petkov CI, 2004, NAT NEUROSCI, V7, P658, DOI 10.1038/nn1256 Sanders LD, 2006, NEUROPSYCHOLOGIA, V44, P2126, DOI 10.1016/j.neuropsychologia.2005.10.007 SAYERS BMA, 1974, NATURE, V247, P481 SCHIMMEL H, 1967, SCIENCE, V157, P92, DOI 10.1126/science.157.3784.92 STEEGER GH, 1983, IEEE T BIOMED ENG, V5, P295 Tononi G, 1998, SCIENCE, V282, P1846, DOI 10.1126/science.282.5395.1846 Tononi G, 1998, P NATL ACAD SCI USA, V95, P3198, DOI 10.1073/pnas.95.6.3198 VAUGHAN HG, 1998, HUMAN EVENT RELATED, P45 Von der Malsburg C., 1981, 812 M PLANCK I BIOPH WASTELL DG, 1977, ELECTROEN CLIN NEURO, V42, P835, DOI 10.1016/0013-4694(77)90238-3 WOLDORFF MG, 1991, ELECTROEN CLIN NEURO, V79, P170, DOI 10.1016/0013-4694(91)90136-R WOODY CD, 1967, MED BIOL ENG, V5, P539, DOI 10.1007/BF02474247 Yeung N, 2004, PSYCHOPHYSIOLOGY, V41, P822, DOI 10.1111/j.1469-8986.2004.00239.x NR 26 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2007 VL 230 IS 1-2 BP 73 EP 79 DI 10.1016/j.heares.2007.04.004 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203KH UT WOS:000248973000009 PM 17606341 ER PT J AU Sucher, CM McDermott, HJ AF Sucher, Catherine M. McDermott, Hugh J. TI Pitch ranking of complex tones by normally hearing subjects and cochlear implant users SO HEARING RESEARCH LA English DT Article DE pitch perception; cochlear implants; normal hearing ID MUSIC PERCEPTION; ELECTRIC HEARING; TEMPORAL PITCH; STIMULATION; RECOGNITION; DIMENSIONS; RECIPIENTS; INTERVAL; TIMBRE; LISTENERS AB The ability of 10 normally hearing (NH) adults and eight cochlear implant (CI) users to pitch-rank pairs of complex tones was assessed. The acoustically presented stimuli differed in fundamental frequency (F0) by either one or six semitones (F0 range: 98 to 740 Hz). The NH group obtained significantly higher mean scores for both experiments: (NH: one semitone - 81.2%, six semitones 89.0%; CI: one semitone - 49.0%, six semitones - 60.2%; p < 0.001). Prior musical experience was found to be associated with higher pitch-ranking scores for the NH subjects. Those with musical experience ratings <3 obtained significantly lower scores for both interval sizes (p < 0.001) than those with higher ratings. Nevertheless, the scores obtained by the musically inexperienced, NH adults were significantly higher than those obtained by the CI group for both the one-semitone (p = 0.022) and six-semitone (p = 0.0 18) intervals. These results suggest that the pitch information CI users obtain from their implant systems is less accurate than that obtained by NH listeners when listening to the same complex sounds. Furthermore, the relatively poor pitch-ranking ability of at least some CI users may be associated with a more-limited experience of music in general. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP Sucher, CM (reprint author), Univ Melbourne, Dept Otolaryngol, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM csucher@bionicear.org; hughm@unimelb.edu.au CR Balkany T, 1996, OTOLARYNG CLIN N AM, V29, P277 BEAL AL, 1985, MEM COGNITION, V13, P405, DOI 10.3758/BF03198453 BUSBY PA, 1994, J ACOUST SOC AM, V95, P2658, DOI 10.1121/1.409835 Carlyon RP, 2002, J ACOUST SOC AM, V112, P621, DOI 10.1121/1.1488660 Collins LM, 1997, J ACOUST SOC AM, V101, P440, DOI 10.1121/1.417989 Collins LM, 2000, J ACOUST SOC AM, V108, P2353, DOI 10.1121/1.1314320 Fearn R, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P51 Fujita S, 1999, ANN OTO RHINOL LARYN, V108, P634 Gfeller Kate, 2002, Cochlear Implants Int, V3, P29, DOI 10.1002/cii.50 Gfeller K, 2000, J Am Acad Audiol, V11, P390 Gfeller Kate, 2003, J Music Ther, V40, P78 GFELLER K, 1991, J SPEECH HEAR RES, V34, P916 Gfeller K, 2005, EAR HEARING, V26, P237, DOI 10.1097/00003446-200506000-00001 Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F Leal MC, 2003, ACTA OTO-LARYNGOL, V123, P826, DOI 10.1080/00016480310000386 Ma JKY, 2006, J ACOUST SOC AM, V120, P3978, DOI 10.1121/1.2363927 McDermott Hugh J, 2004, Trends Amplif, V8, P49, DOI 10.1177/108471380400800203 McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177 McKay C. M., 2000, Acoustics Research Letters Online, V1, DOI 10.1121/1.1318742 McKay CM, 1996, J ACOUST SOC AM, V99, P1079, DOI 10.1121/1.414594 MELARA RD, 1990, PERCEPT PSYCHOPHYS, V47, P307, DOI 10.3758/BF03210870 MELARA RD, 1990, PERCEPT PSYCHOPHYS, V48, P169, DOI 10.3758/BF03207084 NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317 Neuhoff JG, 1999, J EXP PSYCHOL HUMAN, V25, P1050, DOI 10.1037/0096-1523.25.4.1050 PIJL S, 1995, J ACOUST SOC AM, V98, P886, DOI 10.1121/1.413514 Pijl S, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P224 Pijl S, 1997, EAR HEARING, V18, P364, DOI 10.1097/00003446-199710000-00002 PITT MA, 1994, J EXP PSYCHOL HUMAN, V20, P976, DOI 10.1037//0096-1523.20.5.976 PLATT JR, 1985, PERCEPT PSYCHOPHYS, V38, P543, DOI 10.3758/BF03207064 ROBINSON K, 1995, J ACOUST SOC AM, V98, P1858, DOI 10.1121/1.414405 Seligman P., 1995, Annals of Otology Rhinology and Laryngology, V104, P139 SINGH PG, 1992, J ACOUST SOC AM, V92, P2650, DOI 10.1121/1.404381 SMITH JD, 1994, COGNITION, V52, P23 TONG YC, 1985, J ACOUST SOC AM, V77, P1881, DOI 10.1121/1.391939 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 Vandali AE, 2005, J ACOUST SOC AM, V117, P3126, DOI 10.1121/1.1874632 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 NR 37 TC 23 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2007 VL 230 IS 1-2 BP 80 EP 87 DI 10.1016/j.heares.2007.05.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203KH UT WOS:000248973000010 PM 17604582 ER PT J AU Fakhry, N Rostain, JC Cazals, Y AF Fakhry, Nicolas Rostain, Jean Claude Cazals, Yves TI Hyperbaric oxygenation with corticoid in experimental acoustic trauma SO HEARING RESEARCH LA English DT Article DE acute acoustic trauma; hearing loss; hyperbaric oxygen; corticoid; guinea pigs ID INDUCED HEARING-LOSS; PIG INNER-EAR; THERAPY; METHYLPREDNISOLONE AB Among possible therapies after acute acoustic trauma, hyperbaric oxygenation (HBO) combined with corticoid was found effective in several animal studies. Such evidence was obtained for moderate 20-25 dB losses. The aim of this study was to further assess this therapy for noise-induced hearing losses greater than previously examined. Sixty-five ears from thirty-six adult guinea pigs were used. Acoustically evoked responses from intracranial electrodes chronically implanted bilaterally into the ventral cochlear nucleus were used to assess acoustic sensitivity alterations. Trauma sound was a third-octave noise-band around 8 kHz presented bilaterally at 115 dB SPL for 45 min. One control group received no treatment, one group was treated with HBO only and another with corticoid only both starting within one day post-trauma, two groups were treated with both HBO and corticoid starting for one group within one day post-trauma, and for the second group at 6 days post-trauma. Acoustic thresholds were measured between the 6th and the 16th days after acoustic trauma. Animals treated with HBO alone or corticoid alone did not differ from controls. Combined HBO and corticoid therapy provided significant protection from noise-induced loss of auditory thresholds, especially when started one day post-exposure. Hearing loss reduction induced by HBO combined with corticoid was of similar magnitude (about 10-15 dB) as in previous studies although the induced hearing loss was considerably greater (about 40 dB instead of 20-25 dB). (c) 2007 Elsevier B.V. All rights reserved. C1 Univ P Cezanne, Fac Sci & Tech, CNRS, UMR 6153,Lab Physiol Neurovegetat, F-13397 Marseille 20, France. Univ CHU La Timone, Ctr Hosp, Serv ORL & Chirurg Cervico Faciale, F-13385 Marseille, France. Univ Aix Marseille 2, EA 3280, Lab Physiopathol & Therapeut Gaz Press, F-13916 Marseille 20, France. IMNSSA, Fac Med Nord, F-13916 Marseille 20, France. RP Cazals, Y (reprint author), Univ P Cezanne, Fac Sci & Tech, CNRS, UMR 6153,Lab Physiol Neurovegetat, Campus St Jerome,Ave Normandie Niemen, F-13397 Marseille 20, France. EM yves.cazals@univ-cezanne.fr CR Cakir BO, 2006, OTOL NEUROTOL, V27, P478 d'Aldin C, 1999, ANN NY ACAD SCI, V884, P328, DOI 10.1111/j.1749-6632.1999.tb08652.x Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 LAMM H, 1982, ARCH OTO-RHINO-LARYN, V236, P237, DOI 10.1007/BF00454215 Lamm K, 1998, ADV OTO-RHINO-LARYNG, V54, P59 Lamm K, 1996, Audiol Neurootol, V1, P148 Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X Lamm K, 1998, ADV OTO-RHINO-LARYNG, V54, P86 Pilgramm M, 1991, Scand Audiol Suppl, V34, P103 Tabuchi K, 2006, OTOL NEUROTOL, V27, P1176, DOI 10.1097/01.mao.0000226313.82069.3f Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825 THORNE PR, 1989, ACTA OTO-LARYNGOL, V107, P71, DOI 10.3109/00016488909127481 Tibbles PM, 1996, NEW ENGL J MED, V334, P1642, DOI 10.1056/NEJM199606203342506 Vavrina J, 1995, Rev Laryngol Otol Rhinol (Bord), V116, P377 Winiarski Michał, 2005, Pol Merkur Lekarski, V19, P348 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 ZHENG XY, 1992, AVIAT SPACE ENVIR MD, V63, P360 NR 19 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2007 VL 230 IS 1-2 BP 88 EP 92 DI 10.1016/j.heares.2007.05.005 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203KH UT WOS:000248973000011 PM 17590548 ER PT J AU Winer, JA Lee, CC AF Winer, Jeffery A. Lee, Charles C. TI The distribution auditory cortex SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE auditory cortex; parallel processing; thalamocortical; corticothalamic; corticofugal ID MEDIAL GENICULATE-BODY; POSTERIOR ECTOSYLVIAN GYRUS; LARGE BASKET CELLS; INFERIOR COLLICULUS; AXON TERMINALS; VISUAL-CORTEX; FUNCTIONAL-ORGANIZATION; TONOTOPIC ORGANIZATION; MODULAR ORGANIZATION; CORTICAL PROJECTIONS AB A synthesis of cat auditory cortex (AC) organization is presented in which the extrinsic and intrinsic connections interact to derive a unified profile of the auditory stream and use it to direct and modify cortical and subcortical information flow. Thus. file thalamocortical input provides essential sensory information about peripheral stimulus events, which AC redirects locally for feature extraction. and then conveys to parallel auditory, multisensory, premotor, limbic, and cognitive centers for further analysis. The corticofugal output influences areas as remote as the pons and the cochlear nucleus. Structures whose effects upon AC are entirely indirect, and it has diverse roles in the transmission of information through the medial geniculate body and inferior colliculus. The distributed AC is thus construed as a functional network in which the auditory percept is assembled for Subsequent redistribution in sensory, premotor, and cognitive streams contingent on the derived interpretation of the acoustic events. The confluence of auditory and multisensory streams likely precedes cognitive processing of sound. The distributed AC constitutes the largest and arguably the most complete representation of the auditory world. Many facets of this scheme may apply in rodent and primate AC as well. We propose that the distributed auditory cortex contributes to local processing regimes in regions as disparate as the frontal pole and the cochlear nucleus to construct the acoustic percept. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Div Neurobiol, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Winer, JA (reprint author), Univ Calif Berkeley, Div Neurobiol, Dept Mol & Cell Biol, Room 289, Berkeley, CA 94720 USA. EM jaw@berkeley.edu CR AITKIN LM, 1968, J NEUROPHYSIOL, V31, P44 AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275 BAJO VM, 1995, HEARING RES, V83, P161, DOI 10.1016/0378-5955(94)00199-Z Bao SW, 2001, NATURE, V412, P79, DOI 10.1038/35083586 Beneyto M, 2001, BRAIN RES BULL, V54, P485, DOI 10.1016/S0361-9230(00)00454-8 BERMAN N, 1982, EXP BRAIN RES, V47, P234 BLUM PS, 1979, EXP BRAIN RES, V34, P1 BOWMAN EM, 1988, J COMP NEUROL, V272, P30, DOI 10.1002/cne.902720104 BOWMAN EM, 1988, J COMP NEUROL, V272, P15, DOI 10.1002/cne.902720103 BRANDAO ML, 1988, PHYSIOL BEHAV, V44, P361, DOI 10.1016/0031-9384(88)90038-8 Briggs F, 2001, J NEUROSCI, V21, P3600 BRUGGE JF, 1985, CEREB CORTEX, V4, P229 CLAREY JC, 1992, SPRINGER HDB AUDITOR, V2, P232 Clasca F, 2000, CEREB CORTEX, V10, P371, DOI 10.1093/cercor/10.4.371 Clasca F, 1997, J COMP NEUROL, V384, P456, DOI 10.1002/(SICI)1096-9861(19970804)384:3<456::AID-CNE10>3.0.CO;2-H CODE RA, 1985, J COMP NEUROL, V242, P485, DOI 10.1002/cne.902420404 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x Crabtree JW, 1998, J COMP NEUROL, V390, P167 DECARLOS JA, 1987, EXP BRAIN RES, V66, P295 de la Mothe LA, 2006, J COMP NEUROL, V496, P27, DOI 10.1002/cne.20923 Del Cano GG, 2006, J COMP NEUROL, V499, P716, DOI 10.1002/cne.21107 DESCARRIES L, 1977, BRAIN RES, V133, P197, DOI 10.1016/0006-8993(77)90759-4 DESCARRIES L, 1975, BRAIN RES, V100, P563, DOI 10.1016/0006-8993(75)90158-4 DIAMOND IT, 1969, BRAIN RES, V15, P305, DOI 10.1016/0006-8993(69)90160-7 Ehret G, 1997, J COMP PHYSIOL A, V181, P547, DOI 10.1007/s003590050139 Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 FITZPATRICK KA, 1978, J COMP NEUROL, V177, P537, DOI 10.1002/cne.901770402 Furukawa S, 2000, J NEUROSCI, V20, P1216 GRAEFF FG, 1993, BEHAV BRAIN RES, V58, P123, DOI 10.1016/0166-4328(93)90097-A HEFFNER RS, 1992, J COMP NEUROL, V317, P219, DOI 10.1002/cne.903170302 HENDRY SHC, 1987, J NEUROSCI, V7, P1503 Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J IMIG TJ, 1985, J NEUROPHYSIOL, V53, P836 IMIG TJ, 1978, J COMP NEUROL, V182, P637, DOI 10.1002/cne.901820406 IMIG TJ, 1984, J COMP NEUROL, V227, P511, DOI 10.1002/cne.902270405 IMIG TJ, 1985, J NEUROPHYSIOL, V53, P309 Jen PHS, 2001, EXP BRAIN RES, V137, P292 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JONES E G, 1970, Brain Behavior and Evolution, V93, P793, DOI 10.1093/brain/93.4.793 JONES EG, 1976, J COMP NEUROL, V167, P385, DOI 10.1002/cne.901670402 Kamke MR, 2005, HEARING RES, V206, P89, DOI 10.1016/j.heares.2004.12.014 KHARAZIA VN, 1996, EXCITATORY AMINO ACI, P127 KIPPS KA, 2005, SOC NEUR ABSTR, V30 KISVARDAY ZF, 1993, J COMP NEUROL, V327, P398, DOI 10.1002/cne.903270307 Kisvarday ZF, 2002, J NEUROCYTOL, V31, P255, DOI 10.1023/A:1024122009448 KOBLER JB, 1987, SCIENCE, V236, P824, DOI 10.1126/science.2437655 Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006 Lee CC, 2004, NEUROSCIENCE, V128, P871, DOI 10.1016/j.neuroscience.2004.06.062 Lee CC, 2005, CEREB CORTEX, V15, P1804, DOI 10.1093/cercor/bhi057 MELLOTT JG, 2004, SOC NEUR ABSTR, V29, P529 Metherate R, 2005, HEARING RES, V206, P146, DOI 10.1016/j.heares.2005.01.014 MIDDLEBROOKS JC, 1983, J NEUROSCI, V3, P203 Miller LM, 2002, J NEUROPHYSIOL, V87, P516 MITANI A, 1985, J COMP NEUROL, V235, P430, DOI 10.1002/cne.902350403 MITANI A, 1985, J COMP NEUROL, V235, P417, DOI 10.1002/cne.902350402 Moucha R, 2005, EXP BRAIN RES, V162, P417, DOI 10.1007/s00221-004-2098-4 Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 Neff WD, 1975, HDB SENSORY PHYSIOLO, VV, P307 OLAZABAL UE, 1989, J COMP NEUROL, V282, P98, DOI 10.1002/cne.902820108 Perales M, 2006, J COMP NEUROL, V497, P959, DOI 10.1002/cne.20988 PETERS A, 1988, J COMP NEUROL, V267, P409, DOI 10.1002/cne.902670310 Pollok B, 2005, EXP BRAIN RES, V167, P287, DOI 10.1007/s00221-005-0060-8 Poremba A, 2003, SCIENCE, V299, P568, DOI 10.1126/science.1078900 PRIETO JJ, 1994, J COMP NEUROL, V344, P349, DOI 10.1002/cne.903440304 PRIETO JJ, 1994, J COMP NEUROL, V344, P383, DOI 10.1002/cne.903440305 Prieto JJ, 1999, J COMP NEUROL, V404, P332, DOI 10.1002/(SICI)1096-9861(19990215)404:3<332::AID-CNE5>3.0.CO;2-R Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Read HL, 2001, P NATL ACAD SCI USA, V98, P8042, DOI 10.1073/pnas.131591898 REALE RA, 1983, NEUROSCIENCE, V8, P67, DOI 10.1016/0306-4522(83)90026-X ROMANSKI LM, 1993, CEREB CORTEX, V3, P515, DOI 10.1093/cercor/3.6.515 Romanski LM, 1999, J COMP NEUROL, V403, P141, DOI 10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O Schofield BR, 2005, HEARING RES, V199, P89, DOI 10.1016/j.heares.2004.08.003 Schreiner C E, 1992, Curr Opin Neurobiol, V2, P516, DOI 10.1016/0959-4388(92)90190-V SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284 Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501 Schroeder CE, 2001, J NEUROPHYSIOL, V85, P1322 Schuller G, 1997, EUR J NEUROSCI, V9, P342, DOI 10.1111/j.1460-9568.1997.tb01404.x SCHULLER G, 1991, EUR J NEUROSCI, V3, P643 Sherman SM, 1998, P NATL ACAD SCI USA, V95, P7121, DOI 10.1073/pnas.95.12.7121 SHINONAGA Y, 1994, J COMP NEUROL, V340, P405, DOI 10.1002/cne.903400310 Smith PH, 2001, J COMP NEUROL, V436, P508, DOI 10.1002/cne.1084 Stecker GC, 2005, J NEUROPHYSIOL, V94, P1267, DOI 10.1152/jn.00104.2005 Stein B. E., 1993, MERGING SENSES Steriade M., 1997, THALAMUS, V2, P721 Sutter ML, 2003, J NEUROPHYSIOL, V90, P2629, DOI 10.1152/jn.00722.2002 Swanson LW, 1998, TRENDS NEUROSCI, V21, P323, DOI 10.1016/S0166-2236(98)01265-X VILLA AEP, 1991, EXP BRAIN RES, V86, P506 WALLACE MN, 1991, EXP BRAIN RES, V86, P518 Winer JA, 2005, INFERIOR COLLICULUS, P231, DOI 10.1007/0-387-27083-3_8 Winer JA, 1998, J COMP NEUROL, V400, P147 Winer JA, 2005, INFERIOR COLLICULUS, P1, DOI 10.1007/0-387-27083-3_1 WINER JA, 1983, J NEUROSCI, V3, P2629 Winer JA, 2006, HEARING RES, V212, P1, DOI 10.1016/j.heares.2005.06.014 Winer JA, 2001, J COMP NEUROL, V430, P27 Winer JA, 2001, J COMP NEUROL, V434, P379, DOI 10.1002/cne.1183 WINER JA, 1984, J COMP NEUROL, V229, P476, DOI 10.1002/cne.902290404 Winer JA, 1999, J COMP NEUROL, V413, P181 Winer JA, 2005, PLASTICITY AND SIGNAL REPRESENTATION IN THE AUDITORY SYSTEM, P109, DOI 10.1007/0-387-23181-1_10 WINER JA, 1992, SPRINGER HDB AUDITOR, V1, P221 WITTER MP, 1986, J COMP NEUROL, V252, P1, DOI 10.1002/cne.902520102 WONG D, 1981, BRAIN RES, V230, P362, DOI 10.1016/0006-8993(81)90416-9 YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743 NR 104 TC 72 Z9 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 3 EP 13 DI 10.1016/j.heares.2007.01.017 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100002 PM 17329049 ER PT J AU Poremba, A Mishkin, M AF Poremba, Amy Mishkin, Mortimer TI Exploring the extent and function of higher-order auditory cortex in rhesus monkeys SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC Inst Hearing Res DE monkey; vocalization; lateralization; multisensory; temporal pole; superior temporal gyrus ID SUPERIOR TEMPORAL SULCUS; PRIMATE PREFRONTAL CORTEX; CORTICAL CONNECTIONS; MACAQUE MONKEYS; WORKING-MEMORY; COMPLEX SOUNDS; VISUAL AREAS; NEURONS; REPRESENTATION; SUBDIVISIONS AB Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques. cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision Supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left-hemisphere "dominance" during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole "dominance'" appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Iowa, Dept Psychol, Iowa City, IA 52240 USA. NIMH, Neuropsychol Lab, Bethesda, MD 20892 USA. RP Poremba, A (reprint author), Univ Iowa, Dept Psychol, E124 SSH, Iowa City, IA 52240 USA. EM amy-poremba@uiowa.edu; mm@ln.nimh.nih.gov CR AHISSAR M, 1992, J NEUROPHYSIOL, V67, P203 Andersen RA, 1997, PHILOS T ROY SOC B, V352, P1421, DOI 10.1098/rstb.1997.0128 Bar M, 1999, P NATL ACAD SCI USA, V96, P1790, DOI 10.1073/pnas.96.4.1790 BAYLIS GC, 1987, J NEUROSCI, V7, P330 Bieser A, 1996, EXP BRAIN RES, V108, P273 BOUSSAOUD D, 1990, J COMP NEUROL, V296, P462, DOI 10.1002/cne.902960311 BRUCE C, 1981, J NEUROPHYSIOL, V46, P369 Clarke S, 2002, EXP BRAIN RES, V147, P8, DOI 10.1007/s00221-002-1203-9 Constantinidis C, 2001, NAT NEUROSCI, V4, P311, DOI 10.1038/85179 DESIMONE R, 1993, VISUAL NEUROSCI, V10, P159 EHRET G, 1987, NATURE, V325, P249, DOI 10.1038/325249a0 FERBERT A, 1992, J PHYSIOL-LONDON, V453, P525 GALABURDA AM, 1983, J COMP NEUROL, V221, P169, DOI 10.1002/cne.902210206 Galuske RAW, 2000, SCIENCE, V289, P1946, DOI 10.1126/science.289.5486.1946 Gattass R, 2005, PHILOS T ROY SOC B, V360, P709, DOI 10.1098/rstb.2005.1629 George I, 2002, CR