FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Patuzzi, RB O'Beirne, GA AF Patuzzi, RB O'Beirne, GA TI Boltzmann analysis of CM waveforms using virtual instrument software SO HEARING RESEARCH LA English DT Article DE cochlear microphonic; Boltzmann function; virtual instrument analysis ID GUINEA-PIG; TRANSDUCTION AB We describe a modification to our technique for the rapid analysis of low-frequency cochlear microphonic (CM) waveforms in the basal turn of the guinea pig cochlea (Patuzzi and Moleirinho, 1998). The transfer curve relating instantaneous sound pressure in the ear canal to instantaneous receptor current through the outer hair cells (OHCs) is determined from the distorted microphonic waveform generated in the extracellular fluid near the hair cells, assuming a first-order Boltzmann activation curve. Previously, the analysis was done in real time using custom-built electronic circuitry. Here, the same task is performed numerically using virtual instrument software (National Instruments LabVIEW 4.1) running on a personal computer. The assumed theoretical function describing the CM waveform is V-cm = V-off + V-sat/{1 +exp[(E-o+Z.P-o.sin(2 pi(f)+(tot))}/kT]}, where the six parameters are (i) a DC offset voltage (V-off); (ii) the frequency of the sinusoidal stimulus (f); (iii) the phase of the sinusoidal stimulus (Z); (iv) the maximal amplitude of the distorted microphonic signal (V-sat); (v) the sensitivity of the transduction process (Z); and (vi) the operating point on the sigmoidal transfer curve (E-o). The software obtains the least-squares fit to the CM waveforms by continuously deriving the six parameters at a speed of about one determination per second. The independent fitting of the frequency and phase allows the data to be analysed off-line from data previously recorded to tape (i.e. the frequency and phase of the microphonic response need not be known accurately beforehand). We present here an outline of the software we have used, and give an example of the changes which can be monitored using the technique (transient asphyxia). The method's advantages and limitations have been discussed in our previous paper. The virtual instrument described here is available from the authors on request. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6907, Australia. RP Patuzzi, RB (reprint author), Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6907, Australia. RI O'Beirne, Greg/I-3838-2012 OI O'Beirne, Greg/0000-0002-3545-4630 CR HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 Kirk DL, 1997, HEARING RES, V112, P69, DOI 10.1016/S0378-5955(97)00104-4 Kros CJ, 1996, COCHLEA, P318 Levenberg K., 1944, Quarterly of Applied Mathematics, V2 MARQUARDT DW, 1963, J SOC IND APPL MATH, V11, P431 *NAT INSTR, 1996, LABVIEW AN 6 REF MAN, P17 Patuzzi R, 1998, HEARING RES, V125, P1, DOI 10.1016/S0378-5955(98)00125-7 PATUZZI R, 1990, HEARING RES, V45, P15, DOI 10.1016/0378-5955(90)90179-S PATUZZI RB, 1995, ACTIVE HEARING, P141 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 NR 10 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1999 VL 133 IS 1-2 BP 155 EP 159 DI 10.1016/S0378-5955(99)00067-2 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 212PN UT WOS:000081225600016 PM 10416874 ER PT J AU Mountain, DC Cody, AR AF Mountain, DC Cody, AR TI Multiple modes of inner hair cell stimulation SO HEARING RESEARCH LA English DT Article DE cochlea; hair cell; electromotility; micromechanics; computational model ID GUINEA-PIG COCHLEA; BASILAR-MEMBRANE; MECHANICAL RESPONSES; RECEPTOR POTENTIALS; TECTORIAL MEMBRANE; ORGAN; CORTI; STIFFNESS; TONES; CURRENTS AB Most current theories of cochlear mechanics assume that the pattern of cochlear partition vibration is simple, similar to that of a bending beam. Recent evidence suggests, however, that the vibration of the organ of Corti can be complex and that multiple vibrational modes may play an important role in cochlear transduction. Inner hair cell (IHC) and auditory nerve responses to pure tones can exhibit large phase shifts and complex response waveforms with increasing stimulus level. In contrast, the comparable basilar membrane (BM) responses are much less complex, exhibiting only small phase shifts and relatively sinusoidal waveforms. To reconcile the differences observed between the published BM data and the IHC data, we have recorded receptor potentials from IHCs and compared these waveform data to the output of two computational models:a traditional linear model where IHC excitation depends only on BM displacement and a new model that assumes that outer hair cell (OHC) force production provides the major mechanical input to the IHC along with two additional mechanical components. Comparisons of the output of the two models with the experimental data show that the new model is capable of reproducing the very complex voltage responses of the IHC recorded in vivo whereas the traditional model performed poorly. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Boston Univ, Dept Biomed Engn, Hearing Res Ctr, Boston, MA 02215 USA. Univ Queensland, Dept Physiol & Pharmacol, Brisbane, Qld 4072, Australia. RP Mountain, DC (reprint author), Boston Univ, Dept Biomed Engn, Hearing Res Ctr, 44 Cummington St, Boston, MA 02215 USA. CR Cheatham MA, 1998, J ACOUST SOC AM, V104, P356, DOI 10.1121/1.423245 CODY AR, 1987, J PHYSIOL-LONDON, V383, P551 CODY AR, 1989, HEARING RES, V41, P89, DOI 10.1016/0378-5955(89)90002-6 COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y DALLOS P, 1985, J NEUROSCI, V5, P1591 DALLOS P, 1986, AUDITORY FREQUENCY S, P73 DALLOS P, 1976, J ACOUST SOC AM, V60, P510, DOI 10.1121/1.381086 Dallos P, 1973, BASIC MECHANISMS HEA, P335 Ewins DJ, 1984, MODAL TESTING THEORY Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 KARAVITAKI KD, 1997, DIVERSITY AUDITORY M, P392 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 MAMMANO F, 1993, NATURE, V365, P838, DOI 10.1038/365838a0 MOUNTAIN DC, 1994, ARO ABSTR, V17, P91 MOUNTAIN DC, 1996, AUDITORY COMPUTATION, P121 MOUNTAIN DC, 1989, HEARING RES, V41, P101, DOI 10.1016/0378-5955(89)90003-8 MOUNTAIN DC, 1989, COCHLEAR MECH STRUCT, P153 MOUNTAIN DC, 1993, BIOPHYSICS HAIR CELL, P361 Murugasu E, 1996, J NEUROSCI, V16, P325 Naidu RC, 1998, HEARING RES, V124, P124, DOI 10.1016/S0378-5955(98)00133-6 NUTTALL AL, 1997, 34 WORKSH INN EAR BI OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 REUTER G, 1990, HEARING RES, V43, P219, DOI 10.1016/0378-5955(90)90230-M RHODE WS, 1967, J ACOUST SOC AM, V42, P185, DOI 10.1121/1.1910547 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1983, J ACOUST SOC AM, V73, P2096, DOI 10.1121/1.389577 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 RUSSELL IJ, 1989, HEARING RES, V43, P55, DOI 10.1016/0378-5955(89)90059-2 RUSSELL IJ, 1992, P ROY SOC B-BIOL SCI, V250, P217, DOI 10.1098/rspb.1992.0152 RUSSELL IJ, 1986, HEARING RES, V22, P199, DOI 10.1016/0378-5955(86)90096-1 RUSSELL IJ, 1983, J PHYSIOL-LONDON, V338, P179 RUSSELL LJ, 1985, PERIPHERAL AUDITORY, P349 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SELLICK PM, 1980, HEARING RES, V2, P439, DOI 10.1016/0378-5955(80)90080-5 SOKOLICH WG, 1976, J ACOUST SOC AM, V59, P963, DOI 10.1121/1.380955 STANKOVIC KM, 1998, ARO ABSTR, V21, P138 STRELIOF.D, 1973, J ACOUST SOC AM, V54, P620, DOI 10.1121/1.1913642 STRELIOFF D, 1984, HEARING RES, V15, P19, DOI 10.1016/0378-5955(84)90221-1 XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103 ZHANG L, 1997, DIVERSITY AUDITORY M, P472 ZHANG L, 1996, ARO ABSTR, V19, P59 ZWISLOCKI JJ, 1986, HEARING RES, V22, P217, DOI 10.1016/0378-5955(86)90097-3 NR 47 TC 33 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 1 EP 14 DI 10.1016/S0378-5955(99)00013-1 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900001 PM 10392543 ER PT J AU Khanna, SM Hao, LF AF Khanna, SM Hao, LF TI Reticular lamina vibrations in the apical turn of a living guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE cochlea mechanics; guinea pig; reticular lamina; sensory cell; interferometry; negative feedback ID OUTER HAIR-CELLS; TEMPORAL-BONE PREPARATION; MECHANICAL TUNING CHARACTERISTICS; LASER HETERODYNE INTERFEROMETRY; SPONTANEOUS CELLULAR VIBRATIONS; BASILAR-MEMBRANE VIBRATION; SHORT-TIME FOURIER; FISH LATERAL-LINE; HEARING ORGAN; DISPLACEMENT RESPONSE AB The reticular lamina of the apical turn of a living guinea pig cochlea was viewed through the intact Reissner's membrane using a slit confocal microscope. Vibrations were measured at selected identified locations with a confocal heterodyne interferometer, in response to tones applied with an acoustic transducer coupled to the ear canal. The position coordinates of each location were recorded. Mechanical tuning curves were measured along a radial track at Hensen's cells, outer hair cells, inner hair cells and at the osseous spiral lamina, over a frequency range of 3 kHz, using five sound pressure levels (100, 90, 80, 70 and 60 dB SPL). The carrier to noise ratio obtained throughout the experiments was high. The response shape at any measuring location was not found to change appreciably with signal level. The response shape also did not change significantly with the radial position on the reticular lamina. However, the response magnitude increased progressively from the inner hair cell to the Hensen's cell. The observed linearity of response at the fundamental frequency is explained by the presence of negative feed back in the apical turn of the cochlea. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Columbia Univ Coll Phys & Surg, Dept Otolaryngol Head & Neck Surg, New York, NY 10032 USA. Univ Maryland, Sch Med, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21201 USA. RP Khanna, SM (reprint author), Columbia Univ Coll Phys & Surg, Dept Otolaryngol Head & Neck Surg, 630 W 168th St, New York, NY 10032 USA. CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Bode H. W., 1945, NETWORK ANAL FEEDBAC BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Brundin L, 1989, Acta Otolaryngol Suppl, V467, P229 BRUNDIN L, 1991, NEUROSCI LETT, V128, P77, DOI 10.1016/0304-3940(91)90763-J BRUNDIN L, 1992, NEUROSCIENCE, V49, P607, DOI 10.1016/0306-4522(92)90230-Y BRUNDIN L, 1992, HEARING RES, V58, P175, DOI 10.1016/0378-5955(92)90126-8 BRUNDIN L, 1989, NATURE, V342, P814, DOI 10.1038/342814a0 BRUNDIN L, 1994, HEARING RES, V73, P35, DOI 10.1016/0378-5955(94)90280-1 CANLON B, 1988, P NATL ACAD SCI USA, V85, P7033, DOI 10.1073/pnas.85.18.7033 COOPER MP, 1996, DIVERSITY COCHLEAR M, P298 COOPER NP, 1992, HEARING RES, V63, P191, DOI 10.1016/0378-5955(92)90084-Z COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y Corti A., 1851, Z WISS ZOOL, V3, P109 DALLOS P, 1986, HEARING RES, V22, P185, DOI 10.1016/0378-5955(86)90095-X DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 ENGSTROM B, 1972, AUDIOLOGY, V11, P6 Engstrom H, 1966, STRUCTURAL PATTERN O Hao LF, 1996, HEARING RES, V99, P176, DOI 10.1016/S0378-5955(96)00099-8 HENEGHAN C, 1994, IEEE T SIGNAL PROCES, V42, P3335, DOI 10.1109/78.340771 HENEGHAN C, 1993, P SOC PHOTO-OPT INS, V2036, P183, DOI 10.1117/12.162711 ITER (International Team for Ear Research), 1989, ACTA OTOLARYNGOL S S, V467, P1 Johnstone BM, 1967, SCIENCE, V158, P390 KARLSSON KK, 1991, HEARING RES, V53, P95, DOI 10.1016/0378-5955(91)90216-V KEILSON SE, 1993, ACTA OTO-LARYNGOL, V113, P591, DOI 10.3109/00016489309135869 KHANNA SM, 1998, IN PRESS P BIOS STOC Khanna SM, 1998, HEARING RES, V116, P71, DOI 10.1016/S0378-5955(97)00200-1 KHANNA SM, 1993, BRIT J AUDIOL, V27, P79, DOI 10.3109/03005369309077895 KHANNA SM, 1998, IN PRESS ACOUSTICA, P84 KHANNA SM, 1992, NOISE INDUCED HEARIN, P3 KHANNA SM, 1985, J ACOUST SOC AM, V77, P577, DOI 10.1121/1.391876 KHANNA SM, 1999, UNPUB HEAR RES KHANNA SM, 1995, ACTIVE HEARING, P257 KHANNA SM, 1995, SPIE, V2732, P64 KHANNA SM, 1993, BIOPHYSICS HAIRCELL, P266 KHANNA SM, 1996, DIVERSITY COCHLEAR M KHANNA SM, 1982, SCIENCE, V215, P305, DOI 10.1126/science.7053580 KHANNA SM, 1989, ACTA OTO-LARYNGOL, P151 KHANNA SM, 1981, VESTIBULAR SYSTEM FU, P337 KHANNA SM, 1986, HEARING RES, V23, P37, DOI 10.1016/0378-5955(86)90174-7 KOESTER CJ, 1990, T ROY MICR, V1, P327 KOESTER CJ, 1994, APPL OPTICS, V33, P702, DOI 10.1364/AO.33.000702 Koester C J, 1989, Acta Otolaryngol Suppl, V467, P27 KOESTER CJ, 1980, APPL OPTICS, V19, P1749, DOI 10.1364/AO.19.001749 LEONARD DGB, 1984, J ACOUST SOC AM, V2, P515 LIBERMAN MC, 1978, ACTA OTOLARYNGOL S S, V358 LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1 LIM DJ, 1980, J ACOUST SOC AM, V67, P1686, DOI 10.1121/1.384295 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 Lund D T, 1989, Acta Otolaryngol Suppl, V467, P77 Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732 NUTTALL AL, 1991, HEARING RES, V51, P203, DOI 10.1016/0378-5955(91)90037-A PUJOL R, 1991, AUDITORY PHYSL PERCE, P41 Retzius G, 1884, GEHORORGAN WIRBELTIE, pII RHODE WS, 1980, J ACOUST SOC AM, V67, P1696, DOI 10.1121/1.384296 RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 ROBLES L, 1986, PERIPHERAL AUDITORY Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1991, HEARING RES, V51, P215, DOI 10.1016/0378-5955(91)90038-B SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SOKOLICH WG, 1981, Patent No. 4251686 STINSON MR, 1994, J ACOUST SOC AM, V96, P170, DOI 10.1121/1.410461 TEICH MC, 1995, ANN BIOMED ENG, V23, P583, DOI 10.1007/BF02584458 TEICH MC, 1993, BIOPHYSICS HAIR CELL, P272 TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807 ULFENDAHL M, 1993, PFLUG ARCH EUR J PHY, V424, P95, DOI 10.1007/BF00374599 ULFENDAHL M, 1991, HEARING RES, V57, P31, DOI 10.1016/0378-5955(91)90071-G Ulfendahl M, 1996, NEUROSCIENCE, V72, P199, DOI 10.1016/0306-4522(95)00545-5 ULFENDAHL M, 1995, NEUROREPORT, V6, P1157, DOI 10.1097/00001756-199505300-00021 ULFENDAHL M, 1993, EUR J NEUROSCI, V5, P713, DOI 10.1111/j.1460-9568.1993.tb00535.x Ulfendahl M, 1997, PROG NEUROBIOL, V53, P331, DOI 10.1016/S0301-0082(97)00040-3 VANNETTEN SM, 1994, HEARING RES, V73, P223, DOI 10.1016/0378-5955(94)90238-0 VANNETTEN SM, 1994, P NATL ACAD SCI USA, V91, P1549, DOI 10.1073/pnas.91.4.1549 VANNETTEN SM, 1993, PROG BRAIN RES, V97, P45 von Bekesy G., 1960, EXPT HEARING, P745 WILLEMIN JF, 1988, J ACOUST SOC AM, V83, P787, DOI 10.1121/1.396122 Willemin J F, 1989, Acta Otolaryngol Suppl, V467, P35 WILSON JP, 1975, J ACOUST SOC AM, V57, P705, DOI 10.1121/1.380472 WRIGHT A, 1981, ARCH OTO-RHINO-LARYN, V230, P11, DOI 10.1007/BF00665375 ZENNER HP, 1987, BIOCHEM BIOPH RES CO, V149, P304, DOI 10.1016/0006-291X(87)91639-1 ZENNER HP, 1988, ACTA OTO-LARYNGOL, V105, P457, DOI 10.3109/00016488809119501 NR 83 TC 38 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 15 EP 33 DI 10.1016/S0378-5955(99)00027-1 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900002 PM 10392544 ER PT J AU Wong, D Miyamoto, RT Pisoni, DB Sehgal, M Hutchins, GD AF Wong, D Miyamoto, RT Pisoni, DB Sehgal, M Hutchins, GD TI PET imaging of cochlear-implant and normal-hearing subjects listening to speech and nonspeech SO HEARING RESEARCH LA English DT Article DE imaging; cochlear implant; positron emission tomography; speech perception; language; deaf ID POSITRON-EMISSION-TOMOGRAPHY; HUMAN BRAIN; CORTICAL ACTIVATION; DEAF PATIENTS; PERCEPTION; USERS; LOCALIZATION; STIMULATION; CORTEX; PITCH AB Functional neuroimaging with positron emission tomography (PET) was used to compare the brain activation patterns of normal-hearing (NH) with postlingually deaf, cochlear-implant (CI) subjects listening to speech and nonspeech signals. The speech stimuli were derived from test batteries for assessing speech-perception performance of hearing-impaired subjects with different sensory aids. Subjects were scanned while passively listening to monaural (right ear) stimuli in five conditions: Silent Baseline, Word, Sentence, Time-reversed Sentence, and Multitalker Babble. Both groups showed bilateral activation in superior and middle temporal gyri to speech and backward speech. However, group differences were observed in the Sentence compared to Silence condition. Ct subjects showed more activated foci in right temporal regions, where lateralized mechanisms for prosodic (pitch) processing have been well established; NH subjects showed a focus in the left inferior frontal gyrus (Brodmann's area 47), where semantic processing has been implicated. Multitalker Babble activated auditory temporal regions in the Ct group only. Whereas NH listeners probably habituated to this multitalker babble, the CI listeners may be using a perceptual strategy that emphasizes 'coarse' coding to perceive this stimulus globally as speechlike. The group differences provide the first neuroimaging evidence suggesting that postlingually deaf Ct and NH subjects may engage differing perceptual processing strategies under certain speech conditions. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Indiana Univ, Sch Med, Dept Anat, Indianapolis, IN 46202 USA. Indiana Univ, Sch Med, Dept Otolaryngol Head Neck Surg, Indianapolis, IN 46202 USA. Indiana Univ, Sch Med, Dept Psychol, Indianapolis, IN 46202 USA. Indiana Univ, Sch Med, Dept Radiol, Indianapolis, IN 46202 USA. RP Wong, D (reprint author), Indiana Univ, Sch Med, Dept Anat, Med Sci 5022, Indianapolis, IN 46202 USA. CR Binder JR, 1997, J NEUROSCI, V17, P353 BINDER JR, 1998, NEUROIMAGE, V7, pS380 Davis H., 1978, HEARING AND DEAFNESS Fiez JA, 1997, HUM BRAIN MAPP, V5, P79, DOI 10.1002/(SICI)1097-0193(1997)5:2<79::AID-HBM1>3.0.CO;2-J FRISTON KJ, 1991, J CEREB BLOOD FLOW M, V11, P81 FRISTON KJ, 1990, J CEREBR BLOOD F MET, V10, P458 Gandour J, 1998, NEUROREPORT, V9, P2115 Goodman A., 1965, ASHA, V7 HERZOG H, 1991, J COMPUT ASSIST TOMO, V15, P369, DOI 10.1097/00004728-199105000-00005 HOWARD D, 1992, BRAIN, V115, P1769, DOI 10.1093/brain/115.6.1769 ITO J, 1990, ARCH OTOLARYNGOL, V116, P1437 Just MA, 1996, SCIENCE, V274, P114, DOI 10.1126/science.274.5284.114 KIRK KI, 1995, EAR HEARING, V16, P470, DOI 10.1097/00003446-199510000-00004 Kirk KI, 1997, J SPEECH LANG HEAR R, V40, P1395 KOCH DB, 1996, ASS RES OTOLARYNGOL, V19, P104 MINOSHIMA S, 1993, J NUCL MED, V34, P322 Naito Y, 1997, ACTA OTO-LARYNGOL, V117, P490, DOI 10.3109/00016489709113426 NAITO Y, 1995, COGNITIVE BRAIN RES, V2, P207, DOI 10.1016/0926-6410(95)90009-8 OSBERGER MJ, 1991, AM J OTOL, V12, P105 PETERSEN SE, 1993, ANNU REV NEUROSCI, V16, P509, DOI 10.1146/annurev.ne.16.030193.002453 Posner M, 1994, IMAGES MIND POSNER MI, 1990, ANNU REV NEUROSCI, V13, P25, DOI 10.1146/annurev.neuro.13.1.25 RAVICZ ME, 1997, ASS RES OTOLARYNGOL, V20, P205 Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156 Shipman D. W., 1982, Proceedings of ICASSP 82. IEEE International Conference on Acoustics, Speech and Signal Processing Shulman GL, 1997, J COGNITIVE NEUROSCI, V9, P648, DOI 10.1162/jocn.1997.9.5.648 Talairach J., 1988, COPLANAR STEREOTAXIC TILLMAN TW, 1994, SAMTR6655 USAF NW U Waltzman Susan B., 1992, Seminars in Hearing, V13, P195, DOI 10.1055/s-0028-1085156 WONG D, 1996, ASS RES OTOLARYNGOL, V19, P107 Zatorre RJ, 1996, CEREB CORTEX, V6, P21, DOI 10.1093/cercor/6.1.21 ZATORRE RJ, 1994, J NEUROSCI, V14, P1908 NR 32 TC 48 Z9 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 34 EP 42 DI 10.1016/S0378-5955(99)00028-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900003 PM 10392545 ER PT J AU Jarboe, JK Hallworth, R AF Jarboe, JK Hallworth, R TI The effect of quinine on outer hair cell shape, compliance and force SO HEARING RESEARCH LA English DT Article DE quinine; outer hair cell motility; force; calmodulin; myosin light chain kinase; free radical ID GUINEA-PIG COCHLEA; K+ CURRENT; MOTILITY; GENERATION; CONTRACTIONS; SALICYLATE; AMPLIFIER; RESPONSES; MECHANISM; HEARING AB Quinine intoxication causes a well-described syndrome that includes tinnitus, sensorineural hearing loss and vertigo. The pathophysiology of quinine's effects on hearing is unknown, but may include a peripheral component. The cochlear outer hair cell is known to be motile and to contribute force to amplify the vibration pattern of the organ of Corti. The outer hair cell is also a target of diseases involving tinnitus and sensorineural hearing loss, including salicylate intoxication. These effects may be mediated through changes either in motile force or in mechanical properties. Quinine's effects on outer hair cell motility and mechanical properties have therefore been examined in vitro. Quinine at 5.0 mM substantially decreased active force generation in isolated guinea pig cochlear outer hair cells. Isolated cells also elongated and dilated in diameter when exposed to 5.0 mM quinine. No consistent changes in mechanical properties were observed. 1.0 mM quinine was ineffective in either force reduction or elongation. Trifluoperazine, a calmodulin inhibitor, and ML-9, a blocker of myosin light chain kinases, were ineffective in blocking quinine-induced force reduction or elongation. Deferoxamine, a hydroxyl free radical scavenger, also failed to block either the force decrease or the elongation. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Texas, Hlth Sci Ctr, Dept Otolaryngol Head & Neck Surg, San Antonio, TX 78284 USA. RP Hallworth, R (reprint author), Univ Texas, Hlth Sci Ctr, Dept Otolaryngol Head & Neck Surg, 7703 Floyd Curl Dr, San Antonio, TX 78284 USA. CR ALVAN G, 1991, BRIT J CLIN PHARMACO, V31, P409 ASHMORE J, 1993, CURR BIOL, V3, P38, DOI 10.1016/0960-9822(93)90145-E ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Berninger E, 1998, ACTA OTO-LARYNGOL, V118, P46 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Chan E, 1998, NEUROSCIENCE, V83, P961, DOI 10.1016/S0306-4522(97)00446-6 CLARK BA, 1990, PFLUG ARCH EUR J PHY, V415, P490, DOI 10.1007/BF00373629 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 Coling DE, 1998, HEARING RES, V115, P175, DOI 10.1016/S0378-5955(97)00194-9 COOK NS, 1985, J PHYSIOL-LONDON, V358, P373 DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6 DULON D, 1987, ARCH OTO-RHINO-LARYN, V244, P104, DOI 10.1007/BF00458558 DULON D, 1990, J NEUROSCI, V10, P1388 EVANS BN, 1990, HEARING RES, V45, P265, DOI 10.1016/0378-5955(90)90126-A Hallworth R, 1995, J NEUROPHYSIOL, V74, P2319 Hallworth R, 1997, HEARING RES, V114, P204, DOI 10.1016/S0378-5955(97)00167-6 Hayashi T, 1996, J MEMBRANE BIOL, V151, P19, DOI 10.1007/s002329900054 HOLLEY MC, 1988, PROC R SOC SER B-BIO, V232, P413, DOI 10.1098/rspb.1988.0004 IWASA KH, 1992, J ACOUST SOC AM, V92, P3169, DOI 10.1121/1.404194 JASTREBOFF PJ, 1996, P 5 INT TINN SEM AM JUNG TTK, 1993, OTOLARYNG CLIN N AM, V26, P791 KARLSSON KK, 1990, NEUROSCI LETT, V116, P101, DOI 10.1016/0304-3940(90)90393-N KARLSSON KK, 1991, ACTA OTO-LARYNGOL, V111, P500, DOI 10.3109/00016489109138375 KARLSSON KK, 1991, HEARING RES, V53, P95, DOI 10.1016/0378-5955(91)90216-V Lin X, 1998, J NEUROPHYSIOL, V79, P2503 LIN X, 1995, HEARING RES, V88, P36, DOI 10.1016/0378-5955(95)00096-M MCFADDEN D, 1994, J ACOUST SOC AM, V95, P3460, DOI 10.1121/1.410022 Mendenhall W, 1975, INTRO PROBABILITY ST POU AM, 1991, HEARING RES, V52, P305, DOI 10.1016/0378-5955(91)90020-A PUEL JL, 1990, OTOLARYNG HEAD NECK, V102, P66 Ratnanather JT, 1996, J ACOUST SOC AM, V99, P1025, DOI 10.1121/1.414631 UNEYAMA H, 1993, BRAIN RES, V604, P24, DOI 10.1016/0006-8993(93)90348-Q ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 NR 36 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 43 EP 50 DI 10.1016/S0378-5955(99)00031-3 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900004 PM 10392546 ER PT J AU Tampakopoulou, DA Sie, KCY AF Tampakopoulou, DA Sie, KCY TI Cisplatin ototoxicity in developing gerbils SO HEARING RESEARCH LA English DT Article DE cisplatin; ototoxicity; otoacoustic emission; auditory brainstem response; gerbil ID GUINEA-PIGS; HEARING-LOSS; CIS-DIAMMINEDICHLOROPLATINUM; CANCER-PATIENTS; HAIR-CELLS; RECEIVING CISPLATIN; AUDITORY FUNCTION; MONGOLIAN GERBIL; DOSE CISPLATIN; CHILDREN AB This experimental study was undertaken to investigate the dose-related effect of cisplatin exposure in young gerbils (2 weeks of age) and explore the relationship between different methods used to monitor auditory function after exposure to cisplatin. Four groups of animals, including a control group, were used. The treatment groups, D1 (n = 6), D2 (n = 7) and D3 (n = 6), received one, two, and three doses of cisplatin (5 mg/kg/dose), respectively, at weekly intervals. Treated animals were first exposed to cisplatin at 2 weeks of age. Distortion product otoacoustic emissions (DPOAE) and auditory brainstem responses (ABR) were measured in treated and control animals at 6 weeks of age. The effects of dose and frequency on the DPOAE amplitude, as well as the relationship between the DPOAE and the ABR thresholds were analyzed. Animals in the D1 and D3 groups demonstrated significant elevation of DPOAE and ABR thresholds. Interestingly, animals in the D2 group demonstrated a bimodal distribution of DPOAE and ABR responses, with four animals severely affected and three not showing an effect. A tendency for a bimodal distribution of DPOAE and ABR responses was also observed in the D1 group, at frequencies below 8 kHz. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Washington, Sch Med, Childrens Hosp, Dept Surg, Seattle, WA 98105 USA. Univ Washington, Sch Med, Reg Med Ctr, Seattle, WA 98105 USA. Univ Washington, Sch Med, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98105 USA. RP Sie, KCY (reprint author), Univ Washington, Sch Med, Childrens Hosp, Dept Surg, CH-62, Seattle, WA 98105 USA. CR AGUILARMARKULIS NV, 1981, J SURG ONCOL, V16, P111, DOI 10.1002/jso.2930160203 BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3 BOCK GR, 1977, SCIENCE, V197, P396, DOI 10.1126/science.877565 BOHEIM K, 1985, ARCH OTO-RHINO-LARYN, V242, P1, DOI 10.1007/BF00464398 CANLON B, 1997, EAR NOSE THROAT J, P253 CANLON B, 1995, HEARING RES, V84, P112, DOI 10.1016/0378-5955(95)00020-5 CANLON B, 1997, EAR NOSE THROAT J, P248 Dagli S, 1997, HEARING RES, V104, P39, DOI 10.1016/S0378-5955(96)00179-7 deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4 ECHTELER SM, 1989, NATURE, V341, P147, DOI 10.1038/341147a0 ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638 FAUSTI SA, 1984, CANCER, V53, P224, DOI 10.1002/1097-0142(19840115)53:2<224::AID-CNCR2820530207>3.0.CO;2-D FLEISCHMAN RW, 1975, TOXICOL APPL PHARM, V33, P320, DOI 10.1016/0041-008X(75)90098-8 Gabaizadeh R, 1997, ACTA OTO-LARYNGOL, V117, P232, DOI 10.3109/00016489709117778 HAYES DM, 1977, CANCER, V39, P1372, DOI 10.1002/1097-0142(197704)39:4<1372::AID-CNCR2820390404>3.0.CO;2-J HENLEY CM, 1993, OTOLARYNG CLIN N AM, V26, P857 HENRY KR, 1981, ARCH OTOLARYNGOL, V107, P92 KOHN S, 1988, LARYNGOSCOPE, V98, P865 KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275 KONISHI T, 1983, AM J OTOLARYNG, V4, P18, DOI 10.1016/S0196-0709(83)80003-9 KOPELMAN J, 1988, LARYNGOSCOPE, V98, P858 KRETSCHMAR CS, 1990, J CLIN ONCOL, V8, P1191 Kujawa SG, 1997, J NEUROPHYSIOL, V78, P3095 LAURELL G, 1988, SCAND AUDIOL, V17, P241, DOI 10.3109/01050398809070712 LAURELL G, 1989, HEARING RES, V38, P19, DOI 10.1016/0378-5955(89)90124-X LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 LENOIR M, 1980, ACTA OTO-LARYNGOL, V89, P317, DOI 10.3109/00016488009127143 LENOIR M, 1983, ACTA OTOLARYNGOL S, V405, P3 MAROT M, 1980, HEARING RES, V2, P111, DOI 10.1016/0378-5955(80)90032-5 MCALPINE D, 1990, HEARING RES, V47, P191, DOI 10.1016/0378-5955(90)90151-E McFadden SL, 1996, HEARING RES, V100, P68, DOI 10.1016/0378-5955(96)00108-6 MCGUIRT JP, 1995, HEARING RES, V84, P52, DOI 10.1016/0378-5955(95)00015-V MCHANEY VA, 1983, J PEDIATR-US, V102, P314, DOI 10.1016/S0022-3476(83)80551-4 MELAMED LB, 1985, CANCER, V55, P41, DOI 10.1002/1097-0142(19850101)55:1<41::AID-CNCR2820550106>3.0.CO;2-N Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 NORTON SJ, 1991, HEARING RES, V51, P73, DOI 10.1016/0378-5955(91)90008-W OSAKA S, 1981, ACTA OTOLARYNGOL, V88, P359 PASIC TR, 1991, LARYNGOSCOPE, V101, P985 PICKLES JO, 1991, HEARING RES, V55, P244, DOI 10.1016/0378-5955(91)90109-M PRIEVE BA, 1984, ACTA OTO-LARYNGOL, V98, P428, DOI 10.3109/00016488409107584 REDDEL RR, 1982, CANCER TREAT REP, V66, P19 RYBAK LP, 1991, LARYNGOSCOPE, V101, P1167 SCHAEFER SD, 1985, CANCER, V56, P1934, DOI 10.1002/1097-0142(19851015)56:8<1934::AID-CNCR2820560807>3.0.CO;2-F SCHWEITZER VG, 1993, OTOLARYNG CLIN N AM, V26, P759 SIE KCY, 1999, 22 ARO MIDW M 1999 S SMITH DI, 1987, HEARING RES, V27, P157, DOI 10.1016/0378-5955(87)90016-5 STADNICKI SW, 1975, CANCER CHEMOTH REP 1, V59, P467 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 TAUDY M, 1992, AUDIOLOGY, V31, P293 VERMORKEN JB, 1983, EUR J CANCER CLIN ON, V19, P53, DOI 10.1016/0277-5379(83)90398-X WATERS GS, 1991, EAR HEARING, V12, P91, DOI 10.1097/00003446-199104000-00003 WEATHERLY RA, 1991, LARYNGOSCOPE, V101, P917 WOOLF NK, 1984, HEARING RES, V13, P277, DOI 10.1016/0378-5955(84)90081-9 Zheng XY, 1997, HEARING RES, V104, P191, DOI 10.1016/S0378-5955(96)00187-6 NR 54 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 51 EP 59 DI 10.1016/S0378-5955(99)00033-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900005 PM 10392547 ER PT J AU Huang, CQ Shepherd, RK AF Huang, CQ Shepherd, RK TI Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates. IV. Effects of stimulus intensity SO HEARING RESEARCH LA English DT Article DE auditory nerve; high rate electrical stimulation; electrically evoked auditory brainstem response; cochlear implant ID DEFINED CHARGE-DENSITIES; GUINEA-PIG; COCHLEAR NUCLEUS; NEURAL DAMAGE; 8TH NERVE; CAT; PARAMETERS; AMPLITUDE; FREQUENCY; PATHOLOGY AB High rate intracochlear electrical stimulation using stimulus intensities well above clinical limits call induce a significant reduction in the excitability of the auditory nerve as measured by a reduction in the amplitude of the electrically evoked auditory brainstem response (EABR). The purpose of the present study was to assess the effect of stimulus intensity on these stimulus induced changes by comparing the effects of acute stimulation using stimulus intensities within normal clinical levels (6 dB and 12 dB above EABR threshold) and significantly above normal clinical levels (> 20 dB above EABR threshold; 0.34 mu C/phase). Stimulus rates of 200, 400, or 1000 pulses/s (pps) were delivered to bipolar scala tympani electrodes. EABRs were recorded before and periodically following 2 h of continuous stimulation. No reduction in EABR amplitude was observed following stimulation at 6 dB above EABR threshold for the three stimulus rates examined. However, EABRs were reduced when stimulated at 12 dB above EABR threshold at 400 pps, and significantly reduced when stimulated at a rate of 1000 pps. Immediate post-stimulus response amplitudes of wave III were 63% and 35% of the pre-stimulus amplitude at 400 and 1000 pps respectively. More significant reductions in EABR amplitude were observed following stimulation at levels more than 20 dB above EABR threshold for both 400 and 1000 pps stimuli. Our findings indicate that stimulus induced changes in EABR amplitude are related to both stimulus rate and stimulus intensity. Moreover, stimulation using intensities within the normal clinical range show little evidence of prolonged reductions in auditory nerve excitability at stimulus rates of up to 1000 pps. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, E Melbourne, Vic 3002, Australia. RP Shepherd, RK (reprint author), Univ Melbourne, Dept Otolaryngol, 32 Gisborne St, E Melbourne, Vic 3002, Australia. RI Shepherd, Robert/I-6276-2012 CR AGNEW WF, 1983, EXP NEUROL, V79, P397, DOI 10.1016/0014-4886(83)90221-2 Black R C, 1983, Acta Otolaryngol Suppl, V399, P5 Cords SM, 1997, AM J OTOL, V18, pS19 DODSON HC, 1987, HEARING RES, V31, P65, DOI 10.1016/0378-5955(87)90214-0 Duckert L G, 1984, Acta Otolaryngol Suppl, V411, P28 FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519 Huang CQ, 1998, HEARING RES, V116, P55, DOI 10.1016/S0378-5955(97)00196-2 HUANG CQ, 1997, P 17 AUST NEUR SOC, V8, P167 HUGHES JR, 1957, J ACOUST SOC AM, V29, P275, DOI 10.1121/1.1908854 IGARASHI M, 1968, J SPEECH HEAR RES, V11, P229 KILLIAN MJP, 1994, HEARING RES, V81, P66, DOI 10.1016/0378-5955(94)90154-6 KILLIAN MJP, 1994, THESIS U UTRECHT MACAULAY RB, 1995, ESTIMATED RANGE CURR MCCREERY DB, 1994, HEARING RES, V77, P105, DOI 10.1016/0378-5955(94)90258-5 MCCREERY DB, 1983, EXP NEUROL, V79, P371, DOI 10.1016/0014-4886(83)90220-0 MCCREERY DB, 1995, MED BIOL ENG COMPUT, V33, P426, DOI 10.1007/BF02510526 MCCREERY DB, 1992, HEARING RES, V62, P42, DOI 10.1016/0378-5955(92)90201-W McDermott H. J., 1993, IEEE Transactions on Rehabilitation Engineering, V1, DOI 10.1109/86.242423 MILLER JM, 1985, COCHLEAR IMPLANTS, P35 MILLER JM, 1991, AM J OTOL, V12, P28 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X NI DF, 1992, HEARING RES, V62, P63, DOI 10.1016/0378-5955(92)90203-Y PFINGST BE, 1993, J ACOUST SOC AM, V94, P1287, DOI 10.1121/1.408155 SHEPHERD RK, 1987, ANN OTO RHINOL LARYN, V96, P50 Shepherd RK, 1990, COCHLEAR PROSTHESES, P69 Shepherd R K, 1983, Acta Otolaryngol Suppl, V399, P19 Shepherd RK, 1986, THESIS U MELBOURNE SHEPHERD RK, 1996, 3 EUR S PAED COCHL I, pA5 SOKOLOFF L, 1983, HDB NEUROCHEMISTRY, V3, P224 THIELEMEIR MA, 1982, ANN OTO RHINOL LARYN, V91, P27 TYKOCINSKI M, 1995, HEARING RES, V88, P124, DOI 10.1016/0378-5955(95)00108-G Tykocinski M, 1997, HEARING RES, V112, P147, DOI 10.1016/S0378-5955(97)00117-2 VISCHER M, 1997, AM J OTOL, V18, pS27 WALSH SM, 1982, HEARING RES, V7, P281, DOI 10.1016/0378-5955(82)90041-7 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 YUEN TGH, 1981, NEUROSURGERY, V9, P292 NR 37 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 60 EP 68 DI 10.1016/S0378-5955(99)00034-9 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900006 PM 10392548 ER PT J AU Kumagami, H Beitz, E Wild, K Zenner, HP Ruppersberg, JP Schultz, JE AF Kumagami, H Beitz, E Wild, K Zenner, HP Ruppersberg, JP Schultz, JE TI Expression pattern of adenylyl cyclase isoforms in the inner ear of the rat by RT-PCR and immunochemical localization of calcineurin in the organ of Corti SO HEARING RESEARCH LA English DT Article DE adenylyl cyclase; calcineurin; protein phosphatase 2B; inner ear; polymerase chain reaction; immunohistochemistry ID OUTER HAIR-CELLS; ENDOLYMPHATIC HYDROPS; 2ND MESSENGERS; CYCLIC-AMP; MODULATION; COCHLEA; BRAIN; MOUSE AB Most studies concerning adenylyl cyclases in the inner ear were carried out before the advent of molecular biology. In a PCR approach using cDNAs of six inner ear tissues (stria vascularis, endolymphatic sac, organ of Corti, vestibulum, cochlear and vestibular nerve) we found tissue specific expression of adenylyl cyclase isoforms. Adenylyl cyclases types 2 and 4 are predominant in the fluid controlling tissues, i.e. in the stria vascularis and endolymphatic sac. In the organ of Corti and vestibulum the Ca2+-modulated isoforms types 1, 6 and 9 were expressed. The regulation of adenylyl cyclase 9, which is the major isoform expressed in the organ of Corti, proceeds via the Ca2+-activated protein phosphatase 2B (calcineurin, PPP3). PCR with specific primers for calcineurin demonstrated its abundant expression in the organ of Corti. Using a monoclonal antibody we localized calcineurin immunochemically to the cochlear nerve, the nerve fibers and the inner hair cells. In the cochlear and vestibular nerves a characteristic neuronal expression pattern of adenylyl cyclase isoforms was observed, i.e. adenylyl cyclases types 2, 3 and 8. The functional consequences of the adenylyl cyclase expression pattern in the inner ear are discussed in conjunction with its unique sensory performance. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Tubingen, Fac Chem & Pharm, D-72076 Tubingen, Germany. Univ Tubingen, Dept Otorhinolaryngol, D-72076 Tubingen, Germany. Univ Tubingen, Inst Physiol, D-72076 Tubingen, Germany. RP Schultz, JE (reprint author), Univ Tubingen, Fac Chem & Pharm, Morgenstelle 8, D-72076 Tubingen, Germany. CR AHLSTROM P, 1975, LARYNGOSCOPE, V85, P1241, DOI 10.1288/00005537-197507000-00016 BIRGERSON L, 1994, ACTA OTO-LARYNGOL, V114, P529, DOI 10.3109/00016489409126098 CALI JJ, 1994, J BIOL CHEM, V269, P12190 COLING DE, 1995, ACTA OTO-LARYNGOL, V115, P218, DOI 10.3109/00016489509139295 COLING DE, 1991, HEARING RES, V57, P113, DOI 10.1016/0378-5955(91)90080-S DOI K, 1992, ACTA OTO-LARYNGOL, V112, P667, DOI 10.3109/00016489209137457 DOI K, 1990, HEARING RES, V45, P157, DOI 10.1016/0378-5955(90)90192-R Drescher MJ, 1997, MOL BRAIN RES, V45, P325, DOI 10.1016/S0169-328X(97)00007-7 DULON D, 1990, J NEUROSCI, V10, P1388 FEINSTEIN PG, 1991, P NATL ACAD SCI USA, V88, P10173, DOI 10.1073/pnas.88.22.10173 FELDMAN AM, 1976, P NATL ACAD SCI USA, V73, P1761, DOI 10.1073/pnas.73.5.1761 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 FURATA H, 1995, HEARING RES, V92, P78 KIMURA RS, 1969, ANN OTO RHINOL LARYN, V78, P542 KOCH T, 1988, ARCH OTO-RHINO-LARYN, V245, P82, DOI 10.1007/BF00481441 KRUPINSKI J, 1989, SCIENCE, V244, P1558, DOI 10.1126/science.2472670 MARTIN F, 1994, HEARING RES, V81, P33, DOI 10.1016/0378-5955(94)90150-3 PATERSON JM, 1995, BIOCHEM BIOPH RES CO, V214, P1000, DOI 10.1006/bbrc.1995.2385 Premont RT, 1996, J BIOL CHEM, V271, P13900 SCHACHT J, 1985, HEARING RES, V20, P9, DOI 10.1016/0378-5955(85)90053-X SCHACHT J, 1982, AM J OTOLARYNG, V3, P328, DOI 10.1016/S0196-0709(82)80005-7 Shen TS, 1997, AM J PHYSIOL-CELL PH, V273, pC323 Sunahara RK, 1996, ANNU REV PHARMACOL, V36, P461 Torre V, 1995, J NEUROSCI, V15, P7757 XIA ZG, 1992, NEUROSCI LETT, V144, P169, DOI 10.1016/0304-3940(92)90742-P ZAJIC G, 1983, HEARING RES, V10, P249, DOI 10.1016/0378-5955(83)90090-4 ZENNER HP, 1979, ARCH OTO-RHINO-LARYN, V222, P275, DOI 10.1007/BF01261174 ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 NR 28 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 69 EP 75 DI 10.1016/S0378-5955(99)00035-0 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900007 PM 10392549 ER PT J AU Beitz, E Kumagami, H Krippeit-Drews, P Ruppersberg, JP Schultz, JE AF Beitz, E Kumagami, H Krippeit-Drews, P Ruppersberg, JP Schultz, JE TI Expression pattern of aquaporin water channels in the inner ear of the rat - The molecular basis for a water regulation system in the endolymphatic sac SO HEARING RESEARCH LA English DT Article DE inner ear; aquaporin; vasopressin; vesicle transport ID K+ SECRETION; CLONING; PROTEINS; TISSUES; RECEPTOR; MEMBRANE; GLYCEROL; COCHLEA; CELLS; CDNA AB Mammalian aquaporins constitute a family of so far 10 related water channel proteins which mediate osmotically driven water fluxes across the plasma membrane. Because regulation of the ionic composition and osmolality of inner ear fluids is of great functional significance, we investigated the expression patterns of aquaporins in five defined areas of the rat inner ear by RT-PCR. The tissues used were stria vascularis, endolymphatic sac, Reissner's membrane, vestibulum and organ of Corti. Aquaporin 1 transcripts were detected in all tissues and are probably constitutive. Aquaporin 5 was only expressed in the organ of Corti and in Reissner's membrane. We show that aquaporin 2, so far considered to be specific to the principal cells of the renal collecting duct, is expressed in the endolymphatic sac. Aquaporin 2 expression was not detected in any other inner ear region. The postnatal appearance of aquaporin 2 transcripts in the endolymphatic sac resembled that in the kidney, i.e, it increased postnatally until day 4. The full-length DNA for aquaporin 2 was cloned from cDNA of the endolymphatic sac. It had an irrelevant Ile54Thr mutation because it could be functionally expressed in Xenopus oocytes. Also exclusively in the endolymphatic sac of the inner ear, we detected transcripts for aquaporin isoforms 3 and 4 which are known to be expressed in the renal principal cells. In the kidney, aquaporin 2 regulation involves vasopressin-stimulated, cAMP-dependent phosphorylation of Ser256 of aquaporin 2 which is stored in cytosolic vesicles. These storage vesicles also contain a serpentine calcium/polycation-sensing receptor. Vesicle shuffling to the plasma membrane involves proteins such as vesicle-associated membrane protein VAMP2, syntaxin-4 and the small GTPase Rab3a. Using RT-PCR we were able to demonstrate the expression of all of these components. By analogy the data suggest that in the endolymphatic sac of the inner ear a system for cellular water permeability is in place which may share many similarities with that characterized in the principal cells of the renal collecting duct. These findings may have a number of interesting pharmacological implications which need to be addressed in future studies. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Tubingen, Fac Chem & Pharm, D-72076 Tubingen, Germany. Univ Tubingen, Dept Otorhinolaryngol, D-72076 Tubingen, Germany. Univ Tubingen, Inst Physiol, D-72076 Tubingen, Germany. RP Schultz, JE (reprint author), Univ Tubingen, Fac Chem & Pharm, Morgenstelle 8, D-72076 Tubingen, Germany. CR Chou CL, 1998, AM J PHYSIOL-CELL PH, V274, pC549 Deen PMT, 1998, CURR OPIN CELL BIOL, V10, P435, DOI 10.1016/S0955-0674(98)80055-0 DOI K, 1990, HEARING RES, V45, P157, DOI 10.1016/0378-5955(90)90192-R FELDMAN AM, 1976, P NATL ACAD SCI USA, V73, P1761, DOI 10.1073/pnas.73.5.1761 Furuta H, 1995, HEARING RES, V92, P78, DOI 10.1016/0378-5955(95)00203-0 Fushimi K, 1997, J BIOL CHEM, V272, P14800, DOI 10.1074/jbc.272.23.14800 FUSHIMI K, 1993, NATURE, V361, P549, DOI 10.1038/361549a0 GORIN MB, 1984, CELL, V39, P49, DOI 10.1016/0092-8674(84)90190-9 HASEGAWA H, 1994, J BIOL CHEM, V269, P5497 King LS, 1996, ANNU REV PHYSIOL, V58, P619, DOI 10.1146/annurev.physiol.58.1.619 Knepper MA, 1997, AM J PHYSIOL-RENAL, V272, pF3 Kumagami H, 1998, PFLUG ARCH EUR J PHY, V436, P970, DOI 10.1007/s004240050731 Lee MD, 1997, MEDICINE, V76, P141, DOI 10.1097/00005792-199705000-00001 LIEBENHOFF U, 1995, FEBS LETT, V365, P209, DOI 10.1016/0014-5793(95)00476-P LUNDQUIST PG, 1965, ACTA OTOLARYNGOL S S, V201, P1 Ma TH, 1997, J CLIN INVEST, V100, P957, DOI 10.1172/JCI231 Nelson RD, 1998, AM J PHYSIOL-CELL PH, V275, pC216 PRESTIDGE BR, 1993, INT J RADIAT ONCOL, V28, P17 PRESTON GM, 1994, SCIENCE, V265, P1585, DOI 10.1126/science.7521540 RAINA S, 1995, J BIOL CHEM, V270, P1908 Salt AN, 1997, HEARING RES, V107, P29, DOI 10.1016/S0378-5955(97)00018-X SALT AN, 1989, AM J OTOLARYNG, V10, P371, DOI 10.1016/0196-0709(89)90030-6 Sands JM, 1997, J CLIN INVEST, V99, P1399, DOI 10.1172/JCI119299 SEEBACHER T, 1999, IN PRESS HEAR RES Stankovic KM, 1995, AM J PHYSIOL-CELL PH, V269, pC1450 SUDHOF TC, 1995, NATURE, V375, P645, DOI 10.1038/375645a0 Sunose H, 1997, J MEMBRANE BIOL, V156, P25, DOI 10.1007/s002329900184 TAKUMIDA M, 1989, HEARING RES, V40, P1, DOI 10.1016/0378-5955(89)90094-4 TOWBIN H, 1979, P NATL ACAD SCI USA, V76, P4350, DOI 10.1073/pnas.76.9.4350 Umenishi F, 1996, DNA CELL BIOL, V15, P475, DOI 10.1089/dna.1996.15.475 Walz T, 1997, NATURE, V387, P624 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Yang BX, 1997, J BIOL CHEM, V272, P16140, DOI 10.1074/jbc.272.26.16140 Yasui M, 1996, AM J PHYSIOL-RENAL, V271, pF461 NR 34 TC 54 Z9 65 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 76 EP 84 DI 10.1016/S0378-5955(99)00036-2 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900008 PM 10392550 ER PT J AU Oukda, M Francois, M Membre, H Bautz, A Dournon, C AF Oukda, M Francois, M Membre, H Bautz, A Dournon, C TI Crystallographic and chemical composition of otoconia in the salamander Pleurodeles waltl SO HEARING RESEARCH LA English DT Article DE aragonite; calcite; inner ear; equilibration; amphibian ID X-RAY-DIFFRACTION; RED-BELLIED NEWT; ELECTRON-MICROSCOPY; CYNOPS-PYRRHOGASTER; INNER-EAR; STATOCONIA; AMPHIBIANS; CRYSTALS; OTOLITH; GROWTH AB The aim of the present study was to define the morphology and the crystallographic and chemical composition of otoconia in different regions of the inner ear in Pleurodeles waltl (urodele amphibian). The inner ear of adults was microdissected and otoconia were analyzed by scanning electron microscopy (SEM), X-ray diffraction, energy dispersive X-ray (EDX) and transmission electron microscopy. Two types of crystals were detected by SEM. Otoconia had different shapes depending on their location in the membranous labyrinth. One type had a cylindrical body with a triplanar smooth facet at each end, the other ones had either a prismatic shape with flat sides and end faces or a fusiform shape with rounded body and pointed end. The forms corresponded to those previously identified by other authors. These two types of otoconia had different X-ray diffraction patterns. The cylindrical otoconia were calcitic and located in the utricle, the other ones were aragonitic and located in the saccule, lagena and endolymphatic sac. An analysis by EDX indicated that both types of otoconia contained about 95% calcium with trace quantities of sodium, magnesium, phosphorus, sulfur, chlorine and potassium. Trace amounts of strontium was only found in the aragonitic otoconia. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Nancy 1, UPRES EA 2401, Lab Expt Biol Immunol, F-54506 Vandoeuvre Nancy, France. Univ Nancy 1, UMR 7555, Lab Chem Mineral Solids, F-54506 Vandoeuvre Nancy, France. RP Dournon, C (reprint author), Univ Nancy 1, UPRES EA 2401, Lab Expt Biol Immunol, POB 239, F-54506 Vandoeuvre Nancy, France. RI FRANCOIS, Michel/B-4277-2013 CR ANNIKO M, 1987, ACTA OTO-LARYNGOL, V104, P285, DOI 10.3109/00016488709107330 BALLARINO J, 1985, AM J ANAT, V174, P131, DOI 10.1002/aja.1001740204 BIDWELL PJ, 1986, BIOL BULL, V170, P75 BRESCHET G, 1836, MEM ACAD MED PARIS, V5, P229 CAMPOS A, 1992, MICRON MICROSC ACTA, V23, P349, DOI 10.1016/0739-6260(92)90039-G CAMPOS A, 1984, ACTA OTO-LARYNGOL, V97, P475, DOI 10.3109/00016488409132924 CARLSTROM DD, 1963, BIOL BULL, V125, P441, DOI 10.2307/1539358 CARLSTROM D, 1953, LARYNGOSCOPE, V63, P1052, DOI 10.1288/00005537-195311000-00002 CARLSTROM D., 1955, ACTA OTO LARYNGOL, V45, P14, DOI 10.3109/00016485509118139 CRESPO PV, 1993, ACTA OTO-LARYNGOL, V113, P176, DOI 10.3109/00016489309135788 DEGENS ET, 1969, MAR BIOL, V2, P105, DOI 10.1007/BF00347005 FERMIN CD, 1995, CELL MOL BIOL, V41, P577 FERMIN CD, 1993, MICROSC RES TECHNIQ, V25, P297, DOI 10.1002/jemt.1070250406 FUNAOKA SEIGO, 1928, FOLIA ANAT JAP, V6, P323 GAULDIE RW, 1993, J MORPHOL, V216, P271, DOI 10.1002/jmor.1052160304 HALLWORTH R, 1995, HEARING RES, V85, P115, DOI 10.1016/0378-5955(95)00038-6 JOHANSSON KE, 1980, J PHYS E SCI INSTRUM, V13, P1289, DOI 10.1088/0022-3735/13/12/015 Kido Toshishige, 1997, Auris Nasus Larynx, V24, P125, DOI 10.1016/S0385-8146(96)00020-X LEWIS ER, 1981, SCANNING, V4, P131 LIM DJ, 1974, BRAIN BEHAV EVOLUT, V10, P37, DOI 10.1159/000124301 Lombard R.E., 1977, CONTRIBUTIONS TO VERTEBRATE EVOLUTION, V2, P1 LOPEZESCAMEZ JA, 1992, MICRON MICROSC ACTA, V23, P367, DOI 10.1016/0739-6260(92)90048-I LOWENSTAM HA, 1981, SCIENCE, V211, P1126, DOI 10.1126/science.7008198 Lychakov D. V., 1994, Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, V30, P99 MALMROS G, 1973, ACTA CHEM SCAND, V27, P483 MARMO F, 1981, CELL TISSUE RES, V218, P265 MARMO F, 1992, ACTA ZOOL-STOCKHOLM, V73, P203 MARMO F, 1983, ACTA ZOOLOGICA, V67, P533 MARMO F, 1983, CELL TISSUE RES, V233, P35 NUSINOVICI J, 1994, ADV X RAY ANAL, V37, P59 PARSONS JONATHAN, 1965, TRANS AMER MICROSCOP SOC, V84, P415, DOI 10.2307/3224731 POTE KG, 1986, J ULTRA MOL STRUCT R, V95, P61, DOI 10.1016/0889-1605(86)90029-7 POTE KG, 1991, COMP BIOCHEM PHYS B, V98, P287, DOI 10.1016/0305-0491(91)90181-C POTE KG, 1993, HEARING RES, V67, P189, DOI 10.1016/0378-5955(93)90246-W ROSAUER EA, 1985, J LARYNGOL OTOL, V99, P21, DOI 10.1017/S0022215100096249 ROSS MD, 1984, PHILOS T ROY SOC B, V304, P445, DOI 10.1098/rstb.1984.0038 ROSS MD, 1975, ANN OTO RHINOL LARYN, V84, P22 SALAMAT MS, 1980, ANN OTO RHINOL LARYN, V89, P229 Steyger PS, 1995, HEARING RES, V92, P184, DOI 10.1016/0378-5955(95)00221-9 STEYGER PS, 1995, HEARING RES, V84, P61, DOI 10.1016/0378-5955(95)00013-T Takumida M, 1997, ACTA OTO-LARYNGOL, V117, P529, DOI 10.3109/00016489709113433 VILSTRUP T, 1951, ANN OTO RHINOL LARYN, V60, P974 WIEDERHOLD ML, 1986, SCANNING ELECTRON MI, V2, P781 WIEDERHOLD ML, 1995, HEARING RES, V84, P41, DOI 10.1016/0378-5955(95)00012-S NR 44 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 85 EP 93 DI 10.1016/S0378-5955(99)00041-6 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900009 PM 10392551 ER PT J AU Wiegrebe, L Patterson, RD AF Wiegrebe, L Patterson, RD TI The role of envelope modulation in spectrally unresolved iterated rippled noise SO HEARING RESEARCH LA English DT Article DE temporal pitch; random phase; unresolved harmonics; amplitude modulation; rippled noise; complex tone ID COMPLEX TONES; PITCH PERCEPTION; STRENGTH; DISCRIMINATION; FREQUENCY; HARMONICS AB Iterated rippled noise (IRN) produces a pitch corresponding to the IRN delay. The pitch persists even when the sound is high-pass filtered at 12 limes the reciprocal of the IRN delay, i.e., in the absence of resolved spectral peaks. Typically, when a sound produces a pitch in the absence of spectral cues, the pitch is explained in terms of periodic envelope modulation, for example, the pitch of a high-pass filtered cosine-phase harmonic complex, or the pitch of sinusoidally amplitude-modulated noise (SAMN). This study presents experiments designed to search for periodic modulation in IRN. The occurrence and significance of modulation is investigated in the envelope of the stimulus waveform as well as in the IRN envelope as represented after narrow-band filtering similar to that occurring in peripheral auditory filters. The results indicate that the envelope of band-pass filtered IRN reveals modulation but that the order of modulation (corresponding to the number of envelope maxima recurring every period) increases with increasing filter bandwidth. The occurrence of first-order modulation, like that of SAMN, is indirectly demonstrated for spectrally unresolved IRN in the lower unresolved frequency range between the 10th and 20th spectral peaks. The significance of recurring transients sometimes visible in the IRN waveform with respect to their contribution to the IRN pitch was assessed by replacing portions of the IRN period with random noise. The results of this experiment indicate that this 'waveform modulation' is not essential for the IRN pitch perception. The presence of temporal pitch in the absence of first-order modulation is demonstrated in two experiments involving the detection of phase delays and f(0) differences for spectrally separated, narrow bands of harmonic complexes and IRNs. (C) 1999 Elsevier Science B.V. All rights reserved. C1 LMU Munchen, Inst Zool, D-80333 Munich, Germany. Univ Cambridge, Dept Physiol, Ctr Neural Basis Hearing, Cambridge CB2 3EG, England. RP Wiegrebe, L (reprint author), LMU Munchen, Inst Zool, Luisenstr 14, D-80333 Munich, Germany. CR BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 CARLYON RP, 1994, J ACOUST SOC AM, V95, P968, DOI 10.1121/1.410013 FASTL H, 1979, HEARING RES, V1, P293, DOI 10.1016/0378-5955(79)90002-9 HANNA TE, 1985, J ACOUST SOC AM, V77, P1129, DOI 10.1121/1.392177 HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297 Kaernbach C, 1998, J ACOUST SOC AM, V104, P2298, DOI 10.1121/1.423742 KIM DO, 1988, BASIC ISSUES HEARING, P252 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 MOORE BCJ, 1979, J EXP PSYCHOL, V31, P229 Moore BCJ, 1997, INTRO PSYCHOL HEARIN MOORE BCJ, 1977, PSYCHOPHYSICS PHYSL Patterson RD, 1996, J ACOUST SOC AM, V100, P3286, DOI 10.1121/1.417212 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 VANNORDEN L, 1982, MUSIC MIND BRAIN VIEMEISTER NF, 1977, PSYCHOPHYSICS PHYSL Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873 NR 20 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 94 EP 108 DI 10.1016/S0378-5955(99)00040-4 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900010 PM 10392552 ER PT J AU Furukawa, M Suzuki, H Ikeda, K Oshima, T Yamaya, M Sasaki, H Takasaka, T AF Furukawa, M Suzuki, H Ikeda, K Oshima, T Yamaya, M Sasaki, H Takasaka, T TI Kinin and histamine stimulate Cl- secretion in gerbil middle ear epithelium: connection to otitis media SO HEARING RESEARCH LA English DT Article DE short-circuit current; intracellular Ca2+ concentration; Lysyl-bradykinin; H-1 histamine receptor; H-1 bradykinin receptor ID INFLAMMATORY MEDIATORS; EXPRESSION CLONING; RECEPTOR; BRADYKININ; EFFUSION; RAT; MEMBRANES; RESPONSES AB The effects of bradykinin (BK) and histamine on transepithelial ion transport in primary cultures of gerbil middle ear epithelium were investigated. Lysyl-bradykinin (lys-BK) elicited a transient increase in short-circuit current (I-sc) when added to apical or basolateral surfaces. Lys-BK had a larger effect than BK or des-arg(9)-BK on both epithelial surfaces. Histamine induced a transient increase in I-sc. only when added to the basolateral surface. Mepyramine, an H-1 histamine antagonist, greatly reduced the histamine-induced I-sc. The H-2 and H-3 histamine antagonists were both ineffective for inhibiting the I-sc responses to histamine. Diphenylamine-2-carboxylate or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, Cl- channel blockers, significantly blocked the I-sc responses to lys-BK or histamine. The Ca2+-mobilizing action of lys-BK and histamine was also investigated in single middle ear epithelial cells. BK and histamine induced an increase in the intracellular Ca2+ concentration. 1,2-Bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, a calcium chelator, greatly reduced the increase in the I-sc responses to lys-BK or histamine. These data indicate that BK and histamine activate intracellular Ca2+-dependent mechanisms, leading to apical Cl- secretion in the cultured gerbil middle ear epithelium via B-2 BK receptors and H-1 histamine receptors. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Tohoku Univ, Sch Med, Dept Otorhinolaryngol, Aoba Ku, Sendai, Miyagi 9808574, Japan. Tohoku Univ, Sch Med, Dept Geriatr Med, Aoba Ku, Sendai, Miyagi 9808574, Japan. Sendai Natl Hosp, Dept Otorhinolaryngol, Miyagino Ku, Sendai, Miyagi 9838520, Japan. RP Furukawa, M (reprint author), Tohoku Univ, Sch Med, Dept Otorhinolaryngol, Aoba Ku, 1-1 Seiryo Machi, Sendai, Miyagi 9808574, Japan. CR BARANIUK JN, 1990, AM REV RESPIR DIS, V141, P706 BERGER G, 1984, ACTA OTO-LARYNGOL, V98, P385, DOI 10.3109/00016488409107578 BERNSTEIN JM, 1978, OTOLARYNG HEAD NECK, V86, P249 BOISVERT P, 1985, ANN OTO RHINOL LARYN, V94, P212 CHAN KH, 1994, LARYNGOSCOPE, V104, P970 CHONMAITREE T, 1994, J INFECT DIS, V169, P1265 CLARKE LL, 1992, AM J PHYSIOL, V263, pC1190 CLARKE LL, 1992, AM J PHYSIOL, V262, pC644 DENNIS RG, 1976, ARCH OTOLARYNGOL, V102, P420 Esaki Y, 1991, Acta Otolaryngol Suppl, V486, P116 FRADY RP, 1976, ARCH OTOLARYNGOL, V102, P420 FUGIWARA Y, 1989, PEPTIDES, V10, P701 Furukawa M, 1998, ACTA PHYSIOL SCAND, V163, P103, DOI 10.1046/j.1365-201x.1998.00330.x Furukawa M, 1997, AM J PHYSIOL-CELL PH, V272, pC827 GANTZ I, 1991, BIOCHEM BIOPH RES CO, V178, P1386, DOI 10.1016/0006-291X(91)91047-G GOLDIE P, 1989, ACTA OTO-LARYNGOL, V108, P246, DOI 10.3109/00016488909125524 GRYNKIEWICZ G, 1985, J BIOL CHEM, V260, P3440 Hall JM, 1997, GEN PHARMACOL, V28, P1, DOI 10.1016/S0306-3623(96)00174-7 Harris RA, 1997, AM J PHYSIOL-LUNG C, V273, pL363 HESS JF, 1992, BIOCHEM BIOPH RES CO, V184, P260, DOI 10.1016/0006-291X(92)91187-U HILL SJ, 1990, PHARMACOL REV, V42, P45 IKEDA K, 1995, CELL CALCIUM, V18, P89, DOI 10.1016/0143-4160(95)90000-4 MACNEIL T, 1995, BBA-GENE STRUCT EXPR, V1264, P223, DOI 10.1016/0167-4781(95)00152-7 MCEACHERN AE, 1991, P NATL ACAD SCI USA, V88, P7724, DOI 10.1073/pnas.88.17.7724 MENKE JG, 1994, J BIOL CHEM, V269, P21583 MINAMI T, 1992, ACTA OTO-LARYNGOL, V112, P680, DOI 10.3109/00016489209137459 REGOLI D, 1995, CAN J PHYSIOL PHARM, V73, P791 RUAT M, 1991, BIOCHEM BIOPH RES CO, V179, P1470, DOI 10.1016/0006-291X(91)91738-X SKONER DP, 1988, ARCH OTOLARYNGOL, V114, P1131 Widdicombe J H, 1987, Cell Tissue Res, V247, P95, DOI 10.1007/BF00216551 YAMASHITA M, 1991, P NATL ACAD SCI USA, V88, P11515, DOI 10.1073/pnas.88.24.11515 YELLON RF, 1991, LARYNGOSCOPE, V101, P165 NR 32 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 109 EP 116 DI 10.1016/S0378-5955(99)00042-8 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900011 PM 10392553 ER PT J AU Smotherman, MS Narins, PM AF Smotherman, MS Narins, PM TI Potassium currents in auditory hair cells of the frog basilar papilla SO HEARING RESEARCH LA English DT Article DE frog; hearing; hair cell; basilar papilla ID RANA-CATESBEIANA; LEOPARD FROG; NERVE-FIBERS; PERIPHERAL ORIGINS; PATCH-CLAMP; BULLFROG; FREQUENCY; COCHLEA; CHICK; SENSITIVITIES AB The whole-cell patch-clamp technique was used to identify and characterize ionic currents in isolated hair cells of the leopard frog basilar papilla (BP). This end organ is responsible for encoding the upper limits of a frog's spectral sensitivity (1.25-2.0 kHz in the leopard frog). Isolated BP hair cells are the smallest hair cells in the frog auditory system, with spherical cell bodies typically less than 20 mu m in diameter and exhibiting whole-cell capacitances of 4-7 pF. Hair cell zero-current resting potentials (V-z) varied around a mean of -65 mV. All hair cells possessed a non-inactivating, voltage-dependent calcium current (I-Ca) that activates above a threshold of -55 mV. Similarly all hair cells possessed a rapidly activating, outward, calcium-dependent potassium current (I-K(Ca)) Most hair cells also possessed a slowly activating, outward, voltage-dependent potassium current (I-K), which is approximate to 80% inactive at the hair cell V-z, and a fast-activating, inward-rectifying potassium current (I-K1) which actively contributes to setting V-z. In a small subset of cells I-K was replaced by a fast-inactivating, voltage-dependent potassium current (I-A), which strongly resembled the A-current observed in hair cells of the frog sacculus and amphibian papilla. Most cells have very similar ionic currents, suggesting that the BP consists largely of one homogeneous population of hair cells. The kinetic properties of the ionic currents present (in particular the very slow I-K) argue against electrical tuning, a specialized spectral filtering mechanism reported in the hair cells of birds, reptiles, and amphibians, as a contributor to frequency selectivity of this organ. Instead BP hair cells reflect a generalized strategy for the encoding of high-frequency auditory information in a primitive, mechanically tuned, terrestrial vertebrate auditory organ. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Calif Los Angeles, Dept Physiol Sci, Los Angeles, CA 90095 USA. RP Smotherman, MS (reprint author), Univ Calif Los Angeles, Dept Physiol Sci, 405 Hilgard Ave, Los Angeles, CA 90095 USA. CR Armstrong CE, 1998, J NEUROSCI, V18, P2962 ART JJ, 1987, J PHYSIOL-LONDON, V385, P207 FENG AS, 1975, J COMP PHYSIOL, V100, P221 FENWICK EM, 1982, J PHYSIOL-LONDON, V331, P577 FRISHKOPF LS, 1963, J ACOUST SOC AM, V35, P1219, DOI 10.1121/1.1918676 FRISHKOP.LS, 1974, ACTA OTO-LARYNGOL, V77, P176, DOI 10.3109/00016487409124615 FUCHS PA, 1990, J PHYSIOL-LONDON, V429, P529 Goodman MB, 1996, BIOPHYS J, V71, P430 Goodman MB, 1996, J PHYSIOL-LONDON, V497, P395 Griguer C, 1996, J NEUROPHYSIOL, V75, P508 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 HOLT JR, 1995, J NEUROPHYSIOL, V73, P1484 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P237 LEWIS ER, 1975, BRAIN RES, V83, P35, DOI 10.1016/0006-8993(75)90856-2 LEWIS ER, 1982, SCIENCE, V215, P1641, DOI 10.1126/science.6978525 MEGELA AL, 1981, J NEUROPHYSIOL, V46, P465 MEGELA AL, 1984, J ACOUST SOC AM, V75, P1155, DOI 10.1121/1.390764 MURROW BW, 1990, P ROY SOC B-BIOL SCI, V242, P189, DOI 10.1098/rspb.1990.0123 MURROW BW, 1994, J PHYSIOL-LONDON, V480, P247 NARINS PM, 1989, J ACOUST SOC AM, V85, P1255, DOI 10.1121/1.397456 OHMORI H, 1984, J PHYSIOL-LONDON, V350, P561 PARSONS TD, 1994, NEURON, V13, P875, DOI 10.1016/0896-6273(94)90253-4 ROBERTS WM, 1990, J NEUROSCI, V10, P3664 RONKEN DA, 1991, J ACOUST SOC AM, V90, P2428, DOI 10.1121/1.402047 RONKEN DA, 1990, HEARING RES, V47, P63, DOI 10.1016/0378-5955(90)90167-N SHOFNER WP, 1981, J EXP BIOL, V93, P181 SIMMONS DD, 1992, J COMP NEUROL, V322, P191, DOI 10.1002/cne.903220205 SMOTHERMAN MS, 1999, UNPUB 2 POPULATIONS Smotherman MS, 1998, J NEUROPHYSIOL, V79, P312 SMOTHERMAN MS, 1999, UNPUB ELECT TUNING F STIEBLER IB, 1990, HEARING RES, V46, P63, DOI 10.1016/0378-5955(90)90140-K VANDIJK P, 1990, HEARING RES, V44, P231, DOI 10.1016/0378-5955(90)90083-2 WEISS TF, 1988, HEARING RES, V33, P167, DOI 10.1016/0378-5955(88)90029-9 WEVER EG, 1973, J MORPHOL, V141, P461, DOI 10.1002/jmor.1051410406 WILCZYNSKI W, 1984, PROG NEUROBIOL, V22, P1, DOI 10.1016/0301-0082(84)90016-9 YAMADA WY, 1997, THESIS U CALIFORNIA ZELICK R, 1985, HEARING RES, V17, P161, DOI 10.1016/0378-5955(85)90019-X NR 37 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 117 EP 130 DI 10.1016/S0378-5955(99)00047-7 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900012 PM 10392554 ER PT J AU Wit, HP Thalen, EO Albers, FWJ AF Wit, HP Thalen, EO Albers, FWJ TI Dynamics of inner ear pressure release, measured with a double-barreled micropipette in the guinea pig SO HEARING RESEARCH LA English DT Article DE cochlea; hydrops; endolymph; Meniere; aqueduct ID HYDROSTATIC-PRESSURE; COCHLEAR AQUEDUCT; ENDOLYMPHATIC HYDROPS; ROUND WINDOW; PERILYMPH; MEMBRANE; PATENCY AB The inner ear, fluid pressure was measured in scala media of the guinea pig through one barrel of a double-barreled micropipette after a sudden volume increase or decrease, caused by injection or withdrawal of artificial endolymph through the other barrel. During injection or withdrawal, the inner ear pressure changed in the order of 1-10 cm water, but it returned to its initial value within a few seconds. The time constant for the pressure recovery depended on the flow direction. It was on average 1.1 s after a short overpressure and 2.8 s after underpressure. The obtained results could be fitted with a simple physical model, when it was assumed that inner ear pressure recovery is a non-linear process, governed by a pressure-dependent flow resistance and/or membrane compliance. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Groningen Hosp, Dept Otorhinolaryngol, NL-9700 RB Groningen, Netherlands. RP Wit, HP (reprint author), Univ Groningen Hosp, Dept Otorhinolaryngol, POB 30-001, NL-9700 RB Groningen, Netherlands. EM h.p.wit@med.rug.nl CR ANDREWS JC, 1991, LARYNGOSCOPE, V101, P661 BEENTJES BI, 1972, ACTA OTO-LARYNGOL, V73, P112, DOI 10.3109/00016487209138919 BOHMER A, 1989, ARCH OTO-RHINO-LARYN, V246, P65, DOI 10.1007/BF00454138 BOHMER A, 1991, LARYNGOSCOPE, V101, P1307 CARLBORG B, 1982, ANN OTO RHINOL LARYN, V91, P209 DECORY L, 1990, LECT NOTES BIOMATH, V87, P270 DEMOTT J, 1997, RES OT ABSTR, V47, P12 Feldman A M, 1979, Neurol Res, V1, P11 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 GUMMER AW, 1981, J ACOUST SOC AM, V70, P1298, DOI 10.1121/1.387144 HORNER KC, 1993, HEARING RES, V68, P1, DOI 10.1016/0378-5955(93)90059-A IVARSSON A, 1977, ACTA OTO-LARYNGOL, V84, P38, DOI 10.3109/00016487709123940 JAKO G., 1959, ANN OTOL RHINOL AND LARYNGOL, V68, P733 Kakigi A, 1998, HEARING RES, V116, P113, DOI 10.1016/S0378-5955(97)00209-8 KLIS JFL, 1985, HEARING RES, V20, P15, DOI 10.1016/0378-5955(85)90054-1 LONG CH, 1987, OTOLARYNG HEAD NECK, V96, P83 MILLER CE, 1985, J ACOUST SOC AM, V77, P1465, DOI 10.1121/1.392041 NAKASHIMA T, 1987, ARCH OTO-RHINO-LARYN, V244, P236, DOI 10.1007/BF00455312 OLSON ES, 1991, J ACOUST SOC AM, V89, P1262, DOI 10.1121/1.400535 RAUCH S, 1964, BIOCH HORORGANS, P142 Salt AN, 1997, HEARING RES, V107, P29, DOI 10.1016/S0378-5955(97)00018-X SALT AN, 1986, NEUROBIOLOGY HEARING, P109 SCHRODER FHH, 1997, COMMUNICATION SEO T, 1997, P SEND EAR S, V7, P49 SUZUKI M, 1994, ACTA OTO-LARYNGOL, P16 SVANE-KNUDSEN V, 1958, Acta Otolaryngol, V49, P240, DOI 10.3109/00016485809134752 TAKEDA T, 1990, ACTA OTO-LARYNGOL, V110, P68, DOI 10.3109/00016489009122516 TAKEUCHI S, 1990, ACTA OTO-LARYNGOL, V109, P93, DOI 10.3109/00016489009107419 TAKEUCHI S, 1991, ANN OTO RHINOL LARYN, V100, P244 THALEN EO, 1998, INN EAR BIOL M INNSB THALEN EO, 1997, P 7 INTR INTR PRESS TONNDORF J., 1957, ANN OTOL RHINOL AND LARYNGOL, V66, P766 WLODYKA J, 1978, ANN OTO RHINOL LARYN, V87, P22 Yeh TH, 1997, HEARING RES, V109, P1, DOI 10.1016/S0378-5955(97)00030-0 YOSHIDA M, 1984, AM J OTOLARYNG, V5, P159, DOI 10.1016/S0196-0709(84)80007-1 ZUCCA G, 1991, ACTA OTO-LARYNGOL, V111, P820, DOI 10.3109/00016489109138417 NR 36 TC 24 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 131 EP 139 DI 10.1016/S0378-5955(99)00048-9 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900013 PM 10392555 ER PT J AU Hamernik, RP Ahroon, WA AF Hamernik, RP Ahroon, WA TI Susceptibility of the noise-toughened auditory system to noise-induced trauma SO HEARING RESEARCH LA English DT Article DE noise trauma; noise-induced toughening ID INDUCED HEARING-LOSS; THRESHOLD SHIFTS; CONDITIONING EXPOSURES; IMPULSE NOISE; CELL LOSS; PROTECTION; CHINCHILLAS; LEVEL AB The auditory system 'toughened' by an interrupted noise exposure has been shown in several reports, to be less affected by (or protected from) a subsequent high level noise exposure. A group of chinchillas (n = 12) was exposed to an interrupted noise at 95 dB SPL, 0.5 kHz octave band, 6 h/day for 10 days. Threshold shifts measured over the 10 day exposure showed that the animals responded by either (1) developing a large toughening effect (i.e., thresholds after day 10 of the exposure were considerably better than at the end of day 1) (n = 5) or (2) not showing any toughening, instead thresholds continued to get worse over the course of the exposure (n = 7). After a 5 day interval, during which thresholds of all the animals returned to normal, they, along with a control group (n = 10) not exposed to the interrupted noise, were exposed to an asymptotic threshold shift producing traumatic noise (127 dB peak SPL narrow band impact, 1 kHz center frequency, 24 h/day for 5 days). Auditory evoked potential audiometry and surface preparation histology showed that there were no statistically significant differences in the response of any of the above groups to the traumatic noise. The interrupted noise exposure, whether it produced a toughening or not, did not provide any protection from a subsequent high-level noise. (C) 1999 Elsevier Science B.V. All rights reserved. C1 SUNY Coll Plattsburgh, Auditory Res Lab, Plattsburgh, NY 12901 USA. RP Hamernik, RP (reprint author), SUNY Coll Plattsburgh, Auditory Res Lab, 107 Beaumont Hall,101 Broad St, Plattsburgh, NY 12901 USA. CR AHROON WA, 1993, J ACOUST SOC AM, V93, P997, DOI 10.1121/1.405406 Ahroon WA, 1999, HEARING RES, V129, P101, DOI 10.1016/S0378-5955(98)00227-5 BOETTCHER FA, 1992, HEARING RES, V62, P217, DOI 10.1016/0378-5955(92)90189-T CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 CARDER HM, 1972, J SPEECH HEAR RES, V15, P603 CLARK WW, 1987, J ACOUST SOC AM, V82, P1253, DOI 10.1121/1.395261 DAVIS H, 1950, Acta Otolaryngol Suppl, V88, P1 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 Fay R. R., 1988, HEARING VERTEBRATES Hamernik RP, 1998, J ACOUST SOC AM, V103, P3478, DOI 10.1121/1.423056 HAMERNIK RP, 1991, 241117 ADA US ARM ME HAMERNIK RP, 1994, J ACOUST SOC AM, V95, P444, DOI 10.1121/1.408338 HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 HENDERSON D, 1979, J ACOUST SOC AM, V65, P1231, DOI 10.1121/1.382790 HENSELMAN LW, 1994, HEARING RES, V78, P1, DOI 10.1016/0378-5955(94)90038-8 HUMES LE, 1984, J ACOUST SOC AM, V76, P1318, DOI 10.1121/1.391447 LIBERMAN MC, 1998, 21 MIDW RES M ASS RE, P140 McFadden SL, 1997, HEARING RES, V103, P142, DOI 10.1016/S0378-5955(96)00170-0 Miller J. D., 1963, ACTA OTO-LARYNGOL, V176, P1 MILLS JH, 1992, NOISE INDUCED HEARIN, P237 MILLS JH, 1973, J SPEECH HEAR RES, V16, P700 Roberto M, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P165 SAUNDERS JC, 1977, J ACOUST SOC AM, V61, P558, DOI 10.1121/1.381298 SUBRAMANIAM M, 1993, J ACOUST SOC AM, V93, P952, DOI 10.1121/1.405455 SUBRAMANIAM M, 1991, HEARING RES, V52, P181, DOI 10.1016/0378-5955(91)90197-H SUBRAMANIAM M, 1992, HEARING RES, V58, P57, DOI 10.1016/0378-5955(92)90008-B SUBRAMANIAM M, 1994, HEARING RES, V74, P204, DOI 10.1016/0378-5955(94)90188-0 SUBRAMANIAM M, 1993, HEARING RES, V65, P234, DOI 10.1016/0378-5955(93)90216-N White DR, 1998, J ACOUST SOC AM, V103, P1566, DOI 10.1121/1.421303 NR 30 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 140 EP 148 DI 10.1016/S0378-5955(99)00039-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900014 PM 10392556 ER PT J AU Chen, GD Fechter, LD AF Chen, GD Fechter, LD TI Potentiation of octave-band noise induced auditory impairment by carbon monoxide SO HEARING RESEARCH LA English DT Article DE hearing loss; carbon monoxide; ototoxicity; octave-band noise; compound action potential; cochlear microphonics; rat ID ACOUSTIC OVERSTIMULATION; THRESHOLD SHIFTS; EXPOSURE; ORGAN AB In previous studies from our lab, broadband noise induced hearing loss has been found to be potentiated by simultaneous carbon monoxide (CO) exposure. In the present study, octave-band noise induced auditory impairment was studied with the presence of CO at levels of 1500, 1200, 700, 500 and 300 ppm and zero (noise alone). Four octave-band noises (1.2-2.4, 2.4-4.8, 4.8-9.6 and 9.6-19.2 kHz) were used. Experimental subjects (rats) were grouped for the exposure (8 h) to each noise, CO and their combinations. The compound action potential (CAP) and cochlear microphonics (CM) were recorded 4 weeks after the exposure. The noise induced elevation of the CAP threshold and the CM iso-amplitude curve were potentiated by the simultaneous CO exposure when the CO level reached 500 ppm or higher. CO exposure alone had no effect on CAP or CM. The CO potentiation can occur in any frequency region depending on the noise band. The combined exposure can also induce threshold shifts in some cases in which both the noise and the CO alone did not cause threshold shifts. The size of the potentiation shown by CAP and CM was similar, indicating a possible origin of the CO potentiation from the damage to the outer hair cells. Interestingly, the hearing loss induced by noise alone gradually recovered (partially), but the hearing loss caused by the combined exposure did not. The potentiation may be due to the reduction of the cell's ability to repair noise induced damage by CO. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Oklahoma, Hlth Sci Ctr, Coll Pharm, Oklahoma City, OK 73190 USA. RP Chen, GD (reprint author), Univ Oklahoma, Hlth Sci Ctr, Coll Pharm, 1110 N Stonewall St,POB 26901, Oklahoma City, OK 73190 USA. CR BAKER SR, 1977, ANN OTO RHINOL LARYN, V86, P323 BURGESS WA, 1977, AM IND HYG ASSOC J, V38, P184, DOI 10.1080/0002889778507935 CHEN GD, 1999, UNPUB TOXICOL SCI CHEN GD, 1999, UNPUB POTENTIATION N FECHTER LD, 1987, HEARING RES, V27, P37, DOI 10.1016/0378-5955(87)90024-4 Fechter LD, 1997, TOXICOL APPL PHARM, V142, P47, DOI 10.1006/taap.1996.8027 FECHTER LD, 1988, HEARING RES, V34, P39, DOI 10.1016/0378-5955(88)90049-4 Fridberger A, 1998, P NATL ACAD SCI USA, V95, P7127, DOI 10.1073/pnas.95.12.7127 Kowalska S, 1981, Med Pr, V32, P145 Kowalska S, 1980, Med Pr, V31, P63 LIM DJ, 1986, AM J OTOLARYNG, V7, P73, DOI 10.1016/S0196-0709(86)80037-0 LIU Y, 1995, TOXICOL APPL PHARM, V132, P196, DOI 10.1006/taap.1995.1099 MAKISHIMA K, 1977, T AM ACAD OPHTHALMOL, V84, P452 MULROY MJ, 1990, HEARING RES, V49, P79, DOI 10.1016/0378-5955(90)90096-8 RAO DB, 1998, TOXICOL SCI, V42, P107 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 TREITMAN RD, 1980, AM IND HYG ASSOC J, V41, P796, DOI 10.1080/15298668091425662 *US EPA, 1991, EPA600890045F, P11 YOUNG JS, 1987, HEARING RES, V26, P37, DOI 10.1016/0378-5955(87)90034-7 NR 19 TC 29 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1999 VL 132 IS 1-2 BP 149 EP 159 DI 10.1016/S0378-5955(99)00044-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 203WJ UT WOS:000080730900015 PM 10392557 ER PT J AU Komeda, M Roessler, BJ Raphael, Y AF Komeda, M Roessler, BJ Raphael, Y TI The influence of interleukin-1 receptor antagonist transgene on spiral ganglion neurons SO HEARING RESEARCH LA English DT Article DE interleukin-1 receptor antagonist; gene transfer; guinea pig; spiral ganglion; adenoviral vector ID NERVE GROWTH-FACTOR; MEDIATED GENE-TRANSFER; FACTOR MESSENGER-RNA; HAIR CELL LOSS; GUINEA-PIG; ADENOVIRAL VECTOR; AUDITORY NEURONS; IN-VIVO; BRAIN INJURY; ROUND WINDOW AB The cytokine interleukin-1 beta (IL-1) has been shown to induce the secretion of NGF and GDNF in several types of neuronal populations. IL-1 has also been shown to mediate immune response following trauma or presence of foreign antigens. We investigated the influence of an IL-1 antagonist on the survival of spiral ganglion neurons in inner ears in which hair cells have been eliminated. We used a replication-deficient adenoviral vector containing the human IL-1 receptor antagonist (IL-1ra) cDNA. Guinea pigs were bilaterally deafened with ototoxic drugs. One week later their left cochleae were inoculated with the IL-1ra vector, designated Ad.IL-1ra. The vector was delivered by injection through the cochlear round window. IL-1ra protein levels within the perilymph of Ad.IL-1ra-injected animals were measured with ELISA and found to be significantly elevated compared to our controls. Spiral ganglion cell counts in experimental ears revealed a lower density of neurons after Ad.IL-1ra inoculation. Taken together, the data suggest that the Ad.IL-1ra-infected cochlear cells synthesized the transgenic human IL-1ra protein, which was then secreted by the cells into the perilymph, resulting in an accelerated neuronal degeneration in hair cell-depleted ears. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Sch Med, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Univ Michigan, Med Ctr, Dept Internal Med, Div Rheumatol, Ann Arbor, MI 48109 USA. RP Raphael, Y (reprint author), Univ Michigan, Sch Med, Dept Otolaryngol, Kresge Hearing Res Inst, MSRB 3 Room 9303,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM yoash@umich.edu CR Anderson WF, 1998, NATURE, V392, P25 Appel E, 1997, NEUROREPORT, V8, P3309, DOI 10.1097/00001756-199710200-00023 Arai K, 1997, MOL CELLS, V7, P1 AREND WP, 1993, ADV IMMUNOL, V54, P167, DOI 10.1016/S0065-2776(08)60535-0 BARAGI VM, 1995, J CLIN INVEST, V96, P2454, DOI 10.1172/JCI118303 BERKENBOSCH F, 1992, ANN NY ACAD SCI, V650, P186 BERKENBOSCH F, 1991, NEUR CONT B, V6, P131 BETZ AL, 1995, J CEREBR BLOOD F MET, V15, P547 CRYSTAL RG, 1995, SCIENCE, V270, P404, DOI 10.1126/science.270.5235.404 DAVIDSON BL, 1993, NAT GENET, V3, P219, DOI 10.1038/ng0393-219 DeKosky ST, 1996, ANN NEUROL, V39, P123, DOI 10.1002/ana.410390118 Dinarello CA, 1996, BLOOD, V87, P2095 DINARELLO CA, 1991, BLOOD, V77, P1627 DRAGHIA R, 1995, GENE THER, V2, P418 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 FAGAN AM, 1990, EXP NEUROL, V110, P105, DOI 10.1016/0014-4886(90)90055-W Friedman WJ, 1996, J BIOL CHEM, V271, P31115 Geschwind MD, 1996, HUM GENE THER, V7, P173, DOI 10.1089/hum.1996.7.2-173 GIULIAN D, 1988, J NEUROSCI, V8, P2485 GIULIAN D, 1994, NEUROCHEM INT, V25, P227, DOI 10.1016/0197-0186(94)90066-3 Hagan P, 1996, NEUROSCIENCE, V75, P1033, DOI 10.1016/0306-4522(96)00225-4 Hahn M, 1997, J NEUROCHEM, V69, P102 HASKILL S, 1991, P NATL ACAD SCI USA, V88, P3681, DOI 10.1073/pnas.88.9.3681 JYUNG RW, 1989, OTOLARYNG HEAD NECK, V101, P670 Karpati G, 1996, TRENDS NEUROSCI, V19, P49 Lalwani AK, 1996, GENE THER, V3, P588 LAMM K, 1986, ACTA OTO-LARYNGOL, V102, P27, DOI 10.3109/00016488609108642 LazarovSpiegler O, 1996, FASEB J, V10, P1296 LENNARD AC, 1995, CRIT REV IMMUNOL, V15, P77 Low W, 1996, J CELL PHYSIOL, V167, P443, DOI 10.1002/(SICI)1097-4652(199606)167:3<443::AID-JCP8>3.0.CO;2-P Makarov SS, 1996, P NATL ACAD SCI USA, V93, P402, DOI 10.1073/pnas.93.1.402 MASHHOUR B, 1994, GENE THER, V1, P122 MERTENS J, 1991, EUR ARCH OTO-RHINO-L, V248, P395, DOI 10.1007/BF01463561 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Nabel GJ, 1998, NATURE, V392, P3 Otani K, 1996, J IMMUNOL, V156, P3558 PATTERSON JC, 1994, ENDOCRINOLOGY, V135, P1697, DOI 10.1210/en.135.4.1697 Raphael Y., 1998, CURR OPIN OTOLARYNGO, V6, P311, DOI 10.1097/00020840-199810000-00005 Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X ROESSLER BJ, 1995, HUM GENE THER, V6, P307, DOI 10.1089/hum.1995.6.3-307 SAKLATVALA J, 1995, BRIT MED BULL, V51, P402 SAPORITO MS, 1993, EXP NEUROL, V123, P295, DOI 10.1006/exnr.1993.1162 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9 VandeWater TR, 1996, CIBA F SYMP, V196, P149 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Weiss MA, 1997, INT J DEV NEUROSCI, V15, P577, DOI 10.1016/S0736-5748(96)00112-8 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 ZAPPIA JJ, 1989, HEARING RES, V40, P29, DOI 10.1016/0378-5955(89)90096-8 NR 50 TC 25 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 1 EP 10 DI 10.1016/S0378-5955(99)00006-4 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600001 PM 10355599 ER PT J AU Kurc, M Farina, M Lins, U Kachar, B AF Kurc, M Farina, M Lins, U Kachar, B TI Structural basis for mechanical transduction in the frog vestibular sensory apparatus: III. The organization of the otoconial mass SO HEARING RESEARCH LA English DT Article DE electron microscopy; freeze-etching; otoconium; vestibular system; otolithic membrane; mechanical transduction; frog vestibular sensory organ ID CALCITE; AMPHIBIANS; ARAGONITE; OTOLITHS; PROTEIN; NEWT AB The saccule and the utricle of the vestibular system detect linear acceleration and gravity. Sensory transduction in these organs depends on myriads of calcium carbonate crystals of high specific gravity, called otoconia, embedded in a filament matrix that overlies the sensory epithelium. The coexistence of hard crystals and slender filaments in this complex extracellular matrix makes it difficult to analyze by conventional electron microscopy. We have now examined this structure in the bullfrog saccule using the quick-freeze, deep-etch replica technique. The otoconia in their typical aragonite polymorph shape exhibit smooth surfaces and are embedded in a loose matrix made of two types of filaments. The regular surface of the otoconia forms a natural smooth background against which we could observe with unprecedented detail the network organization and substructure of the filaments. One type of filament is 8 nm in diameter, while the other, which has a characteristic beaded appearance, is 15 nm in diameter. Both types of filaments either make lateral connections with or end directly on the surface of the otoconia. A consistent observation was the presence of short filaments that directly cross-link adjacent otoconia. Very few otoconia were fractured in an orientation that would allow the study of their internal architecture. These otoconia presented a typical conchoidal cleavage of aragonite. Although crystallites were not clearly apparent, thin lamellar microstructures appeared oriented both perpendicularly and longitudinally to the major otoconial axis. This structural study establishes a framework for the identification of the molecular components present in this unique extracellular matrix and may also help elucidate their role in mechanical transduction. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Natl Inst Deafness & Other Commun Disorders, Lab Cellular Biol, NIH, Bethesda, MD 20892 USA. Fed Univ Rio De Janeiro, Inst Ciencias Biomed, Dept Anat, Lab Biomineralizacao, BR-21941590 Rio De Janeiro, Brazil. Fed Univ Rio De Janeiro, Inst Microbiol Prof Paulo de Goes, Setor Microscopia Eletron, BR-21941590 Rio De Janeiro, Brazil. Fed Univ Rio De Janeiro, Inst Microbiol Prof Paulo de Goes, Dept Microbiol Geral, BR-21941590 Rio De Janeiro, Brazil. RP Kachar, B (reprint author), Natl Inst Deafness & Other Commun Disorders, Lab Cellular Biol, NIH, Bldg 36 Rm 5D-15, Bethesda, MD 20892 USA. RI Farina, Marcos/I-3744-2014 CR BAIRD IL, 1974, BRAIN BEHAV EVOLUT, V10, P11, DOI 10.1159/000124300 Baloh RW, 1990, CLIN NEUROPHYSIOLOGY CARLSTROM DD, 1963, BIOL BULL, V125, P441, DOI 10.2307/1539358 Falini G, 1996, SCIENCE, V271, P67, DOI 10.1126/science.271.5245.67 GAULDIE RW, 1993, J MORPHOL, V218, P1, DOI 10.1002/jmor.1052180102 GILLOYZAGA P, 1985, HEARING RES, V18, P269, DOI 10.1016/0378-5955(85)90043-7 HALLWORTH R, 1995, HEARING RES, V85, P115, DOI 10.1016/0378-5955(95)00038-6 HEUSER JE, 1983, J MOL BIOL, V169, P155, DOI 10.1016/S0022-2836(83)80179-X Hillman D.E., 1976, P452 Hunter-Duvar IM, 1984, ULTRASTRUCTURAL ATLA, P211 JAEGER RG, 1994, HEARING RES, V77, P207, DOI 10.1016/0378-5955(94)90268-2 KACHAR B, 1990, HEARING RES, V45, P179, DOI 10.1016/0378-5955(90)90119-A Kido Toshishige, 1997, Auris Nasus Larynx, V24, P125, DOI 10.1016/S0385-8146(96)00020-X Lim DJ, 1984, ULTRASTRUCTURAL ATLA, P245 Lowenstam H.A., 1991, MECH PHYLOGENY MINER, P3 MANN S, 1983, PROC R SOC SER B-BIO, V218, P415, DOI 10.1098/rspb.1983.0048 MARMO F, 1981, CELL TISSUE RES, V218, P265 MARMO F, 1983, CELL TISSUE RES, V233, P35 Oliveira AM, 1996, NATURWISSENSCHAFTEN, V83, P133 POTE KG, 1991, COMP BIOCHEM PHYS B, V98, P287, DOI 10.1016/0305-0491(91)90181-C POTE KG, 1993, BIOCHEMISTRY-US, V32, P5017, DOI 10.1021/bi00070a007 POTE KG, 1993, HEARING RES, V67, P189, DOI 10.1016/0378-5955(93)90246-W STEYGER PS, 1995, HEARING RES, V84, P61, DOI 10.1016/0378-5955(95)00013-T NR 23 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 11 EP 21 DI 10.1016/S0378-5955(99)00007-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600002 PM 10355600 ER PT J AU Ruckenstein, MJ Keithley, EM Bennett, T Powell, HC Baird, S Harris, JP AF Ruckenstein, MJ Keithley, EM Bennett, T Powell, HC Baird, S Harris, JP TI Ultrastructural pathology in the stria vascularis of the MRL-Fas(lpr) mouse SO HEARING RESEARCH LA English DT Article DE autoimmune; cochlea; systemic lupus erythematosus; stria vascularis ID AUTOIMMUNE STRAIN MOUSE; INNER-EAR DISEASE; LUPUS; CELLS AB The MRL-Fas(1pr) mouse, a model of multisystemic, organ nonspecific autoimmune disease, has been proposed as a model of immune-mediated inner ear disease. A preliminary study employing light microscopy indicated that it develops cochlear pathology that appeared most striking in the stria vascularis, where cells underwent edema and degeneration. However, other structures, including the inner and outer hair cells and the supporting cells, also appeared to display pathology. The current study analyzed cochlear ultrastructure using transmission electron microscopy to better delineate the cochlear lesions Found in these animals. MRL-Fas(1pr) animals were allowed to develop systemic disease (20 weeks old) and then had auditory brainstem response (ABR) thresholds determined. Animals were then killed and their cochleas prepared for electron microscopy. Age-matched MRL-+/+ and BALB/c mice served as controls. Results indicated that MRL-Fas(1pr) mice demonstrated elevated ABR thresholds. In contrast to a preliminary report, the cochlear pathology was observed exclusively in the stria vascularis, where cells demonstrated hydropic degeneration. Strial capillary structure was normal as were the rest of the cellular cochlear constituents. No inflammatory infiltrate was noted. These studies confirm that the MRL-Fas(1pr) mouse develops cochlear abnormalities focused in the stria vascularis. Whether the mechanism of the cellular degeneration involves autoimmune, genetic, or uremic processes has yet to be determined. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Hosp Univ Penn, Dept Otorhinolaryngol Head & Neck Surg, Philadelphia, PA 19104 USA. Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, San Diego, CA 92103 USA. Univ Calif San Diego, Vet Adm Med Ctr, Dept Pathol, San Diego, CA 92103 USA. RP Ruckenstein, MJ (reprint author), Hosp Univ Penn, Dept Otorhinolaryngol Head & Neck Surg, 5 Ravdin,3400 Spruce St, Philadelphia, PA 19104 USA. CR KUMAR V, 1992, BASIC PATHOLOGY, P3 Kusakari C, 1992, Ann Otol Rhinol Laryngol Suppl, V157, P82 MCMENOMEY SO, 1992, OTOLARYNG HEAD NECK, V106, P288 Mountz John D., 1993, Current Opinion in Rheumatology, V5, P557 Nariuchi H, 1994, Acta Otolaryngol Suppl, V514, P127 Peng SL, 1997, ANN NY ACAD SCI, V815, P128, DOI 10.1111/j.1749-6632.1997.tb52055.x RUCKENSTEIN MJ, 1991, J OTOLARYNGOL, V20, P196 RUCKENSTEIN MJ, 1998, IN PRESS OTOLARYNGOL RUCKENSTEIN MJ, 1993, ACTA OTO-LARYNGOL, V113, P160, DOI 10.3109/00016489309135785 RUCKENSTEIN MJ, 1998, ANN M ASS RES OT ST SCARPELLI DG, 1990, ANDERSONS PATHOLOGY, P1 SCHUKNECHT HF, 1991, ADV OTO-RHINO-LARYNG, V46, P50 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 Spicer SS, 1998, HEARING RES, V118, P1, DOI 10.1016/S0378-5955(98)00006-9 STEPHENS SDG, 1982, AUDIOLOGY, V21, P128 THEOFILOPOULOS AN, 1985, ADV IMMUNOL, V37, P269, DOI 10.1016/S0065-2776(08)60342-9 TRUNE DR, 1991, AM J OTOLARYNG, V12, P259, DOI 10.1016/0196-0709(91)90003-X WU JG, 1993, J EXP MED, V178, P461, DOI 10.1084/jem.178.2.461 NR 18 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 22 EP 28 DI 10.1016/S0378-5955(99)00018-0 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600003 PM 10355601 ER PT J AU Yoshida, N Liberman, MC AF Yoshida, N Liberman, MC TI Stereociliary anomaly in the guinea pig: effects of hair bundle rotation on cochlear sensitivity SO HEARING RESEARCH LA English DT Article DE outer hair cell; congenital; stereocilia ID ACOUSTIC TRAUMA; CELLS; PROTECTION; THRESHOLD; MEMBRANE; INJURY AB Histological analysis of cochleas from 100 albino guinea pigs (Hartley strain) obtained from Charles River Laboratories revealed an apparently congenital anomaly in 24% of animals, with roughly equal prevalence in males and females. In affected animals, 15-50% of the first-row outer hair cells (OHCs) showed distinctly abnormal orientation of the W-shaped stereociliary array. These abnormal hair bundles could be rotated by up to 180 degrees from the normal quasi-radial orientation. Second- and third-row OHCs appeared normal in all cases. Cochlear sensitivity was assayed in a subset of animals via compound action potentials (CAPs): CAP thresholds in affected animals were, on average, elevated by 5-10 dB with respect to normal controls. If the contributions of individual OHCs to cochlear 'amplification' add linearly, and if the total OHC contribution corresponds to similar to 45 dB of 'gain', a quantitative correlation of the degree of stereociliary rotation and the degree of threshold shift in these ears suggests that first-row OHCs make a larger contribution to the cochlear amplifier than either of the other OHC rows. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. Tohoku Univ, Sch Med, Dept Otolaryngol, Sendai, Miyagi 980, Japan. RP Liberman, MC (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. CR BREDBERG G, 1972, ACTA OTOLARYNGOL S, V301, P3 COMIS SD, 1989, HEARING RES, V40, P205, DOI 10.1016/0378-5955(89)90161-5 DALLOS P, 1985, ROLE OUTER HAIR CELL DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 ENGSTROM B, 1983, HEARING RES, V12, P251, DOI 10.1016/0378-5955(83)90110-7 FUJITA H, 1990, HEARING RES, V44, P63, DOI 10.1016/0378-5955(90)90022-H FURNESS DN, 1990, ACTA OTO-LARYNGOL, V109, P66, DOI 10.3109/00016489009107416 KIANG NYS, 1976, ANN OTO RHINOL LARYN, V85, P752 Kiang N.Y.S., 1965, MIT RES MONOGRAPH, V35 Kujawa SG, 1997, J NEUROPHYSIOL, V78, P3095 LIBERMAN MC, 1987, HEARING RES, V26, P45, DOI 10.1016/0378-5955(87)90035-9 LIBERMAN MC, 1978, ACTA OTOLARYNGOL S, V358, P5 Liberman MC, 1982, NEW PERSPECTIVES NOI, P105 LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X LIBERMAN MC, 1995, HEARING RES, V90, P158, DOI 10.1016/0378-5955(95)00160-2 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 ROBERTSON D, 1980, HEARING RES, V2, P39, DOI 10.1016/0378-5955(80)90015-5 ROBERTSON D, 1980, HEARING RES, V3, P167, DOI 10.1016/0378-5955(80)90044-1 ROBERTSON D, 1982, HEARING RES, V7, P55, DOI 10.1016/0378-5955(82)90081-8 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 SHERA CA, 1998, IN PRESS J ACOUST SO Tsuji J, 1997, J COMP NEUROL, V381, P188 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WERSALL J, 1965, COLD SPRING HARB SYM, V30, P115 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 NR 26 TC 24 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 29 EP 38 DI 10.1016/S0378-5955(99)00008-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600004 PM 10355602 ER PT J AU Nuttall, AL Guo, MH Ren, TY AF Nuttall, AL Guo, MH Ren, TY TI The radial pattern of basilar membrane motion evoked by electric stimulation of the cochlea SO HEARING RESEARCH LA English DT Article DE guinea pig; otoacoustic emission; laser Doppler velocimetry; outer hair cell; electromotility ID OUTER HAIR CELL; PRODUCT OTOACOUSTIC EMISSIONS; FORCE GENERATION; GERBIL COCHLEA; GUINEA-PIG; STIFFNESS; ELECTROMOTILITY; RESPONSES; MOTILITY AB Electric current applied to the cochlea can evoke in situ electromotile responses of the organ of Corti. These nonsound-generated responses can give insight into the mechanics of the organ as the putative forces produced by outer hair cells (OHC) must couple to the modes of vibration of the basilar membrane (BM), In this study, platinum-iridium wire electrodes were positioned into the scala vestibuli and scala tympani of the first cochlear turn in the guinea pig. Current (1.5 ms rectangular-shaped pulses) was applied to these electrodes at levels to 500 mu A peak. A laser Doppler velocimeter was used to record the velocity or displacement of the basilar membrane at the tonotopic 18 kHz place via an opening into the scala tympani of the first cochlear turn. Beads were positioned across the width of the BM so that the velocity or displacement of the BM could be studied in the radial direction. It was found that the current pulses evoked linear displacements of up to 2 nm for current levels of 500 CIA (higher levels were damaging to the organ of Corti). The pattern of motion across the width of the BM was such that maximum displacement and velocity was located near the first row of OHCs and the position of the outer pillar cell footplate. The BM motion was biphasic in that the zona arcuata moved in the opposite direction to that of the zona pectinata. The results of this study demonstrate that the level of force produced by OHCs is effective in moving the BM and that the distribution of force within the organ of Corti leads to a multimodal motion pattern of the BM for this experimentally artificial means of evoking OHC motion. (C) 1999 Elsevier Science B.V. Al rights reserved. C1 Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, Portland, OR 97201 USA. First Mil Med Univ, Zhujiang Hosp, Dept Otolaryngol, Guangzhou 510282, Peoples R China. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Nuttall, AL (reprint author), Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, NRC04,3181 SW Sam Jackson Pk Rd, Portland, OR 97201 USA. CR Bekesy G., 1960, EXPT HEARING BROWN MC, 1983, SCIENCE, V222, P69, DOI 10.1126/science.6623058 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 DALLOS P, 1992, J NEUROSCI, V12, P4575 Dallos P, 1997, J NEUROSCI, V17, P2212 EVANS BN, 1991, HEARING RES, V52, P288, DOI 10.1016/0378-5955(91)90019-6 GEISLER CD, 1986, HEARING RES, V24, P125, DOI 10.1016/0378-5955(86)90056-0 Hallworth R, 1995, J NEUROPHYSIOL, V74, P2319 HONRUBIA V, 1968, J ACOUST SOC AM, V44, P951, DOI 10.1121/1.1911234 Kolston PJ, 1996, J ACOUST SOC AM, V99, P455, DOI 10.1121/1.414557 MAMMANO F, 1993, NATURE, V365, P838, DOI 10.1038/365838a0 MOUNTAIN DC, 1989, HEARING RES, V42, P195, DOI 10.1016/0378-5955(89)90144-5 NILSEN KE, 1998, 21 MIDW RES M ASS RE NUTTALL AL, 1993, J ACOUST SOC AM, V93, P390, DOI 10.1121/1.405619 NUTTALL AL, 1995, ACTIVE HEARING, P283 NUTTALL AL, 1997, 34 WORKSH INN EAR BI Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2 NUTTALL AL, 1993, P INT S BIOPH HAIR C, P288 NUTTALL AL, 1991, HEARING RES, V51, P203, DOI 10.1016/0378-5955(91)90037-A OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331 OLSON ES, 1991, J ACOUST SOC AM, V89, P1262, DOI 10.1121/1.400535 Ren TY, 1995, HEARING RES, V92, P178, DOI 10.1016/0378-5955(95)00217-0 Ren TY, 1996, HEARING RES, V102, P43, DOI 10.1016/S0378-5955(96)00145-1 Ren TY, 1996, NEUROSCI LETT, V207, P167, DOI 10.1016/0304-3940(96)12524-6 RUSSELL IJ, 1995, AUDIT NEUROSCI, V1, P309 SANTOS-SACCHI J, 1993, BIOPHYS J, V65, P2217 SANTOS-SACCHI J, 1989, J NEUROSCI, V9, P2954 STEELE CR, 1981, J ACOUST SOC AM, V69, P1107, DOI 10.1121/1.385679 XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103 XUE S, 1993, P INT S BIOPH HAIR C, P361 Xue SW, 1996, AUDIT NEUROSCI, V2, P301 ZENNER HP, 1992, ACTA OTO-LARYNGOL, V112, P248 ZHANG L, 1997, DIVERSITY AUDITORY M NR 33 TC 32 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 39 EP 46 DI 10.1016/S0378-5955(99)00009-X PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600005 PM 10355603 ER PT J AU Stevens, HE Wickesberg, RE AF Stevens, HE Wickesberg, RE TI Ensemble responses of the auditory nerve to normal and whispered stop consonants SO HEARING RESEARCH LA English DT Article DE speech; whisper; consonant; auditory nerve ID VOICE-ONSET TIME; DISCHARGE RATE REPRESENTATION; STEADY-STATE VOWELS; FIBER REPRESENTATION; COMPLEX TONES; TEMPORAL CUES; SPEECH; CHINCHILLA; PATTERNS; DISCRIMINATION AB Whispered syllables lack many of the frequency and voicing cues of normally voiced speech, but these two acoustically distinct forms of speech are placed into the same linguistic categories. To examine how whispered and voiced speech are encoded in the auditory system, the responses to speech sounds were recorded from 132 single auditory nerve fibers in 20 ketamine anesthetized chinchillas. Stimuli were the naturally produced syllables /da/ and /ta/ presented in whispered and normal voicing. The results for each syllable presented at a fixed intensity were analyzed by pooling the responses from individual auditory nerve fibers across animals to create a global average peri-stimulus time (GAPST) histogram. For each word-initial consonant, the pattern of peaks in the GAPST was the same for both normal and whispered speech. For the vowel, the GAPSTs for the whispered speech sounds did not display the synchronization observed in the responses to the voiced syllables. The temporal pattern of the peaks was constant over a 40 dB intensity range, although peak sizes varied. Grouping fibers within different frequency ranges created local averages (LAPST) that revealed the significant contribution of high frequency fibers in the response to the whispered consonants. Responses of individual fibers Varied with both the syllable and the voicing. These findings suggest that the encoding of either a whispered or a normal stop consonant results in the same temporal pattern in the ensemble response. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Illinois, Dept Psychol, Champaign, IL 61820 USA. RP Stevens, HE (reprint author), Univ Illinois, Dept Psychol, 603 E Daniel St, Champaign, IL 61820 USA. CR Bergman M., 1980, AGING PERCEPTION SPE Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 CARNEY LH, 1986, J ACOUST SOC AM, V79, P1896, DOI 10.1121/1.393197 DANNENBRING GL, 1980, PERCEPT MOTOR SKILL, V51, P979 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P908, DOI 10.1121/1.390537 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 GARSTECKI DC, 1987, J ACAD REHABILITATIV, V20, P49 HSIAOCHUAN C, 1988, DISS ABSTR IND B, V50, P895 KALLAIL KJ, 1982, DISS ABSTR INT, V42 KUHL PK, 1975, SCIENCE, V190, P69, DOI 10.1126/science.1166301 KUHL PK, 1986, EXP BIOL, V45, P233 KUHL PK, 1981, J ACOUST SOC AM, V70, P340, DOI 10.1121/1.386782 MILLER JL, 1990, LANGUAGE INVITATION MILLER MI, 1983, J ACOUST SOC AM, V74, P502, DOI 10.1121/1.389816 REPP BH, 1989, J ACOUST SOC AM, V85, P379, DOI 10.1121/1.397689 Rhode WS, 1992, MAMMALIAN AUDITORY P, P94 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SACHS MB, 1988, J PHONETICS, V16, P37 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SINEX DG, 1993, J ACOUST SOC AM, V94, P1351, DOI 10.1121/1.408163 SINEX DG, 1994, J ACOUST SOC AM, V95, P897, DOI 10.1121/1.408400 SINEX DG, 1991, J ACOUST SOC AM, V90, P2441, DOI 10.1121/1.402048 SINEX DG, 1989, J ACOUST SOC AM, V85, P1995, DOI 10.1121/1.397852 SINEX DG, 1988, J ACOUST SOC AM, V83, P1817, DOI 10.1121/1.396516 SINEX DG, 1983, J ACOUST SOC AM, V79, P1896 Stevens H. E., 1997, Society for Neuroscience Abstracts, V23, P463 STEVENS HE, 1999, ASS RES OT ABS, V22, P139 TARTTER VC, 1989, J ACOUST SOC AM, V86, P1678, DOI 10.1121/1.398598 VOIGT HF, 1982, HEARING RES, V8, P49, DOI 10.1016/0378-5955(82)90033-8 WOOD CC, 1976, J ACOUST SOC AM, V60, P1381, DOI 10.1121/1.381231 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 NR 32 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 47 EP 62 DI 10.1016/S0378-5955(99)00014-3 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600006 PM 10355604 ER PT J AU Tian, F Fessenden, JD Schacht, J AF Tian, F Fessenden, JD Schacht, J TI Cyclic GMP-dependent protein kinase-I in the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE cyclic GMP-dependent protein kinase I; cochlea; immunohistochemistry; pericyte; hair cell; supporting cell ID VASCULAR SMOOTH-MUSCLE; NITRIC-OXIDE SYNTHASE; BLOOD-FLOW; RAT COCHLEA; CELLS; PHOSPHORYLATION; LOCALIZATION; INHIBITION; PHYSIOLOGY; RELAXATION AB Recent studies have begun to characterize the nitric oxide/cyclic GMP/protein kinase G pathway in the mammalian cochlea by demonstrating the presence of both the enzyme that produces nitric oxide (NO), nitric oxide synthase, and the NO receptor, soluble guanylate cyclase. The present study investigated protein kinase G (cyclic GMP-dependent protein kinase-I, cGK-I), the downstream enzyme of this pathway that frequently mediates its physiological effects. A commercial antibody to a human cGK-I sequence recognized a protein of appropriate molecular weight in Western blots of guinea pig aorta. Immunostaining of guinea pig aorta was consistent with the expected distribution of cGK-I. In lateral wall tissues of the cochlea, pericytes lining the blood vessels of the spiral ligament were strongly immunoreactive. In the organ of Corti, cGK-I was detected in Hensen's, Deiters', and pillar cells, but not in inner and outer hair cells. This distribution coincides with the localization of soluble guanylate cyclase activity and suggests that cGK-I mediates the effects of the NO/cyclic GMP pathway in the cochlea. It reinforces the hypothesis that the NO/cyclic GMP/cGK-I pathway is involved in regulation of cochlear blood flow and supporting cell physiology. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Hunan Med Univ, Second Affiliated Hosp, Dept Otolaryngol, Changsha, Peoples R China. RP Schacht, J (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. CR AOKI E, 1991, BRAIN RES, V559, P159 BLATTER LA, 1994, CELL CALCIUM, V15, P122, DOI 10.1016/0143-4160(94)90051-5 BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8 Brenman JE, 1996, CELL, V84, P757, DOI 10.1016/S0092-8674(00)81053-3 Chen CH, 1998, NEUROSCI LETT, V248, P127, DOI 10.1016/S0304-3940(98)00316-4 COLING DE, 1991, HEARING RES, V57, P113, DOI 10.1016/0378-5955(91)90080-S CORNWELL TL, 1989, J BIOL CHEM, V264, P1146 CORNWELL TL, 1991, MOL PHARMACOL, V40, P923 Dulon D., 1995, ACTIVE HEARING, P195 Fessenden JD, 1998, HEARING RES, V118, P168, DOI 10.1016/S0378-5955(98)00027-6 Fessenden JD, 1997, J HISTOCHEM CYTOCHEM, V45, P1401 FESSENDEN JD, 1994, BRAIN RES, V668, P9, DOI 10.1016/0006-8993(94)90505-3 Franz P, 1996, ACTA OTO-LARYNGOL, V116, P726, DOI 10.3109/00016489609137914 FURUKAWA KI, 1991, J BIOL CHEM, V266, P12337 GRUETTER CA, 1981, J PHARMACOL EXP THER, V219, P181 Guihard G, 1996, BIOCHEM J, V318, P849 HAEFLIGER IO, 1994, INVEST OPHTH VIS SCI, V35, P991 HIRATA M, 1990, J BIOL CHEM, V265, P1268 JOYCE NC, 1984, MICROVASC RES, V28, P206, DOI 10.1016/0026-2862(84)90018-9 KURIYAMA H, 1993, HEARING RES, V69, P215, DOI 10.1016/0378-5955(93)90110-M LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0 Lincoln T M, 1995, Adv Pharmacol, V34, P305 LOHMANN SM, 1981, P NATL ACAD SCI-BIOL, V78, P653, DOI 10.1073/pnas.78.1.653 SAFIEDDINE S, 1992, NEUROREPORT, V3, P1145, DOI 10.1097/00001756-199212000-00029 Vass Z, 1996, HEARING RES, V100, P114, DOI 10.1016/0378-5955(96)00102-5 WALTER U, 1981, EUR J BIOCHEM, V118, P339 Wanikiat P, 1997, BRIT J PHARMACOL, V122, P1135, DOI 10.1038/sj.bjp.0701477 Yamane H, 1997, HEARING RES, V108, P65, DOI 10.1016/S0378-5955(97)00041-5 YOSHIDA Y, 1991, J BIOL CHEM, V266, P19819 ZDANSKI CJ, 1994, HEARING RES, V79, P39, DOI 10.1016/0378-5955(94)90125-2 NR 30 TC 15 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 63 EP 70 DI 10.1016/S0378-5955(99)00015-5 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600007 PM 10355605 ER PT J AU Ryals, BM Dooling, RJ Westbrook, E Dent, ML MacKenzie, A Larsen, ON AF Ryals, BM Dooling, RJ Westbrook, E Dent, ML MacKenzie, A Larsen, ON TI Avian species differences in susceptibility to noise exposure SO HEARING RESEARCH LA English DT Article DE noise exposure; hearing; avian; hair cell ID HAIR-CELL REGENERATION; PARAKEET MELOPSITTACUS-UNDULATUS; INTENSE SOUND EXPOSURE; CHICK BASILAR PAPILLA; ACOUSTIC TRAUMA; INNER-EAR; THRESHOLD SHIFT; AUDITORY-SYSTEM; NEONATAL CHICK; HEARING-LOSS AB Previous studies of hair cell regeneration and hearing recovery in birds after acoustic overstimulation have involved relatively few species. Studies of the effects of acoustic overexposure typically report high variability. Though it is impossible to tell, the data so far also suggest there may be considerable species differences in the degree of damage and the time course and extent of recovery. To examine this issue, we exposed four species of birds (quail, budgerigars, canaries, and zebra finches) to identical conditions of acoustic overstimulation and systematically analyzed changes in hearing sensitivity, basilar papilla morphology, and hair cell number. Quail and budgerigars showed the greatest susceptibility to threshold shift and hair cell loss after overstimulation with either pure tone or bandpass noise, while identical types of overstimulation in canaries and zebra finches resulted in much less of a threshold shift and a smaller, more diffuse hair cell loss. All four species showed some recovery of threshold sensitivity and hair cell number over time. Canary and zebra finch hearing and hair cell number recovered to within normal limits while quail and budgerigars continued to have an approximately 20 dB threshold shift and incomplete recovery of hair cell number. In a final experiment, birds were exposed to identical wide-band noise overstimulation under conditions of artificial middle ear ventilation. Hair cell loss was substantially increased in both budgerigars and canaries suggesting that middle ear air pressure regulation and correlated changes in middle ear transfer function are one factor influencing susceptibility to acoustic overstimulation in small birds. (C) 1999 Elsevier Science B.V. All rights reserved. C1 James Madison Univ, Dept Commun Sci & Disorders, Auditory Res Lab, Harrisonburg, VA 22807 USA. Univ Maryland, Dept Psychol, College Pk, MD 20742 USA. Mcguire Res Inst, Richmond, VA 23249 USA. Odense Univ, Inst Biol, Ctr Sound Commun, DK-5230 Odense, Denmark. RP Ryals, BM (reprint author), James Madison Univ, Dept Commun Sci & Disorders, Auditory Res Lab, Harrisonburg, VA 22807 USA. RI Larsen, Ole /B-3070-2015 CR ADLER HJ, 1992, ACTA OTO-LARYNGOL, V112, P444, DOI 10.3109/00016489209137425 Borg E, 1972, Acta Otolaryngol Suppl, V304, P1 CALFORD MB, 1988, J COMP PHYSIOL A, V162, P503, DOI 10.1007/BF00612515 CORWIN JT, 1992, EXP NEUROL, V115, P7, DOI 10.1016/0014-4886(92)90212-9 COTANCHE DA, 1987, HEARING RES, V25, P267, DOI 10.1016/0378-5955(87)90098-0 COTANCHE DA, 1990, HEARING RES, V46, P29, DOI 10.1016/0378-5955(90)90137-E Cotanche DA, 1995, HEARING RES, V91, P148, DOI 10.1016/0378-5955(95)00185-9 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 COUNTER SA, 1982, ACTA OTO-LARYNGOL, V94, P267, DOI 10.3109/00016488209128913 DINGPFENNIGDORF.JD, 1998, HEARING RES, V120, P109 Dooling R.J., 1980, P261 Dooling R. J., 1995, METHODS COMP PSYCHOA, P161 DOOLING RJ, 1975, J COMP PHYSIOL PSYCH, V88, P1, DOI 10.1037/h0076226 Dooling RJ, 1997, P NATL ACAD SCI USA, V94, P14206, DOI 10.1073/pnas.94.25.14206 DUCKERT LG, 1993, OTOLARYNG CLIN N AM, V26, P873 GLEICH O, 1988, HEARING RES, V34, P69, DOI 10.1016/0378-5955(88)90052-4 GLEICH O, 1994, J MORPHOL, V221, P1, DOI 10.1002/jmor.1052210102 Hashino E., 1989, Journal of the Acoustical Society of Japan (E), V10 HASHINO E, 1989, J ACOUST SOC AM, V85, P289, DOI 10.1121/1.397736 HASHINO E, 1988, J ACOUST SOC AM, V83, P2450, DOI 10.1121/1.396325 HELLSTROEM P, 1993, J ACOUST SOC AM, V80, P783 JORGENSEN JM, 1991, CIBA F SYMP, V160, P151 Larsen O. N., 1996, DIVERSITY AUDITORY M, P11 LINZENBOLD A, 1993, ASS RES OT ABSTR, V16, P211 Manley G. A., 1990, PERIPHERAL HEARING M MANLEY GA, 1993, J MORPHOL, V218, P153, DOI 10.1002/jmor.1052180205 MAREAN GC, 1993, HEARING RES, V71, P125, DOI 10.1016/0378-5955(93)90028-Y MARSH RR, 1990, HEARING RES, V46, P229, DOI 10.1016/0378-5955(90)90004-9 MCFADDEN EA, 1989, HEARING RES, V41, P205, DOI 10.1016/0378-5955(89)90012-9 Miller E. H., 1982, ACOUSTIC COMMUNICATI, V2, P95 MILLS JH, 1981, J ACOUST SOC AM, V73, P918 NIEMIEC AJ, 1994, HEARING RES, V79, P1, DOI 10.1016/0378-5955(94)90122-8 NIEMIEC AJ, 1993, ASS RES OT ABSTR, V16, P119 OECKINGHAUS H, 1983, J COMP PHYSIOL, V150, P61 OKANOYA K, 1990, J ACOUST SOC AM, V87, P2782, DOI 10.1121/1.399069 OKANOYA K, 1987, J COMP PSYCHOL, V101, P7, DOI 10.1037//0735-7036.101.1.7 PUGLIANO FA, 1993, ACTA OTO-LARYNGOL, V113, P18, DOI 10.3109/00016489309135761 RUBEL EW, 1991, CIBA F SYMP, V160, P77 RUBEL EW, 1982, ACTA OTO-LARYNGOL, V93, P31, DOI 10.3109/00016488209130849 RYALS BM, 1985, HEARING RES, V19, P135, DOI 10.1016/0378-5955(85)90117-0 RYALS BM, 1982, ACTA OTO-LARYNGOL, V93, P205, DOI 10.3109/00016488209130873 SAUNDERS J, 1974, P NATL ACAD SCI USA, V71, P1962, DOI 10.1073/pnas.71.5.1962 Saunders J. C., 1982, NEW PERSPECTIVES NOI, P229 SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 SAUNDERS JC, 1992, EXP NEUROL, V115, P13, DOI 10.1016/0014-4886(92)90213-A SAUNDERS JC, 1993, HEARING RES, V69, P25, DOI 10.1016/0378-5955(93)90090-N SAUNDERS SS, 1995, J ACOUST SOC AM, V98, P1365, DOI 10.1121/1.413472 TSUE TT, 1994, OTOLARYNG HEAD NECK, V111, P281, DOI 10.1016/S0194-5998(94)70603-4 NR 48 TC 31 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 71 EP 88 DI 10.1016/S0378-5955(99)00022-2 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600008 PM 10355606 ER PT J AU Nuding, SC Chen, GD Sinex, DG AF Nuding, SC Chen, GD Sinex, DG TI Monaural response properties of single neurons in the chinchilla inferior colliculus SO HEARING RESEARCH LA English DT Article DE inferior colliculus; single unit; chinchilla; monaural stimulation ID DORSAL COCHLEAR NUCLEUS; PRIMARY AUDITORY-CORTEX; LOW-FREQUENCY NEURONS; UNIT RESPONSES; HOUSE MOUSE; CAT; REPRESENTATION; RABBIT; NOISE; STIMULATION AB The responses of 274 inferior colliculus (IC) central nucleus neurons from 20 chinchillas were studied. Characteristic frequency (CF) increased as the IC was traversed in the dorsal-ventral direction. Most units had little or no spontaneous activity, with a mean threshold for response of about 30 dB SPL across all units. Tuning curve width varied between units, with a significant increase in Q(20) with increasing CF. Peri-stimulus time histogram (PSTH) types were similar to those reported for cat inferior colliculus units. Transient, sustained, pauser, and buildup types were observed, with transient responses predominating. Response area (RA) types were also similar to those of cat IC units, with most units displaying stable best frequencies across a range of stimulus intensity levels. For a few units, excitatory RA regions were surrounded by inhibitory sidebands. Nonmonotonic discharge rate vs. stimulus intensity level functions were common in all CF ranges and for all PSTH and RA types. Mean first spike latencies, however, differed across PSTH groups, owing to the temporal definitions of these PSTH shapes. Latencies of sustained units were significantly longer than those of transient units, and buildup PSTHs showed significantly longer latencies than any other group. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Boys Town Natl Res Hosp, Omaha, NE 68131 USA. RP Sinex, DG (reprint author), Arizona State Univ, Dept Speech & Hearing Sci, Box 871908, Tempe, AZ 85287 USA. CR AITKIN L, 1994, EXP BRAIN RES, V98, P53 AITKIN L, 1991, J NEUROPHYSIOL, V65, P383 AITKIN LM, 1985, J NEUROPHYSIOL, V53, P43 AITKIN LM, 1972, BRAIN RES, V47, P91, DOI 10.1016/0006-8993(72)90254-5 AITKIN LM, 1972, BRAIN RES, V47, P77, DOI 10.1016/0006-8993(72)90253-3 AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1196 ALBRECHT D, 1989, BRAIN RES BULL, V22, P923, DOI 10.1016/0361-9230(89)90001-4 ANGEL A, 1985, J PHYSL, V364, P33 Astl J, 1996, AUDIOLOGY, V35, P335 CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106 Chen GD, 1996, AUDIT NEUROSCI, V3, P179 EHRET G, 1985, J COMP PHYSIOL A, V156, P619, DOI 10.1007/BF00619111 EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 EVANS EF, 1973, EXP BRAIN RES, V17, P402 GRINNELL AD, 1963, J PHYSIOL-LONDON, V167, P38 HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P296, DOI 10.3109/00016489309135812 HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A KALTENBACH JA, 1987, EXP NEUROL, V96, P406, DOI 10.1016/0014-4886(87)90058-6 KUWADA S, 1984, J NEUROPHYSIOL, V51, P1306 KUWADA S, 1989, J NEUROPHYSIOL, V61, P269 LANGNER G, 1987, HEARING RES, V31, P197, DOI 10.1016/0378-5955(87)90127-4 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LU Z, 1993, J COMP PHYSIOL A, V173, P33 MAST RE, 1973, J AUD RES, V13, P289 MAST TE, 1970, J ACOUST SOC AM, V48, P505, DOI 10.1121/1.1912165 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 MOORE DR, 1983, BRAIN RES, V269, P69, DOI 10.1016/0006-8993(83)90963-0 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 Nuding S. C., 1993, Society for Neuroscience Abstracts, V19, P535 OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 RHODE WS, 1987, J NEUROPHYSIOL, V57, P414 Rhode WS, 1991, NEUROBIOLOGY HEARING, P47 ROSE JE, 1963, J NEUROPHYSIOL, V26, P294 SEMPLE MN, 1985, J NEUROPHYSIOL, V53, P1467 Sinex DG, 1997, J NEUROSCI METH, V75, P33, DOI 10.1016/S0165-0270(97)02260-7 STIEBLER I, 1985, J COMP NEUROL, V238, P65, DOI 10.1002/cne.902380106 SUGA N, 1965, J PHYSIOL-LONDON, V179, P26 SUTTER ML, 1995, J NEUROPHYSIOL, V73, P190 SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 NR 41 TC 33 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 89 EP 106 DI 10.1016/S0378-5955(99)00023-4 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600009 PM 10355607 ER PT J AU Manley, GA Koppl, C Sneary, M AF Manley, GA Koppl, C Sneary, M TI Reversed tonotopic map of the basilar papilla in Gekko gecko SO HEARING RESEARCH LA English DT Article DE Tokay gecko; gekko; tonotopic; frequency map; tuning ID TOKAY-GECKO; FREQUENCY REPRESENTATION; LIZARD TILIQUA; HAIR-CELLS; MODEL; COCHLEA; NERVE; ORGANIZATION; INNERVATION; RESONANCE AB A published model of the frequency responses of different locations on the basilar papilla of the Tokay gecko Gekko gecko (Authier and Manley, 1995. Hear. Res. 82, 1-13) had implied that (a) unlike all other amniotes studied so far, the frequency map is reversed, with the low frequencies at the base and the high frequencies at the apex, and (b) the high-frequency area is split into two parallel-lying hair cell areas covering different frequency ranges. To test these hypotheses. the frequency representation along the basilar papilla of Gekko gecko was studied by recording from single auditory afferent nerve fibers and labelling them iontophoretically with horseradish peroxidase. Successfully labelled fibers covered a range of characteristic frequencies from 0.42 to 4.9 kHz, which extended from 78% to 9% of the total papillar length, as measured from the apex. The termination sites of labelled fibers within the basilar papilla correlated with their characteristic frequency, the lowest frequencies being represented basally, and the highest apically. This confirms the first prediction of the model. The map indicates, however, that one of the two high-frequency papillar regions (the postaxial segment) represents the full high-frequency range, from about 1 to 5 kHz. No functionally identified labelling was achieved in the preaxial segment. Thus the assumptions underlying the proposed model need revision. A good mathematical description of the frequency distribution was given by an exponential regression with a mapping constant in the living state of approximately 0.4 mm/octave. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Tech Univ Munich, Inst Zool, D-85747 Garching, Germany. San Jose State Univ, Dept Biol Sci, San Jose, CA 95192 USA. RP Manley, GA (reprint author), Tech Univ Munich, Inst Zool, Lichtenbergstr 4, D-85747 Garching, Germany. CR AUTHIER S, 1995, HEARING RES, V82, P1 CHEN L, 1994, HEARING RES, V81, P130, DOI 10.1016/0378-5955(94)90160-0 EATOCK RA, 1981, J COMP PHYSIOL, V142, P203 FREEMAN DM, 1990, HEARING RES, V48, P37, DOI 10.1016/0378-5955(90)90198-X GLEICH O, 1989, HEARING RES, V37, P255, DOI 10.1016/0378-5955(89)90026-9 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 KOPPL C, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P489 KOPPL C, 1990, J COMP PHYSIOL A, V167, P101 KOPPL C, 1995, HEARING RES, V82, P14 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 Manley G. A., 1990, PERIPHERAL HEARING M MANLEY GA, 1988, HEARING RES, V33, P181, DOI 10.1016/0378-5955(88)90031-7 Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0 MANLEY GA, 1989, COCHLEAR MECH STRUCT, P143 MANLEY GA, 1987, SCIENCE, V237, P655, DOI 10.1126/science.3603046 MARCELLINI D, 1977, AM ZOOL, V17, P251 Miller M.R., 1980, P169 MILLER MR, 1985, J COMP NEUROL, V232, P1, DOI 10.1002/cne.902320102 MILLER MR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P463 MILLER MR, 1988, J COMP NEUROL, V271, P604, DOI 10.1002/cne.902710410 MILLER MR, 1973, Z ZELLFORSCH MIK ANA, V136, P307, DOI 10.1007/BF00307037 MULLER M, 1991, HEARING RES, V56, P191, DOI 10.1016/0378-5955(91)90169-A MULLER M, 1991, HEARING RES, V56, P1, DOI 10.1016/0378-5955(91)90147-2 MULLER M, 1993, HEARING RES, V67, P198, DOI 10.1016/0378-5955(93)90247-X SAMSDODD F, 1994, HEARING RES, V76, P16, DOI 10.1016/0378-5955(94)90083-3 TURNER RG, 1981, SCIENCE, V213, P1519, DOI 10.1126/science.7280673 TURNER RG, 1987, HEARING RES, V26, P287, DOI 10.1016/0378-5955(87)90064-5 WEISS TF, 1985, HEARING RES, V20, P157, DOI 10.1016/0378-5955(85)90166-2 WERNER YL, 1978, ISR J ZOOL, V27, P176 WEVER EG, 1978, REPTILE EAR NR 30 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 107 EP 116 DI 10.1016/S0378-5955(99)00021-0 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600010 PM 10355608 ER PT J AU Kamimura, T Whitworth, CA Rybak, LP AF Kamimura, T Whitworth, CA Rybak, LP TI Effect of 4-methylthiobenzoic acid on cisplatin-induced ototoxicity in the rat SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 21st Midwinter Research Meeting of the Association-for-Research-in-Otolaryngology CY FEB 15-19, 1998 CL ST PETERSBURG BEACH, FLORIDA SP Assoc Res Otolaryngol DE cisplatin; ototoxicity; 4-methylthiobenzoic acid; auditory brainstem response; scanning electron microscopy ID HIGH-DOSE CISPLATIN; AUDITORY HAIR-CELLS; ANTIOXIDANT SYSTEM; CIS-PLATINUM; GUINEA-PIG; SODIUM THIOSULFATE; INDUCED DAMAGE; PROTECTION; NEPHROTOXICITY; AGENTS AB The purpose of this study was to investigate the effectiveness of 4-methylthiobenzoic acid (MTBA) as a protection agent against cisplatin (CDDP)-induced changes in organ of Corti surface structure, compared to electrophysiological changes. Electrophysiological change was assessed using auditory brainstem response (ABR) and morphological changes were assessed using scanning electron microscopy (SEM). Male Wistar rats underwent pre-treatment ABRs in response to clicks, and tone bursts at 2, 4, 8, 16, and 32 kHz. The three groups of rats were injected as follows: (1) MTBA (250 mg/kg, i.p.), (2) CDDP (16 mg/kg, i.p.), (3) CDDP+MTBA. (16 mg/kg, i.p.+250 mg/kg, i.p.). Post-treatment ABRs were performed 3 days after drug administration and rats were sacrificed. Their cochleae were harvested and SEM was used to examine the surface of the organ of Corti, specifically the number of inner hair cells (IHCs) and outer hair cells (OHCs) in the apical, middle and basal turns of the cochlea. Animal weight was measured on the first and final days. There was a good correlation between ABR threshold changes and hair cell loss in the high frequency region of the cochlea (basal turn), while threshold changes in the lower test frequencies (middle turn) appeared to be the result of more subtle changes in the cochlea. MTBA provided effective protection against cisplatin-induced ABR threshold changes at all test frequencies as well as hair cell loss. MTBA also protected against body weight loss. (C) 1999 Elsevier Science B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. RP Rybak, LP (reprint author), So Illinois Univ, Sch Med, Dept Surg, POB 19230, Springfield, IL 62794 USA. CR BOHMER A, 1988, ACTA OTO-LARYNGOL, V106, P368, DOI 10.3109/00016488809122259 BOOGAARD PJ, 1991, BIOCHEM PHARMACOL, V41, P1997, DOI 10.1016/0006-2952(91)90141-Q BROCK PR, 1991, MED PEDIATR ONCOL, V19, P295, DOI 10.1002/mpo.2950190415 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 CHURCH MW, 1995, HEARING RES, V86, P195, DOI 10.1016/0378-5955(95)00066-D Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 DIRE F, 1993, ANN ONCOL, V4, P55 DOBYAN DC, 1986, LAB INVEST, V55, P557 Dormans JAMA, 1996, TOXICOL APPL PHARM, V136, P179, DOI 10.1006/taap.1996.0022 FREI B, 1994, AM J MED, V97, pS5, DOI 10.1016/0002-9343(94)90292-5 Gabaizadeh R, 1997, ACTA OTO-LARYNGOL, V117, P232, DOI 10.3109/00016489709117778 HINOJOSA R, 1995, AM J OTOL, V16, P731 Hunter-Duvar I M, 1978, Acta Otolaryngol Suppl, V351, P3 Husain K, 1996, FUND APPL TOXICOL, V32, P278, DOI 10.1006/faat.1996.0131 JONES MM, 1991, ANTICANCER RES, V11, P449 Kaltenbach JA, 1997, OTOLARYNG HEAD NECK, V117, P493, DOI 10.1016/S0194-5998(97)70020-2 KIMITSUKI T, 1993, HEARING RES, V71, P64, DOI 10.1016/0378-5955(93)90021-R KONISHI T, 1983, AM J OTOLARYNG, V4, P18, DOI 10.1016/S0196-0709(83)80003-9 KOPELMAN J, 1988, LARYNGOSCOPE, V98, P858 Kopke RD, 1997, AM J OTOL, V18, P559 LAURELL G, 1991, J OTOLARYNGOL, V20, P158 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 MALICK LE, 1975, STAIN TECHNOL, V50, P265 MOLLER M, 1991, HEARING RES, V51, P247 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 OTTO WC, 1988, HEARING RES, V35, P79, DOI 10.1016/0378-5955(88)90042-1 PASIC TR, 1991, LARYNGOSCOPE, V101, P985 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X RUBIN JS, 1995, J LARYNGOL OTOL, V109, P744 RYBAK LP, 1998, IN PRESS AM J OTOL Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173 RYBAK LP, 1981, J LARYNGOL OTOL, V95, P745, DOI 10.1017/S0022215100091374 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 Saito T, 1997, EUR ARCH OTO-RHINO-L, V254, P281, DOI 10.1007/BF02905989 SAITO T, 1991, HEARING RES, V56, P143, DOI 10.1016/0378-5955(91)90163-4 Saito T, 1996, ACTA OTO-LARYNGOL, V116, P561, DOI 10.3109/00016489609137889 SCHWEITZER VG, 1986, LARYNGOSCOPE, V96, P948 SCHWEITZER VG, 1993, OTOLARYNG CLIN N AM, V26, P759 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 TANGE RA, 1982, ARCH OTO-RHINO-LARYN, V237, P17, DOI 10.1007/BF00453712 VATER M, 1985, J COMP PHYSIOL A, V157, P671, DOI 10.1007/BF01351361 VERMORKEN JB, 1983, EUR J CANCER CLIN ON, V19, P53, DOI 10.1016/0277-5379(83)90398-X WALKER EM, 1994, ANN CLIN LAB SCI, V24, P121 NR 46 TC 34 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 117 EP 127 DI 10.1016/S0378-5955(99)00017-9 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600011 PM 10355609 ER PT J AU Ichimiya, I Suzuki, M Hirano, T Mogi, G AF Ichimiya, I Suzuki, M Hirano, T Mogi, G TI The influence of pneumococcal otitis media on the cochlear lateral wall SO HEARING RESEARCH LA English DT Article DE blood-labyrinth barrier; connexin 26; fibrinogen; mouse; spiral ligament; Streptococcus pneumoniae ID SENSORINEURAL HEARING-LOSS; INNER-EAR; STRIA VASCULARIS; SPIRAL LIGAMENT; FINE-STRUCTURE; GUINEA-PIG; DAMAGE; PERMEABILITY; PROTEINS; BRAIN AB The cochlear influence of otitis media was investigated in order to identify damaged regions causing cochlear malfunction. BALB/c mice were challenged with viable Streptococcus pneumoniae into the middle ear cavity and were killed 1 day to 1 month later for immunohistochemical analysis. Otitis media was induced in all of the animals, and some showed inflammatory cells in the cochlea. Although other changes were not obvious by hematoxylin and eosin staining, immunohistochemistry showed the presence of fibrinogen in the cochlea, mainly in the lower portion of the spiral ligament and in the spiral limbus. Immunostaining for connexin 26 was decreased in the spiral ligament, accompanied by marked fibrinogen staining. Immunostaining for sodium-potassium-adenosine triphosphatase in the stria vascularis and in the type II fibrocytes of the spiral ligament was not affected obviously. The presence of fibrinogen in the cochlea suggests disruption of the blood-labyrinth barrier caused by the middle ear inflammation. Changes in connexin 26 staining suggest the possibility that the spiral ligament could be among the regions responsible for the cochlear malfunction. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Oita Med Univ, Dept Otolaryngol, Hasama, Oita 8795593, Japan. RP Mogi, G (reprint author), Oita Med Univ, Dept Otolaryngol, 1-1 Idaigaoka, Hasama, Oita 8795593, Japan. CR ADAMS JC, 1992, J HISTOCHEM CYTOCHEM, V40, P1457 ALLAM A F, 1970, Journal of Laryngology and Otology, V84, P765, DOI 10.1017/S0022215100072534 GLODDEK B, 1992, LARYNGOSCOPE, V102, P177 GUO YC, 1994, J LARYNGOL OTOL, V108, P310 Ichikawa T, 1997, CLIN ORAL IMPLAN RES, V8, P18, DOI 10.1111/j.1600-0501.1997.tb00003.x ICHIMIYA I, 1994, ANN OTO RHINOL LARYN, V103, P457 ICHIMIYA I, 1994, ACTA OTO-LARYNGOL, V114, P167, DOI 10.3109/00016489409126037 Ichimiya I, 1998, LARYNGOSCOPE, V108, P585, DOI 10.1097/00005537-199804000-00023 JUHN SK, 1988, ACTA OTOLARYNGOL S S, V457, P43 KAWAUCHI H, 1988, ACTA OTOLARYNGOL S S, V457, P100 Kelemen G, 1969, Acta Otolaryngol Suppl, V253, P1 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 LIM D J, 1970, Journal of Laryngology and Otology, V84, P413, DOI 10.1017/S0022215100072029 MEYERHOFF WL, 1980, OTOLARYNG HEAD NECK, V88, P606 MORIZONO T, 1985, ARCH OTOLARYNGOL, V111, P794 PAPARELLA MM, 1984, ANN OTO RHINOL LARYN, V93, P623 PAPARELLA MM, 1981, ACTA OTO-LARYNGOL, V92, P513, DOI 10.3109/00016488109133290 PETITO CK, 1992, ANN NEUROL, V32, P658, DOI 10.1002/ana.410320509 SAIJO S, 1984, ACTA OTO-LARYNGOL, V97, P593, DOI 10.3109/00016488409132937 SAKAGAMI M, 1982, CELL TISSUE RES, V226, P511 SAKAGAMI M, 1984, ACTA OTO-LARYNGOL, V98, P53, DOI 10.3109/00016488409107534 SCHACHERN PA, 1992, ARCH OTOLARYNGOL, V118, P53 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SOILUHANNINEN M, 1994, J VIROL, V68, P6291 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SUZUKI M, 1989, ANN OTO RHINOL LARYN, V98, P980 WRIGHT JL, 1972, ARCHIV OTOLARYNGOL, V96, P16 NR 27 TC 43 Z9 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 128 EP 134 DI 10.1016/S0378-5955(99)00025-8 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600012 PM 10355610 ER PT J AU Edeline, JM Manunta, Y Nodal, FR Bajo, VM AF Edeline, JM Manunta, Y Nodal, FR Bajo, VM TI Do auditory responses recorded from awake animals reflect the anatomical parcellation of the auditory thalamus? SO HEARING RESEARCH LA English DT Article DE guinea pig; medial geniculate body; anatomical parcellation; latency; frequency tuning ID MEDIAL GENICULATE-BODY; BAT PTERONOTUS-PARNELLII; GUINEA-PIG; FUNCTIONAL-ORGANIZATION; TONOTOPIC ORGANIZATION; SINGLE NEURONS; INFERIOR COLLICULUS; VENTRAL DIVISION; RECEPTIVE-FIELDS; LATERAL AMYGDALA AB Previous studies performed in anesthetized animals have shown differences between the acoustic responses of neurons recorded from the different divisions of the medial geniculate body (MGB). This study aimed at determining whether or not such differences are also expressed when neurons are recorded from awake animals. The auditory responses of 130 neurons of the auditory thalamus were determined in awake, restrained guinea pigs while the state of vigilance of the animals was continuously monitored. There were significantly more 'on' phasic evoked responses and significantly fewer 'non-responsive' or 'labile' cells in the ventral division of the MGB (MGv) than in the other divisions. The response latencies and the variability of the latencies were smaller in the MGv than in the other divisions. The tuning of the neurons obtained from MGv and from the lateral part of the posterior complex were significantly sharper than those coming from the dorsal division of the MGB and the medial division. The mean threshold and the percentage of monotonic vs. non-monotonic intensity functions were not different in the subdivisions of the auditory thalamus. When compared with previous studies, the quantifications of the acoustic responses obtained in the present study gave values that differed from those reported under deep anesthesia, but were close to those reported under light anesthesia. Lastly, even if none of the physiological characteristic makes it possible, by itself, to determine the locus of recordings in the auditory thalamus, we conclude that the physiological characteristics of the evoked responses obtained in MGv differ from those of other divisions. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Paris Sud, CNRS, URA 1491, Lab Neurobiol Apprentissage & Memoire, F-91405 Orsay, France. Univ Salamanca, Inst Neurociencias Castilla & Leon, Lab Neurobiol Audic, Salamanca 37007, Spain. RP Edeline, JM (reprint author), Univ Paris Sud, CNRS, URA 1491, Lab Neurobiol Apprentissage & Memoire, F-91405 Orsay, France. CR AITKIN LM, 1974, J NEUROPHYSIOL, V37, P512 AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275 AITKIN LM, 1972, J NEUROPHYSIOL, V35, P365 ALLON N, 1981, EXP BRAIN RES, V41, P222 ALLON N, 1985, BRAIN RES, V360, P75, DOI 10.1016/0006-8993(85)91222-3 ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312 BORDI F, 1994, EXP BRAIN RES, V98, P275, DOI 10.1007/BF00228415 BORDI F, 1994, EXP BRAIN RES, V98, P261, DOI 10.1007/BF00228414 BRUGGE JF, 1973, J NEUROPHYSIOL, V36, P1130 BURTON H, 1976, J COMP NEUROL, V168, P249, DOI 10.1002/cne.901680204 CABALLEROBLEDA M, 1991, J CHEM NEUROANAT, V4, P271, DOI 10.1016/0891-0618(91)90018-8 Cajal S. R., 1911, HISTOLOGIE SYSTEME N CALFORD MB, 1983, J NEUROSCI, V3, P2350 CALFORD MB, 1983, J NEUROSCI, V3, P2365 CALFORD MB, 1983, HEARING RES, V11, P395, DOI 10.1016/0378-5955(83)90070-9 CLERICI WJ, 1990, J COMP NEUROL, V297, P14, DOI 10.1002/cne.902970103 CLERICI WJ, 1990, J COMP NEUROL, V297, P32, DOI 10.1002/cne.902970104 DEVENECIA RK, 1995, J COMP NEUROL, V359, P595, DOI 10.1002/cne.903590407 DIAMOND IT, 1969, BRAIN RES, V15, P205 EDELINE JM, 1991, BEHAV NEUROSCI, V105, P618, DOI 10.1037/0735-7044.105.5.618 EDELINE JM, 1991, BEHAV NEUROSCI, V105, P154, DOI 10.1037/0735-7044.105.1.154 EVANS EF, 1979, ARCH OTOLARYNGOL, V105, P185 HASHIKAWA T, 1995, J COMP NEUROL, V362, P195, DOI 10.1002/cne.903620204 Hennevin E., 1995, Society for Neuroscience Abstracts, V21, P952 HIRSCH JC, 1983, BRAIN RES, V259, P308, DOI 10.1016/0006-8993(83)91264-7 IMIG TJ, 1985, J NEUROPHYSIOL, V53, P836 IMIG TJ, 1984, J COMP NEUROL, V227, P511, DOI 10.1002/cne.902270405 IMIG TJ, 1985, J NEUROPHYSIOL, V53, P309 JONES EG, 1971, J COMP NEUROL, V143, P185, DOI 10.1002/cne.901430204 Jones EG, 1985, THALAMUS KOELLE GB, 1955, J PHARMACOL EXP THER, V114, P167 LEDOUX JE, 1987, J COMP NEUROL, V264, P123, DOI 10.1002/cne.902640110 Li XF, 1996, LEARN MEMORY, V3, P229, DOI 10.1101/lm.3.2-3.229 LOVE JA, 1969, CAN J PHYSIOL PHARM, V47, P881 MCCORMICK DA, 1987, J PHYSIOL-LONDON, V392, P147 MCCORMICK DA, 1988, J NEUROPHYSIOL, V59, P978 MOLINARI M, 1995, J COMP NEUROL, V362, P171, DOI 10.1002/cne.903620203 MOORE RY, 1963, J COMP NEUROL, V121, P109, DOI 10.1002/cne.901210109 MoralesCobas G, 1995, J SLEEP RES, V4, P242 MOREL A, 1987, EXP BRAIN RES, V69, P24 MOREST DK, 1965, J ANAT, V99, P611 MOREST DK, 1986, ADV ANAT EMBRYOL CEL, V97, P1 MOREST DK, 1964, J ANAT, V98, P611 OLIVER DL, 1978, J COMP NEUROL, V182, P423, DOI 10.1002/cne.901820305 PHILLIPS DP, 1989, HEARING RES, V37, P269, DOI 10.1016/0378-5955(89)90027-0 PHILLIPS DP, 1979, J NEUROPHYSIOL, V42, P123 Quirk GJ, 1997, NEURON, V19, P613, DOI 10.1016/S0896-6273(00)80375-X Quirk G. J., 1996, V61, P247 REDIES H, 1991, EXP BRAIN RES, V86, P384 RODRIGUESDAGAEFF C, 1989, HEARING RES, V39, P103, DOI 10.1016/0378-5955(89)90085-3 ROUILLER E, 1983, HEARING RES, V11, P235, DOI 10.1016/0378-5955(83)90081-3 ROUILLER EM, 1989, HEARING RES, V39, P127, DOI 10.1016/0378-5955(89)90086-5 SANDELL JH, 1986, J COMP NEUROL, V243, P326, DOI 10.1002/cne.902430304 SIMS KL, 1974, J HISTOCHEM CYTOCHEM, V22, P7 Steriade M, 1990, BRAINSTEM CONTROL WA STRUTZ J, 1987, HNO, V35, P407 Tennigkeit F, 1996, J NEUROPHYSIOL, V76, P3597 TOROSMOREL A, 1981, NEURONAL MECH HEARIN, P239 WEPSIC JG, 1966, EXP NEUROL, V15, P299, DOI 10.1016/0014-4886(66)90053-7 WHITFIEL.IC, 1968, J SOUND VIB, V8, P108, DOI 10.1016/0022-460X(68)90197-1 WHITFIELD I C, 1972, Brain Behavior and Evolution, V6, P311, DOI 10.1159/000123718 WINER JA, 1984, HEARING RES, V15, P225, DOI 10.1016/0378-5955(84)90031-5 WINER JA, 1994, J COMP NEUROL, V346, P183, DOI 10.1002/cne.903460203 Winer J.A., 1991, NEUROBIOLOGY HEARING, P293 Winer JA, 1992, MAMMALIAN AUDITORY P, P222 WINER JA, 1994, J COMP NEUROL, V346, P161, DOI 10.1002/cne.903460202 WINER JA, 1985, ADV ANAT EMBRYOL CEL, V86, P1 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 68 TC 43 Z9 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 135 EP 152 DI 10.1016/S0378-5955(99)00026-X PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600013 PM 10355611 ER PT J AU Muller, M Smolders, JWT AF Muller, M Smolders, JWT TI Responses of auditory nerve fibers innervating regenerated hair cells after local application of gentamicin at the round window of the cochlea in the pigeon SO HEARING RESEARCH LA English DT Article DE bird; pigeon; inner ear; aminoglycoside; gentamicin; hair cell; regeneration; basilar papilla; auditory nerve; ototoxicity; local drug application ID SEVERE ACOUSTIC TRAUMA; LIGHT-MICROSCOPIC EVIDENCE; INTENSE SOUND EXPOSURE; CHICK BASILAR PAPILLA; GANGLION NEURONS; AMINOGLYCOSIDE TOXICITY; KANAMYCIN OTOTOXICITY; ADULT CHICKENS; INNER-EAR; TECTORIAL MEMBRANE AB Hair cells in the basilar papilla of birds have the capacity to regenerate after injury. There is also functional recovery of hearing after regeneration of the hair cells. The present study was undertaken to determine the effect of local aminoglycoside application on the physiology of auditory nerve fibers innervating regenerated hair cells. Collagen sponges loaded with gentamicin were placed at the round window of the cochlea in adult pigeons. The local application of gentamicin-loaded collagen sponges resulted in total hair cell loss over at least the basal 62% of the basilar papilla. According to the pigeon cochlear place-frequency map (Smolders, Ding-Pfennigdorff and Klinke, Hear. Res. 92 (1995) 151-169), frequencies above 0.3 kHz are represented in this area. Physiological data on single auditory nerve fibers were obtained 14 weeks after gentamicin treatment. The response properties showed the following characteristics when compared to control data: CF thresholds (CF = characteristic frequency) were elevated in units with CF above 0.15 kHz, sharpness of tuning (Q(10dB)) was reduced in units with CF above 0.38 kHz, low-frequency slopes of the tuning curves were reduced in units with CF above 0.25 kHz, high frequency slopes of the tuning curves were reduced in units with CF above 0.4 kHz, spontaneous firing rate was reduced in units with CF above 0.38 kHz, dynamic range of rate-intensity functions at CF was reduced in units with CF above 0.4 kHz and the slopes of these rate-intensity functions were elevated in units with CF above 0.4 kHz. Maximum discharge rate was the only parameter that remained unchanged in regenerated ears. The results show that the response properties of auditory nerve fibers which innervate areas of the papilla that were previously devoid of hair cells are poorer than the controls, but that action potential generation in the afferent fibers is unaffected. This suggests that despite structural regeneration of the basilar papilla, functional recovery of the auditory periphery is incomplete at the level of the hair cell or the hai; cell-afferent synapse. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Frankfurt Klinikum, Inst Physiol 3, D-60590 Frankfurt, Germany. RP Smolders, JWT (reprint author), Univ Frankfurt Klinikum, Inst Physiol 3, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. CR ADLER HJ, 1993, HEARING RES, V71, P214, DOI 10.1016/0378-5955(93)90037-2 Bekesy G., 1960, EXPT HEARING BHAVE SA, 1995, J NEUROSCI, V15, P4618 Carey JP, 1996, J NEUROPHYSIOL, V76, P3301 CHEN L, 1995, HEARING RES, V89, P28, DOI 10.1016/0378-5955(95)00119-5 Chen L, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P43 Chen L, 1996, HEARING RES, V98, P152, DOI 10.1016/0378-5955(96)00086-X CHEN L, 1994, HEARING RES, V81, P130, DOI 10.1016/0378-5955(94)90160-0 Chen L, 1997, J ACOUST SOC AM, V102, P2245, DOI 10.1121/1.419598 CHEN L, 1993, HEARING RES, V69, P15, DOI 10.1016/0378-5955(93)90089-J CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 CORWIN JT, 1992, EXP NEUROL, V115, P7, DOI 10.1016/0014-4886(92)90212-9 COTANCHE DA, 1987, HEARING RES, V30, P197, DOI 10.1016/0378-5955(87)90136-5 Cotanche DA, 1997, ANN OTO RHINOL LARYN, V106, P9 COTANCHE DA, 1994, CURR OPIN NEUROBIOL, V4, P508 COTANCHE DA, 1990, HEARING RES, V46, P29, DOI 10.1016/0378-5955(90)90137-E CRAWFORD AC, 1981, J PHYSIOL-LONDON, V312, P377 CRUZ RM, 1987, ARCH OTOLARYNGOL, V113, P1058 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 Ding-Pfennigdorff D, 1998, HEARING RES, V120, P109, DOI 10.1016/S0378-5955(98)00055-0 DINGPFENNIGDORF.D, 1998, HEARING RES, V123, P109 Ding-Pfennigdorff D, 1998, HEARING RES, V123, P207, DOI 10.1016/S0378-5955(98)00112-9 Dooling RJ, 1997, P NATL ACAD SCI USA, V94, P14206, DOI 10.1073/pnas.94.25.14206 DUCKERT LG, 1990, HEARING RES, V48, P161, DOI 10.1016/0378-5955(90)90206-5 DUCKERT LG, 1993, J COMP NEUROL, V331, P75, DOI 10.1002/cne.903310105 EPSTEIN JE, 1995, HEARING RES, V90, P31, DOI 10.1016/0378-5955(95)00141-9 FISCHER FP, 1994, HEARING RES, V73, P1, DOI 10.1016/0378-5955(94)90277-1 FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R FROYMOVICH O, 1995, J ACOUST SOC AM, V97, P3021, DOI 10.1121/1.411867 FUCHS PA, 1988, J NEUROSCI, V8, P2460 GIROD DA, 1989, HEARING RES, V42, P175, DOI 10.1016/0378-5955(89)90143-3 GLEICH O, 1989, HEARING RES, V37, P255, DOI 10.1016/0378-5955(89)90026-9 GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1 HASHINO E, 1992, HEARING RES, V59, P46, DOI 10.1016/0378-5955(92)90101-R HASHINO E, 1991, HEARING RES, V52, P356, DOI 10.1016/0378-5955(91)90025-5 HASHINO E, 1995, HEARING RES, V88, P156, DOI 10.1016/0378-5955(95)00109-H HASHINO E, 1989, J ACOUST SOC AM, V85, P289, DOI 10.1121/1.397736 HASHINO E, 1988, J ACOUST SOC AM, V83, P2450, DOI 10.1121/1.396325 Hashino E, 1996, BRAIN RES, V720, P172, DOI 10.1016/0006-8993(95)01467-5 Hennig AK, 1998, J NEUROSCI, V18, P3282 Janas JD, 1995, HEARING RES, V92, P17, DOI 10.1016/0378-5955(95)00190-5 KLINKE R, 1994, HEARING RES, V74, P238, DOI 10.1016/0378-5955(94)90192-9 Komeda M, 1996, HEARING RES, V102, P81, DOI 10.1016/S0378-5955(96)00150-5 Koppl C, 1997, J NEUROSCI, V17, P3312 LIPPE WR, 1991, HEARING RES, V56, P203, DOI 10.1016/0378-5955(91)90171-5 MANLEY GA, 1985, J COMP PHYSIOL A, V157, P161, DOI 10.1007/BF01350025 Manley GA, 1997, J ACOUST SOC AM, V101, P1560, DOI 10.1121/1.418273 MANLEY GA, 1987, SCIENCE, V237, P655, DOI 10.1126/science.3603046 MAREAN GC, 1993, HEARING RES, V71, P125, DOI 10.1016/0378-5955(93)90028-Y Masetto S, 1997, INT J DEV NEUROSCI, V15, P387, DOI 10.1016/S0736-5748(96)00099-8 Masetto S, 1997, J NEUROPHYSIOL, V78, P1913 MCFADDEN EA, 1989, HEARING RES, V41, P205, DOI 10.1016/0378-5955(89)90012-9 Muller M, 1996, HEARING RES, V102, P133, DOI 10.1016/S0378-5955(96)00155-4 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 Muller M, 1997, INT J DEV NEUROSCI, V15, P401, DOI 10.1016/S0736-5748(96)00100-1 Muller M, 1998, HEARING RES, V120, P25, DOI 10.1016/S0378-5955(98)00049-5 NAVARATNAM DS, 1995, J BIOL CHEM, V270, P19238 NIEMIEC AJ, 1994, HEARING RES, V75, P209, DOI 10.1016/0378-5955(94)90072-8 Ofsie MS, 1996, J COMP NEUROL, V370, P281 Ofsie MS, 1997, HEARING RES, V113, P207, DOI 10.1016/S0378-5955(97)00150-0 PATUZZI R, 1988, PHYSIOL REV, V68, P1009 PUGLIANO FA, 1993, ACTA OTO-LARYNGOL, V113, P18, DOI 10.3109/00016489309135761 RAPHAEL Y, 1991, HEARING RES, V53, P173, DOI 10.1016/0378-5955(91)90052-B RICHTER CP, 1995, HEARING RES, V83, P19, DOI 10.1016/0378-5955(94)00186-T Roberson DW, 1996, AUDIT NEUROSCI, V2, P195 RYALS BM, 1990, HEARING RES, V50, P87, DOI 10.1016/0378-5955(90)90035-N RYALS BM, 1982, ACTA OTO-LARYNGOL, V93, P205, DOI 10.3109/00016488209130873 Ryals BM, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P84 RYALS BM, 1992, EXP NEUROL, V115, P18, DOI 10.1016/0014-4886(92)90214-B RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 RYALS BM, 1994, HEARING RES, V72, P81, DOI 10.1016/0378-5955(94)90208-9 RYALS BM, 1989, HEARING RES, V43, P81, DOI 10.1016/0378-5955(89)90061-0 SALVI RJ, 1994, J COMP PHYSIOL A, V174, P351 Saunders JC, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P62 Saunders JC, 1996, J NEUROPHYSIOL, V76, P770 SAUNDERS JC, 1982, NEW PERSPECTIVES NOI SAUNDERS SS, 1995, J ACOUST SOC AM, V97, P1150, DOI 10.1121/1.412228 SCHERMULY L, 1985, J COMP PHYSIOL A, V156, P209, DOI 10.1007/BF00610863 Smolders JWT, 1995, HEARING RES, V92, P151, DOI 10.1016/0378-5955(95)00214-6 SMOLDERS JWT, 1986, ORL J OTO-RHINO-LARY, V48, P93 STONE JS, 1994, J COMP NEUROL, V341, P50, DOI 10.1002/cne.903410106 Stone JS, 1996, J NEUROSCI, V16, P6157 TAKASAKA T, 1971, J ULTRA MOL STRUCT R, V35, P20, DOI 10.1016/S0022-5320(71)80141-7 TUCCI DL, 1990, OTOLARYNG HEAD NECK, V103, P443 VONDURING M, 1985, FORTS ZOOL, V30, P681 WALD A, 1947, SEQUENTIAL ANAL, P88 Wang Y, 1996, HEARING RES, V97, P11, DOI 10.1016/S0378-5955(96)80003-7 WU YC, 1995, PROG BIOPHYS MOL BIO, V63, P131, DOI 10.1016/0079-6107(95)00002-5 Wu YC, 1996, BIOPHYS J, V70, P2557 NR 89 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 153 EP 169 DI 10.1016/S0378-5955(99)00029-5 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600014 PM 10355612 ER PT J AU Rusch, A Hummler, E AF Rusch, A Hummler, E TI Mechano-electrical transduction in mice lacking the alpha-subunit of the epithelial sodium channel SO HEARING RESEARCH LA English DT Article DE cochlea; hair cell; mechano-electrical transduction; epithelial sodium channel; gene inactivation ID OUTER HAIR-CELLS; MECHANOELECTRICAL TRANSDUCTION; NA+ CHANNEL; AMILORIDE ANALOGS; ION CHANNELS; K+ CHANNELS; LOCALIZATION; EXPRESSION; NEURODEGENERATION; DIVERSITY AB Sensory hair cells of the vertebrate inner ear use mechanically gated transducer channels (MET) to perceive mechanical stimuli. The molecular nature of the MET channel is not known but several findings suggested that the amiloride-sensitive epithelial Naf channel, ENaC, might be a candidate gene for this function. In order to test this hypothesis, we examined knockout mice deficient in the alpha-subunit of ENaC, and therefore in ENaC function. First, neonatal alpha ENaC(-/-) mice exhibited vestibular reflexes not different from wildtype littermates thus indicating normal vestibular function. We used organotypic cultures of cochlear outer hair cells from newborns to rescue the hair cells from the perinatal death of alpha ENaC(-/-) mice. When hair bundles of cochlear outer hair cells of alpha ENaC(-/-) mice were mechanically stimulated by a fluid jet in whole cell voltage clamp experiments, transducer currents were elicited that were not significantly different from those of alpha ENaC(+/-) or (+/+) cochlear outer hair cells. These results suggest that the vertebrate mechano-electrical transducer apparatus does not include the alpha-subunit of the epithelial Na+ channel. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Tubingen, Hals Nasen Ohren Klin, Inst Physiol, D-72076 Tubingen, Germany. Univ Tubingen, Hals Nasen Ohren Klin, Sekt Sensor Biophys, D-72076 Tubingen, Germany. Univ Lausanne, Inst Pharmacol & Toxicol, CH-1005 Lausanne, Switzerland. RP Rusch, A (reprint author), Univ Tubingen, Hals Nasen Ohren Klin, Inst Physiol, Gmelinstr 5, D-72076 Tubingen, Germany. CR Benos D.J, 1982, AM J PHYSIOL, V242, P131 CANESSA CM, 1993, NATURE, V361, P467, DOI 10.1038/361467a0 CANESSA CM, 1994, NATURE, V367, P463, DOI 10.1038/367463a0 Denk W, 1995, NEURON, V15, P1311, DOI 10.1016/0896-6273(95)90010-1 Fyfe GK, 1998, SEMIN NEPHROL, V18, P138 GARCIA ML, 1990, J BIOL CHEM, V265, P3763 GarciaAnoveros J, 1997, ANNU REV NEUROSCI, V20, P567, DOI 10.1146/annurev.neuro.20.1.567 Garcia-Anoveros J, 1998, NEURON, V20, P1231, DOI 10.1016/S0896-6273(00)80503-6 Geleoc GSG, 1997, P ROY SOC B-BIOL SCI, V264, P611 GILLESPIE PG, 1995, CURR OPIN NEUROBIOL, V5, P449, DOI 10.1016/0959-4388(95)80004-2 GLOWATZKI E, 1995, P ROY SOC B-BIOL SCI, V261, P251, DOI 10.1098/rspb.1995.0145 Glowatzki E, 1997, NEUROPHARMACOLOGY, V36, P1269, DOI 10.1016/S0028-3908(97)00108-1 HACKNEY CM, 1992, P ROY SOC B-BIOL SCI, V248, P215, DOI 10.1098/rspb.1992.0064 HACKNEY CM, 1991, SCANNING MICROSCOPY, V5, P741 HONG KS, 1994, NATURE, V367, P470, DOI 10.1038/367470a0 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 Hummler E, 1996, NAT GENET, V12, P325, DOI 10.1038/ng0396-325 JORGENSEN F, 1988, J PHYSIOL-LONDON, V403, P577 KLEYMAN TR, 1991, J BIOL CHEM, V266, P3907 Kossel AH, 1997, J NEUROSCI, V17, P9634 KROS CJ, 1992, P ROY SOC B-BIOL SCI, V249, P185, DOI 10.1098/rspb.1992.0102 McNicholas CM, 1997, J GEN PHYSIOL, V109, P681, DOI 10.1085/jgp.109.6.681 PALMER LG, 1992, ANNU REV PHYSIOL, V54, P51, DOI 10.1146/annurev.physiol.54.1.51 Rossier BC, 1997, J AM SOC NEPHROL, V8, P980 RoudierPujol C, 1996, J CELL SCI, V109, P379 Rubsamen R., 1998, DEV AUDITORY SYSTEM, P193 RUSCH A, 1994, J PHYSIOL-LONDON, V474, P75 Schmidt A, 1998, BRAIN RES PROTOC, V3, P54, DOI 10.1016/S1385-299X(98)00021-X SCHULTE C, 1998, ASS RES OT ABSTR, V21, P72 TANG CM, 1988, SCIENCE, V240, P213, DOI 10.1126/science.2451291 WALDMANN R, 1995, J BIOL CHEM, V270, P27411 ZWEIFACH A, 1992, J MEMBRANE BIOL, V128, P115 NR 32 TC 22 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 170 EP 176 DI 10.1016/S0378-5955(99)00030-1 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600015 PM 10355613 ER PT J AU Finlayson, PG AF Finlayson, PG TI Post-stimulatory suppression, facilitation and tuning for delays shape responses of inferior colliculus neurons to sequential pure tones SO HEARING RESEARCH LA English DT Article DE forward masking; suppression; facilitation; delay tuning; inferior colliculus ID CAT STRIATE CORTEX; POSITION-SPECIFIC ADAPTATION; SENSORINEURAL HEARING-LOSS; COCHLEAR NUCLEUS NEURONS; SHORT-TERM POTENTIATION; CELL RECEPTIVE-FIELDS; VISUAL-CORTEX; SINGLE UNITS; NERVE-FIBERS; SYNAPTIC POTENTIALS AB Temporal changes in the excitability of inferior colliculus (IC) neurons will shape their responses to complex stimuli. Single-unit responses of rat IC neurons to the second (probe) of a pair of tones exhibited suppression, facilitation and delay tuned effects. Responses to probe tones were markedly suppressed (by 76% for contralateral stimulation with equal intensity tone pairs) during contralateral and binaural stimulation in 60% of IC neurons. Suppression developed rapidly as a function of the duration of the initial tone, and approached maximum for tones of less than 200 ms. Suppression decreased as the interval between tones increased, and this recovery of responsiveness was often exponential (time constants: mean: 271.4 ms; median: 72.8 ms; n = 47), and independent of the duration and intensity of preceding stimulation. Facilitation of responses to probe tones was observed chiefly in neurons with 'pauser/buildup' response patterns, and decreased as the intertone interval increased. The greatest suppression of responses to probe tones occurred only after intertone intervals of 32 ms (delayed minimum; n = 8) in 11% of IC neurons. Other IC neurons exhibited an increased excitability to probe tones presented 128 ms after stimulation (delayed maximum; n = 7). The latencies of the later neurons' responses were longer (mean: 29.5 ms) than other IC neurons. The role of suppression in sound localization and echo suppression, and the relationship between 'delay tuning' effects and encoding of complex stimuli are discussed. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ British Columbia, Dept Surg Otolaryngol, Rotary Hearing Ctr, Vancouver, BC V6T 2B5, Canada. RP Finlayson, PG (reprint author), Univ British Columbia, Dept Surg Otolaryngol, Rotary Hearing Ctr, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada. CR AITKIN L, 1987, J NEUROPHYSIOL, V57, P97 ANWYL R, 1989, BRAIN RES, V503, P148, DOI 10.1016/0006-8993(89)91716-2 BARKER JL, 1978, J PHYSIOL-LONDON, V280, P355 Blauert J., 1983, SPATIAL HEARING PSYC BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2 CARYLON RP, 1988, HEARING RES, V32, P65 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 CHIMENTO TC, 1991, J ACOUST SOC AM, V90, P263, DOI 10.1121/1.401296 Covey E, 1996, J NEUROSCI, V16, P3009 EHRENSTEIN WH, 1994, PERCEPTION, V23, P1249, DOI 10.1068/p231249 EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S FAINGOLD CL, 1989, HEARING RES, V40, P127, DOI 10.1016/0378-5955(89)90106-8 Finlayson P. G., 1996, Society for Neuroscience Abstracts, V22, P889 FINLAYSON PG, 1997, ACTA OTOLARYNGOL, V11, P187 FINLAYSON PG, 1995, EXP BRAIN RES, V106, P145 Finlayson PG, 1997, HEARING RES, V103, P1, DOI 10.1016/S0378-5955(96)00158-X FLAMMINO F, 1975, J ACOUST SOC AM, V57, P692, DOI 10.1121/1.380494 FURUKAWA T, 1978, J PHYSIOL-LONDON, V276, P193 FURUKAWA T, 1978, J PHYSIOL-LONDON, V276, P211 GIASCHI D, 1993, J NEUROPHYSIOL, V70, P2024 GRANTHAM DW, 1989, PERCEPT PSYCHOPHYS, V45, P129, DOI 10.3758/BF03208047 GRANTHAM DW, 1979, PERCEPT PSYCHOPHYS, V26, P403, DOI 10.3758/BF03204166 HAMMOND P, 1985, EXP BRAIN RES, V60, P411 IRVINE DRF, 1986, PROG SENS PHYSL, V7, P279 KELLY JB, 1994, J NEUROPHYSIOL, V71, P1078 KUWADA S, 1980, PSYCHOPHYSICAL PHYSL, P401 Kuwada S, 1997, J NEUROSCI, V17, P7565 KUWADA S, 1989, J NEUROPHYSIOL, V61, P269 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 MARLIN S, 1993, J NEUROPHYSIOL, V69, P2209 MARLIN SG, 1991, J NEUROPHYSIOL, V66, P1769 MCFADDEN SL, 1994, HEARING RES, V78, P132, DOI 10.1016/0378-5955(94)90019-1 NELSON PG, 1963, J NEUROPHYSIOL, V26, P908 Oliver D. L., 1991, NEUROBIOLOGY HEARING, P195 PALOMBI PS, 1994, HEARING RES, V75, P175, DOI 10.1016/0378-5955(94)90068-X Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 Paxinos G., 1982, RAT BRAIN STEREOTAXI POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F POOK PCK, 1992, EXP PHYSIOL, V77, P529 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 REES A, 1988, J ACOUST SOC AM, V83, P1488, DOI 10.1121/1.395904 RELKIN EM, 1991, HEARING RES, V53, P131, DOI 10.1016/0378-5955(91)90220-4 RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J SAINTMARIE RL, 1989, J COMP NEUROL, V279, P382 SAUL AB, 1989, VISUAL NEUROSCI, V2, P609 SAUL AB, 1989, VISUAL NEUROSCI, V2, P593 SHORE SE, 1995, HEARING RES, V82, P31 SHU ZJ, 1993, NATURE, V364, P721, DOI 10.1038/364721a0 SMITH RL, 1979, J ACOUST SOC AM, V65, P166, DOI 10.1121/1.382260 TURNER CW, 1994, J ACOUST SOC AM, V96, P795, DOI 10.1121/1.410317 VATER M, 1992, J COMP PHYSIOL A, V171, P541 VOLMAN SF, 1989, J NEUROSCI, V9, P3083 WALSH JP, 1993, BRAIN RES, V608, P123, DOI 10.1016/0006-8993(93)90782-I WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J YAMAUCHI R, 1989, NEUROSCI RES, V6, P446, DOI 10.1016/0168-0102(89)90006-0 YIN TCT, 1994, J NEUROSCI, V14, P5170 ZHANG S, 1994, J PHYSIOL-LONDON, V480, P123 NR 60 TC 14 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1999 VL 131 IS 1-2 BP 177 EP 194 DI 10.1016/S0378-5955(99)00032-5 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 194JG UT WOS:000080188600016 PM 10355614 ER PT J AU Spicer, SS Smythe, N Schulte, BA AF Spicer, SS Smythe, N Schulte, BA TI Distribution of canalicular reticulum in Deiters cells and pillar cells of gerbil cochlea SO HEARING RESEARCH LA English DT Article DE inner ear; morphology; ultrastructure; organ of Corti; supporting cell; ion transport ID GUINEA-PIG COCHLEA; TUBULOCISTERNAL ENDOPLASMIC-RETICULUM; OUTER HAIR-CELLS; SUPPORTING CELLS; MORPHOLOGICAL ASPECTS; STRIA VASCULARIS; EPITHELIAL-CELLS; PLACE-FREQUENCY; DISTAL TUBULES; ORGAN AB Postfixation with an osmium tetroxide-potassium ferrocyanide solution revealed in supporting cells in the organ of Corti a network of canaliculi termed canalicular reticulum (CR). In Deiters cells (DCs), the CR filled cytosol at the base of the phalanx and under plasmalemma apposed to either the outer hair cells' (HCs) basal surface or nerve terminals. From these locations the CR, accompanied by dense fibrillar substance, descended along microtubule bundles and terminated by surrounding the rosette complex in the apical cytosol. Canalicular profiles protruding from the reticulum penetrated the loose meshwork comprising the periphery of the rosette complex to contact at intervals branches of the dense trabeculae that make up the core of the complex. This arrangement disclosed a structural and presumably functional relationship between outer HCs and the CR and rosette complex. Inner pillar cells (PCs) exhibited moderately abundant to sparse profiles of CR interspersed between microtubule bundles of the microtubule stalk that connected head and foot regions. More elaborate CR extended as a network upward from the top of the microtubule stalk part way into the head body and downward into a conical expansion of the stalk at the base of the cell. Cytosol on the medial side of the basal microtubule expansion contained abundant CR which in conjunction with CR between basal microtubule bundles lay situated for possible uptake of ions or neurotransmitter released from numerous adjoining nerves. CR in outer PCs resembled that in inner PCs but appeared less prevalent in the head and foot regions and did not occur in cytosol beside the basal microtubule stalk. Characteristically small Golgi complexes accompanied the reticulum in DCs and were prevalent in the upper regions but absent in the mid and lower part of inner PCs. Short cisternae in the Golgi stacks associated with CR contrasted with the lengthier cisternae in the complexes infrequently observed in cytosol outside the microtubule stalk of inner PCs. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. RP Spicer, SS (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 171 Ashley Ave, Charleston, SC 29425 USA. CR Alberts B., 1994, MOL BIOL CELL ASHMORE JF, 1986, NATURE, V322, P386 BARON DA, 1984, LAB INVEST, V51, P233 BERGERON M, 1981, BIOL CELL, V42, P43 BISHOP WR, 1988, ANNU REV CELL BIOL, V4, P579, DOI 10.1146/annurev.cb.04.110188.003051 COREY DP, 1979, NATURE, V281, P675, DOI 10.1038/281675a0 DALLOS P, 1992, J NEUROSCI, V12, P4575 DEBRUIJN WC, 1968, P 4 EUR REG C EL MIC, P65 FORGE A, 1982, CELL TISSUE RES, V226, P375 GITTER AH, 1986, ORL J OTO-RHINO-LARY, V48, P68 Hibino H, 1997, J NEUROSCI, V17, P4711 HOUSLEY GD, 1992, ORL J OTORHINOLARYNG, V48, P68 IURATO S, 1976, ACTA OTO-LARYNGOL, V82, P57, DOI 10.3109/00016487609120863 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 Karnosky M., 1971, P 11 M AM SOC CELL B, P146 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263 MOLLER OJ, 1983, CELL TISSUE RES, V228, P13 MOLLGARD K, 1978, J MEMBRANE BIOL, V40, P71, DOI 10.1007/BF02025999 MOLLGARD K, 1981, WATER TRANSPORT EPIT, P85 NADOL JB, 1978, ANN OTO RHINOL LARYN, V87, P70 NAKAZAWA K, 1995, HEARING RES, V89, P121, DOI 10.1016/0378-5955(95)00129-8 OESTERLE EC, 1990, J NEUROPHYSIOL, V64, P617 OHMORI H, 1985, J PHYSIOL-LONDON, V359, P189 PAGANO R E, 1990, Current Opinion in Cell Biology, V2, P652, DOI 10.1016/0955-0674(90)90107-P QVORTRUP K, 1990, CELL TISSUE RES, V261, P287, DOI 10.1007/BF00318670 ROSTGAARD J, 1980, CELL TISSUE RES, V212, P17 SANTI PA, 1979, ACTA OTO-LARYNGOL, V88, P1, DOI 10.3109/00016487909137133 SANTOS-SACCHI J, 1983, HEARING RES, V9, P317, DOI 10.1016/0378-5955(83)90034-5 SANTOS-SACCHI J, 1991, HEARING RES, V52, P89, DOI 10.1016/0378-5955(91)90190-K Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPICER SS, 1987, LAB INVEST, V57, P535 SPICER SS, 1998, IN PRESS J COMP NEUR SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 SPICER SS, 1993, ANAT REC, V237, P421, DOI 10.1002/ar.1092370316 Spicer SS, 1998, ANAT REC, V251, P97, DOI 10.1002/(SICI)1097-0185(199805)251:1<97::AID-AR15>3.0.CO;2-6 Spicer SS, 1997, ANAT REC, V249, P117 THIERY G, 1976, REV CAN BIOL EXPTL, V35, P211 Xu KY, 1998, J HISTOCHEM CYTOCHEM, V46, P419 ZIDANIC M, 1994, BIOPHYS J, V57, P1253 NR 40 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 7 EP 18 DI 10.1016/S0378-5955(98)00202-0 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600002 PM 10320096 ER PT J AU Winer, JA Kelly, JB Larue, DT AF Winer, JA Kelly, JB Larue, DT TI Neural architecture of the rat medial geniculate body SO HEARING RESEARCH LA English DT Article DE thalamus; Golgi type II cell; interneuron; thalamocortical auditory system ID GLUTAMIC-ACID DECARBOXYLASE; AUDITORY CORTICAL-LESIONS; MONKEY SAIMIRI-SCIUREUS; RAPID GOLGI METHOD; SOUND-LOCALIZATION; HORSERADISH-PEROXIDASE; INFERIOR COLLICULUS; TONOTOPIC ORGANIZATION; TOPOGRAPHIC ORGANIZATION; FUNCTIONAL-ORGANIZATION AB The rat medial geniculate body was subdivided using Nissl preparations to establish nuclear boundaries, with Golgi-Cox impregnations to identify projection and local circuit neurons, and in fiber stained material to delineate the fiber tracts and their distribution. Three divisions were recognized (ventral, dorsal and medial); the first two had subdivisions. The ventral division bad lateral and medial parts. The main cell type had bushy tufted dendrites which, with the afferent axons, formed fibrodendritic laminae oriented from dorso-lateral to ventro-medial; such laminae were not as regular medially, in the ovoid nucleus. The dorsal division contained several nuclei (dorsal superficial, dorsal, deep dorsal, suprageniculate, and ventrolateral) and neurons with radiating or bushy dendrites; the nuclear subdivisions differed in the concentration of one cell type or another, and in packing density. A laminar organization was present only in the dorsal superficial nucleus. Medial division neurons were heterogeneous in size and shape, ranging from tiny cells to magnocellular neurons; the various cell types intermingled, so that no further subdivision could be made. This parcellation scheme was consistent with, and supported by, the findings from plastic embedded or fiber stained material. There were very few small neurons with locally ramifying axons and which could perform an intrinsic role like that of Golgi type II cells. Their rarity was consistent with the small number of such profiles in plastic embedded or Nissl material and the few GABAergic medial geniculate body neurons seen in prior immunocytochemical work. While similar neuronal types and nuclear subdivisions are recognized in the rat and cat, there may be major interspecific differences with regard to interneuronal organization in the auditory thalamus whose functional correlates are unknown. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA. Carleton Univ, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. RP Winer, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA. EM jawiner@socrates.berkeley.edu CR AITKIN LM, 1968, J NEUROPHYSIOL, V31, P44 AITKIN LM, 1974, J NEUROPHYSIOL, V37, P512 AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275 AITKIN LM, 1972, J NEUROPHYSIOL, V35, P365 ALTMAN J, 1989, J COMP NEUROL, V284, P567, DOI 10.1002/cne.902840406 Arcelli P, 1997, BRAIN RES BULL, V42, P27, DOI 10.1016/S0361-9230(96)00107-4 ARNAULT P, 1990, J COMP NEUROL, V302, P110, DOI 10.1002/cne.903020109 Barth DS, 1996, NATURE, V383, P78, DOI 10.1038/383078a0 Benedek G, 1997, NEUROSCIENCE, V78, P179, DOI 10.1016/S0306-4522(96)00562-3 CastroAlamancos MA, 1997, PROG NEUROBIOL, V51, P581, DOI 10.1016/S0301-0082(97)00002-6 CLERICI WJ, 1990, J COMP NEUROL, V297, P14, DOI 10.1002/cne.902970103 Clerici WJ, 1998, J COMP NEUROL, V399, P110, DOI 10.1002/(SICI)1096-9861(19980914)399:1<110::AID-CNE9>3.0.CO;2-4 CLERICI WJ, 1990, J COMP NEUROL, V297, P32, DOI 10.1002/cne.902970104 DIAMOND IT, 1957, J NEUROPHYSIOL, V20, P300 FITZPATRICK D, 1983, J NEUROSCI, V3, P673 GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0 GROSS NB, 1974, BRAIN RES, V65, P323, DOI 10.1016/0006-8993(74)90044-4 HARRIS RM, 1987, NEUROSCIENCE, V21, P229, DOI 10.1016/0306-4522(87)90335-6 HEFFNER H, 1975, J NEUROPHYSIOL, V38, P1340 HENDRICKSON AE, 1983, J NEUROSCI, V3, P1245 HU B, 1995, J PHYSIOL-LONDON, V483, P167 HU B, 1994, J PHYSIOL-LONDON, V479, P217 HUANG CL, 1997, P SOC NEUROSCI, V24, P185 IMIG TJ, 1985, J NEUROPHYSIOL, V53, P836 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 Jones EG, 1985, THALAMUS KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746 KELLY JB, 1986, BEHAV NEUROSCI, V100, P569, DOI 10.1037/0735-7044.100.4.569 KELLY JB, 1980, J NEUROPHYSIOL, V44, P1161 KELLY JB, 1985, J NEUROPHYSIOL, V53, P361 KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270 KRAUS N, 1994, J ACOUST SOC AM, V96, P2758, DOI 10.1121/1.411282 LEDOUX JE, 1991, EXP BRAIN RES, V85, P577 LEDOUX JE, 1987, J COMP NEUROL, V264, P123, DOI 10.1002/cne.902640110 LEDOUX JE, 1990, J NEUROSCI, V10, P1043 LEDOUX JE, 1985, J COMP NEUROL, V242, P182, DOI 10.1002/cne.902420204 LEDOUX JE, 1991, NEUROSCI LETT, V134, P145, DOI 10.1016/0304-3940(91)90527-Z Mallory FB, 1942, PATHOLOGICAL TECHNIQ McEchron MD, 1996, J NEUROSCI, V16, P1273 MCGEE T, 1992, HEARING RES, V61, P147, DOI 10.1016/0378-5955(92)90045-O MCINTOSH AR, 1995, BRAIN RES, V683, P228, DOI 10.1016/0006-8993(95)00378-4 MELLO LEAM, 1992, BRAIN RES, V587, P24, DOI 10.1016/0006-8993(92)91425-E MITANI A, 1984, BRAIN RES, V310, P347, DOI 10.1016/0006-8993(84)90157-4 MOREST DK, 1965, J ANAT, V99, P611 MOREST DK, 1975, J COMP NEUROL, V162, P157, DOI 10.1002/cne.901620202 MOREST DK, 1986, ADV ANAT EMBRYOL CEL, V97, P1 MOREST DK, 1964, J ANAT, V98, P611 MORIIZUMI T, 1992, NEUROSCIENCE, V46, P701, DOI 10.1016/0306-4522(92)90156-V OHARA PT, 1983, NEUROSCIENCE, V8, P189, DOI 10.1016/0306-4522(83)90060-X OHARA PT, 1993, J NEUROCYTOL, V22, P815, DOI 10.1007/BF01181326 PATTERSON HA, 1976, THESIS BOSTON U GRAD Pedroarena C, 1997, P NATL ACAD SCI USA, V94, P724, DOI 10.1073/pnas.94.2.724 PENNY GR, 1983, J NEUROSCI, V3, P1868 PENNY GR, 1984, J COMP NEUROL, V228, P38, DOI 10.1002/cne.902280106 Peruzzi D, 1997, J NEUROSCI, V17, P3766 Ralston HJ, 1983, SOMATOSENSORY INTEGR, P241 Ramon-Moliner E, 1970, CONT RES METHODS NEU, P32 RODRIGUESDAGAEFF C, 1989, HEARING RES, V39, P103, DOI 10.1016/0378-5955(89)90085-3 ROMANSKI LM, 1993, CEREB CORTEX, V3, P499, DOI 10.1093/cercor/3.6.499 ROSEN JB, 1991, BEHAV NEUROSCI, V105, P817, DOI 10.1037//0735-7044.105.6.817 ROUILLER EM, 1989, HEARING RES, V39, P127, DOI 10.1016/0378-5955(89)90086-5 Shi CJ, 1997, J COMP NEUROL, V382, P153 SHINONAGA Y, 1994, J COMP NEUROL, V340, P405, DOI 10.1002/cne.903400310 SOUSAPINTO A, 1973, ADV ANAT EMBRYOL CEL, V48, P1 TURNER BH, 1991, J COMP NEUROL, V313, P295, DOI 10.1002/cne.903130208 VAUDANO E, 1991, EUR J NEUROSCI, V3, P317, DOI 10.1111/j.1460-9568.1991.tb00818.x VAUGHAN DW, 1983, BRAIN RES, V260, P181, DOI 10.1016/0006-8993(83)90673-X WEPSIC JG, 1966, EXP NEUROL, V15, P299, DOI 10.1016/0014-4886(66)90053-7 Winer J.A., 1992, Springer Handbook of Auditory Research, V1, P222 Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005 WINER JA, 1983, J NEUROSCI, V3, P2629 WINER JA, 1977, J COMP NEUROL, V176, P387, DOI 10.1002/cne.901760307 WINER JA, 1988, J COMP NEUROL, V278, P47, DOI 10.1002/cne.902780104 Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083 WINER JA, 1987, J COMP NEUROL, V257, P282, DOI 10.1002/cne.902570212 WINER JA, 1992, J COMP NEUROL, V319, P172, DOI 10.1002/cne.903190114 WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302 WINER JA, 1988, J COMP NEUROL, V274, P422, DOI 10.1002/cne.902740310 WINER JA, 1983, J COMP NEUROL, V221, P1, DOI 10.1002/cne.902210102 WINER JA, 1984, J COMP NEUROL, V224, P344 WINER JA, 1994, J COMP NEUROL, V346, P161, DOI 10.1002/cne.903460202 WINER JA, IN PRESS HEAR RES NR 83 TC 54 Z9 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 19 EP 41 DI 10.1016/S0378-5955(98)00216-0 PG 23 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600003 PM 10320097 ER PT J AU Winer, JA Sally, SL Larue, DT Kelly, JB AF Winer, JA Sally, SL Larue, DT Kelly, JB TI Origins of medial geniculate body projections to physiologically defined zones of rat primary auditory cortex SO HEARING RESEARCH LA English DT Article DE primary auditory cortex; cerebral cortex; auditory thalamus; thalamocortical projection ID RAPID GOLGI METHOD; IMMUNOREACTIVE NEURONS; THALAMOCORTICAL NEURONS; FUNCTIONAL-ORGANIZATION; TONOTOPIC ORGANIZATION; HORSERADISH-PEROXIDASE; RESPONSE PROPERTIES; TEMPORAL CORTEX; CEREBRAL-CORTEX; DORSAL DIVISION AB Medial geniculate body neurons projecting to physiologically identified subregions of rat primary auditory cortex (area 41, Tel) were labeled with horseradish peroxidase in adult rats. The goals were to determine the type(s) of projection neuron and the spatial arrangement of these cells with respect to thalamic subdivisions. Maps of best frequency were made with single neuron or unit cluster extracellular recording at depths of 500-800 mu m, which correspond to layers III-IV in Nissl preparations. Tracer injections were made in different cortical isofrequency regions (2, 11, 22, or 38 kHz, respectively). Labeled neurons were plotted on representative sections upon which the architectonic subdivisions were drawn independently. Most of the cells of origin lay in the ventral division in every experiment. Injections at low frequencies labeled bands of neurons laterally in the ventral division: progressively more rostral deposits at higher frequencies labeled bands or clusters more medially in the ventral division, and through most of its caudo-rostral extent. Medial division labeling was variable. Labeled cells were always in the lateral half of the nucleus and were often scattered. There were few labeled cells in the dorsal division. Seven types of thalamocortical neuron were identified: ventral division cells had a tufted branching pattern, while medial division neurons have heterogeneous shapes and sizes and were larger. Dorsal division neurons had a radiate branching pattern. The size range of labeled neurons spanned that of Nissl stained neuronal somata. Area 41 may receive two types of thalamic projection: ventral division input is strongly convergent, highly topographic, spatially focal, and restricted to one type of neuron only, while the medial division projection is more divergent, coarsely topographical, involves multiple cortical areas, and has several varieties of projection neuron. Despite species differences in local circuitry, many facets of thalamocortical organization are conserved in phylogeny. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA. Carleton Univ, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. RP Winer, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA. EM jawiner@socrates.berkeley.edu CR Aitkin L. M., 1990, AUDITORY CORTEX STRU AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275 AITKIN LM, 1972, J NEUROPHYSIOL, V35, P365 AOKI C, 1992, VISUAL NEUROSCI, V8, P177 ARNAULT P, 1990, J COMP NEUROL, V302, P110, DOI 10.1002/cne.903020109 BRANDNER S, 1990, J NEUROSCI, V10, P50 JONES EG, 1976, J COMP NEUROL, V168, P197, DOI 10.1002/cne.901680203 Burwell RD, 1995, HIPPOCAMPUS, V5, P390, DOI 10.1002/hipo.450050503 CALFORD MB, 1983, J NEUROSCI, V3, P2350 CALFORD MB, 1981, J NEUROPHYSIOL, V45, P1013 CAMPBELL MJ, 1987, J COMP NEUROL, V261, P209, DOI 10.1002/cne.902610204 CLAREY JC, 1992, SPRINGER HDB AUDITOR, V2, P232 CLERICI WJ, 1990, J COMP NEUROL, V297, P14, DOI 10.1002/cne.902970103 CLERICI WJ, 1990, J COMP NEUROL, V297, P32, DOI 10.1002/cne.902970104 DEACON TW, 1983, J COMP NEUROL, V220, P168, DOI 10.1002/cne.902200205 DeFelipe J, 1991, CEREB CORTEX, V1, P117, DOI 10.1093/cercor/1.2.117 DIAMOND ME, 1992, J COMP NEUROL, V319, P66, DOI 10.1002/cne.903190108 DYKES RW, 1983, BRAIN RES REV, V6, P47, DOI 10.1016/0165-0173(83)90004-8 EDELINE JM, 1994, EXP BRAIN RES, V97, P373 Edeline JM, 1995, EXP BRAIN RES, V107, P221 EDELINE JM, 1994, BRAIN RES, V636, P333, DOI 10.1016/0006-8993(94)91033-2 GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0 GERREN RA, 1983, BRAIN RES, V265, P138, DOI 10.1016/0006-8993(83)91344-6 GLASSMAN RB, 1975, EXP NEUROL, V48, P460, DOI 10.1016/0014-4886(75)90007-2 HARRIS RM, 1987, J COMP NEUROL, V258, P397, DOI 10.1002/cne.902580308 HASHIKAWA T, 1995, J COMP NEUROL, V362, P195, DOI 10.1002/cne.903620204 HINDMARSH JL, 1994, PHILOS T ROY SOC B, V346, P165, DOI 10.1098/rstb.1994.0139 HUANG CL, 1997, P SOC NEUROSCI, V24, P185 IMIG TJ, 1985, J NEUROPHYSIOL, V53, P309 KELLY JB, 1990, CEREBRAL CORTEX RAT, P380 KELLY JB, 1985, J NEUROPHYSIOL, V53, P361 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 KILLACKEY H P, 1972, Brain Behavior and Evolution, V6, P141, DOI 10.1159/000123703 LEDOUX JE, 1985, J COMP NEUROL, V242, P182, DOI 10.1002/cne.902420204 LEDOUX JE, 1991, NEUROSCI LETT, V134, P145, DOI 10.1016/0304-3940(91)90527-Z Lund JS, 1995, J ANAT, V187, P563 MCCORMICK DA, 1992, P NATL ACAD SCI USA, V89, P2774, DOI 10.1073/pnas.89.7.2774 MCCORMICK DA, 1992, PROG NEUROBIOL, V39, P337, DOI 10.1016/0301-0082(92)90012-4 MESULAM MM, 1978, J HISTOCHEM CYTOCHEM, V26, P106 MIDDLEBROOKS JC, 1983, J NEUROSCI, V3, P203 MOREST DK, 1971, Z ANAT ENTWICKLUNGS, V133, P216, DOI 10.1007/BF00528025 MOREST DK, 1975, J COMP NEUROL, V162, P157, DOI 10.1002/cne.901620202 MOREST DK, 1965, J ANAT, V99, P143 MOREST DK, 1964, J ANAT, V98, P611 NIIMI K, 1974, EXP BRAIN RES, V19, P326 PATTERSON HA, 1976, THESIS BOSTON U GRAD POPOWITS JM, 1988, P SOC NEUROSCI, V14, P490 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 ROMANSKI LM, 1993, CEREB CORTEX, V3, P515, DOI 10.1093/cercor/3.6.515 ROMANSKI LM, 1993, CEREB CORTEX, V3, P499, DOI 10.1093/cercor/3.6.499 ROUILLER EM, 1989, HEARING RES, V39, P127, DOI 10.1016/0378-5955(89)90086-5 RYUGO DK, 1974, BRAIN RES, V82, P173, DOI 10.1016/0006-8993(74)90903-2 SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 Schreiner C E, 1992, Curr Opin Neurobiol, V2, P516, DOI 10.1016/0959-4388(92)90190-V SHINONAGA Y, 1994, J COMP NEUROL, V340, P405, DOI 10.1002/cne.903400310 SMITH Y, 1987, NEUROSCIENCE, V22, P579, DOI 10.1016/0306-4522(87)90355-1 SOUSAPINTO A, 1973, ADV ANAT EMBRYOL CEL, V48, P1 Stone J, 1983, PARALLEL PROCESSING Sun XD, 1996, NEUROSCI LETT, V212, P131, DOI 10.1016/0304-3940(96)12788-9 SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207 VAUGHAN DW, 1983, BRAIN RES, V260, P181, DOI 10.1016/0006-8993(83)90673-X Weinberger NM, 1997, SEMIN NEUROSCI, V9, P59, DOI 10.1006/smns.1997.0106 WEINBERGER NM, 1987, PROG NEUROBIOL, V29, P1, DOI 10.1016/0301-0082(87)90014-1 WEPSIC JG, 1966, EXP NEUROL, V15, P299, DOI 10.1016/0014-4886(66)90053-7 WINER JA, 1983, J NEUROSCI, V3, P2629 WINER JA, 1988, J COMP NEUROL, V278, P47, DOI 10.1002/cne.902780104 WINER JA, 1999, IN PRESS HEAR RES Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083 WINER JA, 1987, J COMP NEUROL, V257, P282, DOI 10.1002/cne.902570212 WINER JA, 1983, J COMP NEUROL, V221, P1, DOI 10.1002/cne.902210102 WINER JA, 1984, J COMP NEUROL, V224, P344 WOOLSEY CN, 1982, CORTICAL SENSORY ORG, V3 Zilles K, 1990, CEREBRAL CORTEX RAT, P113 NR 73 TC 61 Z9 63 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 42 EP 61 DI 10.1016/S0378-5955(98)00217-2 PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600004 PM 10320098 ER PT J AU Coutinho, P Goodyear, R Legan, PK Richardson, GP AF Coutinho, P Goodyear, R Legan, PK Richardson, GP TI Chick alpha-tectorin: molecular cloning and expression during embryogenesis SO HEARING RESEARCH LA English DT Article DE extracellular matrix; inner ear; cochlea; tectorial membrane; otolithic membrane; tectorin ID AVIAN INNER-EAR; VON-WILLEBRAND-FACTOR; EXTRACELLULAR-MATRIX; BETA-TECTORIN; MEMBRANE; PROTEIN; PHOSPHATIDYLINOSITOL; GLYCOPROTEIN; RECEPTOR; HAIR AB The avian and mammalian tectorial membranes both contain two non-collagenous glycoproteins, alpha and beta-tectorin. To determine whether variations in the primary sequences of the chick and mouse alpha-tectorins account for differences in subunit composition and matrix structure of the tectorial membranes in these two species, cDNAs spanning the entire open reading frame of chick alpha-tectorin were cloned and the derived amino acid sequence was compared with that of mouse alpha-tectorin. Chick alpha-tectorin shares 73% amino acid sequence identity with mouse alpha-tectorin and, like mouse alpha-tectorin. is composed of three distinct modules: an N-terminal region similar to the G1 domain of entactin, a central region that shares identity with zonadhesin and contains three full and two partial von Willebrand factor type D repeats, and a C-terminal region containing a zona pellucida domain. The central region of chick alpha-tectorin contains fewer potential N-glycosylation sites than that of mouse alpha-tectorin and is cleaved at two additional sites. Differences in the glycosylation and proteolytic processing of chick and mouse a-tectorin may therefore account for the variation observed in the composition and structure of the collagenase-insensitive matrices of the avian and mammalian tectorial membranes. In situ hybridisation and Northern blot analysis of chick inner ear tissue indicate that the spatial and temporal patterns of alpha and beta-tectorin mRNA expression in the developing chick inner ear are different, suggesting the two tectorins may each form homomeric filaments. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Sussex, Sch Biol Sci, Brighton BN1 9QG, E Sussex, England. RP Richardson, GP (reprint author), Univ Sussex, Sch Biol Sci, Brighton BN1 9QG, E Sussex, England. EM g.p.richardson@susseu.ac.uk CR ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999 ANGST BD, 1990, J CELL SCI, V97, P247 BARTOLAMI S, 1991, J COMP NEUROL, V314, P777, DOI 10.1002/cne.903140410 BLIN N, 1976, NUCLEIC ACIDS RES, V3, P2303 BONTHRON DT, 1986, NATURE, V324, P270, DOI 10.1038/324270a0 BORK P, 1992, FEBS LETT, V300, P237, DOI 10.1016/0014-5793(92)80853-9 CHAMBERLIN ME, 1990, P NATL ACAD SCI USA, V87, P6014, DOI 10.1073/pnas.87.16.6014 COHEN GM, 1985, HEARING RES, V18, P29, DOI 10.1016/0378-5955(85)90108-X Cohen-Salmon M, 1997, P NATL ACAD SCI USA, V94, P14450, DOI 10.1073/pnas.94.26.14450 COTANCHE DA, 1984, DEV BRAIN RES, V16, P181, DOI 10.1016/0165-3806(84)90024-5 CROSS GAM, 1987, CELL, V48, P179, DOI 10.1016/0092-8674(87)90419-3 CROSS GAM, 1990, ANNU REV CELL BIOL, V6, P1 DURKIN ME, 1988, J CELL BIOL, V107, P2749, DOI 10.1083/jcb.107.6.2749 FEINBERG AP, 1984, ANAL BIOCHEM, V137, P266 FERGUSON MAJ, 1988, ANNU REV BIOCHEM, V57, P285 FUKUOKA SI, 1991, P NATL ACAD SCI USA, V88, P2892 Goodyear R, 1996, HEARING RES, V96, P167, DOI 10.1016/0378-5955(96)00045-7 Goodyear R, 1997, J NEUROSCI, V17, P6289 GOODYEAR R, 1995, J COMP NEUROL, V351, P81, DOI 10.1002/cne.903510108 HARDY DM, 1995, J BIOL CHEM, V270, P26025 HASKO JA, 1988, HEARING RES, V35, P21, DOI 10.1016/0378-5955(88)90037-8 HESSION C, 1987, SCIENCE, V237, P1479, DOI 10.1126/science.3498215 KILLICK R, 1995, J CELL BIOL, V129, P535, DOI 10.1083/jcb.129.2.535 KILLICK R, 1992, HEARING RES, V64, P21, DOI 10.1016/0378-5955(92)90165-J Killick R, 1997, HEARING RES, V103, P131, DOI 10.1016/S0378-5955(96)00174-8 KODOKULA K, 1993, J CELL BIOL, V120, P657 KOZAK M, 1984, NUCLEIC ACIDS RES, V12, P857, DOI 10.1093/nar/12.2.857 KRONESTERFREI A, 1978, CELL TISSUE RES, V193, P11 Legan PK, 1997, J BIOL CHEM, V272, P8791 LIANG LF, 1990, MOL CELL BIOL, V10, P1507 LISANTI MP, 1988, P NATL ACAD SCI USA, V85, P9557, DOI 10.1073/pnas.85.24.9557 MANN K, 1989, EMBO J, V8, P75 MAYADAS TN, 1992, P NATL ACAD SCI USA, V89, P3531, DOI 10.1073/pnas.89.8.3531 PENNICA D, 1987, SCIENCE, V236, P83, DOI 10.1126/science.3453112 RAU A, 1998, IN PRESS J COMP NEUR RICHARDSON GP, 1987, HEARING RES, V25, P45, DOI 10.1016/0378-5955(87)90078-5 Sambrook J., 1989, MOL CLONING LAB MANU SHIEL MJ, 1990, HEARING RES, V47, P147, DOI 10.1016/0378-5955(90)90172-L SLEPECKY NB, 1992, MATRIX, V92, P80 SOUTHERN EM, 1975, J MOL BIOL, V98, P502 TANAKA K, 1975, ANN OTO RHINOL LARYN, V84, P287 THALMANN I, 1986, ORL J OTO-RHINO-LARY, V48, P107 THALMANN I, 1987, LARYNGOSCOPE, V97, P357 Verhoeven K, 1998, NAT GENET, V19, P60, DOI 10.1038/ng0598-60 WASSARMAN PM, 1988, ANNU REV BIOCHEM, V57, P415 NR 45 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 62 EP 74 DI 10.1016/S0378-5955(98)00213-5 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600005 PM 10320099 ER PT J AU Ostapoff, EM Morest, DK Parham, K AF Ostapoff, EM Morest, DK Parham, K TI Spatial organization of the reciprocal connections between the cat dorsal and anteroventral cochlear nuclei SO HEARING RESEARCH LA English DT Article DE auditory system; inhibitory sideband; local circuit ID GLYCINE-IMMUNOREACTIVE PROJECTIONS; SUPERIOR OLIVARY COMPLEX; GLOBULAR BUSHY CELLS; BRAIN-STEM NUCLEI; GUINEA-PIG; INFERIOR COLLICULUS; DESCENDING PROJECTIONS; HORSERADISH-PEROXIDASE; RETROGRADE TRANSPORT; NERVE ROOT AB We are studying the interconnections between the anteroventral cochlear nucleus (AVCN) and the dorsal cochlear nucleus (DCN). Biotinylated dextran was injected into the DCN, where the best frequency of responses was also recorded. Ventrotubercular neurons in AVCN were labeled, along with cochlear nerve fibers and the axons of cells in DCN. In AVCN, a central band of labeled cochlear nerve axons and large endbulbs was labeled. Bordering this band was a 'fringe' of smaller tuberculoventral axonal endings forming pericellular nests. Most AVCN neurons projecting to DCN were stellate, elongate, or giant cells, located in the posterior division of AVCN, regardless of the DCN injection site. About 75% of the labeled AVCN cells lay within the bands of labeled cochlear nerve fibers. Another 15% were in the outer fringes on either side of these bands, while 10% were outside the bands and the fringes. These findings suggest that most AVCN neurons projecting to the DCN conform to the tonotopic map. A significant portion of the ventrotubercular neurons occupy side-bands in AVCN. Reciprocally, the tuberculoventral tract forms a robust fringe of axonal endings flanking the central bands. The neuronal and axonal bands and side-bands may underlie excitatory and inhibitory signal transformations. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Univ Connecticut, Ctr Hlth, Dept Anat, Farmington, CT 06030 USA. Univ Connecticut, Ctr Hlth, Ctr Neurol Sci, Farmington, CT 06030 USA. Univ Connecticut, Ctr Hlth, Dept Surg, Farmington, CT 06030 USA. RP Ostapoff, EM (reprint author), Univ Connecticut, Ctr Hlth, Dept Anat, Farmington, CT 06030 USA. EM emo@neuron.uchc.edu CR ADAMS JC, 1983, NEUROSCI LETT, V37, P205, DOI 10.1016/0304-3940(83)90431-7 ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 ADAMS JC, 1976, J COMP NEUROL, V170, P107, DOI 10.1002/cne.901700108 ANDERSEN RA, 1980, J COMP NEUROL, V194, P649, DOI 10.1002/cne.901940311 ARLE JE, 1991, J ACOUST SOC AM, V90, P3106, DOI 10.1121/1.401420 BANKS MI, 1991, J NEUROPHYSIOL, V65, P606 BENSON CG, 1990, J COMP NEUROL, V296, P415, DOI 10.1002/cne.902960307 BOURK TR, 1981, HEARING RES, V4, P215, DOI 10.1016/0378-5955(81)90008-3 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 BROWN MC, 1988, J COMP NEUROL, V278, P591, DOI 10.1002/cne.902780410 BROWN MC, 1993, J COMP NEUROL, V337, P600, DOI 10.1002/cne.903370406 CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305 CAJAL SRY, 1952, HISTOLOGIE SYSTEME N, P774 CANT NB, 1982, J COMP NEUROL, V212, P313, DOI 10.1002/cne.902120308 CANT NB, 1978, NEUROSCIENCE, V3, P1003, DOI 10.1016/0306-4522(78)90120-3 CANT NB, 1984, HEARING SCI RECENT A, P371 CANT NB, 1982, NEUROSCI LETT, V32, P241, DOI 10.1016/0304-3940(82)90300-7 CASPARY DM, 1994, J NEUROPHYSIOL, V72, P2124 CASPARY DM, 1993, NATO ADV SCI INST SE, V239, P239 COMIS SD, 1970, J PHYSIOL-LONDON, V210, P751 CONLEE JW, 1982, NEUROSCIENCE, V7, P161, DOI 10.1016/0306-4522(82)90158-0 DENOLORENTE R, 1981, PRIMARY ACOUSTIC NUC Doucet JR, 1997, J COMP NEUROL, V385, P245 EVANS EF, 1993, PROG BRAIN RES, V97, P117 FENG JJ, 1994, J COMP NEUROL, V346, P1, DOI 10.1002/cne.903460102 Hutson KA, 1996, J COMP NEUROL, V371, P397, DOI 10.1002/(SICI)1096-9861(19960729)371:3<397::AID-CNE4>3.0.CO;2-Y Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G KIM DO, 1992, ASS RES OTOLARYNGOL, V15, P60 KIM U, 1992, J COMP NEUROL, V321, P555, DOI 10.1002/cne.903210405 LEAKE PA, 1992, J COMP NEUROL, V320, P468, DOI 10.1002/cne.903200405 Lorente de No R, 1933, LARYNGOSCOPE, V43, P327 MOREST DK, 1993, NATO ADV SCI INST SE, V239, P1 OLIVER DL, 1994, J NEUROSCI METH, V53, P23, DOI 10.1016/0165-0270(94)90140-6 Osen K.K., 1990, GLYCINE NEUROTRANSMI, P417 OSTAPOFF EM, 1991, J COMP NEUROL, V314, P598, DOI 10.1002/cne.903140314 Ostapoff EM, 1997, J COMP NEUROL, V381, P500, DOI 10.1002/(SICI)1096-9861(19970519)381:4<500::AID-CNE9>3.0.CO;2-6 OSTAPOFF EM, 1996, ASS RES OT ABSTR, V19, P165 OSTAPOFF EM, 1997, ASS RES OT ABSTR, V20, P43 OSTAPOFF EM, 1990, J CHEM NEUROANAT, V3, P285 PALMER AR, 1982, HEARING RES, V7, P305, DOI 10.1016/0378-5955(82)90042-9 PALOMBI PS, 1992, J NEUROPHYSIOL, V67, P738 RASMUSSEN GL, 1964, NEUROLOGICAL ASPECTS, P5 Rasmussen G.L., 1960, NEURAL MECHANISMS AU, P105 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 ROSE JE, 1959, B JOHNS HOPKINS HOSP, V104, P211 RYUGO DK, 1991, J COMP NEUROL, V305, P35, DOI 10.1002/cne.903050105 SAINTMARIE RL, 1993, NATO ADV SCI INST SE, V239, P121 SAINTMARIE RL, 1991, HEARING RES, V51, P11, DOI 10.1016/0378-5955(91)90003-R Schofield BR, 1996, J COMP NEUROL, V375, P128, DOI 10.1002/(SICI)1096-9861(19961104)375:1<128::AID-CNE8>3.0.CO;2-5 SCHOFIELD BR, 1994, J COMP NEUROL, V344, P83, DOI 10.1002/cne.903440107 SHORE SE, 1991, HEARING RES, V52, P255, DOI 10.1016/0378-5955(91)90205-N SHORE SE, 1990, ASS RES OT ABSTR, V13, P335 SMITH PH, 1995, SOC NEUR ABSTR, V21, P400 SMITH PH, 1987, J COMP NEUROL, V266, P360, DOI 10.1002/cne.902660305 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 SNYDER RL, 1988, J COMP NEUROL, V278, P209, DOI 10.1002/cne.902780205 SPANGLER KM, 1987, J COMP NEUROL, V259, P452, DOI 10.1002/cne.902590311 TOLBERT LP, 1982, NEUROSCIENCE, V7, P3031, DOI 10.1016/0306-4522(82)90228-7 WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X Wickesberg RE, 1996, J ACOUST SOC AM, V100, P1691, DOI 10.1121/1.416067 WICKESBERG RE, 1990, J NEUROSCI, V10, P1762 WICKESBERG RE, 1988, J COMP NEUROL, V268, P389, DOI 10.1002/cne.902680308 WINTER IM, 1990, HEARING RES, V44, P161, DOI 10.1016/0378-5955(90)90078-4 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 ZHAO HB, 1995, BRAIN RES, V700, P295, DOI 10.1016/0006-8993(95)01078-A NR 66 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 75 EP 93 DI 10.1016/S0378-5955(98)00224-X PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600006 PM 10320100 ER PT J AU Zheng, QY Johnson, KR Erway, LC AF Zheng, QY Johnson, KR Erway, LC TI Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses SO HEARING RESEARCH LA English DT Article DE hearing loss; non-syndromic; mouse; inbred strain; gene; deafness model ID OTOACOUSTIC EMISSION TEST; BRAIN-STEM RESPONSE; MYOSIN VIIA GENE; F1-HYBRID STRAINS; C57BL/6J MICE; DEAFNESS; MOUSE; MODEL; SUSCEPTIBILITY; MUTATION AB The common occurrence of hearing loss in both humans and mice, and the anatomical and functional similarities of their inner ears, attest to the potential of mice being used as models to study inherited hearing loss. A large-scale, auditory screening project is being undertaken at The Jackson Laboratory (TJL) to identify mice with inherited hearing disorders. To assess hearing sensitivity, at least five mice from each inbred strain had auditory brainstem response (ABR) thresholds determined. Thus far, we have screened 80 inbred strains of mice: 60 of them exhibited homogeneous ABR threshold values not significantly different from those of the control strain CBA/CaJ. This large database establishes a reliable reference for normal hearing mouse strains. The following 16 inbred strains exhibited significantly elevated ABR thresholds before the age of 3 months: 129/J, 129/ReJ, 129/SvJ, A/J, ALR/LtJ, ALS/LtJ, BUB/BnJ, C57BLKS/J, C57BR/cdJ. C57L/J, DBA/2J, I/LnJ. MA/MyJ, NOD/LtJ. NOR/LtJ, and SKH2/J. These hearing impaired strains may serve as models for some forms of human non-syndromic hearing loss and aid in the identification of the underlying genes. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Jackson Lab, Bar Harbor, ME 04609 USA. Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA. RP Johnson, KR (reprint author), Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA. RI Zheng, Qing/C-1731-2012 CR ATCHLEY WR, 1993, MOL BIOL EVOL, V10, P1150 BROWN SDM, 1994, HUM MOL GENET, V3, P1453 CHURCH MW, 1986, AUDIOLOGY, V25, P363 DEOL MS, 1956, J EMBRYOL EXP MORPH, V4, P190 EHRET G, 1983, AUDITORY PSYCHOBIOLO, P13 Erkman L, 1996, NATURE, V381, P603, DOI 10.1038/381603a0 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0 Hall J W 3rd, 1997, Adv Otorhinolaryngol, V53, P21 HENRY KR, 1992, AUDIOLOGY, V31, P190 HENRY KR, 1992, AUDIOLOGY, V31, P181 HENRY KR, 1982, J GERONTOL, V37, P275 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244 KEATS BJB, 1995, MAMM GENOME, V6, P8, DOI 10.1007/BF00350886 KIKUTANI H, 1992, ADV IMMUNOL, V51, P285, DOI 10.1016/S0065-2776(08)60490-3 Kim DO, 1996, ACTA OTO-LARYNGOL, V116, P3, DOI 10.3109/00016489609137705 Leiter E. H., 1998, NOD MICE RELATED STR, P1 Liu XZ, 1997, NAT GENET, V16, P188, DOI 10.1038/ng0697-188 Liu XZ, 1997, NAT GENET, V17, P268, DOI 10.1038/ng1197-268 Lyon MF.RastanS, 1996, GENETIC VARIANTS STR MARKAND ON, 1994, J CLIN NEUROPHYSIOL, V11, P319, DOI 10.1097/00004691-199405000-00004 Martini A, 1997, AUDIOLOGY, V36, P228 MCFADDEN SL, 1994, HEARING RES, V78, P115, DOI 10.1016/0378-5955(94)90018-3 MOLLER AR, 1994, J CLIN NEUROPHYSIOL, V11, P284 MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869 Parham K, 1997, HEARING RES, V112, P216, DOI 10.1016/S0378-5955(97)00124-X Petit C, 1996, NAT GENET, V14, P385, DOI 10.1038/ng1296-385 PiekeDahl S, 1997, HEARING RES, V112, P1, DOI 10.1016/S0378-5955(97)00087-7 Probst FJ, 1998, SCIENCE, V280, P1444, DOI 10.1126/science.280.5368.1444 PROCHAZKA M, 1992, DIABETES, V41, P98, DOI 10.2337/diabetes.41.1.98 Sekiguchi F, 1990, Jikken Dobutsu, V39, P269 SHONE G, 1991, HEARING RES, V56, P173, DOI 10.1016/0378-5955(91)90167-8 Simpson EM, 1997, NAT GENET, V16, P19, DOI 10.1038/ng0597-19 SMITH SM, 1982, INT ARCH ALLER A IMM, V67, P254 STEEL KP, 1987, HEARING RES, V28, P227, DOI 10.1016/0378-5955(87)90051-7 Steel KP, 1996, CURR OPIN NEUROBIOL, V6, P520, DOI 10.1016/S0959-4388(96)80059-6 Steel KP, 1995, ANNU REV GENET, V29, P675 STEEL KP, 1983, ARCH OTOLARYNGOL, V109, P22 STOCKARD JJ, 1977, ELECTROEN CLIN NEURO, V43, P550 Sun XM, 1996, ANN OTO RHINOL LARYN, V105, P982 TAKETO M, 1991, P NATL ACAD SCI USA, V88, P2065, DOI 10.1073/pnas.88.6.2065 Vahava O, 1998, SCIENCE, V279, P1950, DOI 10.1126/science.279.5358.1950 VANCAMP G, 1998, HEREDITARY HEARING L WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J Wang AH, 1998, SCIENCE, V280, P1447, DOI 10.1126/science.280.5368.1447 Weil D, 1995, Nature, V374, P60 WICKER LS, 1993, MOL MECH IMMUNOLOGIC, P173 Willott J.F., 1983, AUDITORY PSYCHOBIOLO WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F NR 53 TC 394 Z9 403 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 94 EP 107 DI 10.1016/S0378-5955(99)00003-9 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600007 PM 10320101 ER PT J AU Swartz, DJ Santi, PA AF Swartz, DJ Santi, PA TI Immunolocalization of tenascin in the chinchilla inner ear SO HEARING RESEARCH LA English DT Article DE tenascin; inner ear; vestibular; immunohistochemistry; confocal microscopy ID EPITHELIAL MESENCHYMAL INTERACTIONS; EXTRACELLULAR-MATRIX PROTEIN; SILVER METHENAMINE METHOD; HAIR CELL REGENERATION; OTIC CAPSULE FORMATION; GROWTH-FACTOR-BETA; IMMUNOHISTOCHEMICAL LOCALIZATION; DIFFERENTIAL EXPRESSION; PATHOLOGICAL CONDITIONS; VESTIBULAR EPITHELIUM AB Tenascin was immunolocalized in the chinchilla cochlea and vestibular system to better understand the functional morphology of the inner ear. Inner ear tissues were fixed with acetone, decalcified and cryosectioned. Indirect immunofluorescence. using antibodies directed against human tenascin epitopes, were used to detect tenascin. As a positive control, tenascin immunoreactivity was found in kidney. cortical mesangial cells and the extracellular matrix of glomeruli and medullary tubule interstitial spaces, concurring with previously reported results. In the cochlea, tenascin immunoreactivity was present in osteocytes, the mesothelial cells underlying the basilar membrane IBM) and within the fibrous matrix of the BM. Greater reactivity was observed in the mesothelial cells than in the fibrous matrix of the BM. In the vestibular system. tenascin immunoreactivity formed a diffuse band directly beneath the basal lamina of the ampullary and otoconial organs. Tenascin immunoreactivity was also observed in cup-shaped regions between the type I vestibular hair cells and their surrounding VIII nerve calyces in the ampullary and otoconial organs. This is the first report of the anatomical distribution of tenascin in the adult, mammalian inner ear, other than our previously published abstract P.A. Santi and D. Swartz. Sec. Neurosci. Abstr. 23 (1997) 731. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Univ Minnesota, Minneapolis, MN 55455 USA. Univ Iowa, Sch Med, Iowa City, IA 52242 USA. RP Santi, PA (reprint author), Univ Minnesota, Rm 121,Lions Res Bldg,2001 6th St SE, Minneapolis, MN 55455 USA. CR AUFDERHEIDE E, 1987, J CELL BIOL, V105, P599, DOI 10.1083/jcb.105.1.599 BOURDON MA, 1983, CANCER RES, V43, P2796 CHIQUETEHRISMANN R, 1988, CELL, V53, P383, DOI 10.1016/0092-8674(88)90158-4 DAIKHADAHMANE F, 1995, LAB INVEST, V73, P547 DANILOFF JK, 1989, J CELL BIOL, V108, P625, DOI 10.1083/jcb.108.2.625 ERICKSON HP, 1989, ANNU REV CELL BIOL, V5, P71 FRENZ DA, 1992, DEV BIOL, V153, P324, DOI 10.1016/0012-1606(92)90117-Y FRENZ DA, 1994, DEVELOPMENT, V120, P415 FRENZ DA, 1991, ANN OTO RHINOL LARYN, V100, P301 GATCHALIAN CL, 1989, J CELL BIOL, V108, P1873, DOI 10.1083/jcb.108.5.1873 IGARASHI Y, 1993, HEARING RES, V67, P83, DOI 10.1016/0378-5955(93)90235-S INAGUMA Y, 1988, DEV BIOL, V128, P245, DOI 10.1016/0012-1606(88)90288-6 JONES FS, 1989, P NATL ACAD SCI USA, V86, P1905, DOI 10.1073/pnas.86.6.1905 JORGENSEN JM, 1988, NATURWISSENSCHAFTEN, V75, P319, DOI 10.1007/BF00367330 KAWAMATA S, 1993, HEARING RES, V67, P75, DOI 10.1016/0378-5955(93)90234-R KEITHLEY EM, 1993, J COMP NEUROL, V327, P612, DOI 10.1002/cne.903270411 KOYEMA E, 1996, J ORTHOPAED RES, V14, P403 Mackie EJ, 1996, J ANAT, V188, P157 MUNYER PD, 1994, HEARING RES, V79, P83, DOI 10.1016/0378-5955(94)90129-5 MUNYER PD, 1995, HEARING RES, V85, P85, DOI 10.1016/0378-5955(95)00032-Y NIES DE, 1991, J BIOL CHEM, V266, P2818 NIQET J, 1995, J NEUROCYTOL, V24, P611 NISHI T, 1991, EUR J BIOCHEM, V202, P643, DOI 10.1111/j.1432-1033.1991.tb16418.x Oh SH, 1996, J NEUROSCI, V16, P6463 PERIDES G, 1993, ANAT EMBRYOL, V188, P467 PROBSTMEIER R, 1990, DEVELOPMENT, V109, P313 RICHARDSON GP, 1987, DEV BIOL, V119, P217, DOI 10.1016/0012-1606(87)90223-5 ROBERSON DF, 1992, HEARING RES, V57, P166, DOI 10.1016/0378-5955(92)90149-H SAKAKURA T, 1991, ACTA PATHOL JAPON, V41, P247 SANTI PA, 1989, HEARING RES, V39, P91, DOI 10.1016/0378-5955(89)90084-1 STEINDLER DA, 1989, DEV BIOL, V131, P243, DOI 10.1016/S0012-1606(89)80056-9 Takemura T, 1996, HEARING RES, V95, P26, DOI 10.1016/0378-5955(95)00233-2 TANYERI H, 1995, HEARING RES, V89, P194, DOI 10.1016/0378-5955(95)00137-7 TAYLOR HC, 1989, J CELL BIOCHEM, V41, P71, DOI 10.1002/jcb.240410204 Truong LD, 1996, NEPHRON, V72, P579 TRUONG LD, 1994, KIDNEY INT, V45, P201, DOI 10.1038/ki.1994.24 TRUONG LD, 1994, J AM SOC NEPHROL, V4, P1771 VAINIO S, 1989, J CELL BIOL, V108, P1945, DOI 10.1083/jcb.108.5.1945 WEISLEDER P, 1993, J COMP NEUROL, V331, P97, DOI 10.1002/cne.903310106 WELLER A, 1991, J CELL BIOL, V112, P355, DOI 10.1083/jcb.112.2.355 WOOLF NK, 1992, DEV BRAIN RES, V65, P21, DOI 10.1016/0165-3806(92)90004-G NR 41 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 108 EP 114 DI 10.1016/S0378-5955(98)00229-9 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600008 PM 10320102 ER PT J AU van Adel, BA Kidd, SA Kelly, JB AF van Adel, BA Kidd, SA Kelly, JB TI Contribution of the commissure of Probst to binaural evoked responses in the rat's inferior colliculus: interaural time differences SO HEARING RESEARCH LA English DT Article DE binaural processing; sound localization; auditory spatial perception; interaural time difference; dorsal nucleus of lateral lemniscus; commissure of Probst ID STEM AUDITORY NUCLEI; KAINIC ACID LESIONS; SUPERIOR OLIVARY COMPLEX; LATERAL LEMNISCUS; DORSAL NUCLEUS; BRAIN-STEM; SOUND LOCALIZATION; ALBINO-RAT; ASCENDING PROJECTIONS; GABA-IMMUNOREACTIVITY AB Binaural evoked responses were recorded with glass micropipettes from the central nucleus of the rat's inferior colliculus (ICC) before and after transection of the commissure of Probst (CP) with a microsurgical knife. The peak-to-peak amplitude of the averaged evoked response was measured for binaural clicks with interaural time differences (ITDs) between -1.0 and +30.0 ms (positive values reflecting ipsilateral-leading-contralateral click pairs). Before transection, the amplitude of the evoked response decreased as the ITD was shifted in favor of larger ipsilateral lead times. After transection of the CP, acoustic stimulation of the ipsilateral ear was much less effective in reducing evoked response amplitude. Responses to both short (+/-1.0 ms) and long(1.0-30.0 ms) ITD intervals were affected. After recordings were made, both anterograde and retrograde tract tracing methods were used to verify that the CP was completely transected and that all crossed projections from the dorsal nucleus of the lateral lemniscus (DNLL) to ICC were destroyed. The surgery completely eliminated the retrograde transport of fluorogold from the ICC to the opposite DNLL and blocked the anterograde transport of biotinylated dextran to contralateral DNLL and ICC. The physiological consequences of CP transection are attributed to the complete destruction of decussating, inhibitory (GABAergic) efferent projections from the DNLL. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Carleton Univ, Inst Neurosci, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. RP Kelly, JB (reprint author), Carleton Univ, Inst Neurosci, Lab Sensory Neurosci, 329 Life Sci Bldg, Ottawa, ON K1S 5B6, Canada. CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V3, P265 ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207 BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2 BRUGGE JF, 1970, J NEUROPHYSIOL, V33, P441 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 BUCKTHOUGHT AD, 1993, ASS RES OTOLARYGOL A, V16, P126 CARNEY LH, 1989, J NEUROPHYSIOL, V62, P144 Chen L., 1998, Society for Neuroscience Abstracts, V24, P1635 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 COVEY E, 1993, J NEUROPHYSIOL, V69, P842 DIVAC I, 1990, BRAIN RES, V524, P339, DOI 10.1016/0006-8993(90)90713-L FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K Faingold C.L., 1991, NEUROBIOLOGY HEARING, P223 Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469 GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210 GLENDENNING KK, 1983, J NEUROSCI, V3, P1521 GLENN SL, 1992, J NEUROSCI, V12, P3688 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E HUTSON KA, 1991, J COMP NEUROL, V312, P105, DOI 10.1002/cne.903120109 Ito M, 1996, J NEUROPHYSIOL, V76, P3493 Kelly JB, 1998, HEARING RES, V122, P25, DOI 10.1016/S0378-5955(98)00082-3 Kelly JB, 1997, HEARING RES, V104, P112, DOI 10.1016/S0378-5955(96)00182-7 Kelly JB, 1996, BEHAV NEUROSCI, V110, P1445, DOI 10.1037//0735-7044.110.6.1445 Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0 Kidd SA, 1996, J NEUROSCI, V16, P7390 KUDO M, 1981, BRAIN RES, V221, P57, DOI 10.1016/0006-8993(81)91063-5 LABELLE RE, 1997, ASS RES OT ABSTR, V20, P189 LI L, 1992, J NEUROSCI, V12, P4530 MARKOVITZ NS, 1994, HEARING RES, V73, P121, DOI 10.1016/0378-5955(94)90290-9 MERCHAN MA, 1994, J COMP NEUROL, V342, P259, DOI 10.1002/cne.903420209 MOORE JK, 1987, J COMP NEUROL, V260, P157, DOI 10.1002/cne.902600202 OLIVER DL, 1989, J NEUROSCI, V9, P967 PARK TJ, 1993, J NEUROSCI, V13, P2050 Paxinos G, 1987, RAT BRAIN STEREOTAXI ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 SCHMUED L, 1990, BRAIN RES, V526, P127, DOI 10.1016/0006-8993(90)90258-D SHNEIDERMAN A, 1993, J NEUROCHEM, V60, P72, DOI 10.1111/j.1471-4159.1993.tb05824.x SHNEIDERMAN A, 1989, J COMP NEUROL, V286, P28, DOI 10.1002/cne.902860103 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 Kelly JB, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P329, DOI 10.1007/978-1-4419-8712-9_31 TANAKA K, 1985, BRAIN RES, V341, P252, DOI 10.1016/0006-8993(85)91064-9 THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6 VANADEL B, 1998, THESIS CARLETON U OT van Adel BA, 1998, BEHAV NEUROSCI, V112, P432, DOI 10.1037/0735-7044.112.2.432 van Adel B. A., 1998, Society for Neuroscience Abstracts, V24, P1882 VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205 WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302 Wu SH, 1996, J NEUROPHYSIOL, V75, P1271 YANG L, 1994, AUDIT NEUROSCI, V1, P1 YANG LC, 1994, J NEUROPHYSIOL, V71, P1999 YIN TCT, 1994, J NEUROSCI, V14, P5170 Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5 ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103 NR 56 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 115 EP 130 DI 10.1016/S0378-5955(98)00226-3 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600009 PM 10320103 ER PT J AU Nishizaki, K Yoshino, T Orita, Y Nomiya, S Masuda, Y AF Nishizaki, K Yoshino, T Orita, Y Nomiya, S Masuda, Y TI TUNEL staining of inner ear structures may reflect autolysis, not apoptosis SO HEARING RESEARCH LA English DT Article DE TUNEL method; apoptosis; inner ear; fixation; autolysis ID CELL-DEATH; NECROSIS AB A recent study (Usami et al., 1997) using the TUNEL method has suggested that age-related cell death in the senescence-accelerated mouse inner ear is due to apoptosis. TUNEL staining detects not only apoptosis but also late necrosis or autolysis because it detects DNA breaks. Autolysis may occur in inner ear structures during fixation. To determine whether or not age-related cell death is due to apoptosis, TUNEL staining of the inner ear of normal mice should be understood. However, studies of TUNEL staining of the normal inner ear have not yet been reported. We investigated whether the fixation method or the interval between the death of normal mice and the initiation of fixation influences the results of TUNEL staining of the inner ear. Marginal cells of the stria vascularis and hair cells of the saccule were TUNEL-positive, irrespective of the fixation method or the interval between death and fixation. Interdental cells, Reissner membrane cells, fibrocytes in the suprastrial region, and inner and outer hair cells were also occasionally stained. Transmission electron microscopy showed no morphological characteristics of apoptosis in the hair cells of the saccule. Moreover, patterns of TUNEL staining in the normal and senescence-accelerated mouse inner ear were similar. These stained tissues may require a high level of oxygen, making them more susceptible to autolysis. We concluded that the results of TUNEL staining in the inner ear require confirmation by morphological studies. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Okayama Univ, Sch Med, Dept Otorhinolaryngol, Okayama 7008558, Japan. Okayama Univ, Sch Med, Dept Pathol, Okayama 7008558, Japan. RP Nishizaki, K (reprint author), Okayama Univ, Sch Med, Dept Otorhinolaryngol, Shikata Cho 2-5-1, Okayama 7008558, Japan. EM niskizak@cc.okayama-u.ac.jp CR BURSCH W, 1990, CARCINOGENESIS, V11, P847, DOI 10.1093/carcin/11.5.847 CHENG JH, 1994, SCIENCE, V263, P1759, DOI 10.1126/science.7510905 GAVRIELI Y, 1992, J CELL BIOL, V119, P493, DOI 10.1083/jcb.119.3.493 GOLD R, 1994, LAB INVEST, V71, P219 GRASLKRAUPP B, 1995, HEPATOLOGY, V21, P1465, DOI 10.1016/0270-9139(95)90071-3 HOVANESSIAN AG, 1994, APOPTOSIS, V2, P21 Hughes D.E., 1964, BIOCH HORORGANS, P446 KERR JFR, 1991, APOPTOSIS MOL BASIS, P5 KIRINO T, 1982, BRAIN RES, V239, P57, DOI 10.1016/0006-8993(82)90833-2 LAFERLA FM, 1995, NAT GENET, V9, P21, DOI 10.1038/ng0195-21 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 MUTA K, 1995, J CELL PHYSIOL, V163, P38, DOI 10.1002/jcp.1041630106 Nakagawa T, 1997, EUR ARCH OTO-RHINO-L, V254, P9, DOI 10.1007/BF02630749 OKAMOTO M, 1993, BIOCHEM BIOPH RES CO, V196, P1356, DOI 10.1006/bbrc.1993.2402 Sugiyama H, 1996, KIDNEY INT, V49, P103, DOI 10.1038/ki.1996.14 UMANSKY SR, 1982, J THEOR BIOL, V97, P591, DOI 10.1016/0022-5193(82)90360-5 Usami S, 1997, BRAIN RES, V747, P147, DOI 10.1016/S0006-8993(96)01243-7 YUAN J, 1993, BLOOD, V82, P374 NR 18 TC 27 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 131 EP 136 DI 10.1016/S0378-5955(99)00002-7 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600010 PM 10320104 ER PT J AU Leonova, EV Raphael, Y AF Leonova, EV Raphael, Y TI Application of a platinum replica method to the study of the cytoskeleton of isolated hair cells, supporting cells and whole mounts of the organ of Corti SO HEARING RESEARCH LA English DT Article DE platinum replica method; cochlea; cytoskeleton; cortical lattice; stereocilia; infracuticular network ID INNER-EAR; ACTIN-FILAMENTS; ELECTRON-MICROSCOPY; GUINEA-PIG; F-ACTIN; PROTEINS; MICROTUBULES; ORGANIZATION; MOVEMENT; LOCALIZATION AB We adapted a method of platinum replica to study the cytoskeleton of isolated cells of the guinea pig organ of Corti. This technique combined high image resolution with the ability to visualize the three-dimensional organization of the cytoskeleton of a whole cell. The procedure includes: isolation of hair cells and supporting cells using collagenase digestion, attachment of the cells to a coverslip, detergent extraction, chemical fixation, critical point drying, platinum/carbon coating, and transmission electron microscopy analysis. By using the method of platinum replica, we confirmed the existence of structural domains in the cortical lattice of outer hair cells. Based on the analysis of the partly destroyed cortical lattice, we propose that circumferential filaments are underlined with a thin flexible network. In addition, we established that the base of each stereocilium had a cone-like expansion of actin Filaments and was surrounded by a thin bundle of filaments. We also produced replicas of the protrusion of the cuticular plate into the cytoplasm (infracuticular network) and the reticular lamina cytoskeleton. Our data indicated that the platinum replica method is useful for studying structural interactions among different cytoskeletal elements in the reticular lamina, as well as the cortex of outer hair cells and the cytoskeleton of supporting cells. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Leonova, EV (reprint author), Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM EVL@umich.edu CR Angelborg C, 1972, Acta Otolaryngol Suppl, V301, P49 ANNIKO M, 1995, ORL J OTO-RHINO-LARY, V57, P61 Behnke O, 1970, Int Rev Exp Pathol, V9, P1 BAUWENS LJJM, 1991, ANN OTO RHINOL LARYN, V100, P211 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 DEROSIER DJ, 1989, J CELL BIOL, V109, P2853, DOI 10.1083/jcb.109.6.2853 DRENCKHAHN D, 1982, NATURE, V300, P531, DOI 10.1038/300531a0 ENGSTROM H, 1958, INT REV CYTOL, V7, P535, DOI 10.1016/S0074-7696(08)62695-9 EUTENEUER U, 1984, NATURE, V310, P58, DOI 10.1038/310058a0 EUTENEUER U, 1986, ANN NY ACAD SCI, V466, P867, DOI 10.1111/j.1749-6632.1986.tb38473.x FLOCK A, 1981, J NEUROCYTOL, V10, P133, DOI 10.1007/BF01181749 FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 Fuchs E, 1995, ANNU REV CELL DEV BI, V11, P123, DOI 10.1146/annurev.cellbio.11.1.123 GRIFFITH LM, 1978, J CELL BIOL, V78, P958, DOI 10.1083/jcb.78.3.958 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 HEUSER JE, 1980, J CELL BIOL, V86, P212, DOI 10.1083/jcb.86.1.212 HIROKAWA N, 1982, J CELL BIOL, V95, P249, DOI 10.1083/jcb.95.1.249 Holley M. C., 1996, COCHLEA, P386 HOLLEY MC, 1990, J CELL SCI, V96, P283 HOLLEY MC, 1992, J CELL SCI, V102, P569 HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0 HUDSPETH AJ, 1983, ANNU REV NEUROSCI, V6, P187, DOI 10.1146/annurev.ne.06.030183.001155 ITOH M, 1982, HEARING RES, V6, P277, DOI 10.1016/0378-5955(82)90060-0 ITOH M, 1980, ACTA OTO-LARYNGOL, V90, P385, DOI 10.3109/00016488009131739 KATORI Y, 1997, ARO ABSTR, P214 KIMURA RS, 1966, ACTA OTOLARYNGOL, V111, P286 KUIJPERS W, 1991, HEARING RES, V52, P133, DOI 10.1016/0378-5955(91)90193-D Leonova EV, 1997, HEARING RES, V113, P14, DOI 10.1016/S0378-5955(97)00130-5 LEONOVA EV, 1992, CELL BIOL INT REP, V16, P955, DOI 10.1016/S0309-1651(06)80048-2 LIM DJ, 1971, ARCHIV OTOLARYNGOL, V94, P294 NISHIDA Y, 1993, HEARING RES, V65, P274, DOI 10.1016/0378-5955(93)90220-U OGHALAI JS, 1999, ARO ABSTR, P350 RAPHAEL Y, 1986, J SUBMICROSC CYTOL, V18, P730 RAPHAEL Y, 1994, HEARING RES, V76, P173, DOI 10.1016/0378-5955(94)90098-1 RAPHAEL Y, 1987, DIFFERENTIATION, V35, P151, DOI 10.1111/j.1432-0436.1987.tb00163.x RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 RIS H, 1985, J CELL BIOL, V100, P1474, DOI 10.1083/jcb.100.5.1474 SATIR P, 1984, J CELL BIOL, V99, P235 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P1787 SLEPECKY N, 1989, HEARING RES, V38, P135, DOI 10.1016/0378-5955(89)90135-4 SLEPECKY N, 1985, HEARING RES, V20, P245, DOI 10.1016/0378-5955(85)90029-2 SLEPECKY N, 1989, CELL TISSUE RES, V257, P69 SLEPECKY N, 1982, CELL TISSUE RES, V224, P15, DOI 10.1007/BF00217262 Slepecky N. B., 1996, COCHLEA, P44 SPOENDLIN H, 1968, HEARING MECHANISMS V, P89 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 STEYGER PS, 1989, HEARING RES, V42, P1, DOI 10.1016/0378-5955(89)90113-5 Svitkina TM, 1995, J STRUCT BIOL, V115, P290, DOI 10.1006/jsbi.1995.1054 SVITKINA TM, 1984, EUR J CELL BIOL, V34, P64 THORNE PR, 1987, HEARING RES, V30, P253, DOI 10.1016/0378-5955(87)90141-9 TILNEY LG, 1980, J CELL BIOL, V86, P244, DOI 10.1083/jcb.86.1.244 VALE RD, 1985, CELL, V43, P623, DOI 10.1016/0092-8674(85)90234-X WOLLWEBER L, 1981, J MICROSC-OXFORD, V121, P185 ZENNER HP, 1981, ARCH OTO-RHINO-LARYN, V230, P81, DOI 10.1007/BF00665383 NR 55 TC 6 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 137 EP 154 DI 10.1016/S0378-5955(99)00004-0 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600011 PM 10320105 ER PT J AU Yamada, WM Lewis, ER AF Yamada, WM Lewis, ER TI Predicting the temporal responses of non-phase-locking bullfrog auditory units to complex acoustic waveforms SO HEARING RESEARCH LA English DT Article DE reverse correlation; tuning; temporal response; frog basilar papilla; Wiener kernel ID CONSONANT-VOWEL SYLLABLES; WIENER-KERNEL ANALYSIS; NERVE-FIBER RESPONSES; INNER-EAR FUNCTION; PERIODICITY EXTRACTION; COMMUNICATION SOUND; DISCHARGE PATTERNS; RANA-CATESBEIANA; BACKGROUND-NOISE; GAUSSIAN-NOISE AB Axons from the basilar papilla of the American bullfrog (Raana catesbeiana) do not phase lock to stimuli within an octave of their best frequencies. Nevertheless, they show consistent temporal patterns of instantaneous spike rate las reflected in peristimulus lime histograms) in response to repeated stimuli in that frequency range. We show that the second-order Wiener kernels for these axons, derived from the cross-correlation of continuous (non-repeating), broad-band noise stimulus with the spike train produced in response to that stimulus, can predict with considerable precision the temporal pattern of instantaneous spike rate in response to a novel, complex acoustic waveform (a repeated, 100-ms segment of noise, band-limited to cover the single octaves above and below best frequency). Furthermore, we show that most of this predictive power is retained when the second-order Wiener kernel is reduced to the highest-ranking pair of singular vectors derived from singular-value decomposition, that the retained pair of vectors corresponds to a single auditory filter followed by an envelope-detection process, and that the auditory Filler itself predicts the characteristic frequency (CF) of the axon and the shape of the frequency-threshold tuning curve in the vicinity of CF. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. Univ Calif Los Angeles, Dept Physiol Sci, Los Angeles, CA 90095 USA. RP Lewis, ER (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. CR BODNAR DA, 1994, J COMP PHYSIOL A, V174, P157 Bodnar DA, 1997, AUDIT NEUROSCI, V3, P231 CARNEY LH, 1986, J ACOUST SOC AM, V79, P1896, DOI 10.1121/1.393197 DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704 DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561 EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R FENG AS, 1991, J NEUROPHYSIOL, V65, P424 GEISLER CD, 1989, J ACOUST SOC AM, V85, P1639, DOI 10.1121/1.397952 HILLERY CM, 1987, HEARING RES, V25, P233, DOI 10.1016/0378-5955(87)90095-5 HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 JAVEL E, 1980, J ACOUST SOC AM, V68, P133, DOI 10.1121/1.384639 KUMERASEN R, 1996, DIVERSITY AUDITORY M, P190 LEWIS ER, 1982, SCIENCE, V215, P1641, DOI 10.1126/science.6978525 Lewis ER, 1995, HEARING RES, V92, P1, DOI 10.1016/0378-5955(95)00189-1 LIM D, 1990, THESIS CORNELL U, P1 LIM D, 1990, J NEUROSCI METH, V52, P203 LOWENSTEIN O, 1956, BRIT MED BULL, V12, P114 Marmarelis PZ, 1978, ANAL PHYSL SYSTEMS W Marmarelis VZ, 1997, ANN BIOMED ENG, V25, P239, DOI 10.1007/BF02648038 MILLER MI, 1984, HEARING RES, V14, P257, DOI 10.1016/0378-5955(84)90054-6 RONKEN DA, 1990, HEARING RES, V47, P63, DOI 10.1016/0378-5955(90)90167-N RUGH WJ, 1981, NONLINEAR SYSTEM THE SACHS MB, 1983, J NEUROPHYSIOL, V50, P27 Schetzen M., 1980, VOLTERRA WIENER THEO, Vfirst SCHWARTZ JJ, 1990, J COMP PHYSIOL A, V166, P489 SHOFNER WP, 1981, J EXP BIOL, V93, P181 SIMMONS AM, 1992, J ACOUST SOC AM, V91, P2831, DOI 10.1121/1.402964 SIMMONS AM, 1993, J ACOUST SOC AM, V93, P3374, DOI 10.1121/1.405693 SIMMONS AM, 1993, J COMP PHYSIOL A, V172, P57, DOI 10.1007/BF00214715 Simmons AM, 1996, AUDIT NEUROSCI, V2, P109 SINEX DG, 1983, J ACOUST SOC AM, V73, P602, DOI 10.1121/1.389007 Stein RB, 1970, NEUROSCIENCES, P597 vanDijk P, 1997, HEARING RES, V114, P229, DOI 10.1016/S0378-5955(97)00168-8 vanDijk P, 1997, HEARING RES, V114, P243, DOI 10.1016/S0378-5955(97)00169-X VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009 WEISS TF, 1988, HEARING RES, V33, P167, DOI 10.1016/0378-5955(88)90029-9 WOLODKIN G, 1996, DIVERSITY AUDITORY M, P104 YAMADA WM, 1996, DIVERSITY AUDITORY M, P111 YAMADA WY, 1997, THESIS U CALIFORNIA YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 YU XL, 1989, IEEE T BIO-MED ENG, V36, P36, DOI 10.1109/10.16447 NR 41 TC 29 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 155 EP 170 DI 10.1016/S0378-5955(99)00005-2 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600012 PM 10320106 ER PT J AU Shepherd, RK Javel, E AF Shepherd, RK Javel, E TI Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties SO HEARING RESEARCH LA English DT Article DE auditory nerve fiber; cochlear implant; cochlear histopathology; electrical stimulation; deafness; neural prosthesis ID COCHLEAR IMPLANT; CHANNEL INTERACTIONS; MYELINATED NERVE; CAT COCHLEA; FIBERS; MODEL; PATTERNS; ELECTRODES; EXCITATION; SYSTEM AB To investigate the generation of action potentials by electrical stimulation we studied the response of auditory nerve fibres (ANFs) to a variety of stimulus waveforms. Current pulses were presented to longitudinal bipolar scala tympani electrodes implanted in normal and deafened cochleae. Capacitively coupled monophasic current pulses evoked single ANF responses that were more sensitive to one phase (the 'excitatory' phase) than the other. Anodic pulses produced a significantly shorter mean latency compared with cathodic pulses, indicating that their site for spike initiation is located more centrally along the ANF. The fine temporal structure of ANF responses to biphasic pulses appeared similar to that evoked by monophasic pulses. An excitatory monophasic pulse evoked a significantly lower threshold than a biphasic current pulse having the same polarity and duration leading phase, i.e. the addition of a second phase leads to an increase in threshold. Increasing the temporal separation of the two phases of a biphasic pulse resulted in a moderate reduction in threshold which approached that of an excitatory monophasic pulse for interphase gaps > 100 mu s Greater threshold reductions were observed with narrower current pulses. There was a systematic reduction in threshold with increasing pulse width for biphasic current pulses, reflecting the general charge-dependent properties of ANFs for narrow pulse widths. Chopped biphasic current pulses, which uniformly delivered multiple packets of charge (2 x 30 mu s, 3 x 20 mu s or 6 x 10 mu s) with the same polarity over a 120 mu s period, followed by a similar series in the reverse polarity, demonstrated the ability of the neural membrane to integrate sub-threshold packets of charge to achieve depolarisation. Moreover, thresholds for these current pulses were, 1.5 dB lower than 60 mu s/phase biphasic current pulses with no interphase gap. Finally, stimulation using charge-balanced triphasic and asymmetric current pulses produced systematic changes in threshold and latency consistent with the charge-dependent properties of ANFs. These findings provide insight into the mechanisms underlying the generation of action potentials using electrical stimuli. Moreover, a number of these novel stimuli may have potential clinical application. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, Parkville, Vic 3052, Australia. Univ Minnesota, Dept Otolaryngol, Minneapolis, MN 55455 USA. RP Shepherd, RK (reprint author), Univ Melbourne, Dept Otolaryngol, 32 Gisborne St, E Melbourne, Vic 3002, Australia. RI Shepherd, Robert/I-6276-2012 CR BEMENT SL, 1969, EXP NEUROL, V24, P147, DOI 10.1016/0014-4886(69)90012-0 BLACK RC, 1981, IEEE T BIO-MED ENG, V28, P721, DOI 10.1109/TBME.1981.324668 Black R C, 1983, Acta Otolaryngol Suppl, V399, P5 BROMM B, 1968, PFLUG ARCH EUR J PHY, V299, P357, DOI 10.1007/BF00602911 Brooks VB, 1981, HDB PHYSL NERVOUS 1, V3, P155 BRUMMER SB, 1977, IEEE T BIO-MED ENG, V24, P59, DOI 10.1109/TBME.1977.326218 CLARK GM, 1978, J ACOUST SOC AM, V63, P631, DOI 10.1121/1.2033198 CLOPTON BM, 1990, COCHLEAR IMPLANTS MO, P223 Coste RL, 1996, J ACOUST SOC AM, V99, P3099, DOI 10.1121/1.414796 Dynes SBC, 1996, THESIS MIT CAMBRIDGE Eddington D. K., 1978, ANN OTOL S, V53, P5 EDDINGTON DK, 1995, P 1995 C IMPL AUD PR FAVRE E, 1993, HEARING RES, V66, P150, DOI 10.1016/0378-5955(93)90136-O Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 GORMAN PH, 1983, IEEE T BIO-MED ENG, V30, P407, DOI 10.1109/TBME.1983.325041 Grill WM, 1996, IEEE T BIO-MED ENG, V43, P161, DOI 10.1109/10.481985 Hartmann R., 1990, COCHLEAR IMPLANTS MO, P135 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 Hill AV, 1936, PROC R SOC SER B-BIO, V119, P440, DOI 10.1098/rspb.1936.0015 JAVEL E, 1999, UNPUB ELECT STIMULAT, V3 JAVEL E, 1991, ASS RES OT MIDW M FL, V14, P130 JAVEL E, 1987, ANN OTO RHINOL LARYN, V96, P26 Jayel E., 1990, COCHLEAR IMPLANTS MO, P247 Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6 LOEB GE, 1983, ANN NY ACAD SCI, V405, P123, DOI 10.1111/j.1749-6632.1983.tb31625.x MCDERMOTT H, 1989, IEEE T BIO-MED ENG, V36, P789, DOI 10.1109/10.32112 MCKAY C, 1997, COCHLEAR IMPLANTS, P137 MCNEAL DR, 1976, IEEE T BIO-MED ENG, V23, P329, DOI 10.1109/TBME.1976.324593 MCNEAL DR, 1989, IEEE T BIO-MED ENG, V36, P301, DOI 10.1109/10.19851 MERZENICH MM, 1977, FUNCTIONAL ELECT STI, P321 Miyoshi S, 1996, ARTIF ORGANS, V20, P941, DOI 10.1111/j.1525-1594.1996.tb04574.x MOXON EC, 1967, THESIS MIT CAMBRIDGE Moxon E.C., 1971, THESIS MIT CAMBRIDGE NOBLE D, 1966, PHYSIOL REV, V46, P1 OLEARY SJ, 1985, HEARING RES, V18, P273, DOI 10.1016/0378-5955(85)90044-9 PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5 PARKINS CW, 1987, HEARING RES, V31, P267, DOI 10.1016/0378-5955(87)90196-1 RANCK JB, 1975, BRAIN RES, V98, P417, DOI 10.1016/0006-8993(75)90364-9 REILLY JP, 1985, IEEE T BIO-MED ENG, V32, P1001, DOI 10.1109/TBME.1985.325509 Robblee L S, 1990, NEURAL PROSTHESES FU, P25 RODENHISER KL, 1995, IEEE T BIO-MED ENG, V42, P337, DOI 10.1109/10.376127 Ross S, 1996, J ACOUST SOC AM, V99, P2221, DOI 10.1121/1.415410 RUSHTON WAH, 1951, J PHYSIOL-LONDON, V115, P101 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 SELIGMAN P, 1997, P 16 WORLD C OT HEAD, P121 SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Solandt DY, 1936, PROC R SOC SER B-BIO, V119, P355, DOI 10.1098/rspb.1936.0013 SUESSERMAN MF, 1993, IEEE T BIO-MED ENG, V40, P237, DOI 10.1109/10.216407 TOWNSHEND B, 1987, IEEE T BIO-MED ENG, V34, P891, DOI 10.1109/TBME.1987.326102 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 VANDENHONERT C, 1979, ANN BIOMED ENG, V7, P117 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 VERVEEN A. A., 1962, ACTA MORPHOL NEERLANDO SCAND, V5, P79 WHITE MW, 1987, IEEE 9 ANN C ENG MED, P1906 WHITE MW, 1984, ARCH OTOLARYNGOL, V110, P493 NR 60 TC 70 Z9 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 171 EP 188 DI 10.1016/S0378-5955(99)00011-8 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600013 PM 10320107 ER PT J AU Scholz, G Hirschfelder, A Marquardt, T Hensel, J Mrowinski, D AF Scholz, G Hirschfelder, A Marquardt, T Hensel, J Mrowinski, D TI Low-frequency modulation of the 2f(1)-f(2) distortion product otoacoustic emissions in the human ear SO HEARING RESEARCH LA English DT Article DE low-frequency modulation; distortion product otoacoustic emission; human ear ID OUTER HAIR-CELLS; ENDOLYMPHATIC HYDROPS; GROWTH-BEHAVIOR; MASKING; DEPENDENCE; CURRENTS; COCHLEA; 2F1-F2; LEVEL AB Low-frequency masking is a recent clinical procedure for the differential diagnosis of sensory hearing loss. Currently this requires the recording of the phase-dependent masked subjective threshold, which is time consuming and not always accurate. As an objective method, the recording of modulated distortion product otoacoustic emissions (DPOAEs) can be performed continuously, and with better frequency specificity. Results of measurements of the low-frequency modulated two-tone DPOAE 2f(1)-f(2) in the human ear, and its dependence on various acoustic parameters, are presented here for the first time. Similar to the masked hearing threshold, the pattern of the phase-dependent modulated DPOAEs displayed two minima, at the phases of maximal rarefaction and condensation, respectively, with a latency of about 4 ms (suppressor frequency 32.8 Hz). The smaller dip, at maximal condensation, appeared only for a high suppressor level, and for a low level of the primary tone f(2). The modulating effect measured for the primary frequencies f(1) = 2.5 kHz and f(2) = 3 kHz, decreased for 4 and 4.8 kHz, and vanished for 5 and 6 kHz. The results are discussed using a cubic distortion model based on the Boltzmann function for mechano-electrical transduction of the hair cells. The saturation behavior of the increase of the DPOAE level at different phases is compared with the growth rates of the DPOAE level in normal hearing and in sensory hearing loss. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Humboldt Univ, Charite Campus Virchow Klinikum, ENT Dept, Berlin, Germany. RP Mrowinski, D (reprint author), Augustenburger Pl 1, D-13353 Berlin, Germany. CR BRASS D, 1991, J ACOUST SOC AM, V90, P2415, DOI 10.1121/1.402046 CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 DALLOS P, 1970, J ACOUST SOC AM, V48, P489, DOI 10.1121/1.1912163 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 Frank G, 1997, HEARING RES, V113, P57, DOI 10.1016/S0378-5955(97)00131-7 GERULL G, 1991, SCAND AUDIOL, V20, P227 HOTH S, 1997, HNO, V45, P285 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053 Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 MORIZONO T, 1984, ANN OTO RHINOL LARYN, V93, P225 Mrowinski D, 1996, Audiol Neurootol, V1, P125 MROWINSKI D, 1995, HEARING RES, V85, P95, DOI 10.1016/0378-5955(95)00033-Z NUBEL K, 1995, LARYNGO RHINO OTOL, V74, P651, DOI 10.1055/s-2007-997819 PATUZZI R, 1992, HEARING RES, V60, P165, DOI 10.1016/0378-5955(92)90019-J Patuzzi R., 1996, COCHLEA, P186 POPELKA GR, 1993, HEARING RES, V71, P12, DOI 10.1016/0378-5955(93)90016-T WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 ZWICKER E, 1981, HEARING RES, V4, P195, DOI 10.1016/0378-5955(81)90006-X ZWICKER E, 1987, ACUSTICA, V64, P102 ZWICKER E, 1977, J ACOUST SOC AM, V61, P1031, DOI 10.1121/1.381387 NR 23 TC 22 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 189 EP 196 DI 10.1016/S0378-5955(99)00010-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600014 PM 10320108 ER PT J AU Miller, CA Abbas, PJ Robinson, BK Rubinstein, JT Matsuoka, AJ AF Miller, CA Abbas, PJ Robinson, BK Rubinstein, JT Matsuoka, AJ TI Electrically evoked single-fiber action potentials from cat: responses to monopolar, monophasic stimulation SO HEARING RESEARCH LA English DT Article DE cochlear implant; electrical stimulation; auditory nerve; cat; single fiber recording ID AUDITORY-NERVE FIBERS; SPIRAL GANGLION-CELLS; PHYSIOLOGICAL-PROPERTIES; CURRENT PULSES; EXCITATION; PATTERNS; COCHLEA; NEURONS; FLUCTUATIONS; ELECTRODES AB We recorded action potentials from single auditory-nerve fibers of cats using monophasic current pulses delivered by a monopolar intracochlear electrode. These simple stimuli provided a means of investigating basic properties and hypotheses of electrical excitation. Standard micropipette recording techniques were used. Responses to anodic (positive) and cathodic (negative) stimulus pulses were recorded separately to evaluate stimulus polarity effects. Mean spike (action potential) latency was polarity dependent, with greater latencies for cathodic stimulation. Threshold stimulus level was also polarity dependent, with relatively lower cathodic thresholds. Both effects are consistent with trends reported in the compound action potential. Variability in single-fiber latency (i.e., jitter) was dependent upon stimulus polarity. In contrast, the slope of single-fiber input-output functions failed to show a clear polarity dependence, although such trends have been seen in the compound action potential data. We also observed a relatively greater degree of adaptation over time with anodic stimulation. Bimodal post-stimulus-time histograms were recorded in a small number (2%) of fibers, supporting the hypothesis that both the peripheral (dendritic) and central axonal processes are excitable with the same stimulus polarity, in a limited number of cases. This observation, together with analyses of interactions among measures of latency, threshold, and jitter, is consistent with the hypothesis that, with monopolar intracochlear stimulation, most fibers are stimulated at axonal (modiolar) sites and a minority of fibers nearest the electrode are stimulable at their peripheral processes. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA. Univ Iowa, Dept Physiol & Biophys, Iowa City, IA 52242 USA. RP Miller, CA (reprint author), Univ Iowa, Dept Otolaryngol Head & Neck Surg, 200 Hawkins Dr,C-21 GH, Iowa City, IA 52242 USA. CR BATTMER R, 1998, 7 S COCHL IMPL CHILD Bevington P. R., 1969, DATA REDUCTION ERROR BOSTOCK H, 1983, J PHYSIOL-LONDON, V341, P59 BRUMMER SB, 1977, IEEE T BIO-MED ENG, V24, P440, DOI 10.1109/TBME.1977.326179 Chow CC, 1996, BIOPHYS J, V71, P3013 COLUMBO J, 1987, HEARING RES, V31, P287 DYNES SBC, 1995, THESIS MIT CAMBRIDGE DYNES SBC, 1992, HEARING RES, V58, P79, DOI 10.1016/0378-5955(92)90011-B Felder E, 1997, HEARING RES, V105, P183, DOI 10.1016/S0378-5955(96)00209-2 Finley C. C., 1990, COCHLEAR IMPLANTS MO Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 GOLDBERG JM, 1971, J NEUROPHYSIOL, V34, P676 HALL RD, 1990, HEARING RES, V45, P123, DOI 10.1016/0378-5955(90)90188-U HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 JAVEL E, 1987, ANN OTO RHINOL LARYN, V96, P26 Jayel E., 1990, COCHLEAR IMPLANTS MO, P247 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 LEAKEJONES PA, 1982, HEARING RES, V8, P225, DOI 10.1016/0378-5955(82)90076-4 LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X MILLER CA, 1994, HEARING RES, V78, P11, DOI 10.1016/0378-5955(94)90039-6 MOLLY CN, 1998, 7 S COCHL IMPL CHILD Moxon E.C., 1971, THESIS MIT CAMBRIDGE NADOL JB, 1988, HEARING RES, V34, P253, DOI 10.1016/0378-5955(88)90006-8 OTA CY, 1980, ACTA OTO-LARYNGOL, V89, P53, DOI 10.3109/00016488009127108 PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5 PARKINS CW, 1987, HEARING RES, V31, P267, DOI 10.1016/0378-5955(87)90196-1 POUSSART DJM, 1965, THESIS MIT CAMBRIDGE RATTAY F, 1986, IEEE T BIO-MED ENG, V33, P974, DOI 10.1109/TBME.1986.325670 RUBINSTEIN JT, 1993, IEEE T BIO-MED ENG, V40, P654, DOI 10.1109/10.237695 RUBINSTEIN JT, 1995, BIOPHYS J, V68, P779 RUBINSTEIN JT, 1991, BIOPHYS J, V60, P538 RUPERT A, 1962, EXP NEUROL, V5, P100, DOI 10.1016/0014-4886(62)90026-2 SAUNDERS E, 1998, 7 S COCHL IMPL CHILD SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Spelman F A, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P131 SPOENDLIN H, 1989, HEARING RES, V43, P25, DOI 10.1016/0378-5955(89)90056-7 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 TASAKI I, 1955, AM J PHYSIOL, V181, P639 Tylstedt S, 1997, ACTA OTO-LARYNGOL, V117, P505, DOI 10.3109/00016489709113429 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 Verveen A. A., 1961, FLUCTUATION EXCITABI NR 46 TC 77 Z9 78 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 197 EP 218 DI 10.1016/S0378-5955(99)00012-X PG 22 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600015 PM 10320109 ER PT J AU Waring, MD Ponton, CW Don, M AF Waring, MD Ponton, CW Don, M TI Activating separate ascending auditory pathways produces different human thalamic/cortical responses SO HEARING RESEARCH LA English DT Article DE auditory evoked potential; auditory brainstem implant; cochlear nucleus; electrical stimulation; human ID BRAIN-STEM IMPLANT; MIDDLE-LATENCY RESPONSES; TEMPORAL DIPOLE MODEL; COCHLEAR NUCLEUS; EVOKED-POTENTIALS; ELECTRICAL-STIMULATION; FRONTAL COMPONENTS; N1 WAVE; LESIONS; GENERATORS AB When auditory nerve function is lost due to surgical removal of bilateral acoustic tumors in cases of neurofibromatosis type 2, a sense of hearing may be restored by means of an auditory brainstem implant (ABI), which electrically stimulates the cochlear nucleus. Electrically evoked auditory brainstem responses recorded from ABI subjects exhibit a variety of waveforms due to the presence or absence of different components. Evidently, ABI stimulation activates different ascending auditory pathways in different individuals. This study examined whether such differences at the brainstem level are associated with corresponding differences at higher levels. Multichannel recordings of electrically evoked middle-latency and late auditory responses were obtained from two ABI subjects whose very different electrically evoked auditory brainstem responses represent distinct categories of waveform morphology. The waveforms of both types of response were qualitatively similar in that for each condition tested there were corresponding main peaks and troughs. Quantitatively, however, there were differences in the scalp distributions and magnitudes of all components present. One subject had distributions suggesting bilateral activation and an N1-P2 complex of large amplitude, whereas the other subject had distributions suggesting unilateral activation contralateral to the side of stimulation and an N1-P2 complex of small amplitude. The differences suggest that activation of different ascending pathways in the auditory system results in different spatial and temporal patterns of neural activity in the thalamic and/or cortical auditory areas. (C) 1999 Elsevier Science B.V. All rights reserved. C1 House Ear Res Inst, Dept Electrophysiol, Los Angeles, CA 90057 USA. RP Waring, MD (reprint author), House Ear Res Inst, Dept Electrophysiol, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM mwaring@hei.org CR ALCAINI M, 1994, PSYCHOPHYSIOLOGY, V31, P611, DOI 10.1111/j.1469-8986.1994.tb02354.x BRACKMANN DE, 1993, OTOLARYNG HEAD NECK, V108, P624 CACACE AT, 1990, ELECTROEN CLIN NEURO, V77, P6, DOI 10.1016/0168-5597(90)90012-3 CHIAPPA KH, 1979, ARCH NEUROL-CHICAGO, V36, P81 DON M, 1994, J ACOUST SOC AM, V96, P3476, DOI 10.1121/1.410608 Eisenberg L S, 1987, J Rehabil Res Dev, V24, P9, DOI 10.1682/JRRD.1987.07.0009 GIARD MH, 1994, ELECTROEN CLIN NEURO, V92, P238, DOI 10.1016/0168-5597(94)90067-1 Hall J, 1992, HDB AUDITORY EVOKED Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 KNIGHT RT, 1980, ELECTROEN CLIN NEURO, V50, P112, DOI 10.1016/0013-4694(80)90328-4 KNIGHT RT, 1988, ELECTROEN CLIN NEURO, V70, P499, DOI 10.1016/0013-4694(88)90148-4 KOOI KA, 1971, ELECTROEN CLIN NEURO, V31, P166, DOI 10.1016/0013-4694(71)90187-8 KRAUS N, 1982, ELECTROEN CLIN NEURO, V54, P275, DOI 10.1016/0013-4694(82)90177-8 McCallum W. C., 1979, HUMAN EVOKED POTENTI, P235, DOI 10.1007/978-1-4684-3483-5_16 MCFARLAND WH, 1977, J SPEECH HEAR RES, V20, P781 MOLLER AR, 1994, ELECTROEN CLIN NEURO, V92, P215, DOI 10.1016/0168-5597(94)90065-5 MOLLER AR, 1983, J NEUROSURG, V59, P1013, DOI 10.3171/jns.1983.59.6.1013 Nelson M D, 1997, J Am Acad Audiol, V8, P89 Otto SR, 1998, OTOLARYNG HEAD NECK, V118, P291, DOI 10.1016/S0194-5998(98)70304-3 OZDAMAR O, 1983, AUDIOLOGY, V22, P34 PERONNET F, 1977, PROGR CLIN NEUROPHYS, V2, P130 PERONNET F, 1974, ELECTROEN CLIN NEURO, V37, P225, DOI 10.1016/0013-4694(74)90025-X Polich J, 1983, BASES AUDITORY BRAIN, P345 PONTON CW, 1993, ELECTROEN CLIN NEURO, V88, P478, DOI 10.1016/0168-5597(93)90037-P Ponton CW, 1996, INT CONGR SER, V1099, P490 SCHERG M, 1985, ELECTROEN CLIN NEURO, V62, P32, DOI 10.1016/0168-5597(85)90033-4 SCHERG M, 1985, ELECTROEN CLIN NEURO, V62, P290, DOI 10.1016/0168-5597(85)90006-1 SCHERG M, 1986, ELECTROEN CLIN NEURO, V65, P344, DOI 10.1016/0168-5597(86)90014-6 SHANNON RV, 1993, OTOLARYNG HEAD NECK, V108, P634 VAUGHAN HG, 1970, ELECTROEN CLIN NEURO, V28, P360, DOI 10.1016/0013-4694(70)90228-2 Waring MD, 1998, EVOKED POTENTIAL, V108, P331, DOI 10.1016/S0168-5597(97)00072-5 WARING MD, 1993, ADV COCHLEAR IMPLANT, P16 Waring MD, 1996, EVOKED POTENTIAL, V100, P538, DOI 10.1016/S0921-884X(96)96061-0 WARING MD, 1992, LARYNGOSCOPE, V102, P1293, DOI 10.1288/00005537-199211000-00017 Waring M D, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P33 WARING MD, 1995, EVOKED POTENTIAL, V96, P338, DOI 10.1016/0168-5597(95)00022-K WOLPAW JR, 1975, ELECTROEN CLIN NEURO, V39, P609, DOI 10.1016/0013-4694(75)90073-5 WOODS DL, 1987, ELECTROEN CLIN NEURO, V68, P132, DOI 10.1016/0168-5597(87)90040-2 NR 38 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1999 VL 130 IS 1-2 BP 219 EP 229 DI 10.1016/S0378-5955(99)00016-7 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185VL UT WOS:000079691600016 PM 10320110 ER PT J AU Sauer, G Richter, CP Klinke, R AF Sauer, G Richter, CP Klinke, R TI Sodium, potassium, chloride and calcium concentrations measured in pigeon perilymph and endolymph SO HEARING RESEARCH LA English DT Article DE pigeon; inner ear; sodium; potassium; chloride; calcium ID GUINEA-PIG; INNER-EAR; COCHLEAR ENDOLYMPH; ELECTROCHEMICAL PROFILE; STRIA VASCULARIS; CA++ ACTIVITY; POTENTIALS; FUROSEMIDE; HYDROPS; IONS AB According to Davis' (1965) model of the inner ear, a potential difference between the endocochlear potential and the hair cell resting potential drives the transduction current across the apical hair cell membrane. It is assumed that the endocochlear potential (EP) consists of two components. The first is a diffusion potential, which depends on the ionic composition of endolymph and perilymph and on the permeability of the perilymph-endolymph barrier. The second is an electrogenic component which is determined by active ion transport across the perilymph-endolymph barrier. In birds, the EP is between +8 and +20 mV. Little is known about the underlying mechanisms responsible for the measured EP in birds. The present paper studies whether ionic compositions of endo- and perilymph might explain the EP in birds. Concentrations of Na+, K+, Ca2+ and Cl- in pigeon scala vestibuli, scala tympani and scala media were determined with ion-selective microelectrodes. Na+, K+, Ca2+ and Cl- were 150.0, 4.2, 1.4 and 117.0 mM in perilymph (scala tympani and scala vestibuli). In scala media, the concentrations of K+, Ca2+ and Cl- were 140.6, 0.23 and 142.1 mM. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Frankfurt, Physiol Inst 3, D-60590 Frankfurt, Germany. RP Richter, CP (reprint author), Northwestern Univ, Frances Searle Bldg,2299 N Campus Dr, Evanston, IL 60208 USA. RI Richter, Claus-Peter/B-4641-2012 CR Ammann D., 1986, ION SELECTIVE MICROE Bekesy G., 1960, EXPT HEARING VONBEKESY G, 1952, J ACOUST SOC AM, V24, P72 BOSHER SK, 1979, J PHYSIOL-LONDON, V293, P329 BOSHER SK, 1978, NATURE, V273, P377, DOI 10.1038/273377a0 BOSHER SK, 1980, ACTA OTO-LARYNGOL, V90, P219, DOI 10.3109/00016488009131718 DAVIS H, 1965, COLD SPRING HARB SYM, V30, P181 IKEDA K, 1987, HEARING RES, V26, P117, DOI 10.1016/0378-5955(87)90040-2 IKEDA K, 1988, HEARING RES, V32, P103, DOI 10.1016/0378-5955(88)90081-0 IKEDA K, 1988, HEARING RES, V34, P307, DOI 10.1016/0378-5955(88)90010-X IKEDA K, 1991, HEARING RES, V51, P185, DOI 10.1016/0378-5955(91)90035-8 IKEDA K, 1989, HEARING RES, V40, P111, DOI 10.1016/0378-5955(89)90104-4 KONISHI T, 1983, HEARING RES, V11, P219, DOI 10.1016/0378-5955(83)90080-1 KONISHI T, 1980, EXP BRAIN RES, V40, P457 KONISHI T, 1970, Acta Oto-Laryngologica, V69, P192, DOI 10.3109/00016487009123353 KUIJPERS W, 1970, PFLUG ARCH EUR J PHY, V320, P359, DOI 10.1007/BF00588214 KUIJPERS W, 1970, PFLUG ARCH EUR J PHY, V320, P348, DOI 10.1007/BF00588213 KUSUKARI J, 1978, ACTA OTOLARYNGOL, V86, P336 MANLEY GA, 1977, C I NATIONAL SANTE R, V68, P127 MORI H, 1985, HEARING RES, V17, P227, DOI 10.1016/0378-5955(85)90067-X NECKER R, 1970, Z VERGL PHYSIOL, V69, P367, DOI 10.1007/BF00333768 NINOYU O, 1987, ORL J OTO-RHINO-LARY, V49, P1 NINOYU O, 1986, ARCH OTO-RHINO-LARYN, V243, P106, DOI 10.1007/BF00453759 NINOYU O, 1986, ARCH OTO-RHINO-LARYN, V243, P141, DOI 10.1007/BF00453767 RICHTER C, 1994, J NEUROSCI METH, V51, P171, DOI 10.1016/0165-0270(94)90007-8 RICHTER CP, 1994, 32 WORKS INN EAR BIO RICHTER CP, 1995, PFLUGERS ARCH S429, V6, P46 Richter CP, 1996, J COMP PHYSIOL A, V179, P415 RUNHAAR G, 1991, HEARING RES, V56, P227, DOI 10.1016/0378-5955(91)90173-7 RYBAK LP, 1985, LARYNGOSCOPE, V95, P1, DOI 10.1288/00005537-198509010-00001 SALT AN, 1994, HEARING RES, V74, P115, DOI 10.1016/0378-5955(94)90180-5 SCHERMULY L, 1990, HEARING RES, V50, P295, DOI 10.1016/0378-5955(90)90053-R SCHERMULY L, 1985, J COMP PHYSIOL A, V156, P209, DOI 10.1007/BF00610863 SCHERMULY L, 1983, HEARING RES, V10, P279, DOI 10.1016/0378-5955(83)90093-X SCHMIDT RS, 1962, J CELL COMPAR PHYSL, V59, P311, DOI 10.1002/jcp.1030590311 SELLICK P M, 1975, Progress in Neurobiology (Oxford), V5, P337, DOI 10.1016/0301-0082(75)90015-5 SELLICK PM, 1974, PFLUG ARCH EUR J PHY, V352, P351, DOI 10.1007/BF00585687 SELLICK PM, 1972, PFLUG ARCH EUR J PHY, V336, P11, DOI 10.1007/BF00589137 Thomas RC, 1978, ION SENSITIVE INTRAC VOSSIECK T, 1991, HEARING RES, V56, P93, DOI 10.1016/0378-5955(91)90158-6 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S NR 41 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1999 VL 129 IS 1-2 BP 1 EP 6 DI 10.1016/S0378-5955(98)00230-5 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 175XN UT WOS:000079121500001 PM 10190746 ER PT J AU O'Marra, SK McCormick, CA AF O'Marra, SK McCormick, CA TI Organization and connections of the dorsal descending nucleus and other presumed acoustic areas in the brainstem of the teleost fish, Astronotus ocellatus SO HEARING RESEARCH LA English DT Article DE hearing; saccular projection; lagenar projection; descending octaval nucleus; auditory evolution; cichlid fish; teleost fish ID LATERAL-LINE; CENTRAL PROJECTIONS; CARASSIUS-AURATUS; 8TH NERVE; INNER-EAR; GOLDFISH; AFFERENT; OCTAVAL; CATFISH; MEDULLA AB This study provides new information on brainstem areas, assumed to be auditory based on observations in other species, in the oscar, Astronotus ocellatus. The primary goal of the study was to explore the morphology of the dorsal descending octaval nucleus, which contains a population of neurons that receives acoustic afferents from-the inner ear. Using cytoarchitectonic and connectional criteria, we revised the previously defined dorsal boundary of the descending octaval nucleus, such that the most dorsomedial neurons in this nucleus are positioned ventral to the cerebellar crest and medial to nucleus medialis. At some levels, these dorsomedial cells are continuous with another part of the dorsal descending nucleus that underlies nucleus medialis. The terminal fields of the saccule and lagena are located within this latter, more ventral part of the dorsal descending nucleus. However, the dorsomedial cells that are proximate to the cerebellar crest have long ventral dendrites that extend into these terminal fields, and therefore likely receive saccular and lagenar input. In contrast to a previous report, saccular afferents terminate more medially within the dorsal descending nucleus than do lagenar inputs. Injections of horseradish peroxidase in nucleus centralis of the torus semicircularis revealed that many descending nucleus neurons that lie within the saccular and lagenar terminal fields, including the dorsomedial neurons proximate to the cerebellar crest, project to this acoustic midbrain area. These injections also revealed a secondary octaval population like that described in otophysan fishes. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Oberlin Coll, Program Neurosci, Oberlin, OH 44074 USA. Oberlin Coll, Dept Biol, Oberlin, OH 44074 USA. RP McCormick, CA (reprint author), Oberlin Coll, Program Neurosci, Oberlin, OH 44074 USA. EM Catherine.McCormick@oberlin.edu CR ALLEN JM, 1976, J MAR BIOL ASSOC UK, V56, P471 BARRY MA, 1987, J COMP NEUROL, V266, P457, DOI 10.1002/cne.902660403 BELL CC, 1981, HEARING SOUND COMMUN, P383 BEST ACG, 1980, J MAR BIOL ASSOC UK, V60, P703 BLAXTER JHS, 1976, J MAR BIOL ASSOC UK, V56, P487 Braford M. R. Jr., 1993, Society for Neuroscience Abstracts, V19, P160 BRAFORD MR, 1979, SOC NEUR ABSTR, V5, P139 Denton EL, 1980, J MAR BIOL ASSOC UK, V60, P714 ECHTELER SM, 1984, J COMP NEUROL, V230, P536, DOI 10.1002/cne.902300405 FAY RR, 1984, SCIENCE, V225, P951, DOI 10.1126/science.6474161 FINGER TE, 1984, J COMP NEUROL, V229, P129, DOI 10.1002/cne.902290110 HANKER JS, 1977, J HISTOCHEM CYTOCHEM, V9, P788 LAUDER G V, 1983, Bulletin of the Museum of Comparative Zoology, V150, P95 MCCORMICK CA, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P323 McCormick CA, 1996, BRAIN BEHAV EVOLUT, V47, P113, DOI 10.1159/000113232 McCormick CA, 1997, HEARING RES, V110, P39, DOI 10.1016/S0378-5955(97)00060-9 McCormick C. A., 1998, Society for Neuroscience Abstracts, V24, P157 MCCORMICK CA, 1994, BRAIN BEHAV EVOLUT, V43, P189, DOI 10.1159/000113634 MCCORMICK CA, 1984, NEUROSCI LETT, V51, P207, DOI 10.1016/0304-3940(84)90552-4 McCormick C.A., 1999, COMP HEARING FISH AM, P155 MEREDITH GE, 1983, J COMP NEUROL, V220, P44, DOI 10.1002/cne.902200106 MEREDITH GE, 1984, J COMP NEUROL, V228, P342, DOI 10.1002/cne.902280305 MEREDITH GE, 1987, J COMP NEUROL, V265, P507, DOI 10.1002/cne.902650405 MEREDITH GE, 1985, NEUROSCI LETT, V55, P191, DOI 10.1016/0304-3940(85)90018-7 MESULAM MM, 1978, J HISTOCHEM CYTOCHEM, V26, P106 Montgomery J. C., 1995, AUDIT NEUROSCI, V1, P207 NEW JG, 1994, BRAIN BEHAV EVOLUT, V43, P34, DOI 10.1159/000113623 Popper A.N., 1999, COMP HEARING FISH AM, P43 PUZDROWSKI RL, 1989, BRAIN BEHAV EVOLUT, V34, P110, DOI 10.1159/000116496 SCHELLART NAM, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P295 STRIEDTER GF, 1991, J COMP NEUROL, V312, P311, DOI 10.1002/cne.903120213 STRIEDTER GF, 1992, BRAIN BEHAV EVOLUT, V39, P329, DOI 10.1159/000114130 NR 32 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1999 VL 129 IS 1-2 BP 7 EP 19 DI 10.1016/S0378-5955(98)00218-4 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 175XN UT WOS:000079121500002 PM 10190747 ER PT J AU Bacon, SP AF Bacon, SP TI Some effects of background noise on modulation detection interference SO HEARING RESEARCH LA English DT Article DE amplitude modulation; modulation detection interference; within-channel processing; across-channel processing ID CHANNEL; SIGNALS AB Modulation thresholds were obtained for a 2000-Hz signal carrier modulated at a rate of 10 Hz. Thresholds were obtained without a masker carrier and in the presence of a masker carrier that was either unmodulated or modulated at a rate of 10 Hz and a depth of 100%; (m(m) = 1.0). Of primary interest was whether the amount of interference-caused by the masker was influenced by the frequency proximity of the masker to the signal, and whether background noise had an influence on that proximity effect. In general, for masker carriers higher in frequency than the 2000-Hz signal carrier, there was a tendency for the interference to decline as the masker was moved farther away from the signal; for masker carriers lower than 2000 Hz, there was little or no proximity effect. Broadband noise eliminated the proximity effect obtained with an unmodulated masker; but not that obtained with a modulated masker. Results with a narrowband noise suggest that the broadband noise has its effect by masking the high-frequency side of the signal's excitation pattern. These results. as well as the results of an excitation pattern analysis, suggest that the proximity effect with an unmodulated masker may be mediated via a peripheral, within-channel interaction, whereas that with a modulated masker may be mediated via a central, across-channel interaction. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Arizona State Univ, Dept Speech & Hearing Sci, Psychoacoust Lab, Tempe, AZ 85287 USA. RP Bacon, SP (reprint author), Arizona State Univ, Dept Speech & Hearing Sci, Psychoacoust Lab, Tempe, AZ 85287 USA. CR *ANSI, 1989, SPEC AUD BACON SP, 1994, J ACOUST SOC AM, V95, P2637, DOI 10.1121/1.410020 BACON SP, 1993, J ACOUST SOC AM, V93, P3442, DOI 10.1121/1.405674 BACON SP, 1993, J ACOUST SOC AM, V93, P1012, DOI 10.1121/1.405549 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T HALL JW, 1991, J ACOUST SOC AM, V90, P3028, DOI 10.1121/1.401777 HAWKINS JE, 1950, J ACOUST SOC AM, V22, P6, DOI 10.1121/1.1906581 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MENDOZA L, 1995, J ACOUST SOC AM, V97, P3072, DOI 10.1121/1.413105 MOORE BCJ, 1991, Q J EXP PSYCHOL-A, V43, P327 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 YOST WA, 1994, HEARING RES, V79, P48, DOI 10.1016/0378-5955(94)90126-0 YOST WA, 1989, J ACOUST SOC AM, V85, P848, DOI 10.1121/1.397556 YOST WA, 1990, J ACOUST SOC AM, V87, P897, DOI 10.1121/1.398899 Zwicker E., 1952, ACUSTICA S3, V2, P125 ZWICKER E, 1970, FREQUENCY ANAL PERIO NR 16 TC 2 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1999 VL 129 IS 1-2 BP 20 EP 26 DI 10.1016/S0378-5955(98)00215-9 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 175XN UT WOS:000079121500003 PM 10190748 ER PT J AU Suzuki, M Kaga, K AF Suzuki, M Kaga, K TI Development of blood-labyrinth barrier in the semicircular canal ampulla of the rat SO HEARING RESEARCH LA English DT Article DE blood-labyrinth barrier; development; basal lamina anionic site; developing rat; transmission electron microscope ID MEMBRANE ANIONIC SITES; INNER-EAR; STRIA VASCULARIS; BRAIN BARRIER; OTOTOXICITY; CISPLATIN; SURFACES AB Cationic polyethyleneimine (PEI) administered intravenously was transported to anionic sites on the capillary and subepithelial basal laminae (BL) in the vestibular labyrinth. Therefore, changes in the PEI distribution on the BL reflect changes in the transport system in the vestibular labyrinth. A 0.1% PEI solution was administered intravenously (7.5 ml/kg) to developing (1, 4, 7, 14 days after birth) and adult rats in order to investigate the development of the macromolecular transport in the ampulla of the semicircular canal as a function of age. After 1 h, the bony labyrinth was removed and embedded in Epoxy resin. Ultrathin sections of the ampulla were then examined with a transmission electron microscope. In the subepithelial BL in the dark cell area and capillary BL in the crista ampullaris, the PEI distribution in both 1- and 4-day-old rats was markedly increased compared to that in either 7-, 14-day or adult rats. In the sensory cells in 1-, 4-day or 7-day-old rats, PEI density and area was significantly greater than in the adult rats. These findings suggest that the macromolecular transport system in the developing rat ampulla becomes mature by 14 days after birth and that the maturation of its transport system in the ampulla is strongly associated with that in the stria vascularis. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Tokyo, Dept Otolaryngol, Bunkyo Ku, Tokyo 1138655, Japan. RP Suzuki, M (reprint author), Univ Tokyo, Dept Otolaryngol, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138655, Japan. CR ANDREWS PM, 1985, ANAT REC, V212, P223, DOI 10.1002/ar.1092120302 ANNIKO M, 1980, ACTA OTO-LARYNGOL, V90, P106, DOI 10.3109/00016488009131705 ANNIKO M, 1981, ARCH OTO-RHINO-LARYN, V232, P43, DOI 10.1007/BF00661002 ANNIKO M, 1979, ARCH OTO-RHINO-LARYN, V224, P285, DOI 10.1007/BF01108785 CURTHOYS IS, 1981, ACTA OTO-LARYNGOL, V92, P323, DOI 10.3109/00016488109133268 CURTHOYS IS, 1982, EXP BRAIN RES, V47, P295 DECHESNE C, 1986, ACTA OTO-LARYNGOL, V101, P11, DOI 10.3109/00016488609108602 EVIATAR L, 1981, OTOLARYNG HEAD NECK, V89, P818 EVIATAR L, 1981, AMINOGLYCOSIDE OTOTO, P301 HENLEY CM, 1993, OTOLARYNG CLIN N AM, V26, P857 HENLEY CM, 1995, BRAIN RES REV, V20, P68, DOI 10.1016/0165-0173(94)00006-B JAHNKE K, 1980, ARCH OTO-RHINO-LARYN, V228, P29, DOI 10.1007/BF00455891 JUHN SK, 1981, ACTA OTO-LARYNGOL, V91, P529, DOI 10.3109/00016488109138538 JUHN SK, 1981, ANN OTO RHINOL LARYN, V90, P135 REESE TS, 1967, J CELL BIOL, V34, P207, DOI 10.1083/jcb.34.1.207 SAKAGAMI M, 1982, CELL TISSUE RES, V226, P511 SCHURER JW, 1978, J HISTOCHEM CYTOCHEM, V26, P688 SCHWEITZER VG, 1986, OTOLARYNG HEAD NECK, V94, P458 Skultétyová I, 1993, Endocr Regul, V27, P209 STEWART PA, 1987, DEV BRAIN RES, V32, P271, DOI 10.1016/0165-3806(87)90107-6 SUZUKI M, 1995, ACTA OTO-LARYNGOL, V115, P747, DOI 10.3109/00016489509139397 Suzuki M, 1998, HEARING RES, V116, P107, DOI 10.1016/S0378-5955(97)00208-6 Suzuki M, 1998, LARYNGOSCOPE, V108, P81, DOI 10.1097/00005537-199801000-00015 Suzuki M, 1991, Acta Otolaryngol Suppl, V481, P112 Suzuki M, 1997, ANN OTO RHINOL LARYN, V106, P971 TOMODA K, 1988, ARCH OTO-RHINO-LARYN, V245, P307, DOI 10.1007/BF00464638 VORBRODT AW, 1986, DEV BRAIN RES, V29, P69, DOI 10.1016/0165-3806(86)90083-0 Xu J, 1994, J Hirnforsch, V35, P103 Yamasoba T, 1996, HEARING RES, V102, P116, DOI 10.1016/S0378-5955(96)00159-1 YOSHIHARA T, 1987, ACTA OTO-LARYNGOL, V103, P161, DOI 10.3109/00016488709107779 NR 30 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1999 VL 129 IS 1-2 BP 27 EP 34 DI 10.1016/S0378-5955(98)00214-7 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 175XN UT WOS:000079121500004 PM 10190749 ER PT J AU Tsuprun, V Santi, P AF Tsuprun, V Santi, P TI Ultrastructure and immunohistochemical identification of the extracellular matrix of the chinchilla cochlea SO HEARING RESEARCH LA English DT Article DE collagen; extracellular matrix; spiral limbus; basilar membrane; spiral ligament; immunohistochemistry; transmission electron microscopy; scanning electron microscopy ID II COLLAGEN DISTRIBUTION; TECTORIAL MEMBRANE; INNER-EAR; BASILAR-MEMBRANE; KERATAN SULFATE; ELECTRON-MICROSCOPY; MESSENGER-RNA; LOCALIZATION; FIBRONECTIN; PROTEOGLYCANS AB The molecular composition and three-dimensional organization of the extracellular matrix (ECM) was studied by immunofluorescent microscopy, transmission and scanning electron microscopy in three connective tissue structures of the cochlea: the spiral limbus, basilar membrane and spiral ligament. Type II collagen, fibronectin, tenascin, chondroitin sulfate proteoglycans, alpha(v) and beta(1) integrins were immunolocalized in the ECM of these connective tissue structures. Electron micrographs showed a continuum of cross-striated collagen fibrils having a similar diameter and axial periodicity that spread from the spiral limbus via the basilar membrane and into the spiral ligament. Some of collagen fibrils were aggregated laterally into bundles. Bundle images, and their digital Fourier transformations, showed a major 67-nm axial D-repeat characteristic for collagen fibrils. Transmission electron microscopy showed numerous proteoglycans associated with the collagen fibrils. The spiral limbus, basilar membrane and spiral ligament demonstrated regional differences in molecular composition and structural organization of their ECM. The glycoproteins fibronectin, tenascin and alpha(v) integrin were immunolocalized mainly in the basilar membrane. Collagen fibrils of the spiral limbus and spiral ligament did not appear to be strongly oriented. However, most of the collagen fibrils in the basilar membrane were arranged into radially directed bundles. Collagen fibrils in the basilar membrane were also surrounded by a homogeneous matrix, which was immunoreactive to fibronectin and tenascin antibodies. A more complete understanding of the composition and structural organization of the ECM in these connective tissue structures in the cochlea provides a foundation upon which micromechanical models of cochlear function can be constructed. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Minnesota, Dept Otolaryngol, Minneapolis, MN 55455 USA. RP Santi, P (reprint author), Univ Minnesota, Dept Otolaryngol, Rm 121,Lions Res Bldg,2001 6th St SE, Minneapolis, MN 55455 USA. EM santip@tc.umn.edu CR ANGELBORG G, 1974, ACTA OTOLARYNGOL S S, V319, P43 BARTHEL LK, 1990, J HISTOCHEM CYTOCHEM, V38, P1383 Bekesy G., 1960, EXPT HEARING Birk DE, 1991, CELL BIOL EXTRACELLU, P221 Brakebusch C, 1997, J CELL SCI, V110, P2895 BYERS PH, 1989, AM J MED GENET, V34, P72, DOI 10.1002/ajmg.1320340114 CABEZUDO LM, 1978, ACTA OTO-LARYNGOL, V86, P160, DOI 10.3109/00016487809124733 Chen Y, 1997, SCANNING, V19, P349 Cosgrove D, 1996, HEARING RES, V97, P54 Cosgrove D, 1997, HEARING RES, V105, P159, DOI 10.1016/S0378-5955(96)00203-1 DZAMBA BJ, 1991, J CELL SCI, V100, P605 FISHER LW, 1989, J BIOL CHEM, V264, P4571 HASKO JA, 1988, HEARING RES, V35, P21, DOI 10.1016/0378-5955(88)90037-8 HYNES RO, 1992, CELL, V69, P11, DOI 10.1016/0092-8674(92)90115-S ISHIBE T, 1990, AM J OTOL, V11, P33 ISHIBE T, 1989, ANN OTO RHINOL LARYN, V98, P648 ISHII K, 1992, EUR ARCH OTO-RHINO-L, V249, P224 IURATO S, 1962, Z ZELLFORSCH MIK ANA, V56, P40, DOI 10.1007/BF00326848 JOLIAT T, 1992, ANN OTO RHINOL LARYN, V101, P1000 KANAME H, 1994, J ELECTRON MICROSC, V43, P394 KATORI Y, 1993, ACTA OTO-LARYNGOL, V113, P715, DOI 10.3109/00016489309135890 KEITHLEY EM, 1993, J COMP NEUROL, V327, P612, DOI 10.1002/cne.903270411 KHETARPAL U, 1994, HEARING RES, V79, P59, DOI 10.1016/0378-5955(94)90127-9 KUIVANIEMI H, 1991, FASEB J, V5, P2052 MIKUNI H, 1994, ARCH HISTOL CYTOL, V57, P187, DOI 10.1679/aohc.57.187 Mikuni H, 1995, EUR ARCH OTO-RHINO-L, V252, P495, DOI 10.1007/BF02114759 MOSHER DF, 1991, ANN NY ACAD SCI, V614, P167, DOI 10.1111/j.1749-6632.1991.tb43701.x MUNYER PD, 1994, HEARING RES, V79, P83, DOI 10.1016/0378-5955(94)90129-5 OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331 OLSON ES, 1991, J ACOUST SOC AM, V89, P1262, DOI 10.1121/1.400535 RICHARDSON GP, 1987, HEARING RES, V25, P45, DOI 10.1016/0378-5955(87)90078-5 Ruoslahti E., 1991, CELL BIOL EXTRACELLU, P343 SANTI PA, 1986, HEARING RES, V24, P179, DOI 10.1016/0378-5955(86)90017-1 SANTI PA, 1997, ASS RES OTOLARYNGOLO, P158 SANTI PA, 1990, J ELECTRON MICR TECH, V15, P293, DOI 10.1002/jemt.1060150308 SANTI PA, 1989, HEARING RES, V39, P91, DOI 10.1016/0378-5955(89)90084-1 Schweitzer L, 1996, HEARING RES, V97, P84 SCOTT JE, 1985, COLLAGEN REL RES, V5, P541 SCOTT JE, 1988, BIOCHEM J, V252, P313 SCOTT JE, 1980, BIOCHEM J, V187, P887 SLEPECKY NB, 1992, CELL TISSUE RES, V267, P413, DOI 10.1007/BF00319363 Swartz DJ, 1997, HEARING RES, V109, P92, DOI 10.1016/S0378-5955(97)00054-3 Swartz D. J., 1997, Society for Neuroscience Abstracts, V23, P731 THALMANN I, 1993, ARCH BIOCHEM BIOPHYS, V307, P391, DOI 10.1006/abbi.1993.1605 THALMANN I, 1987, LARYNGOSCOPE, V97, P357 THALMANN I, 1993, CONNECT TISSUE RES, V29, P191, DOI 10.3109/03008209309016826 TOMODA K, 1984, EAR RES JPN, V15, P1999 Tsuprun V, 1997, HEARING RES, V110, P107, DOI 10.1016/S0378-5955(97)00068-3 Tsuprun V, 1996, MATRIX BIOL, V15, P31, DOI 10.1016/S0945-053X(96)90124-9 VANKUPPEVELT THMSM, 1987, HISTOCHEM J, V19, P520 WOOLF NK, 1992, DEV BRAIN RES, V65, P21, DOI 10.1016/0165-3806(92)90004-G Woolf NK, 1996, J HISTOCHEM CYTOCHEM, V44, P27 YOO TJ, 1988, LARYNGOSCOPE, V98, P1255 NR 53 TC 29 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1999 VL 129 IS 1-2 BP 35 EP 49 DI 10.1016/S0378-5955(98)00219-6 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 175XN UT WOS:000079121500005 PM 10190750 ER PT J AU Nair, TS Prieskorn, DM Miller, JM Dolan, DF Raphael, Y Carey, TE AF Nair, TS Prieskorn, DM Miller, JM Dolan, DF Raphael, Y Carey, TE TI KHRI-3 monoclonal antibody-induced damage to the inner ear: antibody staining of nascent soars SO HEARING RESEARCH LA English DT Article DE in vivo; intracochlear infusion; hearing loss; hair cell loss; bioreactor; mini-osmotic pump; noise ID SENSORINEURAL HEARING-LOSS; RETICULAR LAMINA; PASSIVE TRANSFER; GUINEA-PIG; ANTIGEN; DISEASE; ORGAN; AUTOANTIBODIES; PEMPHIGUS; INFUSION AB Intracochlear infusion of the KHRI-3 monoclonal antibody results in in vivo binding to guinea pig inner ear supporting cells, loss of hair cells and hearing loss. To further characterize the basis for KHRI-3-induced hearing loss, antibody was produced in a bioreactor in serum-free medium, affinity purified, and compared to conventionally prepared antibody by infusion into the scale tympani using mini-osmotic pumps. In vivo antibody binding was observed in 10 of 11 guinea pigs. A previously unreported pattern of KHRI-3 antibody binding to cells involved in scar formation was noted in five guinea pigs. All but one of the KHRI-3-infused animals demonstrated a bearing loss of > 10 dB in the treated ear. In five of 11 animals the threshold shift was 30 dB or more: and all had hair cell losses. In one guinea pig infused with 2 mg/ml of antibody, the organ of Corti was absent in the basal turn of the infused ear. This ear had a 45-50 dB threshold shift but, curiously, no detectable antibody binding in the residual organ of Corti. Organ of Corti tissue was fragile in antibody-infused ears. Breaks within the outer hair cell region occurred in 5/11 infused ears. The contralateral ears were normal except for one noise-exposed animal that demonstrated hair cell loss in the uninfused ear. Three animals were exposed to 6 kHz noise (108 dB) for 30 min on day 7. Antibody access to the organ of Corti may be increased in animals exposed to noise, since the strongest in vivo binding was observed in noise-exposed animals. Loss of integrity of the organ of Corti seems to be the primary mechanism of inner ear damage by KHRI-3 antibody. The binding of KHRI-3 antibody in new scars suggests a role of the antigen in scar formation. Antibodies with binding properties similar to KHRI-3 have been detected in 51% of patients diagnosed with autoimmune sensorineural hearing loss; thus, it seems likely that such autoantibodies also may have pathologic effects resulting in hearing loss in humans. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Dept Otolaryngol Head & Neck Surg, Kresge Hearing Res Inst 6028, Ann Arbor, MI 48109 USA. RP Carey, TE (reprint author), Univ Michigan, Dept Otolaryngol Head & Neck Surg, Kresge Hearing Res Inst 6028, 1301 E Ann St, Ann Arbor, MI 48109 USA. CR AMAGAI M, 1992, J CLIN INVEST, V90, P919, DOI 10.1172/JCI115968 ANHALT GJ, 1982, NEW ENGL J MED, V306, P1189, DOI 10.1056/NEJM198205203062001 BILLINGS PB, 1995, ANN OTO RHINOL LARYN, V104, P181 BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T Disher MJ, 1997, ANN NY ACAD SCI, V830, P253, DOI 10.1111/j.1749-6632.1997.tb51896.x GOTTSCHLICH S, 1995, LARYNGOSCOPE, V105, P1347, DOI 10.1288/00005537-199512000-00016 HARRIS JP, 1990, LARYNGOSCOPE, V100, P516 Leonova EV, 1997, HEARING RES, V113, P14, DOI 10.1016/S0378-5955(97)00130-5 LIU Z, 1993, J CLIN INVEST, V92, P2480, DOI 10.1172/JCI116856 MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585 MILLER JM, 1996, ABSTR ASS RES OT, V19, P106 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 MOSEICKI RA, 1994, JAMA-J AM MED ASSOC, V272, P611 NAIR TS, 1995, HEARING RES, V83, P101, DOI 10.1016/0378-5955(94)00194-U Nair TS, 1997, HEARING RES, V107, P93, DOI 10.1016/S0378-5955(97)00024-5 PTOK M, 1993, HEARING RES, V66, P245, DOI 10.1016/0378-5955(93)90144-P PTOK M, 1993, EUR ARCH OTO-RHINO-L, V250, P345 RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7 RAPHAEL Y, 1992, EXP NEUROL, V115, P32, DOI 10.1016/0014-4886(92)90217-E ZAJIC G, 1991, HEARING RES, V52, P59, DOI 10.1016/0378-5955(91)90187-E NR 21 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1999 VL 129 IS 1-2 BP 50 EP 60 DI 10.1016/S0378-5955(98)00220-2 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 175XN UT WOS:000079121500006 PM 10190751 ER PT J AU Whitworth, CA Hudson, TE Rybak, LP AF Whitworth, CA Hudson, TE Rybak, LP TI The effect of combined administration of cadmium and furosemide on auditory function in the rat SO HEARING RESEARCH LA English DT Article DE cadmium; furosemide; ototoxicity; auditory brainstem response ID PROXIMAL CONVOLUTED TUBULES; BLOOD-LABYRINTH BARRIER; GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; ADENOSINE-TRIPHOSPHATASE; COMPARATIVE OTOTOXICITY; LIPID-PEROXIDATION; GROWING-RATS; METALLOTHIONEIN; NEUROTOXICITY AB A number of heavy metals have been associated with toxic effects to the peripheral or central auditory system. These include lead, arsenic, mercury, platinum and organic tin compounds. In addition, the ototoxic effects of some metals may be potentiated by other factors. However, the auditory effects of cadmium have not previously been reported. The purpose of the present study was to investigate the potential ototoxic effects of cadmium from an acute dosage, and its potentiation by furosemide. Auditory brainstem response (ABR) thresholds were measured in adult Sprague-Dawley rats. Rats received either cadmium chloride (5 mg/kg, i.p.) followed by saline (4 ml/kg, i.p.), cadmium chloride followed by furosemide (200 mg/kg, i.p.), or furosemide alone. Follow-up ABRs were carried out 7 days post-treatment and threshold changes were compared between each treatment group. No significant threshold change was seen for the cadmium chloride plus saline treated or the furosemide treated animals. However, significant threshold elevations were observed in animals receiving cadmium chloride plus furosemide. In addition, scanning electron microscopy revealed extensive hair cell loss in animals treated with cadmium chloride and furosemide. Although functional auditory changes were not seen after the administration of cadmium alone, the potentiation of threshold changes by furosemide suggests that cadmium may be ototoxic under certain conditions. (C) 1999 Elsevier Science B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. RP Rybak, LP (reprint author), So Illinois Univ, Sch Med, Dept Surg, POB 19230, Springfield, IL 62794 USA. CR ANNIKO M, 1976, ACTA OTO-LARYNGOL, V82, P70, DOI 10.3109/00016487609120864 ASHMORE JF, 1986, NATURE, V322, P368, DOI 10.1038/322368a0 BLAKLEY BW, 1993, OTOLARYNG HEAD NECK, V109, P385 BOLESPONTO LL, 1990, CLIN PHARMACOKINET, V18, P381, DOI 10.2165/00003088-199018050-00004 BRUMMETT RE, 1996, 19 MIDW RES M ASS RE BRUMMETT RE, 1975, ACTA OTO-LARYNGOL, V80, P86, DOI 10.3109/00016487509121305 BRUMMETT RE, 1981, J CLIN PHARMACOL, V21, P628 BRUMMETT RE, 1993, 16 MIDW RES M ASS RE CROFTON KM, 1990, TOXICOL APPL PHARM, V105, P123, DOI 10.1016/0041-008X(90)90364-Z DAYLEYYATES PT, 1982, CHEM-BIOL INTERACT, V40, P325 DORIAN C, 1995, TOXICOL APPL PHARM, V130, P161, DOI 10.1006/taap.1995.1021 DORIAN C, 1992, TOXICOL APPL PHARM, V114, P173, DOI 10.1016/0041-008X(92)90066-2 FASITSAS CD, 1991, COMP BIOCHEM PHYS C, V100, P271, DOI 10.1016/0742-8413(91)90167-R FAUSTI SA, 1993, ARCH OTOLARYNGOL, V119, P661 FECHTER LD, 1990, TOXICOL APPL PHARM, V105, P133, DOI 10.1016/0041-008X(90)90365-2 FECHTER LD, 1986, HEARING RES, V23, P275, DOI 10.1016/0378-5955(86)90116-4 GOZDZIKZ.T, 1969, ACTA OTO-LARYNGOL, V68, P85, DOI 10.3109/00016486909121546 GRATTON MA, 1990, HEARING RES, V50, P211, DOI 10.1016/0378-5955(90)90046-R GUPTA A, 1990, BIOCHEM INT, V21, P97 HODAIE M, 1995, NEUROSCI LETT, V185, P195, DOI 10.1016/0304-3940(95)11260-4 HOEFFDING V, 1991, NEUROTOXICOL TERATOL, V13, P135, DOI 10.1016/0892-0362(91)90003-F HONMOU O, 1995, NEUROSCIENCE, V65, P241, DOI 10.1016/0306-4522(94)E0132-N INAMURA N, 1992, HEARING RES, V61, P12, DOI 10.1016/0378-5955(92)90030-Q JIN T, 1987, PHARMACOL TOXICOL, V61, P89 JUHN SK, 1981, ACTA OTO-LARYNGOL, V91, P529, DOI 10.3109/00016488109138538 JUHN SK, 1981, ANN OTO RHINOL LARYN, V90, P135 JUHN SK, 1982, AM J OTOLARYNG, V3, P392, DOI 10.1016/S0196-0709(82)80016-1 KERSHAW WC, 1990, TOXICOL APPL PHARM, V106, P448, DOI 10.1016/0041-008X(90)90339-V Klaassen C.D., 1996, CASARETT DOULLS TOXI KOMUNE S, 1981, ARCH OTOLARYNGOL, V101, P66 LAI JCK, 1980, BIOCHEM PHARMACOL, V29, P141, DOI 10.1016/0006-2952(80)90321-4 LAURELL GFE, 1992, ANN OTO RHINOL LARYN, V101, P969 LAURELL G, 1989, HEARING RES, V38, P19, DOI 10.1016/0378-5955(89)90124-X LILLIENTHAL H, 1990, ENV HLTH PERSPECT, V89, P21 MCKIM JM, 1992, TOXICOL APPL PHARM, V112, P324, DOI 10.1016/0041-008X(92)90203-5 MENNEAR JH, 1979, CADMIUM TOXICITY MIN KS, 1991, TOXICOL APPL PHARM, V109, P7, DOI 10.1016/0041-008X(91)90186-I MURTHY RC, 1991, TOXICOL ENVIRON CHEM, V29, P267, DOI 10.1080/02772249109357633 NAKAGAWA T, 1992, BRAIN RES, V580, P345, DOI 10.1016/0006-8993(92)90966-D NECHAY BR, 1977, J PHARMACOL EXP THER, V200, P623 PAL R, 1993, NEUROCHEM INT, V23, P451, DOI 10.1016/0197-0186(93)90129-S Pichette V, 1996, J AM SOC NEPHROL, V7, P345 RAKHIT A, 1987, CLIN PHARMACOL THER, V41, P580 RASTOGI RB, 1977, J NEUROCHEM, V28, P789, DOI 10.1111/j.1471-4159.1977.tb10629.x REHM S, 1990, TOXICOL APPL PHARM, V104, P94, DOI 10.1016/0041-008X(90)90285-3 RIORDAN JF, 1991, METHODS ENZYMOLOGY B, V205 RYBAK LP, 1982, J OTOLARYNGOL, V11, P127 RYBAK LP, 1992, OTOLARYNG HEAD NECK, V106, P677 RYBAK LP, 1986, ACTA OTO-LARYNGOL, V101, P59, DOI 10.3109/00016488609108608 SATO M, 1983, LIFE SCI, V33, P903, DOI 10.1016/0024-3205(83)90745-2 SHIMIZU M, 1990, TOXICOL APPL PHARM, V103, P28, DOI 10.1016/0041-008X(90)90259-W SHUKLA GS, 1987, LIFE SCI, V41, P2215, DOI 10.1016/0024-3205(87)90518-2 WHITWORTH C, 1996, THESIS U ILLINOIS SP YAMAMURA K, 1989, FUND APPL TOXICOL, V13, P509, DOI 10.1016/0272-0590(89)90287-X Yamane H, 1988, Acta Otolaryngol Suppl, V447, P28 NR 55 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1999 VL 129 IS 1-2 BP 61 EP 70 DI 10.1016/S0378-5955(98)00222-6 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 175XN UT WOS:000079121500007 PM 10190752 ER PT J AU Braun, M AF Braun, M TI Auditory midbrain laminar structure appears adapted to f(0) extraction: further evidence and implications of the double critical bandwidth SO HEARING RESEARCH LA English DT Article DE inferior colliculus; fibrodendritic lamina; stellate cell; critical bandwidth; auditory spectral integration; fundamental frequency f(0) ID FREQUENCY-FOLLOWING RESPONSES; INFERIOR COLLICULUS; CENTRAL NUCLEUS; COMPLEX TONES; SPECTRAL INTEGRATION; NEURONAL MECHANISMS; CRITICAL BANDS; PITCH ANALYSIS; FINE-STRUCTURE; TIME DOMAIN AB The psychoacoustic 'critical bandwidth' (CB), e.g. similar to 2.6 semitones (= 0.22 octave) at 1.5-3 kHz, is known from many spectral integration phenomena. Cat data suggest that it is represented in the inferior colliculus (IC) (Ehret and Merzenich, 1985, Science 227, 1245-1247), where it is consistently related to the fibrodendritic laminae (Schreiner and Langner, 1997, Nature 388, 383-386). The recent discovery of the CB and the double CB (2CB) in the statistics of frequency spacing of spontaneous otoacoustic emissions (Braun, 1997, Hear. Res. 114, 197-203) has initiated further investigations of the novel phenomenon of 2CB. Meta-analysis of psychoacoustic valuation studies of pure-tone intervals again revealed the effects of CB and 2CB. Valuations showed a significant stepwise change with interval size: < CB unpleasant, CB-2CB pleasant, > 2CB indifferent. Scrutiny of cat and human data indicated that for both species, at least in the midspectrum (1-3 kHz in humans), the tonotopic ranges within single IC laminae and the tonotopic distances between neighboring laminae may equal 1 CB (distances to second next laminae being 2CB). This unique architecture would provide the most economical neural convergence of period information from pairs of adjacent harmonic partials 3-6 of complex sound. The resulting summed postsynaptic potentials would thus contain a beat frequency equaling f(0) of sound input and being detectable by the known neural behavior of characteristic periodicity response. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Physiol Mus Res, D-22607 Hamburg, Germany. RP Braun, M (reprint author), Physiol Mus Res, Adickes Str 42, D-22607 Hamburg, Germany. CR Biebel UW, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P263, DOI 10.1007/978-1-4419-8712-9_24 Braun M, 1998, HEARING RES, V118, P129, DOI 10.1016/S0378-5955(98)00028-8 Braun M, 1997, HEARING RES, V114, P197, DOI 10.1016/S0378-5955(97)00160-3 Burns E. M., 1982, PSYCHOL MUSIC, P241 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 Caspary DM, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P227, DOI 10.1007/978-1-4419-8712-9_21 CASSEDAY JH, 1995, NEURAL REPRESENTATIO, P25 Covey E, 1996, J NEUROSCI, V16, P3009 Ehret G., 1997, CENTRAL AUDITORY SYS, P259 EHRET G, 1985, SCIENCE, V227, P1245, DOI 10.1126/science.3975613 EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 GALBRAITH GC, 1994, ELECTROEN CLIN NEURO, V92, P321, DOI 10.1016/0168-5597(94)90100-7 Geniec P, 1971, Acta Otolaryngol Suppl, V295, P1 GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9 GREENWOO.DD, 1970, J ACOUST SOC AM, V47, P1022, DOI 10.1121/1.1912002 Guthrie ER, 1928, AM J PSYCHOL, V40, P624, DOI 10.2307/1414344 Hawkins H., 1996, AUDITORY COMPUTATION, P221 HEFFNER H, 1976, J ACOUST SOC AM, V59, P915, DOI 10.1121/1.380951 HERRERA M, 1988, J HIRNFORSCH, V29, P393 HOUTSMA AJM, 1972, J ACOUST SOC AM, V51, P520, DOI 10.1121/1.1912873 Kaestner G., 1909, PSYCHOL STUDIEN, V4, P473 KAMEOKA A, 1969, J ACOUST SOC AM, V45, P1451, DOI 10.1121/1.1911623 LANGNER G, 1983, EXP BRAIN RES, V52, P333 LANGNER G, 1986, FORTSCHRITTE AKUSTIK, P473 LANGNER G, 1981, EXP BRAIN RES, V44, P450 LANGNER G, 1987, HEARING RES, V31, P197, DOI 10.1016/0378-5955(87)90127-4 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LANGNER G, 1992, ADV BIOSCI, V83, P241 Langner G, 1987, NEW FRONTIERS BRAIN, P122 Langner G, 1997, ACTA OTO-LARYNGOL, P68 LEVELT WJM, 1966, BRIT J MATH STAT PSY, V19, P163 Long GR, 1994, COMP HEARING MAMMALS, P18 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 Moore B. C. J., 1993, HUMAN PSYCHOPHYSICS, P56 NIENHUYS TGW, 1979, ACTA OTO-LARYNGOL, V88, P350, DOI 10.3109/00016487909137179 OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 OLIVER DL, 1991, J COMP NEUROL, V303, P75, DOI 10.1002/cne.903030108 OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 PATTERSO.RD, 1973, J ACOUST SOC AM, V53, P1565, DOI 10.1121/1.1913504 PICKLES JO, 1979, J ACOUST SOC AM, V66, P1725, DOI 10.1121/1.383645 PLOMP R, 1965, J ACOUST SOC AM, V38, P548, DOI 10.1121/1.1909741 Rasch RA, 1982, PSYCHOL MUSIC, P1 Rees A, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P239, DOI 10.1007/978-1-4419-8712-9_22 RITSMA RJ, 1967, J ACOUST SOC AM, V42, P191, DOI 10.1121/1.1910550 Scharf B., 1970, F MODERN AUDITORY TH, V1, P159 Schreiner CE, 1997, NATURE, V388, P383, DOI 10.1038/41106 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823 SCHWARZ DWF, 1993, ACTA OTO-LARYNGOL, V113, P266, DOI 10.3109/00016489309135807 SEMPLE MN, 1979, J NEUROPHYSIOL, V42, P1626 SERVIERE J, 1984, J COMP NEUROL, V228, P463, DOI 10.1002/cne.902280403 SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750 TOMLINSON RWW, 1988, J ACOUST SOC AM, V84, P560, DOI 10.1121/1.396833 VANDEGEER JP, 1962, ACTA PSYCHOL, V20, P308, DOI 10.1016/0001-6918(62)90028-8 WAGNER T, 1994, NEUROREPORT, V6, P89, DOI 10.1097/00001756-199412300-00024 Webster RC, 1985, AM J COSMET SURG, V2, P1 White LJ, 1998, J ACOUST SOC AM, V103, P2051, DOI 10.1121/1.421352 WIER CC, 1977, J ACOUST SOC AM, V61, P178, DOI 10.1121/1.381251 WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P397, DOI 10.1121/1.1913591 ZERLIN S, 1986, J ACOUST SOC AM, V79, P1612, DOI 10.1121/1.393297 Zwicker E., 1990, PSYCHOACOUSTICS FACT ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963 NR 66 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1999 VL 129 IS 1-2 BP 71 EP 82 DI 10.1016/S0378-5955(98)00223-8 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 175XN UT WOS:000079121500008 PM 10190753 ER PT J AU Mizuta, K Saito, A Watanabe, T Nagura, M Arakawa, M Shimizu, F Hoshino, T AF Mizuta, K Saito, A Watanabe, T Nagura, M Arakawa, M Shimizu, F Hoshino, T TI Ultrastructural localization of megalin in the rat cochlear duct SO HEARING RESEARCH LA English DT Article DE endocytosis; post-embedding immunogold method; stria vascularis ID DENSITY-LIPOPROTEIN RECEPTOR; NEPHRITIS ANTIGENIC COMPLEX; HEYMANN NEPHRITIS; PROTEIN RAP; GENE FAMILY; HAIR-CELLS; INNER-EAR; GP330; ENDOCYTOSIS; GLYCOPROTEIN-330 AB Megalin is an endocytic receptor predominantly expressed in the kidney proximal tubule cells. In the present study, localization of megalin was examined using a post-embedding immunogold method in the rat cochlear duct. Marginal cells of the stria vascularis were labeled on the apical surface, but not on the basolateral surface. This localization pattern resembles kidney proximal tubule cells. Immunoreactivity was also detected on various other cells, including epithelial cells of the spiral prominence and epithelial cells of Reissner's membrane. In contrast, virtually no gold particles were seen on intermediate cells and basal cells of the stria vascularis, mesothelial cells of Reissner's membrane or fibrocytes in the lateral wall. Also unlabeled were cells in the tympanic wall of the cochlear duct, including sensory cells and supporting cells of the organ of Corti. The present findings show the involvement of megalin in endocytosis of marginal cells and are suggestive of different uptake mechanisms for aminoglycosides in the kidney proximal tubule cells and in the cochlear sensory cells. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Hamamatsu Univ Sch Med, Dept Otolaryngol, Hamamatsu, Shizuoka 4313192, Japan. Niigata Univ, Sch Med, Dept Cell Biol, Niigata 9518510, Japan. Niigata Univ, Sch Med, Dept Med 2, Niigata 9518510, Japan. RP Mizuta, K (reprint author), Hamamatsu Univ Sch Med, Dept Otolaryngol, Handa Cho 3600, Hamamatsu, Shizuoka 4313192, Japan. EM mizuta@hama-med.ac.jp CR Birn H, 1997, J BIOL CHEM, V272, P26497, DOI 10.1074/jbc.272.42.26497 CHATELET F, 1986, AM J PATHOL, V122, P512 CHEN WJ, 1990, J BIOL CHEM, V265, P3116 CHRISTENSEN EI, 1992, J HISTOCHEM CYTOCHEM, V40, P1481 CONLEE JW, 1991, HEARING RES, V55, P57, DOI 10.1016/0378-5955(91)90092-N FARQUHAR MG, 1994, ANN NY ACAD SCI, V737, P96, DOI 10.1111/j.1749-6632.1994.tb44304.x FARQUHAR MG, 1995, J AM SOC NEPHROL, V6, P35 Hammond TG, 1997, AM J PHYSIOL-RENAL, V272, pF117 Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6 HINOJOSA R, 1972, ACTA OTO-LARYNGOL, V74, P1, DOI 10.3109/00016487209128416 HUMES HD, 1988, KIDNEY INT, V33, P900, DOI 10.1038/ki.1988.83 HUNTERDUVAR IM, 1978, ACTA OTO-LARYNGOL, P24 HUY PTB, 1986, J CLIN INVEST, V77, P1492 IKEDA K, 1988, HEARING RES, V34, P307, DOI 10.1016/0378-5955(88)90010-X KAHLMETER G, 1984, J ANTIMICROB CHEMOTH, V13, P9 KANALAS JJ, 1991, J BIOL CHEM, V266, P10825 KERJASCHKI D, 1987, J EXP MED, V166, P109, DOI 10.1084/jem.166.1.109 KERJASCHKI D, 1983, J EXP MED, V157, P667, DOI 10.1084/jem.157.2.667 Kounnas M Z, 1994, In Vivo, V8, P343 KOUNNAS MZ, 1993, J BIOL CHEM, V268, P14176 LIM DJ, 1986, AM J OTOLARYNG, V7, P73, DOI 10.1016/S0196-0709(86)80037-0 Lundgren S, 1997, J HISTOCHEM CYTOCHEM, V45, P383 MOESTRUP SK, 1994, ANN NY ACAD SCI, V737, P124, DOI 10.1111/j.1749-6632.1994.tb44306.x MOESTRUP SK, 1995, J CLIN INVEST, V96, P1404, DOI 10.1172/JCI118176 NAKAI Y, 1974, ARCH OTO-RHINO-LARYN, V206, P127, DOI 10.1007/BF00460403 ORLANDO RA, 1993, P NATL ACAD SCI USA, V90, P4082, DOI 10.1073/pnas.90.9.4082 PACCAUD JP, 1993, J BIOL CHEM, V268, P23191 RAYCHOWDHURY R, 1989, SCIENCE, V244, P1163, DOI 10.1126/science.2786251 Richardson GP, 1997, J NEUROSCI, V17, P9506 SAITO A, 1994, P NATL ACAD SCI USA, V91, P9725, DOI 10.1073/pnas.91.21.9725 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 Sundin DP, 1997, AM J PHYSIOL-CELL PH, V272, pC1309 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WILLNOW TE, 1992, J BIOL CHEM, V267, P26172 ZHENG G, 1994, J HISTOCHEM CYTOCHEM, V42, P531 NR 35 TC 26 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1999 VL 129 IS 1-2 BP 83 EP 91 DI 10.1016/S0378-5955(98)00221-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 175XN UT WOS:000079121500009 PM 10190754 ER PT J AU Gaskell, H Henning, GB AF Gaskell, H Henning, GB TI Forward and backward masking with brief impulsive stimuli SO HEARING RESEARCH LA English DT Article DE precedence effect; non-simultaneous masking AB The forward and backward masking effect of a 20-mu s pulse was measured for delays ranging From 0 to +/- 4 ms. Masking is not a monotonic function of delay in either forward or backward masking. For two of the three observers, the asymmetry in which forward masking exceeds that of backward masking is small for delays less than 500 mu s. The implications of the data for the contribution of masking to the precedence effect are considered. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Radcliffe Infirm, Dept Clin Geratol, Oxford OX2 6HE, England. Univ Texas, Dept Psychol, Austin, TX 78712 USA. RP Henning, GB (reprint author), Univ Oxford, Dept Expt Psychol, SRU, S Parks Rd, Oxford OX1 3UD, England. CR BABKOFF H, 1968, J ACOUST SOC AM, V44, P1373, DOI 10.1121/1.1911271 Blauert J., 1996, SPATIAL HEARING CHISTOVICH IA, 1959, BIOPHYS, V4, P46 DAVID EE, 1962, P 4 INT C AC COP 196 DAVID EE, 1961, P 3 INT C AC STUTTG, V1, P144 DUIFHUIS H, 1973, J ACOUST SOC AM, V54, P1471, DOI 10.1121/1.1914446 ELLIOTT LL, 1971, AUDIOLOGY, V10, P65 FETH LL, 1977, PERCEPT PSYCHOPHYS, V22, P497, DOI 10.3758/BF03199517 GASKELL H, 1978, THESIS U OXFORD GASKELL H, 1976, J ACOUST SOC AM, V60, pS102 GASKELL H, 1983, HEARING RES, V12, P277, DOI 10.1016/0378-5955(83)90002-3 GUTTMAN N, 1960, J ACOUST SOC AM, V32, P1329, DOI 10.1121/1.1907902 HENNING GB, 1981, J ACOUST SOC AM, V70, P1669, DOI 10.1121/1.387231 HOUTGAST T, 1968, J ACOUST SOC AM, V44, P807, DOI 10.1121/1.1911178 Papoulis A., 1962, FOURIER INTEGRAL ITS RAAB DH, 1961, J ACOUST SOC AM, V33, P137, DOI 10.1121/1.1908600 RONKEN DA, 1970, J ACOUST SOC AM, V47, P1091, DOI 10.1121/1.1912010 TOLLIN DJ, 1998, PSYCHOPHYSICAL PHYSL TOLLIN DJ, 1999, IN PRESS J ACOUST SO, V105 Tollin DJ, 1998, J ACOUST SOC AM, V104, P3030, DOI 10.1121/1.423884 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 ZUREK PM, 1976, THESIS ARIZONA STATE ZUREK PM, 1975, J ACOUST SOC AM, V58, pS55, DOI 10.1121/1.2002193 NR 23 TC 5 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1999 VL 129 IS 1-2 BP 92 EP 100 DI 10.1016/S0378-5955(98)00228-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 175XN UT WOS:000079121500010 PM 10190755 ER PT J AU Ahroon, WA Hamernik, RP AF Ahroon, WA Hamernik, RP TI Noise-induced hearing loss in the noise-toughened auditory system SO HEARING RESEARCH LA English DT Article DE noise-induced hearing loss ID PRODUCT OTOACOUSTIC EMISSIONS; CONDITIONING EXPOSURES; THRESHOLD SHIFTS; CELL LOSS; TRAUMA; PROTECTION; LEVEL AB The auditory system, toughened by an interrupted noise exposure, has been shown in several reports to be less affected by (or protected from) a subsequent high-level noise exposure. Exposure to 115 dB peak SPL, 1 kHz narrow band (400 Hz) transients presented 1/s, 6 h/day, to four groups of chinchillas produced a 10-28 dB toughening effect across the 0.5-8.0 kHz test frequency range. Following either a 30 day or an 18 h recovery period the animals were exposed to the same impulses but presented at 121 or 127 dB peak SPL for five uninterrupted days, thus producing an asymptotic threshold shift (ATS) condition. Comparisons between toughened and untoughened control subjects showed: (1) During the 121 dB exposure there was a statistically significant reduction of 10-25 dB in ATS across the entire test frequency range. Thirty days following the 121 dB exposure there were no significant differences in the postexposure permanent effects on thresholds and sensory cell loss. (2) During the 127 dB exposure only the group with the 30 day interval between the toughening and traumatic exposures showed a small (similar to 10 dB), statistically significant, frequency-specific (8 kHz), reduction in ATS. Thirty days following the 127 dB exposure a statistically significant protective effect on threshold was measured only at 16.0 kHz. However, both toughened groups showed less inner hair cell loss at and above 1.0 kHz, while only the group with the 18 h interval between the toughening and traumatic exposures showed less outer hair cell loss at and above 1.0 kHz. There were no systematic differences in the response of the toughened animals that could be attributed to the 30 day or 18 h post-toughening interval. (C) 1999 Elsevier Science B.V. All rights reserved. C1 SUNY Coll Plattsburgh, Auditory Res Lab, Plattsburgh, NY 12901 USA. RP Hamernik, RP (reprint author), SUNY Coll Plattsburgh, Auditory Res Lab, 107 Beaumont Hall, Plattsburgh, NY 12901 USA. CR AHROON WA, 1993, J ACOUST SOC AM, V93, P997, DOI 10.1121/1.405406 CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 CANLON B, 1995, HEARING RES, V84, P112, DOI 10.1016/0378-5955(95)00020-5 CANLON B, 1998, 21 MIDW RES M ASS RE, P136 CANLON B, 1996, AUDITORY SYSTEM PLAS, P128 CLARK WW, 1987, J ACOUST SOC AM, V82, P1253, DOI 10.1121/1.395261 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 FOWLER T, 1995, HEARING RES, V88, P1, DOI 10.1016/0378-5955(95)00062-9 Hamernik RP, 1998, J ACOUST SOC AM, V103, P3478, DOI 10.1121/1.423056 HAMERNIK RP, 1994, J ACOUST SOC AM, V95, P444, DOI 10.1121/1.408338 HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 Hamernik RP, 1998, HEARING RES, V118, P73, DOI 10.1016/S0378-5955(98)00021-5 HENSELMAN LW, 1994, HEARING RES, V78, P1, DOI 10.1016/0378-5955(94)90038-8 Jock BM, 1996, HEARING RES, V96, P179, DOI 10.1016/0378-5955(96)00058-5 LIBERMAN MC, 1998, 21 MIDW RES M ASS RE, P140 McFadden SL, 1997, HEARING RES, V103, P142, DOI 10.1016/S0378-5955(96)00170-0 Miller J. D., 1963, ACTA OTO-LARYNGOL, V176, P1 Roberto M, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P165 Skellett RA, 1998, HEARING RES, V116, P21, DOI 10.1016/S0378-5955(97)00199-8 SUBRAMANIAM M, 1993, J ACOUST SOC AM, V93, P952, DOI 10.1121/1.405455 SUBRAMANIAM M, 1991, HEARING RES, V52, P181, DOI 10.1016/0378-5955(91)90197-H Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 White DR, 1998, J ACOUST SOC AM, V103, P1566, DOI 10.1121/1.421303 NR 24 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1999 VL 129 IS 1-2 BP 101 EP 110 DI 10.1016/S0378-5955(98)00227-5 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 175XN UT WOS:000079121500011 PM 10190756 ER PT J AU Adamson, CL Davis, RL AF Adamson, CL Davis, RL TI Differentiation of cyst-forming stria vascularis tissues in vitro SO HEARING RESEARCH LA English DT Article DE cochlea; epithelium; development; inner ear; marginal cell ID MAMMALIAN ENDOLYMPH SYSTEM; COLLECTING DUCT EPITHELIA; GUINEA-PIG COCHLEA; INNER-EAR; ETHACRYNIC-ACID; MARGINAL CELLS; IN-VITRO; MORPHOLOGICAL FEATURES; REISSNERS MEMBRANE; OTOTOXIC ACTIONS AB The marginal cells of the stria vascularis possess distinctive morphological characteristics associated with their role in endolymph production. Interestingly, when stria-derived epithelial cells are grown in association with the underlying mesenchyme, the final differentiation of these cell types does not occur. Beyond the rudimentary polarity that is established, similar to that shown in epithelial monolayers, cells in culture bear only a slight resemblance to their marginal cell counterparts in vivo. The ultrastructural features that typify these epithelia, extensive cytoplasmic invaginations, with an abundance of mitochondria, and darkly stained cytoplasm, are not evident under standard culture conditions. In order to determine whether fluid transport, a key function of the stria vascularis, has an effect on the ultrastructural morphology, we examined de novo stria vascularis tissues that formed a fluid-filled cyst in vitro. We found that only cells associated with the luminal structure demonstrated dark cytoplasmic staining and amplification of the basolateral membrane of the marginal cells. Additionally, other epithelial features, such as mitochondria-rich and microvilli-rich cells, were observed in cyst-forming tissues. The enhancement of the marginal cell specializations was not as robust as that observed in vivo; however, they were clearly more extensive when compared to cells in the same culture that were not associated with a fluid-filled lumen. Thus it appears that fluid transport may be necessary to maximize differentiation of stria vascularis tissues in vitro. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Rutgers State Univ, Dept Cell Biol & Neurosci, Nelson Biol Labs, Piscataway, NJ 08854 USA. RP Adamson, CL (reprint author), Rutgers State Univ, Dept Cell Biol & Neurosci, Nelson Biol Labs, 604 Allison Rd, Piscataway, NJ 08854 USA. CR ACHOUCHE J, 1991, ANN OTO RHINOL LARYN, V100, P999 Agrup C, 1996, HEARING RES, V102, P155, DOI 10.1016/S0378-5955(96)00156-6 ALBERS FWJ, 1987, ACTA OTO-LARYNGOL, V104, P202, DOI 10.3109/00016488709107319 ANNIKO M, 1988, ARCH OTO-RHINO-LARYN, V244, P346, DOI 10.1007/BF00497462 ANNIKO M, 1984, ULTRASTRUCTURAL ATLA, P184 ANNIKO M, 1981, ANN OTO RHINOL LARYN, V90, P25 ANNIKO M, 1980, ARCH OTO-RHINO-LARYN, V229, P281, DOI 10.1007/BF02565531 BENZEEV A, 1985, EXP CELL RES, V157, P520, DOI 10.1016/0014-4827(85)90137-5 BIRCHMEIER C, 1995, INT REV CYTOL, V160, P221, DOI 10.1016/S0074-7696(08)61556-9 BIRCHMEIER C, 1993, BIOESSAYS, V15, P185, DOI 10.1002/bies.950150307 BIREK C, 1982, IN VITRO CELL DEV B, V18, P382 Bosher S K, 1977, Adv Otorhinolaryngol, V22, P81 BOSHER SK, 1973, ACTA OTO-LARYNGOL, V75, P184, DOI 10.3109/00016487309139694 BOSHER SK, 1971, J PHYSIOL-LONDON, V212, P739 BOSHER SK, 1980, ACTA OTO-LARYNGOL, V89, P407, DOI 10.3109/00016488009127156 BOSHER SK, 1980, ACTA OTO-LARYNGOL, V90, P40, DOI 10.3109/00016488009131696 BRUMMETT R, 1977, ACTA OTO-LARYNGOL, V83, P98, DOI 10.3109/00016487709128819 CABLE J, 1991, PIGM CELL RES, V4, P87, DOI 10.1111/j.1600-0749.1991.tb00320.x CABLE J, 1992, HEARING RES, V64, P6, DOI 10.1016/0378-5955(92)90164-I CHAILLER P, 1991, ANAT EMBRYOL, V184, P319, DOI 10.1007/BF00957893 COTANCHE DA, 1987, HEARING RES, V25, P125, DOI 10.1016/0378-5955(87)90086-4 CROSSIN KL, 1988, AUDITORY FUNCITON NE, P3 Dallos P, 1996, SPRINGER HDB AUDITOR, P1 DAVIES J, 1993, CELL BIOL, V4, P213 EKBLOM P, 1989, FASEB J, V3, P2141 ELLIGET KA, 1991, IN VITRO CELL DEV B, V27, P739 ENGSTROM H, 1955, Pract Otorhinolaryngol (Basel), V17, P69 FELIX H, 1993, ACTA OTO-LARYNGOL, V113, P321, DOI 10.3109/00016489309135817 FERNANDE.C, 1974, ACTA OTO-LARYNGOL, V78, P173, DOI 10.3109/00016487409126343 FRANKE WW, 1978, P NATL ACAD SCI USA, V75, P5034, DOI 10.1073/pnas.75.10.5034 Garrod DR, 1993, CURR OPIN CELL BIOL, V5, P30, DOI 10.1016/S0955-0674(05)80005-5 GILBERT SF, 1994, DEV BIOL, P647 GROBSTEIN C, 1953, SCIENCE, V118, P52, DOI 10.1126/science.118.3054.52 GROBSTEIN C, 1955, J EXP ZOOL, V130, P319, DOI 10.1002/jez.1401300207 Grobstein C, 1967, Natl Cancer Inst Monogr, V26, P279 GUETHHALLONET C, 1992, TRENDS GENET, V8, P274, DOI 10.1016/0168-9525(92)90134-P GUMBINER BM, 1992, CELL, V69, P385, DOI 10.1016/0092-8674(92)90440-N HAZENMARTIN DJ, 1994, IN VITRO CELL DEV-AN, V30A, P356 HILDING DA, 1977, ACTA OTO-LARYNGOL, V84, P24, DOI 10.3109/00016487709123939 HINOJOSA R, 1966, AM J ANAT, V118, P632 IURATO S, 1962, Z ZELLFORSCH MIK ANA, V56, P40, DOI 10.1007/BF00326848 KARFUNKE.P, 1974, INT REV CYTOL, V38, P245, DOI 10.1016/S0074-7696(08)60927-4 KIKUCHI K, 1966, ACTA OTOLARYNGOL STO, V62, P207 Kim HN, 1996, ACTA OTO-LARYNGOL, V116, P805, DOI 10.3109/00016489609137930 KIMURA RS, 1970, ACTA OTO-LARYNGOL, V70, P301 KIMURA RS, 1967, ANN OTO RHINOL LARYN, V76, P664 KIMURA RS, 1970, ACTA OTO-LARYNGOL, V69, P415, DOI 10.3109/00016487009123387 KIMURA RS, 1969, ANN OTO RHINOL LARYN, V78, P542 LAMB JF, 1981, BIOCHIM BIOPHYS ACTA, V644, P333, DOI 10.1016/0005-2736(81)90391-6 LIM DJ, 1985, AM J OTOLARYNG, V6, P153, DOI 10.1016/S0196-0709(85)80078-8 LOUVARD D, 1992, ANNU REV CELL BIOL, V8, P157, DOI 10.1146/annurev.cb.08.110192.001105 MARCUS DC, 1986, NEUROBIOLOGY HEARING, P123 MARTIN F, 1994, HEARING RES, V81, P33, DOI 10.1016/0378-5955(94)90150-3 MCPHEE JR, 1988, PHYSL EAR MELICHAR I, 1992, ACTA OTO-LARYNGOL, V112, P762, DOI 10.3109/00016489209137471 MINUTH WW, 1993, KIDNEY INT, V44, P337 Minuth WW, 1997, EXP NEPHROL, V5, P10 Minuth WW, 1997, EXP NEPHROL, V5, P414 Minuth WW, 1997, PEDIATR NEPHROL, V11, P140 Mou K, 1997, HEARING RES, V103, P47, DOI 10.1016/S0378-5955(96)00163-3 PEASE DANIEL C., 1956, JOUR BIOPHYS AND BIOCHEM CYTOL, V2, P203, DOI 10.1083/jcb.2.4.203 PURVES D, 1997, NEUROSCIENCE, P223 QVORTRUP K, 1995, ACTA OTO-LARYNGOL, V115, P241, DOI 10.3109/00016489509139300 QVORTRUP K, 1994, ACTA OTO-LARYNGOL, V114, P30, DOI 10.3109/00016489409126013 RAREY KE, 1989, HEARING RES, V38, P277, DOI 10.1016/0378-5955(89)90071-3 RODRIGUEZBOULAN E, 1989, SCIENCE, V245, P718, DOI 10.1126/science.2672330 Romand R., 1983, DEV AUDITORY VESTIBU, P47 Rubel EW, 1988, AUDITORY FUNCTION NE, P3 SAGARA T, 1995, HEARING RES, V83, P121, DOI 10.1016/0378-5955(94)00195-V SALT AN, 1986, NEUROBIOLOGY HEARING, P109 SAXEN L, 1970, DEV BIOL, V23, P511, DOI 10.1016/0012-1606(70)90137-5 SCHROTT A, 1987, ACTA OTO-LARYNGOL, V103, P451 SIMMONS NL, 1981, J MEMBRANE BIOL, V59, P105, DOI 10.1007/BF01875708 SMITH C., 1957, ANN OTOL RHINOL AND LARYNGOL, V66, P521 SOBKOWICZ HM, 1983, DEV AUDITORY VESTIBU, P27 SOROKIN L, 1992, KIDNEY INT, V41, P657, DOI 10.1038/ki.1992.101 STEEL KP, 1987, HEARING RES, V27, P11, DOI 10.1016/0378-5955(87)90022-0 STEEL KP, 1989, DEVELOPMENT, V107, P453 Steiner P, 1997, DIFFERENTIATION, V62, P193 SUZUKI M, 1995, HEARING RES, V86, P68, DOI 10.1016/0378-5955(95)00055-9 SWANSON GJ, 1990, DEV BIOL, V137, P243, DOI 10.1016/0012-1606(90)90251-D UNSWORTH B, 1970, DEV BIOL, V21, P547, DOI 10.1016/0012-1606(70)90077-1 VANDEWATER TR, 1983, DEV AUDITORY VESTIBU, P337 Vilar J, 1996, KIDNEY INT, V49, P1478, DOI 10.1038/ki.1996.208 Wangemann P., 1996, SPRINGER HDB AUDITOR, P130 WEIBEL E. R., 1957, ACTA ANAT, V29, P53 WELLER A, 1991, DEV BIOL, V144, P248, DOI 10.1016/0012-1606(91)90419-4 WIGAND ME, 1976, HDB SENSORY PHYSL, P279 YAMAMOTO K, 1964, ANN OTO RHINOL LARYN, V73, P332 YEH TH, 1992, ACTA OTO-LARYNGOL, V112, P254 NR 90 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1999 VL 129 IS 1-2 BP 111 EP 127 DI 10.1016/S0378-5955(98)00225-1 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 175XN UT WOS:000079121500012 PM 10190757 ER PT J AU von Unge, M Decraemer, WF Dirckx, JJ Bagger-Sjoback, D AF von Unge, M Decraemer, WF Dirckx, JJ Bagger-Sjoback, D TI Tympanic membrane displacement patterns in experimental cholesteatoma SO HEARING RESEARCH LA English DT Article DE cholesteatoma; retraction pocket; gerbil animal model; moire interferometry; tympanic membrane; displacement ID OTITIS-MEDIA; GERBILS; RAT AB Tympanic membrane (TM) stiffness changes in the pars tensa in response to experimentally induced ear canal cholesteatoma by obstruction of the ear canal were studied. To this aim TM displacement versus pressure was measured with a high resolution, differential moire interferometer. The measurements were performed on fresh, isolated gerbil temporal bones after removal of the cholesteatoma bulk. Besides an overall stiffness reduction we found that local stiffness variations were present in nine out of 18 studied ears. The stiffness changes as a function of time after ear canal obstruction had a pattern similar to those previously shown to develop in response to various forms of otitis media, showing that the TM stiffness properties decrease in a similar way in response to different inflammatory middle ear diseases. The stiffness changes correlated with an increased overall TM thickness and increased thickness of the lamina propria in particular as measured in histology sections. The stiffness changes may play an important role in the pathophysiology of cholesteatoma. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Karolinska Hosp, Dept Otorhinolaryngol, S-10401 Stockholm, Sweden. Karolinska Inst, S-10401 Stockholm, Sweden. Univ Antwerp, Rijksuniv Ctr Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium. RP von Unge, M (reprint author), Cent Lasarettet, Dept Otorhinolaryngol, S-72189 Vasteras, Sweden. CR CHOLE RA, 1985, LARYNGOSCOPE, V95, P270 CHOLE R A, 1981, American Journal of Otology, V2, P204 Dirckx J J, 1997, J Biomed Opt, V2, P176, DOI 10.1117/12.268966 FRIEDMANN I, 1955, J Laryngol Otol, V69, P588, DOI 10.1017/S002221510005115X FULGHUM FS, 1985, INFECT IMMUN, V50, P678 JACKSON DG, 1978, ACTA OTO-LARYNGOL, V86, P71, DOI 10.3109/00016487809124722 LARSSON C, 1998, IN PRESS AM J OTOL MAGNUSON K, 1995, EUR ARCH OTO-RHINO-L, V252, P76 MCGINN MD, 1982, ACTA OTO-LARYNGOL, V93, P61, DOI 10.3109/00016488209130853 MCGINN MD, 1984, ACTA OTO-LARYNGOL, V97, P297, DOI 10.3109/00016488409130992 RUEDI L, 1959, Acta Otolaryngol, V50, P233, DOI 10.3109/00016485909129191 SCHMIDT SH, 1994, ACTA OTO-LARYNGOL, V114, P430, DOI 10.3109/00016489409126082 STEINBACH E, 1980, J LARYNGOL OTOL, V94, P269, DOI 10.1017/S0022215100088782 VONUNGE M, 1995, HEARING RES, V82, P184, DOI 10.1016/0378-5955(94)00017-K VONUNGE M, 1991, AM J OTOL, V12, P407 vonUnge M, 1997, HEARING RES, V106, P123, DOI 10.1016/S0378-5955(97)00008-7 VONUNGE M, 1994, AM J OTOL, V15, P663 VONUNGE M, 1993, HEARING RES, V70, P229, DOI 10.1016/0378-5955(93)90161-S WOLFMAN DE, 1986, ANN OTO RHINOL LARYN, V95, P639 NR 19 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 1 EP 15 DI 10.1016/S0378-5955(98)00183-X PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500001 PM 10082278 ER PT J AU Lowenheim, H Kil, J Gultig, K Zenner, HP AF Lowenheim, H Kil, J Gultig, K Zenner, HP TI Determination of hair cell degeneration and hair cell death in neomycin treated cultures of the neonatal rat cochlea SO HEARING RESEARCH LA English DT Article DE organ of Corti; aminoglycoside ototoxicity; hair cell; cell death; live/dead assay ID ETHIDIUM HOMODIMER; DEVELOPING ORGAN; RETINOIC ACID; INNER-EAR; CORTI; REGENERATION; REORGANIZATION; OTOTOXICITY; EPITHELIA; CALCIUM AB The spatial-temporal course of hair cell degeneration and hair cell death was examined in the mammalian cochlea following aminoglycoside treatment. Organotypic cultures were established from postnatal rats (P3) and treated with 1 mM neomycin sulfate for 12-48 h and analyzed using a live/dead assay under epifluorescence microscopy. Live hair sells were labeled with calcein, a probe whose fluorescence and cellular retention depends upon intracellular esterase activity and cell-membrane integrity, respectively. Hair cell death was determined by ethidium homodimer-1, a probe that fan enter cells with compromised cell membranes only. Inside the cell it binds to DNA. Hair cell morphology was also examined using phalloidin labeling, scanning electron microscopy sind semi-thin section analysis. Results showed that hair cell degeneration and hair cell death occurred in a time dependent gradient from base to apex. After 48 h of neomycin treatment, most apical hair cells survived while most basal hair cells died. Calcein labeling provides a sensitive functional assay for measuring hair cell survival. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Tubingen, Dept Otorhinolaryngol, D-72076 Tubingen, Germany. Univ Virginia, Dept Otolaryngol, Charlottesville, VA 22908 USA. Univ Virginia, Dept Neurosci, Charlottesville, VA 22908 USA. RP Lowenheim, H (reprint author), Univ Tubingen, Dept Otorhinolaryngol, Silcherstr 5, D-72076 Tubingen, Germany. EM hubert.loewenheim.@uni-tuebingen.de CR CHARDIN S, 1995, SCIENCE, V267, P707, DOI 10.1126/science.7839151 CHIU VCK, 1977, BIOPHYS J, V18, P3 CUBELLS JF, 1994, J NEUROSCI, V14, P2260 DARTSCH PC, 1990, GIT LABORMED, V13, P450 DARTSCH PC, 1992, EUR MICR ANAL, V17, P11 DECLERCK LS, 1994, J IMMUNOL METHODS, V172, P115, DOI 10.1016/0022-1759(94)90384-0 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 FORGE A, 1993, J NEUROCYTOL, V22, P854, DOI 10.1007/BF01186357 GANESAN MG, 1983, J PHARM SCI, V72, P1465, DOI 10.1002/jps.2600721224 GAUGAIN B, 1978, BIOCHEMISTRY-US, V17, P5071, DOI 10.1021/bi00617a001 GLAZER AN, 1990, P NATL ACAD SCI USA, V87, P3851, DOI 10.1073/pnas.87.10.3851 Hawkins Jr JE, 1976, HDB SENSORY PHYSIOLO, P707 He DZZ, 1997, J NEUROSCI, V17, P3634 KELLEY MW, 1993, DEVELOPMENT, V119, P1041 LEFEBVRE PP, 1993, SCIENCE, V260, P692, DOI 10.1126/science.8480180 Leonova EV, 1997, HEARING RES, V113, P14, DOI 10.1016/S0378-5955(97)00130-5 Li L., 1995, AUDIT NEUROSCI, V1, P111 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 LICHTENFELS R, 1994, J IMMUNOL METHODS, V172, P227, DOI 10.1016/0022-1759(94)90110-4 LODHI S, 1979, BIOCHIM BIOPHYS ACTA, V557, P1, DOI 10.1016/0005-2736(79)90084-1 MARK RJ, 1995, J NEUROSCI, V15, P6239 NICOL KMM, 1992, HEARING RES, V61, P117, DOI 10.1016/0378-5955(92)90042-L NORDEMAR H, 1983, ACTA OTO-LARYNGOL, V96, P457, DOI 10.3109/00016488309132732 RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7 RAPHAEL Y, 1992, EXP NEUROL, V115, P32, DOI 10.1016/0014-4886(92)90217-E RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E SOBKOWICZ HM, 1975, J NEUROCYTOL, V4, P543, DOI 10.1007/BF01351537 SOBKOWICZ HM, 1992, EXP NEUROL, V115, P44, DOI 10.1016/0014-4886(92)90219-G SPECTOR GJ, 1972, ANN OTO RHINOL LARYN, V81, P377 STAECKER H, 1995, SCIENCE, V267, P709, DOI 10.1126/science.267.5198.709 TSIEN RY, 1981, NATURE, V290, P527, DOI 10.1038/290527a0 Wersall J., 1981, AMINOGLYCOSIDE OTOTO, P197 NR 33 TC 27 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 16 EP 26 DI 10.1016/S0378-5955(98)00181-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500002 PM 10082279 ER PT J AU Heijmen, PS Klis, SFL De Groot, JCMJ Smoorenburg, GF AF Heijmen, PS Klis, SFL De Groot, JCMJ Smoorenburg, GF TI Cisplatin ototoxicity and the possibly protective effect of alpha-melanocyte stimulating hormone SO HEARING RESEARCH LA English DT Article DE cisplatin; ototoxicity; neuropeptide; alpha-melanocyte stimulating hormone; ORG 2766 ID GUINEA-PIGS; ACTH(4-9) ANALOG; NEUROTOXICITY; ORG-2766; COCHLEA AB It is known that adrenocorticotrophic hormone (ACTH)-derived peptides, the so-called melanocortins, can reduce cisplatin-induced neurotoxicity. Recently, our group has found that cisplatin-induced ototoxicity can also be reduced or prevented by treatment with the synthetic melanocortin-like peptide, ORG 2766 (Hamers et al., 1994; De Groot et al., 1997). The present study was designed to investigate the possibly ameliorating effects of the physiologically more relevant naturally occurring neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) upon cisplatin ototoxicity and to compare its protective effects to those of ORG 2766. For eight consecutive days guinea pigs were treated with cisplatin at a concentration of either 1.5 mg/kg/day or 2 mg/kg/day. Animals were co-treated with either alpha-MSH (75 mu g/kg/day), ORG 2766 (75 mu g/kg/day), or a sham injection containing physiological saline. Electrocochleography and hair cell counts were performed. Treatment with 1.5 mg/kg/day cisplatin resulted in a large variability of the morphological and electrophysiological data, a variability that might have masked possible effects of ORG 2766 and alpha-MSH. Treatment with 2 mg/kg/day cisplatin caused less variable, severe reductions in the compound action potentials and cochlear microphonics combined with basal and middle-turn outer hair cell loss in five out of six animals. However, in the alpha-MSH co-treated groups, two out of six animals could be classified as normal, two animals as moderately affected and two animals as severely affected. In the ORG 2766 co-treated group we found three animals that were not affected and three animals that were severely affected. We conclude that the protective effects of alpha-MSH and ORG 2766 co-treatment are comparable and that alpha-MSH might be clinically useful in protecting against cisplatin-induced ototoxicity. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Utrecht Hosp, Dept Otorhinolaryngol, Hearing Res Labs, NL-3584 CX Utrecht, Netherlands. RP Smoorenburg, GF (reprint author), Univ Utrecht Hosp, Dept Otorhinolaryngol, Hearing Res Labs, Room G02-531,Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands. EM g.smoorenburg@kmb.azu.nl CR BAR PR, 1993, ANN NY ACAD SCI, V680, P649, DOI 10.1111/j.1749-6632.1993.tb19764.x BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3 DEKONING P, 1987, EXP NEUROL, V97, P746, DOI 10.1016/0014-4886(87)90132-4 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HAMERS FPT, 1993, CANCER CHEMOTH PHARM, V32, P162, DOI 10.1007/BF00685621 HAMERS FPT, 1994, EUR ARCH OTO-RHINO-L, V251, P23 HOEVE LJ, 1989, ARCH OTORHINOLARYNGO, V245, P98 HOL EM, 1995, PEPTIDES, V16, P979, DOI 10.1016/0196-9781(95)00017-E KOMUNE S, 1995, ANN OTO RHINOL LARYN, V104, P149 KONISHI T, 1983, AM J OTOLARYNG, V4, P18, DOI 10.1016/S0196-0709(83)80003-9 LAURELL G, 1995, HEARING RES, V87, P16, DOI 10.1016/0378-5955(95)00074-E MCALPINE D, 1990, HEARING RES, V47, P191, DOI 10.1016/0378-5955(90)90151-E MYERS SF, 1991, OTOLARYNG HEAD NECK, V104, P122 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 SCHAEFER SD, 1985, CANCER, V56, P1934, DOI 10.1002/1097-0142(19851015)56:8<1934::AID-CNCR2820560807>3.0.CO;2-F SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 TANGE RA, 1982, ARCH OTO-RHINO-LARYN, V237, P17, DOI 10.1007/BF00453712 TAUDY M, 1992, AUDIOLOGY, V31, P293 VANDEELEN GW, 1986, ACTA OTO-LARYNGOL, V101, P207, DOI 10.3109/00016488609132829 VANDERHOOP RG, 1990, NEW ENGL J MED, V322, P89, DOI 10.1056/NEJM199001113220204 WINDEBANK AJ, 1994, NEUROLOGY, V44, P488 NR 24 TC 23 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 27 EP 39 DI 10.1016/S0378-5955(98)00194-4 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500003 PM 10082280 ER PT J AU Conlon, BJ Aran, JM Erre, JP Smith, DW AF Conlon, BJ Aran, JM Erre, JP Smith, DW TI Attenuation of aminoglycoside-induced cochlear damage with the metabolic antioxidant alpha-lipoic acid SO HEARING RESEARCH LA English DT Article DE amikacin; aminoglycoside antibiotic; alpha-lipoic acid; dihydrolipoic acid; ototoxicity; free radical; reactive oxygen species; free radical scavenger ID PIG IN-VIVO; MICROSOMAL LIPID-PEROXIDATION; GENTAMICIN OTOTOXICITY; CEREBRAL-ISCHEMIA; IRON CHELATORS; FREE-RADICALS; HAIR-CELLS; GLUTATHIONE; VITRO; PROTECTION AB Free radical generation is increasingly implicated in a variety of pathological processes, including drug toxicity. Recently, a number of studies have demonstrated the ability of gentamicin to facilitate the generation of radical species both in vivo and in vitro, which suggests that this process plays an important role in aminoglycoside-induced ototoxicity. Free radical scavengers are compounds capable of inactivating free radicals, thereby attenuating their tissue damaging capacity. In this study we have determined the ability of the powerful free radical scavenger alpha-lipoic acid (100 mg/kg/day) to attenuate the cochlear damage induced by a highly ototoxic regimen of the aminoglycoside amikacin (450 mg/kg/day, i.m.). Experiments were carried out on pigmented guinea pigs initially weighing 200-250 g. Changes in cochlear function were characterized as shifts in compound action potential (CAP) thresholds, estimated every 5 days, by use of chronic indwelling electrodes implanted at the round window, vertex, and contralateral mastoid. Results showed that animals receiving alpha-lipoic acid in combination with amikacin demonstrated a significantly less severe elevation in CAP thresholds compared with animals receiving amikacin alone (P < 0.001; t-test). These results provide further evidence of the recently reported intrinsic role of free radical generation in aminoglycoside ototoxicity, and highlight a potential clinical therapeutic use of alpha-lipoic acid in the management of patients undergoing aminoglycoside treatment. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Duke Univ, Med Ctr, Div Otolaryngol Head & Neck Surg, Hearing Res Labs, Durham, NC 27710 USA. Univ Bordeaux 2, Hop Pellegrin, Lab Audiol Expt & Clin, F-33076 Bordeaux, France. RP Conlon, BJ (reprint author), Duke Univ, Med Ctr, Div Otolaryngol Head & Neck Surg, Hearing Res Labs, Box 3550, Durham, NC 27710 USA. CR ANDERSON ME, 1985, ARCH BIOCHEM BIOPHYS, V239, P538, DOI 10.1016/0003-9861(85)90723-4 BARBIROLI B, 1995, J NEUROL, V242, P472, DOI 10.1007/BF00873552 Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338 BAST A, 1988, BIOCHIM BIOPHYS ACTA, V963, P558, DOI 10.1016/0005-2760(88)90326-8 BUSSE E, 1992, ARZNEIMITTEL-FORSCH, V42-1, P829 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 Conlon BJ, 1998, HEARING RES, V115, P1, DOI 10.1016/S0378-5955(97)00171-8 Conlon BJ, 1998, LARYNGOSCOPE, V108, P284, DOI 10.1097/00005537-199802000-00023 CORTOPASSI G, 1994, HEARING RES, V78, P27, DOI 10.1016/0378-5955(94)90040-X ERNFORS P, 1996, NAT MED, V2, P1338 FREEMAN BA, 1982, LAB INVEST, V47, P412 GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 HALLIWELL B, 1984, BIOCHEM J, V219, P1 HAN D, 1995, BIOCHEM BIOPH RES CO, V207, P258, DOI 10.1006/bbrc.1995.1181 HARRISON EH, 1974, ARCH BIOCHEM BIOPHYS, V160, P514, DOI 10.1016/0003-9861(74)90428-7 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 HOFFMAN DW, 1988, ANN OTO RHINOL LARYN, V97, P36 KAGAN VE, 1992, BIOCHEM PHARMACOL, V44, P1637, DOI 10.1016/0006-2952(92)90482-X NAGAMATSU M, 1995, DIABETES CARE, V18, P1160, DOI 10.2337/diacare.18.8.1160 OU PM, 1995, BIOCHEM PHARMACOL, V50, P123, DOI 10.1016/0006-2952(95)00116-H Packer L, 1996, FREE RADICAL BIO MED, V20, P625, DOI 10.1016/0891-5849(95)02129-9 PACKER L, 1995, FREE RADICAL BIO MED, V19, P227, DOI 10.1016/0891-5849(95)00017-R Packer L, 1997, FREE RADICAL BIO MED, V22, P359, DOI 10.1016/S0891-5849(96)00269-9 Panigrahi M, 1996, BRAIN RES, V717, P184, DOI 10.1016/0006-8993(96)00009-1 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 PULLAN LM, 1992, J NEUROCHEM, V59, P2087 SCHOLICH H, 1989, BIOCHIM BIOPHYS ACTA, V1001, P256, DOI 10.1016/0005-2760(89)90108-2 SIGEL H, 1978, ARCH BIOCHEM BIOPHYS, V187, P208, DOI 10.1016/0003-9861(78)90025-5 Song BB, 1997, J PHARMACOL EXP THER, V282, P369 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 SPENCE JT, 1976, ARCH BIOCHEM BIOPHYS, V174, P13, DOI 10.1016/0003-9861(76)90318-0 TANG LH, 1993, NEURON, V11, P857, DOI 10.1016/0896-6273(93)90115-8 TEICHERT J, 1992, INT J CLIN PHARM TH, V30, P511 WANG H, 1996, ASS RES OTOLARYNGOL, V19, P29 Wolz P, 1996, NEUROPHARMACOLOGY, V35, P369, DOI 10.1016/0028-3908(95)00172-7 YANG CL, 1995, RENAL FAILURE, V17, P2 NR 38 TC 61 Z9 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 40 EP 44 DI 10.1016/S0378-5955(98)00195-6 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500004 PM 10082281 ER PT J AU Teixeira, M Couloigner, V Loiseau, A Hulin, P Sterkers, O Planelles, G Ferrary, E AF Teixeira, M Couloigner, V Loiseau, A Hulin, P Sterkers, O Planelles, G Ferrary, E TI Evidence for apical K conductance and Na-K-2Cl cotransport in the endolymphatic sac of guinea pig SO HEARING RESEARCH LA English DT Article DE endolymphatic sac; K conductance; Na-K-Cl cotransport ID INNER-EAR HOMEOSTASIS; COLCHICINE PRETREATMENT; GLYCEROL AB The transepithelial potential in the endolymphatic sac (ESP) was recorded up to 60 min after apical injection of ouabain, bumetanide, quinine, barium, tetraethylammonium, and 4-aminopyridine. After control injection, ESP decreased by 74% and completely recovered at 30 min. After ouabain, barium: or quinine injection, the ESP time course was similar to that in the control group. After bumetanide, tetraethylammonium, or 4-aminopyridine injection, complete recovery was only observed at 60 min. These results suggest that apical K+ conductance and Na-K-2Cl cotransporter could be involved in the genesis of ESP. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Univ Paris 07, Fac Xavier Bichat, INSERM, U426, F-75870 Paris 18, France. Univ Paris 05, Fac Necker Enfants Malad, INSERM, U467, Paris, France. RP Ferrary, E (reprint author), Univ Paris 07, Fac Xavier Bichat, INSERM, U426, BP 416,16 Rue Henri Huchard, F-75870 Paris 18, France. CR Couloigner V, 1998, LARYNGOSCOPE, V108, P592, DOI 10.1097/00005537-199804000-00024 COULOIGNER V, IN PRESS ACTA OTOLAR FINA M, 1994, MOL CELL NEUROSCI, V5, P604, DOI 10.1006/mcne.1994.1074 HOSHIKAWA H, 1994, ACTA OTO-LARYNGOL, V114, P40, DOI 10.3109/00016489409126014 Hultcrantz M, 1997, ACTA OTO-LARYNGOL, V117, P518, DOI 10.3109/00016489709113431 KIMURA RS, 1965, PRACT-OTO-RHINO-LARY, V27, P343 LAWRENCE M, 1961, ANN OTO RHINOL LARYN, V70, P753 LUNDQUIST PG, 1976, ARCH OTO-RHINO-LARYN, V212, P231, DOI 10.1007/BF00453671 MANNI JJ, 1987, THESIS NIJMEGEN NETH MERCHANT SN, 1995, EUR ARCH OTO-RHINO-L, V252, P63 MIZUKOSHI F, 1988, ACTA OTO-LARYNGOL, V105, P202, DOI 10.3109/00016488809096999 Mori N, 1996, PFLUG ARCH EUR J PHY, V433, P58, DOI 10.1007/s004240050248 RASKANDERSEN H, 1991, ANN OTO RHINOL LARYN, V100, P148 RASKANDERSEN H, 1987, HEARING RES, V26, P177, DOI 10.1016/0378-5955(87)90110-9 RASKANDERSEN H, 1981, ANN NY ACAD SCI, V374, P11, DOI 10.1111/j.1749-6632.1981.tb30855.x Stankovic KM, 1997, HEARING RES, V114, P21, DOI 10.1016/S0378-5955(97)00072-5 TAKUMIDA M, 1989, HEARING RES, V40, P1, DOI 10.1016/0378-5955(89)90094-4 TAKUMIDA M, 1989, HEARING RES, V40, P17, DOI 10.1016/0378-5955(89)90095-6 TOMIYAMA SI, 1992, ANN OTO RHINOL LARYN, V101, P48 Tsujikawa S, 1993, Acta Otolaryngol Suppl, V500, P50 VOSTEEN KH, 1986, CONTROVERSIAL ASPECT, P16 Wu DZ, 1996, AM J PHYSIOL-CELL PH, V271, pC1765 NR 22 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 45 EP 50 DI 10.1016/S0378-5955(98)00197-X PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500005 PM 10082282 ER PT J AU Scates, KW Woods, CI Azeredo, WJ AF Scates, KW Woods, CI Azeredo, WJ TI Inferior colliculus stimulation and changes in 2f(1)-f(2) distortion product otoacoustic emissions in the rat SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emission; inferior colliculus; olivocochlear efferent ID COCHLEAR MECHANICS; 2F1-F2; PROJECTIONS; NEURONS; SYSTEMS; NUCLEI; ADULT AB The external, central and dorsal subnuclei of the inferior colliculus (ICX, ICC, ICD respectively) have different patterns of descending projections to the periolivary region. We found that electrical stimulation of these subnuclei in anesthetized rats causes suppression of 2f(1)-f(2) distortion product otoacoustic emissions (DPOAE). The responses in DPOAEs to stimulation of ICX and ICC are characterized by a large (7-25 dB), initial suppression which lasted 25-30 s (early phase) followed by a sustained smaller (3-15 dB) suppression (late phase). ICX stimulation produces the largest suppressions of DPOAEs in both contralateral and ipsilateral ears equally. Stimulation of the ICC causes large suppressions in the contralateral ear DPOAEs but much smaller than the suppressions of DPOAEs caused by ICX stimulation. Stimulation of the ICC causes a much smaller suppression in the ipsilateral ear DPOAEs than in the contralateral ear DPOAEs. ICD stimulation, however, produces little or no suppression of DPOAEs in either ear when compared to other subnuclei. No frequency-specific changes in DPOAEs were seen with stimulation of any of the subnuclei of the inferior colliculus (IC). Sectioning of middle ear muscles did not negate the suppressive effects of IC stimulation on DPOAEs. These findings verify that the IC has a subnucleus-specific influence over cochlear micromechanics. (C) 1999 Elsevier Science B.V. All rights reserved. C1 SUNY Hlth Sci Ctr, Dept Otolaryngol & Commun Sci, Syracuse, NY 13210 USA. RP Woods, CI (reprint author), SUNY Hlth Sci Ctr, Dept Otolaryngol & Commun Sci, 750 E Adams St, Syracuse, NY 13210 USA. CR AITKIN LM, 1978, J NEUROPHYSIOL, V41, P837 AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1196 CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305 DOLAN D F, 1988, Society for Neuroscience Abstracts, V14, P650 DOLAN TG, 1985, J ACOUST SOC AM, V77, P1475, DOI 10.1121/1.392042 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 Guinan Jr J.J., 1996, COCHLEA, P435 HARRIS FP, 1992, HEARING RES, V64, P133, DOI 10.1016/0378-5955(92)90175-M HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 RAJAN R, 1990, BRAIN RES, V506, P192, DOI 10.1016/0006-8993(90)91251-B REITER ER, 1995, J NEUROPHYSIOL, V73, P506 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 NR 21 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 51 EP 60 DI 10.1016/S0378-5955(98)00198-1 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500006 PM 10082283 ER PT J AU Wareing, M Mhatre, AN Pettis, R Han, JJ Haut, T Pfister, MHF Hong, K Zheng, WW Lalwani, AK AF Wareing, M Mhatre, AN Pettis, R Han, JJ Haut, T Pfister, MHF Hong, K Zheng, WW Lalwani, AK TI Cationic liposome mediated transgene expression in the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE mammalian cochlea; cationic liposome; gene therapy; transgene expression ID GENE-TRANSFER; IN-VIVO; PLASMID DNA; INVIVO; DELIVERY; THERAPY; CELLS; COMPLEXES; MICE AB Sensorineural hearing loss affects nearly 10% of the American population that is refractory to conventional therapy. Gene therapy represents an intervention with potential therapeutic efficacy. We studied the feasibility of cationic liposome mediated gene transfer within the guinea pig cochlea in vivo following direct microinjection into the cochlea. Transgene expression was persistent up to 14 days in the neurosensory epithelia and surrounding tissue without toxicity and inflammation in the target organ. This study represents the first successful use of cationic liposomes for cochlear gene transfer thus providing a safe and rapid alternative to the use of recombinant viral vectors in gene therapy for inner ear disorders. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, Epstein Labs, Lab Mol Otol, San Francisco, CA 94143 USA. Calif Pacific Med Ctr, Res Inst, Liposome Res Lab, San Francisco, CA 94115 USA. RP Lalwani, AK (reprint author), Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, Epstein Labs, Lab Mol Otol, 533 Parnassus Ave,U490A, San Francisco, CA 94143 USA. CR ALLEN TM, 1994, TRENDS PHARMACOL SCI, V15, P215, DOI 10.1016/0165-6147(94)90314-X Felgner PL, 1997, SCI AM, V276, P102 Flotte TR, 1997, PEDIATR CLIN N AM, V44, P153, DOI 10.1016/S0031-3955(05)70468-5 Gao X, 1995, GENE THER, V2, P710 Gill DR, 1997, GENE THER, V4, P199, DOI 10.1038/sj.gt.3300391 Hong KL, 1997, FEBS LETT, V400, P233, DOI 10.1016/S0014-5793(96)01397-X Hsiao M, 1997, BIOCHEM BIOPH RES CO, V233, P359, DOI 10.1006/bbrc.1997.6459 JIAO SS, 1992, EXP NEUROL, V115, P400, DOI 10.1016/0014-4886(92)90205-5 KANEDA Y, 1989, SCIENCE, V243, P375, DOI 10.1126/science.2911748 Lalwani AK, 1996, GENE THER, V3, P588 Lee RJ, 1997, CRIT REV THER DRUG, V14, P173 NABEL EG, 1990, SCIENCE, V249, P1285, DOI 10.1126/science.2119055 Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X STAVRIDIS JC, 1986, EXP CELL RES, V164, P568, DOI 10.1016/0014-4827(86)90056-X STEWART MJ, 1992, HUM GENE THER, V3, P267, DOI 10.1089/hum.1992.3.3-267 WALTHER FJ, 1993, AM J PHYSIOL, V265, pL330 ZHU N, 1993, SCIENCE, V261, P209, DOI 10.1126/science.7687073 NR 17 TC 49 Z9 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 61 EP 69 DI 10.1016/S0378-5955(98)00196-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500007 PM 10082284 ER PT J AU Saint Marie, RL Luo, L Ryan, AF AF Saint Marie, RL Luo, L Ryan, AF TI Spatial representation of frequency in the rat dorsal nucleus of the lateral lemniscus as revealed by acoustically induced c-fos mRNA expression SO HEARING RESEARCH LA English DT Article DE tonotopic; activity marker ID INFERIOR COLLICULUS; MOUSTACHE BAT; TONOTOPIC ORGANIZATION; DESCENDING PROJECTIONS; RESPONSE PROPERTIES; AUDITORY-SYSTEM; NEURONS; PATHWAY AB The conventional view, based largely an studies in cats, holds that the dorsal nucleus of the lateral lemniscus (DNLL) is tonotopically organized with a dorsal (low-frequency) to ventral (high-frequency) representation. Based on the topography of projections between the DNLL and inferior colliculus, it has been proposed that the rat DNLL has a concentric, inside-to-outside, tonotopic organization with high frequencies represented along the rind and low frequencies represented in the core. We used acoustic stimulation and c-fos mRNA expression to examine this issue, Results suggest that the rat DNLL does have a crude tonotopic organization and that this tonotopy has a concentric component. Following high-frequency stimulation, labeled neurons were found most frequently along the margins of DNLL, although they also tended to be more concentrated ventrally. Many fewer neurons labeled following middle-frequency stimulation, and these tended to be more uniformly distributed throughout the nucleus. Still fewer neurons labeled after low-frequency stimulation and these tended to be scattered mostly in the dorsal half of the nucleus. We conclude that: (i) many more neurons in the rat DNLL are responsive to high-frequency than to low-frequency acoustic stimulation: and (ii) that the frequency representation of the rat DNLL has both concentric and dorsal-to-ventral components. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 House Ear Inst, Neuroanat Dept, Los Angeles, CA 90057 USA. Univ So Calif, Sch Med, Dept Otolaryngol Head & Neck Surg, Los Angeles, CA 90033 USA. Univ Calif San Diego, Dept Surg Otolaryngol, San Diego, CA 92103 USA. Univ Calif San Diego, Dept Neurosci, San Diego, CA 92103 USA. Vet Adm Med Ctr, San Diego, CA 92093 USA. RP Saint Marie, RL (reprint author), House Ear Inst, Neuroanat Dept, 2100 W 3rd St, Los Angeles, CA 90057 USA. CR AITKIN LM, 1970, J NEUROPHYSIOL, V33, P421 CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305 COVEY E, 1993, J NEUROPHYSIOL, V69, P842 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0 LUO L, 1999, IN PRESS J COMP NEUR Malmierca MS, 1996, HEARING RES, V93, P167, DOI 10.1016/0378-5955(95)00227-8 MARKOVITZ NS, 1994, HEARING RES, V73, P121, DOI 10.1016/0378-5955(94)90290-9 MARKOVITZ NS, 1993, HEARING RES, V71, P51, DOI 10.1016/0378-5955(93)90020-2 MERCHAN MA, 1994, J COMP NEUROL, V342, P259, DOI 10.1002/cne.903420209 MORGAN JI, 1991, ANNU REV NEUROSCI, V14, P421, DOI 10.1146/annurev.ne.14.030191.002225 MORGAN JI, 1989, TRENDS NEUROSCI, V12, P459, DOI 10.1016/0166-2236(89)90096-9 PREUSS S, 1991, THESIS U TUBINGEN RYAN AF, 1982, J COMP NEUROL, V207, P369, DOI 10.1002/cne.902070408 Sagar Stephen M., 1993, V59, P273 SAINTMARIE RL, 1999, IN PRESS J COMP NEUR SHNEIDERMAN A, 1998, ASS RES OT ABSTR, V21, P94 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 YANG L, 1996, J COMP NEUROL, V373, P573 YANG LC, 1994, J NEUROPHYSIOL, V71, P1999 YANG LC, 1994, J NEUROPHYSIOL, V71, P2014 NR 21 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 70 EP 74 DI 10.1016/S0378-5955(98)00188-9 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500008 PM 10082285 ER PT J AU Mills, CD Loos, BM Henley, CM AF Mills, CD Loos, BM Henley, CM TI Increased susceptibility of male rats to kanamycin-induced cochleotoxicity SO HEARING RESEARCH LA English DT Article DE gender; sex; aminoglycoside; ototoxicity; distortion product otoacoustic emission ID OTOTOXICITY AB Although clinical observations suggest that males are more susceptible than females to ototoxic drugs, controlled experimental studies investigating gender susceptibility have not been performed. Aminoglycosides initially attack the cochlea's outer hair cells (OHCs). We investigated the effects of the aminoglycoside, kanamycin, on electrophysiological function of OHCs in male and female rats. Animals were grouped by gender and treated with kanamycin (400 mg/kg/day kanamycin base, intramuscular injection) or equivolume normal saline. Administration was continued until distortion product otoacoustic emissions (DPOAEs) suggested a loss in OHC function in kanamycin-treated rats. Males treated with kanamycin showed changes in DPOAE thresholds and amplitudes as early as treatment day 10 which spread to all test frequencies by treatment day 13. In contrast, females treated with kanamycin did not show significant changes in thresholds or amplitudes until treatment day 22. The mechanism of increased male susceptibility to kanamycin cochleotoxicity has not been determined. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Baylor Coll Med, Bobby R Alford Dept Otorhinolaryngol & Commun Sci, Houston, TX 77030 USA. RP Henley, CM (reprint author), Amgen Inc, 1 Amgen Ctr Dr, Thousand Oaks, CA 91320 USA. CR ASTBURY PJ, 1982, ARCH TOXICOL, V50, P267, DOI 10.1007/BF00310859 BARZA M, 1980, ANTIMICROB AGENTS CH, V17, P707 BENNETT WM, 1982, J INFECT DIS, V145, P370 Brown R D, 1985, Arch Toxicol Suppl, V8, P240 CARLIER E, 1980, ARCH OTO-RHINO-LARYN, V226, P129, DOI 10.1007/BF00455127 DALONZO BJ, 1983, J FAM PRACTICE, V16, P489 Hawkins Jr JE, 1976, HDB SENSORY PHYSIOLO, P707 Henley CM, 1996, HEARING RES, V99, P85, DOI 10.1016/S0378-5955(96)00094-9 HENLEY CM, 1995, BRAIN RES REV, V20, P68, DOI 10.1016/0165-0173(94)00006-B Henley CM, 1996, HEARING RES, V98, P93, DOI 10.1016/0378-5955(96)00077-9 LAUTERMANN J, 1995, HEARING RES, V86, P15, DOI 10.1016/0378-5955(95)00049-A Lenoir M, 1983, Acta Otolaryngol Suppl, V405, P1 PRIEVE BA, 1984, ACTA OTO-LARYNGOL, V98, P428, DOI 10.3109/00016488409107584 Pujol R, 1986, Acta Otolaryngol Suppl, V429, P29 NR 14 TC 16 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 75 EP 79 DI 10.1016/S0378-5955(98)00190-7 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500009 PM 10082286 ER PT J AU Kuijpers, W Peters, TA Tonnaer, ELGM AF Kuijpers, W Peters, TA Tonnaer, ELGM TI Nature of the tympanic membrane insertion into the tympanic bone of the rat SO HEARING RESEARCH LA English DT Article DE tympanic membrane; insertion; tympanic bone; myofibroblast; rat ID GRANULATION TISSUE; SMOOTH-MUSCLE; DIFFERENTIATION; CONTRACTION; PROTEINS; ACTIN AB The nature of the insertion of the tympanic membrane into the tympanic bone was studied in the rat during the developmental period ranging from 18 days post conception (dpc) to 40 days after birth (dab). Techniques applied were light microscopy, electron microscopy and immunohistochemistry with antibodies to cytoskeletal proteins: vimentin, desmin and alpha-smooth muscle actin (sma) as fibroblast differentiation markers. It was established that the cartilaginous annulus of the pars tensa was connected to the tympanic bone by an interface of specialised connective tissue. Both the fibrocartilage and the interface were derived from the embryonal mesenchyme between the tympanic ring and meatal plate. Electron microscopy showed that the interface was composed of two types of fibroblast. The majority of these cells were myofibroblasts, which were interconnected by junctions and had intimate contact with the collagenous fibres. A small number were identified as genuine fibroblasts. Cytoskeletal characterisation revealed the presence of three types of cell: V cells which expressed vimentin, VA cells which expressed vimentin and ol-sma and VAD cells which expressed vimentin, alpha-sma and desmin. The myofibroblasts expressed antigens of both smooth muscle cells (alpha-sma, desmin) and connective tissue cells (vimentin). It is suggested that the pars tensa is connected to the tympanic bone by a network of contractile cells and fibres. Contraction will move the membrane in an outward direction and antagonise the inward retraction by the tensor tympani. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Nijmegen, Dept Otorhinolaryngol, NL-6500 HB Nijmegen, Netherlands. RP Kuijpers, W (reprint author), Univ Nijmegen, Dept Otorhinolaryngol, Ph van Leydenlaan 15, NL-6500 HB Nijmegen, Netherlands. CR Franke W W, 1982, Cold Spring Harb Symp Quant Biol, V46 Pt 1, P431 GABBIANI G, 1971, EXPERIENTIA, V27, P549, DOI 10.1007/BF02147594 GABBIANI G, 1972, J EXP MED, V135, P719, DOI 10.1084/jem.135.4.719 GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F Hayward SW, 1996, ACTA ANAT, V155, P94 LIM DJ, 1970, ACTA OTO-LARYNGOL, V70, P176 Lim D J, 1968, Acta Otolaryngol, V66, P515, DOI 10.3109/00016486809126316 Lim D J, 1968, Acta Otolaryngol, V66, P181, DOI 10.3109/00016486809126286 MAJNO G, 1971, SCIENCE, V173, P548, DOI 10.1126/science.173.3996.548 OSBORN M, 1983, LAB INVEST, V48, P372 SAPPINO AP, 1990, LAB INVEST, V63, P144 SCHMITTGRAFF A, 1994, VIRCHOWS ARCH, V425, P3, DOI 10.1007/BF00193944 SKALLI O, 1986, J CELL BIOL, V103, P2787, DOI 10.1083/jcb.103.6.2787 Skalli O., 1988, MOL CELLULAR BIOL WO, P373 SKALLI O, 1989, LAB INVEST, V60, P275 TONNAER EL, 1990, J HISTOCHEM CYTOCHEM, V38, P1223 NR 16 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 80 EP 88 DI 10.1016/S0378-5955(98)00203-2 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500010 PM 10082287 ER PT J AU Goto, S Oshima, T Ikeda, K Takasaka, T AF Goto, S Oshima, T Ikeda, K Takasaka, T TI Expression and localization of the Na+-H+ exchanger in the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE Na+-H+ exchanger; cochlea; reverse transcription polymerase chain reaction; in situ hybridization; digoxigenin; guinea pig ID MOLECULAR-CLONING; GROWTH-FACTOR; INTRACELLULAR PH; HAIR-CELLS; FUNCTIONAL EXPRESSION; RETINOIC ACID; RAT COCHLEA; INNER-EAR; ANTIPORTER; GENE AB Physiological studies have shown that the Na+-H+ exchanger (NHE) is a major carrier protein regulating the intracellular pH in the cells of the cochlea. The presence of multiple forms of the exchanger has been demonstrated by the recent cloning of four mammalian NHEs, NHE-1 to NHE-4. Despite the structural similarity, these NHE isoforms differ in their tissue distribution, kinetic characteristics, and responses to external stimuli. The present study was undertaken to examine the expression and distribution of four NHE isoforms in the guinea pig cochlea. We used reverse transcription-polymerase chain reaction to assess the expression of NHE-1-4 isoforms and non-radioactive in situ hybridization to examine their localization. Although NHE-2, -3 and -4 isoform mRNAs could be detected in the cochlear tissue, the NHE-1 message was predominant. Cloned guinea pig NHE-1-4 partial cDNA fragments were highly homologous to the corresponding rat NHE isoforms. NHE-1 isoform mRNA was distributed in the hair cells. marginal cells, spiral ligament fibrocytes, spiral prominence cells and spiral ganglion cells. NHE-1 localized in a variety of cochlear cells would contribute to their differential function. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Tohoku Univ, Sch Med, Dept Otorhinolaryngol, Aoba Ku, Sendai, Miyagi 9808574, Japan. RP Ikeda, K (reprint author), Tohoku Univ, Sch Med, Dept Otorhinolaryngol, Aoba Ku, 1-1 Seiryo Machi, Sendai, Miyagi 9808574, Japan. CR ARONSON PS, 1985, ANNU REV PHYSIOL, V47, P545 BRANT SR, 1995, AM J PHYSIOL-CELL PH, V269, pC198 COLLINS JF, 1993, P NATL ACAD SCI USA, V90, P3938, DOI 10.1073/pnas.90.9.3938 Cox GA, 1997, CELL, V91, P139, DOI 10.1016/S0092-8674(01)80016-7 Deitmer JW, 1996, PROG NEUROBIOL, V48, P73, DOI 10.1016/0301-0082(95)00039-9 FRANCHI A, 1986, P NATL ACAD SCI USA, V83, P9388, DOI 10.1073/pnas.83.24.9388 GRINSTEIN S, 1992, J BIOL CHEM, V267, P23823 GRINSTEIN S, 1989, BIOCHIM BIOPHYS ACTA, V988, P73, DOI 10.1016/0304-4157(89)90004-X Hidaka H, 1996, BIOCHEM BIOPH RES CO, V220, P425, DOI 10.1006/bbrc.1996.0421 Hoogerwerf WA, 1996, AM J PHYSIOL-GASTR L, V270, pG29 IKEDA K, 1992, J PHYSIOL-LONDON, V447, P627 IKEDA K, 1994, ACTA OTO-LARYNGOL, V114, P162, DOI 10.3109/00016489409126036 KELLEY MW, 1993, DEVELOPMENT, V119, P1041 KLANKE CA, 1995, GENOMICS, V25, P615, DOI 10.1016/0888-7543(95)80002-4 KUIJPERS W, 1969, BIOCHIM BIOPHYS ACTA, V173, P477, DOI 10.1016/0005-2736(69)90012-1 LEFEBVRE PP, 1993, SCIENCE, V260, P692, DOI 10.1126/science.8480180 Ma E, 1997, NEUROSCIENCE, V79, P591, DOI 10.1016/S0306-4522(96)00674-4 MacLeod RJ, 1996, J BIOL CHEM, V271, P23138 ORLOWSKI J, 1992, J BIOL CHEM, V267, P9331 Oshima T, 1997, BIOCHEM BIOPH RES CO, V233, P737, DOI 10.1006/bbrc.1997.6533 Oshima T, 1997, HEARING RES, V103, P63, DOI 10.1016/S0378-5955(96)00164-5 REPRESA J, 1989, DEV BIOL, V134, P21, DOI 10.1016/0012-1606(89)90074-2 SARDET C, 1989, CELL, V56, P271, DOI 10.1016/0092-8674(89)90901-X SARDET C, 1990, SCIENCE, V247, P723, DOI 10.1126/science.2154036 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SUNOSE H, 1993, AM J PHYSIOL, V265, pC72 Takahashi KI, 1996, NEUROSCI RES, V24, P109, DOI 10.1016/0168-0102(95)00989-2 TOKUNAGA K, 1987, CANCER RES, V47, P5616 TSE CM, 1992, J BIOL CHEM, V267, P9340 TSE CM, 1993, J BIOL CHEM, V268, P11917 WAKABAYASHI S, 1994, J BIOL CHEM, V269, P5583 WANG Z, 1993, J BIOL CHEM, V268, P1 Wangemann P, 1996, HEARING RES, V94, P94, DOI 10.1016/0378-5955(96)00008-1 WANGEMANN P, 1993, HEARING RES, V69, P107, DOI 10.1016/0378-5955(93)90098-L WANGEMANN P, 1996, HOMEOSTATIC MECHANIS, P160 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 YUN CH, 1995, J PHYSIOL-LONDON, V482P, pS1 YUN CHC, 1995, AM J PHYSIOL-GASTR L, V269, pG1 NR 38 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 89 EP 96 DI 10.1016/S0378-5955(98)00191-9 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500011 PM 10082288 ER PT J AU Yao, WP Godfrey, DA AF Yao, WP Godfrey, DA TI Immunolocalization of alpha 4 and alpha 7 subunits of nicotinic receptor in rat cochlear nucleus SO HEARING RESEARCH LA English DT Article DE acetylcholine; acetylcholinesterase; auditory; choline acetyltransferase; cholinergic; cholinoceptive ID CENTRAL-NERVOUS-SYSTEM; ACETYLCHOLINE-RECEPTORS; MODULATION AB The rat cochlear nucleus (CN) is known to receive cholinergic input. To investigate the prevalence of nicotinic acetylcholine receptor (nAChR), immunohistochemistry for alpha 4 and alpha 7 subunits, which represent nAChRs with high binding affinities for nicotine and alpha-bungarotoxin, respectively, was performed on perfusion-fixed rat brain sections. Microscopic observations and densitometric measurements show dense labeling for alpha 7 but not alpha 4. Within the CN, alpha 7 receptors are found in all subregions, with relatively high densities in granular regions. The distribution of alpha 7 within the CN appears to correlate more closely with that of acetylcholinesterase than with mAChR or choline acetyltransferase. Our results suggest a role of nicotinic cholinergic transmission in the rat CN associated with high affinity for alpha-bungarotoxin. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Med Coll Ohio, Dept Otolaryngol Head & Neck Surg, Toledo, OH 43614 USA. RP Godfrey, DA (reprint author), Med Coll Ohio, Dept Otolaryngol Head & Neck Surg, 3065 Arlington Ave, Toledo, OH 43614 USA. EM dgodfrey@mco.edu CR ALBUQUERQUE EX, 1995, ANN NY ACAD SCI, V757, P48, DOI 10.1111/j.1749-6632.1995.tb17464.x CHEN K, 1998, IN PRESS NEUROSCIENC CHEN KJ, 1994, HEARING RES, V77, P168 CLARKE PBS, 1985, J NEUROSCI, V5, P1307 DELTORO ED, 1994, J COMP NEUROL, V349, P325, DOI 10.1002/cne.903490302 Godfrey DA, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P139, DOI 10.1007/978-1-4419-8712-9_13 Happe HK, 1998, J COMP NEUROL, V397, P163, DOI 10.1002/(SICI)1096-9861(19980727)397:2<163::AID-CNE2>3.0.CO;2-Z HUNT S, 1978, BRAIN RES, V157, P213, DOI 10.1016/0006-8993(78)90025-2 Lindstrom J, 1996, PROG BRAIN RES, V109, P125 MORLEY BJ, 1977, BRAIN RES, V134, P161, DOI 10.1016/0006-8993(77)90935-0 Mugnaini E, 1997, PROG BRAIN RES, V114, P131 Radcliffe KA, 1998, J NEUROSCI, V18, P7075 Role LW, 1996, NEURON, V16, P1077, DOI 10.1016/S0896-6273(00)80134-8 SARGENT PB, 1993, ANNU REV NEUROSCI, V16, P403, DOI 10.1146/annurev.ne.16.030193.002155 VETTER DE, 1993, NATO ADV SCI INST SE, V239, P279 WADA E, 1989, J COMP NEUROL, V284, P314, DOI 10.1002/cne.902840212 Wonnacott S, 1997, TRENDS NEUROSCI, V20, P92, DOI 10.1016/S0166-2236(96)10073-4 Yao WP, 1997, NEUROSCI LETT, V229, P21, DOI 10.1016/S0304-3940(97)00400-X YAO WP, 1995, HEARING RES, V89, P76, DOI 10.1016/0378-5955(95)00123-7 Yao WP, 1996, AUDIT NEUROSCI, V2, P241 NR 20 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 97 EP 102 DI 10.1016/S0378-5955(98)00199-3 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500012 PM 10082289 ER PT J AU Wu, R Hoshino, T Nagura, M AF Wu, R Hoshino, T Nagura, M TI Endocochlear potential in focal lesions of the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE cochlea; focal lesion; endocochlear potential; photochemical reaction; Rose Bengal; thrombus formation ID STRIA VASCULARIS; MARGINAL CELLS; THROMBOSIS; MICROCIRCULATION; INFARCTION; MECHANISMS AB To estimate the correlation between the cochlear lateral wall and endocochlear potential (EP), the EP was measured at different time intervals up to 3 weeks at cochlear focal lesions made in the guinea pig. Lesions were produced by a photochemical reaction between systemically administered Rose Bengal and green light illumination in the second cochlear turn. Focal strial lesions (mean diameter 975 mu m) became apparent under a scanning electron microscope 60 min after illumination, and degeneration of the organ of Corti was recognized at 3 days. The EP was measured continuously for 1 h following onset of the reaction in eight ears. In the other ears, EP measurements were done after various intervals of time up to 3 weeks. The EP showed two declines from pre-illumination level. The first started soon after illumination, reached a minimum value at 25 min, and then slightly recovered by 1 h. The second decline appeared at 3 days after illumination. In contrast to evident focal morphological degeneration 2 weeks post illumination, the EP values had recovered to almost normal. We suggest that the sequential changes in the EP were produced depending on the degeneration and then repairing processes of the endolymphatic boundary tissues. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Hamamatsu Univ Sch Med, Dept Otolaryngol, Hamamatsu, Shizuoka 4313192, Japan. RP Wu, R (reprint author), Hamamatsu Univ Sch Med, Dept Otolaryngol, 3600 Handa Cho, Hamamatsu, Shizuoka 4313192, Japan. CR ALFORD BR, 1965, ANN OTO RHINOL LARYN, V74, P728 CABLE J, 1994, PIGM CELL RES, V7, P17, DOI 10.1111/j.1600-0749.1994.tb00015.x CANNON MW, 1976, ELECT IMPEDANCES CUR DIETRICH WD, 1987, ACTA NEUROPATHOL, V72, P315 Foote CS, 1976, FREE RADICAL BIO MED, P85 Gao J, 1998, MICROSC RES TECHNIQ, V41, P323, DOI 10.1002/(SICI)1097-0029(19980515)41:4<323::AID-JEMT5>3.0.CO;2-R Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8 HERRMANN KS, 1983, MICROVASC RES, V26, P238, DOI 10.1016/0026-2862(83)90073-0 HU BH, 1995, HEARING RES, V89, P69, DOI 10.1016/0378-5955(95)00122-5 IGARASHI M, 1969, LARYNGOSCOPE, V79, P603, DOI 10.1288/00005537-196904000-00005 Iwasaki S, 1997, HEARING RES, V108, P55, DOI 10.1016/S0378-5955(97)00045-2 Jahnke K, 1975, Acta Otolaryngol Suppl, V336, P1 KERR TP, 1982, AM J OTOLARYNG, V3, P332, DOI 10.1016/S0196-0709(82)80006-9 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KIMURA RS, 1986, AM J OTOLARYNG, V7, P130, DOI 10.1016/S0196-0709(86)80042-4 KOBAYASHI T, 1993, ACTA OTO-LARYNGOL, V113, P507, DOI 10.3109/00016489309135854 KUSAKARI J, 1978, ACTA OTO-LARYNGOL, V86, P336, DOI 10.3109/00016487809107512 Miyashita H, 1998, MICROSC RES TECHNIQ, V41, P334 NANDA SK, 1987, ARCH OPHTHALMOL-CHIC, V105, P1121 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 PAULER M, 1988, LARYNGOSCOPE, V98, P754 PERLMAN H B, 1959, Laryngoscope, V69, P591 Salt AN, 1997, HEARING RES, V107, P29, DOI 10.1016/S0378-5955(97)00018-X SALT AN, 1987, LARYNGOSCOPE, V97, P984 SELLICK P M, 1975, Progress in Neurobiology (Oxford), V5, P337, DOI 10.1016/0301-0082(75)90015-5 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SUGA F, 1970, ARCHIV OTOLARYNGOL, V92, P213 SUGA F, 1964, ANN OTO RHINOL LARYN, V73, P924 UMEMURA K, 1990, EUR ARCH OTO-RHINO-L, V248, P105 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WATSON BD, 1985, ANN NEUROL, V17, P497, DOI 10.1002/ana.410170513 WU R, 1997, IN PRESS SCAN MICROS NR 33 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 103 EP 111 DI 10.1016/S0378-5955(98)00204-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500013 PM 10082290 ER PT J AU Sha, SH Schacht, J AF Sha, SH Schacht, J TI Stimulation of free radical formation by aminoglycoside antibiotics SO HEARING RESEARCH LA English DT Article DE gentamicin; kanamycin; neomycin; streptomycin; reactive oxygen species; Epstein-Barr virus cell; neutrophil; ototoxicity ID PIG IN-VIVO; OXYGEN-FREE RADICALS; INNER-EAR TISSUES; GUINEA-PIG; GENTAMICIN OTOTOXICITY; SUPEROXIDE PRODUCTION; CHEMI-LUMINESCENCE; RESPIRATORY BURST; IRON CHELATORS; HAIR-CELLS AB We have previously shown gentamicin to form a redox-active iron chelate. This study investigates whether other aminoglycosides can likewise stimulate the generation of reactive oxygen species (free radicals). Kanamycin, neomycin and streptomycin were compared to gentamicin in intact cells and in cell-free in vitro assays using luminescence detection with lucigenin or luminol. Neutrophils and Epstein-Barr virus-transformed lymphoblastoid cells served as cell models in which a respiratory burst of superoxide was induced by phorbol ester. The addition of millimolar amounts of any of the aminoglycosides increased the luminescence significantly. The drugs also increased the formation of free radicals in an enzymatic (hypoxanthine-xanthine oxidase) and a non-enzymatic (phenazine methosulfate-NADH) superoxide-generating system. Half-maximal stimulation was reached with 0.4 mM gentamicin, and there was an absolute requirement for an electron donor, arachidonic acid. In both intact cells and cell-free systems, gentamicin-enhanced luminosity was suppressed by iron chelators. These results demonstrate that different aminoglycoside antibiotics can stimulate the formation of free radicals in biological and in cell-free systems. Luminescence detection is a convenient assay method to investigate the redox properties of these drugs. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Schacht, J (reprint author), Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. CR BOCK GR, 1983, HEARING RES, V9, P255, DOI 10.1016/0378-5955(83)90030-8 CHANOCK SJ, 1994, J BIOL CHEM, V269, P24519 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Conlon BJ, 1998, LARYNGOSCOPE, V108, P284, DOI 10.1097/00005537-199802000-00023 CRANN SA, 1992, BIOCHEM PHARMACOL, V43, P1835, DOI 10.1016/0006-2952(92)90718-X DULON D, 1986, ANTIMICROB AGENTS CH, V30, P96 FANTONE JC, 1985, HUM PATHOL, V16, P973 FEDERSPIL P, 1979, ANTIBIOTIKASCHADEN O, P86 GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 GUTTERIDGE JMC, 1987, FEBS LETT, V214, P362, DOI 10.1016/0014-5793(87)80088-1 GYLLENHAMMAR H, 1987, J IMMUNOL METHODS, V97, P209, DOI 10.1016/0022-1759(87)90461-3 HENNEBERT PE, 1951, ANN OTOLARYNGOLPARIS, V68, P507 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 HUANG MY, 1990, BIOCHEM PHARMACOL, V40, P11 HUY PTB, 1986, J CLIN INVEST, V77, P1492 KELLER H, 1956, ARZNEIMITTEL-FORSCH, V6, P379 Li YB, 1998, J BIOL CHEM, V273, P2015, DOI 10.1074/jbc.273.4.2015 Liochev SI, 1997, ARCH BIOCHEM BIOPHYS, V337, P115, DOI 10.1006/abbi.1997.9766 LODHI S, 1980, BIOCHEM PHARMACOL, V29, P597, DOI 10.1016/0006-2952(80)90382-2 NAKAJIMA T, 1994, AM J PHYSIOL, V266, pF425 PIERSON MG, 1981, HEARING RES, V4, P79, DOI 10.1016/0378-5955(81)90037-X PORTER CD, 1992, J IMMUNOL METHODS, V155, P151, DOI 10.1016/0022-1759(92)90281-W PREZANT TR, 1992, AM J MED GENET, V44, P465, DOI 10.1002/ajmg.1320440416 Priuska EM, 1998, INORG CHIM ACTA, V273, P85, DOI 10.1016/S0020-1693(97)05942-2 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 RAMSAMMY LS, 1987, BIOCHEM PHARMACOL, V36, P2125, DOI 10.1016/0006-2952(87)90140-7 RAO UM, 1989, FREE RADICAL BIO MED, V7, P513 SCHACHT J, 1979, ARCH OTO-RHINO-LARYN, V224, P129, DOI 10.1007/BF00455236 SHA SH, 1998, IN PRESS FREE RADICA Song BB, 1997, J PHARMACOL EXP THER, V282, P369 Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 STRATTA P, 1994, RENAL FAILURE, V16, P445, DOI 10.3109/08860229409045076 Walker P. D., 1987, AM J PHYSIOL, V253, P495 WALKER PD, 1988, J CLIN INVEST, V81, P334, DOI 10.1172/JCI113325 WANG BM, 1984, BIOCHEM PHARMACOL, V33, P3257, DOI 10.1016/0006-2952(84)90087-X WARD PA, 1983, J CLIN INVEST, V72, P789, DOI 10.1172/JCI111050 WYMANN MP, 1987, ANAL BIOCHEM, V165, P371, DOI 10.1016/0003-2697(87)90284-3 YANG CL, 1995, RENAL FAILURE, V17, P21, DOI 10.3109/08860229509036371 NR 40 TC 99 Z9 105 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 112 EP 118 DI 10.1016/S0378-5955(98)00200-7 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500014 PM 10082291 ER PT J AU Harada, T Tokuriki, M Tanioka, Y AF Harada, T Tokuriki, M Tanioka, Y TI Age-related changes in the brainstem auditory evoked potentials of the marmoset SO HEARING RESEARCH LA English DT Article DE brain-stem auditory evoked potential; marmoset; aging; stimulus frequency; tone burst stimulation ID STEM RESPONSE; COMMON MARMOSET; CALLITHRIX-JACCHUS; HEARING-LOSS; STIMULUS-INTENSITY; MONKEY; PRESBYCUSIS; FREQUENCY; KETAMINE; MULATTA AB Changes in brain-stem auditory evoked potentials (BAEPs) with age were recorded in common marmosets (Callithrix jacchus) at the age of 1-2, 6-8 and 10-12 years. The auditory function was assessed by thresholds, latencies and amplitudes of BAEPs evoked by use of tone burst stimulations with audible frequencies ranging from 1 to 99 kHz. Prolongation of the latencies of later waves was observed in the animals at the age of 6-8 and 10-12 years at high frequencies, suggesting that aging in marmosets, as reported previously in humans and other animals, may cause earlier hearing loss at high frequency than at low frequency within the hearing range. At 10-12 years of age, the elevations of BAEP thresholds and the declines of BAEP amplitudes in older animals were also observed. As the differences in the parameters are small, it was suggested that only a moderate hearing loss occurred with onset late in life in common marmoset similar to that in CBA/Ca mice. Based on the results obtained in this study, BAEP latencies appear to be more sensitive indicators than BAEP thresholds and amplitudes for the early detection of hearing impairment. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Yamaguchi Univ, Fac Agr, Dept Vet Med, Yamaguchi 7538581, Japan. Cent Inst Expt Anim, Miyamae Ku, Kanagawa 2160001, Japan. RP Harada, T (reprint author), Mochida Pharmaceut, Fuji Cent Res Lab, Div Toxicol, 342 Gensuke, Shizuoka 4268640, Japan. CR ALLEN AR, 1978, ELECTROEN CLIN NEURO, V45, P53, DOI 10.1016/0013-4694(78)90341-3 Beagley H A, 1978, Br J Audiol, V12, P69, DOI 10.3109/03005367809078858 BOETTCHER FA, 1993, HEARING RES, V71, P146, DOI 10.1016/0378-5955(93)90030-5 CAMPBELL DG, 1993, HEARING RES, V70, P127, DOI 10.1016/0378-5955(93)90057-8 CHURCH MW, 1987, BRAIN RES, V403, P72, DOI 10.1016/0006-8993(87)90124-7 CHURCH MW, 1987, ELECTROEN CLIN NEURO, V67, P570, DOI 10.1016/0013-4694(87)90060-5 CHURCH MW, 1993, EAR HEARING, V14, P249, DOI 10.1097/00003446-199308000-00004 ConeWesson BK, 1997, HEARING RES, V105, P119, DOI 10.1016/S0378-5955(96)00199-2 COOPER WA, 1990, HEARING RES, V43, P171, DOI 10.1016/0378-5955(90)90226-F CROOK D, 1990, ARTERIOSCLEROSIS, V10, P633 DOYLE WJ, 1983, ELECTROEN CLIN NEURO, V56, P210, DOI 10.1016/0013-4694(83)90075-5 Fausti S A, 1992, J Am Acad Audiol, V3, P397 FELDMAN ML, 1991, ASS RES OT ABSTR, V14, P27 FULLERTON BC, 1987, ELECTROEN CLIN NEURO, V66, P547, DOI 10.1016/0013-4694(87)90102-7 FUNAI H, 1983, AUDIOLOGY, V22, P9 Harada T, 1997, EVOKED POTENTIAL, V104, P43, DOI 10.1016/S0168-5597(96)96015-3 HARRISON J, 1982, NEUROBIOL AGING, V3, P163, DOI 10.1016/0197-4580(82)90036-7 Havenaar R., 1993, PRINCIPLES LAB ANIMA, P17 HENRY KR, 1985, AUDIOLOGY, V24, P92 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 KAMADA T, 1991, J MED PRIMATOL, V20, P284 KUZEL RA, 1990, J PHARMACOL METHOD, V24, P9, DOI 10.1016/0160-5402(90)90045-M LEGATT AD, 1986, ELECTROEN CLIN NEURO, V64, P41, DOI 10.1016/0013-4694(86)90042-8 LEV A, 1972, ARCH KLIN EXP OHR, V201, P79, DOI 10.1007/BF00341066 Li H S, 1992, Scand Audiol Suppl, V36, P1 MARTINI A, 1991, ACTA OTOLARYNGOL S, V476, P97 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 MOLLER AR, 1986, ELECTROEN CLIN NEURO, V65, P361, DOI 10.1016/0168-5597(86)90015-8 Oku T, 1997, ORL J OTO-RHINO-LARY, V59, P141 ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0 OTTAVIANI F, 1991, ACTA OTOLARYNGOL S S, V476, P110 OWEN K, 1994, HUM EXP TOXICOL, V13, P357 Parham K, 1997, HEARING RES, V112, P216, DOI 10.1016/S0378-5955(97)00124-X PINEDA JA, 1989, ELECTROEN CLIN NEURO, V73, P532, DOI 10.1016/0013-4694(89)90262-9 ROSENHALL U, 1986, SCAND AUDIOL, V15, P179, DOI 10.3109/01050398609042141 SAITOH Y, 1994, HEARING RES, V75, P27, DOI 10.1016/0378-5955(94)90052-3 SIMPSON GV, 1985, BRAIN RES, V348, P28, DOI 10.1016/0006-8993(85)90355-5 TOKURIKI M, 1990, AM J VET RES, V51, P97 TORIMOTO Y, 1991, J IMMUNOL, V146, P2176 Warfield D., 1973, Methods of animal experimentation, volume IV,, P43 Willott J. F., 1991, AGING AUDITORY SYSTE YAMANOUCHI K, 1985, JPN J CANCER RES, V76, P481 NR 42 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 119 EP 124 DI 10.1016/S0378-5955(98)00201-9 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500015 PM 10082292 ER PT J AU Hu, BH McFadden, SL Salvi, RJ Henderson, D AF Hu, BH McFadden, SL Salvi, RJ Henderson, D TI Intracochlear infusion of buthionine sulfoximine potentiates carboplatin ototoxicity in the chinchilla SO HEARING RESEARCH LA English DT Article DE antioxidant; chemotherapeutic drug; cochlea; hearing loss; hair cell; platinum ID CARCINOMA CELL-LINES; PRODUCT OTOACOUSTIC EMISSIONS; CISPLATIN OTOTOXICITY; GLUTATHIONE DEPLETION; LIPID-PEROXIDATION; ANTIOXIDANT SYSTEM; BRAIN GLUTATHIONE; PLATINUM DRUGS; HEARING-LOSS; LUNG-CANCER AB The aim of this experiment was to determine if buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, enhances the ototoxicity of carboplatin. Osmotic pumps were used to infuse BSO into the right cochleas of 12 adult chinchillas for 14 days. The left cochleas served as controls. Animals were assigned to three groups: a drug control group that did not receive carboplatin, a group that received a single dose of carboplatin (25 mg/kg i.p.), and a group that received a double dose of carboplatin (25 mg/kg i.p. x2), with 4 days between injections. Carboplatin was administered after three days of BSO pre-treatment. Ototoxicity was assessed with evoked potentials recorded From electrodes implanted in the inferior colliculi (ICPs), distortion product otoacoustic emissions (DPOAEs), and cochleograms. BSO infusion itself caused no long-term functional or morphological changes. One of four animals treated with a single dose of carboplatin showed a significant loss of inner hair cells (IHCs), with greater loss in the BSO-treated ear. All animals in the double-dose carboplatin group showed marked differences between BSO-treated and control ears. Average IHC losses were 59% in BSO-treated ears vs. 18% in control ears. Moreover, BSO-treated ears sustained significantly greater outer hair cell (OHC) losses than control ears (37% vs. 2%, respectively). ICP and DPOAE response amplitudes were reduced slightly in BSO-treated ears relative to control ears, consistent with their greater hair cell loss. The results clearly show that BSO can enhance carboplatin ototoxicity in the chinchilla, supporting a role of GSH and reactive oxygen species in platinum ototoxicity. (C) 1999 Elsevier Science B.V. All rights reserved. C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP McFadden, SL (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 215 Parker Hall, Buffalo, NY 14214 USA. EM hubohua@plagh.com.cn; mcfadden@acsu.buffalo.edu CR AHN HJ, 1994, J UROLOGY, V151, P263 ARRICK BA, 1984, CANCER RES, V44, P4224 BABU E, 1995, MOL CELL BIOCHEM, V144, P7, DOI 10.1007/BF00926734 BONOMI P, 1991, SEMIN ONCOL, V18, P2 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T Burkard R, 1997, J ACOUST SOC AM, V102, P3620, DOI 10.1121/1.420149 CANETTA R, 1985, CANCER TREAT REV, V12, P125, DOI 10.1016/0305-7372(85)90027-1 DEGRAEFF A, 1988, CANCER CHEMOTH PHARM, V22, P325 EASTMAN A, 1987, BIOCHEM PHARMACOL, V36, P4177, DOI 10.1016/0006-2952(87)90581-8 FERGUSON PJ, 1995, J OTOLARYNGOL, V24, P242 Freilich RJ, 1996, MED PEDIATR ONCOL, V26, P95 HOFFMAN DW, 1988, ANN OTO RHINOL LARYN, V97, P36 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Hofstetter P, 1997, AUDIOLOGY, V36, P301 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Jock BM, 1996, HEARING RES, V96, P179, DOI 10.1016/0378-5955(96)00058-5 KERA Y, 1989, ALCOHOL ALCOHOLISM, V24, P519 KISARA S, 1995, RES COMMUN MOL PATH, V89, P401 LAI GM, 1989, J NATL CANCER I, V81, P535, DOI 10.1093/jnci/81.7.535 LAZENBY CM, 1988, BIOCHEM PHARMACOL, V37, P3743, DOI 10.1016/0006-2952(88)90409-1 LEE FYF, 1987, BRIT J CANCER, V56, P33, DOI 10.1038/bjc.1987.148 Lee Kyung Shik, 1992, Korean Journal of Internal Medicine (English Edition), V7, P111 LUTHEN RE, 1994, INT J PANCREATOL, V16, P31 MACDONALD MR, 1994, J OTOLARYNGOL, V23, P151 McFadden SL, 1998, HEARING RES, V120, P121, DOI 10.1016/S0378-5955(98)00052-5 MCGINNESS JE, 1978, PHYSIOL CHEM PHYS M, V10, P267 MCKEAGE MJ, 1995, DRUG SAFETY, V13, P228 MEIJER C, 1992, CANCER RES, V52, P6885 MEIJER C, 1990, BRIT J CANCER, V62, P72, DOI 10.1038/bjc.1990.232 MELLISH KJ, 1993, BRIT J CANCER, V68, P240, DOI 10.1038/bjc.1993.322 MISTRY P, 1993, INT J CANCER, V55, P848, DOI 10.1002/ijc.2910550526 MISTRY P, 1991, BRIT J CANCER, V64, P215, DOI 10.1038/bjc.1991.279 MITCHELL JB, 1989, INT J RADIAT ONCOL, V16, P1289 MIZUI T, 1992, AM J PHYSIOL, V262, pH313 MORALES CF, 1994, AM J RESP CRIT CARE, V149, P915 PILEBLAD E, 1989, J NEUROCHEM, V53, P1878, DOI 10.1111/j.1471-4159.1989.tb09256.x RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 RUCKDESCHEL JC, 1994, SEMIN ONCOL, V21, P114 RUSSO A, 1986, INT J RADIAT ONCOL, V12, P1347 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 Salvi RJ, 1998, INT TINNITUS J, V4, P11 SCHINDLER RA, 1995, AM J OTOL, V16, P304 SCHWEITZER VG, 1986, OTOLARYNG HEAD NECK, V94, P458 SINGH SV, 1995, INT J CANCER, V61, P431, DOI 10.1002/ijc.2910610326 SNYDER DL, 1994, LAB ANIMAL, V23, P42 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 TAUDY M, 1992, AUDIOLOGY, V31, P293 THANISLASS J, 1995, BIOCHEM PHARMACOL, V50, P229, DOI 10.1016/0006-2952(95)00123-H TONETTI M, 1993, BIOCHEM PHARMACOL, V46, P1377, DOI 10.1016/0006-2952(93)90102-3 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WAKE M, 1994, LARYNGOSCOPE, V104, P488 WALKER EM, 1981, ANN CLIN LAB SCI, V11, P397 WEISS RB, 1993, DRUGS, V46, P360, DOI 10.2165/00003495-199346030-00003 NR 55 TC 18 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 125 EP 134 DI 10.1016/S0378-5955(98)00210-X PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500016 PM 10082293 ER PT J AU Fujimura, T Furukawa, H Doi, Y Makishima, K Fujimoto, S AF Fujimura, T Furukawa, H Doi, Y Makishima, K Fujimoto, S TI Immunoreactivity of endothelins and endothelin receptor in the stria vascularis of the mouse cochlea SO HEARING RESEARCH LA English DT Article DE endothelin; endothelin receptor type A; Na,K-ATPase; intermediate cell; lysosome; stria vascularis ID C-DEPENDENT PATHWAY; NA+-K+-ATPASE; INNER-EAR; B RECEPTOR; MELANOCYTES; CELLS; MICE; LOCALIZATION; ABNORMALITIES; EXPRESSION AB Immunoreactivities of endothelin-1, endothelin-3, endothelin receptor type A, and Na,K-ATPase were investigated in the stria vascularis of adult male WBB6F(1) +/+ mice and in that of W/W-v mutants lacking strial intermediate cells. In the +/+ mice, electron microscopic immunoreactivity for the endothelins was seen on the rough endoplasmic reticulum, Golgi apparatus, cytoplasmic vesicles and lysosomes exclusively in the strial intermediate cells by the postembedment method. Immunoreactive endothelin receptor A was localized along the plasma membrane of strial marginal cells of both wild and mutant types although the immunoreactivity of the latter was much less than that of the former by the preembedment method. These findings suggest that the endothelins, which are produced in the strial intermediate cells, may play a role in the maintenance of the stria vascularis function in the +/+ mice. Since the plasma membrane of the marginal cells of the W/W-v mice, which do not generate a high positive endocochlear potential, also showed immunoreactivity for Na,K-ATPase, it seems likely that the endothelins are involved in the activation of sodium pump of the strial marginal cells by mediation of endothelin receptor A. In addition, the role of lysosomes in the crinophagy of the endothelins in the strial intermediate cells is proposed in the +/+ mice. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Occupat & Environm Hlth, Sch Med, Dept Anat, Kitakyushu, Fukuoka 8078555, Japan. Univ Occupat & Environm Hlth, Sch Med, Dept Otorhinolaryngol, Kitakyushu, Fukuoka 8078555, Japan. Univ Occupat & Environm Hlth, Sch Hlth Sci, Dept Clin Pathol, Kitakyushu, Fukuoka 8078555, Japan. RP Fujimura, T (reprint author), Univ Occupat & Environm Hlth, Sch Med, Dept Anat, Kitakyushu, Fukuoka 8078555, Japan. CR ARAI H, 1990, NATURE, V348, P730, DOI 10.1038/348730a0 BAYNASH AG, 1994, CELL, V79, P1277, DOI 10.1016/0092-8674(94)90018-3 BOSHER SK, 1971, J PHYSIOL-LONDON, V212, P739 CABLE J, 1992, HEARING RES, V64, P6, DOI 10.1016/0378-5955(92)90164-I Franz P, 1997, ACTA OTO-LARYNGOL, V117, P358, DOI 10.3109/00016489709113407 GUPTA S, 1991, AM J PHYSIOL, V261, pH38 Hamasaki Kunshige, 1993, Medical Electron Microscopy, V26, P133, DOI 10.1007/BF02348039 HARRISON VJ, 1995, P NATL ACAD SCI USA, V92, P6344, DOI 10.1073/pnas.92.14.6344 HILDING DA, 1977, ACTA OTO-LARYNGOL, V84, P24, DOI 10.3109/00016487709123939 HOSODA K, 1994, CELL, V79, P1267, DOI 10.1016/0092-8674(94)90017-5 INOUE A, 1989, P NATL ACAD SCI USA, V86, P2863, DOI 10.1073/pnas.86.8.2863 Jinnouchi K, 1997, ACTA OTO-LARYNGOL, V117, P41, DOI 10.3109/00016489709117989 KAWAI N, 1995, J NEUROCHEM, V65, P1588 KURIHARA Y, 1994, NATURE, V368, P703, DOI 10.1038/368703a0 LEWIS PR, 1988, PRACTICAL METHODS EL MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077 NAKAMURA S, 1990, HISTOCHEMISTRY, V94, P475, DOI 10.1007/BF00272609 Nariuchi H, 1994, Acta Otolaryngol Suppl, V514, P127 Sakaguchi N, 1997, HEARING RES, V109, P83, DOI 10.1016/S0378-5955(97)00048-8 SAKURAI T, 1990, NATURE, V348, P732, DOI 10.1038/348732a0 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHROTT A, 1990, HEARING RES, V46, P1, DOI 10.1016/0378-5955(90)90134-B SCHROTT A, 1987, ACTA OTO-LARYNGOL, V103, P451 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 SMITH RE, 1966, J CELL BIOL, V31, P319, DOI 10.1083/jcb.31.2.319 SONE M, 1995, HEARING RES, V83, P26, DOI 10.1016/0378-5955(94)00189-W STEEL KP, 1987, HEARING RES, V27, P11, DOI 10.1016/0378-5955(87)90022-0 STEEL KP, 1989, DEVELOPMENT, V107, P453 UEDA H, 1992, ANAT REC, V232, P257, DOI 10.1002/ar.1092320210 YANAGISAWA M, 1988, NATURE, V332, P411, DOI 10.1038/332411a0 ZEIDEL ML, 1989, AM J PHYSIOL, V257, pC1101 NR 31 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 135 EP 146 DI 10.1016/S0378-5955(98)00206-8 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500017 PM 10082294 ER PT J AU Hardie, NA Shepherd, RK AF Hardie, NA Shepherd, RK TI Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem SO HEARING RESEARCH LA English DT Article DE afferent deprivation; aminoglycoside; auditory system; cochlear implant; cochlear nucleus; neonatal deafness ID INTRACOCHLEAR ELECTRICAL-STIMULATION; NEONATALLY DEAFENED CATS; SPIRAL GANGLION-CELLS; INFERIOR COLLICULUS; STEM RESPONSE; ETHACRYNIC-ACID; AFFERENT INFLUENCES; NERVE SURVIVAL; NUCLEUS; NEURONS AB We have investigated the effects of sensorineural hearing loss on the cochlea and central auditory system of profoundly deafened cats. Seventeen adult cats were used: four had normal hearing; 12 were deafened neonatally for periods of <2.5 years (five bilaterally, seven unilaterally); and one animal had a long-term (similar to 8 years) profound bilateral hearing loss. Bipolar scala tympani stimulating electrodes were bilaterally implanted in each animal, and electrically evoked auditory brainstem responses (EABRs) were recorded in an acute study to evaluate the basic physiologic response properties of the deafened auditory pathway. The cochleae and cochlear nuclei (CN) of each animal were examined with light microscopy. Spiral ganglion cell density in neonatally deafened cochleae was 17% of normal, and only 1.5% of normal in the long-term deaf animal. There was a 46% reduction in total CN volume in neonatally deafened animals compared to normal, and a 60% reduction in the long-term deaf animal. Neural density in the anteroventral CN of bilaterally deafened animals was 37% higher than normal; 44% higher in the long-term deaf animal. Significantly, however, we saw no evidence of a loss of neurones within the anteroventral CN in any deafened animal. There was a significant increase in EABR threshold and wave IV latency in the deafened animals, and a significant decrease in response amplitude and input/output function gradient. Again, these changes were more extensive in the long-term deaf animal. These data show that a sensorineural hearing loss can evoke significant morphological and physiological changes within the cochlea and auditory brainstem, and these changes become greater with duration of deafness. It remains to be seen whether these changes can be reversed following the introduction of afferent activity via chronic electrical stimulation of the auditory nerve. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, Parkville, Vic 3052, Australia. RP Shepherd, RK (reprint author), Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, 2nd Floor,32 Gisborne St, E Melbourne, Vic 3002, Australia. EM r.shepherd@metdoto.unimelb.edu.au RI Shepherd, Robert/I-6276-2012 CR ANNIKO M, 1989, ARCH OTO-RHINO-LARYN, V246, P43, DOI 10.1007/BF00454133 Berman A.L., 1968, BRAIN STEM CAT CYTOA Black R C, 1983, Acta Otolaryngol Suppl, V399, P5 Blamey P, 1996, Audiol Neurootol, V1, P293 BOSTOCK H, 1983, J PHYSIOL-LONDON, V341, P41 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 BUSBY P A, 1991, British Journal of Audiology, V25, P291, DOI 10.3109/03005369109076601 BUSBY PA, 1992, AUDIOLOGY, V31, P95 CHOUARD CH, 1983, ACTA OTO-LARYNGOL, V95, P639, DOI 10.3109/00016488309139456 Coggeshall RE, 1996, J COMP NEUROL, V364, P6, DOI 10.1002/(SICI)1096-9861(19960101)364:1<6::AID-CNE2>3.0.CO;2-9 DURHAM D, 1989, HEARING RES, V43, P39, DOI 10.1016/0378-5955(89)90057-9 Eggermont J.J., 1986, ACTA OTOLARYNGOL S, V429, P1 Felix H, 1985, Acta Otolaryngol Suppl, V423, P67 FRIJNS JHM, 1995, THESIS U LEIDEN LEID HALL RD, 1990, HEARING RES, V45, P123, DOI 10.1016/0378-5955(90)90188-U HARDIE NA, 1997, P AUST NEUROSCI SOC, V8, P166 HARDIE NA, 1997, 1997 C IMPL AUD PROS, P112 Hardie NA, 1998, CLIN EXP PHARMACOL P, V25, P303, DOI 10.1111/j.1440-1681.1998.tb02356.x Hardie NA, 1998, NEUROREPORT, V9, P2019, DOI 10.1097/00001756-199806220-00020 Hartmann R, 1997, HEARING RES, V112, P115, DOI 10.1016/S0378-5955(97)00114-7 HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402 HAYASHIDA T, 1989, ACTA OTO-LARYNGOL, V108, P404, DOI 10.3109/00016488909125546 Heid S, 1998, HEARING RES, V115, P101, DOI 10.1016/S0378-5955(97)00182-2 HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G HULTCRANTZ M, 1991, HEARING RES, V54, P272, DOI 10.1016/0378-5955(91)90121-O HYSON RL, 1989, J NEUROSCI, V9, P2835 Javel E., 1986, NEUROBIOLOGY HEARING, P213 JEWETT DL, 1972, BRAIN RES, V36, P101, DOI 10.1016/0006-8993(72)90769-X KIANG NYS, 1975, J COMP NEUROL, V162, P221, DOI 10.1002/cne.901620205 KITZES LM, 1985, J NEUROPHYSIOL, V53, P1483 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 Kotak VC, 1997, EUR J NEUROSCI, V9, P2340, DOI 10.1111/j.1460-9568.1997.tb01651.x LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 LEAKE PA, 1992, HEARING RES, V64, P99, DOI 10.1016/0378-5955(92)90172-J LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X Leake PA, 1997, HEARING RES, V113, P117, DOI 10.1016/S0378-5955(97)00133-0 LEAKE PA, 1995, HEARING RES, V82, P65 Liu XG, 1997, HEARING RES, V114, P264, DOI 10.1016/S0378-5955(97)00170-6 LUSTIG LR, 1994, HEARING RES, V74, P29, DOI 10.1016/0378-5955(94)90173-2 MAIR IWS, 1973, ACTA OTOLARYNGOL S, V314, P36 MATSUSHIMA JI, 1991, HEARING RES, V56, P133, DOI 10.1016/0378-5955(91)90162-3 Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 Melcher JR, 1996, HEARING RES, V93, P28, DOI 10.1016/0378-5955(95)00179-4 MILLER CA, 1994, HEARING RES, V78, P11, DOI 10.1016/0378-5955(94)90039-6 MILLER JM, 1983, ANN OTO RHINOL LARYN, V92, P599 Rogers NJ, 1998, ANN OTO RHINOL LARYN, V107, P337 MOORE DR, 1990, DEV BRAIN RES, V54, P125, DOI 10.1016/0165-3806(90)90072-7 MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412 MOORE DR, 1989, J NEUROSCI, V9, P1213 MOORE DR, 1988, J COMP NEUROL, V272, P503, DOI 10.1002/cne.902720405 MOXON EL, 1971, THESIS CAMBRIDGE MA NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 National Institutes of Health, 1995, NIH CONSENSUS STATE, V13, P1 NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403 POWELL TPS, 1962, J ANAT, V96, P249 REALE RA, 1987, DEV BRAIN RES, V34, P281, DOI 10.1016/0165-3806(87)90215-X ROMAND R, 1984, EXP BRAIN RES, V56, P395 Saada AA, 1996, BRAIN RES, V736, P315, DOI 10.1016/0006-8993(96)00719-6 SCHWARTZ DR, 1993, HEARING RES, V70, P243, DOI 10.1016/0378-5955(93)90162-T SELDON HL, 1991, ARCH OTOLARYNGOL, V117, P1158 SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd R K, 1983, Acta Otolaryngol Suppl, V399, P19 Shepherd RK, 1995, HEARING RES, V92, P131, DOI 10.1016/0378-5955(95)00211-1 SHEPHERD RK, 1991, ACTA OTO-LARYNGOL, V111, P848, DOI 10.3109/00016489109138421 SHEPHERD RK, 1985, HEARING RES, V18, P105, DOI 10.1016/0378-5955(85)90001-2 SIMMONS FB, 1979, ANN OTO RHINOL LARYN, V88, P533 SMITH L, 1983, ANN OTO RHINOL LARYN, V92, P19 SNYDER R, 1995, J NEUROPHYSIOL, V73, P449 SNYDER RL, 1991, HEARING RES, V56, P246, DOI 10.1016/0378-5955(91)90175-9 SPOENDLI.H, 1971, ARCH KLIN EXP OHR, V200, P275, DOI 10.1007/BF00373310 STEWARD O, 1985, J COMP NEUROL, V231, P385, DOI 10.1002/cne.902310308 STYPULKOWSKI PH, 1986, OTOLARYNG CLIN N AM, V19, P249 SUTTON D, 1983, ANN OTO RHINOL LARYN, V92, P53 TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410 TUCCI DL, 1985, J COMP NEUROL, V238, P371, DOI 10.1002/cne.902380402 VANDENHONERT C, 1986, HEARING RES, V21, P109, DOI 10.1016/0378-5955(86)90033-X WALSH EJ, 1986, NEUROBIOLOGY HEARING, P247 WONGRILEY MTT, 1978, BRAIN RES, V141, P185, DOI 10.1016/0006-8993(78)90629-7 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X YLIKOSKI J, 1978, ARCH OTOLARYNGOL, V104, P202 ZHOU RZ, 1995, HEARING RES, V88, P98, DOI 10.1016/0378-5955(95)00105-D NR 85 TC 105 Z9 108 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 147 EP 165 DI 10.1016/S0378-5955(98)00209-3 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500018 PM 10082295 ER PT J AU Chan, E Ulfendahl, M AF Chan, E Ulfendahl, M TI Mechanically evoked shortening of outer hair cells isolated from the guinea pig organ of Corti SO HEARING RESEARCH LA English DT Article DE auditory; cochlea; direct current; inner ear; low frequency; mechanical; modulation; outer hair cell ID RESPONSES; COCHLEA; INTELLIGIBILITY; STIMULATION; MOTILITY; CHANNELS; MASKING; NOISE AB Outer hair cells isolated from the mammalian hearing organ have been shown to respond to mechanical stimuli at acoustic frequencies by expressing a change in cell length (e.g. Canlon et al., 1988). The acoustically evoked response is characterised by both a tonic length change following the envelope of the stimulus, and a frequency-dependent phasic component. We show here that mechanical stimulation at much lower frequencies directed at the cell body also elicits length changes of the outer hair cells. When the apical pole of isolated outer hair cells was compressed with a quartz fibre, a shortening or contraction at the basal pole was observed. Transverse indentation at the lateral membrane elicited shortenings at both ends of the cells. The sensitivity to the mechanical manipulation was changed by an altered tonicity of the external solution, or exposure to salicylate. As the response occurs at very low stimulus frequencies, it may account for the mechanism by which the hearing organ responds to the low frequency modulation component in complex signals like speech. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Karolinska Hosp, King Gustaf V Res Inst, ENT Res Lab, S-17176 Stockholm, Sweden. Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden. RP Ulfendahl, M (reprint author), Karolinska Hosp, King Gustaf V Res Inst, ENT Res Lab, S-17176 Stockholm, Sweden. CR ANDRESEN MC, 1992, AM J PHYSIOL, V262, pH1415 BROWNELL WE, 1994, ACTIVE HEARING, P167 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BRUNDIN L, 1991, NEUROSCI LETT, V128, P77, DOI 10.1016/0304-3940(91)90763-J BRUNDIN L, 1992, NEUROSCIENCE, V49, P606 BRUNDIN L, 1989, NATURE, V342, P814, DOI 10.1038/342814a0 BRUNDIN L, 1994, HEARING RES, V73, P35, DOI 10.1016/0378-5955(94)90280-1 CANLON B, 1988, P NATL ACAD SCI USA, V85, P7033, DOI 10.1073/pnas.85.18.7033 Chan E, 1997, ACTA PHYSIOL SCAND, V161, P533, DOI 10.1046/j.1365-201X.1997.00241.x CHAN E, 1997, P INT S DIV AUD MECH, P487 Cheatham MA, 1997, HEARING RES, V108, P191, DOI 10.1016/S0378-5955(97)00032-4 Chertoff M. E., 1994, AM J PHYSIOL, V266, P467 EVANS BN, 1993, P NATL ACAD SCI USA, V90, P8347, DOI 10.1073/pnas.90.18.8347 Fridberger A, 1997, ACTA PHYSIOL SCAND, V161, P239, DOI 10.1046/j.1365-201X.1997.00214.x HALLWORTH R, 1997, P INT S DIV AUD MECH, P524 Hallworth R, 1995, J NEUROPHYSIOL, V74, P2319 Holley M. C., 1996, COCHLEA, P386 HORII Y, 1971, J ACOUST SOC AM, V49, P1849, DOI 10.1121/1.1912590 HOUTGAST T, 1985, J ACOUST SOC AM, V77, P1069, DOI 10.1121/1.392224 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HUMES LE, 1990, J SPEECH HEAR RES, V33, P3 Rosen S., 1986, FREQUENCY SELECTIVIT, P373 RUSSELL IJ, 1995, AUDIT NEUROSCI, V1, P309 ULFENDAHL M, 1998, PFLUGERS ARCH, V436, P98 Ulfendahl M, 1997, PROG NEUROBIOL, V53, P331, DOI 10.1016/S0301-0082(97)00040-3 YANG XC, 1989, SCIENCE, V243, P1068, DOI 10.1126/science.2466333 ZHI M, 1995, ASS RES OTOLARYNGOL, P155 NR 27 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 166 EP 174 DI 10.1016/S0378-5955(98)00207-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500019 PM 10082296 ER PT J AU Carlile, S Delaney, S Corderoy, A AF Carlile, S Delaney, S Corderoy, A TI The localisation of spectrally restricted sounds by human listeners SO HEARING RESEARCH LA English DT Article DE human hearing; auditory localization; broadband sound; spectrally restricted sound ID INTERAURAL TIME DIFFERENCES; COMPLEX WAVEFORMS; MEDIAN PLANE; AUDITORY SPACE; LOCALIZATION; FREQUENCY; CUES; LATERALIZATION; DELAY; ACOUSTICS AB The two principal binaural cues to sound location are interaural time differences (ITDs), which are thought to be dominant at low frequencies, and interaural level differences (ILDs), which are thought to dominate at mid to high frequencies. The outer ear also filters the sound in a location dependent manner and provides spectral cues to location. In these experiments we have examined the relative contribution of these cues to the auditory localisation performance by humans. Six subjects localised sounds by pointing their face toward the perceived location of stimuli presented in complete darkness in an anechoic chamber. Control stimuli were spectrally flat (400 Hz to 16 kHz), while the relative contribution of location cues in the low frequency channels was determined using noise high passed at 2 kHz and in the high frequency channels using stimuli low passed at 2 kHz. The removal of frequencies below 2 kHz had little effect on either the pattern of systematic errors or the distribution of localisation estimates with the exception of an increase in the size of the standard deviations associated with a few rear locations. This suggests considerable redundancy in the auditory localisation information contained within a broadband sound. In contrast, restricting the target spectrum to frequencies below 2 kHz resulted in a large increase in the cone-of-confusion errors as well as a subject dependent biasing of the front-to-back or back-to-front confusions. These biases and the reduction in localisation accuracy for high pass stimuli at some posterior locations are consistent with a contribution of spectral information at low frequencies. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Sydney, Dept Physiol, Auditory Neurosci Lab, Sydney, NSW 2006, Australia. Univ Sydney, Inst Biomed Res, Sydney, NSW 2006, Australia. RP Carlile, S (reprint author), Univ Sydney, Dept Physiol, Auditory Neurosci Lab, Sydney, NSW 2006, Australia. EM simonc@physiol.usyd.edu.au CR ASANO F, 1990, J ACOUST SOC AM, V88, P159, DOI 10.1121/1.399963 BERNSTEIN LR, 1982, J ACOUST SOC AM, V71, P147, DOI 10.1121/1.387254 BLAUERT J, 1969, ACUSTICA, V22, P205 Blauert J, 1982, Scand Audiol Suppl, V15, P7 Blauert J., 1983, SPATIAL HEARING PSYC BUTLER RA, 1992, PERCEPT PSYCHOPHYS, V51, P182, DOI 10.3758/BF03212242 BUTLER RA, 1983, AM J OTOLARYNG, V4, P165, DOI 10.1016/S0196-0709(83)80039-8 BUTLER RA, 1987, PERCEPT PSYCHOPHYS, V41, P1, DOI 10.3758/BF03208206 BUTLER RA, 1980, PERCEPT PSYCHOPHYS, V28, P449, DOI 10.3758/BF03204889 CARLILE S, 1994, J ACOUST SOC AM, V95, P3445, DOI 10.1121/1.409965 CARLILE S, 1996, VIRTUAL AUDITORY SPA, pCH1 CARLILE S, 1994, J NEUROPHYSIOL, V71, P785 Carlile S, 1997, HEARING RES, V114, P179, DOI 10.1016/S0378-5955(97)00161-5 CARLILE S, 1994, P AUST NEUROSCI SOC, V5, P31 Durlach N. I., 1978, HDB PERCEPTION, V4, P365 Fisher NI, 1993, STAT ANAL SPHERICAL HEBRANK J, 1974, J ACOUST SOC AM, V56, P1829, DOI 10.1121/1.1903520 HENNING GB, 1974, J ACOUST SOC AM, V55, P84, DOI 10.1121/1.1928135 HENNING GB, 1980, J ACOUST SOC AM, V68, P446 HENNING GB, 1981, HEARING RES, V4, P185, DOI 10.1016/0378-5955(81)90005-8 KLUMPP RG, 1956, J ACOUST SOC AM, V28, P859, DOI 10.1121/1.1908493 Leong P, 1998, J NEUROSCI METH, V80, P191, DOI 10.1016/S0165-0270(97)00201-X MAKOUS JC, 1990, J ACOUST SOC AM, V87, P2188, DOI 10.1121/1.399186 MCFADDEN D, 1976, J ACOUST SOC AM, V59, P634, DOI 10.1121/1.380913 MIDDLEBROOKS JC, 1992, J ACOUST SOC AM, V92, P2607, DOI 10.1121/1.404400 Mills A. W, 1972, FDN MODERN AUDITORY MUSICANT AD, 1985, J ACOUST SOC AM, V77, P202, DOI 10.1121/1.392259 NUETZEL JM, 1976, J ACOUST SOC AM, V60, P1339, DOI 10.1121/1.381227 OLDFIELD SR, 1984, PERCEPTION, V13, P581, DOI 10.1068/p130581 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X Pratt CC, 1930, J EXP PSYCHOL, V13, P278, DOI 10.1037/h0072651 ROFFLER SK, 1968, J ACOUST SOC AM, V43, P1255, DOI 10.1121/1.1910976 Shaw E. A. G., 1974, HDB SENSORY PHYSL, P455 TRAHIOTIS C, 1986, J ACOUST SOC AM, V79, P1950, DOI 10.1121/1.393202 Wallach H, 1939, J ACOUST SOC AM, V10, P270, DOI 10.1121/1.1915985 WATKINS AJ, 1978, J ACOUST SOC AM, V63, P1152, DOI 10.1121/1.381823 WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445 ZWISLOCKI J, 1956, J ACOUST SOC AM, V28, P860, DOI 10.1121/1.1908495 NR 38 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 175 EP 189 DI 10.1016/S0378-5955(98)00205-6 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500020 PM 10082297 ER PT J AU Xiang, ZH Bo, XN Burnstock, G AF Xiang, ZH Bo, XN Burnstock, G TI P2X receptor immunoreactivity in the rat cochlea, vestibular ganglion and cochlear nucleus SO HEARING RESEARCH LA English DT Article DE P2X receptor; P2X purinoceptor; ATP; spiral ganglion; cochlea; vestibular ganglion; vestibulocochlear nerve ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; PURINERGIC RECEPTORS; EXTRACELLULAR ATP; SENSORY NEURONS; CALCIUM; MOBILIZATION; CHANNELS; CURRENTS; INCREASE AB P2X receptors have been reported to be involved in neurotransmission in both central and peripheral nerves. In the present study, polyclonal antibodies against P2X(1), P2X(2), P2X(3), P2X(4), P2X(5), and P2X(6) were used to study the distribution of P2X receptors in rat cochlea and vestibulocochlear nerve pathways. It was found that in the vestibular ganglion all six types of antibodies stained the neurons to different intensities. The strongest signal was obtained with the P2X(2) antibodies, followed by P2X(3) antibodies. The other four antibodies produced weak signals, of approximately the same intensity. In the spiral ganglion, the six types of antibodies also stained almost all neurons. However, the rank order of intensity was different from that in the vestibular ganglion: the strongest signal was still obtained with P2X(2) antibodies, followed by P2X(4), P2X(1), and P2X(3) antibodies. The immunolabelling was much weaker with P2X(5) and P2X(6) antibodies compared with the other four types of antibodies. In the cochlea, besides the spiral ganglion neurons, other tissues such as stria vascularis, the organ of Corti and the tectorial membrane were labelled intensively with P2X(2) antibodies only. High density P2X(2) immunoreactivity was also observed in the vestibulocochlear nerve fibres. In the cochlear nucleus, neurons and nerve fibres were stained with the P2X(2) antibodies, as were the neurons in the trapezoid body. These results suggested that P2 receptors, especially the P2X(2) receptors, may play important roles in the signal transduction involved in the perception of sound and balance. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Royal Free Hosp, Sch Med, Auton Neurosci Inst, London NW3 2PF, England. Second Mil Med Univ, Dept Histol & Embryol, Shanghai, Peoples R China. RP Burnstock, G (reprint author), Royal Free Hosp, Sch Med, Auton Neurosci Inst, Rowland Hill St, London NW3 2PF, England. EM g.burnstock@ucl.ac.uk RI Bo, Xuenong/E-9845-2012 CR ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 BRAKE AJ, 1994, NATURE, V371, P519, DOI 10.1038/371519a0 Brandle U, 1997, FEBS LETT, V404, P294, DOI 10.1016/S0014-5793(97)00128-2 Burnstock G, 1997, NEUROPHARMACOLOGY, V36, P1127, DOI 10.1016/S0028-3908(97)00125-1 Burnstock G, 1996, CURR OPIN NEUROBIOL, V6, P526, DOI 10.1016/S0959-4388(96)80060-2 Burnstock G, 1996, LANCET, V347, P1604, DOI 10.1016/S0140-6736(96)91082-X CHEN CC, 1995, NATURE, V377, P428, DOI 10.1038/377428a0 Chessell P, 1997, NEUROSCIENCE, V77, P783 Cho H, 1997, ACTA OTO-LARYNGOL, V117, P545, DOI 10.3109/00016489709113435 DULON D, 1993, CELL CALCIUM, V14, P245, DOI 10.1016/0143-4160(93)90071-D Glowatzki E, 1997, NEUROPHARMACOLOGY, V36, P1269, DOI 10.1016/S0028-3908(97)00108-1 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 HOUSLEY GD, 1995, BIOCHEM BIOPH RES CO, V212, P501, DOI 10.1006/bbrc.1995.1998 Housley GD, 1998, MOL NEUROBIOL, V16, P21, DOI 10.1007/BF02740601 Housley GD, 1998, J COMP NEUROL, V393, P403 IKEDA K, 1995, CELL CALCIUM, V18, P89, DOI 10.1016/0143-4160(95)90000-4 LEWIS C, 1995, NATURE, V377, P432, DOI 10.1038/377432a0 LIPOSITS Z, 1984, NEUROSCIENCE, V13, P513, DOI 10.1016/0306-4522(84)90245-8 MATCHETT BG, 1995, HEARING RES, V84, P177 NAKAGAWA T, 1990, J NEUROPHYSIOL, V63, P1068 Parker MS, 1998, HEARING RES, V121, P62, DOI 10.1016/S0378-5955(98)00065-3 Radford KM, 1997, J NEUROSCI, V17, P6529 Salih SG, 1998, NEUROREPORT, V9, P279, DOI 10.1097/00001756-199801260-00019 SHIGEMOTO T, 1990, J PHYSIOL-LONDON, V420, P127 Sugasawa M, 1996, J PHYSIOL-LONDON, V491, P707 Sugasawa M, 1996, AM J PHYSIOL-CELL PH, V271, pC1817 SUZUKI M, 1995, HEARING RES, V86, P68, DOI 10.1016/0378-5955(95)00055-9 Thorne PR, 1996, SEMIN NEUROSCI, V8, P233, DOI 10.1006/smns.1996.0030 Xiang ZH, 1998, NEUROSCI LETT, V256, P105, DOI 10.1016/S0304-3940(98)00774-5 NR 29 TC 50 Z9 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1999 VL 128 IS 1-2 BP 190 EP 196 DI 10.1016/S0378-5955(98)00208-1 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 168DH UT WOS:000078675500021 PM 10082298 ER PT J AU Sato, M Leake, PA Hradek, GT AF Sato, M Leake, PA Hradek, GT TI Postnatal development of the organ of Corti in cats: a light microscopic morphometric study SO HEARING RESEARCH LA English DT Article DE basilar membrane; development; organ of Corti; hair cell; tunnel of Corti ID ANTEROVENTRAL COCHLEAR NUCLEUS; AUDITORY-EVOKED POTENTIALS; INFERIOR COLLICULUS; FREQUENCY; MATURATION; KITTENS; SENSITIVITY; NEURONS; NERVE AB This study quantitatively characterizes the development of the major morphological features of the organ of Corti during the first 2 weeks postnatal, the period when the cat auditory system makes the transition from being essentially non-functional to having nearly adult-like responses. Four groups of kittens (n = 3) were studied at one day postnatal (P1), P5, P10, P15, and compared to adults. Measurements were made of the organ of Corti at 3 cochlear locations: 20%, 60% and 85% of basilar membrane length from the base - cochlear locations which in the adult correspond to best frequencies of approximate to 20 kHz, 2 kHz and 500 Hz, respectively. In addition, measurements of basilar membrane length and opening of the tunnel of Corti were made in 20 cochlear specimens from kittens aged P0-P6. Results indicate that: (i) at PO the basilar membrane has attained adult length, and the tunnel of Corti is open over approximately the basal one-half of the cochlea; (ii) the initial opening of the tunnel of Corti occurs at a site about 4 mm from the cochlear base (best frequency of approximate to 25 kHz in the adult cochlea); (iii) the thickness of the tympanic cell layer decreases markedly at the basal 20-kHz location; (iv) the areas of the tunnel of Corti and space of Nuel and the angulation of the inner hair cells (IHC) relative to the basilar membrane all show marked postnatal increases at both the middle and apical locations; (v) IHC are nearly adult-like in length and shape at birth, whereas the OHC (at 2-kHz and 500-Hz locations) undergo marked postnatal changes; (vi) disappearance of the marginal pillars and maturation of the supporting cells are not yet complete by P15. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Calif San Francisco, Dept Otolaryngol, Epstein Lab, U490, San Francisco, CA 94143 USA. Keio Univ, Sch Med, Dept Otolaryngol, Shinjuku Ku, Tokyo 160, Japan. RP Leake, PA (reprint author), Univ Calif San Francisco, Dept Otolaryngol, Epstein Lab, U490, San Francisco, CA 94143 USA. EM leake@itsa.ucsf.edu CR AITKIN LM, 1975, NEUROSCI LETT, V1, P315, DOI 10.1016/0304-3940(75)90019-1 AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1208 BRUGGE JF, 1985, HEARING RES, V20, P275, DOI 10.1016/0378-5955(85)90032-2 BRUGGE JF, 1981, HEARING RES, V5, P217, DOI 10.1016/0378-5955(81)90047-2 BRUGGE JF, 1978, J NEUROPHYSIOL, V41, P1557 BRUGGE JF, 1984, J ACOUST SOC AM, V75, P1548, DOI 10.1121/1.390826 BRUGGE JF, 1988, HEARING RES, V34, P127, DOI 10.1016/0378-5955(88)90100-1 EHRET G, 1981, J COMP PHYSIOL PSYCH, V95, P304, DOI 10.1037/h0077770 GREENWOOD DD, 1974, SENSATION MEASUREMEN, P231 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HINOJOSA R, 1977, ACTA OTO-LARYNGOL, V84, P238, DOI 10.3109/00016487709123963 Leake PA, 1997, HEARING RES, V113, P117, DOI 10.1016/S0378-5955(97)00133-0 LENOIR M, 1987, ANAT EMBRYOL, V175, P477, DOI 10.1007/BF00309683 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIM DJ, 1992, DEV AUDITORY VESTIBU, V2, P161 MOORE DR, 1980, EXP BRAIN RES, V38, P103 PUJOL R, 1970, J COMP NEUROL, V139, P115, DOI 10.1002/cne.901390108 PUJOL R, 1969, J PHYSIOL-PARIS, V61, P411 ROMAND R, 1982, J COMP NEUROL, V204, P1, DOI 10.1002/cne.902040102 RUBEL EW, 1984, ANNU REV PHYSIOL, V46, P213 Snyder RL, 1997, J COMP NEUROL, V384, P293, DOI 10.1002/(SICI)1096-9861(19970728)384:2<293::AID-CNE9>3.0.CO;2-X Sobkowicz HM, 1992, DEV AUDITORY VESTIBU, V2, P59 WALSH EJ, 1986, J ACOUST SOC AM, V79, P712, DOI 10.1121/1.393461 WALSH EJ, 1987, HEARING RES, V28, P97, DOI 10.1016/0378-5955(87)90157-2 WALSH EJ, 1990, AM J OTOLARYNG, V11, P23, DOI 10.1016/0196-0709(90)90166-S WALSH EJ, 1986, J ACOUST SOC AM, V79, P745, DOI 10.1121/1.393463 WALSH EJ, 1986, J ACOUST SOC AM, V79, P722 Walsh Edward J., 1992, P161 WEBSTER WR, 1991, HEARING RES, V55, P70, DOI 10.1016/0378-5955(91)90093-O NR 29 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 1 EP 13 DI 10.1016/S0378-5955(98)00143-9 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100001 PM 9925011 ER PT J AU Eisen, MD Duncan, RK Saunders, JC AF Eisen, MD Duncan, RK Saunders, JC TI The tip link's role in asymmetric stereocilia motion of chick cochlear hair cells SO HEARING RESEARCH LA English DT Article DE auditory; chick; basilar papilla; stereocilia motion; hair cell; tip link ID MECHANOELECTRICAL TRANSDUCTION; INNER-EAR; STIFFNESS; BUNDLES; MODEL; INTEGRITY; CHANNELS; CALCIUM AB The symmetry of chick cochlear hair bundle motion was examined in this study. Isolated segments from the basilar papilla were incubated in vitro in either normal or low calcium medium, which is known to disrupt tip links. Stereociliary bundles, stimulated with an oscillating water microjet, were oriented in profile and viewed in slow motion at high magnification with stroboscopic illumination. The displacement of the tallest hair in the bundle was fixed to 20 degrees peak-to-peak (P-P) motion. The angular deflections of the shortest and tallest hairs were then measured in both the positive (towards the tallest hair) and negative (towards the shortest) directions with respect to the non-stimulated position of the hair. The tallest hairs exhibited nearly symmetric motion in medium containing normal and low calcium. The shortest hairs, in normal calcium, displayed considerable asymmetry with angular deflections in the positive direction significantly larger than in the negative direction. This asymmetric motion disappeared after incubation in low calcium. The shortest hair angular displacement in the negative direction, however, was the same in both normal and low calcium conditions. These results indicated that the tallest and shortest hairs moved with equal angular deflection in the negative direction, while in the positive direction the shortest hair moved through a significantly greater angular deflection than the tallest hair. The implication of this finding is that the tip links contributed significantly to hair bundle motion in the positive direction only. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Univ Penn, Dept Otorhinolaryngol Head & Neck Surg, Philadelphia, PA 19104 USA. Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA. RP Saunders, JC (reprint author), Univ Penn, Dept Otorhinolaryngol Head & Neck Surg, 5 Ravdin ORL,3400 Spruce St, Philadelphia, PA 19104 USA. EM saunderj@mail.med.upenn.edu CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X BRIX J, 1994, HEARING RES, V76, P147, DOI 10.1016/0378-5955(94)90096-5 Brundin L, 1989, Acta Otolaryngol Suppl, V467, P229 COREY DP, 1983, J NEUROSCI, V3, P962 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 Duncan RK, 1998, HEARING RES, V124, P69, DOI 10.1016/S0378-5955(98)00118-X Duncan RK, 1997, HEARING RES, V104, P15, DOI 10.1016/S0378-5955(96)00176-1 DUNCAN RK, 1998, HEARING RES, V127, P22 Duncan RK, 1995, AUDIT NEUROSCI, V1, P321 FLOCK A, 1984, HEARING RES, V15, P11 FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817 Furness DN, 1997, P ROY SOC B-BIOL SCI, V264, P45 GEISLER CD, 1993, HEARING RES, V65, P79, DOI 10.1016/0378-5955(93)90203-D GUTTENPLAN M, 1989, HEARING RES, V43, P47, DOI 10.1016/0378-5955(89)90058-0 HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, pC1 HACKNEY CM, 1995, ACTIVE HEARING, P103 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HUSBANDS J, 1998, 21 MIDW RES M ASS RE, P199 JACOBS RA, 1990, COLD SH Q B, V55, P547 Marquis RE, 1997, P NATL ACAD SCI USA, V94, P11923, DOI 10.1073/pnas.94.22.11923 PAE SS, 1994, P NATL ACAD SCI USA, V91, P1153, DOI 10.1073/pnas.91.3.1153 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P SAUNDERS JC, 1989, J ACOUST SOC AM, V86, P1797, DOI 10.1121/1.398612 SZYMKO YM, 1995, J COMP PHYSIOL A, V176, P727 SZYMKO YM, 1992, HEARING RES, V59, P241, DOI 10.1016/0378-5955(92)90120-C TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 NR 28 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 14 EP 21 DI 10.1016/S0378-5955(98)00167-1 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100002 PM 9925012 ER PT J AU Duncan, RK Eisen, MD Saunders, JC AF Duncan, RK Eisen, MD Saunders, JC TI Distal separation of chick cochlear hair cell stereocilia: analysis of contact-constraint models SO HEARING RESEARCH LA English DT Article DE auditory; chick; stereocilia; hair cell; micromechanics ID MECHANOELECTRICAL TRANSDUCTION; ACTIN-FILAMENTS; BIRD COCHLEA; INNER-EAR; BUNDLE; DISPLACEMENT; CHANNELS AB One model often used in the study of hair bundle micromechanics assumes simple geometric relationships between hair displacements, constrained by contact between neighboring hairs at their distal tips. Recent observations of hair bundle motion provided the opportunity to evaluate the contact-constraint model against measured displacements for the tallest: and shortest sensory hairs. A contact-constraint model was developed based on the geometry of a single column of stereocilia. The model used morphological data from chick hair bundles for which displacement data in the excitatory and inhibitory directions were also available. For each hair bundle, a unique sensory hair radius was determined so that the calculated resting bundle morphology matched the measured values. The model was then evaluated against the displacement data for each hair bundle. In each case, the model underestimated the excitatory displacement of the shortest hairs. Failure of the model to accurately predict bundle motion raises the possibility of a distal separation between the hairs at rest. It is suggested that tip links pull the hairs through this separation during excitatory deflections. Perhaps at damaging levels of displacement, the hairs suddenly come into contact, tip-link tension dramatically increases, and the tip-links are fractured. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Penn, Dept Otorhinolaryngol Head & Neck Surg, Philadelphia, PA 19104 USA. Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA. RP Saunders, JC (reprint author), Univ Penn, Dept Otorhinolaryngol Head & Neck Surg, 5 Ravdin ORL,3400 Spruce St, Philadelphia, PA 19104 USA. EM saunderj@mail.med.upenn.edu CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X BAIRD RA, 1994, J NEUROPHYSIOL, V71, P685 Duncan RK, 1998, HEARING RES, V124, P69, DOI 10.1016/S0378-5955(98)00118-X Duncan RK, 1997, HEARING RES, V104, P15, DOI 10.1016/S0378-5955(96)00176-1 Duncan RK, 1995, AUDIT NEUROSCI, V1, P321 Eisen MD, 1999, HEARING RES, V127, P14, DOI 10.1016/S0378-5955(98)00167-1 Erulkar J. S., 1996, Scanning Microscopy, V10, P1127 FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817 Furness DN, 1997, P ROY SOC B-BIOL SCI, V264, P45 GEISLER CD, 1993, HEARING RES, V65, P79, DOI 10.1016/0378-5955(93)90203-D HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, pC1 HACKNEY CM, 1992, P ROY SOC B-BIOL SCI, V248, P215, DOI 10.1098/rspb.1992.0064 HACKNEY CM, 1995, ACTIVE HEARING, P103 HOWARD J, 1988, ANNU REV BIOPHYS BIO, V17, P99 HUSBANDS J, 1998, 21 MIDW RES M ASS RE, P199 JACOBS RA, 1990, COLD SH Q B, V55, P547 Peterson EH, 1996, ANN NY ACAD SCI, V781, P85, DOI 10.1111/j.1749-6632.1996.tb15695.x PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P PICKLES JO, 1992, TRENDS NEUROSCI, V15, P254, DOI 10.1016/0166-2236(92)90066-H SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P299, DOI 10.1121/1.392491 TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807 TILNEY LG, 1983, J CELL BIOL, V96, P822, DOI 10.1083/jcb.96.3.822 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 NR 24 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 22 EP 30 DI 10.1016/S0378-5955(98)00168-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100003 PM 9925013 ER PT J AU Yamasoba, T Dolan, DF Miller, JM AF Yamasoba, T Dolan, DF Miller, JM TI Acquired resistance to acoustic trauma by sound conditioning is primarily mediated by changes restricted to the cochlea, not by systemic responses SO HEARING RESEARCH LA English DT Article DE noise-induced hearing loss; sound conditioning; acoustic trauma; auditory toughening; guinea pig; cochlea ID MIDDLE-EAR MUSCLES; CALCIUM-BINDING PROTEINS; INDUCED HEARING-LOSS; NOISE TRAUMA; AUDIOGENIC STRESS; THRESHOLD SHIFT; RAT COCHLEA; GUINEA-PIG; HEAT-SHOCK; PROTECTION AB Hearing loss caused by intense sound exposure can be significantly reduced by pre-exposing subjects to moderate-level acoustic stimuli. This phenomenon occurs in a variety of mammals. We investigated whether sound conditioning provides acquired resistance to acoustic trauma through local mechanisms selectively in the conditioned ears or if systemic mechanisms are involved that would yield contralateral protection in unconditioned ears. Guinea pigs (group I) in which one external ear canal was occluded were exposed to conditioning sound (2-20 kHz, 85 dB SPL, 5 h/day, 10 days). After removing the occlusion, the animals were then subjected bilaterally to intense noise (2-20 kHz, 110 dB SPL, 5 h) 5 days after the last conditioning exposure. Animals without ear canal occlusion were also exposed to the intense sound without conditioning (group IT) or following the same conditioning exposure (group III). Intense sound exposure caused significantly greater permanent ABR threshold shifts at all frequencies tested (4, 8, 12, 16 and 20 kHz) in group II than in group III. Tn group I, the occluded ears showed significantly greater threshold shifts at all frequencies compared to the unoccluded ears. The threshold shifts in the occluded ears in group I were identical to those observed in group II; and the shifts in unoccluded ears in group I were identical to those in group III. Protective effects provided by sound conditioning were almost the same in group III and in the unoccluded ears in group I. The extent of hair cell damage supported the physiological findings. These results indicate that acquired resistance to acoustic trauma provided by sound conditioning is restricted to the cochlea exposed to conditioning sound, suggesting that conditioning protection is mediated primarily by the changes that occur locally within the conditioned cochlea. This animal model, with unilateral external ear canal occlusion during sound conditioning, is useful for studies of the mechanisms of conditioning protection. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Univ Tokyo, Dept Otolaryngol, Bunkyo Ku, Tokyo 113, Japan. RP Dolan, DF (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM ddolan@umich.edu CR Altschuler RA, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P202 Brown MC, 1998, J NEUROPHYSIOL, V79, P3088 Campeau S, 1997, J NEUROSCI, V17, P5979 Campeau S, 1997, J NEUROENDOCRINOL, V9, P577 CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 Canlon B, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P118 CANLON B, 1993, NEUROSCI LETT, V150, P103, DOI 10.1016/0304-3940(93)90118-5 DAGLI S, 1995, NEUROSCI LETT, V194, P57, DOI 10.1016/0304-3940(95)11726-D FOWLER T, 1995, HEARING RES, V88, P1, DOI 10.1016/0378-5955(95)00062-9 Franceschini V., 1991, Theoretical and Computational Fluid Dynamics, V2, DOI 10.1007/BF00271636 FURUKAWA K, 1995, EXP NEUROL, V133, P153, DOI 10.1006/exnr.1995.1018 HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 HENDERSON D, 1994, HEARING RES, V74, P22, DOI 10.1016/0378-5955(94)90172-4 HU HB, 1997, HEARING RES, V113, P198 HU HB, 1997, HEARING RES, V110, P209 HUNTERDU.IM, 1973, J ACOUST SOC AM, V54, P1179, DOI 10.1121/1.1914364 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Kujawa SG, 1997, J NEUROPHYSIOL, V78, P3095 KUKREJA RC, 1994, AM J PHYSIOL-HEART C, V267, pH2213 Lamm K, 1996, Audiol Neurootol, V1, P148 LIBERMAN MC, 1995, HEARING RES, V90, P158, DOI 10.1016/0378-5955(95)00160-2 LIM HH, 1993, HEARING RES, V69, P146 Mattson MP, 1996, RESTOR NEUROL NEUROS, V9, P191, DOI 10.3233/RNN-1996-9401 Mattson MP, 1998, TRENDS NEUROSCI, V21, P53, DOI 10.1016/S0166-2236(97)01188-0 McFadden SL, 1997, HEARING RES, V103, P142, DOI 10.1016/S0378-5955(96)00170-0 MITCHELL A, 1997, ASS RES OT ABSTR, V20, P283 MIYAKITA T, 1992, HEARING RES, V60, P149, DOI 10.1016/0378-5955(92)90017-H MORGAN RW, 1986, P NATL ACAD SCI USA, V83, P8059, DOI 10.1073/pnas.83.21.8059 Pack AK, 1995, HEARING RES, V91, P119 PIRVOLA U, 1995, P NATL ACAD SCI USA, V92, P9269, DOI 10.1073/pnas.92.20.9269 Puel JL, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P36 RAREY KE, 1995, HEARING RES, V82, P135, DOI 10.1016/0378-5955(94)00171-L RIABOWOL KT, 1988, SCIENCE, V242, P433, DOI 10.1126/science.3175665 ROWLAND RT, 1995, SURGERY, V118, P446, DOI 10.1016/S0039-6060(05)80357-5 RYAN AF, 1994, HEARING RES, V72, P23, DOI 10.1016/0378-5955(94)90201-1 SLEPECKY NB, 1993, HEARING RES, V70, P73, DOI 10.1016/0378-5955(93)90053-4 Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825 THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9 Yamasoba T, 1998, HEARING RES, V120, P143, DOI 10.1016/S0378-5955(98)00054-9 Yamasoba T, 1997, HEARING RES, V112, P13, DOI 10.1016/S0378-5955(97)00092-0 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2 Zheng XY, 1997, HEARING RES, V104, P191, DOI 10.1016/S0378-5955(96)00187-6 NR 43 TC 18 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 31 EP 40 DI 10.1016/S0378-5955(98)00178-6 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100004 PM 9925014 ER PT J AU Nieder, A Klump, GM AF Nieder, A Klump, GM TI Adjustable frequency selectivity of auditory forebrain neurons recorded in a freely moving songbird via radiotelemetry SO HEARING RESEARCH LA English DT Article DE bird; starling; telemetry; auditory forebrain; field L; frequency tuning; two-tone interaction; masking ID STARLING STURNUS-VULGARIS; FINCHES TAENOPYGIA-GUTTATA; COCHLEAR GANGLION NEURONS; INFERIOR COLLICULUS; FIELD-L; TONOTOPIC ORGANIZATION; SPECTRAL INTEGRATION; GABAERGIC INHIBITION; RESPONSE PROPERTIES; CORTEX AB One of the hearing system's basic properties that determines the detection of signals is its frequency selectivity. In the natural environment, a songbird may achieve an improved detection ability if the neuronal filters of its auditory system could be sharpened to adapt to the spectrum of the background noise. To address this issue, we studied 35 multi-unit clusters in the input layer of the primary auditory forebrain of nine European starlings (Sturnus vulgaris). Microelectrodes were chronically implanted in this songbird's cortex analogue and the neuronal activity was transmitted from unrestrained birds via a miniature FM transmitter. Frequency tuning curves (FTCs) and inhibitory sidebands were determined by presenting a matrix of frequency-level combinations of pure tones. From each FTC, the characteristic frequency (CF) and several parameters describing the neurons' filter characteristics were derived and compared to the same recording site's filter function while simultaneously stimulating with a continuous CF tone 20 dB above the response threshold. Our results show a significant improvement of frequency selectivity during two-tone stimulation, indicating that spectral filtering in the starling's auditory forebrain depends on the acoustic background in which a signal is presented. Moreover, frequency selectivity was found to be a function of the time over which the stimulus persisted, since FTCs were much sharper and inhibitory sidebands were largely expanded several milliseconds after response onset. Neuronal filter bandwidths during two-tone stimulation in the auditory forebrain are in good agreement with psychoacoustically measured critical bandwidths in the same species. Radiotelemetry proved to be a powerful tool in studying neuronal activity in freely behaving birds. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Tech Univ Munich, Inst Zool, D-85747 Garching, Germany. RP Klump, GM (reprint author), Tech Univ Munich, Inst Zool, Lichtenbergstr 4, D-85747 Garching, Germany. EM gklump@star1.zoo.chemie.tu-muenchen.de CR ARTHUR RM, 1971, J PHYSIOL-LONDON, V212, P593 BONKE D, 1979, J COMP PHYSIOL, V132, P243 BUCHFELLNER E, 1989, J COMP PHYSIOL A, V164, P539, DOI 10.1007/BF00610447 BUCHFELLNER E, 1987, THESIS TU MUNICH BUUS S, 1995, J ACOUST SOC AM, V98, P112, DOI 10.1121/1.414466 Capsius B, 1996, HEARING RES, V96, P59, DOI 10.1016/0378-5955(96)00038-X CARR CE, 1989, J COMP NEUROL, V286, P190, DOI 10.1002/cne.902860205 Chen L, 1996, J ACOUST SOC AM, V100, P442, DOI 10.1121/1.415959 Doupe AJ, 1997, J NEUROSCI, V17, P1147 EHRET G, 1985, SCIENCE, V227, P1245, DOI 10.1126/science.3975613 EHRET G, 1988, AUDITORY FUNCTION NE, P363 Ehret G, 1997, J COMP PHYSIOL A, V181, P635, DOI 10.1007/s003590050146 Ehret G, 1995, ADV HEARING RES, P387 EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 EICHENBAUM H, 1977, PHYSIOL BEHAV, V18, P1175, DOI 10.1016/0031-9384(77)90026-9 EVANS EF, 1992, ADV BIOSCI, V83, P159 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 FORTUNE ES, 1992, J COMP NEUROL, V325, P388, DOI 10.1002/cne.903250306 FORTUNE ES, 1995, J COMP NEUROL, V360, P413, DOI 10.1002/cne.903600305 FUJITA I, 1991, J NEUROSCI, V11, P722 GAESE BH, 1995, EUR J NEUROSCI, V7, P438, DOI 10.1111/j.1460-9568.1995.tb00340.x GLEICH O, 1995, HEARING RES, V82, P81 GLEICH O, 1988, HEARING RES, V32, P81, DOI 10.1016/0378-5955(88)90148-7 GOLDBERG SJ, 1987, EXP NEUROL, V96, P430, DOI 10.1016/0014-4886(87)90060-4 Hant JJ, 1997, J ACOUST SOC AM, V101, P2789, DOI 10.1121/1.418565 HEIL P, 1991, BRAIN RES, V539, P121, DOI 10.1016/0006-8993(91)90693-P JACOB R, 1991, J NEUROSCI METH, V38, P89, DOI 10.1016/0165-0270(91)90158-V KARTEN H J, 1968, Brain Research, V11, P134, DOI 10.1016/0006-8993(68)90078-4 KATSUKI Y, 1958, J NEUROPHYSIOL, V21, P469 Klump Georg M., 1996, P321 KLUMP GM, 1995, HEARING RES, V87, P157, DOI 10.1016/0378-5955(95)00087-K KRUGER J, 1981, EXP BRAIN RES, V41, P191 LANGEMANN U, 1995, HEARING RES, V84, P167, DOI 10.1016/0378-5955(95)00023-W LANGNER G, 1981, EXP BRAIN RES, V43, P11 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LEPPELSACK EH, 1992, THESIS TU MUNICH LEPPELSA.HJ, 1974, J COMP PHYSIOL, V88, P271, DOI 10.1007/BF00697959 Lewicki MS, 1996, J NEUROSCI, V16, P6987 Manley G. A., 1990, PERIPHERAL HEARING M MANLEY GA, 1985, J COMP PHYSIOL A, V157, P161, DOI 10.1007/BF01350025 MARGOLIASH D, 1983, J NEUROSCI, V3, P1039 MULLER CM, 1985, EXP BRAIN RES, V59, P587 MULLER CM, 1988, J NEUROPHYSIOL, V59, P1673 MULLER CM, 1988, CELL TISSUE RES, V252, P99 PELLEGTOIBA R, 1989, EXP BRAIN RES, V74, P353 PICKLES JO, 1979, J ACOUST SOC AM, V66, P1725, DOI 10.1121/1.383645 PINKWART C, 1987, J NEUROSCI METH, V20, P341, DOI 10.1016/0165-0270(87)90065-3 RUBSAMEN R, 1986, J COMP PHYSIOL A, V158, P639, DOI 10.1007/BF00603820 SAINI KD, 1981, J COMP NEUROL, V198, P209, DOI 10.1002/cne.901980203 SCHARMANN MG, 1996, THESIS TU MUNICH SCHREINER CE, 1992, J NEUROPHYSIOL, V68, P1487 SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367 SKUTT HR, 1967, ELECTROEN CLIN NEURO, V22, P275 SUGA N, 1985, J NEUROPHYSIOL, V53, P1109 TEMCHIN AN, 1988, J COMP PHYSIOL A, V163, P99, DOI 10.1007/BF00612001 UNO H, 1991, J COMP PHYSIOL A, V169, P231, DOI 10.1007/BF00215870 VATER M, 1992, J COMP PHYSIOL A, V171, P541 Vates GE, 1996, J COMP NEUROL, V366, P613, DOI 10.1002/(SICI)1096-9861(19960318)366:4<613::AID-CNE5>3.0.CO;2-7 WAGNER H, 1990, EUR J NEUROSCI, V2, P949, DOI 10.1111/j.1460-9568.1990.tb00007.x WILD JM, 1993, J COMP NEUROL, V337, P32 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 NR 61 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 41 EP 54 DI 10.1016/S0378-5955(98)00179-8 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100005 PM 9925015 ER PT J AU Munoz, DJB McFie, C Thorne, PR AF Munoz, DJB McFie, C Thorne, PR TI Modulation of cochlear blood flow by extracellular purines SO HEARING RESEARCH LA English DT Article DE adenosine; adenosine 5 '-triphosphate; cochlear blood flow; guinea pig cochlea; laser Doppler flowmetry; P1 receptor; P1 receptor antagonist; P2 receptor; P2 receptor antagonist; perilymph; purine; spiral ligament; stria vascularis; uridine 5 '-triphosphate ID AORTIC ENDOTHELIAL-CELLS; GUINEA-PIG COCHLEA; PHOSPHOLIPASE-C; RECEPTORS; ATP; GANGLION; VASCULATURE; COMPARTMENT; STIMULATION; PYRIMIDINES AB Humoral adenosine 5'-triphosphate (ATP), adenosine and uridine 5'-triphosphate (UTP) have been shown to have a role in controlling local blood flow in a variety of tissues. The presence of P1 and P2 receptors in the cochlea, and particularly the highly vascular region, the stria vascularis, implies a vasoactive role for these compounds in the inner ear. To test the effect of extracellular purines and pyrimidines on cochlear blood flow, cochleae from anaesthetised guinea-pigs were perfused with ATP (I mu M-10 mM), adenosine (I mu M-10 mM) and UTP (1 mM) in artificial perilymph while blood flow through the cochlea was measured. An acute perilymphatic perfusion technique was established via tubing placed through a hole in the bone overlying scala tympani of the first cochlear turn, with an outlet hole in scala vestibuli of the fourth turn. Blood flow was measured by placing the probe of a laser Doppler blood perfusion monitor on the bone overlying the stria vascularis in the third cochlear turn. ATP and adenosine produced a significant dose dependent increase in cochlear blood flow (28.8-229.0% and 35.8-258.1%, respectively). The effect of ATP (100 mu M) on cochlear blood flow was reduced in the presence of reactive blue 2 (1 mM) and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (1 mM). The blood flow response to adenosine (10 mu M) was reduced in the presence of 1,3-dimethylxanthine (theophylline, 100 mu M), but not with either 3,7-dimethyl-1-propargylxanthine (10 mu M) or 8-cyclopentyl-1,3-dipropylxanthine (10 mu M). UTP did not produce any change in the cochlear blood flow. To determine if the ATP effect was also mediated by adenosine derived from ectonucleotidase activity, the perilymphatic compartment was perfused with either ATP plus theophylline (100 mu M) or with the non-metabolisable form of ATP, adenosine 5'-O-(3-thiophosphate) (ATP gamma S, 100 mu M). The effect of ATP on cochlear blood flow was unaffected with the inclusion of theophylline while ATP gamma S produced an increase in cochlear blood flow similar to the one observed with ATP. These findings indicate that extracellular ATP and its metabolite adenosine have a modulatory role in cochlear blood flow possibly mediated by both P1 and P2 receptors. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Auckland, Sch Med, Dept Physiol, Auckland, New Zealand. Green Lane Hosp, Dept Audiol, Auckland 3, New Zealand. RP Thorne, PR (reprint author), Univ Auckland, Sch Med, Dept Physiol, Private Bag 92019, Auckland, New Zealand. CR Axellson A, 1968, ACTA OTO-LARYNGOL, V243, P1 AXELSSON A, 1987, HEARING RES, V31, P183, DOI 10.1016/0378-5955(87)90125-0 BURNSTOCK G, 1990, ANN NY ACAD SCI, V603, P31 CHAPAL J, 1983, EUR J PHARMACOL, V87, P423, DOI 10.1016/0014-2999(83)90081-X CUSACK NJ, 1990, ANN NY ACAD SCI, V603, P172 Drury AN, 1929, J PHYSIOL-LONDON, V68, P213 DUFF F, 1954, J PHYSIOL-LONDON, V125, P581 Ford MS, 1997, HEARING RES, V105, P130, DOI 10.1016/S0378-5955(96)00204-3 FURCHGOTT RF, 1989, FASEB J, V3, P2007 Green H, 1950, BIOL ACTIONS ADENINE HADDY FJ, 1968, PHYSIOL REV, V48, P688 HASEGAWA M, 1989, ACTA OTO-LARYNGOL, V107, P413, DOI 10.3109/00016488909127532 KENNEDY C, 1985, EUR J PHARMACOL, V107, P161, DOI 10.1016/0014-2999(85)90055-X KENNEDY C, 1985, EUR J PHARMACOL, V111, P49, DOI 10.1016/0014-2999(85)90112-8 KUCUK B, 1991, J ELECTRON MICROSC, V40, P193 Lamm K, 1996, Audiol Neurootol, V1, P148 LAURIKAINEN EA, 1993, HEARING RES, V64, P199, DOI 10.1016/0378-5955(93)90006-M LIU J, 1995, AUDITORY NEUROSCI, V1, P330 MCLAREN GM, 1993, HEARING RES, V71, P183, DOI 10.1016/0378-5955(93)90033-W MOCKETT BG, 1995, HEARING RES, V84, P177, DOI 10.1016/0378-5955(95)00024-X MOTTE S, 1993, CIRC RES, V72, P504 MUNOZ DJB, 1996, DRUG DEVELOP RES, V37, P183 MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 Nicholas RA, 1996, MOL PHARMACOL, V50, P224 OHLSEN KA, 1991, CIRC RES, V69, P509 PRAZMA J, 1981, ACTA OTO-LARYNGOL, V92, P459, DOI 10.3109/00016488109133284 QUIRK WS, 1988, HEARING RES, V32, P129 REN TY, 1993, ACTA OTO-LARYNGOL, V113, P146, DOI 10.3109/00016489309135783 REN TY, 1993, ANN OTO RHINOL LARYN, V102, P378 Ren TY, 1997, HEARING RES, V112, P87, DOI 10.1016/S0378-5955(97)00109-3 Spoendlin H, 1966, Acta Otolaryngol, V61, P423 Thorne PR, 1996, SEMIN NEUROSCI, V8, P233, DOI 10.1006/smns.1996.0030 UDDMAN R, 1982, ARCH OTO-RHINO-LARYN, V236, P7, DOI 10.1007/BF00464052 VIALS AJ, 1993, BRIT J PHARMACOL, V110, P1091 Vlajkovic SM, 1996, HEARING RES, V99, P31, DOI 10.1016/S0378-5955(96)00079-2 WILKINSON GF, 1993, BRIT J PHARMACOL, V108, P689 YAMASOBA T, 1993, ANN OTO RHINOL LARYN, V102, P873 ZAJTCHUK JT, 1979, OTOLARYNG HEAD NECK, V87, P268 NR 38 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 55 EP 61 DI 10.1016/S0378-5955(98)00161-0 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100006 PM 9925016 ER PT J AU Tennigkeit, F Schwarz, DWF Puil, E AF Tennigkeit, F Schwarz, DWF Puil, E TI Modulation of frequency selectivity by Na+- and K+-conductances in neurons of auditory thalamus SO HEARING RESEARCH LA English DT Article DE auditory thalamus; frequency analysis; membrane property ID LATERAL GENICULATE-NUCLEUS; ROOT GANGLION NEURONS; RELAY NEURONS; CALCIUM CURRENTS; SUBTHRESHOLD OSCILLATIONS; NEOCORTICAL NEURONS; RAT; ELECTROPHYSIOLOGY; MECHANISMS; RESONANCE AB In thalamic neurons, frequency-filter properties arise from intrinsic membrane properties which transform sensory inputs to thalamocortical signals. They also contribute to the tendency for the membrane to generate synchronized oscillations. We studied the frequency selectivities of thalamocortical neurons in the rat ventral medial geniculate body (MGBv) in vitro, using whole-cell recording techniques, sinewave (swept 'ZAP' or single) current inputs and pharmacological blockade of membrane currents. In a voltage range that was subthreshold to spike genesis, the frequency responses below 20 Hz were voltage-dependent; they exhibited lowpass characteristics at depolarized potentials and bandpass resonance (near 1 Hz) in the activation range (similar to -65 to -50 mV) of the low-threshold Ca2+-current (I-T). A temperature increase of > 10 degrees C in 3 neurons did not change this voltage-dependence and increased the frequency of maximum resonance to 2 Hz. The removal of extracellular Ca2+, its equimolar substitution with Mg2+ or blockade of I-T With Ni2+ (0.5 mM) completely blocked the resonance at hyperpolarized potentials or rest, as well as the low-threshold Ca2+-spike (LTS). Blockade of high threshold Ca2+-currents with Cd2+ (50 mu M) did not affect the resonance. These data implied that, like the LTS, an activation of TT produced the membrane resonance. An increased ZAP-current input evoked action potentials near the resonant frequency as well as Cd2+-sensitive high-threshold Ca2+-spikes at depolarized membrane potentials and very low frequencies. By blocking a persistent Na+-current (I-NaP), tetrodotoxin (300 nM) reduced the magnitude of the frequency response without affecting the frequency preference. The response was larger in amplitude, especially at frequencies lower than the maximum resonant frequency, when we used 4-aminopyridine (0.05-0.1 and 1-2 mM), Ba2+ (0.2 mM) or Cs+ (3 mM) to block voltage-dependent K+-currents. From these data, we suggest that A-type (I-A and I-AS) and inwardly rectifying (I-KIR) K+-currents modulate resonance, changing the quality of the lowpass filter function. We conclude that the generation of membrane resonance in MGBv neurons depends critically on I-T-activation while the quality of the frequency response is subject to modulation by voltage-dependent conductances. The frequency selectivities in MGBv may contribute to lowpass filter functions for auditory transmission during wakefulness and oscillations observed during sleep. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ British Columbia, Fac Med, Rotary Hearing Ctr, Dept Surg Otolaryngol, Vancouver, BC V6T 2B5, Canada. RP Schwarz, DWF (reprint author), Univ British Columbia, Fac Med, Rotary Hearing Ctr, Dept Surg Otolaryngol, 2211 Wesbrook Mall,ACU R153, Vancouver, BC V6T 2B5, Canada. CR COULTER DA, 1989, J PHYSIOL-LONDON, V414, P587 DOSSI RC, 1992, J PHYSIOL-LONDON, V447, P215 GUTFREUND Y, 1995, J PHYSIOL-LONDON, V483, P621 HERNANDEZCRUZ A, 1989, J NEUROPHYSIOL, V61, P1270 Huguenard JR, 1996, ANNU REV PHYSIOL, V58, P329, DOI 10.1146/annurev.physiol.58.1.329 HUTCHEON B, 1994, J NEUROPHYSIOL, V71, P583 Hutcheon B, 1996, J NEUROPHYSIOL, V76, P683 LAMPL I, 1993, J NEUROPHYSIOL, V70, P2181 LERESCHE N, 1991, J PHYSIOL-LONDON, V441, P155 MCCORMICK DA, 1992, PROG NEUROBIOL, V39, P337, DOI 10.1016/0301-0082(92)90012-4 MCCORMICK DA, 1991, J NEUROPHYSIOL, V66, P1176 MCCORMICK DA, 1990, NEUROSCIENCE, V39, P103, DOI 10.1016/0306-4522(90)90225-S MCCORMICK DA, 1990, J PHYSIOL-LONDON, V431, P291 MUKHERJEE P, 1995, J NEUROPHYSIOL, V74, P1222 PUIL E, 1994, J NEUROPHYSIOL, V71, P575 PUIL E, 1989, J NEUROPHYSIOL, V62, P810 PUIL E, 1986, J NEUROPHYSIOL, V55, P995 SOLTESZ I, 1991, J PHYSIOL-LONDON, V441, P157 STERIADE M, 1985, J NEUROPHYSIOL, V54, P1473 Steriade M, 1990, THALAMIC OSCILLATION STORM JF, 1990, PROG BRAIN RES, V83, P161 STROHMANN B, 1994, J NEUROPHYSIOL, V71, P1361 STROHMANN B, 1995, ACTA OTO-LARYNGOL, V115, P168, DOI 10.3109/00016489509139284 SUTOR B, 1993, NEUROSCI LETT, V157, P62, DOI 10.1016/0304-3940(93)90643-Y TENNIGKEIT F, 1994, CAN J PHYSL PHARM, V72 Tennigkeit F, 1998, HEARING RES, V122, P18, DOI 10.1016/S0378-5955(98)00083-5 Tennigkeit F, 1997, J NEUROPHYSIOL, V78, P591 Tennigkeit F, 1998, NEUROSCIENCE, V83, P1063, DOI 10.1016/S0306-4522(97)00458-2 Tennigkeit F, 1996, J NEUROPHYSIOL, V76, P3597 VONKROSIGK M, 1993, SCIENCE, V261, P361, DOI 10.1126/science.8392750 NR 30 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 77 EP 85 DI 10.1016/S0378-5955(98)00174-9 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100008 PM 9925018 ER PT J AU Walton, J Orlando, M Burkard, R AF Walton, J Orlando, M Burkard, R TI Auditory brainstem response forward-masking recovery functions in older humans with normal hearing SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; temporal resolution; recovery; forward masking; human ID AGE-RELATED-CHANGES; EVOKED POTENTIALS; STEM RESPONSE; GAP DETECTION; GERBILS; YOUNG; ENHANCEMENT; LISTENERS; ADULTS; MICE AB We investigated the auditory brainstem response (ABR) recovery from forward masking using toneburst maskers and probes. Two subject groups matched for hearing thresholds were evaluated: normal-hearing young adults (21-40 years) and older subjects (63-77 years) with normal audiometric thresholds. Stimuli consisted of 1, 4 and 8 kHz tonebursts, with 2-4 cycle rise/fall time and no plateau. Forward maskers were tonebursts of the same frequency, with a 5 ms rise/fall time and a 20 ms plateau time. Probes were presented at 40 dB above threshold, and the forward masker was adjusted to a level that just eliminated the ABR to the 40 dB sensation level toneburst when the probe onset occurred at masker offset. Forward-masker intervals varied from 2 to 64 ms. ABR wave V latencies were similar for the young and old age groups regardless of toneburst frequency. Under forward-masking conditions, wave V latency was prolonged for the shorter intervals, and recovered to baseline latency by 64 ms. The forward-masker recovery functions were nearly identical for the two age groups for the 1 kHz toneburst. In contrast, there were clear differences in the recovery functions for the two age groups for the 4 and 8 kHz tonebursts. Specifically, the mean latency shift was greater for the aged group for forward-masker intervals of 16 ms or less. The two age groups showed identical latency shifts for longer forward-masker intervals. These data demonstrate prolonged recovery from forward masking in older human subjects. As these subjects had audiometric thresholds within normal limits, one plausible interpretation of this finding is that the prolonged recovery time is a manifestation of an aging effect on the central auditory nervous system rather than the periphery. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Rochester, Med Ctr, Dept Otolaryngol, Otolryngol Div, Rochester, NY 14642 USA. SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY USA. SUNY Buffalo, Dept Commun Disorders, Buffalo, NY USA. SUNY Buffalo, Dept Sci, Buffalo, NY USA. SUNY Buffalo, Dept Otolaryngol, Buffalo, NY USA. RP Walton, J (reprint author), Univ Rochester, Med Ctr, Dept Otolaryngol, Otolryngol Div, POB 629, Rochester, NY 14642 USA. EM jwalton@cc.urmc.rochester.edu CR ADAMS PF, 1991, VITAL HLTH STAT, V10, P184 ANANTHANARAYAN AK, 1987, ELECTROEN CLIN NEURO, V66, P427 ANANTHANARAYAN AK, 1983, ELECTROEN CLIN NEURO, V55, P223, DOI 10.1016/0013-4694(83)90191-8 BOETTCHER FA, 1993, HEARING RES, V71, P137, DOI 10.1016/0378-5955(93)90029-Z Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 BURKARD R, 1993, J ACOUST SOC AM, V94, P2441, DOI 10.1121/1.407465 BURKARD R, 1987, J ACOUST SOC AM, V81, P1064, DOI 10.1121/1.394678 EHRET G, 1974, NATURWISSENSCHAFTEN, V61, P506 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N KRAMER SJ, 1982, HEARING RES, V8, P317, DOI 10.1016/0378-5955(82)90022-3 KRAMER SJ, 1982, J ACOUST SOC AM, V72, P795, DOI 10.1121/1.388186 LASKY RE, 1982, HEARING RES, V6, P315, DOI 10.1016/0378-5955(82)90063-6 LASKY RE, 1993, EAR HEARING, V14, P95, DOI 10.1097/00003446-199304000-00004 LUTMAN ME, 1991, ACTA OTO-LARYNGOL, P120 Rohlf FJ, 1995, BIOMETRY SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 SNELL KB, 1995, ASS RES OT ABSTR, V18, P54 TYLER RS, 1982, J ACOUST SOC AM, V72, P740, DOI 10.1121/1.388254 WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J Walton JP, 1998, J NEUROSCI, V18, P2764 Willott J. F., 1991, AGING AUDITORY SYSTE NR 25 TC 20 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 86 EP 94 DI 10.1016/S0378-5955(98)00175-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100009 PM 9925019 ER PT J AU Seebacher, T Beitz, E Kumagami, H Wild, K Ruppersberg, JP Schultz, JE AF Seebacher, T Beitz, E Kumagami, H Wild, K Ruppersberg, JP Schultz, JE TI Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear SO HEARING RESEARCH LA English DT Article DE guanylyl cyclase; inner ear; cochlea; vestibulum; endolymph ID NATRIURETIC-PEPTIDE RECEPTOR; NITRIC-OXIDE SYNTHASE; DEPENDENT PROTEIN-KINASE; GUINEA-PIG COCHLEA; MOLECULAR-CLONING; SENSORY NEURONS; BLOOD-FLOW; SUBUNIT; CELLS; FORM AB Membrane-bound guanylyl cyclases (GCs) are peptide hormone receptors whereas the cytosolic isoforms are receptors for nitric oxide. In the inner ear, the membrane-bound GCs may be involved in the regulation of fluid homeostasis and the cytosolic forms possibly play a role in signal processing and regulation of local blood flow. In this comprehensive study, we examined, qualitatively and quantitatively, the transcription pattern of all known GC isoforms in the inner ear from rat by RT-PCR. The tissues used were endolymphatic sac, stria vascularis, organ of Corti, organ of Corti outer hair cells, cochlear nerve, Reissner's membrane, vestibular dark cells, and vestibular sensory cells. We show that multiple particulate (GC-A, GC-B, GC-D, GC-E, GC-F and GC-G) and several subunits of the heterodimeric cytosolic GCs (alpha 1, alpha 2, beta 1 and beta 2) are expressed, albeit at highly different levels. GC-C was not found. GC-A and the soluble subunits al and pi were transcribed ubiquitously. GC-B was present in all tissues except stria vascularis, which contained GC-A and traces of GC-E and GC-G. GC-B was by far the predominant membrane-bound isoform in the organ of Corti (86%), Reissner's membrane (75%) and the vestibulum (80%). Surprisingly, GC-E, a retinal isoform, was detected in significant amounts in the cochlear nerve (8%) and in the organ of Corti (4%). Although the cytosolic GC is a heterodimer composed of an alpha and a beta subunit, the mRNA transcription of these subunits was not stoichiometric. Particularly in the vestibulum, the transcription of the pr subunits was at least four-fold higher than of the alpha 1 subunit. The data are compatible with earlier suggestions that membrane receptor GCs may be involved in the control of inner ear electrolyte and fluid composition whereas NO-stimulated GC isoforms mainly participate in the regulation of blood flow and supporting cell physiology. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Tubingen, Inst Pharmazeut, D-72076 Tubingen, Germany. Univ Tubingen, Inst Physiol, D-72076 Tubingen, Germany. RP Schultz, JE (reprint author), Univ Tubingen, Inst Pharmazeut, Morgenstelle 8, D-72076 Tubingen, Germany. CR Baude EJ, 1997, J BIOL CHEM, V272, P16035, DOI 10.1074/jbc.272.25.16035 BEHRENDS S, 1995, J BIOL CHEM, V270, P21109 CHINKERS M, 1989, NATURE, V338, P78, DOI 10.1038/338078a0 Fessenden JD, 1998, HEARING RES, V118, P168, DOI 10.1016/S0378-5955(98)00027-6 Fessenden JD, 1997, J HISTOCHEM CYTOCHEM, V45, P1401 FULLE HJ, 1995, P NATL ACAD SCI USA, V92, P3571, DOI 10.1073/pnas.92.8.3571 Furuta H, 1995, HEARING RES, V92, P78, DOI 10.1016/0378-5955(95)00203-0 GARBERS DL, 1994, J BIOL CHEM, V269, P30741 GIUILI G, 1993, HUM GENET, V91, P257 GIUILI G, 1992, FEBS LETT, V304, P83, DOI 10.1016/0014-5793(92)80594-7 Gosepath K, 1997, BRAIN RES, V747, P26, DOI 10.1016/S0006-8993(96)01149-3 Gupta G, 1997, J CLIN INVEST, V100, P1488, DOI 10.1172/JCI119670 HARPER A, 1994, OTOLARYNG HEAD NECK, V111, P430 HARTENECK C, 1991, FEBS LETT, V292, P217, DOI 10.1016/0014-5793(91)80871-Y KOCH T, 1992, HEARING RES, V63, P197, DOI 10.1016/0378-5955(92)90085-2 Kojima M, 1995, BIOCHEM BIOPH RES CO, V217, P993, DOI 10.1006/bbrc.1995.2868 Krause G, 1997, HEARING RES, V110, P95, DOI 10.1016/S0378-5955(97)00064-6 Kumar R, 1997, HYPERTENSION, V29, P414 LAMBRECHT HG, 1991, EMBO J, V10, P793 MATSUOKA I, 1995, BIOCHEM BIOPH RES CO, V216, P242, DOI 10.1006/bbrc.1995.2616 ZUMGOTTESBERGE AMM, 1991, HEARING RES, V56, P86 MIKAMI Y, 1995, CURR EYE RES, V14, P391, DOI 10.3109/02713689508999937 NAKANE M, 1988, BIOCHEM BIOPH RES CO, V157, P1139, DOI 10.1016/S0006-291X(88)80992-6 NAKANE M, 1990, J BIOL CHEM, V265, P16841 Pfeifer A, 1996, SCIENCE, V274, P2082, DOI 10.1126/science.274.5295.2082 SCHULZ S, 1990, CELL, V63, P941, DOI 10.1016/0092-8674(90)90497-3 SCHULZ S, 1997, J BIOL CHEM, V272, P1032 SCHULZ S, 1989, CELL, V58, P1155, DOI 10.1016/0092-8674(89)90513-8 Seebacher T, 1996, ELECTROPHORESIS, V17, P1573, DOI 10.1002/elps.1150171013 Suzuki M, 1997, NEUROREPORT, V8, P439, DOI 10.1097/00001756-199701200-00013 Yamane H, 1997, HEARING RES, V108, P65, DOI 10.1016/S0378-5955(97)00041-5 YANG RB, 1995, P NATL ACAD SCI USA, V92, P602, DOI 10.1073/pnas.92.2.602 Yu S, 1997, P NATL ACAD SCI USA, V94, P3384, DOI 10.1073/pnas.94.7.3384 YUEN PST, 1990, BIOCHEMISTRY-US, V29, P10872, DOI 10.1021/bi00501a002 ZDANSKI CJ, 1994, HEARING RES, V79, P39, DOI 10.1016/0378-5955(94)90125-2 ZUBIN P, 1995, J BIOCHEM-TOKYO, V118, P418 NR 36 TC 19 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 95 EP 102 DI 10.1016/S0378-5955(98)00176-2 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100010 PM 9925020 ER PT J AU Nakayama, M Caspary, DM Konrad, HR Milbrandt, JC Helfert, RH AF Nakayama, M Caspary, DM Konrad, HR Milbrandt, JC Helfert, RH TI Age-related changes in [H-3]strychnine binding in the vestibular nuclei of rats SO HEARING RESEARCH LA English DT Article DE aging; brain; glycine receptor; receptor autoradiography ID GLYCINE RECEPTOR; AUTORADIOGRAPHIC LOCALIZATION; COCHLEAR NUCLEUS; SUBSTANTIA-NIGRA; H-3 STRYCHNINE; NEURONS; BRAIN; TAURINE; MOUSE; SITES AB Glycine plays an important role as a neurotransmitter in the four vestibular nuclei (VN). The objective of this study was to determine if the levels of glycine-receptor binding in the VN change as a function of age. Quantitative receptor autoradiography was performed on brainstem sections from three age groups (3, 18 and 26 months) of Fischer 344 rats to assess binding in the VN. Glycine receptors were localized using [H-3]strychnine binding;. Strychnine binding declined monotonically with increasing age, such that the level of strychnine binding in each of the VN in the 28-month-old animals was approximately one-half that in the 3-month-olds. The age-related decrease in levels of strychnine binding suggest altered glycinergic function in the VN, which may in turn contribute to disturbances in equilibrium observed in the elderly. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Aichi Med Univ, Dept Otolaryngol, Aichi 48011, Japan. So Illinois Univ, Sch Med, Dept Surg, Div Otolaryngol, Springfield, IL 62794 USA. So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. RP Helfert, RH (reprint author), Aichi Med Univ, Dept Otolaryngol, Aichi 48011, Japan. EM bhelfert@siumed.edu CR BANAYSCHWARTZ M, 1989, NEUROCHEM RES, V14, P563, DOI 10.1007/BF00964919 FROSTHOLM A, 1985, BRAIN RES BULL, V15, P473, DOI 10.1016/0361-9230(85)90038-3 FURUYA N, 1992, ANN NY ACAD SCI, V22, P594 HUNTER C, 1989, BRAIN RES, V482, P247, DOI 10.1016/0006-8993(89)91187-6 Krenning J, 1998, LARYNGOSCOPE, V108, P26, DOI 10.1097/00005537-199801000-00005 LAPEYRE PNM, 1995, NEUROSCI LETT, V188, P155, DOI 10.1016/0304-3940(95)11418-V Lopez I, 1997, J VESTIBUL RES-EQUIL, V7, P77 MARKHAM CH, 1996, DISORDERS VESTIBULAR, P48 MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T NAKAYAMA M, 1994, OTOLARYNG HEAD NECK, V111, P799, DOI 10.1016/S0194-5998(94)70571-2 PAN HS, 1983, J NEUROSCI, V3, P1189 PROBST A, 1986, NEUROSCIENCE, V17, P11, DOI 10.1016/0306-4522(86)90222-8 SATO K, 1991, NEUROSCIENCE, V43, P381, DOI 10.1016/0306-4522(91)90302-5 Sharpe James A., 1993, P15 SHEPARD NT, 1996, PRACTICAL MANAGEMENT, P1 SMITH PF, 1991, NEUROSCI LETT, V121, P244, DOI 10.1016/0304-3940(91)90695-P SPENCER RF, 1992, ANN NY ACAD SCI, V656, P602, DOI 10.1111/j.1749-6632.1992.tb25239.x STEIN BM, 1967, AM J ANAT, V120, P281, DOI 10.1002/aja.1001200205 TATTON WG, 1991, NEUROSCI LETT, V131, P179, DOI 10.1016/0304-3940(91)90608-V WALBERG F, 1990, EXP BRAIN RES, V79, P547 Willott JF, 1997, J COMP NEUROL, V385, P405 ZARBIN MA, 1981, J NEUROSCI, V1, P532 NR 22 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 103 EP 107 DI 10.1016/S0378-5955(98)00177-4 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100011 PM 9925021 ER PT J AU Rubinstein, JT Wilson, BS Finley, CC Abbas, PJ AF Rubinstein, JT Wilson, BS Finley, CC Abbas, PJ TI Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation SO HEARING RESEARCH LA English DT Article DE cochlear implant; stochastic resonance; electrical stimulation; simulation; auditory nerve ID COCHLEAR IMPLANTS; INNER-EAR; DISCHARGES; NOISE; MODEL; AXON AB We describe a novel signal processing strategy for cochlear implants designed to emphasize stochastic independence across the excited neural population. The strategy is based on the observation that high rate pulse trains may produce random spike patterns in auditory nerve fibers that are statistically similar to those produced by spontaneous activity in the normal cochlea, We call this activity 'pseudospontaneous'. A supercomputer-based computational model of a population of auditory nerve fibers suggests that different average rates of pseudospontaneous activity can be created by varying the stimulus current of a fixed-amplitude, high-rate pulse train, e.g. 5000 pps. Electrically-evoked compound action potentials recorded in a human cochlear implant subject are consistent with the hypothesis that such a stimulus can desynchronize the fiber population. This desynchronization may enhance neural representation of temporal detail and dynamic range with a cochlear implant and eliminate a major difference between acoustic and electric hearing. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Univ Iowa, Dept Otolaryngol, Iowa City, IA 52242 USA. Univ Iowa, Dept Physiol, Iowa City, IA 52242 USA. Univ Iowa, Dept Biophys, Iowa City, IA 52242 USA. Res Triangle Inst, Ctr Auditory Prosthesis Res, Res Triangle Pk, NC 27709 USA. Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA. Univ Iowa, Dept Otolaryngol, Iowa City, IA 52242 USA. RP Rubinstein, JT (reprint author), Univ Iowa, Dept Otolaryngol, 200 Hawkins Dr, Iowa City, IA 52242 USA. EM jay@earpower.oto.uiowa.edu CR ABBAS PJ, 1997, NEUROPHYSIOLOGIC EFF COLLINS JJ, 1995, NATURE, V376, P236, DOI 10.1038/376236a0 DYNES SBC, 1992, HEARING RES, V58, P79, DOI 10.1016/0378-5955(92)90011-B GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 JOHNSON DH, 1976, BIOPHYS J, V16, P719 Johnson DH, 1996, J COMPUT NEUROSCI, V3, P275, DOI 10.1007/BF00161089 Kiang NY, 1970, SENSORINEURAL HEARIN, P241 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 MATSUOKA AJ, 1997, 1997 C IMPL AUD PROS MILLER CM, 1997, NEUROPHYSIOLOGIC EFF Morse RP, 1996, NAT MED, V2, P928, DOI 10.1038/nm0896-928 MOTZ H, 1987, PERCEPTION, V16, P777, DOI 10.1068/p160777 Moxon E.C., 1971, THESIS MIT CAMBRIDGE Parnas BR, 1996, IEEE T BIO-MED ENG, V43, P313, DOI 10.1109/10.486289 RUBINSTEIN JT, 1993, IEEE T BIO-MED ENG, V40, P654, DOI 10.1109/10.237695 RUBINSTEIN JT, 1997, NEUROPHYSIOLOGIC EFF RUBINSTEIN JT, 1995, BIOPHYS J, V68, P779 RUBINSTEIN JT, 1991, BIOPHYS J, V60, P538 Rushton WAH, 1934, J PHYSIOL-LONDON, V82, P332 SANTOS-SACCHI J, 1993, J NEUROSCI, V13, P3599 Schoonhoven R, 1997, HEARING RES, V113, P247, DOI 10.1016/S0378-5955(97)00149-4 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 WILSON B, 1997, SPEECH PROCESSORS AU WILSON BS, 1994, SPEECH PROCESSORS AU Wilson BS, 1997, BRIT J AUDIOL, V31, P205 Wilson BS, 1997, AM J OTOL, V18, pS30 NR 30 TC 159 Z9 161 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 108 EP 118 DI 10.1016/S0378-5955(98)00185-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100012 PM 9925022 ER PT J AU Eddins, AC Zuskov, M Salvi, RJ AF Eddins, AC Zuskov, M Salvi, RJ TI Changes in distortion product otoacoustic emissions during prolonged noise exposure SO HEARING RESEARCH LA English DT Article DE distortion product; otoacoustic emission; noise-induced hearing loss; chinchilla ID TEMPORARY THRESHOLD SHIFTS; HAIR CELL LOSS; HIGH-FREQUENCY NOISE; 2 DISCRETE SOURCES; HEARING-LOSS; CHINCHILLA; HUMANS; INNER; VULNERABILITY; REDUCTION AB The aim of this study was to evaluate the reduction in 2f(1)-f(2) distortion product otoacoustic emission (DPOAE) amplitude resulting from prolonged noise exposures. A group of five chinchillas was exposed continuously to an octave-band noise centered at 4.0 kHz for a total of 42 days, 6 days at each of seven exposure levels. Exposure level increased in 8-dB steps from 48 to 96 dB SPL. DPOAE input-output (I/O) functions were measured at octave intervals over a range of primary tone fi frequencies between 1.2 and 9.6 kHz. Measurements were obtained (1) pre-exposure, (2) during days 3-6 of each 6-day exposure, and (3) 3 weeks after the final exposure. Continuous noise exposure caused a reduction in DPOAE amplitude that was greatest at f(2) frequencies within and above (3.4-6.8 kHz) the octave-band noise exposure. For these f(2) frequencies, DPOAE amplitudes decreased as exposure level increased up to approximately 72-80 dB SPL; higher exposure levels failed to cause any further reduction in DPOAE amplitude. The noise level at which DPOAE amplitude began to decrease was approximately 50 dB SPL. Above this critical level, DPOAE amplitude decreased 1.3 dB for every dB increase in noise level up to approximately 75 dB SPL. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Indiana Univ, Dept Speech & Hearing Sci, Auditory Physiol Lab, Bloomington, IN 47405 USA. SUNY Buffalo, Dept Commun Disorders & Sci, Hearing Res Lab, Buffalo, NY 14260 USA. RP Eddins, AC (reprint author), Indiana Univ, Dept Speech & Hearing Sci, Auditory Physiol Lab, Bloomington, IN 47405 USA. CR ANDERSON SD, 1979, ARCH OTO-RHINO-LARYN, V224, P47, DOI 10.1007/BF00455223 BENITEZ LD, 1972, J ACOUST SOC AM, V52, P1115, DOI 10.1121/1.1913222 BOETTCHER FA, 1992, HEARING RES, V62, P217, DOI 10.1016/0378-5955(92)90189-T Boettcher FA, 1995, J ACOUST SOC AM, V98, P3215, DOI 10.1121/1.413811 Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 BOHNE BA, 1987, HEARING RES, V29, P251, DOI 10.1016/0378-5955(87)90172-9 Bohne B.A., 1976, EFFECTS NOISE HEARIN, P41 BOHNE BA, 1976, ANN OTO RHINOL LARYN, V85, P711 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 CARDER HM, 1971, AM ACAD OPTHAMOL OTO, V75, P1346 CARDER HM, 1972, J SPEECH HEAR RES, V15, P603 DAVIS RI, 1989, HEARING RES, V41, P1, DOI 10.1016/0378-5955(89)90173-1 Franceschini V., 1991, Theoretical and Computational Fluid Dynamics, V2, DOI 10.1007/BF00271636 FROYMOVICH O, 1995, J ACOUST SOC AM, V97, P3021, DOI 10.1121/1.411867 HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 LIBERMAN MC, 1986, BASIC APPL ASPECTS N, P163 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 Mills J. H., 1976, EFFECTS NOISE HEARIN, P265 MILLS JH, 1979, J ACOUST SOC AM, V65, P1238, DOI 10.1121/1.382791 MILLS JH, 1972, J SPEECH HEAR RES, V15, P624 NORTON SJ, 1991, HEARING RES, V51, P73, DOI 10.1016/0378-5955(91)90008-W NORTON ST, 1990, MECH BIOPHYSICS HEAR POPELKA GR, 1993, HEARING RES, V71, P12, DOI 10.1016/0378-5955(93)90016-T POWERS NL, 1995, NATURE, V375, P585, DOI 10.1038/375585a0 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1367 SIEGEL JH, 1982, NEW PERSPECTIVES NOI, P137 SNYDER DL, 1994, LAB ANIMAL, V23, P42 Spoendlin H, 1976, EFFECTS NOISE HEARIN, P69 SUBRAMANIAM M, 1994, HEARING RES, V74, P204, DOI 10.1016/0378-5955(94)90188-0 SUTTON LA, 1994, HEARING RES, V75, P161, DOI 10.1016/0378-5955(94)90067-1 TAYLOR W, 1976, NOISE LEVELS HEARING Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 ZUREK PM, 1982, J ACOUST SOC AM, V72, P774, DOI 10.1121/1.388258 NR 39 TC 18 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 119 EP 128 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100013 PM 9925023 ER PT J AU Ozturan, O Oysu, C AF Ozturan, O Oysu, C TI Influence of spontaneous otoacoustic emissions on distortion product otoacoustic emission amplitudes SO HEARING RESEARCH LA English DT Article DE spontaneous otoacoustic emission; distortion product otoacoustic emission; normal-hearing human ID NORMALLY HEARING SUBJECTS; ACOUSTIC DISTORTION; HUMAN EARS; 2F1-F2; FREQUENCY; COCHLEA; ADULTS; TONES AB Although the influence of the levels and ratios of the primary stimulus on the amplitude of distortion product otoacoustic emissions (DPOAEs) has been studied intensely, the influence of the presence of spontaneous otoacoustic emissions (SOAEs) has been investigated less thoroughly. The present investigation analysed whether the unilateral presence of 58 SOAEs in 43 normal-hearing adults was related to larger DPOAEs in the ear with SOAEs compared to the contralateral ear having no SOAEs. The study was designed such that the only factor that could influence the amplitude of DPOAEs was the presence of SOAEs. Input/output (IIO) functions were collected in response to primary tones that were presented in 5-dB steps from 70 to 40 dB SPL at the frequency of the unilaterally recorded SOAE of each subject. The primary outcome was the demonstration of statistically significant (P < 0.05) larger DPOAEs in ears exhibiting SOAEs than in ears without measurable SOAEs, except at the highest stimulus level of 70 dB SPL. These results suggest that SOAEs play an additive role in the measurement of DPOAEs. The enhancing effect of the unilateral presence of SOAEs on DPOAEs was statistically significant for 65 dB SPL and lower levels of primary tones. The authors speculate that passive cochlear properties begin to participate in the generation of DPOAEs at primary-stimulus levels greater than 65 dB SPL. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Inonu Univ, Fac Med, Turgut Ozal Med Ctr, Dept Otolaryngol, Malatya 44100, Turkey. Istanbul Med Fac, Dept Otolaryngol, Istanbul, Turkey. RP Ozturan, O (reprint author), Inonu Univ, Fac Med, Turgut Ozal Med Ctr, Dept Otolaryngol, Malatya 44100, Turkey. RI OZTURAN, ORHAN/B-4984-2015 OI OZTURAN, ORHAN/0000-0002-6129-8627 CR BONFILS P, 1989, LARYNGOSCOPE, V99, P752 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 BURNS EM, 1984, HEARING RES, V16, P271, DOI 10.1016/0378-5955(84)90116-3 CIANFRONE M, 1990, ADV AUDIOL, V7, P126 DANIEL WW, 1987, BIOSTATISTICS FDN AN, P230 FRITZE W, 1985, ARCH OTO-RHINO-LARYN, V242, P43, DOI 10.1007/BF00464404 FURST M, 1988, J ACOUST SOC AM, V84, P215, DOI 10.1121/1.396968 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 KEMP DT, 1990, EAR HEARING, V11, P93 KOK MR, 1993, HEARING RES, V69, P115, DOI 10.1016/0378-5955(93)90099-M KULAWIEC JT, 1995, EAR HEARING, V16, P515 LONSBURYMARTIN BL, 1991, J ACOUST SOC AM, V89, P1749, DOI 10.1121/1.401009 LONSBURYMARTIN BL, 1990, ANN OTO RHINOL LARYN, V99, P15 LONSBURYMARTIN BL, 1993, EAR HEARING, V1, P11 LUTMAN ME, 1994, ADV OTOACOUSTIC EMIS, V1, P36 MARTIN GK, 1990, EAR HEARING, V11, P106 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 MOULIN A, 1993, HEARING RES, V65, P216, DOI 10.1016/0378-5955(93)90215-M MUSIEK FE, 1994, AM J OTOL, V15, P21 Norrix LW, 1996, J ACOUST SOC AM, V100, P945, DOI 10.1121/1.416206 NORTON SJ, 1993, EAR HEARING, V14, P64, DOI 10.1097/00003446-199302000-00009 NORTON SJ, 1990, MECH BIOPHYSICS HEAR, P217 Osterhammel PA, 1996, SCAND AUDIOL, V25, P187, DOI 10.3109/01050399609048003 OSTERHAMMEL PA, 1993, SCAND AUDIOL, V22, P111, DOI 10.3109/01050399309046026 Penner MJ, 1997, HEARING RES, V103, P28, DOI 10.1016/S0378-5955(96)00162-1 PENNER MJ, 1993, HEARING RES, V68, P229, DOI 10.1016/0378-5955(93)90126-L PLINKERT PK, 1994, EUR ARCH OTO-RHINO-L, V251, P95 Prieve BA, 1997, J ACOUST SOC AM, V102, P2871, DOI 10.1121/1.420342 PUJOL R, 1991, HEARING RES, V57, P129, DOI 10.1016/0378-5955(91)90082-K RYAN BF, 1994, MINITAB HDB, P227 SININGER YS, 1993, ADV OTOLARYNGOL HEAD, V7, P247 STRICKLAND AE, 1984, J ACOUST SOC AM S1, V75, P82 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 WIER CC, 1988, J ACOUST SOC AM, V84, P230, DOI 10.1121/1.396970 NR 40 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 129 EP 136 DI 10.1016/S0378-5955(98)00184-1 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100014 PM 9925024 ER PT J AU Ruckenstein, MJ Hu, L AF Ruckenstein, MJ Hu, L TI Antibody deposition in the stria vascularis of the MRL-Fas(lpr) mouse SO HEARING RESEARCH LA English DT Article DE autoimmune; cochlea; systemic lupus erythematosus; antibody; stria vascularis ID INNER-EAR DISEASE; MURINE LUPUS; MODELS; LPR AB The MRL-Fas(lpr) mouse, a model of multisystemic, organ non-specific autoimmune disease, has been proposed as a model of immune-mediated inner ear disease. Preliminary studies indicate that it develops cochlear pathology focused in the stria vascularis including intracellular edema and degeneration which develops in the absence of an inflammatory infiltrate but in the presence of antibody deposition. It was thus hypothesized that the antibodies found in the stria were mediating a direct pathologic effect on this structure, without recruiting classical inflammatory mediators. It was further hypothesized that the antibodies deposited within the stria would be derived from the non-complement fixing isotypes and subclasses, which are known to be able to mediate direct pathologic effects on target tissues. This study utilized immunohistologic techniques to identify the antibody isotypes and subclasses deposited within the stria vascularis of the MRL-Fas(lpr) mouse. Results indicate that all antibody isotypes and subclasses can be identified within the stria vascularis in the absence of complement. Thus, antibody deposition was not restricted to non-complement fixing antibodies. While it is possible that antibodies are mediating direct pathologic effects within the stria, the non-specific nature of the antibody deposition may indicate that these antibodies are not responsible for the observed pathology. Rather, other mechanisms, such as metabolic and genetic etiologies, must also be considered. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Univ Tennessee, Dept Otolaryngol Head & Neck Surg, Memphis, TN USA. RP Ruckenstein, MJ (reprint author), Hosp Univ Penn, Dept Otorhinolaryngol Head & Neck Surg, 3400 Spruce St,5 Ravdin, Philadelphia, PA 19104 USA. CR COHEN PL, 1991, ANNU REV IMMUNOL, V9, P243, DOI 10.1146/annurev.iy.09.040191.001331 Kusakari C, 1992, Ann Otol Rhinol Laryngol Suppl, V157, P82 LOCKSHIN M D, 1990, Current Opinion in Rheumatology, V2, P708 NAIR TS, 1995, HEARING RES, V83, P101, DOI 10.1016/0378-5955(94)00194-U Nariuchi H, 1994, Acta Otolaryngol Suppl, V514, P127 Peng SL, 1997, ANN NY ACAD SCI, V815, P128, DOI 10.1111/j.1749-6632.1997.tb52055.x RUCKENSTEIN MJ, 1996, ANN M ASS RES OT ST RUCKENSTEIN MJ, 1991, J OTOLARYNGOL, V20, P196 RUCKENSTEIN MJ, 1993, ACTA OTO-LARYNGOL, V113, P160, DOI 10.3109/00016489309135785 RUCKENSTEIN MJ, 1995, ANN M ASS RES OT ST SCHUKNECHT HF, 1991, ADV OTO-RHINO-LARYNG, V46, P50 SCHUMACHER HR, 1985, LAB DIAGNOSTIC PROCE, P329 SCHUR PH, 1987, ANN ALLERGY, V58, P89 SPIEGELBERG HL, 1989, INT ARCH ALLER A IMM, V90, P22 STEPHENS SDG, 1982, AUDIOLOGY, V21, P128 THEOFILOPOULOS AN, 1985, ADV IMMUNOL, V37, P269, DOI 10.1016/S0065-2776(08)60342-9 THEOFILOPOULOS AN, 1989, ADV IMMUNOL, V46, P61 TRUNE DR, 1989, HEARING RES, V38, P57, DOI 10.1016/0378-5955(89)90128-7 WU JG, 1994, P NATL ACAD SCI USA, V91, P2344, DOI 10.1073/pnas.91.6.2344 WU JG, 1993, J EXP MED, V178, P461, DOI 10.1084/jem.178.2.461 NR 20 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 137 EP 142 DI 10.1016/S0378-5955(98)00189-0 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100015 PM 9925025 ER PT J AU Culling, JF AF Culling, JF TI The existence region of Huggins' pitch SO HEARING RESEARCH LA English DT Article DE binaural; dichotic; pitch; Huggins ID HIGH-FREQUENCIES AB Huggins' pitch (HP) can be heard when listening to white noise which is diotic at all frequencies except for a narrow band over which the interaural phase of the noise changes progressively through 360 degrees. The detectability (d') of HP was measured for 11 center frequencies between 100 Hz and 3200 Hz in half-octave steps. The listeners' task was to discriminate HP stimuli from diotic noises in a single-interval, YES/NO task. Detectability was simultaneously compared with that of pure tones presented interaurally out of phase and masked by diotic white noise (NoS pi). The levels of the tones were set so that they would fall below masked threshold monaurally at the higher frequencies tested. All four listeners showed similar patterns of detectability at high frequencies for both the Huggins-pitch stimuli and the masked tones. The results showed that HP can be detected at higher frequencies than previously reported; all four listeners could detect both the tones and HP to some extent at 2256 Hz and one listener could also detect HP at 3200 Hz. The results demonstrate that both HP and NoS pi stimuli show a sharp drop in detectability at around 1500 Hz, but remain detectable at higher frequencies. (C) 1999 Elsevier Science B.V. All rights reserved. C1 Univ Oxford, Physiol Lab, Oxford OX1 3PT, England. RP Culling, JF (reprint author), Univ Wales Coll Cardiff, Sch Psychol, Cardiff CF1 3YG, S Glam, Wales. RI Culling, John/D-1468-2009 CR BERNSTEIN LR, 1992, J ACOUST SOC AM, V91, P306, DOI 10.1121/1.402773 CRAMER EM, 1958, J ACOUST SOC AM, V30, P413, DOI 10.1121/1.1909628 Culling JF, 1998, J ACOUST SOC AM, V103, P3509, DOI 10.1121/1.423059 Culling JF, 1998, J ACOUST SOC AM, V103, P3527, DOI 10.1121/1.423060 Durlach NI, 1978, HDB PERCEPTION DURLACH NI, 1962, J ACOUST SOC AM, V34, P1096, DOI 10.1121/1.1918251 DURLACH NI, 1964, J ACOUST SOC AM, V36, P577 FOURCIN AJ, 1958, 1126 SIGN RES DEV ES FOURCIN AJ, 1970, FREQUENCY ANAL PERIO KLEIN MA, 1981, J ACOUST SOC AM, V70, P51, DOI 10.1121/1.386581 MCFADDEN D, 1978, J ACOUST SOC AM, V63, P1120, DOI 10.1121/1.381820 MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861 PATTERSON R, 1988, SPIRAL VOS FINAL R A Patterson RD, 1987, IOC SPEECH GROUP AUD PERLMAN G, 1980, BEHAV RES METH INSTR, V12, P554, DOI 10.3758/BF03201835 RAATGEVER J, 1980, THESIS DELFT U RAATGEVER J, 1986, J ACOUST SOC AM, V80, P429, DOI 10.1121/1.394039 WILBANKS WA, 1979, B PSYCHONOMIC SOC, V14, P449 Yost W. A., 1987, AUDITORY PROCESSING YOST WA, 1991, J ACOUST SOC AM, V89, P838, DOI 10.1121/1.1894644 NR 20 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 143 EP 148 DI 10.1016/S0378-5955(98)00193-2 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100016 PM 9925026 ER PT J AU Tu, TY Chiu, JH Shu, CH Lien, CF AF Tu, TY Chiu, JH Shu, CH Lien, CF TI cAMP mediates transepithelial K+ and Na+ transport in a strial marginal cell line SO HEARING RESEARCH LA English DT Article DE cAMP; marginal cell; stria vascularis; ion transport; secondary messenger; voltage clamp ID CYCLIC-AMP; INNER-EAR; NONSELECTIVE CATION; ADENYLATE-CYCLASE; LUMINAL MEMBRANE; GUINEA-PIG; PRIMARY CULTURE; CL CHANNELS; IN-VITRO; MAXI-K+ AB Because cytoplasmic cAMP has been reported to be the secondary messenger mediating K+ transport in marginal cells of freshly isolated stria vascularis, the possible role of cAMP in ion transport processes of an immortalized marginal cell line (MCPV-8) showing evidence of K+ and Na+ reabsorption was evaluated in this study. Confluent MCPV-8 monolayers were mounted into Ussing chambers and perfused on both sides with perilymph-like Ringer's solution. Transepithelial short-circuit current (I-SC), resistance (R-T) and open-circuit voltage (V-T) were measured using voltage clamp technique. The following results were obtained. (1) Addition of forskolin (10(-4) M) to the basolateral perfusate increased I-SC to 311 +/- 42%; no significant change in R-T was observed. Addition of BaCl2 (2 mM) to the apical perfusate at the maximal response of forskolin blocked 50-60% of I-SC and subsequent addition of amiloride (10(-5) M) to the apical perfusate further blocked I-SC to a value close to 0. (2) To evaluate the effect of cellular cAMP on Ba2+-sensitive K+ current, amiloride-sensitive Na+ current was blocked first by addition of amiloride (10(-5) M) to the apical perfusate; subsequent addition of 3-isobutyl-1-methylxanthine (IBMX, 1 mM) or N-6,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (dbcAMP, 1 mM) to the basolateral perfusate increased I-SC to 175 +/- 13% and 411 +/- 32%, respectively. The stimulated Ise was blocked to close to 0 by addition of BaCl2 (2 mM) to the apical perfusate. N-2,2'-O-Dibutyrylguanosine 3',5'-cyclic monophosphate (dbcGMP, 1 mM) had no effect on I-SC. (3) To assess the effect of cellular cAMP on amiloride-sensitive Na+ current, Ba2+-sensitive K+ current was blocked in advance by addition of BaCl2 to the apical perfusate; subsequent addition of IBMX or dbcAMP to the basolateral perfusate increased I-SC to 219 +/- 21% and 388 +/- 39%, respectively. The stimulated I-SC was blocked to close to 0 by addition of amiloride to the apical perfusate. dbcGMP had no effect on I-SC. Hence, these results suggest that cellular cAMP is the secondary messenger that mediates the transepithelial transport of both K+ and Na+ in MCPV-8 monolayers. (C) 1999 Published by Elsevier Science B.V. All rights reserved. C1 Vet Gen Hosp, Dept Otolaryngol, Taipei, Taiwan. Natl Yang Ming Univ, Sch Med, Inst Clin Med, Taipei 112, Taiwan. Natl Yang Ming Univ, Sch Med, Dept Otolaryngol, Taipei 112, Taiwan. Natl Yang Ming Univ, Sch Med, Inst Tradit Med, Taipei 112, Taiwan. RP Tu, TY (reprint author), Vet Gen Hosp, Dept Otolaryngol, 201 Sec 2,Shih Pai Rd, Taipei, Taiwan. CR ACHOUCHE J, 1991, ANN OTO RHINOL LARYN, V100, P999 Agrup C, 1996, HEARING RES, V102, P155, DOI 10.1016/S0378-5955(96)00156-6 AHLSTROM P, 1975, LARYNGOSCOPE, V85, P1241, DOI 10.1288/00005537-197507000-00016 BEAVO JA, 1990, TRENDS PHARMACOL SCI, V11, P150, DOI 10.1016/0165-6147(90)90066-H Busch AE, 1997, TRENDS PHARMACOL SCI, V18, P26, DOI 10.1016/S0165-6147(96)01016-4 DRESCHER MJ, 1996, ASS RES OTOLARYNGOL, V19, P185 DUFFEY ME, 1981, NATURE, V294, P451, DOI 10.1038/294451a0 Harmanci M C, 1978, Am J Physiol, V235, P440 HERMAN P, 1995, AM J PHYSIOL-LUNG C, V268, pL390 HUY PTB, 1981, ACTA OTO-LARYNGOL, V91, P9, DOI 10.3109/00016488109138476 IKEDA K, 1989, HEARING RES, V39, P279, DOI 10.1016/0378-5955(89)90047-6 LIU J, 1995, AUDIT NEUROSCI, V1, P331 Marcus DC, 1998, HEARING RES, V115, P82, DOI 10.1016/S0378-5955(97)00180-9 MARTIN F, 1994, HEARING RES, V81, P33, DOI 10.1016/0378-5955(94)90150-3 MIZUTA K, 1995, HEARING RES, V88, P199, DOI 10.1016/0378-5955(95)00113-I POWELL DW, 1974, AM J PHYSIOL, V227, P1428 SAKAGAMI M, 1991, HEARING RES, V56, P168, DOI 10.1016/0378-5955(91)90166-7 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 Shen ZJ, 1997, AUDIT NEUROSCI, V3, P215 SUNOSE H, 1994, HEARING RES, V80, P86, DOI 10.1016/0378-5955(94)90012-4 SUNOSE H, 1993, AM J PHYSIOL, V265, pC72 Sunose H, 1997, HEARING RES, V114, P107, DOI 10.1016/S0378-5955(97)00152-4 Takeuchi S, 1996, HEARING RES, V101, P181, DOI 10.1016/S0378-5955(96)00151-7 Takeuchi S, 1996, HEARING RES, V95, P18, DOI 10.1016/0378-5955(96)00016-0 TAKEUCHI S, 1992, HEARING RES, V61, P86, DOI 10.1016/0378-5955(92)90039-P Tu TY, 1998, HEARING RES, V123, P97, DOI 10.1016/S0378-5955(98)00101-4 TU TY, 1995, ACTA OTO-LARYNGOL, V115, P291, DOI 10.3109/00016489509139312 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wangemann Philine, 1996, Journal of General Physiology, V108, p31A WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WIDDICOMBE JH, 1985, J APPL PHYSIOL, V58, P1729 Yan SZ, 1998, MOL PHARMACOL, V53, P182 YEH T, 1995, HEARING RES, V90, P79, DOI 10.1016/0378-5955(95)00149-3 ZAJIC G, 1983, HEARING RES, V10, P249, DOI 10.1016/0378-5955(83)90090-4 NR 36 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1999 VL 127 IS 1-2 BP 149 EP 157 DI 10.1016/S0378-5955(98)00192-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 156XY UT WOS:000078029100017 PM 9925027 ER PT J AU Leeuw, AR Dreschler, WA AF Leeuw, AR Dreschler, WA TI The relation between otoacoustic emissions and the broadening of the auditory filter for higher levels SO HEARING RESEARCH LA English DT Article DE auditory filter; transient evoked otoacoustic emission; notched-noise masking; normal-hearing and hearing-impaired subjects ID HEARING-IMPAIRED LISTENERS; FREQUENCY-SELECTIVITY; TUNING CURVES; HAIR-CELLS; THRESHOLD; MASKING; MODEL; RESOLUTION; BANDWIDTHS; AUDIOGRAM AB The active behaviour of outer hair cells (OHCs) is often used to explain two phenomena, namely otoacoustic emissions (OAEs) and the level dependence of auditory filters. Correlations between these two phenomena may contribute to the evidence of these hypotheses. In this study auditory fillers were calculated from probe thresholds in notched-noise maskers over a range of at least 25 dB. Fut ther, transient evoked otoacoustic emissions (TEOAEs) were measured at several stimulation levels. Ten normal-hearing and nine hearing-impaired subjects were tested. A linear increase of the width of the auditory filter with 2.2 dB/Hz was found up to a specific saturation level. The group of selected hearing-impaired subjects with mild hearing loss showed no wider than normal auditory filters. As expected, the increase of the width of the auditory filter correlated positively with the level of TEOAEs for click intensities of about 80 dB peak SPL. However, for subjects with TEOAEs wider auditory filters at a masker level of 65 dB/Hz were found for subjects with larger TEOAEs. This result cannot be explained by a model by which the cochlea shows an active behaviour for lower stimulation levels, influencing both the TEOAE levels and the filter skirts, and a passive behaviour for higher stimulation levels. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Amsterdam, Acad Med Ctr, Dept Clin Audiol, NL-1105 AZ Amsterdam, Netherlands. RP Leeuw, AR (reprint author), Univ Amsterdam, Acad Med Ctr, Dept Clin Audiol, D2,Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands. CR AVAN P, 1991, HEARING RES, V52, P99, DOI 10.1016/0378-5955(91)90191-B BONFILS P, 1990, EAR HEARING, V11, P155, DOI 10.1097/00003446-199004000-00010 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 COLLET L, 1991, AUDIOLOGY, V30, P164 DUBNO JR, 1989, J ACOUST SOC AM, V85, P1666, DOI 10.1121/1.397955 FLORENTINE M, 1992, AUDIOLOGY, V31, P241 GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GLASBERG BR, 1984, J ACOUST SOC AM, V76, P419, DOI 10.1121/1.391584 HANNLEY M, 1983, J ACOUST SOC AM, V74, P40, DOI 10.1121/1.389616 HARRISON RV, 1982, HEARING RES, V6, P303, DOI 10.1016/0378-5955(82)90062-4 Hoth S., 1995, Audiologische Akustik, V34 KAERNBACH C, 1990, J ACOUST SOC AM, V88, P2645, DOI 10.1121/1.399985 KANIS LJ, 1994, J ACOUST SOC AM, V96, P2156, DOI 10.1121/1.410157 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 LEEUW AR, 1994, EAR HEARING, V15, P240, DOI 10.1097/00003446-199406000-00005 LUTMAN ME, 1991, J ACOUST SOC AM, V89, P320, DOI 10.1121/1.400513 MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861 MOORE BCJ, 1992, J ACOUST SOC AM, V91, P3402, DOI 10.1121/1.402830 NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 PATTERSON RD, 1980, J ACOUST SOC AM, V67, P229, DOI 10.1121/1.383732 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RITSMA RJ, 1980, PSYCHOPHYSICAL PHYSL, P175 ROSEN S, 1994, HEARING RES, V73, P231, DOI 10.1016/0378-5955(94)90239-9 ROSEN S, 1994, AUDIOLOGY, V33, P37 ROSEN S, 1992, J ACOUST SOC AM, V92, P773, DOI 10.1121/1.403946 SMURZYNSKI J, 1993, EAR HEARING, V14, P258, DOI 10.1097/00003446-199308000-00005 STELMACHOWICZ PG, 1985, J ACOUST SOC AM, V77, P620, DOI 10.1121/1.392378 STRUBE HW, 1989, HEARING RES, V38, P35, DOI 10.1016/0378-5955(89)90126-3 VANSUMMERS W, 1992, J SPEECH HEAR RES, V35, P1189 WEBER DL, 1977, J ACOUST SOC AM, V62, P424, DOI 10.1121/1.381542 XU L, 1994, HEARING RES, V74, P173 ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 ZWICKER E, 1986, J ACOUST SOC AM, V80, P146, DOI 10.1121/1.394175 NR 37 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 1 EP 10 DI 10.1016/S0378-5955(98)00153-1 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500001 PM 9872128 ER PT J AU Zheng, Y Ikeda, K Nakamura, M Takasaka, T AF Zheng, Y Ikeda, K Nakamura, M Takasaka, T TI Endonuclease cleavage of DNA in the aged cochlea of Mongolian gerbil SO HEARING RESEARCH LA English DT Article DE TUNEL method; apoptosis; outer hair cell; ganglion cell; distortion product otoacoustic emission; endocochlear potential ID PRODUCT OTOACOUSTIC EMISSIONS; ACOUSTIC DISTORTION; STRIA VASCULARIS; CELL-DEATH; APOPTOSIS; FRAGMENTATION; POTENTIALS; DELETIONS; FEATURES; INJURY AB Apoptosis is the most common form of physiological cell death, plays an important role in a variety of physiological and pathological situations, and is characterized by an endonuclease activation. Aged gerbils (24-month-old) showed a significant elevation of the distortion product otoacoustic emission (DPOAE) threshold and a significant decrease of the DPOAE level as compared to young gerbils (3- to 6-month-old), suggesting a disturbance of the outer hair cell in the aged cochlea. Furthermore, the endocochlear potential in the aged (15-75 mV) was apparently lower than that in the young (89-90 mV), indicating strial damage with aging. A terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method demonstrated the presence of the DNA fragmentation predominantly in the outer hair cells and spiral ganglion cells. These changes were sporadically observed in the inner hair cells and supporting cells. TUNEL positive cells were markedly observed in some aged gerbils showing deterioration in cochlear function, which may suggest the individual variability of presbycusis. On the other hand, the strial cells showed a marked atrophy, but no DNA fragmentation. These findings suggest that the aged change in the outer hair cells and spiral ganglion cells involves an apoptotic death pathway. However, strial atrophy with aging seems to be unrelated to apoptosis. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Tohoku Univ, Sch Med, Dept Otorhinolaryngol, Aoba Ku, Sendai, Miyagi 98077, Japan. Tohoku Univ, Sch Med, Dept Anat, Sendai, Miyagi 98077, Japan. RP Ikeda, K (reprint author), Tohoku Univ, Sch Med, Dept Otorhinolaryngol, Aoba Ku, 1-1 Seiryomachi, Sendai, Miyagi 98077, Japan. CR Adams JC, 1997, HEARING RES, V104, P101, DOI 10.1016/S0378-5955(96)00184-0 Bai U, 1997, AM J OTOL, V18, P449 BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 COHEN GM, 1992, BIOCHEM J, V286, P331 Engström B, 1987, Acta Otolaryngol Suppl, V436, P110 FEHSEL K, 1994, J HISTOCHEM CYTOCHEM, V42, P613 GAVRIELI Y, 1992, J CELL BIOL, V119, P493, DOI 10.1083/jcb.119.3.493 Gratton MA, 1996, HEARING RES, V94, P116, DOI 10.1016/0378-5955(96)00011-1 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N HOCKENBERY DM, 1993, CELL, V75, P241, DOI 10.1016/0092-8674(93)80066-N KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 KUSAKARI J, 1978, LARYNGOSCOPE, V88, P12 LUNDQUIST PG, 1965, ACTA OTOLARYNGOL S S, V201, P1 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 NORTON SJ, 1991, HEARING RES, V51, P73, DOI 10.1016/0378-5955(91)90008-W SCHMIEDT RA, 1982, HEARING RES, V7, P335, DOI 10.1016/0378-5955(82)90044-2 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 Schmiedt RA, 1996, HEARING RES, V102, P125, DOI 10.1016/S0378-5955(96)00154-2 SCHMIEDT RA, 1986, J ACOUST SOC AM, V79, P1481, DOI 10.1121/1.393675 Schuknecht H. F., 1974, PATHOLOGY EAR SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K SCHULZEOSTHOFF K, 1994, J CELL BIOL, V127, P15, DOI 10.1083/jcb.127.1.15 Seidman MD, 1996, LARYNGOSCOPE, V106, P777, DOI 10.1097/00005537-199606000-00021 SOKOLICH WG, 1976, J ACOUST SOC AM, V59, P963, DOI 10.1121/1.380955 TAKASAKA T, 1994, AUDITORY SYSTEM, P1 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 UEDA N, 1997, 20 MIDW RES M ASS RE, P220 Ueda N, 1998, LARYNGOSCOPE, V108, P580, DOI 10.1097/00005537-199804000-00022 UEDA N, 1995, P NATL ACAD SCI USA, V92, P7202, DOI 10.1073/pnas.92.16.7202 Usami S, 1997, BRAIN RES, V747, P147, DOI 10.1016/S0006-8993(96)01243-7 Vaux DL, 1996, P NATL ACAD SCI USA, V93, P2239, DOI 10.1073/pnas.93.6.2239 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 Zheng YL, 1997, HEARING RES, V112, P167, DOI 10.1016/S0378-5955(97)00118-4 NR 34 TC 21 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 11 EP 18 DI 10.1016/S0378-5955(98)00138-5 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500002 PM 9872129 ER PT J AU Bilecen, D Scheffler, K Schmid, N Tschopp, K Seelig, J AF Bilecen, D Scheffler, K Schmid, N Tschopp, K Seelig, J TI Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI SO HEARING RESEARCH LA English DT Article DE tonotopy; functional magnetic resonance imaging; auditory cortex; sine tone presentation ID POSITRON EMISSION TOMOGRAPHY; HUMAN BRAIN ACTIVATION; CEREBRAL BLOOD-FLOW; MAGNETIC-FIELDS; FUNCTIONAL MRI; STIMULUS RATE; STIMULATION; OXYGENATION; FREQUENCY; REPRESENTATION AB Functional magnetic resonance imaging is a noninvasive and nonradioactive method for the detection of focal brain activity. In the present study the auditory cortex was investigated in nine normal subjects who were binaurally stimulated using pulsed sine tones of 500 Hz and 4000 Hz. The BOLD (blood oxygenation level dependent) signal change coincided with the stimulation paradigm and was detected in the plane of the superior temporal gyrus. The comparison of the spatial distribution of activated areas revealed a different behavior for the two frequencies. The present findings underline the existence of a frequency specific organization in the medic-lateral, fi-onto-occipital and cranio-caudal extension in both hemispheres of the auditory cortex in human. The activated areas for the high tone were found more frontally and medially orientated than the low tone stimulated areas. Furthermore, a slight cranio-caudal shift was observed for the higher frequency, more pronounced in the right than in the left temporal lobe. Finally, for most of the subjects investigated the BOLD activation area of the 500 Hz sine tone was larger than that of the 4000 Hz stimulation. Both frequencies showed a lateralization of signal response to the left temporal lobe. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Basel, Dept Biophys Chem, MR Ctr, CH-4056 Basel, Switzerland. Univ Basel, Bioctr, Dept Biophys Chem, CH-4056 Basel, Switzerland. Kantonsspital Liestal, ENT Dept, CH-4410 Liestal, Switzerland. RP Scheffler, K (reprint author), Univ Basel, Dept Biophys Chem, MR Ctr, Klingelbergstr 70, CH-4056 Basel, Switzerland. CR ARLINGER S, 1982, ELECTROEN CLIN NEURO, V54, P642, DOI 10.1016/0013-4694(82)90118-3 BANDETTINI PA, 1992, MAGNET RESON MED, V25, P390, DOI 10.1002/mrm.1910250220 BANDETTINI PA, 1993, MAGNET RESON MED, V30, P161, DOI 10.1002/mrm.1910300204 BERTRAND O, 1988, FUNCTIONAL BRAIN IMAGING, P75 Bertrand O, 1991, Acta Otolaryngol Suppl, V491, P116 BINDER JR, 1994, COGNITIVE BRAIN RES, V2, P31, DOI 10.1016/0926-6410(94)90018-3 BINDER JR, 1994, ANN NEUROL, V35, P662, DOI 10.1002/ana.410350606 BINDER JR, 1995, ARCH NEUROL-CHICAGO, V52, P593 Bronstein I., 1979, TASCHENBUCH MATH DEYOE EA, 1992, 11TH ANN M SOC MAGN, P1824 EHRET G, 1994, EUR J NEUROSCI, V6, P1589, DOI 10.1111/j.1460-9568.1994.tb00549.x ELBERLING C, 1982, SCAND AUDIOL, V11, P61, DOI 10.3109/01050398209076201 ELLIOTT LL, 1994, J ACOUST SOC AM, V96, P1397, DOI 10.1121/1.410284 FOX PT, 1984, J NEUROPHYSIOL, V51, P1109 FOX PT, 1986, P NATL ACAD SCI USA, V83, P1140, DOI 10.1073/pnas.83.4.1140 FRAHM J, 1994, NMR BIOMED, V7, P45, DOI 10.1002/nbm.1940070108 FRAHM J, 1993, MAGNET RESON MED, V29, P139, DOI 10.1002/mrm.1910290126 FRAHM J, 1992, JMRI-J MAGN RESON IM, V2, P501, DOI 10.1002/jmri.1880020505 GREENBERG JH, 1981, SCIENCE, V212, P678, DOI 10.1126/science.6971492 Hedeen RA, 1997, MAGNET RESON MED, V37, P7, DOI 10.1002/mrm.1910370103 Howard MA, 1996, BRAIN RES, V724, P260, DOI 10.1016/0006-8993(96)00315-0 KRAUS N, 1988, EAR HEARING, V9, P159, DOI 10.1097/00003446-198808000-00001 LARSEN JP, 1989, ACTA NEUROL SCAND, V80, P438 LAUTER JL, 1985, HEARING RES, V20, P199, DOI 10.1016/0378-5955(85)90024-3 MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 OGAWA S, 1990, MAGNET RESON MED, V14, P68, DOI 10.1002/mrm.1910140108 OGAWA S, 1992, P NATL ACAD SCI USA, V89, P5951, DOI 10.1073/pnas.89.13.5951 PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 PETERSEN SE, 1988, NATURE, V331, P585, DOI 10.1038/331585a0 ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770 Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156 SCHERG M, 1983, ELECTROEN CLIN NEURO, V56, P443, DOI 10.1016/0013-4694(83)90227-4 Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336 Seitz R J, 1990, Neuroreport, V1, P57, DOI 10.1097/00001756-199009000-00016 THORNTON AR, 1977, J SPEECH HEAR RES, V20, P81 TIITINEN H, 1993, PSYCHOPHYSIOLOGY, V30, P537, DOI 10.1111/j.1469-8986.1993.tb02078.x TUOMISTO T, 1983, NUOVO CIMENTO D, V2, P471, DOI 10.1007/BF02455946 VERKINDT C, 1995, EVOKED POTENTIAL, V96, P143, DOI 10.1016/0168-5597(94)00242-7 Wessinger CM, 1997, HUM BRAIN MAPP, V5, P18, DOI 10.1002/(SICI)1097-0193(1997)5:1<18::AID-HBM3>3.0.CO;2-Q WILKINS AJ, 1987, NEUROPSYCHOLOGIA, V25, P359, DOI 10.1016/0028-3932(87)90024-8 WISE R, 1991, BRAIN, V114, P1803, DOI 10.1093/brain/114.4.1803 WOODS DL, 1991, NEUROREPORT, V2, P189, DOI 10.1097/00001756-199104000-00007 WOODS DL, 1987, ELECTROEN CLIN NEURO, V68, P12 YAMAMOTO T, 1988, P NATL ACAD SCI USA, V85, P8732, DOI 10.1073/pnas.85.22.8732 YAMAMOTO T, 1992, ACTA OTO-LARYNGOL, V112, P201 NR 47 TC 96 Z9 98 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 19 EP 27 DI 10.1016/S0378-5955(98)00139-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500003 PM 9872130 ER PT J AU Tabuchi, K Ito, Z Wada, T Hara, A Kusakari, J AF Tabuchi, K Ito, Z Wada, T Hara, A Kusakari, J TI The effect of mannitol upon cochlear dysfunction induced by transient local anoxia SO HEARING RESEARCH LA English DT Article DE cochlea; compound action potential; blood circulation; local anoxia; mannitol ID INFERIOR CEREBELLAR ARTERY; LASER-DOPPLER MEASUREMENTS; ACUTE-RENAL-FAILURE; BLOOD-FLOW; LIPID-PEROXIDATION; CEREBRAL-ISCHEMIA; GERBIL COCHLEA; TISSUE-INJURY; FREE-RADICALS; GUINEA-PIG AB Transient local anoxia of the cochlea was induced by pressing the labyrinthine artery, and compound action potential (CAP) or endocochlear potential (EP) was measured before and after transient local anoxia ranging from 5 to 60 min using 106 albino guinea pigs. The complete interruption of the cochlear blood flow by this procedure and its full restoration after releasing the pressure on the artery was confirmed by a laser-Doppler flowmeter. The anoxia of less than 10 min induced no post-anoxic cochlear dysfunction, whereas the anoxia of a longer duration induced an irreversible dysfunction of the cochlea. it was evident that the post-anoxic recovery of the CAP threshold was worse as the anoxia period was prolonged, and CAP was almost completely abolished after 60-min anoxia. In animals which were administered mannitol intravenously just after the restoration of the cochlear blood circulation, the recovery of the CAP threshold was significantly better than that in the control animals, when the animals were subjected to local anoxia of 15- to 30-min duration. No beneficial effect, however, was observed in the 60-min anoxia group. In conclusion, local anoxia of 10 min or longer caused cochlear dysfunction, which was partially but significantly alleviated by mannitol. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Tsukuba, Inst Clin Med, Dept Otolaryngol, Tsukuba, Ibaraki 305, Japan. RP Kusakari, J (reprint author), Univ Tsukuba, Inst Clin Med, Dept Otolaryngol, 1-1-1 Tennodai, Tsukuba, Ibaraki 305, Japan. EM jun_kusa@md.tsukuba.ac.jp CR Asai Y, 1996, ANN OTO RHINOL LARYN, V105, P472 AXELSSON A, 1983, ACTA OTO-LARYNGOL, V95, P297, DOI 10.3109/00016488309130946 BELL BA, 1987, LANCET, V1, P66 BILLETT TE, 1989, HEARING RES, V41, P189, DOI 10.1016/0378-5955(89)90010-5 BURKE TJ, 1983, AM J PHYSIOL, V244, pF646 CANTU RC, 1969, J NEUROSURG, V30, P50, DOI 10.3171/jns.1969.30.1.0050 FECHTER LD, 1987, HEARING RES, V27, P37, DOI 10.1016/0378-5955(87)90024-4 FREEMAN BA, 1982, LAB INVEST, V47, P412 GUSSEN R, 1976, ANN OTO RHINOL LARYN, V85, P94 HABERL RL, 1989, AM J PHYSIOL, V256, pH1247 HARA A, 1995, HEARING RES, V90, P228, DOI 10.1016/0378-5955(95)00166-3 KIMURA R., 1958, ANN OTOL RHINOL AND LARYNGOL, V67, P5 KIRINO T, 1982, BRAIN RES, V239, P57, DOI 10.1016/0006-8993(82)90833-2 KOBAYASHI H, 1995, SURG NEUROL, V44, P55, DOI 10.1016/0090-3019(95)00065-8 KOMARA JS, 1986, ANN EMERG MED, V15, P384, DOI 10.1016/S0196-0644(86)80171-8 KONISHI T, 1961, J ACOUST SOC AM, V33, P349, DOI 10.1121/1.1908659 KUSAKARI J, 1980, TOHOKU J EXP MED, V131, P1 Kusakari J, 1981, Auris Nasus Larynx, V8, P55 KVIETYS PR, 1985, AM J PHYSIOL, V249, pG221 LINDSBERG PJ, 1989, AM J PHYSIOL, V257, pH674 LITTLE JR, 1978, STROKE, V9, P4 Luvisotto TL, 1996, NEUROSURGERY, V38, P131, DOI 10.1097/00006123-199601000-00031 MAGOVERN GJ, 1984, CIRCULATION, V70, P91 MCCORD JM, 1985, NEW ENGL J MED, V312, P159 MILLER JM, 1983, HEARING RES, V11, P385, DOI 10.1016/0378-5955(83)90069-2 Mom T, 1997, BRAIN RES, V751, P20, DOI 10.1016/S0006-8993(96)01388-1 OTSUBO K, 1994, ACT NEUR S, V60, P321 OURIEL K, 1985, CIRCULATION, V72, P254 PERLMAN H B, 1959, Laryngoscope, V69, P591 PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 QUIRK WS, 1990, ACTA OTO-LARYNGOL, V109, P383, DOI 10.3109/00016489009125159 REN TY, 1994, J APPL PHYSIOL, V76, P212 REN TY, 1993, HEARING RES, V71, P91, DOI 10.1016/0378-5955(93)90024-U Ren TY, 1995, HEARING RES, V92, P30, DOI 10.1016/0378-5955(95)00192-1 SAKAMOTO A, 1991, BRAIN RES, V554, P186, DOI 10.1016/0006-8993(91)90187-Z Scheibe F, 1997, EUR ARCH OTO-RHINO-L, V254, P86, DOI 10.1007/BF01526186 SCHRIER RW, 1984, AM J PHYSIOL, V247, pF365 SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P511 SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P457 SHORT SO, 1985, OTOLARYNG HEAD NECK, V93, P786 SUZUKI J, 1985, STROKE, V16, P695 WASIL M, 1987, BIOCHEM J, V243, P867 Weiss S J, 1986, Acta Physiol Scand Suppl, V548, P9 YOKOYAMA K, 1988, ACTA OTO-LARYNGOL, V106, P192, DOI 10.3109/00016488809106425 NR 44 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 28 EP 36 DI 10.1016/S0378-5955(98)00142-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500004 PM 9872131 ER PT J AU Henzl, MT Thalmann, I Thalmann, R AF Henzl, MT Thalmann, I Thalmann, R TI OCP2 exists as a dimer in the organ of Corti SO HEARING RESEARCH LA English DT Article DE OCP2; SKP1; sedimentation; organ of Corti; guinea pig ID SUPPORTING CELLS; GERBIL COCHLEA; INNER-EAR; PROTEINS; LOCALIZATION AB OCP2 is one of the most abundant proteins in the organ of Corti (OC), comprising approximately 5% of the total protein in the supporting cell population. Although the very close homolog, Skp1p, has been implicated in regulating cell-cycle progression, the function of OCP2 in the terminally differentiated cochlea is presently unknown. We have purified recombinant OCP2 from Escherichia coli and examined the protein by analytical ultracentrifugation. Interestingly, sedimentation equilibrium data collected at 20 degrees C unequivocally indicate that, at the concentrations present in the OC, free OCP2 would exist as a dimeric species. The apparent sedimentation coefficient is independent of concentration at loading concentrations between 10 and 100 mu M, indicating the absence of a significant monomer-dimer equilibrium in this concentration range. The functional significance of this Finding is discussed. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Missouri, Dept Biochem, Columbia, MO 65211 USA. Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Henzl, MT (reprint author), Univ Missouri, Dept Biochem, Columbia, MO 65211 USA. CR Bai C, 1996, CELL, V86, P263, DOI 10.1016/S0092-8674(00)80098-7 CHEN H, 1995, GENOMICS, V27, P389, DOI 10.1006/geno.1995.1068 COLING DE, 1991, HEARING RES, V57, P113, DOI 10.1016/0378-5955(91)90080-S Connelly C, 1996, CELL, V86, P275, DOI 10.1016/S0092-8674(00)80099-9 Demetrick DJ, 1996, CYTOGENET CELL GENET, V73, P104, DOI 10.1159/000134318 FUJITA H, 1975, FDN ULTRACENTRIFUGAL, P64 GOLDBERG RJ, 1953, J PHYS CHEM-US, V57, P194, DOI 10.1021/j150503a014 HANSEN JC, 1994, BIOCHEMISTRY-US, V33, P13155, DOI 10.1021/bi00249a001 HAPAK RC, 1989, J BIOL CHEM, V264, P18751 Housley GD, 1997, AUDIOL NEURO-OTOL, V2, P92 Johnson ML, 1994, MODERN ANAL ULTRACEN, P37 JOHNSON ML, 1981, BIOPHYS J, V36, P575 KALINEC F, 1996, P 19 ARO MIDW RES M, P145 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0 Laue TM, 1992, ANAL ULTRACENTRIFUGA, P90 Laue TM, 1995, METHOD ENZYMOL, V259, P427 Liang Y, 1997, GENE, V184, P163, DOI 10.1016/S0378-1119(96)00590-2 Philo J. S., 1994, MODERN ANAL ULTRACEN, P156 SANTOSSACCHI J, 1991, HEARING RES, V65, P262 SATO Y, 1994, HEARING RES, V80, P21, DOI 10.1016/0378-5955(94)90004-3 SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 Sugasawa M, 1996, AM J PHYSIOL-CELL PH, V271, pC1817 THALMANN I, 1980, ARCH OTO-RHINO-LARYN, V226, P123, DOI 10.1007/BF00455126 THALMANN I, 1990, LARYNGOSCOPE, V100, P99 Thalmann R, 1997, ACTA OTO-LARYNGOL, V117, P265, DOI 10.3109/00016489709117784 UroCoste E, 1997, NEUROREPORT, V8, P1675, DOI 10.1097/00001756-199705060-00023 WILCOX ER, 1992, HEARING RES, V62, P124, DOI 10.1016/0378-5955(92)90208-5 Yoho ER, 1997, HEARING RES, V104, P47, DOI 10.1016/S0378-5955(96)00183-9 ZHANG J, 1995, FINITE ELEM ANAL DES, V19, P45, DOI 10.1016/0168-874X(94)00056-L NR 31 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 37 EP 46 DI 10.1016/S0378-5955(98)00148-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500005 PM 9872132 ER PT J AU Lu, ZM Popper, AN AF Lu, ZM Popper, AN TI Morphological polarizations of sensory hair cells in the three otolithic organs of a teleost fish: fluorescent imaging of ciliary bundles SO HEARING RESEARCH LA English DT Article DE hearing; inner ear; kinocilium; stereocilia; confocal microscopy ID DIRECTIONAL RESPONSE PROPERTIES; OPSANUS-TAU; INNER-EAR; TOADFISH; SENSITIVITY; AFFERENTS; EPITHELIA; FIBERS; ACTIN AB It has been suggested that the morphological polarity of sensory hair cells in the otolithic organs plays important roles in directional hearing in fish. In this study, we examined the hair cell polarization patterns in the saccule, utricle, and lagena of a releost fish, the sleeper goby (Dormitator latifrons). In contrast to using traditional scanning electron microscopy, we employed a simple and rapid method that enabled us to map the hair cell polarization patterns using immunocytochemical and confocal imaging techniques. The hair cells in the caudal part of the saccular epithelium are oriented dorsally and ventrally, with some variations in the caudal end. The hair cells in the rostral part have diverse morphological polarizations. The utricular hair cells fall into internal and external groups which have opposing polarizations. The lagenar hair cells are found in anterior and posterior groups with approximately opposite polarizations. The saccular and lagenar epithelia are oriented perpendicular to the horizontal plane of the fish, while the utricular epithelium lies on the horizontal plane. Thus, the sleeper goby's ear is morphologically capable of being a three-dimensional sound detector. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Maryland, Dept Biol, College Pk, MD 20742 USA. RP Lu, ZM (reprint author), Univ Maryland, Dept Biol, College Pk, MD 20742 USA. CR ADAMS AEM, 1991, METHOD ENZYMOL, V194, P729 DALE T, 1976, Norwegian Journal of Zoology, V24, P85 EDDSWALTON PL, 1995, BIOL BULL, V189, P211 EDDSWALTON PL, 1995, ACTA ZOOL-STOCKHOLM, V76, P257 Fay RR, 1997, HEARING RES, V111, P1, DOI 10.1016/S0378-5955(97)00083-X FLOCK A, 1964, J CELL BIOL, V22, P413, DOI 10.1083/jcb.22.2.413 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 Lewis ER, 1985, VERTEBRATE INNER EAR LOMBARTE A, 1994, J COMP NEUROL, V345, P419, DOI 10.1002/cne.903450308 LU Z, 1997, SOC NEUR ABSTR Lu Z, 1998, J COMP PHYSIOL A, V182, P805, DOI 10.1007/s003590050225 Ofsie MS, 1996, J COMP NEUROL, V370, P281 Platt C., 1981, HEARING SOUND COMMUN, P3 PLATT C, 1977, J COMP NEUROL, V172, P283, DOI 10.1002/cne.901720207 POPPER AN, 1981, J COMP NEUROL, V200, P357, DOI 10.1002/cne.902000306 POPPER AN, 1977, J MORPHOL, V153, P397, DOI 10.1002/jmor.1051530306 POPPER AN, 1976, SCIENCE, V192, P1020, DOI 10.1126/science.1273585 SAIDEL WM, 1990, J COMP NEUROL, V302, P629, DOI 10.1002/cne.903020317 SCHUIJF A, 1975, J COMP PHYSIOL, V98, P333 TILNEY LG, 1980, J CELL BIOL, V86, P244, DOI 10.1083/jcb.86.1.244 WIELAND T, 1978, CRC CR REV BIOCH MOL, V5, P185, DOI 10.3109/10409237809149870 YAN HY, 1991, P ROY SOC B-BIOL SCI, V245, P133, DOI 10.1098/rspb.1991.0099 NR 23 TC 35 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 47 EP 57 DI 10.1016/S0378-5955(98)00149-X PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500006 PM 9872133 ER PT J AU Sininger, YS Cone-Wesson, B Abdala, C AF Sininger, YS Cone-Wesson, B Abdala, C TI Gender distinctions and lateral asymmetry in the low-level auditory brainstem response of the human neonate SO HEARING RESEARCH LA English DT Article DE gender difference; lateral asymmetry; auditory brainstem response; human neonate ID SPONTANEOUS OTOACOUSTIC EMISSIONS; STEM RESPONSE; SEX-DIFFERENCES; HEARING THRESHOLD; INFANTS; AGE; SPEECH; SENSITIVITY; PERCEPTION; PREVALENCE AB Threshold measures of auditory brainstem response (ABR) were generated in 72 full-term newborn infants in response to clicks and tone burst stimuli between 500 and 8000 Hz as detailed in a previous study. These results were further analyzed for differences in response related to ear (lateral asymmetry) and subject gender. Thresholds obtained in male infants were significantly lower than those of females (P = 0.0485). The greatest differences in threshold between male and female infants occurs in the right ear (7.45 dB) as opposed to the left ear (1.56 dB). Both male and female infants have significantly larger wave V amplitude elicited from the right eat than the left (P = 0.0002) using low-level stimuli. Also, as has been no;ed in adults, female infants have larger amplitude ABRs than males (P = 0.0018), but amplitude differences across gender are significant only in the right ear (ear by gender interaction P = 0.0278). Results of this study indicate that gender differences and lateral asymmetry in auditory function are not a result of gender bias for or unbalanced auditory trauma, but a biologically significant phenomenon that is present at birth. The argument is made that superior right ear performance may be part of cerebral laterality in auditory function. (C) 1998 Elsevier Science B.V. All rights reserved. C1 House Ear Inst, Childrens Auditory Res & Evaluat Ctr, Los Angeles, CA 91401 USA. Univ So Calif, Med Ctr, Dept Otolaryngol Head & Neck Surg, Los Angeles, CA USA. RP Sininger, YS (reprint author), House Ear Inst, Childrens Auditory Res & Evaluat Ctr, 2100 W 3rd St, Los Angeles, CA 91401 USA. CR Axelsson A, 1981, Acta Otolaryngol Suppl, V377, P3 BERLIN CI, 1973, J ACOUST SOC AM, V53, P699, DOI 10.1121/1.1913381 BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 CHI JG, 1977, ARCH NEUROL-CHICAGO, V34, P346 CHIARENZA GA, 1988, ELECTROEN CLIN NEURO, V71, P357, DOI 10.1016/0168-5597(88)90038-X CHUNG DY, 1983, J ACOUST SOC AM, V73, P1277, DOI 10.1121/1.389276 CHUNG DY, 1983, AUDIOLOGY, V22, P199 CORSO JF, 1963, ARCHIV OTOLARYNGOL, V77, P385 DON M, 1993, J ACOUST SOC AM, V94, P2135, DOI 10.1121/1.407485 DURIEUXSMITH A, 1987, AUDIOLOGY, V26, P284 ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059 Eldredge L, 1996, EARLY HUM DEV, V45, P215, DOI 10.1016/0378-3782(96)01732-X ENTUS AK, 1977, LANGUAGE DEV NEUROLO GLORIG A, 1965, VITAL HLTH STAT, V11, P1 GOYCOOLEA MV, 1986, LARYNGOSCOPE, V96, P1391 HARSHMAN R, 1974, UCLA C HUM BRAIN FUN Hyde M L, 1990, J Am Acad Audiol, V1, P59 Jerger J, 1993, J Am Acad Audiol, V4, P42 *JOINT COMM INF HE, 1994, AUDIOLOGY TODAY, V6, P6 KANNAN PM, 1974, J ACOUST SOC AM, V55, P1092, DOI 10.1121/1.1914657 KILENY PR, 1987, EAR HEARING, V8, P217, DOI 10.1097/00003446-198708000-00005 KIMURA D, 1969, CAN J PSYCHOLOGY, V23, P445, DOI 10.1037/h0082830 KLEIN AJ, 1984, HEARING RES, V16, P291, DOI 10.1016/0378-5955(84)90118-7 KRYTER KD, 1983, J ACOUST SOC AM, V73, P1897, DOI 10.1121/1.389580 KUHL PK, 1994, CURR OPIN NEUROBIOL, V4, P812, DOI 10.1016/0959-4388(94)90128-7 KUHL PK, 1992, SCIENCE, V255, P606, DOI 10.1126/science.1736364 LAKE DA, 1976, BRAIN LANG, V3, P266, DOI 10.1016/0093-934X(76)90022-5 LEVINE RA, 1983, ELECTROEN CLIN NEURO, V55, P532, DOI 10.1016/0013-4694(83)90163-3 LIEDERMAN J, 1980, INFANT BEHAV DEV, V5, P223 MCFADDEN D, 1993, HEARING RES, V71, P208, DOI 10.1016/0378-5955(93)90036-Z MCFADDEN D, 1995, HEARING RES, V85, P181, DOI 10.1016/0378-5955(95)00045-6 MCGLONE J, 1980, BEHAV BRAIN SCI, V3, P215 MICHALEWSKI HJ, 1980, ELECTROEN CLIN NEURO, V48, P351, DOI 10.1016/0013-4694(80)90271-0 MOLFESE DL, 1975, BRAIN LANG, V2, P356, DOI 10.1016/S0093-934X(75)80076-9 PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 PIRILA T, 1992, AUDIOLOGY, V31, P150 ROBERTS J, 1970, VITAL HLTH STAT, V11, P1 ROBERTS JD, 1975, ORG REACTIONS, V12, P1 ROSEN S, 1962, ANN OTO RHINOL LARYN, V71, P727 ROSENHAMER HJ, 1980, SCAND AUDIOL, V9, P93, DOI 10.3109/01050398009076342 SATO H, 1991, ACTA OTO-LARYNGOL, V111, P1037, DOI 10.3109/00016489109138447 SCHULMANGALAMBOS C, 1975, J SPEECH HEAR RES, V18, P456 SHAYWITZ BA, 1995, NATURE, V373, P607, DOI 10.1038/373607a0 SININGER YS, 1995, J ACOUST SOC AM, V98, P2048, DOI 10.1121/1.413321 SININGER YS, 1998, 21 MIDW M ASS RES OT, P33 SININGER YS, 1993, EAR HEARING, V14, P23, DOI 10.1097/00003446-199302000-00004 Sininger YS, 1996, EAR HEARING, V17, P395, DOI 10.1097/00003446-199610000-00005 Sininger YS, 1997, HEARING RES, V104, P27, DOI 10.1016/S0378-5955(96)00178-5 STAPELLS D R, 1989, Seminars in Hearing, V10, P229 Starr A, 1996, BRAIN, V119, P741, DOI 10.1093/brain/119.3.741 SUZUKI JI, 1984, INT C STAND AUD BRAI, P85 WADA JA, 1977, CAN J NEUROL SCI, V4, P203 NR 53 TC 24 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 58 EP 66 DI 10.1016/S0378-5955(98)00152-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500007 PM 9872134 ER PT J AU Frolenkov, GI Belyantseva, IA Kurc, M Mastroianni, MA Kachar, B AF Frolenkov, GI Belyantseva, IA Kurc, M Mastroianni, MA Kachar, B TI Cochlear outer hair cell electromotility can provide force for both low and high intensity distortion product otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE cochlear amplifier; outer hair cell motility; otoacoustic emission; sulfhydryl reagent; guinea pig ID GUINEA-PIG COCHLEA; 2 DISCRETE SOURCES; ACOUSTIC DISTORTION; ETHACRYNIC-ACID; IMPAIRED EARS; SALICYLATE; RESPONSES; GENTAMICIN; DEPENDENCE; VULNERABILITY AB It is generally believed that the force for the otoacoustic emission (OAE) generation is provided by a mechanism of electromotility, observed in isolated cochlear outer hair cells (OHCs). OHC electromotility is resistant to several ototoxic reagents, it does not depend on ATP hydrolysis, but it can be blocked by specific sulfhydryl reagents: p-chloromercuriphenylsulfonic acid (pCMPS) and p-hydroxymercuriphenylsulfonic acid (pHMPS). We have used these reagents to test whether they also affect OAE. Application of pCMPS and pHMPS on the round window membrane of anesthetized guinea pigs produced a dose-dependent inhibition of the cubic (2F(1)-F(2)) distortion product OAE (DPOAE). The inhibition developed progressively from high to low frequencies, reflecting the diffusion of the drugs through the cochlear compartment. The effect of pCMPS and pHMPS was different from the effects of furosemide and lethal anoxia, which impair cochlear function but do not block OHC electromotility. pHMPS suppressed DPOAE completely at all sound intensities tested (45-80 dB SPL), whereas furosemide or lethal anoxia caused DPOAE to disappear at low-level stimulation (45-60 dB SPL) only. Our results suggest that the OHC electromotility might provide the force for DPOAE generation not only at low, but also at high stimulus intensities. (C) 1998 Elsevier Science B.V. All rights reserved. C1 NIDCD, Sect Struct Cell Biol, Lab Cellular Biol, NIH, Rockville, MD 20852 USA. RP Kachar, B (reprint author), NIDCD, Sect Struct Cell Biol, Lab Cellular Biol, NIH, Bldg 36-5D15, Rockville, MD 20852 USA. EM bkachar@pop.nidcd.nih.gov CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BROWNELL WE, 1985, PERIPHERAL AUDITORY, P369 DALLOS P, 1992, J NEUROSCI, V12, P4575 DIELER R, 1991, J NEUROCYTOL, V20, P637, DOI 10.1007/BF01187066 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 FITZGERALD JJ, 1993, HEARING RES, V67, P147, DOI 10.1016/0378-5955(93)90242-S Flock A, 1997, HEARING RES, V106, P29 Gale JE, 1997, NATURE, V389, P63, DOI 10.1038/37968 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 HARRISON RV, 1988, BIOL HEARING DEAFNES HAYASHIDA T, 1989, ACTA OTO-LARYNGOL, V108, P404, DOI 10.3109/00016488909125546 HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G HOUSLEY GD, 1995, ACTIVE HEARING, P221 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 *INT TEAM EAR RES, 1989, ACTA OTOLARYNGOL S S, V467, P7 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 Kakehata S, 1996, J NEUROSCI, V16, P4881 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 KALINEC F, 1993, NEUROSCI LETT, V157, P231, DOI 10.1016/0304-3940(93)90744-6 KEMP DT, 1984, HEARING RES, V13, P39, DOI 10.1016/0378-5955(84)90093-5 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KUJAWA SG, 1992, HEARING RES, V64, P73, DOI 10.1016/0378-5955(92)90169-N KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 KUJAWA SG, 1994, HEARING RES, V78, P181, DOI 10.1016/0378-5955(94)90024-8 MCFADDEN D, 1984, J ACOUST SOC AM, V76, P443, DOI 10.1121/1.391585 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 NORTON SJ, 1990, LECT NOTES BIOMATH, V87, P219 PATUZZI R, 1988, PHYSIOL REV, V68, P1009 Probst R, 1990, Adv Otorhinolaryngol, V44, P1 REBILLARD G, 1993, BRIT J AUDIOL, V27, P117, DOI 10.3109/03005369309077901 ROTHSTEIN A, 1970, CURRENT TOPICS MEMBR, P135 RUSSELL NJ, 1979, ACTA OTO-LARYNGOL, V88, P369, DOI 10.3109/00016487909137181 Ryan S, 1996, HEARING RES, V94, P140, DOI 10.1016/0378-5955(96)00021-4 SALT AN, 1988, PHYSL EAR, P341 SCHROTT A, 1991, HEARING RES, V52, P245, DOI 10.1016/0378-5955(91)90204-M SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2 THALMANN R, 1977, ACTA OTO-LARYNGOL, V83, P221, DOI 10.3109/00016487709128836 TUNSTALL MJ, 1995, J PHYSIOL-LONDON, V485, P739 Ueda H, 1996, ORL J OTO-RHINO-LARY, V58, P61 UEDA H, 1992, HEARING RES, V62, P199, DOI 10.1016/0378-5955(92)90187-R WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 WHITEHEAD ML, 1990, LECT NOTES BIOMATH, V87, P243 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2359, DOI 10.1121/1.411960 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2346, DOI 10.1121/1.411959 ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 NR 52 TC 34 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 67 EP 74 DI 10.1016/S0378-5955(98)00150-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500008 PM 9872135 ER PT J AU Jackson, BS Relkin, EM AF Jackson, BS Relkin, EM TI A frequency-dependent saturation evident in rate-intensity functions of the chinchilla auditory nerve SO HEARING RESEARCH LA English DT Article DE auditory nerve; rate-intensity function; saturation; dynamic range; chinchilla ID BASILAR-MEMBRANE NONLINEARITY; COCHLEAR NERVE; MAMMALIAN COCHLEA; LEVEL FUNCTIONS; FIBERS; RESPONSES; CATS AB The shape of Fate-intensity functions recorded from individual neurons of the auditory nerve using stimulus frequencies at and below the characteristic frequency have been both well-characterized and modeled by other researchers. However, previous studies of rats-intensity functions using stimulus frequencies above the characteristic frequency have primarily focused on the slopes of the rising phases of the functions. Hence, they did not determine whether Pare-intensity functions recorded using stimulus frequencies above the characteristic frequency saturate, and, if so, at what firing rates the saturation occurs. In this study, rate-intensity functions have been obtained from neurons of the eighth nerve of the chinchilla in response to gated, sinusoidal stimuli in order to investigate saturation firing rates for frequencies above the characteristic frequency. For each neuron, rate-intensity functions were obtained for stimulus intensities up to 90 dB SPL at the characteristic frequency and at as many frequencies above the characteristic frequency as time would allow. These data clearly reveal that, for frequencies above the characteristic frequency, saturation occurs at a rate that decreases monotonically as the frequency of stimulation is increased. In addition, an empirical equation is given which summarizes the dependence of saturation on stimulus frequency for the data of this study. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Syracuse Univ, Inst Sensory Res, Syracuse, NY 13244 USA. Syracuse Univ, Dept Bioengn & Neurosci, Syracuse, NY 13244 USA. RP Jackson, BS (reprint author), Syracuse Univ, Inst Sensory Res, Merrill Lane, Syracuse, NY 13244 USA. CR CHEATHAM MA, 1997, DIVERSITY AUDITORY M, P494 COOPER NP, 1994, HEARING RES, V78, P221, DOI 10.1016/0378-5955(94)90028-0 DOUCET JR, 1995, AUDIT NEUROSCI, V1, P151 Evans E. F., 1975, HDB SENSORY PHYSL, V5, P1 GEISLER CD, 1974, J NEUROPHYSIOL, V37, P1156 Hill KG, 1998, HEARING RES, V115, P129, DOI 10.1016/S0378-5955(97)00187-1 JACKSON BS, 1995, 18 MIDW RES M ASS RE, P175 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 OHLEMILLER KK, 1991, J ACOUST SOC AM, V90, P274, DOI 10.1121/1.401298 PALMER AR, 1987, BRIT MED BULL, V43, P838 Pickles JO, 1988, INTRO PHYSL HEARING RELKIN EM, 1987, J ACOUST SOC AM, V82, P1679, DOI 10.1121/1.395159 RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O Ruggero M. A., 1992, MAMMALIAN AUDITORY P, P34 RUGGERO MA, 1991, HEARING RES, V51, P215, DOI 10.1016/0378-5955(91)90038-B RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 SACHS MB, 1989, HEARING RES, V41, P61, DOI 10.1016/0378-5955(89)90179-2 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E YATES GK, 1990, HEARING RES, V45, P203, DOI 10.1016/0378-5955(90)90121-5 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M NR 23 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 75 EP 83 DI 10.1016/S0378-5955(98)00151-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500009 PM 9872136 ER PT J AU Koppl, C Gleich, O Schwabedissen, G Siegl, E Manley, GA AF Koppl, C Gleich, O Schwabedissen, G Siegl, E Manley, GA TI Fine structure of the basilar papilla of the emu: implications for the evolution of avian hair-cell types SO HEARING RESEARCH LA English DT Article DE hearing; cochlea; hair cell; micromechanics; stereocilia; bird ID BIRD COCHLEA; INNER-EAR; AUDITORY-NERVE; TYTO-ALBA; MORPHOLOGY; CHICKENS; DIFFERENTIATION; INNERVATION; STEREOCILIA; EXPRESSION AB The morphology of the basilar papilla of the emu was investigated quantitatively with light and scanning electron microscopical techniques. The emu is a member of the Paleognathae, a group of flightless birds that represent the most primitive living avian species. The comparison of the emu papilla with that of other, more advanced birds provides insights into the evolution of the avian papilla, The morphology of the emu papilla is that of an unspecialised bird, but shows the full range of features previously shown to be typical for the avian basilar papilla. For example, the orientation of the hair cells' sensitive axes varied in characteristic fashion both along and across the papilla. Many of the quantitative details correlate well with the representation of predominantly low frequencies alone the papilla. The most distinctive features were an unusually high density of hair cells and an unusual tallness of the hair-cell bodies. This suggests that the evolution of morphologically very short hair cells, which are a hallmark of avian papillae, is a recent development in evolution. The small degree of differentiation in hair-cell size contrasts with the observation that a significant number of hair cells in the emu lack afferent innervation. It is therefore suggested that the development of functionally different hair-cell types in birds preceded the differentiation into morphologically trill and short hair cells. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Tech Univ Munich, Inst Zool, D-85747 Garching, Germany. Univ Regensburg, HNO Klin, D-93042 Regensburg, Germany. RP Koppl, C (reprint author), Tech Univ Munich, Inst Zool, Lichtenbergstr 4, D-85747 Garching, Germany. CR Chen L, 1996, J ACOUST SOC AM, V100, P442, DOI 10.1121/1.415959 CHEN L, 1994, HEARING RES, V81, P130, DOI 10.1016/0378-5955(94)90160-0 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 FEDUCCIA A, 1995, SCIENCE, V267, P637, DOI 10.1126/science.267.5198.637 FISCHER FP, 1994, HEARING RES, V73, P1, DOI 10.1016/0378-5955(94)90277-1 FISCHER FP, 1994, SCANNING MICROSCOPY, V8, P351 Fischer FP, 1998, HEARING RES, V121, P112, DOI 10.1016/S0378-5955(98)00072-0 FISCHER FP, 1992, J MORPHOL, V213, P225, DOI 10.1002/jmor.1052130207 FISCHER FP, 1988, HEARING RES, V34, P87, DOI 10.1016/0378-5955(88)90053-6 FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R GLEICH O, 1989, HEARING RES, V37, P255, DOI 10.1016/0378-5955(89)90026-9 GLEICH O, 1988, HEARING RES, V34, P69, DOI 10.1016/0378-5955(88)90052-4 GLEICH O, 1994, J MORPHOL, V221, P1, DOI 10.1002/jmor.1052210102 JORGENSEN JM, 1989, BRAIN BEHAV EVOLUT, V34, P273, DOI 10.1159/000116512 Koppl C, 1997, J ACOUST SOC AM, V101, P1574, DOI 10.1121/1.418145 KOPPL C, 1993, J COMP PHYSIOL A, V171, P695, DOI 10.1007/BF00213066 KOPPL C, 1993, BIOPHYSICS HAIR CELL, P216 Manley G. A., 1990, PERIPHERAL HEARING M MANLEY GA, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P561 Manley GA, 1996, J MORPHOL, V227, P197, DOI 10.1002/(SICI)1097-4687(199602)227:2<197::AID-JMOR6>3.0.CO;2-6 MANLEY GA, 1993, J MORPHOL, V218, P153, DOI 10.1002/jmor.1052180205 Manley GA, 1997, J ACOUST SOC AM, V101, P1560, DOI 10.1121/1.418273 MANLEY GA, 1995, ADV HEARING RES, P219 MANLEY GA, 1989, J COMP PHYSIOL A, V164, P289, DOI 10.1007/BF00612989 MURROW BW, 1990, P ROY SOC B-BIOL SCI, V242, P189, DOI 10.1098/rspb.1990.0123 MURROW BW, 1994, J PHYSIOL-LONDON, V480, P247 Olson S.L., 1985, Avian Biology, V8, P79 Padian K, 1998, BIOL REV, V73, P1, DOI 10.1017/S0006323197005100 PATUZZI RB, 1991, HEARING RES, V53, P57, DOI 10.1016/0378-5955(91)90214-T PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P RYALS BM, 1984, ACTA OTO-LARYNGOL, V98, P93, DOI 10.3109/00016488409107539 SACHS MB, 1974, BRAIN RES, V70, P431, DOI 10.1016/0006-8993(74)90253-4 Slepecky N. B., 1996, COCHLEA, P44 SMETANA P, 1993, DEP AGR W AUSTR MISC, V3892 SMITH CA, 1985, HEARING RES, V17, P237, DOI 10.1016/0378-5955(85)90068-1 Smolders JWT, 1995, HEARING RES, V92, P151, DOI 10.1016/0378-5955(95)00214-6 TAKASAKA T, 1971, J ULTRA MOL STRUCT R, V35, P20, DOI 10.1016/S0022-5320(71)80141-7 TANAKA K, 1978, AM J ANAT, V153, P251, DOI 10.1002/aja.1001530206 TILNEY LG, 1988, J CELL BIOL, V107, P2563, DOI 10.1083/jcb.107.6.2563 TILNEY LG, 1986, HEARING RES, V22, P55, DOI 10.1016/0378-5955(86)90077-8 TILNEY LG, 1986, DEV BIOL, V116, P100, DOI 10.1016/0012-1606(86)90047-3 TILNEY MS, 1987, HEARING RES, V25, P141, DOI 10.1016/0378-5955(87)90087-6 NR 42 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 99 EP 112 DI 10.1016/S0378-5955(98)00156-7 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500011 PM 9872138 ER PT J AU Code, RA Westbrook, EW Ryals, BM AF Code, RA Westbrook, EW Ryals, BM TI Effects of columella removal on inner ear morphology in the chick SO HEARING RESEARCH LA English DT Article DE tegmentum vasculosum; support cell; hair cell; efferent terminal; auditory nerve afferent ID HAIR CELL REGENERATION; SENSORINEURAL HEARING-LOSS; RECOVERY AB We are currently removing the single middle ear bone (columella) in the domestic chick to introduce chemical agents directly into the inner ear. Since we are interested in the effect of these agents on neural structures within the avian basilar papilla (BP), we are concerned about any subtle changes that might result from the surgical procedure of columella removal alone. The purpose of this study was to use light and transmission electron microscopy to analyte morphological changes in the inner ear after columella removal. Fifteen-day-old chicks underwent a unilateral, bilateral or a sham removal of the columella. After columella removal, the oval window was either plugged with Gelfoam or Kimwipe (standard accepted procedure to prevent possible perilymph leak) or left uncovered. After a 5-day survival period, morphological changes were observed in the tegmentum vasculosum (TV) of all ears receiving a columella removal as compared to unoperated ears. Further. ears with Gelfoam plugging the oval window also had damage to the hair cells and support cells of the basilar papilla. In contrast, there were no observable differences in either auditory afferent or efferent nerve terminals on hair cells in the BP from any ears that had the columella removed compared to those from unoperated ears. These results suggest that columella removal alone may produce morphological changes to the TV within 5 days of surgery but not to structures within the BP. On the other hand, columella removal with a Gelfoam plug results in damage not only to the TV but also to cells within the basilar papilla during this same survival time. Despite damage to other structures within the inner ear, cochlear efferent and afferent terminals on surviving hair cells were unaffected by columella removal with or without plugging. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Texas Womans Univ, Dept Biol, Denton, TX 76204 USA. McGuire Res Inst, Richmond, VA 23249 USA. James Madison Univ, Dept Commun Sci & Disorders, Harrisonburg, VA 22807 USA. RP Code, RA (reprint author), Texas Womans Univ, Dept Biol, Denton, TX 76204 USA. CR COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 DUCKERT LG, 1993, J COMP NEUROL, V331, P75, DOI 10.1002/cne.903310105 GIROD DA, 1991, LARYNGOSCOPE, V101, P1130 *PHARM UPJ, 1998, GELF ADV REACT RYALS BM, 1996, ASS RES OT ABSTR, V19, P35 RYALS BM, 1992, EXP NEUROL, V115, P18, DOI 10.1016/0014-4886(92)90214-B RYALS BM, 1995, HEARING RES, V83, P51, DOI 10.1016/0378-5955(94)00190-2 SCHACHERN PA, 1987, LARYNGOSCOPE, V97, P790 TSUE TT, 1994, OTOLARYNG HEAD NECK, V111, P281, DOI 10.1016/S0194-5998(94)70603-4 TUCCI DL, 1985, J COMP NEUROL, V238, P371, DOI 10.1002/cne.902380402 TUCCI DL, 1987, ANN OTO RHINOL LARYN, V96, P343 NR 11 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 113 EP 122 DI 10.1016/S0378-5955(98)00158-0 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500012 PM 9872139 ER PT J AU Toth, L Racz, T Dioszeghy, P Repassy, G Lampe, I AF Toth, L Racz, T Dioszeghy, P Repassy, G Lampe, I TI Otoacoustic emission in myasthenia gravis patients and the role of efferent activation SO HEARING RESEARCH LA English DT Article DE acetylcholine receptor; myasthenia gravis; transient evoked otoacoustic emission ID OUTER HAIR-CELLS; ACETYLCHOLINE AB We performed transient evoked otoacoustic emission (TEOAE) measurements on 29 ears of myasthenia gravis (MG) patients. The purpose of the study was to support the role of acetylcholine (ACh) in the efferent innervation of cochlear outer hair cells (OHCs). Another aim was to establish additional diagnostic tools for the early determination of MG. Initially, threshold audiometry and impedance measurements showed normal values on the ears examined. The main finding was that TEOAE values were significantly lower in MG patients than in healthy controls. Mestinon, a reversible cholinesterase inhibitor, resulted in a significant increase in mean values of TEOAEs, although these values were still lower than normal. The results suggest that in MG, acetylcholine receptor (AChR) autoantibodies inhibit the function of OHC AChRs. Thus, the TEOAE generated by the active movements of OHCs is decreased in MG. Mestinon prevents the degradation of ACh, and thus stimulates efferent function and increases TEOAE values. The results obtained in this study support the role of ACh in the efferent function of OHC, as well as the impaired function of hair cell AChRs in MG patients. Consequently, measuring TEOAEs may be useful in the early diagnosis of some forms of MG. These results reinforce the importance of collaboration between neurologists and otolaryngologists in the management of diseases with pathological neurotransmission. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Debrecen Univ Med, Sch Med, Dept Otolaryngol, H-4012 Debrecen, Hungary. Debrecen Univ Med, Sch Med, Dept Neurol, H-4012 Debrecen, Hungary. RP Toth, L (reprint author), Debrecen Univ Med, Sch Med, Dept Otolaryngol, Nagyerdei Krt 98,POB 28, H-4012 Debrecen, Hungary. CR EYBALIN M, 1989, ARCH OTO-RHINO-LARYN, V246, P228, DOI 10.1007/BF00463561 Guinan Jr J.J., 1996, COCHLEA, P435 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KLINKE R, 1981, ACTA OTO-LARYNGOL, V91, P541, DOI 10.3109/00016488109138540 MORGENSTERN C, 1995, ACTA OTO-LARYNGOL, V115, P206, DOI 10.3109/00016489509139293 Musiek FE, 1997, AM J OTOL, V18, P454 PLINKERT PK, 1994, HNO, V42, P738 Plinkert P K, 1990, Rev Laryngol Otol Rhinol (Bord), V111, P41 SNEDDON J, 1980, LANCET, V8167, P526 SZIKLAI I, 1993, ACTA OTO-LARYNGOL, V113, P326, DOI 10.3109/00016489309135818 Sziklai I, 1996, HEARING RES, V95, P87, DOI 10.1016/0378-5955(96)00026-3 SZOBOR A, 1990, MYASTHENIA GRAVIS WHITEHEAD MM, 1995, CLIN ASPECTS HEARING, P199 NR 13 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 123 EP 125 DI 10.1016/S0378-5955(98)00154-3 PG 3 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500013 PM 9872140 ER PT J AU Popov, VV Supin, AY Klishin, VO AF Popov, VV Supin, AY Klishin, VO TI Lateral suppression of rhythmic evoked responses in the dolphin's auditory system SO HEARING RESEARCH LA English DT Article DE lateral suppression; envelope-following response; auditory brainstem response; dolphin ID ENVELOPE-FOLLOWING RESPONSE; COCHLEAR NUCLEUS; SCALP POTENTIALS; SOUNDS; CAT; RESOLUTION; NEURONS; HEARING; STATE AB In the auditory system of bottlenose dolphins (Tursiops truncatus), a brain-evoked response to rhythmic sound amplitude modulations (the envelope-following response) was markedly suppressed by addition of another sound with a frequency 5-20 kHz higher and an intensity down to 40 dB lower than that of the amplitude-modulated signal. This effect was called paradoxical lateral suppression. This phenomenon was primarily observed when the amplitude-modulated stimulus had a carrier frequency above 30 kHz and modulation rates above 500 Hz. Only the sustained rhythmic response was suppressed, while the transient on-response was not. This indicates that the suppression influenced the ability of evoked potentials to follow rapid amplitude modulations. This prevents weak sounds from being masked by stronger ones. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Russian Acad Sci, Dept Ecol & Evolut, Moscow 117071, Russia. RP Supin, AY (reprint author), Russian Acad Sci, Dept Ecol & Evolut, 33 Leninsky Prospekt, Moscow 117071, Russia. EM supin@inemor.msk.su CR Au W. W. L., 1993, SONAR DOLPHINS AU WWL, 1984, J ACOUST SOC AM, V75, P255, DOI 10.1121/1.390403 BULLOCK TH, 1968, Z VERGL PHYSIOL, V59, P117 DOLPHIN WF, 1995, SENSORY SYSTEMS AQUA, P197 DOLPHIN WF, 1995, J COMP PHYSIOL A, V177, P235 DOLPHIN WF, 1992, HEARING RES, V58, P70, DOI 10.1016/0378-5955(92)90010-K EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 EVANS EF, 1992, PHILOS T ROY SOC B, V336, P295, DOI 10.1098/rstb.1992.0062 EVANS EF, 1973, EXP BRAIN RES, V17, P402 Fay R. R., 1988, HEARING VERTEBRATES Houtgast T., 1974, FACTS MODELS HEARING, P258 KUWADA S, 1986, HEARING RES, V21, P179, DOI 10.1016/0378-5955(86)90038-9 POPOV V, 1990, NATO ADV SCI I A-LIF, V196, P405 POPOV VV, 1990, J COMP PHYSIOL A, V166, P385 Popov VV, 1997, NEUROSCI LETT, V234, P51, DOI 10.1016/S0304-3940(97)00668-X POPOV VV, 1995, J COMP PHYSIOL A, V178, P571 Popov VV, 1997, J ACOUST SOC AM, V102, P1169, DOI 10.1121/1.419935 REES A, 1986, HEARING RES, V23, P123, DOI 10.1016/0378-5955(86)90009-2 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 RIDGWAY SH, 1981, P NATL ACAD SCI-BIOL, V78, P1943, DOI 10.1073/pnas.78.3.1943 SUPIN AY, 1993, J COMP PHYSIOL A, V173, P649 Supin Alexander Ya., 1995, P95 SUPIN AY, 1995, J ACOUST SOC AM, V97, P2586, DOI 10.1121/1.411913 SUPIN AY, 1993, J ACOUST SOC AM, V93, P3490, DOI 10.1121/1.405679 Supin AY, 1995, HEARING RES, V92, P38, DOI 10.1016/0378-5955(95)00194-8 VOIGT HF, 1980, J NEUROPHYSIOL, V44, P76 Young E.D., 1985, P423 YOUNG ED, 1976, J NEUROPHYSIOL, V60, P1 NR 28 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 126 EP 134 DI 10.1016/S0378-5955(98)00155-5 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500014 PM 9872141 ER PT J AU Talwar, SK Gerstein, GL AF Talwar, SK Gerstein, GL TI Auditory frequency discrimination in the white rat SO HEARING RESEARCH LA English DT Article DE frequency discrimination; frequency difference limen; albino rat; signal detection; response latency; tone duration ID ADULT OWL MONKEYS; INTENSITY DISCRIMINATION; DIFFERENCE LIMENS; GUINEA-PIG; SENSITIVITY; CHINCHILLA; PRIMATES; HUMANS AB Frequency discrimination was investigated in the albino rat using a modified go/no-go positive reinforcement procedure in which subjects reported frequency increments in an ongoing series of pure tone bursts. Weber ratios (frequency difference limen/frequency) were measured from 5 to 32 kHz at 50 dB sound pressure level. A signal detection analysis of the procedure enabled a direct comparison to be made with the rat's performance in a discrete trial go/no-go task. A mean Weber ratio of 3.06 +/- 0.44% was measured in the frequency range 5-32 kHz. This indicates that the fat has better frequency discrimination acuity than has previously been thought. The result is discussed in the context of factors affecting performance. Among the factors that were explored we found that long training times and the specific training paradigm played important roles. In comparison to discrete trial go/no-go paradigms, rats performed much better when detecting signals from a repeating background. Frequency discrimination performance decreased linearly for tones less than 50 ms in duration. For longer tone duration performance was unaffected. The means and variability of reaction times for threshold changes of frequency were greater in comparison with supra-threshold frequency changes. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Univ Penn, Dept Neurosci, Philadelphia, PA 19104 USA. RP Talwar, SK (reprint author), 1624 Spruce St,4F, Philadelphia, PA 19103 USA. CR ANDERSON JR, 1980, COGNITIVE SKILLS THE BARU AV, 1971, SENSORY PROCESSES NE, P265 Blackwell HR, 1943, J EXP PSYCHOL, V33, P407, DOI 10.1037/h0057863 BURDA H, 1984, HEARING RES, V14, P315, DOI 10.1016/0378-5955(84)90058-3 CAMPBELL RA, 1963, J ACOUST SOC AM, V35, P1511, DOI 10.1121/1.1918738 CARDOZO BL, 1962, 4 INT C AC COP, V1 CARDOZO BL, 1970, 5 IPO, P38 CRANFORD JL, 1978, BRAIN RES, V148, P499, DOI 10.1016/0006-8993(78)90737-0 DEMANY L, 1985, J ACOUST SOC AM, V78, P1118, DOI 10.1121/1.393034 ELLIOTT DN, 1960, J ACOUST SOC AM, V32, P380, DOI 10.1121/1.1908071 Fay R. R., 1988, HEARING VERTEBRATES FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229 FAY RR, 1974, J ACOUST SOC AM, V56, P206, DOI 10.1121/1.1903256 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 Fletcher H., 1953, SPEECH HEARING COMMU GOUREVIT.G, 1965, J ACOUST SOC AM, V37, P439, DOI 10.1121/1.1909348 GREEN DM, 1966, SIGNAL DETECTION THE GRIER JB, 1971, PSYCHOL BULL, V75, P424, DOI 10.1037/h0031246 HACK MH, 1971, J COMP PHYSIOL PSYCH, V74, P315, DOI 10.1037/h0030356 HARRIS JD, 1952, J ACOUST SOC AM, V24, P750, DOI 10.1121/1.1906970 HARRISON JM, 1992, J ACOUST SOC AM, V92, P1331, DOI 10.1121/1.403927 HARRISON JM, 1984, J ACOUST SOC AM, V75, P1848, DOI 10.1121/1.390985 HEFFNER R, 1971, J ACOUST SOC AM, V49, P1888, DOI 10.1121/1.1912596 HEFFNER RS, 1988, J COMP PSYCHOL, V102, P66, DOI 10.1037/0735-7036.102.1.66 HENNING GB, 1966, J ACOUST SOC AM, V39, P336, DOI 10.1121/1.1909894 HIENZ RD, 1987, ASS RES OTOLARYNGOLO, P81 KEITHLEY EM, 1987, J ACOUST SOC AM, V81, P1036, DOI 10.1121/1.394675 Kelly J.B., 1970, THESIS VANDERBILT U KIETZ H, 1963, INT AUDIOL, V2, P48, DOI 10.3109/05384916309070130 KILLEEN PR, 1978, J EXP ANAL BEHAV, V29, P17, DOI 10.1901/jeab.1978.29-17 Liang C.A., 1961, SOV PHYS ACOUST+, V6, P75 LONG GR, 1984, J ACOUST SOC AM, V75, P1184, DOI 10.1121/1.390768 Long GR, 1994, COMP HEARING MAMMALS, P18 Marston HM, 1996, COGNITIVE BRAIN RES, V3, P269, DOI 10.1016/0926-6410(96)00012-2 Merzenich M.M., 1988, NEUROBIOLOGY NEOCORT, P41 MOODY DB, 1970, ANIMAL PSYCHOPHYSICS, P277 MOODY DB, 1969, VISION RES, V9, P1381, DOI 10.1016/0042-6989(69)90074-1 MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640 NELSON DA, 1978, J ACOUST SOC AM, V64, P114, DOI 10.1121/1.381977 POLLACK I, 1964, PSYCHON SCI, V1, P125 PROSEN CA, 1990, J ACOUST SOC AM, V88, P2152, DOI 10.1121/1.400112 PROSEN CA, 1989, J ACOUST SOC AM, V85, P1302, DOI 10.1121/1.397461 RECANZONE GH, 1993, J NEUROSCI, V13, P87 RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1015 RECANZONE GH, 1991, BEHAV RES METH INSTR, V23, P357 SASLOW CA, 1968, J EXP ANAL BEHAV, V11, P89, DOI 10.1901/jeab.1968.11-89 Scharf B., 1970, FDN MODERN AUDITORY, V1 SEKEY ANDREW, 1963, JOUR ACOUSTICAL SOC AMER, V35, P682, DOI 10.1121/1.1918587 Shower EG, 1931, J ACOUST SOC AM, V3, P275, DOI 10.1121/1.1915561 SIEBERT WM, 1970, PR INST ELECTR ELECT, V58, P723, DOI 10.1109/PROC.1970.7727 Singley M. K., 1989, TRANSFER COGNITIVE S SINNOTT JM, 1987, J COMP PSYCHOL, V101, P126, DOI 10.1037/0735-7036.101.2.126 SINNOTT JM, 1992, HEARING RES, V59, P205, DOI 10.1016/0378-5955(92)90117-6 SINNOTT JM, 1985, J ACOUST SOC AM, V78, P1977, DOI 10.1121/1.392654 SKINNER BF, 1946, AM PSYCHOL, V1, P274 STEBBINS WC, 1966, J EXP ANAL BEHAV, V9, P135, DOI 10.1901/jeab.1966.9-135 SWETS JA, 1996, SIGNAL DETECTION THE Syka J, 1996, HEARING RES, V100, P107, DOI 10.1016/0378-5955(96)00101-3 TALWAR SK, 1998, IN PRESS J ACOUST SO THOMPSON RF, 1960, J NEUROPHYSIOL, V23, P321 TURNER CW, 1982, J SPEECH HEAR RES, V25, P34 VONBEKESY G, 1947, ACTA OTO-LARYNGOL, V35, P411 WATSON CS, 1976, J ACOUST SOC AM, V60, P1176, DOI 10.1121/1.381220 ZWICKER E, 1970, FREQUENCY ANAL PERIO NR 64 TC 27 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 135 EP 150 DI 10.1016/S0378-5955(98)00162-2 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500015 PM 9872142 ER PT J AU Mahendrasingam, S Furness, DN Hackney, CM AF Mahendrasingam, S Furness, DN Hackney, CM TI Ultrastructural localisation of spectrin in sensory and supporting cells of guinea-pig organ of Corti SO HEARING RESEARCH LA English DT Article DE spectrin; hair cell; organ of Corti; cochlea; inner ear ID OUTER HAIR-CELLS; FORCE GENERATION; F-ACTIN; FODRIN; COCHLEA; MEMBRANE; PROTEIN; INNER; IDENTIFICATION; MICROTUBULES AB Spectrin is a cytoskeletal protein found in the cortex of many cell types. It is known to occur in cochlear outer hair cells (OHCs) with previous immunoelectron microscopical studies showing that it is located in the cuticular plate and the cortical lattice. The latter is a network of filaments associated with the lateral plasma membrane that is thought to play a role in OHC motility. Spectrin has also been found in inner hair cells (IHCs) and supporting cells using immunofluorescent techniques, but its ultrastructural distribution in these cells has not yet been described. This has, therefore, been investigated using a monoclonal antibody to a-spectrin in conjunction with pre- and post-embedding immunogold labelling for transmission electron microscopy. Labelling was found in a meshwork of filaments beneath the plasma membranes of both IHCs and supporting cells and, in pillar cells: close to microtubule/microfilament arrays. It was also found in association with the stereocilia of OHCs and IHCs and, as expected, in the cortical lattice and cuticular plate of OHCs. Thus, spectrin is a general component of cytoskeletal structures involved in maintaining the specialised cell shapes in the organ of Corti and may contribute to the mechanical properties of all the cell types examined. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Keele, Dept Commun & Neurosci, Keele ST5 5BG, Staffs, England. RP Mahendrasingam, S (reprint author), Univ Keele, Dept Commun & Neurosci, Keele ST5 5BG, Staffs, England. EM coa03@keele.ac.uk CR Bannister L H, 1988, Prog Brain Res, V74, P213 BENNETT V, 1990, PHYSIOL REV, V70, P1029 BLACK JD, 1988, J CELL BIOL, V106, P97, DOI 10.1083/jcb.106.1.97 BURRIDGE K, 1982, J CELL BIOL, V95, P478, DOI 10.1083/jcb.95.2.478 CARLIN RK, 1983, J CELL BIOL, V96, P443, DOI 10.1083/jcb.96.2.443 DALLOS P, 1992, J NEUROSCI, V12, P4575 DING JP, 1991, HEARING RES, V56, P19, DOI 10.1016/0378-5955(91)90149-4 DRENCKHAHN D, 1991, J CELL BIOL, V112, P641, DOI 10.1083/jcb.112.4.641 DULON D, 1991, HEARING RES, V52, P225, DOI 10.1016/0378-5955(91)90202-K FACH BL, 1985, CAN J BIOCHEM CELL B, V63, P372 FUGIMOTO T, 1989, J HISTOCHEM CYTOCHEM, V37, P1345 FUGIMOTO T, 1991, J HISTOCHEM CYTOCHEM, V39, P1485 FURNESS DN, 1990, EUR ARCH OTO-RHINO-L, V247, P12 GLENNEY JR, 1983, J CELL BIOL, V96, P1491, DOI 10.1083/jcb.96.5.1491 HIROKAWA N, 1983, CELL, V32, P953, DOI 10.1016/0092-8674(83)90080-6 HOLLEY M, 1991, BIOESSAYS, V13, P115, DOI 10.1002/bies.950130304 HOLLEY MC, 1990, J CELL SCI, V96, P283 HOLLEY MC, 1992, J CELL SCI, V102, P569 HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0 HOLLEY M C, 1991, Journal of Cell Biology, V115, p345A HOLLEY MC, 1988, PROC R SOC SER B-BIO, V232, P413, DOI 10.1098/rspb.1988.0004 ISAYAMA T, 1993, CELL TISSUE RES, V274, P127, DOI 10.1007/BF00327993 ISHIKAWA M, 1983, J BIOCHEM-TOKYO, V94, P1209 JIANG D, 1993, BRIT J AUDIOL, V27, P195, DOI 10.3109/03005369309076693 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 NISHIDA Y, 1993, HEARING RES, V65, P274, DOI 10.1016/0378-5955(93)90220-U RAPHAEL Y, 1994, HEARING RES, V76, P173, DOI 10.1016/0378-5955(94)90098-1 SACHS F, 1988, CRIT REV BIOMED ENG, V16, P141 SHIMOOKA T, 1986, J NEUROCYTOL, V15, P715, DOI 10.1007/BF01625189 SHOTTON DM, 1979, J MOL BIOL, V131, P303, DOI 10.1016/0022-2836(79)90078-0 SLEPECKY NB, 1992, HEARING RES, V57, P201, DOI 10.1016/0378-5955(92)90152-D TOLOMEO JA, 1997, P INT S DIV AUD MECH, P556 Tolomeo JA, 1997, BIOPHYS J, V73, P2241 YLIKOSKI J, 1990, HEARING RES, V43, P199, DOI 10.1016/0378-5955(90)90228-H YLIKOSKI J, 1992, HEARING RES, V60, P80, DOI 10.1016/0378-5955(92)90061-Q ZAGON IS, 1986, J NEUROSCI, V6, P2977 NR 36 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 151 EP 160 DI 10.1016/S0378-5955(98)00164-6 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500016 PM 9872143 ER PT J AU Huffman, RF Argeles, PC Covey, E AF Huffman, RF Argeles, PC Covey, E TI Processing of sinusoidally frequency modulated signals in the nuclei of the lateral lemniscus of the big brown bat, Eptesicus fuscus SO HEARING RESEARCH LA English DT Article DE auditory brainstem; nuclei of the lateral lemniscus; frequency modulation; temporal processing; echolocation; bat ID RUFOUS HORSESHOE BAT; CF-FM BAT; INFERIOR COLLICULUS; COCHLEAR NUCLEUS; RHINOLOPHUS-FERRUMEQUINUM; AUDITORY-CORTEX; SINGLE UNITS; RESPONSES; NEURONS; AMPLITUDE AB Neurons in the nuclei of the lateral lemniscus (NLL) of the big brown bat, Eptesicus fuscus, show several distinctive patterns of response to unmodulated tones. Previous work suggests that sustained responders are specialized to transmit information about sound level and duration while onset responders transmit precise timing information. The biosonar signals of E. fuscus consist of multiple, downward frequency modulated sweeps that change in slope and repetition rate as the bat approaches a target. An obvious hypothesis would be that NLL neurons with sustained responses should discharge during the time when the frequency of a signal is within their response area, but that onset responders should discharge each time the frequency enters the excitatory portion of their response area. In this study we examined the responses of NLL neurons to sinusoidally frequency modulated (SFM) signals presented monaurally to awake, restrained bats. Extracellular recordings were obtained from single neurons in the multipolar and columnar divisions of the ventral nucleus (VNLLm and VNLLc), the intermediate nucleus (INLL) and the dorsal nucleus of the lateral lemniscus (DNLL). All NLL neurons responded synchronously to SFM signals under some conditions. The temporal precision of synchronization was quantified using a coefficient of synchronization (CS), where a value of 1 equals perfect synchrony. Maximum CS values ranged from 0.70 to > 0.99, were generally highest at low modulation rates (< 200 Hz), and showed lowpass characteristics for modulation rate. The maximal modulation rates that elicited synchronous discharge ranged from 50 to 500 Hz. The highest maximal rates were found in the VNLLm and VNLLc, the lowest in DNLL. The ability of NLL neurons to synchronize their discharge to the pattern of an SFM signal is intermediate between that of neurons in the cochlear nucleus and in the inferior colliculus. For the majority of neurons in VNLLm, INLL and DNLL, the precision of synchronization was approximately equal for the downward and upward components of the SFM signal; in contrast, 69% of VNLLc neurons responded selectively to the downward component of the SFM signal. All VNLLc neurons and a subset of those in VNLLm, INLL, and DNLL responded synchronously to SFM signals only if the frequency excursions included a border of the excitatory frequency bandwidth, suggesting that the synchronous discharge was due primarily to the repeated passage of the stimulus frequency into and out of the excitatory portion of the response area. In the case of VNLLc neurons, only the high frequency border was effective: Other neurons, especially those in DNLL, responded synchronously to SFM signals with frequency excursions that were confined entirely within the excitatory response area. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA. RP Covey, E (reprint author), Univ Washington, Dept Psychol, POB 351525, Seattle, WA 98195 USA. EM ecovey@u.washington.edu CR ALLON N, 1981, EXP BRAIN RES, V41, P222 BISHOP PO, 1962, J PHYSIOL-LONDON, V162, P409 BODENHAMER RD, 1983, J COMP PHYSIOL, V153, P67 Casseday JH, 1997, J NEUROPHYSIOL, V77, P1595 CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 CASSEDAY JH, 1996, NEURAL REPRESENTATIO, P25 COVEY E, 1986, J NEUROSCI, V6, P2926 COVEY E, 1991, J NEUROSCI, V11, P3456 Covey E., 1995, HEARING BATS, P235 COVEY E, 1993, NATO ADV SCI INST SE, V239, P321 FERNALD RD, 1972, BRAIN RES, V45, P417, DOI 10.1016/0006-8993(72)90472-6 FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 GOULD E, 1971, Communications in Behavioral Biology Part A Original Articles, V5, P263 HUBEL DH, 1960, J PHYSIOL-LONDON, V150, P91 Huffman RF, 1998, HEARING RES, V126, P181, DOI 10.1016/S0378-5955(98)00166-X Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153 KALKO EKV, 1989, BEHAV ECOL SOCIOBIOL, V24, P225, DOI 10.1007/BF00295202 KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273 KHANNA SM, 1989, HEARING RES, V39, P159, DOI 10.1016/0378-5955(89)90088-9 MCANALLY KI, 1989, HEARING RES, V41, P237, DOI 10.1016/0378-5955(89)90015-4 MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6 MESULAM MM, 1982, TRACING NEURONAL CON METZNER W, 1987, J COMP PHYSIOL A, V160, P395, DOI 10.1007/BF00613029 MOLLER AR, 1972, ACTA PHYSIOL SCAND, V86, P223, DOI 10.1111/j.1748-1716.1972.tb05328.x NELSON PG, 1966, J NEUROPHYSIOL, V29, P834 PHILLIPS DP, 1985, EXP BRAIN RES, V58, P443 POLLAK GD, 1981, J NEUROPHYSIOL, V45, P208 POON PWF, 1991, EXP BRAIN RES, V83, P598 POON PWF, 1992, EXP BRAIN RES, V91, P94 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 REIMER K, 1987, J COMP PHYSIOL A, V161, P305, DOI 10.1007/BF00615250 Rhode WS, 1992, MAMMALIAN AUDITORY P, P94 SCHULLER G, 1979, EXP BRAIN RES, V34, P117 SCHULLER G, 1984, J COMP PHYSIOL, V155, P121, DOI 10.1007/BF00610937 SIMMONS JA, 1989, COGNITION, V33, P155, DOI 10.1016/0010-0277(89)90009-7 SINEX DG, 1981, HEARING RES, V4, P127, DOI 10.1016/0378-5955(81)90001-0 SUGA N, 1965, J PHYSIOL-LONDON, V179, P26 SUGA N, 1968, J PHYSIOL-LONDON, V198, P51 SUGA N, 1977, J EXP BIOL, V69, P207 SUGA N, 1969, J PHYSIOL-LONDON, V200, P555 Vater M, 1997, CELL TISSUE RES, V289, P223, DOI 10.1007/s004410050869 VATER M, 1982, J COMP PHYSIOL, V149, P369 WATANABE T, 1972, JPN J PHYSIOL, V22, P569 WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655 WHITFIELD I C, 1972, Brain Behavior and Evolution, V6, P311, DOI 10.1159/000123718 ZOOK JM, 1982, J COMP NEUROL, V207, P1, DOI 10.1002/cne.902070102 NR 48 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 161 EP 180 DI 10.1016/S0378-5955(98)00165-8 PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500017 PM 9872144 ER PT J AU Huffman, RF Argeles, PC Covey, E AF Huffman, RF Argeles, PC Covey, E TI Processing of sinusoidally amplitude modulated signals in the nuclei of the lateral lemniscus of the big brown bat, Eptesicus fuscus SO HEARING RESEARCH LA English DT Article DE auditory brainstem; nuclei of the lateral lemniscus; amplitude modulation; temporal processing; echolocation; bat ID AUDITORY-NERVE FIBERS; GERBIL COCHLEAR NUCLEUS; DOPPLER-SHIFTED ECHOES; CF-FM BAT; INFERIOR COLLICULUS; ECHOLOCATING BAT; SINGLE NEURONS; RHINOLOPHUS-FERRUMEQUINUM; ASCENDING PROJECTIONS; PTERONOTUS-PARNELLII AB Changes in amplitude are a characteristic feature of most natural sounds, including the biosonar signals used by bats for echolocation. Previous evidence suggests that the nuclei of the lateral lemniscus play an important role in processing timing information that is essential for target range determination in echolocation. Neurons that respond to unmodulated tones with a sustained discharge are found in the dorsal nucleus (DNLL), intermediate nucleus (INLL) and multipolar cell division of the ventral nucleus (VNLLm). These neurons provide a graded response over a broad dynamic range of intensities, and would be expected to provide information about the amplitude envelope of a modulated signal. Neurons that respond only at the onset of a tone make up a small proportion of cells in DNLL, INLL and VNLLm, but are the only type found in the columnar division of the ventral nucleus (VNLLc), Onset neurons in VNLLc maintain a constant latency across a wide range of stimulus frequencies and intensities, thus providing a precise marker for when a sound begins. To determine how these different functional classes of cells respond to amplitude changes, we presented sinusoidally amplitude modulated (SAM) signals monaurally to awake: restrained bats and recorded the responses of single neurons extracellularly. There were clear differences in the ability of neurons in the different cell groups to respond to SAM. In the VNLLm, INLL and DNLL, 90% of neurons responded to SAM with a synchronous discharge. Neurons in the VNLLc responded poorly or not at all to SAM signals. This finding was unexpected given the precise onset responses of VNLLc neurons to unmodulated tones and their ability to respond synchronously to sinusoidally frequency modulated (SFM) signals, Among neurons that responded synchronously to SAM, synchronization as a function of modulation rate described either a bandpass ol a lowpass function, with the majority of bandpass functions in neurons that responded to unmodulated tones with a sustained discharge. The maximal modulation rates that elicited synchronous responses were similar for the different cell groups, ranging from 320 Hz in VNLLm to 230 Hz in DNLL, The range of best modulation rates was greater for SAM than for SFM; this was also true of the range of maximal modulation rates at which synchronous discharge occurred. There was little correlation between a neuron's best modulation rate or maximal modulation rate for SAM signals and those for SFM signals, suggesting that responsiveness to amplitude and frequency modulations depends on different neural processing mechanisms. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA. RP Covey, E (reprint author), Univ Washington, Dept Psychol, POB 351525, Seattle, WA 98195 USA. EM ecovey@u.washington.edu CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 BARTSCH E, 1993, HEARING RES, V67, P128, DOI 10.1016/0378-5955(93)90240-2 BELL GP, 1984, BEHAV ECOL SOCIOBIOL, V15, P109, DOI 10.1007/BF00299377 BISHOP PO, 1962, J PHYSIOL-LONDON, V162, P409 CASSEDAY JH, 1995, NEURAL REPRESENTATIO, P25 COVEY E, 1986, J NEUROSCI, V6, P2926 COVEY E, 1991, J NEUROSCI, V11, P3456 Covey E., 1995, HEARING BATS, P235 COVEY E, 1993, J NEUROPHYSIOL, V69, P842 COVEY E, 1993, NATO ADV SCI INST SE, V239, P321 FENG AS, 1994, J NEUROPHYSIOL, V72, P2209 FENG AS, 1991, J NEUROPHYSIOL, V65, P424 FERNALD RD, 1972, BRAIN RES, V45, P417, DOI 10.1016/0006-8993(72)90472-6 FRISINA RD, 1985, EXP BRAIN RES, V60, P417 Frisina RD, 1996, J ACOUST SOC AM, V99, P475, DOI 10.1121/1.414559 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z FRISINA RD, 1994, EXP BRAIN RES, V102, P160 GOLDMAN LJ, 1977, BEHAV ECOL SOCIOBIOL, V2, P411, DOI 10.1007/BF00299509 GOOLER DM, 1992, J NEUROPHYSIOL, V67, P1 GROTHE B, 1994, J NEUROPHYSIOL, V71, P706 HAPLEA S, 1994, J COMP PHYSIOL A, V174, P671 HUBEL DH, 1960, J PHYSIOL-LONDON, V150, P91 HUFFMAN RF, 1995, J COMP NEUROL, V357, P532, DOI 10.1002/cne.903570405 Huffman RF, 1998, HEARING RES, V126, P161, DOI 10.1016/S0378-5955(98)00165-8 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 KOBER R, 1990, J ACOUST SOC AM, V87, P882, DOI 10.1121/1.398898 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LESSER HD, 1990, EXP BRAIN RES, V82, P137 LINK A, 1986, J COMP PHYSIOL A, V159, P403, DOI 10.1007/BF00603985 MOLLER AR, 1974, EXP NEUROL, V45, P104, DOI 10.1016/0014-4886(74)90104-6 MOLLER AR, 1986, HEARING RES, V24, P203, DOI 10.1016/0378-5955(86)90019-5 MOLLER AR, 1972, ACTA PHYSIOL SCAND, V86, P223, DOI 10.1111/j.1748-1716.1972.tb05328.x MOSS CF, 1994, J ACOUST SOC AM, V95, P2745, DOI 10.1121/1.409843 NELSON PG, 1966, J NEUROPHYSIOL, V29, P834 PALMER AR, 1982, ARCH OTO-RHINO-LARYN, V236, P197, DOI 10.1007/BF00454039 REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851 REIMER K, 1987, J COMP PHYSIOL A, V161, P305, DOI 10.1007/BF00615250 RHODE WS, 1994, HEARING RES, V77, P43, DOI 10.1016/0378-5955(94)90252-6 Rhode WS, 1991, NEUROBIOLOGY HEARING, P47 Rhode WS, 1992, MAMMALIAN AUDITORY P, P94 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 RHODE WS, 1995, J ACOUST SOC AM, V97, P2414, DOI 10.1121/1.411963 ROSE GJ, 1984, J COMP PHYSIOL, V154, P211, DOI 10.1007/BF00604986 ROSE GJ, 1985, J NEUROPHYSIOL, V53, P446 ROVERUD RC, 1991, J COMP PHYSIOL A, V168, P259 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823 SCHULLER G, 1979, EXP BRAIN RES, V34, P117 SMITH RL, 1980, BRAIN RES, V184, P499, DOI 10.1016/0006-8993(80)90817-3 SUGA N, 1975, J EXP BIOL, V63, P161 VATER M, 1990, J COMP NEUROL, V292, P373, DOI 10.1002/cne.902920305 Vater M, 1997, CELL TISSUE RES, V289, P223, DOI 10.1007/s004410050869 VATER M, 1982, J COMP PHYSIOL, V149, P369 VONDEREMDE G, 1986, J COMP PHYSIOL A, V159, P765 VONDEREMDE G, 1989, J COMP PHYSIOL A, V164, P663 YATES GK, 1987, HEARING RES, V27, P221, DOI 10.1016/0378-5955(87)90003-7 ZOOK JM, 1982, J COMP NEUROL, V207, P1, DOI 10.1002/cne.902070102 NR 59 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 181 EP 200 DI 10.1016/S0378-5955(98)00166-X PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500018 PM 9872145 ER PT J AU Troyanovskaya, M Wackym, PA AF Troyanovskaya, M Wackym, PA TI Evidence for three additional P2X(2) purinoceptor isoforms produced by alternative splicing in the adult rat vestibular end-organs SO HEARING RESEARCH LA English DT Article DE alternative splicing; extracellular ATP; ligand-gated channel; P2 purinoceptor; vestibular periphery ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; GATED ION CHANNELS; NONSELECTIVE CATION CHANNELS; EXTRACELLULAR ATP; P-2X RECEPTOR; SENSORY NEURONS; ACETYLCHOLINE; CALCIUM; RELEASE AB P2X(2) receptors are ligand-gated ion channels that are activated by extracellular ATP. To characterize the expression of P2X(2) purinoceptor in the adult rat vestibular periphery, reverse transcription-polymerase chain reaction (RT-PCR) was used. No transcript for P2X(2) receptor was found in the vestibular primary efferent neurons (Scarpa's ganglia); however, partial cDNAs encoding four splice variants of the P2X(2) receptor were isolated from vestibular end-organs. In all four cDNAs, the deletions were of different lengths but started at the same position on the P2X(2) gene (Val-370 codon) located toward the intracellular carboxyl terminus. One of these receptor isoforms was identical in sequence to the recently published P2X(2(b)) receptor (Simon et al., 1997, Mol. Pharmacol. 52, 237-248) (also known as P2X(2-2), in the nomenclature of Brandle et al., 1997, FEES Lett. 404, 294-298). The remaining three novel splice variants of the P2X(2) receptor were designated P2X(2(e)), P2X(2(f)) and P2X(2(g)) (GenBank accession numbers AF028603, AF028604 and AF028605, respectively). The functional significance of these three splice variants remains to be determined. Pituitary and cerebellum were used as survey tissues and only the P2X(2(b)) receptor cDNA was found. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, Mol Biol Lab, Milwaukee, WI 53226 USA. Mt Sinai Sch Med, Dept Otolaryngol, New York, NY USA. RP Wackym, PA (reprint author), Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, Mol Biol Lab, 9200 W Wisconsin Ave, Milwaukee, WI 53226 USA. CR ABBRACCHIO MP, 1994, PHARMACOL THERAPEUT, V64, P445, DOI 10.1016/0163-7258(94)00048-4 ANDERSON AD, 1997, BRAIN RES, V778, P414 ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 AUBERT A, 1994, NEUROSCIENCE, V62, P963, DOI 10.1016/0306-4522(94)90487-1 BARNARD EA, 1994, TRENDS PHARMACOL SCI, V15, P67, DOI 10.1016/0165-6147(94)90280-1 BEAN BP, 1992, TRENDS PHARMACOL SCI, V13, P87, DOI 10.1016/0165-6147(92)90032-2 BOBIBN RP, 1996, HAIR CELLS HEARING A, P29 BRAKE AJ, 1994, NATURE, V371, P519, DOI 10.1038/371519a0 Brandle U, 1997, FEBS LETT, V404, P294, DOI 10.1016/S0014-5793(97)00128-2 Brichta AM, 1996, ANN NY ACAD SCI, V781, P183, DOI 10.1111/j.1749-6632.1996.tb15701.x BUDAY L, 1993, CELL, V73, P611, DOI 10.1016/0092-8674(93)90146-H Buell G, 1996, EMBO J, V15, P55 BURNSTOCK G, 1990, ARCH INT PHARMACOD T, V304, P7 BURNSTOCK G, 1990, ANN NY ACAD SCI, V603, P1 Burnstock G, 1996, CIBA F SYMP, V198, P1 Chen C, 1997, HEARING RES, V110, P87, DOI 10.1016/S0378-5955(97)00069-5 CHEN CC, 1995, NATURE, V377, P428, DOI 10.1038/377428a0 Collo G, 1996, J NEUROSCI, V16, P2495 DICKMAN JD, 1993, NEUROSCIENCE, V57, P1097, DOI 10.1016/0306-4522(93)90052-H DOWDAL MJ, 1972, BIOCHEM J, V140, P1 EVANS RJ, 1995, MOL PHARMACOL, V48, P178 FREDHOLM BB, 1994, PHARMACOL REV, V46, P143 FU WM, 1994, J PHYSIOL-LONDON, V477, P449 GOLDBERG JM, 1980, J NEUROPHYSIOL, V43, P986 HOULE CHV, 1996, SEMIN NEUROSCI, V8, P207 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 HOUSLEY GD, 1995, BIOCHEM BIOPH RES CO, V212, P501, DOI 10.1006/bbrc.1995.1998 Housley GD, 1997, AUDIOL NEURO-OTOL, V2, P92 HUMPHREY PPA, 1995, N-S ARCH PHARMACOL, V352, P585 Jaramillo F, 1995, NEURON, V15, P1227, DOI 10.1016/0896-6273(95)90003-9 KEMP BE, 1990, TRENDS BIOCHEM SCI, V15, P342, DOI 10.1016/0968-0004(90)90073-K KOCH CA, 1991, SCIENCE, V252, P668, DOI 10.1126/science.1708916 KREINDLER JL, 1998, IN PRESS ANN OTOL RH LEWIS C, 1995, NATURE, V377, P432, DOI 10.1038/377432a0 LIU J, 1995, AUDIT NEUROSCI, V1, P331 LU Z, 1991, J PHYSIOL-LONDON, V436, P45 Marcus DC, 1997, AM J PHYSIOL-CELL PH, V273, pC2022 MOCKETT BG, 1995, HEARING RES, V84, P177, DOI 10.1016/0378-5955(95)00024-X MOCKETT BG, 1994, J NEUROSCI, V14, P6992 MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5 NAKAGAWA T, 1990, J NEUROPHYSIOL, V63, P1068 NAKAZAWA K, 1994, J NEUROSCI, V14, P740 NIEDZIELSKI AS, 1992, NEUROREPORT, V3, P273, DOI 10.1097/00001756-199203000-00015 North RA, 1996, SEMIN NEUROSCI, V8, P187 Raybould NP, 1997, J PHYSIOL-LONDON, V498, P717 RENNIE KJ, 1993, NEUROSCI LETT, V160, P185, DOI 10.1016/0304-3940(93)90409-E ROSSI ML, 1994, J PHYSIOL-LONDON, V478, P17 ROTIN D, 1994, EMBO J, V13, P4440 SCHWEITZER E, 1987, J NEUROSCI, V7, P2948 SHIGEMOTO T, 1990, J PHYSIOL-LONDON, V420, P127 SILINSKY EM, 1975, J PHYSIOL-LONDON, V247, P145 Simon J, 1997, MOL PHARMACOL, V52, P237 Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2 SMITH CWJ, 1989, ANNU REV GENET, V23, P527, DOI 10.1146/annurev.genet.23.1.527 Sneddon P, 1996, SEMIN NEUROSCI, V8, P201, DOI 10.1006/smns.1996.0026 Soto F, 1996, P NATL ACAD SCI USA, V93, P3684, DOI 10.1073/pnas.93.8.3684 Sugasawa M, 1996, J PHYSIOL-LONDON, V491, P707 SURPRENANT A, 1995, TRENDS NEUROSCI, V18, P224, DOI 10.1016/0166-2236(95)93907-F Surprenant A, 1996, SCIENCE, V272, P735, DOI 10.1126/science.272.5262.735 TAYLOR LM, 1992, P PHYSL SOC NZ, V12, P28 Thorne PR, 1996, SEMIN NEUROSCI, V8, P233, DOI 10.1006/smns.1996.0030 VALERA S, 1994, NATURE, V371, P516, DOI 10.1038/371516a0 VanDenAbbeele T, 1996, J PHYSIOL-LONDON, V494, P77 Vanhoutte PM, 1996, PHARMACOL REV, V48, P1 ZIMMERMANN H, 1994, TRENDS NEUROSCI, V17, P420, DOI 10.1016/0166-2236(94)90016-7 NR 65 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1998 VL 126 IS 1-2 BP 201 EP 209 DI 10.1016/S0378-5955(98)00163-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 146VA UT WOS:000077451500019 PM 9872146 ER PT J AU Patuzzi, R Moleirinho, A AF Patuzzi, R Moleirinho, A TI Automatic monitoring of mechano-electrical transduction in the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE cochlear microphonic; Boltzmann function; homeostasis ID LOW-FREQUENCY TONES; BASILAR-MEMBRANE MECHANICS; OUTER HAIR-CELLS; SENSITIVITY; STEREOCILIA; STIMULATION; POTENTIALS; RESPONSES; ORGAN; CORTI AB We have estimated the transfer curve relating instantaneous sound pressure in the ear canal to instantaneous receptor current through the outer hair cells (OHCs) in the basal turn of the guinea pig cochlea using the cochlear microphonic (CM) elicited by continuous 200 Hz tunes. The transfer curve is well approximated by a Boltzmann activation curve which has been automatically analysed using a custom-built electronic circuit which continuously derives the three parameters defining the curve with a time resolution of seconds. This technique offers a convenient method of monitoring changes in OHC mechano-electrical transduction due to cochlear disturbances, and allows the investigation of cochlear homeostasis over the course of hours. We present here details of the technique, evidence that the recordings are minimally contaminated by neural responses, and normative data on the changes in the parameters with sound level. As the level of the 200 Hz tone increases, the equivalent operating point on the transfer curve migrates in a way consistent with a movement of the organ of Corti towards scala tympani or a contraction of the outer hair cells. Surprisingly, the effective slope of the curve which represents the mechanical sensitivity of the transduction process decreases over an 8 to 1 range as the level of the 200 Hz tone is increased. The effect of this variation is that the amplitude of the equivalent mechanical displacement input to the mechano-electrical transduction process appears to increase by a mere 2 to 1 while the sound level increases by a factor of 20 to 1. These changes are not neurally mediated, since they also occur in the presence of tetrodotoxin and the blocker of afferent neurotransmission, kainate. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6907, Australia. RP Patuzzi, R (reprint author), Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6907, Australia. EM rpatuzzi@cyllene.uwa.edu.au CR CANNON MW, 1976, ISRS14 SYR U I SENS CRAWFORD AC, 1981, J PHYSIOL-LONDON, V315, P317 DALLOS P, 1972, SCIENCE, V177, P365 DALLOS P, 1983, HEARING RES, V12, P89, DOI 10.1016/0378-5955(83)90120-X DALLOS P, 1970, J ACOUST SOC AM, V48, P489, DOI 10.1121/1.1912163 ENGEBRET.AM, 1968, J ACOUST SOC AM, V44, P548, DOI 10.1121/1.1911119 HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 Kirk DL, 1997, HEARING RES, V112, P69, DOI 10.1016/S0378-5955(97)00104-4 KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0 Kirk DL, 1997, HEARING RES, V112, P49, DOI 10.1016/S0378-5955(97)00105-6 KONISHI T, 1961, J ACOUST SOC AM, V33, P349, DOI 10.1121/1.1908659 Kros CJ, 1996, COCHLEA, P318 LEGOUIX JP, 1984, HEARING RES, V14, P39, DOI 10.1016/0378-5955(84)90067-4 MCMULLEN TA, 1985, HEARING RES, V17, P127, DOI 10.1016/0378-5955(85)90016-4 NIEDER P, 1971, J ACOUST SOC AM, V49, P478, DOI 10.1121/1.1912376 PATUZZI R, 1984, HEARING RES, V13, P19, DOI 10.1016/0378-5955(84)90091-1 PATUZZI R, 1990, HEARING RES, V45, P15, DOI 10.1016/0378-5955(90)90179-S PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 PATUZZI RB, 1987, HEARING RES, V30, P83, DOI 10.1016/0378-5955(87)90186-9 PATUZZI RB, 1987, HEARING RES, V30, P73, DOI 10.1016/0378-5955(87)90185-7 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U RHODE WS, 1967, J ACOUST SOC AM, V42, P185, DOI 10.1121/1.1910547 ROBERTSON D, 1979, PFLUG ARCH EUR J PHY, V380, P7, DOI 10.1007/BF00582605 RUGGERO MA, 1986, J ACOUST SOC AM, V80, P1375, DOI 10.1121/1.394390 SAUNDERS JC, 1986, HEARING RES, V23, P233, DOI 10.1016/0378-5955(86)90112-7 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 SIBUL LH, 1987, ADAPTIVE SIGNAL PROC STRELIOF.D, 1973, J ACOUST SOC AM, V54, P620, DOI 10.1121/1.1913642 TUNSTALL MJ, 1995, J PHYSIOL-LONDON, V485, P739 NR 33 TC 33 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1998 VL 125 IS 1-2 BP 1 EP 16 DI 10.1016/S0378-5955(98)00125-7 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 137DL UT WOS:000076899500001 PM 9833960 ER PT J AU Patuzzi, R AF Patuzzi, R TI Exponential onset and recovery of temporary threshold shift after loud sound: evidence for long-term inactivation of mechano-electrical transduction channels SO HEARING RESEARCH LA English DT Article DE stretch-activated channel; acoustic trauma; inactivation; temporary threshold shift ID GUINEA-PIG COCHLEA; CELL-RECEPTOR CURRENT; INDUCED HEARING-LOSS; OUTER HAIR-CELLS; ACOUSTIC TRAUMA; AUDITORY-SYSTEM; POSTEXPOSURE RESPONSIVENESS; EFFERENT NEURONS; ACTIVE PROCESS; NERVE-FIBERS AB The onset and recovery of temporary threshold shift (TTS) in one human subject (the author) has been studied during and after pure-tone overstimulation lasting between minutes and days. Under the conditions of these experiments the time courses appeared reproducible, and thresholds always recovered to normal within 3 days. The onset and recovery followed a multiple-exponential time course, with the time constants for the onset being 6.5 and 800 min, and the recovery time constants being 30, 240 and 800 min. The observed time courses were consistent with data previously reported in humans, and with the view that the threshold elevation was due to an inactivation and reactivation of the stretch-activated channels at the apex of the outer hair cells of the cochlea. The time constants of the multi-exponential onset and recovery do not appear to depend on the duration of the overstimulation, bur the exponential coefficients do. A simple kinetic model of the onset and recovery is described (for more detail see Patuzzi (1998)). It is suggested that the rapid recovery in the first 5 min after exposure is due to a short-lived disruption of the synapses between the inner hair cells and the primary afferent neurones. Intermittent exposures were found to produce much less TTS than continuous tones, and this reduction was found to be inconsistent with the Equal Energy Hypothesis, in that the TTS produced by intermittent tones was much less than predicted using the Equal Energy model, and the recovery time course was also different from that expected from a shorter exposure to a continuous tone of equal energy. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6097, Australia. RP Patuzzi, R (reprint author), Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6097, Australia. EM rpatuzzi@cyllene.uwa.edu.au CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BORG E, 1995, SCAND AUDIOL S, V24 BOTSFORD JH, 1971, J ACOUST SOC AM, V49, P440, DOI 10.1121/1.1912370 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CANLON B, 1987, HEARING RES, V30, P127, DOI 10.1016/0378-5955(87)90130-4 CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 CARDER HM, 1971, AM ACAD OPTHAMOL OTO, V75, P1346 CARDER HM, 1972, J SPEECH HEAR RES, V15, P603 CHARDIN S, 1995, SCIENCE, V267, P707, DOI 10.1126/science.7839151 CLARK WW, 1991, J ACOUST SOC AM, V90, P155, DOI 10.1121/1.401309 CODY AR, 1980, HEARING RES, V3, P3, DOI 10.1016/0378-5955(80)90004-0 CODY AR, 1985, NATURE, V315, P662, DOI 10.1038/315662a0 CODY AR, 1983, HEARING RES, V9, P55, DOI 10.1016/0378-5955(83)90134-X CODY AR, 1988, HEARING RES, V35, P59, DOI 10.1016/0378-5955(88)90040-8 CODY AR, 1982, J ACOUST SOC AM, V72, P280, DOI 10.1121/1.387993 CODY AR, 1982, HEARING RES, V6, P291, DOI 10.1016/0378-5955(82)90061-2 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 DACRUZ MJ, 1993, THESIS U W AUSTR NED DRESCHER DG, 1976, J ACOUST SOC AM, V59, P401, DOI 10.1121/1.380877 DRESCHER DG, 1974, SCIENCE, V185, P273, DOI 10.1126/science.185.4147.273 ELDREDGE DH, 1973, P INT C NOIS PUBL HL, P237 FURUKAWA T, 1978, J PHYSIOL-LONDON, V276, P193 GOULIOS H, 1983, HEARING RES, V11, P237 HENRY KR, 1984, HEARING RES, V16, P225, DOI 10.1016/0378-5955(84)90111-4 HENSELMAN LW, 1994, HEARING RES, V78, P1, DOI 10.1016/0378-5955(94)90038-8 Hille B., 1992, IONIC CHANNELS EXCIT, V2nd HIRSH IJ, 1952, J ACOUST SOC AM, V24, P131, DOI 10.1121/1.1906867 HIRSH IJ, 1955, J ACOUST SOC AM, V27, P1186, DOI 10.1121/1.1908157 HLODAN R, 1994, MECH PROTEIN FOLDING, P194 HOLLEY CH, 1996, COCHLEA, P376 HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 HUGHES JR, 1954, J ACOUST SOC AM, V26, P1064, DOI 10.1121/1.1907450 HUGHES JR, 1957, J ACOUST SOC AM, V29, P275, DOI 10.1121/1.1908854 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 KIANG NYS, 1986, HEARING RES, V22, P171 KIRK DL, 1997, IN PRESS HEAR RES Kros CJ, 1996, COCHLEA, P318 LIBERMAN MC, 1987, HEARING RES, V26, P45, DOI 10.1016/0378-5955(87)90035-9 LONSBURYMARTIN BL, 1978, J NEUROPHYSIOL, V41, P987 MARKIN VS, 1995, BIOPHYS J, V69, P138 MARKIN VS, 1995, ANNU REV BIOPH BIOM, V24, P59 NOFFSING.PD, 1970, J ACOUST SOC AM, V47, P552, DOI 10.1121/1.1911928 NOFFSING.PD, 1970, J ACOUST SOC AM, V47, P546, DOI 10.1121/1.1911927 Patuzzi R., 1996, COCHLEA, P186 Patuzzi R, 1998, HEARING RES, V125, P39, DOI 10.1016/S0378-5955(98)00127-0 PATUZZI R, 1984, HEARING RES, V13, P99, DOI 10.1016/0378-5955(84)90100-X PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 PATUZZI RB, 1991, HEARING RES, V54, P45, DOI 10.1016/0378-5955(91)90135-V PICKLES JO, 1987, HEARING RES, V25, P173, DOI 10.1016/0378-5955(87)90089-X PUEL JL, 1988, HEARING RES, V37, P53, DOI 10.1016/0378-5955(88)90077-9 RAJAN R, 1983, HEARING RES, V12, P185, DOI 10.1016/0378-5955(83)90105-3 RAJAN R, 1990, NEUROL NEUR, V56, P81 RODER H, 1988, NATURE, V335, P700, DOI 10.1038/335700a0 Ruggero MA, 1996, AUDIT NEUROSCI, V2, P329 SALT AN, 1979, HEARING RES, V1, P343, DOI 10.1016/0378-5955(79)90005-4 SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 SAUNDERS JC, 1986, HEARING RES, V23, P245, DOI 10.1016/0378-5955(86)90113-9 SCHMIEDT RA, 1984, J ACOUST SOC AM, V76, P1293, DOI 10.1121/1.391446 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SIEGEL JH, 1987, HEARING RES, V28, P131, DOI 10.1016/0378-5955(87)90044-X WARD WD, 1959, J ACOUST SOC AM, V31, P522, DOI 10.1121/1.1907746 WARD WD, 1959, J ACOUST SOC AM, V31, P791, DOI 10.1121/1.1907787 WARD WD, 1960, J ACOUST SOC AM, V32, P497, DOI 10.1121/1.1908111 WARD WD, 1973, P INT C NOIS PUBL HL, P281 WARD WD, 1980, SCAND AUDIOL S, V12, P339 WARD WD, 1958, J ACOUST SOC AM, V30, P944, DOI 10.1121/1.1909414 WARD WD, 1991, J ACOUST SOC AM, V90, P164, DOI 10.1121/1.401310 WARD WD, 1959, J ACOUST SOC AM, V31, P600, DOI 10.1121/1.1907759 WEISS DS, 1992, J PHYSIOL-LONDON, V453, P279 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 NR 72 TC 28 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1998 VL 125 IS 1-2 BP 17 EP 38 DI 10.1016/S0378-5955(98)00126-9 PG 22 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 137DL UT WOS:000076899500002 PM 9833961 ER PT J AU Patuzzi, R AF Patuzzi, R TI A four-state kinetic model of the temporary threshold shift after loud sound based on inactivation of hair cell transduction channels SO HEARING RESEARCH LA English DT Article DE cochlea; temporary threshold shift; inactivation; kinetic model; acoustic trauma ID ACUTE ACOUSTIC TRAUMA; RAT SKELETAL-MUSCLE; GUINEA-PIG; RECEPTOR CURRENT; HEARING-LOSS; TIP LINKS; COCHLEA; NOISE; STEREOCILIA; VULNERABILITY AB A model of the temporary threshold shift (TTS) following loud sound is presented based on inactivation of the mechano-electrical transduction (MET) channels at the apex of the outer hair cells (OHCs. Tills inactivation is assumed to reduce temporarily the OHC receptor current with a consequent drop in the mechanical sensitivity of the organ of Corti. With acoustic over-stimulation some of the hair cells' MET channels are assumed to adopt one of three closed and non-transducing conformations or 'TTS states'. The sound-induced inactivation is assumed to occur because the sound makes the TTS states more energetically favourable when compared with the transducing slates, and the distribution between these states is assumed to depend on the relative energies of the states and the time allowed for migration between them. By lumping the fast transducing states tone open and two closed) into a single transducing 'pseudo-state', the kinetics of the inactivation and re-activation processes (corresponding to the onset and recovery of TTS) can be described by a four-state kinetic model. The model allows an elegant description of the onset and recovery of TTS time-course in a human subject under a variety of continuous exposure conditions, and some features of intermittent exposure as well. The model also suggests that recovery of TTS may be accelerated by an intermittent tone during the recovery period which may explain some variability TTS in the literature. Other implications of the model are also discussed. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Univ Western Australia, Auditory Lab, Dept Physiol, Nedlands, WA 6097, Australia. RP Patuzzi, R (reprint author), Univ Western Australia, Auditory Lab, Dept Physiol, Nedlands, WA 6097, Australia. EM rpatuzzi@cyllene.uwa.edu.au CR ADAMSON AW, 1973, TXB PHYSICAL CHEM AIDLEY DJ, 1996, ION CHANNELS MOL ACT, P161 ALTSCHULER RA, 1994, INNER EAR NEUROPHARM BENITEZ LD, 1972, J ACOUST SOC AM, V52, P1115, DOI 10.1121/1.1913222 BORG E, 1995, SCAND AUDIOL S, V24 BOTSFORD JH, 1971, J ACOUST SOC AM, V49, P440, DOI 10.1121/1.1912370 CARDER HM, 1971, AM ACAD OPTHAMOL OTO, V75, P1346 CARDER HM, 1972, J SPEECH HEAR RES, V15, P603 CLARK WW, 1991, J ACOUST SOC AM, V90, P155, DOI 10.1121/1.401309 CODY AR, 1980, HEARING RES, V3, P3, DOI 10.1016/0378-5955(80)90004-0 CODY AR, 1988, HEARING RES, V35, P59, DOI 10.1016/0378-5955(88)90040-8 CODY AR, 1982, HEARING RES, V6, P291, DOI 10.1016/0378-5955(82)90061-2 Colquhoun David, 1995, P397 COREY DP, 1983, J NEUROSCI, V3, P962 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 Creiton T.E., 1994, MECHANISMS PROTEIN F, P1 DACRUZ MJ, 1993, THESIS U W AUSTR NED DRESCHER DG, 1976, J ACOUST SOC AM, V59, P401, DOI 10.1121/1.380877 DRESCHER DG, 1974, SCIENCE, V185, P273, DOI 10.1126/science.185.4147.273 Dwight H.B., 1961, TABLES INTEGRALS OTH HENRY KR, 1984, HEARING RES, V16, P225, DOI 10.1016/0378-5955(84)90111-4 HLODAN R, 1994, MECH PROTEIN FOLDING, P194 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 JERGER JF, 1955, J ACOUST SOC AM, V27, P121, DOI 10.1121/1.1907471 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 JOHNSTONE BM, 1990, ADV AUDIOL, V7, P57 KIRK DL, 1997, IN PRESS HEAR RES Kros CJ, 1996, COCHLEA, P318 LIBERMAN MC, 1987, HEARING RES, V26, P45, DOI 10.1016/0378-5955(87)90035-9 LIBERMAN MC, 1987, HEARING RES, V26, P65, DOI 10.1016/0378-5955(87)90036-0 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 MARKIN VS, 1995, BIOPHYS J, V69, P138 MARKIN VS, 1995, ANNU REV BIOPH BIOM, V24, P59 Martinac B., 1993, THERMODYNAMICS MEMBR, P327 MATHEWS RG, 1963, J GEN PHYSIOL, V47, P215 MILLS JH, 1972, J SPEECH HEAR RES, V15, P624 PATUZZI R, 1992, HEARING RES, V60, P165, DOI 10.1016/0378-5955(92)90019-J PATUZZI R, 1998, UNPUB USING TIME COU PATUZZI R, 1996, COCHLEA, P318 PATUZZI R, 1990, HEARING RES, V45, P15, DOI 10.1016/0378-5955(90)90179-S PATUZZI R, 1984, HEARING RES, V13, P99, DOI 10.1016/0378-5955(84)90100-X Patuzzi R, 1998, HEARING RES, V125, P17, DOI 10.1016/S0378-5955(98)00126-9 PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 PICKLES JO, 1987, HEARING RES, V25, P173, DOI 10.1016/0378-5955(87)90089-X PRICE GR, 1974, J ACOUST SOC AM, V56, P183, DOI 10.1121/1.1903251 PRICE GR, 1976, J ACOUST SOC AM, V59, P709, DOI 10.1121/1.380893 RAJAN R, 1992, HEARING RES, V60, P216, DOI 10.1016/0378-5955(92)90023-G ROBERTSON D, 1981, J ACOUST SOC AM, V69, P1096, DOI 10.1121/1.385689 RODER H, 1988, NATURE, V335, P700, DOI 10.1038/335700a0 Roder H., 1994, MECH PROTEIN FOLDING, P26 Ruggero MA, 1996, AUDIT NEUROSCI, V2, P329 RUGGERO M A, 1984, Journal of the Acoustical Society of America, V76, pS35, DOI 10.1121/1.2021825 SALT AN, 1979, HEARING RES, V1, P343, DOI 10.1016/0378-5955(79)90005-4 SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 SAUNDERS JC, 1986, HEARING RES, V23, P245, DOI 10.1016/0378-5955(86)90113-9 Schmid Franz X., 1992, P197 SCHMIEDT RA, 1984, J ACOUST SOC AM, V76, P1293, DOI 10.1121/1.391446 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SMOORENBURG GF, 1976, J ACOUST SOC AM, V59, P954 STEWART JG, 1975, NATURE, V258, P89, DOI 10.1038/258089a0 WALD G, 1969, MOL PROCESSES VISION, P3 WARD WD, 1959, J ACOUST SOC AM, V31, P522, DOI 10.1121/1.1907746 WARD WD, 1959, J ACOUST SOC AM, V31, P791, DOI 10.1121/1.1907787 WARD WD, 1960, J ACOUST SOC AM, V32, P497, DOI 10.1121/1.1908111 WARD WD, 1958, J ACOUST SOC AM, V30, P944, DOI 10.1121/1.1909414 WARD WD, 1991, J ACOUST SOC AM, V90, P164, DOI 10.1121/1.401310 WARD WD, 1959, J ACOUST SOC AM, V31, P600, DOI 10.1121/1.1907759 WEISS DS, 1990, J PHYSIOL-LONDON, V426, P145 WEISS DS, 1992, J PHYSIOL-LONDON, V453, P279 WEISS DS, 1994, HDB MEMBRANE CHANNEL, P213 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 NR 73 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1998 VL 125 IS 1-2 BP 39 EP 70 DI 10.1016/S0378-5955(98)00127-0 PG 32 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 137DL UT WOS:000076899500003 PM 9833962 ER PT J AU Patuzzi, R AF Patuzzi, R TI The Goldman-Hodgkin-Katz equation and graphical 'load-line' analysis of ionic flow through outer hair cells SO HEARING RESEARCH LA English DT Article DE Goldman-Hodgkin-Katz equation; outer hair cell; receptor current; receptor potential; graphical 'load-line' analysis ID GUINEA-PIG COCHLEA; ADENOSINE 5'-TRIPHOSPHATE ATP; LOW-FREQUENCY TONES; MAMMALIAN COCHLEA; ACETYLCHOLINE RESPONSE; SYNAPTIC TRANSMISSION; RECEPTOR CURRENT; HEARING-LOSS; ORGAN; SENSITIVITY AB While the 'membrane potential' of a cell which has a homogeneous membrane and surrounding environment, and which is not pumping ions electrogenically (passine no net current through its membranes), can be estimated from the Goldman voltage equation, this equation is inappropriate for other cells. In the mammalian cochlea such probleluatic cells include the cells of stria vascularis and the sensory hair cells of the organ of Corti. Not only is the Goldman voltage equation inappropriate, but in asymmetric cells the concept of a single 'membrane potential' is misleading: a different transmembrane voltage is required to define the electrical slate of each section of the cell's heterogeneous membrane. This paper presents a graphical 'load-line analysis' of currents through one such asymmetric cell, the outer hair cells of the organ of Corti, The approach is extremely useful in discussing the effects of various cochlear manipulations on the electrical potential within hair cells, even without a detailed knowledge of their membrane conductance. The paper discusses how modified Goldman-Hodgkin-Katz equation can be used to describe stretch-activated channels, voltage-controlled channels, ligand-mediated channels, and how the combination of these channels and the extracellular ionic concentrations should affect the hair cell's resting intracellular potential and resting transcellular current, its receptor current and receptor potential, and the extracellular microphonic potential around these cells. Two other issues discussed are the role of voltage-controlled channels in genetically determining membrane potential, and the insensitivity of hair cells to changes of extracellular potassium concentration under some conditions, (C) 1998 published by Elsevier Science B,V. All rights reserved. C1 Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6097, Australia. RP Patuzzi, R (reprint author), Univ Tubingen, HNO Klin, D-72074 Tubingen, Germany. CR ADAMSON AW, 1973, TXB PHYSICAL CHEM Aidley D. J., 1996, ION CHANNELS MOL ACT ART JJ, 1987, J PHYSIOL-LONDON, V385, P207 ASHMORE JF, 1986, NATURE, V322, P268 CHABBERT C, 1995, HEARING RES, V89, P101, DOI 10.1016/0378-5955(95)00126-2 CODY AR, 1985, NATURE, V315, P662, DOI 10.1038/315662a0 CODY AR, 1987, J PHYSIOL-LONDON, V383, P551 COREY DP, 1983, J NEUROSCI, V3, P962 DACRUZ MJ, 1993, THESIS U W AUSTR NED DALLOS P, 1985, J NEUROSCI, V5, P1591 DALLOS P, 1983, HEARING RES, V12, P89, DOI 10.1016/0378-5955(83)90120-X DALLOS P, 1985, J NEUROSCI, V5, P1609 Dallos P., 1973, AUDITORY PERIPHERY B DOI T, 1993, HEARING RES, V67, P179, DOI 10.1016/0378-5955(93)90245-V EVANS MG, 1996, HEARING RES, V10, P1 FLOCK A, 1976, J PHYSIOL-LONDON, V257, P45 Hille B., 1992, IONIC CHANNELS EXCIT, V2nd Holley M. C., 1996, COCHLEA, P386 HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 IKEDA K, 1992, PFLUG ARCH EUR J PHY, V420, P493, DOI 10.1007/BF00374624 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 KONISHI T, 1970, J ACOUST SOC AM, V49, P1762 Kros CJ, 1996, COCHLEA, P318 LEWIS RS, 1983, HEARING PHYSL BASES, P17 Millman J., 1967, ELECT DEVICES CIRCUI MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5 MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 Nenov AP, 1996, HEARING RES, V101, P149, DOI 10.1016/S0378-5955(96)00143-8 Nenov AP, 1996, HEARING RES, V101, P132, DOI 10.1016/S0378-5955(96)00142-6 PATUZZI R, 1984, HEARING RES, V13, P19, DOI 10.1016/0378-5955(84)90091-1 PATUZZI R, 1984, HEARING RES, V13, P1, DOI 10.1016/0378-5955(84)90089-3 PATUZZI R, 1996, COCHLEA, P318 PATUZZI R, 1990, HEARING RES, V45, P15, DOI 10.1016/0378-5955(90)90179-S PATUZZI R, 1984, HEARING RES, V13, P99, DOI 10.1016/0378-5955(84)90100-X PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 PATUZZI RB, 1987, HEARING RES, V30, P73, DOI 10.1016/0378-5955(87)90185-7 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 RHODE WS, 1967, J ACOUST SOC AM, V42, P185, DOI 10.1121/1.1910547 ROBERTS WM, 1990, J NEUROSCI, V10, P3664 Sewell W. F., 1996, COCHLEA, P503 SUNOSE H, 1992, HEARING RES, V62, P237, DOI 10.1016/0378-5955(92)90190-X THOMAS RC, 1969, J PHYSIOL-LONDON, V201, P495 THOMAS RC, 1972, PHYSIOL REV, V52, P563 WITT CM, 1994, J NEUROPHYSIOL, V72, P1037 NR 46 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1998 VL 125 IS 1-2 BP 71 EP 97 DI 10.1016/S0378-5955(98)00124-5 PG 27 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 137DL UT WOS:000076899500004 PM 9833963 ER PT J AU Buss, E Hall, JW Grose, JH Hatch, DR AF Buss, E Hall, JW Grose, JH Hatch, DR TI Perceptual consequences of peripheral hearing loss: do edge effects exist for abrupt cochlear lesions? SO HEARING RESEARCH LA English DT Article DE hearing; hearing loss; plasticity ID CENTRAL AUDITORY PATHWAYS; INTENSITY DISCRIMINATION; FREQUENCY REPRESENTATION; IMPAIRED LISTENERS; CRITICAL PERIOD; CORTEX; PLASTICITY; CATS; RESPONSES; ORGANIZATION AB There is a growing body of research that shows evidence of central neural reorganization ill response to lesions in the auditory periphery, even if the lesions occur in maturity. This reorganization consists of an increased neural representation of frequencies corresponding to the edge frequency of the lesion. Data were collected to determine whether this over-representation might have consequences for human perception. The hypothesis was that increased central representation might increase acuity on some psychophysical tasks performed at the edge frequency. Tasks included frequency sweep detection (for tones), intensity discrimination (for 100-Hz-wide bands of noise and tones), gap detection and gap discrimination (both for 100-Hz-wide bands of noise). Results from observers with steeply sloping hearing losses were compared with results from normal-hearing observers performing these tasks with masking noise generated to simulate steeply sloping hearing loss. None of these data provide compelling evidence for the hypothesized edge effect. A 40-Hz following response to lone bursts was collected from a subset of the hearing-impaired observers in an attempt to confirm the animal physiology findings of neural over-representation of the edge frequency. No edge-frequency effect was noted in the results, though there was a non-significant tendency for one of the hearing-impaired observers to show shorter latency of response. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Univ N Carolina, Dept Surg, Div Otolaryngol, Chapel Hill, NC 27599 USA. RP Buss, E (reprint author), Univ N Carolina, Dept Surg, Div Otolaryngol, Chapel Hill, NC 27599 USA. CR ARLINGER SD, 1977, ACTA OTO-LARYNGOL, V83, P317, DOI 10.3109/00016487709128851 CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C CHAMBERS RD, 1986, J ACOUST SOC AM, V80, P1673, DOI 10.1121/1.394279 CLOPTON BM, 1977, J NEUROPHYSIOL, V40, P1275 DOOLEY GJ, 1988, J ACOUST SOC AM, V84, P2045, DOI 10.1121/1.397048 EDDINS DA, 1992, J ACOUST SOC AM, V91, P1069, DOI 10.1121/1.402633 FITZGIBBONS PJ, 1994, J SPEECH HEAR RES, V37, P662 GATEHOUSE S, 1992, J ACOUST SOC AM, V92, P1258, DOI 10.1121/1.403921 Hall J, 1992, HDB AUDITORY EVOKED HARRISON RV, 1992, ADV BIOSCI, V83, P625 HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P31, DOI 10.3109/00016489309135763 HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P296, DOI 10.3109/00016489309135812 HARRISON RV, 1993, J OTOLARYNGOL, V22, P4 HELLMAN R, 1986, P 12 INT C AC, V1, pB11 HELLMAN RP, 1994, J ACOUST SOC AM, V96, P2655, DOI 10.1121/1.411445 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Irvine DRF, 1996, CLIN EXP PHARMACOL P, V23, P939, DOI 10.1111/j.1440-1681.1996.tb01146.x JESTEADT W, 1977, J ACOUST SOC AM, V61, P169, DOI 10.1121/1.381278 KNUDSEN EI, 1984, J NEUROSCI, V4, P1012 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MAKELA JP, 1987, ELECTROEN CLIN NEURO, V66, P539, DOI 10.1016/0013-4694(87)90101-5 Moore D R, 1985, Acta Otolaryngol Suppl, V421, P19 MOUNT RJ, 1991, SCANNING MICROSCOPY, V5, P1105 Nelson DA, 1996, J ACOUST SOC AM, V100, P2266, DOI 10.1121/1.417936 Nelson DA, 1997, J ACOUST SOC AM, V101, P2186, DOI 10.1121/1.418203 Plourde G, 1991, Acta Otolaryngol Suppl, V491, P153 Ponton CW, 1996, NEUROREPORT, V8, P61, DOI 10.1097/00001756-199612200-00013 RAJAN R, 1992, NOISE INDUCED HEARIN, P119 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 REALE RA, 1987, DEV BRAIN RES, V34, P281, DOI 10.1016/0165-3806(87)90215-X RECANZONE GH, 1993, J NEUROSCI, V13, P87 ROBINSON K, 1995, J ACOUST SOC AM, V97, P1183, DOI 10.1121/1.412230 RODRIGUEZ R, 1986, EAR HEARING, V7, P300, DOI 10.1097/00003446-198610000-00003 Roman P, 1997, ACTA CHEM SCAND, V51, P13, DOI 10.3891/acta.chem.scand.51-0013 Scheich H, 1991, Curr Opin Neurobiol, V1, P236, DOI 10.1016/0959-4388(91)90084-K SCHRODER AC, 1994, J ACOUST SOC AM, V96, P2683, DOI 10.1121/1.411276 SCHWABER MK, 1993, AM J OTOL, V14, P252 Silman S, 1992, J Am Acad Audiol, V3, P390 TYLER RS, 1982, J ACOUST SOC AM, V72, P740, DOI 10.1121/1.388254 VASAMA JP, 1995, HEARING RES, V87, P132, DOI 10.1016/0378-5955(95)00086-J WILLIAMSON BP, 1993, NLGI SPOKESMAN, V57, P329 WONG D, 1991, NEUROBIOLOGY HEARING, P367 NR 43 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1998 VL 125 IS 1-2 BP 98 EP 108 DI 10.1016/S0378-5955(98)00131-2 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 137DL UT WOS:000076899500005 PM 9833964 ER PT J AU Husmann, KR Morgan, AS Girod, DA Durham, D AF Husmann, KR Morgan, AS Girod, DA Durham, D TI Round window administration of gentamicin: a new method for the study of ototoxicity of cochlear hair cells SO HEARING RESEARCH LA English DT Article DE aminoglycoside; chicken; avian; cochleotoxicity; hair cell regeneration ID INNER-EAR; AMINOGLYCOSIDE OTOTOXICITY; FUNCTIONAL RECOVERY; CHICK COCHLEA; REGENERATION; NEURONS; TOXICITY; REMOVAL; DAMAGE AB Damage to inner ear sensory hair cells after systemic administration of ototoxic drugs has been documented in humans and animals. Birds have the ability to regenerate new hair cells to replace those damaged by drugs or noise. Unfortunately, the systemic administration of gentamicin damages both ears in a variable fashion with potentially confounding systemic drug effects. We developed a method of direct application of gentamicin to one cochlea of hatchling chickens, allowing the other ear to serve as a within-animal control. We tested variables including the vehicle for application, location of application, dosage, and duration of gentamicin exposure. After 5 or 25 days survival, the percent length damage to the cochlea and regeneration of hair cells was evaluated using scanning electron microscopy. Controls consisted of the opposite unexposed cochlea and additional animals which received saline instead of gentamicin. Excellent damage was achieved using gentamicin-soaked Gelfoam pledgets applied to the round window membrane. The percent length damage could be varied from 15 to 100% by changing the dosage of gentamicin, with exposures as short as 30 min. No damage was observed in control animals. Regeneration of hair cells was observed in both the base and apex by 28 days survival. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Univ Kansas, Med Ctr, Dept Otolaryngol, Kansas City, KS 66160 USA. Univ Kansas, Med Ctr, Smith Mental Retardat Res Ctr, Kansas City, KS 66160 USA. Kansas City Vet Affairs Med Ctr, Kansas City, MO USA. RP Durham, D (reprint author), Univ Kansas, Med Ctr, Dept Otolaryngol, 3901 Rainbow Blvd, Kansas City, KS 66160 USA. CR Carranza A, 1997, LARYNGOSCOPE, V107, P137, DOI 10.1097/00005537-199701000-00025 COTANCHE DA, 1991, HEARING RES, V52, P379, DOI 10.1016/0378-5955(91)90027-7 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 CRUZ RM, 1987, ARCH OTOLARYNGOL, V113, P1058 DUCKERT LG, 1990, HEARING RES, V48, P161, DOI 10.1016/0378-5955(90)90206-5 DUCKERT LG, 1993, J COMP NEUROL, V331, P75, DOI 10.1002/cne.903310105 GIROD DA, 1989, HEARING RES, V42, P175, DOI 10.1016/0378-5955(89)90143-3 GIROD DA, 1991, LARYNGOSCOPE, V101, P1139 HUSMANN KR, 1998, ARO ABSTR, V21, P199 HYDE GE, 1990, J COMP NEUROL, V297, P329, DOI 10.1002/cne.902970302 HYDE GE, 1994, J COMP NEUROL, V339, P27, DOI 10.1002/cne.903390105 Janas JD, 1995, HEARING RES, V92, P17, DOI 10.1016/0378-5955(95)00190-5 LIPPE WR, 1991, HEARING RES, V56, P203, DOI 10.1016/0378-5955(91)90171-5 Lowry OH, 1972, FLEXIBLE SYSTEM ENZY MAREAN GC, 1993, HEARING RES, V71, P125, DOI 10.1016/0378-5955(93)90028-Y NORTON S, 1990, ARO ABSTR, V13, P62 PARK DL, 1998, UNPUB HEAR RES PARK RH, 1998, UNPUB LARYNGOSCOPE RUBEL EW, 1990, J NEUROBIOL, V21, P169, DOI 10.1002/neu.480210112 TSUE TT, 1994, OTOLARYNG HEAD NECK, V111, P281, DOI 10.1016/S0194-5998(94)70603-4 TUCCI DL, 1990, OTOLARYNG HEAD NECK, V103, P443 NR 21 TC 27 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1998 VL 125 IS 1-2 BP 109 EP 119 DI 10.1016/S0378-5955(98)00137-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 137DL UT WOS:000076899500006 PM 9833965 ER PT J AU Mason, K Peale, FV Stone, JS Rubel, EW Bothwell, M AF Mason, K Peale, FV Stone, JS Rubel, EW Bothwell, M TI Expression of novel potassium channels in the chick basilar papilla SO HEARING RESEARCH LA English DT Article DE potassium channel; inner ear; cochlea; hair cell ID COCHLEAR HAIR-CELLS; INWARD RECTIFIER; K+ CHANNEL; ACTIN-FILAMENTS; INNER-EAR; MESSENGER-RNAS; BIRD COCHLEA; CURRENTS; CLONING; STEREOCILIA AB Ionic currents are critical for the functioning of the inner car auditory sensory epithelium. We set out to identify and molecularly clone the genes encoding the channels responsible for several currents in the chick basilar papilla. Here we describe an inward-rectifying K+ channel, cKir2.3, present in both hair cells and support cells in the apical end of the chick basilar papilla. The biophysical properties of the human ortholog, hKir2.3, are similar to those of an inward-rectifying channel found in the apical end of the chick basilar papilla, suggesting that this channel may contribute to the corresponding current. Additionally, we describe two new members of the Kv6 subfamily of putative regulatory voltage-gated K+ channels, cKv6.2 and cKv6.3, Both are expressed in hair cells in the epical end of the chick basilar papilla: cKv6.2 is also strongly expressed in support cells and in the brain. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. Univ Washington, Dept Otorhinolaryngol Head & Neck Surg, Seattle, WA 98195 USA. Genentech Inc, Dept Pathol, S San Francisco, CA 94080 USA. Univ Washington, Dept Physiol & Biophys, Seattle, WA 98195 USA. RP Rubel, EW (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. CR ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999 AUFFRAY C, 1980, EUR J BIOCHEM, V107, P303 BOND CT, 1994, RECEPTOR CHANNEL, V2, P183 CARRANZA A, 1998, ABSTR ASS RES OT, V21 CORPET F, 1988, NUCLEIC ACIDS RES, V16, P10881, DOI 10.1093/nar/16.22.10881 COVARRUBIAS M, 1991, NEURON, V7, P763, DOI 10.1016/0896-6273(91)90279-9 DREWE JA, 1992, J NEUROSCI, V12, P538 FETTIPLACE R, 1987, TRENDS NEUROSCI, V10, P421, DOI 10.1016/0166-2236(87)90013-0 FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R FUCHS PA, 1988, J NEUROSCI, V8, P2460 FUCHS PA, 1990, J PHYSIOL-LONDON, V429, P529 FUCHS PA, 1992, PROG NEUROBIOL, V39, P493, DOI 10.1016/0301-0082(92)90003-W Goodman MB, 1996, BIOPHYS J, V71, P430 Goodman MB, 1996, J PHYSIOL-LONDON, V497, P395 Hansen JE, 1998, NUCLEIC ACIDS RES, V26, P387, DOI 10.1093/nar/26.1.387 Hille B., 1992, IONIC CHANNELS EXCIT, V2nd HIROKAWA N, 1978, J COMP NEUROL, V181, P361, DOI 10.1002/cne.901810208 Holmgren M, 1996, J GEN PHYSIOL, V108, P195, DOI 10.1085/jgp.108.3.195 HUDSPETH AJ, 1989, NATURE, V341, P397, DOI 10.1038/341397a0 Hugnot JP, 1996, EMBO J, V15, P3322 Jan LY, 1997, ANNU REV NEUROSCI, V20, P91, DOI 10.1146/annurev.neuro.20.1.91 Janas JD, 1995, HEARING RES, V92, P17, DOI 10.1016/0378-5955(95)00190-5 Jegla T, 1997, J NEUROSCI, V17, P32 LEE KH, 1995, HEARING RES, V87, P9, DOI 10.1016/0378-5955(95)00072-C LESAGE F, 1994, FEBS LETT, V353, P37, DOI 10.1016/0014-5793(94)01007-2 LI M, 1992, SCIENCE, V257, P1225, DOI 10.1126/science.1519059 Manley G. A., 1990, PERIPHERAL HEARING M MASON K, 1998, ABSTR ASS RES OT, V21 MORISHIGE KI, 1994, FEBS LETT, V346, P251, DOI 10.1016/0014-5793(94)00483-8 MURROW BW, 1990, P ROY SOC B-BIOL SCI, V242, P189, DOI 10.1098/rspb.1990.0123 MURROW BW, 1994, J PHYSIOL-LONDON, V480, P247 Navaratnam DS, 1997, NEURON, V19, P1077, DOI 10.1016/S0896-6273(00)80398-0 NAVARATNAM DS, 1995, J BIOL CHEM, V270, P19238 PANTELIAS AA, 1998, ABSTR ASS RES OT, V21 Peale FV, 1998, ANAL BIOCHEM, V256, P158, DOI 10.1006/abio.1997.2500 PERIER F, 1994, P NATL ACAD SCI USA, V91, P6240, DOI 10.1073/pnas.91.13.6240 PICKLES JO, 1993, HEARING RES, V71, P225, DOI 10.1016/0378-5955(93)90038-3 RIDDLE RD, 1993, CELL, V75, P1401, DOI 10.1016/0092-8674(93)90626-2 Rosenblatt KP, 1997, NEURON, V19, P1061, DOI 10.1016/S0896-6273(00)80397-9 Salinas M, 1997, J BIOL CHEM, V272, P24371, DOI 10.1074/jbc.272.39.24371 SALKOFF L, 1992, TRENDS NEUROSCI, V15, P161, DOI 10.1016/0166-2236(92)90165-5 Sambrook J., 1989, MOL CLONING LAB MANU SHAO H, 1998, ABSTR ASS RES OT, V21 Stone JS, 1996, J NEUROSCI, V16, P6157 TAKASAKA T, 1971, J ULTRA MOL STRUCT R, V35, P20, DOI 10.1016/S0022-5320(71)80141-7 TANAKA K, 1978, AM J ANAT, V153, P251, DOI 10.1002/aja.1001530206 TEMPEL BL, 1988, NATURE, V332, P837, DOI 10.1038/332837a0 TILNEY LG, 1992, DEVELOPMENT, V116, P213 TILNEY LG, 1992, ANNU REV CELL BIOL, V8, P257, DOI 10.1146/annurev.cb.08.110192.001353 TILNEY LG, 1986, DEV BIOL, V116, P100, DOI 10.1016/0012-1606(86)90047-3 WU YC, 1995, PROG BIOPHYS MOL BIO, V63, P131, DOI 10.1016/0079-6107(95)00002-5 Wu YC, 1996, BIOPHYS J, V70, P2557 NR 52 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1998 VL 125 IS 1-2 BP 120 EP 130 DI 10.1016/S0378-5955(98)00141-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 137DL UT WOS:000076899500007 PM 9833966 ER PT J AU Parham, K Zhao, HB Ye, Y Kim, DO AF Parham, K Zhao, HB Ye, Y Kim, DO TI Responses of anteroventral cochlear nucleus neurons of the unanesthetized decerebrate cat to click pairs as simulated echoes SO HEARING RESEARCH LA English DT Article DE anteroventral cochlear nucleus; echo processing; click pair; spontaneous rate ID AUDITORY-NERVE FIBERS; FUNCTIONAL-PROPERTIES; CENTRAL PROJECTIONS; MARGINAL SHELL; CELLS; RECOVERY; UNITS; ORGANIZATION; SUPPRESSION; STIMULATION AB To elucidate the contribution of the anteroventral cochlear nucleus (AVCN) to 'echo' processing, this study documents the responses of AVCN neurons to simulated echoes and compares them to those of auditory nerve (AN) fibers. Single unit discharges were recorded from 121 units in the AVCN of 21 unanesthetized decerebrate cats in response to click pairs with inter-click intervals ranging from 1 to 32 ms between 45 and 105 dB SPL re 20 mu Pa. Units were classified according to the post-stimulus time histogram (PSTH) and excitatory-inhibitory response area (EI-area) schemes. Based on their spontaneous rates (SR), units were subdivided into low-(< 20 spikes/s) and high-(> 20 spiltes/s) SR groups. A majority of the units exhibited second-click responses whose recovery time courses were similar to those of AN fibers. These units included primary-like, chopper and onset units in the PSTH scheme and Types I, I/III and III units in the EI-area scheme. A minority of the units exhibited responses that were distinct from those of AN fibers, in that they had second-click response recovery times that were either markedly reduced or prolonged. This group of units included those with primary-like, chopper and onset PSTHs and Type I/III and III EI-areas. No significant difference was found in the second-click response among various PSTH or EI-area types. High-SR AVCN units exhibited a decrease in the second-click response with increasing level. In contrast, low-SR AVCN units showed little level-dependent change in the second-click responses. This SR-based difference was similar to that previously found among AN fibers. The present results suggest that, although a majority of AVCN units exhibit similar time courses of second-click response recovery to those of AN fibers, there do exist mechanisms in the cochlear nucleus that can substantially alter this representation. Furthermore, the difference between the second-click response recovery functions of low- and high-SR AVCN units and the consistency of this finding between AVCN and AN suggest that SR represents an important dimension for signal representation in the AVCN neurons. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Connecticut, Ctr Hlth, Dept Surg, Div Otolaryngol,Surg Res Ctr,Neurosci Program, Farmington, CT 06030 USA. RP Kim, DO (reprint author), Univ Connecticut, Ctr Hlth, Dept Surg, Div Otolaryngol,Surg Res Ctr,Neurosci Program, Farmington, CT 06030 USA. EM kim@neuron.uchc.edu CR Backoff PM, 1997, HEARING RES, V110, P155, DOI 10.1016/S0378-5955(97)00081-6 Bekesy G., 1960, EXPT HEARING Blauert J., 1997, SPATIAL HEARING PSYC BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2 BONFILS P, 1987, HEARING RES, V28, P125, DOI 10.1016/0378-5955(87)90043-8 CANT NB, 1981, NEUROSCIENCE, V6, P2643, DOI 10.1016/0306-4522(81)90109-3 FITZPATRICK DC, 1998, ASS RES OT ABSTR, V21 FITZPATRICK DC, 1997, ASS RES OT ABSTR, V20, P207 Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469 GAUMOND RP, 1982, J NEUROPHYSIOL, V48, P856 Ghoshal S, 1997, J NEUROPHYSIOL, V77, P2083 Ghoshal S, 1996, NEUROSCI LETT, V205, P71, DOI 10.1016/0304-3940(96)12386-7 HAAS H, 1951, ACUSTICA, V1, P49 HARRIS GERARD G., 1963, JOUR ACOUSTICAL SOC AMER, V35, P672, DOI 10.1121/1.1918583 KAWASE T, 1992, J COMP NEUROL, V319, P312, DOI 10.1002/cne.903190210 Kiang NYS, 1965, ACTA OTOLARYNG STOCK, V59, P186, DOI 10.3109/00016486509124552 KIM DO, 1992, ABSTR ASS RES OT, V15, P16 KIM DO, 1991, J ACOUST SOC AM, V89, P2804, DOI 10.1121/1.400687 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 LEAKE PA, 1989, J COMP NEUROL, V281, P612, DOI 10.1002/cne.902810410 LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205 OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103 Palmer AR, 1996, J NEUROPHYSIOL, V75, P780 Parham K, 1996, J NEUROPHYSIOL, V76, P17 PARHAM K, 1992, J NEUROPHYSIOL, V67, P1247 PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 RELKIN EM, 1987, J ACOUST SOC AM, V82, P1679, DOI 10.1121/1.395159 RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 ROUILLER EM, 1984, J COMP NEUROL, V225, P167, DOI 10.1002/cne.902250203 SAYERS BM, 1964, J ACOUST SOC AM, V36, P1199, DOI 10.1121/1.1919183 SENTO S, 1989, J COMP NEUROL, V280, P55 SHINNCUNNINGHAM BG, 1993, J ACOUST SOC AM, V93, P2923, DOI 10.1121/1.405812 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 SHORE SE, 1995, HEARING RES, V82, P31 SMITH PH, 1987, J COMP NEUROL, V266, P360, DOI 10.1002/cne.902660305 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 Wickesberg RE, 1996, J ACOUST SOC AM, V100, P1691, DOI 10.1121/1.416067 WICKESBERG RE, 1990, J NEUROSCI, V10, P1762 WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 YIN TCT, 1994, J NEUROSCI, V14, P5170 Young E.D, 1984, HEARING SCI, P423 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 NR 45 TC 26 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1998 VL 125 IS 1-2 BP 131 EP 146 DI 10.1016/S0378-5955(98)00140-3 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 137DL UT WOS:000076899500008 PM 9833967 ER PT J AU Arnold, T Oestreicher, E Ehrenberger, K Felix, D AF Arnold, T Oestreicher, E Ehrenberger, K Felix, D TI GABA(A) receptor modulates the activity of inner hair cell afferents in guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE efferent auditory system; inner hair cell; GABA receptor; iontophoretic technique; guinea pig ID CENTRAL-NERVOUS-SYSTEM; ORGAN; CORTI; SYNAPSES; RAT AB The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is mediated by two main categories of receptors: the GABA(A) and CABA(B) receptor. Recent immunocytochemical and electron microscopical studies revealed the existence of GABA at the efferent olivocochlear innervation of the guinea pig cochlea. In this microiontophoretic study we examined the effect of GABA on spontaneous and glutamate or acetylcholine induced activity of afferent fibres in the dendritic region of inner hair cells. Furthermore, the receptor subtypes being responsible for this GABA action were analysed using specific agonists and antagonists on alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) induced activity. The spike activities of the subsynaptic area were recorded in the third or fourth turn of the cochlea of anaesthetised guinea pigs. Application of GABA had little effect on spontaneous activity whereas the glutamate or acetylcholine induced firing rate could be depressed by GABA. AMPA and NMDA induced activity was reduced by the GABA(A) agonist muscimol but not by the GABA(B) agonist baclofen. The GABA(A) antagonist blocked the inhibition of both GABA and the GABA(A) agonist. In contrast, the GABA(B) antagonist baclofen was without effect. These results reveal that GABA reduces the activated firing rate of inner hair cell afferents mediated by the GABA(A) receptor subtype. (C) 1998 Elsevier Science B,V, All rights reserved. C1 Univ Bern, Div Neurobiol, CH-3012 Bern, Switzerland. Tech Univ Munich, ENT Dept, D-81675 Munich, Germany. Univ Vienna, ENT Dept, A-1090 Vienna, Austria. RP Felix, D (reprint author), Univ Bern, Div Neurobiol, Erlachstr 9A, CH-3012 Bern, Switzerland. EM dfelix@zonb.unibe.ch CR BORMANN J, 1988, TRENDS NEUROSCI, V11, P112, DOI 10.1016/0166-2236(88)90156-7 BOWERY NG, 1987, NEUROSCIENCE, V20, P365, DOI 10.1016/0306-4522(87)90098-4 EYBALIN M, 1988, NEUROSCIENCE, V24, P29, DOI 10.1016/0306-4522(88)90308-9 EYBALIN M, 1989, ARCH OTO-RHINO-LARYN, V246, P228, DOI 10.1007/BF00463561 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FELIX D, 1992, HEARING RES, V64, P1, DOI 10.1016/0378-5955(92)90163-H FELIX D, 1990, EUR ARCH OTO-RHINO-L, V248, P1, DOI 10.1007/BF00634769 FEX J, 1984, HEARING RES, V15, P123, DOI 10.1016/0378-5955(84)90043-1 FEX J, 1986, HEARING RES, V22, P249, DOI 10.1016/0378-5955(86)90102-4 KLINKE R, 1986, HEARING RES, V22, P235, DOI 10.1016/0378-5955(86)90100-0 KLINKE R, 1977, EXP BRAIN RES, V28, P311 Oestreicher E, 1997, HEARING RES, V107, P46, DOI 10.1016/S0378-5955(97)00023-3 OHMORI Y, 1989, NEUROCHEM INT, V15, P359, DOI 10.1016/0197-0186(89)90145-9 PLINKERT PK, 1995, EUR ARCH OTO-RHINO-L, V1, P53 SIVILOTTI L, 1991, PROG NEUROBIOL, V36, P35, DOI 10.1016/0301-0082(91)90036-Z WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WOJCIK WJ, 1984, MOL PHARMACOL, V25, P24 NR 17 TC 18 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1998 VL 125 IS 1-2 BP 147 EP 153 DI 10.1016/S0378-5955(98)00144-0 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 137DL UT WOS:000076899500009 PM 9833968 ER PT J AU Guth, PS Holt, JC Perin, P Athas, G Garcia, M Puri, A Zucca, G Botta, L Valli, P AF Guth, PS Holt, JC Perin, P Athas, G Garcia, M Puri, A Zucca, G Botta, L Valli, P TI The metabotropic glutamate receptors of the vestibular organs SO HEARING RESEARCH LA English DT Article DE semicircular canal; metabotropic glutamate receptor; vestibular ID PIG CEREBROCORTICAL SYNAPTOSOMES; AFFERENT FIBER SYNAPSE; GUINEA-PIG; HAIR-CELLS; ACETYLCHOLINE-RECEPTORS; PRESYNAPTIC MODULATION; RAT HIPPOCAMPUS; NMDA RECEPTORS; FROG; ACID AB This research sought to test the presence and function of metabotropic excitatory amino acid receptors (mGluR) in the frog semicircular canal (SCC). The mGluR agonist +/- 1-aminocyclopentane-trans-1,3-dicarbsxylate (ACPD) produced an increase in afferent firing rates of the ampullar nerve of the intact posterior canal. This increase was not due to a stimulation of cholinergic efferent terminals or the acetylcholine (ACh) receptor, since atropine, in concentrations which blocked the response to exogenous acetylcholine, did not affect the response to ACPD. Likewise, ACPD effects were not due to stimulation of postsynaptic NMDA receptors, since the NMDA antagonist D(-)-2-amino-5-phosphonopentanoate (AP-5) did not affect the response to ACPD, reinforcing the reported selectivity of ACPD for mGluRs. When the SCC was superfused with artificial perilymph known to inhibit hair cell transmitter release (i.e. low Ca-high Mg), ACPD failed to increase afferent firing. This suggests that the receptor activated by ACPD is located on the hair cell. Pharmacological evidence suggested that the mGluRs involved in afferent facilitation belong to Group I (i.e. subtypes 1 and 5). In fact, the Group III agonist AP-4 had no effect, and the ACPD facilitatory effect was blocked by the Group I mGluR antagonists (S)-4-carboxyphenylglycine (CPG) and (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA). Additional pharmacological evidence supported the presence of Group I mGluRs. Interestingly, the mGluR antagonists, AIDA and 4CPG, by themselves did not affect the resting firing rates of ampullar afferents, This may suggest that the mGluRs are not involved in resting activity but perhaps only in evoked activity (as suggested in Guth ct al. (1991) Hear. Res. 56, 69-78). In addition, the mRNA for the mGluR(1) has been detected in hair cells of both SCC, utricle, and saccule. In summary, the evidence points to an lnGluR localized to the hair cell (i.e. an autoreceptor) which may be activated to produce a positive feedback augmentation of evoked but not resting transmitter release and thus affect afferent activity. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Tulane Univ, Sch Med, Dept Pharmacol, New Orleans, LA 70112 USA. Tulane Univ, Sch Med, Dept Otolaryngol, New Orleans, LA 70112 USA. Univ Pavia, Ist Fisiol Gen, I-27100 Pavia, Italy. RP Guth, PS (reprint author), Tulane Univ, Sch Med, Dept Pharmacol, 1430 Tulane Ave,SL83, New Orleans, LA 70112 USA. EM pguth@mailhost.tcs.tulane.edu CR ANNONI JM, 1984, J NEUROSCI, V4, P2106 ATHAS GB, 1997, P ASS RES OT, V20 BARRIE AP, 1991, J NEUROCHEM, V57, P1398, DOI 10.1111/j.1471-4159.1991.tb08306.x BAUDE A, 1993, NEURON, V11, P771, DOI 10.1016/0896-6273(93)90086-7 BERNARD C, 1985, BRAIN RES, V338, P225, DOI 10.1016/0006-8993(85)90151-9 BOBBIN RP, 1985, AUDITORY BIOCH, P102 CHAVIS P, 1995, NEUROPHARMACOLOGY, V34, P929, DOI 10.1016/0028-3908(95)00082-H COCHRAN SL, 1995, BRAIN RES, V670, P321, DOI 10.1016/0006-8993(94)01357-N COLTON CK, 1975, COMP BIOCHEM PHYS C, V51, P275, DOI 10.1016/0306-4492(75)90074-X Conn PJ, 1997, ANNU REV PHARMACOL, V37, P205, DOI 10.1146/annurev.pharmtox.37.1.205 COTMAN CW, 1986, J PHYSIOL-LONDON, V378, P403 DEVAU G, 1993, EUR J NEUROSCI, V5, P1210, DOI 10.1111/j.1460-9568.1993.tb00975.x EBERWINE J, 1992, METHOD ENZYMOL, V216, P80 GLAUM SR, 1985, METABOLTROPIC GLUTAM, P147 GLAUM SR, 1990, P NATL ACAD SCI USA, V87, P3454, DOI 10.1073/pnas.87.9.3454 GUTH PS, 1986, ACTA OTO-LARYNGOL, V102, P194, DOI 10.3109/00016488609108666 Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3 GUTH PS, 1994, HEARING RES, V75, P225, DOI 10.1016/0378-5955(94)90073-6 Guth PS, 1996, HEARING RES, V98, P1, DOI 10.1016/0378-5955(96)00031-7 GUTH PS, 1991, HEARING RES, V56, P69, DOI 10.1016/0378-5955(91)90155-3 GUTH SL, 1990, BRAIN RES, V508, P76, DOI 10.1016/0006-8993(90)91120-6 HERRERO I, 1992, NATURE, V360, P163, DOI 10.1038/360163a0 HOUSLEY GD, 1990, HEARING RES, V43, P121, DOI 10.1016/0378-5955(90)90221-A HU GY, 1991, BRAIN RES, V568, P339, DOI 10.1016/0006-8993(91)91423-X JONES PQ, 1990, NEUROSCI LETT, V111, P228, DOI 10.1016/0304-3940(90)90373-H Lee K, 1997, J PHYSIOL-LONDON, V504, P649, DOI 10.1111/j.1469-7793.1997.649bd.x LITTMAN L, 1995, NEUROPHARMACOLOGY, V34, P829, DOI 10.1016/0028-3908(95)00070-M Lujan R, 1996, EUR J NEUROSCI, V8, P1488, DOI 10.1111/j.1460-9568.1996.tb01611.x LUJAN R, 1997, SOC NEUR ABSTR, V23, P1753 Nicoletti F, 1996, TRENDS NEUROSCI, V19, P267, DOI 10.1016/S0166-2236(96)20019-0 NORRIS CH, 1988, HEARING RES, V32, P197, DOI 10.1016/0378-5955(88)90092-5 PELLICCIARI R, 1995, J MED CHEM, V38, P3717, DOI 10.1021/jm00019a002 PRIGIONI I, 1994, NEUROREPORT, V5, P516, DOI 10.1097/00001756-199401120-00038 PRIGIONI I, 1990, HEARING RES, V46, P253, DOI 10.1016/0378-5955(90)90006-B SAMBROOK J, 1989, MOL CLONING LAB MANU, P188 Scanziani M, 1997, NATURE, V385, P630, DOI 10.1038/385630a0 SCHOEPP DD, 1994, METABOTROPIC GLUTAMA, P31 Schrader LA, 1997, J NEUROPHYSIOL, V77, P527 Sekiyama N, 1996, BRIT J PHARMACOL, V117, P1493 SOTO E, 1988, BRAIN RES, V462, P104, DOI 10.1016/0006-8993(88)90591-4 SOTO E, 1994, BRAIN RES, V633, P289, DOI 10.1016/0006-8993(94)91551-2 STARR PA, 1990, SOC NEUR ABSTR, V14, P331 THIEFFRY M, 1978, BRAIN RES, V156, P402, DOI 10.1016/0006-8993(78)90528-0 USHERWOO.PN, 1966, NATURE, V210, P634, DOI 10.1038/210634a0 VALLI P, 1985, BRAIN RES, V330, P1, DOI 10.1016/0006-8993(85)90002-2 VANGELDER RN, 1990, P NATL ACAD SCI USA, V87, P1663 VAZQUEZ E, 1995, NEUROSCIENCE, V68, P117, DOI 10.1016/0306-4522(95)00121-X VIZI ES, 1979, PROG NEUROBIOL, V12, P181, DOI 10.1016/0301-0082(79)90011-X WILSCH VW, 1994, EUR J PHARMACOL, V262, P387 ZUCCA G, 1993, NEUROREPORT, V4, P403, DOI 10.1097/00001756-199304000-00015 NR 50 TC 23 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1998 VL 125 IS 1-2 BP 154 EP 162 DI 10.1016/S0378-5955(98)00145-2 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 137DL UT WOS:000076899500010 PM 9833969 ER PT J AU Edge, RM Evans, BN Pearce, M Richter, CP Hu, X Dallos, P AF Edge, RM Evans, BN Pearce, M Richter, CP Hu, X Dallos, P TI Morphology of the unfixed cochlea SO HEARING RESEARCH LA English DT Article DE hemicochlea; anatomy; tissue fixation; basilar membrane; tectorial membrane; organ of Corti; calcium; cochlea ID MOUSE TECTORIAL MEMBRANE; ISOSMOTIC SOLUTIONS; ION CONCENTRATIONS; CA2+ CONCENTRATION; OSMOTIC RESPONSE; MONGOLIAN GERBIL; FREQUENCY MAP; HAIR-CELLS; INNER-EAR; MICROMECHANICS AB Our knowledge of cochlear geometry is based largely upon anatomical observations derived from fixed, dehydrated, embedded and/or sputter-coated material. We have now developed a novel preparation, the hemicochlea, where for the first time living cochlear structures can be observed in situ and from a radial perspective. The experiments were performed on the Mongolian gerbil. Ion substitution experiments suggest that no significant swelling or shrinkage occurs when the preparation is bathed in normal culture medium, so long as calcium concentration is kept at endolymph-like (20 mu M) levels. The tectorial membrane-reticular lamina relationship appears to remain well preserved. Hensen's stripe maintains a close relationship with the inner hair cell stereociliary bundle, unless the mechanical coupling becomes disturbed. In addition, standard fixation and/or dehydration procedures are used to quantify changes due to shrinkage artifacts. Various morphometric gradients are examined in unfixed specimens from apical, middle, and basal turns. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Northwestern Univ, Inst Neurosci, Dept Neurobiol & Physiol, Auditory Physiol Lab,Hugh Knowles Ctr, Evanston, IL 60208 USA. Northwestern Univ, Inst Neurosci, Dept Commun Sci & Disorders, Evanston, IL 60208 USA. Univ Frankfurt, Zentrum Physiol, D-60590 Frankfurt, Germany. RP Dallos, P (reprint author), Northwestern Univ, Inst Neurosci, Dept Neurobiol & Physiol, Auditory Physiol Lab,Hugh Knowles Ctr, Frances Searle Bldg,2299 N Campus Dr, Evanston, IL 60208 USA. RI Richter, Claus-Peter/B-4641-2012 CR ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198 Baker J.R., 1958, PRINCIPLES BIOL MICR BOHNE BA, 1972, LARYNGOSCOPE, V82, P1 BOSHER SK, 1978, NATURE, V273, P377, DOI 10.1038/273377a0 BROOKS SPJ, 1992, ANAL BIOCHEM, V201, P119, DOI 10.1016/0003-2697(92)90183-8 Corti A., 1851, Z WISS ZOOL, V3, P109 EDGE RM, 1996, ASS RES OT 19 MIDW R Freeman DM, 1997, AUDIT NEUROSCI, V3, P363 FREEMAN DM, 1994, HEARING RES, V79, P197, DOI 10.1016/0378-5955(94)90141-4 Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727 HAYAT MA, 1981, PRINCIPLES TECHNIQUE, P1 HILDING A C, 1953, Trans Am Acad Ophthalmol Otolaryngol, V57, P35 HU X, 1995, ASS RES OT 18 MIDW R HU X, 1998, UNPUB J NEUROPHYS HUNTERDUVAR IM, 1977, SCANNING ELECT MICRO, V2, P421 Jahnke K, 1975, Acta Otolaryngol Suppl, V336, P1 Kimura R S, 1966, Acta Otolaryngol, V61, P55, DOI 10.3109/00016486609127043 KONISHI T, 1970, Acta Oto-Laryngologica, V69, P192, DOI 10.3109/00016487009123353 Kronester-Frei A, 1978, SCANNING ELECT MICRO, V2, P943 KRONESTERFREI A, 1979, HEARING RES, V1, P81, DOI 10.1016/0378-5955(79)90019-4 Kronester-Frei A, 1976, Laryngol Rhinol Otol (Stuttg), V55, P687 LIM DJ, 1972, ARCHIV OTOLARYNGOL, V96, P199 LIM DJ, 1980, J ACOUST SOC AM, V67, P1686, DOI 10.1121/1.384295 Lim D J, 1985, Acta Otolaryngol Suppl, V422, P1 MCKINLAY RG, 1978, J ULTRA MOL STRUCT R, V62, P83, DOI 10.1016/S0022-5320(78)90011-4 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 Richter CP, 1998, J NEUROPHYSIOL, V79, P2255 ROSS MD, 1974, AM J ANAT, V139, P449, DOI 10.1002/aja.1001390402 SCHMIEDT RA, 1977, J ACOUST SOC AM, V61, P133, DOI 10.1121/1.381283 Schweitzer L, 1996, HEARING RES, V97, P84 SHAH DM, 1995, HEARING RES, V87, P187, DOI 10.1016/0378-5955(95)00089-M SIEGEL JH, 1986, J NEUROCYTOL, V15, P311, DOI 10.1007/BF01611434 SMITH CA, 1978, EVOKED ELECT ACTIVIT, P3 STERKERS O, 1988, PHYSIOL REV, V68, P1083 STERKERS O, 1984, AM J PHYSIOL, V247, pF602 ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 ZWISLOCKI JJ, 1980, J ACOUST SOC AM, V67, P1679 NR 38 TC 78 Z9 78 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 1 EP 16 DI 10.1016/S0378-5955(98)00090-2 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200001 PM 9822898 ER PT J AU Ylikoski, J Pirvola, U Virkkala, J Suvanto, P Liang, XQ Magal, E Altschuler, R Miller, JM Saarma, M AF Ylikoski, J Pirvola, U Virkkala, J Suvanto, P Liang, XQ Magal, E Altschuler, R Miller, JM Saarma, M TI Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma SO HEARING RESEARCH LA English DT Article DE glial cell line-derived neurotrophic factor; dissociated cochlear neuron; infusion therapy; noise damage; in situ hybridization ID C-RET PROTOONCOGENE; RAT INNER-EAR; NEUROTROPHIC FACTOR; MESSENGER-RNA; HAIR-CELLS; IN-VIVO; TYROSINE KINASE; SURVIVAL FACTOR; GENE-THERAPY; GDNFR-ALPHA AB For patients with profound hearing loss, cochlear implants have become the treatment of choice. These devices provide auditory information through direct electrical stimulation of the auditory nerve. Prosthesis function depends on survival and electrical excitability of the cochlear neurons. Degeneration of the auditory nerve occurs after lesions of its peripheral target field (organ of Corti), specifically, including loss of inner hair cells (IHCs). There is now evidence that local treatment of the cochlea with neurotrophins may enhance survival of auditory neurons after aminoglycoside-induced deafness. Glial cell line-derived neurotrophic factor (GDNF) has recently been shown to be an important survival factor in other regions of the nervous system. By in situ hybridization, we now show that IHCs of the neonatal and mature rat cochlea synthesize GDNF and that GDNF-receptor alpha, but not c-Ret, is expressed in the rat spiral ganglion. We also show that GDNF is a potent survival-promoting factor for rat cochlear neurons in vitro. Finally, we examined GDNF efficacy to enhance cochlear-nerve survival after IHC lesions in vivo. We found that chronic intracochlear infusion of GDNF greatly enhances survival of guinea pig cochlear neurons after noise-induced IHC lesions. Our results demonstrate that GDNF is likely to be an endogenous survival factor in the normal mammalian cochlea and it could have application as a pharmacological treatment to prevent secondary auditory nerve degeneration following organ of Corti damage. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Helsinki, Dept ORL, FIN-00290 Helsinki, Finland. Univ Helsinki, Inst Biotechnol, FIN-00014 Helsinki, Finland. Amgen Inc, Dept Neurobiol, Thousand Oaks, CA 91320 USA. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Ylikoski, J (reprint author), Univ Helsinki, Dept ORL, Haartmaninkatu 4E, FIN-00290 Helsinki, Finland. EM Jukka.Ylikoski@Helsinki.fi CR Arenas E, 1995, NEURON, V15, P1465, DOI 10.1016/0896-6273(95)90024-1 Baloh RH, 1997, NEURON, V18, P793, DOI 10.1016/S0896-6273(00)80318-9 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T BUJBELLO A, 1995, NEURON, V15, P821, DOI 10.1016/0896-6273(95)90173-6 DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 Durbec P, 1996, NATURE, V381, P789, DOI 10.1038/381789a0 ERNFORS P, 1992, EUR J NEUROSCI, V4, P1140, DOI 10.1111/j.1460-9568.1992.tb00141.x Ernfors P, 1996, NAT MED, V2, P1313, DOI 10.1038/nm1296-1313 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Fritzsch B, 1997, TRENDS NEUROSCI, V20, P159, DOI 10.1016/S0166-2236(96)01007-7 GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909 GRIESBECK O, 1995, J NEUROSCI RES, V42, P21, DOI 10.1002/jnr.490420104 Haase G, 1997, NAT MED, V3, P429, DOI 10.1038/nm0497-429 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 HENDERSON CE, 1994, SCIENCE, V266, P1062, DOI 10.1126/science.7973664 Jing SQ, 1996, CELL, V85, P1113, DOI 10.1016/S0092-8674(00)81311-2 KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 Klein RD, 1997, NATURE, V387, P717 LEAKE PA, 1991, HEARING RES, V54, P185 LENOIR M, 1980, ANAT EMBRYOL, V160, P253, DOI 10.1007/BF00305106 LIN LFH, 1993, SCIENCE, V260, P1130, DOI 10.1126/science.8493557 LOHOF AM, 1993, NATURE, V363, P350, DOI 10.1038/363350a0 MCMAHON SB, 1995, CURR OPIN NEUROBIOL, V5, P616, DOI 10.1016/0959-4388(95)80067-0 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 PACHNIS V, 1993, DEVELOPMENT, V119, P1005 PFINGST BE, 1981, ACTA OTO-LARYNGOL, V92, P1, DOI 10.3109/00016488109133232 PFINGST BE, 1983, ANN NY ACAD SCI, V405, P224, DOI 10.1111/j.1749-6632.1983.tb31635.x PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 PIRVOLA U, 1994, HEARING RES, V75, P131, DOI 10.1016/0378-5955(94)90064-7 PIRVOLA U, 1996, ABSTR ASS RES OT, V572, P143 Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X Reeben M, 1998, NEUROSCIENCE, V83, P151, DOI 10.1016/S0306-4522(97)00361-8 Sagot Y, 1996, J NEUROSCI, V16, P2335 Sendtner M, 1997, NAT MED, V3, P380, DOI 10.1038/nm0497-380 SNIDER WD, 1994, CELL, V77, P627, DOI 10.1016/0092-8674(94)90048-5 SPOENDLI.H, 1972, ACTA OTO-LARYNGOL, V73, P235, DOI 10.3109/00016487209138937 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Suvanto P, 1997, HUM MOL GENET, V6, P1267, DOI 10.1093/hmg/6.8.1267 TOMAC A, 1995, NATURE, V373, P335, DOI 10.1038/373335a0 Treanor JJS, 1996, NATURE, V382, P80, DOI 10.1038/382080a0 Trupp M, 1996, NATURE, V381, P785, DOI 10.1038/381785a0 Trupp M, 1997, J NEUROSCI, V17, P3554 TRUPP M, 1995, J CELL BIOL, V130, P137, DOI 10.1083/jcb.130.1.137 Unsicker K, 1996, CELL TISSUE RES, V286, P175, DOI 10.1007/s004410050686 WHEELER EF, 1994, HEARING RES, V73, P46, DOI 10.1016/0378-5955(94)90281-X WILKINSON DG, 1990, POSTIMPLANTATION MAM, P151 Ylikoski J, 1997, AUDIT NEUROSCI, V3, P415 Ylikoski J, 1974, Acta Otolaryngol Suppl, V326, P23 YLIKOSKI J, 1996, ABSTR ASS RES OT, V19, P151 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C Ylikoski J, 1974, Acta Otolaryngol Suppl, V326, P42 NR 52 TC 131 Z9 136 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 17 EP 26 DI 10.1016/S0378-5955(98)00095-1 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200002 PM 9822899 ER PT J AU Ghanem, TA Rabbitt, RD Tresco, PA AF Ghanem, TA Rabbitt, RD Tresco, PA TI Three-dimensional reconstruction of the membranous vestibular labyrinth in the toadfish, Opsanus tau SO HEARING RESEARCH LA English DT Article DE three-dimensional reconstruction; morphology vestibular labyrinth; toadfish ID SEMICIRCULAR CANAL AFFERENTS; RESPONSE DYNAMICS; PLANAR RELATIONSHIPS; RESTING DISCHARGE; ENDOLYMPH FLOW; GUINEA-PIG; AMPULLA; MODEL; DETERMINANTS; ORIENTATION AB Membranous vestibular labyrinths from the oyster toadfish, Opsanus tau, were fixed, dissected from the animal, stained, and embedded in rectangular blocks of clear histological resin. Photomicrographs of complete embedded labyrinths were taken from six orthogonal directions and used to construct three-dimensional (3D) geometrical models of the semicircular canals, ampullae, utricular vestibule and common crus. Membranous ducts and ampullae were modeled using a set of cross-sectional elliptical curves laced together to generate curved tubular models of each structure. The ensemble of these curved tubes was used to generate a complete 3D reconstruction of the outside surface of the membranous labyrinth. When viewed from six orthogonal directions, reconstructions closely matched the embedded tissue. Dimensions of the reconstruction and histological sections were compared to measurements of fresh tissue taken from the same animals prior to fixation and used to correct the reconstructions for tissue shrinkage. Results provide estimates of the endolymphatic volumes, local cross-sectional areas and elliptical eccentricities as well as 3D orientations of the geometric canal planes relative to the skull. Ten micrometer histological sections of the material were also prepared to measure wall thickness in various regions of the labyrinth. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Utah, Dept Bioengn, Salt Lake City, UT 84112 USA. RP Ghanem, TA (reprint author), Univ Utah, Dept Bioengn, 2480 MEB, Salt Lake City, UT 84112 USA. EM tamer.ghanem@m.cc.utah.edu CR BARRY MA, 1987, J COMP NEUROL, V266, P457, DOI 10.1002/cne.902660403 BLANKS RHI, 1976, EXP BRAIN RES, V25, P369 BLANKS RHI, 1972, AM J PHYSIOL, V223, P55 BLANKS RHI, 1985, BRAIN RES, V340, P315, DOI 10.1016/0006-8993(85)90928-X BLANKS RHI, 1975, ACTA OTO-LARYNGOL, V80, P185, DOI 10.3109/00016487509121318 BOYLE R, 1990, J NEUROSCI, V10, P1557 BOYLE R, 1991, J NEUROPHYSIOL, V66, P1504 BRICHTA AM, 1988, BRAIN BEHAV EVOLUT, V32, P236, DOI 10.1159/000116551 Clark G, 1973, STAINING PROCEDURES, V3rd CRUMBROWN A, 1874, J ANAT PHYSL, V8, P327 CURTHOYS IS, 1986, ACTA OTO-LARYNGOL, V101, P1, DOI 10.3109/00016488609108601 CURTHOYS IS, 1987, ACTA OTO-LARYNGOL, V103, P254, DOI 10.3109/00016488709107791 CURTHOYS IS, 1975, ACTA OTO-LARYNGOL, V80, P197, DOI 10.3109/00016487509121319 CURTHOYS IS, 1977, J MORPHOL, V151, P17, DOI 10.1002/jmor.1051510103 Damiano ER, 1996, J FLUID MECH, V307, P333, DOI 10.1017/S0022112096000146 Dickman JD, 1996, EXP BRAIN RES, V111, P8 ESTES MS, 1975, J NEUROPHYSIOL, V38, P1232 EWALD JR, 1887, PFLUGERS ARCH GES PH, V41, P463, DOI 10.1007/BF01802606 EZURE K, 1984, NEUROSCIENCE, V12, P85, DOI 10.1016/0306-4522(84)90140-4 FERNANDE.C, 1971, J NEUROPHYSIOL, V34, P661 GARVIN JL, 1988, AM J PHYSIOL, V255, pF711 GOLDBERG JM, 1971, J NEUROPHYSIOL GROSSMAN SI, 1988, ADV ENG MATH, P290 Highstein SM, 1996, J NEUROPHYSIOL, V75, P575 HILLMAN DE, 1974, BRAIN BEHAV EVOLUT, V10, P52, DOI 10.1159/000124302 IGARASHI M, 1983, ACTA OTO-LARYNGOL, V95, P75, DOI 10.3109/00016488309130918 IGARASHI M, 1967, LARYNGOSCOPE, V77, P1806, DOI 10.1288/00005537-196710000-00003 IGARASHI M, 1981, ACTA OTO-LARYNGOL, V91, P437, DOI 10.3109/00016488109138525 Igarashi M, 1966, 2 S ROL VEST ORG SPA, P47 LANDOLT JP, 1975, J COMP NEUROL, V159, P257, DOI 10.1002/cne.901590207 Mach E., 1875, GRUNDLINIEN LEHRE BE MONEY KE, 1972, COMP BIOCHEM PHYSIOL, V42, P353, DOI 10.1016/0300-9629(72)90116-8 MULLER M, 1988, J THEOR BIOL, V134, P503, DOI 10.1016/S0022-5193(88)80054-7 MULLER M, 1988, J THEOR BIOL, V134, P473, DOI 10.1016/S0022-5193(88)80053-5 OMAN CM, 1987, ACTA OTO-LARYNGOL, V103, P1, DOI 10.3109/00016488709134691 RABBITT RD, 1995, J NEUROPHYSIOL, V73, P2237 Rabbitt RD, 1996, ANN NY ACAD SCI, V781, P213, DOI 10.1111/j.1749-6632.1996.tb15703.x RABBITT RD, 1996, SOC NEUR ABSTR RAMPRASHAD F, 1980, J COMP NEUROL, V192, P883, DOI 10.1002/cne.901920415 RAMPRASHAD F, 1984, AM J ANAT, V169, P295, DOI 10.1002/aja.1001690306 Ramprashad F, 1986, Acta Otolaryngol Suppl, V427, P1 REISINE H, 1988, ANN NY ACAD SCI, V545, P10, DOI 10.1111/j.1749-6632.1988.tb19552.x RICHARDSON KC, 1960, STAIN TECHNOL, V35, P313 SALT AN, 1995, HEARING RES, V88, P79, DOI 10.1016/0378-5955(95)00103-B SILVER RB, 1998, IN PRESS J COMP NEUR TAKAGI A, 1988, OTOLARYNGOL HEAD NEC, V88, P195 VOIE AH, 1993, J MICROSC-OXFORD, V170, P229 WALDORF RA, 1974, ACTA OTO-LARYNGOL, V78, P49, DOI 10.3109/00016487409126324 Wersall J., 1974, P123 YAMAUCHI AM, 1998, ABSTR ASS RES OT, V143 NR 50 TC 24 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 27 EP 43 DI 10.1016/S0378-5955(98)00108-7 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200003 PM 9822900 ER PT J AU Meech, RP Campbell, KCM Hughes, LP Rybak, LP AF Meech, RP Campbell, KCM Hughes, LP Rybak, LP TI A semiquantitative analysis of the effects of cisplatin on the rat stria vascularis SO HEARING RESEARCH LA English DT Article DE cisplatin; stria vascularis; ototoxicity; semiquantitative analysis ID CELL-VOLUME DENSITY; HIGH-DOSE CISPLATIN; GUINEA-PIGS; CIS-DIAMMINEDICHLOROPLATINUM; ETHACRYNIC-ACID; ANTICANCER DRUG; OTOTOXICITY; CIS-DICHLORODIAMMINEPLATINUM(II); PLATINUM; CANCER AB Cisplatin (CDDP) is a very effective chemotherapeutic agent but is highly ototoxic. Most studies have focused on the effects of CDDP on the outer hair cells. The purpose of this study was to examine changes in the stria vascularis in cisplatin treated male Wistar rats and to provide semiquantitative analysis of the results. We removed a section of the stria vascularis from the basal turn of five control and five CDDP(16 mg/kg) treated rats. Using transmission electron microscopy (TEM) we analyzed: (1) changes to the strial tissue as a whole; and (2) intracellular changes in the marginal cells. We also subjected the samples to semiquantitative analysis using the MCID, focusing on three aspects of strial profile abnormalities the number of abnormal marginal cells in CDDP treated tissue, intracellular strial edema and densitometry. Controls appeared normal, but many pathologic changes were apparent in the experimental group. Results from the semiquantitative analysis indicate cisplatin has a deleterious effect on the stria vascularis including strial edema; bulging, rupture and/or compression of the marginal cells and depletion of the cytoplasmic organelles. (C) 1998 Elsevier Science B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. RP Campbell, KCM (reprint author), So Illinois Univ, Sch Med, Dept Surg, POB 19230, Springfield, IL 62794 USA. CR ANNIKO M, 1986, AM J OTOLARYNG, V7, P276, DOI 10.1016/S0196-0709(86)80050-3 APPLETON TG, 1988, INORG CHEM, V27, P130, DOI 10.1021/ic00274a027 BAGGERSJOBACK D, 1980, ARCH OTO-RHINO-LARYN, V228, P217, DOI 10.1007/BF00454231 BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3 BONHEIM K, 1985, ARCH OTORHINOLARYNGO, V242, P1 BOSHER SK, 1980, ACTA OTO-LARYNGOL, V90, P40, DOI 10.3109/00016488009131696 BRUMMETT R, 1977, ACTA OTO-LARYNGOL, V83, P98, DOI 10.3109/00016487709128819 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 EASTMAN A, 1986, BIOCHEMISTRY-US, V25, P3912, DOI 10.1021/bi00361a026 FLEISCHMAN RW, 1975, TOXICOL APPL PHARM, V33, P320, DOI 10.1016/0041-008X(75)90098-8 FRIEDMANN I, 1984, ULTRASTRUCTURAL ATLA GANDARA DR, 1989, ANTICANCER RES, V9, P1121 GONIAS SL, 1988, J BIOL CHEM, V263, P393 GRALLA RJ, 1979, CANCER TREAT REP, V63, P1585 Hacker MP, 1991, TOXICITY ANTICANCER, P82 HOEVE LJ, 1988, ARCH OTO-RHINO-LARYN, V245, P98, DOI 10.1007/BF00481444 KOHN S, 1988, LARYNGOSCOPE, V98, P865 KONISHI T, 1983, AM J OTOLARYNG, V4, P18, DOI 10.1016/S0196-0709(83)80003-9 KOPELMAN J, 1988, LARYNGOSCOPE, V98, P858 KUIJPERS W, 1969, ACTA OTO-LARYNGOL, V67, P200, DOI 10.3109/00016486909125443 LAURELL G, 1995, HEARING RES, V87, P16, DOI 10.1016/0378-5955(95)00074-E LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 LOHUIS PJFM, 1990, HEARING RES, V47, P95, DOI 10.1016/0378-5955(90)90169-P MCALPINE D, 1990, HEARING RES, V47, P191, DOI 10.1016/0378-5955(90)90151-E MERRIN CE, 1979, CANCER TREAT REP, V63, P1579 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 OZOLS RF, 1984, ANN INTERN MED, V100, P19 PEPPARD SB, 1980, LARYNGOSCOPE, V90, P1273 PIEL IJ, 1974, CANCER CHEMOTH REP 1, V58, P871 POLLERA CF, 1988, CANCER CHEMOTH PHARM, V21, P61 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 ROSENBER.B, 1965, NATURE, V205, P698, DOI 10.1038/205698a0 ROSENBERG B, 1979, CANCER TREAT REP, V63, P1433 ROSENBER.B, 1969, NATURE, V222, P385, DOI 10.1038/222385a0 ROZENCWEIG M, 1977, ANN INTERN MED, V86, P803 RYBAK LP, 1992, HEARING RES, V59, P75, DOI 10.1016/0378-5955(92)90104-U SANTI PA, 1983, HEARING RES, V11, P7, DOI 10.1016/0378-5955(83)90041-2 SANTI PA, 1983, HEARING RES, V12, P151, DOI 10.1016/0378-5955(83)90103-X SANTI PA, 1985, HEARING RES, V18, P283, DOI 10.1016/0378-5955(85)90045-0 SANTINI M, 1979, 6 P WORLD S CARD PAC, V8, P1 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 SCHWINK K, 1986, COMP CONT EDUC PRACT, V8, P9 TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261 TOGNELLA S, 1990, CANCER TREAT REV, V17, P139, DOI 10.1016/0305-7372(90)90038-H VERMORKEN JB, 1983, EUR J CANCER CLIN ON, V19, P53, DOI 10.1016/0277-5379(83)90398-X WATERS GS, 1991, EAR HEARING, V12, P91, DOI 10.1097/00003446-199104000-00003 *WILL WILK CO, 1995, STEDM MED DICT WILTSHAW E, 1976, CANCER TREAT REP, V60, P55 YAGODA A, 1976, CANCER TREAT REP, V60, P917 NR 49 TC 44 Z9 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 44 EP 59 DI 10.1016/S0378-5955(98)00116-6 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200004 PM 9822901 ER PT J AU Xie, DH Henson, OW AF Xie, DH Henson, OW TI Tonic efferent-induced cochlear damping in roosting and echolocating mustached bats SO HEARING RESEARCH LA English DT Article DE efferent; medial olivocochlear; bat; cochlea; vocalization ID OUTER HAIR-CELLS; DOPPLER-SHIFTED ECHOES; MOUSTACHED BAT; OTOACOUSTIC EMISSIONS; SPIRAL LIGAMENT; CONTRALATERAL SOUND; CONCOMITANT SHIFTS; AUDITORY-SYSTEM; GUINEA-PIGS; STIMULATION AB The activity of the medial olivocochlear (MOC) efferent system in mustached bats, Pteranotus p. parnellii, was studied by monitoring changes in the mechanical properties of the cochlea. The changing properties were expressed by the decay time (DT) of cochlear microphonic potentials produced by transient-induced ringing (Henson et al., 1995). Tape-recorded roost noise (biosonar and communication sounds) produced sudden, marked decreases in DT when presented to the contralateral ear of animals adapted to the quiet. When the animals were first removed from their roosts the DT was relatively short (1.2-1.5 ms) but this gradually lengthened by about 0.5-1.0 ms as they rested in a quiet chamber. The time required to reach a stable, quiet-adapted state after noise exposure varied with SPL and exposure time; in many experiments recovery was in the range of 90-120 min. When quiet-adapted bats were isolated and allowed to fly and echolocate for 20 min, the DTs measured within a few minutes after the end of the flight were also short and only slowly returned to longer preflight values. The administration of a single dose of gentamicin, which blocks MOC effects, greatly reduced the amount of suppression (damping) observed after periods of noise and echolocation sound exposure. We conclude that tonic MOC activity is induced by the natural vocalizations and roost noise and this activity probably regulates and protects the highly resonant cochlear partition. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ N Carolina, Dept Cell Biol & Anat, Chapel Hill, NC 27599 USA. RP Henson, OW (reprint author), Univ N Carolina, Dept Cell Biol & Anat, Taylor Hall,CB 7090, Chapel Hill, NC 27599 USA. CR Avan P, 1996, EXP BRAIN RES, V109, P9 Bishop AL, 1988, ANIMAL SONAR, P307 BISHOP AL, 1987, HEARING RES, V31, P175, DOI 10.1016/0378-5955(87)90124-9 BOBBIN RP, 1990, HEARING RES, V47, P39, DOI 10.1016/0378-5955(90)90165-L BROWN AM, 1988, HEARING RES, V34, P27, DOI 10.1016/0378-5955(88)90048-2 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BUCK K, 1984, J ACOUST SOC AM, V76, P1090, DOI 10.1121/1.391401 CLARK WW, 1991, J ACOUST SOC AM, V90, P155, DOI 10.1121/1.401309 FIALKOWSKA M D, 1983, Scandinavian Audiology, V12, P295 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 GOLDBERG RL, 1996, 19 ANN MIDW M ST PET GOLDBERG RL, 1998, 21 ANN MIDW M ST PET Guinan JJ, 1996, J ACOUST SOC AM, V100, P1680, DOI 10.1121/1.416066 Guinan Jr J.J., 1996, COCHLEA, P435 HENSON MM, 1984, HEARING RES, V16, P231, DOI 10.1016/0378-5955(84)90112-6 Henson MM, 1996, HEARING RES, V102, P99, DOI 10.1016/0378-5955(96)00153-0 HENSON MM, 1985, HEARING RES, V20, P207, DOI 10.1016/0378-5955(85)90025-5 HENSON MM, 1988, HEARING RES, V35, P237, DOI 10.1016/0378-5955(88)90121-9 HENSON OW, 1972, PHYSIOL BEHAV, V8, P1185, DOI 10.1016/0031-9384(72)90220-X HENSON OW, 1995, HEARING RES, V86, P111, DOI 10.1016/0378-5955(95)00061-8 HENSON OW, 1990, HEARING RES, V50, P259, DOI 10.1016/0378-5955(90)90050-Y HUFFMAN RF, 1993, J COMP PHYSIOL A, V171, P735, DOI 10.1007/BF00213070 HUFFMAN RF, 1993, J COMP PHYSIOL A, V171, P725, DOI 10.1007/BF00213069 KUJAWA SG, 1995, HEARING RES, V85, P142, DOI 10.1016/0378-5955(95)00041-2 KUJAWA SG, 1992, HEARING RES, V61, P106, DOI 10.1016/0378-5955(92)90041-K KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C LAROCHE C, 1989, J ACOUST SOC AM, V85, P1681, DOI 10.1121/1.397957 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 MILLS JH, 1981, J ACOUST SOC AM, V70, P390, DOI 10.1121/1.386774 PLINKERT PK, 1990, ACTA OTO-LARYNGOL, V110, P342, DOI 10.3109/00016489009107453 PLINKERT PK, 1989, LARYNGO RHINO OTOL, V68, P450, DOI 10.1055/s-2007-998374 POLLAK G, 1979, J COMP PHYSIOL, V131, P255 POLLAK G, 1972, SCIENCE, V176, P66, DOI 10.1126/science.176.4030.66 PUJOL R, 1994, BRIT J AUDIOL, V28, P185, DOI 10.3109/03005369409086567 RAJAN R, 1996, J NEUROPHYSIOL, V75, P160 Rajan R, 1992, NOISE INDUCED HEARIN, P429 RAJAN R, 1995, J NEUROPHYSIOL, V74, P582 RAJAN R, 1990, BRAIN RES, V506, P192, DOI 10.1016/0006-8993(90)91251-B REITER ER, 1995, J NEUROPHYSIOL, V73, P506 SMITH DW, 1994, BRAIN RES, V652, P243, DOI 10.1016/0006-8993(94)90233-X SUGA N, 1977, J EXP BIOL, V69, P207 SUGA N, 1975, J EXP BIOL, V63, P161 Sziklai I, 1996, HEARING RES, V95, P87, DOI 10.1016/0378-5955(96)00026-3 XIE DH, 1996, 19 ANN MIDW M ST PET XIE DH, 1993, HEARING RES, V66, P81, DOI 10.1016/0378-5955(93)90262-Y Yamasoba T, 1997, HEARING RES, V112, P13, DOI 10.1016/S0378-5955(97)00092-0 Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2 Zimmermann U, 1996, ACTA OTO-LARYNGOL, V116, P395, DOI 10.3109/00016489609137863 NR 48 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 60 EP 68 DI 10.1016/S0378-5955(98)00122-1 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200005 PM 9822902 ER PT J AU Duncan, RK Dyce, OH Saunders, JC AF Duncan, RK Dyce, OH Saunders, JC TI Low calcium abolishes tip links and alters relative stereocilia motion in chick cochlear hair cells SO HEARING RESEARCH LA English DT Article DE auditory; chick; stereocilium; micromechanics; calcium; tip link ID MECHANOELECTRICAL TRANSDUCTION CHANNELS; GUINEA-PIG COCHLEA; INNER-EAR; CROSS-LINKS; BUNDLE; STIFFNESS; ORGANIZATION; DISPLACEMENT; INTEGRITY; MODEL AB The role of stereocilia tip links in controlling hair bundle motion on chick hair cells was examined in this study. Hair cells from the apical end of the basilar papilla were maintained in culture medium and oriented so that the sensory hair bundles were viewed in profile. A water-jet was used to stimulate the hair bundle and stroboscopic illumination allowed slow motion viewing of sensory hair motion at the bundle edges. Motion of the tallest stereocilium in the bundle was set to a criterion angular deflection and the excursion of the shortest stereocilium was measured. These measurements were made in a sample of hair cells maintained in culture medium containing either near normal levels of calcium or very low calcium levels supplemented with EGTA. In low calcium the angular deflection of the shortest hair was significantly reduced from that observed in normal media. The resting inward tilt of the hairs in the bundle, however, did not change. Scanning electron microscopy verified an almost complete destruction of tip links after exposure to low calcium. These results suggest that tip links contribute significantly to the relative motion of stereocilia and exhibit the mechanical properties of a relatively stiff linkage. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Penn, Dept Otorhinolaryngol Head & Neck Surg, Philadelphia, PA 19104 USA. Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA. RP Saunders, JC (reprint author), Univ Penn, Dept Otorhinolaryngol Head & Neck Surg, 5 Ravdin-ORL,3400 Spruce St, Philadelphia, PA 19104 USA. EM saunderj@mail.med.upenn.edu CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X COMIS SD, 1985, J NEUROCYTOL, V14, P113, DOI 10.1007/BF01150266 Duncan RK, 1997, HEARING RES, V104, P15, DOI 10.1016/S0378-5955(96)00176-1 Duncan RK, 1995, AUDIT NEUROSCI, V1, P321 FURNESS DN, 1986, HEARING RES, V21, P243, DOI 10.1016/0378-5955(86)90222-4 FURNESS DN, 1985, HEARING RES, V18, P177, DOI 10.1016/0378-5955(85)90010-3 GOODYEAR R, 1994, J COMP NEUROL, V345, P267, DOI 10.1002/cne.903450208 GUTTENPLAN M, 1989, HEARING RES, V43, P47, DOI 10.1016/0378-5955(89)90058-0 HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, pC1 HACKNEY CM, 1992, P ROY SOC B-BIOL SCI, V248, P215, DOI 10.1098/rspb.1992.0064 HACKNEY CM, 1995, ACTIVE HEARING, P103 HACOHEN N, 1989, J NEUROSCI, V9, P3988 HOWARD J, 1988, ANNU REV BIOPHYS BIO, V17, P99 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4 HUSBANDS J, 1998, 21 MIDW RES M ASS RE, P199 JACOBS RA, 1990, COLD SH Q B, V55, P547 JARAMILLO F, 1993, P NATL ACAD SCI USA, V90, P1330, DOI 10.1073/pnas.90.4.1330 LITTLE KF, 1985, CELL TISSUE RES, V242, P427 Marquis RE, 1997, P NATL ACAD SCI USA, V94, P11923, DOI 10.1073/pnas.94.22.11923 PAE SS, 1994, P NATL ACAD SCI USA, V91, P1153, DOI 10.1073/pnas.91.3.1153 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P PICKLES JO, 1992, TRENDS NEUROSCI, V15, P254, DOI 10.1016/0166-2236(92)90066-H PICKLES JO, 1989, HEARING RES, V41, P31, DOI 10.1016/0378-5955(89)90176-7 PICKLES JO, 1991, HEARING RES, V54, P153, DOI 10.1016/0378-5955(91)90116-Q SAUNDERS JC, 1989, J ACOUST SOC AM, V86, P1797, DOI 10.1121/1.398612 SZYMKO YM, 1992, HEARING RES, V59, P241, DOI 10.1016/0378-5955(92)90120-C TANAKA K, 1978, AM J ANAT, V153, P251, DOI 10.1002/aja.1001530206 TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 NR 31 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 69 EP 77 DI 10.1016/S0378-5955(98)00118-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200006 PM 9822903 ER PT J AU Kaltenbach, JA Godfrey, DA Neumann, JB McCaslin, DL Afman, CE Zhang, JS AF Kaltenbach, JA Godfrey, DA Neumann, JB McCaslin, DL Afman, CE Zhang, JS TI Changes in spontaneous neural activity in the dorsal cochlear nucleus following exposure to intense sound: relation to threshold shift SO HEARING RESEARCH LA English DT Article DE plasticity; spontaneous activity; tinnitus; cochlear nucleus; noise-induced hearing loss; hamster ID HAIR CELL LOSS; INFERIOR COLLICULUS; AUDITORY-CORTEX; HEARING-LOSS; BRAIN-STEM; ACOUSTIC TRAUMA; TONOTOPIC MAP; TINNITUS; MODEL; DEGENERATION AB Previous studies have shown that the dorsal cochlear nucleus exhibits increased spontaneous activity after exposure to intense sound. Such increases were apparent 1-2 months after the exposure and were generally proportional to the shift in response thresholds induced by the same exposure. The purpose of the present study was to determine whether this sound-induced increase in spontaneous activity is an early event which can be observed shortly after exposure. As in previous studies, anesthetized banisters ranging in postnatal age from 60-70 days were exposed to a 10-kHz tone at levels between 125 and 130 dB SPL for a period of 4 h. Control animals were similarly anesthetized but were not exposed to the intense tone. Exposed animals were examined in two groups, one at 30 days after exposure, the other at 2 days after exposure. Time of exposure was adjusted so that all animals were between 90 and 100 days of age when spontaneous activity was studied electrophysiologically. The results showed that the increases in spontaneous activity, which were evident at 30 days after exposure, were not observed in animals studied 2 days after exposure. This result contrasted with the effect of the intense tone exposure on neural response thresholds. That is, the shifts in response thresholds seen 2 days after exposure were similar to those observed in animals studied 30 days after exposure. These results indicate that changes in spontaneous activity reflect a more slowly developing phenomenon and occur secondarily after induction of threshold shift. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Wayne State Univ, Dept Otolaryngol, Detroit, MI 48201 USA. Med Coll Ohio, Dept Otolaryngol, Toledo, OH 43699 USA. RP Kaltenbach, JA (reprint author), Wayne State Univ, Dept Otolaryngol, 5E-UHC, Detroit, MI 48201 USA. CR AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 Axelsson A., 1992, NOISE INDUCED HEARIN, P269 BOCK GR, 1977, SCIENCE, V197, P396, DOI 10.1126/science.877565 WallhausserFranke E, 1996, NEUROREPORT, V7, P1585, DOI 10.1097/00001756-199607080-00010 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Coles R. R. A., 1995, MECH TINNITUS, P11 Dandy W, 1941, SURG GYNECOL OBSTET, V72, P421 Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454 Evans E F, 1981, Ciba Found Symp, V85, P108 GERKEN GM, 1984, HEARING RES, V13, P249, DOI 10.1016/0378-5955(84)90078-9 HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R House J W, 1981, Ciba Found Symp, V85, P204 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280 KALTENBACH JA, 1992, HEARING RES, V59, P213, DOI 10.1016/0378-5955(92)90118-7 KALTENBACH JA, 1996, ABS ASS RES OTOLARYN, V19, P168 KALTENBACH JA, 1996, P 5 INT TINN SEM AM, P34 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 KALTENBACH JA, 1991, HEARING RES, V51, P149, DOI 10.1016/0378-5955(91)90013-Y KALTENBACH JA, 1996, PLASTICITY REGENERAT, P317 Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 KITAHARA M, 1995, MECHANISMS TINNITUS, P95 LIBERMAN MC, 1978, ACTA OTOLARYNGOL S, V358, P5 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 LONSBURYMARTIN BL, 1981, J NEUROPHYSIOL, V46, P563 MCFADDEN D, 1982, TINNITUS FACTS THEOR, P1 Meleca RJ, 1997, BRAIN RES, V750, P201, DOI 10.1016/S0006-8993(96)01354-6 Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U SASAKI CT, 1980, BRAIN RES, V194, P511, DOI 10.1016/0006-8993(80)91233-0 Saunders J. C., 1982, NEW PERSPECTIVES NOI, P229 SOUSSI T, 1994, ACTA OTO-LARYNGOL, V114, P135, DOI 10.3109/00016489409126031 SUNEJA SK, 1998, IN PRESS EXP NEUROL Syka J, 1989, PROGR SENSORY PHYSL, V9, P97 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 NR 39 TC 72 Z9 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 78 EP 84 DI 10.1016/S0378-5955(98)00119-1 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200007 PM 9822904 ER PT J AU Stenberg, AE Nylen, O Windh, M Hultcrantz, M AF Stenberg, AE Nylen, O Windh, M Hultcrantz, M TI Otological problems in children with Turner's syndrome SO HEARING RESEARCH LA English DT Article DE Turner's syndrome; tympanic membrane pathology; child; hearing impairment; karyotype; otitis media ID OTITIS-MEDIA; HEARING-LOSS; WOMEN AB Ear and hearing disorders are common problems among girls and women with Turner's syndrome. During infancy and childhood the girls often suffer from repeated attacks of acute otitis media and later in life the women frequently complain of a rapid onset of social hearing problems due to sensorineural hearing impairment. A study of 56 girls aged 4-15 years with Turner's syndrome was performed to investigate the prevalence of eardrum pathology and hearing impairment in young children and teenagers with Turner's syndrome. A possible relation to karyotype was also investigated. A high prevalence (61%) of recurrent acute otitis media was found in the study group and 32% had been treated with ventilation tubes. Fifty-seven percent showed eardrum pathology, such as effusion, myringosclerosis, atrophic scars, retraction pockets and perforations. Auricular anomalies were noted in 23% of the cases, most commonly in the 45,X group. The audiometric analysis showed conductive hearing loss lair-bone gap > 10 dB HL) in 43% and the typical sensorineural dip in the middle frequencies was found in 58% of the girls, of whom the youngest was 6 years old. Four percent were using hearing aids. The data of this study further confirm that the dip is progressive over time and may be detectable as early as at the age of 6, giving a chance to predict a future hearing loss. The findings emphasize the importance of regular otological examinations and audiological evaluations of all girls with Turner's syndrome early in life. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Karolinska Hosp, Dept Otorhinolaryngol, S-17176 Stockholm, Sweden. Sahlgrens Univ Hosp, Ostra Hosp, Dept Otorhinolaryngol, S-41345 Gothenburg, Sweden. Sahlgrens Univ Hosp, Dept Obstet & Gynecol, S-41345 Gothenburg, Sweden. RP Hultcrantz, M (reprint author), Karolinska Hosp, Dept Otorhinolaryngol, S-17176 Stockholm, Sweden. EM mhz@ent.ks.se CR ANDERSON H, 1969, ACTA OTOLARYNGOL S S, V247 HULTCRANTZ M, 1994, HEARING RES, V76, P127, DOI 10.1016/0378-5955(94)90094-9 Hultcrantz M, 1997, HEARING RES, V103, P69, DOI 10.1016/S0378-5955(96)00165-7 Hultcrantz M, 1995, INT CONGR SER, V1089, P249 INFANTERIVARD C, 1993, EPIDEMIOL REV, V15, P444 LINDSTEN J, 1963, THESIS ALMQVIST Marttila TI, 1996, INT J PEDIATR OTORHI, V34, P45, DOI 10.1016/0165-5876(95)01238-9 NIELSEN J, 1991, HUM GENET, V87, P81, DOI 10.1007/BF01213097 RAHKO T, 1995, ACTA OTO-LARYNGOL, V115, P190, DOI 10.3109/00016489509139289 ROSENFELD RG, 1994, ENDOCRINOLOGIST, V4, P351, DOI 10.1097/00019616-199409000-00006 Saenger P, 1996, NEW ENGL J MED, V335, P1749, DOI 10.1056/NEJM199612053352307 SCULERATI N, 1990, ARCH OTOLARYNGOL, V116, P704 Sculerati N, 1996, LARYNGOSCOPE, V106, P992, DOI 10.1097/00005537-199608000-00015 SPRI, 1991, KONSENSUSUTTALANDE B STANGERUP SE, 1994, EUR ARCH OTO-RHINO-L, V251, P399 SYLVEN L, 1994, THESIS KAROLINSKA I Turner HH, 1938, ENDOCRINOLOGY, V23, P566 WATKIN PM, 1989, J LARYNGOL OTOL, V103, P731, DOI 10.1017/S0022215100109934 NR 18 TC 47 Z9 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 85 EP 90 DI 10.1016/S0378-5955(98)00113-0 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200008 PM 9822905 ER PT J AU Tateda, M Suzuki, H Ikeda, K Takasaka, T AF Tateda, M Suzuki, H Ikeda, K Takasaka, T TI pH regulation of the globular substance in the otoconial membrane of the guinea-pig inner ear SO HEARING RESEARCH LA English DT Article DE globular substance; pH(i); confocal laser microscope; Na+-H+ exchange; otoconial formation ID CARBONIC-ANHYDRASE; UTRICULAR MACULA; ORGANS; CELLS; LOCALIZATION; OTOLITH AB Physiological and pharmacological characteristics of the globular substance, a precursor of otoconia, are not well understood. In the present study, we investigated the variations and regulation of internal pH (pH(i)) of the globular substance of the guinea-pig inner ear. The otoconial membrane was dissected out from the utricular macula and loaded with the pH-sensitive fluorophore, carboxyseminaphthorhodafluor-1. Dynamic changes of fluorescence were directly observed under a confocal laser scanning microscope, and pH(i) was calculated from dual emission ratio. In the NaCl standard solution buffered with 5 mM HEPES/Tris at pH 7.4, the pH(i) of the globular substance varied from 6.26 to 8.55 with an average of 7.21 (n = 270). Exposure to 25 mM NH4+ induced a rapid increase of the pH(i) followed by a slow relaxation. Then, wash-out of NH4+ caused a prompt and pronounced acidification followed by a gradual pH(i) recovery to the initial level. This gradual pH(i) recovery was significantly inhibited by the absence of external Na+, indicating the presence of an external Na+-dependent H+ extrusion mechanism. This pH(i) recovery was also inhibited by 1 mM amiloride and 10 mu M 3-amino-N-(aminoiminomethyl)-6-[ethyl(2-propyl)amino]pyrazine-2-carboxamide. These results suggest the presence of an Na+-H+ exchanger in the globular substance of the guinea pig. However, HCO3--transporting mechanisms were not determined. The working hypothesis for the otoconial formation is discussed. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Tohoku Univ, Sch Med, Dept Otorhinolaryngol, Aoba Ku, Sendai, Miyagi 9808574, Japan. RP Ikeda, K (reprint author), Tohoku Univ, Sch Med, Dept Otorhinolaryngol, Aoba Ku, 1-1 Seiryo Machi, Sendai, Miyagi 9808574, Japan. CR BALSAMO G, 1969, J EMBRYOL EXP MORPH, V22, P327 BASSNETT S, 1990, AM J PHYSIOL, V258, P171 BUCKLER KJ, 1990, PFLUG ARCH EUR J PHY, V417, P234, DOI 10.1007/BF00370705 Endo S, 1991, Acta Otolaryngol Suppl, V481, P116 FERMIN CD, 1985, ACTA ANAT, V123, P148 GEUZE J J, 1968, Netherlands Journal of Plant Pathology, V18, P155 GREEN J, 1994, MINER ELECTROL METAB, V20, P16 Harada Y, 1983, Adv Otorhinolaryngol, V30, P258 HARADA Y, 1982, Japanese Journal of Clinical Electron Microscopy, V15, P1 HARADA Y, 1978, J CLIN ELECT MICROSC, V11, P5 IKEDA K, 1992, J PHYSIOL-LONDON, V447, P627 IKEDA K, 1987, HEARING RES, V31, P211, DOI 10.1016/0378-5955(87)90189-4 Kawamata S, 1993, Acta Otolaryngol Suppl, V504, P30 KIDO T, 1993, ACTA OTO-LARYNGOL, V113, P128, DOI 10.3109/00016489309135780 KIDO T, 1991, AM J OTOLARYNG, V12, P191, DOI 10.1016/0196-0709(91)90119-Z Lim DJ, 1984, ULTRASTRUCTURAL ATLA, P245 Lim D J, 1973, Ann Otol Rhinol Laryngol, V82, P23 LYON MF, 1955, J EMBRYOL EXP MORPH, V3, P213 NAKAHARA H, 1979, ANAT REC, V193, P233, DOI 10.1002/ar.1091930205 NAKANISHI T, 1992, CIRC RES, V71, P1314 PURICHIA N, 1972, DEV BIOL, V27, P395, DOI 10.1016/0012-1606(72)90178-9 SIMON EE, 1992, AM J PHYSIOL, V262, pF36 STERKERS O, 1988, PHYSIOL REV, V68, P1083 SUZUKI H, 1995, HEARING RES, V87, P32, DOI 10.1016/0378-5955(95)00075-F SUZUKI H, 1997, AM J PHYSIOL, V271, pC1533 SUZUKI H, 1995, HEARING RES, V90, P212, DOI 10.1016/0378-5955(95)00168-7 TAKEMURA T, 1994, HEARING RES, V79, P99, DOI 10.1016/0378-5955(94)90131-7 TAKUMIDA M, 1989, ARCH OTO-RHINO-LARYN, V246, P56, DOI 10.1007/BF00454136 TAKUMIDA M, 1992, ACTA OTO-LARYNGOL, V112, P643, DOI 10.3109/00016489209137454 THOMAS JA, 1979, BIOCHEMISTRY-US, V18, P2210, DOI 10.1021/bi00578a012 VILSTRUP T, 1951, ANN OTO RHINOL LARYN, V60, P974 VINCENTIIS M, 1968, EXPERIENTIA, V24, P818, DOI 10.1007/BF02144891 WRIGHT CG, 1982, ACTA OTO-LARYNGOL, V94, P7, DOI 10.3109/00016488209128884 NR 33 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 91 EP 98 DI 10.1016/S0378-5955(98)00115-4 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200009 PM 9822906 ER PT J AU Stengs, CHM Klis, SFL Huizing, EH Smoorenburg, GF AF Stengs, CHM Klis, SFL Huizing, EH Smoorenburg, GF TI Cisplatin ototoxicity. An electrophysiological dose-effect study in albino guinea pigs SO HEARING RESEARCH LA English DT Article DE cisplatin; guinea pig; compound action potential; cochlear microphonics; summating potential; ototoxicity ID ACTH(4-9) ANALOG; PROTECTION; TOXICITY AB Recently, the effect of the ACTH((4-9)) analog, ORG2766, on cisplatin ototoxicity was studied by Hamers et al. (1994). This study showed that the ACTH((4-9)) analog partially prevents the ototoxicity of cisplatin. The authors suggested that the daily dose of 2.0 mg/kg/day for 8 days might have been too high to obtain full protection. Knowledge about dose-effect relations for cisplatin ototoxicity is rather meager. Therefore, we conducted a basic dose-effect study for cisplatin without any concomitant additives. A follow-up of the Hamers et al. (1994) study, based on dose-effect data from this paper, is presented in a companion paper. The effects of cisplatin on the compound action potential (CAP), cochlear microphonics (CM) and summating potential (SP) were determined in acute experiments, in different groups of albino guinea pigs, each group injected with a different dose of cisplatin. Daily doses ranged from 0.7 to 2.0 mg/kg/day cisplatin (i.p.) for 8 consecutive days. Electrocochleography was performed at day 10. The measurements were performed over a broad range of frequencies (0.5-16 kHz). The results showed clustering of the data in two groups, the first group concerning the treatments of 1.5 and 2.0 mg/kg/day with large frequency-dependent losses in the three cochlear potentials, the second group concerning the treatments with lower doses of cisplatin (0.7, 1.0 and 1.25 mg/kg/day) where almost no losses in the three cochlear potentials were found. The threshold curves regarding the lower doses (0.7-1.25 mg/kg/day) were almost indistinguishable from the control threshold curve except at the higher frequencies (12 and 16 kHz). Thus, a marked transition from almost no ototoxic effect to a large effect seems to occur between cisplatin doses of 1.25 and 1.5 mg/kg/day for 8 days. The small difference between the effects found for 1.5 mg/kg/day and 2 mg/kg/day suggests that a smaller dose than the one of 2 mg/kg/day for 8 days used previously (Hamers et al., 1994) might better suit research into protection against cisplatin ototoxicity. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Utrecht Hosp, Hearing Res Lab, Dept Otorhinolaryngol, NL-3508 GA Utrecht, Netherlands. RP Smoorenburg, GF (reprint author), Univ Utrecht Hosp, Hearing Res Lab, Dept Otorhinolaryngol, Room G-02-531,POB 85500, NL-3508 GA Utrecht, Netherlands. CR BODENNER DL, 1986, CANCER RES, V46, P2751 BOUGHATTAS NA, 1990, J PHARMACOL EXP THER, V255, P672 CARENZA L, 1986, GYNECOL ONCOL, V25, P244, DOI 10.1016/0090-8258(86)90105-8 CHARY KK, 1977, CANCER TREAT REP, V61, P367 deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4 GISPEN WH, 1990, TRENDS PHARMACOL SCI, V11, P221, DOI 10.1016/0165-6147(90)90244-3 HAMERS FPT, 1991, EUR J CANCER, V27, P372, DOI 10.1016/0277-5379(91)90549-S HAMERS FPT, 1994, EUR ARCH OTO-RHINO-L, V251, P23 KONISHI T, 1983, AM J OTOLARYNG, V4, P18, DOI 10.1016/S0196-0709(83)80003-9 LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 MCALPINE D, 1990, HEARING RES, V47, P191, DOI 10.1016/0378-5955(90)90151-E MCHANEY VA, 1983, J PEDIATR-US, V102, P314, DOI 10.1016/S0022-3476(83)80551-4 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 OTTO WC, 1988, HEARING RES, V35, P79, DOI 10.1016/0378-5955(88)90042-1 PFEIFLE CE, 1985, J CLIN ONCOL, V3, P237 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 SCHAEFER SD, 1985, CANCER, V56, P1934, DOI 10.1002/1097-0142(19851015)56:8<1934::AID-CNCR2820560807>3.0.CO;2-F SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 VANDEELEN GW, 1986, ACTA OTO-LARYNGOL, V101, P207, DOI 10.3109/00016488609132829 VANDERHOOP RG, 1990, NEW ENGL J MED, V322, P89, DOI 10.1056/NEJM199001113220204 VANDERHULST RJAM, 1988, ANN OTO RHINOL LARYN, V97, P133 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x NR 23 TC 23 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 99 EP 107 DI 10.1016/S0378-5955(98)00129-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200010 PM 9822907 ER PT J AU Stengs, CHM Klis, SFL Huizing, EH Smoorenburg, GF AF Stengs, CHM Klis, SFL Huizing, EH Smoorenburg, GF TI Protective effects of a neurotrophic ACTH((4-9)) analog on cisplatin ototoxicity in relation to the cisplatin dose: an electrocochleographic study in albino guinea pigs SO HEARING RESEARCH LA English DT Article DE cisplatin; guinea pig; compound action potential; cochlear microphonics; summating potential; ototoxicity; prophylaxis ID SODIUM THIOSULFATE; ACTH(4-9) ANALOG; DIETHYLDITHIOCARBAMATE; NEUROTOXICITY; ORG-2766; RATS AB Cisplatin is a potent cell cycle non-specific chemotherapeutic agent that produces side effects including high-frequency hearing loss. Hamers et al. (1994) studied electrophysiologically the effect of an ACTH((4-9)) analog, also known as ORG2766, on the ototoxicity of cisplatin (administered at 2 mg/kg/day for 8 days) in guinea pigs. ORG2766 was given concomitantly with cisplatin during the 8 day period and an additional dose was given on day 9. The conclusion of this study was that ORG2766 might partially prevent cisplatin ototoxicity, but that the chosen cisplatin dose (2 mg/kg/day; 8 days) might have been too high. Because of the high cisplatin dose the protective power of the co-treatment with ORG2766 might not have stretched to all animals. In this study the results of co-treatment with the same dose and daily schedule of ORG2766 and cisplatin doses of 1.0 mg/kg/day and 1.5 mg/kg/day for 8 days are presented. The measurements were performed over a broad range of frequencies (0.5-16 kHz). Electrocochleography was performed at day 10. In the 1.0 mg/kg/day group there was no beneficial effect of ORG2766, although a tendency towards a division between a subgroup resembling control animals and a subgroup with severe cisplatin effects was noted in the co-treated group. In the 1.5 mg/kg/day co-treated group three animals showed compound action potential (CAP) amplitudes close to those of the controls at all frequencies except the very highest (12 and 16 kHz), the remaining three had CAP amplitudes comparable to those of animals in the cisplatin alone group. The effect of ORG2766 on the latter group of six animals taken together was statistically significant. The dichotomy in the results for the 1.5 mg/kg/day group co-treated with ORG2766 suggests that ORG2766 may have a protective effect against cisplatin ototoxicity which, however, depends on a factor currently unknown. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Utrecht Hosp, Hearing Res Lab, Dept Otorhinolaryngol, NL-3508 GA Utrecht, Netherlands. RP Smoorenburg, GF (reprint author), Univ Utrecht Hosp, Hearing Res Lab, Dept Otorhinolaryngol, Room G-02-531,POB 85500, NL-3508 GA Utrecht, Netherlands. CR BODENNER DL, 1986, CANCER RES, V46, P2751 CHARY KK, 1977, CANCER TREAT REP, V61, P367 CHURCH MW, 1995, HEARING RES, V86, P195, DOI 10.1016/0378-5955(95)00066-D DEKONING P, 1987, EXP NEUROL, V97, P746, DOI 10.1016/0014-4886(87)90132-4 deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4 GANDARA DR, 1990, CRIT REV ONCOL HEMAT, V10, P353, DOI 10.1016/1040-8428(90)90010-P GISPEN WH, 1990, TRENDS PHARMACOL SCI, V11, P221, DOI 10.1016/0165-6147(90)90244-3 HAMERS FPT, 1991, EUR J CANCER, V27, P372, DOI 10.1016/0277-5379(91)90549-S HAMERS FPT, 1991, TOXICOL APPL PHARM, V111, P514, DOI 10.1016/0041-008X(91)90255-D HAMERS FPT, 1994, EUR ARCH OTO-RHINO-L, V251, P23 KOHN S, 1991, LARYNGOSCOPE, V101, P709 KONISHI T, 1983, AM J OTOLARYNG, V4, P18, DOI 10.1016/S0196-0709(83)80003-9 LAURELL G, 1989, HEARING RES, V38, P19, DOI 10.1016/0378-5955(89)90124-X LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 MCALPINE D, 1990, HEARING RES, V47, P191, DOI 10.1016/0378-5955(90)90151-E OTTO WC, 1988, HEARING RES, V35, P79, DOI 10.1016/0378-5955(88)90042-1 PFEIFLE CE, 1985, J CLIN ONCOL, V3, P237 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Stengs CHM, 1998, HEARING RES, V124, P99, DOI 10.1016/S0378-5955(98)00129-4 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 VANDEELEN GW, 1986, ACTA OTO-LARYNGOL, V101, P207, DOI 10.3109/00016488609132829 VANDERHOOP RG, 1990, NEW ENGL J MED, V322, P89, DOI 10.1056/NEJM199001113220204 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x NR 24 TC 14 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 108 EP 117 DI 10.1016/S0378-5955(98)00130-0 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200011 PM 9822908 ER PT J AU Hiyama, S Abe, K Mikuni, H Fukuda, S Inuyama, Y AF Hiyama, S Abe, K Mikuni, H Fukuda, S Inuyama, Y TI Type A fibril of the mouse tectorial membrane shows D-periodicity: an atomic force microscopic examination SO HEARING RESEARCH LA English DT Article DE tectorial membrane; type II collagen; atomic force microscopy; inner ear ID COLLAGEN FIBRILS; ORGANIZATION; MATRIX; FREEZE; CORNEA; SCLERA; GERBIL AB This study demonstrated that type A fibrils of the mouse tectorial membrane showed a morphology characteristic of collagen, as demonstrated using an atomic force microscope. In the topographical imaging mode, the surface of the type A fibrils showed a periodic pattern, consisting of alternating grooves and ridges. The periodicity of the type A fibrils was 69.1 +/- 0.6 nm, which is in accordance with characteristic collagen D-periodicity. The difference in height between grooves and ridges was 1.6 +/- 0.3 nm. In the variable deflection imaging mode, the type A fibrils showed a clear banding pattern, which consisted of alternating light and dark zones, with D-periodicity. In addition, the type A fibrils exhibited one minor dark band in the light zone and one minor light band in the dark zone. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Hokkaido Univ, Sch Med, Dept Otolaryngol, Kita Ku, Sapporo, Hokkaido 060, Japan. Hokkaido Univ, Sch Med, Dept Anat, Sapporo, Hokkaido 060, Japan. RP Hiyama, S (reprint author), Hokkaido Univ, Sch Med, Dept Otolaryngol, Kita Ku, Kita 14,Nishi 5, Sapporo, Hokkaido 060, Japan. RI Fukuda, Satoshi/A-8433-2012 CR ARIMA T, 1990, HEARING RES, V46, P289, DOI 10.1016/0378-5955(90)90010-M BASELT DR, 1993, BIOPHYS J, V65, P2644 BINNIG G, 1986, PHYS REV LETT, V56, P930, DOI 10.1103/PhysRevLett.56.930 Chapman J.A., 1984, ULTRASTRUCTURE CONNE, P1 HASKO JA, 1988, HEARING RES, V35, P21, DOI 10.1016/0378-5955(88)90037-8 KRONESTERFREI A, 1978, CELL TISSUE RES, V193, P11 LAL R, 1994, AM J PHYSIOL, V266, pC1 MARCHINI M, 1983, CONNECT TISSUE RES, V11, P175, DOI 10.3109/03008208309004853 MARTIN Y, 1987, J APPL PHYS, V61, P4723, DOI 10.1063/1.338807 MECHAM RP, 1990, CONNECT TISSUE RES, V24, P83, DOI 10.3109/03008209009152425 Meller D, 1997, CELL TISSUE RES, V288, P111, DOI 10.1007/s004410050798 Montes GS, 1984, ULTRASTRUCTURE CONNE, P65 RICHARDSON GP, 1987, HEARING RES, V25, P45, DOI 10.1016/0378-5955(87)90078-5 SLEPECKY NB, 1992, CELL TISSUE RES, V267, P413, DOI 10.1007/BF00319363 THALMANN I, 1987, LARYNGOSCOPE, V97, P357 Ushiki T, 1996, ARCH HISTOL CYTOL, V59, P421 WEAVER SP, 1994, HEARING RES, V76, P1, DOI 10.1016/0378-5955(94)90081-7 Yamamoto S, 1997, ARCH HISTOL CYTOL, V60, P371, DOI 10.1679/aohc.60.371 ZWISLOCKI JJ, 1988, HEARING RES, V33, P207, DOI 10.1016/0378-5955(88)90151-7 NR 19 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 118 EP 123 DI 10.1016/S0378-5955(98)00123-3 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200012 PM 9822909 ER PT J AU Naidu, RC Mountain, DC AF Naidu, RC Mountain, DC TI Measurements of the stiffness map challenge a basic tenet of cochlear theories SO HEARING RESEARCH LA English DT Article DE gerbil; cochlea; partition stiffness; stiffness gradient; frequency map ID MODEL AB The cochlear frequency map is believed to depend on the progressive decrease in partition stiffness from base to apex. Measurements on cochleae from human cadavers by von Bekesy (1960) suggested that the elasticity of the partition increases by a factor of 100 from the stapes to the helicotrema. However, conventional models require a factor of nearly 10 000 to support the frequency range of normal hearing if entirely determined by partition stiffness. To test this assumption, we measured point stiffness along the width and length of the partition in the gerbil cochlea. Two major findings result from this study: (1) contrary to von Bekesy's results, both cellular and extracellular elements of the sensory epithelium exhibit stiffness gradients; and (2) the stiffness changes by only a factor of 100 over the whole cochlea. Our results imply that present ideas regarding partition vibration need to be significantly revised. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Boston Univ, Hearing Res Ctr, Boston, MA 02215 USA. Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA. Boston Univ, Dept Otolaryngol, Boston, MA 02215 USA. RP Naidu, RC (reprint author), Boston Univ, Hearing Res Ctr, Boston, MA 02215 USA. CR ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198 Bekesy G., 1960, EXPT HEARING CODY AR, 1981, J ACOUST SOC AM, V70, P707, DOI 10.1121/1.386906 DALLOS P, 1992, J NEUROSCI, V12, P4575 de Boer E., 1996, COCHLEA, P258 Ewins DJ, 1984, MODAL TESTING THEORY GEISLER CD, 1993, HEARING RES, V68, P253, DOI 10.1016/0378-5955(93)90129-O Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 GUMMER AW, 1981, J ACOUST SOC AM, V70, P1298, DOI 10.1121/1.387144 Hubbard A. E., 1996, AUDITORY COMPUTATION, P62 KARAVITAKI KD, 1997, DIVERSITY AUDITORY M, P392 LIGHTHILL J, 1991, J VIB ACOUST, V113, P1 MILLER CE, 1985, J ACOUST SOC AM, V77, P1465, DOI 10.1121/1.392041 MOUNTAIN DC, 1993, BIOPHYSICS HAIR CELL, P361 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 NAIDU RC, 1997, DIVERSITY AUDITORY M, P542 OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331 Olson E.S., 1993, BIOPHYSICS HAIR CELL, P280 OLSON ES, 1991, J ACOUST SOC AM, V89, P1262, DOI 10.1121/1.400535 PETERSON LC, 1950, J ACOUST SOC AM, V22, P369, DOI 10.1121/1.1906615 PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 RHODE WS, 1973, BASIC MECHANISMS HEA ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Slepecky N. B., 1996, COCHLEA, P44 Tolomeo JA, 1997, DIVERSITY AUDITORY M, P556 ZHANG L, 1997, DIVERSITY AUDITORY M, P472 NR 27 TC 70 Z9 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 124 EP 131 DI 10.1016/S0378-5955(98)00133-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200013 PM 9822910 ER PT J AU Bohne, BA Maghami, EG Bahadori, RS Harding, GW AF Bohne, BA Maghami, EG Bahadori, RS Harding, GW TI The role of micro-noise trauma in the etiology of aging-related changes in the inner ear SO HEARING RESEARCH LA English DT Article DE chinchilla; aging-related cochlear damage; noise; presbycusis ID TEMPORARY THRESHOLD SHIFTS; AGE-RELATED-CHANGES; INTERRUPTED EXPOSURE; FREQUENCY NOISE; CELL LOSS; CHINCHILLA; COCHLEAS; POTENTIALS; DECLINE; GERBILS AB Eleven chinchillas between 1 and 2.4 years of age had the malleus/incus complex removed from one middle ear and then lived in the Washington University animal facilities for 4 years post-surgery. Each animal had one ear (termed ambient-noise) in which the conductive apparatus was intact; the other ear (termed noise-protected) bad a 50-60 dB conductive hearing loss. The background sound level in the animal facility was 59 dBA with periodic brief sounds up to 102 dBA. After the 4-year experimental period, both ears were fixed, embedded in plastic and dissected for microscopic examination as flat preparations. The quantitative and qualitative findings in the noise-protected ears were compared to those in the ambient-noise ears. Both groups of ears sustained losses of sensory and supporting cells throughout the organ of Corti. A variable amount of age pigment was found to have accumulated in the outer hair cells and all supporting cells. In the noise-protected ears, inner hair cell loss ranged from 1.0 to 3.1% and averaged 1.7+/-0.8%; outer hair cell loss ranged from 1.8 to 6.4% and averaged 3.6 +/- 1.2%. In the ambient-noise ears, inner hair cell loss ranged from 0.7 to 2.8% and averaged 1.6+/-0.7%; outer hair cell loss ranged from 1.3 to 5.4% and averaged 3.6 +/- 1.2%. Within-animal comparison of cell losses in the noise-protected and ambient-noise ears revealed no significant difference between the two groups. It is concluded that long-term exposure to micro-noise does not accelerate the spontaneous loss of sensory cells which occurs with aging. Although not quantified, there was no obvious difference in the amount or cellular distribution of age pigment in the two groups. Thus, it appears that the formation of age pigment in the ear is the result of the cells' basic metabolic processes rather than the wear and tear from sensory transduction. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Bohne, BA (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 517 S Euclid Ave,Box 8115, St Louis, MO 63110 USA. EM bohne_b@kids.wustl.edu RI Bohne, Barbara/A-9113-2008 OI Bohne, Barbara/0000-0003-3874-7620 CR BHATTACHARYYA TK, 1985, ANN OTO RHINOL LARYN, V94, P75 Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 BOHNE BA, 1985, LARYNGOSCOPE, V95, P818 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 BOHNE BA, 1987, HEARING RES, V29, P251, DOI 10.1016/0378-5955(87)90172-9 BOHNE BA, 1972, LARYNGOSCOPE, V82, P1 BOHNE BA, 1976, HEARING DAVIS ESSAYS, P85 BOHNE BA, 1986, J ACOUST SOC AM, V80, P1729, DOI 10.1121/1.394285 BOHNE BA, 1976, ANN OTO RHINOL LARYN, V85, P711 BOHNE BA, 1985, ANN OTO RHINOL LARYN, V94, P122 BOHNEW BA, 1983, HEARING RES, V71, P114 Bredberg G, 1967, J Laryngol Otol, V81, P739, DOI 10.1017/S0022215100067670 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 CARDER HM, 1972, J SPEECH HEAR RES, V15, P603 CLARK DT, 1978, CRC CRIT R SOLID ST, V1, P1 CLARK WM, 1984, MED TIMES, V112, pFM17 CLARK WW, 1987, J ACOUST SOC AM, V81, P1093, DOI 10.1121/1.394629 CLARK WW, 1986, SENSORINEURAL HEARIN, P59 COLMAN JW, 1976, ACTA OTOLARYNGOL, V82, P33 COVELL W. P., 1957, LARYNGOSCOPE, V67, P118 Dawson D, 1987, ADV DATA VITAL HLTH, V133 FAY RR, 1988, HEARING VERTEBRATES, P327 Fried M P, 1976, Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol, V82, P285 GATES GA, 1989, OTOLARYNG HEAD NECK, V100, P266 GHADIALLY FN, 1975, ULTRASTRUCT PATHOL, P306 GOYCOOLEA MV, 1986, LARYNGOSCOPE, V9, P1391 GRAVENDEEL DW, 1960, ARCH OTOLARYNGOL, V71, P556 HENRY KR, 1980, AUDIOLOGY, V19, P369 Ishii T, 1967, Acta Otolaryngol, V64, P17, DOI 10.3109/00016486709139088 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X McFadden SL, 1997, HEARING RES, V111, P114, DOI 10.1016/S0378-5955(97)00099-3 MELNICK W, 1977, ANN OTO RHINOL LARYN, V86, P821 MILLER JD, 1970, J ACOUST SOC AM, V48, P513, DOI 10.1121/1.1912166 MILLS JH, 1979, J ACOUST SOC AM, V65, P1238, DOI 10.1121/1.382791 MILLS JH, 1970, J ACOUST SOC AM, V48, P524, DOI 10.1121/1.1912167 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 NADOL JB, 1980, AGING COMMUNICATION, P63 ROSEN S, 1962, ANN OTO RHINOL LARYN, V71, P727 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SCHUKNECHT HF, 1993, PATHOLOGY EAR, P416 SCHUKNECHT HF, 1951, ANN OTO RHINOL LARYN, V60, P273 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Sivian LJ, 1933, J ACOUST SOC AM, V4, P288, DOI 10.1121/1.1915608 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Ulehlová L, 1975, Adv Exp Med Biol, V53, P257 Zwaardemaker H, 1891, ARCH OHRENHEILK, V32, P53, DOI 10.1007/BF01804656 NR 47 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 132 EP 145 DI 10.1016/S0378-5955(98)00132-4 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200014 PM 9822911 ER PT J AU Erichsen, S Stierna, P Bagger-Sjoback, D Curtis, LM Rarey, KE Schmid, W Hultcrantz, M AF Erichsen, S Stierna, P Bagger-Sjoback, D Curtis, LM Rarey, KE Schmid, W Hultcrantz, M TI Distribution of Na,K-ATPase is normal in the inner ear of a mouse with a null mutation of the glucocorticoid receptor SO HEARING RESEARCH LA English DT Article DE immunohistochemistry; inner ear; mouse; glucocorticoid receptor; Na,K-ATPase; homologous recombination ID MOLECULAR-GENETIC ANALYSIS; LATERAL COCHLEAR WALL; STRIA VASCULARIS; RAT COCHLEA; ALPHA-ISOFORM; I RECEPTOR; EXPRESSION; ADRENOCORTICOSTEROIDS; ABSENCE; CELLS AB This study was performed in order to test the hypothesis that the glucocorticoid hormone stimulates the formation of Na,K-ATPase in the inner ear of the mouse. An immunohistochemical study with respect to the presence and distribution of glucocorticoid receptors (GR) and Na,K-ATPase in the vestibular and cochlear regions of the inner ear was performed on a C57BL mouse with a null mutation of the glucocorticoid receptor (GR mutant mouse). The wild type C57BL mouse and the CBA mouse served as normal controls. As expected, the homozygous GR mutant mouse showed no specific staining for GR in the inner ear. The heterozygous GR mutant mouse showed faint staining of GR in the spiral limbus, the spiral ganglion, the organ of Corti and the utricle. This staining was markedly less than in the wild type C57BL mouse. Antibody labelling of Na,K-ATPase in the inner ear showed no significant difference between the homozygous and the heterozygous CR mutant mouse as compared to the control wild type C57BL mouse or the CBA mouse. Although earlier studies have shown a positive correlation between levels of glucocorticoid hormone in serum and the concentration of Na,K-ATPase in the inner ear, the hypothesis that glucocorticoid hormones alone stimulate the formation of Na,K-ATPase in the inner ear could not be confirmed by this study. Thus other regulating substances must be considered. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Karolinska Hosp, Dept Otorhinolaryngol, S-17176 Stockholm, Sweden. Huddinge Univ Hosp, Dept Otorhinolaryngol, S-14186 Huddinge, Sweden. Univ Florida, Dept Anat & Cell Biol, Gainesville, FL USA. Univ Florida, Dept Otolaryngol, Gainesville, FL USA. German Canc Res Ctr, Div Mol Biol Cell 1, D-69120 Heidelberg, Germany. RP Hultcrantz, M (reprint author), Karolinska Hosp, Dept Otorhinolaryngol, S-17176 Stockholm, Sweden. EM mhz@ent.ks.se CR ANNIKO M, 1986, HEARING RES, V22, P279, DOI 10.1016/0378-5955(86)90104-8 COLE TJ, 1995, STEROIDS, V60, P93, DOI 10.1016/0039-128X(94)00009-2 CURTIS LM, 1993, EUR ARCH OTO-RHINO-L, V250, P265 DECOLLOGNE S, 1993, J CARDIOVASC PHARM, V22, P96 Erichsen S, 1996, HEARING RES, V100, P143, DOI 10.1016/0378-5955(96)00105-0 Erichsen S, 1996, ACTA OTO-LARYNGOL, V116, P721, DOI 10.3109/00016489609137913 FURUTA H, 1994, HEARING RES, V78, P175, DOI 10.1016/0378-5955(94)90023-X HORNER KC, 1991, HEARING RES, V52, P147, DOI 10.1016/0378-5955(91)90194-E LIM DJ, 1985, ACTA OTOLARYNGOL STO, V422, P5 LINGREL JB, 1992, J BIOENERG BIOMEMBR, V24, P263 LOHUIS PJFM, 1990, ACTA OTO-LARYNGOL, V110, P348, DOI 10.3109/00016489009107454 LUTTGE WG, 1989, ENDOCRINOLOGY, V125, P1194 Mikaelian D, 1965, ACTA OTO-LARYNGOL, V59, P451, DOI DOI 10.3109/00016486509124579 MUJAIS SK, 1985, J CLIN INVEST, V76, P170, DOI 10.1172/JCI111942 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 ORLOWSKI J, 1988, J BIOL CHEM, V263, P10436 Paparella M M, 1991, Acta Otolaryngol Suppl, V485, P26 RAREY KE, 1989, ARCH OTOLARYNGOL, V115, P817 RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N RAREY KE, 1989, HEARING RES, V41, P217, DOI 10.1016/0378-5955(89)90013-0 RAREY KE, 1995, HEARING RES, V82, P135, DOI 10.1016/0378-5955(94)00171-L ROSE AM, 1994, CLIN CHEM, V40, P1674 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHMID W, 1995, J STEROID BIOCHEM, V53, P33, DOI 10.1016/0960-0760(95)00038-2 TENCATE WJF, 1993, LARYNGSOCOPE, V103, P65 YOSHIHARA T, 1987, ARCH OTO-RHINO-LARYN, V243, P395, DOI 10.1007/BF00464650 ZUO J, 1995, ACTA OTO-LARYNGOL, V115, P497, DOI 10.3109/00016489509139355 ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I NR 28 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 146 EP 154 DI 10.1016/S0378-5955(98)00117-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200015 PM 9822912 ER PT J AU Krumbholz, K Wiegrebe, L AF Krumbholz, K Wiegrebe, L TI Detection thresholds for brief sounds - are they a measure of auditory intensity integration? SO HEARING RESEARCH LA English DT Article DE intensity integration; temporal interference; decay time of auditory filter; matched filter ID TEMPORAL INTEGRATION; GAP DETECTION; TIME-DOMAIN; FREQUENCY; MASKING; NOISE; LEVEL; SINUSOIDS; FILTER; MODEL AB The present study measured how the detection thresholds for two very brief tone or noise bursts depend on the delay between them. The thresholds for the tone burst pairs systematically increase for increasing delays up to a few milliseconds and then reach a constant value. The tone burst thresholds thus reflect a very short-term interaction between the brief signals. Strikingly, the time constant of the interaction appears to scale inversely to the frequency of the tone bursts. The thresholds for the noise burst pairs, on the other hand, remain approximately constant down to the shortest measured delay of less than 1 ms. In contrast to the concept of intensity integration, these results are interpreted in terms of a temporal overlap of the auditory filter responses elicited by two brief, successively presented signals. In a second experiment it was shown that the observed short-term interaction between two brief signals is sensitive to their relative phases, corroborating the conjecture that the interaction takes place at a level prior to the mechanical to neural transduction in the inner ear. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Munich, Inst Zool, D-80333 Munich, Germany. RP Krumbholz, K (reprint author), Univ Munich, Inst Zool, Luisenstr 14, D-80333 Munich, Germany. EM katrin.krumbholz@mrc-cbu.cam.ac.uk CR Ambardar A., 1995, ANALOG DIGITAL SIGNA CARLYON RP, 1990, J ACOUST SOC AM, V87, P260, DOI 10.1121/1.399293 CARNEY LH, 1993, J ACOUST SOC AM, V93, P401, DOI 10.1121/1.405620 DAI HP, 1995, J ACOUST SOC AM, V98, P798, DOI 10.1121/1.413572 Dau T, 1996, J ACOUST SOC AM, V99, P3615, DOI 10.1121/1.414959 de Boer E, 1985, TIME RESOLUTION AUDI, P141 EDDINS DA, 1992, J ACOUST SOC AM, V91, P1069, DOI 10.1121/1.402633 FLORENTINE M, 1988, J ACOUST SOC AM, V84, P195, DOI 10.1121/1.396964 FORREST TG, 1987, J ACOUST SOC AM, V82, P1933, DOI 10.1121/1.395689 GEISLER CD, 1985, J ACOUST SOC AM, V77, P1102, DOI 10.1121/1.392228 GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GREEN DM, 1960, J ACOUST SOC AM, V32, P121, DOI 10.1121/1.1907862 GREEN DM, 1957, J ACOUST SOC AM, V29, P523, DOI 10.1121/1.1908951 GREEN DM, 1973, J ACOUST SOC AM, V54, P373, DOI 10.1121/1.1913587 HALL JL, 1973, J ACOUST SOC AM, V54, P593, DOI 10.1121/1.1913638 HANSLER G, 1996, STAT SIGNALE GRUNDLA HENNING GB, 1981, J ACOUST SOC AM, V70, P1669, DOI 10.1121/1.387231 Irino T, 1997, J ACOUST SOC AM, V101, P412, DOI 10.1121/1.417975 Johnson DH, 1996, J COMPUT NEUROSCI, V3, P275, DOI 10.1007/BF00161089 KOHLRAUSCH A, 1995, J ACOUST SOC AM, V97, P1817, DOI 10.1121/1.413097 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MEDDIS R, 1986, J ACOUST SOC AM, V79, P702, DOI 10.1121/1.393460 MISKIEWICZ A, 1994, J ACOUST SOC AM, V96, P1429 MOORE BCJ, 1993, J ACOUST SOC AM, V93, P1563, DOI 10.1121/1.406815 MOORE BCJ, 1997, CONTRIB PSYCHOL, P565 Moore BCJ, 1996, J ACOUST SOC AM, V99, P3669, DOI 10.1121/1.414964 MOORE BCJ, 1993, J ACOUST SOC AM, V94, P3190, DOI 10.1121/1.407224 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1102, DOI 10.1121/1.396055 OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0 PATTERSO.JH, 1970, J ACOUST SOC AM, V48, P894, DOI 10.1121/1.1912229 PATTERSON RD, 1992, ADV BIOSCI, V83, P429 PATTERSON RD, 1994, J ACOUST SOC AM, V96, P1409, DOI 10.1121/1.410285 PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 PENNER MJ, 1978, J ACOUST SOC AM, V63, P195, DOI 10.1121/1.381712 PLACK CJ, 1990, J ACOUST SOC AM, V87, P2178, DOI 10.1121/1.399185 PLOMP R, 1964, J ACOUST SOC AM, V36, P277, DOI 10.1121/1.1918946 PLOMP R, 1959, J ACOUST SOC AM, V31, P749, DOI 10.1121/1.1907781 SHAILER MJ, 1983, J ACOUST SOC AM, V74, P467, DOI 10.1121/1.389812 SHAILER MJ, 1987, J ACOUST SOC AM, V81, P1110, DOI 10.1121/1.394631 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 White LJ, 1997, HEARING RES, V112, P141, DOI 10.1016/S0378-5955(97)00115-9 WIEGREBE L, 1998, UNPUB TEMPORAL RESOL Zwicker E., 1990, PSYCHOACOUSTICS FACT ZWICKER E, 1967, OHR NACHRICHTENEMPFL Zwicker E., 1982, PSYCHOAKUSTIK ZWICKER E, 1984, J ACOUST SOC AM, V75, P219, DOI 10.1121/1.390398 ZWISLOCK.JJ, 1969, J ACOUST SOC AM, V46, P431, DOI 10.1121/1.1911708 ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276 NR 50 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 155 EP 169 DI 10.1016/S0378-5955(98)00134-8 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200016 PM 9822913 ER PT J AU Chatterjee, M Zwislocki, JJ AF Chatterjee, M Zwislocki, JJ TI Cochlear mechanisms of frequency and intensity coding. II. Dynamic range and the code for loudness SO HEARING RESEARCH LA English DT Article DE dynamic range; hair cell; auditory nerve; loudness ID AUDITORY-NERVE FIBERS; INPUT-OUTPUT FUNCTIONS; MODEL INCORPORATING REFRACTORINESS; DIFFERING SPONTANEOUS RATE; OUTER HAIR-CELLS; BASILAR-MEMBRANE; INTRACELLULAR-RECORDINGS; CENTRAL PROJECTIONS; PRIOR STIMULATION; PLACE CODE AB Our preceding paper described SPL-dependenl changes in the shape of transfer functions recorded from inner and outer hair cells as well as supporting cells in the 500-2500 Hz regions of the Mongolian gerbil cochlea. As SPL was increased, large shifts were observed in the peak of the transfer function. A strongly compressive nonlinearity was also observed at CF. This paper examines the data from the perspective of intensity coding in the auditory periphery. Based on the data, we offer a new explanation for the mechanisms underlying the different dynamic ranges of low and high threshold auditory neurons. We also find that, for pure tone stimuli, the growth of excitation at the characteristic place saturates rapidly, and cannot encode the wide dynamic range of loudness. The data are analyzed to explore other excitation pattern candidates for loudness coding. The growth of the peak of the IHC transfer function, as well as the growth of the response area, have been found to be linearly related to loudness growth over most of its dynamic range. Implications of the data for auditory intensity coding are discussed. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Syracuse Univ, Inst Sensory Res, Syracuse, NY USA. RP Chatterjee, M (reprint author), House Ear Inst, Dept Auditory Implants & Percept, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM monita@hei.org CR Chatterjee M, 1997, HEARING RES, V111, P65, DOI 10.1016/S0378-5955(97)00089-0 CHATTERJEE M, 1994, THESIS SYRACUSE U SY COOPER NP, 1994, HEARING RES, V78, P221, DOI 10.1016/0378-5955(94)90028-0 DALLOS P, 1982, SCIENCE, V218, P582, DOI 10.1126/science.7123260 DALLOS P, 1985, J NEUROSCI, V5, P1591 DALLOS P, 1989, J ACOUST SOC AM, V86, P1790, DOI 10.1121/1.398611 DALLOS P, 1986, HEARING RES, V22, P185, DOI 10.1016/0378-5955(86)90095-X Eggermont J J, 1974, Acta Otolaryngol Suppl, V316, P39 EHMER RH, 1969, J ACOUST SOC AM, V46, P1445, DOI 10.1121/1.1911883 Fletcher H, 1937, J ACOUST SOC AM, V9, P1, DOI 10.1121/1.1915904 GOLDSTEIN JL, 1974, SENSATION MEASUREMEN, P223 GOODMAN DA, 1982, HEARING RES, V7, P161, DOI 10.1016/0378-5955(82)90012-0 HELLMAN RP, 1961, J ACOUST SOC AM, V33, P687, DOI 10.1121/1.1908764 HELLMAN RP, 1978, J ACOUST SOC AM, V63, P1114, DOI 10.1121/1.381819 HELLMAN RP, 1974, SENSATION MEASUREMEN, P241 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N JACKSON BS, 1995, ARO ABSTR, V18, P697 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 Kiang NYS, 1965, RES MONOGRAPHS, V35 LACHS G, 1981, J ACOUST SOC AM, V69, P774, DOI 10.1121/1.385578 LIBERMAN MC, 1993, J COMP NEUROL, V327, P17, DOI 10.1002/cne.903270103 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205 MOLLER AR, 1983, HEARING RES, V11, P267, DOI 10.1016/0378-5955(83)90062-X MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1505, DOI 10.1121/1.392045 PATUZZI R, 1983, J ACOUST SOC AM, V74, P1734, DOI 10.1121/1.390282 Pickles JO, 1988, INTRO PHYSL HEARING Relkin EM, 1997, J ACOUST SOC AM, V101, P2735, DOI 10.1121/1.418561 RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 ROSE JE, 1971, J NEUROPHYSIOL, V34, P685 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1992, AUDITORY PHYSL PERCE RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 SIEBERT WM, 1965, KYBERNETIK, V2, P206, DOI 10.1007/BF00306416 TEICH MC, 1979, J ACOUST SOC AM, V66, P1738, DOI 10.1121/1.383647 VIEMEIST.NF, 1974, J ACOUST SOC AM, V56, P1594, DOI 10.1121/1.1903483 WEISS TF, 1988, HEARING RES, V33, P167, DOI 10.1016/0378-5955(88)90029-9 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E ZAGAESKI M, 1994, J ACOUST SOC AM, V95, P3430, DOI 10.1121/1.409963 ZENG FG, 1991, HEARING RES, V55, P223, DOI 10.1016/0378-5955(91)90107-K ZHANG M, 1993, THESIS SYRACUSE U SY ZHANG MS, 1995, HEARING RES, V85, P1, DOI 10.1016/0378-5955(95)00026-Z Zhang MS, 1996, HEARING RES, V96, P46, DOI 10.1016/0378-5955(96)00029-9 ZWICKER E, 1965, PSYCHOL REV, V72, P3, DOI 10.1037/h0021703 ZWISLOCKI JJ, 1991, ACTA OTO-LARYNGOL, V111, P256, DOI 10.3109/00016489109137384 ZWISLOCKI J, 1952, EXPERIENTIA, V8, P279, DOI 10.1007/BF02301400 ZWISLOCKI JJ, 1988, NATO ADV RES WORKS A, V164, P163 ZWISLOCK.JJ, 1973, KYBERNETIK, V12, P169, DOI 10.1007/BF00289170 NR 50 TC 11 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 170 EP 181 DI 10.1016/S0378-5955(98)00135-X PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200017 PM 9822914 ER PT J AU Murnane, OD Prieve, BA Relkin, EM AF Murnane, OD Prieve, BA Relkin, EM TI Recovery of the human compound action potential following prior stimulation SO HEARING RESEARCH LA English DT Article DE compound action potential; forward masking; recovery; spontaneous rate; human ID AUDITORY-NERVE FIBERS; INTENSITY DISCRIMINATION; GUINEA-PIG; RESPONSES; MASKING; NEURONS; NOISE; RATES; CATS AB The recovery from prior stimulation of the compound action potential (CAP) was measured using a forward masking stimulus paradigm in four normal-hearing, human subjects. The CAP was recorded using a wick electrode placed on the tympanic membrane. The effects of a 4000-Hz, 97-dB SPL conditioning stimulus on CAP amplitude in response to a 4000-Hz probe were measured as a function of conditioner-probe interval for three probe levels. The normalized probe response amplitude was completely recovered to the control values at an average conditioner-probe interval of 1359 ms, similar to that observed in chinchilla (Relkin, E.M., Doucet, J.R., Sterns, A., 1995. Recovery of the compound action potential following prior stimulation: evidence for a slow component that reflects recovery of low spontaneous-rare auditory neurons, Hear. Res. 83, 183-189). The present results are interpreted as a consequence of the slow recovery of low spontaneous-rate (SR), high threshold neurons from prior stimulation (Relkin, E.M., Doucet, J.R., 1991. Recovery from prior stimulation. I: Relationship to spontaneous firing rates of primary auditory neurons. Hear. Res. 55, 215-222) and may provide indirect physiological evidence for the existence of a class of low-SR auditory neurons in humans. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Syracuse Univ, Dept Commun Sci & Disorders, Syracuse, NY USA. Syracuse Univ, Inst Sensory Res, Syracuse, NY USA. RP Murnane, OD (reprint author), James H Quillen VA, Med Ctr, Dept Audiol 126, Mt Home, TN 37684 USA. CR ANSI-American National Standard Institute, 1996, AM NAT STAND SPEC AU BORG E, 1988, HEARING RES, V36, P191, DOI 10.1016/0378-5955(88)90061-5 CACACE AT, 1991, J ACOUST SOC AM, V89, P1255, DOI 10.1121/1.400534 COATS AC, 1972, J ACOUST SOC AM, V52, P1607, DOI 10.1121/1.1913293 Delgutte B, 1987, PSYCHOPHYSICS SPEECH, P333 EVANS EF, 1980, EXP BRAIN RES, V40, P115 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 Kiang N.Y.S., 1965, MIT RES MONOGRAPH, V35 KRAMER SJ, 1982, J ACOUST SOC AM, V72, P795, DOI 10.1121/1.388186 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LILLY DJ, 1989, MENIERES DISEASE, P369 Rabinowitz WM, 1977, THESIS MIT CAMBRIDGE RELKIN EM, 1995, HEARING RES, V83, P183, DOI 10.1016/0378-5955(95)00004-N RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SALVI RJ, 1986, BASIC APPL ASPECTS N, P179 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 Schmiedt RA, 1996, J NEUROPHYSIOL, V76, P2799 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 Spoor A., 1976, ELECTROCOCHLEOGRAPHY, P183 Tsuji J, 1997, J COMP NEUROL, V381, P188 Viemeister N., 1988, AUDITORY FUNCTION NE, P213 Wilson RH, 1991, HEARING ASSESSMENT, P247 WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E YOUNG E, 1973, J ACOUST SOC AM, V54, P1535, DOI 10.1121/1.1914451 ZENG FG, 1991, HEARING RES, V55, P223, DOI 10.1016/0378-5955(91)90107-K NR 28 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1998 VL 124 IS 1-2 BP 182 EP 189 DI 10.1016/S0378-5955(98)00136-1 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132RU UT WOS:000076644200018 PM 9822915 ER PT J AU Bond, BR Ng, LL Schulte, BA AF Bond, BR Ng, LL Schulte, BA TI Identification of mRNA transcripts and immunohistochemical localization of Na/H exchanger isoforms in gerbil inner ear SO HEARING RESEARCH LA English DT Article DE cochlea; reverse transcription-polymerase chain reaction; immunohistochemistry; stria vascularis; hair cell; Na/H exchanger; ion transport; electrolyte ID BETA-SUBUNIT ISOFORMS; K-CL COTRANSPORTER; NA+/H+ EXCHANGER; STRIA VASCULARIS; ALPHA-SUBUNIT; BRUSH-BORDER; GENE FAMILY; GUINEA-PIG; CELLS; EXPRESSION AB Recent physiological and pharmacological studies have implicated involvement of the Na/H exchanger (NHE) in regulating inner ear ion homeostasis, but the cellular distribution of this membrane transporter remains unknown. Here reverse transcription and the polymerase chain reaction (RT-PCR) were employed to screen adult gerbil inner ears for mRNA transcripts encoding the four best characterized isoforms of NHE. PCR products spanning selected segments of NHE mRNAs were cloned and sequenced. The putative housekeeping gene NHE-1 was found to be expressed and the 459 bp product shared 98.7% amino acid homology with rat sequence. NHE-2, NHE-3 and NHE-4 cDNA transcripts likewise were detected and the PCR products shared 100, 99.4 and 88.9% amino acid homology, respectively, with their rat counterparts. In addition, the cellular distribution of NHE isoforms 1 and 3 was mapped in the gerbil inner ear by immunostaining with polyclonal antisera against rat antigens. In the cochlea, the antiserum against NHE-1 reacted strongly at the basolateral membrane of strial marginal cells as well as with inner and outer hair cells and spiral ganglion neurons. Less intense staining for NHE-1 was present in subpopulations of fibrocytes in the spiral limbus and in inferior and superior areas of the spiral ligament. In the vestibular system dark and transitional cells expressed abundant NHE-1 as did hair cells and vestibular ganglia neurons. Immunostaining with the antiserum against NHE-3 was limited to the apical surface of marginal cells in the stria vascularis. Based on these data, NHE-1 likely functions primarily to maintain intracellular pH levels in cells where it is found in high abundance. NHE-3, on the other hand, possibly participates in the vectorial transcellular movement of Na+ by strial marginal cells thus helping to maintain the extremely low Na+ level in cochlear endolymph. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Med Univ S Carolina, Dept Physiol, Charleston, SC 29425 USA. Leicester Royal Infirm, Dept Med & Therapeut, Div Clin Pharmacol, Leicester LE2 7LX, Leics, England. Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. RP Bond, BR (reprint author), Med Univ S Carolina, Dept Physiol, 171 Ashley Ave, Charleston, SC 29425 USA. EM bondbr@musc.edu CR ADAMS JC, 1992, J HISTOCHEM CYTOCHEM, V40, P1457 Alojado ES, 1996, ANESTH ANALG, V83, P1002 BIANCHINI L, 1994, J EXP BIOL, V196, P337 BIEMESDERFER D, 1992, AM J PHYSIOL, V263, pF833 BIEMESDERFER D, 1993, AM J PHYSIOL, V265, pF736 BOOKSTEIN C, 1994, J CLIN INVEST, V93, P106, DOI 10.1172/JCI116933 BOOKSTEIN C, 1994, J BIOL CHEM, V269, P29704 BORGESE F, 1992, P NATL ACAD SCI USA, V89, P6765, DOI 10.1073/pnas.89.15.6765 BRANT SR, 1995, AM J PHYSIOL-CELL PH, V269, pC198 Calhoun BC, 1997, BIOCHEM J, V325, P559 CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 Dudeja PK, 1996, AM J PHYSIOL-GASTR L, V271, pG483 GRINSTEIN S, 1989, BIOCHIM BIOPHYS ACTA, V988, P73, DOI 10.1016/0304-4157(89)90004-X HARRIS RC, 1986, AM J PHYSIOL, V251, pC815 HIBANO H, 1997, J NEUROSCI, V17, P4711 IKEDA K, 1992, J PHYSIOL-LONDON, V447, P627 IKEDA K, 1994, ACTA OTO-LARYNGOL, V114, P162, DOI 10.3109/00016489409126036 JAKUBOVICZ DE, 1989, BRAIN RES, V485, P215, DOI 10.1016/0006-8993(89)90564-7 JOHNSON JP, 1997, ABSTR PHYSL, V40 Kelly MP, 1997, CIRC RES, V80, P853 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 Malide D, 1997, J HISTOCHEM CYTOCHEM, V45, P1083 MARCUS DC, 1986, NEUROBIOLOGY HEARING, P123 MCGUIRT JP, 1994, J HISTOCHEM CYTOCHEM, V42, P843 MCSWINE RL, 1994, J CELL PHYSIOL, V161, P351, DOI 10.1002/jcp.1041610220 Mizuta K, 1997, HEARING RES, V106, P154, DOI 10.1016/S0378-5955(97)00010-5 MROZ EA, 1993, HEARING RES, V70, P146, DOI 10.1016/0378-5955(93)90152-Q MURER H, 1976, BIOCHEM J, V154, P597 NOEL J, 1995, AM J PHYSIOL-CELL PH, V268, pC283 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 ORLOWSKI J, 1992, J BIOL CHEM, V267, P9332 Peng XR, 1997, MOL BIOL CELL, V8, P399 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SALT AN, 1988, PHYSL EAR, P341 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 SEIFTER JL, 1986, J CLIN INVEST, V78, P859, DOI 10.1172/JCI112671 SICZKOWSKI M, 1995, BIOCHEM BIOPH RES CO, V209, P191, DOI 10.1006/bbrc.1995.1488 SMITH PR, 1997, ABSTR PHYSL, V40 SOLEIMANI M, 1994, BBA-BIOMEMBRANES, V1195, P89, DOI 10.1016/0005-2736(94)90013-2 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z Spicer SS, 1998, HEARING RES, V118, P1, DOI 10.1016/S0378-5955(98)00006-9 Spicer SS, 1998, ANAT REC, V251, P97, DOI 10.1002/(SICI)1097-0185(199805)251:1<97::AID-AR15>3.0.CO;2-6 TSE CM, 1994, BIOCHEMISTRY-US, V33, P12954, DOI 10.1021/bi00248a003 TSE CM, 1993, P NATL ACAD SCI USA, V90, P9110, DOI 10.1073/pnas.90.19.9110 TSE M, 1993, J MEMBRANE BIOL, V135, P93 TSE M, 1993, J AM SOC NEPHROL, V4, P969 WANGEMANN P, 1995, P SENDAI S, V5, P145 Wangemann P, 1996, HEARING RES, V94, P94, DOI 10.1016/0378-5955(96)00008-1 WANGEMANN P, 1993, HEARING RES, V69, P107, DOI 10.1016/0378-5955(93)90098-L NR 52 TC 18 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 1 EP 9 DI 10.1016/S0378-5955(98)00089-6 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700001 PM 9745950 ER PT J AU Furuta, H Luo, L Hepler, K Ryan, AF AF Furuta, H Luo, L Hepler, K Ryan, AF TI Evidence for differential regulation of calcium by outer versus inner hair cells: plasma membrane Ca-ATPase gene expression SO HEARING RESEARCH LA English DT Article DE inner ear; calcium clearance; ion pump; splice variant; in situ hybridization ID SPIRAL GANGLION-CELLS; CALMODULIN-BINDING DOMAINS; MESSENGER-RNA EXPRESSION; GUINEA-PIG COCHLEA; CA-2+-TRANSPORTING ATPASE; MOLECULAR-CLONING; GERBIL COCHLEA; RAT; PUMP; LOCALIZATION AB The expression of mRNA encoding plasma membrane calcium ATPase (PMCA) subunit isoforms (1-4) and splice variants was examined in the adult and developing rat cochlea by PCR and in situ hybridization. High levels of PMCA mRNA expression were observed in the neurons of the spiral ganglion, and in hair cells. Spiral ganglion neurons expressed PMCA 1-3 beginning in embryonic development, reaching high levels shortly after birth, and continuing into adulthood. Inner hair cells expressed PMCA 1 at moderate levels from birth to the time of onset of cochlear function on postnatal day 12, and strongly from then until adulthood. Outer hair cells expressed PMCA 2 at high levels from shortly after birth through adulthood. The data suggest that the calcium clearance requirements of inner and outer hair cells are distinct. PMCA 2 is the isoform with the highest affinity for calmodulin, and has also been associated with high levels of inositol triphosphate, Its presence in outer hair cells suggests that regulation of the enzyme by calmodulin may be particularly important for this hair cell type. It further suggests that inositol phosphate may play a unique role in the outer hair cell. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Kagawa Med Sch, Dept Otolaryngol, Miki, Kagawa 76107, Japan. Univ Calif San Diego, Sch Med, Dept Surg Otolaryngol, La Jolla, CA 92093 USA. Univ Calif San Diego, Sch Med, Dept Neurosci, La Jolla, CA 92093 USA. House Ear Inst, Dept Neuroanat, Los Angeles, CA 90057 USA. RP Furuta, H (reprint author), Kagawa Med Sch, Dept Otolaryngol, 1750-1 Miki Cho, Miki, Kagawa 76107, Japan. EM hfuruta@kms.ac.jp CR ABRAMOWITZ J, 1995, MINER ELECTROL METAB, V21, P367 ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 Blanchet C, 1996, J NEUROSCI, V16, P2574 BOSHER SK, 1978, NATURE, V273, P377, DOI 10.1038/273377a0 Carafoli E, 1997, BASIC RES CARDIOL, V92, P59, DOI 10.1007/BF00794069 Carafoli E, 1996, EXPERIENTIA, V52, P1091, DOI 10.1007/BF01952107 CARAFOLI E, 1992, J BIOL CHEM, V267, P2115 CARAFOLI E, 1994, FASEB J, V8, P993 Crouch JJ, 1995, HEARING RES, V92, P112, DOI 10.1016/0378-5955(95)00201-4 Crouch JJ, 1996, HEARING RES, V101, P55, DOI 10.1016/S0378-5955(96)00132-3 Denk W, 1995, NEURON, V15, P1311, DOI 10.1016/0896-6273(95)90010-1 DULON D, 1990, J NEUROSCI, V10, P1388 DUON D, 1998, IN PRESS EUR J NEURO ENYEDI A, 1991, J BIOL CHEM, V266, P8952 FINA M, 1994, MOL CELL NEUROSCI, V5, P604, DOI 10.1006/mcne.1994.1074 GREEB J, 1989, J BIOL CHEM, V264, P18569 HAGIWARA S, 1983, TRENDS NEUROSCI, V1, P11 HAMMES A, 1994, FASEB J, V8, P428 HARADA N, 1994, ACTA OTO-LARYNGOL, V114, P609, DOI 10.3109/00016489409126113 HILFIKER H, 1994, J BIOL CHEM, V269, P26178 HOWARD A, 1993, AM J PHYSIOL, V265, pG917 IKEDA K, 1993, HEARING RES, V661, P69 IKEDA K, 1989, HEARING RES, V40, P111, DOI 10.1016/0378-5955(89)90104-4 KEETON TP, 1993, J BIOL CHEM, V268, P2740 KEETON TP, 1995, BIOCHEM J, V306, P779 LEHOTSKY J, 1995, MOL CHEM NEUROPATHOL, V25, P175, DOI 10.1007/BF02960911 Lenzi David, 1994, Current Opinion in Neurobiology, V4, P496, DOI 10.1016/0959-4388(94)90049-3 LUO L, 1993, HEARING RES, V69, P182 LUO L, 1998, IN PRESS J COMP NEUR MAURER J, 1992, EUR ARCH OTO-RHINO-L, V249, P176 NEYSES L, 1985, J BIOL CHEM, V260, P283 ROBERTS WM, 1993, NATURE, V363, P74, DOI 10.1038/363074a0 ROMAND R, 1985, HEARING RES, V18, P111, DOI 10.1016/0378-5955(85)90002-4 RYAN A F, 1991, Molecular and Cellular Neuroscience, V2, P179, DOI 10.1016/1044-7431(91)90011-C RYAN AF, 1991, NEURO REPORT, V2, P543 RYAN AF, 1994, 1 INT S INN EAR NEUR, P13 RYBAK LP, 1992, HEARING RES, V59, P189, DOI 10.1016/0378-5955(92)90115-4 SAIKI RK, 1985, SCIENCE, V230, P1350, DOI 10.1126/science.2999980 Sakaguchi N, 1998, J HISTOCHEM CYTOCHEM, V46, P29 SCHACHT J, 1993, OTOLARYNG CLIN N AM, V26, P845 SCHULTE BA, 1993, HEARING RES, V65, P262, DOI 10.1016/0378-5955(93)90219-Q SCHWARTZ AM, 1983, AM J ANAT, V167, P33, DOI 10.1002/aja.1001670104 SHIMOZONO M, 1995, NEUROREPORT, V6, P421, DOI 10.1097/00001756-199502000-00004 SHULL GE, 1988, J BIOL CHEM, V263, P8646 SIMMONS DM, 1989, J HISTOTECHNOL, V12, P169 SLEPECKY NB, 1993, HEARING RES, V70, P73, DOI 10.1016/0378-5955(93)90053-4 SMITH SJ, 1988, TRENDS NEUROSCI, V11, P458, DOI 10.1016/0166-2236(88)90199-3 Sohmer H, 1995, J Basic Clin Physiol Pharmacol, V6, P95 Sridhar TS, 1997, J NEUROSCI, V17, P428 STREHLER EE, 1991, J MEMBRANE BIOL, V120, P1, DOI 10.1007/BF01868586 Tucker T, 1995, NEURON, V15, P1323, DOI 10.1016/0896-6273(95)90011-X Tucker TR, 1996, J PHYSIOL-LONDON, V494, P613 WUYTACK F, 1992, ANN NY ACAD SCI, V671, P82, DOI 10.1111/j.1749-6632.1992.tb43786.x Yamoah EN, 1998, J NEUROSCI, V18, P610 YOSHIHARA T, 1987, ARCH OTO-RHINO-LARYN, V243, P395, DOI 10.1007/BF00464650 NR 55 TC 47 Z9 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 10 EP 26 DI 10.1016/S0378-5955(98)00091-4 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700002 PM 9745951 ER PT J AU Ricketts, C Mendelson, JR Anand, B English, R AF Ricketts, C Mendelson, JR Anand, B English, R TI Responses to time-varying stimuli in rat auditory cortex SO HEARING RESEARCH LA English DT Article DE frequency modulated sweep; direction selective; speed selective; auditory cortex ID FREQUENCY-MODULATION; INFERIOR COLLICULUS; NEURONS; TONES; SENSITIVITY; SWEEPS AB Responses to frequency modulated (FM) sweeps were recorded in rat primary auditory cortex. Forty-four percent of the cells were direction-selective. For speed selectivity, the majority of the cells preferred faster sweeps. The results suggest that rat auditory cortex may be used for processing communication signals of their predators or for detecting spectral changes in acoustic signals. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Toronto, Inst Med Sci, Toronto, ON M5S 1A8, Canada. Univ Toronto, Fac Med, Dept Speech Language Pathol, Toronto, ON M5S 3H2, Canada. RP Mendelson, JR (reprint author), Univ Toronto, Inst Med Sci, 100 Coll St, Toronto, ON M5S 1A8, Canada. EM j.mendelson@utoronto.ca CR GAESE BH, 1995, EUR J NEUROSCI, V7, P438, DOI 10.1111/j.1460-9568.1995.tb00340.x HEIL P, 1992, HEARING RES, V63, P108, DOI 10.1016/0378-5955(92)90080-7 KALTWASSER MT, 1990, J COMP PSYCHOL, V104, P227, DOI 10.1037/0735-7036.104.3.227 KELLY JB, 1988, J NEUROPHYSIOL, V59, P1756 MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6 MENDELSON JR, 1992, EXP BRAIN RES, V91, P435 MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 PICK GF, 1979, J ACOUST SOC AM, V66, P594, DOI 10.1121/1.383116 POON PWF, 1991, EXP BRAIN RES, V83, P598 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367 SHORE SE, 1985, J ACOUST SOC AM, V78, P1286, DOI 10.1121/1.392898 SINEX DG, 1981, HEARING RES, V4, P127, DOI 10.1016/0378-5955(81)90001-0 SUGA N, 1965, J PHYSIOL-LONDON, V179, P26 TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655 WHITFIELD I C, 1972, Brain Behavior and Evolution, V6, P311, DOI 10.1159/000123718 NR 17 TC 32 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 27 EP 30 DI 10.1016/S0378-5955(98)00086-0 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700003 PM 9745952 ER PT J AU Norris, CH Miller, AJ Perin, P Holt, JC Guth, PS AF Norris, CH Miller, AJ Perin, P Holt, JC Guth, PS TI Mechanisms and effects of transepithelial polarization in the isolated semicircular canal SO HEARING RESEARCH LA English DT Article DE semicircular canal; galvanic stimulation; vestibular; mechanotransduction; afferent ID VESTIBULAR-NERVE AFFERENTS; APPLIED GALVANIC CURRENTS; SACCULAR HAIR-CELLS; MECHANOELECTRICAL TRANSDUCTION; SQUIRREL-MONKEY; FROG; DISCHARGE; RESPONSES; FREQUENCY; GLUTAMATE AB Previous studies have shown that galvanic stimulation of semicircular canal organs can modulate their afferent discharge. However, it has not been resolved whether this modulation derived from direct stimulation of hair cells, afferent nerve fibers, some combination of the two, or some as yet unknown path. This problem is addressed in the present study. Experiments were designed first to determine the gross current path necessary for the DC current to modulate afferent firing. These led to the conclusion that the current path had to flow between endolymph and perilymph across the neuroepithelium. Next, the various components in this established path were considered: the afferents, the hair cells, between the hair cells, or some combination of the three. These experiments led to the conclusion that the current pathway was across the hair cells causing transmitter release and thus affecting afferent activity. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Tulane Univ, Sch Med, Dept Pharmacol, New Orleans, LA 70112 USA. Tulane Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, New Orleans, LA 70112 USA. RP Guth, PS (reprint author), Tulane Univ, Sch Med, Dept Pharmacol, 1430 Tulane Ave, New Orleans, LA 70112 USA. EM pguth@mailhost.tcs.tulane.edu CR ART JJ, 1987, J PHYSIOL-LONDON, V385, P207 BEST CH, 1950, PHYSL BASIS MED PRAC, P906 COREY DP, 1983, J NEUROSCI, V3, P942 COREY DP, 1983, J NEUROSCI, V3, P962 Glowatzki E, 1997, NEUROPHARMACOLOGY, V36, P1269, DOI 10.1016/S0028-3908(97)00108-1 GOLDBERG JM, 1984, J NEUROPHYSIOL, V51, P1236 GOLDBERG JM, 1982, BRAIN RES, V252, P156, DOI 10.1016/0006-8993(82)90990-8 GUTH PS, 1998, UNPUB HEAR RES Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3 GUTH PS, 1991, HEARING RES, V56, P69, DOI 10.1016/0378-5955(91)90155-3 GUTH SL, 1990, BRAIN RES, V508, P76, DOI 10.1016/0006-8993(90)91120-6 Highstein SM, 1996, J NEUROPHYSIOL, V75, P575 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P275 HUDSPETH AJ, 1989, NATURE, V341, P397, DOI 10.1038/341397a0 Kataoka Y, 1996, J NEUROPHYSIOL, V76, P1870 LOWENSTEIN O, 1955, J PHYSIOL-LONDON, V127, P104 LUMPKIN EA, 1995, P NATL ACAD SCI USA, V92, P10297, DOI 10.1073/pnas.92.22.10297 Mennerick S, 1996, NEURON, V17, P1241, DOI 10.1016/S0896-6273(00)80254-8 NicolasPuel C, 1996, HEARING RES, V100, P181, DOI 10.1016/0378-5955(96)00112-8 Rabejac D, 1997, EUR J NEUROSCI, V9, P221, DOI 10.1111/j.1460-9568.1997.tb01393.x RICCI A, 1991, ABSTR ASS RES OTOLAR, V14, P95 RICCI A, 1991, BRAIN RES, V565, P78, DOI 10.1016/0006-8993(91)91738-M Richter CP, 1996, J COMP PHYSIOL A, V179, P415 Rossi ML, 1996, BRAIN RES, V721, P174, DOI 10.1016/0006-8993(96)00057-1 RUSCH A, 1994, J PHYSIOL-LONDON, V474, P75 RUSCH A, 1990, HEARING RES, V48, P247, DOI 10.1016/0378-5955(90)90065-W SHOTWELL SL, 1981, ANN NY ACAD SCI, V374, P1, DOI 10.1111/j.1749-6632.1981.tb30854.x VALLI P, 1985, BRAIN RES, V330, P1, DOI 10.1016/0006-8993(85)90002-2 ZUCCA G, 1992, ACTA PHYSIOL SCAND, V145, P423, DOI 10.1111/j.1748-1716.1992.tb09384.x NR 30 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 31 EP 40 DI 10.1016/S0378-5955(98)00096-3 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700004 PM 9745953 ER PT J AU Edds-Walton, PL AF Edds-Walton, PL TI Anatomical evidence for binaural processing in the descending octaval nucleus of the toadfish (Opsanus tau) SO HEARING RESEARCH LA English DT Article DE auditory circuit; binaural hearing; directional hearing; fish hearing ID DIRECTIONAL RESPONSE PROPERTIES; SACCULAR AFFERENTS; INNER-EAR; SALMO-GAIRDNERI; OYSTER TOADFISH; DORSAL NUCLEUS; RAJA-ERINACEA; BRAIN-STEM; 8TH NERVE; PROJECTIONS AB The connections of a potential auditory circuit were determined in the medulla of the toadfish (Opsanus tall). Fluorescent dextran amines placed in the medial torus semicircularis (mTS) retrogradely filled cells primarily in the dorsal region of the descending octaval nuclei (DON) with contralateral predominance. Fluorescent dextran amines placed in the DON revealed commissural fibers that cross the midline with the internal arcuate tract. The interconnections are consistent with a dorsal-ventral organization of the DON: reciprocal innervation is present for the left and right dorsal zones of the DON and for the left and right ventral zones of the DON. Based on projections to the medial (auditory) TS and the reciprocal connections, the dorsal region of the DON appears to be the major auditory processing site in the medulla and also may be a site for directional, binaural comparisons. The ventral region of the DON may be a site for bilateral vestibular processing. Double-labelling experiments revealed that some of the descending octaval cells projecting to the contralateral DON also project to the mTS. Based on the auditory pathway indicated by this study, future neurophysiological investigations of sensitivity to directional sound stimuli should begin in the dorsal DON of the toadfish. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Maryland, Dept Zool, College Pk, MD 20742 USA. RP Edds-Walton, PL (reprint author), Marine Biol Lab, Woods Hole, MA 02543 USA. CR Ariens Kappers C.U., 1936, COMP ANATOMY NERVOUS BASS AH, 1996, 26 ANN M SOC NEUR, V22, P447 Braford M. R. Jr., 1993, Society for Neuroscience Abstracts, V19, P160 BUWALDA RJA, 1979, COMP BIOCHEM PHYS A, V64, P467, DOI 10.1016/0300-9629(79)90573-5 BUWALDA RJA, 1983, J COMP PHYSIOL, V150, P175 Buwalda RJA, 1981, HEARING SOUND COMMUN, P139 CARR CE, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P511 COOMBS S, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P267 DEWOLF FA, 1983, NEUROSCI LETT, V38, P209, DOI 10.1016/0304-3940(83)90370-1 DIJKGRAAF S, 1960, PROC R SOC SER B-BIO, V152, P51, DOI 10.1098/rspb.1960.0022 Duman CH, 1997, BRAIN BEHAV EVOLUT, V49, P99, DOI 10.1159/000112984 Duman CH, 1996, J COMP PHYSIOL A, V179, P797 ECHETELER SM, 1984, J COMP NEUROL, V230, P536 ECHETELER SM, 1985, J COMP PHYSL, V156, P267 EDDSWALTON PL, 1998, IN PRESS HEAR RES EDDSWALTON PL, 1995, BIOL BULL, V189, P211 EDDSWALTON PL, 1994, THESIS U MARYLAND EDDSWALTON PL, 1995, ACTA ZOOL-STOCKHOLM, V76, P257 FAY RR, 1994, BIOL BULL, V187, P258 Fay RR, 1997, HEARING RES, V111, P1, DOI 10.1016/S0378-5955(97)00083-X Fay RR, 1997, HEARING RES, V113, P235, DOI 10.1016/S0378-5955(97)00148-2 FINE ML, 1979, EXP BRAIN RES, V35, P197 FINGER TE, 1984, J COMP NEUROL, V229, P129, DOI 10.1002/cne.902290110 FISH JF, 1972, CURRENT PERSPECTIVES, V2, P386 Fish MP, 1970, SOUNDS W N ATLANTIC GRAY GA, 1961, ECOLOGY, V42, P274, DOI 10.2307/1932079 HANCOCK MB, 1982, NEUROSCI LETT, V31, P247, DOI 10.1016/0304-3940(82)90028-3 Hawkins A. D., 1981, HEARING SOUND COMMUN, P311 HAWKINS AD, 1977, J COMP PHYSIOL, V122, P1 HIGHSTEIN SM, 1992, J COMP NEUROL, V319, P501, DOI 10.1002/cne.903190404 HORNER K, 1980, J EXP BIOL, V85, P323 MCCORMICK CA, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P323 McCormick CA, 1996, BRAIN BEHAV EVOLUT, V47, P113, DOI 10.1159/000113232 McCormick C.A., 1988, P733 MCCORMICK CA, 1993, BRAIN BEHAV EVOLUT, V42, P48, DOI 10.1159/000114140 MCCORMICK CA, 1994, BRAIN BEHAV EVOLUT, V43, P189, DOI 10.1159/000113634 MCCORMICK CA, 1984, NEUROSCI LETT, V51, P207, DOI 10.1016/0304-3940(84)90552-4 MEREDITH GE, 1983, J COMP NEUROL, V220, P44, DOI 10.1002/cne.902200106 Munz H., 1989, P285 NIEUWENHUYS R, 1983, FISH NEUROBIOLOGY, V1 Northcutt R. G., 1981, HEARING SOUND COMMUN, P331 Pankratz DS, 1930, J COMP NEUROL, V50, P247, DOI 10.1002/cne.900500202 PHILLIPS DP, 1985, ANNU REV PSYCHOL, V36, P245 POPPER AN, 1993, BRAIN BEHAV EVOLUT, V41, P14, DOI 10.1159/000113821 PUZDROWSKI RL, 1994, J COMP NEUROL, V339, P587, DOI 10.1002/cne.903390409 ROGERS PH, 1988, J ACOUST SOC AM, V83, P338, DOI 10.1121/1.396444 SCHELLART NAM, 1987, J ACOUST SOC AM, V82, P822, DOI 10.1121/1.395280 SCHELLART NAM, 1990, J EXP BIOL, V149, P113 Schuijf A., 1976, SOUND RECEPTION FISH, P63 SCHUIJF A, 1975, J COMP PHYSIOL, V98, P333 SCHUIJF A, 1975, J COMP PHYSIOL, V98, P307 VANBERGEIJK WA, 1964, CONTRIBUTIONS SENSOR, P1 NR 52 TC 18 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 41 EP 54 DI 10.1016/S0378-5955(98)00097-5 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700005 PM 9745954 ER PT J AU Noi, O Makimoto, K AF Noi, O Makimoto, K TI Comparative effects of glycerol and Urografin on cochlear blood flow and serum osmolarity SO HEARING RESEARCH LA English DT Article DE cochlear blood flow; glycerol; urografin; serum osmolarity; hyperosmotic agent ID NITRIC-OXIDE PRODUCTION; MEDIA AB Glycerol, an osmotic diuretic, has been used for the diagnosis and treatment of endolymphatic hydrops. Hearing improvements in hydropic ears are attributed to its dehydrating effect. In addition to this effect, glycerol also increases cochlear blood flow. Urografin(R), another hyperosmotic agent used for vasography, is similarly known to increase local blood flow. The present study compared these two hyperosmotic agents, glycerol and Urografin(R), in their effects on cochlear blood flow and serum osmolarity. Laser Doppler flowmetry on the lateral wall of the cochlea revealed that the increase in cochlear blood flow with a 30-min infusion (0.025 ml/min) of 76% Urografin(R) continued for a longer time than with a 30-min infusion (0.025 ml/min) of 50% (v/v) glycerol. The significant increases appeared at 20 and 30 min after the infusion with the former; 10, 20, 30, 40, 50 and 60 min after the infusion with the latter. Intravenous infusion of these agents also caused elevation in serum osmolarity. This elevation was appreciably greater with Urografin(R) infusion (maximal increase: about 30 mOsm on average) than with glycerol infusion (maximal increase: about 6 mOsm on average), and the former elevation appeared to be longer lasting than the latter. These differences were ascribed to differences between glycerol and Urografin(R) with respect to the creation of an osmotic gradient across the capillary walls of cochlear blood vessels. Since glycerol penetrates the interstitial space and moves into inner ear fluids, the gradient may decline faster. It would be assumed that a higher concentration of the hyperosmotic agent in the capillary blood causes more vasodilatation and lowering of blood viscosity. Alternatively, direct action of these agents on the vascular wall may affect some biological processes, leading to vasodilatation in different degrees and durations with different agents. Hearing improvement with glycerol administration in hydropic ears was also discussed from the perspective of cochlear blood flow. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Osaka Med Coll, Dept Otolaryngol, Takatsuki, Osaka 569, Japan. RP Makimoto, K (reprint author), Osaka Med Coll, Dept Otolaryngol, Takatsuki, Osaka 569, Japan. CR ADAMS DF, 1973, CIRCULATION, V48, P609 ALMEN T, 1975, INVEST RADIOL, V10, P519 ANDERSSO.C, 1974, ACTA PHYSIOL SCAND, V90, P451, DOI 10.1111/j.1748-1716.1974.tb05608.x ANGELBORG C, 1975, ACTA OTO-LARYNGOL, V79, P81, DOI 10.3109/00016487509124658 BALDWIN DL, 1992, ANN OTO RHINOL LARYN, V101, P168 BERG GR, 1973, NEW ENGL J MED, V289, P87, DOI 10.1056/NEJM197307122890209 BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8 CARBORG BIR, 1983, ANN OTOL RHINOL LA S, V104, P1 KIRKPATRICK CT, 1980, CLIN EXP PHARMACOL P, V7, P147, DOI 10.1111/j.1440-1681.1980.tb00056.x KORENAGA R, 1994, BIOCHEM BIOPH RES CO, V198, P213, DOI 10.1006/bbrc.1994.1030 MELLANDE.S, 1967, ANGIOLOGICA, V4, P310 MORIMITSU T, 1975, J JPN OTORHINOLARYNG, V78, P591 MORIMITSU T, 1974, OTOLARYNGOL FUKUOKA, V20, P599 MORRIS TW, 1983, INVEST RADIOL, V18, P526, DOI 10.1097/00004424-198311000-00009 MOTOMIYA T, 1980, ANGIOLOGY, V31, P283, DOI 10.1177/000331978003100408 OHMURA M, 1982, ACTA OTO-LARYNGOL, V94, P445, DOI 10.3109/00016488209128933 RAINZNER AE, 1973, AM J PHYSIOL, V224, P1327 SCHLUNGBAUM VM, 1962, ROFO FORTSCHR RONTG, V96, P795 SCHMIDSCHONBEIN H, 1984, RADIOLOGE, V24, P478 SCOTT JA, 1981, INVEST RADIOL, V16, P141, DOI 10.1097/00004424-198103000-00012 SNOWDON SL, 1981, J ROY SOC MED, V74, P419 TAKEDA K, 1988, OTOLARYNG HEAD NECK, V98, P226 TAKEDA T, 1989, EQUILIB RES S S, V5, P101 YAMAMOTO A, 1983, BIORHEOLOGY, V20, P615 NR 24 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 55 EP 60 DI 10.1016/S0378-5955(98)00099-9 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700006 PM 9745955 ER PT J AU Wong, JC Miller, RL Calhoun, BM Sachs, MB Young, ED AF Wong, JC Miller, RL Calhoun, BM Sachs, MB Young, ED TI Effects of high sound levels on responses to the vowel [epsilon] in cat auditory nerve SO HEARING RESEARCH LA English DT Article DE synchrony capture; component 1 component 2 transition; auditory nerve; vowel encoding; two-tone suppression; loud sound ID HEARING-IMPAIRED LISTENERS; STEADY-STATE VOWELS; 2-TONE SUPPRESSION; BASILAR-MEMBRANE; GUINEA-PIG; CHARACTERISTIC FREQUENCY; DISCHARGE PATTERNS; SPEECH RECOGNITION; FIBERS; REPRESENTATION AB The vowel \epsilon\ was used to study auditory-nerve responses at high sound levels (60-110 dB). By changing the playback sampling rate of the stimulus, the second formant (F2) frequency was set at best frequency (BF) for fibers with BFs between 1 and 3 kHz. For vowel stimuli, auditory-nerve fibers tend to phase-lock to the formant component nearest the fiber's BF. The responses of fibers with BFs near F2 are captured by the F2 component, meaning that fibers respond as if the stimulus consisted only of the F2 component. These narrowband responses are seen up to levels of 80-100 dB, above which a response to F1 emerges. The F1 response grows, at the expense of the F2 response, and is dominant at the highest levels. The level at which the F1 response appears is BF dependent and is higher at lower BFs. This effect appears to be suppression of the F2 response by F1. At levels near 100 dB, a component l/component 2 transition is observed. All components of the vowel undergo the transition simultaneously, as judged by the 180 degrees phase inversion that occurs at the C2 transition. Above the C2 threshold, a broadband response to many components of the vowel is observed. These results demonstrate that the neural representation of speech in normal ears is degraded at high sound levels, such as those used in hearing aids. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Johns Hopkins Univ, Sch Med, Ctr Hearing Sci, Baltimore, MD 21205 USA. Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA. RP Young, ED (reprint author), Johns Hopkins Univ, Sch Med, Ctr Hearing Sci, 505 Traylor Bldg,720 Rutland Ave, Baltimore, MD 21205 USA. EM eyoung@bme.jhu.edu CR COOPER NP, 1998, ADV HEARING, P11 DANAHER EM, 1973, J SPEECH HEAR RES, V16, P439 DELGUTTE B, 1980, J ACOUST SOC AM, V68, P843, DOI 10.1121/1.384824 DELGUTTE B, 1990, HEARING RES, V49, P225, DOI 10.1016/0378-5955(90)90106-Y EVANS EF, 1973, BASIC MECHANISMS HEA, P519 FAHEY PF, 1985, J ACOUST SOC AM, V77, P599, DOI 10.1121/1.391878 FRENCH NR, 1947, J ACOUST SOC AM, V19, P90, DOI 10.1121/1.1916407 GIFFORD ML, 1983, J ACOUST SOC AM, V74, P115, DOI 10.1121/1.389728 GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374 GOSHORN EL, 1994, EAR HEARING, V15, P454, DOI 10.1097/00003446-199412000-00006 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 JAVEL E, 1983, J ACOUST SOC AM, V74, P801, DOI 10.1121/1.389867 JAVEL E, 1981, J ACOUST SOC AM, V69, P1735, DOI 10.1121/1.385953 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 KIANG NYS, 1990, HEARING RES, V49, P1 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 KIANG NYS, 1969, J ACOUST SOC AM, V46, P106, DOI 10.1121/1.1972490 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 LePrell G, 1996, AUDIT NEUROSCI, V2, P275 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1 Miller RL, 1997, J ACOUST SOC AM, V101, P3602, DOI 10.1121/1.418321 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X PATUZZI R, 1983, HEARING RES, V11, P125, DOI 10.1016/0378-5955(83)90075-8 PATUZZI R, 1984, HEARING RES, V13, P99, DOI 10.1016/0378-5955(84)90100-X PRIJS VF, 1989, HEARING RES, V42, P73, DOI 10.1016/0378-5955(89)90118-4 Ruggero MA, 1996, AUDIT NEUROSCI, V2, P329 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 Ruggero MA, 1996, AUDIT NEUROSCI, V2, P159 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SACHS MB, 1980, J ACOUST SOC AM, V68, P858, DOI 10.1121/1.384825 SACHS MB, 1976, J ACOUST SOC AM, V60, P1157, DOI 10.1121/1.381218 Schilling JR, 1998, HEARING RES, V117, P57, DOI 10.1016/S0378-5955(98)00003-3 SELLICK PM, 1982, HEARING RES, V7, P199, DOI 10.1016/0378-5955(82)90014-4 SEWELL WF, 1984, HEARING RES, V15, P69, DOI 10.1016/0378-5955(84)90226-0 SINEX DG, 1983, J ACOUST SOC AM, V73, P602, DOI 10.1121/1.389007 STELMACHOWICZ PG, 1985, J ACOUST SOC AM, V77, P620, DOI 10.1121/1.392378 STUDEBAKER GA, 1994, J SPEECH HEAR RES, V37, P439 Summers V, 1997, J ACOUST SOC AM, V101, P2866, DOI 10.1121/1.419303 TYLER RS, 1984, J ACOUST SOC AM, V76, P1363, DOI 10.1121/1.391452 VANTASELL DJ, 1980, EAR HEARING, V1, P130, DOI 10.1097/00003446-198005000-00004 WALSH E J, 1982, Journal of the Acoustical Society of America, V71, pS18, DOI 10.1121/1.2019261 WIENER FM, 1946, J ACOUST SOC AM, V18, P401, DOI 10.1121/1.1916378 WONG JC, 1997, THESIS J HOPKINS U B YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 NR 47 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 61 EP 77 DI 10.1016/S0378-5955(98)00098-7 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700007 PM 9745956 ER PT J AU Ohlemiller, KK Siegel, JH AF Ohlemiller, KK Siegel, JH TI Temporal aspects of the effects of cooling on responses of single auditory nerve fibers SO HEARING RESEARCH LA English DT Article DE cochlea; gerbil; temperature; cooling; rate adaptation; phase-locking; synchronization index; peak-splitting ID INNER HAIR-CELLS; CHRONIC COCHLEAR PATHOLOGY; SHORT-TERM ADAPTATION; LOW-FREQUENCY TONES; GUINEA-PIG; TIMING INFORMATION; STEREOCILIA DAMAGE; APICAL DIFFERENCES; RAPID ADAPTATION; PHASE-LOCKING AB During an investigation of the effects of cochlear cooling on frequency tuning and input/output relations of single auditory nerve fibers in gerbil (Ohlemiller and Siegel (1994) Hear. Res. 80, 174-190), cooling-related changes in post-stimulus time histogram (PSTH) shape and phase-locking to tonebursts were characterized in a small sample of neurons. Local cochlear cooling by 5-10 degrees C below normal core temperature did not alter overall PSTH shape, although some evidence was found for a reduction in the time constants of rapid and short term rate adaptation. The relative contributions of rapid and short term response components appeared unaltered. Effects of cooling on phase-locking were assessed by calculating the synchronization index for responses to intense ( > 70 dB SPL) tonebursts at 0.5, 1.0, and 2.0 kHz. Synchronization filter functions exhibited modest reductions in both magnitude and the upper frequency limit of phase-locking. The effects of cooling on the temporal character of responses appear distinct from those of a simple reduction in stimulus intensity. Results are interpreted in terms of cooling-related changes in responses of cochlear hair cells and afferent neurons, and suggest that temperature artifacts are unlikely to underlie reported species differences in PSTH shape and phase-locking. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Northwestern Univ, Dept Neurobiol & Physiol, Auditory Res Lab, Evanston, IL 60208 USA. RP Ohlemiller, KK (reprint author), Cent Inst Deaf, Res Dept, 818 S Euclid Av, St Louis, MO 63110 USA. CR BOYD IA, 1956, J PHYSIOL-LONDON, V132, P74 BOYD IA, 1956, J PHYSIOL-LONDON, V132, P61 BROWN MC, 1983, J ACOUST SOC AM, V73, P1662, DOI 10.1121/1.389387 BUTLER RA, 1960, AM J PHYSIOL, V199, P688 Cai YD, 1996, HEARING RES, V96, P83, DOI 10.1016/0378-5955(96)00033-0 CODY AR, 1989, HEARING RES, V41, P89, DOI 10.1016/0378-5955(89)90002-6 COOPER NP, 1994, HEARING RES, V78, P221, DOI 10.1016/0378-5955(94)90028-0 COOPER NP, 1993, J NEUROPHYSIOL, V70, P370 COREY DP, 1983, J NEUROSCI, V3, P962 DRESCHER DG, 1974, SCIENCE, V185, P273, DOI 10.1126/science.185.4147.273 FLOCK A, 1976, J PHYSIOL-LONDON, V257, P45 FURUKAWA T, 1972, JPN J PHYSIOL, V22, P617 GAGE PW, 1975, J PHYSIOL-LONDON, V244, P385 GEISLER CD, 1974, J NEUROPHYSIOL, V37, P1156 GOLDSTEIN JL, 1990, HEARING RES, V49, P39, DOI 10.1016/0378-5955(90)90094-6 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 Javel E., 1986, NEUROBIOLOGY HEARING, P213 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 KIDD RC, 1990, HEARING RES, V49, P181, DOI 10.1016/0378-5955(90)90104-W KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263 KUNO M, 1983, MECH HEARING, P61 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1 MULLER M, 1991, HEARING RES, V57, P63, DOI 10.1016/0378-5955(91)90075-K NORRIS CH, 1977, BRAIN RES, V123, P176, DOI 10.1016/0006-8993(77)90653-9 OHLEMILLER KK, 1994, HEARING RES, V80, P174, DOI 10.1016/0378-5955(94)90109-0 OHLEMILLER KK, 1990, J COMP PHYSIOL A, V167, P329 OHLEMILLER KK, 1992, HEARING RES, V63, P79, DOI 10.1016/0378-5955(92)90076-Y OHLEMILLER KK, 1991, J ACOUST SOC AM, V90, P274, DOI 10.1121/1.401298 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 RUGGERO MA, 1983, J ACOUST SOC AM, V73, P2096, DOI 10.1121/1.389577 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 SMITH RL, 1975, BIOL CYBERN, V17, P169, DOI 10.1007/BF00364166 SOKOLICH W G, 1973, Journal of the Acoustical Society of America, V54, P283, DOI 10.1121/1.1978024 STIEBLER IB, 1990, HEARING RES, V46, P63, DOI 10.1016/0378-5955(90)90140-K TASAKI I, 1957, INFLUENCE TEMPERATUR, P201 WEISS TF, 1988, HEARING RES, V33, P175, DOI 10.1016/0378-5955(88)90030-5 WEISS TF, 1988, HEARING RES, V33, P167, DOI 10.1016/0378-5955(88)90029-9 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 WESTERMAN LA, 1985, HEARING RES, V17, P197, DOI 10.1016/0378-5955(85)90022-X WESTERMAN LA, 1987, J ACOUST SOC AM, V81, P680, DOI 10.1121/1.394836 WESTERMAN LA, 1988, J ACOUST SOC AM, V83, P2266, DOI 10.1121/1.396357 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E WOOLF NK, 1981, HEARING RES, V4, P335, DOI 10.1016/0378-5955(81)90017-4 YATES GK, 1985, HEARING RES, V17, P1, DOI 10.1016/0378-5955(85)90124-8 NR 49 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 78 EP 86 DI 10.1016/S0378-5955(98)00105-1 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700008 PM 9745957 ER PT J AU Withnell, RH Yates, GK AF Withnell, RH Yates, GK TI Onset of basilar membrane non-linearity reflected in cubic distortion tone input-output functions SO HEARING RESEARCH LA English DT Article DE cubic distortion tone; basilar membrane; compression threshold; guinea pig ID PRODUCT OTOACOUSTIC EMISSION; RATE-INTENSITY FUNCTIONS; 2-TONE RATE SUPPRESSION; GUINEA-PIG COCHLEA; 2 DISCRETE SOURCES; FINE-STRUCTURE; HAIR CELL; CHINCHILLA COCHLEA; TUNING CURVES; NERVE-FIBERS AB The basilar membrane (BM) input output (I/O) function is a non-linear compressive function over much of its operating range. A low level non-compressive region with a break-point or compression threshold between 20 and 40 dB SPL has been identified. To date, no similar compression threshold in cubic distortion tone otoacoustic emission (CDT) data, which would illustrate the dependence of the CDT on BM growth, has been demonstrated. A Taylor series expansion of the enter hair cell gating function yields an amplitude term for 2f(1)-f(2) of p.A(1)(2).A(2), where A(1) and A(2) are the displacement amplitudes of the BM for two pure tone input stimuli of levels L(1) and L(2,) p a constant. By selectively varying either L(1) or L(2) with f(2)/f(1) appropriately chosen to reduce suppression effects, the CDT I/O function can be examined far deviation from the power law. Tn particular, if the amplitude of the CDT were dependent on BM displacement amplitude, then it should be possible by an appropriate choice of parameters to measure compression threshold. We have examined CDT I/O functions for an f(2) of 8 kHz in the guinea pig and found them to be consistent with the expected power law. With L(1) held constant, L(2) varied and f(2)/f(1) = 1.6, a low level region with a slope of one and a compressive region with a slope of 0.14-0.27 corresponding to the analogous regions of the BM I/O function was identified, with a break-point or compression threshold of 22-33 dB SPL. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Western Australia, Dept Physiol, Auditory Lab, Perth, WA 6907, Australia. RP Yates, GK (reprint author), Univ Western Australia, Dept Physiol, Auditory Lab, Perth, WA 6907, Australia. EM gyates@cyllene.uwa.edu.au CR Abdala C, 1996, HEARING RES, V98, P38, DOI 10.1016/0378-5955(96)00056-1 ANDERSON SD, 1980, HEARING RES, V2, P273, DOI 10.1016/0378-5955(80)90063-5 ARTHUR RM, 1971, J PHYSIOL-LONDON, V212, P593 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 BROWN AM, 1990, J ACOUST SOC AM, V88, P840, DOI 10.1121/1.399733 Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209 COOPER NP, 1994, HEARING RES, V78, P221, DOI 10.1016/0378-5955(94)90028-0 DELGUTTE B, 1990, HEARING RES, V49, P225, DOI 10.1016/0378-5955(90)90106-Y EVANS EF, 1979, ARCH OTOLARYNGOL, V105, P185 Fahey PF, 1997, J ACOUST SOC AM, V102, P2880, DOI 10.1121/1.420343 FAY RR, 1988, HEARING RES, V34, P295, DOI 10.1016/0378-5955(88)90009-3 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 Gaskill SA, 1996, J ACOUST SOC AM, V100, P3268, DOI 10.1121/1.417210 Giguere C, 1997, J ACOUST SOC AM, V102, P2821, DOI 10.1121/1.420338 Gorga MP, 1996, J ACOUST SOC AM, V100, P968, DOI 10.1121/1.416208 HE NJ, 1993, J ACOUST SOC AM, V94, P2659, DOI 10.1121/1.407350 HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845 JARAMILLO F, 1993, NATURE, V364, P527, DOI 10.1038/364527a0 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0 KUMMER P, 1995, J ACOUST SOC AM, V98, P197, DOI 10.1121/1.413747 Marsden JE, 1973, BASIC COMPLEX ANAL Mills DM, 1997, J ACOUST SOC AM, V102, P413, DOI 10.1121/1.419763 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 Murugasu E, 1996, J NEUROSCI, V16, P325 PATUZZI R, 1984, HEARING RES, V13, P99, DOI 10.1016/0378-5955(84)90100-X PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 POPELKA GR, 1993, HEARING RES, V71, P12, DOI 10.1016/0378-5955(93)90016-T ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1992, PHILOS T ROY SOC B, V336, P307, DOI 10.1098/rstb.1992.0063 SCHMIEDT RA, 1982, HEARING RES, V7, P335, DOI 10.1016/0378-5955(82)90044-2 Stover L, 1996, J ACOUST SOC AM, V100, P956, DOI 10.1121/1.416207 SUN XM, 1994, J ACOUST SOC AM, V96, P2166, DOI 10.1121/1.410158 SUN XM, 1994, J ACOUST SOC AM, V96, P2175, DOI 10.1121/1.410159 VIEMEISTER NF, 1988, J ACOUST SOC AM, V84, P172, DOI 10.1121/1.396961 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 WHITEHEAD ML, 1990, LECT NOTES BIOMATH, V87, P243 YATES GK, 1990, HEARING RES, V45, P203, DOI 10.1016/0378-5955(90)90121-5 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M YATES GK, 1997, PSYCHOPHYSICAL PHYSL, P39 YATES GK, 1991, HEARING RES, V57, P57, DOI 10.1016/0378-5955(91)90074-J ZWICKER E, 1980, HEARING RES, V2, P513, DOI 10.1016/0378-5955(80)90088-X NR 48 TC 20 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 87 EP 96 DI 10.1016/S0378-5955(98)00100-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700009 PM 9745958 ER PT J AU Tu, TY Chiu, JH Yang, WK Chang, TJ Yang, AH Shu, CH Lien, CF AF Tu, TY Chiu, JH Yang, WK Chang, TJ Yang, AH Shu, CH Lien, CF TI Establishment and characterization of a strial marginal cell line maintaining vectorial electrolyte transport SO HEARING RESEARCH LA English DT Article DE marginal cells; stria vascularis; papilloma virus; immortalization; ion transport; voltage clamp ID HUMAN PAPILLOMAVIRUS TYPE-16; CULTURED EPITHELIAL-CELLS; VESTIBULAR DARK CELLS; K+-CHANNEL; NONSELECTIVE CATION; LUMINAL MEMBRANE; POTASSIUM CURRENT; APICAL MEMBRANE; CL CHANNELS; GUINEA-PIG AB E6/E7 genes of human papilloma virus type 16 were used to immortalize a primary culture of marginal cells (MC) from gerbils. One of the cloned lines was selected which demonstrated preservation of the main characteristics of the MC, both morphologically and physiologically. Electron microscopic examination showed well-developed junctional complexes and apical microvilli which suggested its epithelial origin. Polymerase chain reaction (PCR) demonstrated the incorporation of E6/E7 genes with the genome. Reverse transcription PCR revealed the existence of mRNA of the I-sK channel, a unique marker of MC among the inner ear cells, in this clone. Flow cytometric analysis of this cell line's DNA content was diploid. Numerous large domes formed after confluence of the cell monolayer. Electrophysiologic studies displayed evidence of apical K+ and Na+ channels which were blocked by Ba2+ (2 mM) and amiloride (10(-5) M), respectively. Existence of basolateral Na,K-ATPase and Na+/Cl-/K+ cotransporter was shown by blockage by ouabain (10(-3) M) and bumetanide (50 mu M), individually. Injection of the cell line to nude mice failed to induce growth of tumors. This cell line was serum-, density- and anchorage-dependent when cultured in plastic dishes. In conclusion, this cell line shows characteristics of well-differentiated MC maintaining the major ionic transport processes, and provides us a good model to study the possible mechanisms and regulating factors of endolymph production. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Vet Gen Hosp, Dept Otolaryngol, Taipei, Taiwan. Natl Yang Ming Univ, Inst Clin Med, Taipei 112, Taiwan. Natl Yang Ming Univ, Dept Otolaryngol, Sch Med, Taipei 112, Taiwan. Natl Yang Ming Univ, Inst Tradit Med, Sch Med, Taipei 112, Taiwan. Natl Hlth Res Inst, Taipei, Taiwan. Vet Gen Hosp, Dept Med Res & Educ, Taipei, Taiwan. Vet Gen Hosp, Dept Pathol, Taipei, Taiwan. RP Tu, TY (reprint author), Vet Gen Hosp, Dept Otolaryngol, 201 Sec 2,Shih Pai Rd, Taipei, Taiwan. EM tytu@vghtpe.gov.tw; chiujh@dns.ym.edu.tw CR ACHOUCHE J, 1991, ANN OTO RHINOL LARYN, V100, P999 ADEN DP, 1979, NATURE, V282, P615, DOI 10.1038/282615a0 Agrup C, 1996, HEARING RES, V102, P155, DOI 10.1016/S0378-5955(96)00156-6 Busch AE, 1997, TRENDS PHARMACOL SCI, V18, P26, DOI 10.1016/S0165-6147(96)01016-4 DRESSLER LG, 1987, CANCER RES, V47, P5294 ERLIJ D, 1978, MEMBRANE TRANSPORT B, P27 FONTIJN R, 1995, EXP CELL RES, V216, P199, DOI 10.1006/excr.1995.1025 GONZALEZMARISCAL L, 1985, J MEMBRANE BIOL, V86, P113, DOI 10.1007/BF01870778 GRUENERT DC, 1995, AM J PHYSIOL-LUNG C, V268, pL347 HALBERT CL, 1991, J VIROL, V65, P473 HAWLEYNELSON P, 1989, EMBO J, V8, P3905 HERMAN P, 1995, AM J PHYSIOL-LUNG C, V268, pL390 IKEDA K, 1989, HEARING RES, V39, P279, DOI 10.1016/0378-5955(89)90047-6 JEFFERSON DM, 1990, AM J PHYSIOL, V259, pL496 Kim HN, 1996, ACTA OTO-LARYNGOL, V116, P805, DOI 10.3109/00016489609137930 LESAGE F, 1992, FEBS LETT, V301, P168, DOI 10.1016/0014-5793(92)81240-M LUCIANO L, 1995, HEARING RES, V85, P199, DOI 10.1016/0378-5955(95)00047-8 MARCUS DC, 1994, AM J PHYSIOL, V267, pC857 MARTIN F, 1994, HEARING RES, V81, P33, DOI 10.1016/0378-5955(94)90150-3 MIZUTA K, 1995, HEARING RES, V88, P199, DOI 10.1016/0378-5955(95)00113-I MUNGER K, 1989, J VIROL, V63, P4417 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 RABITO CA, 1980, IN VITRO CELL DEV B, V16, P461 RYAN MJ, 1994, KIDNEY INT, V45, P48, DOI 10.1038/ki.1994.6 SAGARA T, 1995, HEARING RES, V83, P121, DOI 10.1016/0378-5955(94)00195-V SAKAGAMI M, 1991, HEARING RES, V56, P168, DOI 10.1016/0378-5955(91)90166-7 SALT AN, 1982, JPN J PHYSIOL, V32, P219 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SEEDORF K, 1985, VIROLOGY, V145, P181, DOI 10.1016/0042-6822(85)90214-4 Shen ZJ, 1997, AUDIT NEUROSCI, V3, P215 SUGAHARA K, 1984, J CELL BIOL, V99, P1541, DOI 10.1083/jcb.99.4.1541 SUGIMOTO T, 1990, J MEMBRANE BIOL, V113, P39, DOI 10.1007/BF01869604 SUNOSE H, 1994, HEARING RES, V80, P86, DOI 10.1016/0378-5955(94)90012-4 SUNOSE H, 1993, AM J PHYSIOL, V265, pC72 Sunose H, 1997, HEARING RES, V114, P107, DOI 10.1016/S0378-5955(97)00152-4 SWANSON R, 1993, SEMIN NEUROSCI, V5, P117, DOI 10.1016/S1044-5765(05)80006-5 Takeuchi S, 1996, HEARING RES, V101, P181, DOI 10.1016/S0378-5955(96)00151-7 Takeuchi S, 1996, HEARING RES, V95, P18, DOI 10.1016/0378-5955(96)00016-0 TAKEUCHI S, 1992, HEARING RES, V61, P86, DOI 10.1016/0378-5955(92)90039-P TAKUMI T, 1988, SCIENCE, V242, P1042, DOI 10.1126/science.3194754 TU TY, 1995, ACTA OTO-LARYNGOL, V115, P291, DOI 10.3109/00016489509139312 VARNUM MD, 1993, P NATL ACAD SCI USA, V90, P11528, DOI 10.1073/pnas.90.24.11528 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WIDDICOMBE JH, 1985, J APPL PHYSIOL, V58, P1729 WILLUMSEN NJ, 1989, AM J PHYSIOL, V256, pC1045 YANKASKAS JR, 1993, AM J PHYSIOL, V264, pC1219 YEH T, 1995, HEARING RES, V90, P79, DOI 10.1016/0378-5955(95)00149-3 YEH TH, 1992, ACTA OTO-LARYNGOL, V112, P254 NR 51 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 97 EP 110 DI 10.1016/S0378-5955(98)00101-4 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700010 PM 9745959 ER PT J AU Peddicord, R AF Peddicord, R TI Simulation of ILD sensitive neurons in the inferior colliculus of the barn owl SO HEARING RESEARCH LA English DT Article DE interaural level difference; lateral shell; inferior colliculus; sound localization; simulation; ventral lateral lemniscus pars posterior ID INTERAURAL LEVEL DIFFERENCE; BRAIN-STEM; LATERAL LEMNISCUS; AUDITORY-SYSTEM; DORSAL NUCLEUS; NEURAL MAP; RESPONSES; TIME; REPRESENTATION; INHIBITION AB The barn owl (Tyto alba) uses interaural level difference (ILD) as a cue for the localization of sound. The first site of binaural convergence in the pathway that processes ILD is the ventral lateral lemniscus pars posterior (VLVp). Neurons in VLVp receive excitatory input from the contralateral nucleus angularis, and inhibitory input from the contralateral VLVp. Within the lateral shell of the inferior colliculus are ILD sensitive neurons that show maximum spike rate at a specific ILD value, with response falling off sharply on each side. Adolphs has developed a model of such lateral shell neurons based on anatomic and physiological data. In his model, lateral shell neurons receive inhibitory input from VLVp on both sides, and this inhibition, applied against a constant excitatory input, produces the observed two-sided response curves. We simulated, in Matlab 4, Adolphs' model, and obtained supporting results. Our simulation suggests that VLVp provides a repository of simple ILD filters from which higher centers construct more complex filters, including the single-peaked curves observed by Adolphs. The VLVp filters are organized along the inhibitory gradient, with broad filters ventral, sharp filters dorsal. (C) 1998 Elsevier Science B.V. All rights reserved. C1 So Oregon Univ, Dept Comp Sci, Ashland, OR 97520 USA. RP Peddicord, R (reprint author), So Oregon Univ, Dept Comp Sci, Ashland, OR 97520 USA. CR ADOLPHS R, 1993, J NEUROSCI, V13, P3647 BRUGGE JF, 1970, J NEUROPHYSIOL, V33, P441 CARR CE, 1990, J NEUROSCI, V10, P3227 COVINGTON AR, 1978, KYBERNETES, V7, P45, DOI 10.1108/eb005470 JOHNSON DH, 1986, HEARING RES, V21, P135, DOI 10.1016/0378-5955(86)90035-3 KNUDSEN EI, 1978, SCIENCE, V200, P795, DOI 10.1126/science.644324 KONISHI M, 1993, SCI AM APR MANLEY GA, 1988, J NEUROSCI, V8, P2665 MARKOVITZ NS, 1994, HEARING RES, V73, P121, DOI 10.1016/0378-5955(94)90290-9 MOGDANS J, 1994, HEARING RES, V74, P148, DOI 10.1016/0378-5955(94)90183-X PEDDICORD R G, 1974, International Journal of Bio-Medical Computing, V5, P285, DOI 10.1016/0020-7101(74)90022-1 Pickles JO, 1988, INTRO PHYSL HEARING SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 SPENCE CD, 1990, P C AN MOD NEUR SYST SULLIVAN WE, 1984, J NEUROSCI, V4, P1787 TAKAHASHI T T, 1988, Society for Neuroscience Abstracts, V14, P323 TAKAHASHI T, 1984, J NEUROSCI, V4, P1781 TAKAHASHI TT, 1995, J COMP NEUROL, V358, P294, DOI 10.1002/cne.903580210 TAKAHASHI TT, 1988, J COMP NEUROL, V274, P190, DOI 10.1002/cne.902740206 TAKAHASHI TT, 1989, J EXP BIOL, V146, P307 TAKAHASHI TT, 1992, J COMP PHYSIOL A, V170, P161 WAGNER H, 1987, J NEUROSCI, V7, P3105 ZACKSENHOUSE M, 1992, HEARING RES, V62, P105, DOI 10.1016/0378-5955(92)90207-4 NR 23 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 111 EP 124 DI 10.1016/S0378-5955(98)00102-6 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700011 PM 9745960 ER PT J AU Cable, J Steel, KP AF Cable, J Steel, KP TI Combined cochleo-saccular and neuroepithelial abnormalities in the Varitint-waddler-J (Va(J)) mouse SO HEARING RESEARCH LA English DT Article DE endocochlear potential; stria vascularis; melanocyte; compound action potential; summating potential; mouse mutant; pigment defect ID INNER-EAR; STRIA VASCULARIS; C-KIT; MELANOCYTES; DEAFNESS; MICE; DYSFUNCTION; MUTATIONS; GENE AB Hearing loss in Varitint-waddler-J (Va(J)) mice is of mixed origin with both cochleo-saccular and neuroepithelial components. Both Va(J)/Va(J) and Va(J)/+ mutants show impaired cochlear function, but the homozygotes are more severely affected than heterozygotes. Neither group have any detectable compound action potential. Cochlear microphonics are only seen in half of the heterozygotes, at a reduced amplitude and raised threshold, and are not detected in any homozygotes. Summating potentials (SP) responses are seen in most of the heterozygotes, at high stimulus levels. The only responses in homozygotes were negative SPs seen in half of the mutants at very high sound levels, while the remaining homozygotes showed no responses to sound stimulation. Endocochlear potentials (EP) were often small or absent in both groups of mutants, with the homozygotes being more severely affected. Reduced pigmentation in the stria vascularis appears to be associated with a reduced EP, while a primary defect of the neuroepithelium, detectable by electron microscopy in hair cells of 14 day old mice, dramatically influences evoked potentials. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Bristol, Sch Biol Sci, Bristol BS8 1UG, Avon, England. Univ Nottingham, Inst Hearing Res, MRC, Nottingham NG7 2RD, England. RP Cable, J (reprint author), Univ Bristol, Sch Biol Sci, Woodland Rd, Bristol BS8 1UG, Avon, England. EM jo.cable@bristol.ac.uk RI Cable, Joanne/A-4360-2010 CR BERLIN CI, 1969, J AUD RES, V9, P318 BOCK GR, 1983, ACTA OTO-LARYNGOL, V96, P39, DOI 10.3109/00016488309132873 BOSHER SK, 1965, PROC R SOC SER B-BIO, V162, P147, DOI 10.1098/rspb.1965.0030 CABLE J, 1991, PIGM CELL RES, V4, P87, DOI 10.1111/j.1600-0749.1991.tb00320.x CABLE J, 1992, HEARING RES, V64, P6, DOI 10.1016/0378-5955(92)90164-I CABLE J, 1994, PIGM CELL RES, V7, P17, DOI 10.1111/j.1600-0749.1994.tb00015.x CLOUDMAN AM, 1945, J HERED, V36, P259 COLLS AR, 1972, PSYCHOPHARMACOLOGIA, V24, P384 CONLEE JW, 1994, HEARING RES, V79, P115, DOI 10.1016/0378-5955(94)90133-3 COOLS AR, 1972, J HERED, V63, P161 DALLOS P, 1986, HEARING RES, V22, P185, DOI 10.1016/0378-5955(86)90095-X DALLOS P, 1972, ACTA OTO-LARYNGOL, P1 DEOL MS, 1970, J EMBRYOL EXP MORPH, V23, P773 DEOL MS, 1954, J GENET, V52, P562, DOI 10.1007/BF02985081 HAGEMAN MJ, 1977, AM J HUM GENET, V29, P468 HARVEY D, 1992, HEARING RES, V61, P137, DOI 10.1016/0378-5955(92)90044-N JOHNSSON LG, 1976, ANN OTO RHINOL LARYN, V85, P725 KOCHER W, 1960, Z VEREBUNGSL, V91, P114, DOI 10.1007/BF00890005 LANE PW, 1972, J HERED, V63, P355 MAIR IWS, 1973, ACTA OTOLARYNGOL S, V314, P5 MIKAELIA.D, 1965, ANN OTO RHINOL LARYN, V74, P146 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 Silvers WK, 1979, COAT COLORS MICE MOD STEEL KP, 1991, ANN NY ACAD SCI, V630, P68, DOI 10.1111/j.1749-6632.1991.tb19576.x STEEL KP, 1978, THESIS U LONDON STEEL KP, 1987, HEARING RES, V27, P11, DOI 10.1016/0378-5955(87)90022-0 STEEL KP, 1989, DEVELOPMENT, V107, P453 STEEL KP, 1983, BEHAV NEUROSCI, V97, P381, DOI 10.1037//0735-7044.97.3.381 Steel KP, 1995, ANNU REV GENET, V29, P675 STEEL KP, 1994, TRENDS GENET, V10, P428, DOI 10.1016/0168-9525(94)90113-9 STEEL KP, 1983, ARCH OTOLARYNGOL, V109, P22 STEEL KP, 1992, DEV AUDITORY VESTIBU, V2, P221 SUGIURA A, 1970, Acta Oto-Laryngologica, V69, P126, DOI 10.3109/00016487009123345 TSUJIMURA T, 1991, BLOOD, V78, P1942 NR 34 TC 34 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 125 EP 136 DI 10.1016/S0378-5955(98)00107-5 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700012 PM 9745961 ER PT J AU Salt, AN DeMott, JE AF Salt, AN DeMott, JE TI Longitudinal endolymph movements induced by perilymphatic injections SO HEARING RESEARCH LA English DT Article DE endolymph; perilymph; flow; endolymphatic hydrops; perilymph fistula; pressure ID GUINEA-PIG COCHLEA; MENIERES-DISEASE; PRESSURE; HYDROPS; FLOW; OVERPRESSURE AB Endolymph movements and endocochlear potential (EP) changes were measured during disturbances of perilymphatic pressure, induced by injecting artificial perilymph into scala tympani (ST) or scala vestibuli (SV) of the guinea pig cochlea. Injections were performed either with or without an outlet made in the opposite perilymphatic scala. Injections into ST without an outlet induced large pressure changes but virtually no endolymph movement or EP change. Injection at the same rate into ST with an outlet in SV produced smaller pressure changes which were accompanied by a basally-directed displacement of endolymph and significant EP changes. The magnitude of endolymph displacements and EP changes varied as a function of injection rate. Injections into SV, either with or without an outlet in ST, produced apically-directed endolymph displacement and EP changes. For the SV injections without an outlet, the cochlear aqueduct and round window are likely to provide an outlet and compliance, permitting now along the perilymphatic scalae to occur even when no ST outlet was provided. We conclude that endolymph movements are not dependent on the absolute pressure of the perilymph; but instead occur when small, sustained pressure gradients are present across the cochlear partition, corresponding to times when perilymph flow is induced. This study demonstrates that in the normal, sealed cochlea, endolymph and EP are insensitive to fluid injections into ST, but are sensitive to fluid injections into SV. Endolymph movements are therefore unlikely to be generated by cerebrospinal fluid pressure fluctuations (such as those produced by respiration, posture changes, coughing, sneezing, etc) which are transmitted to ST by the cochlear aqueduct. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Salt, AN (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115,517 S Euclid Ave, St Louis, MO 63110 USA. CR ANDREWS JC, 1991, LARYNGOSCOPE, V101, P661 BOHMER A, 1993, ACTA OTOLARYNGOL S, V507, P5 CARLBORG BIR, 1992, AM J OTOL, V13, P41 DENSERT B, 1987, ACTA OTO-LARYNGOL, V103, P32, DOI 10.3109/00016488709134695 Densert B, 1997, AM J OTOL, V18, P726 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 Guild SR, 1927, AM J ANAT, V39, P57, DOI 10.1002/aja.1000390103 Hao LF, 1996, HEARING RES, V99, P176, DOI 10.1016/S0378-5955(96)00099-8 Kimura RS, 1997, EUR ARCH OTO-RHINO-L, V254, P213, DOI 10.1007/BF00874091 LONG CH, 1987, OTOLARYNG HEAD NECK, V96, P83 LUNDQUIST PG, 1964, ACTA OTOLARYNGOL S, V188, P194 MARCHBANKS R J, 1990, British Journal of Audiology, V24, P179, DOI 10.3109/03005369009076554 MARCHBANKS RJ, 1987, BRIT J AUDIOL, V21, P217 Marcus Daniel C., 1997, Journal of General Physiology, V110, p43A MONTANDON P, 1989, MENIERES DIS, P503 NAKASHIMA T, 1981, ANN OTO RHINOL LARYN, V90, P264 Sakikawa Y, 1997, ORL J OTO-RHINO-LARY, V59, P84 SALT AN, 1997, ASS RES OTOLARYNGOL, V20, P12 SALT AN, 1986, HEARING RES, V23, P141, DOI 10.1016/0378-5955(86)90011-0 Salt AN, 1989, MENIERES DIS, P69 Salt AN, 1997, HEARING RES, V107, P29, DOI 10.1016/S0378-5955(97)00018-X SALT AN, 1988, HEARING RES, V33, P279, DOI 10.1016/0378-5955(88)90158-X SALT AN, 1991, J NEUROSCI METH, V38, P233, DOI 10.1016/0165-0270(91)90173-W SALT AN, 1995, HEARING RES, V90, P12, DOI 10.1016/0378-5955(95)00142-0 SYKOVA E, 1987, HEARING RES, V28, P161, DOI 10.1016/0378-5955(87)90047-5 TAKEUCHI S, 1991, ANN OTO RHINOL LARYN, V100, P244 TAKUMIDA M, 1989, HEARING RES, V40, P1, DOI 10.1016/0378-5955(89)90094-4 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S ZIDANIC M, 1990, BIOPHYS J, V57, P1253 NR 29 TC 29 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 137 EP 147 DI 10.1016/S0378-5955(98)00106-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700013 PM 9745962 ER PT J AU Ando, M Takeuchi, S AF Ando, M Takeuchi, S TI Postnatal vascular development in the lateral wall of the cochlear duct of gerbils: quantitative analysis by electron microscopy and confocal laser microscopy SO HEARING RESEARCH LA English DT Article DE stria vascularis; capillary; development; fluorescein; confocal laser microscopy ID STRIA VASCULARIS; INNER-EAR; SPIRAL LIGAMENT; ANGIOGENESIS; MELANOCYTES; PIGMENTATION; MELANIN; ANATOMY; RAT AB The development of the capillary network in the stria vascularis and in the underlying spiral ligament of gerbils was systematically and quantitatively investigated by conventional electron microscopy and confocal laser microscopy in association with vascular labeling with fluorescent gelatin. The developmental changes of capillaries in the lateral wall were observed as the following series of events. (i) At 0 days after birth (DAB) capillaries already existed in the spiral ligament as a network. (ii) At 3-9 DAB the capillary network developed into two layers starting from the scala vestibuli side to the scala tympani side; one layer was located in the stria and the other in the spiral ligament. (iii) At 9 DAB capillaries in the stria became separated from the spiral ligament, and the capillary network consisting of a two-layered structure was complete. (iv) Total capillary length and capillary density in the lateral wall increased until 9 DAB and leveled off thereafter, but changes in the relative position of capillaries in the stria toward the luminal surface of marginal cells continued until 31 DAB. On the basis of the above observations, we propose two possible mechanisms underlying the vascular development in the lateral wall: (i) the formation of new vasculature (angiogenesis), and (ii) changes in the position of cellular components relative to capillaries in association with the differentiation and maturation of marginal cells and intermediate cells. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Kochi Med Sch, Dept Physiol, Nankoku, Kochi 7838505, Japan. RP Ando, M (reprint author), Kochi Med Sch, Dept Physiol, Nankoku, Kochi 7838505, Japan. CR AXELSSON A, 1986, ACTA OTO-LARYNGOL, V101, P75, DOI 10.3109/00016488609108610 BAIRD IL, 1967, ANAT REC, V159, P281, DOI 10.1002/ar.1091590306 BARRENAS ML, 1992, ACTA OTO-LARYNGOL, V112, P50, DOI 10.3109/00016489209100782 CABLE J, 1994, PIGM CELL RES, V7, P17, DOI 10.1111/j.1600-0749.1994.tb00015.x CONLEE JW, 1989, ACTA OTO-LARYNGOL, V107, P48, DOI 10.3109/00016488909127478 CONLEE JW, 1991, HEARING RES, V55, P57, DOI 10.1016/0378-5955(91)90092-N ENDRICH B, 1982, INT J MICROCIRC, V1, P81 Escobar C, 1995, PIGM CELL RES, V8, P271, DOI 10.1111/j.1600-0749.1995.tb00674.x FOLKMAN J, 1992, J BIOL CHEM, V267, P10931 Grant D S, 1995, EXS, V74, P235 GRATTON MA, 1995, HEARING RES, V82, P44 Hashimoto H, 1998, ANAT REC, V250, P488, DOI 10.1002/(SICI)1097-0185(199804)250:4<488::AID-AR13>3.0.CO;2-K HILDING DA, 1977, ACTA OTO-LARYNGOL, V84, P24, DOI 10.3109/00016487709123939 HSIEH P, 1980, J CELL BIOL, V87, P14, DOI 10.1083/jcb.87.1.14 JONESMUMBY CJ, 1984, AM J OTOLARYNG, V5, P127, DOI 10.1016/S0196-0709(84)80031-9 Kikuchi K, 1966, Acta Otolaryngol, V62, P277, DOI 10.3109/00016486609119573 KITAMURA K, 1994, ACTA OTO-LARYNGOL, V114, P177, DOI 10.3109/00016489409126038 KLAGSBRUN M, 1991, ANNU REV PHYSIOL, V53, P217, DOI 10.1146/annurev.physiol.53.1.217 LAVIGNEREBILLARD M, 1992, HEARING RES, V64, P39, DOI 10.1016/0378-5955(92)90166-K MANASEK FJ, 1969, J EMBRYOL EXP MORPH, V21, P271 MARCUS DC, 1978, LARYNGOSCOPE, V88, P1825 MCGUIRT JP, 1995, HEARING RES, V84, P52, DOI 10.1016/0378-5955(95)00015-V MILES FP, 1988, HEARING RES, V33, P191, DOI 10.1016/0378-5955(88)90032-9 Moriguchi M, 1991, Acta Otolaryngol Suppl, V486, P32 Moriguchi M, 1991, Acta Otolaryngol Suppl, V486, P39 PRAZMA J, 1990, ARCH OTOLARYNGOL, V116, P932 RICHARDSON KC, 1960, STAIN TECHNOL, V35, P313 Sadanaga M, 1997, HEARING RES, V112, P106, DOI 10.1016/S0378-5955(97)00121-4 SAGARA T, 1995, HEARING RES, V83, P121, DOI 10.1016/0378-5955(94)00195-V SCHROTT A, 1990, HEARING RES, V46, P1, DOI 10.1016/0378-5955(90)90134-B SHEEHAN DC, 1973, THEORY PRATICE HISTO SMITH CA, 1951, LARYNGOSCOPE, V61, P1073 STEEL KP, 1989, DEVELOPMENT, V107, P453 Steinbauer M, 1997, AM J PHYSIOL-HEART C, V272, pH1710 STROTTMANN JM, 1983, ANAL BIOCHEM, V132, P334, DOI 10.1016/0003-2697(83)90016-7 TANGE RA, 1986, HEARING RES, V23, P135, DOI 10.1016/0378-5955(86)90010-9 Wilting J, 1996, NATURWISSENSCHAFTEN, V83, P153, DOI 10.1007/s001140050265 WOOLF NK, 1986, AM J PHYSIOL, V250, P493 NR 38 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 148 EP 156 DI 10.1016/S0378-5955(98)00109-9 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700014 PM 9745963 ER PT J AU Shen, ZJ Marcus, DC AF Shen, ZJ Marcus, DC TI Divalent cations inhibit IsK/KvLQT1 channels in excised membrane patches of strial marginal cells SO HEARING RESEARCH LA English DT Article DE IsK/KvLQT1 channel; Ca2+-dependent; Mg2+-dependent; rundown; epithelium; 3,3 '-dithio-bis(sulfosuccinimidyl propionate) ID VESTIBULAR DARK CELLS; I-SK CHANNEL; CARDIAC POTASSIUM CURRENT; GUINEA-PIG HEART; K+-CHANNEL; XENOPUS-OOCYTES; KINASE-C; SECRETION; PROTEIN; ISK AB The IsK/KvLQT1 K+ channel in the apical membrane of strial marginal cells and vestibular dark cells is an essential ion transport pathway for the secretion of K+ into the endolymph of the inner ear. Study of this control point has been impeded by rundown of channel activity upon excision into commonly used cytosolic solutions. This paper describes conditions under which patches of apical membrane of strial marginal cells and vestibular dark cells from gerbil containing this channel can be excised, retaining its characteristic voltage dependence, kinetic properties, ion permeability sequence and pharmacological sensitivity, similar to those found during on-cell and perforated-patch whole cell recordings (Shen et al., Audit. Neurosci. 3 (1997) 215-230). Those excised-patch conditions include removal of Mg2+ from the cytosolic solution and use of a K+-rich pipette electrolyte. The inhibition of channel activity by Mg2+ was found to be a general feature of divalent cations; the channel was also inhibited by Ca2+, Ba2+ and Sr2+. The concentrations causing 50% inhibition of IsK/KvLQT1 channel current were 7x10(-5) M, 6x10(-6) M, 3x10(-4) M and 7x10(-5) M, respectively. It was also found that a chemical cross-linking agent, 3,3'-dithio-bis(sulfosuccinimidyl propionate) (DTSSP), which was previously shown to persistently activate IsK/KvLQT1 channels expressed in Xenopus oocytes, maintained in excised patches channel activity which retained voltage dependence and pharmacological sensitivity. These data demonstrate that (1) the channel complex is inhibited by Ca2+, Mg2+ and other divalent cations, (2) the activation by Ca2+ observed previously in whole-cell preparations was due to action via other cellular pathways. These findings must be taken into account when considering the action of receptors which alter the cytosolic Ca2+ activity. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Boys Town Natl Res Hosp, Biophys Lab, Omaha, NE 68131 USA. RP Marcus, DC (reprint author), Kansas State Univ, Dept Anat & Physiol, 1600 Denison Ave, Manhattan, KS 66506 USA. CR Balsinde J, 1996, J BIOL CHEM, V271, P6758 Barhanin J, 1996, NATURE, V384, P78, DOI 10.1038/384078a0 BECQ F, 1994, P NATL ACAD SCI USA, V91, P9160, DOI 10.1073/pnas.91.19.9160 Becq F, 1996, BBA-REV BIOMEMBRANES, V1286, P53, DOI 10.1016/0304-4157(96)00002-0 BELLES B, 1988, PFLUG ARCH EUR J PHY, V411, P353, DOI 10.1007/BF00587713 BUSCH AE, 1992, J PHYSIOL-LONDON, V450, P491 BUSCH AE, 1993, FEBS LETT, V334, P221, DOI 10.1016/0014-5793(93)81715-C COHEN P, 1989, ANNU REV BIOCHEM, V58, P453, DOI 10.1146/annurev.bi.58.070189.002321 DUCHATELLEGOURDON I, 1991, J PHYSIOL-LONDON, V435, P333 FREEMAN LC, 1992, AM J PHYSIOL, V262, pH1298 FREEMAN LC, 1993, CIRC RES, V73, P968 GREGER R, 1990, DIURETICS, V3, P776 HAUSDORFF SF, 1991, BIOCHEMISTRY-US, V30, P3341, DOI 10.1021/bi00227a025 Hille B., 1992, IONIC CHANNELS EXCIT, V2nd HONORE E, 1991, EMBO J, V10, P2805 HONORE E, 1992, BIOCHEM BIOPH RES CO, V184, P1135, DOI 10.1016/S0006-291X(05)80001-4 Horne JH, 1997, SCIENCE, V276, P1690, DOI 10.1126/science.276.5319.1690 KUBOKAWA M, 1995, AM J PHYSIOL-RENAL, V269, pF355 LIU J, 1995, AUDIT NEUROSCI, V1, P331 Marcus DC, 1997, AM J PHYSIOL-CELL PH, V273, pC2022 MARCUS DC, 1994, AM J PHYSIOL, V267, pC857 Marcus DC, 1998, HEARING RES, V115, P82, DOI 10.1016/S0378-5955(97)00180-9 Marcus Daniel C., 1996, Journal of General Physiology, V108, p26A MCNICHOLAS CM, 1994, P NATL ACAD SCI USA, V91, P8077, DOI 10.1073/pnas.91.17.8077 PARDO LA, 1992, P NATL ACAD SCI USA, V89, P2466, DOI 10.1073/pnas.89.6.2466 REUSS L, 1981, J MEMBRANE BIOL, V59, P211, DOI 10.1007/BF01875426 Rude RK, 1996, OSTEOPOROSIS INT, V6, P453, DOI 10.1007/BF01629578 Sanguinetti MC, 1996, NATURE, V384, P80, DOI 10.1038/384080a0 SANGUINETTI MC, 1991, AM J PHYSIOL, V260, pH393 Shen ZJ, 1997, AUDIT NEUROSCI, V3, P215 Strubing C, 1996, BIOPHYS J, V70, P1662 SUNOSE H, 1994, HEARING RES, V80, P86, DOI 10.1016/0378-5955(94)90012-4 Sunose H, 1997, J MEMBRANE BIOL, V156, P25, DOI 10.1007/s002329900184 SUSSBRICH H, 1996, FEBS LETT, V396, P271 TAGLIALATELA M, 1994, SCIENCE, V264, P844, DOI 10.1126/science.8171340 TAKEUCHI S, 1992, AM J PHYSIOL, V262, pC1430 VARNUM MD, 1993, P NATL ACAD SCI USA, V90, P11528, DOI 10.1073/pnas.90.24.11528 VARNUM MD, 1995, NEURON, V14, P407, DOI 10.1016/0896-6273(95)90296-1 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X WALSH KB, 1988, SCIENCE, V242, P67, DOI 10.1126/science.2845575 WANG WH, 1991, J GEN PHYSIOL, V98, P35, DOI 10.1085/jgp.98.1.35 WANGEMANN P, 1995, J MEMBRANE BIOL, V147, P263 Wangemann P, 1996, HEARING RES, V100, P201, DOI 10.1016/0378-5955(96)00127-X Williams BA, 1997, AM J PHYSIOL-HEART C, V272, pH1292 Zhang GH, 1996, J BIOL CHEM, V271, P29067 NR 45 TC 28 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 157 EP 167 DI 10.1016/S0378-5955(98)00110-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700015 PM 9745964 ER PT J AU Nenov, AP Chen, C Bobbin, RP AF Nenov, AP Chen, C Bobbin, RP TI Outward rectifying potassium currents are the dominant voltage activated currents present in Deiters' cells SO HEARING RESEARCH LA English DT Article DE Kv; 4-aminopyridine; tetraethylammonium; voltage dependent block; ion channel ID OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; RECTIFIER K+ CURRENT; SUPPORTING CELLS; INTRACELLULAR-RECORDINGS; NEUROBLASTOMA-CELLS; PLACE-FREQUENCY; CLOSED-STATE; INNER-EAR; ORGAN AB Supporting cells in the cochlea are thought to maintain the homeostasis of the organ of Corti and contribute to the electrical and micromechanical environment of the hair cells. Of the different types of supporting cells, Deiters' cells form a structure that holds the outer hair cells (OHCs) at their base and apex. This structure may play an important role in modifying cochlear mechanics by influencing the force produced by sound induced motion of the OHCs which in turn may be modulated by ATP acting on ligand gated cation channels on the Deiters' cells. Also, a glia-like role of buffering external K+ concentration for the Deiters' cells has been suggested. We studied Deiters' cells' electrical properties and ion conductances using the whole cell variant of the patch clamp technique since they must play an important role in the function of these cells. It was found that isolated Deiters' cells posses a large voltage activated, outwardly rectifying K+ selective conductance. Voltage activated Ca2+ currents and non-selective currents were not detected and voltage activated inward currents were very small. The outward K+ currents were found to be dependent on voltage but not on Ca2+ for their activation. Nimodipine and 4-aminopyridine (4-AP) were shown to interact directly with the K+ channels in a voltage dependent manner. It is suggested that the K+ selective channels in Deiters' cells may be similar to the Kv1.5 type channel. However, based on the voltage dependence of the channels that was described by double Boltzmann equation and on the alteration of that dependence by 4-AP, it is possible that more than one type of K+ selective channel exists. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Louisiana State Univ, Med Ctr, Kresge Hearing Res Lab, Dept Otorhinolaryngol & Biocommun, New Orleans, LA 70112 USA. RP Bobbin, RP (reprint author), Louisiana State Univ, Med Ctr, Kresge Hearing Res Lab, Dept Otorhinolaryngol & Biocommun, 2020 Gravier St,Suite A, New Orleans, LA 70112 USA. CR BEAN BP, 1992, TRENDS PHARMACOL SCI, V13, P87, DOI 10.1016/0165-6147(92)90032-2 BOBBIN RP, 1998, ACOUSTICAL EMISSIONS, P61 BOBBIN RP, 1996, HAIR CELLS HEARING A, P29 BOUCHARD R, 1995, J PHARMACOL EXP THER, V275, P864 BROWNELL WE, 1996, HAIR CELLS HEARING A, P3 Burgess BJ, 1997, HEARING RES, V108, P74, DOI 10.1016/S0378-5955(97)00040-3 CAMPBELL DL, 1993, J GEN PHYSIOL, V101, P603, DOI 10.1085/jgp.101.4.603 CASTLE NA, 1994, MOL PHARMACOL, V46, P1175 Chen C, 1998, BRIT J PHARMACOL, V124, P337, DOI 10.1038/sj.bjp.0701848 Chen C, 1997, HEARING RES, V110, P87, DOI 10.1016/S0378-5955(97)00069-5 Chen C, 1998, HEARING RES, V118, P47, DOI 10.1016/S0378-5955(98)00019-7 DUBOIS JM, 1991, PFLUG ARCH EUR J PHY, V419, P93, DOI 10.1007/BF00373752 Dulon D., 1995, ACTIVE HEARING, P195 DULON D, 1994, BIOCHEM BIOPH RES CO, V201, P1263, DOI 10.1006/bbrc.1994.1841 FECHNER FP, 1998, ARO ABSTR, V21, P18 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 Hibino H, 1997, J NEUROSCI, V17, P4711 HIRSH JK, 1993, J PHARMACOL EXP THER, V267, P604 IURATO S, 1976, ACTA OTO-LARYNGOL, V82, P57, DOI 10.3109/00016487609120863 Jahnke K, 1975, Acta Otolaryngol Suppl, V336, P1 LIN X, 1995, HEARING RES, V88, P36, DOI 10.1016/0378-5955(95)00096-M NADOL JB, 1994, HEARING RES, V81, P49, DOI 10.1016/0378-5955(94)90152-X NAKAGAWA T, 1990, J NEUROPHYSIOL, V63, P1068 OESTERLE E, 1986, HEARING RES, V22, P229, DOI 10.1016/0378-5955(86)90099-7 OESTERLE EC, 1989, J ACOUST SOC AM, V86, P1013, DOI 10.1121/1.398092 OESTERLE EC, 1990, J NEUROPHYSIOL, V64, P617 Parker MS, 1998, HEARING RES, V121, P62, DOI 10.1016/S0378-5955(98)00065-3 RASMUSSON RL, 1995, ADV EXP MED BIOL, V382, P11 RASMUSSON RL, 1995, MOL SUBCELLULAR CARD, V2, P11 Remillard CV, 1996, J PHYSIOL-LONDON, V491, P383 ROBERTSON B, 1993, BRIT J PHARMACOL, V109, P725 RUSSELL SN, 1994, J PHYSIOL-LONDON, V481, P571 SANTOS-SACCHI J, 1983, HEARING RES, V9, P317, DOI 10.1016/0378-5955(83)90034-5 SANTOS-SACCHI J, 1985, HEARING RES, V19, P207, DOI 10.1016/0378-5955(85)90140-6 SANTOS-SACCHI J, 1989, J NEUROSCI, V9, P2954 SANTOS-SACCHI J, 1986, CELL TISSUE RES, V245, P525 SANTOS-SACCHI J, 1991, HEARING RES, V52, P89, DOI 10.1016/0378-5955(91)90190-K SATO Y, 1994, HEARING RES, V80, P21, DOI 10.1016/0378-5955(94)90004-3 Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPICER SS, 1992, J HISTOCHEM CYTOCHEM, V40, P185 SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 SPICER SS, 1993, ANAT REC, V237, P421, DOI 10.1002/ar.1092370316 STEPHENS GJ, 1994, J PHYSIOL-LONDON, V477, P187 TSENG GN, 1992, CIRC RES, V71, P657 YAMANE T, 1995, AM J PHYSIOL-HEART C, V269, pH556 Zhang X., 1997, Biophysical Journal, V72, pA141 ZHAO H, 1997, ARO ABSTR, V20, P15 NR 49 TC 26 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 168 EP 182 DI 10.1016/S0378-5955(98)00121-X PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700016 PM 9745965 ER PT J AU Taschenberger, G Manley, GA AF Taschenberger, G Manley, GA TI General characteristics and suppression tuning properties of the distortion-product otoacoustic emission 2f(1)-f(2) in the barn owl SO HEARING RESEARCH LA English DT Article DE DPOAE; otoacoustic emission; frequency tuning; suppression; barn owl; bird ID ACOUSTIC DISTORTION; BASILAR-MEMBRANE; BOBTAIL LIZARD; HAIR CELL; TYTO-ALBA; MECHANOELECTRICAL TRANSDUCTION; PTERONOTUS-PARNELLII; SOUND LOCALIZATION; 2-TONE DISTORTION; EAR AB The distortion-product otoacoustic emission (DPOAE) 2f(1)-f(2) was measured in the ear canal of the barn owl. DPOAE were elicited by primary tones in 11 frequency regions from 1 to 9 kHz. The highest DPOAE output levels and best thresholds were found for f(1) frequencies of 4 to 7 kHz and additionally at the lowest f(1) frequency investigated. In some cases, the DPOAE sound pressures were only 37 dB below the primary-tone levels (PTL). The optimal primary-tone frequency ratios ranged from 1.05 to 1.45 and varied strongly among the different frequency regions investigated. The largest optimal ratios were measured in the middle frequency range for f(1). At lower and higher f(1), the optimal ratios decreased. DPOAE levels could be suppressed in a frequency-selective way by adding a third tone. As in other non-mammals, the best suppressive frequencies were near f(1), suggesting DPOAE generation near the frequency place of this primary tone. This is in contrast to what is known for mammalian species, where the DPOAE is thought to be generated near f(2). To obtain 6 dB of suppression of the DPOAE level, suppressor-tone levels ranging from 13 dB below to 4 dB above the primary-tone level were necessary. The Q(10dB)-values of suppression tuning curves increased as a function of frequency up, to a value of 15.8. This tendency resembled the increase in frequency selectivity of auditory nerve fibers in this species. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Tech Univ Munich, Inst Zool, D-85747 Garching, Germany. RP Manley, GA (reprint author), Tech Univ Munich, Inst Zool, Lichtenbergstr 4, D-85747 Garching, Germany. EM GAM@cipl.zoolchemie.tu-menchen.de CR Abdala C, 1996, HEARING RES, V98, P38, DOI 10.1016/0378-5955(96)00056-1 Baker R. J., 1989, COCHLEAR MECHANISMS, P349 BONFILS P, 1994, ACTA OTO-LARYNGOL, V114, P360, DOI 10.3109/00016489409126070 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 BROWN AM, 1990, J ACOUST SOC AM, V88, P840, DOI 10.1121/1.399733 BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 BROWN AM, 1998, PSYCHOPHYSICAL PHYSL, P52 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209 BROWN AM, 1990, LECT NOTES BIOMATH, V87, P164 FISCHER FP, 1994, HEARING RES, V73, P1, DOI 10.1016/0378-5955(94)90277-1 FRANK G, 1995, HEARING RES, V83, P151, DOI 10.1016/0378-5955(94)00197-X GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 GENOSSA TJ, 1989, J ACOUST SOC AM, V85, P35 GIBIAN GL, 1982, HEARING RES, V6, P35, DOI 10.1016/0378-5955(82)90006-5 GOLDSTEI.JL, 1968, PR INST ELECTR ELECT, V56, P981, DOI 10.1109/PROC.1968.6449 HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 Harris M., 1992, ADV EC THEORY, V2, P64 HAUSER R, 1991, J ACOUST SOC AM, V89, P280, DOI 10.1121/1.400511 HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 JARAMILLO F, 1993, NATURE, V364, P527, DOI 10.1038/364527a0 Johnson A C, 1993, Scand Audiol Suppl, V39, P1 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 KETTEMBEIL S, 1995, HEARING RES, V86, P47, DOI 10.1016/0378-5955(95)00053-7 Kiang NY-s, 1965, DISCHARGE PATTERNS S KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 KNUDSEN EI, 1979, J COMP PHYSIOL, V133, P1 KNUDSEN EI, 1981, SCI AM, V245, P83 KONISHI M, 1973, AM SCI, V61, P414 KOPPL C, 1998, PSYCHOPHYSICAL PHYSL, P153 Koppl C, 1997, J NEUROPHYSIOL, V77, P364 KOPPL C, 1993, J COMP PHYSIOL A, V171, P695, DOI 10.1007/BF00213066 KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U Koppl C., 1995, ADV HEARING RES, P200 KOPPL C, 1993, J ACOUST SOC AM, V93, P2834 KOSSL M, 1985, J COMP PHYSIOL A, V157, P687, DOI 10.1007/BF01351362 KOSSL M, 1992, HEARING RES, V60, P156, DOI 10.1016/0378-5955(92)90018-I KUMMER P, 1995, J ACOUST SOC AM, V98, P197, DOI 10.1121/1.413747 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 MANLEY GA, 1987, HEARING RES, V26, P257, DOI 10.1016/0378-5955(87)90062-1 MANLEY GA, 1993, J ACOUST SOC AM, V93, P2820, DOI 10.1121/1.405803 MARKIN VS, 1995, ANNU REV BIOPH BIOM, V24, P59 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 MATTHEWS JW, 1986, PERIPHERAL AUDITORY, P258 MCFADDEN D, 1994, J ACOUST SOC AM, V95, P3460, DOI 10.1121/1.410022 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 MOISEFF A, 1989, J COMP PHYSIOL A, V164, P629, DOI 10.1007/BF00614505 NORTON SJ, 1990, LECT NOTES BIOMATH, V87, P219 NUTTALL AL, 1990, J ACOUST SOC AM, V87, P782, DOI 10.1121/1.398890 Palmer AR, 1982, J PHYSL, V324, P66 PAYNE RS, 1971, J EXP BIOL, V54, P535 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 ROBLES L, 1991, NATURE, V349, P413, DOI 10.1038/349413a0 ROSOWSKI JJ, 1984, HEARING RES, V13, P141, DOI 10.1016/0378-5955(84)90105-9 SIEGEL JH, 1982, J NEUROPHYSIOL, V47, P303 SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P615, DOI 10.1121/1.1913152 STOVER L, 1994, ABSTR ASS RES OTOLAR, V17, P215 Taschenberger G, 1997, HEARING RES, V110, P61, DOI 10.1016/S0378-5955(97)00070-1 Taschenberger G, 1995, HEARING RES, V91, P87, DOI 10.1016/0378-5955(95)00174-3 VATER M, 1985, J COMP PHYSIOL A, V157, P671, DOI 10.1007/BF01351361 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2359, DOI 10.1121/1.411960 WILSON JP, 1990, ADV AUDIOL, V7, P47 ZUREK PM, 1985, J ACOUST SOC AM, V78, P340, DOI 10.1121/1.392496 ZWICKER E, 1981, J ACOUST SOC AM, V70, P1277, DOI 10.1121/1.387141 NR 69 TC 16 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 183 EP 200 DI 10.1016/S0378-5955(98)00120-8 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700017 PM 9745966 ER PT J AU Leung, SM Slaven, A Thornton, ARD Brickley, GJ AF Leung, SM Slaven, A Thornton, ARD Brickley, GJ TI The use of high stimulus rate auditory brainstem responses in the estimation of hearing threshold SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; maximum length sequence; threshold estimation ID MAXIMUM-LENGTH SEQUENCES; EVOKED-RESPONSES; STEM RESPONSES; STIMULATION AB This normative study investigates the efficiency of using the maximum length sequence (MLS) technique applied to auditory brainstem evoked response (ABR) testing to estimate hearing thresholds. Using a commercially available system, ABRs were recorded in sixteen subjects at two conventional rates - 9.1 and 33.3 clicks/s - and six MLS rates between 88.8 and 1000 clicks/s. Each subject was tested at five stimulus levels from 60 down to 10 dBnHL. The wave JV amplitude input-output (I/O) functions, relative signal to noise ratio (SNR) and speed of test were calculated for all conditions. The JV amplitude and detectability decrease as the stimulus rate increases and level decreases. The latency of JV increases as the stimulus rate increases and the intensity decreases. While the slope of the amplitude I/O function was maximal at 200 clicks/s, at 300 clicks/s it was comparable with that obtained at conventional rates. At higher rates, the slope of the I/O function decreases. When compared with the conventional recording rate of 33.3 clicks/s there is a small improvement in SNR for MLS rates between 200 and 600 clicks/s at levels above 30 dBnHL. The calculated speed improvement at 300 clicks/s is a factor between 1.4 to 1.6 at a screening level of 30-40 dBnHL. It is felt therefore that there may be a small advantage to using MLS in screening and that the optimal rate for this lies at around 200 to 300 clicks/s. However even at these rates, as a consequence of the adaptation of the response with both rate and level, the improvement in SNR or speed of test would be modest when estimating threshold. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Southampton, Inst Sound & Vibrat Res, Hearing & Balance Ctr, Southampton SO17 1BJ, Hants, England. Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England. RP Slaven, A (reprint author), Univ Southampton, Inst Sound & Vibrat Res, Hearing & Balance Ctr, Southampton SO17 1BJ, Hants, England. EM toni@ihr-soton.u-net.com CR BURKARD R, 1990, J ACOUST SOC AM, V87, P1656, DOI 10.1121/1.399413 CHAN FHY, 1992, MED BIOL ENG COMPUT, V30, P32, DOI 10.1007/BF02446190 EYSHOLDT U, 1982, AUDIOLOGY, V21, P242 HALL JW, 1992, HDB AUDITORY EVOKED, P302 Lasky R E, 1992, J Am Acad Audiol, V3, P383 LI HF, 1988, J BIOMED ENG, V10, P14, DOI 10.1016/0141-5425(88)90022-2 LINAGRANADE G, 1994, AUDIOLOGY, V33, P218 MARSH RR, 1992, EAR HEARING, V13, P396, DOI 10.1097/00003446-199212000-00004 PICTON TW, 1992, ELECTROEN CLIN NEURO, V84, P90, DOI 10.1016/0168-5597(92)90071-I THORNTON ARD, 1993, BRIT J AUDIOL, V27, P205, DOI 10.3109/03005369309076694 THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512 Weber B A, 1995, J Am Acad Audiol, V6, P187 Weber B A, 1993, J Am Acad Audiol, V4, P157 NR 13 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1998 VL 123 IS 1-2 BP 201 EP 205 DI 10.1016/S0378-5955(98)00114-2 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 115YV UT WOS:000075694700018 PM 9745967 ER PT J AU Luksch, H Walkowiak, W AF Luksch, H Walkowiak, W TI Morphology and axonal projection patterns of auditory neurons in the midbrain of the painted frog, Discoglossus pictus SO HEARING RESEARCH LA English DT Article DE anura; brainstem auditory neuron; intracellular; torus semicircularis; tegmentum; sensorimotor integration ID SUPERIOR OLIVARY NUCLEUS; FIRE-BELLIED TOAD; EFFERENT INNERVATION PATTERNS; DORSAL MEDULLARY NUCLEUS; TORUS SEMICIRCULARIS; LEOPARD FROG; RANA-CATESBEIANA; COCHLEAR NUCLEUS; NERVOUS-SYSTEM; SPINAL-CORD AB Acoustic signals are extensively used for guiding various behaviors in frogs such as vocalization and phonotaxis. While numerous studies have investigated the anatomy and physiology of the auditory system, our knowledge of intrinsic properties and connectivity of individual auditory neurons remains poor. Moreover, the neural basis of audiomotor integration still has to be elucidated. We determined basic response patterns, dendritic arborization and axonal projection patterns of auditory midbrain units with intracellular recording and staining techniques in an isolated brain preparation. The subnuclei of the torus semicircularis subserve different tasks. The principal nucleus, the main target of the ascending auditory input, has mostly intrinsic neurons, i.e., their dendrites and axons are restricted to the torus itself. Ln contrast? neurons of the magnocellular and the laminar nucleus project to various auditory and non-auditory processing centers. The projection targets include thalamus, tegmentum, periaqueductal gray; medulla oblongata, and - in the case of laminar neurons - the spinal cord. Additionally, tegmental cells receive direct auditory input and project to various targets, including the spinal cord. Our data imply that both auditory and premotor functions are implemented in individual toral and tegmental neurons. Their axons constitute parallel descending pathways to several effector systems and might be part of the neural substrate for differential audiomotor integration. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Cologne, Inst Zool, D-50923 Cologne, Germany. RP Walkowiak, W (reprint author), Univ Cologne, Inst Zool, Weyertal 119, D-50923 Cologne, Germany. CR ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 BIBIKOV N G, 1979, Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, V15, P608 BIBIKOV NG, 1974, ACUSTICA, V31, P310 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 COHEN AH, 1980, EXP BRAIN RES, V41, P11 COMER C, 1981, J COMP PHYSIOL, V142, P151 DICKE U, 1994, EUR J MORPHOL, V32, P106 DIEKAMP B, 1988, J COMP PHYSIOL A, V163, P301, DOI 10.1007/BF00604006 EBERT U, 1995, EXP BRAIN RES, V104, P310 EGGERMONT JJ, 1991, J NEUROPHYSIOL, V66, P1549 EWERT JP, 1971, Z VERGL PHYSIOL, V71, P165, DOI 10.1007/BF00297976 FENG AS, 1978, J NEUROPHYSIOL, V41, P43 FENG AS, 1986, BRAIN RES, V364, P167, DOI 10.1016/0006-8993(86)90998-4 FENG AS, 1983, J MORPHOL, V175, P253, DOI 10.1002/jmor.1051750304 FENG AS, 1991, J COMP NEUROL, V306, P613, DOI 10.1002/cne.903060407 FENG AS, 1990, PROG NEUROBIOL, V34, P313, DOI 10.1016/0301-0082(90)90008-5 FENG AS, 1976, J NEUROPHYSIOL, V39, P871 FENG AS, 1986, BRAIN RES, V367, P183, DOI 10.1016/0006-8993(86)91591-X Fuzessery Z.M., 1988, P253 FUZESSERY ZM, 1983, J COMP PHYSIOL, V150, P333 GOOLER DM, 1992, J NEUROPHYSIOL, V67, P1 GOOLER DM, 1993, J NEUROPHYSIOL, V69, P1018 GROVER B G, 1985, Society for Neuroscience Abstracts, V11, P1312 HALL JC, 1994, AM ZOOL, V34, P670 HALL JC, 1987, J COMP NEUROL, V258, P407, DOI 10.1002/cne.902580309 HERMES DJ, 1982, HEARING RES, V6, P103, DOI 10.1016/0378-5955(82)90009-0 HILLERY CM, 1984, SCIENCE, V225, P1037, DOI 10.1126/science.6474164 HOFFMANN A, 1993, BRAIN BEHAV EVOLUT, V41, P316, DOI 10.1159/000113852 HOFFMANN A, 1994, PHYSIOL BEHAV, V55, P301, DOI 10.1016/0031-9384(94)90137-6 HOLOHEAN AM, 1990, NEUROSCI LETT, V113, P175, DOI 10.1016/0304-3940(90)90299-O KELLEY DB, 1980, SCIENCE, V207, P553, DOI 10.1126/science.7352269 KELLEY DB, 1978, BRAIN RES, V140, P287, DOI 10.1016/0006-8993(78)90461-4 LUKSCH H, 1991, P 19 GOTT NEUR C THI, P127 LUKSCH H, 1992, P 20 GOTT NEUR C THI, P201 LUKSCH H, 1995, P 23 GOTT NEUR C THI, P285 Luksch H, 1996, J NEUROSCI METH, V70, P91, DOI 10.1016/S0165-0270(96)00107-0 LUKSCH H, 1993, P 19 GOTT NEUR C THI, P223 MANIS PB, 1990, J NEUROSCI, V10, P2338 MCLEAN HA, 1995, J COMP PHYSIOL A, V176, P703, DOI 10.1007/BF01021590 MOHNEKE R, 1982, ZOOL JAHRB ALLG ZOOL, V86, P90 MOHR S, 1993, ZOOL JAHRB ALLG ZOOL, V97, P215 MUDRY KM, 1977, J COMP PHYSIOL, V114, P1 MUDRY KM, 1987, J COMP PHYSIOL A, V160, P477, DOI 10.1007/BF00615081 Neary T.J., 1988, P233 Oertel D., 1988, AUDITORY FUNCTION NE, P313 OHR EA, 1976, COMP BIOCHEM PHYS C, V54, P13, DOI 10.1016/0306-4492(76)90018-6 PATON JA, 1982, BRAIN RES, V249, P15, DOI 10.1016/0006-8993(82)90164-0 PETTIGREW AG, 1981, PROC R SOC SER B-BIO, V212, P433, DOI 10.1098/rspb.1981.0047 POTTER HD, 1965, J NEUROPHYSIOL, V28, P1155 PRIOTDROY MT, 1977, J HIRNFORSCH, V18, P321 RONKEN DA, 1990, HEARING RES, V47, P63, DOI 10.1016/0378-5955(90)90167-N ROSE GJ, 1985, J NEUROPHYSIOL, V53, P446 RUBINSON K, 1975, BRAIN BEHAV EVOLUT, V12, P151, DOI 10.1159/000124400 RUGGERO MA, 1992, SPRINGER HDB AUDITOR, V2, P34 SAGAWA S, 1987, COMP BIOCH PHYSL, V2, P437 SCHAFFER DD, 1982, COMP BIOCHEM PHYS A, V72, P371, DOI 10.1016/0300-9629(82)90233-X SCHMIDT RS, 1988, BRAIN BEHAV EVOLUT, V32, P119, DOI 10.1159/000116539 SCHMIDT RS, 1992, BEHAV BRAIN RES, V50, P17, DOI 10.1016/S0166-4328(05)80284-0 SCHMIDT RS, 1990, BRAIN BEHAV EVOLUT, V36, P307, DOI 10.1159/000115316 SCHMIDT RS, 1976, J COMP PHYSIOL, V108, P99 SCHULTEMATTLER M, 1995, P 23 GOTT NEUR C THI, P559 SHU SY, 1988, NEUROSCI LETT, V85, P169, DOI 10.1016/0304-3940(88)90346-1 STRAKA H, 1993, EUR J NEUROSCI, V5, P251, DOI 10.1111/j.1460-9568.1993.tb00491.x TENDONKELAAR HJ, 1982, PROG BRAIN RES, V57, P25 TOTH P, 1985, J HIRNFORSCH, V26, P365 Walkowiak W., 1988, P275 WALKOWIAK W, 1988, J COMP PHYSIOL A, V164, P31, DOI 10.1007/BF00612715 WALKOWIAK W, 1984, J COMP PHYSIOL, V155, P57, DOI 10.1007/BF00610931 WALKOWIAK W, 1980, J COMP PHYSIOL, V138, P131 WALKOWIAK W, 1994, AM ZOOL, V34, P685 WALKOWIAK W, 1992, ETHOL ECOL EVOL, V4, P63 WHEATLEY M, 1992, EXP BRAIN RES, V88, P609 WIGGERS W, 1994, EUR J MORPHOL, V32, P311 WILCZYNSKI W, 1981, J COMP NEUROL, V198, P421, DOI 10.1002/cne.901980304 Wilczynski W., 1988, P209 Zakon H.H., 1988, P125 ZIMMERMANN E, 1985, NATURWISSENSCHAFTEN, V72, P543, DOI 10.1007/BF00367604 ZITTLAU KE, 1985, NEUROSCI LETT, V60, P77, DOI 10.1016/0304-3940(85)90384-2 NR 78 TC 26 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 1 EP 17 DI 10.1016/S0378-5955(98)00081-1 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500001 PM 9714570 ER PT J AU Tennigkeit, F Schwarz, DWF Puil, E AF Tennigkeit, F Schwarz, DWF Puil, E TI GABA(B) receptor activation changes membrane and filter properties of auditory thalamic neurons SO HEARING RESEARCH LA English DT Article DE auditory thalamus; baclofen; gamma-aminobutyric acid B; resonance ID LATERAL GENICULATE-NUCLEUS; THALAMOCORTICAL NEURONS; CELLULAR MECHANISMS; RAT; HYPERPOLARIZATION; OSCILLATION; POTENTIALS; MODULATION; BACLOFEN; MODEL AB Inhibitory inputs from nucleus reticularis thalami and the inferior colliculus activate gamma-aminobutyric acid B (GABA(B)) receptors in auditory thalamic neurons. These metabotropic receptors have been implicated in the oscillatory behavior of thalamic neurons. We studied the effects of the GABA(B) receptor agonist, baclofen, on membrane and filter properties of neurons in the ventral partition of the medial geniculate body (MGBv) of the rat, using whole-cell patch-clamp recording techniques in a slice preparation. Application of baclofen caused a concentration-dependent and reversible hyperpolarization of MGBv neurons. An increase in membrane conductance shunted voltage signals. The shunt suppressed firing in both tonic and burst modes which normally characterize the neuronal excitation from depolarized and hyperpolarized potentials, respectively. The GABA(B) receptor antagonist, CGP 35348 (0.5 mM), completely and reversibly blocked the baclofen-evoked hyperpolarization and increase in conductance. In voltage-clamp and during blockade of synaptic transmission with tetrodotoxin and Cd2+, baclofen activated an inwardly rectifying outward K+ current, that was sensitive to blockade with Ba2+ (0.5 mM). Intracellular applications of GTP gamma S occluded the baclofen current whereas similar applications of GDP beta S prevented it, suggesting that G-proteins mediated the baclofen current. We measured the impedance amplitude profile in the frequency domain with swept sinusoidal current injection. MGBv neurons normally have lowpass filter characteristics at depolarized potentials and resonance at similar to 1 Hz at hyperpolarized potentials. Baclofen application reduced the impedance below 20 Hz which lowered the membrane filter quality and abolished the resonance. Despite its hyperpolarizing effect, therefore, baclofen eliminated an intrinsic tendency to oscillate as well as the intrinsic frequency selectivity of MGBv neurons. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ British Columbia, Dept Pharmacol & Therapeut, Vancouver, BC V6T 1Z3, Canada. Univ British Columbia, Rotary Hearing Ctr, Vancouver, BC V6T 1Z3, Canada. Univ British Columbia, Fac Med, Dept Surg, Vancouver, BC V6T 2B5, Canada. RP Puil, E (reprint author), Univ British Columbia, Dept Pharmacol & Therapeut, 2176 Hlth Sci Mall, Vancouver, BC V6T 1Z3, Canada. CR Armstrong RW, 1997, J NEUROSURG, V87, P409, DOI 10.3171/jns.1997.87.3.0409 CLARKE KA, 1983, NEUROPHARMACOLOGY, V22, P1231, DOI 10.1016/0028-3908(83)90086-2 CRUNELLI V, 1988, J PHYSIOL-LONDON, V399, P153 DESTEXHE A, 1998, J NEUROSCI, V18, P3589 Destexhe A, 1996, J NEUROPHYSIOL, V76, P2049 GAHWILER BH, 1985, P NATL ACAD SCI USA, V82, P1558, DOI 10.1073/pnas.82.5.1558 GUYON A, 1995, J PHYSIOL-LONDON, V485, P29 HUTCHEON B, 1994, J NEUROPHYSIOL, V71, P583 JAHNSEN H, 1984, J PHYSIOL-LONDON, V349, P227 JAHNSEN H, 1994, BRAIN RES, V666, P9, DOI 10.1016/0006-8993(94)90277-1 Kammermeier PJ, 1997, J NEUROPHYSIOL, V77, P465 Kaupmann K, 1997, NATURE, V386, P239, DOI 10.1038/386239a0 Kim U, 1997, SCIENCE, V278, P130, DOI 10.1126/science.278.5335.130 LIU Z, 1992, NEUROSCIENCE, V48, P87, DOI 10.1016/0306-4522(92)90340-8 MCCORMICK DA, 1992, J NEUROSCI, V12, P278 MCCORMICK DA, 1990, J PHYSIOL-LONDON, V431, P291 MISGELD U, 1995, PROG NEUROBIOL, V46, P423, DOI 10.1016/0301-0082(95)00012-K Peruzzi D, 1997, J NEUROSCI, V17, P3766 PUIL E, 1994, J NEUROPHYSIOL, V71, P575 PUIL E, 1986, J NEUROPHYSIOL, V55, P995 SHOSAKU A, 1983, EXP BRAIN RES, V49, P432 Sodickson DL, 1996, J NEUROSCI, V16, P6374 Tennigkeit F, 1997, J NEUROPHYSIOL, V78, P591 Tennigkeit F, 1998, NEUROSCIENCE, V83, P1063, DOI 10.1016/S0306-4522(97)00458-2 Tennigkeit F, 1996, J NEUROPHYSIOL, V76, P3597 TENNIKEIT F, 1994, CAN J PHYSL PHARM, V72 Ulrich D, 1996, P NATL ACAD SCI USA, V93, P13245, DOI 10.1073/pnas.93.23.13245 Ulrich D, 1996, J PHYSIOL-LONDON, V493, P845 VONKROSIGK M, 1993, SCIENCE, V261, P361, DOI 10.1126/science.8392750 WILLIAMS SR, 1995, NEUROSCIENCE, V66, P133, DOI 10.1016/0306-4522(94)00604-4 WINER JA, 1988, J COMP NEUROL, V278, P47, DOI 10.1002/cne.902780104 NR 31 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 18 EP 24 DI 10.1016/S0378-5955(98)00083-5 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500002 PM 9714571 ER PT J AU Kelly, JB Buckthought, AD Kidd, SA AF Kelly, JB Buckthought, AD Kidd, SA TI Monaural and binaural response properties of single neurons in the rat's dorsal nucleus of the lateral lemniscus SO HEARING RESEARCH LA English DT Article DE auditory brainstem; binaural hearing; acoustic signal processing; lateral lemniscus; tonotopic organization; sound frequency ID AUDITORY BRAIN-STEM; SUPERIOR OLIVARY COMPLEX; RUFOUS HORSESHOE BAT; KAINIC ACID LESIONS; INFERIOR COLLICULUS; MOUSTACHE BAT; PHYSIOLOGICAL-PROPERTIES; ASCENDING PROJECTIONS; GABA-IMMUNOREACTIVITY; GABAERGIC PROJECTION AB Extracellular recordings were made with microelectrodes from single neurons in the rat's dorsal nucleus of the lateral lemniscus (DNLL) and response characteristics were determined for monaural and binaural acoustic stimulation. The vast majority of DNLL neurons were narrowly tuned to sound frequency and their temporal responses to contralateral tone pulses fell into one of three broad categories: onset (57%), sustained (21%) or onset-pause-sustained (22%). Most DNLL neurons fired multiple action potentials to a single click delivered to the contralateral ear. The majority (77%) of DNLL neurons showed a monotonic increase in the number of spikes elicited by contralateral tone pulses of increasing sound pressure level; the remaining cells were weakly non-monotonic. No obvious tonotopic pattern was found in the distribution of characteristic frequency of neurons in DNLL. Most DNLL neurons exhibited either excitatory/inhibitory (74%) or excitatory/excitatory (9%) binaural response patterns. The remaining cells (17%) were monaural and driven exclusively by stimulation of the contralateral ear. The binaural neurons in DNLL were sensitive to both interaural intensity and interaural time differences as determined by presentation of dichotic tone bursts and clicks respectively. The responses of DNLL neurons could be distinguished on the basis of monaural and binaural response characteristics from those in surrounding areas including the sagulum, paralemniscal zone and the intermediate nucleus of the lateral lemniscus. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Carleton Univ, Inst Neurosci, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. Carleton Univ, Dept Psychol, Ottawa, ON K1S 5B6, Canada. RP Kelly, JB (reprint author), Carleton Univ, Inst Neurosci, Lab Sensory Neurosci, 329 Life Sci Bldg,1125 Coloney By Dr, Ottawa, ON K1S 5B6, Canada. EM jkelly@ccs.carleton.ca CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 AITKIN LM, 1970, J NEUROPHYSIOL, V33, P421 AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1196 BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207 BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2 BRUGGE JF, 1970, J NEUROPHYSIOL, V33, P441 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 BUCKTHOUGHT AD, 1993, ASS RES OTOLARYGOL A, V16, P126 CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305 CARNEY LH, 1989, J NEUROPHYSIOL, V62, P144 CASSEDAY JH, 1988, J COMP NEUROL, V278, P313, DOI 10.1002/cne.902780302 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 COVEY E, 1986, J NEUROSCI, V6, P2926 COVEY E, 1991, J NEUROSCI, V11, P3456 Covey E., 1995, HEARING BATS, P235 COVEY E, 1993, J NEUROPHYSIOL, V69, P842 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x Fu XW, 1997, NEUROSCIENCE, V78, P815, DOI 10.1016/S0306-4522(96)00580-5 GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210 GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409 GLENN SL, 1992, J NEUROSCI, V12, P3688 HUTSON KA, 1991, J COMP NEUROL, V312, P105, DOI 10.1002/cne.903120109 Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153 Ito M, 1996, J NEUROPHYSIOL, V76, P3493 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 Kelly JB, 1997, HEARING RES, V104, P112, DOI 10.1016/S0378-5955(96)00182-7 KELLY JB, 1991, HEARING RES, V55, P39, DOI 10.1016/0378-5955(91)90089-R KELLY JB, 1991, HEARING RES, V56, P273, DOI 10.1016/0378-5955(91)90177-B KELLY JB, 1998, ASS RES OT ABSTR, V21, P107 Kelly JB, 1996, BEHAV NEUROSCI, V110, P1445, DOI 10.1037//0735-7044.110.6.1445 Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0 Kelly J. B., 1997, Society for Neuroscience Abstracts, V23, P1549 KELLY JB, 1995, ACOUSTICAL SIGNAL PR, P329 Kidd SA, 1996, J NEUROSCI, V16, P7390 KUDO M, 1981, BRAIN RES, V221, P57, DOI 10.1016/0006-8993(81)91063-5 LABELLE RE, 1996, ASS RES OT ABSTR, V19, P121 LI L, 1992, J NEUROSCI, V12, P4530 LI L, 1992, HEARING RES, V61, P73, DOI 10.1016/0378-5955(92)90038-O MARKOVITZ NS, 1994, HEARING RES, V73, P121, DOI 10.1016/0378-5955(94)90290-9 MARKOVITZ NS, 1993, HEARING RES, V71, P51, DOI 10.1016/0378-5955(93)90020-2 MERCHAN MA, 1994, J COMP NEUROL, V342, P259, DOI 10.1002/cne.903420209 METZNER W, 1987, J COMP PHYSIOL A, V160, P395, DOI 10.1007/BF00613029 MOORE JK, 1987, J COMP NEUROL, V260, P157, DOI 10.1002/cne.902600202 Paxinos G, 1987, RAT BRAIN STEREOTAXI POLLAK GD, 1988, HEARING RES, V36, P107, DOI 10.1016/0378-5955(88)90054-8 PREUSS S, 1991, THESIS U TUBINGEN ROBERTS RC, 1987, J COMP NEUROL, V258, P2676 SALLY SL, 1992, BRAIN RES, V572, P5, DOI 10.1016/0006-8993(92)90444-E SHNEIDERMAN A, 1993, J NEUROCHEM, V60, P72, DOI 10.1111/j.1471-4159.1993.tb05824.x SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 TANAKA K, 1985, BRAIN RES, V341, P252, DOI 10.1016/0006-8993(85)91064-9 THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6 VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205 VATER M, 1995, J COMP NEUROL, V351, P632, DOI 10.1002/cne.903510411 WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302 WU SH, 1995, J NEUROPHYSIOL, V73, P794 WU SH, 1991, J NEUROPHYSIOL, V65, P230 WU SH, 1995, J NEUROPHYSIOL, V73, P780 WU SH, 1984, J NEUROSCI, V4, P1577 Wu SH, 1996, J NEUROPHYSIOL, V75, P1271 YANG L, 1996, J COMP NEUROL, V373, P573 YANG LC, 1994, J NEUROPHYSIOL, V71, P1999 YANG LC, 1994, J NEUROPHYSIOL, V71, P2014 YIN TCT, 1994, J NEUROSCI, V14, P5170 ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103 NR 68 TC 36 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 25 EP 40 DI 10.1016/S0378-5955(98)00082-3 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500003 PM 9714572 ER PT J AU Ueda, H Nakata, S Hoshino, M AF Ueda, H Nakata, S Hoshino, M TI Effects of effusion in the middle ear and perforation of the tympanic membrane on otoacoustic emissions in guinea pigs SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; tympanic membrane; perforation; otitis media with effusion; guinea pig AB The influence of fluid in the middle ear and of perforation and closure of the tympanic membrane (TM) on otoacoustic emissions (OAEs) was evaluated in guinea pigs. Click-evoked otoacoustic emissions (CEOAEs) and distortion product otoacoustic emissions (DPOAEs) were measured after the auditory bulla was opened. Neither OAE level changed significantly when fluid filled only half the space in the bulla, but both OAE levels disappeared when fluid completely filled the bulla. These changes were reversible. Thus, the presence of fluid in the bulla influenced CEOAE and DPOAE levels only when its volume filled more than half the space of the bulla. Changes in both CEOAE and DPOAE levels were affected by the size of the perforation of the tympanic membrane. For the smallest perforation, the reduction in both CEOAE and DPOAE levels was restricted to the lower frequencies. However, as the size of the perforation increased, a decrease in high-frequency function occurred. Thus, the results indicate that the magnitude of both OAEs was proportional to the size of the perforation. Both OAE levels improved after the perforation was closed. Because CEOAEs were mole sensitive than DPOAEs to perforation and closure of the TM, DPOAEs may be better suited for OAE measurement in ears with perforated TMs. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Nagoya Univ, Sch Med, Dept Otolaryngol, Showa Ku, Nagoya, Aichi 4668550, Japan. Nagoya Red Cross Hosp, Dept Otolaryngol, Nagoya, Aichi, Japan. RP Ueda, H (reprint author), Nagoya Univ, Sch Med, Dept Otolaryngol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan. EM uehiromi@tsuru.med.nagoya-u.ac.jp CR AMEDEE RG, 1995, LARYNGOSCOPE, V105, P589, DOI 10.1288/00005537-199506000-00006 ANTHONY WP, 1972, ARCHIV OTOLARYNGOL, V95, P506 AUSTIN DF, 1978, J LARYNGOL OTOL, V92, P367, DOI 10.1017/S0022215100085492 Bigelow DC, 1996, LARYNGOSCOPE, V106, P71, DOI 10.1097/00005537-199601000-00014 BRAY PJ, 1989, THESIS U LONDON KEMP DT, 1990, EAR HEARING, V11, P93 LONSBURYMARTIN BL, 1990, EAR HEARING, V11, P144 McArdle F E, 1968, Arch Klin Exp Ohren Nasen Kehlkopfheilkd, V192, P145, DOI 10.1007/BF00404153 OWENS JJ, 1993, AM J OTOL, V14, P34 Relkin EM, 1988, PHYSL EAR, P103 UEDA H, 1992, HEARING RES, V62, P199, DOI 10.1016/0378-5955(92)90187-R Wada H, 1995, AUDIOLOGY, V34, P161 WIEDERHOLD ML, 1990, LECT NOTES BIOMATH, V87, P251 NR 13 TC 19 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 41 EP 46 DI 10.1016/S0378-5955(98)00084-7 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500004 PM 9714573 ER PT J AU Wu, SH Fu, XW AF Wu, SH Fu, XW TI Glutamate receptors underlying excitatory synaptic transmission in the rat's lateral superior olive studied in vitro SO HEARING RESEARCH LA English DT Article DE auditory system; binaural interaction; superior olivary complex; ionotropic glutamate receptor; metabotropic glutamate receptor; patch clamp recording ID AUDITORY BRAIN-STEM; ANTEROVENTRAL COCHLEAR NUCLEUS; D-ASPARTATE RECEPTORS; SOUND LOCALIZATION; INFERIOR COLLICULUS; ACOUSTIC CHIASM; NON-NMDA; IMMUNOCYTOCHEMICAL LOCALIZATION; PHYSIOLOGICAL-PROPERTIES; POSTSYNAPTIC CURRENTS AB Glutamate receptors underlying synaptic excitation in the rat's lateral superior olive were studied by whole-cell patch clamp recordings in a brain slice preparation. Recordings from two morphological types of cells, bipolar and multipolar, identified by intracellular labeling with biocytin, showed that there were no obvious differences in responses mediated or modulated by ionotropic and metabotropic receptors between these two types of neurons. The excitatory postsynaptic potentials (EPSPs) elicited by ipsilateral stimulation of the trapezoid body consisted of two components, An earlier component, which had faster rise time constant and decay time constant, was mediated by non-NMDA receptors. A later component, which had slower rise time and decay time constants, was mediated by NMDA receptors. Suprathreshold responses (action potentials), which arose from the early component, were always abolished by the non-NMDA antagonist, CNQX, but not by the NMDA antagonist, APV. These results suggest that both non-NMDA and NMDA receptors are present in LSO neurons, and that fast excitatory transmission in LSO is primarily mediated by non-NMDA receptors. The metabotropic glutamate receptor agonists, t-ACPD and L-AP4 reduced the size of EPSPs evoked by stimulation of the ipsilateral trapezoid body in LSO neurons; the reductive action of t-ACPD was reversed by the antagonist, MCPG, indicating that metabotropic glutamate receptors, probably group II and III subtypes, can modulate excitatory synaptic transmission in LSO. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Carleton Univ, Inst Neurosci, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. RP Wu, SH (reprint author), Carleton Univ, Inst Neurosci, Lab Sensory Neurosci, Life Sci Res Bldg,1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada. EM shwu@ccs.carleton.ca CR AOKI E, 1987, NEUROSCIENCE, V21, P755, DOI 10.1016/0306-4522(87)90035-2 BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387 BASKYS A, 1991, J PHYSL, V444, P786 Boudreau J C, 1970, Contrib Sens Physiol, V4, P143 BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442 BROWNER RH, 1975, BRAIN BEHAV EVOLUT, V11, P322, DOI 10.1159/000123643 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 BURKE JP, 1994, J NEUROSCI, V14, P5120 CAIRD D, 1983, EXP BRAIN RES, V52, P385 CANT NB, 1986, J COMP NEUROL, V247, P457, DOI 10.1002/cne.902470406 CAO CQ, 1995, BRIT J PHARMACOL, V115, P1469 CASPARY DM, 1989, BRAIN RES, V503, P83, DOI 10.1016/0006-8993(89)91707-1 CASPARY DM, 1991, NEUROBIOLOGY HEARING, V2, P141 CASSEDAY JH, 1975, J NEUROPHYSIOL, V38, P842 COVEY E, 1991, J NEUROPHYSIOL, V66, P1080 ELVERLAND HH, 1978, EXP BRAIN RES, V32, P117 FINLAYSON PG, 1989, HEARING RES, V38, P221, DOI 10.1016/0378-5955(89)90067-1 FORSYTHE ID, 1993, P ROY SOC B-BIOL SCI, V251, P151, DOI 10.1098/rspb.1993.0022 FORSYTHE ID, 1988, J PHYSIOL-LONDON, V396, P515 Fu XW, 1997, NEUROSCIENCE, V78, P815, DOI 10.1016/S0306-4522(96)00580-5 Fu X. W., 1996, Society for Neuroscience Abstracts, V22, P648 GEREAU RW, 1995, J NEUROSCI, V15, P6879 GLAUM SR, 1992, J NEUROSCI, V12, P2251 GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210 GLENDENNING KK, 1991, J COMP NEUROL, V310, P377, DOI 10.1002/cne.903100308 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 GUINAN JJ, 1972, INT J NEUROSCI, V4, P101, DOI 10.3109/00207457209147165 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 Harrison J M, 1970, Contrib Sens Physiol, V4, P95 HARRISON JM, 1966, J COMP NEUROL, V126, P51, DOI 10.1002/cne.901260105 HARRISON JM, 1962, J COMP NEUROL, V119, P341, DOI 10.1002/cne.901190306 HELFERT RH, 1987, AM J ANAT, V179, P55, DOI 10.1002/aja.1001790108 HELFERT RH, 1986, J COMP NEUROL, V244, P533, DOI 10.1002/cne.902440409 HENKEL CK, 1991, J COMP NEUROL, V313, P259, DOI 10.1002/cne.903130206 HESTRIN S, 1990, J PHYSIOL-LONDON, V422, P203 ISAACSON JS, 1995, J NEUROPHYSIOL, V73, P964 ISHIDA M, 1993, BRIT J PHARMACOL, V109, P1169 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JONAS P, 1992, J PHYSIOL-LONDON, V455, P143 JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 KANDLER K, 1995, J NEUROSCI, V15, P6890 KAVANAGH GL, 1992, J NEUROPHYSIOL, V67, P1643 KISS KM, 1990, ACTA MORPHOL HUNG, V38, P207 Kotak VC, 1997, EUR J NEUROSCI, V9, P2340, DOI 10.1111/j.1460-9568.1997.tb01651.x KOTAK VC, 1995, J NEUROPHYSIOL, V74, P1611 Kotak VC, 1996, J NEUROSCI, V16, P1836 KUDO M, 1990, J COMP NEUROL, V298, P400, DOI 10.1002/cne.902980403 LACHICA EA, 1995, J NEUROSCI, V15, P1724 MADL JE, 1986, J HISTOCHEM CYTOCHEM, V34, P317 Manis PB, 1996, J NEUROPHYSIOL, V76, P1639 Manzoni O, 1995, EUR J NEUROSCI, V7, P2518, DOI 10.1111/j.1460-9568.1995.tb01051.x MANZONI OJ, 1995, NEUROPHARMACOLOGY, V34, P965, DOI 10.1016/0028-3908(95)00060-J MASTERTO.B, 1967, J NEUROPHYSIOL, V30, P341 MAYER ML, 1987, J PHYSIOL-LONDON, V394, P501 Molitor SC, 1997, J NEUROPHYSIOL, V77, P1889 MOORE CN, 1974, BRAIN RES, V82, P13, DOI 10.1016/0006-8993(74)90889-0 MOORE DR, 1988, J COMP NEUROL, V269, P342, DOI 10.1002/cne.902690303 NAKANISHI S, 1994, NEURON, V13, P1031, DOI 10.1016/0896-6273(94)90043-4 OLLO C, 1979, AM J ANAT, V155, P349, DOI 10.1002/aja.1001550306 SANES DH, 1990, J NEUROSCI, V10, P3494 SATO K, 1995, ABSTR ASS RES OT, V18, P31 SCHOFIELD BR, 1991, J COMP NEUROL, V314, P645, DOI 10.1002/cne.903140403 STOTLER WA, 1953, J COMP NEUROL, V98, P401, DOI 10.1002/cne.900980303 STROMING.NL, 1971, J COMP NEUROL, V143, P217, DOI 10.1002/cne.901430205 SUNEJA SK, 1995, J NEUROCHEM, V64, P161 TAKAHASHI T, 1992, J PHYSIOL-LONDON, V446, pP549 TSUBOKAWA H, 1994, J NEUROPHYSIOL, V71, P1190 TSUCHITANI C, 1969, J ACOUST SOC AM, V46, P978 TSUCHITANI C, 1977, J NEUROPHYSIOL, V40, P296 WARR WB, 1972, BRAIN RES, V40, P247 Warr W. B., 1982, CONTRIB SENS PHYSIOL, V7, P1 WARR WB, 1966, EXP NEUROL, V14, P453, DOI 10.1016/0014-4886(66)90130-0 WU SH, 1992, J NEUROPHYSIOL, V68, P1151 WU SH, 1992, NEUROSCI LETT, V134, P257, DOI 10.1016/0304-3940(92)90529-G WU SH, 1991, J NEUROPHYSIOL, V65, P230 WU SH, 1992, J NEUROSCI, V12, P3084 ZHANG S, 1994, J PHYSIOL-LONDON, V480, P123 ZHOU N, 1992, DEV BRAIN RES, V67, P145, DOI 10.1016/0165-3806(92)90215-I Zirpel L, 1996, J NEUROPHYSIOL, V76, P4127 ZIRPEL L, 1995, J NEUROSCI, V15, P214 NR 83 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 47 EP 59 DI 10.1016/S0378-5955(98)00085-9 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500005 PM 9714574 ER PT J AU Ornitz, DM Bohne, BA Thalmann, I Harding, GW Thalmann, R AF Ornitz, DM Bohne, BA Thalmann, I Harding, GW Thalmann, R TI Otoconial agenesis in tilted mutant mice SO HEARING RESEARCH LA English DT Article DE otoconia; vestibular histopathology; mouse mutant; gravity receptor ID INNER-EAR; GUINEA-PIG; MEMBRANES; CALCIUM; PROTEIN; ORGANS; GERBIL AB The sense of balance is one of the phylogenetically oldest sensory systems. The vestibular organs, consisting of sensory hair cells and an overlying extracellular membrane, have been conserved throughout vertebrate evolution. To better understand mechanisms regulating vestibular development and mechanisms of vestibular pathophysiology, we have analyzed the mouse mutant, tilted (tlt), which has dysfunction of the gravity receptors. The tilted mouse arose spontaneously and has not been previously analyzed for a developmental or physiological deficit. Here we demonstrate that the tilted mouse, like the head tilt (het) mouse, specifically lacks otoconia and consequently does not sense spatial orientation relative to the force of gravity. Unlike other mouse mutations affecting the vestibular system (such as pallid, mocha and tilted head), the defect in the tilted mouse is highly penetrant, results in the nearly complete absence of otoconia, exhibits no degeneration of the sensory epithelium and has no apparent abnormal phenotype in other organ systems. We further demonstrate that protein expression in the macular sensory epithelium is qualitatively unaltered in tilted mutant mice. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA. Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Ornitz, DM (reprint author), Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA. EM dornitz@pharmdec.wustl.edu RI Bohne, Barbara/A-9113-2008 OI Bohne, Barbara/0000-0003-3874-7620 CR ANDERSON L, 1988, 2 DIMENSIONAL ELECTR Anniko M, 1980, Am J Otolaryngol, V1, P400, DOI 10.1016/S0196-0709(80)80021-4 BERLIN CI, 1968, J SPEECH HEAR RES, V11, P159 BIRCH LM, 1968, J AUD RES, V8, P459 Bohne BA, 1997, HEARING RES, V109, P34, DOI 10.1016/S0378-5955(97)00019-1 CARLSTROM DD, 1963, BIOL BULL, V125, P441, DOI 10.2307/1539358 DEOL MS, 1966, J EMBRYOL EXP MORPH, V16, P543 EHRET G, 1974, NATURWISSENSCHAFTEN, V61, P506 EHRET G, 1983, AUDITORY PSYCHOBIOLO, P13 FAY RR, 1988, HEARING VERTEBRATES, P367 FERMIN CD, 1995, CELL MOL BIOL, V41, P577 HENRY KR, 1979, ACTA OTO-LARYNGOL, V87, P61, DOI 10.3109/00016487909126387 HENRY KR, 1979, AUDIOLOGY, V18, P93 Kitamura K, 1991, Acta Otolaryngol Suppl, V481, P121 Lane PW, 1987, MOUSE NEWS LETT, V77, P129 Lane PW, 1986, MOUSE NEWS LETT, V75, P28 Lim D, 1978, VESTIBULAR MECH HLTH, P195 Lim D J, 1980, Birth Defects Orig Artic Ser, V16, P111 Lim DJ, 1984, ULTRASTRUCTURAL ATLA, P245 Lim D J, 1973, Ann Otol Rhinol Laryngol, V82, P23 MANN S, 1983, PROC R SOC SER B-BIO, V218, P415, DOI 10.1098/rspb.1983.0048 MUNYER PD, 1991, HEARING RES, V52, P369, DOI 10.1016/0378-5955(91)90026-6 *NIH, 1991, RES HUMAN COMMUNICAT, V5, P31 OAKLEY BR, 1980, ANAL BIOCHEM, V105, P361, DOI 10.1016/0003-2697(80)90470-4 Olsen B. R., 1991, CELL BIOL EXTRACELLU, P177 POTE KG, 1986, J ULTRA MOL STRUCT R, V95, P61, DOI 10.1016/0889-1605(86)90029-7 POTE KG, 1991, COMP BIOCHEM PHYS B, V98, P287, DOI 10.1016/0305-0491(91)90181-C POTE KG, 1993, BIOCHEMISTRY-US, V32, P5017, DOI 10.1021/bi00070a007 PRESTON RE, 1975, ACTA OTO-LARYNGOL, V80, P269, DOI 10.3109/00016487509121327 Riley BB, 1996, DEV BIOL, V179, P427, DOI 10.1006/dbio.1996.0272 ROLFSEN RM, 1984, J HERED, V75, P158 ROMER AS, 1964, VERTEBRATE BODY, P357 ROSS MD, 1985, BIOCH AUDITORY SYSTE, P500 SALAMAT MS, 1980, ANN OTO RHINOL LARYN, V89, P229 SALT AN, 1989, AM J OTOLARYNG, V10, P371, DOI 10.1016/0196-0709(89)90030-6 SCHRADER RE, 1973, TERATOLOGY, V8, P257 SUZUKI H, 1995, HEARING RES, V87, P32, DOI 10.1016/0378-5955(95)00075-F SUZUKI H, 1992, HEARING RES, V60, P45, DOI 10.1016/0378-5955(92)90057-T SUZUKI H, 1995, HEARING RES, V90, P212, DOI 10.1016/0378-5955(95)00168-7 Sweet H, 1980, MOUSE NEWS LETT, V63, P19 TACHIBANA M, 1992, HEARING RES, V62, P11, DOI 10.1016/0378-5955(92)90198-V TAKEMURA T, 1994, HEARING RES, V79, P99, DOI 10.1016/0378-5955(94)90131-7 TANCRETI DM, 1969, J NEUROPATHOL EXP NE, V28, P159 THALMANN R, 1976, HDB AUDITORY VESTIBU, P359 THALMANN R, 1971, LARYNGOSCOPE, V81, P1245, DOI 10.1288/00005537-197108000-00008 TRUNE D R, 1983, Journal of Neurogenetics, V1, P53, DOI 10.3109/01677068309107072 TRUNE DR, 1983, AM J OTOLARYNG, V4, P261, DOI 10.1016/S0196-0709(83)80070-2 VEENHOF VB, 1969, DEV OTOCONIA MICE WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 Whitfield TT, 1996, DEVELOPMENT, V123, P241 NR 50 TC 56 Z9 57 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 60 EP 70 DI 10.1016/S0378-5955(98)00080-X PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500006 PM 9714575 ER PT J AU Goldberg, RL Henson, OW AF Goldberg, RL Henson, OW TI Changes in cochlear mechanics during vocalization: evidence for a phasic medial efferent effect SO HEARING RESEARCH LA English DT Article DE cochlear microphonic; damping; resonance; efferent; vocalization; mustached bat ID OUTER HAIR-CELLS; CONTRALATERAL ACOUSTIC STIMULATION; CROSSED OLIVOCOCHLEAR BUNDLE; SPONTANEOUS OTOACOUSTIC EMISSIONS; SOUND STIMULATION; MOUSTACHED BAT; GUINEA-PIG; MICROMECHANICAL PROPERTIES; ELECTRIC STIMULATION; DC MOVEMENTS AB The mustached bat, Pteronotus p. parnellii, has a finely tuned cochlea that rings at its resonant frequency in response to an acoustic tone pip. The decay time (DT) and frequency of these damped oscillations can be measured from the cochlear microphonic potential (CM) to study changes in cochlear mechanics. In this report, we describe phasic changes that occur in synchrony with communication sound vocalizations of the bat. Three animals with chronically implanted electrodes were studied. During the experiments, 1-2 ms tone pips were emitted from a speaker every 200 ms. This triggered a computer analysis of the resulting CR I to determine the DT and cochlear resonance frequency (CRF) of the ringing. The time relative to vocalizations was determined by monitoring the output of a microphone placed near a bat's mouth. Similar results were obtained from all three bats tested. In a representative case, the average DT was 2.33 +/- 0.25 ms while the bat was quiet: but it decreased by 46% to 1.26 +/- 0.75 during vocalizations, which indicates a greater damping of the cochlear partition. Sometimes, DT started decreasing immediately before the bat vocalized. After the end of a vocalization, the return to baseline values varied from rapid (milliseconds) to gradual (1-2 seconds). The CRF also changed from baseline values during vocalization, although the amount and direction of change were not predictable. When gentamicin was administered to block the action of medial olivocochlear (MOC) efferents, DT reduction was still evident during vocalization but less pronounced. We conclude that phasic changes in damping occur in synchrony with vocalization, and that the MOC system plays a role in causing suppression. Since suppression can begin prior to vocalization, this may be a synkinetic effect, mediated by neural outflow to the ear in synchrony with neural outflow to the middle ear muscles and the muscles used for vocalization. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ N Carolina, Dept Cell Biol & Anat, Chapel Hill, NC 27599 USA. RP Henson, OW (reprint author), Univ N Carolina, Dept Cell Biol & Anat, Taylor Hall,CB 7090, Chapel Hill, NC 27599 USA. CR Avan P, 1996, EXP BRAIN RES, V109, P9 AVAN P, 1992, HEARING RES, V57, P269, DOI 10.1016/0378-5955(92)90156-H BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BUNO W, 1978, EXP NEUROL, V59, P62, DOI 10.1016/0014-4886(78)90201-7 CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E COLLET L, 1992, AUDIOLOGY, V31, P1 COLLET L, 1990, ADV AUDIOL, P164 FROEHLICH P, 1993, PHYSIOL BEHAV, V53, P679, DOI 10.1016/0031-9384(93)90173-D GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 GOLDBERG RL, 1996, ABSTR ASS RES OT, V19, P56 Guinan Jr J.J., 1996, COCHLEA, P435 HARRISON WA, 1993, J ACOUST SOC AM, V94, P2649, DOI 10.1121/1.407349 Henson MM, 1996, HEARING RES, V102, P99, DOI 10.1016/0378-5955(96)00153-0 HENSON OW, 1972, PHYSIOL BEHAV, V8, P1185, DOI 10.1016/0031-9384(72)90220-X HENSON OW, 1995, HEARING RES, V86, P111, DOI 10.1016/0378-5955(95)00061-8 HENSON OW, 1985, J COMP PHYSIOL A, V157, P587, DOI 10.1007/BF01351353 HILDESHEIMER M, 1990, HEARING RES, V43, P263, DOI 10.1016/0378-5955(90)90233-F HUFFMAN RF, 1993, J COMP PHYSIOL A, V171, P735, DOI 10.1007/BF00213070 KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273 KIRK DL, 1993, HEARING RES, V67, P20, DOI 10.1016/0378-5955(93)90228-S KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C LIBERMAN MC, 1991, J NEUROPHYSIOL, V65, P123 LUKAS JH, 1981, INT J NEUROSCI, V12, P137 MAURER J, 1992, LARYNGO RHINO OTOL, V71, P69, DOI 10.1055/s-2007-997248 MERIC C, 1994, NEUROSCI BIOBEHAV R, V18, P215, DOI 10.1016/0149-7634(94)90026-4 Meric C., 1996, Physiology and Behavior, V59, P1, DOI 10.1016/0031-9384(95)02008-X MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 PATUZZI RB, 1991, HEARING RES, V54, P45, DOI 10.1016/0378-5955(91)90135-V PLINKERT PK, 1992, LARYNGO RHINO OTOL, V71, P74, DOI 10.1055/s-2007-997249 PUEL JL, 1988, HEARING RES, V37, P65, DOI 10.1016/0378-5955(88)90078-0 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 ROBERTS BL, 1970, J PHYSIOL-LONDON, V208, pP37 RUSSELL IJ, 1974, BRAIN RES, V80, P517, DOI 10.1016/0006-8993(74)91036-1 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 SLEPECKY N, 1988, HEARING RES, V34, P119, DOI 10.1016/0378-5955(88)90099-8 SMITH DW, 1994, BRAIN RES, V652, P243, DOI 10.1016/0006-8993(94)90233-X Sridhar TS, 1997, J NEUROSCI, V17, P428 SRIDHAR TS, 1995, J NEUROSCI, V15, P3667 SUGA N, 1975, J EXP BIOL, V62, P277 SZIKLAI I, 1993, ACTA OTO-LARYNGOL, V113, P326, DOI 10.3109/00016489309135818 Sziklai I, 1996, HEARING RES, V95, P87, DOI 10.1016/0378-5955(96)00026-3 TAKEYAMA M, 1992, ACTA OTO-LARYNGOL, V112, P205 VEUILLET E, 1992, HEARING RES, V61, P47, DOI 10.1016/0378-5955(92)90035-L VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 XIE DH, 1996, ABSTR ASS RES OT, V19, P77 XIE DH, 1998, IN PRESS HEAR RES ZENNER HP, 1993, PROG BRAIN RES, V97, P21 ZENNER HP, 1993, BRIT J AUDIOL, V27, P73, DOI 10.3109/03005369309077894 NR 53 TC 20 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 71 EP 81 DI 10.1016/S0378-5955(98)00078-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500007 PM 9714576 ER PT J AU Mills, DM Rubel, EW AF Mills, DM Rubel, EW TI Development of the base of the cochlea: place code shift in the gerbil SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Diversity in Auditory Mechanics Conference CY JUN, 1996 CL BERKELEY, CALIFORNIA DE development; ontogeny; frequency-place map; cochlear amplifier; distortion product otoacoustic emissions; gerbil ID MONGOLIAN GERBIL; FREQUENCY MAP; MAMMALIAN COCHLEA; TONOTOPIC ORGANIZATION; OTOACOUSTIC EMISSIONS; POSTNATAL-DEVELOPMENT; NEONATAL GERBIL; NERVE-FIBERS; EAR; PRINCIPLE AB Distortion product otoacoustic emission measurements were made at 1/12 octave intervals before and after the injection of furosemide in gerbils aged 15 days after birth to adult, in order to obtain estimates of cochlear amplifier gain as a function of stimulus frequency. The frequency at which the gains went sharply to zero, defined as the 'base cutoff frequency', increased from about 20 kHz to over 50 kHz during development. This increase provides further confirmation of the hypothesis that the place code changes during development in the basal part of the cochlea. If the measured base cutoff frequency is identified with the characteristic frequency at the basal end of the cochlea, as defined by electrophysiological measures, then these emission data can be used to generate a frequency-place map as a function of age. The derived place code shift is consistent with published electrophysiological measures, and can be used to extend these measures. Near the base cutoff frequency, the observed cochlear amplifier gain typically dropped sharply from a relative maximum to zero, over a distance of about a half octave. Specifically, this distance appeared to exhibit a curvilinear variation with age, reaching a maximum of 3/4 of an octave at 19-21 days. After transforming from frequency to place using the map derived from emissions, however, the distance between the extreme base and the place associated with the peak gain decreased monotonically from about 1.2 mm at age 15-19 days to 0.6 mm at maturity. This distance is assumed to be characteristic of the length of the active amplification zone for the cochlear amplifier in the base region. Over the same time period, there was approximately a doubling of the rate of amplification with distance from the base, so that the cochlear amplifier gain at the peak actually changed very little from 15 days to adult. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Univ Washington, Dept Otolaryngol Head & Neck Surg, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. RP Mills, DM (reprint author), Univ Washington, Dept Otolaryngol Head & Neck Surg, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA. EM dmmills@u.washington.edu CR ARJMAND E, 1988, HEARING RES, V32, P93, DOI 10.1016/0378-5955(88)90149-9 Bekesy G., 1960, EXPT HEARING CODY AR, 1992, HEARING RES, V62, P166, DOI 10.1016/0378-5955(92)90182-M ECHTELER SM, 1989, NATURE, V341, P147, DOI 10.1038/341147a0 HARRIS DM, 1990, HEARING RES, V50, P1, DOI 10.1016/0378-5955(90)90029-O HARRIS DM, 1984, SCIENCE, V225, P741, DOI 10.1126/science.6463651 HE DZZ, 1994, HEARING RES, V78, P77, DOI 10.1016/0378-5955(94)90046-9 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIPPE W, 1983, SCIENCE, V219, P514, DOI 10.1126/science.6823550 Manley GA, 1996, AUDIT NEUROSCI, V3, P199 MANLEY GA, 1987, SCIENCE, V237, P655, DOI 10.1126/science.3603046 MCGUIRT JP, 1995, HEARING RES, V84, P52, DOI 10.1016/0378-5955(95)00015-V Mills DM, 1997, J ACOUST SOC AM, V102, P413, DOI 10.1121/1.419763 MILLS DM, 1994, AUDIT NEUROSCI, V1, P77 Mills DM, 1998, J ACOUST SOC AM, V103, P507, DOI 10.1121/1.421101 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 MILLS DM, 1998, 135 M AC SOC AM SEAT Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 NORTON SJ, 1991, HEARING RES, V51, P73, DOI 10.1016/0378-5955(91)90008-W OHLEMILLER KK, 1990, J COMP PHYSIOL A, V167, P329 Rubel E.W., 1978, HDB SENSORY PHYSL, V9, P135 RUBEL EW, 1983, SCIENCE, V219, P512, DOI 10.1126/science.6823549 RUBEL EW, 1984, ANN OTO RHINOL LARYN, V93, P609 RUBSAMEN R, 1992, J COMP PHYSIOL A, V170, P129 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 RYAN AF, 1992, DEV AUDITORY VESTIBU, V2, P243 SANES DH, 1988, PHYSL EAR, P431 SANES DH, 1989, J COMP NEUROL, V279, P436, DOI 10.1002/cne.902790308 SCHMIEDT RA, 1981, HEARING RES, V5, P295, DOI 10.1016/0378-5955(81)90053-8 Schweitzer L, 1996, HEARING RES, V97, P84 SMITH DI, 1987, HEARING RES, V27, P157, DOI 10.1016/0378-5955(87)90016-5 Souter M, 1997, J COMP NEUROL, V386, P635 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Walsh Edward J., 1992, P161 WOOLF NK, 1984, HEARING RES, V13, P277, DOI 10.1016/0378-5955(84)90081-9 WOOLF NK, 1986, AM J PHYSIOL, V250, P493 WOOLF NK, 1988, HEARING RES, V35, P131, DOI 10.1016/0378-5955(88)90112-8 WOOLF NK, 1985, DEV BRAIN RES, V17, P131, DOI 10.1016/0165-3806(85)90138-5 YANCEY C, 1985, HEARING RES, V18, P189, DOI 10.1016/0378-5955(85)90011-5 ZWEIG G, 1991, J ACOUST SOC AM, V89, P1229, DOI 10.1121/1.400653 NR 42 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 82 EP 96 DI 10.1016/S0378-5955(98)00079-3 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500008 PM 9714577 ER PT J AU Gordon, M O'Neill, WE AF Gordon, M O'Neill, WE TI Temporal processing across frequency channels by FM selective auditory neurons can account for FM rate selectivity SO HEARING RESEARCH LA English DT Article DE auditory midbrain; temporal processing; lateral inhibition; mustached bat; formant transition; phonological impairment ID INFERIOR COLLICULUS; MODULATED TONES; SINGLE UNITS; CORTEX; BATS; RESPONSES; CHILDREN; STIMULI; SENSITIVITY; MECHANISMS AB Auditory neurons tuned to the direction and rate of frequency modulations (FM) might underlie the encoding of frequency sweeps in animal vocalizations and formant transitions in human speech. We examined the relationship between FM direction and rate selectivity and the precise temporal interactions of excitatory and inhibitory sideband inputs. Extracellular single-unit recordings were made in the auditory midbrains of eight mustached bats. Up- and down-sweeping linear FM stimuli were presented at different modulation rates in order to determine FM selectivity. Brief tone pairs with varying interstimulus delays were presented in a forward masking paradigm to examine the relative timing of excitatory and inhibitory inputs. In the 33 units for which tone pair data were collected, a correspondence existed between FM rate selectivity and the time delays between paired tones. Moreover, FM directional selectivity was strongly linked to rate selectivity, because directional preferences were expressed only at certain rates and not others. We discuss how abnormalities in the relative timing of inputs could alter or abolish the selectivity of such neurons, and how such a mechanism could account for the perceptual deficits for formant transitions seen in certain children with phonological deficits. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Univ Rochester, Sch Med & Dent, Program Neurosci, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Brain & Cognit Sci, Rochester, NY 14642 USA. RP O'Neill, WE (reprint author), Univ Rochester, Sch Med & Dent, Program Neurosci, Rochester, NY 14642 USA. EM oneill@bcs.rochester.edu CR BARLOW HB, 1965, J PHYSIOL-LONDON, V178, P477 BISHOP DVM, 1990, J CHILD PSYCHOL PSYC, V31, P1027, DOI 10.1111/j.1469-7610.1990.tb00844.x BODENHAMER RD, 1983, J COMP PHYSIOL, V153, P67 BRITT R, 1976, J NEUROPHYSIOL, V39, P179 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 CATTS HW, 1993, J SPEECH HEAR RES, V36, P948 Covey E, 1996, J NEUROSCI, V16, P3009 Esser KH, 1997, P NATL ACAD SCI USA, V94, P14019, DOI 10.1073/pnas.94.25.14019 FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 GARDNER RB, 1979, J ACOUST SOC AM, V66, P704, DOI 10.1121/1.383220 GOLDMAN LJ, 1977, BEHAV ECOL SOCIOBIOL, V2, P411, DOI 10.1007/BF00299509 Gordon M., 1997, Society for Neuroscience Abstracts, V23, P732 GREENWOO.DD, 1965, J NEUROPHYSIOL, V28, P863 HEIL P, 1992, J COMP PHYSIOL A, V171, P583 HEIL P, 1992, HEARING RES, V63, P108, DOI 10.1016/0378-5955(92)90080-7 KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273 KAY RH, 1972, J PHYSIOL-LONDON, V225, P657 LIBERMAN IY, 1974, J EXP CHILD PSYCHOL, V18, P201, DOI 10.1016/0022-0965(74)90101-5 MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 MOLLER AR, 1974, J ACOUST SOC AM, V55, P631, DOI 10.1121/1.1914574 NELSON PG, 1966, J NEUROPHYSIOL, V29, P834 NELSON PG, 1963, J NEUROPHYSIOL, V26, P908 Ohlemiller KK, 1996, NEUROREPORT, V7, P1749, DOI 10.1097/00001756-199607290-00011 ONEILL WE, 1985, J COMP PHYSIOL A, V157, P797, DOI 10.1007/BF01350077 PHILLIPS DP, 1985, EXP BRAIN RES, V58, P443 POON PWF, 1992, EXP BRAIN RES, V91, P94 RAUSCHECKER JP, 1997, SOC NEUR ABSTR, V23, P1937 REGAN D, 1979, J ACOUST SOC AM, V65, P1249, DOI 10.1121/1.382792 ROSE JE, 1963, J NEUROPHYSIOL, V26, P294 SCARBOROUGH HS, 1990, CHILD DEV, V61, P1728, DOI 10.1111/j.1467-8624.1990.tb03562.x SCHULLER G, 1986, J NEUROSCI METH, V18, P339, DOI 10.1016/0165-0270(86)90022-1 SHANNONHARTMAN S, 1992, HEARING RES, V61, P179, DOI 10.1016/0378-5955(92)90049-S STEFANATOS GA, 1989, ARCH NEUROL-CHICAGO, V46, P871 STEFANATOS GA, 1993, ANN NY ACAD SCI, V682, P412, DOI 10.1111/j.1749-6632.1993.tb23009.x SUGA N, 1965, J PHYSIOL-LONDON, V179, P26 SUGA N, 1968, J PHYSIOL-LONDON, V198, P51 SUGA N, 1977, J EXP BIOL, V69, P207 Suga N., 1973, BASIC MECH HEARING, P675 SUGA N, 1965, J PHYSIOL-LONDON, V181, P671 SUGA N, 1983, ADV VERTEBRATE NEURO, P829 SUGA N, 1973, J ACOUST SOC AM, V54, P174, DOI 10.1121/1.1913561 TALLAL P, 1973, NATURE, V241, P468, DOI 10.1038/241468a0 Tallal P, 1996, SCIENCE, V271, P81, DOI 10.1126/science.271.5245.81 TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 TORGESEN JK, 1994, J LEARN DISABIL, V27, P276 WATANABE T, 1972, JPN J PHYSIOL, V22, P569 WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655 NR 48 TC 53 Z9 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 97 EP 108 DI 10.1016/S0378-5955(98)00087-2 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500009 PM 9714578 ER PT J AU Nakajima, HH Mountain, DC Hubbard, AE AF Nakajima, HH Mountain, DC Hubbard, AE TI Nonlinear characteristics of electrically evoked otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE electrically-evoked otoacoustic emission; outer hair cell motility; otoacoustic emission; electrical stimulation; cochlea; gerbil ID BASILAR-MEMBRANE MOTION; ACOUSTIC ENHANCEMENT; GERBIL COCHLEA; GUINEA-PIG; TRANSDUCTION; ADAPTATION AB To further our knowledge of outer hair cell nonlinearities, we measured the dependence of the electrically-evoked otoacoustic emissions (EEOEs) on current level for a wide range of electrical frequencies. Alternating electrical current was delivered into the scala media of the gerbil cochlea while the EEOE was measured with a probe-tube microphone. While the EEOE scaled linearly with current level for many frequencies and current levers, notable exceptions occurred. For frequencies below 300 Hz and currents above 20-30 mu A(peak), the gain (primary EEOE magnitude divided by the current level) increased abruptly. For higher frequencies, the gain often increased slightly with increasing current of up to 30-50 mu A(peak), but decreased at even higher current levels. We also investigated the enhancement of the EEOE due to simultaneous acoustic stimulation. The enhancement of the EEOE was relatively insensitive to current level with little change in enhancement for current levels up to 20 mu A(peak). For current levels above approximately 10 mu A(peak) the enhancement decreased slightly. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Boston Univ, Hearing Res Ctr, Boston, MA 02215 USA. Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA. Boston Univ, Dept Otolaryngol, Boston, MA 02215 USA. Boston Univ, Dept Elect Comp & Syst Engn, Boston, MA 02215 USA. RP Nakajima, HH (reprint author), Boston Univ, Hearing Res Ctr, 44 Cummington St, Boston, MA 02215 USA. EM hhn@enga.bu.edu CR CRAWFORD, 1985, J PHYSL, V360, P359 GILLESPIE PG, 1995, BIOPHYS J, V68, pS358 GILLESPIE PG, 1993, NEURON, V11, P581, DOI 10.1016/0896-6273(93)90071-X HUBBARD AE, 1983, SCIENCE, V222, P510, DOI 10.1126/science.6623090 HUBBARD AE, 1990, HEARING RES, V43, P269, DOI 10.1016/0378-5955(90)90234-G HUDSPETH AJ, 1994, NEURON, V12, P1, DOI 10.1016/0896-6273(94)90147-3 JERRY RA, 1995, J ACOUST SOC AM, V98, P2011, DOI 10.1121/1.413319 Kirk DL, 1996, J ACOUST SOC AM, V100, P3714, DOI 10.1121/1.417335 KIRK DL, 1997, 20 MIDW RES M ASS RE, P123 MOUNTAIN DC, 1989, HEARING RES, V42, P195, DOI 10.1016/0378-5955(89)90144-5 Mountain DC, 1983, MECHANICS HEARING, P119 MURATA K, 1991, HEARING RES, V55, P201, DOI 10.1016/0378-5955(91)90105-I NAIDU RC, 1997, P INT S DIV AUD MECH, P542 NAKAJIMA HH, 1994, J ACOUST SOC AM, V96, P786, DOI 10.1121/1.410316 NAKAJIMA HH, 1997, P INT S DIV AUD MECH, P399 Nakajima HH, 1996, AUDIT NEUROSCI, V3, P79 Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2 Ren TY, 1995, HEARING RES, V92, P178, DOI 10.1016/0378-5955(95)00217-0 Ren TY, 1996, NEUROSCI LETT, V207, P167, DOI 10.1016/0304-3940(96)12524-6 XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103 Xue SW, 1996, AUDIT NEUROSCI, V2, P301 XUE SW, 1993, HEARING RES, V70, P121, DOI 10.1016/0378-5955(93)90056-7 YATES GK, 1997, 20 MIDW M ST PET BEA, P123 NR 23 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 109 EP 118 DI 10.1016/S0378-5955(98)00094-X PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500010 PM 9714579 ER PT J AU Job, A Grateau, P Picard, J AF Job, A Grateau, P Picard, J TI Intrinsic differences in hearing performances between ears revealed by the asymmetrical shooting posture in the army SO HEARING RESEARCH LA English DT Article DE Bekesy audiometry; lateralization; occupational posture; eyedness; noise-induced hearing loss; cochlear physiology ID RANDOM-POPULATION AB Left ear noise-induced hearing losses are dominant in the army. The common explanation is the asymmetrical effect of the shooting posture. However, firm evidence to support this possibility is still lacking. In the French army shooters, eye preference rather than hand preference for shooting determines the side of shooting and hence the ear more exposed to noise. To test whether left-right asymmetry of hearing thresholds really relates to the shooting posture, we analyzed audiograms from 644 officers of the infantry and artillery branches. The interaural differences reached 7 dB for right-eyed subjects, and less, about 5 dB, for left-eyed subjects at 6-7 kHz, both with disadvantage for the left ear. In contrast, hearing thresholds of both groups in the low frequency range were significantly better for left ears. Our results suggest each ear has different intrinsic characteristics. The right cochlea might be a less sensitive but more robust sensor than the left cochlea, which might be a finer sensor but more sensitive to noise. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Ctr Rech Serv Sante Armees Emile Parde, F-38702 La Tronche, France. Cabinet Expertise ORL, F-75009 Paris, France. RP Job, A (reprint author), Ctr Rech Serv Sante Armees Emile Parde, POB 87, F-38702 La Tronche, France. RI JOB, Agnes/L-3158-2014 OI JOB, Agnes/0000-0001-6764-284X CR ANTTONEN H, 1980, SCAND AUDIOL, V16, P137 Bekesy G., 1960, EXPT HEARING Buffe P, 1986, Ann Otolaryngol Chir Cervicofac, V103, P251 BURKE KA, 1994, NEUROPSYCHOLOGIA, V32, P1409, DOI 10.1016/0028-3932(94)00074-3 *ISO, 1983, 389 ISO INT ORG STAN *ISO, 1975, 389 ISO INT ORG STAN Job A, 1996, COMPUT METH PROG BIO, V49, P95, DOI 10.1016/0169-2607(95)01712-7 Khalfa S, 1997, ACTA OTO-LARYNGOL, V117, P192, DOI 10.3109/00016489709117767 MINGOUTAUD L, 1996, THESIS U BORDEAUX ODESS JS, 1972, LARYNGOSCOPE, V82, P1971, DOI 10.1288/00005537-197211000-00002 PIRILA T, 1991, SCAND AUDIOL, V20, P223, DOI 10.3109/01050399109045967 PIRILA T, 1992, AUDIOLOGY, V31, P150 PIRILA T, 1991, ACTA OTO-LARYNGOL, V111, P677, DOI 10.3109/00016489109138399 PROSSER S, 1988, BRIT J AUDIOL, V23, P481 Rajan R, 1992, NOISE INDUCED HEARIN, P429 SORRI M, 1983, P 4 INT C NOIS PUBL, P55 WARD WD, 1957, J ACOUST SOC AM, V29, P1289, DOI 10.1121/1.1908768 YLIKOSKI J, 1989, SCAND AUDIOL, V18, P161, DOI 10.3109/01050398909070741 NR 18 TC 25 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 119 EP 124 DI 10.1016/S0378-5955(98)00104-X PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500011 PM 9714580 ER PT J AU Yang, LC Pollak, GD AF Yang, LC Pollak, GD TI Features of ipsilaterally evoked inhibition in the dorsal nucleus of the lateral lemniscus SO HEARING RESEARCH LA English DT Article DE binaural processing; Inhibition; dorsal nucleus of the lateral lemniscus; mustached bat ID SUPERIOR OLIVARY COMPLEX; BATS INFERIOR COLLICULUS; CENTRAL AUDITORY-SYSTEM; VITRO BRAIN SLICE; BIG BROWN BAT; MOUSTACHE BAT; ASCENDING PROJECTIONS; PTERONOTUS-PARNELLII; RESPONSE PROPERTIES; MUSTACHE BAT AB The dorsal nucleus of the lateral lemniscus (DNLL) is a binaural nucleus whose neurons are excited by stimulation of the contralateral ear and inhibited by stimulation of the ipsilateral ear. Here we report on several features of the ipsilaterally evoked inhibition in 95 DNLL neurons of the mustache bat. These features include its dependence on intensity, its tuning and the types of stimuli that are capable of evoking it. Inhibition was studied by evoking discharges with the iontophoretic application of glutamate, and then evaluating the strength and duration of the inhibition of the glutamate evoked background activity produced by stimulation of the ipsilateral ear. Excitatory responses were evoked by stimulation of the contralateral ear with best frequency (BF) tone bursts. Glutamate evoked discharges could be inhibited in all DNLL neurons and the inhibition often persisted for periods ranging from 10 to 50 ms beyond the duration of the tone burst that evoked it. The duration of the persistent inhibition increased with stimulus intensity. Stimulus duration had little influence on the duration of the persistent inhibition. Signals as short as 2 ms suppressed discharges for as long as 30 ms after the signal had ended. The frequency tuning of the total period of inhibition and the period of persistent inhibition were both closely matched to the tuning evoked by stimulation of the contralateral ear. Moreover, the effectiveness of complex signals for evoking persistent inhibition, such as brief FM sweeps and sinusoidally amplitude and frequency modulated signals, was comparable to that of tone bursts at the neuron's excitatory BF, so long as the complex signal contained frequencies at or around the neuron's excitatory BF. We also challenged DNLL cells with binaural paradigms. In one experiment, we presented a relatively long (40 ms) BF tone burst of fixed intensity to the contralateral ear, which evoked a sustained discharge, and a shorter, 10 ms signal of variable intensity to the ipsilateral ear. As the intensity of the 10 ms ipsilateral signal increased, it generated progressively longer periods of persistent inhibition and thus the discharges were suppressed for periods far longer than the 10 ms duration of the ipsilateral signal. With interaural time disparities, ipsilateral signals that led contralateral signals evoked a persistent inhibition that suppressed the responses to the trailing contralateral signals for periods of a least 15 ms. This suggests that an initial binaural sound that favors the ipsilateral ear should suppress the responses to trailing sounds that normally would be excitatory if they were presented alone. We hypothesize a circuit that generates the persistent inhibition and discuss how the results with binaural signals support that hypothesis. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Univ Texas, Dept Zool, Austin, TX 78712 USA. RP Pollak, GD (reprint author), Univ Texas, Dept Zool, Austin, TX 78712 USA. EM gpollak@mail.utexas.edu CR ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 AITKIN LM, 1970, J NEUROPHYSIOL, V33, P421 BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207 BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P242 BRUGGE JF, 1970, J NEUROPHYSIOL, V33, P441 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 BUCKTHOUGHT AD, 1993, ABSTR ASS RES OT, P126 CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305 CAIRD D, 1983, EXP BRAIN RES, V52, P385 CANT NB, 1986, J COMP NEUROL, V247, P457, DOI 10.1002/cne.902470406 CAREY C L, 1971, Brain Behavior and Evolution, V4, P401, DOI 10.1159/000125448 CASSEDAY JH, 1988, J COMP NEUROL, V278, P313, DOI 10.1002/cne.902780302 COVEY E, 1991, J NEUROPHYSIOL, V66, P1080 COVEY E, 1993, J NEUROPHYSIOL, V69, P842 ERULKAR SD, 1972, PHYSIOL REV, V52, P237 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K Fu XW, 1997, NEUROSCIENCE, V78, P815, DOI 10.1016/S0306-4522(96)00580-5 Fu XW, 1997, J NEUROPHYSIOL, V78, P2235 Fubara BM, 1996, J COMP NEUROL, V369, P83 FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P59 GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409 GLENDENNING KK, 1988, J COMP NEUROL, V275, P261 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 HALPLEA S, 1994, J COMP PHYSIOL A, V174, P671 HARNISCHFEGER G, 1985, J NEUROPHYSIOL, V53, P89 HAVEY DC, 1980, ELECTROEN CLIN NEURO, V48, P249, DOI 10.1016/0013-4694(80)90313-2 HUFFMAN RF, 1995, J COMP NEUROL, V357, P532, DOI 10.1002/cne.903570405 HUTSON KA, 1991, J COMP NEUROL, V312, P105, DOI 10.1002/cne.903120109 Irvine D. R. F., 1986, PROGR SENSORY PHYSL, V7 Kelly J. B., 1997, Society for Neuroscience Abstracts, V23, P1549 Kidd SA, 1996, J NEUROSCI, V16, P7390 KLUG A, 1995, J NEUROPHYSIOL, V74, P1701 KUDO M, 1981, BRAIN RES, V221, P57, DOI 10.1016/0006-8993(81)91063-5 LI L, 1992, J NEUROSCI, V12, P4530 MARKOVITZ NS, 1994, HEARING RES, V73, P121, DOI 10.1016/0378-5955(94)90290-9 MARKOVITZ NS, 1993, HEARING RES, V71, P51, DOI 10.1016/0378-5955(93)90020-2 MERCHAN MA, 1994, J COMP NEUROL, V341, P1 Mills A. W., 1972, FOUNDATIONS MODERN A, V2, P303 MOORE JK, 1987, J COMP NEUROL, V260, P157, DOI 10.1002/cne.902600202 MOORE MJ, 1983, J NEUROSCI, V3, P237 Pape HC, 1996, ANNU REV PHYSIOL, V58, P299, DOI 10.1146/annurev.physiol.58.1.299 PARK TJ, 1993, J NEUROSCI, V13, P2050 Park TJ, 1997, J NEUROPHYSIOL, V77, P2863 PARK TJ, 1993, J NEUROSCI, V13, P5172 PARK TJ, 1994, J NEUROPHYSIOL, V72, P1080 Park TJ, 1996, J NEUROSCI, V16, P6554 PHILLIPS DP, 1982, HEARING RES, V8, P13, DOI 10.1016/0378-5955(82)90031-4 POLLAK GD, 1995, SPRINGER HDB AUDITOR, V11, P296 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 ROSS LS, 1988, J COMP NEUROL, V270, P488, DOI 10.1002/cne.902700403 ROSS LS, 1989, J NEUROSCI, V9, P2819 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B SAINTMARIE RL, 1989, J COMP NEUROL, V279, P382 SANES DH, 1988, J NEUROSCI, V8, P682 SCHULLER G, 1986, J NEUROSCI METH, V18, P339, DOI 10.1016/0165-0270(86)90022-1 SEMPLE MN, 1979, J NEUROPHYSIOL, V42, P1626 Shaw E. A. G., 1974, HDB SENSORY PHYSL, P455 SHNEIDERMAN A, 1987, J COMP NEUROL, V266, P519, DOI 10.1002/cne.902660406 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6 TSUCHITA.C, 1966, J NEUROPHYSIOL, V29, P684 VATER M, 1992, J COMP PHYSIOL A, V171, P541 VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205 VATER M, 1995, J COMP NEUROL, V358, P155, DOI 10.1002/cne.903580202 VATER M, 1995, J COMP NEUROL, V351, P632, DOI 10.1002/cne.903510411 WENSTRUP JJ, 1986, J NEUROSCI, V6, P921 WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302 WU SH, 1995, J NEUROPHYSIOL, V73, P794 WU SH, 1995, J NEUROPHYSIOL, V73, P780 YANG L, 1994, AUDIT NEUROSCI, V1, P1 YANG LC, 1994, J NEUROPHYSIOL, V71, P1999 YANG LC, 1994, J NEUROPHYSIOL, V71, P2014 Yang LC, 1997, J NEUROPHYSIOL, V77, P324 Yang LC, 1996, J COMP NEUROL, V373, P575, DOI 10.1002/(SICI)1096-9861(19960930)373:4<575::AID-CNE7>3.0.CO;2-Z ZOOK JM, 1985, J COMP NEUROL, V237, P307, DOI 10.1002/cne.902370303 ZOOK JM, 1987, J COMP NEUROL, V261, P347, DOI 10.1002/cne.902610303 ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103 NR 80 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 125 EP 141 DI 10.1016/S0378-5955(98)00088-4 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500012 PM 9714581 ER PT J AU Chen, GD AF Chen, GD TI Effects of stimulus duration on responses of neurons in the Chinchilla inferior colliculus SO HEARING RESEARCH LA English DT Article DE sound duration; pure tone; inferior colliculus; single unit; Chinchilla AB The effects of the stimulus duration (10 to 300 ms) on the responses of chinchilla inferior colliculus neurons to pure tones were studied in 41 units. The responses of the majority of the neurons (90%) were classified as sustained, onset, pause with onset peak and pause without onset peak response patterns. Three neurons were found to have response to the stimulus offset (offset response pattern). One neuron responded to the sound with the decrease of the spontaneous discharge rate (inhibitory response pattern). The responses restricted within the stimulus duration could be simply predicted from the peristimulus time histogram (PSTH) to the longer duration. The leading part of the PSTH to the longer stimulus duration resembled that to the shorter stimulus duration. The function of the spike number versus duration was correlated with the PSTH patterns. The response following the stimulus offset (including inhibitory response) could vary with the stimulus duration nonmonotonically and show a band-pass or band-reject property. Overall, four (about 10%) of the neurons could be regarded as duration-tuned units. The duration selectivity could be understood by the interaction between the ongoing and the offset process of the neurons. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Arizona State Univ, Dept Speech & Hearing Sci, Tempe, AZ 85287 USA. RP Chen, GD (reprint author), Univ Oklahoma, Hlth Sci Ctr, Coll Pharm, 1110 N Stonewall St,POB 26901, Oklahoma City, OK 73190 USA. CR CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 CHEN GD, 1997, ABSTR ASS RES OT, P758 COOLEY BC, 1992, THROMB RES, V67, P1, DOI 10.1016/0049-3848(92)90252-6 Covey E, 1996, J NEUROSCI, V16, P3009 Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 FENG AS, 1990, PROG NEUROBIOL, V34, P313, DOI 10.1016/0301-0082(90)90008-5 FENG AS, 1991, J NEUROPHYSIOL, V65, P424 Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050 He JF, 1997, J NEUROSCI, V17, P2615 KAUKORANTA E, 1989, HEARING RES, V41, P15, DOI 10.1016/0378-5955(89)90174-3 NARINS PM, 1980, BRAIN BEHAV EVOLUT, V17, P48, DOI 10.1159/000121790 POTTER HD, 1965, J NEUROPHYSIOL, V28, P1155 NR 12 TC 53 Z9 57 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1998 VL 122 IS 1-2 BP 142 EP 150 DI 10.1016/S0378-5955(98)00103-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 106UH UT WOS:000075168500013 PM 9714582 ER PT J AU Li, Y Evans, MS Faingold, CL AF Li, Y Evans, MS Faingold, CL TI In vitro electrophysiology of neurons in subnuclei of rat inferior colliculus SO HEARING RESEARCH LA English DT Article DE inferior colliculus; auditory system; central nucleus; spike firing; epilepsy ID EPILEPSY-PRONE RATS; AUDIOGENIC-SEIZURE SUSCEPTIBILITY; LATERAL LEMNISCUS; DORSAL NUCLEUS; BRAIN SLICE; INHIBITION; STIMULATION; GABA; PROJECTIONS; PHYSIOLOGY AB We compared membrane and synaptic properties of neurons in the three major subdivisions of inferior colliculus (IC), central nucleus (ICc, N = 18), external cortex (ICx, N = 38), and dorsal cortex (ICd, N = 31) of slices from rat IC; using intracellular neuronal recording. Three types of responses occurred in each IC subdivision in response to depolarizing currents: on-type (N = 20), rapidly-adapting (N = 11), and sustained firing (N = 56), which was most common. The on-type neurons have lower input resistances and shorter time constants, with wider and lower amplitude action potentials (APs) than sustained neurons. A calcium-mediated 'hump' was often evoked by depolarizing current pulses in ICd neurons (11 of 28), was infrequent in ICx, but was absent in ICc. ICx and ICe neurons often exhibited spontaneous repetitive spike firing, lower repetitive AP firing thresholds, and faster repetitive spike firing than ICd neurons. Calcium-mediated fast after-hyperpolarizations and spike frequency adaptation were regularly seen in IC. Neurons in ICx and ICd, but not ICc, had synaptic responses to stimulation of the collicular commissure (CoIC). In ICx, large epileptiform depolarizing events were often elicited by strong electrical stimulation of CoIC, which was not normally seen in ICd. These results indicate that ICx neurons exhibit a greater degree of synaptic excitability than neurons in ICe or ICd, which may contribute to the proposed role of ICx in pathological IC hyperexcitability. (C) 1998 Elsevier Science B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. So Illinois Univ, Sch Med, Dept Neurol, Springfield, IL 62794 USA. RP Faingold, CL (reprint author), So Illinois Univ, Sch Med, Dept Pharmacol, POB 19230, Springfield, IL 62794 USA. EM faingold@wpsmtp.siumed.edu CR AGHAJANIAN GK, 1989, SYNAPSE, V3, P331, DOI 10.1002/syn.890030406 Browning R.A., 1994, IDIOPATHIC GEN EPILE, P399 BROWNING RA, 1989, EPILEPSY RES, V4, P119, DOI 10.1016/0920-1211(89)90016-8 Caird D, 1991, NEUROBIOLOGY HEARING, P253 Chakravarty DN, 1998, BRAIN RES, V783, P102, DOI 10.1016/S0006-8993(97)01193-1 Chakravarty DN, 1997, BRAIN RES, V761, P263, DOI 10.1016/S0006-8993(97)00331-4 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 Condon CJ, 1996, J COMP PHYSIOL A, V178, P147 Covey E, 1996, J NEUROSCI, V16, P3009 DISTERHOFT JF, 1993, CLIN NEUROPHARMACOL, V16, pS12 DRUGA R, 1984, PHYSIOL BOHEMOSLOV, V33, P869 EVANS MS, 1994, EPILEPSY RES, V18, P97, DOI 10.1016/0920-1211(94)90002-7 FAINGOLD CL, 1993, EXP NEUROL, V119, P198, DOI 10.1006/exnr.1993.1021 FAINGOLD CL, 1991, EXP NEUROL, V113, P354, DOI 10.1016/0014-4886(91)90026-9 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K FAINGOLD CL, 1986, LIFE SCI, V39, P869, DOI 10.1016/0024-3205(86)90368-1 FAYELUND H, 1986, ANAT EMBRYOL, V175, P35, DOI 10.1007/BF00315454 FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050 GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0 Gerken GM, 1996, HEARING RES, V97, P75 GOULD EM, 1995, BRAIN RES, V698, P62, DOI 10.1016/0006-8993(95)00813-6 GRILLNER S, 1991, ANNU REV NEUROSCI, V14, P169, DOI 10.1146/annurev.neuro.14.1.169 Hille B., 1992, IONIC CHANNELS EXCIT, V2nd Kwon J, 1997, EPILEPSY RES, V27, P89, DOI 10.1016/S0920-1211(97)01024-3 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LI L, 1992, J NEUROSCI, V12, P4530 Li Y., 1993, Society for Neuroscience Abstracts, V19, P536 LI Y, 1994, BRAIN RES, V660, P232, DOI 10.1016/0006-8993(94)91294-7 MALMIERCA MS, 1995, ANAT EMBRYOL, V191, P343, DOI 10.1007/BF00534687 MANIRA A, 1994, J NEUROPHYSIOL, V72, P1852 MCCORMICK DA, 1990, SYNAPTIC ORG BRAIN, P32 MCCOWN TJ, 1987, EPILEPSIA, V28, P234, DOI 10.1111/j.1528-1157.1987.tb04213.x MCCOWN TJ, 1984, EXP NEUROL, V86, P527, DOI 10.1016/0014-4886(84)90087-6 MCCOWN TJ, 1991, BRAIN RES, V567, P25, DOI 10.1016/0006-8993(91)91431-Y MILBRANDT JC, 1994, NEUROBIOL AGING, V15, P699, DOI 10.1016/0197-4580(94)90051-5 Oliver D. L., 1991, NEUROBIOLOGY HEARING, P195 Palombi PS, 1996, HEARING RES, V100, P41, DOI 10.1016/0378-5955(96)00115-3 Paxinos G., 1982, RAT BRAIN STEREOTAXI Pedemonte M, 1997, BRAIN RES, V759, P24, DOI 10.1016/S0006-8993(97)00123-6 PIERSON MG, 1989, BRAIN RES, V486, P381, DOI 10.1016/0006-8993(89)90528-3 PRINCE DA, 1985, EPILEPSIA, V26, pS3, DOI 10.1111/j.1528-1157.1985.tb05721.x RIBAK CE, 1995, ANAT EMBRYOL, V191, P279, DOI 10.1007/BF00534681 Ribak C E, 1994, J Hirnforsch, V35, P303 RICE ME, 1991, NEUROSCI LETT, V132, P141, DOI 10.1016/0304-3940(91)90287-4 SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308 SMITH PH, 1992, J NEUROSCI, V12, P3700 Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0 TOKUNAGA A, 1984, J HIRNFORSCH, V25, P461 WADA JA, 1970, EXP NEUROL, V28, P326, DOI 10.1016/0014-4886(70)90240-2 Wagner T, 1996, EUR J NEUROSCI, V8, P1231, DOI 10.1111/j.1460-9568.1996.tb01291.x WAGNER T, 1994, NEUROREPORT, V6, P89, DOI 10.1097/00001756-199412300-00024 YAMAUCHI R, 1989, NEUROSCI RES, V6, P446, DOI 10.1016/0168-0102(89)90006-0 NR 52 TC 39 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 1 EP 10 DI 10.1016/S0378-5955(98)00066-5 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800001 PM 9682803 ER PT J AU Kral, A Hartmann, R Mortazavi, D Klinke, R AF Kral, A Hartmann, R Mortazavi, D Klinke, R TI Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents SO HEARING RESEARCH LA English DT Article DE cochlear implant; electrical stimulation; auditory single fiber; spatial resolution; lateral inhibition ID SCALA TYMPANI ELECTRODES; CURRENT DISTRIBUTIONS; STIMULATION; NERVE; CAT; PATTERNS; FABRICATION; PROSTHESIS; FIBERS; DESIGN AB This paper investigates the spatial resolution of electrical intracochlear stimulation in order to enable further refinement of cochlear implants. For this purpose electrical potential distributions around a conventional human intracochlear electrode (NUCLEUS-22) were measured in a tank, in cat cadaver cochleae and in living cat cochleae. Potential gradients were calculated where of importance. The values were compared to spatial tuning curves from cat primary auditory afferents in electrical mono-, bi-, and various tripolar stimulation modes. Finally, a lumped element model was developed to elucidate the single fiber data. Tank potential measurements show the principal features of the different stimulation modes but are not sufficient to explain all the features of experimental data from single fibers. Intracochlear potential measurements indicate an increase in spatial resolution in an apical direction. The single fiber data also confirm that a tripolar stimulus configuration provides significantly better spatial resolution than any other stimulation mode presently in use. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Physiol Inst 3, D-60590 Frankfurt, Germany. Inst Pathol Physiol, SK-81108 Bratislava, Slovakia. RP Klinke, R (reprint author), Physiol Inst 3, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. CR ASUKUMA S, 1978, HEARING RES, V1, P25 Bekesy G., 1960, EXPT HEARING BLACK RC, 1981, IEEE T BIO-MED ENG, V28, P721, DOI 10.1109/TBME.1981.324668 BLACK RC, 1980, J ACOUST SOC AM, V67, P868, DOI 10.1121/1.383966 CLARK GM, 1984, J MED ENG TECHNOL, V8, P3, DOI 10.3109/03091908409032065 Evans E. F., 1975, HDB SENSORY PHYSL, V5, P1 Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55 FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q Hartmann R., 1990, COCHLEAR IMPLANTS MO, P135 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 Hartmann R, 1990, Acta Otolaryngol Suppl, V469, P128 HATSUSHIKA S, 1990, ANN OTO RHINOL LARYN, V99, P871 HOCHMAIRDESOYER IJ, 1983, ANN NY ACAD SCI, V405, P173, DOI 10.1111/j.1749-6632.1983.tb31630.x IFUKUBE T, 1987, IEEE T BIO-MED ENG, V34, P883, DOI 10.1109/TBME.1987.326009 IFUKUBE T, 1987, IEEE T BIO-MED ENG, V34, P876, DOI 10.1109/TBME.1987.326008 Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549 KASPER A, 1991, ANN OTO RHINOL LARYN, V100, P812 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LOEB GE, 1983, MED BIOL ENG COMPUT, V21, P241, DOI 10.1007/BF02478489 LOEB GE, 1997, HIGHLY SELECTIVE COC, P89 Merzenich M.M., 1977, BIOMEDICAL ENG INSTR, P321 MORTAZAVI D, 1995, THESIS JW GOETHE U F OLEARY SJ, 1985, HEARING RES, V18, P273, DOI 10.1016/0378-5955(85)90044-9 PARKINS CW, 1987, HEARING RES, V31, P267, DOI 10.1016/0378-5955(87)90196-1 PATRICK JF, 1991, EAR HEARING, V12, pS3, DOI 10.1097/00003446-199108001-00002 RATTAY F, 1989, IEEE T BIO-MED ENG, V36, P676, DOI 10.1109/10.32099 RANCK JB, 1975, BRAIN RES, V98, P417, DOI 10.1016/0006-8993(75)90364-9 RUDDY HA, 1995, MED BIOL ENG COMPUT, V33, P793, DOI 10.1007/BF02523011 SCHINDLER RA, 1993, AM J OTOL, V14, P263 SIMMONS BF, 1972, ANN OTOL, V81, P731 SIMMONS FB, 1966, ARCHIV OTOLARYNGOL, V84, P2 SPELMAN FA, 1982, ANN OTOL RHINOL S98, V91, P1 Spoendlin H, 1988, PHYSL EAR, P201 STRELIOF.D, 1973, J ACOUST SOC AM, V54, P620, DOI 10.1121/1.1913642 SUESSERMAN MF, 1993, IEEE T BIO-MED ENG, V40, P237, DOI 10.1109/10.216407 Suesserman M.F., 1992, THESIS U WASHINGTON SUESSERMAN MF, 1991, IEEE T BIO-MED ENG, V38, P401, DOI 10.1109/10.81558 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 NR 39 TC 134 Z9 137 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 11 EP 28 DI 10.1016/S0378-5955(98)00061-6 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800002 PM 9682804 ER PT J AU Khalfa, S Micheyl, C Veuillet, E Collet, L AF Khalfa, S Micheyl, C Veuillet, E Collet, L TI Peripheral auditory lateralization assessment using TEOAEs SO HEARING RESEARCH LA English DT Article DE auditory asymmetry; medial olivocochlear system; TEOAE ID MEDIAL OLIVOCOCHLEAR SYSTEM; CONTRALATERAL ACOUSTIC STIMULATION; OTOACOUSTIC EMISSIONS; HUMANS; NOISE; TONES AB Previous studies indicate a left-right asymmetry in the function of peripheral auditory system. Contralateral acoustic suppression of TEOAEs (transient evoked otoacoustic emissions) enables assessment of medial olivocochlear efferent system functioning, and has demonstrated that this system is more effective in the right than in the left ear. Moreover, TEOAE amplitudes are lower in the left than in the right ear. The aim of the present experiment was to verify firstly the absence of a relationship between medial efferent system asymmetry and TEOAE amplitude asymmetry, and secondly to study TEOAE input/output function slopes. There was no link between the asymmetries in TEOAE amplitude and in the medial efferent system functioning. Further, as previously shown, the medial olivocochlear system increased the TEOAE input/output function slopes. These TEOAE input/output function slopes seem to be consistent factors in peripheral asymmetry since the slope is lower in the right than in the left ear. Moreover, the lower the TEOAE amplitudes, the greater the TEOAE slopes. The slope asymmetry of the two ears could correspond to earlier saturation or a lower augmentation ability of the TEOAE response in the right ear, where the TEOAE amplitude is higher. This asymmetry in growth slopes reinforces the notion of peripheral auditory lateralization. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Hop Edouard Herriot, CNRS, UPRESA 5020, F-69003 Lyon, France. RP Khalfa, S (reprint author), Hop Edouard Herriot, CNRS, UPRESA 5020, Pavillon U,3 Pl Arsonval, F-69003 Lyon, France. CR BERLIN CI, 1994, OTOLARYNG HEAD NECK, V110, P3, DOI 10.1016/S0194-5998(94)70788-X BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 Brown S, 1997, PERCEPT PSYCHOPHYS, V59, P442, DOI 10.3758/BF03211910 CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909 COLLET L, 1992, AUDIOLOGY, V31, P1 COLLET L, 1990, HEARING RES, V43, P252 EAGLES EM, 1963, LARYNGOSCOPE S, P1 GESCHWIN.N, 1968, SCIENCE, V161, P186, DOI 10.1126/science.161.3837.186 Hécaen H, 1971, Cortex, V7, P19 JANCKE L, 1992, NEUROPSYCHOLOGIA, V30, P941, DOI 10.1016/0028-3932(92)90047-P KAWASE T, 1993, J NEUROPHYSIOL, V70, P2519 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Khalfa S, 1997, ACTA OTO-LARYNGOL, V117, P192, DOI 10.3109/00016489709117767 Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008 KIMURA D, 1961, CAN J PSYCHOLOGY, V15, P166, DOI 10.1037/h0083219 MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K Micheyl C, 1996, J ACOUST SOC AM, V99, P1604, DOI 10.1121/1.414734 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 PROBST R, 1993, PROG BRAIN RES, V97, P91 Veuillet E, 1996, HEARING RES, V93, P128, DOI 10.1016/0378-5955(95)00212-X VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 NR 21 TC 32 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 29 EP 34 DI 10.1016/S0378-5955(98)00062-8 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800003 PM 9682805 ER PT J AU Konrad-Martin, DL Rubsamen, R Dorrscheidt, GJ Rubel, EW AF Konrad-Martin, DL Rubsamen, R Dorrscheidt, GJ Rubel, EW TI Development of single- and two-tone responses of anteroventral cochlear nucleus neurons in gerbil SO HEARING RESEARCH LA English DT Article DE development; cochlear nuclear complex; two-tone suppression ID AUDITORY-NERVE FIBERS; 2-TONE RATE SUPPRESSION; HAIR CELL LESIONS; BASILAR-MEMBRANE; FREQUENCY-SELECTIVITY; OTOACOUSTIC EMISSIONS; MONGOLIAN GERBIL; MAMMALIAN COCHLEA; NEONATAL GERBIL; TUNING CURVES AB Responses of anteroventral cochlear nucleus (AVCN) neurons in developing gerbils were obtained to single-tone stimuli; and two-tone stimuli elicited by best frequency probes presented over a range of intensities. Neurons displayed Type I, Type I/III, and Type III receptive field patterns. Best frequencies ranged from 1.5 to 10.0 kHz. Two-tone suppression (2TS) was first observed in 5 of 16 neurons examined at 14 dab, and in all neurons examined in gerbils aged 15 to 60 dab. Suppression areas grew larger, and discharge rate reductions became greater with age. Features of the two-tone responses that were highly correlated with single-tone responses across age groups include maximum rate reductions and suppression area thresholds. The intensity level of the CF probe-tone also influenced these features of 2TS. Maximum rate reductions to below spontaneous rate levels of activity were common across age groups. Results suggest that the cochlear amplifier is present and fundamentally adult-like by 15 dab for the regions of the cocklea pr coding the mid frequencies in gerbil. Over the subsequent week, contributions to the developing two-tone responses by the cochlear amplifier increase slightly. Two-tone responses are influenced by central inhibitory mechanisms as early as 14 dab. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Washington, Sch Med, Dept Otolaryngol Head & Neck Surg, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98195 USA. RP Rubel, EW (reprint author), Univ Washington, Sch Med, Dept Otolaryngol Head & Neck Surg, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA. EM rubel@u.washington.edu CR ABBAS PJ, 1976, J ACOUST SOC AM, V59, P112, DOI 10.1121/1.380841 ARJMAND E, 1988, HEARING RES, V32, P93, DOI 10.1016/0378-5955(88)90149-9 BOSHER SK, 1971, J PHYSIOL-LONDON, V212, P739 Cooper NP, 1996, J ACOUST SOC AM, V99, P3087, DOI 10.1121/1.414795 COSTALUPES JA, 1987, HEARING RES, V26, P155, DOI 10.1016/0378-5955(87)90107-9 Dallos P, 1980, PSYCHOPHYSICAL PHYSL, P242 DELGUTTE B, 1990, HEARING RES, V49, P225, DOI 10.1016/0378-5955(90)90106-Y ECHTELER SM, 1989, NATURE, V341, P147, DOI 10.1038/341147a0 Evans E. F., 1974, FACTS MODELS HEARING, P118 EVANS EF, 1973, EXP BRAIN RES, V17, P428 EVANS EF, 1975, J PHYSIOL-LONDON, V252, pP60 EVANS EF, 1995, ADV HEARING RES, P233 FAHEY PF, 1985, J ACOUST SOC AM, V77, P599, DOI 10.1121/1.391878 FERNANDEZ C, 1974, ACTA OTOLARYNGOL, V78, P172 FINCK A, 1972, J COMP PHYSIOL PSYCH, V78, P375, DOI 10.1037/h0032373 FITZAKERLEY J L, 1991, Society for Neuroscience Abstracts, V17, P304 FITZAKERLEY JL, 1994, HEARING RES, V77, P135, DOI 10.1016/0378-5955(94)90261-5 FITZAKERLEY JL, 1994, HEARING RES, V77, P150, DOI 10.1016/0378-5955(94)90262-3 GEISLER CD, 1990, HEARING RES, V44, P241, DOI 10.1016/0378-5955(90)90084-3 GIBSON DJ, 1985, J NEUROPHYSIOL, V53, P940 GREENWOOD DD, 1976, J ACOUST SOC AM, V59, P607, DOI 10.1121/1.380906 HE DZZ, 1994, HEARING RES, V78, P77, DOI 10.1016/0378-5955(94)90046-9 Henley C, 1989, HEARING RES, V43, P141 HUANG JM, 1995, HEARING RES, V88, P14, DOI 10.1016/0378-5955(95)00094-K JAVEL E, 1978, J ACOUST SOC AM, V63, P1093, DOI 10.1121/1.381817 LENOIR M, 1987, HEARING RES, V29, P265, DOI 10.1016/0378-5955(87)90173-0 MCGUIRT JP, 1995, HEARING RES, V84, P52, DOI 10.1016/0378-5955(95)00015-V MILLS DM, 1994, AUDIT NEUROSCI, V1, P77 Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 MILLS JH, 1983, HEARING RES THEORY, V2, P233 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9 NORTON SJ, 1991, HEARING RES, V51, P73, DOI 10.1016/0378-5955(91)90008-W PALMER AR, 1982, HEARING RES, V7, P305, DOI 10.1016/0378-5955(82)90042-9 PATUZZI RB, 1988, PHYSIOL REV, V68, P1010 PFEIFFER RR, 1966, SCIENCE, V154, P667, DOI 10.1126/science.154.3749.667 PRIJS VF, 1989, HEARING RES, V42, P73, DOI 10.1016/0378-5955(89)90118-4 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2 RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981 ROBERTSON D, 1976, NATURE, V259, P477, DOI 10.1038/259477a0 ROMAND R, 1983, NEUROSCI LETT, V35, P271, DOI 10.1016/0304-3940(83)90329-4 ROSE JE, 1974, J NEUROPHYSIOL, V37, P218 Rubel E.W., 1978, HDB SENSORY PHYSL, V9, P135 RUBSAMEN R, 1995, J NEUROPHYSIOL, V74, P1628 RUBSAMEN R, 1998, PSYCHOPHYSICAL PHYSL, P352 RUBSAMEN R, 1992, J COMP PHYSL, V165, P755 Rubsamen R., 1998, DEV AUDITORY SYSTEM, P193 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 SANES DH, 1988, PHYSL EAR, P431 SANES DH, 1989, J COMP NEUROL, V279, P436, DOI 10.1002/cne.902790308 SCHMIEDT RA, 1982, HEARING RES, V7, P335, DOI 10.1016/0378-5955(82)90044-2 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1390 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1367 SOKOLOWSKI BHA, 1989, HEARING RES, V41, P115, DOI 10.1016/0378-5955(89)90005-1 WALSH EJ, 1990, AM J OTOLARYNG, V11, P23, DOI 10.1016/0196-0709(90)90166-S Walsh Edward J., 1992, P161 WOOLF NK, 1984, HEARING RES, V13, P131 WOOLF NK, 1986, AM J PHYSIOL, V250, P493 WOOLF NK, 1985, DEV BRAIN RES, V17, P131, DOI 10.1016/0165-3806(85)90138-5 YATES GK, 1992, TRENDS NEUROSCI, V15, P57, DOI 10.1016/0166-2236(92)90027-6 Young E.D, 1984, HEARING SCI, P423 NR 64 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 35 EP 52 DI 10.1016/S0378-5955(98)00063-X PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800004 PM 9682806 ER PT J AU Ferber-Viart, C Preckel, MP Dubreuil, C Banssillon, V Duclaux, R AF Ferber-Viart, C Preckel, MP Dubreuil, C Banssillon, V Duclaux, R TI Effect of anesthesia on transient evoked otoacoustic emissions in humans: a comparison between propofol and isoflurane SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; anesthesia; isoflurane; propofol; blood pressure ID STIMULATED ACOUSTIC EMISSIONS; DISTORTION PRODUCTS; PHYSIOLOGICAL VULNERABILITY; COCHLEAR FUNCTION; GERBIL; RABBIT; AUTOREGULATION; POTENTIALS AB The influence of general anesthesia (GA) on auditory brainstem responses (ABRs) has been widely studied in humans whereas few studies have been devoted as yet to its effect on cochlear micromechanical properties. This study was aimed at evaluating: (1) the effect of GA on transient evoked otoacoustic emissions (TEOAEs) in humans (n = 10), and (2) to compare the effects induced by two different anesthetic agents: propofol (n=5) and isoflurane (n=5). The TEOAEs were continuously monitored together with hemodynamic patterns describing Various measures of blood pressure. (I) The GA induced a decrease in TEOAE amplitude and TEOAE amplitude was significantly correlated with the hemodynamic patterns. (2) Both anesthetic agents were responsible for a decrease in TEOAE during the first 20 min of recording. Under propofol, TEOAE amplitude increased after 20 min whereas under isoflurane TEOAEs continued to decrease. Under propofol, TEOAE amplitude was correlated with blood pressure changes in a highly significant manner, whereas under isoflurane TEOAE levels were completely independent of such hemodynamic patterns. These results infer that (1) the GA induced a decrease in TEOAE amplitude, and that (2) TEOAE changes induced by propofol could depend on the concomitant hemodynamic changes whereas isoflurane could be responsible for TEOAE changes depending on both, hemodynamic changes and its own pharmacological properties. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Ctr Hosp Lyon Sud, Federat Explorat Audiovestibulaires, F-69495 Pierre Benite, France. Hospices Civils Lyon, Serv Anesthesie Reanimat, F-69495 Pierre Benite, France. Ctr Hosp Lyon Sud, Serv Explorat Neurosesorielles, F-69495 Pierre Benite, France. Univ Lyon 1, Lab Neurosci & Syst Sensoriels, Upresa 5020, F-69495 Pierre Benite, France. RP Ferber-Viart, C (reprint author), Ctr Hosp Lyon Sud, Serv Explorat Neurosesorielles, Pav 3-A, F-69495 Pierre Benite, France. CR BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 BROWN JN, 1994, AM J PHYSIOL, V266, pH458 CANE MA, 1992, SCAND AUDIOL, V21, P173, DOI 10.3109/01050399209045999 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 CHASSARD D, 1989, BRIT J ANAESTH, V62, P522, DOI 10.1093/bja/62.5.522 DeBeer NAM, 1996, BRIT J ANAESTH, V76, P685 ENGDAHL B, 1994, SCAND AUDIOL, V23, P99, DOI 10.3109/01050399409047492 ENNS J, 1993, CAN J ANAESTH, V39, pA43 FerberViart C, 1995, HEARING RES, V91, P202, DOI 10.1016/0378-5955(95)00193-X FROEHLICH P, 1994, HEARING RES, V75, P184, DOI 10.1016/0378-5955(94)90069-8 Harel N, 1997, HEARING RES, V110, P25, DOI 10.1016/S0378-5955(97)00061-0 HARRIS FP, 1991, AUDIOLOGY, V30, P135 HAUSER R, 1992, ANN OTO RHINOL LARYN, V101, P994 HOFFMAN WE, 1991, ANESTH ANALG, V73, P753 HUY TB, 1990, DONNEES ACTUELLES PH, P179 Kemp D T, 1986, Scand Audiol Suppl, V25, P71 KEMP DT, 1990, EAR HEARING, V11, P93 KETTEMBEIL S, 1995, HEARING RES, V86, P47, DOI 10.1016/0378-5955(95)00053-7 LLYODTHOMAS AR, 1990, J ANAESTH, V65, P306 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 MANNINEN PH, 1985, ANESTH ANALG, V64, P43 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 Plourde G, 1996, ANESTH ANALG, V82, P75, DOI 10.1097/00000539-199601000-00013 PRECKEL MP, 1997, BRIT J ANAESTH, V78, P19 REBILLARD G, 1992, HEARING RES, V62, P142, DOI 10.1016/0378-5955(92)90179-Q Ren TY, 1995, HEARING RES, V92, P30, DOI 10.1016/0378-5955(95)00192-1 SAMRA SK, 1984, ANESTHESIOLOGY, V61, P261, DOI 10.1097/00000542-198409000-00005 SCARFONE E, 1991, HEARING RES, V54, P247, DOI 10.1016/0378-5955(91)90119-T SCHMIEDT RA, 1981, HEARING RES, V5, P295, DOI 10.1016/0378-5955(81)90053-8 SCHMIEDT RA, 1986, ABSTR ASS RES OTOLAR, V9, P112 STARR A, 1972, J ACOUST SOC AM, V51, P1367, DOI 10.1121/1.1912985 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 VELASCO M, 1984, NEUROPHARMACOLOGY, V23, P359, DOI 10.1016/0028-3908(84)90199-0 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 Zheng YL, 1997, HEARING RES, V112, P167, DOI 10.1016/S0378-5955(97)00118-4 NR 36 TC 12 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 53 EP 61 DI 10.1016/S0378-5955(98)00064-1 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800005 PM 9682807 ER PT J AU Parker, MS Larroque, ML Campbell, JM Bobbin, RP Deininger, PL AF Parker, MS Larroque, ML Campbell, JM Bobbin, RP Deininger, PL TI Novel variant of the P2X2 ATP receptor from the guinea pig organ of Corti SO HEARING RESEARCH LA English DT Article DE in situ hybridization; sequence; mRNA; cDNA; splice variant; guinea pig ID GATED ION CHANNELS; OUTER HAIR-CELLS; P-2X RECEPTOR; EXTRACELLULAR ATP; PURINERGIC RECEPTORS; CATION CHANNELS; COCHLEA; PURINOCEPTOR; LOCALIZATION; NEURONS AB ATP functions as a neurotransmitter and a neuromodulator in various tissues by acting on metabotropic (P2Y) and ionotropic (P2X) receptors. Evidence suggests that ATP activates P2X receptors on several cell types in the organ of Corti of guinea pig including outer hair cells (OHCs), Deiters' cells, Hensen's cells, pillar cells and inner hair cells (IHCs). Determining the sequence and structure of P2X receptors in guinea pig organ of Corti is important for understanding the function of ATP in the cochlea. We screened a guinea pig organ of Corti cDNA library for P2X2. ATP receptors using rat P2X2 cDNA as a probe. We sequenced three P2X2 variants which were found to be abundant in this library. One is a novel P2X2 isoform (P2X2-3) created by a retained intron coding for an additional 27 amino acids (81 bp) in the putative extracellular domain. We have also sequenced a variant (P2X2-2) that lacks both the 81-bp sequence and a 192-bp sequence in the 3' intracellular domain. A third variant (P2X2-1) contains the intracellular 192-bp sequence but not the extracellular 81-bp sequence found in P2X2-3. The multiple transcripts arise from alternative intron and exon splicing events. In situ hybridization with a probe common to the three variants localized P2X2 to many of the cells of the organ of Corti. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Louisiana State Univ, Med Ctr, Kresge Hearing Res Lab S, Dept Otorhinolaryngol & Biocommun, New Orleans, LA 70112 USA. Louisiana State Univ, Med Ctr, Dept Biochem & Mol Biol, New Orleans, LA 70112 USA. RP Bobbin, RP (reprint author), Louisiana State Univ, Med Ctr, Kresge Hearing Res Lab S, Dept Otorhinolaryngol & Biocommun, 2020 Gravier St,Suite A, New Orleans, LA 70112 USA. EM rbobbi@1sumc.edu CR BEAN BP, 1992, TRENDS PHARMACOL SCI, V13, P87, DOI 10.1016/0165-6147(92)90032-2 BO XN, 1995, FEBS LETT, V375, P129, DOI 10.1016/0014-5793(95)01203-Q BOBBIN RP, 1978, ANN OTO RHINOL LARYN, V87, P185 BOBBIN RP, 1997, IN PRESS HEAR RES BRAKE AJ, 1994, NATURE, V371, P519, DOI 10.1038/371519a0 Brandle U, 1997, FEBS LETT, V404, P294, DOI 10.1016/S0014-5793(97)00128-2 Buell G, 1996, EMBO J, V15, P55 BURNSTOCK G, 1985, GEN PHARMACOL, V16, P433, DOI 10.1016/0306-3623(85)90001-1 BURNSTOCK G, 1991, NUCLEOS NUCLEOT, V10, P917, DOI 10.1080/07328319108047230 BURNSTOCK G, 1990, ANN NY ACAD SCI, V603, P1 CHEN C, 1998, IN PRESS HEAR RES CHEN C, 1995, HEARING RES, V88, P215, DOI 10.1016/0378-5955(95)00115-K CHEN C, 1998, IN PRESS BR J PHARM Chvatchko Y, 1996, IMMUNITY, V5, P275, DOI 10.1016/S1074-7613(00)80322-2 Collo G, 1996, J NEUROSCI, V16, P2495 Dubyak GR, 1993, AM J PHYSIOL, V265, pC577 DULON D, 1993, CELL CALCIUM, V14, P245, DOI 10.1016/0143-4160(93)90071-D DULON D, 1991, NEUROREPORT, V2, P69, DOI 10.1097/00001756-199102000-00001 EVANS RJ, 1992, NATURE, V357, P503, DOI 10.1038/357503a0 GarciaGuzman M, 1996, FEBS LETT, V388, P123, DOI 10.1016/0014-5793(96)00499-1 Hansen MA, 1997, BIOCHEM BIOPH RES CO, V236, P670, DOI 10.1006/bbrc.1997.6815 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 HOUSLEY GD, 1995, BIOCHEM BIOPH RES CO, V212, P501, DOI 10.1006/bbrc.1995.1998 Housley GD, 1997, AUDIOL NEURO-OTOL, V2, P92 JAHR CE, 1983, NATURE, V304, P730, DOI 10.1038/304730a0 KIDD EJ, 1995, MOL PHARMACOL, V48, P569 KRISTAL SM, 1983, NEUROSCI LETT, V35, P41 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 KUJAWA SG, 1994, HEARING RES, V78, P181, DOI 10.1016/0378-5955(94)90024-8 LEWIS C, 1995, NATURE, V377, P432, DOI 10.1038/377432a0 LIU J, 1995, AUDIT NEUROSCI, V1, P331 MOCKETT BG, 1995, HEARING RES, V84, P177, DOI 10.1016/0378-5955(95)00024-X NAKAGAWA T, 1990, J NEUROPHYSIOL, V63, P1068 North RA, 1996, CIBA F SYMP, V198, P105 North RA, 1996, CIBA F SYMP, V198, P91 NUTTLE LC, 1994, J BIOL CHEM, V269, P13988 Safieddine S, 1996, MOL BRAIN RES, V40, P127 Seguela P, 1996, J NEUROSCI, V16, P448 Simon J, 1997, MOL PHARMACOL, V52, P237 Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2 Soto F, 1996, P NATL ACAD SCI USA, V93, P3684, DOI 10.1073/pnas.93.8.3684 Sugasawa M, 1996, J PHYSIOL-LONDON, V491, P707 SUPRENANT A, 1995, TRENDS NEUROSCI, V18, P224 Surprenant A, 1996, SCIENCE, V272, P735, DOI 10.1126/science.272.5262.735 SUZUKI M, 1995, HEARING RES, V86, P68, DOI 10.1016/0378-5955(95)00055-9 VALERA S, 1994, NATURE, V371, P516, DOI 10.1038/371516a0 Valera S, 1995, RECEPTOR CHANNEL, V3, P283 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 Werner P, 1996, P NATL ACAD SCI USA, V93, P15485, DOI 10.1073/pnas.93.26.15485 WILCOX ER, 1992, HEARING RES, V62, P124, DOI 10.1016/0378-5955(92)90208-5 NR 50 TC 47 Z9 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 62 EP 70 DI 10.1016/S0378-5955(98)00065-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800006 PM 9682808 ER PT J AU Morand, N Veuillet, E Gagnieu, MC Lemoine, P Collet, L AF Morand, N Veuillet, E Gagnieu, MC Lemoine, P Collet, L TI Benzodiazepines alter cochleo-cochlear loop in humans SO HEARING RESEARCH LA English DT Article DE gamma-aminobutyric acid; outer hair cell; olivocochlear efferent system; otoacoustic emission ID OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; OTOACOUSTIC EMISSIONS; INFERIOR COLLICULUS; MICROMECHANICAL PROPERTIES; ELECTRICAL-STIMULATION; OLIVOCOCHLEAR NEURONS; AUDITORY PATHWAY; EFFERENT SYSTEM; GABA RECEPTORS AB By using otoacoustic emission, we looked for change in outer hair cell (OHC) motile activity and medial olivocochlear (MOC) system inhibition due to benzodiazepine administration, a drug that is known to produce a pharmacological effect by interacting with GABAergic inhibitory neurotransmission. No effect was observed on OHC motile activity, in contrast benzodiazepines decreased MOC system effectiveness suggesting the existence of GABAergic fibers projecting onto the MOC system. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Hop Edouard Herriot, Lab Neurosci & Syst Sensoriels, F-69003 Lyon, France. Hop Edouard Herriot, Pharmacol Lab, F-69003 Lyon, France. Unite Clin Psychiat Biol, Bron, France. RP Veuillet, E (reprint author), Hop Edouard Herriot, Lab Neurosci & Syst Sensoriels, 3 Pl Arsonval,Pavillon U, F-69003 Lyon, France. EM veuillet@olfac.univ-lyon1.fr CR COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E COLLET L, 1992, AUDIOLOGY, V31, P1 DELB W, 1994, LARYNGO RHINO OTOL, V73, P315, DOI 10.1055/s-2007-997138 DOLAN DF, 1988, J ACOUST SOC AM, V83, P1081, DOI 10.1121/1.396052 DOLAN D F, 1988, Society for Neuroscience Abstracts, V14, P650 Evans MG, 1996, HEARING RES, V101, P1, DOI 10.1016/S0378-5955(96)00107-4 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FEX J, 1984, HEARING RES, V15, P123, DOI 10.1016/0378-5955(84)90043-1 FEX J, 1986, BRAIN RES, V366, P106, DOI 10.1016/0006-8993(86)91285-0 Fubara BM, 1996, J COMP NEUROL, V369, P83 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 HAUSER R, 1992, ANN OTO RHINOL LARYN, V101, P994 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 JUIZ JM, 1994, BRAIN RES, V639, P193, DOI 10.1016/0006-8993(94)91730-2 KEMP DT, 1990, EAR HEARING, V11, P93 KIRK DL, 1993, HEARING RES, V67, P20, DOI 10.1016/0378-5955(93)90228-S MERCHANPEREZ A, 1990, INT J DEV NEUROSCI, V8, P613, DOI 10.1016/0736-5748(90)90053-5 Olfield R. C., 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 PLINKERT PK, 1989, ARCH OTO-RHINO-LARYN, V246, P417, DOI 10.1007/BF00464301 PLINKERT PK, 1993, EUR ARCH OTO-RHINO-L, V250, P351 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 RAJAN R, 1990, BRAIN RES, V506, P192, DOI 10.1016/0006-8993(90)91251-B RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 RYAN AF, 1992, J COMP NEUROL, V326, P337, DOI 10.1002/cne.903260303 SCHWARTZ IR, 1983, HEARING RES, V9, P185, DOI 10.1016/0378-5955(83)90027-8 SUNEJA SK, 1995, J NEUROCHEM, V64, P147 Sziklai I, 1996, HEARING RES, V95, P87, DOI 10.1016/0378-5955(96)00026-3 THOMPSON GC, 1986, BRAIN RES, V372, P72, DOI 10.1016/0006-8993(86)91459-9 VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205 VELLUTI R, 1986, ELECTROEN CLIN NEURO, V64, P556, DOI 10.1016/0013-4694(86)90194-X VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 Warr BW, 1992, MAMMALIAN AUDITORY P, P410 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 Wynne B, 1995, J CHEM NEUROANAT, V9, P289, DOI 10.1016/0891-0618(95)00095-X NR 34 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 71 EP 76 DI 10.1016/S0378-5955(98)00068-9 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800007 PM 9682809 ER PT J AU Anken, RH Werner, K Ibsch, M Rahmann, H AF Anken, RH Werner, K Ibsch, M Rahmann, H TI Fish inner ear otolith size and bilateral asymmetry during development SO HEARING RESEARCH LA English DT Article DE maximum radius; sagitta; lapillus; utriculus; sacculus ID CICHLID FISH; MORPHOGENETIC DEVELOPMENT; OREOCHROMIS-MOSSAMBICUS AB Size and bilateral asymmetry (i.e. size difference between the left and the right hand side) of inner ear otoliths of larval mouthbreeding cichlid fish were determined during the ontogenetic development of larvae from hatching to the free swimming stage. Animals of two batches were raised in aquarium hatch baskets. The basket containing one batch was placed directly above aeration equipment, resulting in random water circulation within the basket, which constantly shifted the specimens around ('shifted' specimens). The second batch of animals was raised in parallel without shifting. Due to the weight of the yolk-sacs, these animals lay on their sides until. the yolk-sacs were resorbed ('stationary' specimens). The groups of larvae did not differ from one another in respect of individual general development, nor in otolith size. Contrasting results were obtained regarding bilateral otolith asymmetry: In both shifted and stationary animals, asymmetry of utricular and saccular otoliths (lapilli and sagittae, respectively) ranged at comparatively low values throughout development. However, by comparison with shifted individuals, lapillar asymmetry of stationary animals showed a highly significant increase during early development when larvae were forced to lay on their sides due to their prominent yolk-sacs. In later developmental stages, when they began to swim freely, a dramatic decrease in lapillar asymmetry was apparent. These findings indicate that development of lapillar asymmetry depends on the direction of the acting gravity vector relative to the positioning of the larvae, suggesting that the size (or mass) of a given otolith is regulated via a feedback mechanism. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Stuttgart Hohenheim, Inst Zool, D-70593 Stuttgart, Germany. RP Anken, RH (reprint author), Univ Stuttgart Hohenheim, Inst Zool, Garbenstr 30, D-70593 Stuttgart, Germany. CR ALEMANY F, 1994, MAR BIOL, V121, P35, DOI 10.1007/BF00349471 ANKEN R, 1997, LOW G J, V8, P12 ANKEN RH, 1993, ZOOL ANZ, V231, P1 BALLARINO J, 1984, AM J PHYSIOL, V246, P305 DARLINGTON CL, 1992, MOL NEUROBIOL, V5, P355 deJong HAA, 1996, AVIAT SPACE ENVIR MD, V67, P463 DOWNHOWER J F, 1990, Polskie Archiwum Hydrobiologii, V37, P209 Hara H, 1995, Acta Otolaryngol Suppl, V519, P257 HARE JA, 1994, MAR BIOL, V118, P541, DOI 10.1007/BF00347500 HILBIG R, 1995, P CEBAS WORKSH C, V11, P91 KINGSMILL S, 1993, SCIENCE, V260, P1233, DOI 10.1126/science.260.5112.1233 KORTJE KH, 1991, J HIRNFORSCH, V32, P491 LIM DJ, 1974, AEROSPACE MED, V45, P705 LOWENSTEIN O, 1949, J PHYSIOL-LONDON, V110, P392 LYCHAKOV D, 1991, PHYSIOLOGIST S, V34, P204 Nindl G, 1996, J BRAIN RES, V37, P291 Palmar A.R., 1985, ANNU REV ECOL SYST, V17, P391 Platt C., 1983, P89 Popper A.N., 1988, P687 POPPER AN, 1977, J MORPHOL, V153, P397, DOI 10.1002/jmor.1051530306 PRESSON JC, 1992, BRAIN BEHAV EVOLUT, V39, P197, DOI 10.1159/000114117 Rahmann H, 1996, Adv Space Res, V17, P121, DOI 10.1016/0273-1177(95)00623-M ROSS M, 1985, PHYSIOLOGIST S, V28, P219 ROSS M, 1986, SCAN ELECT MICROSC, V4, P1695 ROSS M, 1987, PHYSIOLOGIST S, V30, P90 VONBAUMGARTEN RJ, 1986, EXP BRAIN RES, V64, P239 von Baumgarten R J, 1979, Life Sci Space Res, V17, P161 YAN HY, 1993, J COMP PHYSIOL A, V173, P347, DOI 10.1007/BF00212699 NR 28 TC 33 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 77 EP 83 DI 10.1016/S0378-5955(98)00067-7 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800008 PM 9682810 ER PT J AU Cosgrove, D Samuelson, G Meehan, DT Miller, C McGee, J Walsh, EJ Siegel, M AF Cosgrove, D Samuelson, G Meehan, DT Miller, C McGee, J Walsh, EJ Siegel, M TI Ultrastructural, physiological, and molecular defects in the inner ear of a gene-knockout mouse model for autosomal Alport syndrome SO HEARING RESEARCH LA English DT Article DE collagen; stria vascularis; basement membrane; cochlea; pathology ID COL4A5 COLLAGEN GENE; IV COLLAGEN; MURINE COCHLEA; IDENTIFICATION; ALPHA-3(IV); EXPRESSION; MUTATIONS; CELLS; LOCALIZATION; GOODPASTURE AB The cochleae from a COL4A3-deficient mouse line were examined for defects that might shed light on the molecular mechanism of otopathology observed in humans with Alport syndrome. At the light microscopic level no obvious defects were observed. Immunohistochemical analysis using antibodies specific for the basement membrane collagen chains revealed the absence of the COL4A3 and COL4A4 chains throughout the membranous labyrinth. The COL4A5 chain was absent from all cochlear basement membranes except those in the vessels of the stria vascularis. Expression of the COL4A1 and COL4A2 chains was unchanged in the mutant. Electron microscopic examination of the cochlear basement membranes revealed significant thinning of the basement membrane running from the spiral limbus, down the inner sulcus, across the basilar membrane and up to the spiral prominence. Basement membranes that normally ensheathe the root cells were not detectable. In contrast, the basement membranes surrounding the vessels of the stria vascularis were significantly thickened in the mutant. This was associated with endothelial cell swelling and a marked decrease in internal capillary diameter. In severe cases, pathology was observed in the marginal cells with a loss of basolateral infoldings. Immunohistochemical analysis of the strial vessels revealed an increase in entactin and collagen COL4A1 and COL4A2 chains. Auditory-evoked brainstem response measurements suggest a small increase in thresholds across all frequencies when successive measurements on individual mutant mice were examined between 6 and 8 postnatal weeks. Combined, these results illustrate changes in the basement membranes of the strial vessels that bear resemblance to Alport glomerular basement membrane pathology. A closer look at this compartment in human Alport biopsy specimen may be warranted. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Boys Town Natl Res Hosp, Omaha, NE 68131 USA. RP Cosgrove, D (reprint author), Boys Town Natl Res Hosp, 555 No 30th St, Omaha, NE 68131 USA. EM Cosgrove@boystown.org CR AITKIN CL, 1988, DIS KIDNEY, P617 ANTIGNAC C, 1994, J CLIN INVEST, V93, P1195, DOI 10.1172/JCI117073 Arnold W, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P119 BARKER DF, 1990, SCIENCE, V248, P1224, DOI 10.1126/science.2349482 BURNS WA, 1981, THIN IS PLASTIC EMBE, P24 CASSADY G, 1965, PEDIATRICS, V35, P967 Cosgrove D, 1996, GENE DEV, V10, P2981, DOI 10.1101/gad.10.23.2981 Cosgrove D, 1996, HEARING RES, V97, P54 Cosgrove D, 1996, HEARING RES, V100, P21, DOI 10.1016/0378-5955(96)00114-1 Cosgrove D, 1997, HEARING RES, V105, P159, DOI 10.1016/S0378-5955(96)00203-1 DING J, 1994, KIDNEY INT, V46, P1504 GOLDBLOOM RB, 1957, PEDIATRICS, V20, P241 Gratton MA, 1996, HEARING RES, V94, P116, DOI 10.1016/0378-5955(96)00011-1 GUBLER MC, 1995, KIDNEY INT, V47, P1142, DOI 10.1038/ki.1995.163 HUDSON BG, 1993, J BIOL CHEM, V268, P26033 IVERSON UM, 1974, ACTA PAEDIATR SC S, V245, P1 JOHANSSON LG, 1981, ARCH OTOLARYNGOL, V107, P340 JULIANO RL, 1993, J CELL BIOL, V120, P577, DOI 10.1083/jcb.120.3.577 KASHTAN CE, 1992, KIDNEY INT, V42, P115, DOI 10.1038/ki.1992.269 LEMMINK HH, 1994, HUM MOL GENET, V3, P1269, DOI 10.1093/hmg/3.8.1269 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 MCDONALD TJ, 1978, LARYNGOSCOPE, V88, P38 zumGottesberge AMM, 1996, EUR ARCH OTO-RHINO-L, V253, P470 MINER JH, 1994, J CELL BIOL, V127, P879, DOI 10.1083/jcb.127.3.879 Miner JH, 1996, J CELL BIOL, V135, P1403, DOI 10.1083/jcb.135.5.1403 MITSCHKE H, 1975, NEW ENGL J MED, V292, P1062, DOI 10.1056/NEJM197505152922005 MOCHIZUKI T, 1994, NAT GENET, V8, P77, DOI 10.1038/ng0994-77 MYERS GJ, 1972, ARCHIV OTOLARYNGOL, V96, P333 PERRIS R, 1988, SCIENCE, V241, P86, DOI 10.1126/science.3388022 Prophet E. B., 1992, LAB METHODS HISTOTEC, P29 RUMPELT HJ, 1987, PEDIATR NEPHROL, V1, P422 Rupprecht HD, 1996, KIDNEY INT, V49, P1575, DOI 10.1038/ki.1996.228 Sakaguchi N, 1997, HEARING RES, V105, P44, DOI 10.1016/S0378-5955(96)00180-3 SAUS J, 1988, J BIOL CHEM, V263, P13374 SMITH RJH, 1992, ARCH OTOLARYNGOL, V118, P1085 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 STREULI CH, 1991, J CELL BIOL, V115, P1383, DOI 10.1083/jcb.115.5.1383 TAKAHASHI M, 1992, ANN OTO RHINOL LARYN, V101, P58 THOMPSON SM, 1987, EYE, V1, P146 Weidauer H, 1976, Laryngol Rhinol Otol (Stuttg), V55, P6 Wester D C, 1995, J Am Acad Audiol, V6, P73 WINTER LE, 1968, ARCH OTOLARYNGOL, V88, P236 ZWACKA RM, 1994, EMBO J, V13, P5129 NR 43 TC 42 Z9 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 84 EP 98 DI 10.1016/S0378-5955(98)00069-0 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800009 PM 9682811 ER PT J AU Rossi, ML Ferrary, E Martini, M Pelucchi, B Bernard, C Teixeira, M Sterkers, O Rubini, G Fesce, R AF Rossi, ML Ferrary, E Martini, M Pelucchi, B Bernard, C Teixeira, M Sterkers, O Rubini, G Fesce, R TI The effects of perilymphatic tonicity on endolymph composition and synaptic activity at the frog semicircular canal SO HEARING RESEARCH LA English DT Article DE frog labyrinth; hypo-hypertonicity; endolymph; transepithelial potential; synaptic transmission; afferent discharge ID OUTER HAIR-CELLS; GUINEA-PIG; NEUROMUSCULAR-JUNCTION; HYPOSMOTIC ACTIVATION; SENSORY DISCHARGE; K+ SECRETION; LABYRINTH; TRANSMISSION; CHANNEL AB The effects of changes in perilymphatic tonicity on the semicircular canal were investigated by combining the measurements of transepithelial potential and endolymphatic ionic composition in the isolated frog posterior canal with the electrophysiological assessment of synaptic activity and sensory spike firing at the posterior canal in the isolated intact labyrinth. In the isolated posterior canal, the endolymph was replaced by an endolymph-like solution of known composition, in the presence of basolateral perilymph-like solutions of normal (230 mosmol/kg), reduced (105 mosmol/kg, low NaCl) or increased osmolarity (550 mosmol/kg, Na-Gluconate added). Altered perilymphatic tonicity did not produce significant changes in endolymphatic ionic concentrations during up to 5 min. In the presence of hypotonic perilymph, decreased osmolality, K and Cl concentrations were observed at 10 min. In the presence of hypertonic perilymph, the endolymphatic osmolality began to increase at 5 min and by 10 min Na concentration had also significantly increased. On decreasing the tonicity of the external solution an immediate decline was observed in transepithelial potential, whereas hypertonicity produced the opposite effect. In the intact frog labyrinth, mEPSPs and spike potentials were recorded from single fibers of the posterior nerve in normal Ringer's (240 mosmol/kg) as well as in solutions with modified tonicity. Hypotonic solutions consistently decreased and hypertonic solutions consistently increased mEPSPs and spike frequencies, independent of the species whose concentration was altered. These effects ensued within 1-2 min after the start of perfusion with the test solutions. In particular, when the tonicity was changed by varying Na concentration the mean mEPSP rate was directly related to osmolality. Size histograms of synaptic potentials were well described by single log-normal distribution functions under all experimental conditions. Hypotonic solutions (105 mosmol/kg) markedly shifted the histograms to the left. Hypertonic solutions (380-550 mosmol/kg, NaCl or Na-Gluconate added) shifted the histograms to the right. Hypertonic solutions obtained by adding sucrose to normal Ringer's solution (final osmolality 550 mosmol/kg) increased mEPSP and spike rates, but did not display appreciable effects an mEPSP size. All effects on spike discharge and on mEPSP rate and size were rapidly reversible. In Ca-free, 10 mM EGTA, Ringer's solution, the sensory discharge was completely abolished and did not recover on making the solution hypertonic. These results indicate that perilymphatic solutions with altered tonicity produce small and slowly ensuing changes in the transepithelial parameters which may indirectly affect the sensory discharge rate, whereas relevant, early and reversible effects occur at the cytoneural junction. In particular, the modulation of mEPSP amplitude appears to be postsynaptic; the presynaptic effect on mEPSP rate of occurrence is presumably linked to local calcium levels, in agreement with previous results indicating that calcium inflow is required to sustain basal transmitter release in this preparation. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Ferrara, Dipartimento Biol, Sez Fisiol Gen, I-44100 Ferrara, Italy. Univ Paris 07, INSERM, U426, Fac Xavier Bichat, F-75018 Paris, France. Hosp San Raffaele, Dibit, CNR, Ctr Cytopharmacol, I-20132 Milan, Italy. RP Rossi, ML (reprint author), Univ Ferrara, Dipartimento Biol, Sez Fisiol Gen, Via L Borsari 46, I-44100 Ferrara, Italy. RI fesce, riccardo/A-6317-2008; Rossi, Maria Lisa/D-4251-2011 CR BERNARD C, 1986, J PHYSIOL-LONDON, V371, P17 CHABBERT C, 1995, HEARING RES, V89, P101, DOI 10.1016/0378-5955(95)00126-2 COCHRAN SL, 1995, NEUROSCIENCE, V68, P1147, DOI 10.1016/0306-4522(95)00200-3 CRIST JR, 1993, HEARING RES, V69, P194, DOI 10.1016/0378-5955(93)90107-C DULON D, 1990, J NEUROSCI, V10, P1388 FERRARY E, 1989, AM J PHYSIOL, V257, pF182 FERRARY E, 1993, J PHYSIOL-LONDON, V461, P451 FESCE R, 1986, J GEN PHYSIOL, V88, P59, DOI 10.1085/jgp.88.1.59 FESCE R, 1990, PROG NEUROBIOL, V35, P85, DOI 10.1016/0301-0082(90)90019-D FURSHPAN EJ, 1956, J PHYSIOL-LONDON, V134, P689 HARADA N, 1994, ACTA OTO-LARYNGOL, V114, P510, DOI 10.3109/00016489409126095 HARADA N, 1993, BRAIN RES, V614, P205, DOI 10.1016/0006-8993(93)91036-R JOHNSTON.BM, 1972, Q REV BIOPHYS, V5, P1 KITA H, 1977, J NEUROPHYSIOL, V40, P212 KITA H, 1982, J PHYSIOL-LONDON, V325, P213 Rossi ML, 1996, BRAIN RES, V721, P174, DOI 10.1016/0006-8993(96)00057-1 ROSSI ML, 1989, J GEN PHYSIOL, V94, P303, DOI 10.1085/jgp.94.2.303 ROSSI ML, 1991, BRAIN RES, V555, P123, DOI 10.1016/0006-8993(91)90868-V ROSSI ML, 1988, BRAIN RES, V452, P312, DOI 10.1016/0006-8993(88)90035-2 ROSSI ML, 1988, NEUROSCI LETT, V93, P44, DOI 10.1016/0304-3940(88)90010-9 ROSSI ML, 1994, J PHYSIOL-LONDON, V478, P17 SHIMONI Y, 1977, NATURE, V267, P170, DOI 10.1038/267170a0 WANGEMANN P, 1995, J MEMBRANE BIOL, V147, P263 ZUCCA G, 1995, ACTA OTO-LARYNGOL, V115, P34, DOI 10.3109/00016489509133343 NR 24 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 99 EP 108 DI 10.1016/S0378-5955(98)00071-9 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800010 PM 9682812 ER PT J AU Kitano, H Takeda, T Suzuki, M Kitanishi, T Yazawa, Y Kitajima, K Kimura, H Tooyama, I AF Kitano, H Takeda, T Suzuki, M Kitanishi, T Yazawa, Y Kitajima, K Kimura, H Tooyama, I TI Presence of mRNA for vasoactive intestinal polypeptide (VIP) and its receptor in the rat inner ear SO HEARING RESEARCH LA English DT Article DE reverse transcription-polymerase chain reaction; vasoactive intestinal polypeptide; vasoactive intestinal polypeptide receptor; Meniere's disease; endolymphatic hydrops ID EXPRESSION; LYMPHOCYTES AB Although mechanisms regulating inner ear fluid have not been yet elucidated, control of blood flow has been thought to be of great importance. Vasoactive intestinal polypeptide (VIP) was the first neuropeptide demonstrated in cerebrovascular nerves. To study the possible role of VIP in regulation of inner ear fluid, we investigated the presence of mRNA for VIP and VIP receptor in the rat inner ear using a reverse transcription-polymerase chain reaction (RT-PCR) method. A single band of the size expected for VIP and its receptor was detected in mRNA from the rat inner ear by using primers specific for VIP and the receptor. The nucleotide sequences of the subcloned RT-PCR products were identical to those of rat VIP and the rat lung VIP receptor. These results indicate that both VIP and VIP receptor are expressed in the inner ear of the rat and suggest that VIP may be implicated in regulation of fluid in the inner ear. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Shiga Univ Med Sci, Dept Otolaryngol, Otsu, Shiga 5202192, Japan. Kouchi Med Sch, Dept Otolaryngol, Nango Ku, Kouchi, Japan. Shiga Univ Med Sci, Mol Neurobiol Res Ctr, Otsu, Shiga 5202192, Japan. RP Kitano, H (reprint author), Shiga Univ Med Sci, Dept Otolaryngol, Otsu, Shiga 5202192, Japan. CR CARLISLE L, 1990, HEARING RES, V43, P107, DOI 10.1016/0378-5955(90)90219-F CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999 GOMARIZ RP, 1994, REGUL PEPTIDES, V50, P177, DOI 10.1016/0167-0115(94)90033-7 GOMARIZ RP, 1994, BIOCHEM BIOPH RES CO, V203, P1599, DOI 10.1006/bbrc.1994.2369 IBATA Y, 1993, NEUROREPORT, V4, P128, DOI 10.1097/00001756-199302000-00003 ISHIHARA T, 1992, NEURON, V8, P811, DOI 10.1016/0896-6273(92)90101-I Kitano H, 1997, NEUROREPORT, V8, P2289, DOI 10.1097/00001756-199707070-00038 MURASE T, 1993, NEUROENDOCRINOLOGY, V57, P1092, DOI 10.1159/000126475 NISHIZAWA M, 1985, FEBS LETT, V183, P55, DOI 10.1016/0014-5793(85)80953-4 Suzuki M, 1997, NEUROREPORT, V8, P439, DOI 10.1097/00001756-199701200-00013 Takeda T, 1995, Acta Otolaryngol Suppl, V519, P219 USDIN TB, 1994, ENDOCRINOLOGY, V135, P2662, DOI 10.1210/en.135.6.2662 NR 12 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 109 EP 111 DI 10.1016/S0378-5955(98)00070-7 PG 3 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800011 PM 9682813 ER PT J AU Fischer, FP AF Fischer, FP TI Hair cell morphology and innervation in the basilar papilla of the emu (Dromaius novaehollandiae) SO HEARING RESEARCH LA English DT Article DE bird; emu; cochlea; hair cell; innervation; evolution ID INNER-EAR; ACOUSTIC TRAUMA; GALLUS-DOMESTICUS; CHICKEN COCHLEA; AVIAN COCHLEA; NERVE-FIBERS; TYTO-ALBA; REGENERATION; MAP; GRADIENTS AB The emu, being a member of the rather primitive bird group of the palaeognathid Ratitae, may reveal primitives features of the avian basilar papilla. There are, however, no qualitative differences with the papillae of other birds such as the chicken or the starling. There are only quantitative differences in the continuous morphological gradients (such as hair cell height, stereovillar height) from neural to abneural, and from the base to the apex of the papilla. Only few (about two in the emu) afferent terminals and on average one efferent fiber contact each hair cell. Along the abneural edge, there is a population of hair cells that lack afferent innervation (short hair cells), suggesting that their function must lie in the papilla itself. There is thus a general pattern in the structures of the avian basilar papilla. In detail, however, a number of primitive characters were observed in the emu, as compared to advanced birds such as the starling and the barn owl. The hair cells are very densely packed and comparatively tall(up to 40 mu m in the apex). This anatomy correlates well with the good lower-frequency hearing (see Koppl and Manley, J. Acoust. Sec. Am. 101 (1997) 1574-1584). The afferent nerve fibers contacting the hair cells within the basilar papilla are rather thick, and there are a large number of afferent fibers that contact more than one hair cell. The zone of hair cells without afferent innervation (short hair cells) along the abneural edge of the basilar papilla is rather narrow in the emu. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Tech Univ Munchen, Inst Zool, D-85747 Garching, Germany. RP Fischer, FP (reprint author), Tech Univ Munchen, Inst Zool, Lichtenbergstr 4, D-85747 Garching, Germany. CR ASHMORE JF, 1994, EXP PHYSIOL, V79, P113 BRIX J, 1994, HEARING RES, V75, P244, DOI 10.1016/0378-5955(94)90075-2 Carrol R., 1988, VERTEBRATE PALAEONTO CHANDLER JP, 1984, J COMP NEUROL, V222, P506, DOI 10.1002/cne.902220405 CHEN L, 1994, HEARING RES, V81, P130, DOI 10.1016/0378-5955(94)90160-0 CODE RA, 1994, J COMP NEUROL, V340, P161, DOI 10.1002/cne.903400203 COLE KS, 1990, EXP BRAIN RES, V82, P585 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 COTANCHE DA, 1987, HEARING RES, V30, P197, DOI 10.1016/0378-5955(87)90136-5 COTANCHE DA, 1992, J COMP NEUROL, V324, P353, DOI 10.1002/cne.903240306 CRACRAFT J, 1981, AUK, V98, P681 DANNHOF BJ, 1991, NATURWISSENSCHAFTEN, V78, P570, DOI 10.1007/BF01134454 Feduccia A., 1980, AGE BIRDS FISCHER FP, 1994, HEARING RES, V73, P1, DOI 10.1016/0378-5955(94)90277-1 FISCHER FP, 1994, SCANNING MICROSCOPY, V8, P351 FISCHER FP, 1994, 31 INN EAR BIOL WORK, P12 FISCHER FP, 1991, HEARING RES, V53, P281, DOI 10.1016/0378-5955(91)90061-D FISCHER FP, 1992, J MORPHOL, V213, P225, DOI 10.1002/jmor.1052130207 FISCHER FP, 1988, HEARING RES, V34, P87, DOI 10.1016/0378-5955(88)90053-6 FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R FUCHS PA, 1992, J NEUROSCI, V12, P800 FUCHS PA, 1992, PROG NEUROBIOL, V39, P493, DOI 10.1016/0301-0082(92)90003-W GLEICH O, 1989, HEARING RES, V37, P255, DOI 10.1016/0378-5955(89)90026-9 GLEICH O, 1998, IN PRESS HEARING ORG GLEICH O, 1994, J MORPHOL, V221, P1, DOI 10.1002/jmor.1052210102 JONES SM, 1995, HEARING RES, V82, P149, DOI 10.1016/0378-5955(94)00173-N JORGENSEN JM, 1989, BRAIN BEHAV EVOLUT, V34, P273, DOI 10.1159/000116512 KAISER A, 1994, J NEUROPHYSIOL, V72, P2966 KLINKE R, 1993, PROG BRAIN RES, V97, P31 Koppl C, 1997, J ACOUST SOC AM, V101, P1574, DOI 10.1121/1.418145 KOPPL C, 1993, J COMP PHYSIOL A, V171, P695, DOI 10.1007/BF00213066 LAVIGNEREBILLARD M, 1985, J COMP NEUROL, V238, P340, DOI 10.1002/cne.902380308 MANLEY GA, 1992, EVOLUTIONARY BIOL HE Manley GA, 1996, J MORPHOL, V227, P197, DOI 10.1002/(SICI)1097-4687(199602)227:2<197::AID-JMOR6>3.0.CO;2-6 Manley GA, 1997, J ACOUST SOC AM, V101, P1560, DOI 10.1121/1.418273 MANLEY GA, 1995, ADV HEARING RES, P219 MANLEY GA, 1989, J COMP PHYSIOL A, V164, P289, DOI 10.1007/BF00612989 MANLEY GA, 1987, SCIENCE, V237, P655, DOI 10.1126/science.3603046 MARCHANT S, 1990, HDB AUSTR NZ ANTARCT, P47 OESTERLE EC, 1992, J COMP NEUROL, V318, P64, DOI 10.1002/cne.903180105 Ofsie MS, 1996, J COMP NEUROL, V370, P281 PUJOL R, 1991, MIDW M ASS RES OT ST, P125 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 SMITH CA, 1985, HEARING RES, V17, P237, DOI 10.1016/0378-5955(85)90068-1 Smolders JWT, 1995, HEARING RES, V92, P151, DOI 10.1016/0378-5955(95)00214-6 TAKASAKA T, 1971, J ULTRA MOL STRUCT R, V35, P20, DOI 10.1016/S0022-5320(71)80141-7 TANAKA K, 1978, AM J ANAT, V153, P251, DOI 10.1002/aja.1001530206 Zidanic M, 1996, AUDIT NEUROSCI, V2, P347 NR 48 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 112 EP 124 DI 10.1016/S0378-5955(98)00072-0 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800012 PM 9682814 ER PT J AU Abdala, C AF Abdala, C TI A developmental study of distortion product otoacoustic emission (2f1-f2) suppression in humans SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; distortion product; suppression; tuning ID TUNING CURVES; BASILAR-MEMBRANE; COCHLEAR MECHANICS; NERVE-FIBERS; HUMAN ADULTS; 2F(1)-F(2); MATURATION; INFANTS; GERBIL; ORIGIN AB Suppression of the 2fl-f2 distortion product otoacoustic emission (DPOAE) provides an effective paradigm for the study of functional cochlear maturation in humans. DPOAE iso-suppression tuning curves (STCs) represent some aspect of peripheral filtering, probably related to the boundaries of distortion generation. Studies conducted thus far suggest that the cochlear tuning assessed by this technique is adult-like in humans by term birth (Abdala et al., Hear. Res. 98 (1996) 38-53; Abdala and Sininger, Ear Hear. 17 (1996) 374-385). However, there have been no studies of cochlear tuning in premature human neonates. DPOAE STCs and suppression growth functions were measured from 14 normal-hearing adults, 33 term and 85 premature neonates to investigate the developmental time course of cochlear frequency resolution and non-linearity. Premature neonates showed non-adult-like DPOAE suppression at f2 of 1500 and 6000 Hz: (1) STCs were narrower in width (Q10) and steeper in slope on the low-frequency flank of the tuning curve; (2) suppressor tones lower in frequency than f2 produced atypically shallow growth of DPOAE suppression. The influence of immature conductive pathways cannot be entirely ruled out as a factor contributing to these results. However, findings may indicate that an immaturity exists in cochlear frequency resolution and non-linearity just prior to term birth. The bases of this immaturity are hypothesized to be outer hair cell in origin. (C) 1998 Elsevier Science B.V. All rights reserved. C1 House Ear Inst, Childrens Auditory Res & Evaluat Ctr, Los Angeles, CA 90057 USA. RP Abdala, C (reprint author), House Ear Inst, Childrens Auditory Res & Evaluat Ctr, 2100 W 3rd St, Los Angeles, CA 90057 USA. CR Abdala C, 1996, EAR HEARING, V17, P374, DOI 10.1097/00003446-199610000-00003 Abdala C, 1996, HEARING RES, V98, P38, DOI 10.1016/0378-5955(96)00056-1 Abdala C, 1996, J ACOUST SOC AM, V100, P3726, DOI 10.1121/1.417234 ALLEN J, 1996, DIVERSITY AUDITORY M, P1 BARGONES JY, 1988, J ACOUST SOC AM, V83, P1809, DOI 10.1121/1.396515 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 BURNS E, 1991, PREVALENCE SPONTANEO, P219 COSTALUPES JA, 1987, HEARING RES, V26, P155, DOI 10.1016/0378-5955(87)90107-9 Dallos P, 1980, PSYCHOPHYSICAL PHYSL, P242 Dirks D.D., 1987, EAR HEAR S5, V8, P60 Eggermont JJ, 1996, EAR HEARING, V17, P386, DOI 10.1097/00003446-199610000-00004 Evans EF, 1976, J PHYSIOL-LONDON, V256, P43 FEX J, 1962, ACTA PHYSIOL SCAND, V55, P1 FRANK G, 1995, HEARING RES, V83, P150 Gaskill SA, 1996, J ACOUST SOC AM, V100, P3268, DOI 10.1121/1.417210 GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103 Harris M., 1992, ADV EC THEORY, V2, P64 KEEFE DH, 1994, J ACOUST SOC AM, V95, P355, DOI 10.1121/1.408380 KEEFE DH, 1993, J ACOUST SOC AM, V94, P2617, DOI 10.1121/1.407347 Kiang NYS, 1965, RES MONOGRAPH, V35 KOPPL C, 1993, J ACOUST SOC AM, V93, P2834 KUMMER P, 1995, J ACOUST SOC AM, V98, P197, DOI 10.1121/1.413747 LAVIGNEREBILLARD M, 1988, ACTA OTO-LARYNGOL, V105, P398, DOI 10.3109/00016488809119492 Lavigne-Rebillard M, 1987, Acta Otolaryngol Suppl, V436, P43 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X LONG GR, 1993, BIOPHYSICS HAIR CELL, P40 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 MILLS DM, 1994, AUDIT NEUROSCI, V1, P77 Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 NORTON SJ, 1991, HEARING RES, V51, P73, DOI 10.1016/0378-5955(91)90008-W PUJOL R, 1970, J COMP NEUROL, V139, P115, DOI 10.1002/cne.901390108 RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2 Rhode WS., 1977, PSYCHOPHYSICS PHYSL, P27 ROBLES L, 1989, COCHLEAR MECH STRUCT, P369 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1367 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 WALSH E, 1997, LONG TERM PHYSL CONS, P213 WALSH E, 1998, CONSEQUENCES NEONATA, P214 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WIER CC, 1988, J ACOUST SOC AM, V84, P230, DOI 10.1121/1.396970 NR 46 TC 41 Z9 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 125 EP 138 DI 10.1016/S0378-5955(98)00073-2 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800013 PM 9682815 ER PT J AU Boettcher, FA Caldwell, RK Gratton, MA White, DR Miles, LR AF Boettcher, FA Caldwell, RK Gratton, MA White, DR Miles, LR TI Effects of nimodipine on noise-induced hearing loss SO HEARING RESEARCH LA English DT Article DE calcium channel blocker; gerbil; nimodipine; noise-induced hearing loss ID OUTER HAIR-CELLS; INTRACELLULAR CALCIUM LEVELS; GUINEA-PIG COCHLEA; SUBARACHNOID HEMORRHAGE; MONGOLIAN GERBILS; CHANNEL; DILTIAZEM; SYSTEM; PHARMACOKINETICS; DISTORTION AB The effects of nimodipine, a calcium channel blocker, on noise-induced hearing loss were examined in gerbils. Animals were implanted subcutaneously with a timed-release pellet containing either nimodipine (approximately 10 mg/kg/day) or placebo and exposed to either 102 or 107 dBA noise. Serum levels were tested in two subjects and were in the range known to protect humans from cerebral artery vasospasm and ischemia-related neurologic deficits. Nimodipine and control groups had similar amounts of noise-induced (a) permanent threshold shift; (b) reductions in distortion product otoacoustic emissions; (c) reductions in tuning and suppression of the compound action potential; and (d) loss of outer hair cells. The results suggest that nimodipine, at a dose which results in clinically relevant serum levels, does not provide protection from the effects of moderately intense noise exposures. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Med Univ S Carolina, Dept Otolaryngol & Communicat Sci, Charleston, SC 29425 USA. RP Boettcher, FA (reprint author), Med Univ S Carolina, Dept Otolaryngol & Communicat Sci, 171 Ashley Ave, Charleston, SC 29425 USA. EM boettcfa@musc.edu CR ALLEN GS, 1983, NEW ENGL J MED, V308, P619, DOI 10.1056/NEJM198303173081103 ART JJ, 1993, J PHYSIOL-LONDON, V470, P109 BOBBIN RP, 1990, HEARING RES, V46, P277, DOI 10.1016/0378-5955(90)90009-E Boettcher FA, 1996, LARYNGOSCOPE, V106, P772, DOI 10.1097/00005537-199606000-00020 Boettcher FA, 1995, J ACOUST SOC AM, V98, P3215, DOI 10.1121/1.413811 COREY DP, 1979, NATURE, V281, P675, DOI 10.1038/281675a0 DALLOS P, 1976, J ACOUST SOC AM, V59, P591, DOI 10.1121/1.380903 DULON D, 1991, HEARING RES, V52, P225, DOI 10.1016/0378-5955(91)90202-K FETTIPLACE R, 1992, SOC GEN PHY, V47, P343 Fridberger A, 1996, ACTA OTO-LARYNGOL, V116, P17, DOI 10.3109/00016489609137707 GELMERS HJ, 1990, STROKE, V21, P81 GELMERS HJ, 1985, AM J CARDIOL, V55, pB144, DOI 10.1016/0002-9149(85)90623-X GRATTON MA, 1990, HEARING RES, V50, P211, DOI 10.1016/0378-5955(90)90046-R Green GE, 1996, J NEUROCHEM, V67, P37 GUTH PS, 1991, HEARING RES, V56, P69, DOI 10.1016/0378-5955(91)90155-3 HENDERSON D, 1995, OCCUP MED, V10, P513 Hille B., 1992, IONIC CHANNELS EXCIT, V2nd HUDSPETH AJ, 1986, HEARING RES, V22, P21, DOI 10.1016/0378-5955(86)90070-5 IKEDA K, 1991, AM J PHYSIOL, V261, pC231 Ison JR, 1997, HEARING RES, V106, P179, DOI 10.1016/S0378-5955(96)00216-X KIM DO, 1992, NOISE INDUCED HEARIN, P98 KUMANA CR, 1993, EUR J CLIN PHARMACOL, V45, P363 LIN X, 1995, HEARING RES, V88, P36, DOI 10.1016/0378-5955(95)00096-M LOPEZESCAMEZ JA, 1995, ACTA OTO-LARYNGOL, V115, P759, DOI 10.3109/00016489509139399 Maurer J, 1995, ORL J OTO-RHINO-LARY, V57, P319 MAURER J, 1993, HNO, V41, P192 MEE E, 1988, NEUROSURGERY, V22, P484 MUCK W, 1994, PHARMAZIE, V49, P130 NAKAGAWA T, 1991, NEUROSCI LETT, V125, P81, DOI 10.1016/0304-3940(91)90136-H Nayler WG, 1988, CALCIUM ANTAGONISTS ORRENIUS S, 1992, TOXICOL LETT, V64-5, P357, DOI 10.1016/0378-4274(92)90208-2 PerezTrepichio AD, 1996, J NEUROSCI METH, V68, P297, DOI 10.1016/0165-0270(96)00096-9 QIAN MX, 1992, J CHROMATOGR-BIOMED, V578, P316, DOI 10.1016/0378-4347(92)80432-P Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x Rämsch K D, 1985, Neurochirurgia (Stuttg), V28 Suppl 1, P74 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SCHMIEDT RA, 1986, J ACOUST SOC AM, V79, P1481, DOI 10.1121/1.393675 SCRIABINE A, 1989, FASEB J, V3, P1799 SIEGEL JH, 1987, HEARING RES, V28, P131, DOI 10.1016/0378-5955(87)90044-X Sridhar TS, 1997, J NEUROSCI, V17, P428 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Torre V, 1995, J NEUROSCI, V15, P7757 TSIEN RY, 1989, ANNU REV NEUROSCI, V12, P227, DOI 10.1146/annurev.neuro.12.1.227 VERITY MA, 1992, NEUROTOXICOLOGY, V13, P139 VINGE E, 1986, EUR J CLIN PHARMACOL, V30, P421, DOI 10.1007/BF00607954 NR 45 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 139 EP 146 DI 10.1016/S0378-5955(98)00075-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800014 PM 9682816 ER PT J AU He, JF AF He, JF TI Long-latency neurons in auditory cortex involved in temporal integration: theoretical analysis of experimental data SO HEARING RESEARCH LA English DT Article DE auditory model; dorsal zone; temporal integration; time window; one-layer perception; time axis representation ID MEDIAL GENICULATE-BODY; BINDING PROTEIN IMMUNOREACTIVITY; COMBINATION-SENSITIVE NEURONS; INFERIOR COLLICULUS; MOUSTACHED BAT; REPETITION RATE; NEURAL-NETWORK; CAT; REPRESENTATION; ORGANIZATION AB A previous experimental study (He et al., 1997) found 132 duration-selective neurons with long latencies of greater than 30 ms in the dorsal zone of cat auditory cortex. The mechanism by which such long-latency neurons integrate information during their latent period is investigated by analysis of the temporal relationship between the stimulus and neuronal response. In the present study, we developed a one-layer perceptron to examine the above temporal relationship of the experimental results. The acoustic stimulus was represented as a contiguous series of sequential short time epochs. The perceptron was trained by using the spike data as the desired outputs and the acoustic stimuli (in digital format) as the inputs. The adaptive weights between the outputs and the inputs after training indicated the temporal relationship between neuronal responses and the stimuli. The contribution of each time epoch of the stimulus could be either positive or negative: the positive contribution corresponds to excitatory input and the negative contribution to inhibitory input. Long-duration-selective neurons were found to receive mainly excitatory input along the entire effective stimulus duration. However, duration-tuned neurons received excitatory input for only the time period from the stimulus onset to their best durations, and inhibitory thereafter. The temporal integration pattern of short-duration-selective neurons was similar to duration-tuned neurons. However, short-duration-selective neurons received excitatory input only at the beginning of the stimulus. Each of the duration-threshold neurons integrated auditory information only for a restricted time period of the stimulus, suggesting that they have a time window over the stimulus time domain. Non-duration-threshold neurons have time windows extending from the stimulus onset onward. The assembly of duration-threshold neurons and non-duration-threshold neurons may collectively represent the time axis of the stimulus. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Hitachi Ltd, Adv Res Lab, Hatoyama, Saitama 3500395, Japan. RIKEN, Brain Sci Inst, Lab Neural Architecture, Wako, Saitama 3510198, Japan. Univ Tokushima, Dept Elect & Elect Engn, Tokushima 770, Japan. RP He, JF (reprint author), Hitachi Ltd, Adv Res Lab, Hatoyama, Saitama 3500395, Japan. CR AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275 ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312 BEALE R, 1990, NEURAL COMPUTING INT, P39 BUONOMANO DV, 1995, SCIENCE, V267, P1028, DOI 10.1126/science.7863330 CALFORD MB, 1983, J NEUROSCI, V3, P2350 CALFORD MB, 1983, J NEUROSCI, V3, P2365 CALFORD MB, 1981, J NEUROPHYSIOL, V45, P1013 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Clarey J.C., 1992, MAMMALIAN AUDITORY P, P232 deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0 DUYSENS J, 1985, J NEUROPHYSIOL, V54, P1068 Duysens J, 1996, VISION RES, V36, P3243, DOI 10.1016/0042-6989(96)00040-5 EFRON B, 1991, SCIENCE, V253, P390, DOI 10.1126/science.253.5018.390 EGGERMONT JJ, 1990, HEARING RES, V43, P181, DOI 10.1016/0378-5955(90)90227-G EGGERMONT JJ, 1991, HEARING RES, V57, P45, DOI 10.1016/0378-5955(91)90073-I Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 FENG AS, 1990, PROG NEUROBIOL, V34, P313, DOI 10.1016/0301-0082(90)90008-5 Gawne TJ, 1996, J NEUROPHYSIOL, V76, P1356 GOODMAN JC, 1994, DEV SPEECH PERCEPTIO, P3 HAFTER ER, 1990, J ACOUST SOC AM, V88, P806, DOI 10.1121/1.399730 HASHIKAWA T, 1995, J COMP NEUROL, V362, P195, DOI 10.1002/cne.903620204 He J, 1997, Society for Neuroscience Abstracts, V23, P2071 He J., 1994, Society for Neuroscience Abstracts, V20, P324 He J., 1996, Society for Neuroscience Abstracts, V22, P1068 He JF, 1997, J NEUROPHYSIOL, V77, P896 He JF, 1997, J NEUROSCI, V17, P2615 HU B, 1995, J PHYSIOL-LONDON, V483, P167 IMIG TJ, 1983, ANNU REV NEUROSCI, V6, P95, DOI 10.1146/annurev.ne.06.030183.000523 IMIG TJ, 1985, J NEUROPHYSIOL, V53, P309 IRVINE DRF, 1980, J NEUROPHYSIOL, V43, P395 JONES EG, 1995, J COMP NEUROL, V362, P153, DOI 10.1002/cne.903620202 Kosaki H, 1997, J COMP NEUROL, V386, P304 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 MERZENICH MM, 1993, ANN NY ACAD SCI, V682, P1 MIDDLEBROOKS JC, 1994, SCIENCE, V264, P842, DOI 10.1126/science.8171339 Middlebrooks J. C., 1996, Society for Neuroscience Abstracts, V22, P1068 MIDDLEBROOKS JC, 1983, J NEUROSCI, V3, P203 MOLINARI M, 1995, J COMP NEUROL, V362, P171, DOI 10.1002/cne.903620203 Olsen J. F., 1992, SOC NEUR ABSTR, V18, P883 OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1275 OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1254 PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748 PINHEIRO AD, 1991, J COMP PHYSIOL A, V169, P69 POTTER HD, 1965, J NEUROPHYSIOL, V28, P1155 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 REPP BH, 1978, J EXP PSYCHOL HUMAN, V4, P621, DOI 10.1037//0096-1523.4.4.621 SAITOH I, 1995, J NEUROPHYSIOL, V74, P1 SCHREINER CE, 1988, AUDITORY FUNCTION NE, P337 SEMPLE MN, 1993, J NEUROPHYSIOL, V69, P449 SNYDER RL, 1991, HEARING RES, V56, P246, DOI 10.1016/0378-5955(91)90175-9 SPITZER MW, 1993, J NEUROPHYSIOL, V69, P1245 SUGA N, 1990, NEURAL NETWORKS, V3, P3, DOI 10.1016/0893-6080(90)90043-K SUGA N, 1995, ACTIVE HEARING, P13 UNNIKRISHNAN KP, 1991, IEEE T SIGNAL PROCES, V39, P698, DOI 10.1109/78.80888 WAIBEL A, 1989, IEEE T ACOUST SPEECH, V37, P328, DOI 10.1109/29.21701 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 Widrow B., 1960, ADAPTIVE SWITCHING C, P96 NR 57 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 147 EP 160 DI 10.1016/S0378-5955(98)00076-8 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800015 PM 9682817 ER PT J AU Jones, SM Ryals, BM Colbert, S AF Jones, SM Ryals, BM Colbert, S TI Vestibular function in Belgian Waterslager canaries (Serinus canarius) SO HEARING RESEARCH LA English DT Article DE bird; saccule; linear jerk; linear acceleration; vestibular evoked potential; vestibular system; scanning electron microscopy ID AUDITORY-THRESHOLDS; HEARING; DYSPLASIA AB The purpose of this study was to measure vestibular function in Belgian Waterslager canaries using short latency vestibular evoked potentials (VsEPs) elicited by linear acceleration stimuli. Responses were recorded with vertex to mastoid leads using traditional signal averaging. Response thresholds, latencies, and amplitudes were quantified and compared to non-Waterslager controls. Cochlear and vestibular organs were also processed for scanning electron microscopy. Results indicated that vestibular response thresholds were slightly, but significantly, higher for Belgian Waterslager canaries and response amplitudes at 0 dBre:1.0 g/ms were significantly reduced compared to non-Waterslagers. Response peak latencies were not significantly different. The most striking morphological finding was that the stereociliary bundles of Waterslager saccular hair cells showed no common orientation. Previous reports have also found significantly less hair cells in Waterslager saccules (Weisleder and Park, Hear. Res. 80 (1994) 64-70); however, the present study did not confirm this finding. The utricle and ampullae appeared normal. The present results indicate that vestibular neural function, as measured with VsEPs, is affected in Belgian Waterslager canaries. The results also suggest that one structural correlate of the functional loss is the disordered stereociliary bundles in the sacculus. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Missouri, Sch Med, Dept Surg, Div Otolaryngol, Columbia, MO 65212 USA. James Madison Univ, Dept Commun Sci & Disorders, Harrisonburg, VA 22807 USA. RP Jones, SM (reprint author), Univ Missouri, Sch Med, Dept Surg, Div Otolaryngol, 205 Allton Bldg,DC375-00, Columbia, MO 65212 USA. CR COHEN GM, 1985, ORL J OTO-RHINO-LARY, V47, P236 GLEICH O, 1998, ASS RES OTOLARYNGOL, V788, P198 GLEICH O, 1994, HEARING RES, V79, P125 GLEICH O, 1995, HEARING RES, V82, P100 GLEICH O, 1994, NATURWISSENSCHAFTEN, V81, P320, DOI 10.1007/BF01131950 Jones SM, 1997, J COMP PHYSIOL A, V180, P631, DOI 10.1007/s003590050079 Jones SM, 1996, J VESTIBUL RES-EQUIL, V6, P71 JONES TA, 1992, ELECTROEN CLIN NEURO, V82, P377, DOI 10.1016/0013-4694(92)90007-5 JONES TA, 1992, HEARING RES, V62, P181, DOI 10.1016/0378-5955(92)90184-O JONES TA, 1998, IN PRESS J VESTIB RE Lewis E R, 1994, J Vestib Res, V4, P189 NAZARETH AM, 1998, IN PRESS J VESTIB RE OKANOYA K, 1987, J COMP PSYCHOL, V101, P213, DOI 10.1037/0735-7036.101.2.213 OKANOYA K, 1990, HEARING RES, V46, P271, DOI 10.1016/0378-5955(90)90008-D OKANOYA K, 1985, J ACOUST SOC AM, V78, P1170, DOI 10.1121/1.392885 PARK JC, 1982, AM J OTOLARYNG, V3, P117, DOI 10.1016/S0196-0709(82)80042-2 ROSENHAL.U, 1970, ARCH KLIN EXP OHR, V197, P154, DOI 10.1007/BF00306164 RYALS BM, 1997, ASS RES OTOLARYNGOL, V717, P180 TRUJILLO TB, 1996, FINCH CANARY WORLD, V2, P17 Weisleder P, 1996, J COMP NEUROL, V369, P292, DOI 10.1002/(SICI)1096-9861(19960527)369:2<292::AID-CNE9>3.0.CO;2-Z WEISLEDER P, 1994, HEARING RES, V80, P64, DOI 10.1016/0378-5955(94)90009-4 NR 21 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1998 VL 121 IS 1-2 BP 161 EP 169 DI 10.1016/S0378-5955(98)00074-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZZ784 UT WOS:000074766800016 PM 9682818 ER PT J AU Wada, H Sugawara, M Kobayashi, T Hozawa, K Takasaka, T AF Wada, H Sugawara, M Kobayashi, T Hozawa, K Takasaka, T TI Measurement of guinea pig basilar membrane using computer-aided three-dimensional reconstruction system SO HEARING RESEARCH LA English DT Article DE computer-aided three-dimensional reconstruction; guinea pig; basilar membrane; cochlea; frequency-position ID 3-DIMENSIONAL RECONSTRUCTION; TEMPORAL BONE; COCHLEA AB Cochleas are known to have the ability to analyze a frequency widely, and this ability seems to be owed mostly to the basilar membrane (BM) configuration. However, the relationship between the cochlear frequency-position map and the BM configuration is not clear. Therefore, in this paper, the internal structures of a guinea pig cochlea, especially the BM configuration, were reconstructed and measured using a computer-aided three-dimensional (3-D) reconstruction system. Then, an attempt was made to examine the influence of the BM configuration on the cochlear frequency-position map. The measurement results indicate that the width of the BM increased and its thickness decreased with an increase in the distance from the basal turn towards the apical turn. Theoretical consideration reveals that the wide frequency-position of the cochlea is achieved by not only the BM configuration change along the length of the cochlea but also the change of the Young's modulus of the BM along the length of the cochlea. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Tohoku Univ, Dept Mech Engn, Sendai, Miyagi 9808579, Japan. Nagasaki Univ, Sch Med, Dept Otolaryngol, Nagasaki 852, Japan. Tohoku Univ, Sch Med, Dept Otolaryngol, Sendai, Miyagi 9808579, Japan. RP Wada, H (reprint author), Tohoku Univ, Dept Mech Engn, Sendai, Miyagi 9808579, Japan. CR Angelborg C, 1974, Acta Otolaryngol Suppl, V319, P43 ARIYASU L, 1989, OTOLARYNG HEAD NECK, V100, P87 CABEZUDO LM, 1978, ACTA OTO-LARYNGOL, V86, P160, DOI 10.3109/00016487809124733 FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519 GREEN JD, 1990, LARYNGOSCOPE, V100, P1 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Guild SR, 1927, SCIENCE, V65, P67, DOI 10.1126/science.65.1673.67 Guild SR, 1921, ANAT REC, V22, P141 GUMMER AW, 1981, J ACOUST SOC AM, V70, P1298, DOI 10.1121/1.387144 Ishii T, 1995, Acta Otolaryngol Suppl, V519, P78 MILLER CE, 1985, J ACOUST SOC AM, V77, P1465, DOI 10.1121/1.392041 NAKASHIMA S, 1993, LARYNGOSCOPE, V103, P1150 PARK K, 1992, Yonsei Medical Journal, V33, P159 PERLIN S, 1946, J EXP PSYCHOL, V36, P127, DOI 10.1037/h0055722 SAKASHITA T, 1995, ANN OTO RHINOL LARYN, V104, P469 SATO H, 1992, AM J OTOL, V13, P141 SATO H, 1992, LARYNGOSCOPE, V102, P1056 SHUKNECHT HF, 1953, ARCH OTOLARYNGOL, V58, P377 TAKAGI A, 1989, ANN OTO RHINOL LARYN, V98, P515 TAKAGI A, 1988, OTOLARYNGOL HEAD NEC, V88, P195 TAKAHASHI H, 1993, ACTA OTO-LARYNGOL, V113, P376, DOI 10.3109/00016489309135828 TAKAHASHI H, 1989, LARYNGOSCOPE, V99, P505 VOLDRICH L, 1978, ACTA OTO-LARYNGOL, V86, P331, DOI 10.3109/00016487809107511 WADA H, 1990, J ACOUST SOC AM, V87, P237, DOI 10.1121/1.399290 NR 24 TC 18 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 1 EP 6 DI 10.1016/S0378-5955(98)00007-0 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100001 PM 9667425 ER PT J AU Ren, TY Nuttall, AL AF Ren, TY Nuttall, AL TI Acoustical modulation of electrically evoked otoacoustic emission in intact gerbil cochlea SO HEARING RESEARCH LA English DT Article DE electrical stimulation; cochlea; otoacoustic emission; cochlear amplifier; gerbil ID OUTER HAIR-CELLS; GUINEA-PIG; BASILAR-MEMBRANE; ENHANCEMENT; FUROSEMIDE; MECHANICS; ORGAN; CORTI AB In order to study the interaction between mechanical-electrical and electrical-mechanical transductions of outer hair cells (OHCs) in vivo, we observed the acoustically induced changes in the electrically evoked otoacoustic emission (EEOAE). One pole of a bipolar electrode was placed in the round window niche and the other pole on the surface of the first cochlear turn in the gerbil. A microphone and a speaker were used to monitor the EFOAE and to deliver an acoustical tone, respectively. It was found that a high sound level acoustical tone enhanced the EEOAE fine structure at frequencies below the acoustical frequency, and suppressed the overall level of the EEOAE at frequencies above the acoustical frequency. In addition, the EEOAE at frequencies approximately one half octave lower than the acoustical frequencies were relatively more enhanced or showed relatively less suppression than at other frequencies. The amplitudes of these changes had a positive relationship with acoustical tone levels. Furosemide eliminated the acoustically caused EEOAE change indicating that the acoustically caused change in the EEOAE is a phenomenon of the normal cochlea. One possible mechanism for the results is that the electrically and acoustically evoked basilar membrane (BM) vibrations interact at the EEOAE generation site and change the local mechanical and electrical properties. The second possible mechanism is that the acoustical stimulus creates an impedance discontinuity at its characteristic frequency location leading to a change in the reflected electrically evoked traveling wave, which may enhance or suppress the EEOAE by the vector summation of two waves. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Oregon Hearing Res Ctr NRC04, Dept Otolaryngol & Head & Neck Surg, Portland, OR 97201 USA. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Ren, TY (reprint author), Oregon Hlth Sci Univ, Oregon Hearing Res Ctr NRC04, Dept Otolaryngol & Head & Neck Surg, 3181 SW Sam Jackson Pk Rd, Portland, OR 97201 USA. CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 DAVIS H, 1965, COLD SPRING HARB SYM, V30, P181 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DEBOER E, 1983, J ACOUST SOC AM, V73, P574, DOI 10.1121/1.389003 FAHEY PF, 1997, 20 MIDW RES M ASS RE, P193 HUBBARD AE, 1983, SCIENCE, V222, P510, DOI 10.1126/science.6623090 HUBBARD AE, 1990, HEARING RES, V43, P269, DOI 10.1016/0378-5955(90)90234-G Kirk DL, 1996, J ACOUST SOC AM, V100, P3714, DOI 10.1121/1.417335 MOUNTAIN DC, 1989, HEARING RES, V42, P195, DOI 10.1016/0378-5955(89)90144-5 MURATA K, 1991, HEARING RES, V55, P201, DOI 10.1016/0378-5955(91)90105-I NAKAJIMA HH, 1994, J ACOUST SOC AM, V96, P786, DOI 10.1121/1.410316 NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9 Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2 PISKORSKI P, 1997, 20 MIDW RES M ASS RE, P23 REN T, 1996, 19 MIDW RES M ASS RE, P63 Ren TY, 1995, HEARING RES, V92, P178, DOI 10.1016/0378-5955(95)00217-0 Ren TY, 1996, HEARING RES, V102, P43, DOI 10.1016/S0378-5955(96)00145-1 Ren TY, 1996, NEUROSCI LETT, V207, P167, DOI 10.1016/0304-3940(96)12524-6 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 RYBAK LP, 1982, OTOLARYNG HEAD NECK, V90, P808 SANTOS-SACCHI J, 1989, J NEUROSCI, V9, P2954 SCHMIEDT RA, 1977, J ACOUST SOC AM, V61, P133, DOI 10.1121/1.381283 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 XUE SW, 1993, HEARING RES, V70, P121, DOI 10.1016/0378-5955(93)90056-7 NR 27 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 7 EP 16 DI 10.1016/S0378-5955(98)00045-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100002 PM 9667426 ER PT J AU Fay, RR AF Fay, RR TI Perception of two-tone complexes by the goldfish (Carassius auratus) SO HEARING RESEARCH LA English DT Article DE hearing; complex sound; roughness; fluctuation strength ID ACOUSTIC RESPONSE PROPERTIES; STURNUS-VULGARIS; SONGBIRD; NEURONS; SOUND AB Previous experiments on the sense of hearing in goldfish have used a stimulus generalization paradigm to investigate the perceptual dimensions evoked by spectrally and temporally complex sounds. The present experiments investigated the effects on perception of the frequency separation between two tones. In the first set of experiments, six groups of goldfish were classically conditioned to a single tone and then test-ed for generalization to two-tone complexes having one frequency component equal to the conditioning tone, and the other differing by 2-256 Hz. Generalization declined with increasing frequency differences up to about 32 Hz, and then increased for wider frequency separations. These functions indicate that a restricted range of beat rates produces a perceptual quality that is quite unlike that of a single tone. The generalization function of frequency separation resembles the inverse of the 'fluctuation strength' and 'roughness' functions for human listeners. The second experiment investigated the effects of spectral location on the perception of a 32 Hz beat rate. Goldfish were conditioned to a two-tone complex (500 and 532 Hz) and then tested for generalization to single tones at various frequencies between 200 and 1200 Hz, and to two-tone complexes having a 32 Hz beat rate but with the lower tone component at various frequencies. For single-lone stimuli, generalization was relatively weak but showed a peak at 500 Hz. For the two-tone stimuli, generalization was more robust, but showed a similarly shaped gradient centered on 500 Hz. Thus, goldfish behaved as if they had acquired information about both temporal modulation and the frequency location of the tone components. These perceptual behaviors appear to be shared with humans and other vertebrates. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Loyola Univ, Dept Psychol, Chicago, IL 60626 USA. Loyola Univ, Parmly Hearing Inst, Chicago, IL 60626 USA. RP Fay, RR (reprint author), Loyola Univ, Dept Psychol, 6525 N Sheridan Rd, Chicago, IL 60626 USA. CR Blackwell HR, 1943, J EXP PSYCHOL, V33, P407, DOI 10.1037/h0057863 CYNX J, 1993, J COMP PSYCHOL, V107, P140, DOI 10.1037/0735-7036.107.2.140 CYNX J, 1986, J COMP PSYCHOL, V100, P356 Fastl H., 1983, HEARING PHYSL BASES, P282 FAY RR, 1992, HEARING RES, V59, P101, DOI 10.1016/0378-5955(92)90107-X FAY RR, 1972, J ACOUST SOC AM, V52, P660, DOI 10.1121/1.1913155 Fay R. R., 1988, HEARING VERTEBRATES Fay R. R., 1969, 605 US NAV SUBM MED, P1 FAY RR, 1970, J EXP ANAL BEHAV, V14, P353, DOI 10.1901/jeab.1970.14-353 FAY R, 1969, J AUD RES, V9, P112 FAY RR, 1994, HEARING RES, V76, P158, DOI 10.1016/0378-5955(94)90097-3 FAY RR, 1995, HEARING RES, V89, P146, DOI 10.1016/0378-5955(95)00132-8 FAY RR, 1992, J ACOUST SOC AM, V92, P189, DOI 10.1121/1.404282 Fay R. R., 1994, Sensornye Sistemy, V8, P222 Fay RR, 1996, AUDIT NEUROSCI, V2, P377 GUTTMAN N, 1963, PSYCHOL STUDY SCI, V5 HEFFNER H, 1976, J ACOUST SOC AM, V59, P915, DOI 10.1121/1.380951 JENKINS HM, 1960, J EXP PSYCHOL, V59, P246, DOI 10.1037/h0041661 LU Z, 1993, J COMP PHYSIOL A, V173, P33 LU Z, 1995, J COMP PHYSIOL A, V176, P747 Lu ZM, 1996, AUDIT NEUROSCI, V2, P257 McCormick CA, 1996, BRAIN BEHAV EVOLUT, V47, P113, DOI 10.1159/000113232 PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256 PLOMP R, 1968, J ACOUST SOC AM, V43, P883, DOI 10.1121/1.1910916 SHEPARD RN, 1965, STIMULUS GEN STRIEDTER GF, 1991, J COMP NEUROL, V312, P311, DOI 10.1002/cne.903120213 TAVOLGA WN, 1974, J ACOUST SOC AM, V55, P1323, DOI 10.1121/1.1914704 Terhardt E., 1970, FREQUENCY ANAL PERIO, P278 TERHARDT E, 1974, ACUSTICA, V30, P201 THOMPSON RF, 1962, J COMP PHYSIOL PSYCH, V55, P279, DOI 10.1037/h0047856 Wegel RL, 1924, PHYS REV, V23, P266, DOI 10.1103/PhysRev.23.266 Zwicker E., 1990, PSYCHOACOUSTICS NR 32 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 17 EP 24 DI 10.1016/S0378-5955(98)00048-3 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100003 PM 9667427 ER PT J AU Muller, M Smolders, JWT AF Muller, M Smolders, JWT TI Hair cell regeneration after local application of gentamicin at the round window of the cochlea in the pigeon SO HEARING RESEARCH LA English DT Article DE bird; pigeon; aminoglycoside; regeneration; basilar papilla; hearing; ototoxicity ID CHICK BASILAR PAPILLA; KANAMYCIN OTOTOXICITY; INNER-EAR; AMINOGLYCOSIDE TOXICITY; ACOUSTIC TRAUMA; NOISE DAMAGE; IN-VITRO; RECOVERY; MORPHOLOGY; BUDGERIGAR AB Hair cells in the basilar papilla of birds have the capacity to regenerate after injury. Methods commonly used to induce cochlear damage are systemic application of ototoxic substances such as aminoglycoside antibiotics or loud sound. Both methods have disadvantages. The systemic application of antibiotics results in damage restricted to the basal 50% of the papilla and has severe side effects on the kidneys. Loud sound damages only small parts of the papilla and is restricted to the short hair cells. The present study was undertaken to determine the effect of local aminoglycoside application on the physiology and morphology of the avian basilar papilla. Collagen sponges loaded with gentamicin were placed at the round window of the cochlea in adult pigeons. The time course of hearing thresholds was determined from auditory brain stem responses elicited with pure tone bursts within a frequency range of 0.35-5.565 kHz. The condition of the basilar papilla was determined from scanning electron micrographs. Five days after application of the collagen sponges loaded with gentamicin severe hearing loss, except for the lowest frequency tested, was observed. Only at the apical 20% of the basilar papilla hair cells were left intact, all other hair cells were missing or damaged. At all frequencies there was little functional recovery until day 13 after implantation. At frequencies above 1 kHz functional recovery occurred at a rate of up to 4 dB/day until day 21, beyond that day recovery continued at a rate below 1 dB/day until day 48 at the 5.6 kHz. Below 1 kHz recovery occurred up to day 22, the recovery rate was below 2 dBiday. A residual hearing loss of about 15-25 dB remained at all frequencies, except for the lowest frequency tested. At day 20 new hair cells were seen on the basilar papilla. At day 48 the hair cells appeared to have recovered fully, except for the orientation of the hair cell bundles. The advantage of the local application of the aminoglycoside drug over systemic application is that it damages almost all hair cells in the basilar papilla and it has no toxic side effects. The damage is more extensive than with systemic application. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Frankfurt Klinikum, Physiol Inst 3, D-60590 Frankfurt, Germany. RP Muller, M (reprint author), Univ Frankfurt Klinikum, Physiol Inst 3, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. CR ADLER HJ, 1992, ACTA OTO-LARYNGOL, V112, P444, DOI 10.3109/00016489209137425 BADER F, 1992, THESIS U MUNICH BHAVE SA, 1995, J NEUROSCI, V15, P4618 Carey JP, 1996, J NEUROPHYSIOL, V76, P3301 CHEN L, 1993, HEARING RES, V69, P15, DOI 10.1016/0378-5955(93)90089-J COTANCHE DA, 1987, HEARING RES, V25, P267, DOI 10.1016/0378-5955(87)90098-0 Cotanche DA, 1997, ANN OTO RHINOL LARYN, V106, P9 Cotanche DA, 1995, HEARING RES, V91, P148, DOI 10.1016/0378-5955(95)00185-9 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 DUCKERT LG, 1993, J COMP NEUROL, V331, P75, DOI 10.1002/cne.903310105 EPSTEIN JE, 1995, HEARING RES, V90, P31, DOI 10.1016/0378-5955(95)00141-9 FISCHER FP, 1994, SCANNING MICROSCOPY, V8, P351 FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R GLEICH O, 1989, HEARING RES, V37, P255, DOI 10.1016/0378-5955(89)90026-9 HASHINO E, 1992, HEARING RES, V59, P46, DOI 10.1016/0378-5955(92)90101-R HASHINO E, 1991, HEARING RES, V52, P356, DOI 10.1016/0378-5955(91)90025-5 HASHINO E, 1995, HEARING RES, V88, P156, DOI 10.1016/0378-5955(95)00109-H Hashino E, 1996, BRAIN RES, V720, P172, DOI 10.1016/0006-8993(95)01467-5 HUY PTB, 1981, AMINOGLYCOSIDE OTOTO, P81 Janas JD, 1995, HEARING RES, V92, P17, DOI 10.1016/0378-5955(95)00190-5 KOTECHA B, 1994, HEARING RES, V73, P173, DOI 10.1016/0378-5955(94)90232-1 MANLEY GA, 1987, SCIENCE, V237, P655, DOI 10.1126/science.3603046 MAREAN GC, 1995, HEARING RES, V82, P267, DOI 10.1016/0378-5955(94)00183-Q MAREAN GC, 1993, ABSTR ASS RES OT, V16, P30 MAREAN GC, 1993, HEARING RES, V71, P125, DOI 10.1016/0378-5955(93)90028-Y MARSH RR, 1990, HEARING RES, V46, P229, DOI 10.1016/0378-5955(90)90004-9 Mitchell C, 1996, HEARING RES, V99, P38, DOI 10.1016/S0378-5955(96)00081-0 Muller M, 1996, HEARING RES, V102, P133, DOI 10.1016/S0378-5955(96)00155-4 Richter CP, 1996, J COMP PHYSIOL A, V179, P415 RUBEL EW, 1982, ACTA OTO-LARYNGOL, V93, P31, DOI 10.3109/00016488209130849 RYALS BM, 1982, ACTA OTO-LARYNGOL, V93, P205, DOI 10.3109/00016488209130873 Saunders JC, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P62 SAUNDERS JC, 1982, NEW PERSPECTIVES NOI Smolders JWT, 1995, HEARING RES, V92, P151, DOI 10.1016/0378-5955(95)00214-6 Stone JS, 1996, J NEUROSCI, V16, P6157 TUCCI DL, 1990, OTOLARYNG HEAD NECK, V103, P443 UMEMOTO M, 1994, ARCH HISTOL CYTOL, V57, P395, DOI 10.1679/aohc.57.395 VONDURING M, 1985, FORTS ZOOL, V30, P681 WacholDrewek Z, 1996, BIOMATERIALS, V17, P1733, DOI 10.1016/0142-9612(96)87654-X NR 39 TC 16 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 25 EP 36 DI 10.1016/S0378-5955(98)00049-5 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100004 PM 9667428 ER PT J AU Le Calvez, S Avan, P Gilain, L Romand, R AF Le Calvez, S Avan, P Gilain, L Romand, R TI CD1 hearing-impaired mice. I: Distortion product otoacoustic emission levels, cochlear function and morphology SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emission; mutant mouse; cochlea; cochlear microphonic; summating potential; phalloidin staining ID BRAIN-STEM RESPONSES; HAIR CELL LOSS; ACOUSTIC-DISTORTION; BASILAR-MEMBRANE; GUINEA-PIG; MOSSBAUER TECHNIQUE; TUNING CURVES; MUTANT MICE; 2F1-F2; HUMANS AB The levels of distortion product otoacoustic emissions (DPOAEs) were measured in a strain of hearing-impaired mutant mice (CD1) at various stages of outer hair cell impairment and compared to those of a control inbred strain (CBA/J). Parallel measurements of cochlear potentials and auditory brainstem evoked responses (ABRs) were performed and surface preparations of organs of Corti were observed using phalloidin staining of filamentous actin. Comparison of DPOAEs (elicited by stimulus levels of 60 and 70 dB SPL) with standard functional tests allowed the categorization df CD 1 ears into two groups on the basis of the presence or absence of DPOAE, which corresponded to mean ABR thresholds greater or less than 40 dB nHL respectively. When adopting ABR threshold as the gold standard, this procedure yielded rates of false-positives and -negatives ranging from 5 to 16%. However, individual predictions of electrophysiological function from DPOAE levels were not accurate, owing to their large variance, and attempts to optimize stimulus levels did not reduce this variance. In contrast, the profiles of DPOAE level vs. f(2 )exhibited large correlations with ABR threshold profiles as a function of f(2). It was also noteworthy that the mean levels of DPOAEs in CD1 mice recorded in frequency intervals with normal ABR thresholds were significantly smaller than those of CBA/J mice. Although hearing loss was revealed early both by DPOAEs and by other functional tests, surface preparations often remained normal until about 3-4 months of age. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Blaise Pascal, Neurobiol Lab, F-63177 Clermont Ferrand, France. Univ Auvergne, Sch Med, Dept Biophys, F-63001 Clermont Ferrand, France. Univ Auvergne, Sch Med, ENT Dept, F-63001 Clermont Ferrand, France. RP Avan, P (reprint author), Univ Blaise Pascal, Neurobiol Lab, Ensemble Univ Cezeaux, F-63177 Clermont Ferrand, France. EM paul.avan@u-clermont1.fr CR Allen J. B, 1990, USER MANUAL CUBDIS D ALLEN JB, 1992, J ACOUST SOC AM, V92, P178, DOI 10.1121/1.404281 AVAN P, 1993, AUDIOLOGY, V32, P12 Avan P, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P65 BONFILS P, 1992, ACTA OTO-LARYNGOL, V112, P739, DOI 10.3109/00016489209137468 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 CANLON B, 1993, J ACOUST SOC AM, V94, P3232, DOI 10.1121/1.407229 DALLOS P, 1971, J ACOUST SOC AM, V49, P1144, DOI 10.1121/1.1912476 DAVIS RI, 1993, AUDIOLOGY, V32, P110 DON M, 1978, J ACOUST SOC AM, V63, P1084, DOI 10.1121/1.381816 FRANKLIN DJ, 1991, HEARING RES, V53, P185, DOI 10.1016/0378-5955(91)90053-C GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 GORGA MP, 1994, J ACOUST SOC AM, V96, P1494, DOI 10.1121/1.410227 GORGA MP, 1993, J ACOUST SOC AM, V93, P2050, DOI 10.1121/1.406691 HALL JL, 1974, J ACOUST SOC AM, V56, P1818, DOI 10.1121/1.1903519 HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 Hamernik RP, 1996, J ACOUST SOC AM, V100, P1003, DOI 10.1121/1.416285 HARRIS FP, 1990, J SPEECH HEAR RES, V33, P594 HARRIS FP, 1992, HEARING RES, V64, P133, DOI 10.1016/0378-5955(92)90175-M HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 HARVEY D, 1992, HEARING RES, V61, P137, DOI 10.1016/0378-5955(92)90044-N HENRY KR, 1992, AUDIOLOGY, V31, P181 HOFSTETTER P, 1997, ASS RES OT 20 MIDW M, P107 HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 KHANNA SM, 1982, SCIENCE, V215, P305, DOI 10.1126/science.7053580 Kiang NY-s, 1965, DISCHARGE PATTERNS S KIMBERLEY BP, 1989, J OTOLARYNGOL, V18, P365 LAFRENIERE D, 1991, ARCH OTOLARYNGOL, V117, P1382 Le Calvez S, 1998, HEARING RES, V120, P51, DOI 10.1016/S0378-5955(98)00051-3 LEONARD G, 1990, ADV AUDIOL, V7, P139 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 MARTIN GK, 1990, ANN OTO RHINOL LARYN, V99, P30 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 MILLS DM, 1994, AUDIT NEUROSCI, V1, P77 PARHAM K, 1996, ASS RES OT 19 MIDW M, P26 PATUZZI R, 1984, HEARING RES, V13, P99, DOI 10.1016/0378-5955(84)90100-X PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 PROBST R, 1990, AM J OTOLARYNG, V11, P236, DOI 10.1016/0196-0709(90)90083-8 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 PROSEN CA, 1990, HEARING RES, V44, P179, DOI 10.1016/0378-5955(90)90079-5 PUEL JL, 1995, ACTA ACUST, V3, P75 RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O SCHMIEDT RA, 1986, J ACOUST SOC AM, V79, P1481, DOI 10.1121/1.393675 SCHROTT A, 1991, HEARING RES, V52, P245, DOI 10.1016/0378-5955(91)90204-M SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SHONE G, 1991, HEARING RES, V57, P153, DOI 10.1016/0378-5955(91)90084-M SUTTON LA, 1994, HEARING RES, V75, P162 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 Trune DR, 1996, HEARING RES, V96, P41, DOI 10.1016/0378-5955(96)00017-2 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2346, DOI 10.1121/1.411959 NR 55 TC 29 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 37 EP 50 DI 10.1016/S0378-5955(98)00050-1 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100005 PM 9667429 ER PT J AU Le Calvez, S Guilhaume, A Romand, R Aran, JM Avan, P AF Le Calvez, S Guilhaume, A Romand, R Aran, JM Avan, P TI CD1 hearing-impaired mice. II: Group latencies and optimal f(2)/f(1) ratios of distortion product otoacoustic emissions, and scanning electron microscopy SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emission; mutant mouse; cochlea; reticular lamina; scanning electron microscopy ID ACOUSTIC DISTORTION; MUTANT MICE; COCHLEA; AMPLITUDE; RESPONSES; ASPIRIN; HUMANS; EARS AB In our companion paper (Le Calvez et al., 1998), the levels of distortion product otoacoustic emissions (DPOAE) were collected in the ears of CD1 mice with progressive degeneration of cochlear outer hair cells (OHC). Their comparison to standard functional measurements such as auditory-evoked brainstem responses (ABR) showed that CD1 ears could be classified as normal or impaired in a frequency-specific manner using DPOAE levels. The present work reports how DPOAE phases and levels of young CD1 mice were affected by varying the frequency ratio of eliciting stimuli at frequencies f(1) and f(2). Normally hearing CBA/J mice served as controls. The rate of phase change of DPOAE when f(1) was varied and f(2) was fixed allowed the group delay of DPOAE to be derived. The changes of DPOAE levels during this procedure disclosed bandpass characteristics that several reports (Fahey and Alien, 1986; Brown and Gaskill, 1990) assumed to be the reflection of important features uf cochlear micromechanics, possibly in relation to the coupling of OHCs to the tectorial membrane. Group delays became significantly shorter when ABR thresholds exceeded 40 dB elevation. The bandpass filter characteristics strikingly depended on auditory function so that the optimal ratio f(2)/f(1) progressively shifted from 1.24 to 1.50 or more when hearing loss increased. A difference was also noted between CD1 ears whose ABR thresholds were not yet increased and control CBA/J (optimal ratio 1.20). Scanning electron microscopy disclosed a variety of often minor OHC lesions that were only roughly correlated with cochlear function. However, the presence of abnormalities in the reticular lamina associated with early changes of DPOAE fine structure as a function of f(2)/f(1) supported the hypothesis of some involvement of micromechanical features in the bandpass filter characteristics of DPOAE, The sensitivity of their measurement in pathological situations is potentially interesting. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Clermont Ferrand, Neurobiol Lab, F-63177 Clermont Ferrand, France. Hop Pellegrin, Lab Expt & Clin Audiol, F-33076 Bordeaux, France. Univ Auvergne, Sch Med, Dept Biophys, F-63001 Clermont Ferrand, France. RP Avan, P (reprint author), Univ Clermont Ferrand, Neurobiol Lab, Ensemble Univ Cezeaux, F-63177 Clermont Ferrand, France. EM paul.avan@u-clermont1.fr CR Abdala C, 1996, J ACOUST SOC AM, V100, P3726, DOI 10.1121/1.417234 Allen J. B, 1990, USER MANUAL CUBDIS D ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198 ALLEN JB, 1990, LECT NOTES BIOMATH, V87, P324 ALLEN JB, 1993, J ACOUST SOC AM, V94, P809, DOI 10.1121/1.408182 AVAN P, 1993, AUDIOLOGY, V32, P12 Avan P, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P65 BROWN AM, 1992, P ROY SOC B-BIOL SCI, V250, P29, DOI 10.1098/rspb.1992.0126 BROWN AM, 1993, J ACOUST SOC AM, V93, P3291, DOI 10.1121/1.405713 BROWN AM, 1993, J ACOUST SOC AM, V93, P3298, DOI 10.1121/1.405714 BROWN AM, 1990, LECT NOTES BIOMATH, V87, P164 BROWN AM, 1995, AUDIT NEUROSCI, V1, P169 CARLYON RP, 1993, HEARING RES, V66, P233, DOI 10.1016/0378-5955(93)90143-O DAVIS JM, 1983, PEPTIDES, V4, P79, DOI 10.1016/0196-9781(83)90170-5 EGGERMONT JJ, 1979, J ACOUST SOC AM, V65, P463, DOI 10.1121/1.382345 Ehret G, 1983, DEV AUDITORY VESTIBU, P211 FAHEY PF, 1986, PERIPHERAL AUDITORY, P314 GORGA MP, 1994, J ACOUST SOC AM, V96, P1494, DOI 10.1121/1.410227 GORGA MP, 1993, J ACOUST SOC AM, V93, P2050, DOI 10.1121/1.406691 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 Kanis LJ, 1997, J ACOUST SOC AM, V101, P1527, DOI 10.1121/1.418173 KEMP DT, 1984, HEARING RES, V13, P39, DOI 10.1016/0378-5955(84)90093-5 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 KEMP DT, 1983, HEARING PHYSL BASES, P82 KIMBERLEY BP, 1993, J ACOUST SOC AM, V94, P1343, DOI 10.1121/1.408162 Le Calvez S, 1998, HEARING RES, V120, P37, DOI 10.1016/S0378-5955(98)00050-1 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X MARTIN DL, 1997, MIDW ARO M, P195 MARTIN GK, 1990, ANN OTO RHINOL LARYN, V99, P30 NEELY ST, 1997, DIVERSITY AUDITORY M, P434 OMAHONEY CF, 1995, J ACOUST SOC AM, V97, P3721, DOI 10.1121/1.412994 PARHAM K, 1996, MIDW ARO M, P26 Patuzzi R., 1996, COCHLEA, P186 PROBST R, 1990, AM J OTOLARYNG, V11, P236, DOI 10.1016/0196-0709(90)90083-8 SCHROTT A, 1991, HEARING RES, V52, P245, DOI 10.1016/0378-5955(91)90204-M SHONE G, 1991, HEARING RES, V57, P153, DOI 10.1016/0378-5955(91)90084-M Whitehead ML, 1996, J ACOUST SOC AM, V100, P1663, DOI 10.1121/1.416065 ZWISLOCKI JJ, 1979, SCIENCE, V204, P639, DOI 10.1126/science.432671 NR 40 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 51 EP 61 DI 10.1016/S0378-5955(98)00051-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100006 PM 9667430 ER PT J AU Johnson, DF Prezant, TR Lubavin, B Chaltraw, WE Fischel-Ghodsian, N AF Johnson, DF Prezant, TR Lubavin, B Chaltraw, WE Fischel-Ghodsian, N TI Isolation of overexpressed yeast genes which prevent aminoglycoside toxicity SO HEARING RESEARCH LA English DT Article DE aminoglycoside; ototoxicity; Saccharomyces cerevisiae ID PLASMA-MEMBRANE ATPASE; RESISTANT PMA1 MUTANTS; RIBOSOMAL-RNA GENE; SACCHAROMYCES-CEREVISIAE; INDUCED DEAFNESS; ESCHERICHIA-COLI; ANTIBIOTICS; MUTATIONS; SITES; OTOTOXICITY AB Aminoglycoside antibiotics at non-toxic levels can cause sensorineural hearing loss in genetically predisposed individuals. The major aminoglycoside hypersensitivity mutation that has been described in humans is at position 1555 in the mitochondrial 12S ribosomal RNA gene. In order to identify additional candidate genes for genetic susceptibility mutations in humans and possibly develop therapeutic interventions, we are using yeast as a model organism to identify genes whose products interact with aminoglycosides or bypass the effects of aminoglycoside poisoning. We have selected yeast genomic DNAs that, when cloned into a high copy number plasmid, confer neomycin resistance. We have previously described the first gene identified through this approach [Prezant, Chaltraw and Fischel-Ghodsian, Microbiology 142 (1996) 3407-3414] and have now completed this search by the exhaustive screening of 35 yeast genome equivalents. This has resulted in the identification of seven additional chromosomal regions. All seven chromosomal regions have been characterized and the most likely gene responsible fur aminoglycoside resistance has been identified for each of them. While the mechanism of aminoglycoside resistance can be inferred for some of the gene products, it remains to be determined for others. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Cedars Sinai Med Ctr, Burns & Allen Res Inst,Ahmanson Dept Pediat, Med Genet Birth Defects Ctr, Steven Spielberg Pediat Res Ctr, Los Angeles, CA 90048 USA. Univ Calif Los Angeles, Sch Med, Los Angeles, CA 90048 USA. RP Fischel-Ghodsian, N (reprint author), Cedars Sinai Med Ctr, Burns & Allen Res Inst,Ahmanson Dept Pediat, Med Genet Birth Defects Ctr, Steven Spielberg Pediat Res Ctr, 8700 Beverly Blvd, Los Angeles, CA 90048 USA. CR ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999 BACINO C, 1995, PHARMACOGENETICS, V5, P165, DOI 10.1097/00008571-199506000-00005 BAIROCH A, 1991, NUCLEIC ACIDS RES, V19, P2241 BALZI E, 1994, J BIOL CHEM, V269, P2206 CARLSON M, 1982, CELL, V28, P145, DOI 10.1016/0092-8674(82)90384-1 CHERNOFF YO, 1994, EMBO J, V13, P906 Davies J, 1997, TRENDS MICROBIOL, V5, P234, DOI 10.1016/S0966-842X(97)01033-0 DEAN N, 1995, P NATL ACAD SCI USA, V92, P1287, DOI 10.1073/pnas.92.5.1287 FischelGhodsian N, 1997, AM J OTOLARYNG, V18, P173, DOI 10.1016/S0196-0709(97)90078-8 Fourmy D, 1996, SCIENCE, V274, P1367, DOI 10.1126/science.274.5291.1367 GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 Haussinger D, 1996, BIOCHEM J, V313, P697 HAWKINS JE, 1977, ACTA OTO-LARYNGOL, V83, P123, DOI 10.3109/00016487709128821 HIGASHI K, 1989, CLIN GENET, V35, P433 HIRAYAMA T, 1995, MOL GEN GENET, V249, P127, DOI 10.1007/BF00290358 HU DN, 1991, J MED GENET, V28, P79, DOI 10.1136/jmg.28.2.79 HUTCHIN T, 1993, NUCLEIC ACIDS RES, V21, P4174, DOI 10.1093/nar/21.18.4174 ITO H, 1983, J BACTERIOL, V153, P163 Kolaczkowski M, 1996, J BIOL CHEM, V271, P31543 LI M, 1982, J BIOL CHEM, V257, P5921 MARBOIS BN, 1994, GENE, V138, P212 MCCUSKER JH, 1987, MOL CELL BIOL, V7, P4082 MOAZED D, 1987, NATURE, V327, P389, DOI 10.1038/327389a0 PEARSON WR, 1988, P NATL ACAD SCI USA, V85, P2444, DOI 10.1073/pnas.85.8.2444 PERLIN DS, 1988, J BIOL CHEM, V263, P18118 PERLIN DS, 1989, J BIOL CHEM, V264, P21857 PREKER PJ, 1995, CELL, V81, P379, DOI 10.1016/0092-8674(95)90391-7 Prezant TR, 1996, MICROBIOL-UK, V142, P3407 PREZANT TR, 1993, NAT GENET, V4, P289, DOI 10.1038/ng0793-289 Reid RJD, 1997, J BIOL CHEM, V272, P12091, DOI 10.1074/jbc.272.18.12091 SAIKI RK, 1988, SCIENCE, V239, P487, DOI 10.1126/science.2448875 Sambrook J., 1989, MOL CLONING LAB MANU SANDBAKEN MG, 1990, J BIOL CHEM, V265, P15838 SANDE MA, 1990, PHARMACOL BASIS THER, P1098 Sherman F., 1983, METHODS YEAST GENETI SINGH A, 1979, NATURE, V277, P146, DOI 10.1038/277146a0 Song BB, 1997, J PHARMACOL EXP THER, V282, P369 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 STRATHERN JN, 1991, METHOD ENZYMOL, V194, P319 ULASZEWSKI S, 1987, MOL GEN GENET, V207, P38, DOI 10.1007/BF00331488 VONAHSEN U, 1993, SCIENCE, V260, P1500, DOI 10.1126/science.8502993 VONAHSEN U, 1991, NATURE, V353, P368, DOI 10.1038/353368a0 ZUMGOTTESBERGE M, 1997, J OTORHINOLARYNGOL R, V59, P127 NR 43 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 62 EP 68 DI 10.1016/S0378-5955(98)00057-4 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100007 PM 9667431 ER PT J AU Fay, RR AF Fay, RR TI Auditory stream segregation in goldfish (Carassius auratus) SO HEARING RESEARCH LA English DT Article DE hearing; fish; auditory stream segregation; auditory scene analysis ID NERVE-FIBERS; PERCEPTION AB Goldfish were classically conditioned to a mixture of two pulse trains differing in both repetition rate and the spectral profile of the pulses. Animals were then tested for generalization to single pulse trains having one or the other spectral profile presented at a variety of repetition rates. Generalization functions of repetition rate were qualitatively similar to those obtained following conditioning to either of the pulse trains alone. Thus, the spectral profile of each pulse type was appropriately associated with the repetition rate at which that pulse type was presented during conditioning. These results indicate that the two concurrent pulse trains making up the conditioning stimuli were analyzed independently, forming two auditory streams. When either of the two pulse trains were presented with a 500 ms onset asynchrony, stream segregation was enhanced. These and other results suggest that many fundamental features of the human sense of hearing are widely shared among vertebrate animals, and may have developed first among fishes. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Loyola Univ, Dept Psychol, Chicago, IL 60626 USA. Loyola Univ, Parmly Hearing Inst, Chicago, IL 60626 USA. RP Fay, RR (reprint author), Loyola Univ, Dept Psychol, 6525 N Sheridan Rd, Chicago, IL 60626 USA. CR Bregman AS., 1990, AUDITORY SCENE ANAL BULLOCK TH, 1992, EVOLUTIONARY BIOL HE CARR CE, 1990, J NEUROSCI, V10, P3227 DEBOER E, 1976, HDB SENSORY PHYSL, V3, P479 Fay R. R., 1997, DIVERSITY AUDITORY M, P69 FAY RR, 1992, HEARING RES, V59, P101, DOI 10.1016/0378-5955(92)90107-X FAY RR, 1972, J ACOUST SOC AM, V52, P660, DOI 10.1121/1.1913155 Fay R. R., 1988, HEARING VERTEBRATES FAY RR, 1970, J EXP ANAL BEHAV, V14, P353, DOI 10.1901/jeab.1970.14-353 FAY R, 1969, J AUD RES, V9, P112 Fay RR, 1998, HEARING RES, V120, P17, DOI 10.1016/S0378-5955(98)00048-3 FAY RR, 1978, J ACOUST SOC AM, V63, P136, DOI 10.1121/1.381705 FAY RR, 1994, HEARING RES, V76, P158, DOI 10.1016/0378-5955(94)90097-3 FAY RR, 1995, HEARING RES, V89, P146, DOI 10.1016/0378-5955(95)00132-8 FAY RR, 1987, SENSORY BIOL AQUATIC, P711 FAY RR, 1986, J ACOUST SOC AM, V79, P1883, DOI 10.1121/1.393196 FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229 Fay RR, 1997, HEARING RES, V113, P235, DOI 10.1016/S0378-5955(97)00148-2 Fay RR, 1996, AUDIT NEUROSCI, V2, P377 GANS C, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P3 Hartmann W. M., 1988, AUDITORY FUNCTION, P623 Heiligenberg W., 1991, NEURAL NETS ELECT FI Hulse SH, 1997, J COMP PSYCHOL, V111, P3, DOI 10.1037/0735-7036.111.1.3 McCormick CA, 1996, BRAIN BEHAV EVOLUT, V47, P113, DOI 10.1159/000113232 MOENG R, 1985, J COMP PHYSL, V155, P615 SIMMONS J, 1995, SPRINGER HDB AUDITOR, V5 Terhardt E., 1970, FREQUENCY ANAL PERIO, P278 NR 27 TC 58 Z9 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 69 EP 76 DI 10.1016/S0378-5955(98)00058-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100008 PM 9667432 ER PT J AU Phippard, D Heydemann, A Lechner, M Lu, LH Lee, D Kyin, T Crenshaw, EB AF Phippard, D Heydemann, A Lechner, M Lu, LH Lee, D Kyin, T Crenshaw, EB TI Changes in the subcellular localization of the Brn4 gene product precede mesenchymal remodeling of the otic capsule SO HEARING RESEARCH LA English DT Article DE brain-4 (Brn4/Pou3f4); otic capsule; temporal bone formation; immunohistochemistry; in situ hybridization ID GROWTH-FACTOR-BETA; POU-DOMAIN; PERIOTIC MESENCHYME; TISSUE INTERACTIONS; MIXED DEAFNESS; CHONDROGENESIS; PROTEINS; FAMILY AB To better understand the genetic mechanisms that regulate the formation of the temporal bone, we have characterized the developmental expression pattern of the mouse gene, Brn4/Pou3f4, which plays a central role in bony labyrinth formation. Expression of this gene is initially detected in the ventral aspect of the otic capsule at 10.5 days post coitus (dpc), and correlates with the onset of mesenchymal condensation in the oric capsule. As the otic capsule condenses further and surrounds the entire otic vesicle, the Brn4 gene product is detected throughout the inner ear in the mesenchyme of both the cochlear and vestibular aspects. Early in otic embryogenesis, the Brn4 gene product is localized to the nucleus of the vast majority of cells in which it is expressed. The Brn4 gene product remains nuclear in those regions of the otic capsule that eventually give rise to the mature bony labyrinth. However, the subcellular localization of the Brn4 gene product shifts from strictly nuclear to perinuclear in those regions of the otic capsule that will cavitate to form acellular regions in the temporal bone, such as the scala tympani, scala vestibuli, and the internal auditory meatus. These data provide a detailed analysis of the expression pattern of the Brn4 gene, and provide insight into the role of the Brn4 gene product and its regulation during otic capsule formation. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Univ Penn, Dept Neurosci, Philadelphia, PA 19104 USA. Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA. RP Crenshaw, EB (reprint author), Univ Penn, Dept Neurosci, 36th & Hamilton Walk, Philadelphia, PA 19104 USA. CR Ausubel FM, 1991, CURRENT PROTOCOLS MO BAEUERLE PA, 1988, SCIENCE, V242, P540, DOI 10.1126/science.3140380 DEKOK YJM, 1995, SCIENCE, V267, P685, DOI 10.1126/science.7839145 FRENZ DA, 1991, ANN NY ACAD SCI, V630, P256, DOI 10.1111/j.1749-6632.1991.tb19597.x FRENZ DA, 1992, DEV BIOL, V153, P324, DOI 10.1016/0012-1606(92)90117-Y FRENZ DA, 1991, ANN NY ACAD SCI, V630, P253, DOI 10.1111/j.1749-6632.1991.tb19596.x FRENZ DA, 1994, DEVELOPMENT, V120, P415 FRENZ DA, 1991, ANN OTO RHINOL LARYN, V100, P301 FRENZ DA, 1991, DEV BIOL, V144, P38, DOI 10.1016/0012-1606(91)90476-J GUAN KL, 1991, ANAL BIOCHEM, V192, P262, DOI 10.1016/0003-2697(91)90534-Z HERR W, 1995, GENE DEV, V9, P1679, DOI 10.1101/gad.9.14.1679 LANGMAN J, 1982, MED EMBRYOLOGY MCPHEE JR, 1985, ANAT REC, V213, P566, DOI 10.1002/ar.1092130413 MCPHEE JR, 1986, J EMBRYOL EXP MORPH, V97, P1 PIUSSAN C, 1995, AM J HUM GENET, V56, P224 RUSHLOW C, 1992, BIOESSAYS, V14, P89, DOI 10.1002/bies.950140204 Sher A E, 1971, Acta Otolaryngol Suppl, V285, P1 SHULL MM, 1992, NATURE, V359, P693, DOI 10.1038/359693a0 SIMMONS DM, 1989, J HISTOTECHNOL, V12, P169 STEEL KP, 1994, TRENDS GENET, V10, P428, DOI 10.1016/0168-9525(94)90113-9 Theiler K., 1989, HOUSE MOUSE ATLAS EM TREACY MN, 1992, ANNU REV NEUROSCI, V15, P139, DOI 10.1146/annurev.neuro.15.1.139 VANDEWATER TR, 1991, ANN NY ACAD SCI, V630, P116 VERRIJZER CP, 1993, BIOCHIM BIOPHYS ACTA, V1173, P1, DOI 10.1016/0167-4781(93)90237-8 Wegner M, 1993, CURR OPIN CELL BIOL, V5, P488, DOI 10.1016/0955-0674(93)90015-I NR 25 TC 37 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 77 EP 85 DI 10.1016/S0378-5955(98)00059-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100009 PM 9667433 ER PT J AU Sutherland, DP Glendenning, KK Masterton, RB AF Sutherland, DP Glendenning, KK Masterton, RB TI Role of acoustic striae in hearing: discrimination of sound-source elevation SO HEARING RESEARCH LA English DT Article DE dorsal acoustic stria; intermediate acoustic stria; ventral acoustic stria; cochlear nucleus ID SPECTRAL CUES; ORIENTATION BEHAVIOR; MEDIAN PLANE; FREE-FIELD; LOCALIZATION; CATS; PINNA; TRANSFORMATION; MECHANISMS; ACUITY AB After years of systematic experimentation, we finally uncovered one thing the dorsal system contributes to hearing which the ventral system may not - the mechanism for orienting to an elevated sound source [Sutherland, D.P., Masterton. R.B., Glendenning, K.K. (1998) Behav. Brain Res. in press]. This paper follows up this one positive result on a historical background of uniformly negative results. The focus of this report is on the fusiform cells of the dorsal cochlear nucleus whose axons course through the dorsal acoustic stria (DAS). Because electrophysiological studies have shown that the cues for sensing the elevation of a sound source would seem to be best analyzed by the dorsal cochlear nucleus, we tested, behaviorally, normal cats and cats deprived of their DAS or intermediate acoustic stria, bilaterally or ipsilaterally (with or without their contralateral ear deafened). for their ability to orient to elevated sources of broad-band noise. For behavioral testing, we made use of a conventional shock-avoidance procedure. The results lead to the conclusion that DCN and DAS may play no role in learned elevation discriminations. This result builds on that of another of our papers which suggests that a deficit in reflexive discrimination of elevation is strictly auditory in nature [Sutherland, D.P., Masterton. R.B.. Glendenning, K.K. (1998) Behav. Brain Res. in press]. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Florida State Univ, Dept Psychol, Program Psychobiol & Neurosci, Tallahassee, FL 32306 USA. RP Sutherland, DP (reprint author), Florida State Univ, Dept Psychol, Program Psychobiol & Neurosci, Tallahassee, FL 32306 USA. EM kircher@psy.fsu.edu CR ADAMS JC, 1976, J COMP NEUROL, V170, P107, DOI 10.1002/cne.901700108 AITKIN L, 1990, HEARING RES, V50, P97, DOI 10.1016/0378-5955(90)90036-O BRAWER JR, 1974, J COMP NEUROL, V155, P257 BRUGGE JF, 1994, HEARING RES, V73, P67, DOI 10.1016/0378-5955(94)90284-4 BUTLER RA, 1977, J ACOUST SOC AM, V61, P1264, DOI 10.1121/1.381427 FROST SB, 1997, SOC NEUROSCI, V27, P2072 GLENDENNING KK, 1990, OTOLARYNGOL HEAD NEC, V103, P190 Glendenning KK, 1998, BRAIN BEHAV EVOLUT, V51, P59, DOI 10.1159/000006530 HEBRANK J, 1974, J ACOUST SOC AM, V56, P935, DOI 10.1121/1.1903351 HEBRANK J, 1974, J ACOUST SOC AM, V56, P1829, DOI 10.1121/1.1903520 Heffner H. E., 1995, METHODS COMP PSYCHOA, P79 HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P915 Heffner R. S., 1990, COMP PERCEPTION, VI, P285 HEFFNER RS, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P691 HEFFNER RS, 1995, HEARING RES, V88, P190, DOI 10.1016/0378-5955(95)00112-H HEFFNER RS, 1988, HEARING RES, V36, P221, DOI 10.1016/0378-5955(88)90064-0 Huang AY, 1996, J ACOUST SOC AM, V100, P2341, DOI 10.1121/1.417943 Huang AY, 1996, J ACOUST SOC AM, V100, P1070, DOI 10.1121/1.416293 MARTIN RL, 1987, HEARING RES, V30, P239, DOI 10.1016/0378-5955(87)90140-7 MASTERTO.B, 1967, J NEUROPHYSIOL, V30, P341 Masterton RB, 1997, ANN OTO RHINOL LARYN, V106, P31 MASTERTON RB, 1984, ANNU REV PHYSIOL, V46, P275 MASTERTON RB, 1993, ORL J OTO-RHINO-LARY, V55, P159 MASTERTON RB, 1994, ASS RES OTOLARYNGOL, V17, P84 MASTERTON RB, 1988, J NEUROPHYSIOL, V60, P1841 MASTERTON RB, 1982, SOUND LOCALIZATION T, P113 MASTERTON RB, 1994, HEARING RES, V73, P209, DOI 10.1016/0378-5955(94)90237-2 MAY BJ, 1998, ASS RES OTOLARYNGOL, V679, P170 May BJ, 1996, J ACOUST SOC AM, V100, P1059, DOI 10.1121/1.416292 MIDDLEBROOKS JC, 1989, J ACOUST SOC AM, V86, P89, DOI 10.1121/1.398224 MORELANDGRANGER E, 1986, ASS RES OTOLARYNGOL, V9, P45 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 MUSICANT AD, 1985, J ACOUST SOC AM, V77, P202, DOI 10.1121/1.392259 MUSICANT AD, 1984, J ACOUST SOC AM, V75, P1195, DOI 10.1121/1.390770 PHILLIPS DP, 1982, HEARING RES, V8, P13, DOI 10.1016/0378-5955(82)90031-4 RICE JJ, 1995, J ACOUST SOC AM, V97, P1764, DOI 10.1121/1.412053 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 ROFFLER SK, 1968, J ACOUST SOC AM, V43, P1255, DOI 10.1121/1.1910976 SHAW EAG, 1974, J ACOUST SOC AM, V56, P1848, DOI 10.1121/1.1903522 Sherrington C. S., 1906, INTEGRATIVE ACTION N SLATTERY WH, 1994, HEARING RES, V75, P38, DOI 10.1016/0378-5955(94)90053-1 SUTHERLAND DP, 1994, ASS RES OTOLARYNGOL, V17, P84 SUTHERLAND DP, 1994, THESIS FLORIDA STATE SUTHERLAND DP, 1998, IN PRESS BEHAV BRAIN SUTHERLAND DP, 1993, ASS RES OTOLARYNGOL, V16, P109 SUTHERLAND DP, 1991, ASS RES OTOLARYNGOL, V14, P33 THOMPSON GC, 1978, J NEUROPHYSIOL, V41, P1183 Warr W. B., 1982, CONTRIB SENS PHYSIOL, V7, P1 Young E. D., 1988, AUDITORY FUNCTION NE, P277 Young ED, 1996, J ACOUST SOC AM, V99, P3064, DOI 10.1121/1.414883 NR 50 TC 27 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 86 EP 108 DI 10.1016/S0378-5955(98)00056-2 PG 23 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100010 PM 9667434 ER PT J AU Ding-Pfennigdorff, D Smolders, JWT Muller, M Klinke, R AF Ding-Pfennigdorff, D Smolders, JWT Muller, M Klinke, R TI Hair cell loss and regeneration after severe acoustic overstimulation in the adult pigeon SO HEARING RESEARCH LA English DT Article DE bird; pigeon; acoustic trauma; regeneration; auditory nerve; hair cell; basilar papilla; 5-bromo-2 '-deoxyuridine labeling ID CHICK BASILAR PAPILLA; INTENSE SOUND EXPOSURE; AVIAN INNER-EAR; NEONATAL CHICKS; TECTORIAL MEMBRANE; THRESHOLD SHIFT; NOISE DAMAGE; PURE-TONES; TRAUMA; COCHLEA AB The extent of hair cell regeneration following acoustic overstimulation severe enough to destroy tall hair cells, was determined in adult pigeons. BrdU (5-bromo-2'-deoxyuridine) was used as a proliferation marker. Recovery of hearing thresholds in each individual animal was measured over a period of up to 16 weeks after trauma. In ears with loss of both short and tall hair cells, little or no functional recovery occurred. In ears with less damage, where significant functional recovery did occur, there were always a few rows of surviving hair cells left at the neural edge of the basilar papilla. In the region of hair cell loss, numerous BrdU labeled cells were found. However, only a small minority of these cells were regenerated hair cells, the majority being monolayer cells. Irrespective of the extent of the region of hair-cell loss, regenerated hair cells were observed predominantly in a narrow strip at the transition from the abneural area of total hair cell loss and the neural area of hair cell survival. With increasing damage this strip moved progressively towards the neural edge of the papilla. No regeneration of hair cells was observed in the abneural region of total hair cell loss, even up to 16 weeks after trauma. The results indicate that there is a gradient in the destructive effect of loud sound across the width of the basilar papilla, from most detrimental at the abneural edge to least detrimental at the neural edge. Both tall and short hair cells can regenerate after sound trauma. Whether they do regenerate or not depends on the degree of damage to the area of the papilla where they normally reside. Regeneration of new hair cells occurs only in a narrow longitudinal band, which moves from abneural into the neural direction with increasing damage. In the area neural to this band, hair cells survive the overstimulation. In the area abneural to this band, sound damage is so severe, that no regeneration of hair cells occurs. As a consequence morphological and functional deficits persist. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Frankfurt Klinikum, Physiol Inst 3, D-60590 Frankfurt, Germany. RP Smolders, JWT (reprint author), Univ Frankfurt Klinikum, Physiol Inst 3, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. EM smolders@uni-frankfurt.de CR ADLER HJ, 1992, ACTA OTO-LARYNGOL, V112, P444, DOI 10.3109/00016489209137425 CHEN L, 1995, HEARING RES, V89, P28, DOI 10.1016/0378-5955(95)00119-5 Chen L, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P43 Chen L, 1996, HEARING RES, V98, P152, DOI 10.1016/0378-5955(96)00086-X CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 COTANCHE DA, 1987, HEARING RES, V30, P197, DOI 10.1016/0378-5955(87)90136-5 COTANCHE DA, 1987, HEARING RES, V25, P267, DOI 10.1016/0378-5955(87)90098-0 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 COTANCHE DA, 1992, EXP NEUROL, V115, P23, DOI 10.1016/0014-4886(92)90215-C Cotanche DA, 1997, ANN OTO RHINOL LARYN, V106, P9 COTANCHE DA, 1996, ASS RES OTOLARYNGOL, V19, P199 COTANCHE DA, 1990, HEARING RES, V46, P29, DOI 10.1016/0378-5955(90)90137-E Cotanche DA, 1995, HEARING RES, V91, P148, DOI 10.1016/0378-5955(95)00185-9 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 COUSILLAS H, 1985, HEARING RES, V19, P217, DOI 10.1016/0378-5955(85)90141-8 DUCKERT LG, 1990, HEARING RES, V48, P161, DOI 10.1016/0378-5955(90)90206-5 FISCHER FP, 1994, SCANNING MICROSCOPY, V8, P351 FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R GIROD DA, 1995, ASS RES OT ABSTR, V18, P787 GIROD DA, 1989, HEARING RES, V42, P175, DOI 10.1016/0378-5955(89)90143-3 GLEICH O, 1989, HEARING RES, V37, P255, DOI 10.1016/0378-5955(89)90026-9 GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1 HASHINO E, 1993, J CELL SCI, V105, P23 HASHINO E, 1991, HEARING RES, V52, P356, DOI 10.1016/0378-5955(91)90025-5 MANLEY GA, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P561 MARSH RR, 1990, HEARING RES, V46, P229, DOI 10.1016/0378-5955(90)90004-9 MCFADDEN EA, 1989, HEARING RES, V41, P205, DOI 10.1016/0378-5955(89)90012-9 Muller M, 1996, HEARING RES, V102, P133, DOI 10.1016/S0378-5955(96)00155-4 Muller M, 1997, INT J DEV NEUROSCI, V15, P401, DOI 10.1016/S0736-5748(96)00100-1 NIEMIEC AJ, 1994, HEARING RES, V79, P1, DOI 10.1016/0378-5955(94)90122-8 OESTERLE EC, 1993, HEARING RES, V66, P213, DOI 10.1016/0378-5955(93)90141-M PATUZZI RB, 1991, HEARING RES, V53, P57, DOI 10.1016/0378-5955(91)90214-T POJE CP, 1995, HEARING RES, V82, P197, DOI 10.1016/0378-5955(94)00177-R PUGLIANO FA, 1993, NEUROSCI LETT, V151, P214, DOI 10.1016/0304-3940(93)90023-E RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408 RAPHAEL Y, 1991, HEARING RES, V53, P173, DOI 10.1016/0378-5955(91)90052-B RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 REBILLARD G, 1982, HEARING RES, V8, P77, DOI 10.1016/0378-5955(82)90036-3 ROSOWSKI JJ, 1980, J COMP PHYSIOL, V136, P183 RUBEL EW, 1982, ACTA OTO-LARYNGOL, V93, P31, DOI 10.3109/00016488209130849 RYALS BM, 1990, HEARING RES, V50, P87, DOI 10.1016/0378-5955(90)90035-N RYALS BM, 1982, ACTA OTO-LARYNGOL, V93, P205, DOI 10.3109/00016488209130873 RYALS BM, 1985, HEARING RES, V19, P73, DOI 10.1016/0378-5955(85)90099-1 RYALS BM, 1995, HEARING RES, V83, P51, DOI 10.1016/0378-5955(94)00190-2 RYALS BM, 1989, HEARING RES, V43, P81, DOI 10.1016/0378-5955(89)90061-0 SALVI RJ, 1996, AUDITORY SYSTEM PLAS Saunders JC, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P62 Saunders JC, 1996, J NEUROPHYSIOL, V76, P770 SAUNDERS JC, 1992, EXP NEUROL, V115, P13, DOI 10.1016/0014-4886(92)90213-A SAUNDERS JC, 1993, HEARING RES, V69, P25, DOI 10.1016/0378-5955(93)90090-N SAUNDERS JC, 1982, NEW PERSPECTIVES NOI Smolders JWT, 1995, HEARING RES, V92, P151, DOI 10.1016/0378-5955(95)00214-6 SMOLDERS JWT, 1992, ADV BIOSCI, V83, P197 STONE JS, 1994, J COMP NEUROL, V341, P50, DOI 10.1002/cne.903410106 TSUE TT, 1994, J NEUROSCI, V14, P140 TUCCI DL, 1990, OTOLARYNG HEAD NECK, V103, P443 VONDURING M, 1985, FORTS ZOOL, V30, P681 NR 57 TC 7 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 109 EP 120 DI 10.1016/S0378-5955(98)00055-0 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100011 PM 9667435 ER PT J AU McFadden, SL Kasper, C Ostrowski, J Ding, DL Salvi, RJ AF McFadden, SL Kasper, C Ostrowski, J Ding, DL Salvi, RJ TI Effects of inner hair cell loss on inferior colliculus evoked potential thresholds, amplitudes and forward masking functions in chinchillas SO HEARING RESEARCH LA English DT Article DE adaptation; carboplatin; central auditory system; ototoxicity; temporal resolution; plasticity ID PRODUCT OTOACOUSTIC EMISSIONS; SENSORINEURAL HEARING-LOSS; DORSAL COCHLEAR NUCLEUS; AUDITORY-NERVE FIBERS; TUNING CURVES; GUINEA-PIGS; NOISE EXPOSURE; CARBOPLATIN; RESPONSES; CORTEX AB The effects of outer hair cell (OHC) loss on evoked potential (EVP) thresholds, amplitudes and forward masking (FWM) functions have been fairly well characterized. In contrast, the effects of inner hair cell (IHC) losses are largely unknown, primarily due to the difficulty of producing selective IHC lesions. Recent studies have shown that IHCs of the chinchilla are preferentially damaged by the anticancer drug: carboplatin. In this study, we administered a single 100 mg/kg dose of carboplatin to four chinchillas, to examine the effects of IHC lesions on EVPs measured from the inferior colliculus (IC-EVPs). Thresholds and amplitude functions were measured for 0.25-16 kHz tone bursts, and FWM functions were measured at 1, 2 and 4 kHz, using masker-probe intervals of 2, 5, 10, 20, 40 and 80 ms, before and 1-2 months after carboplatin treatment. Histology revealed IHC lesions ranging from approximately 15 to 90%, with virtually no loss of OHCs. Surprisingly, even massive IHC lesions were not associated with elevations of IC-EVP thresholds. IC-EVP amplitudes at suprathreshold levels were sometimes depressed, sometimes enhanced, and in some cases unchanged. IHC lesions increased susceptibility to FWM, particularly at intermediate (10-20 ms) masker-probe intervals, without significantly changing the overall time course of FWM. The results provide new perspectives on the contribution of IHCs to FWM, and on the ability of the central auditory system to adapt to a significant reduction of neural input from the cochlea. (C) 1998 Elsevier Science B.V. All rights reserved. C1 SUNY Buffalo, Hearing Res Labs, Buffalo, NY 14214 USA. RP McFadden, SL (reprint author), SUNY Buffalo, Hearing Res Labs, 215 Parker Hall, Buffalo, NY 14214 USA. EM mcfadden@acsu.buffalo.edu CR AITKIN L, 1986, AUDITORY MIDBRAIN, P1 AREHOLE S, 1987, HEARING RES, V30, P23, DOI 10.1016/0378-5955(87)90179-1 AREHOLE S, 1987, HEARING RES, V27, P193, DOI 10.1016/0378-5955(87)90001-3 AREHOLE S, 1989, AUDIOLOGY, V28, P92 Backoff PM, 1997, HEARING RES, V110, P155, DOI 10.1016/S0378-5955(97)00081-6 Burkard R, 1997, J ACOUST SOC AM, V102, P3620, DOI 10.1121/1.420149 CUDAHY E, 1982, NEW PERSPECTIVES NOI, P395 DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DRESCHLER WA, 1985, J ACOUST SOC AM, V78, P1261, DOI 10.1121/1.392895 Duan M L, 1996, Audiol Neurootol, V1, P309 Duan M L, 1996, Audiol Neurootol, V1, P320 DUIFHUIS H, 1973, J ACOUST SOC AM, V54, P1471, DOI 10.1121/1.1914446 Evans EF, 1976, J PHYSIOL-LONDON, V256, P43 FEKETE DM, 1984, J COMP NEUROL, V229, P432, DOI 10.1002/cne.902290311 FESTEN JM, 1983, J ACOUST SOC AM, V73, P652, DOI 10.1121/1.388957 FITZGIBBONS PJ, 1982, J ACOUST SOC AM, V72, P1387 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P296, DOI 10.3109/00016489309135812 HENDERSON D, 1983, AUDIOLOGY, V22, P172 HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P535 HOFSTETTER P, 1997, IN PRESS HEAR RES HOFSTETTER P, 1997, IN PRESS AUDIOLOGY ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Javel E., 1986, NEUROBIOLOGY HEARING, P213 Jock BM, 1996, HEARING RES, V96, P179, DOI 10.1016/0378-5955(96)00058-5 LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6 LIBERMAN MC, 1986, BASIC APPL ASPECTS N, P163 McFadden SL, 1997, HEARING RES, V111, P114, DOI 10.1016/S0378-5955(97)00099-3 NELSON DA, 1987, J ACOUST SOC AM, V81, P709, DOI 10.1121/1.395131 NELSON DA, 1980, PSYCHOPHYSICAL PHYSL OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206 POPELAR J, 1987, HEARING RES, V8, P273 RYAN A, 1977, ANN OTO RHINOL LARYN, V86, P176 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 RYAN A, 1979, J ACOUST SOC AM, V66, P370, DOI 10.1121/1.383194 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SALVI RJ, 1982, AM J OTOLARYNG, V3, P408, DOI 10.1016/S0196-0709(82)80018-5 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U SALVI RJ, 1986, BASIC APPL ASPECTS N, P179 Salvi RJ, 1996, P 5 INT TINN SEM POR, P457 SALVI RJ, 1979, ARCH OTO-RHINO-LARYN, V224, P111, DOI 10.1007/BF00455233 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1390 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1367 SCHMIEDT RA, 1982, NEW PERSPECTIVES NOI, P153 SMITH RL, 1979, J ACOUST SOC AM, V65, P166, DOI 10.1121/1.382260 SNYDER DL, 1994, LAB ANIMAL, V23, P42 SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448 SYKA J, 1994, HEARING RES, V78, P158, DOI 10.1016/0378-5955(94)90021-3 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 VOGTEN LLM, 1978, J ACOUST SOC AM, V63, P1520, DOI 10.1121/1.381846 Wake M, 1996, ACTA OTO-LARYNGOL, V116, P714, DOI 10.3109/00016489609137912 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WAKE M, 1994, LARYNGOSCOPE, V104, P488 WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 WICKESBERG RE, 1993, MAMMALIAN COCHLEAR N, P77 Willott JF, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P297 WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310 WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 NR 65 TC 27 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 121 EP 132 DI 10.1016/S0378-5955(98)00052-5 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100012 PM 9667436 ER PT J AU Lasky, RE Van Veen, BD Maier, MM AF Lasky, RE Van Veen, BD Maier, MM TI Nonlinear functional modeling of scale recorded auditory evoked responses to maximum length sequences SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Meeting of the Association-for-Research-in-Otolaryngology CY FEB 05-09, 1995 CL ST PETERSBURG BEACH, FLORIDA SP Assoc Res Otolaryngol DE auditory brainstem evoked response; nonlinear system identification; maximum length sequence ID BRAIN-STEM RESPONSES; CROSS-CORRELATION; HUMANS; NOISE; STIMULATION; POTENTIALS; MASKING; LATENCY; RATES AB The purpose of this study was to model the adult human's scalp recorded evoked response to auditory pulses separated by varying inter pulse intervals (IPIs). The responses modeled probably reflect auditory nerve and brainstem generators. The subjects were 10 young adult humans with normal hearing. They were presented pseudo random sequences of pulses (maximum length sequences, MLSs) in order to characterize their system response. For the stimuli and the responses modeled accounting for temporal nonlinearities (interactions among the pulses) improved model performance only marginally. Nonlinear contributions to the models decreased with increasing interval between the input pulses. Increasing the memory of the model beyond 20 ms did not increase modeled performance dramatically. Model performance varied as a function of minimum IPI (MIPI) of the MLSs. At the shortest MIPI overall model performance deteriorated (due, in part, to a decrease in SNR), but nonlinear effects became relatively more important. At the longest MIPI performance also deteriorated, possibly due to the increasing influence of longer latency, more variable evoked potential components. Modeled performance generalized to responses recorded in the same recording session to the same and different MLSs. This study confirms the similarity between MLS linear kernels and conventionally averaged evoked responses-both are adapted responses reflecting the IPIs of the evoking stimuli. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Wisconsin, Sch Med, Dept Neurol, Madison, WI 53792 USA. Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. RP Lasky, RE (reprint author), Univ Wisconsin, Sch Med, Dept Neurol, H6-528 Clin Sci Bldg,600 Highland Ave, Madison, WI 53792 USA. CR BURKARD R, 1994, J ACOUST SOC AM, V95, P2126, DOI 10.1121/1.408674 BURKARD R, 1990, J ACOUST SOC AM, V87, P1656, DOI 10.1121/1.399413 BURKARD R, 1994, J ACOUST SOC AM, V95, P2136, DOI 10.1121/1.408675 BURKARD R, 1991, J ACOUST SOC AM, V90, P1398, DOI 10.1121/1.401931 BURKARD R, 1990, J ACOUST SOC AM, V87, P1665, DOI 10.1121/1.399414 CHAN FHY, 1992, MED BIOL ENG COMPUT, V30, P32, DOI 10.1007/BF02446190 Davies W.D.T., 1966, Control, V10 DON M, 1977, ANN OTO RHINOL LARYN, V86, P186 EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R EYSHOLDT U, 1982, AUDIOLOGY, V21, P242 Hall J, 1992, HDB AUDITORY EVOKED HUNG G, 1977, MATH BIOSCI, V37, P135, DOI 10.1016/0025-5564(77)90091-8 KORENBERG M, 1983, ELECTRON LETT, V19, P175, DOI 10.1049/el:19830121 Lasky RE, 1997, HEARING RES, V111, P165, DOI 10.1016/S0378-5955(97)00106-8 Lasky RE, 1996, EAR HEARING, V17, P544, DOI 10.1097/00003446-199612000-00010 LASKY RE, 1993, J ACOUST SOC AM, V93, P2077, DOI 10.1121/1.406694 LASKY RE, 1995, EAR HEARING, V16, P354, DOI 10.1097/00003446-199508000-00002 LASKY RE, 1995, HEARING RES, V89, P212, DOI 10.1016/0378-5955(95)00140-7 LASKY RE, 1993, EAR HEARING, V14, P183, DOI 10.1097/00003446-199306000-00005 LASKY RE, 1988, ASHA CONV Lasky R E, 1992, J Am Acad Audiol, V3, P383 LIGHTFOOT G, 1991, THESIS LINAGRANADE G, 1994, AUDIOLOGY, V33, P218 Marmarelis PZ, 1978, ANAL PHYSL SYSTEMS MARSH RR, 1992, EAR HEARING, V13, P396, DOI 10.1097/00003446-199212000-00004 PICTON TW, 1992, ELECTROEN CLIN NEURO, V84, P90, DOI 10.1016/0168-5597(92)90071-I SHI Y, 1990, THESIS Shi Y, 1991, IEEE Trans Biomed Eng, V38, P834 SUTTER EE, 1987, ADV METHODS PHYSL SY, V1, P251 SUTTER EE, 1992, VISION RES, V32, P443 Sutter EE, 1992, NONLINEAR VISION, P171 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P205, DOI 10.3109/03005369309076694 THORNTON ARD, 1975, ELECTROEN CLIN NEURO, V39, P399, DOI 10.1016/0013-4694(75)90103-0 VANVEEN BD, 1994, J ACOUST SOC AM, V96, P2235, DOI 10.1121/1.410095 Volterra V., 1959, THEORY FUNCTIONALS I WEATHERBY L, 1982, J ACOUST SOC AM S1, V71, P599 NR 36 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 133 EP 142 DI 10.1016/S0378-5955(98)00053-7 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100013 PM 9667437 ER PT J AU Yamasoba, T Dolan, DF AF Yamasoba, T Dolan, DF TI The medial cochlear efferent system does not appear to contribute to the development of acquired resistance to acoustic trauma SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Neuroscience-Society Meeting CY OCT 25-30, 1997 CL NEW ORLEANS, LOUISIANA SP Neurosci Soc DE olivocochlear bundle; noise-induced hearing loss; conditioning; strychnine; auditory toughening; guinea pig ID INDUCED HEARING-LOSS; MIDDLE-EAR MUSCLES; CROSSED OLIVOCOCHLEAR BUNDLE; OUTER HAIR-CELLS; NOISE TRAUMA; CONDITIONING EXPOSURES; THRESHOLD SHIFT; STIMULATION; PROTECTION; TEMPORARY AB Noise-induced hearing loss (NIHL) was compared between sound conditioned and unconditioned guinea pigs, in which the left ear in both groups had been perfused with strychnine. Animals in the conditioned group were subjected to moderate sound (85 dB SPL broadband, 5 h/day, 10 days) and then exposed to intense sound (110 dB sPL broadband, 5 h). Unconditioned animals were exposed only to the intense sound. Following intense sound exposure, strychnine-treated ears showed greater NIHL than untreated ears in both unconditioned and conditioned animals, demonstrating the role of the medial efferents to reduce NIHL. Conditioned animals, however, showed smaller hearings loss and cochlear damage in both strychnine-treated and untreated ears compared to unconditioned animals; the protective effects given by conditioning were equivalent between the strychnine-treated and untreated ears. These results suggest that, although the medial efferent system acts to attenuate NIHL. it may not be necessary for. the acquired resistance to NIHL provided by conditioning. (C) 1998 Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Univ Tokyo, Dept Otolaryngol, Bunkyo Ku, Tokyo 113, Japan. RP Dolan, DF (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM ddolan@umich.edu CR CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 CANLON B, 1995, HEARING RES, V84, P112, DOI 10.1016/0378-5955(95)00020-5 Canlon B, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P118 CANLON B, 1993, NEUROSCI LETT, V150, P103, DOI 10.1016/0304-3940(93)90118-5 DAGLI S, 1995, NEUROSCI LETT, V194, P57, DOI 10.1016/0304-3940(95)11726-D Dagli S, 1997, HEARING RES, V104, P39, DOI 10.1016/S0378-5955(96)00179-7 DOLAN DF, 1998, ASS RES OT ABSTR, V21, P551 DOLAN DF, 1994, ASS RES OT ABSTR, V17, P65 FOWLER T, 1995, HEARING RES, V88, P1, DOI 10.1016/0378-5955(95)00062-9 Guinan Jr J.J., 1996, COCHLEA, P435 HANDROCK M, 1982, ARCH OTO-RHINO-LARYN, V234, P191, DOI 10.1007/BF00453630 HENDERSON D, 1994, HEARING RES, V74, P22, DOI 10.1016/0378-5955(94)90172-4 HENSELMAN LW, 1994, HEARING RES, V78, P1, DOI 10.1016/0378-5955(94)90038-8 Hu BH, 1997, HEARING RES, V110, P209, DOI 10.1016/S0378-5955(97)00075-0 JACONO AA, 1997, ASS RES OT ABSTR, V20, P132 LIBERMAN MC, 1995, HEARING RES, V90, P158, DOI 10.1016/0378-5955(95)00160-2 LIM HH, 1993, HEARING RES, V69, P146 McFadden SL, 1997, HEARING RES, V103, P142, DOI 10.1016/S0378-5955(96)00170-0 Miller J. D., 1963, ACTA OTO-LARYNGOL, V176, P1 MITCHELL A, 1997, ASS RES OT ABSTR, V20, P283 MIYAKITA T, 1992, HEARING RES, V60, P149, DOI 10.1016/0378-5955(92)90017-H PUEL JL, 1988, HEARING RES, V37, P65, DOI 10.1016/0378-5955(88)90078-0 RAJAN R, 1988, J NEUROPHYSIOL, V60, P569 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 RYAN AF, 1994, HEARING RES, V72, P23, DOI 10.1016/0378-5955(94)90201-1 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 SUBRAMANIAM M, 1993, J ACOUST SOC AM, V93, P952, DOI 10.1121/1.405455 SUBRAMANIAM M, 1992, HEARING RES, V58, P57, DOI 10.1016/0378-5955(92)90008-B SUBRAMANIAM M, 1993, HEARING RES, V65, P234, DOI 10.1016/0378-5955(93)90216-N TAKEYAMA M, 1992, ACTA OTO-LARYNGOL, V112, P205 Yamasoba T, 1997, HEARING RES, V112, P13, DOI 10.1016/S0378-5955(97)00092-0 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2 Zheng XY, 1997, HEARING RES, V104, P191, DOI 10.1016/S0378-5955(96)00187-6 NR 35 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1998 VL 120 IS 1-2 BP 143 EP 151 DI 10.1016/S0378-5955(98)00054-9 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZT983 UT WOS:000074149100014 PM 9667438 ER PT J AU Housley, GD Raybould, NP Thorne, PR AF Housley, GD Raybould, NP Thorne, PR TI Fluorescence imaging of Na+ influx via P2X receptors in cochlear hair cells SO HEARING RESEARCH LA English DT Article DE Sodium Green (TM); caged-adenosine 5 '-triphosphate; adenosine 5 '-triphosphate-gated ion channel; outer hair cell; inner hair cell; voltage-clamp; confocal laser scanning microscopy; pyridoxalphosphate-6-azophenyl-2 ',4 '-disulphonic acid ID GUINEA-PIG COCHLEA; ADENOSINE 5'-TRIPHOSPHATE ATP; EXTRACELLULAR ATP; CALCIUM; RELEASE; ACETYLCHOLINE; LOCALIZATION; RESPONSES; CHANNELS; CURRENTS AB The adenosine 5'-triphosphate (ATP)-activated membrane conductance, mediated by P2X receptors, was examined in isolated guinea-pig cochlear inner and outer hair cells. Photo-activated release of caged-ATP elicted a 30-ms latency inwardly rectifying nonselective cation conductance, blocked by the P2X receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 10-100 mu M), consistent with the direct activation of ATP-gated ion channels. A K-(Ca) conductance in the inner hair cells (IHC), activated by the entry of Ca2+ through the ATP-gated ion channels, was blocked by including 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) in the internal solution. Real-time confocal slit-scanning fluorescence imaging of Na+ influx through the ATP-gated ion channels was performed using the dye Sodium Green(TM) with simultaneous whole-cell recording of membrane currents. The Na+ entry was localized to the endolymphatic surface, with the increase in [Na+](i) detected within approximately 200 ms of the onset of the inward current response. Within 600 ms Na+ had diffused throughout the cell cytoplasm with the exception of the subnuclear region of the outer hair cells. Correlation of voltage-clamp measurements of Na+ entry with regional increases in Naf-induced fluorescence demonstrated ATP-induced increases in intracellular Na+ in excess of 45 mM within 4 s. These data provide direct evidence for the Na+ permeability of the ATP-gated ion channels as well as independent evidence for the localization of P2X receptors at the endolymphatic surface of the sensory hair cells. The localization of the ATP-gated ion channels to the apical surface of the hair cells supports an ATP-mediated modulation of 'silent' K+ current across the cochlear partition which could regulate hearing sensitivity by controlling the transcellular driving force for both mechanoelectrical and electromechanical transduction in hair cells. (C) 1998 Elsevier Science B.V. C1 Univ Auckland, Dept Physiol, Fac Med & Hlth Sci, Mol Physiol Lab, Auckland, New Zealand. RP Housley, GD (reprint author), Univ Auckland, Dept Physiol, Fac Med & Hlth Sci, Mol Physiol Lab, Private Bag 92019, Auckland, New Zealand. CR AMORINO GP, 1995, CYTOMETRY, V21, P248, DOI 10.1002/cyto.990210305 ASHMORE JF, 1992, ADV BIOSCI, V83, P19 ASHMORE JF, 1994, EXP PHYSIOL, V79, P113 ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 Ashmore Jonathan F., 1994, Current Opinion in Neurobiology, V4, P503, DOI 10.1016/0959-4388(94)90050-7 ASHMORE JF, 1993, BIOPHYSICS HAIR CELL, P151 BRANDLE TU, 1995, P MOL BIOL HEAR DEAF, P168 Burnstock G, 1995, Pharm Acta Helv, V69, P231, DOI 10.1016/0031-6865(94)00043-U Denk W, 1995, NEURON, V15, P1311, DOI 10.1016/0896-6273(95)90010-1 DULON D, 1991, NEUROREPORT, V2, P69, DOI 10.1097/00001756-199102000-00001 DULON D, 1995, PFLUG ARCH EUR J PHY, V430, P365, DOI 10.1007/BF00373911 Edwards Frances A., 1994, Current Opinion in Neurobiology, V4, P347, DOI 10.1016/0959-4388(94)90095-7 Gibb AJ, 1996, SEMIN NEUROSCI, V8, P225, DOI 10.1006/smns.1996.0029 GORDON JL, 1986, BIOCHEM J, V233, P309 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 HIROSE K, 1994, J CELL BIOL, V127, P763, DOI 10.1083/jcb.127.3.763 HOUSLEY GD, 1993, BIOPHYSICS HAIR CELL, P116 HOUSLEY GD, 1995, ACTIVE HEARING, P219 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HOUSLEY GD, 1995, BIOCHEM BIOPH RES CO, V212, P501, DOI 10.1006/bbrc.1995.1998 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 Housley GD, 1997, AUDIOL NEURO-OTOL, V2, P92 Housley GD, 1998, MOL NEUROBIOL, V16, P21, DOI 10.1007/BF02740601 HOUSLEY GD, 1993, P IUPS, V32 HOUSLEY GD, 1996, DRUG DEVELOP RES, V37, P171 HUDSPETH AJ, 1989, NATURE, V341, P397, DOI 10.1038/341397a0 Iismaa TP, 1995, G PROTEIN COUPLED RE KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 KUJAWA SG, 1994, HEARING RES, V78, P181, DOI 10.1016/0378-5955(94)90024-8 LAMBRECHT G, 1992, EUR J PHARMACOL, V217, P217, DOI 10.1016/0014-2999(92)90877-7 LASSERROSS N, 1992, P ROY SOC B-BIOL SCI, V247, P35, DOI 10.1098/rspb.1992.0006 LIU J, 1995, AUDIT NEUROSCI, V1, P331 MILBURN T, 1989, BIOCHEMISTRY-US, V28, P49, DOI 10.1021/bi00427a008 MOCKETT BG, 1995, HEARING RES, V84, P177, DOI 10.1016/0378-5955(95)00024-X MOCKETT BG, 1994, J NEUROSCI, V14, P6992 MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5 MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 NAKAGAWA T, 1990, J NEUROPHYSIOL, V63, P1068 NIEDZIELSKI AS, 1992, NEUROREPORT, V3, P273, DOI 10.1097/00001756-199203000-00015 NILLES R, 1994, HEARING RES, V73, P27, DOI 10.1016/0378-5955(94)90279-8 OGAWA K, 1994, HEARING RES, V74, P197, DOI 10.1016/0378-5955(94)90187-2 Raybould NP, 1997, J PHYSIOL-LONDON, V498, P717 Sugasawa M, 1996, J PHYSIOL-LONDON, V491, P707 Thorne PR, 1996, SEMIN NEUROSCI, V8, P233, DOI 10.1006/smns.1996.0030 THORNE PR, 1994, DRUG DEVELOP RES, V31, P328 Wangemann P, 1996, AUDIT NEUROSCI, V2, P187 WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 XU X, 1995, J BIOL CHEM, V270, P19606 NR 49 TC 32 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 1 EP 13 DI 10.1016/S0378-5955(97)00206-2 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600001 PM 9641314 ER PT J AU Bowman, DM Eggermont, JJ Brown, DK Kimberley, BP AF Bowman, DM Eggermont, JJ Brown, DK Kimberley, BP TI Estimating cochlear filter response properties from distortion product otoacoustic emission (DPOAE) phase delay measurements in normal hearing human adults SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; distortion product; phase delay; impulse response; tuning curve; human ID OUTER HAIR-CELLS; STIMULATED ACOUSTIC EMISSIONS; POTENTIAL TUNING CURVES; FREQUENCY-SELECTIVITY; AUDITORY-SYSTEM; 2F1-F2; EAR; SUPPRESSION; PERIPHERY; LATENCY AB This study examined cochlear filter response properties derived from f(1)- and f(2)-sweep phase delay difference measures in 60 normal hearing human adults. Seven different f(2) frequencies ranging from 1.1 to 9.2 kHz were presented (f(2)/f(1) ratios of 1.1-1.3). F(2) intensity level was varied in 5 dB steps from 30 to 50 dB SPL (the level of f(1) was 15 dB above the level of f(2)). DPOAE delay estimates in a f(2)-sweep paradigm are longer than in a f(1)-sweep paradigm at the same frequency and intensity. This indicates that the f(2)-sweep DPOAE phase delay is composed of a greater proportion of the filter response time at the site of DPOAE generation than the f(1)-sweep delay. This proportion was isolated by subtracting f(1)-sweep DPOAE delays from f(2)-sweep delays at similar f(2) frequencies and intensities. Under the assumption of linearity and minimum phase the impulse response of the filter at each f(2) stimulus level was calculated from the mean phase delay difference. Frequency response properties were calculated by Fourier transformation of the impulse response at each f(2) frequency and intensity. High frequency low intensity impulse responses had longer response times and narrower frequency bandwidths than low frequency high intensity responses. The Q(10dB) values of DPOAE derived tuning curves ranged from 2.4 (1.5 kHz) to 7.3 (8.5 kHz). (C) 1998 Elsevier Science B.V. C1 Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. Univ Calgary, Dept Physiol & Biophys, Calgary, AB T2N 1N4, Canada. Univ Calgary, Dept Surg, Calgary, Alta T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Psychol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM eggermon@ucalgary.ca CR Abdala C, 1996, HEARING RES, V98, P38, DOI 10.1016/0378-5955(96)00056-1 ALLEN JB, 1992, PHYS TODAY, V45, P40, DOI 10.1063/1.881349 ASHMORE J, 1993, CURR BIOL, V3, P38, DOI 10.1016/0960-9822(93)90145-E ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Blinchikoff H. J., 1976, FILTERING TIME FREQU Bowman DM, 1997, J ACOUST SOC AM, V101, P1550, DOI 10.1121/1.418129 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 BROWN AM, 1992, P ROY SOC B-BIOL SCI, V250, P29, DOI 10.1098/rspb.1992.0126 BROWN D, 1994, J OTOLARYNGOL, V23, P234 BROWN DK, 1995, 18 MIDW RES M ASS RE, P121 BROWN DK, 1996, THESIS U CALGARY CAL CARNEY LH, 1988, J NEUROPHYSIOL, V60, P1653 DALLOS P, 1992, J NEUROSCI, V12, P4575 Dallos P, 1991, Curr Opin Neurobiol, V1, P215, DOI 10.1016/0959-4388(91)90081-H DALLOS P, 1993, J NEUROPHYSIOL, V70, P299 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704 deBoer E, 1997, J ACOUST SOC AM, V101, P3583, DOI 10.1121/1.418319 DEBOER E, 1990, BIOL CYBERN, V63, P433 DEBOER E, 1991, PHYS REP, V203, P125, DOI 10.1016/0370-1573(91)90068-W DUIFHUIS H, 1973, J ACOUST SOC AM, V54, P1471, DOI 10.1121/1.1914446 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 EGGERMONT JJ, 1979, J ACOUST SOC AM, V65, P463, DOI 10.1121/1.382345 EGGERMONT JJ, 1977, J ACOUST SOC AM, V62, P1247, DOI 10.1121/1.381639 FAHEY PF, 1986, PERIPHERAL AUDITORY, P314 FURST M, 1988, J ACOUST SOC AM, V84, P222, DOI 10.1121/1.396969 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396 GOLDSTEIN JL, 1971, PHYSL AUDITORY SYSTE HALL J, 1974, J ACOUST SOC AM, V62, P1818 HARRISON RV, 1981, J ACOUST SOC AM, V69, P1374, DOI 10.1121/1.385819 HARTMAN WM, 1997, SIGNALS SOUND SENSAT JOHANNESMA PIM, 1972, HEARING THEORY 1972, P58 Kemp D. T., 1983, MECH HEARING, P75 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 KIMBERLEY BP, 1993, J ACOUST SOC AM, V94, P1343, DOI 10.1121/1.408162 MAMMANO F, 1995, 18 MIDW RES M ASS RE, P156 MARTIN GK, 1988, HEARING RES, V33, P49, DOI 10.1016/0378-5955(88)90020-2 MOLLER AR, 1983, BIOL CYBERN, V47, P95, DOI 10.1007/BF00337083 NEELY ST, 1988, J ACOUST SOC AM, V83, P652, DOI 10.1121/1.396542 OMAHONEY CF, 1995, J ACOUST SOC AM, V97, P3721, DOI 10.1121/1.412994 PATTERSON RD, 1980, J ACOUST SOC AM, V67, P229, DOI 10.1121/1.383732 Probst R, 1990, Adv Otorhinolaryngol, V44, P1 Robles L, 1997, J NEUROPHYSIOL, V77, P2385 ROSEN S, 1997, 20 MIDW RES M ASS RE, P227 Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O Ruggero M. A., 1992, MAMMALIAN AUDITORY P, P34 RUGGERO MA, 1992, ADV BIOSCI, V83, P85 RUGGERO MA, 1980, J ACOUST SOC AM, V67, P707, DOI 10.1121/1.383900 RUTTEN WLC, 1986, HEARING RES, V21, P195, DOI 10.1016/0378-5955(86)90218-2 Stover LJ, 1996, J ACOUST SOC AM, V99, P1016, DOI 10.1121/1.414630 WHITEHEAD ML, 1994, 17 MIDW RES M ASS RE, P46 WILLIAMS DM, 1995, J ACOUST SOC AM, V97, P1130, DOI 10.1121/1.412226 Wilson J., 1980, Proceedings of the Eighth Annual Canadian Conference on Information Science ZWICKER E, 1990, J ACOUST SOC AM, V87, P2583, DOI 10.1121/1.399051 NR 56 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 14 EP 26 DI 10.1016/S0378-5955(98)00041-0 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600002 PM 9641315 ER PT J AU Willott, JF Erway, LC AF Willott, JF Erway, LC TI Genetics of age-related hearing loss in mice. IV. Cochlear-pathology and hearing loss in 25 BXD recombinant inbred mouse strains SO HEARING RESEARCH LA English DT Article DE genetics; recombinant inbred mice; cochlea; presbycusis; sensorineural hearing loss ID QUANTITATIVE TRAIT LOCI; C57BL/6J; NUCLEUS AB The effects of three putative genes which contribute to age-related hearing loss (AHL genes) were evaluated using auditory brainstem response (ABR) thresholds and post-mortem cochlear histopathology in 25 recombinant BXD inbred mouse strains, originally derived from C57BL/6J (B6) and DBA/2J (D2) progenitor strains. All BXD strains showed substantial elevation of ABR thresholds and loss of spiral ganglion cells (SGCs) during the first year of life. The findings are consistent with our genetic model in which D2 and B6 inbred strains both possess the Ahl (age-related hearing loss) gene, whereas D2 possesses two additional chromosomal loci with AHL genes (Ahl2 and Ahl3). The between-strain distribution in the severity of SGC loss and ABR threshold elevations suggests that the severity of hearing loss is determined in large part by the number of AHL genes an animal possesses and by additional genetic background effects. The present findings also demonstrate that, because BXD strains vary substantially in the rate and severity of progressive hearing loss (but are genetically closely related), they can provide powerful animal models for developmental studies of AHL. (C) 1998 Elsevier Science B.V. C1 No Illinois Univ, Dept Psychol, De Kalb, IL 60115 USA. Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA. RP Willott, JF (reprint author), No Illinois Univ, Dept Psychol, De Kalb, IL 60115 USA. EM JIMW@NIU.EDU CR Crabbe J C, 1994, Alcohol Alcohol Suppl, V2, P67 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H ERWAY LC, 1993, ASS RES OT ABSTR, V16, P137 GORAMASLAK G, 1991, PSYCHOPHARMACOLOGY, V104, P413, DOI 10.1007/BF02245643 Henry K. R., 1983, AUDITORY PSYCHOBIOLO, P470 HENRY KR, 1980, AUDIOLOGY, V19, P369 JOHNSON KR, 1997, ASS RES OT ABSTR, V20, P221 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 Mikaelian D.O., 1979, LARYNGOSCOPE, V34, P1 Nesbitt Muriel N., 1992, V8, P141 NEUMANN PE, 1992, BEHAV GENET, V22, P665, DOI 10.1007/BF01066637 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 PLOMIN R, 1991, BEHAV GENET, V21, P99, DOI 10.1007/BF01066330 RALLS K, 1967, ANIM BEHAV, V15, P123, DOI 10.1016/S0003-3472(67)80022-8 SEYFRIED TN, 1980, GENETICS, V94, P701 Taylor BA, 1978, ORIGINS INBRED MICE, P423 Willott J. F., 1991, AGING AUDITORY SYSTE WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106 Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F NR 20 TC 50 Z9 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 27 EP 36 DI 10.1016/S0378-5955(98)00029-X PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600003 PM 9641316 ER PT J AU Koay, G Kearns, D Heffner, HE Heffner, RS AF Koay, G Kearns, D Heffner, HE Heffner, RS TI Passive sound-localization ability of the big brown bat (Eptesicus fuscus) SO HEARING RESEARCH LA English DT Article DE bat; binaural cue; Eptesicus fuscus; evolution; retinal ganglion cell; sound localization ID INTERAURAL TIME DIFFERENCES; SUPERIOR OLIVARY COMPLEX; ECHOLOCATING BATS; PRESSURE TRANSFORMATION; INFERIOR COLLICULUS; GANGLION-CELLS; VISUAL-ACUITY; BINAURAL CUES; HEARING; ORIENTATION AB The passive sound-localization ability (i.e. minimum audible angle) of the big brown bat, Eptesicus fuscus, was determined using a conditioned avoidance procedure in which the animals were trained to discriminate left sounds from right sounds. The mean threshold of three bats for a 100-ms broadband noise burst was 14 degrees, a value that is about average for mammals. A similar threshold of 15 degrees was obtained for one animal when it was retested with one of its own recorded echolocation calls as the stimulus. The two bats tested on pure-tone localization were able to localize high-frequency, but not low-frequency tones, even when a low-frequency tone was amplitude modulated, a result indicating that these bats are not able to use binaural time-difference cues for localization. Finally, given the width of the bat's field of best vision, as determined by a count of its ganglion-cell density, its sound-localization acuity is consistent with the hypothesis that the role of passive sound localization is to direct the eyes to the source of a sound. (C) 1998 Published by Elsevier Science B.V. C1 Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. RP Koay, G (reprint author), Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. EM GKoay@pop3.utoledo.edu CR BELL GP, 1986, ANIM BEHAV, V34, P409, DOI 10.1016/S0003-3472(86)80110-5 BIRCH D, 1979, VISION RES, V19, P853 BUCHLER ER, 1982, J MAMMAL, V63, P243, DOI 10.2307/1380633 BUCHLER ER, 1981, ANIM BEHAV, V29, P428, DOI 10.1016/S0003-3472(81)80102-9 Casseday J.H., 1987, P109 CHEN QC, 1995, J EXP BIOL, V198, P2007 Condon CJ, 1996, J COMP PHYSIOL A, V178, P147 DEBRUYN EJ, 1980, VISION RES, V20, P315, DOI 10.1016/0042-6989(80)90018-8 FUZESSERY ZM, 1993, J COMP PHYSIOL A, V171, P767, DOI 10.1007/BF00213073 Grinnell AD, 1995, HEARING BATS, P1 Grothe B, 1996, J COMP PHYSIOL A, V179, P89 GROTHE B, 1994, J COMP NEUROL, V343, P630, DOI 10.1002/cne.903430412 HEFFNER H, 1980, J ACOUST SOC AM, V68, P1584, DOI 10.1121/1.385213 Heffner H. E., 1995, METHODS COMP PSYCHOA, P79 HEFFNER RS, 1992, J COMP NEUROL, V317, P219, DOI 10.1002/cne.903170302 HEFFNER RS, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P691 HEFFNER RS, 1988, BEHAV NEUROSCI, V102, P422, DOI 10.1037/0735-7044.102.3.422 HEFFNER RS, 1992, HEARING RES, V62, P206, DOI 10.1016/0378-5955(92)90188-S HEFFNER RS, 1993, J COMP NEUROL, V331, P418, DOI 10.1002/cne.903310311 HEFFNER RS, 1987, BEHAV NEUROSCI, V101, P701, DOI 10.1037/0735-7044.101.5.701 HEFFNER RS, 1990, HEARING RES, V46, P239, DOI 10.1016/0378-5955(90)90005-A HEFFNER RS, 1994, HEARING RES, V80, P247, DOI 10.1016/0378-5955(94)90116-3 HUFFMAN RF, 1995, J COMP NEUROL, V357, P532, DOI 10.1002/cne.903570405 Hughes A, 1977, HDB SENSORY PHYSL, P613 HUTSON KA, 1986, J NEUROPHYSIOL, V56, P1196 JACOBSON SG, 1976, VISION RES, V30, P527 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0 KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498 KUWABARA N, 1992, J COMP NEUROL, V324, P522, DOI 10.1002/cne.903240406 MARKS JM, 1980, THESIS INDIANA U MASTERTON B, 1975, J COMP PHYSIOL PSYCH, V89, P379, DOI 10.1037/h0077034 MCFADDEN D, 1976, J ACOUST SOC AM, V59, P634, DOI 10.1121/1.380913 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 NEUWEILER G, 1989, TRENDS ECOL EVOL, V4, P160, DOI 10.1016/0169-5347(89)90120-1 PETTIGREW JD, 1988, BRAIN BEHAV EVOLUT, V32, P39, DOI 10.1159/000116531 SEMMES J, 1973, HDB SENSORY PHYSIOLO, V2, P719 SIMMONS JA, 1983, J COMP PHYSIOL, V153, P321 SIMMONS JA, 1975, AM SCI, V63, P204 Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748 STONE J, 1981, WHOLEMOUNT HDB SULLIVAN WE, 1984, J NEUROSCI, V4, P1787 SUTHERS RA, 1970, VISION RES, V10, P1165, DOI 10.1016/0042-6989(70)90034-9 THOMPSON M, 1990, BEHAV RES METH INSTR, V22, P449, DOI 10.3758/BF03203193 NR 45 TC 34 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 37 EP 48 DI 10.1016/S0378-5955(98)00037-9 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600004 PM 9641317 ER PT J AU Long, G AF Long, G TI Perceptual consequences of the interactions between spontaneous otoacoustic emissions and external tones. I. Monaural diplacusis and aftertones SO HEARING RESEARCH LA English DT Article DE monaural diplacusis; spontaneous otoacoustic emission ID ACOUSTIC EMISSIONS; DISTORTION-PRODUCT; TINNITUS; SYNCHRONIZATION; SUPPRESSION; FREQUENCY; MASKING; MASKERS AB Research into monaural diplacusis has led to the concept of idiotones (tone-like stimuli of cochlea origin). Spontaneous otoacoustic emissions (SOAEs) are tone-like stimuli generated by the cochlea and detected in the ear canal. In diplacusis, the existence of idiotones is inferred from disturbances of the perception of single tones. Spontaneous otoacoustic emissions are measured by placing a small microphone at the entrance to the ear canal. Many of the puzzling properties of the hypothesized idiotones are consistent with measurements of the interaction of SOAEs with external tones. The interactions of the SOAEs with external tones were analyzed acoustically. The perceptual properties evoked by 250 ms pulses (presented twice a second) of the acoustic stimuli used in the OAE experiments were systematically investigated. At some stimulus levels, all subjects reported the perception of a second tone alternating with the external tone. The relative pitch of this percept was consistent with the frequency of the SOAE. The frequency dependence of the signal levels needed for the percept had many aspects in common with the suppression tuning curves of the SOAEs. At lower levels of the external tone the subjects sometimes reported a perception of two simultaneous tones. This would be consistent with the subject detecting SOAEs when they are frequency shifted, but not suppressed. The consumption of aspirin by one subject reduced the SOAE into the noise floor and eliminated the monaural diplacusis. (C) 1998 Elsevier Science B.V. C1 Purdue Univ, Dept Audiol & Speech Sci, W Lafayette, IN 47907 USA. RP Long, G (reprint author), Purdue Univ, Dept Audiol & Speech Sci, W Lafayette, IN 47907 USA. EM long@physics.purdue.edu CR BACON SP, 1985, HEARING RES, V19, P49, DOI 10.1016/0378-5955(85)90097-8 BRIGHT KE, 1997, OTOACOUSTIC EMISSION, P46 BURNS EM, 1992, P 4 INT TINN SEM, P1 DALLMAYR C, 1985, ACUSTICA, V59, P65 Evans E F, 1981, Ciba Found Symp, V85, P108 FLOTTORP G, 1953, ACTA OTOLARYNGOL, V43, P395 FORMBY C, 1981, AUDIOLOGY, V20, P219 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P462, DOI 10.1098/rspb.1948.0024 HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Kemp DT, 1979, SCAND AUDIOL S, V9, P35 KEMP S, 1986, J SPEECH HEAR RES, V29, P65 KEMP S, 1992, J SPEECH HEAR RES, V35, P1169 KUMMER P, 1995, J ACOUST SOC AM, V98, P197, DOI 10.1121/1.413747 LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633 LONG GR, 1988, HEARING RES, V36, P659 LONG GR, 1991, J ACOUST SOC AM, V89, P1201, DOI 10.1121/1.400651 LONG GR, 1993, BIOPHYSICS HAIR CELL, P40 Long GR, 1997, J ACOUST SOC AM, V102, P2831, DOI 10.1121/1.420339 Magnan P, 1997, HEARING RES, V107, P41, DOI 10.1016/S0378-5955(97)00015-4 MURPHY WJ, 1995, J ACOUST SOC AM, V97, P3702, DOI 10.1121/1.412387 Neff DL, 1996, J ACOUST SOC AM, V100, P2547, DOI 10.1121/1.417364 NEFF DL, 1986, J ACOUST SOC AM, V79, P1519, DOI 10.1121/1.393678 NORTON SJ, 1989, HEARING RES, V38, P243, DOI 10.1016/0378-5955(89)90069-5 PENNER MJ, 1993, HEARING RES, V68, P229, DOI 10.1016/0378-5955(93)90126-L PENNER MJ, 1990, ARCH OTOLARYNGOL, V116, P418 PURIA S, 1997, DIVERSITY AUDITORY M, P151 TALMADGE CL, 1990, LECT NOTES BIOMATH, V87, P235 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V TUBIS A, 1997, IN PRESS J ACOUST SO VANDIJK P, 1990, J ACOUST SOC AM, V88, P850, DOI 10.1121/1.399734 WARD WD, 1955, J ACOUST SOC AM, V27, P365, DOI 10.1121/1.1907529 WHITEHEAD ML, 1991, HEARING RES, V53, P269, DOI 10.1016/0378-5955(91)90060-M WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012 WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 ZWICKER E, 1990, J ACOUST SOC AM, V87, P2583, DOI 10.1121/1.399051 NR 39 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 49 EP 60 DI 10.1016/S0378-5955(98)00032-X PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600005 PM 9641318 ER PT J AU Coleman, JKM Lee, JI Miller, JM Nuttall, AL AF Coleman, JKM Lee, JI Miller, JM Nuttall, AL TI Changes in cochlear blood flow due to intra-arterial infusions of angiotensin II (3-8) (angiotensin IV) in guinea pigs SO HEARING RESEARCH LA English DT Article DE angiotensin; blood flow; microcirculation; cochlea; hearing; guinea pig ID ENDOTHELIAL-CELLS; BINDING-SITE; RECEPTOR; RATS AB The effects of a newly discovered form of angiotensin, angiotensin IV (ANGIV), on cochlear blood flow (CBF) have been investigated utilizing the laser Doppler flowmetry (LDF) technique. Two specific questions were addressed: What are the effects of anterior inferior cerebellar artery infusions (AICA) of ANGIV on CBF and do angiotensin fragments other than ANGIV influence CBF in mature male and female guinea pigs. Infusions of ANGIV, and C-terminal shortened fragments were accomplished via micropipette into the AICA and changes in CBF were observed using LDF. The results demonstrated that 10 and 100 pmol/min doses of ANGIV increased CBF 22% and 75% (n=6; P<0.01) from baseline, respectively, with little change in mean arterial blood pressure (MAP). Pretreatment with the ANGIV antagonist divalanal-ANGIV (1 nmole/min) blocked increases in CBF due to infusions of 100 pmol/min of ANGIV. The infusion of the C-terminal shortened fragment ANGIV(1-5) and saline had no significant effect on either CBF or MAP. These results provide the evidence for a new subtype of the angiotensin receptor and indicate the likely role of circulating hormones in blood flow regulation in the inner ear. (C) 1998 Published by Elsevier Science B.V. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97201 USA. RP Coleman, JKM (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. CR BRASZKO JJ, 1991, BRAIN RES, V542, P49, DOI 10.1016/0006-8993(91)90996-9 BRASZKO JJ, 1988, NEUROSCIENCE, V27, P777, DOI 10.1016/0306-4522(88)90182-0 COLEMAN JKM, 1993, FASEB J, V7, pA437 COLEMAN J K M, 1990, Society for Neuroscience Abstracts, V16, P873 COLEMAN JKM, 1994, EXP BIOL 1, V8, pA582 Ferrario C. M., 1991, HYPERTENSION S3, V18 HABERL RL, 1991, CIRC RES, V68, P1621 HABERL RL, 1991, CARDIOVASC PHARM S3, V17, pS15 HALL KL, 1995, REGUL PEPTIDES, V58, P107, DOI 10.1016/0167-0115(95)00068-M HARDING JW, 1992, BRAIN RES, V583, P340 HULTCRANTZ E, 1988, AM J OTOLARYNG, V9, P317, DOI 10.1016/S0196-0709(88)80039-5 KERINS DM, 1995, J CLIN INVEST, V96, P2515, DOI 10.1172/JCI118312 KONO T, 1985, ACTA ENDOCRINOL-COP, V109, P249 Kramar E. A., 1995, Society for Neuroscience Abstracts, V21, P156 MCLAREN GM, 1991, HEARING RES, V55, P1, DOI 10.1016/0378-5955(91)90086-O MCLAREN GM, 1993, HEARING RES, V71, P183, DOI 10.1016/0378-5955(93)90033-W MILLER JM, 1990, LASER DOPPLER FLOWME, P319 MILLER JM, 1988, AM J OTOLARYNG, V9, P302, DOI 10.1016/S0196-0709(88)80038-3 MOLLER I, 1996, BRAIN RES, V725, P61 MOLLER I, 1996, BRAIN RES, V712, P307 MOLLER L, 1995, BRAIN RES, V701, P301 QUIRK WS, 1994, HEARING RES, V80, P119, DOI 10.1016/0378-5955(94)90015-9 QUIRK WS, 1989, HEARING RES, V41, P53, DOI 10.1016/0378-5955(89)90178-0 REN TY, 1993, HEARING RES, V71, P91, DOI 10.1016/0378-5955(93)90024-U SARDINIA MF, 1994, PEPTIDES, V15, P1399, DOI 10.1016/0196-9781(94)90115-5 SARDINIA MF, 1993, PEPTIDES, V14, P949, DOI 10.1016/0196-9781(93)90071-N SEMPLE PF, 1976, CIRC RES, V39, P671 SWANSON GN, 1992, REGUL PEPTIDES, V40, P409, DOI 10.1016/0167-0115(92)90527-2 VASS Z, 1995, HEARING RES, V89, P86, DOI 10.1016/0378-5955(95)00127-4 WADA J, 1979, LARYNGOSCOPE, V89, P1457 WRIGHT JW, 1995, FRONT NEUROENDOCRIN, V16, P23, DOI 10.1006/frne.1995.1002 WRIGHT JW, 1994, NEUROSCI BIOBEHAV R, V18, P21, DOI 10.1016/0149-7634(94)90034-5 WRIGHT JW, 1989, AM J PHYSIOL, V257, pR1551 NR 33 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 61 EP 68 DI 10.1016/S0378-5955(98)00038-0 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600006 PM 9641319 ER PT J AU Meloni, EG Davis, M AF Meloni, EG Davis, M TI The dorsal cochlear nucleus contributes to a high intensity component of the acoustic startle reflex in rats SO HEARING RESEARCH LA English DT Article DE dorsal cochlear nucleus; startle; behavior; lesion ID PONTINE RETICULAR-FORMATION; FEAR-POTENTIATED STARTLE; INFERIOR COLLICULUS; RESPONSE PROPERTIES; CONDITIONED FEAR; FUSIFORM CELL; GIANT-NEURONS; BRAIN-STEM; LESIONS; HABITUATION AB The dorsal cochlear nucleus (DCN) has been shown to project to a region of the nucleus reticularis pontis caudalis (PnC) critical for the evocation of startle in rats, suggesting a possible modulatory influence of the DCN on startle. This study examined the involvement of the DCN in the acoustic startle reflex and various other forms of behavioral plasticity seen with this response. Animals received bilateral electrolytic lesions of the DCN and were tested for acoustic startle responses, background noise facilitation, short-term habituation, prepulse inhibition and facilitation, and fear conditioning. Compared to sham lesioned rats, DCN lesioned rats showed a significant reduction in startle amplitude at the two highest startle-eliciting intensities (110 and 115 dB SPL) and normal responses on all other measures. Hence, the DCN appears to contribute to a high intensity component of the acoustic startle response in rats. (C) 1998 Elsevier Science B.V. C1 Yale Univ, Sch Med, Interdept Neurosci Program, New Haven, CT 06508 USA. Yale Univ, Sch Med, Dept Psychiat, New Haven, CT 06508 USA. Connecticut Mental Hlth Ctr, Abraham Ribicoff Res Facil, New Haven, CT 06508 USA. RP Meloni, EG (reprint author), Yale Univ, Sch Med, Interdept Neurosci Program, 34 Pk St, New Haven, CT 06508 USA. CR BERREBI AS, 1990, J NEUROCYTOL, V19, P643, DOI 10.1007/BF01188033 BORSZCZ GS, 1989, J EXP PSYCHOL ANIM B, V15, P54, DOI 10.1037//0097-7403.15.1.54 BOULIS NM, 1990, BRAIN RES, V520, P240, DOI 10.1016/0006-8993(90)91711-O BROWN JS, 1951, J EXP PSYCHOL, V72, P177 CAMPEAU S, 1992, ANIM LEARN BEHAV, V20, P177, DOI 10.3758/BF03200415 CASPARY DM, 1987, BRAIN RES, V417, P273, DOI 10.1016/0006-8993(87)90452-5 DAVIS M, 1974, J COMP PHYSIOL PSYCH, V87, P571, DOI 10.1037/h0036985 DAVIS M, 1993, BEHAV BRAIN RES, V58, P175, DOI 10.1016/0166-4328(93)90102-V DAVIS M, 1989, BEHAV NEUROSCI, V103, P495, DOI 10.1037/0735-7044.103.3.495 DAVIS M, 1982, J NEUROSCI, V2, P791 DAVIS M, 1992, P255 DAVIS M, 1970, J COMP PHYSIOL PSYCH, V72, P177, DOI 10.1037/h0029472 DAVIS M, 1978, J EXP PSYCHOL ANIM B, V4, P95, DOI 10.1037//0097-7403.4.2.95 DAVIS M, 1969, J COMP PHYSIOL PSYCH, V67, P486, DOI 10.1037/h0027308 DAVIS M, 1980, NEUROSCI BIOBEHAV R, V4, P241, DOI 10.1016/0149-7634(80)90016-0 Eaten R.C., 1984, MAMMALIAN STARTLE RE, P287 EVANS EF, 1973, EXP BRAIN RES, V17, P402 FALLS WA, 1995, BEHAV NEUROSCI, V109, P379, DOI 10.1037//0735-7044.109.3.379 FOX JE, 1979, PHYSIOL BEHAV, V23, P291, DOI 10.1016/0031-9384(79)90370-6 GROVES PM, 1974, BEHAV BIOL, V10, P391, DOI 10.1016/S0091-6773(74)91975-0 HAMMOND GR, 1973, PHYSIOL BEHAV, V10, P239, DOI 10.1016/0031-9384(73)90304-1 HITCHCOCK J, 1986, BEHAV NEUROSCI, V100, P11, DOI 10.1037/0735-7044.100.1.11 HITCHCOCK JM, 1989, BEHAV NEUROSCI, V103, P509, DOI 10.1037/0735-7044.103.3.509 HOFFMAN HS, 1969, J ACOUST SOC AM, V45, P7, DOI 10.1121/1.1911377 HOFFMAN HS, 1970, J ACOUST SOC AM, V47, P489, DOI 10.1121/1.1911919 HOFFMAN HS, 1980, PSYCHOL REV, V87, P175, DOI 10.1037/0033-295X.87.2.175 ISON JR, 1973, PHYSIOL BEHAV, V10, P1035, DOI 10.1016/0031-9384(73)90185-6 JORDAN WP, 1983, BEHAV NEUROSCI, V97, P710, DOI 10.1037//0735-7044.97.5.710 KANDLER K, 1991, BRAIN RES, V562, P230, DOI 10.1016/0006-8993(91)90626-7 KELLOGG CK, 1991, BEHAV NEUROSCI, V105, P640, DOI 10.1037/0735-7044.105.5.640 KIANG NYS, 1969, J ACOUST SOC AM, V46, P106, DOI 10.1121/1.1972490 KIM DO, 1994, J ACOUST SOC AM, V96, P1501, DOI 10.1121/1.410228 KOCH M, 1993, EXP BRAIN RES, V93, P231 KOCH M, 1992, NEUROSCIENCE, V49, P617, DOI 10.1016/0306-4522(92)90231-P KORN JH, 1966, CAN J PSYCHOLOGY, V20, P183, DOI 10.1037/h0082939 KRASE W, 1994, BEHAV BRAIN RES, V63, P81, DOI 10.1016/0166-4328(94)90053-1 Landis C, 1939, STARTLE PATTERN LEATON RN, 1976, J EXP PSYCHOL ANIM B, V2, P248, DOI 10.1037//0097-7403.2.3.248 Leaton R. N., 1996, Society for Neuroscience Abstracts, V22, P1875 Lee YL, 1996, J NEUROSCI, V16, P3775 LEITNER DS, 1985, PHYSIOL BEHAV, V34, P65, DOI 10.1016/0031-9384(85)90079-4 LEITNER DS, 1980, PHYSIOL BEHAV, V25, P291, DOI 10.1016/0031-9384(80)90219-X LINGENHOHL K, 1994, J NEUROSCI, V14, P1176 MANIS PB, 1990, J NEUROSCI, V10, P2338 MASTERTON RB, 1988, J NEUROPHYSIOL, V60, P1841 MASTERTON RB, 1994, HEARING RES, V73, P209, DOI 10.1016/0378-5955(94)90237-2 NELKEN I, 1994, J NEUROPHYSIOL, V71, P2446 NODAL FR, 1997, ABSTR ASS RES OT, V20, P161 OLIVER DL, 1984, J COMP NEUROL, V224, P155, DOI 10.1002/cne.902240202 PALOMBI PS, 1994, HEARING RES, V75, P153 PARHAM K, 1990, BEHAV NEUROSCI, V104, P831, DOI 10.1037//0735-7044.104.6.831 Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd Pilz PKD, 1996, NEUROBIOL LEARN MEM, V66, P67, DOI 10.1006/nlme.1996.0044 Prosser CL, 1936, AM J PHYSIOL, V117, P609 REIJMERS LGJE, 1994, BRAIN RES, V661, P174 RHODE WS, 1983, J COMP NEUROL, V213, P426, DOI 10.1002/cne.902130407 RUSSO JM, 1979, PHYSIOL PSYCHOL, V7, P102 RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0 RYUGO DK, 1985, J COMP NEUROL, V242, P381, DOI 10.1002/cne.902420307 SEMPLE MN, 1980, EXP BRAIN RES, V41, P19 SHEETS LP, 1988, BEHAV NEUROSCI, V102, P706, DOI 10.1037//0735-7044.102.5.706 SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750 SPIROU GA, 1993, J COMP NEUROL, V329, P36, DOI 10.1002/cne.903290104 SUTHERLAND DP, 1991, ASS RES OTOLARYNGOL, V14, P33 SWERDLOW N R, 1992, Journal of Psychopharmacology, V6, P176, DOI 10.1177/026988119200600210 SZABO I, 1965, ACTA PHYSIOL HUNG, V27, P167 Taylor M. K., 1994, Society for Neuroscience Abstracts, V20, P1753 WEDEKING P, 1979, PHYSIOL BEHAV, V22, P57, DOI 10.1016/0031-9384(79)90404-9 WILLOTT JF, 1997, ABSTR ASS RES OTOLAR, V20, P46 YAJIMA Y, 1989, EXP BRAIN RES, V75, P381 YEOMANS JS, 1993, BRAIN RES, V617, P309, DOI 10.1016/0006-8993(93)91099-E YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X YOUNG ED, 1992, PHILOS T ROY SOC B, V336, P407, DOI 10.1098/rstb.1992.0076 YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 ZHANG S, 1993, J NEUROPHYSIOL, V69, P1398 ZHANG S, 1994, J NEUROPHYSIOL, V71, P914 NR 77 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 69 EP 80 DI 10.1016/S0378-5955(98)00040-9 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600007 PM 9641320 ER PT J AU Souter, M Forge, A AF Souter, M Forge, A TI Intercellular junctional maturation in the stria vascularis: possible association with onset and rise of endocochlear potential SO HEARING RESEARCH LA English DT Article DE development; gerbil; cochlea; basal cell; marginal cell ID ETHACRYNIC-ACID; INNER-EAR; SPIRAL LIGAMENT; GERBIL COCHLEA; GAP-JUNCTIONS; RAT COCHLEA; NA,K-ATPASE; EXPRESSION; MOUSE; CELLS AB The postnatal maturation of intercellular junctions of marginal and basal cells of the stria vascularis was examined in the gerbil using thin sections and freeze fracture techniques. Immunohistochemical methods were used to determine the presence of Na,K-ATPase postnatally. The onset and growth of endocochlear potential (EP) was also measured. In marginal cells, the apical surface and junctional region around the apical pole of the cell was found to have adult-like characteristics by the time of onset of EP, whilst the increase in staining for Na,K-ATPase temporally coincided with an increasing density of intra-membrane protein particles on the infoldings of marginal cell lateral membranes. Maturation of the junctional specialisations of the basal cells was found to correspond temporally with the period of onset and rise of EP. Tight junctions between basal cells first appeared as small, broken strands composed of widely spaced particles at 6 days after birth (DAB). These junctional strands increased in number and in particle density until adult-like at 16 DAB when they covered large areas of the basal cell lateral membrane. Gap junctions on the apical membrane of basal cells first appeared as small patches of loosely packed junctional elements at 6 DAB. Between 8 and 16 DAB the area of membrane occupied by the gap junctions increased, reaching a mature conformation by 18 DAB. The results suggest that EP maturation is dependent upon the development of sealing between the basal cells by tight junctions and also the establishment and development of gap junctions in the apical plasma membrane of basal cells, associated with intermediate cells. (C) 1998 Elsevier Science B.V. C1 UCL, Sch Med, Inst Laryngol & Otol, London WC1X 8EE, England. RP Souter, M (reprint author), UCL, Sch Med, Inst Laryngol & Otol, 330-332 Grays Inn Rd, London WC1X 8EE, England. EM m.souter@ucl.ac.uk CR ANGGARD L, 1965, ACTA OTOLARYNGOL S, V203 BOSHER SK, 1973, ACTA OTO-LARYNGOL, V75, P184, DOI 10.3109/00016487309139694 BOSHER SK, 1980, ACTA OTO-LARYNGOL, V89, P407, DOI 10.3109/00016488009127156 CARLISLE L, 1990, CELL TISSUE RES, V262, P329, DOI 10.1007/BF00309888 Erichsen S, 1996, HEARING RES, V100, P143, DOI 10.1016/0378-5955(96)00105-0 FERNANDE.C, 1974, ACTA OTO-LARYNGOL, V78, P173, DOI 10.3109/00016487409126343 FORGE A, 1981, AUDIOLOGY, V20, P273 FORGE A, 1984, HEARING RES, V13, P189, DOI 10.1016/0378-5955(84)90108-4 JOHNSTON.BM, 1972, Q REV BIOPHYS, V5, P1 KERR TP, 1982, AM J OTOLARYNG, V3, P332, DOI 10.1016/S0196-0709(82)80006-9 Kikuchi K, 1966, Acta Otolaryngol, V62, P277, DOI 10.3109/00016486609119573 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KIMURA RS, 1969, ANN OTO RHINOL LARYN, V78, P542 KOBAYASHI T, 1987, J HISTOCHEM CYTOCHEM, V35, P601 KONISHI T, 1970, Acta Oto-Laryngologica, V69, P192, DOI 10.3109/00016487009123353 KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P22, DOI 10.3109/00016487809124717 KUIJPERS W, 1974, ACTA OTO-LARYNGOL, V78, P341, DOI 10.3109/00016487409126364 KUIJPERS W, 1969, BIOCHIM BIOPHYS ACTA, V173, P477, DOI 10.1016/0005-2736(69)90012-1 LAVIGNEREBILLARD M, 1992, HEARING RES, V64, P39, DOI 10.1016/0378-5955(92)90166-K MCGUIRT JP, 1995, HEARING RES, V84, P52, DOI 10.1016/0378-5955(95)00015-V McGuirt JP, 1996, AUDIT NEUROSCI, V2, P135 MELICHAR I, 1987, HEARING RES, V25, P35, DOI 10.1016/0378-5955(87)90077-3 MITZUTA K, 1997, HEARING RES, V106, P154 Nakai Y, 1968, Acta Otolaryngol, V66, P120, DOI 10.3109/00016486809126280 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 PIKE DA, 1980, HEARING RES, V3, P79, DOI 10.1016/0378-5955(80)90009-X REALE E, 1975, J ULTRA MOL STRUCT R, V53, P284, DOI 10.1016/S0022-5320(75)80030-X RYBAK LP, 1991, ORL J OTO-RHINO-LARY, V53, P72 RYBAK LP, 1992, HEARING RES, V59, P189, DOI 10.1016/0378-5955(92)90115-4 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SANTOS-SACCHI J, 1991, HEARING RES, V52, P89, DOI 10.1016/0378-5955(91)90190-K SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 SELLICK PM, 1974, PFLUG ARCH EUR J PHY, V352, P339, DOI 10.1007/BF00585686 SHUGYO A, 1990, EUR ARCH OTO-RHINO-L, V248, P79 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 STEEL KP, 1987, HEARING RES, V27, P11, DOI 10.1016/0378-5955(87)90022-0 STEEL KP, 1989, DEVELOPMENT, V107, P453 STERKERS O, 1988, PHYSIOL REV, V68, P1083 THALMANN R, 1973, LARYNGOSCOPE, V83, P1690, DOI 10.1288/00005537-197310000-00010 WOOLF NK, 1986, AM J PHYSIOL, V250, P493 YAO XF, 1994, HEARING RES, V80, P31, DOI 10.1016/0378-5955(94)90006-X NR 42 TC 32 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 81 EP 95 DI 10.1016/S0378-5955(98)00042-2 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600008 PM 9641321 ER PT J AU Kong, WJ Hussl, B Thumfart, WF Schrott-Fischer, A AF Kong, WJ Hussl, B Thumfart, WF Schrott-Fischer, A TI Ultrastructural localization of ChAT-like immunoreactivity in the human vestibular periphery SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Annual Meeting of the American-Academy-of-Otolaryngology-Head-and-Neck-Surgery CY SEP 18-21, 1994 CL SAN DIEGO, CALIFORNIA SP Amer Acad Otolaryngol Head & Neck Surg DE acetylcholine; choline acetyltransferase; immunoelectron microscopy; vestibular neurosensory periphery; human ID GENE-RELATED PEPTIDE; CHOLINE-ACETYLTRANSFERASE; EFFERENT NEURONS; HAIR-CELLS; END-ORGANS; INNER-EAR; NERVE-FIBERS; SYSTEM; FROG; LABYRINTH AB Acetylcholine (ACh) has long been considered a neurotransmitter candidate in the efferent vestibular system of mammals. Recently, choline acetyltransferase (ChAT), the synthesizing enzyme for ACh, was immunocytochemically localized in all five end-organs of the rat vestibule (Kong et al. (1994) Hear. Res. 75, 192-200). However, there is little information in the literature concerning the cholinergic innervation in the vestibular periphery of man. In the present study the ultrastructural localization of the ChAT-like immunoreactivity in the human vestibular periphery was investigated in order to reveal the cholinergic innervation in the human vestibular end-organs. A modified method of pre-embedding immunoelectron microscopy was applied. It was found that the ChAT-like immunoreactivity was located in the bouton-type vesiculated nerve terminals in the vestibular neurosensory epithelia of man. These ChAT-like immunostained nerve terminals make synaptic contacts either with afferent chalices surrounding type I vestibular sensory hair cells, or with type II vestibular sensory hair cells. These results show that the ChAT-like immunoreactivity in the human vestibular periphery is confined to the efferent vestibular system. The ChAT-containing efferents innervate both type I hair cells and type II hair cells, making postsynaptic and presynaptic contacts, respectively. This study presents evidence that ACh is a neurotransmitter candidate in the efferent vestibular system of man. (C) 1998 Published by Elsevier Science B.V. C1 Univ Innsbruck Hosp, Dept Otolaryngol, A-6020 Innsbruck, Austria. Tongji Med Univ, Union Hosp, Dept Otolaryngol, Wuhan, Peoples R China. RP Schrott-Fischer, A (reprint author), Univ Innsbruck Hosp, Dept Otolaryngol, Anichstr 35, A-6020 Innsbruck, Austria. EM Annelies.Schrott@uibk.ac.at CR ALTSCHULER RA, 1986, NEUROBIOLOGY HEARING, P383 ANNIKO M, 1991, ACTA OTO-LARYNGOL, V111, P491, DOI 10.3109/00016489109138374 ASHMORE JF, 1982, J PHYSL, V329, P25 BERNARD C, 1985, BRAIN RES, V338, P225, DOI 10.1016/0006-8993(85)90151-9 BOYLE R, 1990, J NEUROSCI, V10, P1570 CARPENTER MB, 1987, BRAIN RES, V408, P275, DOI 10.1016/0006-8993(87)90387-8 COHEN GM, 1987, HEARING RES, V28, P57, DOI 10.1016/0378-5955(87)90153-5 DANNHOF BJ, 1991, CELL TISSUE RES, V266, P89, DOI 10.1007/BF00678715 EYBALIN M, 1987, EXP BRAIN RES, V65, P261 FELIX D, 1982, ACTA OTO-LARYNGOL, V93, P101, DOI 10.3109/00016488209130858 FEX J, 1986, HEARING RES, V22, P249, DOI 10.1016/0378-5955(86)90102-4 FLOCK A, 1973, NATURE-NEW BIOL, V243, P89 FLOCK A, 1976, J PHYSIOL-LONDON, V257, P45 GACEK R R, 1965, Acta Otolaryngol, V59, P541, DOI 10.3109/00016486509124585 GACEK RR, 1974, ACTA OTO-LARYNGOL, V77, P92, DOI 10.3109/00016487409124603 GOLDBERG JM, 1980, J NEUROPHYSIOL, V43, P986 HIGHSTEIN SM, 1991, NEUROSCI RES, V12, P13, DOI 10.1016/0168-0102(91)90096-H HIGHSTEIN SM, 1985, J NEUROPHYSIOL, V54, P370 HILDING D, 1962, Acta Otolaryngol, V55, P205, DOI 10.3109/00016486209127354 Iurato S, 1972, Prog Brain Res, V37, P429, DOI 10.1016/S0079-6123(08)63917-5 Iurato S, 1971, Acta Otolaryngol Suppl, V279, P1 IURATO S, 1971, ACTA OTO-LARYNGOL, V71, P147, DOI 10.3109/00016487109125343 KLINKE R, 1986, HEARING RES, V22, P235, DOI 10.1016/0378-5955(86)90100-0 KLINKE R, 1974, PHYSIOL REV, V54, P316 KONG WJ, 1994, ACTA OTO-LARYNGOL, V114, P245, DOI 10.3109/00016489409126051 KONG WJ, 1994, OTOLARYNGOL HEAD NEC, V111, P144 KONG WJ, 1994, 31 WORKSH INN EAR BI, P43 KONG WJ, 1994, HEARING RES, V75, P192 LEPEZ I, 1989, NEUROCHEM RES, V14, P113 LLINAS R, 1969, EXP BRAIN RES, V9, P16 LOCKE R E, 1990, Society for Neuroscience Abstracts, V16, P735 MCLAMB WT, 1992, HEARING RES, V58, P193, DOI 10.1016/0378-5955(92)90128-A MESROBIAN RJO, 1987, ARCH OTOLARYNGOL, V113, P543 MEZA G, 1987, HEARING RES, V28, P73, DOI 10.1016/0378-5955(87)90155-9 NOMURA Y, 1965, ARCHIV OTOLARYNGOL, V81, P335 NORRIS CH, 1988, HEARING RES, V32, P197, DOI 10.1016/0378-5955(88)90092-5 PRIGIONI I, 1983, BRAIN RES, V269, P83, DOI 10.1016/0006-8993(83)90964-2 RASMUSSEN GL, 1958, ANAT REC, V130, P361 ROSS MD, 1969, J COMP NEUROL, V135, P453, DOI 10.1002/cne.901350405 ROSSI G, 1965, ACTA ANAT, V60, P362 ROSSI ML, 1980, BRAIN RES, V185, P125, DOI 10.1016/0006-8993(80)90677-0 ROSSI ML, 1977, BRAIN RES, V135, P67, DOI 10.1016/0006-8993(77)91052-6 ROTH B, 1991, ANAT EMBRYOL, V183, P483 SALA O, 1965, ACTA OTOLARYNG STO S, V197, P1 SCHROTTFISCHER A, 1994, HEARING RES, V78, P149, DOI 10.1016/0378-5955(94)90020-5 SCHWARZ DWF, 1986, EXP BRAIN RES, V64, P19 SMITH C, 1967, NASA, P183 TANAKA M, 1989, BRAIN RES, V504, P31, DOI 10.1016/0006-8993(89)91593-X TANAKA M, 1988, BRAIN RES, V447, P175, DOI 10.1016/0006-8993(88)90981-X Usami S, 1991, Acta Otolaryngol Suppl, V481, P166 WACKYM PA, 1993, AM J OTOL, V14, P41 WACKYM PA, 1991, OTOLARYNG HEAD NECK, V105, P493 WARR WB, 1975, J COMP NEUROL, V161, P159, DOI 10.1002/cne.901610203 Wersall J., 1974, P123 WERSALL J, 1956, Acta Otolaryngol Suppl, V126, P1 NR 55 TC 10 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 96 EP 103 DI 10.1016/S0378-5955(98)00033-1 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600009 PM 9641322 ER PT J AU Kong, WJ Hussl, B Thumfart, WF Schrott-Fischer, A AF Kong, WJ Hussl, B Thumfart, WF Schrott-Fischer, A TI Ultrastructural localization of GABA-like immunoreactivity in the human utricular macula SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 31st Workshop of Inner Ear Biology CY SEP 10-13, 1994 CL MONTPELLIER, FRANCE DE gamma-aminobutyric acid; neurotransmitter; immunocytochemistry; efferent vestibular system; human ID GENE-RELATED PEPTIDE; VESTIBULAR END-ORGANS; AFFERENT FIBER SYNAPSE; CHICK INNER-EAR; GUINEA-PIG; CHOLINE-ACETYLTRANSFERASE; GLUTAMATE-DECARBOXYLASE; EFFERENT NEURONS; SQUIRREL-MONKEY; CAT LABYRINTH AB In the vertebrate vestibular periphery, gamma-aminobutyric acid (GABA) has long been presumed to be a neurotransmitter candidate. However, experimental reports about the localization and function of GABA in the vestibular systems of vertebrates are contradictory. In addition, there is no information in the literature concerning the localization of GABA in the human vestibular periphery. The present study investigates the ultrastructural localization of GABA-like immunoreactivity in the human utricular macula. A modified pre-embedding immunostaining electron microscopy technique was applied using two different commercially available polyclonal antibodies to GABA. GABA-like immunoreactivity is confined to the vesiculated nerve fibers and terminals of the human vestibular neurosensory epithelia. The GABA-containing nerve terminals make asymmetrical axo-dendritic synapses with the afferent chalices surrounding the type I sensory hair cells. Type I and type II hair cells as well as afferent chalices are devoid of GABA-like immunoreactive staining. The present study demonstrates that GABA exists in the human vestibular periphery, and that GABA is a neurotransmitter candidate of the human efferent vestibular system. (C) 1998 Published by Elsevier Science B.V. C1 Univ Innsbruck Hosp, Dept Otolaryngol, A-6020 Innsbruck, Austria. Tongji Med Univ, Union Hosp, Dept Otolaryngol, Wuhan, Peoples R China. RP Schrott-Fischer, A (reprint author), Univ Innsbruck Hosp, Dept Otolaryngol, Anichstr 35, A-6020 Innsbruck, Austria. CR ALTSCHULER RA, 1986, NEUROBIOLOGY HEARING, P383 ANNONI JM, 1984, J NEUROSCI, V4, P2106 BERNARD C, 1985, BRAIN RES, V338, P225, DOI 10.1016/0006-8993(85)90151-9 CARPENTER MB, 1987, BRAIN RES, V408, P275, DOI 10.1016/0006-8993(87)90387-8 DANNHOF BJ, 1991, CELL TISSUE RES, V266, P89, DOI 10.1007/BF00678715 DECHESNE C, 1984, ANN OTO RHINOL LARYN, V93, P163 DIDIER A, 1990, CELL TISSUE RES, V260, P415, DOI 10.1007/BF00318645 DRESCHER MJ, 1987, BRAIN RES, V417, P39, DOI 10.1016/0006-8993(87)90177-6 DRESCHER MJ, 1992, J NEUROCHEM, V59, P93, DOI 10.1111/j.1471-4159.1992.tb08879.x ENGSTROM H, 1961, Acta Otolaryngol Suppl, V163, P30 EYBALIN M, 1988, NEUROSCIENCE, V24, P29, DOI 10.1016/0306-4522(88)90308-9 FELIX D, 1982, ACTA OTO-LARYNGOL, V93, P101, DOI 10.3109/00016488209130858 FEX J, 1986, BRAIN RES, V366, P106, DOI 10.1016/0006-8993(86)91285-0 FEX J, 1986, HEARING RES, V22, P249, DOI 10.1016/0378-5955(86)90102-4 FLOCK A, 1974, NATURE, V249, P142, DOI 10.1038/249142a0 GACEK R R, 1965, Acta Otolaryngol, V59, P541, DOI 10.3109/00016486509124585 GOLDBERG JM, 1980, J NEUROPHYSIOL, V43, P986 GUTH SL, 1984, EXP BRAIN RES, V56, P72 HARTMANN R, 1980, PFLUG ARCH EUR J PHY, V388, P123, DOI 10.1007/BF00584117 HIGHSTEIN SM, 1991, NEUROSCI RES, V12, P13, DOI 10.1016/0168-0102(91)90096-H HILDING D, 1962, Acta Otolaryngol, V55, P205, DOI 10.3109/00016486209127354 Hunter-Duvar IM, 1984, ULTRASTRUCTURAL ATLA, P211 ITURBE AG, 1986, INT J DEV NEUROSCI S, V4, pS32 Iurato S, 1972, Prog Brain Res, V37, P429, DOI 10.1016/S0079-6123(08)63917-5 IURATO S, 1971, ACTA OTO-LARYNGOL, V71, P147, DOI 10.3109/00016487109125343 KLINKE R, 1974, PHYSIOL REV, V54, P316 KONG WJ, 1994, ACTA OTO-LARYNGOL, V114, P245, DOI 10.3109/00016489409126051 KONG WJ, 1994, OTOLARYNGOL HEAD NEC, V111, P144 KONG WJ, 1994, 31 WORKSH INN EAR BI, P43 KONG WJ, 1994, HEARING RES, V75, P192 LOPEZ I, 1990, COMP BIOCHEM PHYS B, V95, P375, DOI 10.1016/0305-0491(90)90090-G LOPEZ I, 1988, NEUROSCIENCE, V25, P13 LOPEZ I, 1992, BRAIN RES, V589, P341, DOI 10.1016/0006-8993(92)91297-R LOPEZ I, 1990, BRAIN RES, V530, P170, DOI 10.1016/0006-8993(90)90677-4 MEZA G, 1982, BRAIN RES, V241, P157, DOI 10.1016/0006-8993(82)91238-0 MEZA G, 1987, HEARING RES, V28, P73, DOI 10.1016/0378-5955(87)90155-9 MEZA G, 1989, ACTA OTO-LARYNGOL, V107, P406, DOI 10.3109/00016488909127530 MEZA G, 1985, BRAIN RES, V337, P179, DOI 10.1016/0006-8993(85)91628-2 PRIGIONI I, 1983, BRAIN RES, V269, P83, DOI 10.1016/0006-8993(83)90964-2 SCHROTTFISCHER A, 1994, HEARING RES, V78, P149, DOI 10.1016/0378-5955(94)90020-5 SCHWARZ DWF, 1986, EXP BRAIN RES, V64, P19 SMITH C, 1967, NASA, P183 SPOENDLIN H, 1970, ULTRASTRUCTURE PERIP, P263 TANAKA M, 1989, BRAIN RES, V504, P31, DOI 10.1016/0006-8993(89)91593-X TANAKA M, 1988, BRAIN RES, V447, P175, DOI 10.1016/0006-8993(88)90981-X USAMI S, 1987, BRAIN RES, V418, P383, DOI 10.1016/0006-8993(87)90108-9 USAMI S, 1989, BRAIN RES, V503, P214, DOI 10.1016/0006-8993(89)91666-1 Usami S, 1991, Acta Otolaryngol Suppl, V481, P166 USAMI S, 1987, BRAIN RES, V417, P367, DOI 10.1016/0006-8993(87)90466-5 VALLI P, 1986, BRAIN RES, V362, P92, DOI 10.1016/0006-8993(86)91402-2 WACKYM PA, 1993, AM J OTOL, V14, P41 WACKYM PA, 1991, OTOLARYNG HEAD NECK, V105, P493 WERSALL J, 1956, Acta Otolaryngol Suppl, V126, P1 WHITLON DS, 1989, J NEUROCYTOL, V18, P505, DOI 10.1007/BF01474546 NR 54 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 104 EP 112 DI 10.1016/S0378-5955(98)00034-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600010 PM 9641323 ER PT J AU Gruber, DD Dang, H Shimozono, M Scofield, MA Wangemann, P AF Gruber, DD Dang, H Shimozono, M Scofield, MA Wangemann, P TI alpha(1A)-adrenergic receptors mediate vasoconstriction of the isolated spiral modiolar artery in vitro SO HEARING RESEARCH LA English DT Article DE cochlear blood flow; reverse transcription polymerase chain reaction; BMY7378; 5-methyl urapidil ID COCHLEAR BLOOD-FLOW; VASCULAR SMOOTH-MUSCLE; GUINEA-PIG; RAT AORTA; MOLECULAR-CLONING; ALPHA-1-ADRENERGIC RECEPTOR; INTERNATIONAL UNION; VASOMOTOR RESPONSES; CONTRACTION; SUBTYPES AB Several lines of evidence suggest that cochlear blood flow is under the control of the sympathetic nervous system and that this control is mediated via alpha-adrenergic receptors. The goal of the present study was to determine whether alpha-adrenergic receptors mediate vasoconstriction of the spiral modiolar artery and, if so, to determine which subtype dominates this response. Vascular diameter was measured with video microscopy in the isolated superfused spiral modiolar artery in vitro. The diameter of the spiral modiolar artery under control conditions was 61+/-2 mu m (n=60). Spontaneous vasomotion was observed in most specimens. Addition of norepinephrine to the superfusate caused a phasic vasoconstriction and an increase in the amplitude of vasomotion. These effects were limited to the vicinity of arteriolar branch points of the spiral modiolar artery. Norepinephrine-induced vasoconstriction occurred with EC50 of (1.9+/-0.4)X10(-5) M (n=44) and the vascular diameter was maximally reduced by a factor of 0.87+/-0.01 (n=29). Neither the phasic nature nor the EC50 of the norepinephrine-induced vasoconstrictions was altered in the presence of the beta(2)-adrenergic receptor antagonist 10(-5) M ICI118551 or the nitric oxide synthase inhibitor 10(-4) M NOARG. In contrast, the alpha(2)-adrenergic receptor antagonist 10(-7) M yohimbine and the alpha(2)-adrenergic receptor antagonist 10(-9) and 10(-8) M prazosin caused a significant shift in the dose-response curve. The affinity constants (K-DB) for yohimbine and prazosin were (5+/-2)X10(-8) M (n=4) and (2.0+/-0.7)X10(-10) M (n=18), respectively. The alpha(1A)-adrenergic receptor antagonist 10(-8) M 5-methyl urapidil and the alpha(1D)-adrenergic receptors antagonist 5X10(-6) M BMY7378 caused a significant shift in the dose-response curve. The K-DB values for 5-methyl urapidil and for BMY7378 were (2.7+/-0.7)X10(-10) M (n=8) and (4.4+/-2.7)X10(-7) M (n=8), respectively. Further, total RNA was isolated from microdissected spiral modiolar arteries and the presence of transcripts for alpha(1)-adrenergic receptor subtypes was determined by reverse transcription polymerase chain reaction (RT-PCR). Primers specific for gerbil alpha(1)-adrenergic receptor subtypes were developed using RNA from rat and gerbil brain. Analysis of RNA extracted from the spiral modiolar artery revealed RT-PCR products of the appropriate size for the alpha(1A)-adrenergic receptor, however, no evidence for the alpha(1B)- and alpha(1D)-adrenergic receptor was found. Further, analysis of RNA extracted from blood, which was a contaminant of the microdissected spiral modiolar arteries, revealed no RT-PCR products. Sequence analysis of the RT-PCR product of the alpha(1A)-adrenergic receptor from the spiral modiolar artery confirmed its identity. Identity between the 175 nt gerbil sequence fragment and the known rat, mouse and human alpha(1A)-adrenergic receptor sequences was 90.9, 92.0 and 85.2%, respectively. These observations demonstrate that the spiral modiolar artery contains alpha(1A)-adrenergic receptors which mediate vasoconstriction at branch points. (C) 1998 Elsevier Science B.V. C1 Boys Town Natl Res Hosp, Cell Physiol Lab, Omaha, NE 68131 USA. Creighton Univ, Dept Biomed Sci, Omaha, NE 68178 USA. Creighton Univ, Sch Med, Dept Pharmacol, Omaha, NE 68178 USA. RP Wangemann, P (reprint author), Boys Town Natl Res Hosp, Cell Physiol Lab, 555 N 30th St, Omaha, NE 68131 USA. RI Wangemann, Philine/N-2826-2013 CR ALLEN LF, 1991, P NATL ACAD SCI USA, V88, P11354, DOI 10.1073/pnas.88.24.11354 Anderson R, 1996, BIOCHEM PHARMACOL, V52, P341, DOI 10.1016/0006-2952(96)00212-2 BRECHTELSBAUER PB, 1990, OTOLARYNG HEAD NECK, V103, P566 BYLUND DB, 1994, PHARMACOL REV, V46, P121 CARLISLE L, 1990, HEARING RES, V43, P107, DOI 10.1016/0378-5955(90)90219-F CARRASCO VN, 1990, ARCH OTOLARYNGOL, V116, P411 CHANG AE, 1980, AM J PHYSIOL, V238, pH716 Chen LQ, 1995, J BIOL CHEM, V270, P30980 COTECCHIA S, 1988, P NATL ACAD SCI USA, V85, P7159, DOI 10.1073/pnas.85.19.7159 DELEAN A, 1984, ENDOCRINOLOGY, V115, P485 Eckhart AD, 1996, AM J PHYSIOL-HEART C, V271, pH1599 Eltze M, 1996, EUR J PHARMACOL, V311, P187, DOI 10.1016/0014-2999(96)00430-X FRAME MDS, 1993, MICROVASC RES, V46, P190, DOI 10.1006/mvre.1993.1046 Gao H, 1996, AM J PHYSIOL-GASTR L, V271, pG820 GarciaSainz JA, 1996, LIFE SCI, V59, P235, DOI 10.1016/0024-3205(96)00289-5 GOETZ AS, 1995, EUR J PHARMACOL, V272, pR5, DOI 10.1016/0014-2999(94)00751-R GROSS G, 1988, EUR J PHARMACOL, V151, P333, DOI 10.1016/0014-2999(88)90819-9 GRUBER DD, 1998, ASS RES OTOLARYNGOL, V21, P112 GRUBER DD, 1997, MIDWEST STUDENT MED, V28, P62 Gustafsson H, 1993, Acta Physiol Scand Suppl, V614, P1 HIEBLE JP, 1995, PHARMACOL REV, V47, P267 HULTCRANTZ E, 1978, ORL J OTO-RHINO-LARY, V40, P65 KENNY BA, 1995, BRIT J PHARMACOL, V115, P981 LAURIKAINEN EA, 1993, HEARING RES, V64, P199, DOI 10.1016/0378-5955(93)90006-M LAURIKAINEN EA, 1994, J PHYSIOL-LONDON, V480, P563 Leech CJ, 1996, AM J PHYSIOL-HEART C, V270, pH710 LIMBIRD LE, 1986, CELL SURFACE RECEPTO, P23 LINK R, 1992, MOL PHARMACOL, V42, P16 Liu SY, 1996, ACTA OTO-LARYNGOL, V116, P710, DOI 10.3109/00016489609137911 LOMASNEY JW, 1991, J BIOL CHEM, V266, P6365 LUFF SE, 1988, J NEUROCYTOL, V17, P451, DOI 10.1007/BF01189802 Marshall I, 1996, BRIT J PHARMACOL, V119, P407 MARSHALL I, 1995, BRIT J PHARMACOL, V115, P781 MICHEL AD, 1989, BRIT J PHARMACOL, V98, P883 OHLSEN KA, 1991, CIRC RES, V69, P509 PAUWELS PJ, 1989, EUR J PHARM-MOLEC PH, V172, P471, DOI 10.1016/0922-4106(89)90030-8 PEREZ DM, 1991, MOL PHARMACOL, V40, P876 Piascik MT, 1995, J PHARMACOL EXP THER, V275, P1583 PILLSBURY HC, 1992, ARCH OTOLARYNGOL, V118, P413 REN TY, 1993, ACTA OTO-LARYNGOL, V113, P146, DOI 10.3109/00016489309135783 REN TY, 1993, ANN OTO RHINOL LARYN, V102, P378 Rockman HA, 1997, AM J PHYSIOL-HEART C, V272, pH1553 Saussy DL, 1996, J PHARMACOL EXP THER, V278, P136 SAYET I, 1993, EUR J PHARM-MOLEC PH, V246, P275, DOI 10.1016/0922-4106(93)90042-8 SCHWINN DA, 1990, J BIOL CHEM, V265, P8183 SCOFIELD MA, 1997, J PHARMACOL EXP THER, V275, P1042 SEGAL SS, 1989, AM J PHYSIOL, V256, pH838 SEGAL SS, 1989, AM J PHYSIOL, V256, pH832 TESTA R, 1995, LIFE SCI, V57, pPL159 Testa R, 1997, J PHARMACOL EXP THER, V281, P1284 VANBAVEL E, 1994, J PHYSIOL-LONDON, V477, P103 VanderGraaf PH, 1996, BRIT J PHARMACOL, V118, P299 VillalobosMolina R, 1996, EUR J PHARMACOL, V298, P257, DOI 10.1016/0014-2999(95)00781-4 Wangemann P, 1998, HEARING RES, V118, P90, DOI 10.1016/S0378-5955(98)00017-3 WANGEMANN P, 1997, HEARING RES, V115, P113 WANGEMANN P, 1997, MICROCIRCULATION, V4, P163 Xin XH, 1997, MOL PHARMACOL, V51, P764 YNG M, 1997, N-S ARCH PHARMACOL, V355, P438 NR 58 TC 14 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 113 EP 124 DI 10.1016/S0378-5955(98)00036-7 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600011 PM 9641324 ER PT J AU Varela-Ramirez, A Trujillo-Provencio, C Serrano, EE AF Varela-Ramirez, A Trujillo-Provencio, C Serrano, EE TI Detection of transcripts for delayed rectifier potassium channels in the Xenopus laevis inner ear SO HEARING RESEARCH LA English DT Article DE amphibian; auditory; drk; ion channel; Kv2; reverse transcription polymerase chain reaction; vestibular ID COCHLEAR HAIR-CELLS; POLYMERASE CHAIN-REACTION; K+-CHANNEL; DIFFERENTIAL EXPRESSION; MOLECULAR-CLONING; IONIC CURRENTS; MESSENGER-RNA; GENE; MOUSE; CHICK AB Reverse transcriptase polymerase chain reaction (RT-PCR) was used to amplify sequences for delayed rectifier potassium (drk) channel transcripts in Xenopus laevis inner ear and brain. We used degenerate primers that spanned a region between the N-terminal cytoplasmic portion and a region located between the S2 and S3 transmembrane domains of the potassium channel protein. When inner ear total RNA or brain mRNA was used as a template for RT-PCR, a unique product of the expected size (similar to 560 bp) was observed as a single band after electrophoresis on agarose gels. The PCR product from reactions using X. laevis genomic DNA as template was similarly sized, indicating a lack of introns in this region. The RT-PCR products from inner ear and brain were isolated, cloned, and sequenced. Sequence analysis showed that the X. laevis inner ear and brain clones were identical. Sequence alignments of the cloned RT-PCR products with posted GenBank sequences established that the drk sequences from X. laevis inner ear and brain share highest identity with larval X. laevis brain, mouse, rat, and human Kv2 sequences. Positive signals were obtained from inner ear and brain mRNA in Northern dot blots hybridized with digoxigenin labeled probes from the inner ear clone. Taken together, results provide evidence for the expression of Kv2 sequences in the X. laevis inner ear and brain. (C) 1998 Published by Elsevier Science B.V. C1 New Mexico State Univ, Dept Biol, Las Cruces, NM 88003 USA. RP Serrano, EE (reprint author), New Mexico State Univ, Dept Biol, Las Cruces, NM 88003 USA. CR ALBRECHT B, 1993, RECEPTOR CHANNEL, V1, P99 ART JJ, 1995, J GEN PHYSIOL, V105, P49, DOI 10.1085/jgp.105.1.49 ASHMORE JF, 1983, NATURE, V304, P536, DOI 10.1038/304536a0 ASHMORE JF, 1991, ANNU REV PHYSIOL, V53, P465, DOI 10.1146/annurev.physiol.53.1.465 BAIRD RA, 1992, ANN NY ACAD SCI, V656, P12, DOI 10.1111/j.1749-6632.1992.tb25197.x BENNDORF K, 1994, J PHYSIOL-LONDON, V477, P1 Burger C, 1996, J NEUROSCI, V16, P1412 CATTERALL WA, 1995, ANNU REV BIOCHEM, V64, P493, DOI 10.1146/annurev.biochem.64.1.493 CHANDY KG, 1991, NATURE, V352, P26, DOI 10.1038/352026b0 CRAWFORD AC, 1981, J PHYSIOL-LONDON, V312, P377 Davis RL, 1996, J NEUROPHYSIOL, V76, P438 DEVRIES SC, 1982, PLANTA, V156, P129, DOI 10.1007/BF00395427 Diaz ME, 1995, HEARING RES, V91, P33, DOI 10.1016/0378-5955(95)00159-X Dieffenbach C.W., 1995, PCR PRIMER LAB MANUA Dolly JO, 1996, J BIOENERG BIOMEMBR, V28, P231, DOI 10.1007/BF02110698 EATOCK RA, 1992, ANN NY ACAD SCI, V656, P58, DOI 10.1111/j.1749-6632.1992.tb25200.x EBERWINE J, 1992, P NATL ACAD SCI USA, V89, P3010, DOI 10.1073/pnas.89.7.3010 Fink M, 1996, J BIOL CHEM, V271, P26341 FROHMAN MA, 1988, P NATL ACAD SCI USA, V85, P8998, DOI 10.1073/pnas.85.23.8998 FUCHS PA, 1992, PROG NEUROBIOL, V39, P493, DOI 10.1016/0301-0082(92)90003-W Green GE, 1996, J NEUROCHEM, V67, P37 Griguer C, 1996, J NEUROPHYSIOL, V75, P508 GUTMAN GA, 1993, SEMIN NEUROSCI, V5, P101, DOI 10.1016/S1044-5765(05)80004-1 Hibino H, 1997, J NEUROSCI, V17, P4711 Hille B., 1992, IONIC CHANNELS EXCIT, V2nd HODGKIN AL, 1952, J PHYSIOL-LONDON, V116, P449 Hoffman EP, 1997, NEW ENGL J MED, V336, P1599, DOI 10.1056/NEJM199705293362211 HOUSLEY GD, 1995, BIOCHEM BIOPH RES CO, V212, P501, DOI 10.1006/bbrc.1995.1998 HOUSLEY GD, 1994, HEARING RES, V75, P47, DOI 10.1016/0378-5955(94)90054-X HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P237 HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845 HWANG PM, 1992, NEURON, V8, P473, DOI 10.1016/0896-6273(92)90275-I JAN LY, 1994, NATURE, V371, P119, DOI 10.1038/371119a0 JAN LY, 1992, CELL, V69, P715, DOI 10.1016/0092-8674(92)90280-P Jiang GJ, 1997, P ROY SOC B-BIOL SCI, V264, P731 KAY BK, 1991, XENOPUS LAEVIS PRACT, V36 KLOCKE R, 1993, GENOMICS, V18, P568, DOI 10.1016/S0888-7543(05)80358-1 Kroll KL, 1996, DEVELOPMENT, V122, P3173 LEE KH, 1995, HEARING RES, V87, P9, DOI 10.1016/0378-5955(95)00072-C LopezAnaya VL, 1997, J MORPHOL, V234, P263, DOI 10.1002/(SICI)1097-4687(199712)234:3<263::AID-JMOR5>3.0.CO;2-A MASETTO S, 1994, J NEUROPHYSIOL, V72, P443 MELIS R, 1995, GENOMICS, V25, P285, DOI 10.1016/0888-7543(95)80138-C METCALF AB, 1994, P NATL ACAD SCI USA, V91, P11821, DOI 10.1073/pnas.91.25.11821 Navaratnam DS, 1997, NEURON, V19, P1077, DOI 10.1016/S0896-6273(00)80398-0 NAVARATNAM DS, 1995, J BIOL CHEM, V270, P19238 Neyroud N, 1997, NAT GENET, V15, P186, DOI 10.1038/ng0297-186 Nieuwkoop PD, 1967, NORMAL TABLE XENOPUS Oshima T, 1997, HEARING RES, V103, P63, DOI 10.1016/S0378-5955(96)00164-5 PAK MD, 1991, J NEUROSCI, V11, P869 PICKLES JO, 1993, HEARING RES, V71, P225, DOI 10.1016/0378-5955(93)90038-3 Pongs O., 1992, PHYSL REV S4, V72, P69 ROBERTS WM, 1990, J NEUROSCI, V10, P3664 Rosenblatt KP, 1997, NEURON, V19, P1061, DOI 10.1016/S0896-6273(00)80397-9 Rusch A, 1996, J NEUROPHYSIOL, V76, P995 SALKOFF L, 1995, NEURON, V15, P489, DOI 10.1016/0896-6273(95)90137-X Sambrook J., 1989, MOL CLONING LAB MANU SOKOLOWSKI BHA, 1993, DEV BIOL, V155, P134, DOI 10.1006/dbio.1993.1013 Splawski I, 1997, NEW ENGL J MED, V336, P1562, DOI 10.1056/NEJM199705293362204 Steel KP, 1996, CURR OPIN NEUROBIOL, V6, P520, DOI 10.1016/S0959-4388(96)80059-6 TACHIBANA M, 1992, HEARING RES, V62, P82, DOI 10.1016/0378-5955(92)90204-Z Takeuchi S, 1996, HEARING RES, V95, P18, DOI 10.1016/0378-5955(96)00016-0 Tinsley R., 1996, BIOL XENOPUS Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X NR 63 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 125 EP 134 DI 10.1016/S0378-5955(98)00039-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600012 PM 9641325 ER PT J AU Eddins, AC Salvi, RJ Wang, J Powers, NL AF Eddins, AC Salvi, RJ Wang, J Powers, NL TI Threshold-duration functions of chinchilla auditory nerve fibers SO HEARING RESEARCH LA English DT Article DE auditory nerve; threshold; stimulus duration; temporal integration ID TEMPORAL INTEGRATION; PSYCHOACOUSTICS; SUMMATION AB The purpose of the present study was to measure the change in threshold as a function of stimulus duration in single auditory nerve fibers. Thresholds were measured at each neuron's characteristic frequency (CF) for eight stimulus durations ranging from 8 to 1024 ms. Using an adaptive, two-interval, forced-choice threshold-tracking procedure with a 2-down, 1-up rule, thresholds were estimated based on a decision criterion of one spike or greater difference between tone and no-tone intervals. The results showed that mean thresholds decreased with increasing stimulus duration by approximately 14.6 dB over the range of durations tested. Analysis of group and individual data showed that thresholds decreased by approximately 6-7 dB per decade of duration. The slope of threshold improvement decreased systematically with increasing CF, consistent with previous physiological and psychophysical data. (C) 1998 Elsevier Science B.V. C1 Indiana Univ, Dept Speech & Hearing Sci, Auditory Physiol Lab, Bloomington, IN 47405 USA. SUNY Buffalo, Hearing Res Lab, Buffalo, NY 14260 USA. RP Eddins, AC (reprint author), Indiana Univ, Dept Speech & Hearing Sci, Auditory Physiol Lab, 200 S Jordan Ave, Bloomington, IN 47405 USA. EM aeddins@indiana.edu CR CLARK WW, 1986, SENSORINEURAL HEARIN CLOCK AE, 1993, HEARING RES, V71, P37, DOI 10.1016/0378-5955(93)90019-W Costulupes J. A., 1983, HEARING RES, V9, P42 DOOLING RJ, 1985, J ACOUST SOC AM, V77, P1917, DOI 10.1121/1.391835 DUNIA R, 1989, HEARING RES, V39, P287, DOI 10.1016/0378-5955(89)90048-8 Eddins David A., 1995, P207, DOI 10.1016/B978-012505626-7/50008-X FAY RR, 1983, HEARING RES, V10, P69, DOI 10.1016/0378-5955(83)90018-7 FLORENTINE M, 1988, J ACOUST SOC AM, V84, P195, DOI 10.1121/1.396964 GARNER WR, 1947, J EXP PSYCHOL, V37, P293, DOI 10.1037/h0055734 GERSUNI GV, 1965, NEUROPSYCHOLOGIA, V3, P95, DOI 10.1016/0028-3932(65)90036-9 GREEN DM, 1957, J ACOUST SOC AM, V29, P523, DOI 10.1121/1.1908951 HENDERSO.D, 1969, J ACOUST SOC AM, V46, P474, DOI 10.1121/1.1911714 JOHNSON CS, 1968, J ACOUST SOC AM, V43, P757, DOI 10.1121/1.1910893 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LOWEN SB, 1992, J ACOUST SOC AM, V92, P803, DOI 10.1121/1.403950 Lowen SB, 1996, J ACOUST SOC AM, V99, P3585, DOI 10.1121/1.414979 OLSEN WO, 1966, J ACOUST SOC AM, V40, P591, DOI 10.1121/1.1910123 PICKLES JO, 1980, PSYCHOPHYSICAL PHYSL, P118 PICKLES JO, 1976, J ACOUST SOC AM, V60, P1151, DOI 10.1121/1.381217 PLOMP R, 1959, J ACOUST SOC AM, V31, P749, DOI 10.1121/1.1907781 POPPER AN, 1972, J ACOUST SOC AM, V52, P596, DOI 10.1121/1.1913150 POWERS NL, 1992, ABSTR ASS RES OT, V129 POWERS NL, 1991, THESIS SUNY BUFFALO RELKIN EM, 1987, J ACOUST SOC AM, V82, P1679, DOI 10.1121/1.395159 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SAUNDERS SS, 1993, J ACOUST SOC AM, V94, P83, DOI 10.1121/1.406945 SCHMIDT S, 1994, HEARING RES, V77, P125, DOI 10.1016/0378-5955(94)90260-7 TAYLOR MM, 1967, J ACOUST SOC AM, V41, P782, DOI 10.1121/1.1910407 TEICH MC, 1989, IEEE T BIO-MED ENG, V36, P150, DOI 10.1109/10.16460 VIEMEISTER NF, 1992, ADV BIOSCI, V83, P323 VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 WALL L G, 1981, Journal of Auditory Research, V21, P29 WATSON CS, 1969, J ACOUST SOC AM, V46, P989, DOI 10.1121/1.1911819 YOUNG ED, 1986, J ACOUST SOC AM, V79, P426, DOI 10.1121/1.393530 ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276 NR 35 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 135 EP 141 DI 10.1016/S0378-5955(98)00035-5 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600013 PM 9641326 ER PT J AU Miller, CA Abbas, PJ Rubinstein, JT Robinson, BK Matsuoka, AJ Woodworth, G AF Miller, CA Abbas, PJ Rubinstein, JT Robinson, BK Matsuoka, AJ Woodworth, G TI Electrically evoked compound action potentials of guinea pig and cat: responses to monopolar, monophasic stimulation SO HEARING RESEARCH LA English DT Article DE cochlear implant; electrical stimulation; cat; guinea pig; auditory nerve ID AUDITORY-NERVE; PHYSIOLOGICAL-PROPERTIES; MODEL; EXCITATION; RECORDINGS; SYSTEM; FIBERS AB We recorded electrically evoked compound action potentials (EAPs) from guinea pigs and cats using monophasic current pulses delivered by a monopolar intracochlear electrode. By using simple stimuli, we sought results that could shed light on basic excitation properties of the auditory nerve. In these acute experiments, the recording electrode was placed directly on the auditory nerve. Responses to anodic and cathodic stimulus pulses were recorded separately to evaluate stimulus polarity effects. Several polarity-dependent properties were observed. Both EAP morphology and latency were polarity-dependent, with greater latencies for cathodic stimulation. Threshold stimulus level was also polarity-dependent, but in different directions in the two species: cats had lower cathodic thresholds while guinea pigs had lower anodic thresholds. We also observed that the slopes of the EAP amplitude-level functions depended upon stimulus polarity. In most cases where EAP saturation amplitude could be measured, that amplitude was similar for anodic and cathodic stimuli, suggesting that either stimulus polarity can recruit all fibers, or at least a comparable numbers of fibers. The common findings (e.g., EAP morphology and polarity-dependent latency) observed in these two species suggest results that can be extrapolated to responses obtained in humans, while the species-specific findings (e.g., dependence of threshold on polarity) may point to underlying anatomical differences that caution against overgeneralization across species. Some of our observations also bear upon hypotheses of how electrical stimuli may excite different sites on auditory nerve fibers. (C) 1998 Elsevier Science B.V. C1 Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA. Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA. RP Miller, CA (reprint author), Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, 200 Hawkins Dr,C-21 GH, Iowa City, IA 52242 USA. CR BROWN CJ, 1990, J ACOUST SOC AM, V88, P2205, DOI 10.1121/1.400117 BRUMMER SB, 1977, IEEE T BIO-MED ENG, V24, P440, DOI 10.1109/TBME.1977.326179 BRUMMER SB, 1977, IEEE T BIO-MED ENG, V24, P59, DOI 10.1109/TBME.1977.326218 COLOMBO J, 1987, HEARING RES, V31, P287, DOI 10.1016/0378-5955(87)90197-3 Finley C. C., 1990, COCHLEAR IMPLANTS MO Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 LEAKEJONES PA, 1982, HEARING RES, V8, P225, DOI 10.1016/0378-5955(82)90076-4 LOEB GE, 1983, ANN NY ACAD SCI, V405, P123, DOI 10.1111/j.1749-6632.1983.tb31625.x MILLER CA, 1997, 3 NIH Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9 RATTAY F, 1987, J THEOR BIOL, V125, P339, DOI 10.1016/S0022-5193(87)80066-8 RUBINSTEIN JT, 1995, DISTRIBUTED N CHANNE RUBINSTEIN JT, 1995, BIOPHYS J, V68, P779 *SAS I INC, 1994, P229 SAS I INC SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 Smith DW, 1997, J ACOUST SOC AM, V102, P2228, DOI 10.1121/1.419636 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 White M.W., 1984, AUDIOL ITAL, V1, P77 WILSON BS, 1995, AM J OTOL, V16, P669 NR 21 TC 55 Z9 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 142 EP 154 DI 10.1016/S0378-5955(98)00046-X PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600014 PM 9641327 ER PT J AU Christensen-Dalsgaard, J Jorgensen, MB Kanneworff, M AF Christensen-Dalsgaard, J Jorgensen, MB Kanneworff, M TI Basic response characteristics of auditory nerve fibers in the grassfrog (Rana temporaria) SO HEARING RESEARCH LA English DT Article DE frog; auditory nerve; hearing; post-excitatory suppression; free-field sound; spontaneous activity ID HAIR-CELLS; FROG; SUPPRESSION; PATTERNS; TEMPERATURE; ADAPTATION; FREQUENCY; GOLDFISH; PIPIENS; MASKING AB Responses to free-field sound of 401 fibers from the VIIIth nerve of the grassfrog, Rana temporaria, are described. The spontaneous activities of the fibers ranged from 0 to 75 spikes/s, showing only weak correlation with frequency or sensitivity of the fibers. The highest spontaneous activities were approximately twice as high as reported previously for frogs. Best frequencies ranged from 100 to 1600 Hz and thresholds ranged from 21 to 80 dB SPL. The median dynamic range was 20 dB and the slopes of the rate-level curves ranged from 5 to 20 spikes/(s.dB). Most of the units showed post-excitatory suppression (PS) of their spontaneous activity. The duration of PS increased with sound level, also in fibers showing a decrease in firing rate at high intensities. Most fibers showing one-tone suppression did not show PS at their best suppression frequencies. Strong suppression was observed also in very phasic cells giving one spike per stimulation. Therefore, the mechanism underlying PS is probably different from that underlying adaptation. The sharpening of the neural encoding of temporal parameters and the strong encoding of sound offset as well as onset caused by PS very likely is biologically important. (C) 1998 Published by Elsevier Science B.V. C1 Odense Univ, Inst Biol, Ctr Sound Commun, DK-5230 Odense M, Denmark. RP Christensen-Dalsgaard, J (reprint author), Odense Univ, Inst Biol, Ctr Sound Commun, Campusvej 55, DK-5230 Odense M, Denmark. RI Christensen-Dalsgaard, Jakob/G-9947-2012 OI Christensen-Dalsgaard, Jakob/0000-0002-6075-3819 CR BENEDIX JH, 1994, J ACOUST SOC AM, V96, P2738, DOI 10.1121/1.411280 BRZOSKA J, 1977, J COMP PHYSIOL, V118, P173 CAPRANICA RR, 1975, J COMP PHYSIOL, V100, P231 ChristensenDalsgaard J, 1996, J ACOUST SOC AM, V100, P451, DOI 10.1121/1.415872 ChristensenDalsgaard J, 1996, J COMP PHYSIOL A, V179, P437 FAY RR, 1990, HEARING RES, V48, P93, DOI 10.1016/0378-5955(90)90201-Y FENG AS, 1982, HEARING RES, V6, P241, DOI 10.1016/0378-5955(82)90057-0 FENG AS, 1975, J COMP PHYSIOL, V100, P221 FRISHKOPF LS, 1963, J ACOUST SOC AM, V35, P1219, DOI 10.1121/1.1918676 FURUKAWA T, 1978, J PHYSIOL-LONDON, V276, P193 GLOWATZKI E, 1997, DIVERSITY AUDITORY M, P516 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 HILLERY CM, 1984, SCIENCE, V225, P1037, DOI 10.1126/science.6474164 HUDSPETH AJ, 1983, TRENDS NEUROSCI, V6, P366, DOI 10.1016/0166-2236(83)90166-2 Jorgensen MB, 1997, J COMP PHYSIOL A, V180, P493, DOI 10.1007/s003590050066 Jorgensen MB, 1997, J COMP PHYSIOL A, V180, P503, DOI 10.1007/s003590050067 KOPPL C, 1990, J COMP PHYSIOL A, V167, P113 LEWIS ER, 1986, AUDITORY FREQUENCY S, P129 LEWIS ER, 1982, J COMP PHYSIOL, V145, P437 LOMBARD RE, 1979, BIOL J LINN SOC, V11, P19, DOI 10.1111/j.1095-8312.1979.tb00027.x Manley G. A., 1990, PERIPHERAL HEARING M MEGELA AL, 1982, J ACOUST SOC AM, V71, P641, DOI 10.1121/1.387538 MEGELA AL, 1981, J NEUROPHYSIOL, V46, P465 PALMER AR, 1981, J PHYSL, V324, pP66 RICHTER CP, 1995, HEARING RES, V83, P19, DOI 10.1016/0378-5955(94)00186-T RONKEN DA, 1991, J ACOUST SOC AM, V90, P2428, DOI 10.1121/1.402047 RUGGERO MA, 1992, SPRINGER HDB AUDITOR, V2, P34 SCHNEIDER B, 1980, THESIS BONN U BONN SCHNEIDERLOWITZ B, 1983, THESIS BONN U BONN SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 SMOLDERS JWT, 1984, J COMP PHYSIOL, V155, P19, DOI 10.1007/BF00610927 WALKOWIAK W, 1980, BEHAV PROCESS, V5, P363, DOI 10.1016/0376-6357(80)90019-4 Zakon H.H., 1988, P125 ZELICK R, 1985, HEARING RES, V17, P161, DOI 10.1016/0378-5955(85)90019-X NR 34 TC 7 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1998 VL 119 IS 1-2 BP 155 EP 163 DI 10.1016/S0378-5955(98)00047-1 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZP857 UT WOS:000073795600015 PM 9641328 ER PT J AU Spicer, SS Schulte, BA AF Spicer, SS Schulte, BA TI Evidence for a medial K+ recycling pathway from inner hair cells SO HEARING RESEARCH LA English DT Article DE ion transport; immunohistochemistry; cochlea; aging; gerbil; limbus; interdental cell ID BETA-SUBUNIT ISOFORMS; AGE-RELATED-CHANGES; GERBIL COCHLEA; SUPPORTING CELLS; PLACE-FREQUENCY; ION-TRANSPORT; ALPHA-SUBUNIT; GUINEA-PIG; ORGAN; CORTI AB K+ effluxed from enter hair cells and their nerves is thought to flow laterally to strial marginal cells for recycling into scala media. Observations reported here provide evidence that K+ effluxed from inner hair cells and inner radial nerves travels medially through border cells, inner sulcus cells (ISCs), limbal fibrocytes and interdental cells (IDCs) for return to endolymph. Morphologic features of ISCs in the medial route resembled those of Hensen and Claudius cells in the lateral indicating an ion transport role for ISCs like that of Hensen and Claudius cells. Na,K-ATPase in plasmalemma of IDCs testified to their capacity to resorb and transport K+ through their known gap junctions. IDCs were differentiated into three subgroups. The most lateral IDCs formed short and long columns. Long columns contacted the medialmost ISC inferiorly and the undersurface of the tectorial membrane superiorly providing thereby a potential transcellular route for K+ transit from ISCs to endolymph. Short columns faced inner sulcus below and tectorial membrane above and accordingly possessed cells with opposite polarity at the bottom and top of the column. Short columns thus appeared situated to resorb electrolytes from limbal stroma for release into inner sulcus and beneath tectorial membrane at opposite ends of the column. The central IDCs were positioned for resorbing and transporting K+ effluxing from the Na,K-ATPase-rich stellate fibrocytes which spread toward the IDCs from near the inner sulcus. The most medial IDCs lined cuplike invaginations near the attachment of Reissner's membrane and lay apposed to light fibrocytes located between supralimbal fibrocytes and the medial IDCs. Content of Na,K-ATPase and position in the K+ transport route likened the limbal stellate fibrocytes to the spiral ligament type II fibrocytes and supralimbal fibrocytes to suprastrial fibrocytes in the lateral wall. From content of creatine kinase and position in the transport path, limbal light fibrocytes appeared analogous to spiral ligament type I fibrocytes. The additional finding that limbal fibrocytes showed unchanged or upregulated Na,K-ATPase immunoreactivity in aged gerbils with strial atrophy provided further evidence for an independent medial transport route and for the survival of inner hair cells in presbyacusis. (C) 1998 Elsevier Science B.V. C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. RP Spicer, SS (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 171 Ashley Ave, Charleston, SC 29425 USA. CR BELANGER LF, 1953, SCIENCE, V118, P520, DOI 10.1126/science.118.3070.520 CHEN H, 1995, GENOMICS, V27, P389, DOI 10.1006/geno.1995.1068 DUVALL AJ, 1970, BIOCH MECH HEARING D, P149 ENGSTROM H, 1973, ULTRASTRUCTURE SENSO, P85 GRATTON MA, 1996, 19 MIDW RES M ASS RE HILDING AC, 1952, ANN OTO RHINOL LARYN, V61, P354 ILBERG CV, 1968, ARCH KLIN EXP OHR, V192, P163, DOI 10.1007/BF00404154 ISHIYAMA E, 1970, PRACT-OTO-RHINO-LARY, V32, P321 IURATO S, 1976, ACTA OTO-LARYNGOL, V82, P57, DOI 10.3109/00016487609120863 IURATO S, 1962, Z ZELLFORSCH MIK ANA, V56, P40, DOI 10.1007/BF00326848 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KIMURA RS, 1990, AM J OTOLARYNG, V11, P99, DOI 10.1016/0196-0709(90)90006-H Kimura R.S., 1984, ULTRASTRUCTURAL ATLA, P101 KIMURA RS, 1975, INT REV CYTOL, V42, P173, DOI 10.1016/S0074-7696(08)60981-X KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P22, DOI 10.3109/00016487809124717 LIM D J, 1970, Journal of Laryngology and Otology, V84, P1241, DOI 10.1017/S0022215100072984 Lim D J, 1969, Acta Otolaryngol Suppl, V255, P1 MARCUS DC, 1986, NEUROBIOLOGY HEARING, P123 MCGUIRT JP, 1994, J HISTOCHEM CYTOCHEM, V42, P843 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 MORI N, 1993, EUR ARCH OTO-RHINO-L, V250, P186 SALT AN, 1986, NEUROBIOLOGY HEARING, P108 SANTI PA, 1988, PHYSL EAR, P173 SANTOS-SACCHI J, 1983, HEARING RES, V9, P317, DOI 10.1016/0378-5955(83)90034-5 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 Shen ZJ, 1997, AUDIT NEUROSCI, V3, P215 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPICER SS, 1994, ANAT REC, V240, P149, DOI 10.1002/ar.1092400202 SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Voldrich L, 1967, Acta Otolaryngol, V63, P503 WADA J, 1979, ARCH OTO-RHINO-LARYN, V225, P79, DOI 10.1007/BF00455206 Yoho ER, 1997, HEARING RES, V104, P47, DOI 10.1016/S0378-5955(96)00183-9 ZIDANIC M, 1994, BIOPHYS J, V57, P1253 NR 37 TC 101 Z9 114 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 1 EP 12 DI 10.1016/S0378-5955(98)00006-9 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500001 PM 9606057 ER PT J AU Keller, CH Hartung, K Takahashi, TT AF Keller, CH Hartung, K Takahashi, TT TI Head-related transfer functions of the barn owl: measurement and neural responses SO HEARING RESEARCH LA English DT Article DE auditory; binaural; ear; inferior colliculus; sound localization; virtual reality ID SOUND PRESSURE TRANSFORMATION; SPATIAL RECEPTIVE-FIELDS; CAT INFERIOR COLLICULUS; PRIMARY AUDITORY-CORTEX; TYTO-ALBA; HUMAN EAR; DIRECTIONAL HEARING; SPECTRAL CUES; OPTIC TECTUM; EXTERNAL EAR AB Sounds arriving at the eardrum are filtered by the external ear and associated structures in a frequency and direction specific manner. When convolved with the appropriate filters and presented to human listeners through headphones, broadband noises can be precisely localized to the corresponding position outside of the head (reviewed in Blauert, 1997). Such a 'virtual auditory space' can be a potentially powerful tool for neurophysiological and behavioral work in other species as well. We are developing a virtual auditory space for the barn owl, Tyto alba, a highly successful auditory predator that has become a well-established model for hearing research. We recorded catalogues of head-related transfer functions (HRTFs) from the frontal hemisphere of 12 barn owls and compared virtual and free sound fields acoustically and by their evoked neuronal responses. The inner ca. 1 cm of the ear canal was found to contribute little to the directionality of the HRTFs. HRTFs were recorded by inserting probetube microphones to within about 1 or 2 mm of the eardrum. We recorded HRTFs at frequencies between 2 and 11 kHz, which includes the frequencies most useful to the owl for sound localization (3-9 kHz; Konishi, 1973). Spectra of virtual sounds were within +/-1 dB of amplitude and +/-10 degrees of phase of the spectra of free field sounds measured near to the eardrum. The spatial pattern of responses obtained from neurons in the inferior colliculus were almost indistinguishable in response to virtual and to free field stimulation. (C) 1998 Elsevier Science B.V. C1 Univ Oregon, Inst Neurosci, Eugene, OR 97403 USA. Ruhr Univ Bochum, Inst Kommunikationsakust, D-44780 Bochum, Germany. RP Keller, CH (reprint author), Univ Oregon, Inst Neurosci, Eugene, OR 97403 USA. EM KELLER@UONEURO.UOREGON.EDU CR BLAUERT J, 1969, ACUSTICA, V22, P205 Blauert J., 1997, SPATIAL HEARING BRAINARD MS, 1992, J ACOUST SOC AM, V91, P1025 BRUGGE JF, 1994, HEARING RES, V73, P67, DOI 10.1016/0378-5955(94)90284-4 Brugge JF, 1996, J NEUROSCI, V16, P4420 BUTLER RA, 1977, J ACOUST SOC AM, V61, P1264, DOI 10.1121/1.381427 CALFORD MB, 1984, HEARING RES, V14, P13, DOI 10.1016/0378-5955(84)90064-9 CARLILE S, 1990, J ACOUST SOC AM, V88, P2180, DOI 10.1121/1.400115 CARLILE S, 1994, J ACOUST SOC AM, V95, P3445, DOI 10.1121/1.409965 CARLILE S, 1990, J ACOUST SOC AM, V88, P2195 CARLILE S, 1987, HEARING RES, V31, P111, DOI 10.1016/0378-5955(87)90117-1 CHAN JCK, 1990, J ACOUST SOC AM, V87, P1237, DOI 10.1121/1.398799 CHEN QC, 1995, J EXP BIOL, V198, P2007 COLES RB, 1986, J EXP BIOL, V121, P371 COLES RB, 1988, J COMP PHYSIOL A, V163, P117, DOI 10.1007/BF00612002 ERULKAR SD, 1972, PHYSIOL REV, V52, P237 Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5 FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P757 GOLUBEVA TB, 1972, J EVOLUT BIOC PHYL, V8, P149 GUPPY A, 1988, J COMP PHYSIOL A, V162, P653, DOI 10.1007/BF01342641 Hammershoi D, 1996, J ACOUST SOC AM, V100, P408 HARRISON JM, 1970, J ACOUST SOC AM, V47, P1509, DOI 10.1121/1.1912082 Hartung K, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P407, DOI 10.1007/978-1-4419-8712-9_37 HILL KG, 1980, J EXP BIOL, V86, P135 HUTCHINGS ME, 1987, J PHYSL, V396, pP175 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 JEN PHS, 1984, BRAIN RES, V301, P157 KISTLER DJ, 1992, J ACOUST SOC AM, V91, P1637, DOI 10.1121/1.402444 KLUMP GM, 1992, J COMP PHYSIOL A, V170, P243 KNUDSEN EI, 1979, J COMP PHYSIOL, V133, P1 KNUDSEN EI, 1991, J NEUROSCI, V11, P1727 KNUDSEN EI, 1978, J NEUROPHYSIOL, V41, P870 KNUDSEN EI, 1982, J NEUROSCI, V2, P1177 KNUDSEN EI, 1979, J COMP PHYSIOL, V133, P13 KONISHI M, 1973, AM NAT, V107, P775, DOI 10.1086/282875 LARSEN ON, 1996, DIVERSITY AUDITORY M, P253 LARSEN ON, 1996, ARO ABSTR, V19, P205 LEWALD J, 1990, J COMP PHYSIOL A, V167, P533 MEHRGARDT S, 1977, J ACOUST SOC AM, V61, P1567, DOI 10.1121/1.381470 MELLERT V, 1974, J ACOUST SOC AM, V56, P1913, DOI 10.1121/1.1903534 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 MIDDLEBROOKS JC, 1989, J ACOUST SOC AM, V86, P89, DOI 10.1121/1.398224 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 MIDDLEBROOKS JC, 1987, J NEUROPHYSIOL, V57, P672 MOISEFF A, 1989, J COMP PHYSIOL A, V164, P637, DOI 10.1007/BF00614506 MOISEFF A, 1981, J COMP PHYSIOL, V144, P299 MOISEFF A, 1989, J COMP PHYSIOL A, V164, P629, DOI 10.1007/BF00614505 MOORE BCJ, 1989, J ACOUST SOC AM, V85, P820, DOI 10.1121/1.397554 MOORE DR, 1984, HEARING RES, V13, P159, DOI 10.1016/0378-5955(84)90106-0 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 NORBERG R A, 1977, Philosophical Transactions of the Royal Society of London B Biological Sciences, V280, P375, DOI 10.1098/rstb.1977.0116 Norberg R. A., 1968, ARK ZOOL, V20, P181 NORBERG RA, 1978, PHILOS T ROY SOC B, V282, P325, DOI 10.1098/rstb.1978.0014 OBRIST MK, 1993, J EXP BIOL, V180, P119 OEKINGHAUS H, 1983, J COMP PHYSIOL A, V150, P61 OLSEN JF, 1989, J NEUROSCI, V9, P2591 PAYNE R, 1967, NAT HIST, V67, P316 PAYNE RS, 1971, J EXP BIOL, V54, P535 PHILLIPS DP, 1982, HEARING RES, V8, P13, DOI 10.1016/0378-5955(82)90031-4 PLENGE G, 1974, J ACOUST SOC AM, V56, P944, DOI 10.1121/1.1903353 POON PWF, 1993, J NEUROPHYSIOL, V70, P667 POON PWF, 1993, J NEUROPHYSIOL, V70, P655 Pralong D., 1996, VIRTUAL AUDITORY SPA, P109 Proakis J. G., 1992, DIGITAL SIGNAL PROCE PYCRAFT WP, 1998, T LINN SOC LOND 2 Z, V7, P223 QUINE DB, 1974, J COMP PHYSIOL, V93, P347 RABBITT RD, 1988, J ACOUST SOC AM, V83, P1064, DOI 10.1121/1.396051 Rayleigh L., 1907, PHILOS MAG, V13, P214 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 ROSOWSKI JJ, 1980, J COMP PHYSIOL, V136, P183 SCHWARTZKOPFF J, 1962, Z VERGL PHYSIOL, V45, P570, DOI 10.1007/BF00342999 SEARLE CL, 1975, J ACOUST SOC AM, V57, P448, DOI 10.1121/1.380442 SEMPLE MN, 1983, HEARING RES, V10, P203, DOI 10.1016/0378-5955(83)90054-0 SHAW EAG, 1974, HDB SENSORY PHYSL, V1, P455 SHAW EAG, 1968, J ACOUST SOC AM, V44, P240, DOI 10.1121/1.1911059 SINYOR A, 1973, J ACOUST SOC AM, V54, P916, DOI 10.1121/1.1914346 SINYOR A, 1971, J ACOUST SOC AM, V50, P92, DOI 10.1121/1.1977781 STELLBOGEN ELFRIEDE, 1930, ZEITSCHR WISS BIOL ABT A ZEITSCHR MORPH U OKOL TIERE, V19, P686, DOI 10.1007/BF00406206 STERBING SJ, 1998, UNPUB VIRTUAL SOUND STINSON MR, 1985, J ACOUST SOC AM, V78, P1596, DOI 10.1121/1.392797 TAKAHASHI TT, 1994, J NEUROSCI, V14, P4780 TAKAHASHI TT, 1992, J NEUROSCI, V12, P4381 VONILJITSCHEW VD, 1974, BIOL ZENTRALBL, V93, P165 WENZEL EM, 1993, J ACOUST SOC AM, V94, P111, DOI 10.1121/1.407089 WIENER FM, 1946, J ACOUST SOC AM, V18, P401, DOI 10.1121/1.1916378 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P868, DOI 10.1121/1.397558 WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410 YOUNG ED, 1992, PHILOS T ROY SOC B, V336, P407, DOI 10.1098/rstb.1992.0076 Young ED, 1996, J ACOUST SOC AM, V99, P3064, DOI 10.1121/1.414883 NR 90 TC 102 Z9 102 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 13 EP 34 DI 10.1016/S0378-5955(98)00014-8 PG 22 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500002 PM 9606058 ER PT J AU Dirckx, JJJ Decraemer, WF von Unge, M Larsson, C AF Dirckx, JJJ Decraemer, WF von Unge, M Larsson, C TI Volume displacement of the gerbil eardrum pars flaccida as a function of middle ear pressure SO HEARING RESEARCH LA English DT Article DE middle ear; tympanic membrane; pressure; pars flaccida; tympanometry ID TYMPANIC MEMBRANE; STATIC PRESSURE; MECHANICS AB The pars flaccida (PF) is a small region of the eardrum, with elasticity and histology completely different from the rest of the membrane, which has often been attributed a pressure regulating function for the middle ear (ME). In this paper, the Volume displacement of the PF as a function of ME pressure is discussed. The deformation of the PF was measured in vitro in five Mongolian gerbil ears, by means of an opto-electronic moire interferometer. Volume displacement was determined at small intervals in three sequential pressure cycles, in the range of +/- 0.4 kPa, +/- 2 kPa, and again +/- 0.4 kPa. The displacement was found to be a highly non-linear function of pressure, with a strong increase up to 0.4 kPa ME over-or underpressure and remaining nearly unchanged for pressures beyond 0.4 kPa. In all animals, maximal volume displacement was less than 0.5 mu l, or 0.2% of total ME air volume. Clear hysteresis was found between the deformations at the same pressure level in the increasing and decreasing parts of the pressure cycles. Membrane behavior in the first 0.4 kPa pressure cycle was significantly different from that in the second 0.4 kPa cycle, which followed the 2 kPa pressure cycle. The results indicate that the ME pressure change regulation function of the PF is limited to very small pressure changes of a few hundred Pa around ambient pressure, and that larger ME pressures cause at least short-term changes in the membrane's behavior. (C) 1998 Elsevier Science B.V. C1 Univ Antwerp, Ruca, Lab Biomed Phys, B-2020 Antwerp, Belgium. Karolinska Hosp, Dept Otorhinolaryngol, S-10401 Stockholm, Sweden. Karolinska Inst, S-10401 Stockholm, Sweden. RP Dirckx, JJJ (reprint author), Univ Antwerp, Ruca, Lab Biomed Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. CR ARITOMO H, 1988, OTOLARYNG HEAD NECK, V98, P310 Dirckx J J, 1997, J Biomed Opt, V2, P176, DOI 10.1117/12.268966 DIRCKX JJJ, 1992, HEARING RES, V62, P99, DOI 10.1016/0378-5955(92)90206-3 Dirckx JJJ, 1997, HEARING RES, V111, P153, DOI 10.1016/S0378-5955(97)00108-1 HELLSTROM S, 1983, ACTA PHYSIOL SCAND, V118, P337, DOI 10.1111/j.1748-1716.1983.tb07280.x KOHLLOFFEL LUE, 1984, HEARING RES, V13, P83, DOI 10.1016/0378-5955(84)90098-4 LAY DOUGLAS, 1972, J MORPHOL, V138, P41, DOI 10.1002/jmor.1051380103 MOLVAER OI, 1978, ACTA OTO-LARYNGOL, V85, P24, DOI 10.3109/00016487809121419 PLASSMANN W, 1991, BRAIN BEHAV EVOLUT, V38, P115, DOI 10.1159/000114382 RAVICZ ME, 1992, J ACOUST SOC AM, V92, P157, DOI 10.1121/1.404280 Rosowski JJ, 1997, DIVERSITY AUDITORY M, P129 Sade J, 1996, ACTA OTO-LARYNGOL, V116, P284, DOI 10.3109/00016489609137842 Shrapnell HJ, 1832, LONDON MED GAZ, V10, P120 STENFORS LE, 1979, ACTA OTO-LARYNGOL, V88, P395, DOI 10.3109/00016487909137184 TEOH SW, 1997, COMMUNICATION TONNDORF J, 1970, ANN OTO RHINOL LARYN, V79, P743 VONUNGE M, 1991, AM J OTOL, V12, P407 VONUNGE M, 1993, HEARING RES, V70, P229, DOI 10.1016/0378-5955(93)90161-S NR 18 TC 37 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 35 EP 46 DI 10.1016/S0378-5955(98)00025-2 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500003 PM 9606059 ER PT J AU Chen, C Skellett, RA Fallon, M Bobbin, RP AF Chen, C Skellett, RA Fallon, M Bobbin, RP TI Additional pharmacological evidence that endogenous ATP modulates cochlear mechanics SO HEARING RESEARCH LA English DT Article DE pyridoxal-phosphate-6-azophenyl-2 ',4 '-disulfonic acid; ion channel; otoacoustic emission; Deiters' cell; pillar cell; outer hair cell; Hensen's cell ID OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; CONTINUOUS PRIMARY STIMULATION; F(2)-F(1) DPOAE RESPONSE; TIME-VARYING ALTERATIONS; STRIA VASCULARIS; SURAMIN; RECEPTOR; CALCIUM; ORGAN AB In the cochlea, outer hair cells (OHCs) generate the active cochlear mechanics whereas the supporting cells, such as Deiters' cells and Hensen's cells, may play a role in both the active and passive cochlear mechanics. The presence of receptors for adenosine triphosphate (ATP) on OHCs, Deiters' cells and Hensen's cells indicates that endogenous ATP may have a role in cochlear mechanics. To explore this possibility, the effects of the ATP antagonist, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), were studied in guinea pig both in vitro on isolated OHCs, Deiters' cells, Hensen's cells and pillar cells using the whole-cell configuration of the patch-clamp technique, and in vivo on sound evoked cochlear potentials (cochlear microphonic, CM; summating potential, SP; compound action potential, CAP) and distortion product otoacoustic emissions (DPOAEs) using cochlear perilymphatic perfusion. Results show that PPADS (100 mu M) reduced the inward current evoked by 5-10 mu M ATP in OHCs, Deiters' cells, Hensen's cells and pillar cells. This effect of PPADS was slow in onset and was slowly reversed to a varying degree in the different cell types. In vivo application of PPADS in increasing concentrations reduced the sound evoked CAP, SP and increased N-1 latency starting at about 0.33 mM (SP) and 1 mM (CAP and N-1 latency). PPADS (0.33-1 mM) reversibly suppressed the initial value of the quadratic DPOAE and reversed the 'slow decline' in the quadratic DPOAE that occurs during continuous stimulation with moderate level primaries. These results, together with the similar effects of the ATP antagonist suramin reported previously (Skellett et al., 1997), may be evidence that endogenous ATP acting on cells in the organ of Corti alters cochlear mechanics. (C) 1998 Elseuier Science B.V. C1 Louisiana State Univ, Med Ctr, Dept Otorhinolaryngol & Biocommun, Kresge Hearing Res Lab S, New Orleans, LA 70112 USA. RP Bobbin, RP (reprint author), Louisiana State Univ, Med Ctr, Dept Otorhinolaryngol & Biocommun, Kresge Hearing Res Lab S, 2020 Gravier St,Suite A, New Orleans, LA 70112 USA. CR ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 BAILEY SJ, 1994, BRIT J PHARMACOL, V112, P219 Bobbin RP, 1997, HEARING RES, V113, P155, DOI 10.1016/S0378-5955(97)00140-8 BOBBIN RP, 1985, AUDITORY BIOCH, P102 BOBBIN RP, 1978, ANN OTO RHINOL LARYN, V87, P185 BOBBIN RP, 1996, HAIR CELLS HEARING A, P29 BOBBIN RP, 1997, IN PRESS OTOACOUSTIC Brandle U, 1997, FEBS LETT, V404, P294, DOI 10.1016/S0014-5793(97)00128-2 BROWNELL WE, 1996, HAIR CELLS HEARING A, P3 Buell G, 1996, EMBO J, V15, P55 Burgess BJ, 1997, HEARING RES, V108, P74, DOI 10.1016/S0378-5955(97)00040-3 BURNSTOCK G, 1990, ANN NY ACAD SCI, V603, P1 BURNSTOCK G, 1987, BRIT J PHARMACOL, V90, P383 CHEN C, 1995, HEARING RES, V86, P25, DOI 10.1016/0378-5955(95)00050-E CHEN C, 1995, HEARING RES, V88, P215, DOI 10.1016/0378-5955(95)00115-K Chen C, 1997, HEARING RES, V110, P87, DOI 10.1016/S0378-5955(97)00069-5 Collo G, 1996, J NEUROSCI, V16, P2495 Dulon D., 1995, ACTIVE HEARING, P195 DULON D, 1993, CELL CALCIUM, V14, P245, DOI 10.1016/0143-4160(93)90071-D EYBALIN M, 1993, PHYSIOL REV, V73, P309 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 GHOSH J, 1993, BIOCHEM BIOPH RES CO, V194, P36, DOI 10.1006/bbrc.1993.1781 GLOWATZKI E, 1995, P ROY SOC B-BIOL SCI, V262, P141, DOI 10.1098/rspb.1995.0188 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 HOUSLEY GD, 1995, BIOCHEM BIOPH RES CO, V212, P501, DOI 10.1006/bbrc.1995.1998 IURATO S, 1976, ACTA OTO-LARYNGOL, V82, P57, DOI 10.3109/00016487609120863 KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227 KIRK DL, 1993, HEARING RES, V67, P20, DOI 10.1016/0378-5955(93)90228-S KOPP R, 1990, CANCER RES, V50, P6490 KUJAWA SG, 1995, HEARING RES, V85, P142, DOI 10.1016/0378-5955(95)00041-2 Kujawa SG, 1996, HEARING RES, V97, P153 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 KUJAWA SG, 1994, HEARING RES, V78, P181, DOI 10.1016/0378-5955(94)90024-8 LIU J, 1995, AUDIT NEUROSCI, V1, P331 LOWE M, 1995, HEARING RES, V83, P133, DOI 10.1016/0378-5955(94)00198-Y NAKAGAWA T, 1990, J NEUROPHYSIOL, V63, P1068 NILLES R, 1994, HEARING RES, V73, P27, DOI 10.1016/0378-5955(94)90279-8 PARKER MS, 1997, ARO ABSTR, V20, P217 PARKER MS, 1997, UNPUB HEAR RES Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2 Sugasawa M, 1996, J PHYSIOL-LONDON, V491, P707 Sugasawa M, 1996, AM J PHYSIOL-CELL PH, V271, pC1817 SUZUKI M, 1995, HEARING RES, V86, P68, DOI 10.1016/0378-5955(95)00055-9 Wangemann P, 1996, AUDIT NEUROSCI, V2, P187 Wangemann P., 1994, Society for Neuroscience Abstracts, V20, P1276 WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 ZIGANSHIN AU, 1995, PFLUG ARCH EUR J PHY, V429, P412, DOI 10.1007/BF00374157 NR 48 TC 28 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 47 EP 61 DI 10.1016/S0378-5955(98)00019-7 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500004 PM 9606060 ER PT J AU Gao, WY Wiederhold, ML Harrison, JL AF Gao, WY Wiederhold, ML Harrison, JL TI Development of the endolymphatic sac and duct in the Japanese red-bellied newt, Cynops pyrrhogaster SO HEARING RESEARCH LA English DT Article DE endolymphatic sac and duct; development; otoconia; intercellular space ID MONGOLIAN GERBIL; INNER-EAR; FRACTURE; BARRIER; MOUSE; RAT AB The development and maturation of the endolymphatic sac (ES) and duct (ED) were studied in the newt Cynops pyrrhogaster. The ES first appears as an oval capsule at the dorsal-medial tip of the otic vesicle at stage 39, about 11 days after oviposition. The ES consists of polymorphous epithelial cells with a minimum of cytoplasm. The intercellular space (IS) between the epithelial cells is narrow and has a smooth surface. At stage 44, the size of the ES increases as many vacuoles in the IS become filled. At stage 46, 18 days after oviposition, the ES elongates markedly and a slit-like lumen is found in the ES. The epithelium contains a few cell organelles which are scattered in the cytoplasm. The vacuoles in the IS are fused, which expands the IS. Two days later (stage 48), floccular material (endolymph) is present in the expanded lumen. The IS dilates and has a wide and irregular appearance. At stage 50, approximately 26 days after oviposition: the ES extends and expands significantly and crystals (otoconia) can now be seen in the widened lumen of the ES. The cytoplasm of the cuboidal epithelial cells contains an abundance of vesicles surrounded by ribosomes and Golgi complexes. Intercellular digitations are formed in the expanded IS. At stage 54, the ES forms a large bellow-like pouch. Numerous otoconia accumulate in the lumen. Free floating cells and cell debris can be seen in the lumen at this stage. The epithelial cells contain numerous cytoplasmic organelles which are evenly distributed in the cytoplasm. Granules are found in the apical and lateral cytoplasm. The IS is loose and displays a labyrinthine appearance. The primitive ED first appears as a connection between the ES and the saccule but no lumen is present inside at stage 39. At stage 46, a narrow lumen is formed in the ED, which corresponds to the formation of the ES lumen. At stage 50? as the ED extends, floccular material is seen in the lumen. At stage 54, the ED bears numerous microvilli on its luminal surface. Otoconia and endolymph are present in the ED. Tight junctions between the epithelial cells are formed at stage 46. A fully developed intercellular junctional complex is produced at stage 54. Based on the development of the ES and ED, the maturation of function of the ES and ED are discussed. (C) 1998 Elsevier Science B.V. C1 Univ Texas, Hlth Sci Ctr, Dept Otolaryngol Head & Neck Surg, San Antonio, TX 78284 USA. RP Wiederhold, ML (reprint author), Univ Texas, Hlth Sci Ctr, Dept Otolaryngol Head & Neck Surg, 7703 Floyd Curl Dr, San Antonio, TX 78284 USA. CR Adlington P, 1967, J Laryngol Otol, V81, P759, DOI 10.1017/S0022215100067682 ANNIKO M, 1982, AM J OTOLARYNG, V3, P242, DOI 10.1016/S0196-0709(82)80062-8 BAGGERSJOBACK D, 1984, ANN OTO RHINOL LARYN, V93, P89 BAGGERSJOBACK D, 1986, AM J OTOL, V7, P134 BARBARA M, 1987, ARCH OTO-RHINO-LARYN, V244, P284, DOI 10.1007/BF00468637 BARBARA M, 1989, J LARYNGOL OTOL, V103, P137, DOI 10.1017/S0022215100108308 BAST TH, 1949, TEMPORAL BONE EAR, P3 CLAUDE P, 1973, J CELL BIOL, V58, P390, DOI 10.1083/jcb.58.2.390 DAHLMANN A, 1995, CELL TISSUE RES, V282, P277, DOI 10.1007/s004410050479 Dempster WT, 1930, J MORPHOL, V50, P71, DOI 10.1002/jmor.1050500104 FRIBERG U, 1986, ACTA OTO-LARYNGOL, V101, P172, DOI 10.3109/00016488609132825 Friberg U, 1985, Acta Otolaryngol Suppl, V426, P1 FUKAZAWA K, 1990, Japanese Journal of Clinical Electron Microscopy, V23, P135 FUKAZAWA K, 1991, ANAT REC, V230, P425, DOI 10.1002/ar.1092300315 FUKAZAWA K, 1995, HEARING RES, V86, P82, DOI 10.1016/0378-5955(95)00058-C GUARDABASSI A, 1960, Z ZELLFORSCH MIK ANA, V51, P278 Guild SR, 1927, AM J ANAT, V39, P1, DOI 10.1002/aja.1000390102 HOSHIKAWA H, 1994, ACTA OTO-LARYNGOL, V114, P40, DOI 10.3109/00016489409126014 HULTCRANTZ M, 1988, ACTA OTO-LARYNGOL, V105, P303, DOI 10.3109/00016488809097012 HULTCRANTZ M, 1987, ACTA OTO-LARYNGOL, V104, P406, DOI 10.3109/00016488709128268 KAWAMATA S, 1987, CELL TISSUE RES, V249, P57, DOI 10.1007/BF00215418 KOIKE H, 1995, HEARING RES, V88, P206, DOI 10.1016/0378-5955(95)00114-J LUNDQUIST PG, 1965, ACTA OTOLARYNGOL S S, V201 MARMO F, 1986, ACTA ZOOL-STOCKHOLM, V67, P53 OKADA T, 1989, DEVELOPMENT VERTEBRA Okada YK, 1947, JPN J EXP MORPHOL, V3, P1 RASKANDERSEN H, 1991, ANN OTO RHINOL LARYN, V100, P148 RASKANDERSEN H, 1981, ANN NY ACAD SCI, V374, P11, DOI 10.1111/j.1749-6632.1981.tb30855.x RASKANDERSEN H, 1980, ACTA OTO-LARYNGOL, V89, P283, DOI 10.3109/00016488009127140 REYNOLDS ES, 1963, J CELL BIOL, V17, P208, DOI 10.1083/jcb.17.1.208 RUBEN RJ, 1967, ACTA OTOLARYNGOL S S, V220 SALAMAT MS, 1980, ANN OTO RHINOL LARYN, V89, P229 SHER AE, 1971, ACTA OTOLARYNGOL S S, V285 STEYGER PS, 1995, HEARING RES, V84, P61, DOI 10.1016/0378-5955(95)00013-T TAKUMIDA M, 1988, ARCH OTO-RHINO-LARYN, V245, P266, DOI 10.1007/BF00464628 TOMIYAMA S, 1986, LARYNGOSCOPE, V96, P685 WATSKE D, 1950, ANAT RES, V106, P361 Whiteside B, 1922, AM J ANAT, V30, P231, DOI 10.1002/aja.1000300204 WIEDERHOLD ML, 1992, 18TH P INT S SPAC TE, V18, P2103 WIEDERHOLD ML, 1995, HEARING RES, V84, P41, DOI 10.1016/0378-5955(95)00012-S Wiederhold M L, 1997, Gravit Space Biol Bull, V10, P91 NR 41 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 62 EP 72 DI 10.1016/S0378-5955(98)00018-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500005 PM 9606061 ER PT J AU Hamernik, RP Ahroon, WA Jock, BM Bennett, JA AF Hamernik, RP Ahroon, WA Jock, BM Bennett, JA TI Noise-induced threshold shift dynamics measured with distortion-product otoacoustic emissions and auditory evoked potentials in chinchillas with inner hair cell deficient cochleas SO HEARING RESEARCH LA English DT Article DE carboplatin; otoacoustic emission; threshold shift dynamics; noise effect ID HEARING-LOSS; EXPOSURE; CARBOPLATIN; OTOTOXICITY; RESISTANCE; DAMAGE; LEVEL AB Chinchillas (n = 6) were treated with carboplatin and, following a 30-day recovery period, were exposed to a 115 dB peak SPL impact noise presented at a rate of 1/s for 6 h/day for 10 days. A second group (n = 6) received only the noise treatment. Cubic distortion product otoacoustic emissions (2f(1)-f(2)) and auditory evoked potential (AEP) detection thresholds in response to tone bursts were measured before and 30 days after drug treatment and following the first and 10th day of the noise exposure. Thirty days after the final exposure day, permanent changes in AEP detection thresholds and emissions were measured and cochleograms constructed. The drug treatment eliminated over 80% of the inner hair cells (IHC) in the cochlea, leaving the outer hair cell (OHC) population essentially intact prior to the interrupted noise exposure. The drug treatment alone had very little or no effect on AEP detection thresholds and emission metrics. Following the noise exposure, the IHC-deficient animals showed clear 'toughening' effects in the AEP and emission measures which were the same as measured in the group receiving only the noise. After a 30-day postexposure recovery period, AEP thresholds were elevated about 10 dB at the low frequencies in the drug-noise group whereas emissions returned to near normal despite the massive IHC losses. These results are consistent with the idea that an intact OHC population is required for toughening. However, sound-evoked efferent pathways activated by the few remaining IHCs (similar to 20%) which, in this preparation, are distributed throughout the cochlea, may still contribute significantly to the toughening phenomena. (C) 1998 Elsevier Science B.V. C1 SUNY Coll Plattsburgh, Auditory Res Lab, Plattsburgh, NY 12901 USA. RP Hamernik, RP (reprint author), SUNY Coll Plattsburgh, Auditory Res Lab, 107 Beaumont Hall,101 Broad St, Plattsburgh, NY 12901 USA. EM AhroonWA@SPLAVA.CC.PLATTSBURGH.EDU CR AHROON WA, 1993, J ACOUST SOC AM, V93, P997, DOI 10.1121/1.405406 BLAKESLEE EA, 1978, J ACOUST SOC AM, V63, P876, DOI 10.1121/1.381767 BOETTCHER FA, 1992, HEARING RES, V62, P217, DOI 10.1016/0378-5955(92)90189-T Burkard R, 1997, J ACOUST SOC AM, V102, P3620, DOI 10.1121/1.420149 CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 CLARK WW, 1987, J ACOUST SOC AM, V82, P1253, DOI 10.1121/1.395261 CLARK WW, 1992, NOISE INDUCED HEARIN, P445 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 Fay R. R., 1988, HEARING VERTEBRATES FRANKLIN DJ, 1991, HEARING RES, V53, P185, DOI 10.1016/0378-5955(91)90053-C HAMERNIK RP, 1994, J ACOUST SOC AM, V95, P444, DOI 10.1121/1.408338 Hamernik RP, 1996, J ACOUST SOC AM, V100, P1003, DOI 10.1121/1.416285 HARGETT CE, 1986, 861 USAARL HENDERSON D, 1992, NOISE INDUCED HEARIN, P476 HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321 Jock BM, 1996, HEARING RES, V96, P179, DOI 10.1016/0378-5955(96)00058-5 LIBERMAN C, 1992, NOISE INDUCED HEARIN, P423 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 QIU CX, 1996, ARO MIDW M, V19, P112 Rajan R, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P159 SALVI RJ, 1982, AM J OTOLARYNG, V3, P408, DOI 10.1016/S0196-0709(82)80018-5 SUBRAMANIAM M, 1991, HEARING RES, V56, P65, DOI 10.1016/0378-5955(91)90154-2 SUBRAMANIAM M, 1991, HEARING RES, V52, P181, DOI 10.1016/0378-5955(91)90197-H SUBRAMANIAM M, 1994, HEARING RES, V74, P204, DOI 10.1016/0378-5955(94)90188-0 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WAKE M, 1994, LARYNGOSCOPE, V104, P488 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 Zheng XY, 1997, HEARING RES, V104, P191, DOI 10.1016/S0378-5955(96)00187-6 NR 31 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 73 EP 82 DI 10.1016/S0378-5955(98)00021-5 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500006 PM 9606062 ER PT J AU Iwasaki, S Mizuta, K Hoshino, T AF Iwasaki, S Mizuta, K Hoshino, T TI Tone burst-evoked otoacoustic emissions in cats with acoustic overstimulation and anoxia SO HEARING RESEARCH LA English DT Article DE transient evoked otoacoustic emission; acoustic overstimulation; anoxia; scanning electron microscope; cat ID GUINEA-PIG; COCHLEAR MECHANICS; MODEL; ECHOES; RABBIT AB Transient evoked otoacoustic emissions (TEOAE) produced by a 2 kHz tone burst could be detected in 30 out of 37 ears (81% detectability) in 21 cats. The amplitude of tone burst-evoked TEOAE was saturated at a stimulus level between 45 and 50 dB SPL and the latency time of peak amplitude was 6.23 ms on average (5.53-7.28 ms). The effects of pure tone overstimulation and shortterm anoxia on the tone burst-evoked TEOAE in cats were evaluated. A permanent detection threshold shift of the TEOAE was confirmed at 24 h and 1 week after the overstimulation at 125 dB SPL. In these cases, damaged first row outer hair cells and inner hair cells were observed over an average length of 3.3 mm (16% of the entire cochlear length) by scanning electron microscopy. These findings suggested that the TEOAE can detect localized cochlear hair cell damage. A temporary detection threshold shift of the TEOAE was observed after the overstimulation at 105 dB SPL, and the threshold shift recovered in 107.5 min on average. In the short-term anoxia trial, the TEOAE amplitude started to decrease 45-90 s after the anoxia and recovered completely when the duration of anoxia was under 1 min. However, the TEOAE amplitude did not recover pre-anoxia values (it remained below 80% of its initial value) after 5 min when the anoxia was over 2 min. These findings demonstrated that the detection threshold and amplitude of the TEOAE were also affected by metabolic changes of the cochlear hair cells. Tone burst-evoked TEOAE are useful for the evaluation of localized histological and functional damage of the cochlear hair cells. (C) 1998 Elsevier Science B.V. C1 Hamamatsu Univ Sch Med, Dept Otolaryngol, Hamamatsu, Shizuoka 43131, Japan. RP Iwasaki, S (reprint author), Hamamatsu Univ Sch Med, Dept Otolaryngol, 3600 Handa Cho, Hamamatsu, Shizuoka 43131, Japan. CR ANDERSON SD, 1979, ARCH OTO-RHINO-LARYN, V224, P47, DOI 10.1007/BF00455223 RUGGERO MA, 1983, HEARING RES, V10, P283, DOI 10.1016/0378-5955(83)90094-1 AVAN P, 1990, HEARING RES, V44, P151, DOI 10.1016/0378-5955(90)90077-3 BOHNE BA, 1982, NEW PERSPECTIVES NOI, P183 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DEBOER E, 1983, J ACOUST SOC AM, V73, P567, DOI 10.1121/1.389002 DIEPENDAAL RJ, 1987, J ACOUST SOC AM, V82, P917, DOI 10.1121/1.395290 FREDELIUS L, 1987, HEARING RES, V30, P157, DOI 10.1016/0378-5955(87)90133-X HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7 KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 MIZUTA K, 1990, SCANNING MICROSCOPY, V4, P967 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 ROBERTSON D, 1980, HEARING RES, V3, P167, DOI 10.1016/0378-5955(80)90044-1 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 WIDICK MP, 1994, OTOLARYNG HEAD NECK, V111, P407 WILSON JP, 1980, HEARING RES, V2, P527, DOI 10.1016/0378-5955(80)90090-8 ZWICKER E, 1981, HEARING RES, V4, P43, DOI 10.1016/0378-5955(81)90035-6 NR 19 TC 0 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 83 EP 89 DI 10.1016/S0378-5955(98)00020-3 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500007 PM 9606063 ER PT J AU Wangemann, P Cohn, ES Gruber, DD Gratton, MA AF Wangemann, P Cohn, ES Gruber, DD Gratton, MA TI Ca2+-dependence and nifedipine-sensitivity of vascular tone and contractility in the isolated superfused spiral modiolar artery in vitro SO HEARING RESEARCH LA English DT Article DE cochlear blood flow; calcium antagonist; microvasculature ID COCHLEAR BLOOD-FLOW; SUDDEN HEARING-LOSS; SPONTANEOUS VASOMOTION; CALCIUM-ANTAGONISTS; SPECTRAL-ANALYSIS; INNER-EAR; NIMODIPINE; ARTERIOLES; DILTIAZEM; MUSCLE AB The regulation of the vascular diameter of the spiral modiolar artery may play a major role in the regulation of cochlear blood flow and tissue oxygenation since the spiral modiolar artery provides the main blood supply to the cochlea. The goal of the present study was to determine whether vascular lone and contractility of the spiral modiolar artery depend on the presence of extracellular Ca2+ and involves nifedipine-sensitive Ca2+ channels. The spiral modiolar artery was isolated and superfused in vitro and the diameter was measured continuously by video microscopy. Isolated segments of the spiral modiolar artery had an outer diameter of 61 +/- 3 mu m (n = 59) and displayed vasomotion characterized by 5-15 clearly distinguishable constrictions per min. Removal of Ca-2+ from the superfusion medium caused a reversible relaxation and cessation of vasomotion and was used to determine the magnitude of basal vascular tone. The basal vascular tone consisted of a sustained reduction of the vascular diameter to 95.1 +/- 0.3% (n = 51) of the maximal diameter in Ca2+-free medium. Nifedipine reduced the basal vascular tone with an IC50 Of (1.1 +/- 0.3) x 10(-9) M although 22% of the basal vascular tone was insensitive to nifedipine. Elevation of the K+ concentration from 3.6 to 150 mM caused a transient vasoconstriction which was dependent on the presence of extracellular Ca2+. Nifedipine fully inhibited K+-induced vasoconstriction with an IC50 of (2.0 +/- 0.7) x 10(-9) M. Norepinephrine (10(-4) M) caused a transient vasoconstriction and an increase of vasomotion at branch points of the spiral modiolar artery. Norepinephrine-induced vasoconstriction was fully inhibited in the absence of Ca2+ and partially inhibited by 10(-7) M nifedipine. These observations suggest that the spiral modiolar artery contains voltage-dependent nifedipine-sensitive Ca2+ channels which are involved in the maintenance of basal vascular tone as well as in the mediation of K+- and norepinephrine-induced contractility. Further, the data suggest that cytosolic Ca2+ stores, if present in the spiral modiolar artery, are of limited capacity compared to other vessels. (C) 1998 Published by Elsevier Science B.V. C1 Boys Town Natl Res Hosp, Cell Physiol Lab, Omaha, NE 68131 USA. Creighton Univ, Dept Biomed Sci, Omaha, NE 68178 USA. RP Wangemann, P (reprint author), Boys Town Natl Res Hosp, Cell Physiol Lab, 555 N 30th St, Omaha, NE 68131 USA. EM Wange@Boystown.org RI Wangemann, Philine/N-2826-2013 CR BAROFFIO A, 1994, PHYSICIANS DESK REFE BERTUGLIA S, 1991, AM J PHYSIOL, V260, pH362 BEVAN JA, 1982, AM J CARDIOL, V49, P519, DOI 10.1016/S0002-9149(82)80005-2 Boettcher FA, 1996, LARYNGOSCOPE, V106, P772, DOI 10.1097/00005537-199606000-00020 BYLUND DB, 1994, PHARMACOL REV, V46, P121 CARRASCO VN, 1990, ARCH OTOLARYNGOL, V116, P411 COLEMAN JKM, 1991, OTOLARYNG HEAD NECK, V105, P840 DAVIES E, 1994, BRIT J AUDIOL, V28, P125, DOI 10.3109/03005369409086559 Frielingsdorf J, 1996, CIRCULATION, V93, P1380 Gauthier-Rein KM, 1997, AM J PHYSIOL-HEART C, V272, pH1462 GODFRAIND T, 1986, PHARMACOL REV, V38, P321 Griffith TM, 1997, AM J PHYSIOL-HEART C, V272, pH1696 GRUBER DD, 1997, UNPUB HEAR RES Gustafsson H, 1993, Acta Physiol Scand Suppl, V614, P1 HAWS CW, 1984, AM J PHYSIOL, V247, pH170 HILL MA, 1994, AM J PHYSIOL, V267, pH1085 HWA JJ, 1986, AM J PHYSIOL, V251, pH182 Ison JR, 1997, HEARING RES, V106, P179, DOI 10.1016/S0378-5955(96)00216-X JOHANSSON B, 1989, J HYPERTENS, V7, pS5 KIMURA RS, 1974, ACTA OTO-LARYNGOL, V77, P231 KONG JQ, 1994, J PHARMACOL EXP THER, V268, P1153 LENARZ T, 1989, LARYNGO RHINO OTOL, V68, P634, DOI 10.1055/s-2007-998418 LIMBIRD LE, 1986, CELL SURFACE RECEPTO, P23 LOUTZENHISER R, 1989, AM J PHYSIOL, V257, pF561 MAURER J, 1993, HNO, V41, P192 MEIER R, 1993, LARYNGO RHINO OTOL, V72, P291, DOI 10.1055/s-2007-997903 MESSING M, 1991, EUR J PHARMACOL, V198, P189, DOI 10.1016/0014-2999(91)90620-6 MILLER JM, 1995, OTOLARYNG HEAD NECK, V112, P101, DOI 10.1016/S0194-5998(95)70308-X MORITA Y, 1995, ACTA PHYSIOL SCAND, V154, P121, DOI 10.1111/j.1748-1716.1995.tb09894.x MULVANY MJ, 1988, J CARDIOVASC PHARM, V12, pS16, DOI 10.1097/00005344-198812006-00006 OHLSEN KA, 1991, CIRC RES, V69, P509 OSOL G, 1988, AM J PHYSIOL, V254, pH28 PAGANI M, 1986, CIRC RES, V59, P178 REN TY, 1994, ACTA OTO-LARYNGOL, V114, P254, DOI 10.3109/00016489409126052 RIZZONI D, 1995, J HYPERTENS, V13, P1043, DOI 10.1097/00004872-199509000-00016 SARUTA T, 1996, KIDNEY INT S55, V49, pS52 SNEDECOR GW, 1954, STAT METHODS TAKAYASU M, 1988, J NEUROSURG, V69, P104, DOI 10.3171/jns.1988.69.1.0104 TSAI AG, 1993, INT J MICROCIRC, V12, P75 UMEMURA K, 1993, EUR J PHARMACOL, V239, P17, DOI 10.1016/0014-2999(93)90970-S Wangemann P., 1996, SPRINGER HDB AUDITOR, P130 WANGEMANN P, 1997, HEARING RES, V115, P113 Wangemann P, 1996, HEARING RES, V95, P49, DOI 10.1016/0378-5955(96)00007-X Wesselman JPM, 1996, J VASC RES, V33, P32, DOI 10.1159/000159129 Yip KP, 1996, CARDIOVASC RES, V31, P359 NR 45 TC 11 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 90 EP 100 DI 10.1016/S0378-5955(98)00017-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500008 PM 9606064 ER PT J AU Turner, JG Willott, JF AF Turner, JG Willott, JF TI Exposure to an augmented acoustic environment alters auditory function in hearing-impaired DBA/2J mice SO HEARING RESEARCH LA English DT Article DE plasticity; sensorineural hearing loss; startle reflex; auditory brainstem response; development ID INFERIOR COLLICULUS NEURONS; STARTLE RESPONSE; PREPULSE INHIBITION; RETICULAR-FORMATION; GIANT-NEURONS; C57BL/6J MICE; GUINEA-PIG; CORTEX; PLASTICITY; REFLEX AB The effects of exposure to an augmented acoustic environment (AAE) on auditory function were evaluated using DBA/2J (DBA) mice, a strain that exhibits high-frequency hearing loss beginning around the time of weaning/adolescence (between 3-4 weeks of age) and becoming severe by 2-3 months of age. Mice were exposed 12 h per night for 10 nights to a 70 dB SPL broad-band noise AAE at one of three age periods ranging from the onset of hearing loss (25-35 days of age) to more severe degrees of hearing loss (35-45 days and 45-55 days); control mice did not receive the AAE. C57BL/6J (C57) mice of the same ages provided normal hearing, age-matched mice in both exposed and control conditions. The auditory brainstem response (ABR), acoustic startle response amplitude, and prepulse inhibition (PPI) were used to assess the auditory system. The AAE had significant effects on DBA mice, but had no effect on normal-hearing C57 mice. For the most part, AAE exposure resulted in improved auditory performance in DBA mice (better PPI, lower ABR thresholds, bigger startle amplitudes). However, the age of the mice and/or severity of hearing loss proved to be an important variable; improvement of PPI occurred only when the AAE was initiated later in the course of hearing loss (35 days of age or older); in contrast to this, beneficial effects on ABR thresholds occurred only when the AAE was initiated early in the course of hearing loss (< 45 days of age). (C) 1998 Elsevier Science B.V. C1 No Illinois Univ, Dept Psychol, De Kalb, IL 60115 USA. RP Willott, JF (reprint author), No Illinois Univ, Dept Psychol, De Kalb, IL 60115 USA. EM jimw@niu.edu CR HALL WH, 1990, JAMA-J AM MED ASSOC, V263, P3185 Arlinger S, 1996, EAR HEARING, V17, pS87, DOI 10.1097/00003446-199617031-00009 BRAFF DL, 1990, ARCH GEN PSYCHIAT, V47, P181 CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C Canlon B, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P118 Carlson S, 1996, HEARING RES, V99, P168, DOI 10.1016/S0378-5955(96)00098-6 CARLSON SC, 1997, ASS RES OTOLARYNGOL, V20, P641 COTMAN CW, 1996, HDB BIOL AGING, P284 DAVIS M, 1982, J NEUROSCI, V2, P791 Davis M., 1984, P287 DUBLIN W, 1976, FUNDAMENTALS SENSORI ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H FOX JE, 1979, PHYSIOL BEHAV, V23, P291, DOI 10.1016/0031-9384(79)90370-6 Henderson D, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P143 HENRY KR, 1980, AUDIOLOGY, V19, P369 HOFFMAN HS, 1980, PSYCHOL REV, V87, P175, DOI 10.1037/0033-295X.87.2.175 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Kryter K.D., 1985, EFFECTS NOISE MAN, V2nd LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X LEITNER DS, 1985, PHYSIOL BEHAV, V34, P65, DOI 10.1016/0031-9384(85)90079-4 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LINGENHOHL K, 1992, J COMP NEUROL, V325, P473, DOI 10.1002/cne.903250403 LINGENHOHL K, 1994, J NEUROSCI, V14, P1176 LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 Miller JM, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P378 Northern J. L., 1991, HEARING CHILDREN PARHAM K, 1997, ASS RES OT ABSTR, V20, P194 PARHAM K, 1988, Behavioral Neuroscience, V102, P881, DOI 10.1037/0735-7044.102.6.881 PARHAM K, 1990, BEHAV NEUROSCI, V104, P831, DOI 10.1037//0735-7044.104.6.831 PERLSTEIN WM, 1993, PSYCHOPHYSIOLOGY, V30, P347, DOI 10.1111/j.1469-8986.1993.tb02056.x POPELAR J, 1994, HEARING RES, V72, P125, DOI 10.1016/0378-5955(94)90212-7 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RALLS K, 1967, ANIM BEHAV, V15, P123, DOI 10.1016/S0003-3472(67)80022-8 SAUNDERS JC, 1980, BRAIN RES, V187, P69, DOI 10.1016/0006-8993(80)90495-3 Schuknecht H. F., 1974, PATHOLOGY EAR SCHWABER MK, 1993, AM J OTOL, V14, P252 SHNERSON A, 1980, J COMP PHYSIOL PSYCH, V94, P36, DOI 10.1037/h0077648 SHONE G, 1991, HEARING RES, V56, P173, DOI 10.1016/0378-5955(91)90167-8 Subramaniam M, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P128 SWERDLOW NR, 1993, BEHAV NEUROSCI, V107, P104, DOI 10.1037//0735-7044.107.1.104 Turner J. G., 1996, Society for Neuroscience Abstracts, V22, P1821 TURNER JG, 1996, ASS RES OTOLARYNGOL, V19, P163 WEINBERGER NM, 1995, ANNU REV NEUROSCI, V18, P129 WILLOTT F, 1996, AUDITORY PLASTICITY, P297 Willott JF, 1996, EAR HEARING, V17, pS66, DOI 10.1097/00003446-199617031-00007 Willott J. F., 1991, AGING AUDITORY SYSTE WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310 WILLOTT JF, 1978, BRAIN RES, V148, P230, DOI 10.1016/0006-8993(78)90395-5 WILLOTT JF, 1984, HEARING RES, V16, P161, DOI 10.1016/0378-5955(84)90005-4 WILLOTT JF, 1995, BEHAV NEUROSCI, V109, P396, DOI 10.1037//0735-7044.109.3.396 WILLOTT JF, 1997, SOC NEUR ABSTR, V18, P22 WILLOTT JF, 1981, J NEUROPHYSIOL, V45, P35 WILLOTT JF, 1994, BEHAV NEUROSCI, V108, P703, DOI 10.1037/0735-7044.108.4.703 WILLOTT JF, 1984, BRAIN RES, V309, P159, DOI 10.1016/0006-8993(84)91022-9 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F WILLOTT JF, 1984, EXP NEUROL, V83, P495, DOI 10.1016/0014-4886(84)90118-3 YOUNG JS, 1983, J ACOUST SOC AM, V73, P1686, DOI 10.1121/1.389391 NR 60 TC 39 Z9 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 101 EP 113 DI 10.1016/S0378-5955(98)00024-0 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500009 PM 9606065 ER PT J AU Sakaguchi, N Crouch, JJ Lytle, C Schulte, BA AF Sakaguchi, N Crouch, JJ Lytle, C Schulte, BA TI Na-K-Cl cotransporter expression in the developing and senescent gerbil cochlea SO HEARING RESEARCH LA English DT Article DE aging; development; inner ear; ion transport; stria vascularis ID ION-TRANSPORT MECHANISMS; RETINAL-PIGMENT EPITHELIUM; BETA-SUBUNIT ISOFORMS; SMOOTH-MUSCLE CELLS; STRIA VASCULARIS; INNER-EAR; ENDOTHELIAL-CELLS; MARGINAL CELLS; ULTRASTRUCTURAL-LOCALIZATION; NA+/K+/CL COTRANSPORT AB Changes in the cellular expression pattern of the Na-K-Cl cotransporter (NKCC) were investigated during postnatal development and with advancing age in the gerbil cochlea. At birth, faint immunostaining for NKCC was discernable in the developing stria vascularis (StV), Reissner's membrane, interdental cells and some relatively undifferentiated cells lining the cochlear partition. Between 2 and 4 days after birth (DAB) immunostaining persisted and increased in the future interdental, inner and outer sulcus and claudius cells but then disappeared from these sites by 8 DAB. In contrast, NKCC immunoreactivity in the StV increased progressively during development and approached adult levels by 12 DAB. Immunostaining for NKCC in subpopulations of fibrocytes in the inferior portion of the spiral ligament, the suprastrial region and the spiral limbus was first detectable between 10 and 12 DAB and staining intensity reached adult levels around 16 DAB. Changes in NKCC expression with advancing age generally mimicked those previously observed for Na,K-ATPase in focal regions of atrophic lateral wall. Diminished immunostaining was first seen in the StV, presumably associated with the involution of the marginal cell's basolateral processes. Further atrophy culminated in complete loss of immunostaining in the StV and an associated down-regulation of NKCC expression in spiral ligament transport fibrocytes. The marked similarities in the developmental and age-related expression patterns of NKCC and Na,K-ATPase point to a high level of functional cooperativity between these two ion transport mediators, which together provide an efficient mechanism for generating and maintaining high K+ levels in endolymph and the endocochlear potential. (C) 1998 Published by Elsevier Science B.V. C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. Med Univ S Carolina, Dept Otolaryngol & Commun Sci, Charleston, SC 29425 USA. Univ Calif Riverside, Div Biomed Sci, Riverside, CA 92525 USA. RP Schulte, BA (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 171 Ashley Ave, Charleston, SC 29425 USA. EM schultba@musc.edu CR ARRINDELL EL, 1992, EXP CELL RES, V203, P192, DOI 10.1016/0014-4827(92)90055-D BROCK TA, 1986, AM J PHYSIOL, V250, pC888 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 ELLIOTT SJ, 1992, AM J PHYSIOL, V263, pH96 EPSTEIN FH, 1985, ANN NY ACAD SCI, V456, P187, DOI 10.1111/j.1749-6632.1985.tb14864.x FORGE A, 1976, CLIN OTOLARYNGOL, V1, P211, DOI 10.1111/j.1365-2273.1976.tb00879.x GRATTON MA, 1995, HEARING RES, V82, P44 GRATTON MA, 1995, HEARING RES, V83, P43, DOI 10.1016/0378-5955(94)00188-V GUGGINO WB, 1988, AM J PHYSIOL, V254, pF615 HAAS M, 1994, AM J PHYSIOL-CELL PH, V267, pC869 HAAS M, 1989, ANNU REV PHYSIOL, V51, P443, DOI 10.1146/annurev.physiol.51.1.443 Hidaka H, 1996, BIOCHEM BIOPH RES CO, V220, P425, DOI 10.1006/bbrc.1996.0421 HUOTT PA, 1988, J CLIN INVEST, V82, P514, DOI 10.1172/JCI113626 IWANO T, 1989, J HISTOCHEM CYTOCHEM, V37, P353 JOSEPH DP, 1991, J PHYSIOL-LONDON, V435, P439 KERR TP, 1982, AM J OTOLARYNG, V3, P332, DOI 10.1016/S0196-0709(82)80006-9 KIMURA RS, 1970, ACTA OTO-LARYNGOL, V69, P415, DOI 10.3109/00016487009123387 KIMURA RS, 1974, ACTA OTO-LARYNGOL, V77, P231 KUIJPERS W, 1974, ACTA OTO-LARYNGOL, V78, P341, DOI 10.3109/00016487409126364 KUSAKARI J, 1978, LARYNGOSCOPE, V88, P12 KUSAKARI J, 1978, ACTA OTO-LARYNGOL, V86, P336, DOI 10.3109/00016487809107512 Longo N, 1996, BBA-BIOMEMBRANES, V1281, P38, DOI 10.1016/0005-2736(96)00004-1 Lytle C, 1995, AM J PHYSIOL-CELL PH, V269, pC1496 MCGUIRT JP, 1995, HEARING RES, V84, P52, DOI 10.1016/0378-5955(95)00015-V MCGUIRT JP, 1994, J HISTOCHEM CYTOCHEM, V42, P843 McGuirt JP, 1996, AUDIT NEUROSCI, V2, P135 MEES K, 1983, ACTA OTO-LARYNGOL, V95, P277, DOI 10.3109/00016488309130944 Mizuta K, 1997, HEARING RES, V106, P154, DOI 10.1016/S0378-5955(97)00010-5 NAKAZAWA K, 1995, J HISTOCHEM CYTOCHEM, V43, P981 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 OGRADY SM, 1986, J MEMBRANE BIOL, V91, P33, DOI 10.1007/BF01870212 OGRADY SM, 1987, AM J PHYSIOL, V253, pC177 PANET R, 1994, J CELL PHYSIOL, V158, P121, DOI 10.1002/jcp.1041580115 PANET R, 1991, J CELL BIOL, V114, P337, DOI 10.1083/jcb.114.2.337 PIKE DA, 1980, HEARING RES, V3, P79, DOI 10.1016/0378-5955(80)90009-X QUICK CA, 1975, ANN OTO RHINOL LARYN, V84, P94 RYAN A F, 1991, Molecular and Cellular Neuroscience, V2, P179, DOI 10.1016/1044-7431(91)90011-C RYBAK LP, 1992, HEARING RES, V59, P189, DOI 10.1016/0378-5955(92)90115-4 RYBAK LP, 1982, J OTOLARYNGOL, V11, P127 RYBAK LP, 1986, ACTA OTO-LARYNGOL, V101, P59, DOI 10.3109/00016488609108608 Sakaguchi N, 1997, HEARING RES, V105, P44, DOI 10.1016/S0378-5955(96)00180-3 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SANTI PA, 1983, HEARING RES, V12, P151, DOI 10.1016/0378-5955(83)90103-X SCHMIEDT RA, 1992, COFACTORS DEV AGING, P246 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K SELLICK P M, 1975, Progress in Neurobiology (Oxford), V5, P337, DOI 10.1016/0301-0082(75)90015-5 SMITH JB, 1986, AM J PHYSIOL, V250, pF759 SMITH JB, 1987, J MEMBRANE BIOL, V99, P51, DOI 10.1007/BF01870621 SOYBEL DI, 1995, AM J PHYSIOL-CELL PH, V269, pC242 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z Spicer SS, 1997, HEARING RES, V111, P93, DOI 10.1016/S0378-5955(97)00097-X Sun DD, 1995, AM J PHYSIOL-CELL PH, V269, pC1506 TAKAHASH.T, 1971, ANN OTO RHINOL LARYN, V80, P721 VIGNE P, 1994, J BIOL CHEM, V269, P19925 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 ZUO J, 1995, ACTA OTO-LARYNGOL, V115, P497, DOI 10.3109/00016489509139355 NR 61 TC 61 Z9 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 114 EP 122 DI 10.1016/S0378-5955(98)00022-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500010 PM 9606066 ER PT J AU Scholtz, AW Kanonier, G Schrott-Fischer, A AF Scholtz, AW Kanonier, G Schrott-Fischer, A TI Immunohistochemical investigation of enkephalins in the human inner ear SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT ARO Midwinter Meeting CY FEB, 1996 CL ST PETERSBURG, FL SP ARO DE immunohistochemistry; enkephalin; cochlea; vestibular endorgan; human ID GENE-RELATED PEPTIDE; GUINEA-PIG COCHLEA; CHOLINE-ACETYLTRANSFERASE; VESTIBULAR SYSTEM; LOCALIZATION; ORGAN; RAT; CORTI; IMMUNOREACTIVITY; NEUROTRANSMITTERS AB Enkephalins are generally considered as neuropeptides in the central and peripheral nervous system of mammals bound to three large precursor molecules. Several animal studies demonstrated the distribution of met- and leu-enkephalin-like immunoreactivities in neurons and terminals of the lateral olivocochlear system. The immunostainings in the medial system are more controversial. No data about the presence of different enkephalin sequences in the vestibular efferent terminals are known. In the present study, the ultrastructural localization and distribution of immunoreactivities for six different antibodies against met-and leu-enkephalins in the human cochlear and vestibular periphery were investigated. A modified method of pre-embedding immunoelectronmicroscopy was applied. Met-and leu-enkephalin-like immunoreactivities were observed in the efferent terminals of the human outer and inner hair cell region. Using different met-and leu-enkephalin antibodies, the distribution of immunoreactivities remained similar. In the five human vestibular endorgans, enkephalin-like immunostaining was absent. (C) 1998 Elsevier Science B.V. C1 Univ Innsbruck, Dept Otorhinolaryngol, A-6020 Innsbruck, Austria. RP Scholtz, AW (reprint author), Univ Innsbruck, Dept Otorhinolaryngol, Anichstr 35, A-6020 Innsbruck, Austria. CR ALTSCHULER RA, 1985, HEARING RES, V17, P249, DOI 10.1016/0378-5955(85)90069-3 ALTSCHULER RA, 1984, J HISTOCHEM CYTOCHEM, V32, P839 BURKI C, 1993, ORL J OTO-RHINO-LARY, V55, P3 CARPENTER MB, 1990, J HIRNFORSCH, V31, P585 CODE RA, 1995, HEARING RES, V87, P69, DOI 10.1016/0378-5955(95)00080-N CUELLO AC, 1984, J HISTOCHEM CYTOCHEM, V32, P947 EYBALIN M, 1984, HEARING RES, V13, P135, DOI 10.1016/0378-5955(84)90104-7 FEX J, 1981, P NATL ACAD SCI-BIOL, V78, P1255, DOI 10.1073/pnas.78.2.1255 GOLDBERG JM, 1980, J NEUROPHYSIOL, V43, P986 HIGHSTEIN SM, 1991, NEUROSCI RES, V12, P13, DOI 10.1016/0168-0102(91)90096-H HOFFMAN DW, 1986, NEUROBIOLOGY HEARING, P371 HUGHES J, 1983, BRIT MED BULL, V39, P17 KAWABATA A, 1990, LIFE SCI, V47, P1355, DOI 10.1016/0024-3205(90)90200-B KITAJIRI M, 1985, BRAIN RES, V358, P394, DOI 10.1016/0006-8993(85)90992-8 KONG WJ, 1994, ACTA OTO-LARYNGOL, V114, P245, DOI 10.3109/00016489409126051 LEHTOSALO JI, 1984, HEARING RES, V16, P101, DOI 10.1016/0378-5955(84)90028-5 OHNO K, 1993, ACTA OTO-LARYNGOL, P16 RASMUSSEN GL, 1959, ANAT REC, V130, P361 RAYMOND J, 1988, PROG BRAIN RES, V76, P29 SCHROTTFISCHER A, 1994, HEARING RES, V78, P149, DOI 10.1016/0378-5955(94)90020-5 SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448 TANAKA M, 1989, BRAIN RES, V504, P31, DOI 10.1016/0006-8993(89)91593-X WACKYM PA, 1993, ACTA OTO-LARYNGOL, V113, P601, DOI 10.3109/00016489309135871 WACKYM PA, 1990, LARYNGOSCOPE, V100, P447 WAMSLEY JK, 1980, BRAIN RES, V190, P153, DOI 10.1016/0006-8993(80)91166-X WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 YAMASHITA T, 1993, ACTA OTO-LARYNGOL, P26 YANG HYT, 1983, J NEUROCHEM, V40, P969, DOI 10.1111/j.1471-4159.1983.tb08080.x NR 28 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 123 EP 128 DI 10.1016/S0378-5955(98)00023-9 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500011 PM 9606067 ER PT J AU Braun, M AF Braun, M TI Accurate binaural mirroring of spontaneous otoacoustic emissions suggests influence of time-locking in medial efferents SO HEARING RESEARCH LA English DT Article DE spontaneous otoacoustic emission; twin studies; olivocochlear efferent; neural phase-coupling; outer hair cell; electromotility ID OUTER HAIR-CELLS; SPONTANEOUS CELLULAR VIBRATIONS; GUINEA-PIG COCHLEA; DISTORTION-PRODUCT; HEARING SENSITIVITY; FREQUENCY; HUMANS; STIMULATION; PREVALENCE; NEURONS AB Spontaneous otoacoustic emissions (SOAEs) of nearly identical acoustic frequency in both ears are a common observation, but it is unknown if this binaural mirroring effect is random, artefactual, genetic, developmental, or of other origin. The available raw datal of all human SOAE surveys were pooled, and the intervals of all possible binaural emission pairs (N = 9555) were listed according to size on the Cent-scale (I Cent = 1/100 semitone = 1/1200 octave). Statistical analysis showed (1) a slight broad-band mirroring in the 0-100 Cent range (P < 0.05), and (2) a strong narrow-band mirroring (NBM) in the 0-20 Cent range (P < 0.001). Negative results in a detailed SOAE cluster detection program excluded experimental artefacts as causes of NBM. Analysis of the large subgroup of twin data excluded genetic and intrauterine developmental causes. Systemic developmental causes are unrealistic, as 20 Cent corresponds to only similar to 80 mu m on the cochlear map. Analysis of infant data indicated that the effect may be introduced after birth by secondary factors. Interaural crosstalk was examined but had to be rejected. It is suggested that bilaterally spreading period information in the medial olivocochlear system influences outer hair cells of the same best frequency in both ears very similarly. Evidence concerning possible effects on electromotility is discussed, and experimental tests are proposed. (C) 1998 Elsevier Science B.V. C1 Physiol Mus Res, D-22607 Hamburg, Germany. RP Braun, M (reprint author), Physiol Mus Res, Adickes Str 42, D-22607 Hamburg, Germany. CR BERLIN CI, 1995, HEARING RES, V87, P96, DOI 10.1016/0378-5955(95)00082-F BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 Blanchet C, 1996, J NEUROSCI, V16, P2574 BROWNELL WE, 1997, DIVERSITY AUDITORY M, P573 BRUNDIN L, 1993, BIOPHYSICS HAIR CELL, P182 BRUNDIN L, 1989, NATURE, V342, P814, DOI 10.1038/342814a0 BURNS EM, 1994, J ACOUST SOC AM, V95, P385, DOI 10.1121/1.408330 BURNS EM, 1984, HEARING RES, V16, P271, DOI 10.1016/0378-5955(84)90116-3 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 DALLMAYR C, 1986, THESIS TU MUNCHEN DALLMAYR C, 1985, ACUSTICA, V59, P67 Evans MG, 1996, J PHYSIOL-LONDON, V491, P563 FRICK LR, 1988, EAR HEARING, V9, P190, DOI 10.1097/00003446-198808000-00004 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 Gold T., 1988, COCHLEAR MECHANISMS, P299 GUMMER M, 1988, HEARING RES, V36, P41, DOI 10.1016/0378-5955(88)90136-0 HAMMEL DR, 1983, THESIS U ILLINOIS UR Iwasa KH, 1997, BIOPHYS J, V73, P546 JONES K, 1986, PERIPHERAL AUDITORY, P266 KEEFE DH, 1990, LECT NOTES BIOMATH, V87, P194 KEILSON SE, 1993, ACTA OTO-LARYNGOL, V113, P591, DOI 10.3109/00016489309135869 Khalfa S, 1997, ACTA OTO-LARYNGOL, V117, P192, DOI 10.3109/00016489709117767 Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008 KHANNA SM, 1993, BRIT J AUDIOL, V27, P79, DOI 10.3109/03005369309077895 KOHLER W, 1986, ARCH OTO-RHINO-LARYN, V243, P43, DOI 10.1007/BF00457907 KOK MR, 1993, HEARING RES, V69, P115, DOI 10.1016/0378-5955(93)90099-M LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779 LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633 LONG GR, 1986, PERIPHERAL AUDITORY, P213 LONG GR, 1991, J ACOUST SOC AM, V89, P1201, DOI 10.1121/1.400651 LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X LONSBURYMARTIN BL, 1991, J ACOUST SOC AM, V89, P1749, DOI 10.1121/1.401009 LONSBURYMARTIN BL, 1990, ANN OTO RHINOL LARYN, V99, P3 MCFADDEN D, 1993, HEARING RES, V71, P208, DOI 10.1016/0378-5955(93)90036-Z MCFADDEN D, 1995, HEARING RES, V85, P181, DOI 10.1016/0378-5955(95)00045-6 MCFADDEN D, 1993, P NATL ACAD SCI USA, V90, P11900, DOI 10.1073/pnas.90.24.11900 MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K MORLET T, 1995, HEARING RES, V90, P44, DOI 10.1016/0378-5955(95)00144-4 MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K PENNER MJ, 1987, J SPEECH HEAR RES, V30, P396 PENNER MJ, 1993, HEARING RES, V68, P229, DOI 10.1016/0378-5955(93)90126-L PENNER MJ, 1994, HEARING RES, V73, P190, DOI 10.1016/0378-5955(94)90234-8 Probst R, 1990, Adv Otorhinolaryngol, V44, P1 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Rhode WS, 1992, MAMMALIAN AUDITORY P, P94 Russell A.F., 1992, THESIS U ILLINOIS UR STRICKLAND EA, 1985, J ACOUST SOC AM, V78, P931, DOI 10.1121/1.392924 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V VANDIJK P, 1994, J ACOUST SOC AM, V96, P163, DOI 10.1121/1.411438 VANDIJK P, 1990, J ACOUST SOC AM, V88, P850, DOI 10.1121/1.399734 WABLE J, 1994, HEARING RES, V80, P141, DOI 10.1016/0378-5955(94)90105-8 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WHITEHEAD ML, 1991, HEARING RES, V53, P269, DOI 10.1016/0378-5955(91)90060-M WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012 WILSON JP, 1986, PERIPHERAL AUDITORY, P229 WIT HP, 1981, J ACOUST SOC AM, V70, P437, DOI 10.1121/1.386786 ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 NR 59 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 129 EP 138 DI 10.1016/S0378-5955(98)00028-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500012 PM 9606068 ER PT J AU Summers, V Leek, MR AF Summers, V Leek, MR TI Masking of tones and speech by Schroeder-phase harmonic complexes in normally hearing and hearing-impaired listeners SO HEARING RESEARCH LA English DT Article DE Schroeder-phase masking; active mechanism; basilar membrane; hearing impairment; outer hair cell; cochlea; cochlear nonlinearity ID BASILAR-MEMBRANE; RECOGNITION PERFORMANCE; ARTICULATION INDEX; AUDITORY-NERVE; INNER-EAR; NOISE; LEVEL; COCHLEAR; INTELLIGIBILITY; INDIVIDUALS AB Tone detection and sentence recognition were measured for normally hearing and hearing-impaired listeners using maskers consisting of harmonic series with components summed in positive or negative Schroeder phase. Each task was carried out with the signal set at 60, 70, or 80 dB SPL. For listeners with normal hearing, positive Schroeder-phase complexes masked tones and sentences less than negative Schroeder-phase maskers. Ln the two experimental tasks, to achieve the same amount of masking, positive Schroeder-phase complexes had to be set as much as 12-15 dB higher than negative Schroeder-phase complexes. Large phase effects were observed on both tasks at all three test levels. The two maskers were more nearly equal in effectiveness in the presence of cochlear damage. The findings support an interpretation that involves differences in the shape of the basilar-membrane waveform generated by each masker and active cochlear processing which enhances the internal signal-to-masker ratio for signals presented in the positive Schroeder masker. This spectral enhancement appears to require nonlinear active gain that is characteristic of normal auditory processing at moderate presentation levels. The results of the sentence recognition task suggest that group differences observed in tone detection transfer fairly directly to speech perception under masking. (C) 1998 Published by Elsevier Science B.V. C1 Walter Reed Army Med Ctr, Army Audiol & Speech Ctr, Washington, DC 20307 USA. RP Summers, V (reprint author), Walter Reed Army Med Ctr, Army Audiol & Speech Ctr, Washington, DC 20307 USA. CR Alcantara JI, 1996, J ACOUST SOC AM, V100, P2382, DOI 10.1121/1.417948 *ANSI, 1989, SPEC AUD Carlyon RP, 1997, J ACOUST SOC AM, V101, P3636, DOI 10.1121/1.418324 Carlyon RP, 1997, J ACOUST SOC AM, V101, P3648, DOI 10.1121/1.418325 Chatterjee M, 1997, HEARING RES, V111, P65, DOI 10.1016/S0378-5955(97)00089-0 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 deBoer E, 1997, J ACOUST SOC AM, V101, P3583, DOI 10.1121/1.418319 FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859 GIGUERE C, 1994, J ACOUST SOC AM, V95, P331 GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P458, DOI 10.1121/1.1910357 HORST JW, 1990, J ACOUST SOC AM, V88, P2656, DOI 10.1121/1.399986 HYGGE S, 1992, J SPEECH HEAR RES, V35, P208 *I EL EL ENG, 1969, IEEE REC PRACT SPEEC JAVEL E, 1988, HEARING RES, V34, P275, DOI 10.1016/0378-5955(88)90008-1 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 KIM DO, 1986, HEARING RES, V22, P105, DOI 10.1016/0378-5955(86)90088-2 KOHLRAUSCH A, 1995, J ACOUST SOC AM, V97, P1817, DOI 10.1121/1.413097 KUBOVY M, 1979, J ACOUST SOC AM, V66, P100, DOI 10.1121/1.383061 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LIBERMAN MC, 1986, BASIC APPL ASPECTS N, P163 Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN MOORE BCJ, 1995, BRIT J AUDIOL, V29, P131, DOI 10.3109/03005369509086590 Murugasu E., 1995, AUDIT NEUROSCI, V1, P139 Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 PATUZZI R, 1993, BRIT J AUDIOL, V27, P91, DOI 10.3109/03005369309077897 PAVLOVIC CV, 1986, J ACOUST SOC AM, V80, P50, DOI 10.1121/1.394082 PAVLOVIC CV, 1984, J ACOUST SOC AM, V75, P1606, DOI 10.1121/1.390870 Pickles JO, 1988, INTRO PHYSL HEARING ROSEN S, 1992, J ACOUST SOC AM, V92, P773, DOI 10.1121/1.403946 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 SCHROEDE.MR, 1970, IEEE T INFORM THEORY, V16, P85, DOI 10.1109/TIT.1970.1054411 SCHUM DJ, 1991, J SPEECH HEAR RES, V34, P636 SMITH BK, 1986, J ACOUST SOC AM, V80, P1631, DOI 10.1121/1.394327 SMOORENBURG GF, 1992, J ACOUST SOC AM, V91, P421, DOI 10.1121/1.402729 VONKLITZING R, 1994, J ACOUST SOC AM, V95, P2192, DOI 10.1121/1.408679 Yates Graeme K., 1995, P41, DOI 10.1016/B978-012505626-7/50004-2 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M Zhang MS, 1996, HEARING RES, V96, P46, DOI 10.1016/0378-5955(96)00029-9 NR 43 TC 42 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 139 EP 150 DI 10.1016/S0378-5955(98)00030-6 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500013 PM 9606069 ER PT J AU Cransac, H Cottet-Emard, JM Hellstrom, S Peyrin, L AF Cransac, H Cottet-Emard, JM Hellstrom, S Peyrin, L TI Specific sound-induced noradrenergic and serotonergic activation in central auditory structures SO HEARING RESEARCH LA English DT Article DE acoustic stimulation; noradrenaline; serotonin; cochlear nucleus; inferior colliculus; auditory cortex; raphe nuclei; locus coeruleus ID COCHLEAR NUCLEUS; LOCUS COERULEUS; RAT; NORADRENALINE; NEURONS; CORTEX; BRAIN; IMMUNOREACTIVITY; INNERVATION; MONOAMINES AB We have studied the noradrenergic and serotonergic changes induced by white noise stimulation at 70, 90 or 110 dB SPL for 45 min, in cochlear nuclei, inferior colliculus (IC), primary auditory cortex (PAC) and as a comparison in locus coeruleus (LC) and raphe dorsalis using HPLC. Both noradrenergic and serotonergic pathways were activated in the dorsal+posteroventral cochlear nuclei (DCN+PVCN) without changes in the anteroventral cochlear nucleus (AVCN) and IC. In the DCN+PVCN the noradrenergic activation was restricted to animals exposed to 70 dB SPL whereas the increase of serotonin content was intensity dependent. In PAC serotonergic activation was observed only after 70 dB SPL exposure. These data suggest that in physiological conditions (70 dB SPL) noradrenergic and serotonergic regulation of the processing of auditory information occurs specifically in the dorsal cochlear nucleus where the control of incoming information to higher auditory structures takes place (i.e. IC and PAC). We suggest that the serotonergic activation in the primary auditory cortex for 70 dB SPL sound stimulation could be related to the fact that low-intensity white noise stimulation could be the most plastic-demanding processing in the auditory cortex. (C) 1998 Published by Elsevier Science B.V. C1 Hop Edouard Herriot, UPRESA CNRS 5020, F-69437 Lyon 03, France. Umea Univ, Dept Otorhinolaryngol, S-90185 Umea, Sweden. RP Cransac, H (reprint author), Hop Edouard Herriot, UPRESA CNRS 5020, Pavillon U,Pl Arsonval, F-69437 Lyon 03, France. EM cransac@rockefellet.univ-lyon1.fr CR Cody AR, 1996, BRAIN RES, V728, P72 Cransac H, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P175, DOI 10.1007/978-1-4419-8712-9_16 Cransac H, 1997, COMP BIOCHEM PHYS A, V116, P341, DOI 10.1016/S0300-9629(96)00231-9 CRANSAC H, 1995, HEARING RES, V90, P65, DOI 10.1016/0378-5955(95)00147-X Cransac H, 1996, HEARING RES, V100, P150, DOI 10.1016/0378-5955(96)00116-5 CURTIS DR, 1961, J NEUROPHYSIOL, V24, P80 DeFelipe J, 1991, CEREB CORTEX, V1, P117, DOI 10.1093/cercor/1.2.117 Ebert U, 1996, EUR J NEUROSCI, V8, P1306, DOI 10.1111/j.1460-9568.1996.tb01299.x EBERT U, 1992, NEUROSCI LETT, V145, P51, DOI 10.1016/0304-3940(92)90201-H Edeline JM, 1995, EXP BRAIN RES, V107, P221 Faingold C.L., 1991, NEUROBIOLOGY HEARING, P223 HARPER MS, 1995, J ANAT, V186, P373 HOLMAN RB, 1976, NEUROSCIENCE, V1, P147, DOI 10.1016/0306-4522(76)90010-5 HUGHES EC, 1988, AM J OTOL, V9, P122 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H KOBAYASH.RM, 1974, BRAIN RES, V77, P269, DOI 10.1016/0006-8993(74)90790-2 KOHNO Y, 1981, J NEUROCHEM, V36, P286, DOI 10.1111/j.1471-4159.1981.tb02405.x KROMER LF, 1980, ANAT EMBRYOL, V158, P227, DOI 10.1007/BF00315908 LEVITT P, 1978, BRAIN RES, V139, P219, DOI 10.1016/0006-8993(78)90925-3 MARRIAGE J, 1995, J LARYNGOL OTOL, V109, P915 MENA F, 1976, ENDOCRINOLOGY, V99, P445 MITCHELL EA, 1991, BRAIN RES, V538, P289, DOI 10.1016/0006-8993(91)90442-X SHINBA T, 1992, BRAIN RES BULL, V28, P463, DOI 10.1016/0361-9230(92)90048-3 STEINBUSCH HWM, 1981, NEUROSCIENCE, V6, P557, DOI 10.1016/0306-4522(81)90146-9 THOMPSON AM, 1995, J COMP NEUROL, V351, P104, DOI 10.1002/cne.903510110 THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9 Zhang JS, 1996, BRAIN RES BULL, V39, P75, DOI 10.1016/0361-9230(95)02053-5 NR 27 TC 29 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 151 EP 156 DI 10.1016/S0378-5955(98)00031-8 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500014 PM 9606070 ER PT J AU Quint, E Furness, DN Hackney, CM AF Quint, E Furness, DN Hackney, CM TI The effect of explantation and neomycin on hair cells and supporting cells in organotypic cultures of the adult guinea-pig utricle SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on New Directions in Vestibular Research CY JUN 25-27, 1995 CL NEW YORK, NEW YORK SP New York Acad Sci DE hair cell; inner ear; aminoglycoside; ototoxicity; regeneration ID AMINOGLYCOSIDE-INDUCED OTOTOXICITY; MAMMALIAN INNER-EAR; SENSORY EPITHELIA; GENTAMICIN; REGENERATION AB Recent reports suggest that immature hair bundles are observed following aminoglycoside-induced hair-cell loss in the mammalian utricle in vitro as well as in vivo. It is therefore important to document the initial morphological changes associated with both culturing and aminoglycoside application so that degeneration can be clearly distinguished from regeneration. In this study, utricles from adult guinea pigs were maintained in culture for either 3 or 8 days, half being exposed to neomycin for days 2 and 3. They were then processed for microscopical examination and compared with control utricles from animals of the same age. The numbers of hair-cell and supporting-cell nuclei were counted and hair-cell morphology assessed. Bundles were classified as having either stepped (SHB) or unstepped (UHB) stereocilia, and their density determined. The numbers of hair-cell, but not supporting-cell, nuclei declined significantly compared with controls in both untreated and treated explants, the greatest reduction occurring 5 days after neomycin administration. The density of SHBs also declined but there was no significant change in UHB density resulting in a residual population of hair bundles of more immature appearance in both untreated and treated utricles in vitro than In vivo. Although degenerative events such as hair-cell ejection from, or retraction into, the sensory epithelium were observed, no evidence of regeneration was found. (C) 1998 Elsevier Science B.V. C1 Univ Keele, Dept Commun & Neurosci, Keele ST5 5BG, Staffs, England. RP Hackney, CM (reprint author), Univ Keele, Dept Commun & Neurosci, Keele ST5 5BG, Staffs, England. EM coa38@keele.ac.uk RI Orton, Elizabeth/J-6550-2013 CR BAIRD RA, 1993, HEARING RES, V65, P151, DOI 10.1016/0378-5955(93)90210-R DUPONT J, 1993, SCANNING MICROSCOPY, V7, P597 DUVALL A J, 1964, Acta Otolaryngol, V57, P581, DOI 10.3109/00016486409137120 ENGSTROM H, 1972, ACTA OTOLARYNGOL S S, V301 ENGSTROM H, 1958, INT REV CYTOL, V7, P535, DOI 10.1016/S0074-7696(08)62695-9 ENGSTROM HANS, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1356 FLOCK A, 1965, J CELL BIOL, V25, P1, DOI 10.1083/jcb.25.1.1 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 FRESHNEY R.I, 1992, ANIMAL CELL CULTURE, P1 FURNESS DN, 1989, HEARING RES, V38, P95, DOI 10.1016/0378-5955(89)90131-7 GOVAERTS PJ, 1990, TOXICOL LETT, V52, P227, DOI 10.1016/0378-4274(90)90033-I HAWKINS JE, 1975, VESTIBULAR SYSTEM, P321 HAWKINS J. E., 1959, ANN OTOL RHINOL AND LARYNGOL, V68, P698 KOHONEN A, 1965, ACTA OTOLARYNGOL S S, V208, P9 KOTECHA B, 1994, HEARING RES, V73, P173, DOI 10.1016/0378-5955(94)90232-1 Li L., 1995, AUDIT NEUROSCI, V1, P111 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 LIM DJ, 1985, ACTA OTOLARYNGOL S S, V422, P4 LINDEMAN HH, 1967, ACTA OTOLARYNGOL S S, V224, P86 Lindeman H H, 1973, Adv Otorhinolaryngol, V20, P405 Lindeman H H, 1969, Ergeb Anat Entwicklungsgesch, V42, P1 LOWENSTEIN O, 1959, NATURE, V184, P1807, DOI 10.1038/1841807a0 MBIENE JP, 1984, ANAT EMBRYOL, V170, P229, DOI 10.1007/BF00318726 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E ROSENHAL.U, 1972, ANN OTO RHINOL LARYN, V81, P339 ROTHWELL NJ, 1996, J PHYSIOL-LONDON, V493, P102 Sobkowicz HM, 1997, INT J DEV NEUROSCI, V15, P463, DOI 10.1016/S0736-5748(96)00104-9 SOBKOWICZ HM, 1993, ACTA OTOLARYNGOL S S, V502, P1 SOBKOWICZ HM, 1992, EXP NEUROL, V115, P44, DOI 10.1016/0014-4886(92)90219-G SPOENDLIN HH, 1966, ROLE VESTIBULAR ORGA, P99 TANYERI H, 1995, HEARING RES, V89, P194, DOI 10.1016/0378-5955(95)00137-7 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 WATANUKI K, 1971, PRACT-OTO-RHINO-LARY, V33, P304 WERSALL J, 1956, ACTA OTOLARYNGOL S S, V126, P5 WERSALL J, 1971, ARCH KLIN EXP OHR, V200, P1, DOI 10.1007/BF00302186 Wersäll J, 1973, Adv Otorhinolaryngol, V20, P14 Wyllie A H, 1980, Int Rev Cytol, V68, P251 YAN HY, 1991, P ROY SOC B-BIOL SCI, V245, P133, DOI 10.1098/rspb.1991.0099 NR 39 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 157 EP 167 DI 10.1016/S0378-5955(98)00026-4 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500015 PM 9606071 ER PT J AU Fessenden, JD Schacht, J AF Fessenden, JD Schacht, J TI The nitric oxide/cyclic GMP pathway: A potential major regulator of cochlear physiology SO HEARING RESEARCH LA English DT Article DE nitric oxide synthase; soluble guanylate cyclase; protein kinase; blood flow; homeostasis; excitotoxicity ID ACTIVATES GUANYLATE CYCLASE; VASCULAR ENDOTHELIAL-CELLS; NEURONAL NADPH DIAPHORASE; OXIDE SYNTHASE; BLOOD-FLOW; SKELETAL-MUSCLE; RELAXING FACTOR; METHYLENE-BLUE; GUINEA-PIG; RELEASE AB The nitric oxide (NO)/cyclic guanosine monophosphate (GMP) pathway is now recognized as a major regulatory system in cell physiology and tissue homeostasis. This pathway may control processes as diverse as muscle relaxation, gut peristalsis, neurotransmission and hormonal secretion. It is also involved in the development and function of sensory systems such as vision and olfaction. This review will detail the NO/cyclic GMP pathway, evaluate studies in the auditory system and discuss its potential participation in cochlear blood flow, supporting cell physiology and excitotoxicity. (C) 1998 Published by Elsevier Science B.V. C1 Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Schacht, J (reprint author), Univ Michigan, Dept Biol Chem, 1301 E Ann St, Ann Arbor, MI 48109 USA. CR ARNOLD WP, 1977, SCIENCE, V198, P934, DOI 10.1126/science.22126 ARNOLD WP, 1977, P NATL ACAD SCI USA, V74, P3203, DOI 10.1073/pnas.74.8.3203 BATES JN, 1991, BIOCHEM PHARMACOL, V42, pS157, DOI 10.1016/0006-2952(91)90406-U BLATTER LA, 1995, CIRC RES, V76, P922 BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8 BREDT DS, 1990, NATURE, V347, P768, DOI 10.1038/347768a0 BREDT DS, 1994, NEURON, V13, P301, DOI 10.1016/0896-6273(94)90348-4 BREDT DS, 1990, P NATL ACAD SCI USA, V87, P682, DOI 10.1073/pnas.87.2.682 BREDT DS, 1991, NATURE, V351, P714, DOI 10.1038/351714a0 Brenman JE, 1996, CELL, V84, P757, DOI 10.1016/S0092-8674(00)81053-3 Brenman JE, 1996, METHOD ENZYMOL, V269, P119 CHEN C, 1995, HEARING RES, V87, P1, DOI 10.1016/0378-5955(95)00071-B CHO HJ, 1992, J EXP MED, V176, P599, DOI 10.1084/jem.176.2.599 Dais CGD, 1996, HEARING RES, V99, P1 DAWSON TM, 1991, P NATL ACAD SCI USA, V88, P7797, DOI 10.1073/pnas.88.17.7797 DAWSON VL, 1993, J NEUROSCI, V13, P2651 DEVLIN DJ, 1989, TOXICOL APPL PHARM, V99, P354, DOI 10.1016/0041-008X(89)90017-3 DINERMAN JL, 1994, P NATL ACAD SCI USA, V91, P4214, DOI 10.1073/pnas.91.10.4214 Fessenden JD, 1997, J HISTOCHEM CYTOCHEM, V45, P1401 FESSENDEN JD, 1994, BRAIN RES, V668, P9, DOI 10.1016/0006-8993(94)90505-3 FORSTERMANN U, 1995, N-S ARCH PHARMACOL, V352, P351 Franz P, 1996, ACTA OTO-LARYNGOL, V116, P726, DOI 10.3109/00016489609137914 FURCHGOTT RF, 1980, NATURE, V288, P373, DOI 10.1038/288373a0 Gosepath K, 1997, BRAIN RES, V747, P26, DOI 10.1016/S0006-8993(96)01149-3 GROZDANOVIC Z, 1994, ACTA ANAT, V150, P16 GUTH PS, 1977, J NEUROCHEM, V28, P263, DOI 10.1111/j.1471-4159.1977.tb07741.x HAEFLIGER IO, 1994, INVEST OPHTH VIS SCI, V35, P991 HOPE BT, 1991, P NATL ACAD SCI USA, V88, P2811, DOI 10.1073/pnas.88.7.2811 HUANG ZH, 1994, SCIENCE, V265, P1883, DOI 10.1126/science.7522345 KELLEY C, 1988, J MUSCLE RES CELL M, V9, P184, DOI 10.1007/BF01773740 KNOWLES RG, 1992, TRENDS BIOCHEM SCI, V17, P399, DOI 10.1016/0968-0004(92)90008-W KOBZIK L, 1994, NATURE, V372, P546, DOI 10.1038/372546a0 Kong WJ, 1996, HEARING RES, V99, P22, DOI 10.1016/S0378-5955(96)00076-7 KONTOS HA, 1993, STROKE, V24, P427 KURENNY DE, 1994, NEURON, V13, P315, DOI 10.1016/0896-6273(94)90349-2 MALINSKI T, 1992, NATURE, V358, P676, DOI 10.1038/358676a0 MARLETTA MA, 1993, J BIOL CHEM, V268, P12231 MOILANEN E, 1995, ANN MED, V27, P359, DOI 10.3109/07853899509002589 NAKANE M, 1993, FEBS LETT, V316, P175, DOI 10.1016/0014-5793(93)81210-Q Nenov AP, 1997, HEARING RES, V110, P77, DOI 10.1016/S0378-5955(97)00065-8 OHLSEN KA, 1992, HEARING RES, V58, P19, DOI 10.1016/0378-5955(92)90004-7 PALMER RMJ, 1987, NATURE, V327, P524, DOI 10.1038/327524a0 PALMER RMJ, 1988, NATURE, V333, P664, DOI 10.1038/333664a0 POEGGEL G, 1992, J CARDIOVASC PHARM, V20, pS76 POLLOCK JS, 1991, P NATL ACAD SCI USA, V88, P10480, DOI 10.1073/pnas.88.23.10480 PUEL JL, 1991, NEUROSCIENCE, V45, P63, DOI 10.1016/0306-4522(91)90103-U PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 ROBINSON LJ, 1995, J BIOL CHEM, V270, P995 Sadanaga M, 1997, HEARING RES, V112, P106, DOI 10.1016/S0378-5955(97)00121-4 SCHMIDT HHHW, 1994, CELL, V78, P919, DOI 10.1016/0092-8674(94)90267-4 SESSA WC, 1993, CIRC RES, V72, P921 Shaul PW, 1996, J BIOL CHEM, V271, P6518 SHENG H, 1992, BRIT J PHARMACOL, V106, P768 SHIBUKI K, 1991, NATURE, V349, P326, DOI 10.1038/349326a0 SLEPECKY NB, 1996, HDB AUDITORY RES, V9, P44 STONE JR, 1995, BIOCHEMISTRY-US, V34, P14668, DOI 10.1021/bi00045a007 Stone JR, 1996, BIOCHEMISTRY-US, V35, P1093, DOI 10.1021/bi9519718 STUEHR DJ, 1987, J IMMUNOL, V139, P518 THALMANN R, 1979, ACTA OTO-LARYNGOL, V87, P375, DOI 10.3109/00016487909126436 VASS Z, 1995, HEARING RES, V89, P86, DOI 10.1016/0378-5955(95)00127-4 Vass Z, 1996, HEARING RES, V100, P114, DOI 10.1016/0378-5955(96)00102-5 WOLIN MS, 1990, J PHARMACOL EXP THER, V254, P872 WU HH, 1994, SCIENCE, V265, P1593, DOI 10.1126/science.7521541 Yamane H, 1997, HEARING RES, V108, P65, DOI 10.1016/S0378-5955(97)00041-5 ZDANSKI CJ, 1994, HEARING RES, V79, P39, DOI 10.1016/0378-5955(94)90125-2 ZHANG ZG, 1995, J NEUROL SCI, V128, P22, DOI 10.1016/0022-510X(94)00216-B NR 66 TC 76 Z9 82 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1998 VL 118 IS 1-2 BP 168 EP 176 DI 10.1016/S0378-5955(98)00027-6 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZJ313 UT WOS:000073201500016 PM 9606072 ER PT J AU Zhang, DX Li, L Kelly, JB Wu, SH AF Zhang, DX Li, L Kelly, JB Wu, SH TI GABAergic projections from the lateral lemniscus to the inferior colliculus of the rat SO HEARING RESEARCH LA English DT Article DE auditory system; hearing; gamma-aminobutyric acid; fluorescent retrograde tracing; fluorogold; immunocytochemistry; lateral lemniscus; inferior colliculus ID STEM AUDITORY NUCLEI; DORSAL NUCLEUS; BRAIN-STEM; ASCENDING PROJECTIONS; GABA-IMMUNOREACTIVITY; RESPONSE PROPERTIES; BINAURAL RESPONSES; NEURONAL ORGANIZATION; MOUSTACHE BAT; CAT AB The objective of the present study was to provide direct evidence regarding GABAergic projections from the nuclei of the lateral lemniscus to the central nucleus of the inferior colliculus (ICC), and from the ICC to the opposite ICC. Projections of GABAergic neurons in the rat were investigated by a combination of fluorogold (FG) retrograde tracing and GABA immunocytochemistry, FG was first injected into a frequency-defined region (11-13 kHz) in the center of the ICC, and 1-2 weeks was allowed for retrograde transport. Vibratome sections were then cut through the brainstem and stained with GABA antibody. Double-labeling was taken as evidence of GABAergic neurons projecting to the ICC. The results from FG retrograde labeling alone showed that neurons in the dorsal nucleus of the lateral lemniscus (DNLL) bilaterally, in the intermediate and ventral nucleus of the lateral lemniscus (INLL and VNLL) ipsilaterally, and in the ICC contralaterally project to the ICC. GABA immunostaining alone showed substantial numbers of GABA positive neurons in the nuclei of the lateral lemniscus and the inferior colliculus. FG and GABA double-labeled neurons were present in all nuclei of the lateral lemniscus that project to the ICC. The greatest concentration of double-labeled neurons was found bilaterally in the DNLL, suggesting a prominent GABAergic projection from the DNLL to the ICC, The presence of many double-labeled neurons in the ipsilateral INLL and VNLL suggests that there are also GABAergic inputs from the INLL and VNLL to the ICC. No double-labeled neurons were found in the contralateral ICC, which suggests the possibility of a prominent non-GABAergic projection. (C) 1998 Elsevier Science B.V. C1 Carleton Univ, Dept Psychol, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. RP Wu, SH (reprint author), Carleton Univ, Dept Psychol, Lab Sensory Neurosci, Life Sci Bldg,1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada. CR ADAMS JC, 1987, ASS RES OTOLARYNGOL, V10, P63 ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 AITKIN LM, 1984, J COMP NEUROL, V228, P210, DOI 10.1002/cne.902280207 BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 CLOPTON BM, 1973, BRAIN RES, V56, P355, DOI 10.1016/0006-8993(73)90352-1 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K GASBARRI A, 1994, BRAIN RES, V668, P71, DOI 10.1016/0006-8993(94)90512-6 GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E González Hernández T H, 1986, Brain Res, V368, P268, DOI 10.1016/0006-8993(86)90571-8 HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P577 HUTSON KA, 1991, J COMP NEUROL, V312, P105, DOI 10.1002/cne.903120109 ICHIKAWA H, 1993, BRAIN RES, V611, P67, DOI 10.1016/0006-8993(93)91778-Q Ito M, 1996, J NEUROPHYSIOL, V76, P3493 Kelly JB, 1997, HEARING RES, V104, P112, DOI 10.1016/S0378-5955(96)00182-7 KELLY JB, 1991, HEARING RES, V56, P273, DOI 10.1016/0378-5955(91)90177-B Kelly JB, 1996, BEHAV NEUROSCI, V110, P1445, DOI 10.1037//0735-7044.110.6.1445 Kidd SA, 1996, J NEUROSCI, V16, P7390 KUDO M, 1981, BRAIN RES, V221, P57, DOI 10.1016/0006-8993(81)91063-5 LABELLE RE, 1997, ASS RES OT ABSTR, V20, P189 LI L, 1992, J NEUROSCI, V12, P4530 Li L., 1996, Society for Neuroscience Abstracts, V22, P888 LI L, 1992, HEARING RES, V61, P73, DOI 10.1016/0378-5955(92)90038-O MAJOROSSY K, 1994, ACTA BIOL HUNG, V45, P347 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MERCHAN MA, 1994, J COMP NEUROL, V342, P259, DOI 10.1002/cne.903420209 MOORE DR, 1988, J COMP NEUROL, V269, P342, DOI 10.1002/cne.902690303 MOORE JK, 1987, J COMP NEUROL, V260, P157, DOI 10.1002/cne.902600202 NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203 OLIVER DL, 1989, J NEUROSCI, V9, P967 OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 PARK TJ, 1993, J NEUROSCI, V13, P2050 PARK TJ, 1993, J NEUROSCI, V13, P5172 Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd Peruzzi D, 1997, J NEUROSCI, V17, P3766 Peruzzi D., 1996, Society for Neuroscience Abstracts, V22, P1069 PEYRET D, 1986, HEARING RES, V23, P115, DOI 10.1016/0378-5955(86)90008-0 RIBAK CE, 1986, J NEUROCYTOL, V15, P421, DOI 10.1007/BF01611726 ROBERTS RC, 1987, J NEUROCYTOL, V16, P333, DOI 10.1007/BF01611345 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 ROCKEL AJ, 1973, J COMP NEUROL, V147, P11, DOI 10.1002/cne.901470103 ROSS LS, 1988, J COMP NEUROL, V270, P488, DOI 10.1002/cne.902700403 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B Saint Marie R. L., 1993, Society for Neuroscience Abstracts, V19, P1204 SaintMarie RL, 1996, J COMP NEUROL, V373, P255, DOI 10.1002/(SICI)1096-9861(19960916)373:2<255::AID-CNE8>3.0.CO;2-2 SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308 SHNEIDERMAN A, 1993, J NEUROCHEM, V60, P72, DOI 10.1111/j.1471-4159.1993.tb05824.x SHNEIDERMAN A, 1989, J COMP NEUROL, V286, P28, DOI 10.1002/cne.902860103 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 SPANGLER KM, 1985, J COMP NEUROL, V238, P249, DOI 10.1002/cne.902380302 SYKA J, 1981, NEURONAL MECH HEARIN, P137 TANAKA K, 1985, BRAIN RES, V341, P252, DOI 10.1016/0006-8993(85)91064-9 THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6 VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205 WHITLEY JM, 1984, J COMP NEUROL, V229, P257, DOI 10.1002/cne.902290210 Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005 WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302 WU SH, 1995, J NEUROPHYSIOL, V73, P780 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103 NR 66 TC 63 Z9 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 1 EP 12 DI 10.1016/S0378-5955(97)00202-5 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300001 PM 9557973 ER PT J AU Zheng, JL Lewis, AK Gao, WQ AF Zheng, JL Lewis, AK Gao, WQ TI Establishment of conditionally immortalized rat utricular epithelial cell lines using a retrovirus-mediated gene transfer technique SO HEARING RESEARCH LA English DT Article DE immortalization; supporting cell; hair cell; differentiation; proliferation; vestibular; inner ear ID EAR SENSORY EPITHELIA; INNER-EAR; ACOUSTIC TRAUMA; HAIR-CELLS; REGENERATIVE PROLIFERATION; CHICK COCHLEA; GROWTH-FACTOR; DIFFERENTIATION; IDENTIFICATION; NEURONS AB Supporting cells in the inner ear sensory epithelium are most likely hair cell progenitors. In an effort to establish an in vitro model system of hair cell differentiation, we developed immortalized epithelial cell lines by transferring the tsA58 allele of the SV40 large T antigen oncogene into neonatal rat utricular supporting cells using a retrovirus. The established cell lines have been stably maintained continuously for more than 25 passages and display many features similar to primary supporting cells. They grow in patches and assume a polygonal morphology. Immunocytochemical characterization of the established cell lines reveals that these cells can be labeled by epithelial cell markers, but not by fibroblast, glial or neuronal markers. The immortalized cells grow rapidly in serum medium at permissive temperature, but the majority cease proliferation when cultured in serum free medium at nonpermissive temperature. These cells respond to mitogenic growth factors including bFGF, EGF and TGF-alpha and express growth factor receptors in a manner similar to the primary supporting cells. Furthermore, we find that the cells undergo a morphological differentiation when cultured in serum free medium at non-permissive temperature in the presence of bFGF. Under these conditions, the cells shrink in size, become elongated, and express early hair cell markers such as calretinin and calmodulin. The utricular epithelial cell line we have established may potentially provide an invaluable system for studying hair cell differentiation and regeneration. (C) 1998 Elsevier Science B.V. C1 Genentech Inc, Dept Neurosci, S San Francisco, CA 94080 USA. RP Gao, WQ (reprint author), Genentech Inc, Dept Neurosci, MS 72, S San Francisco, CA 94080 USA. EM gao@gene.com CR BALAK KJ, 1990, J NEUROSCI, V10, P2505 Barald KF, 1997, INT J DEV NEUROSCI, V15, P523, DOI 10.1016/S0736-5748(96)00108-6 CEPKO C, 1990, NEUROMETHODS, V16 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 CORWIN JT, 1995, ASS RES OT ABSTR, V18, P87 DECHESNE CJ, 1994, J COMP NEUROL, V346, P517, DOI 10.1002/cne.903460405 DICICCOBLOOM E, 1990, J CELL BIOL, V110, P2073, DOI 10.1083/jcb.110.6.2073 Fekete DM, 1997, DEVELOPMENT, V124, P2451 Gao W.-Q., 1996, Society for Neuroscience Abstracts, V22, P1620 GAO WQ, 1991, NEURON, V6, P705, DOI 10.1016/0896-6273(91)90168-Y GAO WQ, 1995, J NEUROSCI, V15, P2656 GAO WQ, 1994, DEVELOPMENT, V120, P1059 GHOSH A, 1995, NEURON, V15, P89, DOI 10.1016/0896-6273(95)90067-5 Gu R., 1996, Society for Neuroscience Abstracts, V22, P520 HASHINO E, 1992, HEARING RES, V59, P46, DOI 10.1016/0378-5955(92)90101-R HASHINO E, 1993, J CELL SCI, V105, P23 Holley MC, 1997, INT J DEV NEUROSCI, V15, P541, DOI 10.1016/S0736-5748(96)00109-8 Holley MC, 1997, AUDIOL NEURO-OTOL, V2, P25 Jones JE, 1996, J NEUROSCI, V16, P649 KALINEC F, 1996, ASS RES OT ABSTR, V19, P145 LAMBERT PR, 1994, LARYNGOSCOPE, V104, P701 Lee KH, 1996, HEARING RES, V94, P1, DOI 10.1016/0378-5955(95)00220-0 LENDAHL U, 1990, TRENDS NEUROSCI, V13, P132, DOI 10.1016/0166-2236(90)90004-T RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 RENFRANZ PJ, 1991, CELL, V66, P713, DOI 10.1016/0092-8674(91)90116-G RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 SNYDER EY, 1992, CELL, V68, P33, DOI 10.1016/0092-8674(92)90204-P STONE JS, 1994, J COMP NEUROL, V341, P50, DOI 10.1002/cne.903410106 Stone JS, 1996, J NEUROSCI, V16, P6157 VICARIOABEJON C, 1995, NEURON, V15, P105, DOI 10.1016/0896-6273(95)90068-3 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Warchol ME, 1996, J NEUROSCI, V16, P5466 WEISLEDER P, 1992, EXP NEUROL, V115, P2, DOI 10.1016/0014-4886(92)90211-8 Yamane H, 1995, Acta Otolaryngol Suppl, V520 Pt 1, P174 YAMASHITA H, 1995, P NATL ACAD SCI USA, V92, P3152, DOI 10.1073/pnas.92.8.3152 Zheng JL, 1997, J NEUROSCI, V17, P8270 Zheng JL, 1997, J NEUROSCI, V17, P216 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x ZHENG JL, 1995, J NEUROSCI, V15, P5079 NR 39 TC 24 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 13 EP 23 DI 10.1016/S0378-5955(97)00205-0 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300002 PM 9557974 ER PT J AU Huang, JM Berlin, CI Lin, ST Keats, BJB AF Huang, JM Berlin, CI Lin, ST Keats, BJB TI Low intensities and 1.3 ratio produce distortion product otoacoustic emissions which are larger in heterozygous (+/dn) than homozygous (+/+) mice SO HEARING RESEARCH LA English DT Article DE curly-tail mouse; deafness mouse; distortion product otoacoustic emission; dn gene carrier ID DEAFNESS DN/DN MICE; 2 DISCRETE SOURCES; PHYSIOLOGICAL VULNERABILITY; GENETIC DEAFNESS; HEARING-LOSS; INNER-EAR; CARRIERS; RABBIT; MOUSE; DEGENERATION AB The f(2)/f(1) frequency ratio of 1.3 in combination with stimulus levels of L-1/L-2 = 50/60 and 50/50 dB SPL produced a higher level of distortion product otoacoustic emissions (DPOAE) in the heterozygous (+/dn) mice than in the homozygous (+/+) mice. These results suggest that the dn gene carriers have a unique cochlear trait which may be related to the dn gene locus and expressed via a frequency-and intensity-dependent DPOAE function. (C) 1998 Published by Elsevier Science B.V. C1 Louisiana State Univ, Med Ctr, Kresge Hearing Res Lab S, Dept Otorhinolaryngol & Biocommun, New Orleans, LA 70112 USA. Louisiana State Univ, Med Ctr, Dept Biometry & Genet, New Orleans, LA 70112 USA. RP Huang, JM (reprint author), Louisiana State Univ, Med Ctr, Kresge Hearing Res Lab S, Dept Otorhinolaryngol & Biocommun, 2020 Gravier St,Suite A, New Orleans, LA 70112 USA. CR ALLEN JB, 1992, USER MANUAL CUBDIS D ANDERSON H, 1968, ACTA OTOLARYNGOL STO, V65, P534 BOCK GR, 1983, ACTA OTO-LARYNGOL, V96, P39, DOI 10.3109/00016488309132873 Cohen M, 1996, ACTA OTO-LARYNGOL, V116, P521, DOI 10.3109/00016489609137883 CREMERS CWRJ, 1991, ANN NY ACAD SCI, V630, P191, DOI 10.1111/j.1749-6632.1991.tb19587.x DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DEOL M. S., 1958, HEREDITY, V12, P463, DOI 10.1038/hdy.1958.46 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 Huang JM, 1996, HEARING RES, V98, P18, DOI 10.1016/0378-5955(96)00041-X HUANG JM, 1995, HEARING RES, V88, P61, DOI 10.1016/0378-5955(95)00099-P KEATS BJB, 1996, HAIR CELLS HEARING A, P87 KEATS BJB, 1995, MAMM GENOME, V6, P8, DOI 10.1007/BF00350886 KEMP DT, 1984, HEARING RES, V13, P39, DOI 10.1016/0378-5955(84)90093-5 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KIRSCH JP, 1993, HEARING RES, V67, P51, DOI 10.1016/0378-5955(93)90231-O LASKY RE, 1995, HEARING RES, V89, P35, DOI 10.1016/0378-5955(95)00120-1 LIU XZ, 1994, ANN OTO RHINOL LARYN, V103, P428 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 MARRES HAM, 1989, ARCH OTOLARYNGOL, V115, P591 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 POPELKA GR, 1995, EAR HEARING, V16, P159, DOI 10.1097/00003446-199504000-00003 PUJOL R, 1983, HEARING RES, V12, P57, DOI 10.1016/0378-5955(83)90118-1 STEEL GP, 1983, ACTA OTOLARYNGOL, V96, P39 STEEL KP, 1980, NATURE, V288, P159, DOI 10.1038/288159a0 Wagenaar M, 1996, AM J OTOL, V17, P853 WEBSTER DB, 1985, HEARING RES, V18, P19, DOI 10.1016/0378-5955(85)90107-8 WEBSTER DB, 1992, EXP NEUROL, V115, P27, DOI 10.1016/0014-4886(92)90216-D WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 NR 30 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 24 EP 30 DI 10.1016/S0378-5955(98)00005-7 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300003 PM 9557975 ER PT J AU Jacono, AA Hu, BH Kopke, RD Henderson, D Van de Water, TR Steinman, HM AF Jacono, AA Hu, BH Kopke, RD Henderson, D Van de Water, TR Steinman, HM TI Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla SO HEARING RESEARCH LA English DT Article DE cochlea; noise-induced hearing loss; antioxidant enzyme; stria vascularis; organ of Corti; glutathione; catalase; chinchilla; sound conditioning; acquired resistance to noise ID CISPLATIN OTOTOXICITY; FREE-RADICALS; HAIR-CELLS; GLUTATHIONE; SYSTEM; PROTECTION; MECHANISM; DEFENSE; DAMAGE AB Exposure to low level noise Frier to a high level exposure reduces noise-induced hearing loss in mammals. This phenomenon is known as sound conditioning or 'toughening'. Reactive oxygen intermediates have been implicated in noise-induced cochlear damage. To evaluate if in situ antioxidant processes may play a role in the toughening phenomenon initiated by low level noise exposure we analyzed glutathione reductase, gamma-glutamyl cysteine synthetase, and catalase in stria vascularis and organ of Corti fractions from cochleae of chinchillas exposed to a sound conditioning paradigm. Chinchillas were either (A) kept in quiet cages (control), (B) exposed to conditioning noise of a 0.5 kHz octave band (90 dB for 6 h/day for 10 days), (C) exposed to high level noise (105 dB for 4 h) or (D) exposed to conditioning noise (B) followed by exposure to the higher level noise (C). Each of the noise exposure conditions (B, C, D) induced changes in the levels of these three antioxidant enzymes. The enzyme-specific activity data for the four subject groups support the following two hypotheses. (1) Changes in glutathione reductase, gamma-glutamyl cysteine synthetase, and catalase play a role in attenuating hearing loss associated with sound conditioning followed by high level noise. (2) Hair cells in the organ of Corti an protected from noise-induced damage by increasing stria vascularis levels of catalase, a hydrogen peroxide scavenging enzyme, and of enzymes involved in maintaining glutathione in the reduced state. The model formulated by these hypotheses suggests that agents that protect or augment the glutathione system in the cochlea may be protective against noise-induced hearing loss. (C) 1998 Elsevier Science B.V. C1 Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA. Yeshiva Univ Albert Einstein Coll Med, Dept Otolaryngol, Bronx, NY 10461 USA. Yeshiva Univ Albert Einstein Coll Med, Dept Neurosci, Bronx, NY 10461 USA. SUNY Buffalo, Hearing Res Lab, Buffalo, NY 14214 USA. RP Steinman, HM (reprint author), Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA. EM steinman@aecom.yu.edu CR AEBI H, 1984, METHOD ENZYMOL, V105, P121 Altschuler RA, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P202 ASHER DL, 1981, OTOLARYNG HEAD NECK, V89, P822 BOBBIN RP, 1995, HEARING RES, V87, P49, DOI 10.1016/0378-5955(95)00077-H CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 Canlon B, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P118 CARLBERG I, 1985, METHOD ENZYMOL, V113, P484 ELBARBARY A, 1993, HEARING RES, V71, P80 FRANKLIN DJ, 1991, HEARING RES, V53, P185, DOI 10.1016/0378-5955(91)90053-C GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 Halliwell B, 1996, ANNU REV NUTR, V16, P33, DOI 10.1146/annurev.nutr.16.1.33 Henderson D, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P143 HOFFMAN DW, 1988, ANN OTO RHINOL LARYN, V97, P36 IKEDA K, 1993, ACTA OTO-LARYNGOL, V113, P137, DOI 10.3109/00016489309135781 Jacob Robert A., 1996, American Journal of Clinical Nutrition, V63, p985S Knight JA, 1997, ANN CLIN LAB SCI, V27, P11 LANDI L, 1987, BIOCHIM BIOPHYS ACTA, V902, P200, DOI 10.1016/0005-2736(87)90296-3 MAGGIRWAR SB, 1994, BIOCHEM BIOPH RES CO, V201, P508, DOI 10.1006/bbrc.1994.1731 MALGRANGE B, 1997, 20 MIDW M ASS RES OT, P5 MCFADDEN S, 1996, 19 MIDW M ASS RES OT, P35 Miller Josef M., 1996, P95 PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 SEELIG G, 1995, METHOD ENZYMOL, V113, P379 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Stohs S J, 1995, J Basic Clin Physiol Pharmacol, V6, P205 Subramaniam M, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P128 Usami S, 1996, BRAIN RES, V743, P337, DOI 10.1016/S0006-8993(96)01090-6 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 ZELCK U, 1993, EUR ARCH OTO-RHINO-L, V250, P218 NR 34 TC 105 Z9 116 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 31 EP 38 DI 10.1016/S0378-5955(97)00214-1 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300004 PM 9557976 ER PT J AU Rhode, WS AF Rhode, WS TI Neural encoding of single-formant stimuli in the ventral cochlear nucleus of the chinchilla SO HEARING RESEARCH LA English DT Article DE cochlear nucleus; single formant; vowel; physiology ID AUDITORY-NERVE FIBERS; STEADY-STATE VOWELS; DISCHARGE PATTERNS; AMPLITUDE-MODULATION; BACKGROUND-NOISE; COMPLEX TONES; REPRESENTATION; RESPONSES; PITCH; CAT AB Responses of the principal unit types in the ventral cochlear nucleus of the chinchilla were studied with a single-formant stimulus set that covered fundamental frequency (f0) from 100 Hz to 200 Hz and formant center frequency (F1) from 256 to 782 Hz. Temporal coding for f0 and Fl was explored for 95 stimulus combinations of f0 (n = 5) and F1 (n = 19) in primarylike, onset and chopper unit categories. Several analyses that explored temporal coding were employed including: autocorrelation, interspike interval analysis, and synchronization to each harmonic of f0. In general, the representation of f0 is better in onset and chopper units than in primarylike units. Nearly all units in the cochlear nucleus showed a gain in phase locking to the envelope (f0) of the single-formant stimulus relative to the auditory nerve. The fundamental is represented directly in neural discharges of units in the cochlear nucleus with an interval code (also Cariani and Delgutte, 1996; Rhode, 1995). The formant is represented in the temporal domain in primarylike units, though some chopper and onset units also possess the ability to code Fl through discharge synchrony. Onset-I units, which are associated with the octopus cells, exhibited the strongest phase locking to f0 of any unit types studied. The representation of f0 and Fl in the temporal domain is weak or absent in some units. All-order-interspike interval distributions computed for-populations of units show preservation of temporal coding for both f0 and F1. Results are in agreement with earlier amplitude modulation studies that showed nearly all cochlear nucleus unit types phase lock to the signal envelope better than auditory nerve fibers over a considerable range of signal amplitudes. (C) 1998 Published by Elsevier Science B.V. C1 Univ Wisconsin, Dept Neurophysiol, Madison, WI 53706 USA. RP Rhode, WS (reprint author), Univ Wisconsin, Dept Neurophysiol, 1300 Univ Ave, Madison, WI 53706 USA. EM rhode@neurophys.wisc.edu CR ASSMANN PF, 1987, J ACOUST SOC AM, V81, P520, DOI 10.1121/1.394918 ASSMANN PF, 1990, J ACOUST SOC AM, V88, P680, DOI 10.1121/1.399772 BLACKBURN CC, 1989, J NEUROPHYSIOL, V64, P606 BLACKBURN CC, 1990, J NEUROPHYSIOL, V63, P11914 Bourk TR, 1976, THESIS MIT CAMBRIDGE Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 CARNEY LH, 1994, HEARING RES, V76, P31, DOI 10.1016/0378-5955(94)90084-1 CARR CE, 1990, J NEUROSCI, V10, P3227 CASPARY DM, 1977, EXP NEUROL, V54, P414, DOI 10.1016/0014-4886(77)90246-1 Conley RA, 1995, J ACOUST SOC AM, V98, P3223, DOI 10.1121/1.413812 COOPER NP, 1993, J NEUROPHYSIOL, V70, P370 Delgutte B., 1997, HDB PHONETIC SCI, P507 DELGUTTE B, 1980, J ACOUST SOC AM, V68, P843, DOI 10.1121/1.384824 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P879, DOI 10.1121/1.390597 DENG L, 1987, J ACOUST SOC AM, V82, P1989, DOI 10.1121/1.395643 EVANS EF, 1978, AUDIOLOGY, V17, P367 FRISINA RD, 1985, EXP BRAIN RES, V60, P417 Frisina RD, 1996, J ACOUST SOC AM, V99, P475, DOI 10.1121/1.414559 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z FRISINA RD, 1994, EXP BRAIN RES, V102, P160 GHITZA O, 1992, ADV SPEECH SIGNAL PR, P453 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GREENBERG S, 1986, AUDITORY FREQUENCY S, P241 Greenberg S, 1987, AUDITORY PROCESSING, P225 GREENBERG S, 1997, DIVERSITY HEARING HORST JW, 1986, J ACOUST SOC AM, V79, P398, DOI 10.1121/1.393528 JAVEL E, 1980, J ACOUST SOC AM, V68, P133, DOI 10.1121/1.384639 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1037 KIM DO, 1988, BASIC ISSUES HEARING, P252 KIM DO, 1990, HEARING RES, V45, P95, DOI 10.1016/0378-5955(90)90186-S KIM DO, 1986, AUDITORY FREQUENCY S, P281 Mardia K. V., 1972, STAT DIRECTIONAL DAT MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 Miller J. D, 1977, RECOGNITION COMPLEX, P49 MILLER MI, 1984, HEARING RES, V14, P257, DOI 10.1016/0378-5955(84)90054-6 MOREST DK, 1990, J COMP NEUROL, V300, P230, DOI 10.1002/cne.903000207 PALMER AR, 1986, J ACOUST SOC AM, V79, P100, DOI 10.1121/1.393633 PALMER AR, 1992, ADV BIOSCI, V83, P231 RHODE WS, 1994, HEARING RES, V77, P43, DOI 10.1016/0378-5955(94)90252-6 RHODE WS, 1986, J NEUROPHYSIOL, V56, P262 Rhode WS, 1996, AUDIT NEUROSCI, V3, P101 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 RHODE WS, 1995, J ACOUST SOC AM, V97, P2414, DOI 10.1121/1.411963 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 RODET X, 1980, SPOKEN LANGUAGE GENE, P429 Rose J. E., 1980, NEURAL MECH BEHAV, P1 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 ROSOWSKI JJ, 1991, J ACOUST SOC AM, V90, P124, DOI 10.1121/1.401306 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SACHS MB, 1996, P WORKSH AUD BAS SPE SACHS MB, 1996, COCHLEAR NUCLEUS STR, P231 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SHAMMA SA, 1985, J ACOUST SOC AM, V78, P1612, DOI 10.1121/1.392799 SINEX DG, 1983, J ACOUST SOC AM, V73, P602, DOI 10.1121/1.389007 SINEX DG, 1988, J ACOUST SOC AM, V83, P1817, DOI 10.1121/1.396516 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 SRULOVICZ P, 1983, J ACOUST SOC AM, V73, P1266, DOI 10.1121/1.389275 VOIGT HF, 1982, HEARING RES, V8, P49, DOI 10.1016/0378-5955(82)90033-8 WANG X, 1993, J NEUROPHYSIOL, V71, P59 WANG XQ, 1993, J NEUROPHYSIOL, V70, P1054 Winslow R. L., 1987, AUDITORY PROCESSING, P212 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 ZWICKER E, 1980, J ACOUST SOC AM, V68, P1523, DOI 10.1121/1.385079 NR 67 TC 25 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 39 EP 56 DI 10.1016/S0378-5955(98)00002-1 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300005 PM 9557977 ER PT J AU Schilling, JR Miller, RL Sachs, MB Young, ED AF Schilling, JR Miller, RL Sachs, MB Young, ED TI Frequency-shaped amplification changes the neural representation of speech with noise-induced hearing loss SO HEARING RESEARCH LA English DT Article DE noise-induced hearing loss; auditory nerve; speech; hearing aid ID CHRONIC COCHLEAR PATHOLOGY; AUDITORY-NERVE FIBERS; HAIR CELL LESIONS; VOWEL-LIKE SOUNDS; SPECTRAL CONTRAST; IMPAIRED LISTENERS; TUNING CURVES; INTERNAL REPRESENTATION; STEREOCILIA DAMAGE; ACOUSTIC TRAUMA AB Temporal response patterns of single auditory nerve fibers were used to characterize the effects of a common hearing-aid processing scheme, frequency-shaped amplification, on the encoding of the vowel /epsilon/ in cats with a permanent noise-induced hearing loss. These responses were contrasted with responses to unmodified stimuli in control and impaired cats. Noise-induced hearing loss leads to a degraded representation of the formant frequencies, in which strong phase locking to the formants is not observed in fibers with best frequencies (BFs) near the formants and there is a wide spread of formant phase locking to fibers with higher BFs (Miller et al., 1997a,b). Frequency shaping effectively limits the upward spread of locking to Fl, which improves the representation of higher frequency components of the vowel. However, it also increases phase locking to harmonics in the trough between the formants, which decreases the contrast between Fl and the trough in the neural representation. Moreover, it does not prevent the spread to higher BFs of responses to the second and third formants. The results show a beneficial effect of frequency shaping, but also show that interactions between particular gain functions and particular spectral shapes can result in unwanted distortions of the neural representation of the signal. (C) 1998 Published by Elsevier Science B.V. C1 Johns Hopkins Univ, Sch Med, Ctr Hearing Sci, Baltimore, MD 21205 USA. Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA. RP Young, ED (reprint author), Johns Hopkins Univ, Sch Med, Ctr Hearing Sci, 505 Traylor Bldg,720 Rutland Ave, Baltimore, MD 21205 USA. EM eyoung@bme.jhu.edu CR BACON SP, 1982, J SPEECH HEAR RES, V25, P339 BAER T, 1993, J REHABIL RES DEV, V30, P49 BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176 DALLOS P, 1990, J NEUROPHYSIOL, P242 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 Dallos P, 1980, PSYCHOPHYSICAL PHYSL, P242 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P879, DOI 10.1121/1.390597 FRANCK KR, 1994, THESIS J HOPKINS U B GEISLER CD, 1989, J ACOUST SOC AM, V86, P2192, DOI 10.1121/1.398480 GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374 HUMES LE, 1987, J ACOUST SOC AM, V81, P765, DOI 10.1121/1.394845 KIANG NYS, 1976, ANN OTO RHINOL LARYN, V85, P752 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 LEEK MR, 1987, J ACOUST SOC AM, V81, P148, DOI 10.1121/1.395024 Leek MR, 1996, J ACOUST SOC AM, V100, P1796, DOI 10.1121/1.415999 LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156 LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 LIBERMAN MC, 1987, HEARING RES, V26, P65, DOI 10.1016/0378-5955(87)90036-0 LYBARGER SF, 1978, J AM AUDITORY SOC, V3, P258 May BJ, 1996, AUDIT NEUROSCI, V3, P135 Miller J. D., 1963, ACTA OTO-LARYNGOL, V176, P1 MILLER RL, 1996, NEUR ABSTR, V22, P1822 MILLER RL, 1997, J ACOUST SOC AM, V101, P36052 MILLER RL, 1997, ABSTR AROI, V20, P202 MOORE B C J, 1985, British Journal of Audiology, V19, P175, DOI 10.3109/03005368509078972 MOORE BCJ, 1986, J ACOUST SOC AM, V80, P93, DOI 10.1121/1.394087 PALMER AR, 1993, PROG BRAIN RES, V97, P107 PLOMP R, 1978, J ACOUST SOC AM, V63, P533, DOI 10.1121/1.381753 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 ROBERTSON D, 1979, J ACOUST SOC AM, V66, P466, DOI 10.1121/1.383097 ROBERTSON D, 1982, HEARING RES, V7, P55, DOI 10.1016/0378-5955(82)90081-8 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SCHILLING JR, 1995, THESIS J HOPKINS U B SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1390 SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1367 SIDWELL A, 1985, J ACOUST SOC AM, V78, P495, DOI 10.1121/1.392471 SOKOLICH WG, 1977, J ACOUST SOC AM, V62, pS12, DOI 10.1121/1.2016024 STONE MA, 1992, J REHABIL RES DEV, V29, P39, DOI 10.1682/JRRD.1992.04.0039 SUMMERFIELD Q, 1985, SPEECH COMMUN, V4, P213, DOI 10.1016/0167-6393(85)90048-2 SUMMERS V, 1994, J ACOUST SOC AM, V95, P3518, DOI 10.1121/1.409969 TERKEURS M, 1992, J ACOUST SOC AM, V91, P2872, DOI 10.1121/1.402950 TYLER RS, 1984, J ACOUST SOC AM, V76, P1363, DOI 10.1121/1.391452 VANTASELL DJ, 1987, J ACOUST SOC AM, V81, P1586, DOI 10.1121/1.394511 Versnel H, 1997, J ACOUST SOC AM, V101, P993, DOI 10.1121/1.418057 VILLCHUR E, 1973, J ACOUST SOC AM, V53, P1646, DOI 10.1121/1.1913514 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 ZUREK PM, 1987, J ACOUST SOC AM, V82, P1548, DOI 10.1121/1.395145 NR 51 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 57 EP 70 DI 10.1016/S0378-5955(98)00003-3 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300006 PM 9557978 ER PT J AU Vlajkovic, SM Thorne, PR Housley, GD Munoz, DJB Kendrick, IS AF Vlajkovic, SM Thorne, PR Housley, GD Munoz, DJB Kendrick, IS TI The pharmacology and kinetics of ecto-nucleotidases in the perilymphatic compartment of the guinea-pig cochlea SO HEARING RESEARCH LA English DT Article DE ecto-nucleotidase; ecto-ATPase; ecto-ATP diphosphohydrolase; ecto-5 '-nucleotidase; adenine nucleotide; cochlea ID EXTRACELLULAR ADENINE-NUCLEOTIDES; SMOOTH-MUSCLE CELLS; ADENOSINE 5'-TRIPHOSPHATE; ATP-DIPHOSPHOHYDROLASE; SKELETAL-MUSCLE; HAIR-CELLS; ECTONUCLEOTIDASE; TRIPHOSPHATASE; DEGRADATION; METABOLISM AB This study investigated the characteristics of ecto-nucleotidases in tissues lining the perilymphatic cavity of the cochlea. The perilymphatic space of the isolated guinea-pig cochlea was maintained with oxygenated artificial perilymph (AP) perfused at a rate of 100 mu l/min. Following AP perfusion, either adenosine triphosphate (ATP), adenosine diphosphate (ADP) or adenosine monophosphate (AMP) was introduced into scala tympani, and perfusion arrested for 2 min for substrate incubation with cochlear tissues. Effluent collected from the cochlea was assayed for adenine nucleotide metabolites by reverse-phase high-performance liquid chromatography (RP-HPLC). Extracellular ATP and ADP were rapidly and sequentially hydrolysed to adenosine by Ca2+/Mg2+-dependent and Ca2+/Mg2+-independent enzymatic mechanisms. The degradation of extracellular ATP, ADP and AMP occurred in the presence of intact tissues, as demonstrated by the limited lactate dehydrogenase (LDH) activity (0-2.2%). ATPase activity was not affected by inhibitors of intracellular ATPases (oligomycin, ouabain, N-ethylmaleimide, 100 mu M NaN3) and non-specific alkaline phosphatase (beta-glycerophosphate). The hydrolysis of ATP was inhibited by 5 mM NaN3, suramin, ATP gamma S, La3+ and CTP, the hydrolysis of ADP by beta,gamma-imidoATP, and AMP degradation by alpha,beta-methyleneADP. Ecto-ATPase, ecto-ADPase and ecto-5'-nucleotidase followed Michaelis-Menten hyperbolic kinetics, with estimated K-m values of 2282 mu M, 6619 mu M and 881 mu M, respectively. Our results indicate the presence of considerable ecto-nucleotidase activity within scala tympani of the cochlea, and support its role as the terminating mechanism for P2 receptor signalling known to occur in the cochlea. A competition plot is consistent with ATP and ADP degradation mediated by the same enzyme (ecto-ADP diphosphohydrolase) with two different catalytic sites. (C) 1998 Elsevier Science B.V. C1 Univ Auckland, Dept Physiol, Auckland, New Zealand. RP Thorne, PR (reprint author), Univ Auckland, Dept Physiol, Private Bag 92019, Auckland, New Zealand. CR AIRAS L, 1995, J EXP MED, V182, P1603, DOI 10.1084/jem.182.5.1603 BROOKS SPJ, 1992, BIOTECHNIQUES, V13, P906 BRYANT GM, 1987, HEARING RES, V30, P231, DOI 10.1016/0378-5955(87)90139-0 CARRAWAY CAC, 1980, BIOCHEM J, V191, P45 CHEVILLARD C, 1993, BIOCHEM J, V289, P599 CUNHA RA, 1991, EUR J PHARMACOL, V197, P83, DOI 10.1016/0014-2999(91)90368-Z Fillippini A., 1990, J BIOL CHEM, V265, P334 GORDON EL, 1989, J BIOL CHEM, V264, P18986 GORDON JL, 1986, BIOCHEM J, V233, P309 Handa M, 1996, BIOCHEM BIOPH RES CO, V218, P916, DOI 10.1006/bbrc.1996.0162 HOLLISS DG, 1984, ANAL LETT PT B, V17, P2047 Housley GD, 1997, AUDIOL NEURO-OTOL, V2, P92 HOUSLEY GD, 1997, MOL NEUROBIOL, V16, P21 JAMES S, 1993, J NEUROCHEM, V60, P219, DOI 10.1111/j.1471-4159.1993.tb05841.x Kirley TL, 1997, J BIOL CHEM, V272, P1076 KOBAYASHI T, 1993, ACTA OTO-LARYNGOL, V113, P507, DOI 10.3109/00016489309135854 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 MANERY JF, 1984, CAN J BIOCHEM CELL B, V62, P1015 MEGHJI P, 1992, AM J PHYSIOL, V263, pH40 MEGHJI P, 1995, LIFE SCI, V57, P763, DOI 10.1016/0024-3205(95)02004-3 MOCKETT BG, 1994, J NEUROSCI, V14, P6992 MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 NAGY AK, 1986, J NEUROCHEM, V47, P976 NAKAGAWA T, 1990, J NEUROPHYSIOL, V63, P1068 PEARSON JD, 1985, METHOD PHARMACOL, V6, P83 Picher M, 1996, BIOCHEM PHARMACOL, V51, P1453, DOI 10.1016/0006-2952(96)00086-X PLESNER L, 1991, BIOCHIM BIOPHYS ACTA, V1067, P191, DOI 10.1016/0005-2736(91)90043-8 PLESNER L, 1995, INT REV CYTOL, V158, P141 RAMKUMAR V, 1995, MOL BIOL HEARING DEA, V166 RAMKUMAR V, 1995, TRENDS PHARMACOL SCI, V16, P283, DOI 10.1016/S0165-6147(00)89051-3 SLAKEY LL, 1990, ANN NY ACAD SCI, V603, P366 STILES GL, 1992, J BIOL CHEM, V267, P6451 Thorne PR, 1996, SEMIN NEUROSCI, V8, P233, DOI 10.1006/smns.1996.0030 THORNE PR, 1994, DRUG DEVELOP RES, V31, P328 Todorov LD, 1997, NATURE, V387, P76, DOI 10.1038/387076a0 Vlajkovic SM, 1996, HEARING RES, V99, P31, DOI 10.1016/S0378-5955(96)00079-2 Wang TF, 1996, J BIOL CHEM, V271, P9898 Wangemann P, 1996, AUDIT NEUROSCI, V2, P187 WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 WROBLEWSKI F, 1955, P SOC EXP BIOL MED, V90, P210 ZHAO DY, 1991, MOL CELL BIOCHEM, V107, P151 Ziganshin AU, 1996, COMP BIOCHEM PHYS A, V114, P335, DOI 10.1016/0300-9629(96)00019-9 ZIGANSHIN AU, 1994, DRUG DEVELOP RES, V32, P134, DOI 10.1002/ddr.430320303 ZIGANSHIN AU, 1995, PFLUG ARCH EUR J PHY, V429, P412, DOI 10.1007/BF00374157 ZIMMERMANN H, 1992, BIOCHEM J, V285, P345 Zimmermann H, 1996, PROG NEUROBIOL, V49, P589, DOI 10.1016/0301-0082(96)00026-3 NR 46 TC 28 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 71 EP 80 DI 10.1016/S0378-5955(98)00004-5 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300007 PM 9580435 ER PT J AU McFadden, SL Campo, P Ding, DL Quaranta, N AF McFadden, SL Campo, P Ding, DL Quaranta, N TI Effects of noise on inferior colliculus evoked potentials and cochlear anatomy in young and aged chinchillas SO HEARING RESEARCH LA English DT Article DE acoustic trauma; age-related hearing loss; noise-induced hearing loss; presbycusis; threshold shift ID INDUCED HEARING-LOSS; PERMANENT THRESHOLD SHIFT; C57BL/6J MICE; ACOUSTIC TRAUMA; RESPONSE PROPERTIES; AZIMUTHAL LOCATION; FREE-RADICALS; EXPOSURE; NEURONS; PRESBYCUSIS AB Like many aging humans, the aging chinchilla tends to lose high-frequency sensitivity at a faster rate than low-frequency sensitivity. This feature, combined with its excellent low-frequency hearing, makes the chinchilla attractive as an animal model for studying the relationship between noise-induced hearing loss (NIHL) and age-related hearing loss (AHL). In the present study, we examined susceptibility to noise in 15 aged (10-15 years old) and 15 young chinchillas. Two levels of noise were used, with the aim of determining whether age-related differences exist in the magnitude and rate of recovery from temporary threshold shifts produced by a moderate-level (95 dB) noise exposure, or in susceptibility to permanent threshold shifts and cochlear damage caused by a high-level (106 dB) noise exposure. Thresholds and response amplitudes at 0.5, 1, 2, 4, 8 and 16 kHz were determined from evoked potentials recorded from the inferior colliculus. Cochlear histology was performed on animals exposed to high-level noise. The results suggest that older animals are equally vulnerable to moderate-level noise, but may be slightly more vulnerable to high-level noise. For moderate-level exposures, there appears to be a simple additive relationship (in dB) between AHL and NIHL. For high-level exposures, the relationship may be more complex. (C) 1998 Elsevier Science B.V. C1 SUNY Buffalo, Ctr Hearing & Deafness, Hearing Res Labs, Dept Commun Disorders, Buffalo, NY 14214 USA. Inst Natl Rech & Secur, F-54501 Vandoeuvre Nancy, France. Univ Bari, Dept Audiol & Otol, Bari, Italy. RP McFadden, SL (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, Hearing Res Labs, Dept Commun Disorders, 215 Parker Hall, Buffalo, NY 14214 USA. CR Adams JC, 1997, HEARING RES, V104, P101, DOI 10.1016/S0378-5955(96)00184-0 [Anonymous], 1990, 1999 ISO AREHOLE S, 1989, AUDIOLOGY, V28, P92 BIES DA, 1994, J ACOUST SOC AM, V95, P563, DOI 10.1121/1.408272 BIES DA, 1990, J ACOUST SOC AM, V88, P2743, DOI 10.1121/1.399677 BOETTCHER FA, 1992, HEARING RES, V62, P217, DOI 10.1016/0378-5955(92)90189-T BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 CLARK WW, 1991, J ACOUST SOC AM, V90, P155, DOI 10.1121/1.401309 CONLEE JW, 1988, ACTA OTO-LARYNGOL, V106, P64, DOI 10.3109/00016488809107372 CORSO JF, 1963, ARCHIV OTOLARYNGOL, V77, P385 CORSO JF, 1992, AUDIOLOGY, V31, P162 DOBIE RA, 1992, EAR HEARING, V13, P19, DOI 10.1097/00003446-199202000-00006 Erway LC, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P56 Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X GLORIG A, 1962, Laryngoscope, V72, P1596 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 GREEN K, 1995, OPHTHALMIC RES, V27, P143 HAMERNIK RP, 1989, HEARING RES, V52, P13 HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A HENDERSON D, 1997, IN PRESS EAR HEAR HENDERSON D, 1995, P INT ADV RES WORKSH Hinchcliffe R., 1959, Acustica, V9 HOLLAN S, 1995, HAEMATOLOGIA, V26, P177 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 HUMES LE, 1991, J ACOUST SOC AM, V90, P182, DOI 10.1121/1.401286 JACONO AA, 1996, ASS RES OT ABSTR, V132, P33 LI HS, 1993, AUDIOLOGY, V32, P195 LI HS, 1993, HEARING RES, V68, P19, DOI 10.1016/0378-5955(93)90060-E LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496 MACRAE JH, 1971, AUDIOLOGY, V10, P323 MACRAE JH, 1991, J ACOUST SOC AM, V90, P2513, DOI 10.1121/1.402055 MCFADDEN SL, 1994, HEARING RES, V78, P132, DOI 10.1016/0378-5955(94)90019-1 McFadden SL, 1997, HEARING RES, V111, P114, DOI 10.1016/S0378-5955(97)00099-3 McFadden SL, 1997, HEARING RES, V111, P127, DOI 10.1016/S0378-5955(97)00100-7 MCFADDEN SL, 1994, HEARING RES, V78, P115, DOI 10.1016/0378-5955(94)90018-3 McFadden SL, 1997, HEARING RES, V103, P142, DOI 10.1016/S0378-5955(96)00170-0 MILLER JD, 1970, J ACOUST SOC AM, V48, P513, DOI 10.1121/1.1912166 Mills JH, 1997, J ACOUST SOC AM, V101, P1681, DOI 10.1121/1.418152 Mills JH, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P193 MILLS JH, 1992, NOISE INDUCED HEARIN, P237 PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 ROSENHALL U, 1990, EAR HEARING, V11, P257, DOI 10.1097/00003446-199008000-00002 Salvi RJ, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P275 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U SALVI RJ, 1992, NOISE INDUCED HEARIN, P156 SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6 Schmiedt RA, 1992, NOISE INDUCED HEARIN, P246 SCHULTE BA, 1992, HEARING RES, V62, P46 SHONE G, 1991, HEARING RES, V56, P173, DOI 10.1016/0378-5955(91)90167-8 Spoor A, 1967, INT AUDIOL, V6, P48, DOI 10.3109/05384916709074230 SUN JC, 1994, LARYNGOSCOPE, V104, P1251 URBAN GP, 1979, EXP NEUROL, V63, P229, DOI 10.1016/0014-4886(79)90120-1 Willott JF, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P297 WILLOTT JF, 1988, HEARING RES, V37, P15, DOI 10.1016/0378-5955(88)90074-3 WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 WILLOTT JF, 1981, J NEUROPHYSIOL, V45, P35 WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2 NR 61 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 81 EP 96 DI 10.1016/S0378-5955(98)00013-6 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300008 PM 9557979 ER PT J AU Hill, KG Cone-Wesson, B Liu, GB AF Hill, KG Cone-Wesson, B Liu, GB TI Development of auditory function in the tammar wallaby Macropus eugenii SO HEARING RESEARCH LA English DT Article DE auditory development; auditory brainstem response; marsupial development ID BRAIN-STEM POTENTIALS; POSTNATAL-DEVELOPMENT; GUINEA-PIG; HEARING; MARSUPIALS; RESPONSES; INFANTS; ONSET AB Auditory brainstem responses (ABRs) were evoked in developing wallabies by click and tone burst stimuli delivered by bone conduction and air conduction, al progressive stages of post-natal (pouch) life. ABRs were recorded through the onset of auditory responses (95-110 days), the opening of the external ear canal (125-130 days) and the maturation of ABR thresholds and latencies to values corresponding to those in adults(> 180 days). ABRs were evoked in response to bone-conducted clicks some days prior to the age at which an acoustically evoked response was first observed (around 95 days of pouch life). ABRs could be evoked by bone-conducted and intense air-conducted stimuli prior to opening of the ear canal. A trend of decreasing threshold and latency with age was observed for both modes of stimulation. The morphology of the ABR became more complex, according to both increased age and increased stimulus intensity. The ABR waveforms indicated relatively greater mechanosensitivity to bone-conducted stimuli than to air-conducted stimuli, prior to opening of the ear canal. Following opening of the ear canal, thresholds to air-conducted clicks and tones were substantially reduced and decreased further over the next 10-20 days, while thresholds to bone-conducted clicks continued slowly to decrease. Thresholds to tone bursts in the centre frequency range (4-12 kHz) remained less than those for low (0.5-1.5 kHz) and higher (16 kHz) frequencies. Latencies of an identified peak in ABR waveforms characteristically decreased with age (at constant stimulus intensity) and with stimulus intensity (for a given age). ABR waveforms obtained at progressive ages, but judged to be at corresponding sensation levels, underwent maturational changes, independent of conductive aspects of the wallabies' hearing, for 2-3 weeks after opening of the ear canal. (C) 1998 Elsevier Science B.V. C1 Australian Natl Univ, Res Sch Biol Sci, Canberra, ACT 2601, Australia. Univ Melbourne, Dept Otolaryngol, E Melbourne, Vic 3002, Australia. Univ Queensland, Dept Physiol & Pharmacol, Brisbane, Qld 4072, Australia. RP Hill, KG (reprint author), Australian Natl Univ, Res Sch Biol Sci, Canberra, ACT 2601, Australia. CR Aitkin L, 1996, J EXP ZOOL, V276, P394, DOI 10.1002/(SICI)1097-010X(19961215)276:6<394::AID-JEZ3>3.3.CO;2-K AITKIN L, 1995, HEARING RES, V82, P257, DOI 10.1016/0378-5955(94)00182-P AITKIN LM, 1994, J COMP NEUROL, V349, P377, DOI 10.1002/cne.903490305 COLES RB, 1986, J EXP BIOL, V121, P371 Cone-Wesson B, 1995, AM J AUDIOL, V4, P14 ConeWesson BK, 1997, HEARING RES, V105, P119, DOI 10.1016/S0378-5955(96)00199-2 DIRKS D, 1973, MODERN DEV AUDIOLOGY, P1 DUM N, 1984, ACTA OTO-LARYNGOL, V97, P63, DOI 10.3109/00016488409130965 Freeman TCB, 1997, J COMP NEUROL, V380, P472, DOI 10.1002/(SICI)1096-9861(19970421)380:4<472::AID-CNE4>3.0.CO;2-Z GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F GUMMER AW, 1994, NEUROREPORT, V5, P685, DOI 10.1097/00001756-199402000-00006 HILL K G, 1981, Proceedings of the Australian Physiological and Pharmacological Society, V12, p170P JONES TA, 1983, J NEUROSCI METH, V7, P261, DOI 10.1016/0165-0270(83)90008-0 KNUDSEN EI, 1985, SCIENCE, V230, P545, DOI 10.1126/science.4048948 MARK RF, 1992, TRENDS NEUROSCI, V15, P51, DOI 10.1016/0166-2236(92)90026-5 McFadden SL, 1996, HEARING RES, V100, P68, DOI 10.1016/0378-5955(96)00108-6 MJOEN S, 1983, SCAND AUDIOL, V12, P43, DOI 10.3109/01050398309076223 MOORE DR, 1992, DEV BRAIN RES, V66, P229, DOI 10.1016/0165-3806(92)90084-A MOREY AL, 1990, DEV BRAIN RES, V52, P279, DOI 10.1016/0165-3806(90)90246-U Reimer K, 1996, HEARING RES, V92, P143 SALAMY A, 1976, ELECTROEN CLIN NEURO, V40, P418, DOI 10.1016/0013-4694(76)90193-0 STARR A, 1977, PEDIATRICS, V60, P831 VERSNEL H, 1992, HEARING RES, V59, P138, DOI 10.1016/0378-5955(92)90111-Y WALSH EJ, 1986, J ACOUST SOC AM, V79, P712, DOI 10.1121/1.393461 YANG EY, 1987, EAR HEARING, V8, P244, DOI 10.1097/00003446-198708000-00009 NR 25 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 97 EP 106 DI 10.1016/S0378-5955(97)00211-6 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300009 PM 9557980 ER PT J AU Zhang, T Penner, MJ AF Zhang, T Penner, MJ TI A new method for the automated detection of spontaneous otoacoustic emissions embedded in noisy data SO HEARING RESEARCH LA English DT Article DE spontaneous otoacoustic emission; detection of spontaneous otoacoustic emission; artifact rejection; spectral analysis; ear difference; gender difference ID HUMAN EARS; TINNITUS AB There is, as yet, no universally agreed upon method for the detection of spontaneous otoacoustic emissions (SOAEs). In this paper, we augment extant techniques by presenting a new automated approach. The new procedure reliably labels the spectral peaks as SOAEs, rejects noisy data such as that due to body movements or breathing, provides a subject-specific measure of the probability that a particular peak is erroneously identified as a SOAE, and can be accomplished on-line. Comparison of results with this new approach and with methods undertaken previously in this laboratory and elsewhere are made. The estimated prevalence of SOAEs for the new method is as large as that for any method previously proposed. (C) 1998 Elsevier Science B.V. C1 Univ Maryland, Dept Psychol, College Pk, MD 20742 USA. RP Zhang, T (reprint author), Univ Maryland, Dept Psychol, College Pk, MD 20742 USA. CR BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 BURNS EM, 1984, HEARING RES, V16, P271, DOI 10.1016/0378-5955(84)90116-3 BURNS EM, 1991, ABSTR ASS RES OT, P239 FLOTTORP G, 1953, ACTA OTO-LARYNGOL, V43, P396, DOI 10.3109/00016485309119861 GLANVILLE J D, 1971, Journal of Laryngology and Otology, V85, P1 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 HALL JW, 1992, HDB AUDITORY EVOKED, P14 HAMMEL DR, 1983, THESIS U ILLINOIS UR KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Koopmans L. H., 1974, SPECTRAL ANAL TIME S Markel JD, 1976, LINEAR PREDICTION SP MOULIN A, 1991, ACTA OTO-LARYNGOL, V111, P835, DOI 10.3109/00016489109138419 PENNER M J, 1992, British Journal of Audiology, V26, P115, DOI 10.3109/03005369209077879 Penner MJ, 1997, HEARING RES, V103, P28, DOI 10.1016/S0378-5955(96)00162-1 PENNER MJ, 1989, ARCH OTOLARYNGOL, V116, P428 PENNER MJ, 1990, ARCH OTOLARYNGOL, V116, P428 PENNER MJ, 1993, HEARING RES, V68, P229, DOI 10.1016/0378-5955(93)90126-L PENNER MJ, 1989, J SPEECH HEAR RES, V32, P458 PENNER MJ, 1988, ARCH OTOLARYNGOL, V114, P150 PLINKERT PK, 1990, ACTA OTO-LARYNGOL, V110, P342, DOI 10.3109/00016489009107453 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 STRICKLAND EA, 1985, J ACOUST SOC AM, V78, P931, DOI 10.1121/1.392924 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V WARD WD, 1952, J ACOUST SOC AM, V24, P449, DOI 10.1121/1.1917483 WARD WD, 1955, J ACOUST SOC AM, V27, P365, DOI 10.1121/1.1907529 WEGEL RLA, 1931, ARCH OTOLARYNGOL, V14, P160 WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012 WIER CC, 1984, J ACOUST SOC AM, V76, P1248, DOI 10.1121/1.391376 ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 NR 29 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 107 EP 113 DI 10.1016/S0378-5955(97)00212-8 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300010 PM 9557981 ER PT J AU Maison, S Micheyl, C Collet, L AF Maison, S Micheyl, C Collet, L TI Contralateral frequency-modulated tones suppress transient-evoked otoacoustic emissions in humans SO HEARING RESEARCH LA English DT Article DE medial olivocochlear system; cochlear micromechanism; otoacoustic emission; human; frequency modulation ID CROSSED OLIVOCOCHLEAR BUNDLE; COCHLEAR MICROMECHANICAL PROPERTIES; COMPOUND ACTION-POTENTIALS; ELECTRICAL-STIMULATION; NOISE; INVOLVEMENT; DEPENDENCE; RESPONSES; NEURONS; SOUND AB In order to test the sensitivity of the human medial olivocochlear bundle (MOCB) to stimulus frequency fluctuations, changes in transient-evoked otoacoustic emission (TEOAE) amplitude induced by frequency modulated (FM) tones were measured in IS normal-hearing subjects. The results revealed that TEOAE amplitude was reduced by contralateral FM tones at 30 dB above pure-tone threshold, with significant influences of both modulation rate (MR) and modulation depth (MD). This finding is discussed in the light of other recent results indicating amplitude fluctuation and frequency bandwidth effects in MOCB activation in humans. (C) 1998 Published by Elsevier Science B.V. C1 Univ Lyon 1, Hop Edouard Herriot, Lab Neurosci & Syst Sensoriels, UPRESA CNRS 5020, F-69437 Lyon 03, France. RP Maison, S (reprint author), Univ Lyon 1, Hop Edouard Herriot, Lab Neurosci & Syst Sensoriels, UPRESA CNRS 5020, Pavillon U,3 Pl Arsonval, F-69437 Lyon 03, France. EM smaison@olfac.univ-lyon1.fr CR BERLIN CI, 1995, HEARING RES, V87, P96, DOI 10.1016/0378-5955(95)00082-F BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BUNO W, 1978, EXP NEUROL, V59, P62, DOI 10.1016/0014-4886(78)90201-7 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 IGIRASHI M, 1979, ACTA OTOLARYGNOL STO, V87, P429 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2519 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779 Maison S, 1997, HEARING RES, V113, P89, DOI 10.1016/S0378-5955(97)00136-6 MAISON S, UNPUB SPECTRAL ASPEC Maison S, 1997, J NEUROPHYSIOL, V77, P1759 May BJ, 1995, AUDIT NEUROSCI, V1, P385 Micheyl C, 1997, BEHAV NEUROSCI, V111, P801, DOI 10.1037/0735-7044.111.4.801 Micheyl C, 1996, J ACOUST SOC AM, V99, P1604, DOI 10.1121/1.414734 MOORE BCJ, 1987, HEARING RES, V28, P209, DOI 10.1016/0378-5955(87)90050-5 MURATA K, 1991, HEARING RES, V55, P201, DOI 10.1016/0378-5955(91)90105-I NORMAN M, 1993, BRIT J AUDIOL, V27, P281, DOI 10.3109/03005369309076705 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 RYAN S, 1991, British Journal of Audiology, V25, P391, DOI 10.3109/03005369109076614 SABERI K, 1995, NATURE, V374, P537, DOI 10.1038/374537a0 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 SCHARF B, 1994, HEARING RES, V75, P11, DOI 10.1016/0378-5955(94)90051-5 TRAHIOTI.C, 1970, J ACOUST SOC AM, V47, P592, DOI 10.1121/1.1911934 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 Warr W. B., 1986, NEUROBIOLOGY HEARING, P333 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5 NR 34 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 114 EP 118 DI 10.1016/S0378-5955(97)00213-X PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300011 PM 9557982 ER PT J AU Bouman, H Klis, SFL de Groot, JCMJ Huizing, EH Smoorenburg, GF Veldman, JE AF Bouman, H Klis, SFL de Groot, JCMJ Huizing, EH Smoorenburg, GF Veldman, JE TI Induction of endolymphatic hydrops in the guinea pig by perisaccular deposition of sepharose beads carrying and not carrying immune complexes SO HEARING RESEARCH LA English DT Article DE endolymphatic hydrops; immune response ID LOW-FREQUENCY SOUND; INNER-EAR; STRIA-VASCULARIS; MENIERES-DISEASE; SAC; ELECTROCOCHLEOGRAPHY; MODULATION; POTENTIALS; DIAGNOSIS; MEMBRANE AB We tried to induce endolymphatic hydrops in guinea pig cochleas by unilateral, perisaccular-deposition of sepharose beads carrying immune complexes. Controls consisted of the deposition of sepharose beads without immune complexes and the contralateral, untreated ear. The effects of the treatment were studied by light microscopy and electrophysiological recordings of the gross cochlear potentials 1, 2, and 6 weeks after treatment. Each condition included six animals. Analysis of variance of the morphometric data concerning the ears treated with deposition of the beads showed a statistically significant difference (P = 0.04) between the degree of hydrops found for the beads with immune complexes and for those without. The difference between the treated ears and the contralateral untreated ears was significant (P = 0.01) for the beads with immune complexes and not significant (P = 0.8) for those without immune complexes while there was no significant effect of post-treatment time interval. Analysis of variance of the electrophysiological data, collected in response to tone bursts al the apex of the cochlea, showed no significant differences between the results for the beads with and without immune complexes. Therefore these results were pooled. One week after treatment the pooled results for the compound action potential showed a small decrease in amplitude, just significant at 2 kHz, but not at 4 and 8 kHz. This decrease disappeared completely after 6 weeks. The pooled results for the negative summating potential (SP) showed a significant increase in magnitude at all frequencies decreasing with post-treatment interval. The cochlear microphonics did not demonstrate any change in amplitude after treatment. The results indicate that deposition of sepharose beads with immune complexes induces endolymphatic hydrops. Also, deposition of the sepharose beads itself may have induced hydrops together with enhancement of the SP. SP enhancement may be related to the development of endolymphatic hydrops rather than to the presence of hydrops as such. This may be based on pressure build-up while hydrops develops. (C) 1998 Elsevier Science B.V. C1 Univ Utrecht Hosp, Dept Otorhinolaryngol, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands. RP Veldman, JE (reprint author), Univ Utrecht Hosp, Dept Otorhinolaryngol, Hearing Res Labs, Room G02-531,POB 85500, NL-3508 GA Utrecht, Netherlands. CR ALBERS FWJ, 1988, ACTA OTO-LARYNGOL, V105, P281, DOI 10.3109/00016488809097009 ALBERS FWJ, 1987, ANN OTO RHINOL LARYN, V96, P282 ALBERS FWJ, 1987, ACTA OTO-LARYNGOL, V104, P202, DOI 10.3109/00016488709107319 ARAN JM, 1984, ACTA OTO-LARYNGOL, V97, P547, DOI 10.3109/00016488409132933 BROOKES GB, 1995, IMMUNOLOGY ENT DISOR, P169 COATS AC, 1981, ARCH OTOLARYNGOL, V107, P199 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 DURRANT JD, 1974, J ACOUST SOC AM, V56, P562, DOI 10.1121/1.1903291 FERRARO J, 1983, OTOLARYNG CLIN N AM, V16, P69 GIBSON WPR, 1977, AUDIOLOGY, V16, P389 HARRIS JP, 1984, AM J OTOLARYNG, V5, P418, DOI 10.1016/S0196-0709(84)80059-9 HARRIS JP, 1984, ANN OTO RHINOL LARYN, V93, P157 HARRISON RV, 1984, HEARING RES, V14, P85, DOI 10.1016/0378-5955(84)90071-6 HORNER KC, 1986, HEARING RES, V26, P319 KIMURA RS, 1965, PRACT-OTO-RHINO-LARY, V27, P343 KLIS JFL, 1985, HEARING RES, V20, P15, DOI 10.1016/0378-5955(85)90054-1 KLIS JFL, 1988, HEARING RES, V32, P175, DOI 10.1016/0378-5955(88)90089-5 KONISHI S, 1975, J LARYNGOL OTOL, V89, P577, DOI 10.1017/S0022215100080786 KONISHI T, 1976, ELECTROCOCHLEOGRAPHY, P295 Konishi T, 1981, MENIERES DIS PATHOGE, P47 KUMAGAMI H, 1983, ORL J OTO-RHINO-LARY, V45, P143 MERCHANT SN, 1995, EUR ARCH OTO-RHINO-L, V252, P63 MORIZONO T, 1985, ANN OTO RHINOL LARYN, V94, P191 RASKANDERSEN H, 1980, ACTA OTO-LARYNGOL, V89, P283, DOI 10.3109/00016488009127140 RUDING PRJ, 1988, THESIS UTRECHT U RUDING PRJW, 1987, ARCH OTO-RHINO-LARYN, V244, P174, DOI 10.1007/BF00464263 RUTH RA, 1988, AM J OTOL, V9, P1 SAKAGAMI M, 1995, ANN OTO RHINOL LARYN, V104, P210 TOMIYAMA S, 1992, ACTA OTO-LARYNGOL, V112, P470, DOI 10.3109/00016489209137428 TOMIYAMA S, 1987, ACTA OTO-LARYNGOL, V103, P182, DOI 10.3109/00016488709107782 VANDEELEN GW, 1986, ACTA OTO-LARYNGOL, V101, P207, DOI 10.3109/00016488609132829 VANDEELEN GW, 1987, ARCH OTO-RHINO-LARYN, V244, P167 NR 32 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 119 EP 130 DI 10.1016/S0378-5955(97)00216-5 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300012 PM 9557983 ER PT J AU Jokay, I Soos, G Repassy, G Dezso, B AF Jokay, I Soos, G Repassy, G Dezso, B TI Apoptosis in the human inner ear - Detection by in situ end-labeling of fragmented DNA and correlation with other markers SO HEARING RESEARCH LA English DT Article DE adult and fetal inner ear; apoptosis; actinomycin D-induced apoptosis; immunohistochemistry ID PROGRAMMED CELL-DEATH; TISSUE TRANSGLUTAMINASE; CARBOXYPEPTIDASE-M; INDUCTION; CISPLATIN; OTOTOXICITY; TUMOR; PATHOGENESIS; MECHANISMS; EXPRESSION AB The aim of this study was to obtain baseline data on the recently described special form of single cell death, apoptosis, in normal human inner ears. For this purpose, in situ end-labeling of the fragmented DNA was applied, in conjunction with apoptosis-related markers, to detect cellular elements showing programmed cell death in decalcified and paraffin-embedded tissues. Over 20 specimens were analyzed which were obtained from autopsy cases with no history of acoustic lesions confirmed by histopathology. Based on staining results, we saw no apoptotic signs in the majority of normal adult inner ears. An apoptotic cell captured in the Reissner's membrane of the cochlea from an old patient may, however, indicate an age-related subtle cell loss with the process of apoptosis. Nevertheless, the fact that more apoptosis was not found in our cases suggests that this phenomenon does not contribute significantly to the tissue homeostasis in the adult inner ear under normal conditions. These data are in accordance with our immunohistochemical findings on the p53 nucleoprotein, and proliferating cell nuclear antigen expression since there was no staining in any of the cellular elements, including the mesenchymal cells. This reflects a stationary and stable condition of cells of the vestibular and the cochlear structures, probably to maintain their integrity and the fine sensory functions. As opposed to the above findings, during inner ear development, the epithelial cells lining the cochlear lumen, the ossifying cartilage of the temporal bone, and the mesenchymal cells show different degrees of proliferation in combination with single cell death as signs of maturation of the vestibular and the cochlear apparatus. In addition, apoptosis has been demonstrated in cells of the cochlear stria vascularis from an adult patient treated with high doses of cisplatin, vinblastine and bleomycin prior to death. Furthermore, a wide range of apoptosis could be induced experimentally in a normal ear by an external perfusion of actinomycin D (ActD), which is known to produce programmed cell death in many cell types of different origins. The potential role of cytostatic agents in the apoptotic process of the inner ear needs, however, to be confirmed in large-scale specimens from patients treated with genotoxins. The fact, however, that apoptotic cells are also seen in association with ActD indicates that the fine sensory structure of the cochlea may also be a target for certain chemotherapeutic agents when administered in high doses. (C) 1998 Elsevier Science B.V. C1 Debrecen Univ Med, Sch Med, Dept Pathol, H-4012 Debrecen, Hungary. Debrecen Univ Med, Sch Med, Dept Otolaryngol, H-4012 Debrecen, Hungary. RP Dezso, B (reprint author), Debrecen Univ Med, Sch Med, Dept Pathol, POB 24, H-4012 Debrecen, Hungary. EM dezsob@gizi.dote.hu CR Amendola A, 1996, P NATL ACAD SCI USA, V93, P11057, DOI 10.1073/pnas.93.20.11057 Anniko M, 1990, Acta Otolaryngol Suppl, V470, P13 ANNIKO M, 1989, ACTA OTO-LARYNGOL, V108, P385, DOI 10.3109/00016488909125544 BAUWENS LJJM, 1991, ANN OTO RHINOL LARYN, V100, P211 BURGER MM, 1995, INT J CANCER, V60, P590, DOI 10.1002/ijc.2910600503 COHEN JJ, 1993, IMMUNOL TODAY, V14, P126, DOI 10.1016/0167-5699(93)90214-6 CUI SJ, 1994, CANCER RES, V54, P2462 Cummings M, 1996, J PATHOL, V179, P288, DOI 10.1002/(SICI)1096-9896(199607)179:3<288::AID-PATH574>3.0.CO;2-M DEZSO B, 1990, J CANCER RES CLIN, V116, P372, DOI 10.1007/BF01612920 Dezso B, 1996, CLIN CANCER RES, V2, P1543 Dubbink HJ, 1996, BIOCHEM J, V315, P901 FESUS L, 1987, FEBS LETT, V224, P104, DOI 10.1016/0014-5793(87)80430-1 FRIEDRICHS B, 1995, UROL RES, V23, P301 FRISTCHE M, 1993, ONCOGENE, V8, P307 GOLD R, 1993, J HISTOCHEM CYTOCHEM, V41, P1023 HAN DKM, 1995, AM J PATHOL, V147, P267 Hardwick SJ, 1996, J PATHOL, V179, P294 HINOJOSA R, 1995, AM J OTOL, V16, P731 IJIRI K, 1983, BRIT J CANCER, V47, P175, DOI 10.1038/bjc.1983.25 KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 LIEBERMANN DA, 1995, ONCOGENE, V11, P199 MARTIN SJ, 1990, J IMMUNOL, V145, P1859 MEYN RE, 1995, INT J CANCER, V60, P725, DOI 10.1002/ijc.2910600526 MIURA M, 1993, CELL, V75, P653, DOI 10.1016/0092-8674(93)90486-A NAGAE A, 1992, J NEUROCHEM, V59, P2201 Nagy Laszlo, 1994, Cancer Bulletin (Houston), V46, P136 Nakagawa T, 1997, EUR ARCH OTO-RHINO-L, V254, P9, DOI 10.1007/BF02630749 PIACENTINI M, 1991, CELL TISSUE RES, V263, P227, DOI 10.1007/BF00318764 PLUM F, 1985, PATHOPHYSIOLOGY, P1115 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 SCHULNECHT H, 1968, Archives of Otolaryngology, V87, P129 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 SHI SR, 1991, J HISTOCHEM CYTOCHEM, V39, P741 STELLER H, 1995, SCIENCE, V267, P1445, DOI 10.1126/science.7878463 TAN FL, 1989, J BIOL CHEM, V264, P13165 TARCSA E, 1992, J BIOL CHEM, V267, P25648 THOMAZY V, 1989, CELL TISSUE RES, V255, P215 THOMPSON CB, 1995, SCIENCE, V267, P1456, DOI 10.1126/science.7878464 TISO M, 1995, AM J PATHOL, V147, P434 Wang CY, 1996, SCIENCE, V274, P784, DOI 10.1126/science.274.5288.784 WILLIAMS GT, 1991, CELL, V65, P1097, DOI 10.1016/0092-8674(91)90002-G Wyllie Andrew H., 1995, Current Opinion in Genetics and Development, V5, P97, DOI 10.1016/S0959-437X(95)90060-8 NR 43 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 131 EP 139 DI 10.1016/S0378-5955(97)00215-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300013 PM 9580436 ER PT J AU Furuta, H Luo, L Ryan, AF Mori, N AF Furuta, H Luo, L Ryan, AF Mori, N TI Expression of mRNA encoding vasopressin V1a, vasopressin V2, and ANP-B receptors in the rat cochlea SO HEARING RESEARCH LA English DT Article DE in situ hybridization; natriuretic peptide; polymerase chain reaction; rat; receptor; vasopressin ID ATRIAL-NATRIURETIC-PEPTIDE; POLYMERASE CHAIN-REACTION; IN-SITU HYBRIDIZATION; GUANYLATE-CYCLASE; ADENYLATE-CYCLASE; MESSENGER-RNAS; GUINEA-PIG; INNER-EAR; ARGININE-VASOPRESSIN; MOLECULAR-CLONING AB The expression of mRNAs encoding vasopressin V1a, V2, and ANP-B receptors in the rat cochlea was examined by PCR and in situ hybridization. After reverse-transcription of rat cochlear RNA, cDNA was amplified by PCR using pairs of primers specific to these receptors. After subcloning of the PCR products, clones with sequences identical to those cloned previously from the rat liver (Via receptor), kidney (V2 receptor) and brain (ANP-B receptor) were obtained. The localization of expression of those receptors in the developing and adult rat cochlea was examined by in situ hybridization using S-35-labeled cRNA probes. The Via and V2 receptors were expressed throughout the whole of the neonatal rat cochlea, while no expression was detected in the adult cochlea. The ANP-B receptor was expressed throughout the whole of the neonatal cochlea. In the adult cochlea, expression was observed in the spiral ganglion and the spiral ligament. These results suggest that vasopressin may play a role in the development of the cochlea, and that natriuretic peptide may play a role in the function of the spiral ganglion and the spiral ligament. (C) 1998 Elsevier Science B.V. C1 Kagawa Med Sch, Dept Otolaryngol, Kagawa 76107, Japan. Univ Calif San Diego, Sch Med, Dept Surg Otolaryngol, La Jolla, CA 92093 USA. RP Furuta, H (reprint author), Kagawa Med Sch, Dept Otolaryngol, Miki Cho, Kagawa 76107, Japan. CR BIE P, 1980, PHYSIOL REV, V60, P961 BLOCH B, 1990, NEUROSCI LETT, V109, P259, DOI 10.1016/0304-3940(90)90004-S BRENNER BM, 1990, PHYSIOL REV, V70, P665 BROWN J, 1995, AM J PHYSIOL-ENDOC M, V269, pE253 CHINKERS M, 1989, NATURE, V338, P78, DOI 10.1038/338078a0 FIRSOV D, 1994, PFLUG ARCH EUR J PHY, V429, P79, DOI 10.1007/BF02584033 FULLER F, 1988, J BIOL CHEM, V263, P9395 FURUTA H, 1995, 18 ARO MIDW RES M, P25 FURUTA H, 1994, HEARING RES, V78, P175, DOI 10.1016/0378-5955(94)90023-X Furuta H, 1995, HEARING RES, V92, P78, DOI 10.1016/0378-5955(95)00203-0 HUY PTB, 1981, ACTA OTO-LARYNGOL, V91, P9, DOI 10.3109/00016488109138476 JARD S, 1983, CURR TOP MEMBR TRANS, V18, P255 KOCH T, 1992, HEARING RES, V63, P197, DOI 10.1016/0378-5955(92)90085-2 LANGUB MC, 1995, J COMP NEUROL, V356, P183, DOI 10.1002/cne.903560205 LOLAIT SJ, 1992, NATURE, V357, P336, DOI 10.1038/357336a0 LOLAIT SJ, 1995, P NATL ACAD SCI USA, V92, P6783, DOI 10.1073/pnas.92.15.6783 LUO L, 1993, HEARING RES, V69, P182 MANDON B, 1995, PFLUG ARCH EUR J PHY, V430, P12, DOI 10.1007/BF00373834 MOREL A, 1992, NATURE, V356, P523, DOI 10.1038/356523a0 MORI N, 1989, ACTA OTO-LARYNGOL, V107, P80, DOI 10.3109/00016488909127482 MURASAWA S, 1995, J BIOL CHEM, V270, P20042 OSTROWSKI NL, 1993, ENDOCRINOLOGY, V133, P1849, DOI 10.1210/en.133.4.1849 PITOVSKI DZ, 1993, HEARING RES, V69, P10, DOI 10.1016/0378-5955(93)90088-I RAREY KE, 1989, HEARING RES, V41, P217, DOI 10.1016/0378-5955(89)90013-0 Rubel E.W., 1978, HDB SENSORY PHYSL, V9, P135 SAIKI RK, 1985, SCIENCE, V230, P1350, DOI 10.1126/science.2999980 SAITO M, 1995, BIOCHEM BIOPH RES CO, V212, P751, DOI 10.1006/bbrc.1995.2033 SCHACHT J, 1985, HEARING RES, V20, P9, DOI 10.1016/0378-5955(85)90053-X SCHULZ S, 1989, CELL, V58, P1155, DOI 10.1016/0092-8674(89)90513-8 SIMMONS DM, 1989, J HISTOTECHNOL, V12, P169 SUGA SI, 1992, ENDOCRINOLOGY, V130, P229, DOI 10.1210/en.130.1.229 SUMNERS C, 1992, AM J PHYSIOL, V262, pC1134 VIGNE P, 1992, BIOCHEM BIOPH RES CO, V183, P640, DOI 10.1016/0006-291X(92)90530-X YOON YJ, 1992, ACTA OTO-LARYNGOL, V112, P604, DOI 10.3109/00016489209137448 ZENNER HP, 1979, ARCH OTO-RHINO-LARYN, V222, P275, DOI 10.1007/BF01261174 ZUMGOTTESBERGE AMM, 1989, ACTA OTO-LARYNGOL, V468, P53 NR 36 TC 15 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 140 EP 148 DI 10.1016/S0378-5955(98)00009-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300014 PM 9557984 ER PT J AU Eggermont, JJ Kenmochi, M AF Eggermont, JJ Kenmochi, M TI Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex SO HEARING RESEARCH LA English DT Article DE cat; primary auditory cortex; anterior auditory field; secondary auditory cortex; multi-unit recording; spontaneous firing rate; salicylate; quinine; tinnitus ID INFERIOR COLLICULUS; COCHLEAR NUCLEUS; CAT; TINNITUS AB This study presents firing rates for simultaneously recorded spontaneous and stimulus driven multi-unit activity in primary auditory cortex (AI), anterior auditory field (AAF) and secondary auditory cortex (AII) in cats before and after application of salicylate or quinine. From 21 cats, in three cortical areas simultaneously, a total of 1533 multi-unit files were obtained. The data suggest (1) that both salicylate and quinine significantly increase spontaneous firing rates in AII, whereas in AI and AAF both quinine and salicylate reduced the spontaneous rate; (2) the effect of both drugs was to increase spontaneous rates for recording sites with high characteristic frequency (CF) and a tendency to decrease them for low CF sites; (3) the mean stimulus driven firing rates were not affected by either drug except for a decrease produced by quinine in AI; (4) changes in driven firing rate were positively correlated with changes in spontaneous firing rates. This suggests that tinnitus inducing agents selectively increase spontaneous firing rates in the extralemniscal pathway. (C) 1998 Elsevier Science B.V. C1 Univ Calgary, Dept Physiol & Biophys, Calgary, AB T2N 1N4, Canada. Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Physiol & Biophys, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. CR CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Eggermont JJ, 1997, NEUROREPORT, V8, P2709, DOI 10.1097/00001756-199708180-00014 EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 EVANS EF, 1981, TINNITUS CIBA FDN S, V85, P1008 Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kaltenbach JA, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P317 Kenmochi M, 1997, HEARING RES, V113, P110, DOI 10.1016/S0378-5955(97)00137-8 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5 MOLLER AR, 1995, MECH TINNITUS, P207 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 MULHERAN M, 1990, THESIS U KEELE STAFF Ochi K, 1997, HEARING RES, V105, P105, DOI 10.1016/S0378-5955(96)00201-8 Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 Reich G. E., 1996, P 5 INT TINN SEM 199, P429 RODIECK RW, 1962, BIOPHYS J, V2, P351 ROUILLER EM, 1991, EXP BRAIN RES, V86, P483 SALGANICOFF M, 1988, J NEUROSCI METH, V25, P181, DOI 10.1016/0165-0270(88)90132-X Salvi RJ, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P275 SALVI RJ, 1978, EXP BRAIN RES, V32, P301 SALVI RJ, 1995, P 5 INT TINN SEM 199, P457 SHEHATADIELER WE, 1994, HEARING RES, V74, P77, DOI 10.1016/0378-5955(94)90177-5 SIEBERT WM, 1965, KYBERNETIK, V2, P206, DOI 10.1007/BF00306416 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E NR 29 TC 94 Z9 101 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 149 EP 160 DI 10.1016/S0378-5955(98)00008-2 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300015 PM 9557985 ER PT J AU Bianchi, LM Gale, NW AF Bianchi, LM Gale, NW TI Distribution of Eph-related molecules in the developing and mature cochlea SO HEARING RESEARCH LA English DT Article DE inner ear; auditory; ephrin; gerbil ID RECEPTOR TYROSINE KINASES; NERVOUS-SYSTEM; INNER-EAR; IN-VITRO; LIGANDS; EXPRESSION; FAMILY; GENE; GUIDANCE; AXONS AB Receptors and ligands of the Eph family have recently been shown to influence the development of a variety of tissues. In the present study, the temporal and spatial distribution of Eph receptors and ligands were investigated in the embryonic and postnatal cochlea using Northern blot and immunohistochemical analysis. The results of Northern blot experiments revealed that a large number of Eph family members were present in embryonic cochlear and vestibular ganglia. Immunohistochemical studies revealed that ligands and receptors of the GPI subclass were distributed in complementary patterns within the differentiating spiral limbus, inner sulcus and outer sulcus. The distribution of these molecules became more restricted beginning in the first postnatal week. In contrast, members of the transmembrane subclass of Eph ligands were largely associated with cochlear neurons and their target hair cells. Expression of these ligands appeared to increase during the second postnatal week, corresponding to the period of peripheral nerve fiber reorganization in the cochlea. Together, these studies suggest that multiple Eph family members play unique roles in formation of the cochlea. (C) 1998 Published by Elsevier Science B.V. C1 Med Univ S Carolina, Dept Otolaryngol & Commun Sci, Charleston, SC 29425 USA. Regeneron Pharmaceut Inc, Tarrytown, NY 10591 USA. RP Bianchi, LM (reprint author), Med Univ S Carolina, Dept Otolaryngol & Commun Sci, 171 Ashley Ave, Charleston, SC 29425 USA. EM bianchil@MUSC.edu CR Brambilla R, 1995, MOL CELL NEUROSCI, V6, P487, DOI 10.1006/mcne.1995.0001 Brennan C, 1997, DEVELOPMENT, V124, P655 Bruckner K, 1997, SCIENCE, V275, P1640, DOI 10.1126/science.275.5306.1640 CHENG HJ, 1995, CELL, V82, P371, DOI 10.1016/0092-8674(95)90426-3 COISSEK T, 1995, ONCOGENE, V9, P97 Daniel TO, 1996, KIDNEY INT, V50, pS73 DAVIS S, 1994, SCIENCE, V266, P816, DOI 10.1126/science.7973638 DRESCHER U, 1995, CELL, V82, P359, DOI 10.1016/0092-8674(95)90425-5 ECHTELER SM, 1992, P NATL ACAD SCI USA, V89, P6324, DOI 10.1073/pnas.89.14.6324 ELLIS J, 1995, MECH DEVELOP, V52, P319, DOI 10.1016/0925-4773(95)00411-S Flanagan JG, 1997, CELL, V90, P403 Flenniken AM, 1996, DEV BIOL, V179, P382, DOI 10.1006/dbio.1996.0269 Gale NW, 1996, NEURON, V17, P9, DOI 10.1016/S0896-6273(00)80276-7 Gale NW, 1996, ONCOGENE, V13, P1343 Gao PP, 1996, P NATL ACAD SCI USA, V93, P11161, DOI 10.1073/pnas.93.20.11161 HENKEMEYER M, 1994, ONCOGENE, V9, P1001 Henkemeyer M, 1996, CELL, V86, P35, DOI 10.1016/S0092-8674(00)80075-6 HINOJOSA R, 1977, ACTA OTO-LARYNGOL, V84, P238, DOI 10.3109/00016487709123963 HIRAI H, 1987, SCIENCE, V238, P1717, DOI 10.1126/science.2825356 Holland SJ, 1996, NATURE, V383, P722, DOI 10.1038/383722a0 Kilpatrick TJ, 1996, MOL CELL NEUROSCI, V7, P62, DOI 10.1006/mcne.1996.0005 KIMURA RS, 1990, AM J OTOLARYNG, V11, P99, DOI 10.1016/0196-0709(90)90006-H KUCUK B, 1990, ARCH HISTOL CYTOL, V53, P439, DOI 10.1679/aohc.53.439 Lee AM, 1996, DNA CELL BIOL, V15, P817, DOI 10.1089/dna.1996.15.817 LIM DJ, 1985, ACTA OTOLARYNGOL S, V42, P1 MAISONPIERRE PC, 1990, NEURON, V5, P501, DOI 10.1016/0896-6273(90)90089-X Marcus RC, 1996, DEV BIOL, V180, P786, DOI 10.1006/dbio.1996.0347 MCGUIRT JP, 1994, J HISTOCHEM CYTOCHEM, V42, P843 Monschau B, 1997, EMBO J, V16, P1258, DOI 10.1093/emboj/16.6.1258 Nakamoto M, 1996, CELL, V86, P755, DOI 10.1016/S0092-8674(00)80150-6 NIETO MA, 1992, DEVELOPMENT, V116, P1137 RUIZ JC, 1994, MECH DEVELOP, V46, P87 Wang HU, 1997, NEURON, V18, P383, DOI 10.1016/S0896-6273(00)81240-4 Winning RS, 1996, DEV BIOL, V179, P309, DOI 10.1006/dbio.1996.0262 WINSLOW JW, 1995, NEURON, V14, P973, DOI 10.1016/0896-6273(95)90335-6 Zhang JH, 1996, J NEUROSCI, V16, P7182 NR 36 TC 33 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 161 EP 172 DI 10.1016/S0378-5955(98)00010-0 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300016 PM 9557986 ER PT J AU Iwai, H Tomoda, K Hosaka, N Miyashima, S Suzuka, Y Ikeda, H Lee, SR Inaba, M Ikehara, S Yamashita, T AF Iwai, H Tomoda, K Hosaka, N Miyashima, S Suzuka, Y Ikeda, H Lee, SR Inaba, M Ikehara, S Yamashita, T TI Induction of immune-mediated hearing loss in SCID mice by injection of MRL/lpr mouse spleen cells SO HEARING RESEARCH LA English DT Article DE autoimmune disease; stria vascularis; immunocompetent cell; systemic lupus erythematosus ID SEVERE COMBINED IMMUNODEFICIENCY; LPR LPR MOUSE; STRIA VASCULARIS; ENDOLYMPHATIC SAC; DISEASE; MODEL; AGE; MANIFESTATIONS; DEFICIENCY; GERBILS AB The MRL/lpr mouse, which has a mutation in the Pas gene encoding a cell-surface receptor for apoptosis, shows an accumulation of abnormal immunocompetent cells and SLE-like disease. It has recently been reported that this mouse also manifests sensorineural hearing loss (SHL) with cochlear pathology at 20 weeks of age. We examined the effects of injecting MRL/lpr spleen cells on the development of SHL in severe combined immunodeficient (SCID) mice, which originally develop neither SHL nor cochlear pathology. Immune-mediated SHL and cochlear pathology were, indeed, transferred to the SCID mice by the injection of spleen cells from the MRL/lpr mice. These findings suggest that cell-mediated immunity is involved in the development of SHL and cochlear pathology. (C) 1998 Published by Elsevier Science B.V. C1 Kansai Med Univ, Dept Otorhinolaryngol, Osaka 570, Japan. Kanazawa Med Univ, Dept Otorhinolaryngol, Kanazawa, Ishikawa, Japan. Kansai Med Univ, Dept Pathol 1, Osaka, Japan. RP Iwai, H (reprint author), Kansai Med Univ, Dept Otorhinolaryngol, 10-15 Fumizonocho, Osaka 570, Japan. CR ANDREWS BS, 1978, J EXP MED, V148, P1198, DOI 10.1084/jem.148.5.1198 ASHANY D, 1992, CLIN EXP IMMUNOL, V90, P466 BOSMA GC, 1983, NATURE, V301, P527, DOI 10.1038/301527a0 BRAMA I, 1980, ARCH OTOLARYNGOL, V106, P215 CODY DTR, 1971, LARYNGOSCOPE, V81, P1208, DOI 10.1288/00005537-197108000-00004 DUCHOSAL MA, 1990, J EXP MED, V172, P985, DOI 10.1084/jem.172.3.985 GOODWILL CJ, 1972, ANN RHEUM DIS, V31, P170, DOI 10.1136/ard.31.3.170 GRATTON MA, 1995, HEARING RES, V82, P44 Gratton MA, 1996, HEARING RES, V94, P116, DOI 10.1016/0378-5955(96)00011-1 IWAI H, 1995, ACTA OTO-LARYNGOL, V115, P509, DOI 10.3109/00016489509139357 KRAMS SM, 1989, J EXP MED, V170, P1919, DOI 10.1084/jem.170.6.1919 KUSAKARI C, 1992, ANN OTO RHINOL LARYN, V101, P82 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LIEBER MR, 1988, CELL, V55, P7, DOI 10.1016/0092-8674(88)90004-9 MACHT L, 1991, CLIN EXP IMMUNOL, V84, P34 MACRAE D, 1975, EYE EAR NOSE THROAT, V36, P721 MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585 MCMENOMEY SO, 1992, OTOLARYNG HEAD NECK, V106, P288 MOSIER DE, 1988, NATURE, V335, P256, DOI 10.1038/335256a0 Murphy E.D., 1979, GENETIC CONTROL AUTO, P207 NONAKA M, 1992, ANN OTO RHINOL LARYN, V101, P54 RUCKENSTEIN MJ, 1993, ACTA OTO-LARYNGOL, V113, P160, DOI 10.3109/00016489309135785 SCHULER W, 1986, CELL, V46, P963, DOI 10.1016/0092-8674(86)90695-1 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K TAKAHASHI M, 1988, ACTA OTO-LARYNGOL, V106, P409, DOI 10.3109/00016488809122264 THEOFILOPOULOS AN, 1985, ADV IMMUNOL, V37, P269, DOI 10.1016/S0065-2776(08)60342-9 Trune DR, 1997, HEARING RES, V105, P57, DOI 10.1016/S0378-5955(96)00191-8 Trune DR, 1996, HEARING RES, V95, P57, DOI 10.1016/0378-5955(96)00018-4 WATANABEFUKUNAGA R, 1992, NATURE, V356, P314, DOI 10.1038/356314a0 Willott J. F., 1991, AGING AUDITORY SYSTE NR 30 TC 8 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1998 VL 117 IS 1-2 BP 173 EP 177 DI 10.1016/S0378-5955(98)00015-X PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZD064 UT WOS:000072647300017 PM 9557987 ER PT J AU Kurc, M Dodane, V Pinto, DS Kachar, B AF Kurc, M Dodane, V Pinto, DS Kachar, B TI Presynaptic localization of G protein isoforms in the efferent nerve terminals of the mammalian cochlea SO HEARING RESEARCH LA English DT Article DE G protein; SNAP-25; cochlea; nerve terminal; hair cell; efferent system ID CROSSED OLIVOCOCHLEAR BUNDLE; HETEROTRIMERIC-G-PROTEINS; GUINEA-PIG; ACETYLCHOLINE-RELEASE; SYNAPTIC VESICLES; ALPHA-SUBUNITS; RAT COCHLEA; STIMULATION; RECEPTOR; FAMILY AB Heterotrimeric guanine nucleotide binding proteins (G proteins) are known to be involved in receptor-mediated synaptic activity. In order to determine which G protein isoforms, if any, are involved in synaptic regulation in the organ of Corti, we performed an extensive immunocytochemical screening. We localized. a G alpha(q/11) isoform to the efferent nerve terminals using antibodies specific against the a subunit of these proteins. The label was observed in the efferent boutons contacting either the outer hair cells or the afferent fibers at the inner spiral bundle. We compared the localization of this isoform to that of the presynaptic protein SNAP-25 ill double labeling experiments. G alpha(q/11) immunoreactivity was present predominantly in the cytoplasm of the presynaptic boutons in a region of high density of synaptic vesicles, while SNAP-25 was localized predominantly in the plasma membrane of the boutons. No label for these proteins was found al the afferent synapses, including the presynaptic terminals on hair cells. These results suggest that an isoform of the G(q) subfamily of the G proteins might be involved in presynaptic modulation of neurotransmitter release at the cochlear efferents. (C) 1998 Published by Elsevier Science B.V. C1 NIH, Sect Struct Cell Biol, Natl Inst Deafness & Other Commun Disorders, Bethesda, MD 20892 USA. RP Kachar, B (reprint author), NIH, Sect Struct Cell Biol, Natl Inst Deafness & Other Commun Disorders, 9000 Rockville Pk Bldg 36,Room 5D-15, Bethesda, MD 20892 USA. RI Pinto, Decio/B-6041-2011 OI Pinto, Decio/0000-0001-6198-5155 CR AHNERTHILGER G, 1994, EUR J CELL BIOL, V65, P26 BARTOLAMI S, 1993, NEUROCHEM INT, V23, P419, DOI 10.1016/0197-0186(93)90126-P BOMSEL M, 1992, MOL BIOL CELL, V3, P1317 BROWN MC, 1984, J PHYSIOL-LONDON, V354, P625 BROWNELL WE, 1985, AUDITORY BIOMECHANIC, P369 DEBELLEROCHE JS, 1982, BRIT J PHARMACOL, V75, P359 EGLEN RM, 1994, TRENDS PHARMACOL SCI, V15, P114, DOI 10.1016/0165-6147(94)90047-7 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FEX J, 1986, BRAIN RES, V366, P106, DOI 10.1016/0006-8993(86)91285-0 GILMAN AG, 1995, BIOSCIENCE REP, V15, P65, DOI 10.1007/BF01200143 Guinan Jr J.J., 1996, COCHLEA, P435 GUIRAMAND J, 1990, BIOCHEM PHARMACOL, V39, P1913, DOI 10.1016/0006-2952(90)90609-O Herlitze S, 1996, NATURE, V380, P258, DOI 10.1038/380258a0 HERRERO I, 1992, NATURE, V360, P163, DOI 10.1038/360163a0 ISHII D, 1980, ACTA OTOLARYNGOL STO, V62, P61 KILBINGER H, 1977, N-S ARCH PHARMACOL, V300, P145, DOI 10.1007/BF00505045 LEE CH, 1992, J BIOL CHEM, V267, P16044 MAGOVCEVIC I, 1995, HEARING RES, V90, P55, DOI 10.1016/0378-5955(95)00146-8 MARCHI M, 1981, EUR J PHARMACOL, V73, P75, DOI 10.1016/0014-2999(81)90147-3 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 NEER EJ, 1995, CELL, V80, P249, DOI 10.1016/0092-8674(95)90407-7 NGSEE JK, 1990, J NEUROSCI, V10, P317 NIEDZIELSKI AS, 1992, HEARING RES, V59, P250, DOI 10.1016/0378-5955(92)90121-3 OGAWA K, 1994, HEARING RES, V74, P197, DOI 10.1016/0378-5955(94)90187-2 PANG IH, 1990, J BIOL CHEM, V265, P18707 PATUZZI R, 1988, PHYSIOL REV, V68, P1009 Rasmussen G.L., 1960, NEURAL MECHANISMS AU, P105 Safieddine S, 1996, MOL BRAIN RES, V40, P127 SHENKER A, 1991, J BIOL CHEM, V266, P9309 STRATHMANN M, 1989, P NATL ACAD SCI USA, V86, P7407, DOI 10.1073/pnas.86.19.7407 SZERB JC, 1980, N-S ARCH PHARMACOL, V311, P119, DOI 10.1007/BF00510250 VOGEL SS, 1991, P NATL ACAD SCI USA, V88, P1775, DOI 10.1073/pnas.88.5.1775 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 NR 34 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 1 EP 9 DI 10.1016/S0378-5955(97)00183-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400001 PM 9508023 ER PT J AU Hienz, RD Stiles, P May, BJ AF Hienz, RD Stiles, P May, BJ TI Effects of bilateral olivocochlear lesions on vowel formant discrimination in cats SO HEARING RESEARCH LA English DT Article DE olivocochlear lesion; speech perception; background noise; animal psychophysics ID AUDITORY-NERVE FIBERS; GUINEA-PIG COCHLEA; BASILAR-MEMBRANE DISPLACEMENT; TEMPORARY THRESHOLD SHIFTS; ELECTRICAL-STIMULATION; FREQUENCY DISCRIMINATION; EFFERENT STIMULATION; SOUND LOCALIZATION; RATE RESPONSES; SPECTRAL CUES AB Operant conditioning procedures were used to measure the effects of bilateral olivocochlear lesions on the cat's discrimination thresholds for changes in the second formant frequency (Delta F-2) of the vowel /epsilon/. Three cats were tested with the formant discrimination task under quiet conditions and in the presence of continous broadband noise at signal-to-noise ratios (S/Ns) of 23, 13, and 3 dB. In quiet, vowel levels of 50 and 70 dB produced average Delta F(2)s Of 42 and 47 Hz, respectively, and these thresholds did not change significantly in low levels of background noise (S\Ns = 23 and 13 dB). Average Delta F(2)s increased to 94 and 97 Hz for vowel levels of 50 and 70 dB in the loudest level of background noise (S/N = 3 dB). Average Delta F-2 thresholds in quiet and in lower noise levels were only slightly affected when the olivocochlear bundle was lesioned by making bilateral cuts into the floor of the IVth ventricle. In contrast, post-lesion Delta F-2 thresholds in the highest noise level were significantly larger than pre-lesion values; the most severely affected subject showed post-lesion discrimination thresholds well over 200 Hz for both 50 and 70 dB vowels. These results suggest that olivocochlear feedback may enhance speech processing in high levels of ambient noise. (C) 1998 Elsevier Science B.V. C1 Johns Hopkins Univ, Dept Otorhinolaryngol Head & Neck Surg, Sch Med, Baltimore, MD 21205 USA. Johns Hopkins Univ, Sch Med, Johns Hopkins Asthma & Allergy Ctr, Dept Psychiat,Div Behav Biol, Baltimore, MD 21224 USA. RP May, BJ (reprint author), Johns Hopkins Univ, Dept Otorhinolaryngol Head & Neck Surg, Sch Med, 505 Taylor Rd Bldg,720 Rutland Ave, Baltimore, MD 21205 USA. CR ARNESEN AR, 1984, ACTA OTO-LARYNGOL, V98, P501, DOI 10.3109/00016488409107591 Dallos P, 1997, J NEUROSCI, V17, P2212 DEWSON JH, 1968, J NEUROPHYSIOL, V31, P122 DOLAN DF, 1994, ASS RES OT ABSTR, V17, P356 GACEK RR, 1961, ARCHIV OTOLARYNGOL, V74, P690 GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 Giraud AL, 1997, NEUROREPORT, V8, P1779 GREEN DM, 1966, SIGNAL DETECTION THE, P127 GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8 Guinan Jr J.J., 1996, COCHLEA, P435 Hienz RD, 1996, J ACOUST SOC AM, V100, P1052, DOI 10.1121/1.416291 Hienz RD, 1996, J ACOUST SOC AM, V99, P3656, DOI 10.1121/1.414980 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 Huang AY, 1996, J ACOUST SOC AM, V100, P1070, DOI 10.1121/1.416293 IGARASHI M, 1972, ACTA OTO-LARYNGOL, V73, P455, DOI 10.3109/00016487209138966 IGARASHI M, 1979, ACTA OTO-LARYNGOL, V87, P79, DOI 10.3109/00016487909126390 IGARASHI M, 1979, ACTA OTO-LARYNGOL, V87, P429, DOI 10.3109/00016487909126446 IGARASHI M, 1974, ACTA OTO-LARYNGOL, V77, P311, DOI 10.3109/00016487409124630 IGARASHI M, 1977, ACTA OTO-LARYNGOL, V83, P410, DOI 10.3109/00016487709128865 Kiang NYS, 1976, ELECTROCOCHLEOGRAPHY, P95 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779 May BJ, 1995, AUDIT NEUROSCI, V1, P385 May BJ, 1996, AUDIT NEUROSCI, V3, P135 MAY BJ, 1995, METHODS COMP PSYCHOA, P95 MAY BJ, 1992, J NEUROPHYSIOL, V68, P1589 Micheyl C, 1996, J ACOUST SOC AM, V99, P1604, DOI 10.1121/1.414734 Murugasu E, 1996, AUDIT NEUROSCI, V2, P363 Murugasu E, 1996, J NEUROSCI, V16, P325 NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9 OSEN KK, 1969, BRAIN RES, V16, P165, DOI 10.1016/0006-8993(69)90092-4 PETERSON GE, 1952, J ACOUST SOC AM, V24, P175, DOI 10.1121/1.1906875 RAJAN R, 1983, HEARING RES, V9, P279, DOI 10.1016/0378-5955(83)90032-1 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 SACHS MB, 1980, J ACOUST SOC AM, V68, P858, DOI 10.1121/1.384825 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 SCHARF B, 1994, HEARING RES, V75, P11, DOI 10.1016/0378-5955(94)90051-5 SCHUKNECHT HF, 1959, ARCHIV OTOLARYNGOL, V69, P549 Sewell W. F., 1996, COCHLEA, P503 SOKAL RR, 1995, BIOMETRY, P444 Sridhar TS, 1997, J NEUROSCI, V17, P428 SRIDHAR TS, 1995, J NEUROSCI, V15, P3667 TRAHOITIS C, 1968, J ACOUST SOC AM, V47, P592 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WILLIAMS EA, 1993, SCAND AUDIOL, V22, P197, DOI 10.3109/01050399309047469 WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5 WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 NR 55 TC 31 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 10 EP 20 DI 10.1016/S0378-5955(97)00197-4 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400002 PM 9508024 ER PT J AU Skellett, RA Cullen, JK Fallon, M Bobbin, RP AF Skellett, RA Cullen, JK Fallon, M Bobbin, RP TI Conditioning the auditory system with continuous vs. interrupted noise of equal acoustic energy: Is either exposure more protective? SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emission; protection; noise exposure ID PRODUCT OTOACOUSTIC EMISSIONS; INDUCED HEARING-LOSS; OUTER HAIR-CELLS; EVOKED-POTENTIAL THRESHOLDS; DISTORTION-PRODUCT; TRAUMATIC EXPOSURE; GUINEA-PIGS; DAMAGE; SOUND; LEVEL AB The purpose of this study was to test the hypothesis that differences exist in the amount of protection provided by prior sound conditioning with continuous vs. interrupted, moderate-level noise. Differences were determined by monitoring the changes that occurred in cubic (2f(1)-f(2)) distortion product otoacoustic emission (DPOAE) amplitude growth functions subsequent to a traumatizing noise exposure (105 dB SPL, 1.0-2.0 kHz octave band noise presented 24 h per day for 3 days) in guinea pigs which had been conditioned with either continuous (89 dB SPI, 1.0-2.0 kHz octave band noise presented 24 h per day for 11 days) or interrupted noise (95 dB SPL, 1.0-2.0 kHz octave band noise presented on a B-h 'on'/18-h'off' schedule for 11 days) of equal acoustic energy. Results suggest that there are significant differences in the degree of protection provided by prior sound conditioning with the continuous and interrupted schedules of moderate-level noise used in this study. Specifically, the interrupted conditioning protocol afforded some degree of protection against the damaging effects of the traumatizing noise exposure, limited to frequencies above the noise exposure band. Conversely, there was a lack of any consistent and sizable protective effect found across the entire test frequency range for the continuous sound conditioning protocol. (C) 1998 Published by Elsevier Science B.V. C1 Louisiana State Univ, Med Ctr, Dept Otorhinolaryngol & Biocommun, Kresge Hearing Res Lab, New Orleans, LA USA. RP Skellett, RA (reprint author), Univ Texas, Callier Ctr Commun Disorders, 1966 Inwood Rd, Dallas, TX 75235 USA. EM skellett@utdallas.edu CR ALLEN JB, 1993, J ACOUST SOC AM, V94, P809, DOI 10.1121/1.408182 Boettcher FA, 1995, J ACOUST SOC AM, V98, P3215, DOI 10.1121/1.413811 BOHNE BA, 1987, HEARING RES, V55, P195 BOHNE BA, 1985, ANN OTO RHINOL LARYN, V94, P122 BROWN AM, 1990, J ACOUST SOC AM, V88, P840, DOI 10.1121/1.399733 BROWN AM, 1992, P ROY SOC B-BIOL SCI, V250, P29, DOI 10.1098/rspb.1992.0126 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 CANLON B, 1995, HEARING RES, V84, P112, DOI 10.1016/0378-5955(95)00020-5 CANLON B, 1992, NOISE INDUCED HEARIN, P489 CARDER HM, 1972, J SPEECH HEAR RES, V15, P603 Chang KW, 1996, HEARING RES, V96, P1, DOI 10.1016/0378-5955(95)00225-1 CLARK WW, 1987, J ACOUST SOC AM, V82, P1253, DOI 10.1121/1.395261 DAVIS H, 1943, ACTA OTOLARYNGOL S, V88 ELDRED KM, 1955, 55355 WADC TN AER SP FOWLER T, 1995, HEARING RES, V88, P1, DOI 10.1016/0378-5955(95)00062-9 FREDELIUS L, 1992, HEARING RES, V62, P194, DOI 10.1016/0378-5955(92)90186-Q Guinan Jr J.J., 1996, COCHLEA, P435 HENDERSON D, 1992, NOISE INDUCED HEARIN, P476 KIM DO, 1992, NOISE INDUCED HEARIN, P98 KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C MATTHEWS JW, 1986, PERIPHERAL AUDITORY, P258 Miller J. D., 1963, ACTA OTO-LARYNGOL, V176, P1 MITCHELL C, 1977, ARCH OTOLARYNGOL, V103, P117 PUEL JL, 1995, ACTA ACUST, V3, P75 RYAN AF, 1994, HEARING RES, V72, P23, DOI 10.1016/0378-5955(94)90201-1 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 Sewell W. F., 1996, COCHLEA, P503 Skellett RA, 1996, HEARING RES, V98, P68, DOI 10.1016/0378-5955(96)00062-7 Slepecky N. B., 1996, COCHLEA, P44 SUBRAMANIAM M, 1991, HEARING RES, V52, P181, DOI 10.1016/0378-5955(91)90197-H SUBRAMANIAM M, 1992, HEARING RES, V58, P57, DOI 10.1016/0378-5955(92)90008-B SUBRAMANIAM M, 1995, EAR HEARING, V16, P372, DOI 10.1097/00003446-199508000-00004 SUBRAMANIAM M, 1994, HEARING RES, V74, P204, DOI 10.1016/0378-5955(94)90188-0 SUBRAMANIAM M, 1994, EAR HEARING, V15, P299, DOI 10.1097/00003446-199408000-00004 SUBRAMANIAM M, 1993, HEARING RES, V65, P234, DOI 10.1016/0378-5955(93)90216-N Ward W. D., 1976, EFFECTS NOISE HEARIN, P407 WHITE DR, 1996, 19 MIDW RES M ASS RE, P34 Zheng XY, 1997, HEARING RES, V104, P191, DOI 10.1016/S0378-5955(96)00187-6 ZUREK PM, 1982, J ACOUST SOC AM, V72, P774, DOI 10.1121/1.388258 NR 41 TC 10 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 21 EP 32 DI 10.1016/S0378-5955(97)00199-8 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400003 PM 9508025 ER PT J AU Shore, SE Moore, JK AF Shore, SE Moore, JK TI Sources of input to the cochlear granule cell region in the guinea pig SO HEARING RESEARCH LA English DT Article DE axonal transport; fluorogold; cochlear nucleus; superior olivary complex; inferior colliculus ID DESCENDING PROJECTIONS; NUCLEAR-COMPLEX; AUDITORY-NERVE; BRAIN-STEM; CAT; RAT; MOUSE; ORGANIZATION; ANTEROGRADE; DORSAL AB Anterograde and retrograde transport of fluorogold was used to trace input to the superficial granule cell layer of the ventral cochlear nucleus in the guinea pig. Infusion of fluorogold into the labyrinth resulted in heavy labeling of eighth nerve axons and their terminals in the ventral cochlear nucleus, but only a few labeled axons entered the granule cell layer, Injections of fluorogold restricted to the granule cell layer retrogradely labeled neurons in the ipsilateral lateral superior olivary nucleus, in the periolivary region predominantly contralaterally, and in the inferior colliculus predominantly ipsilaterally. Labeled neurons were also present in the ipsilateral ventral cochlear nucleus, but this may be due to interruption of axons of passage in the lateral ventrotubercular tract. Overall this study demonstrates very restricted direct cochlear input to the granule cell region, but provides evidence for projections from several brainstem auditory nuclei. (C) 1998 Published by Elsevier Science B.V. C1 Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Med Coll Ohio, Dept Otolaryngol, Toledo, OH 43699 USA. House Ear Inst, Dept Neuroanat Res, Los Angeles, CA USA. Univ So Calif, Dept Otolaryngol, Los Angeles, CA 90089 USA. RP Shore, SE (reprint author), Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM sushore@umich.edu CR BEATTIE JL, 1993, ASS RES OTOLARYNGOL, P119 Berglund AM, 1996, HEARING RES, V94, P31, DOI 10.1016/0378-5955(95)00231-6 BERGLUND AM, 1994, HEARING RES, V75, P121, DOI 10.1016/0378-5955(94)90063-9 BROWN MC, 1993, J COMP NEUROL, V337, P600, DOI 10.1002/cne.903370406 BROWN MC, 1988, J COMP NEUROL, V303, P300 BROWN MC, 1990, HEARING RES, V49, P105, DOI 10.1016/0378-5955(90)90098-A BURIAN M, 1988, NEUROSCI LETT, V84, P13, DOI 10.1016/0304-3940(88)90329-1 COLLINGE C, 1991, HEARING RES, V53, P159, DOI 10.1016/0378-5955(91)90051-A FELICIANO M, 1995, AUDIT NEUROSCI, V1, P187 FERRAGAMO MJ, 1997, ASS RES OTOLARYNGOL, P44 HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7 JONES DR, 1979, NEUROSCIENCE, V4, P1299, DOI 10.1016/0306-4522(79)90158-1 KANE EC, 1974, J COMP NEUROL, V155, P301, DOI 10.1002/cne.901550303 KANE ES, 1977, AM J ANAT, V150, P301 KIM DO, 1995, ACTIVE HEARING, P31 Konigsmark BW, 1970, CONT RES METHODS NEU, P315 KVETTER GA, 1989, BRAIN BEHAV EVOLUT, V34, P193 LORENTE DR, 1991, PRIMARY ACOUSTIC NUC Malmierca MS, 1996, HEARING RES, V93, P167, DOI 10.1016/0378-5955(95)00227-8 MARTIN GL, 1982, NEUROSCI LETT, V18, P113 MERZENIC.MM, 1973, BRAIN RES, V58, P331, DOI 10.1016/0006-8993(73)90005-X MOORE JK, 1980, J COMP NEUROL, V193, P609 MOORE JK, 1979, AM J ANAT, V154, P393, DOI 10.1002/aja.1001540306 MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406 MUGNAINI E, 1980, J NEUROCYTOL, V9, P537, DOI 10.1007/BF01204841 NODA Y, 1974, ARCH OTO-RHINO-LARYN, V208, P107, DOI 10.1007/BF00453924 NUDO RJ, 1984, CONTRIBUTIONS SENSOR, V8, P79 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 OSEN KK, 1965, J COMP NEUROL, V125, P223, DOI 10.1002/cne.901250206 OSEN KK, 1984, ARCH ITAL BIOL, V122, P169 OSEN KK, 1970, ARCH ITAL BIOL, V108, P21 OSEN KK, 1969, BRAIN RES, V16, P165, DOI 10.1016/0006-8993(69)90092-4 Ramsay H, 1996, ACTA OTO-LARYNGOL, V116, P39, DOI 10.3109/00016489609137710 RYAN AF, 1990, J COMP NEUROL, V300, P572, DOI 10.1002/cne.903000410 SHORE SE, 1991, HEARING RES, V52, P255, DOI 10.1016/0378-5955(91)90205-N SHORE SE, 1995, ASS RES OTOLARYNGOL, P37 SPANGLER KM, 1987, J COMP NEUROL, V259, P452, DOI 10.1002/cne.902590311 WEBSTER DB, 1971, J COMP NEUROL, V143, P323, DOI 10.1002/cne.901430305 Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 Wright DD, 1996, J COMP NEUROL, V365, P159, DOI 10.1002/(SICI)1096-9861(19960129)365:1<159::AID-CNE12>3.0.CO;2-L NR 43 TC 36 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 33 EP 42 DI 10.1016/S0378-5955(97)00207-4 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400004 PM 9508026 ER PT J AU Kelly, JB Liscum, A van Adel, B Ito, M AF Kelly, JB Liscum, A van Adel, B Ito, M TI Projections from the superior olive and lateral lemniscus to tonotopic regions of the rat's inferior colliculus SO HEARING RESEARCH LA English DT Article DE auditory system; sound frequency; retrograde transport; lateral lemniscus; superior olivary complex; inferior colliculus ID VITRO BRAIN SLICE; RUFOUS HORSESHOE BAT; DORSAL NUCLEUS; RESPONSE PROPERTIES; ASCENDING PROJECTIONS; EFFERENT PROJECTIONS; ECHOLOCATING BAT; COCHLEAR NUCLEUS; AUDITORY-SYSTEM; SINGLE NEURONS AB The projections to physiologically defined tonotopic regions of the central nucleus of the inferior colliculus (ICC) from the adult rat's superior olivary complex (SOC) and lateral lemniscus were investigated using retrograde tract tracing methods. Iontophoretic injections of the retrograde tracers; Fluoro-Gold (FG) or-horseradish peroxidase (HRP), were made into the ICC through a glass micropipette, which also served as a recording electrode to determine the frequency response at the injection site. Injections were made into frequency-specific regions based on the best responses of neurons to contralaterally presented tones between 2-25 kHz. In the dorsal nucleus of the lateral lemniscus (DNLL) neurons were labeled both ipsilaterally and contralaterally to the injection site with a larger proportion pi-ejecting to the contralateral side. Th-distribution of labeled cells was concentric, with high frequencies represented along the outer margin and low frequencies represented centrally within DNLL. The lateral superior olive (LSO) was labeled bilaterally, with high frequencies represented medially and low frequencies laterally along the nuclear axis. The projection from the medial superior olive (MSG) was ipsilateral, with high frequencies represented ventrally and low frequencies dorsally. The projection from the superior paraolivary nucleus (SPN) was also largely ipsilateral, with high frequencies represented medially and low frequencies laterally. The intermediate and ventral nuclei of the lateral lemniscus (INLL and VNLL) were also labeled ipsilaterally and exhibited a distribution of tracer that depended on the frequency of the injection site: the low frequency projection was banded but the high frequency projection was more evenly distributed. (C) 1998 Elsevier Science B.V. C1 Carleton Univ, Inst Neurosci, Lab Sensory Sci, Ottawa, ON K1S 5B6, Canada. RP Kelly, JB (reprint author), Carleton Univ, Inst Neurosci, Lab Sensory Sci, 329 Life Sci Bldg,1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 AITKIN LM, 1970, J NEUROPHYSIOL, V33, P421 AITKIN LM, 1986, BRAIN BEHAV EVOLUT, V29, P1, DOI 10.1159/000118668 BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207 BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 BUCKTHOUGHT AD, 1993, ASS RES OTOLARYGOL A, V16, P126 CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305 CASSEDAY JH, 1988, J COMP NEUROL, V278, P313, DOI 10.1002/cne.902780302 CLOPTON BM, 1973, BRAIN RES, V56, P355, DOI 10.1016/0006-8993(73)90352-1 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 COLEMAN JR, 1982, OTOLARYNG HEAD NECK, V90, P795 COLOMBO A, 1996, ASS RES OT ABSTR, V19, P121 COVEY E, 1991, J NEUROPHYSIOL, V66, P1080 COVEY E, 1986, J NEUROSCI, V6, P2926 COVEY E, 1991, J NEUROSCI, V11, P3456 Covey E., 1995, HEARING BATS, P235 COVEY E, 1993, J NEUROPHYSIOL, V69, P842 FLAMMINO F, 1975, J ACOUST SOC AM, V57, P692, DOI 10.1121/1.380494 FRIAUF E, 1988, EXP BRAIN RES, V73, P263 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x Fu XW, 1997, NEUROSCIENCE, V78, P815, DOI 10.1016/S0306-4522(96)00580-5 GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409 GLENDENNING KK, 1983, J NEUROSCI, V3, P1521 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 GOLDBERG JM, 1967, J COMP NEUROL, V129, P143, DOI 10.1002/cne.901290203 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 HARNISCHFEGER G, 1985, J NEUROPHYSIOL, V53, P89 HEFFNER RS, 1985, HEARING RES, V19, P85, DOI 10.1016/0378-5955(85)90100-5 HENKEL CK, 1983, J COMP NEUROL, V221, P416, DOI 10.1002/cne.902210405 HUANG C, 1986, EXP BRAIN RES, V61, P506 HUTSON KA, 1991, J COMP NEUROL, V312, P105, DOI 10.1002/cne.903120109 INBODY SB, 1981, BRAIN RES, V210, P361, DOI 10.1016/0006-8993(81)90910-0 Ito M, 1996, J NEUROPHYSIOL, V76, P3493 ITO M, 1995, WORLD C NEUR IBRO KY, V4, P197 KANDLER K, 1993, J COMP NEUROL, V328, P161, DOI 10.1002/cne.903280202 KAVANAGH GL, 1992, J NEUROPHYSIOL, V67, P1643 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 KELLY JB, 1991, HEARING RES, V56, P273, DOI 10.1016/0378-5955(91)90177-B Kelly JB, 1996, BEHAV NEUROSCI, V110, P1445, DOI 10.1037//0735-7044.110.6.1445 Kidd SA, 1996, J NEUROSCI, V16, P7390 KUDO M, 1988, BRAIN RES, V463, P352, DOI 10.1016/0006-8993(88)90409-X KUDO M, 1981, BRAIN RES, V221, P57, DOI 10.1016/0006-8993(81)91063-5 LI L, 1992, J NEUROSCI, V12, P4530 MARKOVITZ NS, 1994, HEARING RES, V73, P121, DOI 10.1016/0378-5955(94)90290-9 MARKOVITZ NS, 1993, HEARING RES, V71, P51, DOI 10.1016/0378-5955(93)90020-2 Merchan MA, 1996, J COMP NEUROL, V372, P245 MERCHAN MA, 1994, J COMP NEUROL, V342, P259, DOI 10.1002/cne.903420209 METZNER W, 1987, J COMP PHYSIOL A, V160, P395, DOI 10.1007/BF00613029 MOORE DR, 1988, J COMP NEUROL, V269, P342, DOI 10.1002/cne.902690303 NORDEEN KW, 1983, J COMP NEUROL, V214, P155 OKOYAMA S, 1995, HEARING RES, V88, P65, DOI 10.1016/0378-5955(95)00100-I OKOYAMA S, 1995, HEARING RES, V88, P71, DOI 10.1016/0378-5955(95)00101-9 OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 PREUSS S, 1991, THESIS U TUBINGEN ROONEY BJ, 1991, J NEUROSCI METH, V39, P65, DOI 10.1016/0165-0270(91)90094-G ROSS LS, 1988, J COMP NEUROL, V270, P488, DOI 10.1002/cne.902700403 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B SAINTMARIE RL, 1989, J COMP NEUROL, V279, P382 SANES DH, 1989, J COMP NEUROL, V279, P436, DOI 10.1002/cne.902790308 SCHOFIELD BR, 1991, J COMP NEUROL, V312, P68, DOI 10.1002/cne.903120106 SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 SYKA J, 1981, NEURONAL MECH HEARIN, P137 Kelly JB, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P329, DOI 10.1007/978-1-4419-8712-9_31 TANAKA K, 1985, BRAIN RES, V341, P252, DOI 10.1016/0006-8993(85)91064-9 TSUCHITANI C, 1977, J NEUROPHYSIOL, V40, P296 VANADEL BA, 1996, ASS RES OTOLARYNGOL, V19, P12 WHITLEY JM, 1984, J COMP NEUROL, V229, P257, DOI 10.1002/cne.902290210 WILLARD FH, 1984, BRAIN RES, V303, P171, DOI 10.1016/0006-8993(84)90225-7 WU SH, 1995, J NEUROPHYSIOL, V73, P794 WU SH, 1995, J NEUROPHYSIOL, V73, P780 Wu SH, 1996, J NEUROPHYSIOL, V75, P1271 YANG LC, 1994, J NEUROPHYSIOL, V71, P1999 YANG LC, 1994, J NEUROPHYSIOL, V71, P2014 YNAG L, 1996, J COMP NEUROL, V373, P573 ZOOK JM, 1987, J COMP NEUROL, V261, P347, DOI 10.1002/cne.902610303 ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103 NR 79 TC 62 Z9 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 43 EP 54 DI 10.1016/S0378-5955(97)00195-0 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400005 PM 9508027 ER PT J AU Huang, CQ Shepherd, RK Seligman, PM Clark, GM AF Huang, CQ Shepherd, RK Seligman, PM Clark, GM TI Reduction in excitability of the auditory nerve following acute electrical stimulation at high stimulus rates: III. Capacitive versus non-capacitive coupling of the stimulating electrodes SO HEARING RESEARCH LA English DT Article DE auditory nerve; direct current (DC); high rate electrical stimulation; electrically evoked auditory brainstem response; cochlear implant ID DEFINED CHARGE-DENSITIES; GUINEA-PIG; PLATINUM-ELECTRODES; ENERGY-METABOLISM; DAMAGE; ANTAGONIST; PROTECTS; CORTEX; INJURY; SYSTEM AB Safe electrical stimulation of neural tissue is typically achieved using charge-balanced biphasic current pulses, which are designed to minimize the generation of direct current (DC) and the production of harmful electrochemical products. However, due to the kinetics of the charge injection process, neural stimulators must also use capacitive coupling or electrode shorting techniques, to ensure DC levels are minimal. Previous studies have reported a reduction in excitability of the auditory nerve following acute simulation at high rates and intensities. Elevated levels of DC were reported in these studies despite using charge-balanced biphasic pulses and electrode shorting. The present study was designed to investigate the extent to which DC contributed to these stimulus induced reductions in auditory nerve excitability. Adult guinea pigs were bilaterally implanted and unilaterally stimulated for two hours using charge-balanced biphasic current pulses and stimulus rates of 200, 400 or 1000 pulses/s (pps) at a stimulus intensity well above clinical levels (0.34 mu C/phase). DC levels were controlled using either electrode shorting, or electrode shorting with capacitive coupling. Electrically evoked auditory brainstem responses (EABRs) were recorded before and periodically following the acute stimulation. It was found that the extent of reduction in the EABR amplitude was a function of stimulus rate. While there was little change in the EABR following stimulation at 200 pps, significant post-stimulus reductions in the EABR amplitude were observed at stimulus rates of 400 and 1000 pps during the three hour post-stimulus monitoring period. Stimulation using capacitively coupled electrodes, which eliminated all DCs, showed reductions in EABR amplitudes similar to those observed following stimulation using electrode shorting alone. While there was no significant difference in tie extent of reduction in EABR amplitudes for capacitive coupling versus electrode shorting at stimulus rates of 200 pps (P>0.05) and 300 pps (P>0.05), there was a significant difference at 1000 pps (P<0.001). The present findings indicate that the major component of the stimulus induced reductions observed in auditory nerve excitability appear to be associated with stimulus induced neuronal activity, although elevated levels of DC (>2.5 mu A) can also contribute to these changes. However, although statistically significant, the effects of DC are very small compared to the effects of high rate, high intensity stimulation per se. (C) 1998 Elsevier Science B.V. C1 Univ Melbourne, Dept Otolaryngol, E Melbourne, Vic 3052, Australia. RP Shepherd, RK (reprint author), Univ Melbourne, Dept Otolaryngol, 32 Gisborne St, E Melbourne, Vic 3052, Australia. EM shepherdr@mail.medoto.unimelb.edu.au RI Shepherd, Robert/I-6276-2012 CR AGNEW WF, 1993, NEUROSCIENCE, V52, P45, DOI 10.1016/0306-4522(93)90180-N Agnew W F, 1979, Neurol Res, V1, P187 AGNEW WF, 1977, J NEUROPATH EXP NEUR, V36, P533, DOI 10.1097/00005072-197705000-00010 AGNEW WF, 1990, J BIOMED ENG, V12, P301, DOI 10.1016/0141-5425(90)90004-7 AGNEW WF, 1983, EXP NEUROL, V79, P397, DOI 10.1016/0014-4886(83)90221-2 ALFORD S, 1992, EXCITATORY AMINO ACI, P43 ARAN JM, 1977, CLIN OTOLARYNGOL, V77, P305 BLACK RC, 1979, APPL NEUROPHYSIOL, V42, P366 BROWN M, 1992, HEARING RES, V59, P224, DOI 10.1016/0378-5955(92)90119-8 BRUMMER SB, 1977, IEEE T BIO-MED ENG, V24, P440, DOI 10.1109/TBME.1977.326179 BRUMMER SB, 1977, IEEE T BIO-MED ENG, V24, P59, DOI 10.1109/TBME.1977.326218 CARTER PM, 1995, P 3 INT C COCHL IMPL, P159 COUSILLAS H, 1988, HEARING RES, V36, P21, DOI 10.1016/0378-5955(88)90135-9 DODSON HC, 1987, HEARING RES, V31, P65, DOI 10.1016/0378-5955(87)90214-0 DONALDSON ND, 1986, MED BIOL ENG COMPUT, V24, P41, DOI 10.1007/BF02441604 HUANG CQ, 1998, IN PRESS 2 INT C BIO HUANG CQ, 1996, P 16 AUST NEUR SOC, V7, P227 HURLBERT RJ, 1993, J NEUROSURG, V79, P905, DOI 10.3171/jns.1993.79.6.0905 ISLAM N, 1995, BRAIN RES, V684, P206, DOI 10.1016/0006-8993(95)00434-R KILLIAN MJP, 1994, HEARING RES, V81, P66, DOI 10.1016/0378-5955(94)90154-6 Lilly JC, 1961, ELECT STIMULATION BR, P60 MCCREERY DB, 1983, EXP NEUROL, V79, P371, DOI 10.1016/0014-4886(83)90220-0 McDermott H. J., 1993, IEEE Transactions on Rehabilitation Engineering, V1, DOI 10.1109/86.242423 MCHARDY J, 1980, IEEE T BIOMED ENG, V24, P129 MILLER JM, 1985, COCHLEAR IMPLANTS, P35 MIYAOKA M, 1979, Acta Neurologica Scandinavica Supplementum, V60, P16 MORLEY P, 1994, BRAIN PATHOL, V4, P37 NI DF, 1992, HEARING RES, V62, P63, DOI 10.1016/0378-5955(92)90203-Y NICOTERA P, 1992, ANN NY ACAD SCI, V648, P17, DOI 10.1111/j.1749-6632.1992.tb24520.x NUTTALL AL, 1985, J ACOUST SOC AM, V77, P165, DOI 10.1121/1.392282 PARK CK, 1988, ANN NEUROL, V24, P543, DOI 10.1002/ana.410240411 Patrick J., 1990, COCHLEAR PROSTHESES, p99 Robblee L S, 1990, NEURAL PROSTHESES FU, P25 SCHREINER CE, 1986, HEARING RES, V21, P213, DOI 10.1016/0378-5955(86)90220-0 SHEPHERD RK, 1987, ANN OTO RHINOL LARYN, V96, P50 SHEPHERD RK, 1994, CHRONIC ELECT STIMUL Shepherd RK, 1990, COCHLEAR PROSTHESES, P69 Shepherd R K, 1983, Acta Otolaryngol Suppl, V399, P19 Shepherd RK, 1986, THESIS U MELBOURNE SHEPHERD RK, 1985, BIOMATERIALS, V6, P237, DOI 10.1016/0142-9612(85)90019-5 SHEPHERD RK, 1991, ACTA OTO-LARYNGOL, V111, P848, DOI 10.3109/00016489109138421 SIESJO BK, 1990, NEURODEGENERATIVE DI, P35 SOKOLOFF L, 1983, HDB NEUROCHEMISTRY, V3, P224 SOKOLOFF L, 1977, J NEUROCHEM, V29, P13, DOI 10.1111/j.1471-4159.1977.tb03919.x TYKOCINSKI M, 1995, HEARING RES, V88, P124, DOI 10.1016/0378-5955(95)00108-G Tykocinski M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P68 WIELOCH T, 1985, SCIENCE, V230, P681, DOI 10.1126/science.2996146 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 YAROWSKY PJ, 1981, FED PROC, V40, P2353 NR 50 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 55 EP 64 DI 10.1016/S0378-5955(97)00196-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400006 PM 9508028 ER PT J AU Trune, DR Kempton, JB Mitchell, CR Hefeneider, SH AF Trune, DR Kempton, JB Mitchell, CR Hefeneider, SH TI Failure of elevated heat shock protein 70 antibodies to alter cochlear function in mice SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; inner ear; heat shock protein 70; CBA/J mouse; antibody ID SENSORINEURAL HEARING-LOSS; SERUM ANTIBODIES; STRESS PROTEINS; INNER-EAR; AUTOIMMUNE-DISEASE; MENIERES-DISEASE; CELL-ADHESION; RAT COCHLEA; HEAT-SHOCK-PROTEIN-70 AB Heat shock protein 70 (HSP70) has been suggested as the putative cochlear antigen underlying a proposed autoimmune etiology in certain cases of Meniere's disease and idiopathic hearing loss. To determine if antibodies to this cellular protein are capable of altering cochlear function, BALB/c (N = 3) and CBA/J (N = 9) mice were inoculated with bovine HSP70 by intraperitoneal injections (10 mu g in Saline) every 10 days for 7 or 10 months, respectively. An equal number of control mice were injected with PBS according to the same schedule. ABR thresholds at 4, 8, 16, and 32 kHz in the HSP70-inoculated mice did not change over the 10 month period and were similar to saline controls. Furthermore, serum immune complexes and antinuclear antibodies did not increase over the inoculation period. ELISA analysis demonstrated the mice created antibodies to the foreign HSP70, but these apparently caused no abnormalities in the auditory or immune systems. It was concluded that foreign HSP70 is antigenic and inoculation with it will raise antibodies, but these antibodies were neither immunopathogenic nor cochleopathic. Therefore, these findings do not support current theories that elevated anti-HSP70 antibodies are the underlying cause of hearing loss in patients with such antibodies present. (C) 1998 Elsevier Science B.V. C1 Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr NRC04, Portland, OR 97201 USA. Oregon Hlth Sci Univ, Dept Med, Div Arthrit & Rheumat Dis, Portland, OR 97201 USA. Oregon Hlth Sci Univ, Vet Affairs Med Ctr, Dept Immunol, Portland, OR 97201 USA. RP Trune, DR (reprint author), Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr NRC04, 3181 SW Sam Jackson Pk Rd, Portland, OR 97201 USA. CR BARTEN DM, 1994, J NEUROIMMUNOL, V51, P123, DOI 10.1016/0165-5728(94)90074-4 BILLINGS PB, 1995, ANN OTO RHINOL LARYN, V104, P181 BILLINGS PB, 1996, ASS RES OTOLARYNGOL, P38 BLOCH DB, 1995, ARCH OTOLARYNGOL, V121, P1167 Brabb T, 1997, J IMMUNOL, V159, P497 DECHESNE CJ, 1992, HEARING RES, V59, P195, DOI 10.1016/0378-5955(92)90116-5 GOTTSCHLICH S, 1995, LARYNGOSCOPE, V105, P1347, DOI 10.1288/00005537-199512000-00016 HEFENEIDER SH, 1993, AUTOIMMUNITY, V15, P187, DOI 10.3109/08916939309019926 JOLIAT T, 1992, ANN OTO RHINOL LARYN, V101, P1000 KAUFMANN SHE, 1990, IMMUNOL TODAY, V11, P129, DOI 10.1016/0167-5699(90)90050-J LIM HH, 1993, HEARING RES, V69, P146 Lin DW, 1997, OTOLARYNG HEAD NECK, V117, P530, DOI 10.1016/S0194-5998(97)70026-3 Mitchell C, 1996, HEARING RES, V99, P38, DOI 10.1016/S0378-5955(96)00081-0 MOSCICKI RA, 1994, JAMA-J AM MED ASSOC, V272, P611, DOI 10.1001/jama.272.8.611 RAINE CS, 1990, LAB INVEST, V63, P476 RAUCH SD, 1997, ASS RES OTOLARYNGOL, P196 RAUCH SD, 1995, AM J OTOL, V16, P648 SHINNICK TM, 1991, CURR TOP MICROBIOL, V167, P145 Trune DR, 1997, OTOLARYNG HEAD NECK, V117, P504, DOI 10.1016/S0194-5998(97)70022-6 Trune DR, 1997, HEARING RES, V105, P57, DOI 10.1016/S0378-5955(96)00191-8 TRUNE DR, 1989, HEARING RES, V38, P57, DOI 10.1016/0378-5955(89)90128-7 WELCH WJ, 1992, PHYSIOL REV, V72, P1063 WINFIELD JB, 1991, CURR TOP MICROBIOL, V167, P161 WINFIELD JB, 1989, ARTHRITIS RHEUM, V32, P1497, DOI 10.1002/anr.1780321202 YAMANOBE S, 1993, LARYNGOSCOPE, V103, P319, DOI 10.1288/00005537-199303000-00013 Yi YJ, 1997, INFECT IMMUN, V65, P1669 NR 26 TC 29 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 65 EP 70 DI 10.1016/S0378-5955(97)00198-6 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400007 PM 9508029 ER PT J AU Khanna, SM Ulfendahl, M Steele, CR AF Khanna, SM Ulfendahl, M Steele, CR TI Vibration of reflective beads placed on the basilar membrane SO HEARING RESEARCH LA English DT Article DE beads; basilar membrane; mechanics; guinea pig; model ID TEMPORAL BONE PREPARATION; INNER-EAR; NONLINEAR MECHANICS; COCHLEA; MOTION; CELLS AB Most investigators place reflective beads on the basilar membrane to measure its vibration with optical methods. It is therefore important to find out if the beads faithfully follow the motion of the structures on which they are placed. Vibration of the beads on the basilar membrane and basilar membrane adjacent to the beads are measured in the third turn of the guinea pig cochlea in a temporal bone preparation. It is shown that the Leads do not follow the motion of the organ. The mechanism by which this departure may occur is investigated by modeling the motion of the beads on the Claudius' cells. (C) 1998 Published by Elsevier Science B.V. C1 Columbia Univ Coll Phys & Surg, New York, NY 10032 USA. Karolinska Inst, Dept Physiol & Pharmacol, Stockholm, Sweden. Stanford Univ, Div Appl Mech, Stanford, CA 94305 USA. RP Khanna, SM (reprint author), Columbia Univ Coll Phys & Surg, 630 W 168th St, New York, NY 10032 USA. CR BRUNDIN L, 1994, HEARING RES, V73, P35, DOI 10.1016/0378-5955(94)90280-1 COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y GUMMER AW, 1993, P INT S BIOPH HAIR C, P229 Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727 Hao LF, 1996, HEARING RES, V99, P176, DOI 10.1016/S0378-5955(96)00099-8 *ITER, 1989, ACTA OTOLARYNGOL S, V467 JEN DH, 1987, J ACOUST SOC AM, V82, P1667, DOI 10.1121/1.395158 Johnstone BM, 1967, SCIENCE, V158, P390 JOHNSTON.BM, 1970, J ACOUST SOC AM, V47, P504, DOI 10.1121/1.1911921 KHANNA SM, 1996, DIVERSITY AUDITORY M KHANNA SM, 1996, P SOC PHOTO-OPT INS, V2732, P64, DOI 10.1117/12.231687 KHANNA SM, 1995, ACTIVE HEARING, P257 Khanna S M, 1989, Acta Otolaryngol Suppl, V467, P163 Khanna S M, 1989, Acta Otolaryngol Suppl, V467, P151 KLIAUGA P, 1993, PHYS MED BIOL, V28, P359 KOESTER CJ, 1989, SPIE, V1161, P378 KOESTER CJ, 1994, APPL OPTICS, V33, P702, DOI 10.1364/AO.33.000702 MILLER CE, 1985, J ACOUST SOC AM, V77, P1465, DOI 10.1121/1.392041 NUTTALL AL, 1991, HEARING RES, V51, P203, DOI 10.1016/0378-5955(91)90037-A Pilkey W. D., 1994, FORMULAS STRESS STRA RHODE WS, 1995, WENNERGREN INT SERIE, V65, P307 Rhode WS, 1996, AUDIT NEUROSCI, V3, P101 RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981 RHODE WS, 1974, J ACOUST SOC AM, V55, P588, DOI 10.1121/1.1914569 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 RHODE WS, 1974, ANN OTO RHINOL LARYN, V83, P619 RUGGERO MA, 1991, HEARING RES, V51, P215, DOI 10.1016/0378-5955(91)90038-B SOKOLICH WG, 1981, Patent No. 4251686 STEELE CR, 1995, BIOMEDICAL ENG HDB, P505 TOLOMEO JA, 1997, IN PRESS J ACOUST SO ULFENDAHL M, 1993, PFLUG ARCH EUR J PHY, V424, P95, DOI 10.1007/BF00374599 ULFENDAHL M, 1989, HEARING RES, V40, P55, DOI 10.1016/0378-5955(89)90099-3 Ulfendahl M, 1989, Acta Otolaryngol Suppl, V467, P91 ULFENDAHL M, 1995, NEUROREPORT, V6, P1157, DOI 10.1097/00001756-199505300-00021 Ulfendahl M, 1996, J NEUROPHYSIOL, V76, P3850 WILLEMIN JF, 1988, J ACOUST SOC AM, V83, P787, DOI 10.1121/1.396122 NR 37 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 71 EP 85 DI 10.1016/S0378-5955(97)00200-1 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400008 PM 9508030 ER PT J AU Wang, XY Robertson, D AF Wang, XY Robertson, D TI Substance P-sensitive neurones in the rat auditory brainstem: possible relationship to medial olivocochlear neurones SO HEARING RESEARCH LA English DT Article DE auditory brainstem; superior olivary complex; ventral nucleus of trapezoid body; substance P; olivocochlear neuron ID CONTRALATERAL SOUND STIMULATION; INFERIOR COLLICULUS; GUINEA-PIG; MICROMECHANICAL PROPERTIES; OTOACOUSTIC EMISSIONS; COCHLEAR EFFERENTS; PROJECTIONS; NUCLEUS; HUMANS; STEM AB Using in vitro techniques, intracellular microelectrode recordings were made from the regions of origin of medial olivocochlear neurones in the rat auditory brainstem. Cells were characterised according to their action potential shape and their excitatory response to bath application of micromolar concentrations of the peptide neurotransmitter substance P and were filled with biocytin by ii!lection through the intracellular microelectrode for subsequent morphological reconstruction. Cells with a rapid component to the after-hyperpolarising phase of their action potentials (AHP2 cells) were most likely to show excitatory effects of substance P. Histological reconstruction showed that these cells were stellate with numerous large, slowly tapering dendrites exhibiting small, scattered spines. III examples in which the major axon was not cut near the cell body-the axons ascended dorsally out of the superiord olivary complex, in a manner that was consistent with the trajectory of axons of medial olivocochlear neurones. These features differed from other cells in the ventral nucleus of the trapezoid body that were unresponsive to substance P. In a further series of experiments, medial olivocochlear cells in the same region were retrogradely labeled by prior intracochlear injection with fast blue and recordings were made under direct visual observation using either microelectrode impalement or whole-cell patch methods. These data support the view that medial olivocochlear neurones are substance P-sensitive and exhibit a characteristic spike shape. These data strongly suggest that medial olivocochlear neurones possess receptors for substance P and may therefore receive excitatory input from a substance P-utilising neural pathway. (C) 1998 Elsevier Science B.V. C1 Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6907, Australia. RP Robertson, D (reprint author), Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6907, Australia. CR ASCHOFF A, 1988, EXP BRAIN RES, V71, P241 CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5 HARVEY JA, 1993, BRAIN RES, V619, P1, DOI 10.1016/0006-8993(93)91590-O Kawase T, 1995, HEARING RES, V91, P1, DOI 10.1016/0378-5955(95)00145-X MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 PATUZZI RB, 1991, HEARING RES, V54, P45, DOI 10.1016/0378-5955(91)90135-V PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 ROBERTSON D, 1996, AUDIT NEUROSCI, V2, P12 ROBERTSON D, 1988, BRAIN RES, V462, P47, DOI 10.1016/0006-8993(88)90583-5 ROBERTSON D, 1996, INT S AC SIGN PROC C, P19 ROBERTSON D, 1985, HEARING RES, V20, P63, DOI 10.1016/0378-5955(85)90059-0 ROBERTSON D, 1989, DEV BRAIN RES, V47, P197, DOI 10.1016/0165-3806(89)90176-4 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8 THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309 THOMPSON AM, 1991, J COMP NEUROL, V303, P267, DOI 10.1002/cne.903030209 VETTER DE, 1993, HEARING RES, V70, P173, DOI 10.1016/0378-5955(93)90156-U WANG X, 1996, P AUSTRAL PHYSL PHAR, V27, P15 Wang XY, 1997, HEARING RES, V106, P20, DOI 10.1016/S0378-5955(96)00211-0 Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 Wynne B, 1995, J CHEM NEUROANAT, V9, P289, DOI 10.1016/0891-0618(95)00095-X Wynne B, 1997, J CHEM NEUROANAT, V12, P259, DOI 10.1016/S0891-0618(97)00219-6 Wynne B, 1996, Audiol Neurootol, V1, P54 NR 29 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 86 EP 98 DI 10.1016/S0378-5955(97)00203-7 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400009 PM 9508031 ER PT J AU Santos-Sacchi, J Huang, GJ AF Santos-Sacchi, J Huang, GJ TI Temperature dependence of outer hair cell nonlinear capacitance SO HEARING RESEARCH LA English DT Article DE outer hair cell; motility; capacitance; temperature; patch clamp ID ELECTROKINETIC SHAPE CHANGES; MOTILITY VOLTAGE SENSOR; SQUID GIANT-AXON; MECHANICAL RESPONSES; GATING CURRENTS; SODIUM-CHANNEL; MEMBRANE; MOVEMENT; CHARGE AB The temperature dependence of outer hair cell motility-related gating current and capacitance was evaluated under whole-cell voltage clamp. Temperature change caused a shift of these voltage-dependent functions along the voltage axis, with a decrease in temperature causing a negative shift in the voltage at peak capacitance (V(pkcm)) Of 19.2 mV per 10 degrees C. Gating current kinetics showed only mild temperature dependence, the Q(10) being about 1.5. Temperature is speculated to affect outer hair cell (OHC) mechanical gain and frequency response by alterations in lateral membrane viscoelastic properties. Such temperature-dependent effects on the OHC may mediate known temperature effects on in vivo cochlear physiology. (C) 1998 Published by Elsevier Science B.V. C1 Yale Univ, Sch Med, Otolaryngol Sect, New Haven, CT 06510 USA. Yale Univ, Sch Med, Neurobiol Sect, New Haven, CT 06510 USA. RP Santos-Sacchi, J (reprint author), Yale Univ, Sch Med, Otolaryngol Sect, BML 244,333 Cedar St, New Haven, CT 06510 USA. EM joseph.santos-sacchi@yale.edu CR ADAMS DJ, 1979, J PHYSIOL-LONDON, V291, P467 ARMSTRONG CM, 1977, J GEN PHYSIOL, V70, P567, DOI 10.1085/jgp.70.5.567 ARMSTRON.CM, 1973, NATURE, V242, P459, DOI 10.1038/242459a0 Ashmore J. F., 1989, MECH HEARING, P107 ASHMORE JF, 1997, IN PRESS NATURE ASHMORE JF, 1992, SOC GEN PHY, V47, P395 BEZANILLA F, 1978, BIOPHYS J, V23, P479 BROWN MC, 1983, J ACOUST SOC AM, V73, P1662, DOI 10.1121/1.389387 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 COLLINS CA, 1982, Q J EXP PHYSIOL CMS, V67, P41 CORREA AM, 1992, BIOPHYS J, V61, P1332 DALLOS P, 1982, SCIENCE, V218, P582, DOI 10.1126/science.7123260 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 FORGE A, 1991, CELL TISSUE RES, V265, P473, DOI 10.1007/BF00340870 GALE JE, 1994, P ROY SOC B-BIOL SCI, V255, P243, DOI 10.1098/rspb.1994.0035 GITTER AH, 1992, ORL J OTO-RHINO-LARY, V54, P121 GULLEY RL, 1977, ANAT REC, V189, P109, DOI 10.1002/ar.1091890108 HILGEMANN DW, 1989, PFLUG ARCH EUR J PHY, V415, P247, DOI 10.1007/BF00370601 HOLLEY MC, 1988, PROC R SOC SER B-BIO, V232, P413, DOI 10.1098/rspb.1988.0004 HUANG GJ, 1993, BIOPHYS J, V65, P2228 HUANG GJ, 1994, P NATL ACAD SCI USA, V91, P12268, DOI 10.1073/pnas.91.25.12268 IWASA KH, 1989, HEARING RES, V40, P247, DOI 10.1016/0378-5955(89)90165-2 IWASA KH, 1994, J ACOUST SOC AM, V96, P2216, DOI 10.1121/1.410094 IWASA KH, 1993, BIOPHYS J, V65, P492 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 KAKEHATA S, 1995, BIOPHYS J, V68, P2190 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 KIMURA JE, 1979, J PHYSIOL-LONDON, V289, P479 LECATES WW, 1995, MIDW M ASS RES OT ST ROJAS E, 1975, PHILOS T ROY SOC B, V270, P459, DOI 10.1098/rstb.1975.0023 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 SANTOSSACCHI J, 1990, LECT NOTES BIOMATH, V87, P69 SANTOS-SACCHI J, 1993, BIOPHYS J, V65, P2217 SANTOSSACCHI J, 1995, MIDW M ASS RES OT ST SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SANTOSSACCHI J, 1996, SOC NEUR 26 ANN M SANTOSSACCHI J, 1997, MIDW M ASS RES OT ST SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906 SCHAUF CL, 1979, BIOPHYS J, V27, P193 NR 39 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 99 EP 106 DI 10.1016/S0378-5955(97)00204-9 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400010 PM 9508032 ER PT J AU Suzuki, M Yamasoba, T Kaga, K AF Suzuki, M Yamasoba, T Kaga, K TI Development of the blood-labyrinth barrier in the rat SO HEARING RESEARCH LA English DT Article DE development; blood-labyrinth barrier; maturation; basement membrane anionic site; polyethyleneimine; rat ID ANIONIC SITES; BRAIN BARRIER; GUINEA-PIG; POLYETHYLENEIMINE; OTOTOXICITY; MOLECULES; PERILYMPH AB Systemically administered cationic polyethyleneimine (PEI) passes through the capillary endothelial cell and attaches to anionic sites on the capillary basal lamina (BL). Thus, the distribution of PEI on the BL reflects the changes in the endothelial cell transport system. A 0.1% PEI solution was administered by intravenous injection (7.5 ml/kg) to developing (4, 7, 11, 14, 21 days after birth) and adult rats to evaluate the development of endothelial cell transport in the cochlear capillary as related to age. One hour later, the bony labyrinth was removed and embedded in Epoxy resin. Ultrathin sections of the cochlear lateral wall were then viewed with a transmission electron microscope. The distribution of PEI in the capillary BL in the stria vascularis of the 4-, 7- and 11-day-old rats was significantly greater compared to the adult rats. The distribution of PEI in the capillary BL in the spiral ligament of the 4- and 7-day-old rats was also significantly greater compared to the adult rats. These findings suggest that the endothelial cell transport is more robust in the developing rat cochlea and that the blood-labyrinth barrier becomes mature by 14 days after birth in rats. (C) 1998 Published by Elsevier Science B.V. C1 Univ Tokyo, Dept Otolaryngol, Bunkyo Ku, Tokyo 113, Japan. Natl Tohsei Hosp, Dept Otolaryngol, Shizuoka 411, Japan. RP Suzuki, M (reprint author), Univ Tokyo, Dept Otolaryngol, Bunkyo Ku, 7-3-1,Hongo, Tokyo 113, Japan. CR ANDREWS PM, 1985, ANAT REC, V212, P223, DOI 10.1002/ar.1092120302 ANNIKO M, 1981, ARCH OTO-RHINO-LARYN, V232, P43, DOI 10.1007/BF00661002 HAWKINS E, 1973, AUDIOLOGY, V12, P383 HENLEY CM, 1993, OTOLARYNG CLIN N AM, V26, P857 HENLEY CM, 1995, BRAIN RES REV, V20, P68, DOI 10.1016/0165-0173(94)00006-B JAHNKE K, 1980, ARCH OTO-RHINO-LARYN, V228, P29, DOI 10.1007/BF00455891 JUHN SK, 1981, ACTA OTO-LARYNGOL, V91, P529, DOI 10.3109/00016488109138538 JUHN SK, 1981, ANN OTO RHINOL LARYN, V90, P135 KELLERHALS B, 1979, ACTA OTO-LARYNGOL, V87, P370, DOI 10.3109/00016487909126435 REESE TS, 1967, J CELL BIOL, V34, P207, DOI 10.1083/jcb.34.1.207 RYBAK LP, 1987, ARCH OTO-RHINO-LARYN, V244, P204, DOI 10.1007/BF00455306 RYBAK LP, 1992, HEARING RES, V59, P189, DOI 10.1016/0378-5955(92)90115-4 SAKAGAMI M, 1982, CELL TISSUE RES, V226, P511 SCHURER JW, 1978, J HISTOCHEM CYTOCHEM, V26, P688 Skultétyová I, 1993, Endocr Regul, V27, P209 STEWART PA, 1987, DEV BRAIN RES, V32, P271, DOI 10.1016/0165-3806(87)90107-6 SUZUKI M, 1995, ACTA OTO-LARYNGOL, V115, P747, DOI 10.3109/00016489509139397 Suzuki M, 1991, Acta Otolaryngol Suppl, V481, P112 Suzuki M, 1996, EUR ARCH OTO-RHINO-L, V253, P351 TOMODA K, 1988, ARCH OTO-RHINO-LARYN, V245, P307, DOI 10.1007/BF00464638 VORBRODT AW, 1986, DEV BRAIN RES, V29, P69, DOI 10.1016/0165-3806(86)90083-0 Xu J, 1994, J Hirnforsch, V35, P103 Yamasoba T, 1996, HEARING RES, V102, P116, DOI 10.1016/S0378-5955(96)00159-1 ZANETTA JP, 1985, DEV BRAIN RES, V17, P253, DOI 10.1016/0165-3806(85)90149-X NR 24 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 107 EP 112 DI 10.1016/S0378-5955(97)00208-6 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400011 PM 9508033 ER PT J AU Kakigi, A Takeda, T AF Kakigi, A Takeda, T TI Effect of artificial endolymph injection into the cochlear duct on the endocochlear potential SO HEARING RESEARCH LA English DT Article DE endocochlear potential; negative endocochlear potential; artificial endolymph injection ID GUINEA-PIG; EXPERIMENTAL HYDROPS; REISSNERS; MECHANISM; PERFUSION; MEMBRANE; BARIUM AB We investigated the effect of acute endolymphatic hydrops on the positive endocochlear potential (+EP) and negative endocochlear potential (-EP). The +EP was measured in guinea pigs during injection (without outlet) and perfusion (with outlet) of artificial endolymph into the cochlear duct. The -EP was measured during anoxia after the injection or the perfusion had finished. Injection of artificial endolymph produced a slight transient increase in the +EP, and a significant decrease in the magnitude of the -EP. Chronic endolymphatic hydrops produces both +EP and -EP decrease. The +EP decrease in chronic endolymphatic hydrops may cause the chronic change of the inner ear. The +EP increase in acute endolymphatic hydrops may he caused by a shift of the basilar membrane. However, the mechanism of the 'transient' +EP increase is not clear. The -EP decrease was not observed in animals whose cochlear duct was perfused with artificial endolymph. Therefore, the artificial endolymph itself did not cause the decrease in magnitude of the -EP. Dysfunction of the hair cells is a possible explanation for the -EP decrease but the mechanism of such a decrease is not clear in the present study. However, the results of this study support the notion that small increases in endolymphatic pressure below the resolution of recent measurements (DeMott and Salt, 1997) can lead directly to a reduction of the -EP during hydrops. The animal model described here can eliminate the chronic effect of hydrops, therefore, this model is useful for investigations into the effect of hydrops itself on the inner ear and the mechanism of hearing loss in Meniere's disease. (C) 1998 Elsevier Science B.V. C1 Kochi Med Sch, Dept Otolaryngol, Nanko Ku, Kochi 783, Japan. RP Kakigi, A (reprint author), Kochi Med Sch, Dept Otolaryngol, Nanko Ku, Kochi 783, Japan. CR ALBERS FWJ, 1987, ANN OTO RHINOL LARYN, V96, P282 ALBERS FWJ, 1987, ACTA OTO-LARYNGOL, V104, P202, DOI 10.3109/00016488709107319 ASAKUMA S, 1984, ACTA OTO-LARYNGOL, V97, P273, DOI 10.3109/00016488409130989 ASAKUMA S, 1979, ARCH OTOLARYNGOL, V105, P145 BOSHER SK, 1979, J PHYSIOL-LONDON, V293, P329 COHEN J, 1984, ACTA OTO-LARYNGOL, V98, P398, DOI 10.3109/00016488409107580 DEMOTT JE, 1997, ASS RES OTOLARYNGOL, P12 FUKAZAWA T, 1987, ACTA OTO-LARYNGOL, V103, P170, DOI 10.3109/00016488709107780 HUDSPETH AJ, 1994, NEURON, V12, P1, DOI 10.1016/0896-6273(94)90147-3 IKEDA K, 1991, HEARING RES, V51, P185, DOI 10.1016/0378-5955(91)90035-8 JAHNKE K, 1985, ARCH OTO-RHINO-LARYN, V241, P175, DOI 10.1007/BF00454352 KIMURA RS, 1967, ANN OTO RHINOL LARYN, V76, P664 KIMURA RS, 1965, PRACT-OTO-RHINO-LARY, V27, P343 KOMUNE S, 1983, OTOLARYNG HEAD NECK, V91, P427 Konishi T, 1967, Acta Otolaryngol, V64, P107, DOI 10.3109/00016486709139097 KONISHI T, 1976, ELECTROCOCHLEOGRAPHY, P295 KONISHI T, 1979, ACTA OTO-LARYNGOL, V87, P506, DOI 10.3109/00016487909126459 Konishi T, 1981, MENIERES DIS PATHOGE, P47 KUSAKARI J, 1986, ACTA OTO-LARYNGOL, V101, P27, DOI 10.3109/00016488609108604 MARCUS DC, 1983, HEARING RES, V12, P17, DOI 10.1016/0378-5955(83)90116-8 MARCUS DC, 1984, AM J PHYSIOL, V247, pC240 Morgenstern C, 1984, Acta Otolaryngol Suppl, V406, P56 RUDING PRJW, 1987, ARCH OTO-RHINO-LARYN, V244, P174, DOI 10.1007/BF00464263 SALT AN, 1994, HEARING RES, V74, P165, DOI 10.1016/0378-5955(94)90184-8 SHINOZAKI N, 1980, ACTA OTO-LARYNGOL, V90, P370, DOI 10.3109/00016488009131738 SZIKLAI I, 1992, LARYNGOSCOPE, V102, P431, DOI 10.1288/00005537-199204000-00011 TAKEUCHI S, 1991, ANN OTOL RHINOL LARN, V100, P224 TASAKI I, 1954, J ACOUST SOC AM, V26, P765, DOI 10.1121/1.1907415 NR 28 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 113 EP 118 DI 10.1016/S0378-5955(97)00209-8 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400012 PM 9508034 ER PT J AU Revelis, J Thompson, AM Britton, BH Thompson, GC AF Revelis, J Thompson, AM Britton, BH Thompson, GC TI Effects of para-chlorophenylalanine (pCPA) on the bush baby auditory brainstem response SO HEARING RESEARCH LA English DT Article DE 5-hydroxytryptamine; auditory brainstem response; up-regulation ID RECEPTOR MESSENGER-RNA; COCHLEAR NUCLEUS; GUINEA-PIG; ACOUSTIC STARTLE; BINDING-SITES; CATECHOLAMINERGIC SYSTEMS; BUSPIRONE TREATMENT; ADAPTIVE-CHANGES; RAT HIPPOCAMPUS; VERVET MONKEYS AB Click-evoked auditory brainstem responses were recorded in a prosimian primate, the bush baby (Otolemur garnettii), before and after depletion of serotonin (by systemic injection of pain-chlorophenylalanine; pCPA) and up to 20 days after discontinuing pCPA injections (during the recovery of serotonin). Biphasic 100 mu s clicks were presented at five repetition rates (13.2, 33.2, 53.2, 73.2, and 93.2 clicks/s; RATE) and sound pressure levels (SPL) were varied in 10 dB steps from 120-60 dB SPL peak equivalent. Absolute latencies of vertex-positive peaks I, III, IV, and V were measured from click onset. The latencies from each wave were statistically analyzed with a two-way analysis of variance using either RATE or SPL (but not both) and TIME AFTER pCPA as independent variables. Prior to pCPA, brainstem response latencies increased as a function of both decreasing SPL and increasing RATE. After pCPA, these normal increases in wave latency increased even more, particularly in response to high click rates. After pCPA was discontinued, measurements taken at weekly intervals indicated that latencies decreased after 1 week, increased to the highest values recorded after 2 weeks, and returned to normal after 3 weeks. These dynamic changes were interpreted to be the result of postsynaptic receptor up-regulation during the 10 days of continuous pCPA administration. These results suggest that serotonin plays an important role in sensory processing at the cellular level and, ionically, facilitates the auditory brainstem response to sound. (C) 1998 Published by Elsevier Science B.V. C1 Univ Oklahoma, Hlth Sci Ctr, Dept Otorhinolaryngol, Oklahoma City, OK 73190 USA. RP Thompson, GC (reprint author), Univ Oklahoma, Hlth Sci Ctr, Dept Otorhinolaryngol, POB 26901, Oklahoma City, OK 73190 USA. CR Adams CF, 1996, PHARMACOLOGY, V53, P328, DOI 10.1159/000139446 ALBERT DJ, 1984, NEUROSCI BIOBEHAV R, V8, P5, DOI 10.1016/0149-7634(84)90017-4 BALANDER RJ, 1984, PHYSIOL BEHAV, V32, P603, DOI 10.1016/0031-9384(84)90315-9 BHARGAVA V, 1981, PHARMACOL BIOCHEM BE, V15, P587, DOI 10.1016/0091-3057(81)90214-8 BHARGAVA VK, 1977, NEUROPHARMACOLOGY, V16, P447, DOI 10.1016/0028-3908(77)90088-0 BILL DJ, 1991, BRIT J PHARMACOL, V103, P1857 BLACKSHEAR MA, 1986, NEUROPHARMACOLOGY, V25, P1267, DOI 10.1016/0028-3908(86)90146-2 BRITTON BH, 1995, 14 IB AM C OT BARC BRITTON BH, 1991, ASS RES OTOLARYNGOL, V14, P87 BRUINVELS AT, 1994, NEUROPHARMACOLOGY, V33, P367, DOI 10.1016/0028-3908(94)90067-1 BUCHANAN CP, 1994, PHARM BIOCH BEHAV, V3, P483 BUCKHOLTZ NS, 1988, LIFE SCI, V42, P2439, DOI 10.1016/0024-3205(88)90342-6 BUCKHOLTZ NS, 1990, NEUROPSYCHOPHARMACOL, V3, P137 BURNET PWJ, 1994, BRAIN RES, V638, P311, DOI 10.1016/0006-8993(94)90664-5 CARRUBA MO, 1979, N-S ARCH PHARMACOL, V309, P125, DOI 10.1007/BF00501219 CHAMBERLAIN B, 1987, PHARMACOL BIOCHEM BE, V28, P503, DOI 10.1016/0091-3057(87)90513-2 CHEN H, 1995, MOL BRAIN RES, V32, P348, DOI 10.1016/0169-328X(95)00098-D CONCU A, 1978, EXPERIENTIA, V34, P375, DOI 10.1007/BF01923045 DAHLSTROM A, 1964, ACTA PHYSIOL SCAND, V62, P1 DAVIS M, 1986, PSYCHOPHARMACOL BULL, V22, P837 DAVIS M, 1980, SCIENCE, V209, P521, DOI 10.1126/science.7394520 EBERT U, 1992, NEUROSCI LETT, V145, P51, DOI 10.1016/0304-3940(92)90201-H EHLERS CL, 1991, PHARMACOL BIOCHEM BE, V38, P789, DOI 10.1016/0091-3057(91)90243-U ELHALAWANI ME, 1983, BIOL REPROD, V28, P221, DOI 10.1095/biolreprod28.1.221 ENGLE G, 1986, N-S ARCH PHARMACOL, V332, P1 FERGUSON J, 1970, SCIENCE, V168, P499, DOI 10.1126/science.168.3930.499 FERRY RC, 1993, MOL PHARMACOL, V43, P726 FREUND TF, 1990, P NATL ACAD SCI USA, V87, P8501, DOI 10.1073/pnas.87.21.8501 GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210 GRADWELL PB, 1975, BRAIN RES, V88, P281, DOI 10.1016/0006-8993(75)90390-X HuitronResendiz S, 1997, BRAIN RES, V761, P19, DOI 10.1016/S0006-8993(97)00286-2 HUNTER R E, 1988, Society for Neuroscience Abstracts, V14, P492 HUTSON PH, 1987, EUR J PHARMACOL, V143, P221, DOI 10.1016/0014-2999(87)90536-X Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G KAPLAN JR, 1994, PSYCHOSOM MED, V56, P479 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H KOE BK, 1966, J PHARMACOL EXP THER, V154, P499 KOELLA WP, 1968, ELECTROEN CLIN NEURO, V25, P481, DOI 10.1016/0013-4694(68)90158-2 LEPETIT P, 1991, EUR J PHARMACOL, V209, P207, DOI 10.1016/0014-2999(91)90171-L MANRIQUE C, 1994, BRAIN RES, V663, P93, DOI 10.1016/0006-8993(94)90466-9 MANRIQUE C, 1993, BRAIN RES, V623, P345, DOI 10.1016/0006-8993(93)91452-X MCKENNA DJ, 1989, NEUROPSYCHOPHARMACOL, V2, P79 MELLER E, 1992, PHARMACOL BIOCHEM BE, V43, P405, DOI 10.1016/0091-3057(92)90169-G MORLEY JE, 1980, EUR J PHARMACOL, V67, P283, DOI 10.1016/0014-2999(80)90509-9 MOURET J, 1968, EUR J PHARMACOL, V5, P17, DOI 10.1016/0014-2999(68)90151-9 OCONNOR JJ, 1992, BRAIN RES, V573, P190, DOI 10.1016/0006-8993(92)90762-X OSUIDE G, 1984, NEUROPHARMACOLOGY, V23, P1407, DOI 10.1016/0028-3908(84)90081-9 RALEIGH MJ, 1987, PSYCHOPHARMACOLOGY, V93, P44, DOI 10.1007/BF02439585 RALEIGH MJ, 1986, PSYCHOPHARMACOLOGY, V90, P503 SHYU KW, 1984, EXP NEUROL, V84, P179, DOI 10.1016/0014-4886(84)90014-1 STACH R, 1981, N-S ARCH PHARMACOL, V316, P56, DOI 10.1007/BF00507228 Stanford IM, 1996, J NEUROSCI, V16, P7566 STARKEY SJ, 1994, NEUROPHARMACOLOGY, V33, P393, DOI 10.1016/0028-3908(94)90069-8 STEINBUSCH HWM, 1981, NEUROSCIENCE, V6, P557, DOI 10.1016/0306-4522(81)90146-9 THOMPSON AM, 1997, IN PRESS BRAIN RES THOMPSON AM, 1995, J COMP NEUROL, V351, P104, DOI 10.1002/cne.903510110 THOMPSON GC, 1985, J COMP NEUROL, V231, P270, DOI 10.1002/cne.902310214 THOMPSON GC, 1978, NEUR ABSTR, V4, P11 THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6 THOMPSON GC, 1995, BRAIN RES, V683, P140, DOI 10.1016/0006-8993(95)00364-V THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9 THOMPSON G C, 1989, Society for Neuroscience Abstracts, V15, P748 TRICKLEBANK MD, 1984, EUR J PHARMACOL, V106, P271, DOI 10.1016/0014-2999(84)90714-3 WILLARD FH, 1984, BRAIN RES BULL, V12, P253, DOI 10.1016/0361-9230(84)90053-4 WU MF, 1990, BRAIN RES, V532, P237, DOI 10.1016/0006-8993(90)91765-9 NR 65 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 119 EP 130 DI 10.1016/S0378-5955(97)00210-4 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400013 PM 9508035 ER PT J AU Kabudwand, EA Nubel, K Gerdemann, M Scholz, G Mrowinski, D AF Kabudwand, EA Nubel, K Gerdemann, M Scholz, G Mrowinski, D TI Low-frequency masking for detection of endolymphatic hydrops in patients with glaucoma SO HEARING RESEARCH LA English DT Article DE endolymphatic hydrops; glaucoma; low-frequency masking ID UNILATERAL MENIERES-DISEASE; CARBONIC-ANHYDRASE; INNER-EAR; CELLS; EPITHELIUM; TRANSPORT; RECEPTORS AB The coincidence of various eye and ear abnormalities has been described in the literature. Some authors discuss the possible existence of endolymphatic hydrops in patients with glaucoma. Whereas the current diagnostic tests for glaucoma are well-defined and evident, those for endolymphatic hydrops are not so reliable. This has made it difficult to accurately study the coincidence of endolymphatic hydrops and glaucoma. For better detection of endolymphatic hydrops, we performed low-frequency masking tests in 23 patients with primary open-angle glaucoma without signs of Meniere's disease. The phase dependent sensitivity of the organ of Corti to a short test stimulus can be measured by applying a low-frequency masker tone to determine the modulation depth. Whereas the modulation depth in the normal hearing population is around 20-35 dB, the modulation depth in patients with Meniere's disease may be significantly decreased (5-10 dB), depending on the stage of disease. A decreased modulation depth was found in at least one ear in 19 of our 23 patients with glaucoma. Correlations between homeostatic mechanisms and their histological characteristics, e.g. melanocytes and their hormonal and enzymatic regulation, will be discussed. If the common pathogenesis of eye and ear lesions is better understood, it may be possible to develop new and more effective strategies for prevention and therapy. (C) 1998 Elsevier Science B.V. C1 Univ Hosp Rudolf Virchow, ENT Dept, D-13353 Berlin, Germany. Univ Hosp Rudolf Virchow, Dept Ophthalmol, D-13353 Berlin, Germany. Benjamin Franklin Univ Hosp, Dept Audiol & Phoniatr, Berlin, Germany. Buch Hosp, ENT Dept, Berlin, Germany. RP Mrowinski, D (reprint author), Univ Hosp Rudolf Virchow, ENT Dept, Augustenburger Pl 1, D-13353 Berlin, Germany. CR Aso S, 1994, Acta Otolaryngol Suppl, V511, P87 Bartual J, 1991, Acta Otorrinolaringol Esp, V42, P438 BERKOWIT.WP, 1974, ANN OTO RHINOL LARYN, V83, P555 BROOKES GB, 1985, AM J OTOL, V6, P495 CAGINI C, 1995, SURV OPHTHALMOL, V39, P25 COOPER RL, 1984, CURR EYE RES, V3, P809, DOI 10.3109/02713688409000792 FUKAZAWA K, 1994, ORL J OTO-RHINO-LARY, V56, P247 HEATON JM, 1993, ARCH OTOLARYNGOL, V119, P680 HSU CJ, 1991, ACTA OTO-LARYNGOL, V111, P75, DOI 10.3109/00016489109137357 IGARASHI Y, 1989, ACTA OTO-LARYNGOL, V107, P29, DOI 10.3109/00016488909127476 JAHNKE K, 1977, LARYNG RHINOL OTOL V, V56, P402 JAHNKE K, 1991, ORL J OTO-RHINO-LARY, V53, P279 Kanoh N, 1995, Acta Otolaryngol Suppl, V520 Pt 2, P381 KAUFMANN PL, 1994, TXT OPHTHALMOLOGY, V7 KITANO I, 1995, HEARING RES, V83, P37, DOI 10.1016/0378-5955(94)00187-U LAVIGNEREBILLARD M, 1992, HEARING RES, V64, P39, DOI 10.1016/0378-5955(92)90166-K MAREN TH, 1984, GLAUCOMA APPL PHARM, P325 Matsui H, 1996, EXP EYE RES, V62, P409, DOI 10.1006/exer.1996.0046 MOFFAT DA, 1992, OTOLARYNG HEAD NECK, V107, P370 MOORTHY RS, 1995, SURV OPHTHALMOL, V39, P265, DOI 10.1016/S0039-6257(05)80105-5 MORGENSTERN C, 1985, ARCH OTORHINOLARYN S, V247, P1 MORIZONO T, 1984, ANN OTO RHINOL LARYN, V93, P225 Mrowinski D, 1996, Audiol Neurootol, V1, P125 MROWINSKI D, 1996, AUDIOL NEURO-OTOL, V1, P134 MROWINSKI D, 1995, HEARING RES, V85, P95, DOI 10.1016/0378-5955(95)00033-Z Paparella M M, 1990, J Vestib Res, V1, P3 POLANSKY JR, 1985, CURR EYE RES, V4, P267, DOI 10.3109/02713688509000858 Ralli G, 1989, Acta Otorhinolaryngol Ital, V9, P503 RAREY KE, 1989, HEARING RES, V41, P217, DOI 10.1016/0378-5955(89)90013-0 ROHDE BH, 1989, CURR EYE RES, V8, P1225, DOI 10.3109/02713688909013901 SCHUKNECHT HF, 1982, ANN OTOL RHINOL S106, V92, P1 SETH RS, 1978, EAR NOSE THROAT J, V57, P69 Shapiro A, 1997, AM J OTOL, V18, P172 SHINKAWA H, 1986, ACTA OTO-LARYNGOL, V101, P43, DOI 10.3109/00016488609108606 SPERLING NM, 1993, LARYNGOSCOPE, V103, P277 Tunny TJ, 1996, BIOCHEM BIOPH RES CO, V223, P221, DOI 10.1006/bbrc.1996.0874 VANAAREM A, 1995, ARCH OTOLARYNGOL, V121, P916 Vargas L M, 1995, J Fla Med Assoc, V82, P533 VICK HP, 1970, ACTA OPHTHALMOL, V48, P349 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WERNER EB, 1977, ARCH OPHTHALMOL-CHIC, V95, P1173 WOLFENSBERGER TJ, 1994, INVEST OPHTH VIS SCI, V35, P3401 ZENNER HP, 1986, ARCH OTO-RHINO-LARYN, V243, P108, DOI 10.1007/BF00453760 ZUMGOTTESBERGE AMM, 1995, ACTA OTOLARYNGOL, V520, P360 ZUMGOTTESBERGE AMM, 1988, ACTA HISTOCHEMICAL S, V36, P331 NR 45 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1998 VL 116 IS 1-2 BP 131 EP 136 DI 10.1016/S0378-5955(97)00201-3 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YY665 UT WOS:000072171400014 PM 9508036 ER PT J AU Conlon, BJ Smith, DW AF Conlon, BJ Smith, DW TI Supplemental iron exacerbates aminoglycoside ototoxicity in vivo SO HEARING RESEARCH LA English DT Article DE gentamicin; iron; aminoglycoside antibiotic; ototoxicity; free radical; reactive oxygen species ID PIG IN-VIVO; FREE-RADICALS; GENTAMICIN OTOTOXICITY; OXYGEN RADICALS; FERRITIN; DISEASE AB There is increasing evidence to suggest that free :radical generation is central to a variety of pathological processes, including drug toxicity. Studies demonstrating the ability of gentamicin to facilitate the generation of radical species suggest that this process plays an important role in aminoglycoside-induced ototoxicity. Because:transition metals, particularly iron, play an important role in the production of free radicals and the generation of reactive oxygen species, we sought to determine whether gentamicin-induced ototoxicity is exacerbated by increases in serum iron levels. To this end, we assessed the effects of supplemental iron administration (2 mg/kg/day and 6 mg/kg/day) on changes in auditory function induced by co-administration of gentamicin (100 mg/kg/day for 30 days). Experiments were carried out on pigmented guinea pigs initially weighing 250-300 g. Changes in cochlear function were characterized as shifts in compound action potential (CAP) thresholds, estimated every third day throughout the treatment period by use of chronic indwelling electrodes implanted at the round window, vertex, and contralateral mastoid. Results showed that animals receiving iron in combination with gentamicin demonstrated a more rapid and profound elevation ill CAP thresholds compared with animals receiving gentamicin alone. This effect occurred in a dose-dependant manner. Animals receiving supplemental iron alone maintained normal CAP thresholds throughout the treatment period. There was no statistically significant difference in serum gentamicin levels between groups receiving gentamicin alone or gentamicin plus iron. These results provide further evidence of the recently reported intrinsic role of iron in aminoglycoside ototoxicity, and highlight a potential risk of aminoglycoside administration in patients with elevated serum iron. (C) 1998 Elsevier Science B.V. C1 Duke Univ, Med Ctr, Dept Otolaryngol Head & Neck Surg, Hearing Res Labs, Durham, NC 27710 USA. RP Conlon, BJ (reprint author), Duke Univ, Med Ctr, Dept Otolaryngol Head & Neck Surg, Hearing Res Labs, Box 3550, Durham, NC 27710 USA. CR BENISMAIL TH, 1994, GEN PHARMACOL, V25, P1249 BIEMOND P, 1986, ARTHRITIS RHEUM, V29, P1187, DOI 10.1002/art.1780291002 BOLANN BJ, 1990, EUR J BIOCHEM, V193, P899, DOI 10.1111/j.1432-1033.1990.tb19415.x Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 CORTOPASSI G, 1994, HEARING RES, V78, P27, DOI 10.1016/0378-5955(94)90040-X CRICHTON RR, 1987, EUR J BIOCHEM, V164, P485, DOI 10.1111/j.1432-1033.1987.tb11155.x FREEMAN BA, 1982, LAB INVEST, V47, P412 GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 GRUENER N, 1991, CLIN CHEM, V37, P263 GUTTERIDGE JMC, 1992, ANN NEUROL, V32, pS16, DOI 10.1002/ana.410320705 HALLIWELL B, 1984, METHOD ENZYMOL, V105, P47 HALLIWELL B, 1990, METHOD ENZYMOL, V186, P1 HALLIWELL B, 1992, J NEUROCHEM, V59, P1609, DOI 10.1111/j.1471-4159.1992.tb10990.x HALLIWELL B, 1986, ARCH BIOCHEM BIOPHYS, V246, P501, DOI 10.1016/0003-9861(86)90305-X HALLIWELL B, 1984, BIOCHEM J, V219, P1 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 HOFFMAN DW, 1988, ANN OTO RHINOL LARYN, V97, P36 KAYS SE, 1991, J NUTR, V121, P1869 LEBEL CP, 1991, NEUROTOXICOL TERATOL, V13, P341, DOI 10.1016/0892-0362(91)90081-7 PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8 PIERSON MG, 1981, HEARING RES, V4, P79, DOI 10.1016/0378-5955(81)90037-X Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 SPEAR N, 1994, ARCH BIOCHEM BIOPHYS, V312, P198, DOI 10.1006/abbi.1994.1299 WALKER PD, 1987, AM J PHYSIOL, V253, pC495 WEINBERG ED, 1992, LIFE SCI, V50, P1289, DOI 10.1016/0024-3205(92)90279-X YANG CL, 1995, RENAL FAILURE, V17, P2 NR 28 TC 19 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 1 EP 5 DI 10.1016/S0378-5955(97)00171-8 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500001 PM 9472730 ER PT J AU Faddis, BT Hughes, RM Miller, JD AF Faddis, BT Hughes, RM Miller, JD TI Quantitative measures reflect degeneration, but not regeneration, in the deafness mouse organ of Corti SO HEARING RESEARCH LA English DT Article DE deafness mouse; degeneration; regeneration; organ of Corti ID SPIRAL GANGLION; INNER-EAR; MICE AB The deafness mouse (dn/dn) is a well known model of hereditary deafness uncomplicated by behavioral and motor disturbances. The organ of Corti in this mouse develops a normal complement of sensory and supporting cell structures, yet animals homozygous for this gene never demonstrate tiny hearing capacity. They are profoundly deaf from birth. Soon after development, the organ of Corti rapidly degenerates, most sensory cells having vanished by 50 days of age. Published observations have suggested that apical regions of the organ of Corti may regenerate some supporting cell structures by 90 days of age. We have quantified changes in organ of Corti structure from 15 to 130 days of age using several different measures. Measures of peak height and total cross-sectional area, as well as a subjective rating scale, all demonstrate consistent degenerative changes during this time period. No evidence for regeneration of supporting or sensory cell structures is noted, although a surprising degree of variability is present in all regions of the organ of forti which may account for previous claims. (C) 1998 Elsevier Science B.V. C1 Cent Inst Deaf, Dept Res, St Louis, MO 63110 USA. RP Faddis, BT (reprint author), Cent Inst Deaf, Dept Res, 909 So Taylor, St Louis, MO 63110 USA. CR BOCK GR, 1983, ACTA OTO-LARYNGOL, V96, P39, DOI 10.3109/00016488309132873 BOCK GR, 1982, BRAIN RES, V239, P608, DOI 10.1016/0006-8993(82)90536-4 DEOL M. S., 1958, HEREDITY, V12, P463, DOI 10.1038/hdy.1958.46 DURHAM D, 1989, HEARING RES, V43, P39, DOI 10.1016/0378-5955(89)90057-9 FADDIS BT, 1996, ASS RES OT ABSTR 19, P6 FRANK MP, 1983, ARCH OTOLARYNGOL, V109, P526 PUJOL R, 1983, HEARING RES, V12, P57, DOI 10.1016/0378-5955(83)90118-1 STEEL KP, 1980, NATURE, V288, P159, DOI 10.1038/288159a0 STEEL KP, 1984, HEARING RES, V15, P59, DOI 10.1016/0378-5955(84)90225-9 WEBSTER DB, 1985, HEARING RES, V18, P19, DOI 10.1016/0378-5955(85)90107-8 WEBSTER DB, 1992, EXP NEUROL, V115, P27, DOI 10.1016/0014-4886(92)90216-D NR 11 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 6 EP 12 DI 10.1016/S0378-5955(97)00172-X PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500002 PM 9472731 ER PT J AU Barsz, K Benson, PK Walton, JP AF Barsz, K Benson, PK Walton, JP TI Gap encoding by inferior collicular neurons is altered by minimal changes in signal envelope SO HEARING RESEARCH LA English DT Article DE rise time; gap detection; temporal resolution; amplitude modulation; inferior colliculus; mouse ID CAT AUDITORY-CORTEX; STARLING STURNUS-VULGARIS; BRAIN-STEM; RISE-TIME; FUNCTIONAL-ORGANIZATION; EVOKED-RESPONSE; TEMPORAL CUES; NERVE FIBERS; NOISE; LEVEL AB Neural correlates of temporal resolution in the central auditory system are currently under intense investigation. The gap detection paradigm offers a simple, yet important, test of temporal acuity because changes in behavioral gap thresholds have been correlated with deficits in complex stimulus processing, such as speech perception. Tn gap detection studies, silent gaps are typically shaped by rapid (<1.0 ms) rise/fall (R/F) times, i.e., rapid decreases and increases in sound intensity. However, in nature, the envelopes surrounding silent periods can vary significantly in KIF time. Therefore, we investigated whether changes in the R/F time surrounding the silent gap affect neural processing by inferior collicular (IC) neurons. Gap R/F times were varied between 0.5 and 16 ms and the discharge pattern, response rate, and fi:rst spike latency of IC neurons were measured for gap widths up to 100 ms. Neurons were classified into phasic or tonic discharge patterns based on peri-stimulus time histograms elicited to 100 ms noise carriers. The results indicate that (1) minimal gap thresholds increased with R/F time regardless of response type, (2) first spike latency variance increased systematically with R/F time for units which had small first spike standard deviations at short R/F times: and (3) the response rate of some units (called 'gap-tuned') changed as a function of both R/F time and gap width. Gap-tuned units responded strongly to a particular gap width only when the envelope of the gap was shaped by a particular R/F time. For gap-tuned units, increases in R/F time shifted the tuning to larger gap widths and also broadened the response profile. These results show that temporal acuity of neurons in the IC, as measured by the gap detection paradigm, is sensitive to the envelope surrounding gaps embedded in noise carriers. (C) 1998 Elsevier Science B.V. C1 Univ Rochester, Sch Med & Dent, Dept Surg, Otolaryngol Div, Rochester, NY 14642 USA. RP Walton, JP (reprint author), Univ Rochester, Sch Med & Dent, Dept Surg, Otolaryngol Div, Box 629, Rochester, NY 14642 USA. CR BARTH CD, 1993, AUDIOLOGY, V32, P225 BUCHFELLNER E, 1989, J COMP PHYSIOL A, V164, P539, DOI 10.1007/BF00610447 BURKARD R, 1991, AUDIOLOGY, V30, P47 EGGERMONT JJ, 1995, NEUROREPORT, V6, P1645, DOI 10.1097/00001756-199508000-00014 FENG AS, 1994, J COMP PHYSIOL A, V175, P531 FORREST TG, 1987, J ACOUST SOC AM, V82, P1933, DOI 10.1121/1.395689 FRISINA RD, 1989, J COMP NEUROL, V284, P85, DOI 10.1002/cne.902840107 GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818 HAPLEA S, 1994, J COMP PHYSIOL A, V174, P671 Heil P, 1996, NEUROREPORT, V7, P3073, DOI 10.1097/00001756-199611250-00056 Heil P, 1997, J NEUROPHYSIOL, V77, P2616 Heil P, 1997, J NEUROPHYSIOL, V77, P2642 HOUTSMA AJM, 1987, J ACOUST SOC AM WOOD ISON JR, 1982, J COMP PHYSIOL PSYCH, V96, P945, DOI 10.1037/0735-7036.96.6.945 KATZ SJ, 1971, J ACOUST SOC AM, V50, pA146 KLUMP GM, 1989, J COMP PHYSIOL A, V164, P531, DOI 10.1007/BF00610446 LANGNER G, 1987, HEARING RES, V31, P197, DOI 10.1016/0378-5955(87)90127-4 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 MITTMANN DH, 1995, HEARING RES, V90, P185, DOI 10.1016/0378-5955(95)00164-X OLSEN HF, 1967, MUSIC PHYSICS ENG ONEILL WE, 1989, J COMP NEUROL, V284, P60, DOI 10.1002/cne.902840106 PARK TJ, 1993, J NEUROSCI, V13, P5172 PENNER MJ, 1977, J ACOUST SOC AM, V61, P552, DOI 10.1121/1.381297 PHILLIPS DP, 1988, J NEUROPHYSIOL, V59, P1524 PHILLIPS DP, 1995, J NEUROPHYSIOL, V73, P674 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Slotnick B.M., 1975, STEREOTAXIC ATLAS AL Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 SUGA N, 1971, J PHYSIOL-LONDON, V217, P159 SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207 VANTASSELL DJ, 1992, J ACOUST SOC AM, V92, P1247, DOI 10.1121/1.403920 WALTON JP, 1996, ASS RES OT ABSTR, V18, P71 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 Yan J, 1996, HEARING RES, V93, P102, DOI 10.1016/0378-5955(95)00209-X ZHANG W, 1990, HEARING RES, V46, P181, DOI 10.1016/0378-5955(90)90001-6 NR 36 TC 24 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 13 EP 26 DI 10.1016/S0378-5955(97)00173-1 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500003 PM 9472732 ER PT J AU Bangert, M Kalmring, K Sickmann, T Stephen, R Jatho, M Lakes-Harlan, R AF Bangert, M Kalmring, K Sickmann, T Stephen, R Jatho, M Lakes-Harlan, R TI Stimulus transmission in the auditory receptor organs of the foreleg of bushcrickets (Tettigoniidae) I. The role of the tympana SO HEARING RESEARCH LA English DT Article DE bushcricket; insect; auditory receptor organ; sound transmission; tympanum ID GAMPSOCLEIS-GRATIOSA TETTIGONIIDAE; COMPLEX TIBIAL ORGANS; BUSH-CRICKETS; ACOUSTIC TRACHEA; ORTHOPTERA; PHYSIOLOGY; MORPHOLOGY; ENSIFERA; EAR; HINDLEGS AB The auditory organs of the tettigoniid are located just below the femoral tibial joint in the forelegs. Structurally each auditory organ consists of a tonotopically organized crista acustica and intermediate organ and associated sound conducting structures; an acoustic trachea and two lateral tympanic membranes located at the level of the receptor complex. The receptor cells and associated satellite structures are located in a channel Filled with hemolymph fluid. The vibratory response characteristics of the tympanic membranes generated by sound stimulation over the frequency range 2-40 kHz have been studied using laser vibrometry. The acoustic trachea was found to be the principal structure through which sound energy reached the tympana. The velocity of propagation down the trachea was observed to be:independent of the frequency and appreciably lower than the velocity of sound in free space. Structurally the tympana are found to be partially in contact with the air in the trachea and with the hemolymph in the channel containing the receptor cells. The two tympana were found to oscillate in phase, with a broad band frequency response, have linear coherent response characteristics and small time constant. Higher modes of vibration were not observed. Measurements of the pattern of vibration of the tympana showed that these structures vibrate as hinged flaps rather than vibrating stretched membranes. These findings: together with the morphology of the organ and physiological data from the receptor cells, suggest the possibility of an impedance matching function for the tympana in the transmission of acoustic energy to the receptor cells in the tettigoniid ear. (C) 1998 Elsevier Science B.V. C1 Univ Marburg, Fachbereich Biol Zool, AG Neurobiol, D-35032 Marburg, Germany. RP Kalmring, K (reprint author), Univ Marburg, Fachbereich Biol Zool, AG Neurobiol, POB 1929, D-35032 Marburg, Germany. CR BAILEY WJ, 1984, ANIM BEHAV, V32, P816, DOI 10.1016/S0003-3472(84)80158-X BRECKOW J, 1985, J COMP PHYSIOL A, V157, P619, DOI 10.1007/BF01351356 HILL KG, 1981, J COMP PHYSIOL, V142, P169 HOFFMANN E, 1995, J ACOUST SOC AM, V98, P1845, DOI 10.1121/1.413371 KALMRING K, 1997, UNPUB STIMULUS TRANS, V2 KALMRING K, 1994, J EXP ZOOL, V270, P155, DOI 10.1002/jez.1402700205 KALMRING K, 1995, J EXP ZOOL, V272, P103, DOI 10.1002/jez.1402720204 Kalmring K, 1996, J EXP ZOOL, V276, P315, DOI 10.1002/(SICI)1097-010X(19961201)276:5<315::AID-JEZ2>3.0.CO;2-R KALMRING K, 1994, J EXP ZOOL, V270, P135 LAKES R, 1990, TETTIGONIIDAE BIOL S LARSEN ON, 1981, J COMP PHYSIOL, V143, P297 LARSEN ON, 1978, J COMP PHYSIOL, V123, P217 LEWIS DB, 1974, J EXP BIOL, V60, P839 LIN YZ, 1993, J EXP ZOOL, V267, P377, DOI 10.1002/jez.1402670404 LIN YZ, 1994, J MORPHOL, V221, P191, DOI 10.1002/jmor.1052210208 MICHELSEN A, 1992, EVOLUTIONARY BIOL HE MICHELSEN A, 1978, J COMP PHYSIOL, V123, P193 MICHELSEN A, 1994, J COMP PHYSIOL A, V175, P145, DOI 10.1007/BF00215110 MICHELSE.A, 1971, Z VERGL PHYSIOL, V71, P63, DOI 10.1007/BF01245155 NOCKE H, 1975, J COMP PHYSIOL, V100, P25 OLDFIELD BP, 1984, J COMP PHYSIOL, V155, P689, DOI 10.1007/BF00610855 OLDFIELD BP, 1985, HEARING RES, V17, P27, DOI 10.1016/0378-5955(85)90126-1 ROSSLER W, 1994, HEARING RES, V80, P191, DOI 10.1016/0378-5955(94)90110-4 ROSSLER W, 1992, ZOOMORPHOLOGY, V112, P181, DOI 10.1007/BF01633108 SCHUMACHER R, 1979, ENTOMOL GEN, V5, P321 SCHUMACHER R, 1975, Z MORPHOL TIERE, V81, P209, DOI 10.1007/BF00278370 SEYMOUR C, 1978, J COMP PHYSIOL, V123, P205 SICKMANN T, 1997, IN PRESS HEAR RES STEPHEN RO, 1982, J EXP BIOL, V99, P279 STEPHEN RO, 1982, J ACOUST SOC AM, V72, P13, DOI 10.1121/1.387997 STUMPNER A, 1992, PHYSIOL ENTOMOL, V17, P73, DOI 10.1111/j.1365-3032.1992.tb00992.x VOLKER A, 1991, THESIS U GOTTINGEN ZEUNER FRIEDRICH E., 1936, PROC ROY ENT SOC LONDON, V11, P11 NR 33 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 27 EP 38 DI 10.1016/S0378-5955(97)00177-9 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500004 PM 9472733 ER PT J AU Pratt, H Shi, YB Polyakov, A AF Pratt, H Shi, YB Polyakov, A TI Contralaterally evoked transient otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE transient evoked otoacoustic emission; efferent system; contralateral; human; click ID COCHLEAR MICROMECHANICAL PROPERTIES; SUPPRESSION; STIMULATION AB Contralaterally evoked transient otoacoustic emissions (CETOAEs) were recorded from 10 normal-hearing young adults (20 ears) in response to monaural, 11/s, 65 dB pe SPL clicks to the ear contralateral to the microphone probe. A burst of CETOAEs was observed 12-22 ms (average peak at 18.5 ms) after the contralateral cl ck, and its mean level was -7.3 dB pc SPL, 4 dB above the averaged noise level. The frequency content of CETOAEs included a prominence around 1 kHz. In 40%, of the ears examined CETOAEs were 3 dB or more above noise level in both replications of records from the same ear. To explain these results CETOAEs are suggested to reflect mechanical events induced by the crossed efferent system in the cochlea that was contralateral to the: stimulated ear. The latency of the contralateral responses suggests that they may be related to the contralateral suppression effect observed with binaural stimulation. The latency of the response, coupled with the anatomical origin of the crossed efferent system at the superior olivary complex, suggest its involvement in the contralateral CETOAEs reported here. (C) 1998 Elsevier Science B.V. C1 Technion Israel Inst Technol, Evoked Potentials Lab, IL-32000 Haifa, Israel. RP Pratt, H (reprint author), Technion Israel Inst Technol, Evoked Potentials Lab, Gutwirth Bldg, IL-32000 Haifa, Israel. EM hillel@tx.technion.ac.il CR AHARONSON V, 1995, ISRAEL J MED SCI, V31, P728 BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E DJUPESLA.G, 1971, ACTA OTO-LARYNGOL, V71, P262, DOI 10.3109/00016487109125361 HARRISON JM, 1974, HDB SENSORY PHYSL, V1, P363 Iurato S., 1974, HDB SENSORY PHYSL, P261 KEMP DT, 1990, EAR HEARING, V11, P93 KOBLER JB, 1992, J NEUROPHYSIOL, V68, P807 LIND O, 1994, BRIT J AUDIOL, V28, P219, DOI 10.3109/03005369409086571 MORLET T, 1994, BRAIN DEV-JPN, V16, P115, DOI 10.1016/0387-7604(94)90046-9 PENNER MJ, 1993, HEARING RES, V68, P229, DOI 10.1016/0378-5955(93)90126-L PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 SHI Y, 1997, IN PRESS HEAR RES TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 NR 16 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 39 EP 44 DI 10.1016/S0378-5955(97)00178-0 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500005 PM 9472734 ER PT J AU Edds-Walton, PL AF Edds-Walton, PL TI Projections of primary afferents from regions of the saccule in toadfish (Opsanus tau) SO HEARING RESEARCH LA English DT Article DE auditory pathway; directional processing; fish hearing; fluorescent dextran amine; neuron labeling ID HAIR-CELLS; INNER-EAR; HORSERADISH-PEROXIDASE; OCTAVOLATERALIS AREA; ORGANIZATION; HEARING; SOUND; PHONOTAXIS; GOLDFISH; FISH AB The hair cell orientation patterns present on the saccules of fishes may be important for encoding the direction of a sound source. This study was conducted to determine whether primary afferent projections to the medulla are organized by the best directions for the hair cells they innervate. The toadfish saccule has hair cells oriented primarily in the vertical plane: both the rostral and the caudal saccule have hair cell orientations sweeping from 0 degrees to 45 degrees, and the:middle saccule has hair cells oriented at 90 degrees. Fluorescent dextran amines were used singly and in combination to label regions of the saccular nerve innervating rostral, middle, and caudal saccule. The projections of those afferents were examined in detail in the anterior and descending octaval nuclei, which are auditory nuclei in this species. There was no evidence of topographic projections based on location along the length of the saccule or based on hair cell orientation. There was some evidence that parallel inputs are present from each region of the saccule examined, which may be based on the 180 degrees opposition of hair cells found throughout the saccule: however, afferents from the rostral, middle, and caudal saccule appear to have overlapping projections to the anterior and descending octaval nuclei. These data suggest that in toadfish, calculations of the direction of the sound source may begin in either of these primary auditory nuclei by comparing afferent input from along the saccule. (C) 1998 Elsevier Science B.V. C1 Univ Maryland, Dept Zool, College Pk, MD 20742 USA. RP Edds-Walton, PL (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. EM walton@citrus.ucr.edu CR Baierlein R., 1983, NEWTONIAN DYNAMICS BODZNICK D, 1984, J COMP NEUROL, V225, P581, DOI 10.1002/cne.902250408 Brown CH, 1994, COMP HEARING MAMMALS, P57 BUWALDA RJA, 1983, J COMP PHYSIOL, V150, P175 Buwalda RJA, 1981, HEARING SOUND COMMUN, P139 DALE T, 1976, Norwegian Journal of Zoology, V24, P85 DIJKGRAAF S, 1960, PROC R SOC SER B-BIO, V152, P51, DOI 10.1098/rspb.1960.0022 EDDSWALTON PL, 1995, BIOL BULL, V189, P211 EDDSWALTON PL, 1994, THESIS U MARYLAND CO EDDSWALTON PL, 1996, ANN M SOC NEUR EDDSWALTON PL, 1995, ACTA ZOOL-STOCKHOLM, V76, P257 Fay RR, 1996, BIOL BULL, V191, P255 Fay RR, 1997, HEARING RES, V111, P1, DOI 10.1016/S0378-5955(97)00083-X Fay RR, 1997, HEARING RES, V113, P235, DOI 10.1016/S0378-5955(97)00148-2 FISH JF, 1972, CURRENT PERSPECTIVES, V2, P386 FLOCK A, 1964, J CELL BIOL, V22, P413, DOI 10.1083/jcb.22.2.413 Flock A., 1971, HDB SENSORY PHYSIOLO, V1, P396 FRITZSCH B, 1981, CELL TISSUE RES, V218, P581 FURUKAWA T, 1967, J NEUROPHYSIOL, V30, P1377 GRAY GA, 1961, ECOLOGY, V42, P274, DOI 10.2307/1932079 HANCOCK MB, 1982, NEUROSCI LETT, V31, P247, DOI 10.1016/0304-3940(82)90028-3 HAWKINS AD, 1977, J COMP PHYSIOL, V122, P1 HIGHSTEIN SM, 1992, J COMP NEUROL, V319, P501, DOI 10.1002/cne.903190404 HILDEBRAND SF, 1972, FISHES CHESAPEAKE BA HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P577 KLUMP GM, 1986, J COMP PHYSIOL A, V158, P383, DOI 10.1007/BF00603622 LEWIS ER, 1982, J COMP PHYSIOL, V145, P437 LOMBARTE A, 1992, J MORPHOL, V214, P97, DOI 10.1002/jmor.1052140107 MCCORMICK CA, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P323 MCCORMICK CA, 1982, J MORPHOL, V171, P159, DOI 10.1002/jmor.1051710205 MCCORMICK CA, 1993, BRAIN BEHAV EVOLUT, V42, P48, DOI 10.1159/000114140 MCCORMICK CA, 1994, BRAIN BEHAV EVOLUT, V43, P189, DOI 10.1159/000113634 MCCORMICK CA, 1984, NEUROSCI LETT, V51, P207, DOI 10.1016/0304-3940(84)90552-4 Myrberg A.A, 1981, HEARING SOUND COMMUN, P395 Pankratz DS, 1930, J COMP NEUROL, V50, P247, DOI 10.1002/cne.900500202 PASSMORE NI, 1984, J COMP PHYSIOL, V154, P189, DOI 10.1007/BF00604984 POPPER AN, 1993, BRAIN BEHAV EVOLUT, V41, P14, DOI 10.1159/000113821 POPPER AN, 1982, AM ZOOL, V22, P311 RHEINLAENDER J, 1979, J COMP PHYSIOL, V133, P247 ROGERS PH, 1988, J ACOUST SOC AM, V83, P338, DOI 10.1121/1.396444 SAIDEL WM, 1983, EXP BRAIN RES, V50, P149 SAUNDERS JC, 1983, HEARING OTHER SENSES, P175 SCHELLART NAM, 1987, J ACOUST SOC AM, V82, P822, DOI 10.1121/1.395280 SCHELLART NAM, 1990, J EXP BIOL, V149, P113 Schuijf A., 1976, SOUND RECEPTION FISH, P63 SCHUIJF A, 1975, J COMP PHYSIOL, V98, P333 SCHUIJF A, 1975, J COMP PHYSIOL, V98, P307 SOKOLOWSKI BHA, 1987, J MORPHOL, V194, P323, DOI 10.1002/jmor.1051940311 SUGIHARA I, 1989, J NEUROPHYSIOL, V62, P1330 TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807 Winn H. E., 1972, BEHAV MARINE ANIM, V2, P361 NR 51 TC 11 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 45 EP 60 DI 10.1016/S0378-5955(97)00179-2 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500006 PM 9472735 ER PT J AU Frisina, RD Walton, JP Lynch-Armour, MA Byrd, JD AF Frisina, RD Walton, JP Lynch-Armour, MA Byrd, JD TI Inputs to a physiologically characterized region of the inferior colliculus of the young adult CBA mouse SO HEARING RESEARCH LA English DT Article DE hearing; deafness; aging; horseradish peroxidase; central auditory system; tract tracing ID SUPERIOR OLIVARY COMPLEX; DORSAL COCHLEAR NUCLEUS; ASCENDING PROJECTIONS; HEARING-LOSS; FREQUENCY REPRESENTATION; FUNCTIONAL-ORGANIZATION; EFFERENT PROJECTIONS; PTERONOTUS-PARNELLII; LATERAL LEMNISCUS; AUDITORY-SYSTEM AB Presbycusis is a sensory perceptual disorder involving loss of high-pitch hearing and reduced ability to process biologically relevant acoustic signals in noisy environments. The present investigation is part of an ongoing series of studies aimed at discerning the neural bases of presbycusis. The purpose of the present experimen: was to delineate the inputs to a functionally characterized region of the dorsomedial inferior colliculus (IC, auditory midbrain) in young, adult CBA mice. Focal, iontophoretic injections of horseradish peroxidase were made ill the 18-24 kHz region of dorsomedial IC of the CBA strain following physiological mapping experiments. Serial sections were reacted with diaminobenzidine or tetramethylbenzidine, counterstained and examined for retrogradely labeled cell bodies. Input projections were observed contralaterally: from: all three divisions of cochlear nucleus, intermediate and dorsal nuclei of the lateral lemniscus (LL); and the central nucleus, external nucleus and dorsal cortex of the IC. Input projections were observed ipsilaterally from: the medial and lateral superior olivary nuclei; the superior paraolivary nucleus; the dorsolateral and anterolateral periolivary nuclei; the dorsal and ventral divisions of the ventral nucleus of LL; the dorsal and intermediate nuclei of LL; the central nucleus, external nucleus and dorsal cortex of the IC outside the injection site; and small projections from central gray and the medial geniculate body. These findings in young, adult mice with normal hearing call now serve as a baseline for similar experiments being conducted in mice of older ages and with varying degrees of hearing loss to discover neural changes that may cause age-related hearing disorders. (C) 1998 Elsevier Science B.V. C1 Univ Rochester, Sch Med & Dent, Dept Surg, Otolaryngol Div, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Physiol, Rochester, NY 14642 USA. RP Frisina, RD (reprint author), Univ Rochester, Sch Med & Dent, Dept Surg, Otolaryngol Div, 601 Elmwood Ave, Rochester, NY 14642 USA. EM rdf@mother.ent.rochester.edu CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 COVEY E, 1986, J NEUROSCI, V6, P2926 DAVIS AC, 1991, ACTA OTOLARYNGOL STO, V476, P16 ELVERLAND HH, 1978, EXP BRAIN RES, V32, P117 Frisina R. D., 1995, Society for Neuroscience Abstracts, V21, P908 Frisina RD, 1997, J ACOUST SOC AM, V101, P2741, DOI 10.1121/1.418562 FRISINA RD, 1989, J COMP NEUROL, V284, P85, DOI 10.1002/cne.902840107 GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409 GLENDENNING KK, 1980, ANAT REC, V196, P63 GLENDENNING KK, 1985, J COMP NEUROL, V232, P262 GLENDENNING KK, 1983, J NEUROSCI, V3, P1521 Harrison J M, 1970, Contrib Sens Physiol, V4, P95 Henry K. R., 1983, AUDITORY PSYCHOBIOLO, P470 HENRY KR, 1980, AUDIOLOGY, V19, P369 HINCHCLIFFE R, 1962, J SPEECH HEAR DISORD, V27, P301 HOFSTETTER KM, 1992, J COMP NEUROL, V323, P370, DOI 10.1002/cne.903230306 Jerger J, 1973, Adv Otorhinolaryngol, V20, P115 KAZEE AM, 1995, HEARING RES, V89, P109, DOI 10.1016/0378-5955(95)00128-6 KELLEY PE, 1992, J COMP NEUROL, V319, P196 LESSER HD, 1990, EXP BRAIN RES, V82, P137 Lorente de No R, 1933, LARYNGOSCOPE, V43, P327 LYNCHARMOUR MA, 1995, ASS RES OT ABSTR, P71 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MARTIN MR, 1981, J COMP NEUROL, V197, P141, DOI 10.1002/cne.901970111 MAURER J, 1979, HEARING AGING MEININGER V, 1986, NEUROSCIENCE, V17, P1159, DOI 10.1016/0306-4522(86)90085-0 Mesulam M., 1982, TRACING NEURAL CONNE OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 OLIVER DL, 1987, J COMP NEUROL, V264, P24, DOI 10.1002/cne.902640104 Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 OLLO C, 1979, AM J ANAT, V155, P349, DOI 10.1002/aja.1001550306 ONEILL WE, 1989, J COMP NEUROL, V284, P60, DOI 10.1002/cne.902840106 OSEN KK, 1969, ACTA OTO-LARYNGOL, V67, P352, DOI 10.3109/00016486909125462 PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 ROSS LS, 1988, J COMP NEUROL, V270, P488, DOI 10.1002/cne.902700403 ROYSTER LH, 1979, AM IND HYG ASSOC J, V40, P504, DOI 10.1080/15298667991429895 RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0 RYUGO DK, 1985, J COMP NEUROL, V242, P381, DOI 10.1002/cne.902420307 RYUGO DK, 1976, THESIS U CALIFORNIA Schneiderman A., 1988, J COMP NEUROL, V276, P188 Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 SCHWEIZER H, 1981, J COMP NEUROL, V201, P25, DOI 10.1002/cne.902010104 STIEBLER I, 1985, J COMP NEUROL, V238, P65, DOI 10.1002/cne.902380106 TRUNE DR, 1983, DEV BRAIN RES, V9, P1, DOI 10.1016/0165-3806(83)90103-7 WALTON JP, 1995, ASS RES OT ABSTR, V18, P71 Willard FH, 1983, AUDITORY PSYCHOBIOLO, P201 WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412 WILLOTT JF, 1978, J COMP PHYSIOL, V127, P175 WILLOTT JF, 1994, NEUROBIOL AGING, V15, P175, DOI 10.1016/0197-4580(94)90109-0 WILLOTT JF, 1985, J COMP NEUROL, V237, P545, DOI 10.1002/cne.902370410 Wilson W. W., 1995, Society for Neuroscience Abstracts, V21, P908 Zettel M. L., 1995, Society for Neuroscience Abstracts, V21, P908 Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8 ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103 ZOOK JM, 1982, J COMP NEUROL, V207, P1, DOI 10.1002/cne.902070102 NR 57 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 61 EP 81 DI 10.1016/S0378-5955(97)00176-7 PG 21 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500007 PM 9472736 ER PT J AU Marcus, DC Sunose, H Liu, JZ Bennett, T Shen, ZJ Scofield, MA Ryan, AF AF Marcus, DC Sunose, H Liu, JZ Bennett, T Shen, ZJ Scofield, MA Ryan, AF TI Protein kinase C mediates P-2U purinergic receptor inhibition of K+ channel in apical membrane of strial marginal cells SO HEARING RESEARCH LA English DT Article DE phospholipase C; perforated-patch whole-cell voltage clamp; minK channel; gerbil; rat; self-referencing probe ID CARDIAC POTASSIUM CURRENT; POLYMERASE CHAIN-REACTION; GUINEA-PIG COCHLEA; EXTRACELLULAR ATP; MESSENGER-RNA; RAT COCHLEA; VASCULARIS; SECRETION; VOLTAGE; ISK AB Strial marginal cells (SMC) electrogemically secrete K+ via slowly activating K+ (I-sK) channels, consisting of I-sK regulatory and KvLQT1 channel subunits, and the associated short circuit current (I-sc) is inhibited by agonists of the apical P-2U receptor [Liu et al., Audit. Neurosci. 2 (1995) 331-340]. Measurements of relative K+ flux (J(K)) with a self-referencing K+-selective probe demonstrated a decrease in J(K) after apical perfusion of 100 mu M ATP. On-cell macro patch recordings from the apical membrane of gerbil SMC showed a decrease of the I-sK channel current (I-IsK) by 88 +/- 8% during pipette perfusion of 100 mu M ATP. The magnitude of the decrease of I-sc by ATP was diminished in the presence of inhibitors of phospholipase C (PLC) and protein kinase C (PKC), U-73122 and GF109203X. Activation of PKC by phorbol 12-myristate 13-acetate (20 nM) decreased I-IsK (grebil: by 62 +/- 10%; rat: by 72 +/- 6%) in perforated-patch whole-cell recordings while the inactive analog, 4 alpha PMA, had no effect. By contrast, elevation of cytosolic [Ca2+] by A23187 increased the whole-cell I-IsK. The expression of the isk gene transcript was confirmed and the serine responsible for the species-specific response to PKC was found to be present in the gerbil I-sK; sequence. These data provide evidence consistent with a direct effect of the PKC branch of the PLC pathway on the I-sk channel of SMC in response to activation of the apical P-2U receptor and predict that the secretion of endolymph in the human cochlea may be controlled by PKC in the same way as in our animal model. (C) 1998 Elsevier Science B.V. C1 Boys Town Natl Res Hosp, Biophys Lab, Omaha, NE 68131 USA. Univ Calif San Diego, Div Otolaryngol, La Jolla, CA 92093 USA. San Diego VA Med Ctr, La Jolla, CA USA. Creighton Univ, Sch Med, Dept Pharmacol, Mol Pharmacol Lab, Omaha, NE 68178 USA. RP Marcus, DC (reprint author), Boys Town Natl Res Hosp, Biophys Lab, 555 No 30th St, Omaha, NE 68131 USA. CR Agrup C, 1997, PFLUG ARCH EUR J PHY, V433, P603, DOI 10.1007/s004240050320 Barhanin J, 1996, NATURE, V384, P78, DOI 10.1038/384078a0 Chen ZP, 1996, ENDOCRINOLOGY, V137, P248, DOI 10.1210/en.137.1.248 Clunes MT, 1996, CELL CALCIUM, V20, P339, DOI 10.1016/S0143-4160(96)90039-1 COLLINS A, 1992, J PHYSIOL-LONDON, V454, P27 DUBYAK GR, 1993, AM J PHYSIOL, V265, pC577 FENWICK EM, 1982, J PHYSIOL-LONDON, V331, P577 FREDHOLM BB, 1994, PHARMACOL REV, V46, P143 Furuta H, 1995, HEARING RES, V92, P78, DOI 10.1016/0378-5955(95)00203-0 GRIERSON JP, 1995, BRIT J PHARMACOL, V115, P11 Hunn M, 1997, FEBS LETT, V400, P226, DOI 10.1016/S0014-5793(96)01395-6 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KOCHIAN LV, 1992, PLANTA, V188, P601, DOI 10.1007/BF00197055 KUHTREIBER WM, 1990, J CELL BIOL, V110, P1565, DOI 10.1083/jcb.110.5.1565 LESAGE F, 1992, FEBS LETT, V301, P168, DOI 10.1016/0014-5793(92)81240-M LIU J, 1995, AUDIT NEUROSCI, V1, P331 MARCUS DC, 1994, BIOPHYS J, V66, P1939 MARCUS DC, 1994, AM J PHYSIOL, V267, pC857 MARCUS DC, 1997, CELL PHYSL SOURCE BO, V2 MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5 MURAI T, 1989, BIOCHEM BIOPH RES CO, V161, P176, DOI 10.1016/0006-291X(89)91577-5 Nicholas RA, 1996, MOL PHARMACOL, V50, P224 OGAWA K, 1995, NEUROREPORT, V6, P1538 RODRIGUEZECHAND.EL, 1965, Z ZELLFORSCH, V67, P600 Sanguinetti MC, 1996, NATURE, V384, P80, DOI 10.1038/384080a0 SCOFIELD MA, 1995, J PHARMACOL EXP THER, V275, P1035 SHEN Z, 1995, J MEMBRANE BIOL, V146, P283 SUNOSE H, 1994, HEARING RES, V80, P86, DOI 10.1016/0378-5955(94)90012-4 Sunose H, 1997, J MEMBRANE BIOL, V156, P25, DOI 10.1007/s002329900184 SUNOSE H, 1997, IN PRESS HEAR RES Takeuchi S, 1996, J MEMBRANE BIOL, V150, P47, DOI 10.1007/s002329900029 VARNUM MD, 1993, P NATL ACAD SCI USA, V90, P11528, DOI 10.1073/pnas.90.24.11528 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 ZWISLOCKI J, 1950, J ACOUST SOC AM, V22, P778, DOI 10.1121/1.1906689 NR 35 TC 52 Z9 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 82 EP 92 DI 10.1016/S0378-5955(97)00180-9 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500008 PM 9472737 ER PT J AU Mulroy, MJ Henry, WR McNeil, PL AF Mulroy, MJ Henry, WR McNeil, PL TI Noise-induced transient microlesions in the cell membranes of auditory hair cells SO HEARING RESEARCH LA English DT Article DE noise-induced hearing loss; temporary threshold shift; cell membrane wounding; hair cell membrane lesion; lizard ID TEMPORARY THRESHOLD SHIFT; ALLIGATOR LIZARD; FLUORESCENT DYES; COCHLEA; MODEL; EAR AB Several types of nonauditory cells recover from transitory mechanically induced microlesions in their cell membranes. We report evidence that hair cells in the auditory papilla of the alligator lizard suffered similar membrane wounding when exposed to noise loud enough to induce a temporary threshold shift. Lucifer yellow, a molecular marker that does not normally penetrate through the cell membrane into the cytoplasm, was introduced into the extracellular fluid bathing the basolateral membrane of the hair cells. We assessed the effect of loud noise on the function of the ear by measuring compound action potentials of the auditory nerve before exposure to the noise, immediately after cessation of the noise, and after recovering overnight. Hair cells that were exposed to the noise took up much more Lucifer yellow than hair cells that were not exposed. We propose that the Lucifer yellow entered the hair cells via noise-induced lesions in their cell membranes, and that the cells were able to survive and recover functionally. (C) 1998 Elsevier Science B.V. C1 Med Coll Georgia, Dept Anat & Cellular Biol, Augusta, GA 30912 USA. RP Mulroy, MJ (reprint author), Med Coll Georgia, Dept Anat & Cellular Biol, Augusta, GA 30912 USA. EM mmulroy@mail.mcg.edu CR DEW LA, 1993, HEARING RES, V66, P99, DOI 10.1016/0378-5955(93)90264-2 FREEMAN DM, 1990, HEARING RES, V49, P29, DOI 10.1016/0378-5955(90)90093-5 HENRY WR, 1995, HEARING RES, V84, P81, DOI 10.1016/0378-5955(95)00014-U LIM DJ, 1986, AM J OTOLARYNG, V7, P73, DOI 10.1016/S0196-0709(86)80037-0 McNeil PL, 1997, J CELL BIOL, V137, P1, DOI 10.1083/jcb.137.1.1 McNeil Paul L., 1993, Trends in Cell Biology, V3, P302, DOI 10.1016/0962-8924(93)90012-P MCNEIL PL, 1989, METHOD CELL BIOL, V29, P153 MCNEIL PL, 1992, AM J PATHOL, V140, P1097 MULROY MJ, 1984, SCAN ELECTRON MICROS, P831 MULROY MJ, 1990, HEARING RES, V49, P79, DOI 10.1016/0378-5955(90)90096-8 MULROY MJ, 1986, SCANNING ELECTRON MI, V4, P1451 NADOL JB, 1976, AM J ANAT, V147, P281, DOI 10.1002/aja.1001470304 ROSOWSKI JJ, 1985, HEARING RES, V20, P139, DOI 10.1016/0378-5955(85)90165-0 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 STEINBERG TH, 1988, J CELL BIOL, V107, P887, DOI 10.1083/jcb.107.3.887 STEINBERG TH, 1987, J CELL BIOL, V105, P2695, DOI 10.1083/jcb.105.6.2695 STEINHARDT RA, 1994, SCIENCE, V263, P390, DOI 10.1126/science.7904084 STEWART WW, 1981, NATURE, V292, P17, DOI 10.1038/292017a0 WEISS TF, 1976, BRAIN RES, V115, P71, DOI 10.1016/0006-8993(76)90823-4 NR 19 TC 35 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 93 EP 100 DI 10.1016/S0378-5955(97)00181-0 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500009 PM 9472738 ER PT J AU Heid, S Hartmann, R Klinke, R AF Heid, S Hartmann, R Klinke, R TI A model for prelingual deafness, the congenitally deaf white cat - population statistics and degenerative changes SO HEARING RESEARCH LA English DT Article DE congenital deafness; organ of Corti; auditory nerve; spiral ganglion; degeneration; cat; hearing deficit; Waardenburg ID ANTEROVENTRAL COCHLEAR NUCLEUS; ELECTRICAL-STIMULATION; SPIRAL GANGLION; HEREDITARY DEAFNESS; BRAIN-STEM; MICE; PATHOLOGY; EAR AB Cochlear implantation in congenitally deaf children leads to electrical stimulation of an entirely naive central auditory system. In this case, processes of central auditory maturation are induced by the electric stimuli. For the study of these processes the deaf white cat (DWC) appears to be an appropriate model. However, a knowledge of the basic data of these animals is necessary before such a model may be used. This paper presents these data and is one of a series of publications concerning congenital deafness in children and cochlear implantation. In our strain 72% of the animals are totally deaf as judged by the absence of any brain stem evoked potentials at click intensities up to 120 dB SPL peak equivalent. Primarily, there is a degeneration of the entire organ of Corti during the first postnatal weeks. An absence of acoustically evoked brain stem responses in the early postnatal weeks shows that DWCs probably never have any hearing experience. Months after the degeneration of the organ of Corti, the spiral ganglion starts to degenerate from the midportion of the cochlea. However, even in adult cats (2 years), a sufficient number of functionally intact auditory afferents remain, which are suitable for electrical cochlear stimulation. (C) 1998 Elsevier Science B.V. C1 Univ Frankfurt Klinikum, Inst Phys 3, D-60590 Frankfurt, Germany. RP Klinke, R (reprint author), Univ Frankfurt Klinikum, Inst Phys 3, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. EM klinke@em.uni-frankfurt.de CR Alexander G., 1900, ARCH OHRENHEILK, V50, P159, DOI 10.1007/BF01971054 ALEXANDER G, 1905, ARCH OHRENHEILK, V66, P161, DOI 10.1007/BF01834326 BERGSMA DR, 1971, J HERED, V62, P171 BOCK GR, 1983, ACTA OTO-LARYNGOL, V96, P39, DOI 10.3109/00016488309132873 BOSHER SK, 1965, PROC R SOC SER B-BIO, V162, P147, DOI 10.1098/rspb.1965.0030 BREE WT, 1828, LONDONS MAG NAT HIST, V1, P178 BROWN SDM, 1994, HUM MOL GENET, V3, P1453 BRUGGE JF, 1978, J NEUROPHYSIOL, V41, P1557 Burkard R, 1996, J ACOUST SOC AM, V100, P978, DOI 10.1121/1.416209 DELACK JB, 1984, COMP CONT EDUC PRACT, V6, P609 DEOL MS, 1970, PROC R SOC SER B-BIO, V175, P201, DOI 10.1098/rspb.1970.0019 DILLER G, 1990, HORGESCHAD PADAG, V44, P80 ELVERLAND HH, 1980, ACTA OTO-LARYNGOL, V90, P360, DOI 10.3109/00016488009131737 ELVERLAND HH, 1984, ACTA NEUROL SCAND, V69, P145 ELVERLAND HH, 1977, ORL J OTO-RHINO-LARY, V39, P241 Gruneberg H, 1940, PROC R SOC SER B-BIO, V129, P154, DOI 10.1098/rspb.1940.0034 Hartmann R, 1997, HEARING RES, V112, P115, DOI 10.1016/S0378-5955(97)00114-7 HARTMANN R, 1997, ASS RES OTOLARYNG, P230 Heid S, 1997, HEARING RES, V110, P191, DOI 10.1016/S0378-5955(97)00074-9 HEID S, 1996, P 24 GOETT NEUR C, V2, P515 KLINKE R, 1997, FORSCH FRANKFURT, V2, P16 Langman AW, 1996, PEDIATR CLIN N AM, V43, P1217, DOI 10.1016/S0031-3955(05)70515-0 LARSEN SA, 1992, EXP NEUROL, V115, P151, DOI 10.1016/0014-4886(92)90240-Q LAUKLI E, 1982, AUDIOLOGY, V21, P350 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 LEAKE PA, 1992, HEARING RES, V64, P99, DOI 10.1016/0378-5955(92)90172-J LEAKE PA, 1995, HEARING RES, V82, P65 LEAKE PA, 1992, J COMP NEUROL, V320, P468, DOI 10.1002/cne.903200405 Mair I W, 1973, Acta Otolaryngol Suppl, V314, P1 Mitchell AL, 1935, J HERED, V26, P425 MOTOHASHI H, 1994, HEARING RES, V80, P10, DOI 10.1016/0378-5955(94)90003-5 PUJOL R, 1977, ACTA OTO-LARYNGOL, V83, P59, DOI 10.3109/00016487709128813 Rawitz B., 1896, MORPHOL ARBEIT, V6, P545 REBILLARD G, 1976, ACTA OTO-LARYNGOL, V82, P48, DOI 10.3109/00016487609120862 REBILLARD M, 1981, PHYSL HEAR RES, V5, P189 REBILLARD M, 1981, HEARING RES, V5, P179, DOI 10.1016/0378-5955(81)90044-7 ROMAND R, 1992, DEV AUDITORY VESTIBU, V2 Saada AA, 1996, BRAIN RES, V736, P315, DOI 10.1016/0006-8993(96)00719-6 SAADA AA, 1995, ASS RES OTOLARYNG, P176 SACHS L, 1974, STAT AUSWERTUNGSMETH SCHROTT A, 1990, HEARING RES, V46, P1, DOI 10.1016/0378-5955(90)90134-B SCHROTT A, 1987, ACTA OTO-LARYNGOL, V103, P451 SCHWARTZ IR, 1982, ACTA OTO-LARYNGOL, V93, P9, DOI 10.3109/00016488209130847 SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 SORSBY A, 1954, J GENET, V52, P425, DOI 10.1007/BF02981535 Steel KP, 1995, ANNU REV GENET, V29, P675 SUGA F, 1970, LARYNGOSCOPE, V80, P80, DOI 10.1288/00005537-197001000-00007 VANLENNEP ECC, 1910, THESIS UTRECHT U WALSH EJ, 1986, J ACOUST SOC AM, V79, P712, DOI 10.1121/1.393461 WEST CD, 1973, J COMP NEUROL, V151, P377, DOI 10.1002/cne.901510406 Whiting PW, 1918, J EXP ZOOL, V25, P539, DOI 10.1002/jez.1400250207 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X NR 52 TC 41 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 101 EP 112 DI 10.1016/S0378-5955(97)00182-2 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500010 PM 9472739 ER PT J AU Wangemann, P Gruber, DD AF Wangemann, P Gruber, DD TI The isolated in vitro perfused spiral modiolar artery: pressure dependence of vasoconstriction SO HEARING RESEARCH LA English DT Article DE cochlear blood flow; intravascular pressure ID COCHLEAR BLOOD-FLOW; VAS-DEFERENS; SMOOTH-MUSCLE; GUINEA-PIG; INNER-EAR; IN-VITRO; POTASSIUM; MICROCIRCULATION; NOREPINEPHRINE; VASODILATION AB We developed a new technique, the isolated in vitro perfused spiral modiolar artery, which allowed the continuous measurement of the vascular diameter and control of the intravascular pressure. An isolated section of the spiral modiolar artery from the gerbil was perfused on one end with a set of concentric pipettes and occluded on the other end in order to apply a defined intravascular pressure in the range between 10 and 230 cm H2O. The preparation was continuously superfused with a NaCl solution. The diameter of the spiral modiolar artery in NaCl solution displayed little dependence on the applied intravascular pressure. The diameter was 73 +/- 10 mu m (n = 5) at 10 cm H2O and increased with pressure to 85 +/- 7 mu m (n = 5) at the highest applied pressure (220 or 230 cm H2O). Elevation of the K+ concentration from 3.6 to 150 mM in the superfusate caused a transient vasoconstriction. The amplitude of the Kt-induced vasoconstriction depended strongly on the applied intravascular pressure. At 10 cm H2O the amplitude was maximal and the outer diameter decreased transiently by 49+/-9% (from 73+/-10 to 38+/-9 mu m; n=5). The amplitude of K+-induced vasoconstriction was nearly maximal at pressures lower than 30 cm H2O, declined at higher pressures, and was not significantly different from zero at pressures larger than 100 cm H2O. These observations in conjunction with an estimation of the intravascular pressures in vivo suggest that cochlear blood flow can be regulated on two levels: (1) cochlear blood flow can be regulated by controlling the vascular diameter of the spiral modiolar artery (intracochlear blood flow regulation) and (2) intracochlear blood flow regulation can be modulated by altering the perfusion pressure which is controlled by the vasculature upstream of the cochlea. (C) 1998 Elsevier Science B.V. C1 Boys Town Natl Res Hosp, Cell Physiol Lab, Omaha, NE 68131 USA. RP Wangemann, P (reprint author), Boys Town Natl Res Hosp, Cell Physiol Lab, 555 N 30th St, Omaha, NE 68131 USA. RI Wangemann, Philine/N-2826-2013 CR ANGELBORG C, 1977, ACTA OTO-LARYNGOL, V83, P92, DOI 10.3109/00016487709128818 BRECHTELSBAUER PB, 1990, OTOLARYNG HEAD NECK, V103, P566 CARLISLE L, 1990, HEARING RES, V43, P107, DOI 10.1016/0378-5955(90)90219-F CHANG AE, 1980, AM J PHYSIOL, V238, pH716 FOUDA AK, 1987, BLOOD VESSELS, V24, P63 FRONEK K, 1975, AM J PHYSIOL, V228, P791 GAILLY P, 1993, BRIT J PHARMACOL, V110, P326 HATA R, 1994, J NEUROL SCI, V121, P79, DOI 10.1016/0022-510X(94)90160-0 HAYASHI K, 1994, CIRC RES, V75, P821 HUANG Y, 1995, BRIT J PHARMACOL, V115, P845 KHOYI MA, 1987, EUR J PHARMACOL, V140, P55, DOI 10.1016/0014-2999(87)90633-9 KIMURA M, 1993, AM J PHYSIOL, V264, pH1788 MAASS B, 1984, ARCH OTO-RHINO-LARYN, V240, P295 MILLER JM, 1984, ARCH OTOLARYNGOL, V110, P305 POLIDORO JH, 1982, ARCH INT PHARMACOD T, V256, P36 SHAPIRO HM, 1971, AM J PHYSIOL, V221, P279 SNOW JB, 1973, ARCH OTOLARYNGOL, V97, P365 VINALL PE, 1987, STROKE, V18, P92 WANGEMANN P, 1996, INNER EAR BIOL, V33, P94 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wangemann P, 1996, HEARING RES, V95, P49, DOI 10.1016/0378-5955(96)00007-X WEILLE FL, 1954, AMA ARCH OTOLARYNGOL, V59, P731 WESTFALL DP, 1990, ANN NY ACAD SCI, V603, P300 YU DY, 1994, INVEST OPHTH VIS SCI, V35, P4087 NR 24 TC 13 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 113 EP 118 DI 10.1016/S0378-5955(97)00184-6 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500011 PM 9472740 ER PT J AU Watson, GM Mire, P Hudson, RR AF Watson, GM Mire, P Hudson, RR TI Repair of hair bundles in sea anemones by secreted proteins SO HEARING RESEARCH LA English DT Article DE tip link; hair cells; signal transduction ID CELLS; TRANSDUCTION; HALIPLANELLA; SENSITIVITY; STEREOCILIA; LINKS AB Sea anemones are sessile invertebrates that detect movements of prey using numerous hair bundles located on tentacles surrounding their mouth. Previously we found that hair bundles of anemones are structurally and functionally similar to those of vertebrates. After 10-15 min exposure to calcium depleted buffers, hair bundles in chickens suffer moderate damage from which they recover in 12 h without requiring new protein synthesis [Zhao, Yamoah and Gillespie, Proc. Natl. Acad. Sci. USA 94 (1996) 15469-15474]. We find that after 1 h exposure to calcium free seawater, hair bundles of anemones suffer extensive damage from which they recover in 4 h; apparently because of newly synthesized, secretory proteins called 'repair proteins'. Recovery is delayed in a dose dependent fashion by cycloheximide. In the presence of exogenously added repair proteins: recovery occurs within 8 min and is cycloheximide insensitive. Recovery is ascertained by a bioassay performed on intact specimens, by electrophysiology, and by timelapse video microscopy. Fraction pi a chromatographic Fraction with bioactivity comparable to the complete mixture of repair proteins, consists of complexes having an estimated mass of 2000 kDa. Avidin based cytochemistry suggests that biotinylated fraction beta binds to damaged hair bundles. SDS-PAGE gel electrophoresis demonstrates that fraction beta contains 8-10 polypeptides of 90 kDa or smaller. At least four of these polypeptides apparently are consumed during the repair process. Negatively stained samples of fraction beta are shown by transmission electron microscopy to include filamentous structures similar in length (150 nm) and width (6 nm) to linkages between stereocilia. The filamentous structures can be associated with globular structures (20 nm in diameter). A model is presented wherein repair proteins comprise replacement linkages and enzymes that attach linkages to appropriate membrane proteins. (C) 1998 Elsevier Science B.V. C1 Univ SW Louisiana, Dept Biol, Lafayette, LA 70504 USA. RP Watson, GM (reprint author), Univ SW Louisiana, Dept Biol, Box 42451, Lafayette, LA 70504 USA. EM gmw5722@usl.edu CR ASHMORE JF, 1991, ANNU REV PHYSIOL, V53, P465, DOI 10.1146/annurev.physiol.53.1.465 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X BARNES RD, 1980, INVERTEBRATE ZOOLOGY BAYER EA, 1990, METHOD ENZYMOL, V184, P138 Bollag D. M., 1991, PROTEIN METHODS HOWARD J, 1988, ANNU REV BIOPHYS BIO, V17, P99 HUDSPETH AJ, 1992, SOC GEN PHY, V47, P357 HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845 HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 Mariscal R. N., 1974, COELENTERATE BIOL RE, P129 MINASIAN LL, 1979, BIOL BULL, V157, P478, DOI 10.2307/1541032 MIRE P, 1997, IN PRESS HEAR RES MIRETHIBODEAUX P, 1994, J EXP ZOOL, V270, P517, DOI 10.1002/jez.1402700605 OSBORNE MP, 1988, HEARING RES, V35, P99, DOI 10.1016/0378-5955(88)90044-5 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P POLLARD TD, 1982, METHOD ENZYMOL, V85, P123 PREYER S, 1995, HEARING RES, V89, P187, DOI 10.1016/0378-5955(95)00136-5 Shick J. M., 1991, FUNCTIONAL BIOL SEA SHOTWELL SL, 1981, ANN NY ACAD SCI, V374, P1, DOI 10.1111/j.1749-6632.1981.tb30854.x WATSON GM, 1995, CELL MOTIL CYTOSKEL, V30, P208, DOI 10.1002/cm.970300305 Watson GM, 1997, HEARING RES, V107, P53, DOI 10.1016/S0378-5955(97)00022-1 WATSON GM, 1983, TISSUE CELL, V15, P939, DOI 10.1016/0040-8166(83)90059-9 WATSON GM, 1994, INT REV CYTOL, V156, P275 WATSON GM, 1991, J CELL SCI, V99, P307 ZHAO Y, 1996, P NATL ACAD SCI USA, V94, P15469 NR 27 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 119 EP 128 DI 10.1016/S0378-5955(97)00185-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500012 PM 9472741 ER PT J AU Hill, KG AF Hill, KG TI Basilar membrane motion in relation to two-tone suppression SO HEARING RESEARCH LA English DT Article DE two-tone suppression; basilar membrane mechanics; auditory nerve ID AUDITORY-NERVE FIBERS; INNER HAIR CELL; LOW-FREQUENCY TONES; GUINEA-PIG COCHLEA; LOW-SIDE SUPPRESSORS; 2-TONE SUPPRESSION; MAMMALIAN COCHLEA; RECEPTOR POTENTIALS; MOSSBAUER TECHNIQUE; RATE RESPONSES AB It is proposed that two-tone suppression of rate responses in auditory-nerve fibres by a low-side suppressor cannot be explained in terms of basilar membrane motion. In a model, the amplitude of the mechanical response, either to the tone at characteristic frequency (CF), or to the CF tone combined with a second, lower frequency lone (a suppressor), is taken as the effective stimulus to inner hair cells (IHC), the voltage response of which is considered responsible fbr excitatory drive to auditory-nerve fibres. Many empirical mechanical and physiological effects are simulated accurately by the model, particularly phenomena observed in two-tone experiments using low-side suppressor tones, that authors have described as two-tone suppression. It is argued in this paper, however, that such phenomena strictly do not constitute suppression in the cochlear response and provide no explanation for rate suppression in nerve fibres. According to the model presented here and consistent with experimental data, suppression of the spike response to a CF tone in an auditory-nerve fibre by a low-side suppressor cannot be explained in terms of the mechanics of the BM. Conclusions by others that experiments support a mechanical explanation for low-side rate suppression are shown to be questionable. It is concluded that low-side suppression of neural responses is explicable only in terms of a non-mechanical factor derived from the response to the low frequency tone, that depresses responsiveness in fibres at the CF location. Adherence to the model of low-side neural rate suppression depending on reduced net mechanical response of the BM is contrary to experimental evidence, furthermore it overlooks a profound influence additional to synaptic drive, that is implied in the shaping of responses in auditory-nerve fibres. (C) 1998 Elsevier Science B.V. C1 Australian Natl Univ, Res Sch Biol Sci, Canberra, ACT 2601, Australia. RP Hill, KG (reprint author), Australian Natl Univ, Res Sch Biol Sci, Canberra, ACT 2601, Australia. EM khill@rsbs.anu.edu.au CR Cai YD, 1996, HEARING RES, V96, P83, DOI 10.1016/0378-5955(96)00033-0 Cai YD, 1996, HEARING RES, V96, P94, DOI 10.1016/0378-5955(96)00034-2 Cai YD, 1996, HEARING RES, V96, P126, DOI 10.1016/0378-5955(96)00036-6 Cai YD, 1996, HEARING RES, V96, P113, DOI 10.1016/0378-5955(96)00035-4 CHEATHAM MA, 1992, HEARING RES, V59, P39, DOI 10.1016/0378-5955(92)90100-2 Cheatham MA, 1997, HEARING RES, V108, P191, DOI 10.1016/S0378-5955(97)00032-4 CHEATHAM MA, 1992, HEARING RES, V60, P1, DOI 10.1016/0378-5955(92)90052-O CHEATHAM MA, 1994, HEARING RES, V75, P103, DOI 10.1016/0378-5955(94)90061-2 CHEATHAM MA, 1990, HEARING RES, V50, P193, DOI 10.1016/0378-5955(90)90045-Q CODY AR, 1987, J PHYSIOL-LONDON, V383, P551 CODY AR, 1989, HEARING RES, V41, P89, DOI 10.1016/0378-5955(89)90002-6 Cooper NP, 1996, J ACOUST SOC AM, V99, P3087, DOI 10.1121/1.414795 DALLOS P, 1977, J ACOUST SOC AM, V62, P1048, DOI 10.1121/1.381598 DALLOS P, 1986, HEARING RES, V22, P185, DOI 10.1016/0378-5955(86)90095-X DALLOS P, 1990, J ACOUST SOC AM, V87, P1636, DOI 10.1121/1.399411 DALLOS P, 1992, SOC GEN PHY, V47, P371 DALLOS P, 1984, HEARING RES, V14, P281, DOI 10.1016/0378-5955(84)90055-8 DELGUTTE B, 1990, HEARING RES, V49, P225, DOI 10.1016/0378-5955(90)90106-Y DOLAN DF, 1989, J ACOUST SOC AM, V86, P1007, DOI 10.1121/1.398091 ENGEBRET.AM, 1968, J ACOUST SOC AM, V44, P548, DOI 10.1121/1.1911119 Geisler CD, 1997, J ACOUST SOC AM, V102, P430, DOI 10.1121/1.419765 GEISLER CD, 1990, HEARING RES, V44, P241, DOI 10.1016/0378-5955(90)90084-3 GOLDSTEIN JL, 1995, HEARING RES, V89, P52, DOI 10.1016/0378-5955(95)00121-3 HARVEY D, 1992, HEARING RES, V61, P137, DOI 10.1016/0378-5955(92)90044-N HILL KG, 1989, HEARING RES, V39, P75, DOI 10.1016/0378-5955(89)90083-X HILL KG, 1992, HEARING RES, V64, P52, DOI 10.1016/0378-5955(92)90167-L HILL KG, 1991, HEARING RES, V55, P167, DOI 10.1016/0378-5955(91)90101-E NUTTALL AL, 1993, J ACOUST SOC AM, V93, P390, DOI 10.1121/1.405619 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X PATUZZI R, 1984, HEARING RES, V13, P9, DOI 10.1016/0378-5955(84)90090-X PATUZZI R, 1984, HEARING RES, V13, P19, DOI 10.1016/0378-5955(84)90091-1 PATUZZI R, 1984, HEARING RES, V13, P1, DOI 10.1016/0378-5955(84)90089-3 PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PFEIFFER R R, 1970, Journal of the Acoustical Society of America, V48, P1373, DOI 10.1121/1.1912294 RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 RUSSELL IJ, 1992, J NEUROSCI, V12, P1587 RUSSELL IJ, 1983, J PHYSIOL-LONDON, V338, P179 SACHS MB, 1981, HEARING RES, V4, P309, DOI 10.1016/0378-5955(81)90015-0 SELLICK PM, 1979, HEARING RES, V1, P227, DOI 10.1016/0378-5955(79)90016-9 SELLICK PM, 1980, HEARING RES, V2, P439, DOI 10.1016/0378-5955(80)90080-5 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SOKOLOWSKI BHA, 1989, HEARING RES, V41, P115, DOI 10.1016/0378-5955(89)90005-1 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M YATES GK, 1989, COCHLEAR MECHANISMS, P177 ZIDANIC M, 1992, J NEUROPHYSIOL, V67, P108 NR 48 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 129 EP 142 DI 10.1016/S0378-5955(97)00187-1 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500013 PM 9472742 ER PT J AU Dazert, S Baird, A Ryan, AF AF Dazert, S Baird, A Ryan, AF TI Receptor-targeted delivery of an intracellular toxin to outer hair cells by fibroblast growth factor SO HEARING RESEARCH LA English DT Article DE inner ear; organ of Corti; hair cell; development; fibroblast growth factor; fibroblast growth factor receptor; saporin ID FGF MESSENGER-RNA; FACTOR-SAPORIN MITOTOXIN; PROTO-ONCOGENE INT-2; MIDDLE-EAR MUCOSA; INNER-EAR; EXPRESSION PATTERN; F-ACTIN; ORGAN; CULTURE; MOUSE AB The presence and distribution of functional, high-affinity receptors for fibroblast growth factors (FGFs) in the neonatal organ of Corti were probed using the intracellular toxin saporin conjugated to basic FGF (FGF-2). FGFs that bind to high-affinity FGF receptors are internalized as part of the normal process of receptor inactivation. The receptor can thus be used for the targeted delivery of molecules conjugated to FGF into the cytoplasm. Incubation of postnatal day 5 (P5) rat organ of Corti cultures with FGF-saporin caused a dose dependent destruction of outer hair cells, Deiters cells and outer pillar cells. Inner hair cells and other cells were unaffected. Organ of Corti cultures at P0 and P10 showed much less damage than at P5. The results suggest that outer hair cells and adjacent supporting cells in the organ of Corti transiently express high-affinity FGF receptors, and that these receptors can mediate the intracellular delivery of bioactive molecules. (C) 1998 Elsevier Science B.V. C1 Univ Calif San Diego, Sch Med, Dept Surg Otolaryngol, La Jolla, CA 92093 USA. Vet Adm Med Ctr, La Jolla, CA 92093 USA. Univ Calif San Diego, Sch Med, Dept Neurosci, San Diego, CA 92121 USA. Vet Adm Med Ctr, San Diego, CA 92121 USA. Prizm Pharmaceut, San Diego, CA 92121 USA. RP Ryan, AF (reprint author), Univ Calif San Diego, Sch Med, Dept Surg Otolaryngol, 0666,9500 Gilman Dr, La Jolla, CA 92093 USA. EM aryan@ucsd.edu CR BAIRD A, 1985, LANCET, V2, P563 Baird Andrew, 1994, Current Opinion in Neurobiology, V4, P78, DOI 10.1016/0959-4388(94)90035-3 BAIRD A, 1990, PEPTIDE GROWTH FACTO, V1, P369 BEATTIE GM, 1990, DIABETES, V39, P1002, DOI 10.2337/diabetes.39.8.1002 CHELLAIAH AT, 1994, J BIOL CHEM, V269, P11620 Colvin JS, 1996, NAT GENET, V12, P390, DOI 10.1038/ng0496-390 FRIESEL RE, 1995, FASEB J, V9, P919 Goldman CK, 1997, CANCER RES, V57, P1447 GOSPODAROWICZ D, 1985, ENDOCRINOLOGY, V117, P2383 Hawkins Jr JE, 1976, HDB SENSORY PHYSIOLO, P707 JOHNSON DE, 1993, ADV CANCER RES, V60, P1 KOUTNOUYAN HA, 1994, LARYNGOSCOPE, V104, P350 LAPPI DA, 1989, BIOCHEM BIOPH RES CO, V160, P917, DOI 10.1016/0006-291X(89)92522-9 LAPPI DA, 1991, J CELL PHYSIOL, V147, P17, DOI 10.1002/jcp.1041470104 Low W, 1996, J CELL PHYSIOL, V167, P443, DOI 10.1002/(SICI)1097-4652(199606)167:3<443::AID-JCP8>3.0.CO;2-P LUO L, 1995, DEV BRAIN RES, V86, P24, DOI 10.1016/0165-3806(95)00011-2 LUO L, 1993, HEARING RES, V69, P182 MANSOUR SL, 1994, MOL REPROD DEV, V39, P62, DOI 10.1002/mrd.1080390111 PETERS K, 1993, DEV BIOL, V155, P423, DOI 10.1006/dbio.1993.1040 PIRVOLA U, 1995, P NATL ACAD SCI USA, V92, P9269, DOI 10.1073/pnas.92.20.9269 RAPHAEL Y, 1994, HEARING RES, V76, P173, DOI 10.1016/0378-5955(94)90098-1 REPRESA J, 1991, NATURE, V353, P561, DOI 10.1038/353561a0 RYAN AF, 1993, ACTA OTO-LARYNGOL, V113, P68, DOI 10.3109/00016489309135769 Sobkowicz H M, 1993, Acta Otolaryngol Suppl, V502, P3 SOROKIN A, 1994, J BIOL CHEM, V269, P17056 Sosnowski BA, 1996, J BIOL CHEM, V271, P33647 THORNE PR, 1987, HEARING RES, V30, P253, DOI 10.1016/0378-5955(87)90141-9 VANDEWAT.T, 1974, ANN OTO RHINOL LARYN, V83, P1 VANDEWAT.TR, 1971, ACTA OTO-LARYNGOL, V71, P303, DOI 10.3109/00016487109125368 WILKINSON DG, 1988, EMBO J, V7, P691 WILKINSON DG, 1989, DEVELOPMENT, V105, P131 ZIMMER Y, 1993, J BIOL CHEM, V268, P7899 NR 32 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 143 EP 148 DI 10.1016/S0378-5955(97)00188-3 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500014 PM 9472743 ER PT J AU Lamm, K Arnold, W AF Lamm, K Arnold, W TI The effect of prednisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear SO HEARING RESEARCH LA English DT Article DE cochlea; hearing loss, noise-induced; drug effect; prednisolone; diclofenac; histamine antagonist; auditory evoked potential; brain stem evoked potential; electrocochleography; cochlear blood flow; laser Doppler flowmetry; perilymph pO(2); hypoxia; guinea pig ID SENSORINEURAL HEARING-LOSS; BLOOD-CELL VELOCITY; GLUCOCORTICOID RECEPTORS; RAT COCHLEA; VESTIBULAR TISSUES; BINDING-SITES; THERAPY; VASCULATURE; REAPPRAISAL; EXPRESSION AB The effect of anti-inflammatory agents, such as the synthetic glucocorticoid prednisolone, diclofenac sodium, and histamine H1-receptor antagonist, was studied in unexposed and noise-exposed (broad-band noise, bandwidth 1-12 kHz, 106 dB SPL, 30 min) guinea pigs. The results were compared with the results obtained from no treatment and with isotonic saline (placebo) therapy. The cochlear blood flow (CoBF) and the partial oxygen pressure in the perilymph (PL-pO(2)) were continuously and simultaneously recorded over a period of 210 min. In addition, cochlear microphonics (CMs), compound action potentials of the auditory nerve (CAPs), and auditory brain stem responses (ABRs) were registered. Noise-induced hearing loss paralleled a decrease of PL-pO(2). Both were found to occur before evidence of reduced CoBF. PL-pO(2) and CoBF progressively declined post-exposure, while CMs, CAPs, and ABRs did not further deteriorate nor showed signs of recovery up to 180 min after cessation of noise. Treatment started 60 min post-exposure, or after 90 mill without manipulation and was then Further studied for 120 min. In the unexposed animals, diclofenac sodium and prednisolone induced a significant decline of PL-pO(2), while CoBF, CMs, CAPs, and ABRs revealed no change. Isotonic saline did not influence the measured parameters. After infusion of the histamine H1-receptor antagonist, a significant decrease of CoBF together with blood pressure and CMs was observed, while PL-pO(2), CAPs, and ABRs showed no change. In the noise-exposed animals, diclofenac sodium induced partial restoration of CM and CAP amplitudes and full restoration of ABRs. Following a high dose of prednisolone (25 mg), partial restoration of CMs and full restoration of CAPs and ABRs were registered. This effect was significantly less pronounced following a low dose of prednisolone (2.5 mg). Restoration of CMs, CAPs, and ABRs was immediate (i.e. 50 min after infusion) and remained stable for another 60 min until the end of the recording period. The histamine HI-receptor antagonist and isotonic saline did not influence CMs, CAPs, and ABRs. None of the applied drugs resulted in relief of progressive noise-induced cochlear hypoxia and post-traumatic ischemia. These findings indicate direct cellular effects of prednisolone and diclofenac sodium in the cochlea taking into account no blood flow and oxygenation. The possible mechanisms involved are discussed. (C) 1998 Elsevier Science B.V. C1 Tech Univ Munich, Klinikum Rechts Isar, Dept Otolaryngol Head & Neck Surg, D-81675 Munich, Germany. RP Lamm, K (reprint author), Tech Univ Munich, Klinikum Rechts Isar, Dept Otolaryngol Head & Neck Surg, Ismaninger Str 22, D-81675 Munich, Germany. CR AXELSSON A, 1987, HEARING RES, V31, P183, DOI 10.1016/0378-5955(87)90125-0 AXELSSON A, 1982, NEW PERSPECTIVES NOI, P49 BARNES PJ, 1993, TRENDS PHARMACOL SCI, V14, P436, DOI 10.1016/0165-6147(93)90184-L BAULIEU EE, 1989, ENDOCRINOLOGY, P16 Borg E, 1995, Scand Audiol Suppl, V40, P1 BROOKS PM, 1991, NEW ENGL J MED, V324, P1716 BROWN JN, 1994, AM J PHYSIOL, V266, pH458 CAMPBELL W B, 1990, P600 DENGERINK H, 1985, ACTA OTO-LARYNGOL, V100, P19, DOI 10.3109/00016488509108582 Erichsen S, 1996, HEARING RES, V100, P143, DOI 10.1016/0378-5955(96)00105-0 Erichsen S, 1996, ACTA OTO-LARYNGOL, V116, P721, DOI 10.3109/00016489609137913 FURUTA H, 1994, HEARING RES, V78, P175, DOI 10.1016/0378-5955(94)90023-X GARRISON J C, 1990, P575 HAWKINS JE, 1972, LARYNGOSCOPE, V82, P1091, DOI 10.1288/00005537-197207000-00001 HAWKINS JE, 1976, ARCH OTO-RHINO-LARYN, V212, P241, DOI 10.1007/BF00453672 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 HAYNES R C JR, 1990, P1431 INSEL P A, 1990, P638 KANZAKI J, 1993, ORL J OTO-RHINO-LARY, V55, P24 Kanzaki J, 1983, Acta Otolaryngol Suppl, V393, P77 KANZAKI J, 1981, ARCH OTO-RHINO-LARYN, V230, P5, DOI 10.1007/BF00665374 KUNIHIRO T, 1990, ORL J OTO-RHINO-LARY, V52, P86 LAMM H, 1995, OTO RHINO LARYN NOVA, V5, P161 Lamm K, 1996, Audiol Neurootol, V1, P148 LAMM K, 1992, WIEN MED WOCHENSCHR, V20, P455 LAMM K, 1993, OTORHINOLARYNGOL NOV, V3, P285 LAMM K, 1995, OTO RHINO LARYN NOVA, V5, P153 LAMM K, 1997, IN PRESS ADV OTORHIN, V54 LIPSCOMB DM, 1973, LARYNGOSCOPE, V83, P259, DOI 10.1288/00005537-197302000-00008 LIPSCOMB DM, 1977, ACTA OTO-LARYNGOL, V84, P44, DOI 10.3109/00016487709123941 MATTOX DE, 1977, ANN OTO RHINOL LARYN, V86, P463 MCMAHON M, 1988, DIABETES METAB REV, V4, P17 MICHEL O, 1993, OTORHINOLARYNGOL NOV, V3, P292 MILLER JM, 1990, LASER DOPPLER FLOWME, P319 MILLER JM, 1988, AM J OTOLARYNG, V9, P302, DOI 10.1016/S0196-0709(88)80038-3 MILLER JM, 1995, OTOLARYNG HEAD NECK, V112, P101, DOI 10.1016/S0194-5998(95)70308-X MOSKOWITZ D, 1984, LARYNGOSCOPE, V94, P664 MUNCK A, 1990, AM REV RESPIR DIS, V141, pS2 PITOVSKI DZ, 1994, HEARING RES, V77, P216, DOI 10.1016/0378-5955(94)90269-0 Pitovski DZ, 1996, ACTA OTO-LARYNGOL, V116, P737, DOI 10.3109/00016489609137916 PITOVSKI DZ, 1993, BRAIN RES, V601, P273, DOI 10.1016/0006-8993(93)91720-D PITOVSKI DZ, 1993, HEARING RES, V69, P10, DOI 10.1016/0378-5955(93)90088-I QUIRK WS, 1991, HEARING RES, V52, P217, DOI 10.1016/0378-5955(91)90201-J QUIRK WS, 1992, HEARING RES, V63, P102, DOI 10.1016/0378-5955(92)90079-3 RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N RAREY KE, 1989, HEARING RES, V41, P217, DOI 10.1016/0378-5955(89)90013-0 RAREY KE, 1995, HEARING RES, V82, P135, DOI 10.1016/0378-5955(94)00171-L SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 Ten Cate Wouter-Jan F., 1994, American Journal of Physiology, V266, pE269 TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 TENCATE WJF, 1994, HEARING RES, V75, P151 TODD PA, 1988, DRUGS, V35, P244, DOI 10.2165/00003495-198835030-00004 VELDMAN JE, 1993, ACTA OTO-LARYNGOL, V113, P303, DOI 10.3109/00016489309135813 VERTES D, 1981, ARCH OTO-RHINO-LARYN, V230, P285, DOI 10.1007/BF00456331 VERTES D, 1979, ACTA OTO-LARYNGOL, V88, P47, DOI 10.3109/00016487909137139 VISCHER M, 1991, OTORHINOLARYNGOL NOV, V1, P75 WILSON WR, 1980, ARCH OTOLARYNGOL, V106, P772 ZUO J, 1995, ACTA OTO-LARYNGOL, V115, P497, DOI 10.3109/00016489509139355 ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I NR 60 TC 60 Z9 66 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 149 EP 161 DI 10.1016/S0378-5955(97)00186-X PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500015 PM 9472744 ER PT J AU Willott, JF Turner, JG Carlson, S Ding, DL Bross, LS Falls, WA AF Willott, JF Turner, JG Carlson, S Ding, DL Bross, LS Falls, WA TI The BALB/c mouse as an animal model for progressive sensorineural hearing loss SO HEARING RESEARCH LA English DT Article DE inbred strain; presbycusis; cochlear histopathology; auditory brainstem response; cochlear nucleus; behavior ID INFERIOR COLLICULUS NEURONS; ANTEROVENTRAL COCHLEAR NUCLEUS; ACOUSTIC STARTLE RESPONSE; BRAIN-STEM RESPONSE; AGE-RELATED-CHANGES; C57BL/6J MICE; PREPULSE INHIBITION; STRIA VASCULARIS; CBA/J MICE; PRESBYCUSIS AB To develop the BALB/c mouse strain as an animal model for the study of progressive sensorineural hearing loss, mice ranging in age from young adult through middle age were studied. Auditory brainstem response thresholds, histopathology [cytocochleograms for hair cells, the packing density of spiral ganglion cells (SGCs), the number of neurons and overall size of the anterior ventral cochlear nucleus (AVCN)], and behavioral paradigms (prepulse inhibition. fear-potentiated startle) were compared with previous data from C57BL/6J (C57) and DBA/2J (DBA) mouse strains. Progressive high frequency hearing loss in BALB/c mice was generally more rapid than C57 and slower than DBA (e.g. mean thresholds for 16 kHz: 10-month-old BALB/c mice = 71 dB SPL; 55-day-old DBA mice = 79 dB SPL: 12-month-old C57 mice = 50 dB SPL). Like the other strains, BALB/c exhibited a progressive loss of hair cells and SGCs that was most severe in the cochlear base and least severe in the middle turns; however, BALB/c mice had relatively more SGC loss in the apex. Unlike C57 and DBA, no loss of neurons was observed in the AVCN following cochlear pathology (although AVCN volume was reduced). Like the other strains, successful fear conditioning was obtained with a 12 kHz conditioned stimulus. Prepulse inhibition showed that middle and low frequency tones (4-12 kHz) became more salient as high frequency hearing declined. Similar results had been previously obtained with C57 and DBA mice and were interpreted as reflecting hearing-loss-induced plasticity in the central auditory system. (C) 1998 Elsevier Science B.V. C1 No Illinois Univ, Dept Psychol, De Kalb, IL 60115 USA. SUNY Buffalo, Dept Communicat Disorders, Hearing Res Labs, Buffalo, NY 14214 USA. RP Willott, JF (reprint author), No Illinois Univ, Dept Psychol, De Kalb, IL 60115 USA. RI Falls, William/D-1208-2013 OI Falls, William/0000-0002-9246-1474 CR BROWN JN, 1995, HEARING RES, V86, P189 Carlson S., 1996, Society for Neuroscience Abstracts, V22, P1115 Carlson S, 1996, HEARING RES, V99, P168, DOI 10.1016/S0378-5955(96)00098-6 COHEN GM, 1987, ASS RES OT ABSTR, V10, P120 Davis M., 1984, P287 Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Falls WA, 1997, BEHAV NEUROSCI, V111, P855, DOI 10.1037/0735-7044.111.4.855 GRATTON MA, 1995, HEARING RES, V82, P44 Gratton MA, 1996, HEARING RES, V94, P116, DOI 10.1016/0378-5955(96)00011-1 HEINIGER HJ, 1980, HDB GENETICALLY STAN Henry K. R., 1983, AUDITORY PSYCHOBIOLO, P470 HENRY KR, 1980, AUDIOLOGY, V19, P369 HENRY KR, 1984, DEV PSYCHOBIOL, V17, P493, DOI 10.1002/dev.420170507 HENRY KR, 1981, J COMP PHYSIOL PSYCH, V95, P418, DOI 10.1037/h0077787 HOFFMAN HS, 1980, PSYCHOL REV, V87, P175, DOI 10.1037/0033-295X.87.2.175 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 KLUVER H, 1953, J NEUROPATH EXP NEUR, V12, P400 LAMBERT PR, 1982, OTOLARYNG HEAD NECK, V90, P787 LEITNER DS, 1985, PHYSIOL BEHAV, V34, P65, DOI 10.1016/0031-9384(85)90079-4 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61 MCFADDEN SL, 1994, HEARING RES, V78, P115, DOI 10.1016/0378-5955(94)90018-3 Mikaelian D.O., 1979, LARYNGOSCOPE, V34, P1 MIZUTA K, 1993, SCANNING MICROSCOPY, V7, P889 PARHAM K, 1997, ASS RES OT ABSTR, V20, P194 PARHAM K, 1988, Behavioral Neuroscience, V102, P881, DOI 10.1037/0735-7044.102.6.881 RALLS K, 1967, ANIM BEHAV, V15, P123, DOI 10.1016/S0003-3472(67)80022-8 SAUNDERS JC, 1976, J COMP PHYSIOL PSYCH, V90, P212, DOI 10.1037/h0077198 Schuknecht H. F., 1974, PATHOLOGY EAR Shnerson A., 1982, DEV BRAIN RES, V2, P77 Shnerson A., 1982, DEV BRAIN RES, V2, P65 SHONE G, 1991, HEARING RES, V56, P173, DOI 10.1016/0378-5955(91)90167-8 SWERDLOW NR, 1993, BEHAV NEUROSCI, V107, P104, DOI 10.1037//0735-7044.107.1.104 Turner J. G., 1996, Society for Neuroscience Abstracts, V22, P1821 WENNGREN BI, 1988, ACTA OTO-LARYNGOL, V106, P238, DOI 10.3109/00016488809106431 Willott JF, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P297 WILLOTT FF, 1997, J COMP NEUROL, V385, P405 WILLOTT JF, 1988, HEARING RES, V37, P15, DOI 10.1016/0378-5955(88)90074-3 Willott J. F., 1991, AGING AUDITORY SYSTE WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310 WILLOTT JF, 1991, ABSTR ASS RES OT, V14, P16 WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106 WILLOTT JF, 1984, HEARING RES, V16, P161, DOI 10.1016/0378-5955(84)90005-4 WILLOTT JF, 1995, BEHAV NEUROSCI, V109, P396, DOI 10.1037//0735-7044.109.3.396 Willott J. F., 1997, Society for Neuroscience Abstracts, V23, P1822 WILLOTT JF, 1996, PATHOBIOLOGY AGING M WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 WILLOTT JF, 1981, J NEUROPHYSIOL, V45, P35 WILLOTT JF, 1994, BEHAV NEUROSCI, V108, P703, DOI 10.1037/0735-7044.108.4.703 WILLOTT JF, 1994, HEARING RES, V74, P1, DOI 10.1016/0378-5955(94)90171-6 Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F NR 55 TC 71 Z9 73 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 162 EP 174 DI 10.1016/S0378-5955(97)00189-5 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500016 PM 9472745 ER PT J AU Coling, DE Bartolami, S Rhee, D Neelands, T AF Coling, DE Bartolami, S Rhee, D Neelands, T TI Inhibition of calcium-dependent motility of cochlear outer hair cells by the protein kinase inhibitor, ML-9 SO HEARING RESEARCH LA English DT Article DE outer hair cells; sensory receptor cells; calcium; calmodulin; protein kinase; motility; ML-9 ID LIGHT-CHAIN PHOSPHORYLATION; SHAPE CHANGES; IDENTIFICATION; ACETYLCHOLINE; RESPONSES; VIABILITY; MUSCLE; LENGTH; BASE; APEX AB The calcium ionophore ionomycin has been shown to induce length increases of guinea pig outer hair cells (Dulon et al., 1990). We have demonstrated that these length increases can be inhibited by a 30 min preincubation of the cells with the protein kinase inhibitor ML-9. At either 30 or 60 s after ionomycin application, the effect of ML-9 was dose-dependent with a half maximal response at approximately 0.3 mu M. No effect on cell length was detected after:30 min incubation with 0.5 and 5 mu M ML-9 alone. However, with 50 and 500 mu M ML-9, significant contraction in cell length was observed. 50 mu M ML-9 did not interfere with the ability of ionomycin to elevate fluorescence of the calcium indicator Fluo-3, nor did it after the ability of cells to exclude propidium iodide from their nuclei. Treatment with 500 mu M ML-9 resulted in impaired cell morphology. The data support the hypothesis that protein kinase activity regulates calcium-dependent processes that effect shape changes of outer hair cells. They are consistent with the involvement of the calcium/calmodulin-dependent enzyme, myosin light chain kinase, a known target of ML-9, but do not preclude the possibility of another intracellular target for ML-9. (C) 1998 Published by Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Univ Montpellier 2, Lab Neurophysiol Sensorielle, F-34095 Montpellier, France. RP Coling, DE (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM fortelab@lsa.berkeley.edu CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 COLING DE, 1991, HEARING RES, V57, P113, DOI 10.1016/0378-5955(91)90080-S DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1985, J NEUROSCI, V5, P1591 Dallos P, 1997, J NEUROSCI, V17, P2212 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DELANEROLLE P, 1991, AM J PHYSIOL, V261, pL1 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6 DULON D, 1987, ARCH OTO-RHINO-LARYN, V244, P104, DOI 10.1007/BF00458558 DULON D, 1990, J NEUROSCI, V10, P1388 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 GOLDSTEI.AJ, 1967, ANN OTO RHINOL LARYN, V76, P414 HIDAKA H, 1992, ANNU REV PHARMACOL, V32, P377, DOI 10.1146/annurev.pharmtox.32.1.377 Holley M. C., 1996, COCHLEA, P386 HOUSLEY GD, 1995, ACTIVE HEARING, P221 JONES KH, 1985, J HISTOCHEM CYTOCHEM, V33, P77 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 KNIPPER M, 1995, HEARING RES, V86, P100, DOI 10.1016/0378-5955(95)00060-H KOESSL M, 1992, J NEUROSCI, V12, P1575 Kros CJ, 1996, COCHLEA, P318 LIEPE BA, 1993, J GEN PHYSIOL, V102, P75, DOI 10.1085/jgp.102.1.75 NAIRN AC, 1985, ANNU REV BIOCHEM, V54, P931, DOI 10.1146/annurev.biochem.54.1.931 PAGHROEHL K, 1993, EXP EYE RES, V57, P679, DOI 10.1006/exer.1993.1176 POU AM, 1991, HEARING RES, V52, P305, DOI 10.1016/0378-5955(91)90020-A Preyer S, 1996, AUDIT NEUROSCI, V2, P145 Puschner B, 1997, HEARING RES, V110, P251, DOI 10.1016/S0378-5955(97)00086-5 SAITOH M, 1986, BIOCHEM BIOPH RES CO, V140, P280, DOI 10.1016/0006-291X(86)91087-9 SCHACHT J, 1987, HEARING RES, V31, P155, DOI 10.1016/0378-5955(87)90121-3 SCHACHT J, 1995, ACTIVE HEARING, P209 SWEENEY HL, 1993, AM J PHYSIOL, V264, pC1085 SZIKLAI I, 1993, ACTA OTO-LARYNGOL, V113, P326, DOI 10.3109/00016489309135818 Sziklai I, 1996, HEARING RES, V95, P87, DOI 10.1016/0378-5955(96)00026-3 SZIKLAI I, 1986, ARCH OTORHINOLARYNGO, V243, P123 ULFENDAHL M, 1987, ARCH OTORHINOLARYNGO, V254, P237 Wangemann P., 1996, COCHLEA, P130 ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 NR 40 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 175 EP 183 DI 10.1016/S0378-5955(97)00194-9 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500017 PM 9472746 ER PT J AU van Emst, MG Giguere, C Smoorenburg, GF AF van Emst, MG Giguere, C Smoorenburg, GF TI The generation of DC potentials in a computational model of the organ of Corti: effects of voltage-dependent K+ channels in the basolateral membrane of the inner hair cell SO HEARING RESEARCH LA English DT Article DE DC receptor potential; K+ channel; hair cell model; auditory nonlinearity ID GUINEA-PIG COCHLEA; ELECTRICAL CIRCUIT PROPERTIES; WAVE DIGITAL-FILTERS; RECEPTOR POTENTIALS; REACTIVE ELEMENTS; MOUSE COCHLEA; RESPONSES; CURRENTS AB A computational model of the organ of Corti is described to assist in the interpretation of electrophysiological data concerning the role of the K+ channels residing in the basolateral membrane of cochlear hair tells. Recent in vivo data from Van Ernst et al. (Hear. Res. 88, 27-35 (1995); Hear. Res. 102, 70-80 (1996)) about the effects of selective blocking of Ki channels indicate that these channels affect the magnitude of the summating potential. In order to understand the nature of this effect, the model of Dallos (Hear. Res. 14, 281-291 (1984)) was extended to account for the voltage- and time-dependent properties of the K+ channels in the basolateral membrane of the inner hair cell (IHC) (Kros and Crawford, J. Physiol. 