BIOL, V325, P197, DOI 10.1016/S1631-0691(02)01430-0 Hackett TA, 1998, J COMP NEUROL, V394, P475, DOI 10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z HEFFNER HE, 1984, SCIENCE, V226, P75, DOI 10.1126/science.6474192 Hertz-Pannier L, 2002, BRAIN, V125, P361, DOI 10.1093/brain/awf020 JONES E G, 1970, Brain Behavior and Evolution, V93, P793, DOI 10.1093/brain/93.4.793 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kaiser J, 2003, NEUROIMAGE, V20, P816, DOI 10.1016/S1053-8119(03)00350-1 Karbe H, 1998, J CEREBR BLOOD F MET, V18, P1157, DOI 10.1097/00004647-199810000-00012 Logothetis NK, 1996, ANNU REV NEUROSCI, V19, P577, DOI 10.1146/annurev.ne.19.030196.003045 MACKO KA, 1985, BRAIN IMAGING BRAIN, P73 MACKO KA, 1982, SCIENCE, V218, P394, DOI 10.1126/science.7123241 Mazzoni P, 1996, J NEUROPHYSIOL, V75, P1233 MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 MISHKIN M, 1983, TRENDS NEUROSCI, V6, P414, DOI 10.1016/0166-2236(83)90190-X MORAN MA, 1987, J COMP NEUROL, V256, P88, DOI 10.1002/cne.902560108 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 Nagy A, 2006, EUR J NEUROSCI, V24, P917, DOI 10.1111/j.1460-9568.2006.04942.x PANDYA DN, 1994, J COMP NEUROL, V345, P447, DOI 10.1002/cne.903450311 Petkov CI, 2006, PLOS BIOL, V4, P1213, DOI 10.1371/journal.pbio.0040215 Poremba A, 2004, NATURE, V427, P448, DOI 10.1038/nature02268 Poremba A, 2003, SCIENCE, V299, P568, DOI 10.1126/science.1078900 Rama P, 2004, CEREB CORTEX, V14, P768, DOI 10.1093/cercor/bhh037 RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Rauschecker JP, 1998, CURR OPIN NEUROBIOL, V8, P516, DOI 10.1016/S0959-4388(98)80040-8 Recanzone GH, 2001, AUDIOL NEURO-OTOL, V6, P178, DOI 10.1159/000046828 Recanzone GH, 2000, HEARING RES, V150, P104, DOI 10.1016/S0378-5955(00)00194-5 Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056 Schroeder CE, 2005, CURR OPIN NEUROBIOL, V15, P454, DOI 10.1016/j.conb.2005.06.008 SCHWARZ DWF, 1990, J NEUROPHYSIOL, V64, P282 SELTZER B, 1978, BRAIN RES, V149, P1, DOI 10.1016/0006-8993(78)90584-X Squire LR, 2004, NEUROBIOL LEARN MEM, V82, P171, DOI 10.1016/j.nlm.2004.06.005 Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911 TURNER BH, 1980, J COMP NEUROL, V191, P515, DOI 10.1002/cne.901910402 UNGERLEIDER LG, 1982, ANAL VISUAL BEHAV, P49 VARGHAKHADEM F, 1997, BRAIN, V119, P101 WALLACE MT, 1993, J NEUROPHYSIOL, V69, P1797 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 YETERIAN EH, 1989, J COMP NEUROL, V282, P80, DOI 10.1002/cne.902820107 NR 54 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 14 EP 23 DI 10.1016/j.heares.2007.01.003 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100003 PM 17321703 ER PT J AU Zatorre, RJ AF Zatorre, Robert J. TI There's more to auditory cortex than meets the ear SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE functional neuroimaging ID SELECTIVE ATTENTION; SPEECH-PERCEPTION; MUSICAL IMAGERY; VISUAL EVENTS; MODULATION; PLASTICITY; MEMORY; BRAIN; EXPERIENCE; STIMULI AB The auditory cortex is typically defined as that portion of the cortex containing neurons that respond to sound. This definition is adequate in a narrow context, but does not take into account sufficiently the subtleties associated with more complex behaviors and cognitive processes. Thus, it is easy to demonstrate that cortical regions essentially unrelated to sound processing may nevertheless be activated by an auditory stimulus; conversely, it is possible to demonstrate responses within classical auditory cortical regions in the complete absence of sound. We give several examples that indicate that responses in auditory cortex cannot be predicted based solely on knowledge of stimulus features. Rather, factors such as memory, attention, and mental imagery can be shown to play a major role in modulating or producing neural responses within auditory cortex. We argue that the interactions between classically defined auditory regions and other sensory, motor, and cognitive systems underlie many behaviors of interest; and that a more complete understanding of these processes will emerge from a consideration of the distributed nature of auditory cortical function. (c) 2007 Elsevier B.V. All rights reserved. C1 McGill Univ, Montreal Neurol Inst, BRAMS Lab, Montreal, PQ, Canada. RP Zatorre, RJ (reprint author), McGill Univ, Montreal Neurol Inst, BRAMS Lab, Montreal, PQ, Canada. EM robert.zatorre@mcgill.ca CR ALHO K, 1993, NEUROREPORT, V4, P391, DOI 10.1097/00001756-199304000-00012 BRUGGE JF, 1985, CEREB CORTEX, V4, P229 Calvert GA, 1997, SCIENCE, V276, P593, DOI 10.1126/science.276.5312.593 Dehaene-Lambertz G, 2005, NEUROIMAGE, V24, P21, DOI 10.1016/j.neuroimage.2004.09.039 Downar J, 2001, NEUROIMAGE, V14, P1256, DOI 10.1006/nimg.2001.0946 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Golestani N, 2004, NEUROIMAGE, V21, P494, DOI 10.1016/j.neuroimaging.2003.09.071 GONZALEZLIMA F, 1986, BEHAV BRAIN RES, V20, P281, DOI 10.1016/0166-4328(86)90228-7 Griffiths TD, 2000, BRAIN, V123, P2065, DOI 10.1093/brain/123.10.2065 HACKETT TA, 2004, COGNITIVE NEUROSCIEN Halpern AR, 1999, CEREB CORTEX, V9, P697, DOI 10.1093/cercor/9.7.697 Halpern AR, 2004, NEUROPSYCHOLOGIA, V42, P1281, DOI 10.1016/j.neuropsychologia.2003.12.017 Halpern AR, 1992, AUDITORY IMAGERY, P1 Hickok G, 2003, J COGNITIVE NEUROSCI, V15, P673, DOI 10.1162/089892903322307393 HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177 Johnson JA, 2006, NEUROIMAGE, V31, P1673, DOI 10.1016/j.neuroimage.2006.02.026 Johnson JA, 2005, CEREB CORTEX, V15, P1609, DOI 10.1093/cercor/bhi039 Kraemer DJM, 2005, NATURE, V434, P158, DOI 10.1038/434158a KRAUS N, 1995, J COGNITIVE NEUROSCI, V7, P25, DOI 10.1162/jocn.1995.7.1.25 Laurienti PJ, 2002, J COGNITIVE NEUROSCI, V14, P420, DOI 10.1162/089892902317361930 Liebenthal E, 2003, J COGNITIVE NEUROSCI, V15, P549, DOI 10.1162/089892903321662930 MOLCHAN SE, 1994, P NATL ACAD SCI USA, V91, P8122, DOI 10.1073/pnas.91.17.8122 Mottonen R, 2006, NEUROIMAGE, V30, P563, DOI 10.1016/j.neuroimage.2005.10.002 Naatanen R, 1997, NATURE, V385, P432, DOI 10.1038/385432a0 PENFIELD W, 1963, BRAIN, V86, P595, DOI 10.1093/brain/86.4.595 Petkov CI, 2004, NAT NEUROSCI, V7, P658, DOI 10.1038/nn1256 Petrides M, 2005, PHILOS T ROY SOC B, V360, P781, DOI 10.1098/rstb.2005.1631 Poremba A, 2003, SCIENCE, V299, P568, DOI 10.1126/science.1078900 REMEZ RE, 1981, SCIENCE, V212, P947, DOI 10.1126/science.7233191 Schurmann M, 2002, NEUROIMAGE, V16, P434, DOI 10.1006/nimg.2002.1098 Shomstein S, 2004, J NEUROSCI, V24, P10702, DOI 10.1523/JNEUROSCI.2939-04.2004 Shulman GL, 1997, CEREB CORTEX, V7, P193, DOI 10.1093/cercor/7.3.193 Voisin J, 2006, J NEUROSCI, V26, P273, DOI 10.1523/JNEUROSCI.2967-05.2006 WOLDORFF MG, 1993, P NATL ACAD SCI USA, V90, P8722, DOI 10.1073/pnas.90.18.8722 Woodruff PWR, 1996, NEUROREPORT, V7, P1909, DOI 10.1097/00001756-199608120-00007 Zatorre RJ, 2005, NEURON, V47, P9, DOI 10.1016/j.neuron.2005.06.013 ZATORRE RJ, 1993, NEUROPSYCHOLOGIA, V31, P221, DOI 10.1016/0028-3932(93)90086-F Zatorre RJ, 1999, NEUROIMAGE, V10, P544, DOI 10.1006/nimg.1999.0491 ZATORRE RJ, 1994, J NEUROSCI, V14, P1908 NR 39 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 24 EP 30 DI 10.1016/j.heares.2007.01.018 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100004 PM 17341441 ER PT J AU Lomber, SG Malhotra, S Hall, AJ AF Lomber, Stephen G. Malhotra, Shveta Hall, Amee J. TI Functional specialization in non-primary auditory cortex of the cat: Areal and laminar contributions to sound localization SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE reversible deactivation; superior colliculus; posterior auditory field; dorsal zone; anterior ectosylvian sulcus ID ANTERIOR ECTOSYLVIAN SULCUS; SUPERIOR COLLICULUS; CEREBRAL-CORTEX; COOLING DEACTIVATION; UNILATERAL ABLATION; RESPONSE PROPERTIES; CORTICAL-NEURONS; RETINOTOPIC ORGANIZATION; SPATIAL SENSITIVITY; CORTICOTECTAL CELLS AB The purpose of this study is to: (1) examine the relative contributions of the 13 acoustically-responsive regions of the cerebral cortex to sound localization: (2) examine the laminar contributions to spatial localization behavior for each of the cortical areas identified to be critical for accurately determining the position of a sound source: and (3) synthesize the findings from sound localization studies and the underlying corticocortical and corticotectal connections to develop a processing system for Sound localization information within and between the cerebral cortex and the superior colliculus. First, we examined performance on a sound localization task before, during, and after unilateral or bilateral reversible cooling deactivation of each region of acoustically-responsive cortex. Overall, unilateral deactivation of primary auditory cortex and the dorsal zone (AI/DZ), the posterior auditory field (PAF). or the auditory field of the anterior ectosylvian sulcus (AES) yielded profound sound localization deficits in the contralateral field. Bilateral deactivations of the same regions yielded bilateral sound localization deficits. Second, graded cooling of AI/DZ or PAF showed that deactivation of only the superficial layers was required to elicit Sound localization deficits. However. graded cooling of AES revealed that cooling of the superficial layers alone does not cause significant sound localization deficits. Profound deficits were identified only when cooling extended through the full thickness of AES cortex. Therefore. we propose that the superficial layers of AI/DZ or PAF and the deeper layers of AES are necessary for determining the precise location of a sound source. Finally, when these results are combined with data on corticocortical and corticotectal projections, we propose that signals processed in the superficial layers of AI, DZ, or PAF feed forward to the auditory field of AES. In turn. neurons ill the deeper layers of AES project to the intermediate and deeper layers of the superior colliculus. Therefore. we propose that sound localization signals processed in primary and non-primary auditory cortex are transmitted to the superior colliculus by means of the auditory field of the AES. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Western Ontario, Dept Physiol & Pharmacol, Ctr Brain & Mind, London, ON N6A 5K8, Canada. Univ Western Ontario, Dept Psychol, N London, ON N6A 5C2, Canada. RP Lomber, SG (reprint author), Univ Western Ontario, Dept Physiol & Pharmacol, Ctr Brain & Mind, 100 Perth Dr, London, ON N6A 5K8, Canada. EM steve.lomber@uwo.ca RI Lomber, Stephen/B-6820-2015 OI Lomber, Stephen/0000-0002-3001-7909 CR MASTERSON RB, 1964, J NEUROPHYSIOL, V27, P15 Beneyto M, 1998, J COMP NEUROL, V401, P329 BENITA M, 1972, BRAIN RES, V36, P133, DOI 10.1016/0006-8993(72)90771-8 BOWMAN EM, 1988, J COMP NEUROL, V272, P30, DOI 10.1002/cne.902720104 BOWMAN EM, 1988, J COMP NEUROL, V272, P15, DOI 10.1002/cne.902720103 Brooks VB, 1983, REV PHYSL BIOCH PHAR, V95, P1, DOI 10.1007/BFb0034097 Casseday J H, 1977, Ann N Y Acad Sci, V299, P255, DOI 10.1111/j.1749-6632.1977.tb41912.x CLAREY JC, 1990, J COMP NEUROL, V301, P304, DOI 10.1002/cne.903010212 CLAREY JC, 1986, BRAIN RES, V386, P12, DOI 10.1016/0006-8993(86)90136-8 CLASCA F, 1997, J COMP NEUROL, V384, P436 CLASCA F, 2000, CEREB CORTEX, V4, P371 CRANFORD J, 1971, SCIENCE, V172, P286, DOI 10.1126/science.172.3980.286 deRibaupierre F, 1997, CENTRAL AUDITORY SYS, P317 Diamond IT, 1979, PROGR PSYCHOBIOLOGY, V8, P1 Ferster D, 1996, NATURE, V380, P249, DOI 10.1038/380249a0 Girden E, 1939, AM J PSYCHOL, V52, P1, DOI 10.2307/1416656 Hall DA, 2003, CURR BIOL, V13, pR406, DOI 10.1016/S0960-9822(03)00323-3 HEFFNER H, 1975, J NEUROPHYSIOL, V38, P1340 HEFFNER H, 1978, J NEUROPHYSIOL, V41, P963 Heffner HE, 1997, ACTA OTO-LARYNGOL, P22 HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P915 IMIG TJ, 1982, MULTIPLE AUDITORY AR, V3 JASPER HH, 1970, CAN J PHYSIOL PHARM, V48, P640 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746 KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1 KORTE M, 1993, J NEUROPHYSIOL, V70, P1717 Lomber SG, 1999, J NEUROSCI METH, V86, P179, DOI 10.1016/S0165-0270(98)00165-4 Lomber SG, 1999, J NEUROSCI METH, V86, P109, DOI 10.1016/S0165-0270(98)00160-5 Lomber SG, 1996, VISUAL NEUROSCI, V13, P1143 Lomber SG, 2001, J COMP NEUROL, V441, P44, DOI 10.1002/cne.1396 LOMBER SG, 1994, BEHAV BRAIN RES, V64, P25, DOI 10.1016/0166-4328(94)90116-3 Lomber SG, 1996, CEREB CORTEX, V6, P673, DOI 10.1093/cercor/6.5.673 Lomber SG, 2000, CEREB CORTEX, V10, P1066, DOI 10.1093/cercor/10.11.1066 Malhotra S, 2007, J NEUROPHYSIOL, V97, P26, DOI 10.1152/jn.00720.2006 Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003 MELLOTT JG, 2005, 2821 SOC NEUR MELLOTT JG, 2004, 5297 SOC NEUR MEREDITH MA, 1989, J COMP NEUROL, V289, P687 Middlebrooks JC, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P225 MIDDLEBROOKS JC, 1994, SCIENCE, V264, P842, DOI 10.1126/science.8171339 MIDDLEBROOKS JC, 1983, J NEUROSCI, V3, P203 MIDDLEBROOKS JC, 1984, J NEUROSCI, V4, P2621 Middlebrooks JC, 2002, NAT NEUROSCI, V5, P824, DOI 10.1038/nn0902-824 Middlebrooks JC, 2002, NEUROSCIENTIST, V8, P73 Mori A, 1996, NEUROREPORT, V7, P2385, DOI 10.1097/00001756-199610020-00021 MUCKE L, 1982, EXP BRAIN RES, V46, P1 NEFF WD, 1968, CIBA FDN S HEAR MECH, P207 NEFF WD, 1956, J NEUROPHYSIOL, V19, P500 NELKEN I, 1997, PSYCHOPHYSICAL PHYSL, P504 Niimi K, 1979, Adv Anat Embryol Cell Biol, V57, P1 OLSON CR, 1987, J COMP NEUROL, V261, P277, DOI 10.1002/cne.902610209 OLSON CR, 1983, PROG BRAIN RES, V58, P239, DOI 10.1016/S0079-6123(08)60025-4 PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0 PAULA-BARBOSA M M, 1973, Brain Research, V50, P47, DOI 10.1016/0006-8993(73)90593-3 PAULABARBOSA MM, 1975, EXP BRAIN RES, V23, P535 Payne BR, 1999, J NEUROSCI METH, V86, P195, DOI 10.1016/S0165-0270(98)00166-6 PHILLIPS DP, 1982, BRAIN RES, V248, P237, DOI 10.1016/0006-8993(82)90581-9 PHILLIPS DP, 1984, J NEUROPHYSIOL, V51, P147 Populin LC, 1998, J NEUROSCI, V18, P2147 RAUSCHECKER JP, 1993, J NEUROSCI, V13, P4538 RAVIZZA R, 1974, FED PROC, V33, P1917 RAVIZZA RJ, 1972, J NEUROPHYSIOL, V35, P344 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 Reinoso-Suarez F, 1961, TOPOGRAPHICAL ATLAS RISS W, 1959, J NEUROPHYSIOL, V22, P374 ROCKLAND KS, 1979, BRAIN RES, V179, P3, DOI 10.1016/0006-8993(79)90485-2 ROUILLER EM, 1991, EXP BRAIN RES, V86, P483 SCHWARK HD, 1986, J NEUROPHYSIOL, V56, P1074 Stecker GC, 2005, J NEUROPHYSIOL, V94, P1267, DOI 10.1152/jn.00104.2005 Stecker GC, 2003, J NEUROPHYSIOL, V89, P2889, DOI 10.1152/jn.00980.2002 STROMING.NL, 1969, EXP NEUROL, V25, P521, DOI 10.1016/0014-4886(69)90095-8 STROMING.NL, 1969, EXP NEUROL, V24, P348, DOI 10.1016/0014-4886(69)90141-1 THOMPSON GC, 1983, BEHAV BRAIN RES, V8, P211, DOI 10.1016/0166-4328(83)90055-4 THOMPSON RF, 1963, J COMP PHYSIOL PSYCH, V56, P996, DOI 10.1037/h0048640 Tian B, 1998, J NEUROPHYSIOL, V79, P2629 TORTELLY A, 1980, BRAIN RES, V188, P543, DOI 10.1016/0006-8993(80)90052-9 UPDYKE BV, 1986, J COMP NEUROL, V246, P265, DOI 10.1002/cne.902460210 WEGENER JG, 1964, J AUD RES, V4, P227 WEYAND TG, 1986, J NEUROPHYSIOL, V56, P1102 WEYAND TG, 1991, J NEUROPHYSIOL, V65, P1078 WHITFIEL.IC, 1972, J NEUROPHYSIOL, V35, P718 Winer JA, 1992, MAMMALIAN AUDITORY P, P222 Woolsey C. N., 1960, NEURAL MECH AUDITORY, P165 Woolsey C.N., 1961, SENS COMMUN, P235 Yang XF, 2006, NEUROBIOL DIS, V23, P637, DOI 10.1016/j.nbd.2006.05.006 Zatorre RJ, 2002, NAT NEUROSCI, V5, P905, DOI 10.1038/nn904 NR 88 TC 31 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 31 EP 45 DI 10.1016/j.heares.2007.01.013 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100005 PM 17329050 ER PT J AU Griffiths, TD Kumar, S Warren, JD Stewart, L Stephan, KE Friston, KJ AF Griffiths, Timothy D. Kumar, Sukhbinder Warren, Jason D. Stewart, Lauren Stephan, Klaas Enno Friston, Karl J. TI Approaches to the cortical analysis of auditory objects SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC Inst Hearing Res DE auditory cortex; functional imaging; neurology; lesion ID MODEL SELECTION; BALLOON MODEL; CORTEX; BRAIN; FMRI; RESPONSES; MUSIC; AREAS; PITCH AB We describe work that addresses the cortical basis for the analysis of auditory objects using 'generic' sounds that do not correspond to any particular events or sources (like vowels or voices) that have semantic association. The experiments involve the manipulation of synthetic sounds to produce systematic changes of stimulus features, such as spectral envelope. Conventional analyses of normal functional imaging data demonstrate that the analysis of spectral envelope and perceived timbral change involves a network consisting of planum temporale (PT) bilaterally and the right superior temporal sulcus (STS). Further analysis of imaging data using dynamic causal modelling (DCM) and Bayesian model selection was carried out in the right hemisphere areas to determine the effective connectivity between these auditory areas. Specifically, the objective was to determine if the analysis of spectral envelope in the network is done in a serial fashion (that is from HG to PT to STS) or parallel fashion (that is PT and STS receives input from HG simultaneously). Two families of models, serial and parallel (16 in total) that represent different hypotheses about the connectivity between HG, PT and STS were selected. The models within a family differ with respect to the pathway that is modulated by the analysis of spectral envelope. After the models are identified, Bayesian model selection procedure is then used to select the 'optimal' model from the specified models. The data strongly support a particular serial model containing modulation of the HG to PT effective connectivity during spectral envelope variation. Parallel work in neurological subjects addresses the effect of lesions to different parts of this network. We have recently studied in detail subjects with 'dystimbria': an alteration in the perceived quality of auditory objects distinct from pitch or loudness change. The subjects have lesions of the normal network described above with normal perception of pitch strength but abnormal perception of the analysis of spectral envelope change. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Newcastle Upon Tyne, Sch Med, Auditory Grp, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. UCL, Inst Neurol, Wellcome Dept Imaging Neurosci, London WC1N 6BT, England. RP Griffiths, TD (reprint author), Univ Newcastle Upon Tyne, Sch Med, Auditory Grp, Framlington Pl, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. EM t.d.griffiths@ncl.ac.uk RI Friston, Karl/D-9230-2011 OI Friston, Karl/0000-0001-7984-8909 CR Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078 Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644 Buxton RB, 1998, MAGNET RESON MED, V39, P855, DOI 10.1002/mrm.1910390602 Caclin A, 2005, J ACOUST SOC AM, V118, P471, DOI 10.1121/1.1929229 Friston KJ, 2000, NEUROIMAGE, V12, P466, DOI 10.1006/nimg.2000.0630 Friston KJ, 2003, NEUROIMAGE, V19, P1273, DOI 10.1016/S1053-8119(03)00202-7 Goebel R, 2003, MAGN RESON IMAGING, V21, P1251, DOI 10.1016/j.mri.2003.08.026 GREY JM, 1977, J ACOUST SOC AM, V61, P1270, DOI 10.1121/1.381428 Griffiths TD, 2002, TRENDS NEUROSCI, V25, P348, DOI 10.1016/S0166-2236(02)02191-4 Griffiths TD, 2001, HEARING RES, V154, P165, DOI 10.1016/S0378-5955(01)00243-X Griffiths TD, 2004, TRENDS NEUROSCI, V27, P181, DOI 10.1016/j.tins.2004.02.005 Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538 Harrison L, 2003, NEUROIMAGE, V19, P1477, DOI 10.1016/S1053-8119(03)00160-5 Kiebel SJ, 2006, NEUROIMAGE, V30, P1273, DOI 10.1016/j.neuroimage.2005.12.055 Lichtheim L., 1885, BRAIN, V7, P433 MCADAMS S, 1992, PHILOS T ROY SOC B, V336, P383, DOI 10.1098/rstb.1992.0072 McIntosh A. R., 1994, Human Brain Mapping, V2, P2 Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7 Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004 Penny WD, 2004, NEUROIMAGE, V22, P1157, DOI 10.1016/j.neuroimage.2004.03.026 Peretz I, 2003, NAT NEUROSCI, V6, P688, DOI 10.1038/nn1083 Raftery AE, 1995, SOCIOL METHODOL, V25, P111, DOI 10.2307/271063 Stephan KE, 2004, J ANAT, V205, P443, DOI 10.1111/j.0021-8782.2004.00359.x Stewart L, 2006, BRAIN, V129, P2533, DOI 10.1093/brain/awl171 Tardif E, 2001, EUR J NEUROSCI, V13, P1045, DOI 10.1046/j.0953-816x.2001.01456.x Warren JD, 2005, NEUROIMAGE, V24, P1052, DOI 10.1016/j.neuroimage.2004.10.031 NR 26 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 46 EP 53 DI 10.1016/j.heares.2007.01.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100006 PM 17321704 ER PT J AU Weinberger, NM AF Weinberger, Norman M. TI Auditory associative memory and representational plasticity in the primary auditory cortex SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE acetylcholine; conditioning; receptive field ID RECEPTIVE-FIELD PLASTICITY; MEDIAL GENICULATE-NUCLEUS; LEARNING-INDUCED PLASTICITY; TONE-EVOKED RESPONSES; BASAL FOREBRAIN; GUINEA-PIG; CHOLINERGIC MODULATION; SINGLE NEURONS; FREQUENCY DISCRIMINATION; PHYSIOLOGICAL PLASTICITY AB Historically. the primary auditory cortex has been largely ignored as a substrate of auditory memory, perhaps because studies of associative learning Could not reveal the plasticity of receptive fields (RFs). The use of a unified experimental design, in which RFs are obtained before and after standard training (e.g., classical and instrumental conditioning) revealed associative representational plasticity, characterized by facilitation of responses to tonal conditioned stimuli (CSs) at the expense of other frequencies, producing CS-specific tuning shifts. Associative representational plasticity (ARP) possesses the major attributes of associative memory: it is highly specific, discriminative, rapidly acquired, consolidates over hours and days and can be retained indefinitely. The nucleus basalis cholinergic system is sufficient both For the induction of ARP and for the induction of specific auditory memory, including control of the amount of remembered acoustic details. Extant controversies regarding the form. function and neural substrates of ARP appear largely to reflect different assumptions, which are explicitly discussed. The view that the forms of plasticity are task dependent is supported by ongoing studies in which auditory learning involves CS-specific decreases in threshold or bandwidth without affecting frequency tuning. Future research needs to focus on the factors that determine ARP and their functions in hearing and in auditory memory. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Irvine, Dept Neurobiol & Behav, Ctr Neurobiol Learning & Memory, Irvine, CA 92797 USA. RP Weinberger, NM (reprint author), Univ Calif Irvine, Dept Neurobiol & Behav, Ctr Neurobiol Learning & Memory, Irvine, CA 92797 USA. EM nmweinbe@uci.edu CR ASHE JH, 1989, SYNAPSE, V4, P44, DOI 10.1002/syn.890040106 Bakin JS, 1996, BEHAV NEUROSCI, V110, P905 Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A BIESZCZAD KM, 2006, 2006 ABSTR VIEW SOC Blake DT, 2002, P NATL ACAD SCI USA, V99, P10114, DOI 10.1073/pnas.092278099 Boatman JA, 2006, EUR J NEUROSCI, V24, P894, DOI 10.1111/j.1460-9568.2006.04965.x CONDON CD, 1991, BEHAV NEUROSCI, V105, P416 CRUIKSHANK SJ, 1992, BEHAV NEUROSCI, V106, P471, DOI 10.1037/0735-7044.106.3.471 DIAMOND DM, 1989, BEHAV NEUROSCI, V103, P471, DOI 10.1037/0735-7044.103.3.471 DIAMOND DM, 1986, BRAIN RES, V372, P357, DOI 10.1016/0006-8993(86)91144-3 EDELINE JM, 1993, BEHAV NEUROSCI, V107, P82, DOI 10.1037//0735-7044.107.1.82 EDELINE JM, 1994, EXP BRAIN RES, V97, P373 EDELINE JM, 1991, BEHAV NEUROSCI, V105, P618, DOI 10.1037/0735-7044.105.5.618 EDELINE JM, 1992, BEHAV NEUROSCI, V106, P81, DOI 10.1037//0735-7044.106.1.81 EDELINE JM, 1994, BRAIN RES, V636, P333, DOI 10.1016/0006-8993(94)91033-2 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 GABRIEL M, 1975, SCIENCE, V189, P1108, DOI 10.1126/science.1162365 Galvan VV, 2001, JARO, V2, P199 Galvan VV, 2002, NEUROBIOL LEARN MEM, V77, P78, DOI 10.1006/nlme.2001.4044 Gao E, 1998, P NATL ACAD SCI USA, V95, P12663, DOI 10.1073/pnas.95.21.12663 GERREN RA, 1983, BRAIN RES, V265, P138, DOI 10.1016/0006-8993(83)91344-6 HARS B, 1993, NEUROSCIENCE, V56, P61, DOI 10.1016/0306-4522(93)90562-T Hawkey DJC, 2004, NAT NEUROSCI, V7, P1055, DOI 10.1038/nn1315 Hebb D.O., 1949, ORG BEHAV NEUROPSYCH Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 King AJ, 2006, CURR BIOL, V16, pR410, DOI 10.1016/j.cub.2006.05.012 Kisley MA, 2001, EUR J NEUROSCI, V13, P1993, DOI 10.1046/j.0953-816x.2001.01568.x Konorski J, 1967, INTEGRATIVE ACTIVITY LEDOUX JE, 1984, J NEUROSCI, V4, P683 LOVE JA, 1969, CAN J PHYSIOL PHARM, V47, P881 Mackintosh N. J., 1974, PSYCHOL ANIMAL LEARN MAHO C, 1995, PSYCHOBIOLOGY, V23, P10 MARSH JT, 1964, ELECTROEN CLIN NEURO, V17, P685 MCKENNA TM, 1989, SYNAPSE, V4, P30, DOI 10.1002/syn.890040105 McLin DE, 2002, P NATL ACAD SCI USA, V99, P4002, DOI 10.1073/pnas.062057099 METHERATE R, 1991, BRAIN RES, V559, P163, DOI 10.1016/0006-8993(91)90301-B METHERATE R, 1993, SYNAPSE, V14, P132, DOI 10.1002/syn.890140206 METHERATE R, 1990, SYNAPSE, V6, P133, DOI 10.1002/syn.890060204 Miasnikov AA, 2001, NEUROREPORT, V12, P1537, DOI 10.1097/00001756-200105250-00047 Miasnikov AA, 2006, NEUROBIOL LEARN MEM, V86, P47, DOI 10.1016/j.nlm.2005.12.010 MOLCHAN SE, 1994, P NATL ACAD SCI USA, V91, P8122, DOI 10.1073/pnas.91.17.8122 Morris JS, 1998, P ROY SOC B-BIOL SCI, V265, P649 NORMAN RJ, 1977, SCIENCE, V196, P551, DOI 10.1126/science.850800 Oh JD, 1996, EXP NEUROL, V140, P95, DOI 10.1006/exnr.1996.0119 Ohl FW, 1996, EUR J NEUROSCI, V8, P1001, DOI 10.1111/j.1460-9568.1996.tb01587.x OHL FW, 2004, NAT REV NEUROSC 1120 Ohl FW, 1997, J COMP PHYSIOL A, V181, P685, DOI 10.1007/s003590050150 Ohl FW, 2005, CURR OPIN NEUROBIOL, V15, P470, DOI 10.1016/j.conb.2005.07.002 Poremba A, 1997, J NEUROSCI, V17, P8645 RESCORLA RA, 1988, ANNU REV NEUROSCI, V11, P329 RIQUIMAROUX H, 1992, J NEUROPHYSIOL, V68, P1613 ROMANSKI LM, 1992, J NEUROSCI, V12, P4501 Rutkowski RG, 2005, P NATL ACAD SCI USA, V102, P13664, DOI 10.1073/pnas.0506838102 SAKURAI Y, 1994, J NEUROSCI, V14, P2606 Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 Sussman E, 2006, BRAIN RES, V1075, P165, DOI 10.1016/j.brainres.2005.12.074 TEICH AH, 1988, PHYSIOL BEHAV, V44, P405, DOI 10.1016/0031-9384(88)90044-3 TEICH AH, 1989, BRAIN RES, V480, P210, DOI 10.1016/0006-8993(89)91584-9 WEBER BA, 1970, J SPEECH HEAR RES, V13, P387 Weinberger NA, 1990, LEARNING COMPUTATION, P91 WEINBERGER NM, 1984, NEUROBIOLOGY LEARNIN, P197 Weinberger NM, 2004, SPR HDB AUD, V23, P173 Weinberger NM, 2006, NEUROBIOL LEARN MEM, V86, P270, DOI 10.1016/j.nlm.2006.04.004 Weinberger NM, 1990, CONCEPTS NEUROSCIENC, V1, P91 WEINBERGER NM, 2004, NAT REV NEUROSC 1120 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 WEINBERGER NM, 1995, BEHAV NEUROSCI, V109, P10, DOI 10.1037/0735-7044.109.1.10 Weinberger NM, 2007, LEARN MEMORY, V14, P1, DOI 10.1101/lm.421807 Weinberger NM, 1998, AUDIOL NEURO-OTOL, V3, P145, DOI 10.1159/000013787 WEINBERGER NM, 1993, P NATL ACAD SCI USA, V90, P2394, DOI 10.1073/pnas.90.6.2394 WEINBERGER NM, 2006, 2398 SOC NEUR WEINBERGER NM, 1987, PROG NEUROBIOL, V29, P1, DOI 10.1016/0301-0082(87)90014-1 WEINBERGER NM, 1984, BEHAV NEUROSCI, V98, P171, DOI 10.1037/0735-7044.98.2.171 WEPSIC JG, 1966, EXP NEUROL, V15, P299, DOI 10.1016/0014-4886(66)90053-7 WESTENBERG IS, 1976, ELECTROEN CLIN NEURO, V40, P356, DOI 10.1016/0013-4694(76)90187-5 WICKELGR.WO, 1968, J NEUROPHYSIOL, V31, P777 WINER JA, 1983, J NEUROSCI, V3, P2629 NR 80 TC 81 Z9 83 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 54 EP 68 DI 10.1016/j.heares.2007.01.004 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100007 PM 17344002 ER PT J AU Eggermont, JJ AF Eggermont, Jos J. TI Correlated neural activity as the driving force for functional changes in auditory cortex SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE electrode arrays; spectro-temporal receptive field; coincidence detection; cat; plasticity ID CAT VISUAL-CORTEX; ENRICHED ACOUSTIC ENVIRONMENT; NEOCORTICAL PYRAMIDAL NEURONS; RECEPTIVE-FIELD PROPERTIES; INDUCED HEARING-LOSS; MONKEY MOTOR CORTEX; PRECISION GRIP TASK; VOICE ONSET TIME; CROSS-CORRELATION; NOISE TRAUMA AB The functional role of neural synchrony is reflected in cortical tonotopic map reorganization and in the emergence of pathological phenomena such as tinnitus. First of all experimenter-centered and subject-centered views of neural activity will be contrasted; this argues against the use of stimulus-correction procedures and favors the use of a correction procedure based on neural activity without reference to stimulus timing. Within a cortical column neurons fired synchronously with on average about 6 % of their spikes in a 1 ms bin and occasionally showing 30 % or more of such coincident spikes. For electrode separations exceeding 200 mu m the average peak correlation strength only occasionally reached 3 %. The experimental evidence for coincidence of neural activity, neural correlation and neural synchrony shows that horizontal fibers activity can induce strong neural correlations. Cortico- cortical connections for a large part connect cell groups with characteristic frequencies differing by more than one octave. Such neurons have generally non-overlapping receptive fields but still can have sizeable peak cross-correlations. Correlated neural activity and heterotopic neural interconnections are presented as the substrates for cortical reorganization; increased neural synchrony and tonotopic map reorganization go hand in hand. This links cortical reorganization with hypersynchrony that can be considered as an important driving force underlying tinnitus. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Calgary, Dept Phys & Biophys, Calgary, AB T2N 1N4, Canada. Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Phys & Biophys, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM eggermon@ucalgary.ca CR Abbott LF, 1999, NEURAL COMPUT, V11, P91, DOI 10.1162/089976699300016827 Abeles M., 1991, CORTICONICS NEURAL C AERTSEN A, 1994, PHYSICA D, V75, P103, DOI 10.1016/0167-2789(94)90278-X AHISSAR M, 1992, J NEUROPHYSIOL, V67, P203 Aizawa N, 2006, JARO-J ASSOC RES OTO, V7, P71, DOI 10.1007/s10162-005-0026-3 Baker SN, 2001, J NEUROPHYSIOL, V85, P869 Baker SN, 2003, J NEUROPHYSIOL, V89, P1941, DOI 10.1152/jn.00832.2002 Bao SW, 2001, NATURE, V412, P79, DOI 10.1038/35083586 Bao SW, 2003, J NEUROSCI, V23, P10765 BRILLINGER DR, 1976, BIOL CYBERN, V22, P213, DOI 10.1007/BF00365087 Brody CD, 1998, J NEUROPHYSIOL, V80, P3345 Brody CD, 1999, NEURAL COMPUT, V11, P1537, DOI 10.1162/089976699300016133 Brosch M, 1999, EUR J NEUROSCI, V11, P3517, DOI 10.1046/j.1460-9568.1999.00770.x Chapman AG, 1998, PROG BRAIN RES, V116, P371, DOI 10.1016/S0079-6123(08)60449-5 Chechik G, 2006, NEURON, V51, P359, DOI 10.1016/j.neuron.2006.06.030 CLARKE S, 1993, ANAT EMBRYOL, V188, P117 DASILVA LFH, 1995, ITAL J NEUROL SCI, V16, P45 deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0 DICKSON JW, 1974, J NEUROPHYSIOL, V37, P1239 Eggermont JJ, 1990, CORRELATIVE BRAIN TH Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Eggermont JJ, 2000, J NEUROPHYSIOL, V83, P2708 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 EGGERMONT JJ, 1994, J NEUROPHYSIOL, V71, P246 EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006 Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3 EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227 ENGEL AK, 1991, SCIENCE, V252, P1177, DOI 10.1126/science.252.5009.1177 ESPINOSA IE, 1988, BRAIN RES, V450, P39, DOI 10.1016/0006-8993(88)91542-9 Faingold CL, 2004, PROG NEUROBIOL, V72, P55, DOI 10.1016/j.pneurobio.2003.11.003 FETZ EE, 1983, J PHYSIOL-LONDON, V341, P387 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 FROSTIG RD, 1983, BRAIN RES, V272, P211, DOI 10.1016/0006-8993(83)90567-X Gerstein GL, 2000, J NEUROSCI METH, V100, P41, DOI 10.1016/S0165-0270(00)00226-0 Gourevitch B, 2007, J NEUROPHYSIOL, V97, P144, DOI 10.1152/jn.00807.2006 Grande LA, 2004, J NEUROSCI, V24, P1839, DOI 10.1523/JNEUROSCI.3500-03.2004 HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R Holmgren CD, 2001, J NEUROSCI, V21, P8270 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Jenison RL, 2003, NETWORK-COMP NEURAL, V14, P83, DOI 10.1088/0954-898X/14/1/305 JOHNSON DH, 1976, BIOPHYS J, V16, P719 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 Karmarkar UR, 2002, J NEUROPHYSIOL, V88, P507, DOI 10.1152/jn.00909.2001 Kilgard MP, 2002, P NATL ACAD SCI USA, V99, P3205, DOI 10.1073/pnas.261705198 Kimpo RR, 2003, J NEUROSCI, V23, P5750 KIRKWOOD PA, 1979, J NEUROSCI METH, V1, P107, DOI 10.1016/0165-0270(79)90009-8 Kistler WM, 2002, NEURAL COMPUT, V14, P987, DOI 10.1162/089976602753633358 KOENDERINK JJ, 1984, BIOL CYBERN, V50, P35, DOI 10.1007/BF00317937 KOENDERINK JJ, 1984, BIOL CYBERN, V50, P43, DOI 10.1007/BF00317938 KONIG P, 1995, P NATL ACAD SCI USA, V92, P290, DOI 10.1073/pnas.92.1.290 Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006 Lee CC, 2004, NEUROSCIENCE, V128, P871, DOI 10.1016/j.neuroscience.2004.06.062 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 Miller R, 1996, BIOL CYBERN, V75, P253, DOI 10.1007/s004220050292 Nakahara H, 2004, P NATL ACAD SCI USA, V101, P7170, DOI 10.1073/pnas.0401196101 Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Norena AJ, 2006, NAT NEUROSCI, V9, P932, DOI 10.1038/nn1720 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 RACINE RJ, 1995, BRAIN RES, V702, P77, DOI 10.1016/0006-8993(95)01024-9 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Rausell E, 1998, J NEUROSCI, V18, P4216 Read HL, 2001, P NATL ACAD SCI USA, V98, P8042, DOI 10.1073/pnas.131591898 Reyes AD, 2003, NAT NEUROSCI, V6, P593, DOI 10.1038/nn1056 Rolls ET, 2003, J NEUROPHYSIOL, V89, P2810, DOI 10.1152/jn.01070.2002 Rosenberg JR, 1998, J NEUROSCI METH, V83, P57, DOI 10.1016/S0165-0270(98)00061-2 Rudolph M, 2003, J COMPUT NEUROSCI, V14, P239, DOI 10.1023/A:1023245625896 Schreiner C E, 1992, Curr Opin Neurobiol, V2, P516, DOI 10.1016/0959-4388(92)90190-V Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 SINGER W, 1995, ANNU REV NEUROSCI, V18, P555, DOI 10.1146/annurev.neuro.18.1.555 Sjostrom PJ, 2003, NEURON, V39, P641, DOI 10.1016/S0896-6273(03)00476-8 Steinmetz PN, 2000, NATURE, V404, P187 Steriade M., 2001, INTACT SLICED BRAIN Stroeve S, 2001, NEURAL COMPUT, V13, P2005, DOI 10.1162/089976601750399281 Thomson AM, 1997, CEREB CORTEX, V7, P510, DOI 10.1093/cercor/7.6.510 Tomita M, 2005, J NEUROPHYSIOL, V93, P378, DOI 10.1152/jn.00643.2004 Tomita M, 2004, HEARING RES, V193, P39, DOI 10.1016/j.heares.2004.03.002 TOYAMA K, 1981, J NEUROPHYSIOL, V46, P202 TOYAMA K, 1981, J NEUROPHYSIOL, V46, P191 Valentine PA, 2004, CEREB CORTEX, V14, P827, DOI 10.1093/cercor/bhh041 Valentine PA, 2003, HEARING RES, V183, P109, DOI 10.1016/S0378-5955(03)00220-X VONDERMALSBURG C, 1986, BIOL CYBERN, V54, P29 WALLACE MN, 1991, EXP BRAIN RES, V86, P527 Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565 Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398 ZOHARY E, 1994, NATURE, V370, P140, DOI 10.1038/370140a0 NR 89 TC 38 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 69 EP 80 DI 10.1016/j.heares.2007.01.008 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100008 PM 17296278 ER PT J AU Wang, XQ AF Wang, Xiaoqin TI Neural coding strategies in auditory cortex SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE auditor cortex; marmoset; temporal processing; neural coding ID AMPLITUDE-MODULATED SOUNDS; MEDIAL GENICULATE-BODY; ANTEROVENTRAL COCHLEAR NUCLEUS; CALLITHRIX-JACCHUS-JACCHUS; SINGLE-FORMANT STIMULI; PHASE-LOCKED RESPONSES; CORTICAL-NEURONS; INFERIOR COLLICULUS; NERVE FIBERS; COMMON MARMOSET AB In contrast to the visual system, the auditory system has longer subcortical pathways and more spiking synapses between the peripheral receptors and the cortex. This unique organization reflects the needs of the auditory system to extract behaviorally relevant information from a complex acoustic environment using strategies different from those used by other sensory systems. The neural representations of acoustic information in auditory cortex can be characterized by three types: (1) isomorphic (faithful) representations of acoustic structures; (2) non-isomorphic transformations of acoustic features and (3) transformations from acoustical to perceptual dimensions. The challenge facing auditory neurophysiologists is to understand the nature of the latter two transformations. In this article, I will review recent Studies front our laboratory regarding temporal discharge patterns in auditory cortex of awake marmosets and cortical representations of time-varying signals. Findings from these studies show that (1) firing patterns of neurons in auditory cortex are dependent on stimulus optimality and context and (2) the auditory cortex forms internal representations of sounds that are no longer faithful replicas of their acoustic structures. (c) 2007 Published by Elsevier B.V. C1 Johns Hopkins Univ, Sch Med, Lab Auditory Neurophysiol, Dept Biomed Engn, Baltimore, MD 21205 USA. RP Wang, XQ (reprint author), Johns Hopkins Univ, Sch Med, Lab Auditory Neurophysiol, Dept Biomed Engn, 720 Rutland Ave,Traylor 410, Baltimore, MD 21205 USA. EM xiaoqin.wang@jhu.edu CR AITKIN LM, 1988, J COMP NEUROL, V269, P235, DOI 10.1002/cne.902690208 AITKIN LM, 1986, J COMP NEUROL, V252, P175, DOI 10.1002/cne.902520204 AKEROYD MA, 1995, J ACOUST SOC AM, V98, P2466, DOI 10.1121/1.414462 Barbour DL, 2003, SCIENCE, V299, P1073, DOI 10.1126/science.1080425 Barbour DL, 2003, J NEUROSCI, V23, P7194 Bartlett EL, 2007, J NEUROPHYSIOL, V97, P1005, DOI 10.1152/jn.00593.2006 BATRA R, 1989, J NEUROPHYSIOL, V61, P257 Bendor D, 2006, CURR OPIN NEUROBIOL, V16, P391, DOI 10.1016/j.conb.2006.07.001 Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 Bieser A, 1996, EXP BRAIN RES, V108, P273 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 Chimoto S, 2002, BRAIN RES, V934, P34, DOI 10.1016/S0006-8993(02)02316-8 CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87 De Ribaupierre F, 1972, Brain Res, V48, P205, DOI 10.1016/0006-8993(72)90179-5 deCharms RC, 1998, SCIENCE, V280, P1439, DOI 10.1126/science.280.5368.1439 deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0 DERIBAUPIERRE F, 1980, HEARING RES, V3, P65, DOI 10.1016/0378-5955(80)90008-8 DeWeese MR, 2003, J NEUROSCI, V23, P7940 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 Eggermont JJ, 1997, NEUROREPORT, V8, P2709, DOI 10.1097/00001756-199708180-00014 EGGERMONT JJ, 1994, HEARING RES, V74, P51, DOI 10.1016/0378-5955(94)90175-9 EVANS EF, 1964, J PHYSIOL-LONDON, V171, P476 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y GAESE BH, 1995, EUR J NEUROSCI, V7, P438, DOI 10.1111/j.1460-9568.1995.tb00340.x GOLDSTEIN MH, 1959, J ACOUST SOC AM, V31, P356, DOI 10.1121/1.1907724 Heil P, 1997, J NEUROPHYSIOL, V77, P2642 Heil P, 1997, J NEUROPHYSIOL, V78, P2438 HOUTGAST T, 1973, ACUSTICA, V28, P66 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Krishna BS, 2000, J NEUROPHYSIOL, V84, P255 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001 Liu LF, 2006, J NEUROPHYSIOL, V95, P1926, DOI 10.1152/jn.00497.2005 Lu T, 2001, J NEUROPHYSIOL, V85, P2364 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 Lu T, 2000, J NEUROPHYSIOL, V84, P236 Lu T, 2004, J NEUROPHYSIOL, V91, P301, DOI 10.1152/jn.00022.2003 Malone BJ, 2002, J NEUROSCI, V22, P4625 Mickey BJ, 2003, J NEUROSCI, V23, P8649 MOSHITCH D, 2006, J NEUROPHYSIOL, V95, P3576 MULLERPREUSS P, 1994, HEARING RES, V80, P197, DOI 10.1016/0378-5955(94)90111-2 O'Connor KN, 2005, J NEUROPHYSIOL, V94, P4051, DOI 10.1152/jn.00046.2005 PALMER AR, 1982, ARCH OTO-RHINO-LARYN, V236, P197, DOI 10.1007/BF00454039 PATTERSON RD, 1994, J ACOUST SOC AM, V96, P1409, DOI 10.1121/1.410285 PATTERSON RD, 1994, J ACOUST SOC AM, V96, P1419, DOI 10.1121/1.410286 Phan ML, 2007, J NEUROPHYSIOL, V97, P1726, DOI 10.1152/jn.00698.2006 PHILLIPS DP, 1985, HEARING RES, V19, P253, DOI 10.1016/0378-5955(85)90145-5 PHILLIPS DP, 1990, J ACOUST SOC AM, V88, P1403, DOI 10.1121/1.399718 PHILLIPS DP, 1993, ANN NY ACAD SCI, V682, P104, DOI 10.1111/j.1749-6632.1993.tb22963.x PREUSS A, 1990, EXP BRAIN RES, V79, P207 Recanzone GH, 2000, HEARING RES, V150, P104, DOI 10.1016/S0378-5955(00)00194-5 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 ROUILLER E, 1981, HEARING RES, V5, P81, DOI 10.1016/0378-5955(81)90028-9 Schnupp JWH, 2001, NATURE, V414, P200, DOI 10.1038/35102568 SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501 Wallace MN, 2002, HEARING RES, V172, P160, DOI 10.1016/S0378-5955(02)00580-4 WANG XQ, 1993, J NEUROPHYSIOL, V70, P1054 Wang XQ, 2000, P NATL ACAD SCI USA, V97, P11843, DOI 10.1073/pnas.97.22.11843 Wang XQ, 2003, SPEECH COMMUN, V41, P107, DOI 10.1016/S0167-6393(02)00097-3 WANG XQ, 1994, J NEUROPHYSIOL, V71, P59 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565 WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 69 TC 45 Z9 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 81 EP 93 DI 10.1016/j.heares.2007.01.019 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100009 PM 17346911 ER PT J AU Nelken, I Chechik, G AF Nelken, Israel Chechik, Gal TI Information theory in auditory research SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE auditory system; information theory; entropy; mutual information; variance decomposition; neural code ID INFERIOR COLLICULUS; POPULATION CODES; NEURONS; RESPONSES; CORTEX; TIME; TRANSMISSION; REDUNDANCY; STIMULI; CAT AB Mutual information (MI) is in increasing use as a way of quantifying neural responses. However, it is still considered with some doubts by many researchers, because it is not always clear what MI really measures. and because MI is hard to calculate in practice. This paper aims to clarify these issues. First, it provides an interpretation of mutual information as variability decomposition, similar to standard variance decomposition routinely used in statistical evaluations of neural data, except that the measure of variability is entropy rather than variance. Second, it discusses those aspects of the MI that makes its calculation difficult. The goal of this paper is to clarify when and how information theory can be used informatively and reliably in auditory neuroscience. (c) 2007 Elsevier B.V. All rights reserved. C1 Hebrew Univ Jerusalem, Dept Neurobiol, Silberman Inst Life Sci, IL-91904 Jerusalem, Israel. Hebrew Univ Jerusalem, Interdisciplinary Ctr Neural Computat, Silberman Inst Life Sci, IL-91904 Jerusalem, Israel. Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA. RP Nelken, I (reprint author), Hebrew Univ Jerusalem, Dept Neurobiol, Silberman Inst Life Sci, Safra Campus, IL-91904 Jerusalem, Israel. EM israel@cc.huji.ac.il RI Nelken, Israel/B-7753-2011 OI Nelken, Israel/0000-0002-6645-107X CR Brenner N, 2000, NEURON, V26, P695, DOI 10.1016/S0896-6273(00)81205-2 Chase SM, 2005, J NEUROSCI, V25, P7575, DOI 10.1523/JNEUROSCI.0915-05.2005 Chechik G, 2006, NEURON, V51, P359, DOI 10.1016/j.neuron.2006.06.030 Cover T M, 1991, ELEMENTS INFORM THEO Deneve S, 2001, NAT NEUROSCI, V4, P826, DOI 10.1038/90541 Escabi MA, 2003, J NEUROSCI, V23, P11489 Furukawa S, 2002, J NEUROPHYSIOL, V87, P1749, DOI 10.1152/jn.00491.2001 Hsu A, 2004, J NEUROSCI, V24, P9201, DOI 10.1523/JNEUROSCI.2449-04.2004 Lu T, 2004, J NEUROPHYSIOL, V91, P301, DOI 10.1152/jn.00022.2003 MIDDLEBROOKS JC, 1994, SCIENCE, V264, P842, DOI 10.1126/science.8171339 Moshitch D, 2006, J NEUROPHYSIOL, V95, P3756, DOI 10.1152/jn.00822.2005 Nelken I, 2005, J COMPUT NEUROSCI, V19, P199, DOI 10.1007/s10827-005-1739-3 Nemenman I, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.056111 Nirenberg S, 2003, P NATL ACAD SCI USA, V100, P7348, DOI 10.1073/pnas.1131895100 Paninski L, 2003, NEURAL COMPUT, V15, P1191, DOI 10.1162/089976603321780272 Panzeri S, 1996, NETWORK-COMP NEURAL, V7, P87, DOI 10.1088/0954-898X/7/1/006 Pola G, 2003, NETWORK-COMP NEURAL, V14, P35, DOI 10.1088/0954-898X/14/1/303 Rieke F, 1995, P ROY SOC B-BIOL SCI, V262, P259, DOI 10.1098/rspb.1995.0204 Rolls ET, 1997, EXP BRAIN RES, V114, P149, DOI 10.1007/PL00005615 Schneidman E, 2003, J NEUROSCI, V23, P11539 Sharpee T, 2004, NEURAL COMPUT, V16, P223, DOI 10.1162/089976604322742010 Slee SJ, 2005, J NEUROSCI, V25, P9978, DOI 10.1523/JNEUROSCI.2666-05.2005 Sokal R. R., 1981, BIOMETRY, V2nd Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 Strong S P, 1998, Pac Symp Biocomput, P621 TREVES A, 1995, NEURAL COMPUT, V7, P399, DOI 10.1162/neco.1995.7.2.399 VICTOR JD, 2002, PHYS REV E, V66, P51903 NR 27 TC 27 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 94 EP 105 DI 10.1016/j.heares.2007.01.012 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100010 PM 17300891 ER PT J AU King, AJ Bajo, VM Bizley, JK Campbell, RAA Nodal, FR Schulz, AL Schnupp, JWH AF King, Andrew J. Bajo, Victoria M. Bizley, Jennifer K. Campbell, Robert A. A. Nodal, Fernando R. Schulz, Andreas L. Schnupp, Jan W. H. TI Physiological and behavioral studies of spatial coding in the auditory cortex SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC Inst Hearing Res DE auditory localization; ferret; reversible inactivation; corticofugal pathway; virtual acoustic space; binaural; plasticity; training ID SOUND-LOCALIZATION BEHAVIOR; EAR TRANSFER-FUNCTIONS; INDIVIDUAL-DIFFERENCES; INDUCED PLASTICITY; CORTICAL-NEURONS; PRESSURE LEVEL; CAT; SPACE; CUES; SENSITIVITY AB Despite extensive subcortical processing, the auditory cortex is believed to be essential for normal sound localization. However, we still have a poor understanding of how auditory spatial information is encoded in the cortex and of the relative contribution of different cortical areas to spatial hearing. We investigated the behavioral consequences of inactivating ferret primary auditory cortex (A1) on auditory localization by implanting a sustained release polymer containing the GABA(A) agonist muscimol bilaterally over A1. Silencing A1 led to a reversible deficit in the localization of brief noise bursts in both the horizontal and vertical planes. In other ferrets, large bilateral lesions of the auditory cortex, which extended beyond A1, produced more severe and persistent localization deficits. To investigate the processing of spatial information by high-frequency A1 neurons, we measured their binaural-level functions and used individualized virtual acoustic space stimuli to record their spatial receptive fields (SRFs) in anesthetized ferrets. We observed the existence of a continuum of response properties, with most neurons preferring contralateral sound locations. In many cases, the SRFs could be explained by a simple linear interaction between the acoustical properties of the head and external ears and the binaural frequency tuning of the neurons. Azimuth response profiles recorded in awake ferrets were very similar and further analysis suggested that the slopes of these functions and location-dependent variations in spike timing are the main information-bearing parameters. Studies of sensory plasticity can also provide valuable insights into the role of different brain areas and the way in which information is represented within them. For example, stimulus-specific training allows accurate auditory localization by adult ferrets to be relearned after manipulating binaural cues by occluding one ear. Reversible inactivation of A1 resulted in slower and less complete adaptation than in normal controls, whereas selective lesions of the descending corticocollicular pathway prevented any improvement in performance. These results reveal a role for auditory cortex in training-induced plasticity of auditory localization, which could be mediated by descending cortical pathways. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Oxford, Dept Physiol Anat & Genet, Oxford OX1 3PT, England. RP King, AJ (reprint author), Univ Oxford, Dept Physiol Anat & Genet, Sherrington Bldg,Pk Rd, Oxford OX1 3PT, England. EM andrew.king@physiol.ox.ac.uk RI schnupp, jan/A-3006-2012; King, Andrew/M-6708-2013 OI King, Andrew/0000-0001-5180-7179 CR BAJO VM, 2006, CEREB CORTEX BAJO VM, 2006, ASS RES OTOLARYNGOL, V29, P56 BEITEL RE, 1993, J NEUROPHYSIOL, V70, P351 Belin P, 2000, NAT NEUROSCI, V3, P965, DOI 10.1038/79890 BIZLEY JK, UNPUB ROLE AUDITORY BRUGGE JF, 1994, HEARING RES, V73, P67, DOI 10.1016/0378-5955(94)90284-4 Brugge JF, 1996, J NEUROSCI, V16, P4420 Campbell RAA, 2006, J NEUROPHYSIOL, V95, P3742, DOI 10.1152/jn.01155.2005 Chase SM, 2006, J NEUROSCI, V26, P3889, DOI 10.1523/JNEUROSCI.4986-05.2006 CLIFTON RK, 1988, DEV PSYCHOL, V24, P477, DOI 10.1037//0012-1649.24.4.477 Furukawa S, 2002, J NEUROPHYSIOL, V87, P1749, DOI 10.1152/jn.00491.2001 HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P915 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 IMIG TJ, 1977, BRAIN RES, V138, P241, DOI 10.1016/0006-8993(77)90743-0 Irvine DRF, 1996, J NEUROPHYSIOL, V75, P75 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 Kacelnik O, 2006, PLOS BIOL, V4, P627, DOI 10.1371/journal.pbio.0040071 KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746 King AJ, 2004, CURR BIOL, V14, pR335, DOI 10.1016/j.cub.2004.04.018 King AJ, 2001, TRENDS COGN SCI, V5, P261, DOI 10.1016/S1364-6613(00)01660-0 King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821 King M, 2005, HEALTH TECHNOL ASSES, V9, P1 Macpherson EA, 2000, J ACOUST SOC AM, V108, P1834, DOI 10.1121/1.1310196 MADISON RD, 1993, EXP NEUROL, V121, P153, DOI 10.1006/exnr.1993.1082 Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003 McAlpine D, 2005, J PHYSIOL-LONDON, V566, P21, DOI 10.1113/jphysiol.2005.083113 Mickey BJ, 2003, J NEUROSCI, V23, P8649 MIDDELBROOKS JC, 1981, J NEUROSCI, V1, P187 MIDDLEBROOKS JC, 1990, J ACOUST SOC AM, V87, P2149, DOI 10.1121/1.399183 Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1480, DOI 10.1121/1.427176 Mrsic-Flogel TD, 2003, NAT NEUROSCI, V6, P981, DOI 10.1038/nn1108 Mrsic-Flogel TD, 2005, J NEUROPHYSIOL, V93, P3489, DOI 10.1152/jn.00748.2004 Mrsic-Flogel TD, 2001, J NEUROPHYSIOL, V86, P1043 Nelken I, 2005, J COMPUT NEUROSCI, V19, P199, DOI 10.1007/s10827-005-1739-3 Nelken I, 2004, CURR OPIN NEUROBIOL, V14, P474, DOI 10.1016/j.conb.2004.06.005 Ohl FW, 2005, CURR OPIN NEUROBIOL, V15, P470, DOI 10.1016/j.conb.2005.07.002 RAJAN R, 1990, J NEUROPHYSIOL, V64, P872 Reale RA, 2003, J NEUROPHYSIOL, V89, P1024, DOI 10.1152/jn.00563.2002 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2723 Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3 Schnupp JWH, 2003, J ACOUST SOC AM, V113, P2021, DOI 10.1121/1.1547460 Schnupp JWH, 2001, NATURE, V414, P200, DOI 10.1038/35102568 SCHULZ AL, 2006, FENS ABSTR, V3 Shinn-Cunningham BG, 1998, J ACOUST SOC AM, V103, P3656, DOI 10.1121/1.423088 Smith AL, 2004, EUR J NEUROSCI, V19, P3059, DOI 10.1111/j.1460-9568.2004.03379.x Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 Stecker GC, 2003, J NEUROPHYSIOL, V89, P2889, DOI 10.1152/jn.00980.2002 Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 Van Wanrooij MM, 2005, J NEUROSCI, V25, P5413, DOI 10.1523/JNEUROSCI.0850-05.2005 Van Wanrooij MM, 2004, J NEUROSCI, V24, P4163, DOI 10.1523/JNEUROSCI.0048-04.2004 Wightman F. L., 1993, HUMAN PSYCHOPHYSICS, P155 Winer JA, 2006, HEARING RES, V212, P1, DOI 10.1016/j.heares.2005.06.014 Wright BA, 2001, P NATL ACAD SCI USA, V98, P12307, DOI 10.1073/pnas.211220498 Yin T. C. T, 2002, INTEGRATIVE FUNCTION, P99 Young E. D., 2002, INTEGRATIVE FUNCTION, P160 Zhang JP, 2004, J NEUROPHYSIOL, V91, P101, DOI 10.1152/jn.00166.2003 NR 57 TC 41 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 106 EP 115 DI 10.1016/j.heares.2007.01.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100011 PM 17314017 ER PT J AU Micheyl, C Carlyon, RP Gutschalk, A Melcher, JR Oxenham, AJ Rauschecker, JP Tian, B Wilson, EC AF Micheyl, Christophe Carlyon, Robert P. Gutschalk, Alexander Melcher, Jennifer R. Oxenham, Andrew J. Rauschecker, Josef P. Tian, Biao Wilson, E. Courtenay TI The role of auditory cortex in the formation of auditory streams SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC Inst Hearing Res DE auditory cortex; auditory scene analysis; single-unit recordings; magnetoencephalography; functional magnetic resonance imaging ID STARLINGS STURNUS-VULGARIS; GOLDFISH CARASSIUS-AURATUS; MIDDLE LATENCY COMPONENTS; TONE SEQUENCES; SCENE ANALYSIS; PERCEPTUAL ORGANIZATION; FUNDAMENTAL-FREQUENCY; SONGBIRD FOREBRAIN; EVOKED-POTENTIALS; TIME INTERVALS AB Auditory streaming refers to the perceptual parsing of acoustic sequences into "streams", which makes it possible for a listener to follow the sounds from a given source amidst other sounds. Streaming is currently regarded as an important function of the auditory system in both humans and animals, crucial for survival in environments that typically contain multiple sound sources. This article reviews recent findings concerning the possible neural mechanisms behind this perceptual phenomenon at the level of the auditory cortex. The first part is devoted to intra-cortical recordings, which provide insight into the neural "micromechanisms" of auditory streaming in the primary auditory cortex (A1). In the second part, recent results obtained using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in humans, which suggest a contribution from cortical areas other than A1, are presented. Overall, the findings concur to demonstrate that many important features of sequential streaming can be explained relatively simply based on neural responses in the auditory cortex. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA. MIT, Elect Res Lab, Cambridge, MA 02139 USA. MRC, Cognit & Brain Sci Unit, Cambridge, England. Univ Heidelberg, Dept Neurol, D-6900 Heidelberg, Germany. Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. Georgetown Univ, Med Ctr, Dept Physiol & Biophys, Georgetown Inst Cognit & Computat Sci, Washington, DC 20007 USA. Harvard Univ, MIT, Speech & Hearing Biosci & Technol Program, Div Hlth Sci & Technol, Cambridge, MA 02139 USA. RP Micheyl, C (reprint author), Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA. EM cmicheyl@umn.edu RI Carlyon, Robert/A-5387-2010; Rauschecker, Josef/A-4120-2013 CR Alain C, 1998, NEUROREPORT, V9, P3537, DOI 10.1097/00001756-199810260-00037 ALAIN C, 1994, NEUROREPORT, V6, P140, DOI 10.1097/00001756-199412300-00036 ANSTIS S, 1985, J EXP PSYCHOL HUMAN, V11, P257, DOI 10.1037/0096-1523.11.3.257 Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004 Beauvois MW, 1997, PERCEPT PSYCHOPHYS, V59, P81, DOI 10.3758/BF03206850 Beauvois MW, 1996, J ACOUST SOC AM, V99, P2270, DOI 10.1121/1.415414 Bee MA, 2004, J NEUROPHYSIOL, V92, P1088, DOI 10.1152/jn.00884.2003 Bee MA, 2005, BRAIN BEHAV EVOLUT, V66, P197, DOI 10.1159/000087854 Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380 Bregman AS, 2000, PERCEPT PSYCHOPHYS, V62, P626, DOI 10.3758/BF03212114 Bregman AS., 1990, AUDITORY SCENE ANAL Brosch M, 1997, J NEUROPHYSIOL, V77, P923 BUTLER RA, 1968, J ACOUST SOC AM, V44, P945, DOI 10.1121/1.1911233 CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 Carlyon RP, 2004, TRENDS COGN SCI, V8, P465, DOI 10.1016/j.tics.2004.08.008 CARLYON RP, 1994, J ACOUST SOC AM, V95, P3541, DOI 10.1121/1.409971 Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115 Carlyon Robert P., 2005, P317, DOI 10.1016/B978-012375731-9/50056-2 Cusack R, 2005, J COGNITIVE NEUROSCI, V17, P641, DOI 10.1162/0898929053467541 Cusack R, 2004, J EXP PSYCHOL HUMAN, V30, P643, DOI 10.1037/0096-1523.30.4.643 Deike S, 2004, NEUROREPORT, V15, P1511, DOI 10.1097/01.wnr.0000132919.12990.34 Denham SL, 2001, NATO SCI S A LIF SCI, V312, P281 DEUTSCH D, 1974, NATURE, V251, P307, DOI 10.1038/251307a0 Eggermont JJ, 1999, J NEUROSCI, V19, P2780 Fay RR, 2000, JARO, V1, P120, DOI 10.1007/s101620010015 Fay RR, 1998, HEARING RES, V120, P69, DOI 10.1016/S0378-5955(98)00058-6 Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0 Fishman YI, 2004, J ACOUST SOC AM, V116, P1656, DOI 10.1121/1.1778903 Flechsig P., 1908, NEUROLOGISCHES CENTR, V27, P50 GALABURDA A, 1980, J COMP NEUROL, V190, P597, DOI 10.1002/cne.901900312 GREEN DM, 1966, SIGNAL DETECTION THE Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276 Griffiths TD, 1998, NAT NEUROSCI, V1, P422, DOI 10.1038/1637 Grimault N, 2002, J ACOUST SOC AM, V111, P1340, DOI 10.1121/1.1452740 Grimault N, 2000, J ACOUST SOC AM, V108, P263, DOI 10.1121/1.429462 Gutschalk A, 2004, NEUROIMAGE, V22, P755, DOI 10.1016/j.neuroimage.2004.01.025 Gutschalk A, 2002, NEUROIMAGE, V15, P207, DOI 10.1006/nimg.2001.0949 GUTSCHALK A, 2006, 29 MIDW RES M Gutschalk A, 2005, J NEUROSCI, V25, P5382, DOI 10.1523/JNEUROSCI.0374-05.2005 Hackett TA, 2001, J COMP NEUROL, V441, P197, DOI 10.1002/cne.1407 Harms MP, 2005, J NEUROPHYSIOL, V93, P210, DOI 10.1152/jn.00712.2004 Harms MP, 2002, J NEUROPHYSIOL, V88, P1433, DOI 10.1152/jn.00156.2002 Harms MP, 2003, HUM BRAIN MAPP, V20, P168, DOI 10.1002/hbm.10136 HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155 Hulse SH, 1997, J COMP PSYCHOL, V111, P3, DOI 10.1037/0735-7036.111.1.3 Hung J, 2001, EXP BRAIN RES, V140, P56, DOI 10.1007/s002210100783 Izumi A, 2002, COGNITION, V82, P113 JONES MR, 1981, J EXP PSYCHOL HUMAN, V7, P1059, DOI 10.1037/0096-1523.7.5.1059 Jones SJ, 1998, EVOKED POTENTIAL, V108, P131, DOI 10.1016/S0168-5597(97)00077-4 Kanwal JS, 2003, NETWORK-COMP NEURAL, V14, P413, DOI 10.1088/0954-898X/14/3/303 KASHINO M, IN PRESS HEARING BAS Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 LIEGEOISCHAUVEL C, 1991, BRAIN, V114, P139 LPAS Van Noorden, 1975, TEMPORAL COHERENCE P MacDougall-Shackleton SA, 1998, J ACOUST SOC AM, V103, P3581, DOI 10.1121/1.423063 McCabe SL, 1997, J ACOUST SOC AM, V101, P1611, DOI 10.1121/1.418176 Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039 MICHEYL C, IN PRESS HEARING BAS MILLER GA, 1950, J ACOUST SOC AM, V22, P637, DOI 10.1121/1.1906663 Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320 Morosan P, 2001, NEUROIMAGE, V13, P684, DOI 10.1006/nimg.2000.0715 NAATANEN R, 1988, ELECTROEN CLIN NEURO, V69, P523, DOI 10.1016/0013-4694(88)90164-2 Naatanen R, 2001, TRENDS NEUROSCI, V24, P283, DOI 10.1016/S0166-2236(00)01790-2 PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PARKIN D, 1998, HEALTH TECHNOL ASSES, V2, P1 Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7 Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004 PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48 PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P198, DOI 10.1016/0013-4694(78)90004-4 PRESSNITZER D, 2006, CURR BIOL, V11, P1351 RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330 Rauschecker JP, 2004, J NEUROPHYSIOL, V91, P2578, DOI 10.1152/jn.00834.2003 Roberts B, 2002, J ACOUST SOC AM, V112, P2074, DOI 10.1121/1.1508784 Scherg M., 1990, ADV AUDIOL, V6, P40 SNYDER JS, UNPUB NEUROPHYSIOLOG Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021 Sussman E, 1999, PSYCHOPHYSIOLOGY, V36, P22, DOI 10.1017/S0048577299971056 Tian B, 2004, J NEUROPHYSIOL, V92, P2993, DOI 10.1152/jn.00472.2003 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 Vliegen J, 1999, J ACOUST SOC AM, V106, P938, DOI 10.1121/1.427140 Vliegen J, 1999, J ACOUST SOC AM, V105, P339, DOI 10.1121/1.424503 Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009 WILSON EC, 2005, 28 MIDW RES M YIN P, HEARING BASIC RES AP Yvert B, 2001, CEREB CORTEX, V11, P411, DOI 10.1093/cercor/11.5.411 NR 88 TC 93 Z9 94 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 116 EP 131 DI 10.1016/j.heares.2007.01.007 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100012 PM 17307315 ER PT J AU Davis, MH Johnsrude, IS AF Davis, Matthew H. Johnsrude, Ingrid S. TI Hearing speech sounds: Top-down influences on the interface between audition and speech perception SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC Inst Hearing Res DE speech perception; perceptual grouping; lexical segmentation; perceptual learning; categorical perceptions; fMRI; auditory cortex; temporal lobe; frontal lobe; feedback ID SUPERIOR TEMPORAL SULCUS; PRECATEGORICAL ACOUSTIC STORAGE; PARABELT AUDITORY-CORTEX; PRIMATE CEREBRAL-CORTEX; SHORT-TERM-MEMORY; LEXICAL ACCESS; RHESUS-MONKEY; CORTICAL CONNECTIONS; PREFRONTAL CORTEX; LANGUAGE COMPREHENSION AB This paper focuses on the cognitive and neural mechanisms of speech perception: the rapid, and highly automatic processes by which complex time-varying speech signals are perceived as sequences of meaningful linguistic units. We will review four processes that contribute to the perception of speech: perceptual grouping, lexical segmentation, perceptual learning and categorical perception, in each case presenting perceptual evidence to support highly interactive processes with top-down information flow driving and constraining interpretations of spoken input. The cognitive and neural underpinnings of these interactive processes appear to depend on two distinct representations of heard speech: an auditory, echoic representation of incoming speech, and a motoric/somatotopic representation of speech as it would be produced. We review the neuroanatomical system supporting these two key properties of speech perception and discuss how this system incorporates interactive processes and two parallel echoic and somato-motoric representations, drawing on evidence from functional neuroimaging studies in humans and from comparative anatomical studies. We propose that top-down interactive mechanisms within auditory networks play an important role in explaining the perception of spoken language. (c) 2007 Elsevier B.V. All rights reserved. C1 MRC, Cognit & Brain Sci Unit, Cambridge CB2 7EF, England. Queens Univ, Dept Psychol, Kingston, ON K7L 3N6, Canada. RP Davis, MH (reprint author), MRC, Cognit & Brain Sci Unit, 15 Chaucer Rd, Cambridge CB2 7EF, England. EM matt.davis@mrc-cbu.cam.ac.uk RI Davis, Matthew/F-6039-2010; Johnsrude, Ingrid/G-4694-2011 OI Johnsrude, Ingrid/0000-0002-7810-1333 CR Ahissar E, 2001, P NATL ACAD SCI USA, V98, P13367, DOI 10.1073/pnas.201400998 ANDRUSKI JE, 1994, COGNITION, V52, P163, DOI 10.1016/0010-0277(94)90042-6 Baddeley A. D., 1986, WORKING MEMORY BAILEY PJ, 1980, J EXP PSYCHOL HUMAN, V6, P536 Barker J, 1999, SPEECH COMMUN, V27, P159, DOI 10.1016/S0167-6393(98)00081-8 BRADY SA, 1978, J ACOUST SOC AM, V63, P1556, DOI 10.1121/1.381849 Bregman AS., 1990, AUDITORY SCENE ANAL Brent MR, 1997, J PSYCHOLINGUIST RES, V26, P363, DOI 10.1023/A:1025032825951 Brent MR, 1996, COGNITION, V61, P93, DOI 10.1016/S0010-0277(96)00719-6 Brugge JF, 2003, J NEUROPHYSIOL, V90, P3750, DOI 10.1152/jn.00500.2003 Buchsbaum BR, 2005, NEURON, V48, P687, DOI 10.1016/j.neuron.2005.09.029 Bybee J, 2005, LINGUIST REV, V22, P381, DOI 10.1515/tlir.2005.22.2-4.381 Cairns P, 1997, COGNITIVE PSYCHOL, V33, P111, DOI 10.1006/cogp.1997.0649 Callan DE, 2003, NEUROIMAGE, V19, P113, DOI 10.1016/S1053-8119(03)00020-X Carlyon RP, 2002, ACTA ACUST UNITED AC, V88, P408 Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115 Cutler A., 1987, Computer Speech and Language, V2, DOI 10.1016/0885-2308(87)90004-0 CHRISTIANSEN MH, 1998, LANG COGNTIIVE PROCE, P13 Clarke CM, 2004, J ACOUST SOC AM, V116, P3647, DOI 10.1121/1.1815131 CROWDER RG, 1969, PERCEPT PSYCHOPHYS, V5, P365, DOI 10.3758/BF03210660 CROWDER RG, 1983, PHILOS T ROY SOC B, V302, P251, DOI 10.1098/rstb.1983.0053 CUTLER A, 1988, J EXP PSYCHOL HUMAN, V14, P113, DOI 10.1037/0096-1523.14.1.113 CUTTING JE, 1975, J EXP PSYCHOL HUMAN, V104, P105 DAVIS MH, UNPUB DISSOCIATING S Davis MH, 2005, J EXP PSYCHOL GEN, V134, P222, DOI 10.1037/0096-3445.134.2.222 Davis MH, 2002, J EXP PSYCHOL HUMAN, V28, P218, DOI 10.1037//0096-1523.28.1.218 Davis MH, 2003, J NEUROSCI, V23, P3423 Davis MH, 2003, STUD DEV PSYCHOL, P125 Dehaene-Lambertz G, 2005, NEUROIMAGE, V24, P21, DOI 10.1016/j.neuroimage.2004.09.039 de la Mothe LA, 2006, J COMP NEUROL, V496, P27, DOI 10.1002/cne.20923 DIAMOND IT, 1969, BRAIN RES, V15, P305, DOI 10.1016/0006-8993(69)90160-7 Doupe AJ, 1999, ANNU REV NEUROSCI, V22, P567, DOI 10.1146/annurev.neuro.22.1.567 Eisner F, 2006, J ACOUST SOC AM, V119, P1950, DOI 10.1121/1.2178721 ELMAN JL, 1988, J MEM LANG, V27, P143, DOI 10.1016/0749-596X(88)90071-X Fadiga L, 2002, EUR J NEUROSCI, V15, P399, DOI 10.1046/j.0953-816x.2001.01874.x Felleman DJ, 1991, CEREB CORTEX, V1, P1, DOI 10.1093/cercor/1.1.1 FODOR JA, 1965, J VERB LEARN VERB BE, V4, P414, DOI 10.1016/S0022-5371(65)80081-0 Foxe JJ, 2002, EXP BRAIN RES, V142, P139, DOI 10.1007/s00221-001-0906-7 FRANKISH C, 1989, J EXP PSYCHOL LEARN, V15, P469, DOI 10.1037/0278-7393.15.3.469 Friederici AD, 2000, BRAIN LANG, V74, P289, DOI 10.1006/brln.2000.2313 Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005 GANONG WF, 1980, J EXP PSYCHOL HUMAN, V6, P110, DOI 10.1037/0096-1523.6.1.110 Gao EQ, 2000, P NATL ACAD SCI USA, V97, P8081, DOI 10.1073/pnas.97.14.8081 GARRETT M, 1966, PERCEPT PSYCHOPHYS, V1, P30, DOI 10.3758/BF03207817 Garrod S, 2004, TRENDS COGN SCI, V8, P8, DOI 10.1016/j.tics.2003.10.016 Gaskell MG, 1997, LANG COGNITIVE PROC, V12, P613 Gaskell MG, 1996, J EXP PSYCHOL HUMAN, V22, P144, DOI 10.1037//0096-1523.22.1.144 Giraud AL, 2004, CEREB CORTEX, V14, P247, DOI 10.1093/cercor/bhg124 Goldinger SD, 1999, MEM COGNITION, V27, P328, DOI 10.3758/BF03211416 Goldinger SD, 1996, J EXP PSYCHOL LEARN, V22, P1166, DOI 10.1037/0278-7393.22.5.1166 Goldinger SD, 1998, PSYCHOL REV, V105, P251, DOI 10.1037/0033-295X.105.2.251 Golestani N, 2004, NEUROIMAGE, V21, P494, DOI 10.1016/j.neuroimaging.2003.09.071 Greenlee JDW, 2004, J NEUROPHYSIOL, V92, P1153, DOI 10.1152/jn.00609.2003 Guenther FH, 2006, BRAIN LANG, V96, P280, DOI 10.1016/j.bandl.2005.06.001 Hackett TA, 1998, J COMP NEUROL, V394, P475, DOI 10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z Hackett TA, 1999, BRAIN RES, V817, P45, DOI 10.1016/S0006-8993(98)01182-2 HACKETT TA, 2004, AUDITORY CORTEX PRIM HARNAD S, 1986, CATEGORICAL PERCEPTI HARRIS CL, 1994, CONTINUITY LINGUISTI Hartley T, 1996, J MEM LANG, V35, P1, DOI 10.1006/jmla.1996.0001 Hawkins S, 2003, J PHONETICS, V31, P373, DOI 10.1016/j.wocn.2003.09.006 HERVASISDELMAN A, UNPUB PERCEPTUAL LEA Hickok G, 2004, COGNITION, V92, P67, DOI 10.1016/j.cognition.2003.10.011 Houde JF, 1998, SCIENCE, V279, P1213, DOI 10.1126/science.279.5354.1213 Howard MA, 2000, J COMP NEUROL, V416, P79, DOI 10.1002/(SICI)1096-9861(20000103)416:1<79::AID-CNE6>3.0.CO;2-2 HOWELL P, 1978, PERCEPT PSYCHOPHYS, V24, P496, DOI 10.3758/BF03198773 HOWELL P, 1977, MEM COGNITION, V5, P700, DOI 10.3758/BF03197419 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Humphries C, 2006, J COGNITIVE NEUROSCI, V18, P665, DOI 10.1162/jocn.2006.18.4.665 Humphries C, 2005, HUM BRAIN MAPP, V26, P128, DOI 10.1002/hbm.20148 Indefrey P, 2004, COGNITIVE NEUROSCIENCES III, THIRD EDITION, P759 JACOBY LL, 1988, J EXP PSYCHOL LEARN, V14, P240, DOI 10.1037//0278-7393.14.2.240 Jacquemot C, 2003, J NEUROSCI, V23, P9541 JOHNSRUDE IS, UNPUB MULTIPLE PROCE Jones EG, 2003, ANN NY ACAD SCI, V999, P218, DOI 10.1196/annals.1284.033 Kaas JH, 1999, CURR OPIN NEUROBIOL, V9, P164, DOI 10.1016/S0959-4388(99)80022-1 Kello CT, 2004, J ACOUST SOC AM, V116, P2354, DOI 10.1121/1.1715112 Kemps RJJK, 2005, MEM COGNITION, V33, P430, DOI 10.3758/BF03193061 Kersten D, 2003, CURR OPIN NEUROBIOL, V13, P150, DOI 10.1016/S0959-4388(03)00042-4 KOLINSKY R, 1992, P 19 JOURN ET PAR, P129 Kolinsky R, 1996, LANG COGNITIVE PROC, V11, P611 KRAJLIC T, 2005, COGNITIVE PSYCHOL, V51, P141 KRAUSS RM, 2006, BRIDGING SOCIAL PSYC Kuhl PK, 2004, NAT REV NEUROSCI, V5, P831, DOI 10.1038/nrn1533 Lehiste I., 1977, J PHONETICS, V5, P253 Liberman AM, 2000, TRENDS COGN SCI, V4, P187, DOI 10.1016/S1364-6613(00)01471-6 LIBERMAN AM, 1967, PSYCHOL REV, V74, P431, DOI 10.1037/h0020279 LOGAN JS, 1991, J ACOUST SOC AM, V89, P874, DOI 10.1121/1.1894649 Luce PA, 1998, MEM COGNITION, V26, P708, DOI 10.3758/BF03211391 Luria A. R., 1976, WORKING BRAIN INTRO MACKAY DG, 1993, J MEM LANG, V32, P624, DOI 10.1006/jmla.1993.1032 MACMILLAN NA, 1986, CATEGORICAL PERCPETI Magnuson JS, 2003, COGNITIVE SCI, V27, P285, DOI 10.1016/S0364-0213(03)00004-1 MANN VA, 1983, COGNITION, V14, P211, DOI 10.1016/0010-0277(83)90030-6 MARLSENWILSON W, 1984, ATTENTION PERFORMANC, V10 MARSLENWILSON W, 1994, PSYCHOL REV, V101, P653, DOI 10.1037//0033-295X.101.4.653 MarslenWilson W, 1996, J EXP PSYCHOL HUMAN, V22, P1376 MARSLENWILSON W, 1994, PSYCHOL REV, V101, P3, DOI 10.1037/0033-295X.101.1.3 Mattys SL, 1997, PSYCHON B REV, V4, P310, DOI 10.3758/BF03210789 Mattys SL, 2004, J EXP PSYCHOL HUMAN, V30, P397, DOI 10.1037/0096-1523.30.2.397 Mattys SL, 2005, J EXP PSYCHOL GEN, V134, P477, DOI 10.1037/0096-3445.134.4.477 MAYE J, IN PRESS WECKUD WETC McCandliss BD, 2002, COGN AFFECT BEHAV NE, V2, P89, DOI 10.3758/CABN.2.2.89 MCCLELLAND JL, 1986, COGNITIVE PSYCHOL, V18, P1, DOI 10.1016/0010-0285(86)90015-0 McClelland JL, 2006, TRENDS COGN SCI, V10, P363, DOI 10.1016/j.tics.2006.06.007 McMurray B, 2002, COGNITION, V86, pB33, DOI 10.1016/S0010-0277(02)00157-9 McQueen JM, 1998, J MEM LANG, V39, P21, DOI 10.1006/jmla.1998.2568 Miller J., 1981, PERSPECTIVES STUDY S MILLER JL, 1979, PERCEPT PSYCHOPHYS, V25, P457, DOI 10.3758/BF03213823 MIRMAN D, IN PRESS INTERACTIVE MORAIS J, 1979, COGNITION, V7, P323, DOI 10.1016/0010-0277(79)90020-9 MORAIS J, 1986, COGNITION, V24, P45, DOI 10.1016/0010-0277(86)90004-1 MORTON J, 1971, J EXP PSYCHOL, V91, P169, DOI 10.1037/h0031844 Mottonen R, 2006, NEUROIMAGE, V30, P563, DOI 10.1016/j.neuroimage.2005.10.002 Nakatani LH, 1977, J ACOUST SOC AM, V62, P715, DOI 10.1121/1.381583 Narain C, 2003, CEREB CORTEX, V13, P1362, DOI 10.1093/cercor/bhg083 Nearey TM, 2001, LANG COGNITIVE PROC, V16, P673, DOI 10.1080/01690960143000173 Norris D, 2003, COGNITIVE PSYCHOL, V47, P204, DOI 10.1016/S0010-0285(03)00006-9 NORRIS D, 1994, COGNITION, V52, P189, DOI 10.1016/0010-0277(94)90043-4 Pallier C, 2001, PSYCHOL SCI, V12, P445, DOI 10.1111/1467-9280.00383 Peelle JE, 2005, J EXP PSYCHOL HUMAN, V31, P1315, DOI 10.1037/0096-1523.31.6.1315 Perkell J, 1997, SPEECH COMMUN, V22, P227, DOI 10.1016/S0167-6393(97)00026-5 Perrot X, 2006, CEREB CORTEX, V16, P941, DOI 10.1093/cercor/bhj035 Petrides M, 2002, PRINCIPLES FRONTAL L, P31 Petrides M, 2006, J COMP NEUROL, V498, P227, DOI 10.1002/cne.21048 PETRIDES M, 1988, J COMP NEUROL, V273, P52, DOI 10.1002/cne.902730106 Pickering MJ, 2004, BEHAV BRAIN SCI, V27, P169 PISONI DB, 1974, PERCEPT PSYCHOPHYS, V15, P285, DOI 10.3758/BF03213946 PITT MA, 1993, J EXP PSYCHOL HUMAN, V19, P699, DOI 10.1037/0096-1523.19.4.699 Pitt MA, 2002, J EXP PSYCHOL HUMAN, V28, P150, DOI 10.1037//0096-1523.28.1.150 Pitt MA, 1998, J MEM LANG, V39, P347, DOI 10.1006/jmla.1998.2571 PLOMP R, 2001, INTELLIGENT EAR POEPPEL D, IN PRESS P ROYAL SOC Price C, 2005, TRENDS COGN SCI, V9, P271, DOI 10.1016/j.tics.2005.03.009 Pulvermuller F, 2006, P NATL ACAD SCI USA, V103, P7865, DOI 10.1073/pnas.0509989103 Purcell DW, 2006, J ACOUST SOC AM, V120, P966, DOI 10.1121/1.2217714 READ C, 1986, COGNITION, V24, P31, DOI 10.1016/0010-0277(86)90003-X REMEZ RE, 1994, PSYCHOL REV, V101, P129, DOI 10.1037/0033-295X.101.1.129 Remez RE, 1997, J EXP PSYCHOL HUMAN, V23, P651, DOI 10.1037/0096-1523.23.3.651 REMEZ RE, 1981, SCIENCE, V212, P947, DOI 10.1126/science.7233191 Rizzolatti G, 1998, TRENDS NEUROSCI, V21, P188, DOI 10.1016/S0166-2236(98)01260-0 Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056 Romanski LM, 1999, J COMP NEUROL, V403, P141, DOI 10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 ROSEN SM, 1979, J PHONETICS, V7, P393 Rozzi S, 2006, CEREB CORTEX, V16, P1389, DOI 10.1093/cercor/bhj076 Salverda AP, 2003, COGNITION, V90, P51, DOI 10.1016/S0010-0277(03)00139-2 SAWUSCH JR, 1979, PERCEPT PSYCHOPHYS, V25, P292, DOI 10.3758/BF03198808 Schroeder CE, 2003, INT J PSYCHOPHYSIOL, V50, P5, DOI 10.1016/S0167-8760(03)00120-X Scott SK, 2000, BRAIN, V123, P2400, DOI 10.1093/brain/123.12.2400 Scott SK, 2003, TRENDS NEUROSCI, V26, P100, DOI 10.1016/S0166-2236(02)00037-1 SELTZER B, 1989, J COMP NEUROL, V281, P97, DOI 10.1002/cne.902810108 SELTZER B, 1991, J COMP NEUROL, V312, P625, DOI 10.1002/cne.903120412 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Sheffert SM, 2002, J EXP PSYCHOL HUMAN, V28, P1447, DOI 10.1037//0096-1523.28.6.1447 Shoaf LC, 2002, PERCEPT PSYCHOPHYS, V64, P795, DOI 10.3758/BF03194746 Shockley K, 2004, PERCEPT PSYCHOPHYS, V66, P422, DOI 10.3758/BF03194890 Shore SE, 2006, HEARING RES, V216, P90, DOI 10.1016/j.heares.2006.01.006 THOMAS SM, 2006, BRIT SOC AUD SHORT P Uppenkamp S, 2006, NEUROIMAGE, V31, P1284, DOI 10.1016/j.neuroimage.2006.01.004 WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392 WARREN RM, 1968, PSYCHOL BULL, V70, P261, DOI 10.1037/h0026275 WARREN RM, 1958, AM J PSYCHOL, V71, P612, DOI 10.2307/1420267 Watkins K, 2004, J COGNITIVE NEUROSCI, V16, P978, DOI 10.1162/0898929041502616 Watkins KE, 2003, NEUROPSYCHOLOGIA, V41, P989, DOI 10.1016/S0028-3932(02)00316-0 WATKINS OC, 1980, J EXP PSYCHOL GEN, V109, P251, DOI 10.1037/0096-3445.109.3.251 WEILL SA, 2003, THESIS OHIO STATE U Weinberg RJ, 1997, BRAIN RES BULL, V44, P113, DOI 10.1016/S0361-9230(97)00095-6 Werker JF, 1999, ANNU REV PSYCHOL, V50, P509, DOI 10.1146/annurev.psych.50.1.509 WHALEN DH, 1987, SCIENCE, V237, P169, DOI 10.1126/science.3603014 Wilson SM, 2004, NAT NEUROSCI, V7, P701, DOI 10.1038/nn1263 Wilson SM, 2006, NEUROIMAGE, V33, P316, DOI 10.1016/j.neuroimage.2006.05.032 Winer JA, 2006, HEARING RES, V212, P1, DOI 10.1016/j.heares.2005.06.014 Wise RJS, 2001, BRAIN, V124, P83, DOI 10.1093/brain/124.1.83 Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786 Yeterian EH, 1998, J COMP NEUROL, V399, P384 NR 176 TC 106 Z9 106 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 132 EP 147 DI 10.1016/j.heares.2007.01.014 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100013 PM 17317056 ER PT J AU Palmer, AR Hall, DA Sumner, C Barrett, DJK Jones, S Nakamoto, K Moore, DR AF Palmer, A. R. Hall, D. A. Sumner, C. Barrett, D. J. K. Jones, S. Nakamoto, K. Moore, D. R. TI Some investigations into non-passive listening SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE auditory cortex; attention; corticofugal ID PRIMARY AUDITORY-CORTEX; MEDIAL GENICULATE-BODY; SINGLE-UNIT ACTIVITY; GUINEA-PIG; CORTICOFUGAL MODULATION; SELECTIVE ATTENTION; BEHAVIORAL DEPENDENCY; INFERIOR COLLICULUS; CORTICAL ACTIVATION; COCHLEAR NUCLEUS AB Our knowledge of the function of the auditory nervous system is based upon a wealth of data obtained, for the most part, in anaesthetised animals. More recently, it has been generally acknowledged that factors such as attention profoundly modulate the activity of sensory systems and this can take place at many levels of processing. Imaging studies, in particular, have revealed the greater activation of auditory areas and areas outside of sensory processing areas when attending to a stimulus. We present here a brief review of the consequences of such non-passive listening and go on to describe some of the experiments we are conducting to investigate them. In imaging studies, using fMRI, we can demonstrate the activation of attention networks that are non-specific to the sensory modality as well as greater and different activation of the areas of the supra-temporal plane that includes primary and secondary auditory areas. The profuse descending connections of the auditory system seem likely to be part of the mechanisms subserving attention to sound. These are generally thought to be largely inactivated by anaesthesia. However, we have been able to demonstrate that even in an anaesthetised preparation, removing the descending control from the cortex leads to quite profound changes in the temporal patterns of activation by sounds in thalamus and inferior colliculus. Some of these effects seem to be specific to the ear of stimulation and affect interaural processing. To bridge these observations we are developing an awake behaving preparation involving freely moving animals in which it will be possible to investigate the effects of consciousness (by contrasting awake and anaesthetized), passive and active listening. (c) 2006 Elsevier B.V. All rights reserved. C1 MRC, Inst Hearing Res, Nottingham NG7 2RD, England. RP Palmer, AR (reprint author), MRC, Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. EM arp@ihr.mrc.ac.uk CR Anderson LA, 2006, EUR J NEUROSCI, V24, P491, DOI 10.1111/j.1460-9568.2006.04930.x BENSON DA, 1978, BRAIN RES, V159, P307, DOI 10.1016/0006-8993(78)90537-1 BENSON DA, 1981, BRAIN RES, V219, P249, DOI 10.1016/0006-8993(81)90290-0 Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115 Carlyon RP, 2003, PERCEPTION, V32, P1393, DOI 10.1068/p5035 Connor CE, 1996, J NEUROPHYSIOL, V75, P1306 Cusack R, 2000, J COGNITIVE NEUROSCI, V12, P1056, DOI 10.1162/089892900563867 Degerman A, 2006, BRAIN RES, V1077, P123, DOI 10.1016/j.brainres.2006.01.025 EHRET G, 1985, SCIENCE, V227, P1245, DOI 10.1126/science.3975613 Gaese BH, 2001, J NEUROPHYSIOL, V86, P1062 Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276 Griffiths TD, 1999, NEUROIMAGE, V10, P84, DOI 10.1006/nimg.1999.0464 Griffiths TD, 2000, HUM BRAIN MAPP, V9, P72, DOI 10.1002/(SICI)1097-0193(200002)9:2<72::AID-HBM2>3.0.CO;2-9 Hall DA, 2000, HUM BRAIN MAPP, V10, P107, DOI 10.1002/1097-0193(200007)10:3<107::AID-HBM20>3.0.CO;2-8 Hart HC, 2004, HUM BRAIN MAPP, V21, P178, DOI 10.1002/hbm.10156 He JF, 2003, J NEUROPHYSIOL, V89, P367, DOI 10.1152/jn.00593.2002 He JF, 2002, J NEUROPHYSIOL, V88, P1040, DOI 10.1152/jn00014.2002 HINE JE, 1994, BEHAV NEUROSCI, V108, P196, DOI 10.1037//0735-7044.108.1.196 HOCHERMAN S, 1976, BRAIN RES, V117, P51, DOI 10.1016/0006-8993(76)90555-2 HUBEL DH, 1959, SCIENCE, V129, P1279, DOI 10.1126/science.129.3358.1279 Kacelnik O, 2006, PLOS BIOL, V4, P627, DOI 10.1371/journal.pbio.0040071 Kanwisher N, 2000, NAT REV NEUROSCI, V1, P91, DOI 10.1038/35039043 Karnath HO, 2002, NEUROPSYCHOLOGIA, V40, P1977, DOI 10.1016/S0028-3932(02)00061-1 Lomber SG, 1999, J NEUROSCI METH, V86, P109, DOI 10.1016/S0165-0270(98)00160-5 Luck SJ, 1997, J NEUROPHYSIOL, V77, P24 Ma XF, 2001, P NATL ACAD SCI USA, V98, P14060, DOI 10.1073/pnas.241517098 Macken WJ, 2003, J EXP PSYCHOL HUMAN, V29, P43, DOI 10.1037/0096-1523.29.1.43 Maeder PP, 2001, NEUROIMAGE, V14, P802, DOI 10.1006/nimg.2001.0888 MILLER JM, 1972, SCIENCE, V177, P449, DOI 10.1126/science.177.4047.449 Murphy PC, 1999, SCIENCE, V286, P1552, DOI 10.1126/science.286.5444.1552 Naatanen R., 2004, COGNITIVE NEUROSCIEN, P194 NEWSOME WT, 1989, NATURE, V341, P52, DOI 10.1038/341052a0 PFINGST BE, 1977, EXP BRAIN RES, V29, P393 Populin LC, 2005, J NEUROSCI, V25, P5903, DOI 10.1523/JNEUROSCI.1147-05.2005 Posner M. I., 2004, COGNITIVE NEUROSCIEN, P180 Pressnitzer D, 2001, J NEUROSCI, V21, P6377 Reynolds JH, 2003, NEURON, V37, P853, DOI 10.1016/S0896-6273(03)00097-7 Reynolds JH, 1999, J NEUROSCI, V19, P1736 Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3 Rutkowski RG, 2002, AUDIOL NEURO-OTOL, V7, P214, DOI 10.1159/000063738 RYAN A, 1977, J NEUROPHYSIOL, V40, P943 SALZMAN CD, 1990, NATURE, V346, P174, DOI 10.1038/346174a0 Shackleton TM, 2003, J NEUROSCI, V23, P716 Sillito AM, 2002, PHILOS T R SOC B, V357, P1739, DOI 10.1098/rstb.2002.1170 Syka J, 2005, HEARING RES, V206, P177, DOI 10.1016/j.heares.2005.01.013 Tootell RBH, 1998, NEURON, V21, P1409, DOI 10.1016/S0896-6273(00)80659-5 Wallace MN, 2005, NEUROREPORT, V16, P2001, DOI 10.1097/00001756-200512190-00006 Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Wallace MN, 1999, NEUROREPORT, V10, P2095, DOI 10.1097/00001756-199907130-00019 Wallace MN, 2005, HEARING RES, V204, P115, DOI 10.1016/j.heares.2005.01.007 Wallace MN, 2002, HEARING RES, V172, P160, DOI 10.1016/S0378-5955(02)00580-4 Wallerstein Michael, 2000, APSA CP NEWSLETTER O, V11, P1 Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 Winer JA, 2001, J COMP NEUROL, V430, P27 WINER JA, 1987, J COMP NEUROL, V257, P282, DOI 10.1002/cne.902570212 Winer JA, 2005, HEARING RES, V207, P1, DOI 10.1016/j.heares.2005.06.007 Yan J, 1996, SCIENCE, V273, P1100, DOI 10.1126/science.273.5278.1100 Zatorre RJ, 1999, NEUROIMAGE, V10, P544, DOI 10.1006/nimg.1999.0491 Zhang YF, 1997, NATURE, V387, P900 NR 61 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 148 EP 157 DI 10.1016/j.heares.2006.12.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100014 PM 17275232 ER PT J AU Irvine, DRF AF Irvine, Dexter R. F. TI Auditory cortical plasticity: Does it provide evidence for cognitive processing in the auditory cortex? SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE cholinergic modulation; classical conditioning; cochlear lesion; perceptual learning; receptive field; tonotopic organization ID PRIMARY VISUAL-CORTEX; EXPERIENCE-DEPENDENT PLASTICITY; FREQUENCY RECEPTIVE-FIELDS; INTRACOCHLEAR ELECTRICAL-STIMULATION; PRIMARY SOMATOSENSORY CORTEX; INFERIOR COLLICULUS NEURONS; PARTIAL COCHLEAR LESIONS; ADULT FLYING-FOX; CHOLINERGIC MODULATION; HEARING-LOSS AB The past 20 years have seen substantial changes in our view of the nature of the processing carried out in auditory cortex. Some processing of a cognitive nature, previously attributed to higher-order "association" areas, is now considered to take place in auditory cortex itself. One argument adduced in support of this view is the evidence indicating a remarkable degree of plasticity in the auditory cortex of adult animals. Such plasticity has been demonstrated in a wide range of paradigms, in which auditory input or the behavioural significance of particular inputs is manipulated. Changes over the same time period in our conceptualization of the receptive fields of cortical neurons, and well-established mechanisms for use-related changes in synaptic function, can account for many forms of auditory cortical plasticity. On the basis of a review of auditory cortical plasticity and its probable mechanisms, it is argued that only plasticity associated with learning tasks provides a strong case for cognitive processing in auditory cortex. Even in this case the evidence is indirect, in that it has not yet been established that the changes in auditory cortex are necessary for behavioural learning and memory. Although other lines of evidence provide convincing support for cognitive processing in auditory cortex, that provided by auditory cortical plasticity remains equivocal. (c) 2007 Elsevier B.V. All rights reserved. C1 Monash Univ, Fac Med Nursing & Hlth Sci, Sch Psychol Psychiat & Psychol Med, Clayton, Vic 3800, Australia. Bion Ear Inst, Melbourne, Vic 3002, Australia. RP Irvine, DRF (reprint author), Monash Univ, Fac Med Nursing & Hlth Sci, Sch Psychol Psychiat & Psychol Med, Clayton, Vic 3800, Australia. EM d.irvine@med.monash.edu.au RI Irvine, Dexter/F-7474-2011 CR ASHE JH, 1989, SYNAPSE, V4, P44, DOI 10.1002/syn.890040106 Atwood HL, 1999, LEARN MEMORY, V6, P542, DOI 10.1101/lm.6.6.542 Beitel RE, 2003, P NATL ACAD SCI USA, V100, P11070, DOI 10.1073/pnas.1334187100 Bi GQ, 2001, ANNU REV NEUROSCI, V24, P139, DOI 10.1146/annurev.neuro.24.1.139 Blake DT, 2002, P NATL ACAD SCI USA, V99, P10114, DOI 10.1073/pnas.092278099 Bringuier V, 1999, SCIENCE, V283, P695, DOI 10.1126/science.283.5402.695 Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056 Buonomano DV, 1998, ANNU REV NEUROSCI, V21, P149, DOI 10.1146/annurev.neuro.21.1.149 CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C CALFORD MB, 1991, J NEUROPHYSIOL, V65, P178 Calford MB, 2002, NEUROSCIENCE, V111, P709, DOI 10.1016/S0306-4522(02)00022-2 CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 CALFORD MB, 1988, NATURE, V332, P446, DOI 10.1038/332446a0 Calford MB, 2003, J NEUROSCI, V23, P6434 Crist RE, 2001, NAT NEUROSCI, V4, P519 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 Dan Y, 2006, PHYSIOL REV, V86, P1033, DOI 10.1152/physrev.00030.2005 DARIANSMITH C, 1994, NATURE, V368, P737, DOI 10.1038/368737a0 DIETRICH V, 2001, HEARING RES, V158, P1 Dinse HR, 2003, SPEECH COMMUN, V41, P201, DOI 10.1016/S0167-6393(02)00104-8 EDELINE JM, 1993, BEHAV NEUROSCI, V107, P539 Eggermont JJ, 2007, HEARING RES, V229, P69, DOI 10.1016/j.heares.2007.01.008 Engineer ND, 2004, J NEUROPHYSIOL, V92, P73, DOI 10.1152/jn.00059.2004 Foeller E, 2001, JARO, V2, P279 Fregnac Y, 1996, J PHYSIOLOGY-PARIS, V90, P189, DOI 10.1016/S0928-4257(97)81422-2 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz J, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P445 Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005 GALAMBOS R, 1955, SCIENCE, V123, P376 Gao EQ, 2000, P NATL ACAD SCI USA, V97, P8081, DOI 10.1073/pnas.97.14.8081 Ghose GM, 2002, J NEUROPHYSIOL, V87, P1867, DOI 10.1152/jn.00690.2001 Gilbert CD, 1998, PHYSIOL REV, V78, P467 GILBERT CD, 1992, NATURE, V356, P150, DOI 10.1038/356150a0 Gu Q, 2002, NEUROSCIENCE, V111, P815, DOI 10.1016/S0306-4522(02)00026-X Harrison RV, 2001, SCAND AUDIOL, V30, P8, DOI 10.1080/010503901750166529 Harrison RV, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P238 Hartmann R, 1997, HEARING RES, V112, P115, DOI 10.1016/S0378-5955(97)00114-7 HASSELMO ME, 1995, BEHAV BRAIN RES, V67, P1, DOI 10.1016/0166-4328(94)00113-T Hayes EA, 2003, CLIN NEUROPHYSIOL, V114, P673, DOI 10.1016/S1388-2457(02)00414-5 Hebb D, 1949, ORG BEHAV Hensch TK, 2004, ANNU REV NEUROSCI, V27, P549, DOI 10.1146/annurev.neuro.27.070203.144327 Irvine D, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P409 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Irvine DRF, 2003, J COMP NEUROL, V467, P354, DOI 10.1002/ene.10921 IRVINE DRF, 2005, AUDITORY SPECTRAL PR, P435 Jacquemot C, 2003, J NEUROSCI, V23, P9541 Ji WQ, 2001, J NEUROPHYSIOL, V86, P211 JULIANO SL, 1991, P NATL ACAD SCI USA, V88, P780, DOI 10.1073/pnas.88.3.780 KAAS JH, 2001, MUTABLE BRAIN, P165 Kamke MR, 2003, J COMP NEUROL, V459, P355, DOI 10.1002/cne.10586 Kamke MR, 2005, NEURON, V48, P675, DOI 10.1016/j.neuron.2005.09.014 KANO M, 1991, NEUROREPORT, V2, P77, DOI 10.1097/00001756-199102000-00003 Karni A, 1997, CURR OPIN NEUROBIOL, V7, P530, DOI 10.1016/S0959-4388(97)80033-5 Kaur S, 2004, J NEUROPHYSIOL, V91, P2551, DOI 10.1152/jn.01121.2003 Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 Kluk K, 2006, HEARING RES, V222, P1, DOI 10.1016/j.heares.2006.06.020 Kudoh M, 2004, NEUROSCI RES, V50, P113, DOI 10.1016/j.neures.2004.06.007 KUHL PK, 1992, SCIENCE, V255, P606, DOI 10.1126/science.1736364 Kuhl PK, 2000, P NATL ACAD SCI USA, V97, P11850, DOI 10.1073/pnas.97.22.11850 Ma XF, 2003, J NEUROPHYSIOL, V89, P90, DOI 10.1152/jn.00968.2001 Maldonado PE, 1996, EXP BRAIN RES, V112, P420 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 MCKAY CM, 2005, AUDITORY SPECTRAL PR, P473 MCKENNA TM, 1989, SYNAPSE, V4, P30, DOI 10.1002/syn.890040105 Merzenich MM, 1996, SCIENCE, V271, P77, DOI 10.1126/science.271.5245.77 Metherate R, 2005, HEARING RES, V206, P146, DOI 10.1016/j.heares.2005.01.014 METHERATE R, 1990, SYNAPSE, V6, P133, DOI 10.1002/syn.890060204 Moore CM, 2002, HEARING RES, V164, P82, DOI 10.1016/S0378-5955(01)00415-4 Morris JS, 1998, P ROY SOC B-BIOL SCI, V265, P649 Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340 Naatanen R, 2001, TRENDS NEUROSCI, V24, P283, DOI 10.1016/S0166-2236(00)01790-2 Naatanen R, 1997, NATURE, V385, P432, DOI 10.1038/385432a0 Nelken I, 2004, CURR OPIN NEUROBIOL, V14, P474, DOI 10.1016/j.conb.2004.06.005 Nithianantharajah J, 2006, NAT REV NEUROSCI, V7, P697, DOI 10.1038/nrn1970 Norena AJ, 2006, NAT NEUROSCI, V9, P932, DOI 10.1038/nn1720 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 Obleser J, 2006, CEREB CORTEX, V16, P1069, DOI 10.1093/cercor/bhj047 Ohl FW, 1996, EUR J NEUROSCI, V8, P1001, DOI 10.1111/j.1460-9568.1996.tb01587.x Ojima H, 2002, CEREB CORTEX, V12, P1079, DOI 10.1093/cercor/12.10.1079 Percaccio CR, 2005, J NEUROPHYSIOL, V94, P3590, DOI 10.1152/jn.00433.2005 Raggio MW, 1999, J NEUROPHYSIOL, V82, P3506 Rajan R, 1998, J COMP NEUROL, V399, P35 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Ramachandran VS, 1998, BRAIN, V121, P1603, DOI 10.1093/brain/121.9.1603 RECANZONE GH, 1993, J NEUROSCI, V13, P87 Rutkowski RG, 2005, P NATL ACAD SCI USA, V102, P13664, DOI 10.1073/pnas.0506838102 Sarter M, 2001, BRAIN RES REV, V35, P146, DOI 10.1016/S0165-0173(01)00044-3 Schmid LM, 1996, CEREB CORTEX, V6, P388, DOI 10.1093/cercor/6.3.388 Schoups A, 2001, NATURE, V412, P549, DOI 10.1038/35087601 Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X Snyder RL, 2000, HEARING RES, V147, P200, DOI 10.1016/S0378-5955(00)00132-5 Snyder RL, 2002, J NEUROPHYSIOL, V87, P434 Snyder Russell L., 1998, Society for Neuroscience Abstracts, V24, P904 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 SUTTER ML, 2005, AUDITORY SPECTRAL PR, P253 Tailby C, 2005, P NATL ACAD SCI USA, V102, P4631, DOI 10.1073/pnas.0402747102 Talwar SK, 2001, J NEUROPHYSIOL, V86, P1555 Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044 Thai-Van H, 2003, BRAIN, V126, P2235, DOI 10.1093/brain/awg228 Thiel CM, 2002, NEURON, V35, P567, DOI 10.1016/S0896-6273(02)00801-2 van Praag H, 2000, NAT REV NEUROSCI, V1, P191, DOI 10.1038/35044558 Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8 Warrier CM, 2004, EXP BRAIN RES, V157, P431, DOI 10.1007/s00221-004-1857-6 WEBSTER HH, 1991, SOMATOSENS MOT RES, V8, P327 Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 Weinberger NM, 2003, NEUROBIOL LEARN MEM, V80, P268, DOI 10.1016/S1074-7427(03)00072-8 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 WEINBERGER NM, 1995, ANNU REV NEUROSCI, V18, P129 WEINBERGER NM, 2000, PLASTICITY AUDITORY, P173 Yang TM, 2004, J NEUROSCI, V24, P1617, DOI 10.1523/JNEUROSCI.4442-03.2004 NR 113 TC 29 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 158 EP 170 DI 10.1016/j.heares.2007.01.006 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100015 PM 17303356 ER PT J AU Kilgard, MP Vazquez, JL Engineer, ND Pandya, PK AF Kilgard, M. P. Vazquez, J. L. Engineer, N. D. Pandya, P. K. TI Experience dependent plasticity alters cortical synchronization SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE synchrony; cross-correlation; sensory coding; acetylcholine; cholinergic ID PRIMARY AUDITORY-CORTEX; CAT VISUAL-CORTEX; FOREBRAIN CHOLINERGIC SYSTEM; RECEPTIVE-FIELD PROPERTIES; CROSS-CORRELATION ANALYSIS; INDUCED HEARING-LOSS; ADULT OWL MONKEYS; NUCLEUS BASALIS; OSCILLATORY RESPONSES; NEURAL ACTIVITY AB Theories of temporal coding by cortical neurons are supported by observations that individual neurons can respond to sensory stimulation with millisecond precision and that activity in large populations is often highly correlated. Synchronization is highest between neurons with overlapping receptive fields and modulated by both sensory stimulation and behavioral state. It is not yet clear whether cortical synchronization is an epiphenomenon or a critical component of efficient information transmission. Experimental manipulations that generate receptive field plasticity can be used to test the relationship between synchronization and receptive fields. Here we demonstrate that increasing receptive field size in primary auditory cortex by repeatedly pairing a train of tones with nucleus basalis (NB) stimulation increases synchronization, and decreasing receptive field size by pairing different tone frequencies with NB stimulation decreases synchronization. These observations seem to support the conclusion that neural synchronization is simply an artifact caused by common inputs. However. pairing tone trains of different carrier frequencies with NB stimulation increases receptive field size without increasing synchronization. and environmental enrichment increases synchronization without increasing receptive field size. The observation that receptive fields and synchronization can be manipulated independently suggests that common inputs are only one of many factors sharing the strength and temporal precision of cortical synchronization and supports the hypothesis that precise neural synchronization contributes to sensory information processing. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Texas, Sch Behav & Brain Sci, Richardson, TX 75083 USA. Univ Illinois, Dept Speech & Hearing Sci, Champaign, IL 61820 USA. RP Kilgard, MP (reprint author), Univ Texas, Sch Behav & Brain Sci, 2601 N Floyd Rd, Richardson, TX 75083 USA. EM kilgard@utdallas.edu CR AHISSAR E, 1992, SCIENCE, V257, P1412, DOI 10.1126/science.1529342 Alloway KD, 2002, BEHAV BRAIN RES, V135, P191, DOI 10.1016/S0166-4328(02)00165-1 Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 Bao SW, 2001, NATURE, V412, P79, DOI 10.1038/35083586 Bao SW, 2003, J NEUROSCI, V23, P10765 Bedenbaugh P, 1997, NEURAL COMPUT, V9, P1265, DOI 10.1162/neco.1997.9.6.1265 Brosch M, 2002, J NEUROPHYSIOL, V87, P2715, DOI 10.1152/jn.00583.2001 Brosch M, 1999, EUR J NEUROSCI, V11, P3517, DOI 10.1046/j.1460-9568.1999.00770.x BROSCH M, 1995, EUR J NEUROSCI, V7, P86, DOI 10.1111/j.1460-9568.1995.tb01023.x Buia C, 2006, J COMPUT NEUROSCI, V20, P247, DOI 10.1007/s10827-006-6358-0 Buzsàki G, 1989, EXS, V57, P159 Conner JM, 2003, NEURON, V38, P819, DOI 10.1016/S0896-6273(03)00288-5 Conner JM, 2005, NEURON, V46, P173, DOI 10.1016/j.neuron.2005.03.003 Crist RE, 2001, NAT NEUROSCI, V4, P519 Cruikshank SJ, 1996, J NEUROSCI, V16, P861 Dan Y, 2006, PHYSIOL REV, V86, P1033, DOI 10.1152/physrev.00030.2005 DAS A, 1995, J NEUROPHYSIOL, V74, P779 deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0 DELACOUR J, 1990, NEUROSCIENCE, V34, P1, DOI 10.1016/0306-4522(90)90299-J DINSE HR, 1993, NEUROREPORT, V5, P173, DOI 10.1097/00001756-199311180-00020 Eggermont JJ, 2000, J NEUROPHYSIOL, V83, P2708 EGGERMONT JJ, 1994, J NEUROPHYSIOL, V71, P246 Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006 ENGEL AK, 1990, EUR J NEUROSCI, V2, P588, DOI 10.1111/j.1460-9568.1990.tb00449.x Engineer ND, 2004, J NEUROPHYSIOL, V92, P73, DOI 10.1152/jn.00059.2004 Erchova IA, 2004, J NEUROSCI, V24, P5931, DOI 10.1523/JNEUROSCI.1202-04.2004 Fries P, 2001, SCIENCE, V291, P1560, DOI 10.1126/science.1055465 Fries P, 1997, P NATL ACAD SCI USA, V94, P12699, DOI 10.1073/pnas.94.23.12699 GASSANOV UG, 1985, BEHAV BRAIN RES, V15, P137, DOI 10.1016/0166-4328(85)90060-9 GRAY CM, 1989, NATURE, V338, P334, DOI 10.1038/338334a0 Ikegaya Y, 2004, SCIENCE, V304, P559, DOI 10.1126/science.1093173 JENKINS WM, 1990, J NEUROPHYSIOL, V63, P82 Johansson RS, 2004, NAT NEUROSCI, V7, P170, DOI 10.1038/nn1177 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1 Kilgard MP, 2001, J NEUROPHYSIOL, V86, P326 KONIG P, 1993, EUR J NEUROSCI, V5, P501, DOI 10.1111/j.1460-9568.1993.tb00516.x Luck SJ, 1997, J NEUROPHYSIOL, V77, P24 Maldonado PE, 1996, EXP BRAIN RES, V112, P431 MEISTER M, 1995, SCIENCE, V270, P1207, DOI 10.1126/science.270.5239.1207 MERZENICH MM, 1990, COLD SH Q B, V55, P873 METHERATE R, 1989, BRAIN RES, V480, P372, DOI 10.1016/0006-8993(89)90210-2 METHERATE R, 1992, J NEUROSCI, V12, P4701 Munk MHJ, 1996, SCIENCE, V272, P271, DOI 10.1126/science.272.5259.271 NELSON JI, 1992, VISUAL NEUROSCI, V9, P21 Neuenschwander S, 1996, NATURE, V379, P728, DOI 10.1038/379728a0 NICHOLS J, 2006, ASS RES OT ABS, P125 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Percaccio CR, 2005, J NEUROPHYSIOL, V94, P3590, DOI 10.1152/jn.00433.2005 PERKEL DH, 1967, BIOPHYS J, V7, P419 Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006 Rajan R, 2001, CEREB CORTEX, V11, P171, DOI 10.1093/cercor/11.2.171 Rasmusson DD, 2000, BEHAV BRAIN RES, V115, P205, DOI 10.1016/S0166-4328(00)00259-X RASMUSSON DD, 1994, NEUROSCIENCE, V60, P665, DOI 10.1016/0306-4522(94)90495-2 RECANZONE GH, 1993, J NEUROSCI, V13, P87 RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1031 Rodriguez R, 2004, J NEUROSCI, V24, P10369, DOI 10.1523/JNEUROSCI.1839-04.2004 ROELFSEMA PR, 1994, EUR J NEUROSCI, V6, P1645, DOI 10.1111/j.1460-9568.1994.tb00556.x SAKURAI Y, 1993, NEUROSCI LETT, V158, P181, DOI 10.1016/0304-3940(93)90259-N Salazar RF, 2004, J NEUROSCI, V24, P1627, DOI 10.1523/JNEUROSCI.3200-03.2004 Schieber MH, 2002, J NEUROSCI, V22, P5277 Schoenbaum G, 2000, J NEUROSCI, V20, P5179 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X Shadlen Michael N., 1994, Current Opinion in Neurobiology, V4, P569, DOI 10.1016/0959-4388(94)90059-0 Singer W, 1999, NEURON, V24, P49, DOI 10.1016/S0896-6273(00)80821-1 Song S, 2001, NEURON, V32, P339, DOI 10.1016/S0896-6273(01)00451-2 Steinmetz PN, 2000, NATURE, V404, P187 SWINDALE NV, 1994, EXP BRAIN RES, V99, P399 VAADIA E, 1995, NATURE, V373, P515, DOI 10.1038/373515a0 Valentine PA, 2004, CEREB CORTEX, V14, P827, DOI 10.1093/cercor/bhh041 van der Togt C, 1998, EUR J NEUROSCI, V10, P1490, DOI 10.1046/j.1460-9568.1998.00200.x WANG XQ, 1995, NATURE, V378, P71, DOI 10.1038/378071a0 Wehr M, 1996, NATURE, V384, P162, DOI 10.1038/384162a0 Weinberger NM, 2003, NEUROBIOL LEARN MEM, V80, P268, DOI 10.1016/S1074-7427(03)00072-8 Worgotter F, 1998, NATURE, V396, P165, DOI 10.1038/24157 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 NR 77 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 171 EP 179 DI 10.1016/j.heares.2007.01.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100016 PM 17317055 ER PT J AU Hromadka, T Zador, AM AF Hromadka, Tomas Zador, Anthony M. TI Toward the mechanisms of auditory attention SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE auditory cortex; attention; rat; rodent ID SPECTROTEMPORAL RECEPTIVE-FIELDS; VISUAL-ATTENTION; UNANESTHETIZED CATS; EVOKED-POTENTIALS; CORTEX; PLASTICITY; MONKEYS; TASK; EVENTS AB Since the earliest studies of auditory cortex, it has been clear that an animal's behavioral or attentional state can play a crucial role in shaping the response characteristics of single neurons. Much of what has been learned about attention has been made using human and animal models, but little is known about the cellular and synaptic mechanisms by which attentional modulation of neuronal responses occurs. The use of rodent experimental models allows us to exploit the full armamentarium of modern cellular and molecular neuroscience techniques. Here we present our program for studying auditory attention, specifically for development of rodent models of attention and finding the neural correlates of attention. (c) 2007 Elsevier B.V. All rights reserved. C1 Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. RP Zador, AM (reprint author), Cold Spring Harbor Lab, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 USA. EM zador@cshl.edu CR Anderson B W, 1980, Neurol Res, V1, P281 Asari H, 2006, J NEUROSCI, V26, P7477, DOI 10.1523/JNEUROSCI.1563-06.2006 Boyden ES, 2005, NAT NEUROSCI, V8, P1263, DOI 10.1038/nn1525 Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005 DESIMONE R, 1995, ANNU REV NEUROSCI, V18, P193, DOI 10.1146/annurev.neuro.18.1.193 EVANS EF, 1964, J PHYSIOL-LONDON, V171, P476 Felleman DJ, 1991, CEREB CORTEX, V1, P1, DOI 10.1093/cercor/1.1.1 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005 HERNANDEZPEON R, 1956, SCIENCE, V123, P331, DOI 10.1126/science.123.3191.331 HOCHERMAN S, 1976, BRAIN RES, V117, P51, DOI 10.1016/0006-8993(76)90555-2 HROMADKA T, 2004, ARO ABSTR, P79 HUBEL DH, 1959, SCIENCE, V129, P1279, DOI 10.1126/science.129.3358.1279 James W, 1890, PRINCIPLES PSYCHOL Johnson JA, 2005, CEREB CORTEX, V15, P1609, DOI 10.1093/cercor/bhi039 Miesenbock G, 2004, CURR OPIN NEUROBIOL, V14, P395, DOI 10.1016/j.conb.2004.05.004 MILLER JM, 1972, SCIENCE, V177, P449, DOI 10.1126/science.177.4047.449 Millers S. M., 2001, BRAIN MIND, V2, P119, DOI 10.1023/A:1017981619014 OATMAN LC, 1971, EXP NEUROL, V32, P341, DOI 10.1016/0014-4886(71)90003-3 OATMAN LC, 1976, EXP NEUROL, V51, P41, DOI 10.1016/0014-4886(76)90052-2 Ohki K, 2005, NATURE, V433, P597, DOI 10.1038/nature03274 PICTON TW, 1971, SCIENCE, V173, P351, DOI 10.1126/science.173.3994.351 Rumpel S, 2005, SCIENCE, V308, P83, DOI 10.1126/science.1103944 Uchida N, 2003, NAT NEUROSCI, V6, P1224, DOI 10.1038/nn1142 Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 NR 26 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 180 EP 185 DI 10.1016/j.heares.2007.01.002 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100017 PM 17307316 ER PT J AU Fritz, JB Elhilali, M David, SV Shamma, SA AF Fritz, Jonathan B. Elhilali, Mounya David, Stephen V. Shamma, Shihab A. TI Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in Al? SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE auditory cortex; receptive field; STRF; plasticity; attention; acoustic salience; ferret; Al ID PRIMARY AUDITORY-CORTEX; PRIMARY VISUAL-CORTEX; TOP-DOWN INFLUENCES; MACAQUE AREA V4; SELECTIVE ATTENTION; PHYSIOLOGICAL PLASTICITY; CORTICAL PLASTICITY; TEMPORAL PLASTICITY; PREFRONTAL CORTEX; SPATIAL ATTENTION AB Acoustic filter properties of A1 neurons can dynamically adapt to stimulus statistics, classical conditioning, instrumental learning and the changing auditory attentional focus. We have recently developed an experimental paradigm that allows us to view cortical receptive field plasticity on-line as the animal meets different behavioral challenges by attending to salient acoustic cues and changing its cortical filters to enhance performance. We propose that attention is the key trigger that initiates a cascade of events leading to the dynamic receptive field changes that we observe. In our paradigm, ferrets were initially trained, using conditioned avoidance training techniques, to discriminate between background noise stimuli (temporally orthogonal ripple combinations) and foreground tonal target stimuli. They learned to generalize the task for a wide variety of distinct background and foreground target stimuli. We recorded cortical activity in the awake behaving animal and computed on-line spectrotemporal receptive fields (STRFs) of single neurons in A1. We observed clear, predictable task-related changes in STRF shape while the animal performed spectral tasks (including single tone and multi-tone detection, and two-tone discrimination) with different tonal targets. A different set of task-related changes occurred when the animal performed temporal tasks (including gap detection and click-rate discrimination). Distinctive cortical STRF changes may constitute a "task-specific signature". These spectral and temporal changes in cortical filters occur quite rapidly, within 2 min of task onset, and fade just as quickly after task completion, or in some cases, persisted for hours. The same cell could multiplex by differentially changing its receptive field in different task conditions. On-line dynamic task-related changes, as well as persistent plastic changes, were observed at a single-unit, multi-unit and population level. Auditory attention is likely to be pivotal in mediating these task-related changes since the magnitude of STRF changes correlated with behavioral performance on tasks with novel targets. Overall, these results suggest the presence of an attention-triggered plasticity algorithm in A1 that can swiftly change STRF shape by transforming receptive fields to enhance figure/ground separation, by using a contrast matched filter to filter out the background, while simultaneously enhancing the salient acoustic target in the foreground. These results favor the view of a nimble, dynamic, attentive and adaptive brain that can quickly reshape its sensory filter properties and sensori-motor links on a moment-to-moment basis, depending upon the current challenges the animal faces. In this review, we summarize our results in the context of a broader survey of the field of auditory attention, and then consider neuronal networks that could give rise to this phenomenon of attention-driven receptive field plasticity in A1. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Maryland, Ctr Auditory & Acoust Res, College Pk, MD 20742 USA. RP Fritz, JB (reprint author), Univ Maryland, Ctr Auditory & Acoust Res, College Pk, MD 20742 USA. EM ripple@isr.umd.edu RI Elhilali, Mounya/A-3396-2010; Shamma, Shihab/F-9852-2012 OI Elhilali, Mounya/0000-0003-2597-738X; CR Ahissar M, 2001, P NATL ACAD SCI USA, V98, P11842, DOI 10.1073/pnas.221461598 Ahveninen J, 2006, P NATL ACAD SCI USA, V103, P14608, DOI 10.1073/pnas.0510480103 ALAIN C, 2006, CEREBRAL CORTEX 0605 Alho K, 2003, COGNITIVE BRAIN RES, V17, P201, DOI 10.1016/S0926-3410(03)00091-0 Shipp S, 2004, TRENDS COGN SCI, V8, P223, DOI 10.1016/j.tics.2004.03.004 ATIANI S, 2006, RAPID RECEPTIVE FIEL Awh E, 2006, TRENDS COGN SCI, V10, P124, DOI 10.1016/j.tics.2006.01.001 Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 Bao SW, 2004, NAT NEUROSCI, V7, P974, DOI 10.1038/nn1293 Barbas H, 2005, CEREB CORTEX, V15, P1356, DOI 10.1093/cercor/bhi018 Beitel RE, 2003, P NATL ACAD SCI USA, V100, P11070, DOI 10.1073/pnas.1334187100 Bellmann A, 2001, BRAIN, V124, P676, DOI 10.1093/brain/124.4.676 BENSON DA, 1978, BRAIN RES, V159, P307, DOI 10.1016/0006-8993(78)90537-1 Bidet-Caulet A, 2005, NEUROIMAGE, V28, P132, DOI 10.1016/j.neuroimage.2005.06.018 Blake DT, 2006, NEURON, V52, P371, DOI 10.1016/j.neuron.2006.08.009 Blake DT, 2002, P NATL ACAD SCI USA, V99, P10114, DOI 10.1073/pnas.092278099 Bouret S, 2004, EUR J NEUROSCI, V20, P791, DOI 10.1111/j.1460-9568.2004.03526.x Brechmann A, 2005, CEREB CORTEX, V15, P578, DOI 10.1093/cercor/bhh159 Bregman AS., 1990, AUDITORY SCENE ANAL Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005 Carlyon RP, 2004, TRENDS COGN SCI, V8, P465, DOI 10.1016/j.tics.2004.08.008 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 Clarke S, 2004, CORTEX, V40, P291, DOI 10.1016/S0010-9452(08)70124-2 Cohen Yale E, 2005, Behav Cogn Neurosci Rev, V4, P218, DOI 10.1177/1534582305285861 CONNER JM, 2003, NEURON, V38, P818 Conner CE, 1997, J NEUROSCI, V17, P3201 CRICK F, 1984, P NATL ACAD SCI-BIOL, V81, P4586, DOI 10.1073/pnas.81.14.4586 Crist RE, 2001, NAT NEUROSCI, V4, P519 Cusack R, 2004, J EXP PSYCHOL HUMAN, V30, P643, DOI 10.1037/0096-1523.30.4.643 DAS A, 1995, NATURE, V375, P780, DOI 10.1038/375780a0 Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220 DESIMONE R, 1995, ANNU REV NEUROSCI, V18, P193, DOI 10.1146/annurev.neuro.18.1.193 DIAMOND DM, 1989, BEHAV NEUROSCI, V103, P471, DOI 10.1037/0735-7044.103.3.471 Doeller CF, 2003, NEUROIMAGE, V20, P1270, DOI 10.1016/S1053-8119(03)00389-6 DUHAMEL JR, 1992, SCIENCE, V255, P90 DUQUE A, 2003, CIRCUIT BASED LOCALI EDELINE JM, 1993, BEHAV NEUROSCI, V107, P82, DOI 10.1037//0735-7044.107.1.82 EDELINE JM, 1993, BEHAV NEUROSCI, V107, P539 Edeline JM, 2003, EXP BRAIN RES, V153, P554, DOI 10.1007/s00221-003-1608-0 Edeline JM, 1999, PROG NEUROBIOL, V57, P165 Engelien A, 2000, BRAIN, V123, P532, DOI 10.1093/brain/123.3.532 Escabi MA, 2003, BIOL CYBERN, V89, P350, DOI 10.1007/S00422-003-0440-8 EVANS EF, 1964, J PHYSIOL-LONDON, V171, P476 Foxe JJ, 2005, EXP BRAIN RES, V166, P370, DOI 10.1007/s00221-005-2378-7 Frith CD, 1996, NEUROIMAGE, V4, P210, DOI 10.1006/nimg.1996.0072 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005 FRITZ JB, 2004, AUDITORY CORTEX SYNT FRITZ JB, 2004, SOC NEUR M SAN DIEG FROEMKE R, 2006, ARO M BALT Ghose GM, 2004, CURR OPIN NEUROBIOL, V14, P513, DOI 10.1016/j.conb.2004.07.003 Gilbert CD, 2001, NEURON, V31, P681, DOI 10.1016/S0896-6273(01)00424-X Golmayo L, 2003, NEUROSCIENCE, V119, P597, DOI 10.1016/S0306-4522(03)00031-9 Grady CL, 1997, NEUROREPORT, V8, P2511, DOI 10.1097/00001756-199707280-00019 GRAZIANO MSA, 1994, SCIENCE, V266, P1054, DOI 10.1126/science.7973661 Gu Q, 2002, NEUROSCIENCE, V111, P815, DOI 10.1016/S0306-4522(02)00026-X HAFTER ER, 2007, SPRINGER HDB AUDITOR Haykin S, 2005, NEURAL COMPUT, V17, P1875, DOI 10.1162/0899766054322964 Heffner H. E., 1995, METHODS COMP PSYCHOA, P79 HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177 HOCHERMAN S, 1976, BRAIN RES, V117, P51, DOI 10.1016/0006-8993(76)90555-2 HUBEL DH, 1959, SCIENCE, V129, P1279, DOI 10.1126/science.129.3358.1279 Hugdahl K, 2000, HUM BRAIN MAPP, V10, P87, DOI 10.1002/(SICI)1097-0193(200006)10:2<87::AID-HBM50>3.0.CO;2-V Hughes HC, 2001, NEUROIMAGE, V13, P1073, DOI 10.1006/nimg.2001.0766 Huntley GW, 1997, CEREB CORTEX, V7, P143, DOI 10.1093/cercor/7.2.143 Hurley LM, 2004, CURR OPIN NEUROBIOL, V14, P488, DOI 10.1016/j.conb.2004.06.007 Iriki A, 1996, NEUROREPORT, V7, P2325 Ito M, 1999, NEURON, V22, P593, DOI 10.1016/S0896-6273(00)80713-8 Jancke L, 1999, NEUROSCI LETT, V266, P125, DOI 10.1016/S0304-3940(99)00288-8 Jäncke L, 2001, Brain Res Cogn Brain Res, V12, P479 JANCKE L, 2003, BRAIN RES COGNITIVE, V58, P736 Johnson JA, 2005, CEREB CORTEX, V15, P1609, DOI 10.1093/cercor/bhi039 JOHNSON JA, 2006, NEUROIMAGE, V15, P1673 Kayser C, 2005, CURR BIOL, V15, P1943, DOI 10.1016/j.cub.2005.09.040 KILGARD M, 2002, P NATL ACAD SCI USA, V19, P2309 Kilgard MP, 2001, AUDIOL NEURO-OTOL, V6, P196, DOI 10.1159/000046832 Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729 Kilgard MP, 2002, BIOL CYBERN, V87, P333, DOI 10.1007/s00422-002-0352-z Kilgard MP, 2001, J NEUROPHYSIOL, V86, P326 Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183 KOCH C, 1985, HUM NEUROBIOL, V4, P219 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3503 KOWALSKI N, 1995, J NEUROPHYSIOL, V73, P1513 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3524 Laubach M, 2000, NATURE, V405, P567, DOI 10.1038/35014604 Li W, 2004, NAT NEUROSCI, V7, P651, DOI 10.1038/nn1255 Ma XF, 2003, J NEUROPHYSIOL, V89, P90, DOI 10.1152/jn.00968.2001 Manunta Y, 2004, J NEUROPHYSIOL, V92, P1445, DOI 10.1152/jn.00079.2004 Maravita A, 2004, TRENDS COGN SCI, V8, P79, DOI 10.1016/j.tics.2003.12.008 MARTINEZTRUJILL.J, 1999, NATURE, V399, P575 Martinez-Trujillo JC, 2002, NEURON, V35, P365 Maunsell JHR, 2006, TRENDS NEUROSCI, V29, P317, DOI 10.1016/j.tins.2006.04.001 Mazer JA, 2003, NEURON, V40, P1241, DOI 10.1016/S0896-6273(03)00764-5 McAdams CJ, 1999, J NEUROSCI, V19, P431 McAdams CJ, 2000, J NEUROPHYSIOL, V83, P1751 McAlonan K, 2006, J NEUROSCI, V26, P4444, DOI 10.1523/JNEUROSCI.5602-05.2006 Menning H, 2000, NEUROREPORT, V11, P817, DOI 10.1097/00001756-200003200-00032 Miller EK, 2001, ANNU REV NEUROSCI, V24, P167, DOI 10.1146/annurev.neuro.24.1.167 Miller EK, 2002, PHILOS T ROY SOC B, V357, P1123, DOI 10.1098/rstb.2002.1099 Miller J M, 1980, Am J Otolaryngol, V1, P119, DOI 10.1016/S0196-0709(80)80004-4 Molholm S, 2005, CEREB CORTEX, V15, P545, DOI 10.1093/cercor/bhh155 Mooney DM, 2004, P NATL ACAD SCI USA, V101, P320, DOI 10.1073/pnas.0304445101 Moore T, 2003, NATURE, V421, P370, DOI 10.1038/nature01341 MOTTER BC, 1993, J NEUROPHYSIOL, V70, P909 MOUNTCASTLE VB, 1995, CEREB CORTEX, V5, P377, DOI 10.1093/cercor/5.5.377 Naatanen R., 1992, ATTENTION BRAIN FUNC Naatanen R, 2001, TRENDS NEUROSCI, V24, P283, DOI 10.1016/S0166-2236(00)01790-2 Najemnik J, 2005, NATURE, V434, P387, DOI 10.1038/nature03390 Navalpakkam V, 2005, VISION RES, V45, P205, DOI 10.1016/j.visres.2004.07.042 Noesselt T, 2002, NEURON, V35, P575, DOI 10.1016/S0896-6273(02)00781-X OATZU GH, 2006, SOC NEUR ABSTR O'Connor DH, 2002, NAT NEUROSCI, V5, P1203, DOI 10.1038/nn957 Ohl FW, 1996, EUR J NEUROSCI, V8, P1001, DOI 10.1111/j.1460-9568.1996.tb01587.x Ohl FW, 1997, J COMP PHYSIOL A, V181, P685, DOI 10.1007/s003590050150 OPITZ B, 2005, EUROPEAN J NEUROSCIE, V32, P532 Ozaki I, 2004, CLIN NEUROPHYSIOL, V115, P1592, DOI 10.1016/j.clinph.2004.02.011 Parasuraman R, 1998, ATTENTIVE BRAIN, P3 Peers PV, 2005, CEREB CORTEX, V15, P1469, DOI 10.1093/cercor/bhi029 Perez-Gonzalez D, 2005, EUR J NEUROSCI, V22, P2879, DOI 10.1111/j.1460-9568.2005.04472.x Petkov CI, 2004, NAT NEUROSCI, V7, P658, DOI 10.1038/nn1256 PFINGST BE, 1977, EXP BRAIN RES, V29, P393 Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006 Pomplun M, 2006, VISION RES, V46, P1886, DOI 10.1016/j.visres.2005.12.003 POSNER MI, 1990, ANNU REV NEUROSCI, V13, P25, DOI 10.1146/annurev.neuro.13.1.25 Raij T, 1997, BRAIN RES, V745, P134, DOI 10.1016/S0006-8993(96)01140-7 Rama P, 2005, NEUROIMAGE, V24, P224, DOI 10.1016/j.neuroimage.2004.08.024 Rao RPN, 2002, VISION RES, V42, P1447, DOI 10.1016/S0042-6989(02)00040-8 Raz A, 2006, NAT REV NEUROSCI, V7, P367, DOI 10.1038/nrn1903 RECANZONE GH, 1993, J NEUROSCI, V13, P87 Reynolds JH, 2004, ANNU REV NEUROSCI, V27, P611, DOI 10.1146/annurev.neuro.26.041002.131039 Reynolds JH, 2000, NEURON, V26, P703, DOI 10.1016/j.neuron.2009.01.002 Rioult-Pedotti MS, 2000, SCIENCE, V290, P533, DOI 10.1126/science.290.5491.533 Rioult-Pedotti MS, 1998, NAT NEUROSCI, V1, P230, DOI 10.1038/678 Roelfsema PR, 1998, NATURE, V395, P376, DOI 10.1038/26475 SAKODA T, 2004, ACTA OTO-LARYNGOL, V553, P36 SELEZNEVA E, 2006, CURR BIOL, V16, P428 Serences JT, 2006, TRENDS COGN SCI, V10, P38, DOI 10.1016/j.tics.2005.11.008 Shomstein S, 2006, J NEUROSCI, V26, P435, DOI 10.1523/JNEUROSCI.4408-05.2006 Shomstein S, 2004, J NEUROSCI, V24, P10702, DOI 10.1523/JNEUROSCI.2939-04.2004 Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021 Sripati AP, 2006, NEURAL COMPUT, V18, P1847, DOI 10.1162/neco.2006.18.8.1847 Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9 Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 Sussman E, 2003, PSYCHON B REV, V10, P630, DOI 10.3758/BF03196525 Sussman ES, 2005, J ACOUST SOC AM, V117, P1285, DOI [10.1121/1.1854312, 10.1121/1.854312] Tolias AS, 2001, NEURON, V29, P757, DOI 10.1016/S0896-6273(01)00250-1 Treue S, 2003, CURR OPIN NEUROBIOL, V13, P428, DOI 10.1016/S0959-4388(03)00105-3 Treue S, 2001, TRENDS NEUROSCI, V24, P295, DOI 10.1016/S0166-2236(00)01814-2 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 Voisin J, 2006, J NEUROSCI, V26, P273, DOI 10.1523/JNEUROSCI.2967-05.2006 Weinberger NM, 2003, NEUROBIOL LEARN MEM, V80, P268, DOI 10.1016/S1074-7427(03)00072-8 WEINBERGER NM, 2003, SPRINGER HDB AUDITOR Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 WEINBERGER NM, 2001, MODEL SYSTEMS NEUROB WEINBERGER NM, 1987, PROG NEUROBIOL, V29, P1, DOI 10.1016/0301-0082(87)90014-1 WEINBERGER NM, 1984, BEHAV NEUROSCI, V98, P171, DOI 10.1037/0735-7044.98.2.171 WEINBERGER NW, 2007, LEARNING MEMORY 0103 Winkler I, 2003, NEUROREPORT, V14, P2053, DOI 10.1097/01.wnr.0000095496.09138.6d Winkowski DE, 2006, NATURE, V439, P336, DOI 10.1038/nature04411 Witten IB, 2006, NAT NEUROSCI, V9, P1439, DOI 10.1038/nn1781 WOLDORFF MG, 1993, P NATL ACAD SCI USA, V90, P8722, DOI 10.1073/pnas.90.18.8722 WOLFE JM, 1989, J EXP PSYCHOL HUMAN, V15, P419, DOI 10.1037/0096-1523.15.3.419 Womelsdorf T, 2006, NAT NEUROSCI, V9, P1156, DOI 10.1038/nn1748 Wright BA, 2004, PERCEPT PSYCHOPHYS, V66, P508, DOI 10.3758/BF03194897 Wrigley SN, 2004, IEEE T NEURAL NETWOR, V15, P1151, DOI 10.1109/TNN.2004.832710 YIN PB, 2007, ARO M DENV Zatorre RJ, 1999, NEUROIMAGE, V10, P544, DOI 10.1006/nimg.1999.0491 Zikopoulos B, 2006, J NEUROSCI, V26, P7348, DOI 10.1523/JNEUROSCI.5511-05.2006 NR 170 TC 75 Z9 76 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 186 EP 203 DI 10.1016/j.heares.2007.01.009 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100018 PM 17329048 ER PT J AU Russ, BE Lee, YS Cohen, YE AF Russ, Brian E. Lee, Yune-Sang Cohen, Yale E. TI Neural and behavioral correlates of auditory categorization SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE categorization; rhesus macaques; audition; prefrontal cortex ID PRIMATE PREFRONTAL CORTEX; INFERIOR TEMPORAL CORTEX; FIELD PLAYBACK EXPERIMENTS; VOICE ONSET TIME; SPEECH-PERCEPTION; RHESUS-MONKEYS; ENHANCED DISCRIMINABILITY; CATEGORICAL PERCEPTION; SEMANTIC COMMUNICATION; VISUAL CATEGORIZATION AB Goal-directed behavior is the essence of adaptation because it allows humans and other animals to respond dynamically to different environmental scenarios. Goal-directed behavior can be characterized as the formation of dynamic links between stimuli and actions. One important attribute of goal-directed behavior is that linkages can be formed based on how a stimulus is categorized. That is, links are formed based on the membership of a stimulus in a particular functional category. In this review, we review categorization with an emphasis on auditory categorization. We focus on the role of categorization in language and non-human vocalizations. We present behavioral data indicating that non-human primates categorize and respond to vocalizations based on differences in their putative meaning and not differences in their acoustics. Finally, we present evidence suggesting that the ventrolateral prefrontal cortex plays an important role in processing auditory objects and has a specific role in the representation of auditory categories. (c) 2006 Elsevier B.V. All rights reserved. C1 Dartmouth Coll, Dept Psychol & Brain Sci, Hanover, NH 03755 USA. Dartmouth Coll, Ctr Cognit Neurosci, Hanover, NH 03755 USA. RP Cohen, YE (reprint author), Dartmouth Coll, Dept Psychol & Brain Sci, Hanover, NH 03755 USA. EM yec@dartmouth.edu CR AFRAZ SR, 2006, NATURE Alain C, 2001, P NATL ACAD SCI USA, V98, P12301, DOI 10.1073/pnas.211209098 Anourova I, 2001, NEUROIMAGE, V14, P1268, DOI 10.1006/nimg.2001.0903 Asaad WF, 2000, J NEUROPHYSIOL, V84, P451 Ashby F Gregory, 2004, Behav Cogn Neurosci Rev, V3, P101, DOI 10.1177/1534582304270782 Ashby FG, 1997, CHOICE, DECISION, AND MEASUREMENT: ESSAYS IN HONOR OF R. DUNCAN LUCE, P367 Badre D, 2005, NEURON, V47, P907, DOI 10.1016/j.neuron.2005.07.023 Baumgart F, 1999, NATURE, V400, P724, DOI 10.1038/23390 Boyton R. M., 1987, COLOR RES APPL, V12, P94 Boyton R.M., 1990, VISION RES, V30, P1311 Bremmer F, 2001, NEUROIMAGE, V14, P46 Bremmer F, 2001, NEURON, V29, P287, DOI 10.1016/S0896-6273(01)00198-2 Bunge SA, 2005, J NEUROSCI, V25, P10347, DOI 10.1523/JNEUROSCI.2937-05.2005 Bunge Silvia A., 2004, Cognitive Affective & Behavioral Neuroscience, V4, P564, DOI 10.3758/CABN.4.4.564 Bushara KO, 2003, NAT NEUROSCI, V6, P190, DOI 10.1038/nn993 Bushara KO, 1999, NAT NEUROSCI, V2, P759 Calvert GA, 1997, SCIENCE, V276, P593, DOI 10.1126/science.276.5312.593 Clarke S, 2000, NEUROPSYCHOLOGIA, V38, P797, DOI 10.1016/S0028-3932(99)00141-4 Cohen Yale E, 2005, Behav Cogn Neurosci Rev, V4, P218, DOI 10.1177/1534582305285861 Cohen YE, 2004, J NEUROSCI, V24, P11307, DOI 10.1523/JNEUROSCI.3935-04.2004 Cohen YE, 2006, BIOL LETT-UK, V2, P261, DOI 10.1698/rsbl.2005.0436 Cusack R, 2000, J COGNITIVE NEUROSCI, V12, P1056, DOI 10.1162/089892900563867 DAMASIO AR, 1989, COGNITION, V33, P25, DOI 10.1016/0010-0277(89)90005-X Deouell LY, 2000, NEUROREPORT, V11, P3059, DOI 10.1097/00001756-200009110-00046 Deouell LY, 2000, AUDIOL NEURO-OTOL, V5, P225, DOI 10.1159/000013884 Devlin JT, 1998, J COGNITIVE NEUROSCI, V10, P77, DOI 10.1162/089892998563798 Doupe AJ, 1999, ANNU REV NEUROSCI, V22, P567, DOI 10.1146/annurev.neuro.22.1.567 Eckardt W, 2004, BEHAV ECOL, V15, P400, DOI 10.1093/beheco/arh032 EGGERMONT JJ, 1995, J ACOUST SOC AM, V98, P911, DOI 10.1121/1.413517 EIMAS PD, 1971, SCIENCE, V171, P303, DOI 10.1126/science.171.3968.303 Fabre-Thorpe M, 1998, NEUROREPORT, V9, P303, DOI 10.1097/00001756-199801260-00023 FERRERA VP, 1992, NATURE, V358, P756, DOI 10.1038/358756a0 FERRERA VP, 1994, J NEUROSCI, V14, P6171 Freedman DJ, 2001, SCIENCE, V291, P312, DOI 10.1126/science.291.5502.312 Freedman DJ, 2003, J NEUROSCI, V23, P5235 Freedman DJ, 2002, J NEUROPHYSIOL, V88, P929, DOI 10.1152/jn.00040.2002 GALABURDA A, 1980, J COMP NEUROL, V190, P597, DOI 10.1002/cne.901900312 Gauthier I, 1999, NAT NEUROSCI, V2, P568, DOI 10.1038/9224 Ghazanfar AA, 2003, NATURE, V423, P937, DOI 10.1038/423937a Ghazanfar AA, 2006, TRENDS COGN SCI, V10, P278, DOI 10.1016/j.tics.2006.04.008 Ghazanfar AA, 2005, J NEUROSCI, V25, P5004, DOI 10.1523/JNEUROSCI.0799-05.2005 Gifford GW, 2003, BRAIN BEHAV EVOLUT, V61, P213, DOI 10.1159/000070704 Gifford GW, 2005, J COGNITIVE NEUROSCI, V17, P1471, DOI 10.1162/0898929054985464 Gifford GW, 2005, EXP BRAIN RES, V162, P509, DOI 10.1007/s00221-005-2220-2 GOUZOULES S, 1984, ANIM BEHAV, V32, P182, DOI 10.1016/S0003-3472(84)80336-X Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276 Grinband J, 2006, NEURON, V49, P757, DOI 10.1016/j.neuron.2006.01.032 Guenther FH, 2004, J SPEECH LANG HEAR R, V47, P46, DOI 10.1044/1092-4388(2004/005) Hackett TA, 1999, BRAIN RES, V817, P45, DOI 10.1016/S0006-8993(98)01182-2 Hart HC, 2004, HUM BRAIN MAPP, V21, P178, DOI 10.1002/hbm.10156 HAUSER MD, 1993, BEHAV ECOL, V4, P194, DOI 10.1093/beheco/4.3.194 HAUSER MD, 1993, BEHAV ECOL, V4 Hauser MD, 1998, ANIM BEHAV, V55, P1647, DOI 10.1006/anbe.1997.0712 Hauser MD, 2001, ANIM BEHAV, V61, P391, DOI 10.1006/anbe.2000.1588 HINDE R. A., 1962, PROC ZOOL SOC LONDON, V138, P1 Holt LL, 2006, J ACOUST SOC AM, V119, P4016, DOI 10.1121/1.2195119 Hung CP, 2005, SCIENCE, V310, P863, DOI 10.1126/science.1117593 HUSAIN FT, 2005, HUM BRAIN MAPP Kreiman G, 2006, NEURON, V49, P433, DOI 10.1016/j.neuron.2005.12.019 KUHL PK, 1982, PERCEPT PSYCHOPHYS, V32, P542, DOI 10.3758/BF03204208 KUHL PK, 1975, SCIENCE, V190, P69, DOI 10.1126/science.1166301 KUHL PK, 1983, J ACOUST SOC AM, V73, P1003, DOI 10.1121/1.389148 KUHL PK, 1978, J ACOUST SOC AM, V63, P905, DOI 10.1121/1.381770 LASKY RE, 1975, J EXP CHILD PSYCHOL, V20, P215, DOI 10.1016/0022-0965(75)90099-5 Liberman A. M., 1967, PSYCHOL REV, V5, P552, DOI 10.1037/h0020279 Lotto AJ, 1997, J ACOUST SOC AM, V102, P1134, DOI 10.1121/1.419865 Lotto AJ, 1998, PERCEPT PSYCHOPHYS, V60, P602, DOI 10.3758/BF03206049 Macnamara J, 1982, NAMES THINGS STUDY H MacNamara J., 1999, REARVIEW MIRROR HIST Maeda H, 2000, EYE, V14, P802 Maestripieri D., 1997, EVOL COMMUN, V1, P193, DOI [10.1075/eoc.1.2.03mae, DOI 10.1075/EOC.1.2.03MAE] MANN VA, 1980, PERCEPT PSYCHOPHYS, V28, P407, DOI 10.3758/BF03204884 Marschark M, 2004, AM ANN DEAF, V149, P51, DOI 10.1353/aad.2004.0013 MARTIN A, 2002, NEW COGNITIVE NEUOSC Matsumoto N, 2005, NEUROREPORT, V16, P1707, DOI 10.1097/01.wnr.0000181579.11012.63 MCGURK H, 1976, NATURE, V264, P746, DOI 10.1038/264746a0 MENDELSON JR, 1992, EXP BRAIN RES, V91, P435 MIDDLEBROOKS JC, 1980, BRAIN RES, V181, P31, DOI 10.1016/0006-8993(80)91257-3 Miller EK, 2002, PHILOS T ROY SOC B, V357, P1123, DOI 10.1098/rstb.2002.1099 Miller EK, 2000, NAT REV NEUROSCI, V1, P59, DOI 10.1038/35036228 Miller EK, 2003, CURR OPIN NEUROBIOL, V13, P198, DOI 10.1016/S0959-4388(03)00037-0 MIYAWAKI K, 1975, PERCEPT PSYCHOPHYS, V18, P331, DOI 10.3758/BF03211209 Muhammad R, 2006, J COGNITIVE NEUROSCI, V18, P974, DOI 10.1162/jocn.2006.18.6.974 Naatanen R., 1996, AHHDVANCES PSYCHOL S, V2, P145 Nelken I, 2003, BIOL CYBERN, V89, P397, DOI 10.1007/s00422-003-0445-3 Nieder A, 2002, SCIENCE, V297, P1708, DOI 10.1126/science.1072493 Ohl FW, 2001, NATURE, V412, P733, DOI 10.1038/35089076 Orlov T, 2000, NATURE, V404, P77 Pandya D. N., 1987, FRONTAL LOBES REVISI, P41 Partan S, 1999, SCIENCE, V283, P1272, DOI 10.1126/science.283.5406.1272 PARTAN S, 2002, BEHAVIOUR, P139 Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7 Poeppel D, 2004, NEUROPSYCHOLOGIA, V42, P183, DOI 10.1016/j.neuropsychologia.2003.07.010 Prasada S, 2000, TRENDS COGN SCI, V4, P66, DOI 10.1016/S1364-6613(99)01429-1 Rama P, 2004, CEREB CORTEX, V14, P768, DOI 10.1093/cercor/bhh037 Rao SC, 1997, SCIENCE, V276, P821, DOI 10.1126/science.276.5313.821 Rauschecker JP, 1998, AUDIOL NEURO-OTOL, V3, P86, DOI 10.1159/000013784 Recanzone GH, 1998, P NATL ACAD SCI USA, V95, P869, DOI 10.1073/pnas.95.3.869 RECANZONE GH, 1993, J NEUROSCI, V13, P87 Rivier F, 1997, NEUROIMAGE, V6, P288, DOI 10.1006/nimg.1997.0304 Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056 Romanski LM, 1999, J COMP NEUROL, V403, P141, DOI 10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V ROSCH E, 1976, COGNITIVE PSYCHOL, V8, P382, DOI 10.1016/0010-0285(76)90013-X SANDELL JH, 1979, J COMP PHYSIOL PSYCH, V93, P626, DOI 10.1037/h0077594 Scott SK, 2000, BRAIN, V123, P2400, DOI 10.1093/brain/123.12.2400 Sereno AB, 1998, NATURE, V395, P500, DOI 10.1038/26752 SEYFARTH RM, 1980, SCIENCE, V210, P801, DOI 10.1126/science.7433999 SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367 SHEPARD RN, 1987, SCIENCE, V237, P1317, DOI 10.1126/science.3629243 SMITH EE, 1974, PSYCHOL REV, V81, P214, DOI 10.1037/h0036351 Spence KW, 1937, PSYCHOL REV, V44, P430, DOI 10.1037/h0062885 Stein B. E., 1993, MERGING SENSES STEINSCHNEIDER M, 1994, ELECTROEN CLIN NEURO, V92, P30, DOI 10.1016/0168-5597(94)90005-1 STREETER LA, 1976, NATURE, V259, P39, DOI 10.1038/259039a0 SUMBY WH, 1954, J ACOUST SOC AM, V26, P212, DOI 10.1121/1.1907309 Tardif E, 2001, EUR J NEUROSCI, V13, P1045, DOI 10.1046/j.0953-816x.2001.01456.x Theunissen FE, 2004, ANN NY ACAD SCI, V1016, P222, DOI 10.1196/annals.1298.023 Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911 Toth LJ, 2002, NATURE, V415, P165, DOI 10.1038/415165a Ungerleider L. G., 1982, ANAL VISUAL BEHAV van HOOFF J. A. R. A. M., 1962, SYMPOSIA ZOOL SOC LONDON, V8, P97 VERNSEL H, 1995, AUDIT NEUROSCI, V1 Vogels R, 1999, EUR J NEUROSCI, V11, P1223, DOI 10.1046/j.1460-9568.1999.00530.x Vouloumanos A, 2001, J COGNITIVE NEUROSCI, V13, P994, DOI 10.1162/089892901753165890 Warren JD, 2003, J NEUROSCI, V23, P5799 Warren JD, 2002, NEURON, V34, P139, DOI 10.1016/S0896-6273(02)00637-2 Wyttenbach RA, 1996, SCIENCE, V273, P1542, DOI 10.1126/science.273.5281.1542 ZATORRE RJ, 1992, SCIENCE, V256, P846, DOI 10.1126/science.1589767 Zuberbuhler K, 2000, COGNITION, V76, P195, DOI 10.1016/S0010-0277(00)00079-2 Zuberbuhler K, 2000, P ROY SOC B-BIOL SCI, V267, P713, DOI 10.1098/rspb.2000.1061 Zuberbuhler K, 1997, ANIM BEHAV, V53, P589, DOI 10.1006/anbe.1996.0334 NR 131 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 204 EP 212 DI 10.1016/j.heares.2006.10.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100019 PM 17208397 ER PT J AU Scheich, H Brechmann, A Brosch, M Budinger, E Ohl, FW AF Scheich, Henning Brechmann, Andre Brosch, Michael Budinger, Eike Ohl, Frank W. TI The cognitive auditory cortex: Task-specificity of stimulus representations SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC Inst Hearing Res DE anatomy; behaviour; categorization; discrimination; functional magnetic resonance imaging ID GERBIL MERIONES-UNGUICULATUS; FREQUENCY-MODULATED TONES; SHORT-TERM MEMORY; MONGOLIAN GERBIL; WORKING-MEMORY; FUNCTIONAL-ORGANIZATION; VISUAL-CORTEX; SENSORY SYSTEMS; CONNECTIONS; NEOCORTEX AB Auditory cortex (AC), like subcortical auditory nuclei, represents properties of auditory stimuli by spatiotemporal activation patterns across neurons. A tacit assumption of AC research has been that the multiplicity of functional maps in primary and secondary areas serves a refined continuation of subcortical stimulus processing, i.e. a parallel orderly analysis of distinct properties of a complex sound. This view. which was mainly derived from exposure to parametric sound variation, may not fully capture the essence of cortical processing. Neocortex, in spite of its parcellation into diverse sensory, motor, associative, and cognitive areas, exhibits a rather stereotyped local architecture. The columnar arrangement of the neocortex and the quantitatively dominant connectivity with numerous other cortical areas are two of its key Features. This suggests that cortex has a rather common function which lies beyond those usually leading to the distinction of functional areas. We propose that task-relatedness of the way, how any information can be represented in cortex, is one general consequence of the architecture and corticocortical connectivity. Specifically, this hypothesis predicts different spatiotemporal representations of auditory stimuli when concepts and strategies how these stimuli are analysed do change. We will describe, in an exemplary fashion, cortical patterns of local field potentials in gerbil, of unit spiking activity in monkey, and of fMRI signals in human AC during the execution of different tasks mainly in the realm of category formation of sounds. We demonstrate that the representations reflect context- and memory-related. conceptual and executional aspects of a task and that they can predict the behavioural outcome. (c) 2007 Elsevier B.V. All rights reserved. C1 Leibniz Inst Neurobiol, Dept Auditory Learning & Speech, D-39118 Magdeburg, Germany. Leibniz Inst Neurobiol, Special Lab Noninvas Brain Imaging, D-39118 Magdeburg, Germany. Univ Magdeburg, Neurol Clin 2, D-39120 Magdeburg, Germany. Univ Magdeburg, Inst Biol, D-39106 Magdeburg, Germany. Leibniz Inst Neurobiol, Res Grp Neuroprosthet, D-39118 Magdeburg, Germany. RP Budinger, E (reprint author), Leibniz Inst Neurobiol, Dept Auditory Learning & Speech, Brenneckestr 6, D-39118 Magdeburg, Germany. EM scheich@ifn-magdeburg.de; brechmann@ifn-magdeburg.de; brosch@ifn-magdeburg.de; budinger@ifn-magdeburg.de; frank.ohl@ifn-magdeburg.de CR Bannister AP, 2005, NEUROSCI RES, V53, P95, DOI 10.1016/j.neures.2005.06.019 Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004 Baumgart F, 1999, NATURE, V400, P724, DOI 10.1038/23390 Brass M, 2004, J NEUROSCI, V24, P8847, DOI 10.1523/JNEUROSCI.2513-04.2004 Brechmann A, 2002, J NEUROPHYSIOL, V87, P423 Brechmann A, 2005, CEREB CORTEX, V15, P578, DOI 10.1093/cercor/bhh159 Brechmann A, 2007, CEREB CORTEX, V17, P2544, DOI 10.1093/cercor/bhl160 Brosch M, 2004, COGNITION, V91, P259, DOI 10.1016/j.cognition.2003.09.005 Brosch M, 1999, J NEUROPHYSIOL, V82, P1542 Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005 Budinger E, 2006, NEUROSCIENCE, V143, P1065, DOI 10.1016/j.neuroscience.2006.08.035 Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x Budinger E, 2000, EUR J NEUROSCI, V12, P2452, DOI 10.1046/j.1460-9568.2000.00143.x BUDINGER E, 2005, LISTENING SPEECH, P91 Buxhoeveden DP, 2002, BRAIN, V125, P935, DOI 10.1093/brain/awf110 Cahill L, 1996, NEUROBIOL LEARN MEM, V65, P213, DOI 10.1006/nlme.1996.0026 Constantinidis Christos, 2004, Cognitive Affective & Behavioral Neuroscience, V4, P444, DOI 10.3758/CABN.4.4.444 Creutzfeld OD, 1983, CORTEX CEREBRI CREUTZFELDT OD, 1977, EXP BRAIN RES, V27, P419 Deike S, 2004, NEUROREPORT, V15, P1511, DOI 10.1097/01.wnr.0000132919.12990.34 DOUGLAS RJ, 1994, EXP BR RES, V24, P131 DOWLING WJ, 1978, PSYCHOL REV, V85, P341, DOI 10.1037/0033-295X.85.4.341 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 Felleman DJ, 1991, CEREB CORTEX, V1, P1, DOI 10.1093/cercor/1.1.1 Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 FUSTER JM, 1971, SCIENCE, V173, P652, DOI 10.1126/science.173.3997.652 Gaschler-Markefski B, 1998, NEURAL PLAST, V6, P69, DOI 10.1155/NP.1998.69 GATTER KC, 1978, BRAIN, V101, P513, DOI 10.1093/brain/101.3.513 Ghazanfar AA, 2006, TRENDS COGN SCI, V10, P278, DOI 10.1016/j.tics.2006.04.008 Goldschmidt J, 2004, NEUROIMAGE, V23, P638, DOI 10.1016/j.neuroimage.2004.05.023 GOTTLIEB Y, 1989, EXP BRAIN RES, V74, P139 Halpern AR, 1999, CEREB CORTEX, V9, P697, DOI 10.1093/cercor/9.7.697 HUBEL DH, 1977, PROC R SOC SER B-BIO, V198, P1, DOI 10.1098/rspb.1977.0085 Hutsler J, 2003, TRENDS NEUROSCI, V26, P429, DOI 10.1016/S0166-2236(03)00198-X Irvine DRF, 2005, INT REV NEUROBIOL, V70, P435, DOI 10.1016/S0074-7742(05)70013-1 Jerison H. J., 1973, EVOLUTION BRAIN INTE Konig R, 2005, AUDITORY CORTEX SYNT Logothetis NK, 2001, NATURE, V412, P150, DOI 10.1038/35084005 Martin KAC, 2002, CURR OPIN NEUROBIOL, V12, P418, DOI 10.1016/S0959-4388(02)00343-4 Metherate R, 2005, HEARING RES, V206, P146, DOI 10.1016/j.heares.2005.01.014 Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7 Mountcastle VB, 1997, BRAIN, V120, P701, DOI 10.1093/brain/120.4.701 Ohl FW, 1996, EUR J NEUROSCI, V8, P1001, DOI 10.1111/j.1460-9568.1996.tb01587.x Ohl FW, 2001, NATURE, V412, P733, DOI 10.1038/35089076 Ohl FW, 1997, J COMP PHYSIOL A, V181, P685, DOI 10.1007/s003590050150 Ohl FW, 2005, CURR OPIN NEUROBIOL, V15, P470, DOI 10.1016/j.conb.2005.07.002 Ohl FW, 1999, LEARN MEMORY, V6, P347 OHL FW, 2004, NATURE REV NEUROSCI, DOI DOI 10.1038/NRN1366-C1 Passingham D, 2004, CURR OPIN NEUROBIOL, V14, P163, DOI 10.1016/j.conb.2004.03.003 Pasternak T, 2005, NAT REV NEUROSCI, V6, P97, DOI 10.1038/nrn1603 Rakic P, 2002, PROG BRAIN RES, V136, P265 Ranganath C, 2005, CURR OPIN NEUROBIOL, V15, P175, DOI 10.1016/j.conb.2005.03.017 ROCKEL AJ, 1980, BRAIN, V103, P221, DOI 10.1093/brain/103.2.221 ROUILLER EM, 1991, EXP BRAIN RES, V86, P483 SAKURAI Y, 1994, J NEUROSCI, V14, P2606 Scheich H, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P383 Scheich H, 1998, EUR J NEUROSCI, V10, P803, DOI 10.1046/j.1460-9568.1998.00086.x SCHEICH H, 1993, EUR J NEUROSCI, V5, P898, DOI 10.1111/j.1460-9568.1993.tb00941.x SCHEICH H, 1994, EXP BR RES, V24, P252 Selezneva E, 2006, CURR BIOL, V16, P2428, DOI 10.1016/j.cub.2006.10.027 Silberberg G, 2002, TRENDS NEUROSCI, V25, P227, DOI 10.1016/S0166-2236(02)02151-3 Stark H, 2004, NEUROSCIENCE, V126, P21, DOI 10.1016/j.neuroscience.2004.02.026 Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 Swadlow HA, 2002, J NEUROSCI, V22, P7766 SWETS JA, 1961, PSYCHOL REV, V68, P301, DOI 10.1037/0033-295X.68.5.301 SZENTAGOTHAI J, 1978, PROC R SOC SER B-BIO, V201, P219, DOI 10.1098/rspb.1978.0043 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 Wetzel W, 1998, NEUROSCI LETT, V252, P115, DOI 10.1016/S0304-3940(98)00561-8 Winer JA, 2005, TRENDS NEUROSCI, V28, P255, DOI 10.1016/j.tins.2005.03.009 Winer JA, 2007, HEARING RES, V229, P3, DOI 10.1016/j.heares.2007.01.017 Winer JA, 1992, MAMMALIAN AUDITORY P, P222 Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7 NR 72 TC 48 Z9 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 213 EP 224 DI 10.1016/j.heares.2007.01.025 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100020 PM 17368987 ER PT J AU Alain, C AF Alain, Claude TI Breaking the wave: Effects of attention and learning on concurrent sound perception SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Auditory Cortex - Listening Brain CY SEP, 2006 CL Nottingham, ENGLAND SP MIC inst Hearing Res DE streaming; speech; ERP; attention; auditory; perception ID AUDITORY SCENE ANALYSIS; STARLINGS STURNUS-VULGARIS; RECEPTIVE-FIELD PLASTICITY; AGE-RELATED-CHANGES; ADULT OWL MONKEYS; VOWEL SEGREGATION; COMPLEX TONES; FUNDAMENTAL FREQUENCIES; HARMONIC COMPLEXES; STREAM SEGREGATION AB The auditory surrounding is often complex with many sound sources active simultaneously. Yet listeners are proficient in breaking apart the composite acoustic wave reaching the ears. This achievement is thought to be the result of bottom-up as well as top-down processes that reflect listeners' experience and knowledge of the auditory environment. Here, specific findings concerning the role of bottom-up and top-down (schema-driven) processes on concurrent sound perception are reviewed, with particular emphasis on studies that have used scalp recording of event-related brain potentials. Findings from several studies indicate that frequency periodicity, upon which Concurrent sound perception partly depends, is quickly and automatically registered in primary auditory cortex. Moreover, success in identifying concurrent vowels is accompanied by enhanced neural activity, as revealed by functional magnetic resonance imaging, in thalamus, primary auditory cortex and planum temporale. Lastly, listeners' ability to segregate concurrent vowels improves with training and these neuroplastic changes occur rapidly, demonstrating the flexibility of human speech segregation mechanisms. Together. these studies suggest that the primary auditory cortex and the planum temporale play an important role in concurrent sound perception, and reveal a link between thalamo-cortical activation and the successful separation and identification of speech sounds presented simultaneously. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Toronto, Dept Psychol, Baycrest Ctr Geriatr Care, Rotman Res Inst, Toronto, ON M6A 2E1, Canada. RP Alain, C (reprint author), Univ Toronto, Dept Psychol, Baycrest Ctr Geriatr Care, Rotman Res Inst, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada. EM calain@rotman-baycrest.on.ca CR Alain C, 2006, CEREB CORTEX Alain C, 2001, J ACOUST SOC AM, V109, P2211, DOI 10.1121/1.1367243 Alain C, 2005, J COGNITIVE NEUROSCI, V17, P811, DOI 10.1162/0898929053747621 Alain C, 2001, J EXP PSYCHOL HUMAN, V27, P1072, DOI 10.1037//0096-1523.27.5.1072 Alain C, 2003, J COGNITIVE NEUROSCI, V15, P1063, DOI 10.1162/089892903770007443 Alain C, 2005, NEUROIMAGE, V26, P592, DOI 10.1016/j.neuroimage.2005.02.006 Alain C, 2002, J ACOUST SOC AM, V111, P990, DOI 10.1121/1.1434942 ASSMANN PF, 1990, J ACOUST SOC AM, V88, P680, DOI 10.1121/1.399772 ASSMANN PF, 1994, J ACOUST SOC AM, V95, P471, DOI 10.1121/1.408342 Atienza M, 2002, LEARN MEMORY, V9, P138, DOI 10.1101/lm.46502 Bakin JS, 1996, BEHAV NEUROSCI, V110, P905 Belin P, 1999, NEUROIMAGE, V10, P417, DOI 10.1006/nimg.1999.0480 Bosnyak DJ, 2004, CEREB CORTEX, V14, P1088, DOI 10.1093/cercor/bhh068 Brattico E, 2003, NEUROREPORT, V14, P2489, DOI 10.1097/01.wnr.0000098748.87269.al Bregman AS., 1990, AUDITORY SCENE ANAL Brunstrom JM, 1998, J ACOUST SOC AM, V104, P3511, DOI 10.1121/1.423934 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 CHALIKIA MH, 1989, PERCEPT PSYCHOPHYS, V46, P487, DOI 10.3758/BF03210865 CHALIKIA MH, 1993, PERCEPT PSYCHOPHYS, V53, P125, DOI 10.3758/BF03211722 Clarke CM, 2004, J ACOUST SOC AM, V116, P3647, DOI 10.1121/1.1815131 de Cheveigne A, 1999, J ACOUST SOC AM, V106, P327, DOI 10.1121/1.427059 DUIFHUIS H, 1982, J ACOUST SOC AM, V71, P1568, DOI 10.1121/1.387811 Dyson BJ, 2005, COGN AFFECT BEHAV NE, V5, P319, DOI 10.3758/CABN.5.3.319 Dyson BJ, 2004, J ACOUST SOC AM, V115, P280, DOI 10.1121/1.1631945 EDELINE JM, 1993, BEHAV NEUROSCI, V107, P539 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Gottselig JM, 2004, LEARN MEMORY, V11, P162, DOI 10.1101/lm.63304 Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N HARTMANN WM, 1990, J ACOUST SOC AM, V88, P1712, DOI 10.1121/1.400246 Hautus MJ, 2005, J ACOUST SOC AM, V117, P275, DOI 10.1121/1.1828499 HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177 Hulse SH, 1997, J COMP PSYCHOL, V111, P3, DOI 10.1037/0735-7036.111.1.3 Izumi A, 2003, HEARING RES, V175, P75, DOI 10.1016/S0378-5955(02)00712-8 Izumi A, 2002, COGNITION, V82, pB113, DOI 10.1016/S0010-0277(01)00161-5 Johnson BW, 2003, CLIN NEUROPHYSIOL, V114, P2245, DOI 10.1016/S1388-2457(03)00247-5 KOFKKA K, 1937, PRINCIPLES GESTALT P Lin JY, 1998, J ACOUST SOC AM, V103, P2608, DOI 10.1121/1.422781 MacDougall-Shackleton SA, 1998, J ACOUST SOC AM, V103, P3581, DOI 10.1121/1.423063 McAdams S, 1997, J ACOUST SOC AM, V102, P2945, DOI 10.1121/1.420349 McDonald KL, 2005, J ACOUST SOC AM, V118, P1593, DOI 10.1121/1.2000747 Menning H, 2000, NEUROREPORT, V11, P817, DOI 10.1097/00001756-200003200-00032 MOORE BCJ, 1986, J ACOUST SOC AM, V80, P479, DOI 10.1121/1.394043 OGAWA S, 1990, P NATL ACAD SCI USA, V87, P9868, DOI 10.1073/pnas.87.24.9868 Ohl FW, 1997, P NATL ACAD SCI USA, V94, P9440, DOI 10.1073/pnas.94.17.9440 PALMER AR, 1990, J ACOUST SOC AM, V88, P1412, DOI 10.1121/1.400329 Pettigrew Catharine M, 2004, J Am Acad Audiol, V15, P469, DOI 10.3766/jaaa.15.7.2 PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 Picton TW, 1999, AUDIOL NEURO-OTOL, V4, P64, DOI 10.1159/000013823 RECANZONE GH, 1993, J NEUROSCI, V13, P87 RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1015 Reinke KS, 2003, COGNITIVE BRAIN RES, V17, P781, DOI 10.1016/S0926-6410(03)00202-7 RITTER W, 1979, SCIENCE, V203, P1358, DOI 10.1126/science.424760 RITTER W, 1982, SCIENCE, V218, P909, DOI 10.1126/science.7134983 Roberts B, 1998, J ACOUST SOC AM, V104, P2326, DOI 10.1121/1.423771 Rutkowski RG, 2005, P NATL ACAD SCI USA, V102, P13664, DOI 10.1073/pnas.0506838102 SCHEFFERS MTM, 1983, J ACOUST SOC AM, V74, P1716, DOI 10.1121/1.390280 SCHERG M, 1989, AUDITORY EVOKED MAGN, P40 Shahin A, 2003, J NEUROSCI, V23, P5545 Snyder JS, 2005, COGNITIVE BRAIN RES, V24, P492, DOI 10.1016/j.cogbrainres.2005.03.002 Szpunar KK, 2004, J EXP PSYCHOL LEARN, V30, P370, DOI 10.1037/0278-7393.30.2.370 TREISMAN AM, 1980, COGNITIVE PSYCHOL, V12, P97, DOI 10.1016/0010-0285(80)90005-5 Tremblay K, 1997, J ACOUST SOC AM, V102, P3762, DOI 10.1121/1.420139 Tremblay K, 2001, EAR HEARING, V22, P79, DOI 10.1097/00003446-200104000-00001 Woods D L, 1995, Electroencephalogr Clin Neurophysiol Suppl, V44, P102 Yonan CA, 2000, PSYCHOL AGING, V15, P88, DOI 10.1037//0882-7974.15.1.88 NR 66 TC 50 Z9 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2007 VL 229 IS 1-2 BP 225 EP + DI 10.1016/j.heares.2007.01.011 PG 48 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 191PI UT WOS:000248143100021 PM 17303355 ER EF