421, 262-291 (1990)). The model shows that the K+ channels induce a shift in the mean IHC basolateral conductance when high-frequency stimuli are present. As a result, cochlear transduction shifts to a different electrical operating state and this is the source of a marked decrease in the stimulus-evoked DC response of the IHC. Extracellularly. in contrast, the magnitude of the DC response increases slightly. At low frequencies, the K+ channels respond to the stimulus waveform on a Cycle-by-cycle basis. The waveform distortion associated with this dynamic basolateral impedance induces a further decrease in the intracellular stimulus-evoked DC response of the IHC. Thus, K+ channels in the IHC appear to be directly involved in the generation of the DC receptor potential at low frequencies, but at high frequencies they simply modify the size of the DC response. (C) 1998 Elsevier Science B.V. C1 Univ Utrecht, Dept Otorhinolaryngol, Hearing Res Labs, NL-3584 CX Utrecht, Netherlands. Univ Ottawa, Audiol Speech Language Pathol Program, Ottawa, ON K1N 6N5, Canada. RP van Emst, MG (reprint author), Univ Utrecht, Dept Otorhinolaryngol, Hearing Res Labs, Room G-02-531,Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands. EM m.g.vanemst@lab.azu.nl CR ASHMORE JF, 1986, NATURE, V322, P368, DOI 10.1038/322368a0 CHEATHAM MA, 1994, HEARING RES, V75, P103, DOI 10.1016/0378-5955(94)90061-2 CODY AR, 1987, J PHYSIOL-LONDON, V383, P551 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 DALLOS P, 1982, SCIENCE, V218, P582, DOI 10.1126/science.7123260 DALLOS P, 1985, J NEUROSCI, V5, P1591 DALLOS P, 1990, J ACOUST SOC AM, V87, P1636, DOI 10.1121/1.399411 DALLOS P, 1983, HEARING RES, V12, P89, DOI 10.1016/0378-5955(83)90120-X DALLOS P, 1984, HEARING RES, V14, P281, DOI 10.1016/0378-5955(84)90055-8 DURRANT JD, 1972, J ACOUST SOC AM, V52, P542, DOI 10.1121/1.1913143 FETTWEIS A, 1986, P IEEE, V74, P270, DOI 10.1109/PROC.1986.13458 GIGUERE C, 1994, J ACOUST SOC AM, V95, P331 GUMMER AW, 1995, 15 INT C AC, V3, P245 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HUDSPETH AJ, 1989, NATURE, V341, P397, DOI 10.1038/341397a0 HUDSPETH AJ, 1994, PHYS TODAY, V47, P22, DOI 10.1063/1.881410 KOSSL M, 1992, J NEUROSCI, V12, P1575 KROS CJ, 1990, J PHYSL, V421, P262 KROS CJ, 1992, P ROY SOC B-BIOL SCI, V249, P185, DOI 10.1098/rspb.1992.0102 MAMMANO F, 1995, PFLUG ARCH EUR J PHY, V430, P745, DOI 10.1007/BF00386170 MCMULLEN TA, 1985, HEARING RES, V17, P127, DOI 10.1016/0378-5955(85)90016-4 Nenov AP, 1997, HEARING RES, V105, P146, DOI 10.1016/S0378-5955(96)00207-9 NUTTALL AL, 1985, J ACOUST SOC AM, V77, P165, DOI 10.1121/1.392282 Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O RUSSELL IJ, 1986, HEARING RES, V22, P199, DOI 10.1016/0378-5955(86)90096-1 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 STRUBE HW, 1982, IEEE T ACOUST SPEECH, V30, P864, DOI 10.1109/TASSP.1982.1163976 vanEmst MG, 1996, HEARING RES, V102, P70, DOI 10.1016/S0378-5955(96)00149-9 VANEMST MG, 1995, HEARING RES, V88, P27, DOI 10.1016/0378-5955(95)00095-L ZEDDIES DG, 1995, ASS RES OTOLARYNGOL, V18, P153 NR 30 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 184 EP 196 DI 10.1016/S0378-5955(97)00192-5 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500018 PM 9472747 ER PT J AU Smurzynski, J Probst, R AF Smurzynski, J Probst, R TI The influence of disappearing and reappearing spontaneous otoacoustic emissions on one subject's threshold microstructure SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 20th Midwinter Research Meeting of the Association-for-Research-in-Otolaryngology CY FEB 01-06, 1997 CL ST PETERSBURG, FLORIDA SP Assoc Res Otolaryngol DE spontaneous otoacoustic emission; hearing threshold; temporal integration ID FREQUENCY; LEVEL AB The effects of a consistently disappearing and reappearing spontaneous otoacoustic emission (SOAE) at around 2280 Hz on microstructure for pure tones of varying durations in a 33 year-old woman with normal hearing was studied. The SOAE began to appear after 10-15 min in a quiet test room and increased in level by up to 22 dB over a 30-40-min period. The SOAE was measured every 12 to 15 min. Between measurements, the subject performed a signal detection task for pure tones with total durations varying from 20 to 320 ms. The signal frequencies were within a +/- 30-Hz range relative to the SOAE frequency. For signal durations of 40-320 ms, there was a local dip at the target SOAE frequency when it was either not detectable or its level was lower than -14 dB SPL. Subjective threshold levels were as much as 12 dB better than those obtained when the SOAE was -6 dB SPL or greater. The results suggest that a region of the cochlea with high sensitivity and instability can be put into self-oscillation producing an SOAE, possibly by a change of efferent activity. Hearing threshold is affected possibly due to adaptation or masking. (C) 1998 Elsevier Science B.V. C1 Univ Basel, Kantonsspital, Dept Otorhinolaryngol, CH-4031 Basel, Switzerland. RP Smurzynski, J (reprint author), Univ Basel, Kantonsspital, Dept Otorhinolaryngol, Petersgraben 4, CH-4031 Basel, Switzerland. CR BELL A, 1992, HEARING RES, V58, P91, DOI 10.1016/0378-5955(92)90012-C BURNS EM, 1994, J ACOUST SOC AM, V95, P385, DOI 10.1121/1.408330 BURNS EM, 1996, ABSTR ASS RES OT, V19, P182 GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726 KELLER F, 1987, Z HORGERATE AKUSTIKE, V5, P6 KEMP DT, 1990, EAR HEARING, V11, P93 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LONG GR, 1991, J ACOUST SOC AM, V89, P1201, DOI 10.1121/1.400651 LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X LONG GR, 1984, HEARING RES, V15, P73, DOI 10.1016/0378-5955(84)90227-2 MATHIS A, 1991, ARCH OTOLARYNGOL, V117, P674 MCFADDEN D, 1993, HEARING RES, V71, P208, DOI 10.1016/0378-5955(93)90036-Z Moore Brian C. J., 1995, P161, DOI 10.1016/B978-012505626-7/50007-8 OBRIEN AJ, 1994, BRIT J AUDIOL, V28, P281, DOI 10.3109/03005369409086578 Penner MJ, 1997, HEARING RES, V103, P28, DOI 10.1016/S0378-5955(96)00162-1 PENNER MJ, 1993, HEARING RES, V68, P229, DOI 10.1016/0378-5955(93)90126-L PENNER MJ, 1994, HEARING RES, V73, P190, DOI 10.1016/0378-5955(94)90234-8 Penner MJ, 1996, EAR HEARING, V17, P116, DOI 10.1097/00003446-199604000-00004 POWERS NL, 1995, NATURE, V375, P585, DOI 10.1038/375585a0 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RABINOWITZ WM, 1984, J ACOUST SOC AM, V76, P1713, DOI 10.1121/1.391618 Smurzynski J, 1996, J ACOUST SOC AM, V100, P2555, DOI 10.1121/1.417366 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V TUBIS A, 1997, ABSTR ASS RES OT, V20, P169 VEDANTAM R, 1991, AM J OTOL, V12, P435 WABLE J, 1994, HEARING RES, V80, P141, DOI 10.1016/0378-5955(94)90105-8 WHITEHEAD ML, 1991, HEARING RES, V53, P269, DOI 10.1016/0378-5955(91)90060-M WILSON JP, 1983, HEARING PHYSL BASES, P97 NR 28 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 197 EP 205 DI 10.1016/S0378-5955(97)00193-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500019 PM 9472748 ER PT J AU Lewald, J AF Lewald, J TI The effect of gaze eccentricity on perceived sound direction and its relation to visual localization SO HEARING RESEARCH LA English DT Article DE directional hearing; sound localization; eye position; spatial coordinate; perception; human ID PRIMATE SUPERIOR COLLICULUS; SACCADIC EYE-MOVEMENTS; AUDITORY LOCALIZATION; HEAD MOVEMENTS; POSITION; SIGNALS; LATERALIZATION; RESPONSES; ACCURACY; STIMULI AB This study investigates the influence of eye position on the localization of a free-field sound source by employing a pointing method. While fixating visual targets in various directions, the subjects indicated the perceived direction of a sound source by adjusting the azimuthal angle of a swivel pointer. The perceived sound azimuth shifted consistently opposite to the direction of eccentric gaze, i.e. to the left when gaze was to the right and vice versa. This shift resembled an approximately linear function of horizontal gaze direction. The mean magnitude of the shift was 3.1 degrees when the gaze was 45 degrees to the side (mean slope 0.069 degrees per degree eccentricity in gaze direction). An additional experiment Investigated the relation of this effect to visual localization. Using the same method, the shift of perceived visual azimuth was measured as a function of gaze direction. The results indicate a shift in the same direction as the auditory shift (opposite to the direction of eccentric gaze). but with a significantly greater magnitude, which was 5.7 degrees for 45 degrees eccentricity in gaze direction. The perceived shifts of sound direction depending on gaze eccentricity may result from incomplete transformations of the auditory spatial coordinates from a craniocentric to an oculocentric frame of reference within neural maps of space, as has been suggested by previous neurophysiological investigations. (C) 1998 Elsevier Science B.V. C1 Ruhr Univ Bochum, D-44780 Bochum, Germany. RP Lewald, J (reprint author), Ruhr Univ Bochum, D-44780 Bochum, Germany. RI Lewald, Jorg/D-3034-2009 OI Lewald, Jorg/0000-0001-9351-0170 CR AUBERT H, 1888, PHYSL STUDIEN ORIENT BIGUER B, 1984, EXP BRAIN RES, V55, P462 BOCK O, 1993, BEHAV BRAIN RES, V56, P77, DOI 10.1016/0166-4328(93)90023-J BOCK O, 1986, EXP BRAIN RES, V64, P476, DOI 10.1007/BF00340484 BOHLANDER RW, 1984, PERCEPT MOTOR SKILL, V59, P483 Brainard Michael S., 1994, Current Opinion in Neurobiology, V4, P557, DOI 10.1016/0959-4388(94)90057-4 COREN S, 1993, B PSYCHONOMIC SOC, V31, P1 CULLEN JK, 1992, AVIAT SPACE ENVIR MD, V63, P498 DELAGE K, 1886, ARCH ZOOL EXP GEN, V4, P535 EHRENSTEIN WH, 1977, THESIS GOTTINGEN EHRENSTEIN WH, 1993, FRAGEBOGEN BEVORZUGU EHRENSTEIN WH, 1984, SENSORY EXPERIENCE A, P401 FRENS MA, 1995, EXP BRAIN RES, V107, P103 Goldstein K, 1926, PSYCHOL FORSCH, V8, P318, DOI 10.1007/BF02411524 GROH JM, 1992, BIOL CYBERN, V67, P291, DOI 10.1007/BF02414885 GUSKI R, 1990, PERCEPTION, V19, P819, DOI 10.1068/p190819 HARTLINE PH, 1995, EXP BRAIN RES, V104, P402 HILL AL, 1972, PERCEPT PSYCHOPHYS, V11, P175, DOI 10.3758/BF03210370 JAY MF, 1987, J NEUROPHYSIOL, V57, P35 JAY MF, 1984, NATURE, V309, P345, DOI 10.1038/309345a0 JAY MF, 1990, COMP PERCEPTION, V1, P351 Kiss J, 1921, Z GESAMTE NEUROL PSY, V65, P14, DOI 10.1007/BF02887518 KURYLO DD, 1992, J COGNITIVE NEUROSCI, V4, P165, DOI 10.1162/jocn.1992.4.2.165 Lewald J, 1996, NEUROREPORT, V7, P1929, DOI 10.1097/00001756-199608120-00012 Lewald J, 1996, EXP BRAIN RES, V110, P322 LEWALD J, 1997, GOTTINGEN NEUROBIOLO, V2, P395 Lewald J, 1996, EXP BRAIN RES, V108, P473 Lewald J, 1997, BEHAV BRAIN RES, V87, P35, DOI 10.1016/S0166-4328(96)02254-1 LUECK CJ, 1990, EXP BRAIN RES, V82, P149 Mach Ernst, 1886, BEITRAGE ANAL EMPFIN MORGAN CL, 1978, PERCEPT PSYCHOPHYS, V23, P61, DOI 10.3758/BF03214296 MULLER O, 1923, DTSCH Z NERVENHEILK, V78, P325, DOI 10.1007/BF01998097 PECK CK, 1995, EXP BRAIN RES, V103, P227 Pierce A. H., 1901, STUDIES AUDITORY VIS POPPEL E, 1973, NATURE, V243, P231, DOI 10.1038/243231a0 PRABLANC C, 1979, BIOL CYBERN, V35, P183, DOI 10.1007/BF00337063 ROSSETTI Y, 1994, EXP BRAIN RES, V97, P487 Ryan TA, 1941, AM J PSYCHOL, V54, P243, DOI 10.2307/1416796 SPARKS DL, 1987, TRENDS NEUROSCI, V10, P312, DOI 10.1016/0166-2236(87)90085-3 Stein B.E., 1984, P819 WALLS GL, 1951, AMA ARCH OPHTHALMOL, V45, P387 WEERTS TC, 1971, PERCEPT PSYCHOPHYS, V9, P35, DOI 10.3758/BF03213025 WEIZSACKER V, 1919, DTSCH Z NERVENHEILK, V64, P1, DOI 10.1007/BF01653534 WHITTINGTON DA, 1981, EXP BRAIN RES, V41, P358 ZAHN JR, 1978, SENS PROCESS, V2, P32 Zambarbieri D, 1981, PROGR OCULOMOTOR RES, P559 ZAMBARBIERI D, 1982, EXP BRAIN RES, V47, P417 NR 47 TC 55 Z9 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 206 EP 216 DI 10.1016/S0378-5955(97)00190-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500020 PM 9472749 ER PT J AU Sone, M Schachern, PA Paparella, MM AF Sone, M Schachern, PA Paparella, MM TI Loss of spiral ganglion cells as primary manifestation of aminoglycoside ototoxicity SO HEARING RESEARCH LA English DT Article DE cystic fibrosis; tobramycin; spiral ganglion cell; degeneration; ototoxicity ID CYSTIC-FIBROSIS; COCHLEAR; TOXICITY; DEGENERATION; GENTAMICIN; TOBRAMYCIN; RECEPTOR; NEURONS; KINETICS; HEARING AB Although pulmonary infections caused by Pseudomonas aeruginosa can hardly be eradicated in patients with cystic fibrosis (CF, the most common genetic disease among Caucasians), these patients are mainly treated with intravenous and nebulized tobramycin. Long-term treatment with tobramycin, however, may induce ototoxic effects. We assessed the clinical histories and postmortem temporal bones of six patients with CF for signs of this ototoxicity. Four bones showed typical manifestations of ototoxicity induced by aminoglycosides (AGs): loss of hair cells in the lower turns, and degeneration of ganglion cells. Six bones revealed no loss or scattered loss of hair cells, however, degeneration of the spiral ganglion cells was observed. This suggests that degeneration of the spiral ganglion may occur as a primary manifestation in some cases of ototoxicity due to aminoglycosides. Recent reports have shown that trophic factors (neurotrophins and acidic fibroblast growth factor) interacting with hair cells and the spiral ganglion protect the inner ear from damage. It may be that disturbances in supply of such trophic factors caused degeneration of ganglion cells without loss of hair cells in the cases we studied. (C) 1998 Published by:Elsevier Science B.V. All rights reserved. C1 Nagoya Univ, Sch Med, Dept Otorhinolaryngol, Showa Ku, Nagoya, Aichi 466, Japan. Univ Minnesota, Sch Med, Dept Otolaryngol, Otitis Med Res Ctr, Minneapolis, MN 55455 USA. Minnesota Ear Head & Neck Clin, Minneapolis, MN 55454 USA. RP Sone, M (reprint author), Nagoya Univ, Sch Med, Dept Otorhinolaryngol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 466, Japan. CR Aitken M L, 1993, Dis Mon, V39, P1 ANNIKO M, 1988, ACTA OTO-LARYNGOL, V105, P120, DOI 10.3109/00016488809119454 ARAN JM, 1995, OTOLARYNG HEAD NECK, V112, P133, DOI 10.1016/S0194-5998(95)70313-6 Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338 DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J EHRENBERGER K, 1995, ACTA OTO-LARYNGOL, V115, P236, DOI 10.3109/00016489509139299 Ernfors P, 1996, NAT MED, V2, P1313, DOI 10.1038/nm1296-1313 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 FAUSTI SA, 1992, J INFECT DIS, V165, P1026 Felder E, 1997, HEARING RES, V105, P183, DOI 10.1016/S0378-5955(96)00209-2 Guild SR, 1921, ANAT REC, V22, P141 HIEL H, 1992, ACTA OTO-LARYNGOL, V112, P272 HINOJOSA R, 1995, AM J OTOL, V16, P731 HINOJOSA R, 1987, J INFECT DIS, V156, P449 Huizing E H, 1987, Acta Otolaryngol Suppl, V436, P117 HUY PTB, 1986, J CLIN INVEST, V77, P1492 Johnsson L G, 1981, Acta Otolaryngol Suppl, V383, P1 LEVY J, 1984, J PEDIATR-US, V105, P117, DOI 10.1016/S0022-3476(84)80375-3 MATZ GJ, 1993, OTOLARYNG CLIN N AM, V26, P705 MCCRACKEN GH, 1986, AM J MED, V80, P172, DOI 10.1016/0002-9343(86)90497-3 Miller J., 1985, CRC HDB OTOTOXICITY MOORE RD, 1984, J INFECT DIS, V149, P23 MUKHOPADHYAY S, 1993, J ANTIMICROB CHEMOTH, V31, P429, DOI 10.1093/jac/31.3.429 MULHERIN D, 1991, IRISH J MED SCI, V160, P173, DOI 10.1007/BF02961666 NADOL JB, 1990, HEARING RES, V49, P141, DOI 10.1016/0378-5955(90)90101-T Neu HC, 1976, J INFECT DIS S, V134, P206 NIEDZIELSKI AS, 1995, J NEUROSCI, V15, P2338 Nishida I, 1996, ORL J OTO-RHINO-LARY, V58, P68 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 PAULER M, 1986, ARCH OTO-RHINO-LARYN, V243, P200, DOI 10.1007/BF00470622 PIRVOLA U, 1995, P NATL ACAD SCI USA, V92, P9269, DOI 10.1073/pnas.92.20.9269 PULLAN LM, 1992, J NEUROCHEM, V59, P2087 SCHACHT J, 1993, OTOLARYNG CLIN N AM, V26, P845 SCHUKNECHT HF, 1953, AMA ARCH OTOLARYNGOL, V58, P377 SCHUKNECHT HF, 1994, OTOLARYNG HEAD NECK, V110, P530 Spoendlin H, 1990, Acta Otolaryngol Suppl, V470, P61 SPOENDLIN H, 1989, HEARING RES, V43, P25, DOI 10.1016/0378-5955(89)90056-7 SPOENDLIN H, 1988, ACTA OTO-LARYNGOL, V105, P403, DOI 10.3109/00016488809119493 Spoendlin H, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P76 STEINKAMP G, 1989, PEDIATR PULM, V6, P91, DOI 10.1002/ppul.1950060207 Suzuka Y, 1988, Acta Otolaryngol Suppl, V450, P1 TANGE RA, 1982, ARCH OTO-RHINO-LARYN, V236, P173, DOI 10.1007/BF00454037 Touw DJ, 1996, THER DRUG MONIT, V18, P118, DOI 10.1097/00007691-199604000-00002 Wood PJ, 1996, THORAX, V51, P369, DOI 10.1136/thx.51.4.369 ZHENG JL, 1995, J NEUROSCI, V15, P5079 ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 NR 46 TC 31 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1998 VL 115 IS 1-2 BP 217 EP 223 DI 10.1016/S0378-5955(97)00191-3 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YT246 UT WOS:000071580500021 PM 9472750 ER PT J AU Gratton, MA Schulte, BA Smythe, NM AF Gratton, MA Schulte, BA Smythe, NM TI Quantification of the stria vascularis and strial capillary areas in quiet-reared young and aged gerbils SO HEARING RESEARCH LA English DT Article DE morphometry; presbyacusis; cochlea; pathology; vasculature ID CELL-VOLUME DENSITY; MONGOLIAN GERBIL; POTENTIALS AB The area of the stria vascularis (StV) and of StV capillaries was measured in radial sections from regions corresponding to 0.5, 2, 4, 10, 20 and 40 kHz. In young gerbils, StV area ranged from 3700 to 8500 mu m(2) and that of individual StV capillaries from 70 to 110 mu m(2). The maximal StV area as well as the largest number of capillaries occurred at the 20 kHz region. In quiet-aged gerbils, the StV area also varied with frequency and was 28-67% smaller than corresponding measures in young gerbils. The decrease in StV area was statistically significant at all but the 2 and 4 kHz regions. The area of individual StV capillaries declined also (8-29%) with age even when the StV area remained near normal. Reductions in capillary area were statistically significant at the 2, 20 and 40 kHz regions. The large variance in StV radial area among aged gerbils reflects the patchy nature of strial degeneration previously observed in this species. The data agree with those of our previous studies and indicate alterations in StV capillaries are a primary cause of presbyacusis in the gerbil. (C) 1997 Elsevier Science B.V. C1 MED UNIV S CAROLINA,DEPT OTOLARYNGOL & COMMUN SCI,CHARLESTON,SC 29425. MED UNIV S CAROLINA,DEPT PATHOL & LAB MED,CHARLESTON,SC 29425. CR BOSHER SK, 1980, ACTA OTO-LARYNGOL, V90, P219, DOI 10.3109/00016488009131718 DUVALL AJ, 1971, ARCH OTOLARYNGOL, V107, P87 DUVALL AJ, 1974, ANN OTO RHINOL LARYN, V83, P498 FORGE A, 1987, HEARING RES, V31, P253, DOI 10.1016/0378-5955(87)90195-X Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 GRATTON MA, 1995, HEARING RES, V82, P44 GRATTON MA, 1990, HEARING RES, V50, P211, DOI 10.1016/0378-5955(90)90046-R Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N LOHUIS PJFM, 1990, HEARING RES, V47, P95, DOI 10.1016/0378-5955(90)90169-P LOHUIS PJFM, 1990, ACTA OTO-LARYNGOL, V110, P348, DOI 10.3109/00016489009107454 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SANTI PA, 1979, J HISTOCHEM CYTOCHEM, V27, P1539 SANTI PA, 1983, HEARING RES, V11, P7, DOI 10.1016/0378-5955(83)90041-2 SANTI PA, 1983, HEARING RES, V12, P151, DOI 10.1016/0378-5955(83)90103-X SANTI PA, 1979, ACTA OTO-LARYNGOL, V88, P1, DOI 10.3109/00016487909137133 SANTI PA, 1985, HEARING RES, V18, P283, DOI 10.1016/0378-5955(85)90045-0 SCHMIEDT RA, 1993, SENSORY RESEARCH MULTIMODAL PERSPECTIVES, P91 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 SCHULTE BA, 1996, ABSTR ASS RES OT, V19, P240 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4 NR 25 TC 28 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 1 EP 9 DI 10.1016/S0378-5955(97)00025-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800001 PM 9447913 ER PT J AU Don, DM Newman, AN Micevych, PE Popper, P AF Don, DM Newman, AN Micevych, PE Popper, P TI Expression of brain-derived neurotrophic factor and its receptor mRNA in the vestibuloauditory system of the bullfrog SO HEARING RESEARCH LA English DT Article DE brain-derived neurotrophic factor; neurotrophin; vestibular system; auditory system; in situ hybridization ID NERVE GROWTH-FACTOR; DEVELOPING INNER-EAR; 8TH CRANIAL NERVE; MESSENGER-RNA EXPRESSION; HAIR CELL REGENERATION; SENSORY NEURONS; GANGLION NEURONS; FACTOR FAMILY; VESTIBULAR RECEPTORS; CENTRAL PROJECTIONS AB Brain-derived neurotrophic factor (BDNF) is a neurotrophin which has been suggested to play a crucial role in the development and maintenance of the inner ear. In the present study, we investigated the expression of mRNAs of BDNF and its high-affinity receptor trkB in the vestibuloauditory system of the adult bullfrog. In situ hybridization was performed using riboprobes transcribed from Xenopus BDNF and trkB cDNA clones. BDNF mRNA was expressed in the sensory epithelia of the ampullary cristae, utricular and saccular maculae, lagena, and amphibian and basilar papillae. Strong hybridization for BDNF mRNA was also found in neuron somata of the vestibuloauditory nuclear complex. trkB mRNA was detected in the sensory epithelia of all vestibular and auditory endorgans. High levels of both BDNF and trkB mRNAs were found in vestibuloauditory ganglion cells. These results support the hypothesis that BDNF participates in the maintenance of vestibuloauditory neurons and may be important for the trophic regulation of vestibular and auditory sensory epithelia in this animal model. (C) 1997 Published by Elsevier Science B.V. All rights reserved. C1 VICTOR GOODHILL EAR CTR,LOS ANGELES,CA 90095. UNIV CALIF LOS ANGELES,SCH MED,DEPT NEUROBIOL,LOS ANGELES,CA 90095. RP Don, DM (reprint author), UNIV CALIF LOS ANGELES,SCH MED,DEPT SURG,DIV HEAD & NECK SURG,ROOM 62-132,CHS,LOS ANGELES,CA 90095, USA. CR ACHESON A, 1995, NATURE, V374, P450, DOI 10.1038/374450a0 ANNIKO M, 1979, ARCH OTORHINOLARYNGO, V224, P295 ARD MD, 1985, NEUROSCIENCE, V16, P151, DOI 10.1016/0306-4522(85)90053-3 AVILA MA, 1993, DEV BIOL, V159, P266, DOI 10.1006/dbio.1993.1239 BAIRD RA, 1993, HEARING RES, V65, P164, DOI 10.1016/0378-5955(93)90211-I BALAK KJ, 1990, J NEUROSCI, V10, P2502 BARDE YA, 1982, EMBO J, V1, P549 BERKEMEIER LR, 1991, NEURON, V7, P857, DOI 10.1016/0896-6273(91)90287-A BUCHMAN VL, 1993, DEVELOPMENT, V118, P989 CAPRANIC.RR, 1974, J ACOUST SOC AM, V56, pS12, DOI 10.1121/1.1913833 Carranza A, 1997, LARYNGOSCOPE, V107, P137, DOI 10.1097/00005537-199701000-00025 CARRANZA A, 1994, ASS RES OT ABSTR, V138, P35 CHAO MV, 1986, SCIENCE, V232, P518, DOI 10.1126/science.3008331 CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999 COHENCORY S, 1994, NEURON, V12, P747, DOI 10.1016/0896-6273(94)90328-X CORWIN JT, 1985, P NATL ACAD SCI USA, V82, P3911, DOI 10.1073/pnas.82.11.3911 DAVIES AM, 1993, J NEUROSCI, V13, P4961 DAVIES AM, 1986, J NEUROSCI, V6, P1897 DEROBERTIS E, 1969, J BIOPHYS BIOCHEM CY, V2, P503 ERNFORS P, 1990, NEURON, V5, P511, DOI 10.1016/0896-6273(90)90090-3 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 ERNFORS P, 1991, EUR J NEUROSCI, V3, P953, DOI 10.1111/j.1460-9568.1991.tb00031.x ERNFORS P, 1994, NATURE, V368, P147, DOI 10.1038/368147a0 FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0 FAVRE D, 1991, NEUROREPORT, V2, P501, DOI 10.1097/00001756-199109000-00001 GILLOYZAGA P, 1987, ASS RES OT ABSTR, V10, P223 GLEISNER L, 1974, ACTA OTOLARNGOL ST S, V333, P1 HALLBOOK F, 1991, NEURON, V6, P845, DOI 10.1016/0896-6273(91)90180-8 HERNANDEZ J, 1995, ASS RES OTOLARYNGOL, V326, P82 HERNANDEZ J, 1994, ASS RES OTOLARYNGOL, V137, P35 HOFER M, 1990, EMBO J, V9, P2459 HOHN A, 1990, NATURE, V344, P339, DOI 10.1038/344339a0 IGARASHI M, 1970, ACTA OTO-LARYNGOL, V69, P247, DOI 10.3109/00016487009123360 ISACKSON PJ, 1991, FEBS LETT, V285, P260, DOI 10.1016/0014-5793(91)80812-H KAPLAN DR, 1991, SCIENCE, V252, P554, DOI 10.1126/science.1850549 KLEIN R, 1990, CELL, V61, P647, DOI 10.1016/0092-8674(90)90476-U KLEIN R, 1991, CELL, V65, P189, DOI 10.1016/0092-8674(91)90419-Y KOITCHEV K, 1982, ACTA OTO-LARYNGOL, V94, P431, DOI 10.3109/00016488209128931 KURUVILLA A, 1985, LARYNGOSCOPE, V95, P692 LAMBALLE F, 1991, CELL, V66, P967, DOI 10.1016/0092-8674(91)90442-2 LEFEBVRE PP, 1992, HEARING RES, V58, P185, DOI 10.1016/0378-5955(92)90127-9 LEFEBVRE PP, 1994, NEUROREPORT, V5, P865, DOI 10.1097/00001756-199404000-00003 LEVIMONT.R, 1968, PHYSIOL REV, V48, P534 LINDSAY RM, 1985, DEV BIOL, V112, P319, DOI 10.1016/0012-1606(85)90402-6 Mair I W, 1966, Acta Otolaryngol, V62, P513, DOI 10.3109/00016486609119595 MAISONPIERRE PC, 1990, SCIENCE, V247, P1446, DOI 10.1126/science.2321006 MATESZ C, 1979, NEUROSCIENCE, V4, P2061, DOI 10.1016/0306-4522(79)90078-2 MIDDLEMAS DS, 1991, MOL CELL BIOL, V11, P143 MIRANDA RC, 1993, P NATL ACAD SCI USA, V90, P6439, DOI 10.1073/pnas.90.14.6439 NEWMAN A, 1987, LARYNGOSCOPE, V97, P1219 NEWMAN A, 1986, LARYNGOSCOPE, V96, P484, DOI 10.1288/00005537-198605000-00003 NEWMAN A, 1989, LARYNGOSCOPE, V99, P162 ORR MF, 1968, DEV BIOL, V17, P39, DOI 10.1016/0012-1606(68)90088-2 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 PIRVOLA U, 1994, HEARING RES, V75, P131, DOI 10.1016/0378-5955(94)90064-7 RADEKE MJ, 1987, NATURE, V325, P593, DOI 10.1038/325593a0 RICHTER E, 1981, ARCH OTO-RHINO-LARYN, V230, P251, DOI 10.1007/BF00456326 RODRIGUEZTEBAR A, 1990, NEURON, V4, P487, DOI 10.1016/0896-6273(90)90107-Q SCHECTERSON LC, 1992, NEURON, V9, P449, DOI 10.1016/0896-6273(92)90183-E SCHECTERSON LC, 1994, HEARING RES, V73, P92, DOI 10.1016/0378-5955(94)90286-0 SILVERST.H, 1973, LARYNGOSCOPE, V83, P1414, DOI 10.1288/00005537-197309000-00004 SOPPET D, 1991, CELL, V65, P895, DOI 10.1016/0092-8674(91)90396-G SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 SPOENDLI.H, 1971, ARCH KLIN EXP OHR, V200, P275, DOI 10.1007/BF00373310 SPOENDLIN HH, 1963, ANN OTO RHINOL LARYN, V72, P660 SQUINTO SP, 1991, CELL, V65, P885, DOI 10.1016/0092-8674(91)90395-F TSUE TT, 1994, P NATL ACAD SCI USA, V91, P1584, DOI 10.1073/pnas.91.4.1584 Van De Water T., 1976, ANN OTOL RHINOL S33, V85, P1 VONBARTHELD CS, 1991, DEVELOPMENT, V113, P455 WARCHOL ME, 1993, HEARING RES, V71, P28, DOI 10.1016/0378-5955(93)90018-V WHEELER EF, 1994, HEARING RES, V73, P46, DOI 10.1016/0378-5955(94)90281-X YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C ZAKON H, 1981, BRAIN RES, V209, P325, DOI 10.1016/0006-8993(81)90157-8 ZHENG JL, 1995, J NEUROBIOL, V28, P330 ZHENG JL, 1995, J NEUROSCI, V15, P5079 ZHOU XN, 1987, ACTA OTO-LARYNGOL, V104, P90, DOI 10.3109/00016488709109052 NR 76 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 10 EP 20 DI 10.1016/S0378-5955(97)00113-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800002 PM 9447914 ER PT J AU Stankovic, KM Brown, D Alper, SL Adams, JC AF Stankovic, KM Brown, D Alper, SL Adams, JC TI Localization of pH regulating proteins H(+)ATPase and Cl-/HCO3- exchanger in the guinea pig inner ear SO HEARING RESEARCH LA English DT Article DE vH(+)ATPase; Cl-/HCO3-; exchanger; endolymph; pH ID VACUOLAR H+-ATPASE; AUDITORY-NERVE FIBERS; CARBONIC-ANHYDRASE; INTERCALATED CELLS; ION-TRANSPORT; TRANSEPITHELIAL VOLTAGE; ENDOLYMPHATIC SAC; INTRACELLULAR PH; STRIA VASCULARIS; NA+/H+ EXCHANGER AB Mechanisms that regulate endolymphatic pH are unknown. It has long been recognized that, because of the large positive endolymphatic potential in the cochlea, a passive movement of protons would be directed out of endolymph leading to endolymphatic alkalization. However, endolymphatic pH is close to that of blood, suggesting that H+ is being secreted into endolymph. Since the kidney and the inner ear are both actively engaged in fluid and electrolyte regulation, we attempted to determine whether proteins responsible for acid secretion in the kidney also exist in the guinea pig inner ear. To that end, a monoclonal antibody against a 31 kDa subunit of a vacuolar vH(+)ATPase and a polyclonal, affinity purified antibody against the AE2 Cl-/HCO3- exchanger (which can also recognize AE1 under some conditions) were used. In the cochlea, the strongest immunoreactivity for the vH(+)ATPase was found in apical plasma membranes and apical cytoplasm of strial marginal cells. These cells were negative for the Cl-/HCO3- exchanger. Certain cells of the inner ear demonstrated both apical staining for vH(+)ATPase and basolateral staining for the Cl-/HCO3- exchanger; these included interdental cells and epithelial cells of the endolymphatic sac. Cochlear cell types with diffuse cytoplasmic staining for vH(+)ATPase and a basolaterally localized Cl-/HCO3-; exchanger included inner hair cells, root cells and a subset of supporting cells in the organ of Corti. Hair cells of the utricle, saccule and cristae ampullaris also expressed both vH(+)ATPase and the Cl-/HCO3- exchanger, but immunostaining for the vH(+)ATPase was less intense and less polarized than in the cochlea. These immunocytochemical results support a role for the vH(+)ATPase and Cl-/HCO3- exchanger in the regulation of endolymphatic pH and suggest that certain cells (including strial marginal cells and epithelial cells of the endolymphatic sac) may be specialized for this regulation. (C) 1997 Published by Elsevier Science B.V. All rights reserved. C1 MASSACHUSETTS EYE & EAR INFIRM,EATON PEABODY LAB,BOSTON,MA 02114. MASSACHUSETTS GEN HOSP,RENAL UNIT,BOSTON,MA 02129. HARVARD UNIV,SCH MED,DEPT PATHOL,BOSTON,MA 02129. BETH ISRAEL DEACONESS MED CTR,MOL MED UNIT,BOSTON,MA 02115. BETH ISRAEL DEACONESS MED CTR,RENAL UNIT,BOSTON,MA 02115. HARVARD UNIV,SCH MED,DEPT MED,BOSTON,MA 02115. HARVARD UNIV,SCH MED,DEPT CELL BIOL,BOSTON,MA 02115. HARVARD UNIV,SCH MED,DEPT OTOL & LARYNGOL,BOSTON,MA 02114. MASSACHUSETTS EYE & EAR INFIRM,BOSTON,MA 02114. RP Stankovic, KM (reprint author), HARVARD UNIV MIT,DIV HLTH SCI & TECHNOL,243 CHARLES ST,BOSTON,MA 02114, USA. CR ADAMS JC, 1992, J HISTOCHEM CYTOCHEM, V40, P1457 ALPER SL, 1989, P NATL ACAD SCI USA, V86, P5429, DOI 10.1073/pnas.86.14.5429 BROSIUS FC, 1995, AM J PHYSIOL-RENAL, V269, pF461 Brown D, 1996, HISTOCHEM CELL BIOL, V105, P261, DOI 10.1007/BF01463929 BROWN D, 1996, IN PRESS J EXP BIOL, V199 BUSA WB, 1984, AM J PHYSIOL, V246, pR409 CANNON C, 1985, NATURE, V314, P443, DOI 10.1038/314443a0 DAHLMANN A, 1995, CELL TISSUE RES, V282, P277, DOI 10.1007/s004410050479 FORGAC M, 1989, PHYSIOL REV, V69, P765 FREEMAN DM, 1996, ASS RES OT ABSTR, V19, P232 Guild SR, 1927, AM J ANAT, V39, P57, DOI 10.1002/aja.1000390103 GUINAN JJ, 1988, HEARING RES, V33, P115, DOI 10.1016/0378-5955(88)90024-X ICHIMIYA I, 1994, ACTA OTO-LARYNGOL, V114, P167, DOI 10.3109/00016489409126037 IKEDA K, 1992, J PHYSIOL-LONDON, V447, P627 IKEDA K, 1987, HEARING RES, V31, P211, DOI 10.1016/0378-5955(87)90189-4 Jiang LW, 1997, AM J PHYSIOL-CELL PH, V272, pC191 KALINEC F, 1993, BIOPHYSICS HAIR CELL, P75 KIM J, 1990, J AM SOC NEPHROL, V1, P245 KIMURA RS, 1969, ANN OTO RHINOL LARYN, V78, P542 KRONESTERFREI A, 1979, HEARING RES, V1, P81, DOI 10.1016/0378-5955(79)90019-4 MARCUS DC, 1994, HEARING RES, V73, P101, DOI 10.1016/0378-5955(94)90287-9 MISRAHY GA, 1958, AM J PHYSIOL, V194, P393 MORGENSTERN C, 1982, AM J OTOLARYNG, V3, P323, DOI 10.1016/S0196-0709(82)80004-5 NEGRINI C, 1995, BBA-BIOMEMBRANES, V1236, P207, DOI 10.1016/0005-2736(95)00081-D NELSON RD, 1992, P NATL ACAD SCI USA, V89, P3541, DOI 10.1073/pnas.89.8.3541 Okamura H, 1996, HISTOCHEM CELL BIOL, V106, P425 PRAZMA J, 1978, AM J PHYSIOL, V235, pF317 RASKANDERSEN H, 1980, ACTA OTO-LARYNGOL, V89, P283, DOI 10.3109/00016488009127140 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SATO Y, 1994, HEARING RES, V80, P21, DOI 10.1016/0378-5955(94)90004-3 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 SILVERST.H, 1966, LARYNGOSCOPE, V76, P498 SLY WS, 1995, ANNU REV BIOCHEM, V64, P375, DOI 10.1146/annurev.bi.64.070195.002111 SMITH CA, 1958, AM J PHYSIOL, V193, P203 SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z SPICER SS, 1990, HEARING RES, V43, P205, DOI 10.1016/0378-5955(90)90229-I SPICER SS, 1995, ASS RES OT ABSTR, V18, P559 STANKOVIC KM, 1995, ASS RES OT ABSTR, V18, P87 STERKERS O, 1988, PHYSIOL REV, V68, P1083 STERKERS O, 1984, AM J PHYSIOL, V246, pF47 STUARTTILLEY A, 1994, AM J PHYSIOL, V266, pC559 TSUJIKAWA S, 1992, ORL J OTO-RHINO-LARY, V54, P198 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wangemann P, 1996, HEARING RES, V94, P94, DOI 10.1016/0378-5955(96)00008-1 WANGEMANN P, 1993, HEARING RES, V69, P107, DOI 10.1016/0378-5955(93)90098-L YURKO MA, 1987, J BIOL CHEM, V262, P15770 NR 46 TC 77 Z9 81 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 21 EP 34 DI 10.1016/S0378-5955(97)00072-5 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800003 PM 9447915 ER PT J AU Nuttall, AL Guo, MH Ren, TY Dolan, DF AF Nuttall, AL Guo, MH Ren, TY Dolan, DF TI Basilar membrane velocity noise SO HEARING RESEARCH LA English DT Article DE guinea pig; cochlea; basilar membrane; laser interferometer; cochlear mechanics; noise; Brownian motion ID OUTER HAIR-CELLS; SPONTANEOUS OTOACOUSTIC EMISSIONS; AUDITORY-NERVE FIBERS; GUINEA-PIG; MECHANICAL RESPONSES; STIMULATION; MOTION; STEREOCILIA; MODULATION; COCHLEA AB Basilar membrane (BM) noise, measured as a velocity signal under the quiet acoustic condition, was investigated in the guinea pig. The cochleas of anesthetized young healthy guinea pigs were surgically exposed and a hole was made on the lateral wall of the scala tympani of the first cochlear turn for visualization of the BM and measurement of the BM velocity with a laser interferometer. The amplitude and frequency of the BM velocity noise were analyzed by a spectrum analyzer under different conditions. The spectrum of the BM velocity noise was a band limited function with a peak velocity at the topographic best frequency of the measured location on the BM. The peak velocity ranged to about 8 mu m/s and depended on the physiological condition of the cochlea. Saline blockage of the external auditory canal or the middle ear did not change the BM noise. BM noise was much smaller, or was not evident, when the cochlear sensitivity decreased. The suppression tuning curve of the BM velocity noise indicates that the maximum suppression caused by an acoustic pure tone occurred at the best frequency location. A low sound level wide band acoustic noise given to the external ear canal produced a spectrum function having the same frequency and amplitude response as the BM noise. Electrical stimulation of the crossed olivocochlear bundle significantly depresses the BM velocity noise. These data demonstrate that the BM noise is a representation of internal rather than external noise. The amplitude and frequency of the BM noise reflect the usual cochlear sensitivity and frequency selectivity. Since the organ of Corti in the sensitive cochlea is a highly sensitive and tuned mechanical system, the internal (to the animal) noise responsible for the BM noise may originate from mechanical vibrations remote from the cochlea and propagated to the ear, or may be caused by Brownian motion of cellular structures in the cochlea. (C) 1997 Elsevier Science B.V. C1 XIJING HOSP,DEPT OTOLARYNGOL,XIAN 710032,SHAANXI,PEOPLES R CHINA. UNIV MICHIGAN,KRESGE HEARING RES INST,ANN ARBOR,MI 48109. RP Nuttall, AL (reprint author), OREGON HLTH SCI UNIV,OREGON HEARING RES CTR NRC04,DEPT OTOLARYNGOL HEAD & NECK SURG,PORTLAND,OR 97201, USA. CR ALLEN J, 1996, DIVERSITY AUDITORY M, P1 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Bekesy G., 1960, EXPT HEARING BROWN MC, 1984, J PHYSIOL-LONDON, V354, P625 BROWN MC, 1983, SCIENCE, V222, P69, DOI 10.1126/science.6623058 BROWN MC, 1983, J ACOUST SOC AM, V73, P1662, DOI 10.1121/1.389387 BROWNELL WE, 1986, NEUROBIOLOGY HEARING BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DENK W, 1989, P NATL ACAD SCI USA, V86, P5371, DOI 10.1073/pnas.86.14.5371 DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 GEISLER CD, 1974, J NEUROPHYSIOL, V37, P1156 GUINAN JJ, 1988, HEARING RES, V33, P115, DOI 10.1016/0378-5955(88)90024-X HARRIS GG, 1968, J ACOUST SOC AM, V44, P176, DOI 10.1121/1.1911052 JOHNSON DH, 1976, BIOPHYS J, V16, P719 LAWRENCE M, 1965, COLD SPRING HARB SYM, V30, P159 LEWIS ER, 1992, HEARING RES, V63, P7, DOI 10.1016/0378-5955(92)90067-W LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 MOUNTAIN DC, 1989, HEARING RES, V42, P195, DOI 10.1016/0378-5955(89)90144-5 Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732 Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2 NUTTALL AL, 1991, HEARING RES, V51, P203, DOI 10.1016/0378-5955(91)90037-A PATUZZI R, 1986, ORL J OTO-RHINO-LARY, V48, P81 REN T, 1995, ACTA OTO-LARYNGOL, V115, P725, DOI 10.3109/00016489509139393 REN TY, 1994, HEARING RES, V77, P200, DOI 10.1016/0378-5955(94)90267-4 RUSSELL IJ, 1992, P ROY SOC B-BIOL SCI, V250, P217, DOI 10.1098/rspb.1992.0152 SANTOS-SACCHI J, 1989, J NEUROSCI, V9, P2954 SELLICK PM, 1983, HEARING RES, V10, P93, DOI 10.1016/0378-5955(83)90019-9 SEWELL WF, 1984, HEARING RES, V15, P69, DOI 10.1016/0378-5955(84)90226-0 TALMADGE CL, 1991, J ACOUST SOC AM, V89, P2391, DOI 10.1121/1.400958 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V VELLUTI RA, 1994, HEARING RES, V72, P19, DOI 10.1016/0378-5955(94)90200-3 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 NR 38 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 35 EP 42 DI 10.1016/S0378-5955(97)00147-0 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800004 PM 9447916 ER PT J AU Geisler, CD AF Geisler, CD TI Further results with the 'uniquantal EPSP' hypothesis SO HEARING RESEARCH LA English DT Article DE cochlea; primary neuron; excitatory post-synaptic potential; uniquantal; spontaneous rate; hazard function ID AUDITORY-NERVE FIBERS; LEVEL FUNCTIONS; DISCHARGE-RATE; HAIR-CELLS; GUINEA-PIG; AFFERENT; SYNAPSE; MODEL; DEPENDENCE; RESPONSES AB The hypothesis of Geisler (Brain Res. 212 (1981) 198-201), in which the different spontaneous-rate classes of primary auditory neurons were accounted for by the different sizes of uniquantal EPSPs relative to the gap between resting membrane and threshold potentials, was represented with an expanded model which included relative refractory effects. The spike rates generated by the expanded model, when plotted vs. estimated sound level, are qualitatively similar to those of experimentally obtained rate-level curves. The hypothesis is also consistent with recent ultrastructural data which suggest that average quantal-release rates for any particular primary auditory neuron are inversely related to its spontaneous rate. The model's recovery processes following spike generation (hazard functions) are also similar to those observed experimentally. (C) 1997 Elsevier Science B.V. C1 UNIV WISCONSIN,DEPT ELECT & COMP ENGN,MADISON,WI 53706. RP Geisler, CD (reprint author), UNIV WISCONSIN,DEPT NEUROPHYSIOL,275 MED SCI BLDG,1300 UNIV AVE,MADISON,WI 53706, USA. CR COUSILLAS H, 1988, HEARING RES, V36, P213, DOI 10.1016/0378-5955(88)90063-9 GAUMOND RP, 1982, J NEUROPHYSIOL, V48, P856 GEISLER CD, 1981, BRAIN RES, V212, P198, DOI 10.1016/0006-8993(81)90051-2 GEISLER CD, 1990, HEARING RES, V44, P1, DOI 10.1016/0378-5955(90)90017-J GEISLER CD, 1985, J ACOUST SOC AM, V77, P1102, DOI 10.1121/1.392228 GRAY PR, 1967, BIOPHYS J, V7, P759, DOI 10.1016/S0006-3495(67)86621-9 HAYASHI JH, 1985, J PHYSIOL-LONDON, V368, P179 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 Kiang N.Y.S., 1965, MIT RES MONOGRAPH, V35 LI J, 1993, HEARING RES, V69, P151 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 MARK KE, 1992, J ACOUST SOC AM, V91, P989, DOI 10.1121/1.402504 MerchanPerez A, 1996, J COMP NEUROL, V371, P208, DOI 10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.0.CO;2-6 MILLER MI, 1993, J ACOUST SOC AM, V94, P2093, DOI 10.1121/1.407482 MOLNAR CE, 1968, PR INST ELECTR ELECT, V56, P993, DOI 10.1109/PROC.1968.6450 MULLER M, 1991, HEARING RES, V55, P50, DOI 10.1016/0378-5955(91)90091-M PARSONS TD, 1994, NEURON, V13, P875, DOI 10.1016/0896-6273(94)90253-4 RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981 RUSSELL IJ, 1995, ADV HEARING RES, P136 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 SIEGEL JH, 1992, HEARING RES, V59, P85, DOI 10.1016/0378-5955(92)90105-V vonGersdorff H, 1996, NEURON, V16, P1221, DOI 10.1016/S0896-6273(00)80148-8 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M ZAGAESKI M, 1994, J ACOUST SOC AM, V95, P3430, DOI 10.1121/1.409963 ZEDDIES DG, 1995, ASS RES OTOLARYNGOL, V18, P153 NR 28 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 43 EP 52 DI 10.1016/S0378-5955(97)00144-5 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800005 PM 9447917 ER PT J AU Yang, W Musci, TS Mansour, SL AF Yang, W Musci, TS Mansour, SL TI Trapping genes expressed in the developing mouse inner ear SO HEARING RESEARCH LA English DT Article DE gene trap screen; retinoic acid; thyroid hormone; nerve growth factor; embryonic stem cells; mouse development ID EMBRYONIC STEM-CELLS; DEVELOPMENTALLY-REGULATED GENES; TARGETED DISRUPTION; RETINOIC ACID; MICE; PROTOONCOGENE; DEFECTS; CULTURE; SCREEN; INSERTION AB Identification of the genes involved in the development of the mouse inner ear and developmental studies of mice that bear mutations in these genes is an important approach to understanding genetically determined human auditory dysfunction. Towards this end, we initiated a gene trap screen designed to simultaneously mark and mutate genes in mouse embryonic stem cells by the insertion of a lacZ reporter gene. Expression of beta-galactosidase in gene trap cell lines was monitored both before and after the addition of factors that are known to affect inner ear development. Gene trap cell lines that expressed beta-galactosidase under one or more culture conditions were used to create chimeric mouse embryos for studies of reporter gene expression in vivo. A high proportion of these gene trap insertions were expressed in the developing inner ear, suggesting that this strategy provides an effective means of identifying genes that may be involved in inner ear development or function. (C) 1997 Elsevier Science B.V. C1 UNIV UTAH,ECCLES INST HUMAN GENET,DEPT HUMAN GENET,SALT LAKE CITY,UT 84112. CR Baker RK, 1997, DEV BIOL, V185, P201, DOI 10.1006/dbio.1997.8541 Capecchi M. R., 1994, Scientific American (International Edition), V270 Chen J, 1996, ONCOGENE, V12, P979 CHEN Z, 1994, GENE DEV, V8, P2293, DOI 10.1101/gad.8.19.2293 Cohen M.M., 1995, HEREDITARY HEARING L, P9 DeBry RW, 1996, GENOMICS, V33, P337, DOI 10.1006/geno.1996.0209 DEOL MS, 1973, J MED GENET, V10, P235, DOI 10.1136/jmg.10.3.235 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0 Forrester LM, 1996, P NATL ACAD SCI USA, V93, P1677, DOI 10.1073/pnas.93.4.1677 Freeman S, 1996, HEARING RES, V97, P19 Frenz DA, 1996, TERATOLOGY, V53, P292 FRIEDRICH G, 1991, GENE DEV, V5, P1513, DOI 10.1101/gad.5.9.1513 GASCA S, 1995, DEV GENET, V17, P141, DOI 10.1002/dvg.1020170206 GOSSLER A, 1989, SCIENCE, V244, P463, DOI 10.1126/science.2497519 HILL DP, 1993, CURR TOP DEV BIOL, V28, P181, DOI 10.1016/S0070-2153(08)60213-6 JONES KR, 1994, CELL, V76, P989, DOI 10.1016/0092-8674(94)90377-8 KELLEY MW, 1993, DEVELOPMENT, V119, P1041 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KOZAK M, 1989, J CELL BIOL, V108, P229, DOI 10.1083/jcb.108.2.229 LEFEBVRE PP, 1990, BRAIN RES, V507, P254, DOI 10.1016/0006-8993(90)90279-K LEFEBVRE PP, 1991, ACTA OTO-LARYNGOL, V111, P304, DOI 10.3109/00016489109137392 LI CW, 1978, J MORPHOL, V157, P249, DOI 10.1002/jmor.1051570302 Liu XZ, 1997, NAT GENET, V16, P188, DOI 10.1038/ng0697-188 MANSOUR SL, 1993, DEVELOPMENT, V117, P13 MCMAHON AP, 1990, CELL, V62, P1073, DOI 10.1016/0092-8674(90)90385-R NAGY A, 1993, P NATL ACAD SCI USA, V90, P8424, DOI 10.1073/pnas.90.18.8424 Papaioannou V., 1993, Gene targeting: a practical approach., P107 Petit C, 1996, NAT GENET, V14, P385, DOI 10.1038/ng1296-385 REDDY S, 1992, P NATL ACAD SCI USA, V89, P6721, DOI 10.1073/pnas.89.15.6721 Robertson EJ, 1987, TERATOCARCINOMAS EMB, P71 ROBERTSON NG, 1994, GENOMICS, V23, P42, DOI 10.1006/geno.1994.1457 ROWE LB, 1994, MAMM GENOME, V5, P253, DOI 10.1007/BF00389540 RUGH R, 1968, MOUSE ITS REPRODUCTI SANES J, 1986, EMBO J, V5, P2133 Serafini T, 1996, CELL, V87, P1001, DOI 10.1016/S0092-8674(00)81795-X SKARNES WC, 1992, GENE DEV, V6, P903, DOI 10.1101/gad.6.6.903 SKARNES WC, 1995, P NATL ACAD SCI USA, V92, P6592, DOI 10.1073/pnas.92.14.6592 SORIANO P, 1991, CELL, V64, P693, DOI 10.1016/0092-8674(91)90499-O Steel KP, 1996, CURR OPIN NEUROBIOL, V6, P520, DOI 10.1016/S0959-4388(96)80059-6 Steel KP, 1995, ANNU REV GENET, V29, P675 SULIK KK, 1995, HEREDITARY HEARING L, P22 TAKEUCHI T, 1995, GENE DEV, V9, P1211, DOI 10.1101/gad.9.10.1211 Theiler K, 1989, HOUSE MOUSE THOMAS KR, 1987, CELL, V51, P503, DOI 10.1016/0092-8674(87)90646-5 THUMMEL CS, 1988, GENE, V74, P445, DOI 10.1016/0378-1119(88)90177-1 Torres M, 1997, P NATL ACAD SCI USA, V94, P901, DOI 10.1073/pnas.94.3.901 VANCAMP G, 1997, HEREDITARY HEARING L Weil D, 1997, NAT GENET, V16, P191, DOI 10.1038/ng0697-191 WOOD SA, 1993, NATURE, V365, P87 WURST W, 1995, GENETICS, V139, P889 Wurst W., 1993, Gene targeting: a practical approach., P33 NR 52 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 53 EP 61 DI 10.1016/S0378-5955(97)00146-9 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800006 PM 9447918 ER PT J AU Brunschwig, AS Salt, AN AF Brunschwig, AS Salt, AN TI Fixation-induced shrinkage of Reissner's membrane and its potential influence on the assessment of endolymph volume SO HEARING RESEARCH LA English DT Article DE cochlea; Reissner's membrane; endolymph; endolymphatic hydrops ID MAGNETIC-RESONANCE MICROSCOPY; HYDROPS; COCHLEA AB The quantification of endolymph volume by histological techniques or by magnetic resonance (MR) microscopy requires the inner ear to be first treated with chemical fixatives. If the fixative induces soft-tissue shrinkage, it would tend to return a distended Reissner's membrane towards a straight position, since this membrane is anchored to bone at its medial and lateral edges. The goal of this study was to determine the degree of Reissner's membrane shrinkage induced by different fixation protocols to establish methods which minimize tissue shrinkage. Fragments of fresh Reissner's membrane were dissected from isolated cochleae in an artificial perilymph. Specimens were viewed with an inverted microscope during infusion of fixatives, and changes recorded on video tape. Size changes of the specimen were quantified, usually over a 20 min period. Heidenhain-Susa, a fixative which is widely used in histological studies of hydropic cochleae, caused substantial shrinkage of Reissner's membrane, decreasing the length of specimens by an average of 15.1%. Other fixation procedures induced far less shrinkage. The use of 3.1% glutaraldehyde in Hanks' balanced salt solution produced a mean length decrease of only 0.3%. The inclusion in the fixation medium of 4.5% mercuric chloride, corresponding to the concentration which is present in Heidenhain-Susa and which acts to increase the contrast of Reissner's membrane in MR microscopy, contributes significantly to specimen shrinkage. We can conclude that the degree of endolymphatic hydrops may be underestimated in specimens fixed with media containing high levels of mercuric chloride. (C) 1997 Elsevier Science B.V. C1 WASHINGTON UNIV,SCH MED,DEPT OTOLARYNGOL,ST LOUIS,MO 63110. CR BOONSTRA H, 1983, VIRCHOWS ARCH A, V402, P195, DOI 10.1007/BF00695061 DENEF JF, 1979, HISTOCHEMISTRY, V63, P163, DOI 10.1007/BF00644538 HENSON MM, 1994, HEARING RES, V75, P75, DOI 10.1016/0378-5955(94)90058-2 KIMURA RS, 1965, PRACT-OTO-RHINO-LARY, V27, P343 KIMURA RS, 1982, AM J OTOLARYNG, V3, P447, DOI 10.1016/S0196-0709(82)80023-9 LIM DJ, 1980, J ACOUST SOC AM, V67, P1686, DOI 10.1121/1.384295 MEEK KM, 1981, HISTOCHEMISTRY, V73, P115, DOI 10.1007/BF00493137 SALT AN, 1995, HEARING RES, V88, P79, DOI 10.1016/0378-5955(95)00103-B SALT AN, 1994, HEARING RES, V74, P165, DOI 10.1016/0378-5955(94)90184-8 VOIE AH, 1993, J MICROSC-OXFORD, V170, P229 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S NR 11 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 62 EP 68 DI 10.1016/S0378-5955(97)00153-6 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800007 PM 9447919 ER PT J AU Takeuchi, S Ando, M AF Takeuchi, S Ando, M TI Marginal cells of the stria vascularis of gerbils take up glucose via the facilitated transporter GLUT: application of autofluorescence SO HEARING RESEARCH LA English DT Article DE marginal cell; autofluorescence; mitochondria; NADH; GLUT ID RAT-LIVER MITOCHONDRIA; INNER-EAR; LOCALIZATION AB Strial marginal cells are known to take up and metabolize glucose as their main source of metabolic energy. The membrane transport mechanisms for glucose uptake into strial marginal cells, however, are largely unknown. Two types of glucose transporters in mammalian cells have been described, the facilitated glucose transporter GLUT and the sodium/glucose cotransporter SGLT. The goal of the present study was to determine which of these represent the main glucose uptake mechanism in strial marginal cells. Glucose uptake into strial marginal cells was assessed by monitoring the cellular concentration of the reduced form of nicotinamide adenine dinucleotide (NADH) fluorometrically. The relation between the autofluorescence from marginal cells and cellular metabolism was verified as follows. The autofluorescence (excitation: 340 nm, emission: 450-490 nm) decreased when oxidative phosphorylation in the mitochondria was uncoupled with carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and increased when cytochrome oxidase was inhibited with cyanide. These effects indicate that the autofluorescence is dependent on the mitochondrial metabolic state, and more specifically on the level of NADH in mitochondria. Glucose removal from the bath solution elicited a 39% decrease in the autofluorescence intensity within 5 min. Similarly, cytochalasin B (10 mu M) reduced the fluorescence intensity by 34% in 5 min. In contrast, neither phlorizin (0.1 mM) nor Na+ removal from the bath solution caused any appreciable change in the autofluorescence intensity. These results indicate that glucose depletion affects the metabolic state of the marginal cell within a few minutes, and that marginal cells take up glucose via GLUT, but not via SGLT. Since the excitation and emission wavelengths of several fluorescent dyes used in physiological studies (e.g., Fura-2 and SBFI) are similar to those of NADH, possible effects of autofluorescence on recording signals should always be taken into account when these dyes are utilized. (C) 1997 Elsevier Science B.V. RP Takeuchi, S (reprint author), KOCHI MED SCH,DEPT PHYSIOL,NANKOKU,KOCHI 783,JAPAN. CR AVIDOR JJ, 1962, J BIOL CHEM, V237, P2377 CARTERSU C, 1982, J BIOL CHEM, V257, P5419 CHANCE B, 1965, BIOCHEM Z, V341, P357 CHANCE B, 1962, SCIENCE, V137, P499, DOI 10.1126/science.137.3529.499 DUCHEN MR, 1992, J PHYSIOL-LONDON, V450, P13 ENG J, 1989, BIOPHYS J, V55, P621 ITO M, 1993, HEARING RES, V71, P230, DOI 10.1016/0378-5955(93)90039-4 JOCELYN PC, 1984, BIOCHIM BIOPHYS ACTA, V797, P203, DOI 10.1016/0304-4165(84)90123-5 KAMBAYASHI J, 1982, HEARING RES, V7, P105, DOI 10.1016/0378-5955(82)90084-3 KAPLAN NO, 1960, ENZYME, P105 MARCUS DC, 1978, LARYNGOSCOPE, V88, P1825 MARCUS DC, 1978, ARCH OHREN NASEN KEH, V221, P97, DOI 10.1007/BF00455880 NAKAZAWA K, 1995, HEARING RES, V82, P93 Nakazawa K, 1996, HEARING RES, V96, P13, DOI 10.1016/0378-5955(96)00010-X ROTTENBERG H, 1983, P NATL ACAD SCI-BIOL, V80, P3313, DOI 10.1073/pnas.80.11.3313 SHANAHAN MF, 1982, J BIOL CHEM, V257, P7290 SNEDECOR G.W., 1989, STAT METHODS, V8th TAKATA K, 1993, ACTA HISTOCHEM CYTOC, V26, P165 TAKEUCHI S, 1995, HEARING RES, V83, P89, DOI 10.1016/0378-5955(94)00191-R THALMANN R, 1972, LARYNGOSCOPE, V82, P2249, DOI 10.1288/00005537-197212000-00013 TORENS B, 1993, ANN REV PHYSL, V55, P591 WANG SC, 1990, HEARING RES, V47, P53, DOI 10.1016/0378-5955(90)90166-M WRIGHT EM, 1993, ANNU REV PHYSIOL, V55, P575, DOI 10.1146/annurev.physiol.55.1.575 NR 23 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 69 EP 74 DI 10.1016/S0378-5955(97)00157-3 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800008 PM 9447920 ER PT J AU Lautermann, J Crann, SA McLaren, J Schacht, J AF Lautermann, J Crann, SA McLaren, J Schacht, J TI Glutathione-dependent antioxidant systems in the mammalian inner ear: effects of aging, ototoxic drugs and noise SO HEARING RESEARCH LA English DT Article DE glutathione; free radical; noise trauma; ototoxic drug; age ID PIG IN-VIVO; GENTAMICIN OTOTOXICITY; CISPLATIN OTOTOXICITY; S-TRANSFERASES; GUINEA-PIG; LIPID-PEROXIDATION; FISCHER-344 RATS; COCHLEAR; METABOLISM; INACTIVATION AB Glutathione and glutathione-related enzymes protect against oxidative (free radical) cell injury. This study presents basic information on this antioxidant system in inner ear tissues and preliminary results of the influence of age, ototoxic drugs and noise. These conditions affect inner ear function, possibly through free radicals, and are therefore expected to affect cellular defense mechanisms. In 24-month old Fischer 344 rats, a standard model for aging, glutathione levels were significantly decreased in the auditory nerve by 86% as compared to 3-month old rats but remained unchanged in other cochlear tissues. In guinea pig, the common model for drug- and noise-induced trauma, glutathione levels in the cochlear sensory epithelium were about 8-fold higher (223+/-35 nmol glutathione/mg protein) than in the rat. Cochlear glutathione S-transferase and glutathione reductase activities were similar between the two species, whereas selenium-independent glutathione peroxidase was strikingly lower in guinea pig than in rat (9+/-3 nmol vs. 161+/-84 nmol glutathione converted/mg protein/min). Cisplatin treatment of guinea pigs (56 dB threshold shift at 18 kHz) significantly lowered cochlear glutathione levels by 65% and glutathione S-transferase activity by 44%. Gentamicin treatment (80 dB threshold shift at 18 kHz) and noise exposure (43 dB threshold shift at 18 kHz) did not affect glutathione at the tissue level. These results demonstrate species differences in cochlear glutathione and glutathione-related enzymes. The antioxidant system is sensitive towards environmental influences as seen for age and cisplatin. For gentamicin and noise trauma, whole tissue glutathione and enzyme levels do not correlate with functional damage. This indicates that glutathione homeostasis is largely maintained in the cochlea and that biochemical changes, if they occur under these conditions, may be limited to specific cells. (C) 1997 Elsevier Science B.V. C1 UNIV MICHIGAN,DEPT OTOLARYNGOL,KRESGE HEARING RES INST,ANN ARBOR,MI 48109. CR AXELSSON A, 1981, ACTA OTO-LARYNGOL, V91, P237, DOI 10.3109/00016488109138504 BACKOFF PM, 1994, HEARING RES, V73, P163, DOI 10.1016/0378-5955(94)90231-3 BLUM J, 1985, ARCH BIOCHEM BIOPHYS, V240, P500, DOI 10.1016/0003-9861(85)90056-6 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999 CARRILLO MC, 1991, BIOCHIM BIOPHYS ACTA, V1077, P325, DOI 10.1016/0167-4838(91)90547-D Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 ELBARBARY A, 1993, HEARING RES, V71, P80 FLOHE L., 1976, GLUTATHIONE METABOLI, P17 FLOHE L, 1984, METHOD ENZYMOL, V105, P114 GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 HABIG WH, 1974, J BIOL CHEM, V249, P7130 HARRIS C, 1993, TOXICOL APPL PHARM, V120, P247, DOI 10.1006/taap.1993.1109 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 HOFFMAN DW, 1988, ANN OTO RHINOL LARYN, V97, P36 HUY PTB, 1986, J CLIN INVEST, V77, P1492 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 KETTERER B, 1988, MUTAT RES, V202, P343, DOI 10.1016/0027-5107(88)90197-2 KIRSTEIN CL, 1991, BRAIN RES, V543, P341, DOI 10.1016/0006-8993(91)90047-Y LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 LAUTERMANN J, 1995, HEARING RES, V88, P47, DOI 10.1016/0378-5955(95)00097-N LAUTERMANN J, 1995, HEARING RES, V86, P15, DOI 10.1016/0378-5955(95)00049-A LAWRENCE RA, 1976, BIOCHEM BIOPH RES CO, V71, P952, DOI 10.1016/0006-291X(76)90747-6 LAYNE E, 1957, METHOD ENZYMOL, V3, P447, DOI 10.1016/S0076-6879(57)03413-8 LEAF G, 1947, BIOCHEM J, V41, P280 MAINES MD, 1986, BIOCHEM J, V237, P713 Matsuo M., 1993, FREE RADICALS AGING, P143 MEISTER A, 1983, SCIENCE, V220, P472, DOI 10.1126/science.6836290 MEISTER A, 1983, ANNU REV BIOCHEM, V52, P711, DOI 10.1146/annurev.bi.52.070183.003431 MEISTER A, 1991, PHARMACOL THERAPEUT, V51, P155, DOI 10.1016/0163-7258(91)90076-X MULLER DPR, 1994, NATURAL ANTIOXIDANTS, P535 NEUSCHWANDERTETRI BA, 1989, ANAL BIOCHEM, V179, P236, DOI 10.1016/0003-2697(89)90121-8 OGAWA K, 1994, HEARING RES, V73, P155, DOI 10.1016/0378-5955(94)90230-5 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 REED D J, 1984, Pharmacological Reviews, V36, p25S RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 SADZUKA Y, 1992, BIOCHEM PHARMACOL, V43, P1872, DOI 10.1016/0006-2952(92)90725-X SCHWEITZER VG, 1993, OTOLARYNG CLIN N AM, V26, P759 SHA SH, 1996, ABS ASS RES OT, V19, P30 SluisCremer N, 1996, EUR J BIOCHEM, V242, P301, DOI 10.1111/j.1432-1033.1996.0301r.x SMITH IK, 1988, ANAL BIOCHEM, V175, P408, DOI 10.1016/0003-2697(88)90564-7 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 TABATABAIE T, 1994, ARCH BIOCHEM BIOPHYS, V314, P112, DOI 10.1006/abbi.1994.1418 Usami S, 1996, BRAIN RES, V743, P337, DOI 10.1016/S0006-8993(96)01090-6 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 ZHANG JG, 1994, BIOCHEM PHARMACOL, V47, P1127, DOI 10.1016/0006-2952(94)90383-2 NR 49 TC 85 Z9 88 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 75 EP 82 DI 10.1016/S0378-5955(97)00154-8 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800009 PM 9447921 ER PT J AU Johnson, KR Erway, LC Cook, SA Willott, JF Zheng, QY AF Johnson, KR Erway, LC Cook, SA Willott, JF Zheng, QY TI A major gene affecting age-related hearing loss in C57BL/6J mice SO HEARING RESEARCH LA English DT Article DE age-related; non-syndromic; hearing loss; genetic mapping; mice; presbycusis ID QUANTITATIVE TRAIT LOCI; INFERIOR COLLICULUS NEURONS; RESPONSE PROPERTIES; F1-HYBRID STRAINS; FLANKING MARKERS; COCHLEAR NUCLEUS; MOUSE MODELS; INNER-EAR; DEAFNESS; PRESBYCUSIS AB A major gene responsible for age-related hearing loss (AHL) in C57BL/6J mice was mapped by analyses of a (C57BL/6J x CAST/Ei) x C57BL/6J backcross. AHL, as measured by elevated auditory-evoked brainstem response (ABR) thresholds, segregated among backcross mice as expected for a recessive, primarily single-gene trait. Both qualitative and quantitative linkage analyses gave the same genetic map position for the AHL gene (Ahl) on chromosome 10, near D10Mit5. Marker assisted selection was then used to produce congenic lines of C57BL/6J that contain different CAST-derived segments of chromosome 10. ABR test results and cochlear histopathology of aged progenitors of these congenic lines are presented. Ahl is the first gene causing late-onset, non-syndromic hearing loss that has been reported in the mouse. (C) 1997 Elsevier Science B.V. C1 UNIV CINCINNATI,DEPT BIOL SCI,CINCINNATI,OH 45221. NO ILLINOIS UNIV,DEPT PSYCHOL,DE KALB,IL 60115. RP Johnson, KR (reprint author), JACKSON LAB,600 MAIN ST,BAR HARBOR,ME 04609, USA. RI Zheng, Qing/C-1731-2012 CR AVRAHAM KB, 1995, NAT GENET, V11, P369, DOI 10.1038/ng1295-369 BROWN SDM, 1994, HUM MOL GENET, V3, P1453 Bryda EC, 1997, MAMM GENOME, V8, P1, DOI 10.1007/s003359900336 DEOL MS, 1956, J EMBRYOL EXP MORPH, V4, P190 DEOL MS, 1956, PROC R SOC SER B-BIO, V145, P206, DOI 10.1098/rspb.1956.0028 DIETRICH WF, 1994, NAT GENET, V7, P220, DOI 10.1038/ng0694supp-220 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0 GRLIN RJ, 1995, HEREDITARY HEARING L, V28 GUILFORD P, 1994, HUM MOL GENET, V3, P989, DOI 10.1093/hmg/3.6.989 HALEY CS, 1992, HEREDITY, V69, P315 Henry K. R., 1983, AUDITORY PSYCHOBIOLO, P470 HENRY KR, 1980, AUDIOLOGY, V19, P369 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 JOHNSON KR, 1994, MAMM GENOME, V5, P670, DOI 10.1007/BF00426073 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 MANLY KF, 1993, MAMM GENOME, V4, P303, DOI 10.1007/BF00357089 MARTINEZ O, 1992, THEOR APPL GENET, V85, P480, DOI 10.1007/BF00222330 *MGD, 1997, MOUS GEN DAT MGD MOU Mikaelian D.O., 1979, LARYNGOSCOPE, V34, P1 MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869 *OMIM, 1997, ONL MEND INH MAN OMI OSAKO S, 1971, ACTA OTO-LARYNGOL, V71, P365, DOI 10.3109/00016487109125376 PARHAM K, 1988, Behavioral Neuroscience, V102, P881, DOI 10.1037/0735-7044.102.6.881 SCHAIBLE RH, 1961, MOUSE NEWS LETT, V24, P38 SLEPECKY NB, 1992, ACTA OTO-LARYNGOL, V112, P611, DOI 10.3109/00016489209137449 SOUTHARD JL, 1970, MOUSE NEWS LETT, V42, P30 STEEL KP, 1991, ANN NY ACAD SCI, V630, P68, DOI 10.1111/j.1749-6632.1991.tb19576.x Steel KP, 1995, ANNU REV GENET, V29, P675 STEEL KP, 1994, TRENDS GENET, V10, P428, DOI 10.1016/0168-9525(94)90113-9 Weil D, 1995, Nature, V374, P60 WILLOTT JF, 1988, HEARING RES, V37, P15, DOI 10.1016/0378-5955(88)90074-3 Willott J. F., 1991, AGING AUDITORY SYSTE WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106 WILLOTT JF, 1984, HEARING RES, V16, P161, DOI 10.1016/0378-5955(84)90005-4 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F ZENG ZB, 1994, GENETICS, V136, P1457 NR 41 TC 176 Z9 188 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 83 EP 92 DI 10.1016/S0378-5955(97)00155-X PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800010 PM 9447922 ER PT J AU vanEmst, MG Klis, SFL Smoorenburg, GF AF vanEmst, MG Klis, SFL Smoorenburg, GF TI Identification of the nonlinearity governing even-order distortion products in cochlear potentials SO HEARING RESEARCH LA English DT Article DE summating potential; cochlear microphonics; distortion product; nonlinearity; guinea pig ID GUINEA-PIG COCHLEA; INNER HAIR-CELLS; OTOACOUSTIC EMISSIONS; SUMMATING POTENTIALS; MAMMALIAN COCHLEA; ETHACRYNIC-ACID; CURRENTS; FUROSEMIDE; ENDOLYMPH; RESPONSES AB In order to characterize the cochlear transducer nonlinearities which are involved in the generation of the summating potential (SP), we investigated the effect of a change in the electrical operating point of the cochlear transducer on the SP. The electrical operating point of the cochlear transducer was affected by suppressing reversibly the endocochlear potential (EP). This was realized by intravenous injection of furosemide in guinea pig. A differential recording technique was used in the basal turn of the cochlea to measure locally generated even-order distortion products: the SP and the second harmonic component (2F(0)) of the cochlear microphonics (CM). These potentials were evoked by 2 and 8 kHz stimuli presented at 60 dB SPL. Following furosemide injection, the SP changed polarity twice over time. The zero crossings of the SP coincided with a minimum in the amplitude of 2F(0). Concomitantly, the phase of 2F(0) shifted about 120 degrees. The changes in the electrical even-order products were comparable to the changes that occurred in a mechanical even-order intermodulation distortion product (the difference tone F-2-F-1 otoacoustic emission) after furosemide application (Mills et al., J. Acoust. Sec. Am. 94 (1993) 2108-2122). The combined results suggest that only one sigmoidal transfer function may account for the SP, 2F(0), and the emission of the difference tone F-2-F-1, and that shifts in the operating point of the transfer function would be the major cause behind the furosemide-induced changes in the even-order distortion products. The sigmoidal transfer function is likely associated with the mechano-electrical transducer channel at the apical pole of the outer hair cell. (C) 1997 Elsevier Science B.V. RP vanEmst, MG (reprint author), UNIV UTRECHT, DEPT OTORHINOLARYNGOL, HEARING RES LABS, ROOM G 02 531, HEIDELBERGLAAN 100, NL-3584 CX UTRECHT, NETHERLANDS. CR ARAN JM, 1977, ACTA OTO-LARYNGOL, V83, P153, DOI 10.3109/00016487709128826 BOSHER SK, 1980, ACTA OTO-LARYNGOL, V89, P407, DOI 10.3109/00016488009127156 BROWN MC, 1983, HEARING RES, V9, P131, DOI 10.1016/0378-5955(83)90023-0 COREY DP, 1983, J NEUROSCI, V3, P962 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 DALLOS P, 1972, ACTA OTO-LARYNGOL, P1 DALLOS P, 1990, J ACOUST SOC AM, V87, P1636, DOI 10.1121/1.399411 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 IKEDA K, 1987, HEARING RES, V26, P117, DOI 10.1016/0378-5955(87)90040-2 JARAMILLO F, 1993, NATURE, V364, P527, DOI 10.1038/364527a0 KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263 KROS CJ, 1992, P ROY SOC B-BIOL SCI, V249, P185, DOI 10.1098/rspb.1992.0102 KUSAKARI J, 1978, LARYNGOSCOPE, V88, P12 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 RUSSELL IJ, 1983, NATURE, V301, P334, DOI 10.1038/301334a0 RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 RUSSELL IJ, 1991, J PHYSIOL-LONDON, V435, P493 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 SYKA J, 1985, HEARING RES, V20, P267, DOI 10.1016/0378-5955(85)90031-0 TASAKI I, 1952, J ACOUST SOC AM, V24, P502, DOI 10.1121/1.1906928 TONNDORF J, 1958, J ACOUST SOC AM, V30, P938, DOI 10.1121/1.1909412 VANBENTHEM PPG, 1994, HEARING RES, V77, P9, DOI 10.1016/0378-5955(94)90249-6 vanEmst MG, 1996, HEARING RES, V102, P70, DOI 10.1016/S0378-5955(96)00149-9 VANEMST MG, 1995, HEARING RES, V88, P27, DOI 10.1016/0378-5955(95)00095-L NR 28 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 93 EP 101 DI 10.1016/S0378-5955(97)00156-1 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800011 PM 9447923 ER PT J AU Puschner, B Schacht, J AF Puschner, B Schacht, J TI Energy metabolism in cochlear outer hair cells in vitro SO HEARING RESEARCH LA English DT Article DE adenosine triphosphate; glycolysis; luciferase assay ID CELLULAR ATP; GLUCOSE; HYPERKETONEMIA; 2-DEOXYGLUCOSE; BLOOD AB ATP levels in outer hair cells in vitro were measured using the luciferin/luciferase method. Hair cells were isolated from the guinea pig cochlea and maintained for 2 h in a balanced salt solution with 5.5 mM glucose. Ten to 20 cells sufficed for a robust and reproducible luminescence signal, indicating an ATP content of 6.2+/-0.4 fmol/cell. This ATP concentration is similar to that found in cultures of other cell types and agrees well with the classical measurements in freeze-dried preparations. The ATP levels were reduced by the following treatments: (1) the omission of glucose in the culture medium lowered ATP levels by 28%; (2) the inhibition of glycolysis by 2-deoxyglucose lowered ATP levels by 66%; (3) the inhibition of oxidative phosphorylation by carbonyl cyanide m-chlorophenylhydrazine (CCCP) lowered ATP levels by 75%, and (4) the inhibition of both pathways reduced the ATP content to non-detectable levels. Acetoacetate was able to restore ATP levels partially when glycolysis was inhibited. These results suggest that (1) the major pathway of ATP synthesis in outer hair cells is the aerobic metabolism of glucose; (2) endogenous energy stores (e.g. glycogen) can maintain ATP levels in the absence of glucose; and (3) ketone bodies may be alternative energy sources. (C) 1997 Elsevier Science B.V. C1 UNIV MICHIGAN,KRESGE HEARING RES INST,ANN ARBOR,MI 48109. CR ANDERSSON L, 1984, ZBL VET MED A, V31, P683 BERGMAN EN, 1971, J DAIRY SCI, V54, P936 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CHOU JTH, 1964, BIOCH HORORGANS, P446 DAVIS H, 1965, COLD SPRING HARB SYM, V30, P181 DRINGEN R, 1993, J NEUROCHEM, V60, P1498, DOI 10.1111/j.1471-4159.1993.tb03313.x HEYTLER PG, 1962, BIOCHEM BIOPH RES CO, V7, P272, DOI 10.1016/0006-291X(62)90189-4 Ishikawa Masashi, 1993, Tokushima Journal of Experimental Medicine, V40, P119 KANGAS L, 1984, MED BIOL, V62, P338 MARDEN LL, 1982, IN VITRO CELL DEV B, V18, P550 MATSCHIN.FM, 1967, ANN OTO RHINOL LARYN, V76, P638 MCELROY WD, 1956, ARCH BIOCHEM BIOPHYS, V64, P257, DOI 10.1016/0003-9861(56)90268-5 Richter C, 1996, FEBS LETT, V378, P107, DOI 10.1016/0014-5793(95)01431-4 SCHACHT J, 1985, AUDITORY BIOCH, P389 SCHEIBE F, 1981, ARCH OTO-RHINO-LARYN, V233, P89, DOI 10.1007/BF00464278 SCHOUSBO.A, 1970, J NEUROCHEM, V17, P1501, DOI 10.1111/j.1471-4159.1970.tb00517.x Sokoloff L, 1989, BASIC NEUROCHEMISTRY, P565 Strehler B L, 1968, Methods Biochem Anal, V16, P99, DOI 10.1002/9780470110348.ch2 THALMANN I, 1982, LARYNGOSCOPE, V92, P199 THALMANN I, 1970, ANN OTO RHINOL LARYN, V79, P12 THALMANN R, 1976, LARYNGOSCOPE, V86, P699 THALMANN R, 1972, LARYNGOSCOPE, V82, P2249, DOI 10.1288/00005537-197212000-00013 THALMANN R, 1972, LARYNGOSCOPE, V82, P2059, DOI 10.1288/00005537-197211000-00008 THALMANN R, 1973, LARYNGOSCOPE, V83, P1690, DOI 10.1288/00005537-197310000-00010 THALMANN R, 1970, LARYNGOSCOPE, V80, P1619, DOI 10.1288/00005537-197011000-00001 WANGEMANN AP, 1996, HDB AUDITORY RES, V9, P130 WREE A, 1990, EUR J MORPHOL, V28, P132 ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 NR 29 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 102 EP 106 DI 10.1016/S0378-5955(97)00163-9 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800012 PM 9447924 ER PT J AU Sunose, H Liu, JZ Marcus, DC AF Sunose, H Liu, JZ Marcus, DC TI cAMP increases K+ secretion via activation of apical IsK/KvLQT1 channels in strial marginal SO HEARING RESEARCH LA English DT Article DE gerbil; on-cell macro-patch clamp; nystatin-perforated whole-cell patch clamp; micro-Ussing chamber; self-referencing K+-selective probe; minK channel; KvLQT1; adenylate cyclase; temperature dependence ID VESTIBULAR DARK CELLS; CARDIAC POTASSIUM CURRENT; ION-TRANSPORT MECHANISMS; PROTEIN KINASE-A; I-SK CHANNEL; ADENYLATE-CYCLASE; CYCLIC-AMP; TRANSEPITHELIAL VOLTAGE; CELLULAR-LOCALIZATION; NONSELECTIVE CATION AB In the cochlea, K+ is secreted by electrodiffusion across the apical membrane of strial marginal cells via the I-sK/KvLQT1 ('I-sK') channel. This channel complex has been reported to be activated in other systems by adenosine 3',5'-cyclic monophosphate (cAMP). Since several reports had suggested that cAMP is a second messenger in the cochlea, the effect of the cAMP pathway on transepithelial K+ secretion by strial marginal cells of the gerbil was studied. Both the transepithelial current (I-sc) and K+ flux (J(K)) across strial marginal cell epithelium were measured; I-sc in a micro-Ussing chamber and J(K) as the gradient of K+ concentration near the apical membrane. The apical membrane current (I-IsK) and conductance (g(IsK)) of I-sK channels were recorded with the on-cell macro-patch and the nystatin-perforated whole-cell patch clamp techniques. It has previously been shown that the apical I-sK channel constitutes the primary pathway for K+ secretion. Cytoplasmic cAMP was elevated by applying dibutyryl cyclic-AMP (dbcAMP) or the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) at 37 degrees C. dbcAMP (1 mM) increased I-sc by 51+/-4% and I-IsK in on-cell and whole-cell recordings increased by 214+/-63% and 390+/-61% above the control value, respectively. IBMX (1 mM) caused transient increases of I-sc by 53+/-3% and I-IsK in on-cell recordings by 177+/-75% above the control value. The leak conductance due to all non-I-sK channel sources did not change in the presence of dbcAMP or IBMX. dbcAMP (1 mM at 24 degrees C) increased J(K) by 53+/-16% and I-sc by 18+/-4%. IBMX (1 mM at 24 degrees C) had no effect, suggesting reduced activity of adenylate cyclase at this temperature. Our results demonstrate that the cAMP pathway is constitutively active in strial marginal cells and that the cAMP pathway stimulates transepithelial K+ secretion by increasing I-sK channel current rather than by altering another transport pathway. (C) 1997 Elsevier Science B.V. C1 BOYS TOWN NATL RES HOSP,BIOPHYS LAB,OMAHA,NE 68131. CR AHLSTROM P, 1975, LARYNGOSCOPE, V85, P1241, DOI 10.1288/00005537-197507000-00016 ALAWQATI Q, 1989, METHOD ENZYMOL, V172, P49, DOI 10.1016/S0076-6879(89)72007-3 BAKKER R, 1989, J MEMBRANE BIOL, V111, P25, DOI 10.1007/BF01869206 Barhanin J, 1996, NATURE, V384, P78, DOI 10.1038/384078a0 BEAVO JA, 1990, TRENDS PHARMACOL SCI, V11, P150, DOI 10.1016/0165-6147(90)90066-H BLUMENTHAL EM, 1992, J NEUROSCI, V12, P290 BRADBURY NA, 1992, AM J PHYSIOL, V262, pC752 CHANG XB, 1993, J BIOL CHEM, V268, P11304 DOI K, 1990, HEARING RES, V45, P157, DOI 10.1016/0378-5955(90)90192-R DRESCHER MJ, 1996, ASS RES OTOLARYNGOL, V19, P185 DUFFEY ME, 1981, NATURE, V294, P451, DOI 10.1038/294451a0 FERRETTI ME, 1994, COMP BIOCHEM PHYS C, V108, P65, DOI 10.1016/1367-8280(94)90091-4 HONORE E, 1991, EMBO J, V10, P2805 HUY PTB, 1981, ACTA OTO-LARYNGOL, V91, P9, DOI 10.3109/00016488109138476 KENNELLY PJ, 1991, J BIOL CHEM, V266, P1555 KOCHIAN LV, 1992, PLANTA, V188, P601, DOI 10.1007/BF00197055 KUHTREIBER WM, 1990, J CELL BIOL, V110, P1565, DOI 10.1083/jcb.110.5.1565 Lim D J, 1981, Scand Audiol Suppl, V14 Suppl, P139 LIU J, 1995, AUDIT NEUROSCI, V1, P331 MARCUS DC, 1997, IN PRESS AM J PHYSL Marcus Daniel C., 1996, Keio Journal of Medicine, V45, P301 MARCUS DC, 1986, AM J PHYSIOL, V251, pC662 MARCUS DC, 1994, BIOPHYS J, V66, P1939 MARCUS DC, 1994, HEARING RES, V73, P101, DOI 10.1016/0378-5955(94)90287-9 MARCUS DC, 1994, AM J PHYSIOL, V267, pC857 MARTIN F, 1994, HEARING RES, V81, P33, DOI 10.1016/0378-5955(94)90150-3 MOREL F, 1986, PHYSIOL REV, V66, P377 Neyroud N, 1997, NAT GENET, V15, P186, DOI 10.1038/ng0297-186 Pozo D, 1996, BBA-MOL CELL RES, V1312, P249, DOI 10.1016/0167-4889(96)00044-4 SAKAGAMI M, 1991, HEARING RES, V56, P168, DOI 10.1016/0378-5955(91)90166-7 Sanguinetti MC, 1996, NATURE, V384, P80, DOI 10.1038/384080a0 SCHACHT J, 1985, HEARING RES, V20, P9, DOI 10.1016/0378-5955(85)90053-X SHEN Z, 1997, ASS RES OTOLARYNGOL, V20, P172 Shen ZJ, 1997, AUDIT NEUROSCI, V3, P215 SUNOSE H, 1994, HEARING RES, V80, P86, DOI 10.1016/0378-5955(94)90012-4 Sunose H, 1997, J MEMBRANE BIOL, V156, P25, DOI 10.1007/s002329900184 SUNOSE H, 1993, AM J PHYSIOL, V265, pC72 TAKEUCHI S, 1992, HEARING RES, V61, P86, DOI 10.1016/0378-5955(92)90039-P Takeuchi S, 1996, J MEMBRANE BIOL, V150, P47, DOI 10.1007/s002329900029 VARNUM MD, 1993, P NATL ACAD SCI USA, V90, P11528, DOI 10.1073/pnas.90.24.11528 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X WALSH KB, 1988, SCIENCE, V242, P67, DOI 10.1126/science.2845575 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WANGEMANN P, 1992, HEARING RES, V62, P149, DOI 10.1016/0378-5955(92)90180-U Wangemann Philine, 1996, Journal of General Physiology, V108, p31A WANGEMANN P, 1995, J MEMBRANE BIOL, V147, P263 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 Wangemann P, 1996, HEARING RES, V100, P201, DOI 10.1016/0378-5955(96)00127-X YAMAGISHI T, 1994, EUR J PHARMACOL, V251, P253, DOI 10.1016/0014-2999(94)90407-3 ZAJIC G, 1983, HEARING RES, V10, P249, DOI 10.1016/0378-5955(83)90090-4 NR 50 TC 33 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 107 EP 116 DI 10.1016/S0378-5955(97)00152-4 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800013 PM 9447925 ER PT J AU Kil, J Warchol, ME Corwin, JT AF Kil, J Warchol, ME Corwin, JT TI Cell death, cell proliferation, and estimates of hair cell life spans in the vestibular organs of chicks SO HEARING RESEARCH LA English DT Article DE apoptosis; aminoglycoside; hair cell; cell life span; cell death; cell proliferation; turnover ID SERUM-FREE CULTURE; AVIAN INNER-EAR; ACOUSTIC TRAUMA; SUPPORTING CELLS; LATERAL LINE; SENSORY EPITHELIA; REGENERATION; APOPTOSIS; IDENTIFICATION; NECROSIS AB We have examined the level of on-going cell death in the chick vestibular epithelia using the TUNEL method and compared this to the rate of on-going cell proliferation. Utricles contained 22.6+/-6.8 TUNEL-labeled cells (mean+/-s.e.m.) while saccules contained 15.1+/-4.0, with approximately 90% being labeled hair cells. In separate experiments, chicks were given a single injection of BrdU and killed 2 h later. Utricles contained 116.9+/-6.5 BrdU-labeled cells (mean+/-s.e.m.) and saccules contained 41.0+/-2.2. After 24 h in culture, utricles treated with 1 mM neomycin contained 115.5+/-38.9 TUNEL-labeled cells, an increase of 270% over controls. After 48 h, neomycin-treated saccules contained 40.9+/-7.8, an increase of 152% over controls. The majority of labeled cells were in the hair cell layer. Thus, neomycin exposure results in an apoptotic death of hair cells. The in vivo data measured here were used to estimate that the average life span of utricular hair cells in young chickens is approximately 20 days, in sharp contrast to the life spans assumed for hair cells in humans. (C) 1997 Elsevier Science B.V. C1 UNIV VIRGINIA,MED CTR,DEPT OTOLARYNGOL HEAD & NECK SURG,CHARLOTTESVILLE,VA 22908. CR Bessis, 1964, CELLULAR INJURY, P287 BHAVE SA, 1996, ASS RES OT ABS, V22, P793 BICKNELL GR, 1995, BIOCHEM BIOPH RES CO, V207, P40, DOI 10.1006/bbrc.1995.1150 CARR VM, 1993, EXP NEUROL, V124, P308, DOI 10.1006/exnr.1993.1201 CORWIN JT, 1985, BIOL BULL, V169, P549 CORWIN JT, 1986, BIOL CHANGE OTOLARYN, P291 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 CORWIN JT, 1991, REGENERATION VERTEBR, V160, P101 CORWIN JT, 1991, ANNU REV NEUROSCI, V14, P301, DOI 10.1146/annurev.neuro.14.1.301 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 FREDELIUS L, 1990, ACTA OTO-LARYNGOL, V109, P76, DOI 10.3109/00016489009107417 GAVRIELI Y, 1992, J CELL BIOL, V119, P493, DOI 10.1083/jcb.119.3.493 GRAY EMG, 1996, ASS RES OT ABS, V22, P792 Hawkins Jr JE, 1976, HDB SENSORY PHYSIOLO, P707 JONES JE, 1996, J NEUROSCI, V16, P64 JONES JE, 1993, J NEUROSCI, V13, P1022 JORGENSEN JM, 1981, ACTA ZOOL-STOCKHOLM, V62, P171 JORGENSEN JM, 1988, NATURWISSENSCHAFTEN, V75, P319, DOI 10.1007/BF00367330 JORGENSEN JM, 1991, CIBA F SYMP, V160, P151 KATAYAMA A, 1993, J COMP NEUROL, V333, P28, DOI 10.1002/cne.903330103 KIL J, 1995, ASS RES OT ABSTR, V18, P82 Li L., 1995, AUDIT NEUROSCI, V1, P111 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 LIPPE WR, 1991, HEARING RES, V56, P206 MAJNO G, 1995, AM J PATHOL, V146, P3 Mason J. C., 1995, Society for Neuroscience Abstracts, V21, P396 OESTERLE EC, 1993, HEARING RES, V70, P85, DOI 10.1016/0378-5955(93)90054-5 OESTERLE EC, 1993, HEARING RES, V66, P213, DOI 10.1016/0378-5955(93)90141-M OPPENHEIM RW, 1991, ANNU REV NEUROSCI, V14, P453, DOI 10.1146/annurev.neuro.14.1.453 RAFF MC, 1992, NATURE, V356, P397, DOI 10.1038/356397a0 RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 ROBERSON DF, 1992, HEARING RES, V57, P166, DOI 10.1016/0378-5955(92)90149-H RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 WARCHOL ME, 1993, HEARING RES, V71, P28, DOI 10.1016/0378-5955(93)90018-V WARCHOL ME, 1995, NEUROREPORT, V6, P981, DOI 10.1097/00001756-199505090-00008 WARCHOL ME, 1995, ASS RES OT ABS, V18, P63 WEISLEDER P, 1992, EXP NEUROL, V115, P2, DOI 10.1016/0014-4886(92)90211-8 Wersall J., 1981, AMINOGLYCOSIDE OTOTO, P197 Wyllie A H, 1980, Int Rev Cytol, V68, P251 NR 40 TC 66 Z9 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 117 EP 126 DI 10.1016/S0378-5955(97)00166-4 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800014 PM 9447926 ER PT J AU Schwarz, DWF Puil, E AF Schwarz, DWF Puil, E TI Firing properties of spherical bushy cells in the anteroventral cochlear nucleus of the gerbil SO HEARING RESEARCH LA English DT Article DE cochlear nucleus; spherical bushy cell; membrane property; temporal code ID AUDITORY-NERVE FIBERS; EXCITATORY SYNAPTIC TRANSMISSION; HIPPOCAMPAL PYRAMIDAL CELLS; NEURAL SYNCHRONIZATION; CENTRAL PROJECTIONS; RELAY NEURONS; BRAIN-STEM; GUINEA-PIG; CURRENTS; HYPERPOLARIZATION AB In gerbils, spherical bushy cells (SBCs) encode low frequency sound signals into a temporal firing pattern. To investigate the support for the timing in this temporal code, we characterized the membrane electrical properties of visually identified SBCs in brainstem slices. A brief depolarizing subthreshold transient potential (TP) triggered, with relatively invariant latency, a single spike at the onset of a response to depolarizing current pulses. The activation of a subthreshold Na+-conductance, sensitive to blockade with tetrodotoxin, and a high threshold Ca2+-conductance, sensitive to blockade with Co2+ or Cd2+, accelerated the rising phase and amplified the TP. A K+-conductance, sensitive to blockade by 4-aminopyridine (4-AP, 50 mu M). Shaped the decay of the TP. Following a single spike, voltage-gated activation of transient and sustained K+-conductances suppressed any tendency to repetitively discharge. A reduction in either K+-conductance due to application of 4-AP or tetraethylammonium (TEA, 10 mM), converted the single spike mode to repetitive firing during the depolarizing pulses. A persistent, tetrodotoxin-sensitive Na+-conductance amplified steady-state depolarizing responses. A hyperpolarization-activated conductance, greatly decreased by extracellular Cs+ (3 mM) but resistant to Ba2+ (up to 1 mM), filtered the responses to hyperpolarizing current inputs. A depolarized membrane potential promoted repetitive firing in SBCs. This state, expected in pathophysiological conditions, would corrupt the temporal code. (C) 1997 Elsevier Science B.V. C1 UNIV BRITISH COLUMBIA,DEPT PHARMACOL & THERAPEUT,VANCOUVER,BC V6T 2B5,CANADA. RP Schwarz, DWF (reprint author), UNIV BRITISH COLUMBIA,DEPT SURG OTOLARYNGOL,ROTARY HEARING CTR,KOERNER PAVIL F-153,VANCOUVER,BC V6T 2B5,CANADA. CR BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387 Blauert J., 1983, SPATIAL HEARING BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406 CANT NB, 1986, J COMP NEUROL, V247, P457, DOI 10.1002/cne.902470406 CONNORS JA, 1990, J PHYSL, V213, P21 FRANKENHAEUSER B, 1957, J PHYSIOL-LONDON, V137, P218 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 HACKETT JT, 1982, NEUROSCIENCE, V7, P1455, DOI 10.1016/0306-4522(82)90257-3 HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 HARRISON JM, 1965, J COMP NEUROL, V124, P15, DOI 10.1002/cne.901240103 Hutcheon B, 1996, J NEUROPHYSIOL, V76, P698 Isaacson JS, 1996, J NEUROPHYSIOL, V76, P1566 ISAACSON JS, 1995, J NEUROPHYSIOL, V73, P964 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205 LLINAS RR, 1988, SCIENCE, V242, P1654, DOI 10.1126/science.3059497 MANIS PB, 1991, J NEUROSCI, V11, P2865 MCCORMICK DA, 1991, J NEUROPHYSIOL, V66, P1176 MCCORMICK DA, 1990, J PHYSIOL-LONDON, V431, P291 MCFARLANE S, 1991, J NEUROPHYSIOL, V66, P1380 NICHOLS CG, 1993, TRENDS PHARMACOL SCI, V14, P320 OERTEL D, 1983, J NEUROSCI, V3, P2043 OERTEL D, 1988, AUDITORY FUNCTION, P647 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 Otis T, 1996, J NEUROSCI, V16, P7496 PIJL S, 1995, J ACOUST SOC AM, V98, P886, DOI 10.1121/1.413514 REYES AD, 1994, J NEUROSCI, V14, P5352 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 Rothman JS, 1996, AUDIT NEUROSCI, V2, P47 ROTHMAN JS, 1993, J NEUROPHYSIOL, V70, P2562 ROUILLER EM, 1986, J COMP NEUROL, V249, P261, DOI 10.1002/cne.902490210 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 STORM JF, 1990, PROG BRAIN RES, V83, P161 STORM JF, 1987, J PHYSIOL-LONDON, V385, P733 STROHMANN B, 1994, J NEUROPHYSIOL, V71, P1351 Tennigkeit F, 1996, J NEUROPHYSIOL, V76, P3597 TRAVAGLI RA, 1994, J NEUROPHYSIOL, V71, P1308 TRUSSELL LO, 1993, NEURON, V10, P1185, DOI 10.1016/0896-6273(93)90066-Z WEBSTER DB, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P633 WEBSTER DOUGLAS B., 1962, PHYSIOL ZOOL, V35, P248 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 ZHANG S, 1994, J NEUROPHYSIOL, V72, P705 ZHANG S, 1994, J PHYSIOL-LONDON, V480, P123 NR 44 TC 26 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 127 EP 138 DI 10.1016/S0378-5955(97)00162-7 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800015 PM 9447927 ER PT J AU Lalwani, AK Han, JJ Walsh, BJ Zolotukhin, S Muzyczka, N Mhatre, AN AF Lalwani, AK Han, JJ Walsh, BJ Zolotukhin, S Muzyczka, N Mhatre, AN TI Green fluorescent protein as a reporter for gene transfer studies in the cochlea SO HEARING RESEARCH LA English DT Article DE green fluorescent protein; gene transfer; gene therapy; cochlea; guinea pig; adeno-associated virus ID MAMMALIAN-CELLS; IN-VIVO; ADENOASSOCIATED VIRUS; GUINEA-PIG; VECTOR; TRANSDUCTION; EXPRESSION; AUTOFLUORESCENCE; RETINA; MARKER AB This study examined the 'humanized, red-shifted' version of the jellyfish Aequorea victoria green fluorescent protein (hrGFP) as a novel reporter for in vivo gene transfer studies in the cochlea using adeno-associated virus (AAV) vectors. Approximately 10(5) AAV vectors containing the hrGFP reporter gene were infused over 2 days or 1 week into the cochlea of the guinea pig via an osmotic minipump. Saline infused, non-infused, as well as AAV-beta-galactosidase infused guinea pigs served as the negative controls, The hrGFP transgene expression was detected as moderate intensity fluorescence easily distinguished from the background. Increased fluorescence was seen in the spiral ganglion, spiral ligament, spiral limbus, organ of Corti, and Reissner's membrane of the AAV-hrGFP infused animals. Control animals showed minimal fluorescence throughout the cochlea. Comparison of the 2 day and 1 week AAV-hrGFP infused animals showed qualitatively increased fluorescence in the 2 day animals. Background autofluorescence in the stria vascularis was noted in both the experimental and the control animals, In addition, fluorescence was detected in the contralateral cochlea of the AAV-hrGFP infused animals. Subsequent PCR analysis confirmed the presence of viral particles in the AAV-hrGFP infused cochlea as well as in the brain and the contralateral cochlea. This finding has important implications for the eventual implementation of cochlear gene therapy. The results not only reinforce the need to assess the introduction and expression of foreign genes in the target cochlea but also consider issues of viral spread, safety, and modes of gene delivery. This study establishes hrGFP as an effective reporter of gene transfer and transgene expression in the cochlea. GFP's small gene size, stability, ease of detection, and potential for diverse biological applications will be invaluable for a variety of future gene transfer and expression studies in the cochlea. (C) 1997 Elsevier Science B.V. C1 UNIV FLORIDA,GENE THERAPY CTR,GAINESVILLE,FL 32610. UNIV FLORIDA,DEPT MOL GENET & MICROBIOL,GAINESVILLE,FL 32610. RP Lalwani, AK (reprint author), UNIV CALIF SAN FRANCISCO,DEPT OTOLARYNGOL HEAD & NECK SURG,EPSTEIN LABS,LAB MOL OTOL,SAN FRANCISCO,CA 94117, USA. CR AUBIN JE, 1979, J HISTOCHEM CYTOCHEM, V27, P36 BENNETT J, 1994, INVEST OPHTH VIS SCI, V35, P2535 BENSON RC, 1979, J HISTOCHEM CYTOCHEM, V27, P44 BOKMAN SH, 1981, BIOCHEM BIOPH RES CO, V101, P1372, DOI 10.1016/0006-291X(81)91599-0 CHALFIE M, 1994, SCIENCE, V263, P802, DOI 10.1126/science.8303295 CODY CW, 1993, BIOCHEMISTRY-US, V32, P1212, DOI 10.1021/bi00056a003 Doll RF, 1996, GENE THER, V3, P437 FLACH J, 1994, MOL CELL BIOL, V14, P8399 Geschwind MD, 1996, HUM GENE THER, V7, P173, DOI 10.1089/hum.1996.7.2-173 HEIM R, 1995, NATURE, V373, P663, DOI 10.1038/373663b0 IKAWA M, 1995, DEV GROWTH DIFFER, V37, P455 INOUYE S, 1994, FEBS LETT, V341, P277, DOI 10.1016/0014-5793(94)80472-9 KOTIN RM, 1994, HUM GENE THER, V5, P793, DOI 10.1089/hum.1994.5.7-793 Lalwani AK, 1996, GENE THER, V3, P588 LI TS, 1994, INVEST OPHTH VIS SCI, V35, P2543 MCCARTY DM, 1992, J VIROL, V66, P4050 MCLAUGHLIN SK, 1988, J VIROL, V62, P1963 MORIN JG, 1971, J CELL PHYSIOL, V77, P313, DOI 10.1002/jcp.1040770305 MUZYCZKA N, 1992, CURR TOP MICROBIOL, V158, P97 NISWENDER KD, 1995, J MICROSC-OXFORD, V180, P109 NOLAN GP, 1988, P NATL ACAD SCI USA, V85, P2603, DOI 10.1073/pnas.85.8.2603 PRASHER DC, 1992, GENE, V111, P229, DOI 10.1016/0378-1119(92)90691-H Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X RIZZUTO R, 1995, CURR BIOL, V5, P635, DOI 10.1016/S0960-9822(95)00128-X Sambrook J., 1989, MOL CLONING LAB MANU SHIMOMURA O, 1979, FEBS LETT, V104, P220, DOI 10.1016/0014-5793(79)80818-2 WANG SX, 1994, NATURE, V369, P400, DOI 10.1038/369400a0 Ward W. W., 1981, BIOLUMINESCENCE CHEM, P235 WARD WW, 1980, PHOTOCHEM PHOTOBIOL, V31, P611, DOI 10.1111/j.1751-1097.1980.tb03755.x Zolotukhin S, 1996, J VIROL, V70, P4646 NR 30 TC 53 Z9 57 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 139 EP 147 DI 10.1016/S0378-5955(97)00151-2 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800016 PM 9447928 ER PT J AU Fitzakerley, JL Schaefer, KL Kitko, RA Manis, PB AF Fitzakerley, JL Schaefer, KL Kitko, RA Manis, PB TI Properties of cochlear nucleus neurons in primary culture SO HEARING RESEARCH LA English DT Article DE cochlear nucleus; primary culture; auditory brainstem; culture medium; whole-cell recording ID PHYSIOLOGICAL-RESPONSE PROPERTIES; DISSOCIATED CELL-CULTURE; XENOPUS SPINAL NEURONS; SERUM-FREE; COCHLEOVESTIBULAR GANGLION; HIPPOCAMPAL-NEURONS; CORTICAL-NEURONS; INTRACELLULAR-RECORDINGS; HORSERADISH-PEROXIDASE; NEUROTROPHIC FACTOR AB Dissociated primary cell cultures were derived from the cochlear nuclei (CN) of postnatal rats using standard techniques. Cultured cells differentiated morphologically, but their dendritic profiles were generally less specialized than those of CN cells in vivo. Physiologically, cultured cells could be divided into three classes: tonic, phasic and non-spiking cells, which differed in many of their fundamental biophysical properties. The percentage of cultured cells that spiked repetitively increased over time to a maximum of 85% at 6 days. However, the percentage of cells that produced action potentials decreased with time in culture, from 91% during he first 8 days to less than 40% after 9 days. CN cells were successfully cultured in both serum-supplemented and serum-free (Neurobasal) media. More neurons survived at low plating densities in Neurobasal than in medium containing serum, although neuronal survival was similar at higher densities. Few neurons raised in the serum-free medium were spontaneously active; other response properties were similar to those of cells grown in the presence of serum. Although differentiation of CN cells in culture did not completely mirror the in vivo developmental pattern, these experiments demonstrate that primary culture represents a viable method for the in vitro study of CN neurons. (C) 1997 Elsevier Science B.V. C1 JOHNS HOPKINS UNIV,SCH MED,CTR HEARING SCI,BALTIMORE,MD 21205. JOHNS HOPKINS UNIV,SCH MED,DEPT OTOLARYNGOL HEAD & NECK SURG,BALTIMORE,MD 21205. JOHNS HOPKINS UNIV,SCH MED,DEPT BIOMED ENGN & NEUROSCI,BALTIMORE,MD 21205. CR AHMED Z, 1988, DEV BRAIN RES, V40, P285, DOI 10.1016/0165-3806(88)90141-1 AIZENMAN Y, 1987, BRAIN RES, V406, P32, DOI 10.1016/0006-8993(87)90766-9 AVILA MA, 1993, DEV BIOL, V159, P266, DOI 10.1006/dbio.1993.1239 BANKER GA, 1979, J COMP NEUROL, V187, P469, DOI 10.1002/cne.901870302 BANKER GA, 1977, BRAIN RES, V126, P397, DOI 10.1016/0006-8993(77)90594-7 BAUGHMAN RW, 1991, CULTURING NERVE CELL, P227 BERTRAND D, 1986, INT J BIOMED COMPUT, V18, P193, DOI 10.1016/0020-7101(86)90016-4 BJARE U, 1992, PHARMACOL THERAPEUT, V53, P355, DOI 10.1016/0163-7258(92)90056-6 BOTTENSTEIN JE, 1979, P NATL ACAD SCI USA, V76, P514, DOI 10.1073/pnas.76.1.514 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 Brewer GJ, 1994, FOCUS, V16, P6 BREWER GJ, 1993, J NEUROSCI RES, V35, P567, DOI 10.1002/jnr.490350513 BUCHHALTER JR, 1991, BRAIN RES BULL, V26, P333, DOI 10.1016/0361-9230(91)90003-3 DEBUS E, 1983, DIFFERENTIATION, V25, P193 DESARMENIEN MG, 1993, J NEUROSCI, V13, P2575 DICHTER MA, 1978, BRAIN RES, V149, P279, DOI 10.1016/0006-8993(78)90476-6 EVANS EF, 1973, EXP BRAIN RES, V17, P402 FISCHER G, 1982, NEUROSCI LETT, V28, P325, DOI 10.1016/0304-3940(82)90079-9 FITZAKERLEY JL, 1994, ASS RES OT ABSTR, V17, P16 FITZAKERLEY JL, 1995, ASS RES OT ABSTR, V18, P128 FURSHPAN EJ, 1989, NEURON, V3, P199, DOI 10.1016/0896-6273(89)90033-0 GALLO V, 1986, J NEUROSCI RES, V15, P289, DOI 10.1002/jnr.490150302 GLADZICKI Z, 1991, INT J NEUROSCI, V56, P193 GOLDING NL, 1995, J NEUROSCI, V15, P3138 Gopal KV, 1996, ACTA OTO-LARYNGOL, V116, P697, DOI 10.3109/00016489609137909 Gopal KV, 1996, ACTA OTO-LARYNGOL, V116, P690, DOI 10.3109/00016489609137908 GU XN, 1994, J NEUROSCI, V14, P6325 Gurantz D, 1996, J NEUROSCI, V16, P3287 Hack N. J., 1996, Society for Neuroscience Abstracts, V22, P126 HALL DH, 1995, ASS RES OT ABSTR, V18, P95 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 HEGARTY JL, 1995, ASS RES OT ABSTR, V18, P177 HEMOND SG, 1992, ANAT REC, V232, P273, DOI 10.1002/ar.1092320212 HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P535 Hossain WA, 1996, EXP NEUROL, V138, P121, DOI 10.1006/exnr.1996.0052 HUETTNER JE, 1986, J NEUROSCI, V6, P3044 LEFEBVRE PP, 1991, BRAIN RES, V555, P75, DOI 10.1016/0006-8993(91)90862-P LEFEBVRE PP, 1990, BRAIN RES, V507, P254, DOI 10.1016/0006-8993(90)90279-K LEGENDRE P, 1982, J NEUROPHYSIOL, V48, P1121 Lin X., 1995, Society for Neuroscience Abstracts, V21, P398 LING DS, 1991, DEV BRAIN RES, V9, P99 LOCKERY SR, 1992, J NEUROSCI, V12, P2268 Lorente de No R., 1933, LARYNGOSCOPE, V43, P1 MANIS PB, 1990, J NEUROSCI, V10, P2338 MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208 MANIS PB, 1991, J NEUROSCI, V11, P2865 MCFARLANE S, 1993, J NEUROSCI, V13, P2591 MISGELD U, 1989, BRAIN RES, V492, P149, DOI 10.1016/0006-8993(89)90897-4 MO ZL, 1996, ASS RES OT ABSTR, V19, P75 MOU K, 1996, ASS RES OT ABSTR, V19, P11 NEALE EA, 1993, J NEUROSCI RES, V34, P54, DOI 10.1002/jnr.490340107 ODOWD DK, 1988, J NEUROSCI, V8, P792 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 OERTEL D, 1983, J NEUROSCI, V3, P2043 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 PATTERSON PH, 1978, ANNU REV NEUROSCI, V1, P1, DOI 10.1146/annurev.ne.01.030178.000245 PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 REPRESA J, 1993, DEV BIOL, V159, P257, DOI 10.1006/dbio.1993.1238 RHODE WS, 1986, J NEUROPHYSIOL, V56, P287 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 RHODE WS, 1983, J COMP NEUROL, V213, P426, DOI 10.1002/cne.902130407 ROMKJN HJ, 1988, BIOL CELL, V63, P263 ROUILLER EM, 1984, J COMP NEUROL, V225, P167, DOI 10.1002/cne.902250203 SANTOS-SACCHI J, 1993, J NEUROSCI, V13, P3599 SCHMECHEL DE, 1980, BRAIN RES, V181, P391, DOI 10.1016/0006-8993(80)90621-6 SCOTT BS, 1980, J NEUROBIOL, V11, P291, DOI 10.1002/neu.480110307 SIEBLER M, 1993, SYNAPSE, V14, P206, DOI 10.1002/syn.890140304 SMITH PH, 1987, J COMP NEUROL, V266, P360, DOI 10.1002/cne.902660305 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 Sobkowicz H M, 1993, Acta Otolaryngol Suppl, V502, P3 SOBKOWICZ HM, 1975, J NEUROCYTOL, V4, P543, DOI 10.1007/BF01351537 SPITZER NC, 1976, P NATL ACAD SCI USA, V73, P1641, DOI 10.1073/pnas.73.5.1641 STICHEL CC, 1991, DEV BRAIN RES, V64, P145, DOI 10.1016/0165-3806(91)90218-8 Taber-Pierce E, 1967, J COMP NEUROL, V131, P27 TRENKNER E, 1991, CULTURING NERVE CELL, P283 WU RL, 1994, J NEUROSCI, V14, P1677 WU SH, 1984, J NEUROSCI, V4, P1577 YANG J, 1993, DEV BRAIN RES, V71, P19, DOI 10.1016/0165-3806(93)90100-O ZHANG S, 1993, J NEUROPHYSIOL, V69, P1398 ZHANG S, 1993, J NEUROPHYSIOL, V69, P1409 ZHANG S, 1993, J NEUROPHYSIOL, V69, P1384 Zhou X., 1996, Hearing Research, V101, P187, DOI 10.1016/S0378-5955(96)00122-0 NR 82 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 148 EP 168 DI 10.1016/S0378-5955(97)00158-5 PG 21 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800017 PM 9447929 ER PT J AU Ruan, RS Leong, SK Yeoh, KH AF Ruan, RS Leong, SK Yeoh, KH TI Ototoxicity of sodium nitroprusside SO HEARING RESEARCH LA English DT Article DE hair cells; inner hair cells; outer hair cells; guinea pig; nitric oxide; sodium nitroprusside; L-NAME ID NITRIC-OXIDE SYNTHASE; GUINEA-PIG COCHLEA; KAINIC ACID; L-ARGININE; AGENTS; BRAIN; GANGLION; CELLS; RAT AB Nitric oxide (NO) not only has normal physiological roles like vasodilation and neurotransmission in the living organism, it could also have possible neurodestructive effects under certain pathological conditions. The present study aimed to determine whether direct exposure of guinea pig cochlea to a NO donor like sodium nitroprusside (SNP), or a nitric oxide synthase (NOS) inhibitor like N-G-nitro-L-arginine methyl ester (L-NAME), would cause damage to the auditory hair cells. A piece of gelfoam was placed on the round window of the right ear of adult albino guinea pigs. It was then soaked with 0.1 ml of SNP (3.4 mu M), 0.1 ml of L-NAME (9.3 mu M or 18.5 mu M) or 0.1 ml of injection water, the vehicle used to dissolve the above chemicals. Twelve animals receiving SNP were perfused 1 day, 2, 3 and 7 days later, with three animals being used for each survival period. Six animals receiving L-NAME were allowed to survive up to 7 days before perfusion. Eight animals receiving injection water or 0.45% saline were used as controls. With the scanning electron microscope, the inner and outer hair cells were counted over a 1 mm length of the basilar membrane in each turn of every cochlea. The results showed that, in animals treated with L-NAME at both concentrations stated, no significant loss of either inner or outer hair cells was noted in any part of the cochlea studied. However, as early as 1 day after SNP treatment, a striking loss of inner and outer hair cells was observed in the three lower turns of the cochlea. Damage to the outer hair cells was extended to the apical turn with increasing survival period, but no significant loss of inner hair cells was evident in the apical turn at any of the survival periods studied. To rule out the possibility that the effects were due to the presence of cyanide, a metabolite of SNP, hydroxycobalamin was introduced into the scala tympani of three animals through a cannula-osmotic pump device during SNP treatment. There was no significant difference in the results between the groups with and without hydroxycobalamin infusion 7 days after SNP treatment. The present study suggests that an excessive production of NO in the inner ear could lead to extensive loss of hair cells. (C) 1997 Elsevier Science B.V. C1 NATL UNIV SINGAPORE,DEPT ANAT,SINGAPORE 119260,SINGAPORE. RP Ruan, RS (reprint author), NATL UNIV SINGAPORE HOSP,DEPT OTOLARYNGOL,LOWER KENT RIDGE RD,SINGAPORE 119074,SINGAPORE. CR AMAEE FR, 1995, ACTA OTO-LARYNGOL, V115, P386, DOI 10.3109/00016489509139334 BECKMAN JS, 1990, P NATL ACAD SCI USA, V87, P1620, DOI 10.1073/pnas.87.4.1620 BRECHTELSBAUER PB, 1993, ASS RES OTOLARYNGOL, V368, pP92 BRECHTELSBAUER PB, 1995, OTOLARYNGOL HEAD NEC, V111, pP70 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T BRUNE B, 1989, J BIOL CHEM, V264, P8455 CHEN C, 1995, HEARING RES, V87, P1, DOI 10.1016/0378-5955(95)00071-B Dais CGD, 1996, HEARING RES, V99, P1 DAWSON TM, 1992, ANN NEUROL, V32, P297, DOI 10.1002/ana.410320302 DAWSON TM, 1991, P NATL ACAD SCI USA, V88, P7797, DOI 10.1073/pnas.88.17.7797 DAWSON VL, 1993, J NEUROSCI, V13, P2651 FESSENDEN JD, 1994, BRAIN RES, V668, P9, DOI 10.1016/0006-8993(94)90505-3 HIBBS JB, 1989, BIOCHEM BIOPH RES CO, V157, P2811 Hunter-Duvar I M, 1978, Acta Otolaryngol Suppl, V351, P3 JUIZ JM, 1989, HEARING RES, V40, P65, DOI 10.1016/0378-5955(89)90100-7 KADER A, 1993, STROKE, V24, P1709 KNOWLES RG, 1989, P NATL ACAD SCI USA, V86, P5159, DOI 10.1073/pnas.86.13.5159 Kong WJ, 1996, HEARING RES, V99, P22, DOI 10.1016/S0378-5955(96)00076-7 MONCADA S, 1991, PHARMACOL REV, V43, P109 OHLSEN A, 1993, ACTA OTO-LARYNGOL, V113, P55, DOI 10.3109/00016489309135767 OHLSEN KA, 1992, HEARING RES, V58, P19, DOI 10.1016/0378-5955(92)90004-7 PUEL JL, 1991, NEUROSCIENCE, V45, P63, DOI 10.1016/0306-4522(91)90103-U PUEL JL, 1991, HEARING RES, V51, P255, DOI 10.1016/0378-5955(91)90042-8 PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 PUJOL R, 1985, HEARING RES, V18, P145, DOI 10.1016/0378-5955(85)90006-1 RUAN RS, 1995, BRAIN RES, V698, P163, DOI 10.1016/0006-8993(95)00887-V ZDANSKI CJ, 1994, HEARING RES, V79, P39, DOI 10.1016/0378-5955(94)90125-2 NR 27 TC 17 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 169 EP 178 DI 10.1016/S0378-5955(97)00159-7 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800018 PM 9447930 ER PT J AU Carlile, S Leong, P Hyams, S AF Carlile, S Leong, P Hyams, S TI The nature and distribution of errors in sound localization by human listeners SO HEARING RESEARCH LA English DT Article DE sound localization; spectral cue; pinna; binaural processing ID AUDITORY SPACE; HEARING CONDITIONS; SPECTRAL CUES; TOPOGRAPHY; ACUITY; PLANE AB Measurement of localization performance will reflect errors that relate to the sensory processing of the cues to sound location and the errors associated with the method by which the subject indicates the perceived location. This study has measured the ability of human subjects to localize a short noise burst presented in the free field with the subject indicating the perceived location by pointing their nose towards the source. Subjects were first trained using a closed loop training paradigm which involved instantaneous feedback as to the accuracy of head pointing which resulted in the reduction of residual localization errors and a rapid acquisition of the task by the subjects. Once trained, 19 subjects localized between 4 and 6 blocks of 76 target locations. The data were pooled and the distribution of errors associated with each target location was examined using spherical methods. Errors in the localization estimates for about one third of the locations were rotationally symmetrical about their mean but the remaining locations were best described by an elliptical distribution (Kent distributed). For about one half of the latter locations the orientations of the directions of the greatest variance of the distributions were not aligned with the azimuth and elevation coordinates used for describing the spatial location of the targets. The accuracy (systematic errors) and the distribution of the errors (variance) in localization for our population of subjects were also examined for each test location. The size of the data set and the methods of analysis provide very reliable measures of important baseline parameters of human auditory localization. (C) 1997 Elsevier Science B.V. C1 UNIV SYDNEY,DEPT ELECT ENGN,SEDAL,SYDNEY,NSW 2006,AUSTRALIA. UNIV SYDNEY,INST BIOMED RES,SYDNEY,NSW 2006,AUSTRALIA. RP Carlile, S (reprint author), UNIV SYDNEY,DEPT PHYSIOL,AUDITORY NEUROSCI LAB,SYDNEY,NSW 2006,AUSTRALIA. CR BUTLER RA, 1992, PERCEPT PSYCHOPHYS, V51, P182, DOI 10.3758/BF03212242 BUTLER RA, 1977, J ACOUST SOC AM, V61, P1264, DOI 10.1121/1.381427 BUTLER RA, 1986, HEARING RES, V21, P67, DOI 10.1016/0378-5955(86)90047-X BUTLER RA, 1990, PERCEPTION, V19, P241, DOI 10.1068/p190241 CARLILE S, 1994, J ACOUST SOC AM, V95, P3445, DOI 10.1121/1.409965 CARLILE S, 1996, VIRTUAL AUDITORY SPA, pCH1 CARLILE S, 1987, HEARING RES, V31, P123, DOI 10.1016/0378-5955(87)90118-3 Carlile S, 1996, VIRTUAL AUDITORY SPA CARLILE S, 1996, VIRTUAL AUDITORY SPA, pCH2 CARLILE S, 1994, P AUST NEUROSCI SOC, V5, P31 CHUNG W, 1996, AUSTR C NEUR NETW CA, P150 DYE RH, 1994, J ACOUST SOC AM, V96, P2720, DOI 10.1121/1.411278 ERULKAR SD, 1972, PHYSIOL REV, V52, P238 Fisher NI, 1987, STAT ANAL SPHERICAL GILKEY RH, 1995, J VESTIBUL RES-EQUIL, V5, P487 GILKEY RH, 1995, BEHAV RES METH INSTR, V27, P1, DOI 10.3758/BF03203614 Good MD, 1996, J ACOUST SOC AM, V99, P1108, DOI 10.1121/1.415233 HAFTER ER, 1977, J ACOUST SOC AM, V61, P829, DOI 10.1121/1.381372 HAMMERSHOI D, 1994, BINAURAL AURALIZATIO, P1 HARTMANN WM, 1983, J ACOUST SOC AM, V74, P1380, DOI 10.1121/1.390163 KENT JT, 1982, J ROY STAT SOC B MET, V44, P71 LEONG PHW, 1997, UNPUT J NEUROSCI MET MAKOUS JC, 1990, J ACOUST SOC AM, V87, P2188, DOI 10.1121/1.399186 MIDDLEBROOKS JC, 1992, J ACOUST SOC AM, V92, P2607, DOI 10.1121/1.404400 OLDFIELD SR, 1986, PERCEPTION, V15, P67, DOI 10.1068/p150067 OLDFIELD SR, 1984, PERCEPTION, V13, P581, DOI 10.1068/p130581 OLDFIELD SR, 1984, PERCEPTION, V13, P601, DOI 10.1068/p130601 PERRETT S, 1995, PERCEPT PSYCHOPHYS, V57, P150, DOI 10.3758/BF03206501 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P868, DOI 10.1121/1.397558 NR 29 TC 79 Z9 79 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 179 EP 196 DI 10.1016/S0378-5955(97)00161-5 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800019 PM 9447931 ER PT J AU Braun, M AF Braun, M TI Frequency spacing of multiple spontaneous otoacoustic emissions shows relation to critical bands: a large-scale cumulative study SO HEARING RESEARCH LA English DT Article DE spontaneous otoacoustic emission; critical band; inferior colliculus; neural temporal order; olivocochlear efferent; outer hair cell ID OUTER HAIR-CELLS; SPONTANEOUS CELLULAR VIBRATIONS; GUINEA-PIG COCHLEA; SPECTRAL INTEGRATION; INFERIOR COLLICULUS; HEARING SENSITIVITY; SUPPRESSION; PREVALENCE; HUMANS; NOISE AB Multiple spontaneous otoacoustic emissions (SOAEs), recorded in one ear, are not randomly spaced on the frequency scale. Extent and origin of spacing order, however, are not clear. Therefore, the raw data of all human SOAE surveys were pooled, and the intervals of all possible emission pairs in each ear were in total outlined according to size on a distribution diagram (n = 5245, for intervals up to 2/3 octave). Prevalence was increased for intervals between the benchmarks of 1 and 2 critical bands (CB). This CB-2CB range was further characterized by preference of intervals with low-order frequency ratios like 5:4 or 6:5, whereas outside CB-2CB there were no such effects. The results are discussed in the context of current knowledge of the origin of critical bands. Experiments are proposed that test the hypothesis of an influence of the olivocochlear efferents on SOAE spacing. (C) 1997 Elsevier Science B.V. RP Braun, M (reprint author), PHYSIOL MUS RES, ADICKES STR 42, D-22607 HAMBURG, GERMANY. CR BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 Blanchet C, 1996, J NEUROSCI, V16, P2574 BRAUN M, 1993, BIOPHYSICS HAIR CELL, P31 BURNS EM, 1984, HEARING RES, V16, P271, DOI 10.1016/0378-5955(84)90116-3 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 DALLMAYR C, 1986, THESIS TU MUNICH DALLMAYR C, 1985, ACUSTICA, V59, P67 Dulon D, 1996, EUR J NEUROSCI, V8, P1945, DOI 10.1111/j.1460-9568.1996.tb01338.x EHRET G, 1985, SCIENCE, V227, P1245, DOI 10.1126/science.3975613 EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 Evans MG, 1996, J PHYSIOL-LONDON, V491, P563 FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 FRICK LR, 1988, EAR HEARING, V9, P190, DOI 10.1097/00003446-198808000-00004 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 Gold T., 1988, COCHLEAR MECHANISMS, P299 GREENWOO.DD, 1970, J ACOUST SOC AM, V47, P1022, DOI 10.1121/1.1912002 GUMMER M, 1988, HEARING RES, V36, P41, DOI 10.1016/0378-5955(88)90136-0 HAMMEL DR, 1983, THESIS U ILLINOIS UR JONES K, 1986, PERIPHERAL AUDITORY, P266 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2533 KEEFE DH, 1990, LECT NOTES BIOMATH, V87, P194 KEILSON SE, 1993, ACTA OTO-LARYNGOL, V113, P591, DOI 10.3109/00016489309135869 KHANNA SM, 1993, BRIT J AUDIOL, V27, P79, DOI 10.3109/03005369309077895 KOHLER W, 1986, ARCH OTO-RHINO-LARYN, V243, P43, DOI 10.1007/BF00457907 KOK MR, 1993, HEARING RES, V69, P115, DOI 10.1016/0378-5955(93)90099-M LANGNER G, 1992, UADITORY PHYSL PERCE, P241 Langner G, 1987, NEW FRONTIERS BRAIN, P122 LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633 LONG GR, 1986, PERIPHERAL AUDITORY, P213 LONG GR, 1991, J ACOUST SOC AM, V89, P1201, DOI 10.1121/1.400651 LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X LONG GR, 1994, COMP HEARING MAMMALS, P158 LONSBURYMARTIN BL, 1991, J ACOUST SOC AM, V89, P1749, DOI 10.1121/1.401009 LONSBURYMARTIN BL, 1990, ANN OTO RHINOL LARYN, V99, P3 Maison S, 1997, J NEUROPHYSIOL, V77, P1759 Malmierca MS, 1996, HEARING RES, V93, P167, DOI 10.1016/0378-5955(95)00227-8 McFadden D, 1996, HEARING RES, V97, P102 MCFADDEN D, 1993, HEARING RES, V71, P208, DOI 10.1016/0378-5955(93)90036-Z MCFADDEN D, 1995, HEARING RES, V85, P181, DOI 10.1016/0378-5955(95)00045-6 MCFADDEN D, 1993, P NATL ACAD SCI USA, V90, P11900, DOI 10.1073/pnas.90.24.11900 MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K MICHEYL C, 1995, ACTA OTO-LARYNGOL, V115, P178, DOI 10.3109/00016489509139286 Moore B. C. J., 1993, HUMAN PSYCHOPHYSICS, P56 MORLET T, 1995, HEARING RES, V90, P44, DOI 10.1016/0378-5955(95)00144-4 MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 NIENHUYS TGW, 1979, ACTA OTO-LARYNGOL, V88, P350, DOI 10.3109/00016487909137179 PENNER MJ, 1987, J SPEECH HEAR RES, V30, P396 PENNER MJ, 1993, HEARING RES, V68, P229, DOI 10.1016/0378-5955(93)90126-L PICKLES JO, 1979, J ACOUST SOC AM, V66, P1725, DOI 10.1121/1.383645 Probst R, 1990, Adv Otorhinolaryngol, V44, P1 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RUSSEL AF, 1992, THESIS U ILLINOIS UR SALDANA E, 1990, Society for Neuroscience Abstracts, V16, P716 Scharf B., 1970, F MODERN AUDITORY TH, V1, P159 SCHLOTH E, 1983, ACUSTICA, V53, P250 Shera CA, 1993, BIOPHYSICS HAIR CELL, P54 SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750 STRICKLAND EA, 1985, J ACOUST SOC AM, V78, P931, DOI 10.1121/1.392924 Talmadge C., 1993, BIOPHYSICS HAIR CELL, P25 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V VANDIJK P, 1994, J ACOUST SOC AM, V96, P163, DOI 10.1121/1.411438 VANHENGEL PWJ, 1993, BIOPHYSICS HAIR CELL, P47 vanHengel PWJ, 1996, J ACOUST SOC AM, V99, P3566, DOI 10.1121/1.414955 WABLE J, 1994, HEARING RES, V80, P141, DOI 10.1016/0378-5955(94)90105-8 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WHITEHEAD ML, 1991, HEARING RES, V53, P269, DOI 10.1016/0378-5955(91)90060-M WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012 WILSON JP, 1986, PERIPHERAL AUDITORY, P229 WIT HP, 1981, J ACOUST SOC AM, V70, P437, DOI 10.1121/1.386786 ZERLIN S, 1986, J ACOUST SOC AM, V79, P1612, DOI 10.1121/1.393297 ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 Zwicker E., 1990, PSYCHOACOUSTICS FACT NR 74 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 197 EP 203 DI 10.1016/S0378-5955(97)00160-3 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800020 PM 9447932 ER PT J AU Hallworth, R AF Hallworth, R TI Modulation of outer hair cell compliance and force by agents that affect hearing SO HEARING RESEARCH LA English DT Article DE outer hair cells; motility; overstimulation; osmotic challenge; salicylate ID GUINEA-PIG COCHLEA; MECHANICAL RESPONSES; MEMBRANE CAPACITANCE; TECTORIAL MEMBRANE; MENIERES-DISEASE; GATING CHARGE; SALICYLATE; MOTILITY; ELECTROMOTILITY; TRANSDUCTION AB Force generated by outer hair cells is thought to be an essential source of mechanical input to the normal cochlea. Many disease processes in the inner ear act via outer hair cells. It is therefore plausible that such disease processes modulate outer hair cell force generation. The force generated by an isolated, electrically stimulated outer hair cell against a load may be represented by an intrinsic motor and a passive axial stiffness in series. Thus modulation of outer hair cell force generation may occur either by action on the motor or indirectly by an action on cell stiffness. In this study, the effects of agents that affect hearing on outer hair cell stiffness and force generation have been examined. Overstimulation and hypoosmotic challenge caused cells to decrease in length and increase In stiffness. The force generated by a constant voltage stimulus increased consequent to the stiffness increase. Hyperosmotic challenge elicited a stiffness decrease and a force decrease. In contrast, salicylate caused a decrease in force without stiffness change. The results suggest that outer hair cell force generation in vivo may be modulated in at least two ways. (C) 1997 Elsevier Science B.V. RP Hallworth, R (reprint author), UNIV TEXAS,HLTH SCI CTR,DEPT OTOLARYNGOL HEAD & NECK SURG,SAN ANTONIO,TX 78284, USA. CR ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198 ASHMORE J, 1993, CURR BIOL, V3, P38, DOI 10.1016/0960-9822(93)90145-E ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CHAN E, 1997, IN PRESS NEUROSCIENC CLARK BA, 1990, PFLUG ARCH EUR J PHY, V415, P490, DOI 10.1007/BF00373629 COATS AC, 1981, ARCH OTOLARYNGOL, V107, P469 CODY AR, 1985, NATURE, V315, P662, DOI 10.1038/315662a0 CRIST JR, 1993, HEARING RES, V69, P194, DOI 10.1016/0378-5955(93)90107-C Dallos P, 1991, Curr Opin Neurobiol, V1, P215, DOI 10.1016/0959-4388(91)90081-H DIELER R, 1991, J NEUROCYTOL, V20, P637, DOI 10.1007/BF01187066 DOHLMANN GF, 1976, ARCH OTO-RHINO-LARYN, V212, P301, DOI 10.1007/BF00453678 DULON D, 1987, ARCH OTO-RHINO-LARYN, V244, P104, DOI 10.1007/BF00458558 EVANS BN, 1991, HEARING RES, V52, P288, DOI 10.1016/0378-5955(91)90019-6 FITZGERALD JJ, 1993, HEARING RES, V67, P147, DOI 10.1016/0378-5955(93)90242-S Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727 Hallworth R, 1995, J NEUROPHYSIOL, V74, P2319 HARADA N, 1993, BRAIN RES, V614, P205, DOI 10.1016/0006-8993(93)91036-R HOLLEY MC, 1988, PROC R SOC SER B-BIO, V232, P413, DOI 10.1098/rspb.1988.0004 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HRADA N, 1993, ACTA OTOLARYNGOL S, V500, P39 IWASA KH, 1992, J ACOUST SOC AM, V92, P3169, DOI 10.1121/1.404194 IWASA KH, 1993, BIOPHYS J, V65, P492 Kakehata S, 1996, J NEUROSCI, V16, P4881 KAKEHATA S, 1995, BIOPHYS J, V68, P2190 Klockhoff I, 1966, Acta Otolaryngol, V61, P459, DOI 10.3109/00016486609127084 KUJAWA SG, 1992, HEARING RES, V64, P73, DOI 10.1016/0378-5955(92)90169-N LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6 MAMMANO F, 1993, NATURE, V365, P838, DOI 10.1038/365838a0 MCFADDEN D, 1984, HEARING RES, V16, P251, DOI 10.1016/0378-5955(84)90114-X MCFADDEN D, 1983, HEARING RES, V9, P295, DOI 10.1016/0378-5955(83)90033-3 MURUGASU E, 1994, AUDIT NEUROSCI, V1, P117 PUEL JL, 1990, OTOLARYNG HEAD NECK, V102, P66 REUTER G, 1990, HEARING RES, V43, P219, DOI 10.1016/0378-5955(90)90230-M RUSSELL IJ, 1995, AUDIT NEUROSCI, V1, P309 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E Sziklai I, 1997, ACTA OTO-LARYNGOL, V117, P222, DOI 10.3109/00016489709117775 TUNSTALL MJ, 1995, J PHYSIOL-LONDON, V485, P739 ZWISLOCKI JJ, 1979, SCIENCE, V204, P639, DOI 10.1126/science.432671 NR 43 TC 31 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 204 EP 212 DI 10.1016/S0378-5955(97)00167-6 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800021 PM 9447933 ER PT J AU Shimozono, M Scofield, MA Wangemann, P AF Shimozono, M Scofield, MA Wangemann, P TI Functional evidence for a monocarboxylate transporter (MCT) in strial marginal cells and molecular evidence for MCT1 and MCT2 in stria vascularis SO HEARING RESEARCH LA English DT Article DE H+/monocarboxylate-cotransporter; 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein; stria vascularis; reverse-transcription polymerase chain reaction ID INTRACELLULAR PH INDICATOR; CDNA CLONING; INHIBITOR SPECIFICITY; LACTATE TRANSPORTER; GLUCOSE-TRANSPORTER; NA+/H+ EXCHANGER; K+ SECRETION; INNER-EAR; ERYTHROCYTES; KINETICS AB The transport of lactate, pyruvate and other monocarboxylates across plasma membranes of metabolically active cells such as strial marginal cells (SMC) may be important under aerobic conditions as well as under ischemic and hypoxic conditions. This study addresses the question whether SMC from the gerbil contain a membrane transport mechanism for monocarboxylates. The type of transporter was identified in functional studies by monitoring uptake of monocarboxylates into SMC through measurement of the cytosolic pH (pH(i)) with the pH-sensitive dye 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein(BCECF). Further, subtypes of the functionally identified transporter which are present in stria vascularis were identified as transcripts by cloning and sequencing the reverse-transcription polymerase chain reaction (RT-PCR) products. All functional experiments were performed under nominally HCO3--free conditions. The monocarboxylates acetate and pyruvate (each 20 mM) induced an acidification of pH(i). In contrast, the dicarboxylate malonate (20 mM) had no significant effect on pH(i). alpha-Cyano-4-hydroxycinnamate (CHC; 5 mM), a blocker of H+/ monocarboxylate(-) cotransporter (MCT), reduced reversibly the acidification induced by 5 mM pyruvate. In contrast, 1 mu M DIDS, a blocker of band-3 protein, had no significant effect on the acidification induced by 20 mM acetate. The presence of the transcripts for each of the MCT subtypes, MCT1 and MCT2, was determined by RT-PCR of stria vascularis from gerbil. RT-PCR performed with primers for the MCT1 and MCT2 subtypes on total RNA from stria vascularis revealed PCR products of the predicted sizes. Sequence analysis confirmed that amplified MCT1 and MCT2 cDNA fragments encoded a nucleotide sequence of MCT1 and MCT2, respectively. These observations suggest that SMC contain a MCT and that stria vascularis contains RNA for the subtypes MCT1 and MCT2 subtypes. (C) 1997 Elsevier Science B.V. C1 BOYS TOWN NATL RES HOSP,CELL PHYSIOL LAB,OMAHA,NE 68131. CREIGHTON UNIV,DEPT PHARMACOL,OMAHA,NE 68178. RI Wangemann, Philine/N-2826-2013 CR CAHN RD, 1962, SCIENCE, V136, P962, DOI 10.1126/science.136.3520.962 Carpenter L, 1996, BBA-BIOMEMBRANES, V1279, P157, DOI 10.1016/0005-2736(95)00254-5 CARPENTER L, 1994, BIOCHEM J, V304, P751 DEUTICKE B, 1978, BIOCHIM BIOPHYS ACTA, V507, P137, DOI 10.1016/0005-2736(78)90381-4 EDLUND GL, 1988, BIOCHEM J, V249, P117 FEVE B, 1994, P NATL ACAD SCI USA, V91, P5677, DOI 10.1073/pnas.91.12.5677 GARCIA CK, 1994, CELL, V76, P858 GARCIA CK, 1995, J BIOL CHEM, V270, P1843 GARCIA CK, 1994, GENOMICS, V23, P500, DOI 10.1006/geno.1994.1532 GREENBAU.AL, 1971, ARCH BIOCHEM BIOPHYS, V143, P617, DOI 10.1016/0003-9861(71)90247-5 HALESTRAP AP, 1976, BIOCHEM J, V156, P193 Huang SG, 1996, BIOCHEMISTRY-US, V35, P16806, DOI 10.1021/bi960989v ITO M, 1993, HEARING RES, V71, P230, DOI 10.1016/0378-5955(93)90039-4 Jackson VN, 1996, J BIOL CHEM, V271, P861 JACKSON VN, 1995, BBA-BIOMEMBRANES, V1238, P193, DOI 10.1016/0005-2736(95)00160-5 JACKSON VN, 1996, X97445 GENB EMBL KAMBAYASHI J, 1982, HEARING RES, V7, P105, DOI 10.1016/0378-5955(82)90084-3 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KINOSHITA T, 1992, ANAL BIOCHEM, V162, P156 Lotz P, 1968, Arch Klin Exp Ohren Nasen Kehlkopfheilkd, V192, P237, DOI 10.1007/BF00404159 MARCUS DC, 1978, LARYNGOSCOPE, V88, P1825 NAKAZAWA K, 1995, HEARING RES, V82, P93 POOLE RC, 1993, AM J PHYSIOL, V264, pC761 SCHEIBE F, 1985, HEARING RES, V17, P61, DOI 10.1016/0378-5955(85)90131-5 SHEN Z, 1995, J MEMBRANE BIOL, V146, P283 SHIMOZONO M, 1997, ASS RES OTOLARYNGOL, V20, P172 THALMANN R, 1972, LARYNGOSCOPE, V82, P2249, DOI 10.1288/00005537-197212000-00013 THALMANN R, 1971, LARYNGOSCOPE, V81, P1245, DOI 10.1288/00005537-197108000-00008 TILMANN M, 1991, PFLUG ARCH EUR J PHY, V418, P556, DOI 10.1007/BF00370571 WALTER A, 1984, J MEMBRANE BIOL, V77, P255, DOI 10.1007/BF01870573 WANG XM, 1994, AM J PHYSIOL-HEART C, V267, pH1759 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wangemann P, 1996, HEARING RES, V94, P94, DOI 10.1016/0378-5955(96)00008-1 WANGEMANN P, 1993, HEARING RES, V69, P107, DOI 10.1016/0378-5955(93)90098-L NR 34 TC 8 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 213 EP 222 DI 10.1016/S0378-5955(97)00165-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800022 PM 9447934 ER PT J AU Suzuki, H Furukawa, M Takasaka, T AF Suzuki, H Furukawa, M Takasaka, T TI Quantitative uronic acid analysis of the otoconial membrane of the guinea pig SO HEARING RESEARCH LA English DT Article DE uronic acid; otoconial membrane; methanolysis; thermolysin; reversed-phase high-performance liquid chromatography; glycosaminoglycan ID PERFORMANCE LIQUID-CHROMATOGRAPHY; TECTORIAL MEMBRANE; INNER-EAR; KERATAN SULFATE; CONTAINING GLYCOSAMINOGLYCANS; PROTEOGLYCANS; LOCALIZATION; POLYSACCHARIDES; METHANOLYSIS; RATS AB Histochemical and biochemical studies have shown that the otoconial membrane, as well as the tectorial membrane and the cupula, contains glycoproteins and proteoglycans. However, uronic acids, which are essential elements of glycosaminoglycans (GAGs), have not so far been directly detected or quantitatively measured in inner ear samples. In the present study, we quantitatively analyzed the glucuronic acid (GlcA) content of the otoconial membrane of the guinea pig by methanolysis combined with reversed-phase high-performance liquid chromatography (RP-HPLC). The utricular otoconial membrane was treated with thermolysin to separate the supernatant (OM-sup; gelatinous layer) and precipitate (OM-ppt; otoconia). The samples were then subjected to methanolysis followed by brief TFA hydrolysis, incubated with 1-phenyl-3-methyl-5-pyrazolone for labeling, and then analyzed by RP-HPLC coupled with the detection of UV absorbance at 245 nm. The GlcA contents of OM-sup and OM-ppt were 2.1 and 5.8 pmol/100 ng protein, respectively. Based on this result, GlcA-containing GAGs estimated as (GlcA+monosulfo-N-acetylhexosamine), would be 1.0% of protein in OM-sup and 2.6% of protein in OM-ppt, indicating that this type of glycoconjugate is a minor component in both fractions. It is, accordingly, presumed that both the gelatinous layer and otoconia of the otoconial membrane have totally different properties from those of the tectorial membrane and cartilaginous matrix, which contain abundant GAGs. (C) 1997 Elsevier Science B.V. RP Suzuki, H (reprint author), TOHOKU UNIV,SCH MED,DEPT OTOLARYNGOL,AOBA KU,1-1 SEIRYO MACHI,SENDAI,MIYAGI 98077,JAPAN. CR Aaron RK, 1996, J ORTHOPAED RES, V14, P582, DOI 10.1002/jor.1100140412 ALLEN G, 1981, LAB TECHNIQUES BIOCH, P43 BELANGER LF, 1956, SCIENCE, V123, P1074, DOI 10.1126/science.123.3207.1074 BELANGER LF, 1953, SCIENCE, V118, P520, DOI 10.1126/science.118.3070.520 BITTER T, 1962, ANAL BIOCHEM, V4, P330, DOI 10.1016/0003-2697(62)90095-7 CHAMBERS RE, 1971, BIOCHEM J, V125, P1009 DERUITER GA, 1992, ANAL BIOCHEM, V207, P176, DOI 10.1016/0003-2697(92)90520-H FERMIN CD, 1995, CELL MOL BIOL, V41, P577 FERMIN CD, 1993, MICROSC RES TECHNIQ, V25, P297, DOI 10.1002/jemt.1070250406 GRANT ME, 1972, NEW ENGL J MED, V286, P194, DOI 10.1056/NEJM197201272860406 HONDA S, 1989, ANAL BIOCHEM, V180, P351, DOI 10.1016/0003-2697(89)90444-2 Hultcrantz M, 1996, ACTA OTO-LARYNGOL, V116, P25, DOI 10.3109/00016489609137708 IURATO S, 1960, Z ZELLFORSCH MIK ANA, V52, P105, DOI 10.1007/BF00344642 KAZAMA T, 1992, HISTOCHEM J, V24, P747, DOI 10.1007/BF01460827 KENNEDY JF, 1979, PROTEOGLYCANS BIOL C, P97 KHALKHALIELLIS Z, 1987, HEARING RES, V25, P185, DOI 10.1016/0378-5955(87)90090-6 Lim D J, 1973, Ann Otol Rhinol Laryngol, V82, P23 MUNYER PD, 1994, HEARING RES, V79, P83, DOI 10.1016/0378-5955(94)90129-5 MUNYER PD, 1991, HEARING RES, V52, P369, DOI 10.1016/0378-5955(91)90026-6 POTE KG, 1993, BIOCHEMISTRY-US, V32, P5017, DOI 10.1021/bi00070a007 PRIETO JJ, 1990, HEARING RES, V45, P283, DOI 10.1016/0378-5955(90)90127-B QUIGLEY ME, 1994, ANALYST, V119, P1511, DOI 10.1039/an9941901511 RICHARDSON GP, 1987, HEARING RES, V25, P45, DOI 10.1016/0378-5955(87)90078-5 ROSS MD, 1985, AUDITORY BIOCH, P500 SAITO H, 1970, ACTA OTO-LARYNGOL, V69, P333, DOI 10.3109/00016487009123373 SALAMAT MS, 1980, ANN OTO RHINOL LARYN, V84, P22 SANTI PA, 1990, J ELECTRON MICR TECH, V15, P293, DOI 10.1002/jemt.1060150308 SANTI PA, 1986, HEARING RES, V23, P153, DOI 10.1016/0378-5955(86)90012-2 SHRADER RE, 1973, TERATOLOGY, V8, P257, DOI 10.1002/tera.1420080305 SUZUKI H, 1995, HEARING RES, V87, P32, DOI 10.1016/0378-5955(95)00075-F SUZUKI H, 1992, HEARING RES, V60, P45, DOI 10.1016/0378-5955(92)90057-T TACHIBANA M, 1992, HEARING RES, V62, P11, DOI 10.1016/0378-5955(92)90198-V TAKEMURA T, 1994, HEARING RES, V79, P99, DOI 10.1016/0378-5955(94)90131-7 THALMANN I, 1993, ARCH BIOCHEM BIOPHYS, V307, P391, DOI 10.1006/abbi.1993.1605 WISLOCKI GB, 1955, J ANAT, V89, P3 NR 35 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 223 EP 228 DI 10.1016/S0378-5955(97)00164-0 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800023 PM 9447935 ER PT J AU vanDijk, P Wit, HP Segenhout, JM AF vanDijk, P Wit, HP Segenhout, JM TI Dissecting the frog inner ear with Gaussian noise .1. Application of high-order Wiener-kernel analysis SO HEARING RESEARCH LA English DT Article DE frog; inner ear; VIIIth nerve; Wiener kernel; polynomial correlation; nonlinearity ID AUDITORY-NERVE FIBERS; HAIR-CELLS; RESPONSES; FREQUENCY; BULLFROG; NEURONS; PAPILLA; LIZARD AB Wiener kernel analysis was used to characterize the auditory pathway from tympanic membrane to single primary auditory nerve fibers in the European edible frog, Rana esculenta. Nerve fiber signals were recorded in response to white Gaussian noise. By cross-correlating the noise stimulus and the nerve fiber response, we computed (1) the full second-order Wiener kernel, and (2) the diagonals of the zeroth-to fourth-order Wiener kernels. These diagonals are usually referred to as polynomial correlation functions. The measured Wiener kernels were fitted with a 'sandwich' model. A new fitting procedure was used to compute the response characteristics of(1) the first filter, (2) the static nonlinearity, and (3) the second filter, which form the functional components of the model. The first filter is a bandpass filter. In the majority of low frequency fibers, with best excitatory frequency (BEF) < 800 Hz, this filter was tuned to two frequencies. This dual tuning mechanism gives rise to 'off-diagonal' components in the second-order Wiener kernel. The static nonlinearity resembles a rectifier, and is dominated by second-order (quadratic) nonlinearity. As a function of BEF, the shape of the nonlinearity changes systematically. Finally, the last filter in the model was a low pass filter. Across fibers, its cutoff frequency(f-3dB) ranged from 106 to 434 Hz. (C) 1997 Elsevier Science B.V. RP vanDijk, P (reprint author), UNIV GRONINGEN HOSP,ENT DEPT,POB 30-001,NL-9700 RB GRONINGEN,NETHERLANDS. RI Van Dijk, Pim/E-8019-2010 OI Van Dijk, Pim/0000-0002-8023-7571 CR AERTSEN AMHJ, 1981, BIOL CYBERN, V42, P145, DOI 10.1007/BF00336732 AERTSEN AMHJ, 1981, BIOL CYBERN, V42, P133, DOI 10.1007/BF00336731 BENEDIX JH, 1994, J ACOUST SOC AM, V96, P2738, DOI 10.1121/1.411280 Capranica R.R., 1980, P139 COREY DP, 1983, J NEUROSCI, V3, P962 CORNELIS JG, 1980, P IEEE, V68, P931, DOI 10.1109/PROC.1980.11759 DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704 de BOER E., 1967, J AUD RES, V7, P209 DEBOER E, 1976, P IEEE, V64, P1443, DOI 10.1109/PROC.1976.10348 DEBOER E, 1979, P IEEE, V67, P317, DOI 10.1109/PROC.1979.11237 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 EGGERMONT JJ, 1993, HEARING RES, V66, P117 EVANS EF, 1977, PSYCHOPHYSICS PHYSL, P186 Flannery B. P., 1992, NUMERICAL RECIPES C HORST JW, 1990, J ACOUST SOC AM, V88, P2656, DOI 10.1121/1.399986 KIM PJ, 1994, J ACOUST SOC AM, V95, P410, DOI 10.1121/1.408335 KORENBERG MJ, 1973, 10TH P ANN ROCK MOUN, P47 LEWIS ER, 1977, 35 ANN M EL MICR SOC, P632 LEWIS ER, 1984, SCAN ELECTR MICROSC, V4, P1899 Marmarelis PZ, 1978, ANAL PHYSL SYSTEMS MOLLER AR, 1977, J ACOUST SOC AM, V62, P135 Narins P.M., 1983, HEARING PHYSL BASES, P70 PITCHFORD S, 1987, HEARING RES, V27, P75, DOI 10.1016/0378-5955(87)90027-X Press W. H., 1990, NUMERICAL RECIPES C Preyer S, 1996, Audiol Neurootol, V1, P3 RONKEN DA, 1991, J ACOUST SOC AM, V90, P2428, DOI 10.1121/1.402047 RONKEN DA, 1990, HEARING RES, V47, P63, DOI 10.1016/0378-5955(90)90167-N SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 Schetzen M., 1989, VOLTERRA WIENER THEO Simmons AM, 1996, AUDIT NEUROSCI, V2, P109 TURNER RG, 1987, HEARING RES, V26, P287, DOI 10.1016/0378-5955(87)90064-5 vanDijk P, 1997, HEARING RES, V114, P243, DOI 10.1016/S0378-5955(97)00169-X VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009 WEISS TF, 1988, HEARING RES, V33, P167, DOI 10.1016/0378-5955(88)90029-9 WICKESBERG RE, 1984, HEARING RES, V14, P155, DOI 10.1016/0378-5955(84)90014-5 Zakon H.H., 1988, P125 ZHANG L, 1997, DIVERSITY AUDITORY M, P472 NR 37 TC 22 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 229 EP 242 DI 10.1016/S0378-5955(97)00168-8 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800024 PM 9447936 ER PT J AU vanDijk, P Wit, HP Segenhout, JM AF vanDijk, P Wit, HP Segenhout, JM TI Dissecting the frog inner ear with Gaussian noise .2. Temperature dependence of inner ear function SO HEARING RESEARCH LA English DT Article DE frog; inner ear; VIIIth nerve; temperature; Wiener kernel; nonlinearity ID SPONTANEOUS OTOACOUSTIC EMISSIONS; RESPONSE PROPERTIES; RANA-ESCULENTA; HAIR-CELLS; BULLFROG AB The temperature dependence of the response of single primary auditory nerve fibers (n = 31) was investigated in the European edible frog, Rana esculenta (seven ears). Nerve fiber responses were analyzed with Wiener kernel analysis and polynomial correlation. The responses were described with a cascade model, consisting of a linear bandpass filter, a static nonlinearity, and a linear lowpass filter. From the computed Wiener kernels and the polynomial correlation functions, the characteristics of the three model components were obtained. With increasing temperature (1) tuning of the first filter increased in the majority (n = 16) of amphibian papilla fibers (best excitatory frequency, BEF < 1 kHz, n = 21) but remained unchanged in the majority (n = 10) of basilar papilla fibers (BEF > 1 kHz, n = 11), (2) the gain of the first filter remained unchanged, (3) the shape of nonlinear IO function remained unchanged, (4) the combined gain of the static nonlinearity and the second filter usually increased, but displayed considerable scatter across fibers (from -0.7 dB/degrees C to 3 dB/degrees C), and (5) the cutoff frequency of the second lowpass filter increases, with average 0.13 oct/ degrees C. The immunity of the shape of the nonlinearity is considered evidence of a temperature independent gating mechanism in the transduction channels. The temperature dependence of the second filter may have resulted from a decrease of the hair cell membrane resistance, but may also reflect changes in subsequent staging of nerve fiber excitation. (C) 1997 Elsevier Science B.V. RP vanDijk, P (reprint author), UNIV GRONINGEN HOSP,ENT DEPT,POB 30-001,NL-9700 RB GRONINGEN,NETHERLANDS. RI Van Dijk, Pim/E-8019-2010 OI Van Dijk, Pim/0000-0002-8023-7571 CR Abramowitz M., 1972, HDB MATH FUNCTIONS BENEDIX JH, 1994, J ACOUST SOC AM, V96, P2738, DOI 10.1121/1.411280 COREY DP, 1983, J NEUROSCI, V3, P962 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 GUMMER AW, 1983, HEARING RES, V12, P367, DOI 10.1016/0378-5955(83)90006-0 Hille B., 1992, IONIC CHANNELS EXCIT, V2nd Long GR, 1996, HEARING RES, V98, P22, DOI 10.1016/0378-5955(96)00057-3 MOFFAT AJM, 1976, J ACOUST SOC AM, V60, pS80, DOI 10.1121/1.2003543 OHYAMA K, 1992, 15TH MIDW RES M ASS, P150 PITCHFORD S, 1987, HEARING RES, V27, P75, DOI 10.1016/0378-5955(87)90027-X STIEBLER IB, 1990, HEARING RES, V46, P63, DOI 10.1016/0378-5955(90)90140-K vanDijk P, 1997, HEARING RES, V114, P229, DOI 10.1016/S0378-5955(97)00168-8 VANDIJK P, 1990, HEARING RES, V44, P231, DOI 10.1016/0378-5955(90)90083-2 vanDijk P, 1996, HEARING RES, V101, P102 VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2 WEISS TF, 1988, HEARING RES, V33, P167, DOI 10.1016/0378-5955(88)90029-9 WILSON JP, 1986, AUDITORY FREQUENCY S, P39 NR 17 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 243 EP 251 DI 10.1016/S0378-5955(97)00169-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800025 PM 9447937 ER PT J AU Dememes, D Ryzhova, I AF Dememes, D Ryzhova, I TI Ontogenesis of substance P in the rat peripheral vestibular system SO HEARING RESEARCH LA English DT Article DE substance P; vestibular receptor; ontogeny; rat; immunocytochemistry ID POSTNATAL DEVELOPMENTAL-CHANGES; GENE-RELATED PEPTIDE; GUINEA-PIG; END-ORGANS; INNER-EAR; CALRETININ IMMUNOREACTIVITY; INNERVATION PATTERNS; SYNAPSIN-I; MOUSE; DIFFERENTIATION AB Ontogenesis of substance P (SP) in rat vestibular receptors between gestational day 17 (GD 17) and postnatal day 17 (PD 17) was investigated by immunocytochemistry. SP immunoreactivity was first detected in the afferent nerve fibers of the utricular and saccular maculae on GD 19 and thereafter at birth (PD 0) in the cristae. SP immunoreactivity presented a characteristic pattern. It was strictly confined to the slopes of cristae and peripheral regions of the maculae. The pattern of SP immunoreactivity changed during the maturation of the afferent innervation pattern between PD 4 and PD 9, resulting in fewer fibers being stained. Then, the number of immunostained calyces and small bouton endings increased. On PD 17 the distribution of SP was similar to that of the adult stage. We suggest that SP, present in the epithelium at critical stages of development, may be involved in the maturation of vestibular receptors. (C) 1997 Elsevier Science B.V. C1 RUSSIAN ACAD SCI,IP PAVLOV PHYSIOL INST,LAB PHYSIOL RECEPT,ST PETERSBURG 199034,RUSSIA. RP Dememes, D (reprint author), INSERM,U432,UM 2,PL E BATAILLON,F-34095 MONTPELLIER 5,FRANCE. CR CURTHOYS IS, 1979, BRAIN RES, V167, P41, DOI 10.1016/0006-8993(79)90261-0 CURTHOYS IS, 1982, EXP BRAIN RES, V47, P295 DAM TV, 1993, RECEPTORS DEV NERVOU, V2, P55 Dechesne CJ, 1997, DEV BRAIN RES, V99, P103, DOI 10.1016/S0165-3806(96)00216-7 DECHESNE CJ, 1994, J COMP NEUROL, V346, P517, DOI 10.1002/cne.903460405 DEMEMES D, 1992, BRAIN RES, V582, P168, DOI 10.1016/0006-8993(92)90334-6 DESMADRYL G, 1992, EXP BRAIN RES, V89, P105 DESMADRYL G, 1991, DEV BRAIN RES, V64, P137, DOI 10.1016/0165-3806(91)90217-7 DESMADRYL G, 1992, DEV AUDITORY VESTIBU, P461 DESMADRYL G, 1990, DEV BRAIN RES, V52, P183, DOI 10.1016/0165-3806(90)90234-P Felix H, 1996, ACTA OTO-LARYNGOL, V116, P273, DOI 10.3109/00016489609137839 FERNANDEZ C, 1990, J NEUROPHYSIOL, V63, P767 FERNANDEZ C, 1988, J NEUROPHYSIOL, V60, P176 HOKFELT T, 1991, NEURON, V7, P867, DOI 10.1016/0896-6273(91)90333-U INAGAKI S, 1982, NEUROSCIENCE, V7, P251, DOI 10.1016/0306-4522(82)90165-8 Kusakabe T, 1996, DEV BRAIN RES, V96, P285 MBIENE JP, 1988, ANAT EMBRYOL, V177, P331, DOI 10.1007/BF00315841 MBIENE JP, 1986, J COMP NEUROL, V254, P271, DOI 10.1002/cne.902540210 MBIENE JP, 1989, CELL TISSUE RES, V255, P81 NORDEMAR H, 1983, ACTA OTO-LARYNGOL, V96, P447, DOI 10.3109/00016488309132731 OTSUKA M, 1993, PHYSIOL REV, V73, P229 SANS A, 1982, J COMP NEUROL, V206, P1, DOI 10.1002/cne.902060102 SCARFONE E, 1988, J NEUROSCI, V8, P4640 SCARFONE E, 1991, J NEUROSCI, V11, P1173 Scarfone E, 1996, NEUROSCIENCE, V75, P587, DOI 10.1016/0306-4522(96)00243-6 TANAKA M, 1989, BRAIN RES, V504, P31, DOI 10.1016/0006-8993(89)91593-X USAMI KS, 1995, ACTA OTOLARYNGOL S S, V520, P160 USAMI S, 1991, BRAIN RES, V555, P153, DOI 10.1016/0006-8993(91)90872-S Usami S, 1991, Acta Otolaryngol Suppl, V481, P166 Usami S, 1993, Acta Otolaryngol Suppl, V503, P127 YLIKOSKI J, 1984, ACTA OTO-LARYNGOL, V97, P523, DOI 10.3109/00016488409132930 YLIKOSKI J, 1989, ACTA OTO-LARYNGOL, V107, P417, DOI 10.3109/00016488909127533 YLIKOSKI J, 1984, J LARYNGOL OTOL, V98, P759, DOI 10.1017/S0022215100147413 NR 33 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 252 EP 258 DI 10.1016/S0378-5955(97)00174-3 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800026 PM 9447938 ER PT J AU Muller, M Smolders, JWT zumGottesberge, AMM Reuter, A Zwacka, RM Weiher, H Klinke, R AF Muller, M Smolders, JWT zumGottesberge, AMM Reuter, A Zwacka, RM Weiher, H Klinke, R TI Loss of auditory function in transgenic Mpvl7-deficient mice SO HEARING RESEARCH LA English DT Article DE Mpvl7; hearing; audiogram; degeneration; glomerulosclerosis; Alport's syndrome ID MOUSE MODEL; INNER-EAR; MPV17; GENE; DEGENERATION; STRAINS; NERVE AB The transgenic mouse strain Mpv17 develops severe morphological degeneration of the inner ear and nephrotic syndrome at a young age (Meyer zum Gottesberge et al., 1996; Weiher et al., 1990). The audiograms (1-32 kHz) of Mpv17-negative mice were determined from auditory brain stem responses in young (2 months) and old (7 months) animals. Audiograms of age-matched wildtype mice with the same genetic background, but wild-type at the Mpv17 locus, were also determined. Furthermore, young Mpv17-negative mice that carried a human Mpv17 homologue gene were studied. NMRI mice served as a reference for normal hearing. Mpv17-negative mice suffer from severe sensorineural hearing loss as early as 2 months after birth, In the old Mpv17-negative mice no responses could be elicited at all. The 2 month old wild-type mice had normal audiograms, at 7 months only high threshold responses were seen. The poor audiograms of the Mpv17-negative mice are assumed to be the functional correlate of the morphological degeneration of the cochlea described earlier (Meyer zum Gottesberge et al., 1996). The finding that 2 out of 4 Mpv17-negative mice with the human Mpv17 gene had normal audiograms, shows that the gene inactivation can be functionally compensated by the human Mpv17 gene product. (C) 1997 Elsevier Science B.V. C1 UNIV DUSSELDORF,HNO KLIN,FORSCHUNGSLAB,D-40255 DUSSELDORF,GERMANY. UNIV PENN,INST HUMAN GENE THERAPY,STELLA CHANCE LAB,PHILADELPHIA,PA 19104. FORSCHUNGSZENTRUM KARLSRUHE,INST GENET,D-76021 KARLSRUHE,GERMANY. RP Muller, M (reprint author), UNIV FRANKFURT KLINIKUM,INST PHYSIOL 3,THEODOR STERN KAI 7,D-60590 FRANKFURT,GERMANY. CR Alport A C, 1927, Br Med J, V1, P504 ARNOLD W, 1984, ANN OTO RHINOL LARYN, V93, P119 Dazert S, 1996, HEARING RES, V100, P101, DOI 10.1016/0378-5955(96)00100-1 KARASAWA M, 1993, HUM MOL GENET, V11, P1829 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 KIRSCH JP, 1993, HEARING RES, V67, P51, DOI 10.1016/0378-5955(93)90231-O zumGottesberge AMM, 1996, EUR ARCH OTO-RHINO-L, V253, P470 NETZER KO, 1993, KIDNEY INT, V43, P486, DOI 10.1038/ki.1993.71 SCHENKEL J, 1995, KIDNEY INT, V48, P80, DOI 10.1038/ki.1995.270 Schuknecht H. F., 1974, PATHOLOGY EAR SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 Trune DR, 1996, HEARING RES, V96, P41, DOI 10.1016/0378-5955(96)00017-2 Tryggvason K, 1996, Contrib Nephrol, V117, P154 VOSSIECK T, 1991, HEARING RES, V56, P93, DOI 10.1016/0378-5955(91)90158-6 WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J Weidauer H, 1976, Laryngol Rhinol Otol (Stuttg), V55, P6 WEIHER H, 1990, CELL, V62, P425, DOI 10.1016/0092-8674(90)90008-3 ZWACKA RM, 1994, EMBO J, V13, P5129 NR 18 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 259 EP 263 DI 10.1016/S0378-5955(97)00175-5 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800027 PM 9447939 ER PT J AU Liu, XG McPhee, G Seldon, HL Clark, GM AF Liu, XG McPhee, G Seldon, HL Clark, GM TI Histological and physiological effects of the central auditory prosthesis: surface versus penetrating electrodes SO HEARING RESEARCH LA English DT Article DE brainstem; cochlear nucleus; electrical stimulation; surface electrode; cat; guinea pig ID CHRONIC ELECTRICAL-STIMULATION; NORMAL-HEARING KITTENS; CENTRAL NERVOUS-SYSTEM; COCHLEAR NUCLEUS; SURGICAL IMPLANTATION; MICROELECTRODES; PARAMETERS; DAMAGE; CAT AB To rehabilitate profoundly deaf patients who are not suitable for cochlear implants, central auditory prostheses have been implanted. To compare two possible electrode configurations - penetrating and surface ones - electrical stimulation of the cochlear nucleus with both types of arrays was tested on guinea pigs and cats. Electrophysiological, autoradiographic and histological measures were used to study effects of the central auditory prostheses on the auditory pathway, The results showed that a successful electrically evoked auditory brainstem response could be recorded with both surface and penetrating electrodes in cats and guinea pigs. In guinea pigs the penetrating electrodes had advantages over surface arrays in the sense of lower thresholds and wider dynamic ranges. In cats penetrating electrodes showed lower thresholds than surface ones. In cats and guinea gigs stimulated with either surface or penetrating electrodes, evoked 2-deoxyglucose (2-DG) label was found in the auditory pathway from the cochlear nucleus to the inferior colliculus. No non-auditory tissues were found with evoked 2-DG label. Histological results showed that in subdivisions of the guinea pig cochlear nucleus stimulated with penetrating electrodes the neurone density was decreased, and the mean soma area was increased compared with the control side. In the cat, penetrating electrodes were associated only with increased mean soma area in parts of the stimulated cochlear nucleus. These results suggest that the physiological advantages of penetrating electrodes over surface ones were achieved with some trade-off in safety, especially in the guinea pig. (C) 1997 Elsevier Science B.V. RP Liu, XG (reprint author), UNIV MELBOURNE,AUSTALIAN BION EAR & HEARING RES INST,DEPT OTOLARYNGOL,32 GISBORNE ST,MELBOURNE,VIC 3002,AUSTRALIA. CR ABBAS PJ, 1991, HEARING RES, V51, P123, DOI 10.1016/0378-5955(91)90011-W AGNEW WF, 1986, EXP NEUROL, V92, P162, DOI 10.1016/0014-4886(86)90132-9 BRACKMANN DE, 1993, OTOLARYNG HEAD NECK, V108, P624 EDGERTON BJ, 1982, ANN OTO RHINOL LARYN, V91, P117 Eisenberg L S, 1987, J Rehabil Res Dev, V24, P9, DOI 10.1682/JRRD.1987.07.0009 ELKASHLAN HK, 1991, OTOLARYNG HEAD NECK, V105, P533 EVANS DA, 1990, LARYNGOSCOPE, V100, P128 Fisher G, 1961, ELECT SIMULATION BRA, P55 HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 HAMBRECHT TF, 1990, NEUROL PROSTHESIS, P1 HITSELBERGER WE, 1984, OTOLARYNG HEAD NECK, V92, P52 LASSMANN H, 1984, NEUROSCIENCE, V13, P691, DOI 10.1016/0306-4522(84)90089-7 Laszig R., 1995, Annals of Otology Rhinology and Laryngology, V104, P28 LIU X, 1997, IN PRESS ACTA OTOLAR Liu XG, 1997, ACTA OTO-LARYNGOL, V117, P363, DOI 10.3109/00016489709113408 MCCREERY DB, 1994, HEARING RES, V77, P105, DOI 10.1016/0378-5955(94)90258-5 MCCREERY DB, 1986, EXP NEUROL, V92, P147, DOI 10.1016/0014-4886(86)90131-7 MCCREERY DB, 1992, HEARING RES, V62, P42, DOI 10.1016/0378-5955(92)90201-W MCELVEEN JT, 1985, AM J OTOL S, V6, P88 MCMENEMEY WH, 1979, SYSTEMIC PATHOLOGY, V5, P2193 MERZENICH MM, 1982, BASES AUDITORY BRAIN, P400 NI DF, 1992, HEARING RES, V62, P63, DOI 10.1016/0378-5955(92)90203-Y NI DF, 1993, ACTA OTO-LARYNGOL, V113, P489, DOI 10.3109/00016489309135851 NIPARKO JK, 1989, ANN OTO RHINOL LARYN, V98, P965 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 PORTILLO F, 1943, ADV OTORHINOLARYNGOL, V48, P248 RANCK JB, 1975, BRAIN RES, V98, P417, DOI 10.1016/0006-8993(75)90364-9 SELDON HL, 1991, BRAIN RES, V551, P185, DOI 10.1016/0006-8993(91)90932-L SELDON HL, 1991, ARCH OTOLARYNGOL, V117, P1158 Shepherd R K, 1983, Acta Otolaryngol Suppl, V399, P19 SZELENYI Z, 1976, PFLUG ARCH EUR J PHY, V364, P123, DOI 10.1007/BF00585179 WARING MD, 1995, EVOKED POTENTIAL, V96, P338, DOI 10.1016/0168-5597(95)00022-K Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 YUEN TGH, 1981, NEUROSURGERY, V9, P292 NR 34 TC 18 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 1997 VL 114 IS 1-2 BP 264 EP 274 DI 10.1016/S0378-5955(97)00170-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YL018 UT WOS:A1997YL01800028 PM 9447940 ER PT J AU Poirier, P Jiang, H Lepore, F Guillemot, JP AF Poirier, P Jiang, H Lepore, F Guillemot, JP TI Positional, directional and speed selectivities in the primary auditory cortex of the cat SO HEARING RESEARCH LA English DT Article DE free-field stimulation; static-sound source; moving-sound source; cat; primary auditory cortex ID INFERIOR COLLICULUS NEURONS; SOUND SOURCE MOVEMENT; INTERAURAL PHASE; FUNCTIONAL TOPOGRAPHY; INTENSITY DIFFERENCES; CEREBRAL-CORTEX; SINGLE NEURONS; PRESSURE LEVEL; FREE FIELD; SENSITIVITY AB Responses of high-frequency primary auditory cortex (Al) neurons of the cat to noise stimulation were obtained in a quasianechoic chamber using a static and an apparently moving stimulus presented at similar azimuths. Simulated motion toward right or left as well as different simulated velocities were used. Under static stimulation, most units were contralateral-preferring followed by ipsilateral-and midline-preferring. Some were omnidirectional and a few were unclassifiable. Width of tuning was similar for contralateral-, ipsilateral-and midline-preferring units. Overall, about 25% were finely tuned (<20 degrees) and the remaining were broadly tuned (greater than or equal to 20 degrees). All cells sampled with static stimulation responded to apparent motion. About one quarter of the units were sensitive to the direction of the simulated moving noise in that they responded at least twice as much to one direction as to the other. Almost all directional contralateral-preferring units responded more when the apparent motion was directed toward ipsilateral azimuths, whereas all directional ipsilateral-preferring units responded preferentially to contralaterally oriented motion. In some units, up to five apparent speeds were tested. About half the units were not speed-selective (46%). The other cells were tuned to a preferential speed (40%), decreased their response as the apparent speed increased (10%) or displayed direction-dependent speed selectivity (4%). These results indicate that moving-sound sources are processed by some Al single units. C1 GRP RECH NEUROPHYSIOL EXPT,MONTREAL,PQ H3C 3J7,CANADA. UNIV MONTREAL,DEPT PSYCHOL,MONTREAL,PQ H3C 3J7,CANADA. UNIV QUEBEC,DEPT KINANTHROPOL,MONTREAL,PQ H3C 3P8,CANADA. CR AHISSAR M, 1992, J NEUROPHYSIOL, V67, P203 ALTMAN JA, 1970, EXP BRAIN RES, V10, P81, DOI 10.1007/BF00340520 ALTMAN JA, 1986, HEARING RES, V24, P243, DOI 10.1016/0378-5955(86)90023-7 ALTMAN JA, 1968, EXP NEUROL, V22, P13, DOI 10.1016/0014-4886(68)90016-2 ALTMAN JA, 1987, AUDITORY PATHWAY STR, P349 BARLOW HB, 1964, J PHYSIOL-LONDON, V173, P377 Berkley M. A., 1993, Society for Neuroscience Abstracts, V19, P551 BRUGGE JF, 1969, J NEUROPHYSIOL, V32, P1005 CLAREY JC, 1997, IN PRESS J NEUROPHYS EISENMAN LM, 1974, BRAIN RES, V75, P203, DOI 10.1016/0006-8993(74)90742-2 Evans E. F., 1968, HEARING MECHANISMS V, P272 GRANTHAM DW, 1989, PERCEPT PSYCHOPHYS, V45, P129, DOI 10.3758/BF03208047 GRANTHAM DW, 1979, PERCEPT PSYCHOPHYS, V26, P403, DOI 10.3758/BF03204166 Griffiths TD, 1996, NATURE, V383, P425, DOI 10.1038/383425a0 HALL JL, 1968, J ACOUST SOC AM, V43, P456, DOI 10.1121/1.1910852 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 Irvine DRF, 1996, J NEUROPHYSIOL, V75, P75 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 KITZES LM, 1980, J COMP NEUROL, V192, P455, DOI 10.1002/cne.901920306 KLUVER H, 1953, J NEUROPATH EXP NEUR, V12, P400 KUWADA S, 1979, SCIENCE, V206, P586, DOI 10.1126/science.493964 MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6 MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 PHILLIPS DP, 1981, HEARING RES, V4, P299, DOI 10.1016/0378-5955(81)90014-9 PHILLIPS DP, 1985, ANNU REV PSYCHOL, V36, P245 Poirier P., 1992, Society for Neuroscience Abstracts, V18, P149 POIRIER P, 1994, NEUROPSYCHOLOGIA, V32, P541, DOI 10.1016/0028-3932(94)90143-0 POIRIER P, 1993, BRAIN, V116, P53, DOI 10.1093/brain/116.1.53 RAJAN R, 1990, J NEUROPHYSIOL, V64, P872 RAUSCHECKER JP, 1989, BRAIN RES, V490, P56, DOI 10.1016/0006-8993(89)90430-7 REALE RA, 1986, J NEUROPHYSIOL, V56, P663 SAMSON FK, 1993, J NEUROPHYSIOL, V70, P492 SANCHEZLONGO LP, 1958, NEUROLOGY, V8, P119 SANCHEZLONGO LP, 1957, NEUROLOGY, V7, P655 SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442 SOVIJARV.AR, 1974, BRAIN RES, V73, P455, DOI 10.1016/0006-8993(74)90669-6 SPITZER MW, 1993, J NEUROPHYSIOL, V69, P1245 SPITZER MW, 1991, SCIENCE, V254, P721, DOI 10.1126/science.1948053 STUMPF E, 1992, EXP BRAIN RES, V88, P158, DOI 10.1007/BF02259137 WAGNER H, 1994, J NEUROPHYSIOL, V71, P1907 WAGNER H, 1992, J NEUROPHYSIOL, V68, P2063 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000 NR 44 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 1 EP 13 DI 10.1016/S0378-5955(97)00126-3 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600001 PM 9387982 ER PT J AU Leonova, EV Raphael, Y AF Leonova, EV Raphael, Y TI Organization of cell junctions and cytoskeleton in the reticular lamina in normal and ototoxically damaged organ of Corti SO HEARING RESEARCH LA English DT Article DE immunofluorescence; E-cadherin; catenin; cytoskeleton; organ of Corti; ototoxicity; guinea pig ID ADHESION MOLECULES; CADHERIN FUNCTION; XENOPUS-EMBRYOS; SENSORY CELLS; HAIR-CELLS; LOCALIZATION; EXPRESSION; MEMBRANE; TUBULIN; ULTRASTRUCTURE AB The reticular lamina creates an ion barrier, withstands mechanical stress in the organ of Corti and is able to maintain its integrity during and after severe hair cell loss. Tight junctions maintain the ionic gradient whereas adherens junctions and the cytoskeleton are responsible for the integrity and mechanical resistance of tissues. In this study we used immunofluorescence and electron microscopy to examine the distribution of proteins of right junctions (cingulin), adherens junctions (E-cadherin, alpha- and beta-catenin) and the cytoskeleton (actin, cytokeratin and tubulin) in whole-mounts of the normal and ototoxically damaged organ of Corti. In normal ears the proteins of adherens junctions were found in all cell types of the reticular lamina. We now demonstrate that all cells forming the reticular lamina partially overlap each other organizing extensive cell contacts with a complex three-dimensional shape. During scar formation, the tight junctions as well as adherens junctions between hair and supporting cells appeared in two distinct focal planes, which could help to preserve the ionic barrier and tissue integrity during hair cell degeneration. During scar formation all cytoskeletal structures in the reticular lamina were reorganized in a specific spatio-temporal pattern. We present a three-dimensional model of cell contact organization in the reticular lamina of normal ears and during scar formation. RP Leonova, EV (reprint author), UNIV MICHIGAN,KRESGE HEARING RES INST,DEPT OTOLARYNGOL,MSRB 3,ROOM 9303,1150 W MED CTR DR,ANN ARBOR,MI 48109, USA. CR BERGMANN JE, 1983, P NATL ACAD SCI-BIOL, V80, P1367, DOI 10.1073/pnas.80.5.1367 BILOZUR ME, 1989, CELL MOTIL CYTOSKEL, V14, P469, DOI 10.1002/cm.970140405 BOHNE BA, 1976, HEARING DAVIS ESSAYS, P85 CIFUENTESDIAZ C, 1995, MECH DEVELOP, V50, P85, DOI 10.1016/0925-4773(94)00327-J CITI S, 1989, J CELL SCI, V93, P107 DASILVA PP, 1982, CELL, V28, P441 DUFOUR S, 1994, J CELL BIOL, V127, P521, DOI 10.1083/jcb.127.2.521 DUVALL AJ, 1967, ANN OTO RHINOL LARYN, V76, P688 ENGSTROM H, 1958, INT REV CYTOL, V7, P535, DOI 10.1016/S0074-7696(08)62695-9 Engstrom H, 1966, STRUCTURAL PATTERN O FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Fuchs E, 1995, ANNU REV CELL DEV BI, V11, P123, DOI 10.1146/annurev.cellbio.11.1.123 GULLEY RL, 1976, J NEUROCYTOL, V5, P479, DOI 10.1007/BF01181652 GUMBINER BM, 1995, CURR OPIN CELL BIOL, V7, P634, DOI 10.1016/0955-0674(95)80104-9 Hasegawa M, 1996, J NEUROPATH EXP NEUR, V55, P424, DOI 10.1097/00005072-199604000-00005 HAWKINS JE, 1976, EFFECTS NOISE HEARIN, P91 Hawkins J E Jr, 1973, Adv Otorhinolaryngol, V20, P125 HERMISTON ML, 1995, J CELL BIOL, V129, P489, DOI 10.1083/jcb.129.2.489 HOLT CE, 1994, P NATL ACAD SCI USA, V91, P10844, DOI 10.1073/pnas.91.23.10844 KIMURA RS, 1975, INT REV CYTOL, V42, P173, DOI 10.1016/S0074-7696(08)60981-X KINTNER C, 1992, CELL, V69, P225, DOI 10.1016/0092-8674(92)90404-Z KONISHI T, 1973, ACTA OTOLARYNGOL, V86, P176 LAWRENCE JB, 1986, CELL, V45, P407, DOI 10.1016/0092-8674(86)90326-0 LEVINE E, 1994, DEVELOPMENT, V120, P901 MARCUS DC, 1981, HEARING RES, V4, P149, DOI 10.1016/0378-5955(81)90002-2 MCDOWELL B, 1989, HEARING RES, V40, P221, DOI 10.1016/0378-5955(89)90163-9 Mitchison TJ, 1996, CELL, V84, P371, DOI 10.1016/S0092-8674(00)81281-7 PIALI L, 1995, J CELL BIOL, V130, P451, DOI 10.1083/jcb.130.2.451 RAPHAEL Y, 1994, HEARING RES, V76, P173, DOI 10.1016/0378-5955(94)90098-1 RAPHAEL Y, 1988, DEV BIOL, V128, P222, DOI 10.1016/0012-1606(88)90284-9 RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7 RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 RICHARDSON GP, 1987, DEV BIOL, V119, P217, DOI 10.1016/0012-1606(87)90223-5 SANTI PA, 1988, PHYSL EAR, P173 SCHROER TA, 1991, ANNU REV PHYSIOL, V53, P629, DOI 10.1146/annurev.physiol.53.1.629 SHAPIRO L, 1995, NATURE, V374, P327, DOI 10.1038/374327a0 SIMONS K, 1985, ANNU REV CELL BIOL, V1, P243 Slepecky NB, 1995, HEARING RES, V91, P136, DOI 10.1016/0378-5955(95)00184-0 Souter M, 1995, HEARING RES, V91, P43, DOI 10.1016/0378-5955(95)00163-8 STAMATOGLOU SC, 1992, J CELL BIOL, V116, P1507, DOI 10.1083/jcb.116.6.1507 STEYGER PS, 1989, HEARING RES, V42, P1, DOI 10.1016/0378-5955(89)90113-5 Svitkina TM, 1995, J STRUCT BIOL, V115, P290, DOI 10.1006/jsbi.1995.1054 TAKEICHI M, 1995, CURR OPIN CELL BIOL, V7, P619, DOI 10.1016/0955-0674(95)80102-2 ULFENDAHL M, 1993, PFLUG ARCH EUR J PHY, V424, P95, DOI 10.1007/BF00374599 ULFENDAHL M, 1995, NEUROREPORT, V6, P1157, DOI 10.1097/00001756-199505300-00021 VOLK T, 1987, CELL, V50, P987, DOI 10.1016/0092-8674(87)90525-3 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 WHILTON DS, 1993, J NEUROCYTOL, V22, P1030 ZWISLOCKI JJ, 1979, SCIENCE, V204, P639, DOI 10.1126/science.432671 NR 49 TC 54 Z9 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 14 EP 28 DI 10.1016/S0378-5955(97)00130-5 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600002 PM 9387983 ER PT J AU Temchin, AN Rich, NC Ruggero, MA AF Temchin, AN Rich, NC Ruggero, MA TI Low-frequency suppression of auditory nerve responses to characteristic frequency tones SO HEARING RESEARCH LA English DT Article DE auditory nerve; biasing; modulation; rate suppression; basilar membrane; inner hair cells; cochlea; chinchilla ID GUINEA-PIG COCHLEA; BASILAR-MEMBRANE MOTION; 2-TONE RATE SUPPRESSION; INNER HAIR-CELLS; INPUT-OUTPUT FUNCTIONS; LOW-SIDE SUPPRESSORS; MAMMALIAN COCHLEA; RECEPTOR POTENTIALS; CHINCHILLA COCHLEA; SPIKE INITIATION AB The effects of low-frequency (50, 100, 200 and 400 Hz) 'suppressor' tones on responses to moderate-level characteristic frequency (CF) tones were measured in chinchilla auditory nerve fibers. Two-tone interactions were evident at suppressor intensities of 70-100 dB SPL. In this range, the average response rate decreased as a function of increasing suppressor level and the instantaneous response rate was modulated periodically. At suppression threshold, the phase of suppression typically coincided with basilar membrane displacement toward scala tympani, regardless of CF. At higher suppressor levels, two suppression maxima coexisted, synchronous with peak basilar membrane displacement toward scala tympani and scala vestibuli. Modulation and rate-suppression thresholds did not vary as a function of spontaneous activity and were only minimally correlated with fiber sensitivity. Except for fibers with CF < 1 kHz, modulation and rate-suppression thresholds were lower than rate and phase-locking thresholds for the suppressor tones presented alone, In the case of high-CF fibers with low spontaneous activity, excitation thresholds could exceed suppression thresholds by more than 30 dB. The strength of modulation decreased systematically with increasing suppressor frequency. For a given suppressor frequency, modulation was strongest in high-CF fibers and weakest in low-CF fibers. The present findings strongly support the notion that low-frequency suppression in auditory nerve fibers largely reflects an underlying basilar membrane phenomenon closely related to compressive non-linearity. C1 NORTHWESTERN UNIV,HUGH KNOWLES CTR,EVANSTON,IL 60208. NORTHWESTERN UNIV,INST NEUROSCI,EVANSTON,IL 60208. RI Ruggero, Mario/A-9860-2009 OI Ruggero, Mario/0000-0001-8240-3644 CR ABBAS PJ, 1976, J ACOUST SOC AM, V59, P112, DOI 10.1121/1.380841 Cai YD, 1996, HEARING RES, V96, P94, DOI 10.1016/0378-5955(96)00034-2 Cai YD, 1996, HEARING RES, V96, P126, DOI 10.1016/0378-5955(96)00036-6 Cai YD, 1996, HEARING RES, V96, P113, DOI 10.1016/0378-5955(96)00035-4 Cheatham MA, 1997, HEARING RES, V108, P191, DOI 10.1016/S0378-5955(97)00032-4 CHEATHAM MA, 1992, HEARING RES, V60, P1, DOI 10.1016/0378-5955(92)90052-O CHEATHAM MA, 1995, ADV HEARING RES, P145 CODY AR, 1987, J PHYSIOL-LONDON, V383, P551 Cooper NP, 1996, AUDIT NEUROSCI, V3, P123 COOPER NP, 1994, HEARING RES, V78, P221, DOI 10.1016/0378-5955(94)90028-0 Cooper NP, 1996, J ACOUST SOC AM, V99, P3087, DOI 10.1121/1.414795 COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y Cooper NP, 1996, AUDIT NEUROSCI, V2, P289 COSTALUPES JA, 1987, HEARING RES, V26, P155, DOI 10.1016/0378-5955(87)90107-9 DALLOS P, 1983, MECHANISMS HEARING, P11 DELGUTTE B, 1990, HEARING RES, V49, P225, DOI 10.1016/0378-5955(90)90106-Y FAHEY PF, 1985, J ACOUST SOC AM, V77, P599, DOI 10.1121/1.391878 GEISLER CD, 1992, HEARING RES, V63, P203, DOI 10.1016/0378-5955(92)90086-3 GEISLER CD, 1990, HEARING RES, V44, P241, DOI 10.1016/0378-5955(90)90084-3 GEISLER CD, 1997, IN PRESS DIVERSITY A GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 HARRIS DM, 1979, HEARING RES, V1, P133, DOI 10.1016/0378-5955(79)90024-8 HILL KG, 1995, MIDW M ABSTR ASS RES, V18, P118 HILL KG, 1994, MIDW M ABSTR ASS RES, V17, P97 INGVARSSON K, 1981, THESIS NW U EVANSTON JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 Kiang NY, 1970, SENSORINEURAL HEARIN, P241 KIANG NYS, 1969, J ACOUST SOC AM, V46, pA106 KIDD RC, 1990, HEARING RES, V49, P181, DOI 10.1016/0378-5955(90)90104-W KROIN J, 1980, OTOLARYNG HEAD NECK, V88, P93 LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1 Murugasu E, 1996, J NEUROSCI, V16, P325 NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9 NUTTALL AL, 1981, BRAIN RES, V211, P171, DOI 10.1016/0006-8993(81)90078-0 OHLEMILLER KK, 1990, J COMP PHYSIOL A, V167, P329 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X PATUZZI R, 1984, HEARING RES, V13, P9, DOI 10.1016/0378-5955(84)90090-X Patuzzi R., 1996, COCHLEA, P186 PATUZZI R, 1984, HEARING RES, V13, P19, DOI 10.1016/0378-5955(84)90091-1 PATUZZI R, 1984, HEARING RES, V13, P1, DOI 10.1016/0378-5955(84)90089-3 PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PRIJS VF, 1989, HEARING RES, V42, P73, DOI 10.1016/0378-5955(89)90118-4 RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2 RHODE WS, 1997, IN PRESS DIVERSITY A ROBERTSON D, 1976, NATURE, V259, P477, DOI 10.1038/259477a0 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 ROMAHN G, 1978, EXP BRAIN RES, V32, P423 Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O RUGGERO MA, 1978, J ACOUST SOC AM, V64, pS136, DOI 10.1121/1.2003830 RUGGERO MA, 1986, AUDITORY FREQUENCY S, P189 RUGGERO MA, 1987, J NEUROPHYSIOL, V58, P379 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 RUGGERO MA, 1983, J ACOUST SOC AM, V73, P2096, DOI 10.1121/1.389577 RUGGERO MA, 1986, J ACOUST SOC AM, V80, P1375, DOI 10.1121/1.394390 Ruggero MA, 1996, AUDIT NEUROSCI, V2, P159 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 Ruggero MA, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P23 RUSSELL IJ, 1992, PHILOS T ROY SOC B, V336, P317, DOI 10.1098/rstb.1992.0064 RUSSELL IJ, 1992, J NEUROSCI, V12, P1587 RUSSELL IJ, 1983, J PHYSIOL-LONDON, V338, P179 RUSSELL IJ, 1995, ADV HEARING RES, P136 SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 SACHS MB, 1981, HEARING RES, V4, P309, DOI 10.1016/0378-5955(81)90015-0 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SCHMIEDT RA, 1982, J ACOUST SOC AM, V72, P142, DOI 10.1121/1.387998 SCHMIEDT RA, 1982, HEARING RES, V7, P335, DOI 10.1016/0378-5955(82)90044-2 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 SELLICK PM, 1979, HEARING RES, V1, P227, DOI 10.1016/0378-5955(79)90016-9 SELLICK PM, 1980, HEARING RES, V2, P439, DOI 10.1016/0378-5955(80)90080-5 SELLICK PM, 1982, HEARING RES, V7, P199, DOI 10.1016/0378-5955(82)90014-4 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SELLICK PM, 1983, HEARING RES, V10, P93, DOI 10.1016/0378-5955(83)90019-9 SEWELL WF, 1984, HEARING RES, V15, P69, DOI 10.1016/0378-5955(84)90226-0 TEMCHIN AN, 1994, MIDW M ABSTR ASS RES, V17, P388 TEMCHIN AN, 1997, MIDW M ABSTR ASS RES, V20, P152 ZEDDIES DG, 1996, MIDW M ABSTR ASS RES, V19, P184 ZWICKER E, 1979, BIOL CYBERN, V35, P243, DOI 10.1007/BF00344207 NR 81 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 29 EP 56 DI 10.1016/S0378-5955(97)00129-9 PG 28 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600003 PM 9387984 ER PT J AU Frank, G Kossl, M AF Frank, G Kossl, M TI Acoustical and electrical biasing of the cochlea partition. Effects on the acoustic two tone distortions f(2)-f(1) and 2f(1)-f(2) SO HEARING RESEARCH LA English DT Article DE acoustic two tone distortion; low frequency biasing; electrical biasing; DC current; cochlear amplifier; gain; operating point ID OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; OTOACOUSTIC EMISSIONS; TRANSDUCER CURRENTS; MOTILE RESPONSES; MOUSE COCHLEA; ADAPTATION; AMPLIFIER; MECHANICS; BUNDLE AB Low frequency acoustical biasing of the cochlear partition with 5 Hz tones produces phase correlated changes of the acoustic two-tone distortions 2f(1)-f(2) and f(2)-f(1). Pronounced changes of f(2)-f(1) and only small changes of 2f(1)-f(2) for lower bias tone levels indicate that there is a close relation between changes in the difference tone f(2)-f(1) and changes in the operating point of the cochlear amplifier (Frank and Kossl, 1996). To further investigate this relationship, the cochlear partition was additionally biased by current injection into the scala media of the gerbil. The injection of low frequency (5 Hz) AC currents (max. 1.3 mu A) has a similar effect to that caused by low frequency tones in that both produce phase correlated changes of the two distortions (so-called biasing patterns), with stronger effects on f(2)-f(1). For bias tone levels of about 105 dB SPL and current values of 1.3 mu A, the effects are approximately of the same size. A change in the f(2)-f(1) biasing pattern that can be found for increasing bias tone levels can also be seen for increasing primary levels. Changing the setpoint of the cochlear amplifier through the injection of DC current into the scala media during acoustical biasing of the cochlear partition produces the same changes of f(2)-f(1) biasing patterns as increasing the primary levels. This indicates that the operating point of the outer hair cells that respond to the primary tones is not only influenced by low frequency biasing stimuli but also by shifts with increasing primary levels. C1 UNIV MUNICH,INST ZOOL,D-80021 MUNICH,GERMANY. RI Frank, Gerhard/E-7145-2010 CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 BROWN AM, 1988, HEARING RES, V34, P27, DOI 10.1016/0378-5955(88)90048-2 BROWNELL WE, 1985, SCIENCE, V227, P195 CODY AR, 1987, J PHYSIOL-LONDON, V383, P551 COREY DP, 1983, J NEUROSCI, V3, P962 CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405 DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1985, J NEUROSCI, V5, P1591 DALLOS P, 1993, J NEUROPHYSIOL, V70, P299 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 HUBBARD AE, 1983, SCIENCE, V222, P510, DOI 10.1126/science.6623090 KOSSL M, 1992, J NEUROSCI, V12, P1575 KROS CJ, 1992, P ROY SOC B-BIOL SCI, V249, P185, DOI 10.1098/rspb.1992.0102 MAMMANO F, 1993, NATURE, V365, P838, DOI 10.1038/365838a0 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 MOUNTAIN DC, 1989, HEARING RES, V42, P195, DOI 10.1016/0378-5955(89)90144-5 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 MOUNTAIN DC, 1993, BIOPHYSICS HAIR CELL, P361 MURATA K, 1991, HEARING RES, V55, P201, DOI 10.1016/0378-5955(91)90105-I NUTTALL AL, 1993, 30 INN EAR BIOL WORK NUTTALL AL, 1993, BIOPHYSICS HAIR CELL, P288 NUTTALL AL, 1995, WENNERGREN INT SERIE, V65, P283 REUTER G, 1990, HEARING RES, V43, P219, DOI 10.1016/0378-5955(90)90230-M REUTER G, 1992, HEARING RES, V60, P236, DOI 10.1016/0378-5955(92)90025-I RUSSELL IJ, 1989, HEARING RES, V43, P55, DOI 10.1016/0378-5955(89)90059-2 RUSSELL IJ, 1986, HEARING RES, V22, P199, DOI 10.1016/0378-5955(86)90096-1 RUSSELL IJ, 1991, J PHYSIOL-LONDON, V435, P493 XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103 XUE SW, 1993, HEARING RES, V70, P121, DOI 10.1016/0378-5955(93)90056-7 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 NR 31 TC 37 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 57 EP 68 DI 10.1016/S0378-5955(97)00131-7 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600004 PM 9387985 ER PT J AU Aitkin, L Cochran, S Frost, S MartsiMcClintock, A Masterton, B AF Aitkin, L Cochran, S Frost, S MartsiMcClintock, A Masterton, B TI Features of the auditory development of the short-tailed Brazilian opossum, Monodelphis domestica: evoked responses, neonatal vocalizations and synapses in the inferior colliculus SO HEARING RESEARCH LA English DT Article DE marsupial; development; hearing onset; vocal spectrum; best frequency; synaptogenesis ID DASYURUS-HALLUCATUS; NORTHERN QUOLL; HEARING; ONSET; FERRET AB The onset of hearing in anesthetized South American opossums (Monodelphis domestica) was determined by the measurement of evoked potentials to click stimuli from the vertex of the skull immediately over the inferior colliculus. Evoked potentials were first recorded at postnatal day 24 at a threshold of 83 dB SPL; thresholds declined over subsequent weeks to below 58 dB at 40 days. Isolation calls emitted by the pups had stereotypic spectra with peaks at near 13 kHz and an octave higher. Such calls declined in frequency by day 32 and were not emitted at day 40. The peak frequency of the calls matched very closely the best frequency of hearing of adult Monodelphis. The number of synapses in the inferior colliculus increased at day 26; when plotted in relation to the number of cells, synaptic density increased steeply from day 27 after the animal had begun to hear. This suggests that environmental sound has a potent effect on the development of synapses in the auditory system. C1 FLORIDA STATE UNIV, DEPT PSYCHOL, TALLAHASSEE, FL 32306 USA. RP Aitkin, L (reprint author), MONASH UNIV, DEPT PHYSIOL, CLAYTON, VIC 3168, AUSTRALIA. CR AITKIN L, 1991, J COMP NEUROL, V309, P250, DOI 10.1002/cne.903090206 Aitkin L, 1996, J COMP NEUROL, V375, P77, DOI 10.1002/(SICI)1096-9861(19961104)375:1<77::AID-CNE5>3.0.CO;2-L AITKIN L, 1994, J COMP NEUROL, V343, P532, DOI 10.1002/cne.903430404 Aitkin L, 1996, J EXP ZOOL, V276, P394, DOI 10.1002/(SICI)1097-010X(19961215)276:6<394::AID-JEZ3>3.3.CO;2-K AITKIN LM, 1994, J COMP NEUROL, V349, P377, DOI 10.1002/cne.903490305 BRUNSOBECHTOLD JK, 1992, J COMP NEUROL, V324, P539, DOI 10.1002/cne.903240407 Ehret G, 1983, DEV AUDITORY VESTIBU, P211 FADEM BH, 1982, LAB ANIM SCI, V32, P405 FROST SB, 1994, HEARING RES, V76, P67, DOI 10.1016/0378-5955(94)90088-4 KONIG N, 1975, ANAT EMBRYOL, V148, P73, DOI 10.1007/BF00315564 Larsell O, 1935, J COMP NEUROL, V63, P95, DOI 10.1002/cne.900630107 McCrady E, 1937, J EXP ZOOL, V75, P503, DOI 10.1002/jez.1400750306 McCrady E., 1938, American Anatomical Memoir Philadelphia (Wistar Inst), Vno. 16, P1 MOORE DR, 1982, BRAIN RES, V253, P309, DOI 10.1016/0006-8993(82)90698-9 MULLER M, 1993, HEARING RES, V67, P198, DOI 10.1016/0378-5955(93)90247-X NELSON JE, 1992, ANAT EMBRYOL, V185, P335 PYSH JJ, 1969, AM J ANAT, V124, P411, DOI 10.1002/aja.1001240402 REIMER K, 1993, GENE BRAIN BEHAV, P266 Reimer K, 1995, ZOOL-ANAL COMPLEX SY, V99, P121 Reimer K, 1996, HEARING RES, V92, P143 WILLARD FH, 1993, NATO ADV SCI INST SE, V239, P29 NR 21 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 69 EP 75 DI 10.1016/S0378-5955(97)00128-7 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600005 PM 9387986 ER PT J AU Zheng, XY Ding, DL McFadden, SL Henderson, D AF Zheng, XY Ding, DL McFadden, SL Henderson, D TI Evidence that inner hair cells are the major source of cochlear summating potentials SO HEARING RESEARCH LA English DT Article DE VIIIth nerve; inner ear; receptor potential; electrocochleography ID PRODUCT OTOACOUSTIC EMISSIONS; GUINEA-PIG COCHLEA; FREQUENCY-SELECTIVITY; KAINIC ACID; AUDITORY-NERVE; RESPONSES; ELECTROCOCHLEOGRAPHY; COMPONENTS; PATTERNS; ORGAN AB The role of the inner hair cells (IHCs) in generating the cochlear summating potentials (SP) was assessed by measuring SP, cochlear nerve action potentials (CAP), cochlear microphonics (CM) and 2f(1)-f(2) distortion product otoacoustic emissions (DPOAEs) in 15 chinchillas with either acute chemical de-afferentation, accomplished by applying kainic acid to the round window, or surgical de-afferentation and basal IHC loss, which developed within two months after sectioning the auditory nerve. In the auditory nerve sectioned ears, type I ganglion cells disappeared whereas most, if not all, type II ganglion cells were still present. Histological analysis of surface preparations and sections through the modiolus verified the de-afferentation in both models and showed a large IHC loss at the base of the cochlea in the ears with the auditory nerve sectioned while other structures of the cochlea remained intact. Unoperated (left) ears of 9 animals served as controls. CM and DPOAEs were normal in all ears whereas the CAP was substantially depressed in de-afferented ears. Comparisons among the SP input-output functions suggest that (1) the IHCs are the major generator of SP recorded from the round window in chinchilla, in particular at low to moderate stimulus levels, (2) the SP recorded from the round window largely reflects the responses from hair cells al the base of the cochlea, and (3) kainic acid results in an increase of SP amplitude to high-level stimuli whereas the SP to low-to moderate-level stimuli remains in the normal range. C1 SUNY BUFFALO, DEPT COMMUNICAT DISORDERS & SCI, HEARING RES LABS, BUFFALO, NY 14214 USA. CR BLEDSOE SC, 1981, HEARING RES, V4, P109, DOI 10.1016/0378-5955(81)90040-X BUTLER RA, 1960, AM J PHYSIOL, V199, P688 CHATRIAN GE, 1985, EAR HEARING, V6, P130, DOI 10.1097/00003446-198505000-00002 CHEATHAM MA, 1994, HEARING RES, V75, P103, DOI 10.1016/0378-5955(94)90061-2 CODY AR, 1987, J PHYSIOL-LONDON, V383, P551 DALLOS P, 1985, J NEUROSCI, V5, P1591 DALLOS P, 1972, ACTA OTO-LARYNGOL, P1 DALLOS P, 1974, J ACOUST SOC AM, V56, pSA10 DALLOS P, 1976, J ACOUST SOC AM, V60, P510, DOI 10.1121/1.381086 DALLOS P, 1974, AUDIOLOGY, V13, P277 DAVIS H, 1958, AM J PHYSIOL, V195, P251 DING DL, 1997, ASS RES OT, P107 DOLAN DF, 1989, J ACOUST SOC AM, V86, P2167, DOI 10.1121/1.398477 DURRANT JD, 1974, J ACOUST SOC AM, V56, P562, DOI 10.1121/1.1903291 Durrant J D, 1979, J Aud Res, V19, P183 DURRANT JD, 1972, J ACOUST SOC AM, V52, P542, DOI 10.1121/1.1913143 FECHTER LD, 1994, HEARING RES, V78, P189, DOI 10.1016/0378-5955(94)90025-6 GANS DP, 1983, J ACOUST SOC AM, V74, P1742, DOI 10.1121/1.390257 HARVEY D, 1992, HEARING RES, V61, P137, DOI 10.1016/0378-5955(92)90044-N HONRUBIA V, 1969, J ACOUST SOC AM, V46, P388, DOI 10.1121/1.1911701 KAPLAN MS, 1983, HEARING RES, V12, P323, DOI 10.1016/0378-5955(83)90004-7 KARNOVSKY MJ, 1964, J HISTOCHEM CYTOCHEM, V12, P219 KIANG N. Y., 1960, ANN OTOL RHINOL AND LARYNGOL, V69, P448 KLIS SFL, 1995, EUR ARCH OTO-RHINO-L, V252, P405 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LONSBURYMARTIN BL, 1990, EAR HEARING, V11, P144 MARGOLIS RH, 1992, AUDIOLOGY, V31, P8 MCMULLEN TA, 1985, HEARING RES, V17, P127, DOI 10.1016/0378-5955(85)90016-4 MOLLER AR, 1994, ELECTROEN CLIN NEURO, V92, P316, DOI 10.1016/0168-5597(94)90099-X OWENS JJ, 1993, AM J OTOL, V14, P34 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 PUJOL R, 1985, HEARING RES, V18, P145, DOI 10.1016/0378-5955(85)90006-1 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 REUTER G, 1990, HEARING RES, V43, P219, DOI 10.1016/0378-5955(90)90230-M RUSSELL IJ, 1992, PHILOS T ROY SOC B, V336, P317, DOI 10.1098/rstb.1992.0064 RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 SCHUKNECHT HF, 1953, LARYNGOSCOPE, V63, P441 SMITH DW, 1987, HEARING RES, V29, P125, DOI 10.1016/0378-5955(87)90161-4 SPOENDLIN H, 1976, ACTA OTO-LARYNGOL, V81, P228, DOI 10.3109/00016487609119954 STRELIOFF D, 1985, HEARING RES, V18, P169, DOI 10.1016/0378-5955(85)90009-7 TILANUS CC, 1992, EUR ARCH OTO-RHINO-L, V249, P12 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 VANDEELEN GW, 1986, ACTA OTO-LARYNGOL, V101, P207, DOI 10.3109/00016488609132829 vanEmst MG, 1996, HEARING RES, V102, P70, DOI 10.1016/S0378-5955(96)00149-9 VANEMST MG, 1995, HEARING RES, V88, P27, DOI 10.1016/0378-5955(95)00095-L Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WARREN EH, 1989, HEARING RES, V37, P105, DOI 10.1016/0378-5955(89)90033-6 ZEDDIES DG, 1995, ASS RES OT, P153 ZEDDIES DG, 1996, ASS RES OT, P184 Zheng XY, 1997, HEARING RES, V105, P65, DOI 10.1016/S0378-5955(96)00188-8 ZHENG XY, 1992, AVIAT SPACE ENVIR MD, V63, P360 Zheng XY, 1996, HEARING RES, V95, P161, DOI 10.1016/0378-5955(96)00047-0 ZWISLOCKI JJ, 1984, ACTA OTO-LARYNGOL, V97, P529, DOI 10.3109/00016488409132931 NR 53 TC 19 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 76 EP 88 DI 10.1016/S0378-5955(97)00127-5 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600006 PM 9387987 ER PT J AU Maison, S Micheyl, C Chays, A Collet, L AF Maison, S Micheyl, C Chays, A Collet, L TI Medial olivocochlear system stabilizes active cochlear micromechanical properties in humans SO HEARING RESEARCH LA English DT Article DE medial olivocochlear system; human; active cochlear micromechanism; vestibular neurotomy; outer hair cell; otoacoustic emission ID EVOKED OTOACOUSTIC EMISSIONS; CONTRALATERAL ACOUSTIC STIMULATION; SUPERIOR OLIVARY COMPLEX; AUDITORY-NERVE FIBERS; ELECTRICAL-STIMULATION; BUNDLE STIMULATION; EAR; NEURONS; CAT; SUPPRESSION AB To investigate the involvement of the medial olivocochlear system (MOCS) in outer hair cell (OHC) motility stabilization, evoked otoacoustic emissions (EOAEs) were recorded in 20 normal-hearing subjects and in eight vestibular-neurotomized subjects, successively in the presence and absence of low-intensity contralateral acoustic stimulation. Intrasubject EOAE amplitude variability was assessed as the standard deviation computed over several successive recordings. In normal-hearing subjects, a significantly lower EOAE amplitude variability with contralateral acoustic stimulation (CAS) was observed in subjects in whom the CAS induced the greatest EOAE amplitude reduction. This result could not be attributed to the EOAE amplitude reduction itself, since variability was otherwise found to increase when EOAE amplitude decreased. Moreover, statistically significant correlations between EOAE amplitude attenuation and EOAE amplitude variability under CAS were observed, In the eight subjects operated for vestibular neurotomy, no such effect was found. Being sectioned in vestibular-neurotomized subjects, the MOCS can no longer exert its effects. These results strongly support the notion that MOCS activity, as induced by GAS, elicits a reduction in EOAE amplitude variability in normal-hearing subjects. This finding and some of its possible implications for understanding the role of the MOCS in hearing in humans are discussed. C1 HOP NORD MARSEILLE,SERV ORL & CHIRURG CERVICOFACIALE,MARSEILLE,FRANCE. RP Maison, S (reprint author), UNIV LYON 1,LAB NEUROSCI & SYST SENSORIELS,CNRS UPRESA 5020,HOP EDOUARD HERRIOT,PAVILLON U,F-69437 LYON,FRANCE. CR AMESEN AR, 1984, ACTA OTOLARYNGOL STO, V98, P501 ART JJ, 1984, J PHYSIOL-LONDON, V356, P525 ASHMORE JF, 1982, J PHYSIOL-LONDON, V329, pP26 BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S BOBBIN RP, 1971, NATURE-NEW BIOL, V231, P222 BOBBIN RP, 1974, ACTA OTOLARYNGOL, V77, P656 BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 BUNO W, 1978, EXP NEUROL, V59, P62, DOI 10.1016/0014-4886(78)90201-7 CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E COLLET L, 1992, AUDIOLOGY, V31, P1 COLLET L, 1989, ARCH OTOLARYNGOL, V115, P1060 DESMEDT JE, 1961, NATURE, V192, P1263, DOI 10.1038/1921263a0 FEX J, 1962, ACTA PHYSIOL SCAND, V55, P1 FEX J, 1959, Acta Otolaryngol, V50, P540, DOI 10.3109/00016485909129230 FOLSOM RC, 1987, ACTA OTO-LARYNGOL, V103, P262, DOI 10.3109/00016488709107792 FROEHLICH P, 1990, BRAIN RES, V508, P286, DOI 10.1016/0006-8993(90)90408-4 FROEHLICH P, 1993, PHYSIOL BEHAV, V53, P679, DOI 10.1016/0031-9384(93)90173-D FUCHS PA, 1983, HEARING PHYSL PSYCHO, P25 GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103 GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 JOHNSEN NJ, 1982, SCAND AUDIOL, V11, P69, DOI 10.3109/01050398209076202 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KUJAWA SG, 1992, HEARING RES, V61, P106, DOI 10.1016/0378-5955(92)90041-K LEPAGE EL, 1989, HEARING RES, V38, P177, DOI 10.1016/0378-5955(89)90064-6 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 MAGNAN J, 1994, AM J OTOL, V15, P366 MAGNAN J, 1991, AM J OTOL, V12, P101 Maison S, 1997, J NEUROPHYSIOL, V77, P1759 MICHEYL C, 1996, J ACOUST SOC AM, V3, P1604 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 NAEVE SL, 1992, J ACOUST SOC AM, V91, P2091, DOI 10.1121/1.403695 NORTON SJ, 1990, EAR HEARING, V11, P121, DOI 10.1097/00003446-199004000-00006 QUARANTA A, 1990, ADV AUDIOL, V7, P171 RAJAN R, 1988, BRAIN RES, V459, P241, DOI 10.1016/0006-8993(88)90640-3 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 ROBINSON P M, 1991, British Journal of Audiology, V25, P131, DOI 10.3109/03005369109079843 ROSSI G, 1991, ORL J OTO-RHINO-LARY, V53, P15 RYAN S, 1991, British Journal of Audiology, V25, P391, DOI 10.3109/03005369109076614 SIEGEL JH, 1982, HEARING RES, V6, P172 VEUILLET E, 1992, HEARING RES, V61, P47, DOI 10.1016/0378-5955(92)90035-L VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 Warr W. B., 1986, NEUROBIOLOGY HEARING, P333 WARR WB, 1975, J COMP NEUROL, V161, P159, DOI 10.1002/cne.901610203 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WILLIAMS EA, 1993, SCAND AUDIOL, V22, P197, DOI 10.3109/01050399309047469 WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X NR 52 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 89 EP 98 DI 10.1016/S0378-5955(97)00136-6 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600007 PM 9387988 ER PT J AU Takeuchi, S Ando, M Irimajiri, A AF Takeuchi, S Ando, M Irimajiri, A TI Changes in the volume of marginal cells induced by isotonic 'Cl- depletion/restoration': involvement of the Cl- channel and Na+-K+-Cl- cotransporter SO HEARING RESEARCH LA English DT Article DE cell volume; Cl- channel; Na+-K+-Cl- cotransporter; inner ear; gerbil ID VESTIBULAR DARK CELLS; ION-TRANSPORT MECHANISMS; H-3 BUMETANIDE BINDING; KIDNEY OUTER MEDULLA; STRIA-VASCULARIS; NA-K-2CL COTRANSPORT; CO-TRANSPORT; MEMBRANE; CONDUCTANCE; FUROSEMIDE AB Marginal cells constitute the endolymph-facing epithelium responsible for the secretion of endolymph by the stria vascularis in the inner ear. We have studied the possible involvement of Cl- conductance and Na+-K+-Cl- cotransport in the mechanism of changes in cell volume upon isotonic Cl- depletion/restoration. Changes in cell volume were estimated from video-microscopic images with the aid of an image processor. Marginal cells shrank to similar to 80% of their original volume in 30 s and to 65-70% in 90 s upon total replacement of [Cl](0) (similar to 150 mM) by gluconate(-), and the original volume of the shrunken cells was restored within 2 min after restoration of Cl-. The order of potency of anions to induce isotonic shrinkage was gluconate(-) > I- > F- > Br-. The cell shrinkage caused by Cl- depletion was partially inhibited by 5-Nitro-2-(3-phenyl-propylamino)-benzoic acid (NPPB, 0.2 mM), but not by either 4-acetamido-4'-isothiocyanato-stilbene-2,2'disulfonic acid (SITS, 0.5 mM), bumetanide (10 mu M) or ouabain (1 mM). The cell shrinkage caused by a reduction of [Cl](0) from similar to 150 mM to 7.5 mM was not affected by [K](0) in the range of 3.6 mM to 72 mM. These results suggest that the main efflux pathway(s) responsible for the 'Cl removal'-induced shrinkage depends on volume-correlated Cl- conductance (Takeuchi and Irimajiri, J. Membrane Biol. 150, 47-62, 1996) and that this pathway(s) is essentially independent of the Na+-K+-Cl- cotransporter, the Na+,K+-ATPase, and the K+-Cl- cotransporter. With regard to volume recovery after isotonic shrinkage, its critical dependence on the simultaneous presence of Na+, K+ and Cl- in the bath and its substantial inhibition by bumetanide (10 mu M) both indicate a major role for Na+-K+-Cl- cotransport. The strong influence on cell volume of solute fluxes working through the Cl- channel and the Na+-K+-Cl- cotransporter implies an essential role for these pathways in the ion transport mechanism(s) of the marginal cell. RP Takeuchi, S (reprint author), KOCHI MED SCH,DEPT PHYSIOL,NANKOKU,KOCHI 783,JAPAN. CR DAVIS CW, 1987, J GEN PHYSIOL, V89, P687, DOI 10.1085/jgp.89.5.687 FORBUSH B, 1983, J BIOL CHEM, V258, P1787 GECK P, 1986, J MEMBRANE BIOL, V91, P97, DOI 10.1007/BF01925787 HAAS M, 1986, J BIOL CHEM, V261, P8434 HAAS M, 1994, AM J PHYSIOL-CELL PH, V267, pC869 HAAS M, 1989, ANNU REV PHYSIOL, V51, P443, DOI 10.1146/annurev.physiol.51.1.443 HEDGE RS, 1992, J MEMBRANE BIOL, V126, P27 KUSAKARI J, 1978, LARYNGOSCOPE, V88, P12 KUSAKARI J, 1978, ACTA OTO-LARYNGOL, V86, P336, DOI 10.3109/00016487809107512 LAUF PK, 1992, AM J PHYSIOL, V263, pC917 MACKNIGHT ADC, 1985, PFLUG ARCH EUR J PHY, V405, pS12, DOI 10.1007/BF00581773 MARCUS DC, 1994, AM J PHYSIOL, V267, pC857 MCROBERTS JA, 1982, J BIOL CHEM, V257, P2260 OGRADY SM, 1987, J MEMBRANE BIOL, V96, P11, DOI 10.1007/BF01869330 OWEN NE, 1985, J BIOL CHEM, V260, P1445 SNEDECOR G.W., 1989, STAT METHODS, V8th SPRING KR, 1986, J MEMBRANE BIOL, V92, P21, DOI 10.1007/BF01869012 STRANGE K, 1989, J MEMBRANE BIOL, V107, P249, DOI 10.1007/BF01871940 SUNOSE H, 1994, HEARING RES, V80, P86, DOI 10.1016/0378-5955(94)90012-4 Sunose H, 1997, J MEMBRANE BIOL, V156, P25, DOI 10.1007/s002329900184 TAKEUCHI S, 1995, HEARING RES, V83, P89, DOI 10.1016/0378-5955(94)00191-R TAKEUCHI S, 1992, HEARING RES, V61, P86, DOI 10.1016/0378-5955(92)90039-P Takeuchi S, 1996, J MEMBRANE BIOL, V150, P47, DOI 10.1007/s002329900029 TAKEUCHI S, 1997, ABSTR ASS RES OT, V20, P18 WANGEMANN P, 1994, AM J PHYSIOL, V266, pC1046 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WANGEMANN P, 1992, HEARING RES, V62, P149, DOI 10.1016/0378-5955(92)90180-U WANGEMANN P, 1990, PFLUG ARCH EUR J PHY, V416, P262, DOI 10.1007/BF00392062 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 NR 29 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 99 EP 109 DI 10.1016/S0378-5955(97)00134-2 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600008 PM 9387989 ER PT J AU Kenmochi, M Eggermont, JJ AF Kenmochi, M Eggermont, JJ TI Salicylate and quinine affect the central nervous system SO HEARING RESEARCH LA English DT Article DE cat; primary auditory cortex; single unit; local field potential; salicylate; quinine; tinnitus ID PRIMARY AUDITORY-CORTEX; CALCIUM; CELLS; CURRENTS; KETAMINE; NEURONS AB Spontaneous local field potential (LFP) spindle frequencies in cat primary auditory cortex (AI) were estimated from the LFP-trigger autocorrelogram before and after application of sodium salicylate and quinine sulfate. A significant decrease (from 8.7 Hz to 7.6 Hz) was observed. The best modulation frequencies for 251 single units recorded in AI response to periodic click train stimulation also decreased (from 10 Hz to 8.6 Hz) after application of these tinnitus-inducing drugs. The results strongly suggest a central effect of salicylates and quinine in addition to their peripheral ototoxic effects. C1 UNIV CALGARY,DEPT PSYCHOL,BEHAV NEUROSCI RES GRP,CALGARY,AB T2N 1N4,CANADA. CR ARMANDOHARDY M, 1975, J PHYSIOL-LONDON, V250, P32 ATWATER I, 1979, J PHYSIOL-LONDON, V288, P575 BURGIN H, 1979, J PHYSIOL-LONDON, V287, P15 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561 Dickenson AH, 1996, PROG BRAIN RES, V110, P225 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 EGGERMONT JJ, 1992, HEARING RES, V61, P1, DOI 10.1016/0378-5955(92)90029-M EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227 EGGERMONT JJ, 1996, P 5 INT TINN SEM 199, P402 ELENO N, 1990, INT ARCH ALLER A IMM, V92, P162 HAGIWARA S, 1983, J PHYSIOL-LONDON, V336, P649 HERMANN A, 1984, J GEN PHYSIOL, V83, P919, DOI 10.1085/jgp.83.6.919 Jeanmonod D, 1996, BRAIN, V119, P363, DOI 10.1093/brain/119.2.363 KAYAMA Y, 1983, BRIT J ANAESTH, V55, P655, DOI 10.1093/bja/55.7.655 Kenmochi M, 1997, NEUROREPORT, V8, P1589, DOI 10.1097/00001756-199705060-00008 MANKU MS, 1976, LANCET, V2, P1115 NEWMAN JD, 1974, BRAIN RES, V78, P125, DOI 10.1016/0006-8993(74)90358-8 Ochi K, 1997, HEARING RES, V105, P105, DOI 10.1016/S0378-5955(96)00201-8 Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 OLNEY JW, 1991, SCIENCE, V254, P1515, DOI 10.1126/science.1835799 PUEL JL, 1990, OTOLARYNG HEAD NECK, V102, P66 PUJOL R, 1992, TINNITUS 91, P103 Salvi RJ, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P275 Sherman SM, 1996, VISUAL NEUROSCI, V13, P205 STERIADE M, 1993, SCIENCE, V262, P679, DOI 10.1126/science.8235588 Steriade M., 1991, CEREB CORTEX, V9, P279 TONNDORF J, 1987, HEARING RES, V28, P271, DOI 10.1016/0378-5955(87)90054-2 WallhausserFranke E, 1997, NEUROREPORT, V8, P725, DOI 10.1097/00001756-199702100-00029 Weinberger Norman M., 1995, P1071 WINTERS WD, 1972, NEUROPHARMACOLOGY, V11, P303, DOI 10.1016/0028-3908(72)90016-0 NR 33 TC 25 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 110 EP 116 DI 10.1016/S0378-5955(97)00137-8 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600009 PM 9387990 ER PT J AU Leake, PA Kuntz, AL Moore, CM Chambers, PL AF Leake, PA Kuntz, AL Moore, CM Chambers, PL TI Cochlear pathology induced by aminoglycoside ototoxicity during postnatal maturation in cats SO HEARING RESEARCH LA English DT Article DE congenital deafness; development; hair cells; spiral ganglion; marginal pillars ID INTRACOCHLEAR ELECTRICAL-STIMULATION; NEONATALLY DEAFENED CATS; INFERIOR COLLICULUS; NEURONS; INTENSITY; FREQUENCY AB Cochlear pathology resulting from neonatal administration of the aminoglycoside antibiotic, neomycin sulfate, was studied in young kittens at 15-24 days postnatal. Hearing thresholds showed severe to profound hearing loss in all but one animal. Scanning electron microscopy demonstrated that initial hair cell degeneration occurred in the extreme base (hook region) of the cochlea and sequentially progressed to the basal, middle, then the apical coil of the cochlea. The first row of outer hair cells degenerated first, followed by row 2, then row 3; the last cells to degenerate in a given region were the inner hair cells. This pattern of hair cell degeneration is similar to that seen in adults with neomycin ototoxicity. In contrast, the spiral ganglion exhibited a different pattern of degeneration with initial cell loss occurring in the middle of the cochlea, about 40-60% from the base (approximate to 2.8-8 kHz). Thus, neuronal degeneration apparently is not secondary to sensory cell loss, but rather comprises an independent process in these neonatal animals. Taken together, the findings suggest that the spiral ganglion cell loss in the middle cochlear turn results from increased aminoglycoside sensitivity associated with an earlier initial onset of function in these neurons as compared to other cochlear regions. RP Leake, PA (reprint author), UNIV CALIF SAN FRANCISCO,DEPT OTOLARYNGOL,EPSTEIN LAB U490,SAN FRANCISCO,CA 94143, USA. CR BOHNE BA, 1976, ANN OTO RHINOL LARYN, V85, P711 HAWKINS JE, 1977, ACTA OTO-LARYNGOL, V83, P123, DOI 10.3109/00016487709128821 JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294 JOHNSSON LG, 1981, AMINOGLYCOSIDE OTOTO, P389 KIANG NYS, 1976, ANN OTO RHINOL LARYN, V85, P752 KOHENEN A, 1965, ACTA OTOLARYNGOL S, V208 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 LEAKE PA, 1992, HEARING RES, V64, P99, DOI 10.1016/0378-5955(92)90172-J LEAKE PA, 1995, HEARING RES, V82, P65 LEAKE PA, 1991, HEARING RES, V54, P151 LEAKEJONES PA, 1979, SEM 1979, V3 LEAKEJONES PA, 1980, SEM 1980, V3 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIM DJ, 1987, HEARING RES, V28, P9 LINDEMAN HH, 1971, ACTA OTO-LARYNGOL, V72, P229, DOI 10.3109/00016487109122478 NADOL JG, 1981, AMINOGLYCOSIDE OTOTO, P389 PUJOL R, 1970, J COMP NEUROL, V139, P115, DOI 10.1002/cne.901390108 Pujol R, 1986, Acta Otolaryngol Suppl, V429, P29 Retzius G., 1884, GEHORORGAN WIRBELTIE, V2 ROMAND R, 1982, J COMP NEUROL, V204, P1, DOI 10.1002/cne.902040102 SNYDER R, 1995, J NEUROPHYSIOL, V73, P449 SNYDER RL, 1991, HEARING RES, V56, P246, DOI 10.1016/0378-5955(91)90175-9 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S WALSH EJ, 1990, AM J OTOLARYNG, V11, P23, DOI 10.1016/0196-0709(90)90166-S WALSH EJ, 1986, NEUROBIOLOGY HEARING, P247 Walsh Edward J., 1992, P161 Weibel E. R., 1979, STEREOLOGICAL METHOD, V1 YLIKOSKI J, 1974, ACTA OTOLARYNGOL, V79, P266 NR 28 TC 32 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 117 EP 132 DI 10.1016/S0378-5955(97)00133-0 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600010 PM 9387991 ER PT J AU Lukashkin, AN Russell, IJ AF Lukashkin, AN Russell, IJ TI The voltage dependence of the mechanoelectrical transducer modifies low frequency outer hair cell electromotility in vitro SO HEARING RESEARCH LA English DT Article DE cochlea; outer hair cell; hair cell transducer; electromotility; cochlear amplifier ID GUINEA-PIG COCHLEA; MECHANICAL RESPONSES; CURRENTS; MOTILITY; CHANNELS; DISPLACEMENT; STEREOCILIA; ADAPTATION; MOVEMENTS; CALCIUM AB The fast outer hair cell (OHC) electromotility is voltage dependent and is driven by changes in the OHC transmembrane potential. Those changes include the receptor potential generated by the variable conductance of the mechanoelectrical transducer (Evans and Dallos, 1993). In the experiments described here, we show that the voltage dependence of the mechanoelectrical transducer influences the low frequency motile responses of OHCs to an external electrical field. OHCs were fully inserted into a glass suction pipette, the microchamber, so that only the cuticular plate and hair bundle were exposed to the bath solution. With this technique, a rectification of the mechanical response, equivalent to an excitatory displacement of the hair bundle, was observed when the command voltage inside the microchamber depolarized the apical membrane. The shape of the response persisted when the OHC voltage-gated conductances were blocked. Following treatment of the hair bundle with BAPTA or dihydrostreptomycin, which are known to impair transduction function (Assad et al., 1991; Kroese et al., 1989), rectification of the motile response disappeared. C1 UNIV SUSSEX,SCH BIOL SCI,BRIGHTON BN1 9QG,E SUSSEX,ENGLAND. CR Andronov A. A., 1966, THEORY OSCILLATORS ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 ASHMORE JF, 1986, NATURE, V322, P368, DOI 10.1038/322368a0 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X ASSAD JA, 1989, P NATL ACAD SCI USA, V86, P2918, DOI 10.1073/pnas.86.8.2918 BOSCHER SK, 1978, NATURE, V273, P377 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 EVANS BN, 1993, P NATL ACAD SCI USA, V90, P8347, DOI 10.1073/pnas.90.18.8347 EVANS BN, 1991, HEARING RES, V52, P288, DOI 10.1016/0378-5955(91)90019-6 Evans B.N., 1989, COCHLEAR MECHANISMS, P205 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 HACOHEN N, 1989, J NEUROSCI, V9, P3988 HALLWORTH R, 1993, J NEUROPHYSIOL, V70, P549 HOLLEY MC, 1996, COCHLEA, P421 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 KROS CJ, 1993, BIOPHYSICS HAIR CELL, P141 KROS CJ, 1992, P ROY SOC B-BIOL SCI, V249, P185, DOI 10.1098/rspb.1992.0102 LUKASHKIN AN, 1997, DIVERSITY AUDITORY M, P587 PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 REUTER G, 1990, HEARING RES, V43, P219, DOI 10.1016/0378-5955(90)90230-M RUSSELL IJ, 1991, J PHYSIOL-LONDON, V435, P493 SANTOS-SACCHI J, 1993, BIOPHYS J, V65, P2217 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SANTOS-SACCHI J, 1989, J NEUROSCI, V9, P2954 SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906 Spoendlin H, 1988, PHYSL EAR, P201 WEISS TF, 1985, HEARING RES, V20, P175, DOI 10.1016/0378-5955(85)90167-4 ZENNER HP, 1988, HEARING RES, V34, P233, DOI 10.1016/0378-5955(88)90003-2 ZHANG M, 1997, ABSTR ASS RES OT, V20, P64 NR 35 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 133 EP 139 DI 10.1016/S0378-5955(97)00135-4 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600011 PM 9387992 ER PT J AU vandenHonert, C Finley, CC Xue, S AF vandenHonert, C Finley, CC Xue, S TI Microstimulation of auditory nerve for estimating cochlear place of single fibers in a deaf ear SO HEARING RESEARCH LA English DT Article DE cochlear implant; single unit; cochlear place; characteristic frequency; tuning curve; intermodulation; spatial tuning ID MULTICHANNEL ELECTRICAL-STIMULATION; INFERIOR COLLICULUS; CAT; NUCLEUS; REPRESENTATION; PROJECTIONS AB Multielectrode cochlear prostheses seek to approximate the cochlea's normal frequency-place mapping through spatial segregation of stimulus currents. Various electrode configurations have been employed to achieve such segregation. Direct measurements of stimulation regions among single auditory nerve (AN) fibers has been possible only when normal hearing is preserved, such that each fiber's cochlear place can be inferred from its tuning curve. This precludes measurements in deafened ears, or ears compromised by implantation of the electrodes. Data presented here demonstrate that the cochlear place of an AN fiber can be estimated without acoustic sensitivity, using electrical microstimulation through a recording pipette in the AN bundle. The procedure exploits cochleotopic projection to isofrequency laminae within the contralateral inferior colliculus (IC). Microstimulation excites a small group of fibers neighboring the recorded fiber, generating centrally propagated volleys along a narrow frequency-specific pathway. Evoked potential recordings at varying depths are made to identify the ICC lamina where the response to AN microstimulation is greatest. Preliminary data are also presented for an alternative method of identifying the lamina using a frequency domain measure of binaural interactions within the IC. C1 UNIV VERMONT,DEPT PHYS,BURLINGTON,VT 05405. RP vandenHonert, C (reprint author), CTR AUDITORY PROSTHESIS RES,POB 12194,RES TRIANGLE PK,NC 27009, USA. CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405 BANFAI P, 1985, J LARYNGOL OTOL, V99, P549, DOI 10.1017/S0022215100097231 BLACK RC, 1981, IEEE T BIO-MED ENG, V28, P721, DOI 10.1109/TBME.1981.324668 BYERS CL, 1987, Patent No. 4686765 CHOUARD CH, 1976, LARYNGOSCOPE, V86, P1743, DOI 10.1288/00005537-197611000-00021 Dorman Michael F., 1996, Journal of the Acoustical Society of America, V99, P1174, DOI 10.1121/1.414600 EDDINGTON DK, 1978, ANN OTOLRHINOLLA 2 S, V53, P87 Hartmann R, 1990, Acta Otolaryngol Suppl, V469, P128 HETKE JF, 1992, 15 MIDW M ASS RES OT HOCHMAIRDESOYER IJ, 1980, IEEE T BIO-MED ENG, V27, P44, DOI 10.1109/TBME.1980.326691 HOUSE WF, 1973, ANN OTO RHINOL LARYN, V82, P504 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 MERZENICH MM, 1977, FUNCTIONAL ELECT STI MERZENICH MM, 1979, ACTA OTO-LARYNGOL, V87, P196, DOI 10.3109/00016487909126407 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 MOXON EC, 1965, THESIS MIT CAMBRIDGE OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 OLIVER DL, 1984, J COMP NEUROL, V224, P155, DOI 10.1002/cne.902240202 OLIVER DL, 1978, J COMP NEUROL, V264, P24 RABINER LR, 1975, THEORY APPLICATION D REGAN MP, 1989, CAN J NEUROL SCI, V16, P168 RODENHISER KL, 1995, IEEE T BIO-MED ENG, V42, P337, DOI 10.1109/10.376127 ROSE JE, 1963, J NEUROPHYSIOL, V26, P294 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823 SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SIMMONS FB, 1979, ACTA OTO-LARYNGOL, V87, P170, DOI 10.3109/00016487909126403 SIMMONS FB, 1966, ARCHIV OTOLARYNGOL, V84, P2 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S SOKOLICH WG, 1981, Patent No. 4251686 TYLER RS, 1995, AUDIOLOGY, V34, P135 VANCOMPERNOLLE D, 1985, G9067 STANF U DEP EL VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 NR 35 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 140 EP 154 DI 10.1016/S0378-5955(97)00132-9 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600012 PM 9387993 ER PT J AU Bobbin, RP Chu, SHB Skellett, RA Campbell, J Fallen, M AF Bobbin, RP Chu, SHB Skellett, RA Campbell, J Fallen, M TI Cytotoxicity and mitogenicity of adenosine triphosphate in the cochlea SO HEARING RESEARCH LA English DT Article DE receptor; cochlear potential; cytotoxin; histology; fibrocyte; mitogen ID OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; VESTIBULAR SENSORY EPITHELIA; PURINERGIC P-2Z RECEPTOR; NOISE EXPOSURE ALTERS; ATP-INDUCED PORE; EXTRACELLULAR ATP; PHOSPHOINOSITIDE HYDROLYSIS; INTRACELLULAR CALCIUM; MEDIATED CYTOTOXICITY AB Evidence is accumulating to indicate that extracellular adenosine 5'-triphosphate (ATP) may function as a neurotransmitter, neuromodulator, cytotoxin and mitogen. Many of the cells in the cochlea have ATP receptors, however, their function is unknown. The purpose of the present study was to test whether ATP may act as a cytotoxin in the cochlea. ATP was applied to acutely isolated outer hair cells (OHCs) and their shape changes monitored. In addition, ATP was applied into the cochlea by perfusion of the perilymph compartment for 2 h and the animals allowed to survive 3-4 weeks post drug application. At this time, sound-evoked cochlear potentials and distortion product otoacoustic emissions (DPOAEs) were monitored and the cochleas evaluated histologically. Results indicate that when applied to isolated OHCs, ATP (3-30 mM) induced a bleb formation in the infracuticular region of the cell that burst within a few minutes. Short OHCs were more sensitive to this effect of ATP than long OHCs. 3-4 weeks after the perilymph perfusion of ATP (60 mM; 2 h) cochlear potentials and DPOAEs were abolished, and histologically, cells in the organ of Corti and the stria vascularis were found to have been destroyed. In addition, there was loss of spiral ganglion cells and proliferating connective tissue filled varying proportions of the scala tympani and vestibuli. Application of sodium gluconate, a control, at the same concentrations had no effect either on the isolated OHCs or when applied in vivo. Results suggest that extracellular ATP or a metabolic product may act as a cytotoxin to some epithelial and neural elements in the cochlea and possibly as a mitogen to mesenchymal cells or fibrocytes. RP Bobbin, RP (reprint author), LOUISIANA STATE UNIV,MED CTR,KRESGE HEARING RES LAB S,DEPT OTORHINOLARYNGOL & BIOCOMMUN,NEW ORLEANS,LA 70112, USA. CR ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 AUBERT A, 1994, NEUROSCIENCE, V62, P963, DOI 10.1016/0306-4522(94)90487-1 BEYER EC, 1991, J BIOL CHEM, V266, P7971 BOBBIN RP, 1990, HEARING RES, V47, P39, DOI 10.1016/0378-5955(90)90165-L BOBBIN RP, 1978, ANN OTO RHINOL LARYN, V87, P185 BOBBIN RP, 1997, ARO ABSTR, V20, P14 BOBBIN RP, 1996, HAIR CELLS HEARING A, P29 BURNSTOCK G, 1990, ANN NY ACAD SCI, V603, P1 CECOLA RP, 1992, HEARING RES, V61, P65, DOI 10.1016/0378-5955(92)90037-N CHEN C, 1995, HEARING RES, V86, P25, DOI 10.1016/0378-5955(95)00050-E CHEN C, 1995, HEARING RES, V88, P215, DOI 10.1016/0378-5955(95)00115-K CHU SHB, 1997, ARO ABSTR, V20, P74 CLERICI WJ, 1993, TOXICOL APPL PHARM, V120, P193, DOI 10.1006/taap.1993.1103 Collo G, 1996, J NEUROSCI, V16, P2495 CRIST JR, 1993, HEARING RES, V69, P194, DOI 10.1016/0378-5955(93)90107-C DIVIRGILIO F, 1990, IMMUNOL TODAY, V11, P274, DOI 10.1016/0167-5699(90)90111-L Dulon D., 1995, ACTIVE HEARING, P195 DULON D, 1994, BIOCHEM BIOPH RES CO, V201, P1263, DOI 10.1006/bbrc.1994.1841 DULON D, 1993, CELL CALCIUM, V14, P245, DOI 10.1016/0143-4160(93)90071-D DULON D, 1991, NEUROREPORT, V2, P69, DOI 10.1097/00001756-199102000-00001 EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 FALZONI S, 1995, J CLIN INVEST, V95, P1207, DOI 10.1172/JCI117770 GOLDSTEI.AJ, 1967, ANN OTO RHINOL LARYN, V76, P414 GORDON JL, 1986, BIOCHEM J, V233, P309 HOUSLEY GD, 1995, ACTIVE HEARING, P221 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 HUANG NN, 1993, J BIOL CHEM, V268, P10789 IKEDA K, 1992, PFLUG ARCH EUR J PHY, V420, P493, DOI 10.1007/BF00374624 IKEDA K, 1991, ORL J OTO-RHINO-LARY, V53, P78 KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227 KEITHLEY EM, 1989, LARYNGOSCOPE, V99, P409, DOI 10.1288/00005537-198904000-00010 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 KUJAWA SG, 1994, HEARING RES, V78, P181, DOI 10.1016/0378-5955(94)90024-8 LIU J, 1995, AUDIT NEUROSCI, V1, P331 MOCKETT BG, 1995, HEARING RES, V84, P177, DOI 10.1016/0378-5955(95)00024-X MOCKETT BG, 1994, J NEUROSCI, V14, P6992 MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5 MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 NAKAGAWA T, 1990, J NEUROPHYSIOL, V63, P1068 NIEDZIELSKI AS, 1992, NEUROREPORT, V3, P273, DOI 10.1097/00001756-199203000-00015 OGAWA K, 1994, HEARING RES, V74, P197, DOI 10.1016/0378-5955(94)90187-2 OGAWA K, 1995, NEUROREPORT, V6, P1538 OGAWA K, 1993, HEARING RES, V69, P207, DOI 10.1016/0378-5955(93)90109-E REDEGELD F, 1991, J IMMUNOL, V147, P3638 SCHUBERT J, 1952, J AM CHEM SOC, V74, P3529, DOI 10.1021/ja01134a021 Schuknecht HF, 1993, PATHOLOGY EAR SHIGEMOTO T, 1990, J PHYSIOL-LONDON, V420, P127 SKELLETT RA, 1997, IN PRESS HEAR RES SKELLETT RA, 1995, HEARING RES, V87, P41, DOI 10.1016/0378-5955(95)00076-G Skellett RA, 1996, HEARING RES, V98, P68, DOI 10.1016/0378-5955(96)00062-7 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 STEINBERG TH, 1989, METHOD CELL BIOL, V31, P45, DOI 10.1016/S0091-679X(08)61601-5 Sugasawa M, 1996, J PHYSIOL-LONDON, V491, P707 SUZUKI M, 1995, HEARING RES, V86, P68, DOI 10.1016/0378-5955(95)00055-9 TATHAM PER, 1990, J GEN PHYSIOL, V95, P459, DOI 10.1085/jgp.95.3.459 Vlajkovic SM, 1996, HEARING RES, V99, P31, DOI 10.1016/S0378-5955(96)00079-2 WANG DJ, 1994, J BIOL CHEM, V269, P16648 Wangemann P, 1996, AUDIT NEUROSCI, V2, P187 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 WILSON JE, 1991, ANAL BIOCHEM, V193, P16, DOI 10.1016/0003-2697(91)90036-S WOOLF NK, 1988, ANTIMICROB AGENTS CH, V32, P865 Zoeteweij JP, 1996, HEPATOLOGY, V23, P858, DOI 10.1002/hep.510230429 NR 63 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 155 EP 164 DI 10.1016/S0378-5955(97)00140-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600013 PM 9387994 ER PT J AU McPartland, JL Culling, JF Moore, DR AF McPartland, JL Culling, JF Moore, DR TI Changes in lateralization and loudness judgements during one week of unilateral ear plugging SO HEARING RESEARCH LA English DT Article DE binaural plasticity; auditory adaptation; conductive hearing loss ID AUDITORY BRAIN-STEM; SOUND LOCALIZATION; OTITIS-MEDIA; INFERIOR COLLICULUS; BINAURAL HEARING; COCHLEAR NUCLEUS; CHILDREN; PROJECTIONS; FERRET AB The aim of this study was to determine whether lateralization judgements show adaptation during a period of unilateral ear plugging. Six normally hearing young adults were tested repeatedly using pure tone stimuli of 500 and 4000 Hz to determine (i) the threshold in each ear, (ii) the interaural sensation level difference (ISLD) at which sounds presented alternately to the two ears were of equal loudness, and (iii) the ISLD at which sounds presented simultaneously to the two ears produced a centered internal sound image. Subjects were tested 9-14 times over one week before an ear plug, producing a nominal attenuation of 21 dB (at both frequencies), was placed in one ear. Subjects wore the plug continuously for a further week, and were tested daily during this period, with the plug in place. After unplugging, subjects were tested less frequently for one final week. Net changes in binaural hearing were measured by subtracting the equal loudness ISLD from the centering ISLD. Four subjects showed no net change, either during or after plugging, but a small (<3 dB) adaptation occurred during plugging in two subjects. C1 UNIV OXFORD,PHYSIOL LAB,OXFORD OX1 3PT,ENGLAND. RI Culling, John/D-1468-2009 CR DURLACH NI, 1981, AUDIOLOGY, V20, P181 Florentine M, 1976, J Am Audiol Soc, V1, P243 Hall J W 3rd, 1993, J Am Acad Audiol, V4, P307 HALL JW, 1995, ARCH OTOLARYNGOL, V121, P847 HAUSLER R, 1983, ACTA OTOLARYNGOL S, V400 HELD RICHARD, 1955, AMER JOUR PSYCHOL, V68, P526, DOI 10.2307/1418782 HINE JE, 1994, BEHAV NEUROSCI, V108, P196, DOI 10.1037//0735-7044.108.1.196 Hogan S C, 1996, Audiol Neurootol, V1, P104 HOGAN SC, 1995, BRIT J AUDIOL, V29, P56 IRVINE DRF, 1995, ADV HEARING RES, P3 JERGER JF, 1960, J SPEECH HEAR RES, V3, P15 Kaas Jon H., 1995, P51 KNUDSEN EI, 1984, TRENDS NEUROSCI, V7, P326, DOI 10.1016/S0166-2236(84)80081-8 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MCALPINE D, 1997, IN PRESS J NEUROPHYS Moore BCJ, 1997, INTRO PSYCHOL HEARIN MOORE DR, 1989, J NEUROSCI, V9, P1213 MOORE DR, 1997, MECH HEARING MOORE DR, 1991, AUDIOLOGY, V30, P91 MOORE DR, 1994, J COMP NEUROL, V339, P301, DOI 10.1002/cne.903390209 OLDFIELD SR, 1986, PERCEPTION, V15, P67, DOI 10.1068/p150067 PILLSBURY HC, 1991, ARCH OTOLARYNGOL, V117, P718 ROBINSON K, 1995, J ACOUST SOC AM, V97, P1183, DOI 10.1121/1.412230 SLATTERY WH, 1994, HEARING RES, V75, P38, DOI 10.1016/0378-5955(94)90053-1 WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310 Young PT, 1928, J EXP PSYCHOL, V11, P399, DOI 10.1037/h0073089 NR 26 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 165 EP 172 DI 10.1016/S0378-5955(97)00142-1 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600014 PM 9387995 ER PT J AU Huang, XY Gerhardt, KJ Abrams, RM Antonelli, PJ AF Huang, XY Gerhardt, KJ Abrams, RM Antonelli, PJ TI Temporary threshold shifts induced by low-pass and high-pass filtered noises in fetal sheep in utero SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; fetal sheep; noise; temporary threshold shift ID BRAIN-STEM RESPONSE; SOUND ENVIRONMENT; EXPOSURE; HEARING; DAMAGE AB Auditory brainstem responses (ABRs) were obtained from nine late gestational age fetal sheep in utero before and after a 16-h exposure to low-pass (cut-off frequency 1.0 kHz) and high-pass (cut-off frequency 1.0 kHz) noises (approximately 120 dB sound pressure level, recorded in air). Bone-conduction ABRs were elicited by broadband clicks and 0.5, 1.0 and 2.0 kHz tone bursts. Following low-pass noise exposure, ABR thresholds and wave IV latencies increased significantly for 0.5 and 1.0 kHz tone bursts. The high-pass noise exposure produced significant shifts in ABR thresholds and wave IV latencies only for the 1.0 kHz tone bursts. These findings confirm previous reports of low-frequency sound transmission into the fetal inner ear. C1 UNIV FLORIDA,DEPT COMMUN PROC & DISORDERS,GAINESVILLE,FL 32611. UNIV FLORIDA,INST ADV STUDY COMMUN PROC,GAINESVILLE,FL 32611. UNIV FLORIDA,DEPT OBSTET & GYNECOL,GAINESVILLE,FL 32611. UNIV FLORIDA,DEPT PEDIAT,GAINESVILLE,FL 32611. UNIV FLORIDA,DEPT OTOLARYNGOL,GAINESVILLE,FL 32611. CR ABRAMS RM, 1987, AM J OBSTET GYNECOL, V157, P1438 ARMITAGE SE, 1980, SCIENCE, V208, P1173, DOI 10.1126/science.7375927 Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 BOHNE BA, 1985, ANN OTO RHINOL LARYN, V94, P122 COOK RO, 1982, DEV PSYCHOBIOL, V15, P95, DOI 10.1002/dev.420150202 Daniel T, 1982, Rev Laryngol Otol Rhinol (Bord), V103, P313 DUNN DE, 1981, ASS RES OT 4 MIDW RE, P54 FUJITA T, 1991, ORL J OTO-RHINO-LARY, V53, P147 GERHARDT KJ, 1988, AM J OBSTET GYNECOL, V159, P228 GERHARDT KJ, 1989, SEMIN PERINATOL, V13, P362 Gerhardt KJ, 1996, AM J OTOLARYNG, V17, P374, DOI 10.1016/S0196-0709(96)90069-1 GERHARDT KJ, 1990, AM J OBSTET GYNECOL, V162, P282 GERHARDT KJ, 1992, AM J OTOLARYNG, V13, P226, DOI 10.1016/0196-0709(92)90026-P GRIFFITHS SK, 1994, HEARING RES, V74, P221, DOI 10.1016/0378-5955(94)90190-2 Griffiths SK, 1996, DEV PSYCHOBIOL, V29, P53 Hall J, 1992, HDB AUDITORY EVOKED Hawkins A.D., 1983, P347 HUANG X, 1997, ASS RES OT 20 MIDW R, P204 LACIAK J, 1990, PAM 27 ZJASD OT POLS, P155 LALANDE NM, 1986, AM J IND MED, V10, P427, DOI 10.1002/ajim.4700100410 NYMAN M, 1991, OBSTET GYNECOL, V78, P803 PETERS AJM, 1993, AM J OBSTET GYNECOL, V169, P1304 PIERSON LL, 1995, ASS RES OT 18 MIDW M, P73 PIERSON LL, 1995, DEV PSYCHOBIOL, V28, P293, DOI 10.1002/dev.420280505 PROSEN CA, 1990, HEARING RES, V44, P179, DOI 10.1016/0378-5955(90)90079-5 Ramazzini B, 1964, DIS WORKERS RICHARDS DS, 1992, OBSTET GYNECOL, V80, P186 Shehan CL, 1996, SEMIN PERINATOL, V20, P3, DOI 10.1016/S0146-0005(96)80052-8 Stapells DR, 1985, AUDITORY BRAINSTEM R, P147 VINCE MA, 1985, EARLY HUM DEV, V11, P179, DOI 10.1016/0378-3782(85)90105-7 Ward W. D., 1973, MODERN DEV AUDIOLOGY, P301 WOLLACK CH, 1963, J AUD RES, V3, P121 NR 32 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 173 EP 181 DI 10.1016/S0378-5955(97)00139-1 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600015 PM 9387996 ER PT J AU Fukazawa, T AF Fukazawa, T TI A model of cochlear micromechanics SO HEARING RESEARCH LA English DT Article DE cochlear model; computer simulation; organ of Corti ID OUTER HAIR-CELLS; SPONTANEOUS OTOACOUSTIC EMISSIONS; NONLINEAR MODEL; MECHANICS; MEMBRANE; FEEDBACK; MOTILITY; TINNITUS; INNER; ORGAN AB A cochlear model is presented which has two degrees of freedom, the motion of the basilar membrane and that of the tectorial membrane (TM), in every cross section of the organ of Corti. It assumes that the reticular lamina is virtually rigid, so that the apical portion of the outer hair cells is firmly anchored to it, and also that the TM is directly driven by the BM through the marginal net of the TM, which anchor to the phalanges of the outermost row of Deiters' cells or Hensen's cells, or both. It is shown that the model can produce more than 40 dB of cochlear gain in the frequency-domain simulation and 30 dB in time-domain simulation. Transiently evoked otoacoustic emissions and cochlear microphonics are simulated in the time domain. RP Fukazawa, T (reprint author), DOKKYO UNIV,SCH MED,KOSHIGAYA HOSP,DEPT OTOLARYNGOL,KOSHIGAYA,SAITAMA 343,JAPAN. CR DALLOS P, 1986, HEARING RES, V22, P185, DOI 10.1016/0378-5955(86)90095-X Dallos P, 1973, BASIC MECHANISMS HEA, P335 DEBOER E, 1995, J ACOUST SOC AM, V98, P1400, DOI 10.1121/1.414407 DEBOER E, 1993, J ACOUST SOC AM, V93, P2845, DOI 10.1121/1.406851 Fukazawa T, 1996, HEARING RES, V95, P135, DOI 10.1016/0378-5955(96)00039-1 FUKAZAWA T, 1992, HEARING RES, V59, P17, DOI 10.1016/0378-5955(92)90097-7 FUKAZAWA T, 1994, HEARING RES, V81, P42, DOI 10.1016/0378-5955(94)90151-1 GEISLER CD, 1993, HEARING RES, V68, P253, DOI 10.1016/0378-5955(93)90129-O GEISLER CD, 1993, BIOPHYSICS HAIR CELL, P330 GEISLER CD, 1991, HEARING RES, V54, P105, DOI 10.1016/0378-5955(91)90140-5 GEISLER CD, 1995, HEARING RES, V86, P132, DOI 10.1016/0378-5955(95)00064-B IWASA KH, 1992, J ACOUST SOC AM, V92, P3169, DOI 10.1121/1.404194 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 KRONESTERFREI A, 1979, ARCH OTO-RHINO-LARYN, V224, P3, DOI 10.1007/BF00455217 LIEBERMAN MC, 1978, ACTA OTOLARYNGOL S, V358, P1 LIM DJ, 1972, ARCHIV OTOLARYNGOL, V96, P199 LONSBURYMARTIN BL, 1988, HEARING RES, V33, P69, DOI 10.1016/0378-5955(88)90021-4 MOUNTAIN DC, 1993, BIOPHYSICS HAIR CELL, P361 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 NEELY ST, 1993, J ACOUST SOC AM, V94, P137, DOI 10.1121/1.407091 NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9 NISHIDA H, 1993, ECOG, OAE AND INTRAOPERATIVE MONITORING, P41 REUTER G, 1990, HEARING RES, V43, P219, DOI 10.1016/0378-5955(90)90230-M RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981 SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906 Steele CR, 1993, BIOPHYSICS HAIR CELL, P207 STRELIOFF D, 1985, HEARING RES, V18, P169, DOI 10.1016/0378-5955(85)90009-7 TANAKA Y, 1990, EAR HEARING, V11, P134, DOI 10.1097/00003446-199004000-00008 Voldrich L, 1983, MECH HEARING, P163 WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X WILSON JP, 1980, HEARING RES, V2, P527, DOI 10.1016/0378-5955(80)90090-8 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 ZWISLOCKI JJ, 1989, COCHLEAR MECH STRUCT, P163 NR 33 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 182 EP 190 DI 10.1016/S0378-5955(97)00138-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600016 PM 9387997 ER PT J AU Gill, SS Salt, AN AF Gill, SS Salt, AN TI Quantitative differences in endolymphatic calcium and endocochlear potential between pigmented and albino guinea pigs SO HEARING RESEARCH LA English DT Article DE cochlea; endolymph; calcium; melanin; albinism; endocochlear potential ID OUTER HAIR-CELLS; STRIA VASCULARIS; INNER-EAR; MECHANOELECTRICAL TRANSDUCTION; DEPENDENT DIFFERENCES; MELANOCYTES; OTOTOXICITY; KANAMYCIN; ABNORMALITIES; GRADIENTS AB A number of previous studies have suggested that melanin may play a role in Ca2+ homeostasis of endolymph. In the present study, endolymph Ca2+ levels and endocochlear potential (EP) were measured in all four cochlear turns of pigmented or albino guinea pigs. Auditory sensitivity was also evaluated using cochlear action potential (AP) thresholds. In pigmented animals we found that endolymph Ca2+ tended to increase from base to apex of the cochlea, while EP systematically decreased towards the apex. In contrast, no significant Ca2+ gradient was found in albinos and the EP decline was far less. As a result, the apical turn of albino animals had significantly lower Ca2+ and significantly higher EP than in pigmented animals. AP thresholds pooled across all test frequencies were significantly lower in albino animals although no differences at individual frequencies reached significance. Even after correction for EP differences, the endolymph Ca2+ levels in albino animals were significantly lower than in pigmented ones. These results confirm that there are significant physiologic differences between pigmented and albino animals, which are a likely consequence of the absence of melanin in the albino cochlea. They are consistent with the involvement of melanin in the active transport of Ca2+ into endolymph. C1 WASHINGTON UNIV,SCH MED,DEPT OTOLARYNGOL,ST LOUIS,MO 63110. CR BOCK GR, 1984, HEARING RES, V13, P201, DOI 10.1016/0378-5955(84)90109-6 Bonaccorsi P, 1965, Ann Laringol Otol Rinol Faringol, V64, P725 BOSHER SK, 1978, NATURE, V273, P377, DOI 10.1038/273377a0 CONLEE JW, 1986, HEARING RES, V23, P81, DOI 10.1016/0378-5955(86)90177-2 CONLEE JW, 1994, HEARING RES, V79, P115, DOI 10.1016/0378-5955(94)90133-3 CONLEE JW, 1994, HEARING RES, V72, P108, DOI 10.1016/0378-5955(94)90211-9 CONLEE JW, 1989, HEARING RES, V41, P43, DOI 10.1016/0378-5955(89)90177-9 CONLEE JW, 1989, ACTA OTO-LARYNGOL, V107, P48, DOI 10.3109/00016488909127478 CONLEE JW, 1991, HEARING RES, V55, P57, DOI 10.1016/0378-5955(91)90092-N CONLEE JW, 1993, HEARING RES, V65, P141, DOI 10.1016/0378-5955(93)90209-J Corti A., 1851, Z WISS ZOOL, V3, P109 CREEL D, 1980, PHARMACOL BIOCHEM BE, V12, P969, DOI 10.1016/0091-3057(80)90461-X DOI T, 1993, HEARING RES, V67, P179, DOI 10.1016/0378-5955(93)90245-V DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 DULON D, 1990, J NEUROSCI, V10, P1388 EATOCK RA, 1987, J NEUROSCI, V7, P2821 GRATACAP B, 1985, ACTA OTO-LARYNGOL, V99, P339, DOI 10.3109/00016488509108920 GRATTON MA, 1992, PIGM CELL RES, V5, P30, DOI 10.1111/j.1600-0749.1992.tb00779.x GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HACOHEN N, 1989, J NEUROSCI, V9, P3988 HILDING DA, 1977, ACTA OTO-LARYNGOL, V84, P24, DOI 10.3109/00016487709123939 HILL HZ, 1992, BIOESSAYS, V14, P49, DOI 10.1002/bies.950140111 HUY PTB, 1989, MENIERES DIS PATHOGE, P241 IKEDA K, 1988, HEARING RES, V34, P307, DOI 10.1016/0378-5955(88)90010-X JENISON GL, 1985, J NEUROCHEM, V44, P1845, DOI 10.1111/j.1471-4159.1985.tb07178.x KONIGSMARK BW, 1976, GENETIC METABOLIC DE KOSSL M, 1990, HEARING RES, V44, P217, DOI 10.1016/0378-5955(90)90082-Z LAFERRIE.KA, 1974, ANN OTO RHINOL LARYN, V83, P685 LUMPKIN EA, 1995, P NATL ACAD SCI USA, V92, P10297, DOI 10.1073/pnas.92.22.10297 LYTTKENS L, 1979, ACTA OTO-LARYNGOL, V88, P61, DOI 10.3109/00016487909137141 MASON HS, 1960, ARCH BIOCHEM BIOPHYS, V86, P225, DOI 10.1016/0003-9861(60)90409-4 NINOYU O, 1986, ARCH OTO-RHINO-LARYN, V243, P106, DOI 10.1007/BF00453759 OHMORI H, 1988, J PHYSIOL-LONDON, V399, P115 Pack AK, 1995, HEARING RES, V91, P119 PERSHADSINGH HA, 1980, J BIOL CHEM, V255, P4087 RAREY KE, 1982, HEARING RES, V6, P15, DOI 10.1016/0378-5955(82)90004-1 ROSS MD, 1982, HEARING RES, V6, P15 SALT AN, 1986, HEARING RES, V23, P141, DOI 10.1016/0378-5955(86)90011-0 SALT AN, 1990, AUDIOLOGY, V29, P135 SALT AN, 1989, 2 INT S MEN DIS SALT AN, 1994, HEARING RES, V74, P115, DOI 10.1016/0378-5955(94)90180-5 SALT AN, 1989, AM J OTOLARYNG, V10, P371, DOI 10.1016/0196-0709(89)90030-6 SCHROTT A, 1987, ACTA OTO-LARYNGOL, V103, P451 STEEL KP, 1987, HEARING RES, V27, P11, DOI 10.1016/0378-5955(87)90022-0 STEEL KP, 1989, DEVELOPMENT, V107, P453 STEEL KP, 1983, ARCH OTOLARYNGOL, V109, P22 WASTERSTROM SA, 1986, AM J OTOL, V7, P11 WASTERSTROM SA, 1986, AM J OTOL, V7, P19 Witkop Jr CJ, 1983, METABOLIC BASIS INHE, P301 ZUMGOTTESBERGE AMM, 1988, ACTA OTOLARYNGOL S S, V460, P18 ZUMGOTTESBERGE AMM, 1988, PIGM CELL RES, V1, P238 NR 51 TC 26 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 191 EP 197 DI 10.1016/S0378-5955(97)00141-X PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600017 PM 9387998 ER PT J AU Hu, BH Zheng, XY McFadden, SL Kopke, RD Henderson, D AF Hu, BH Zheng, XY McFadden, SL Kopke, RD Henderson, D TI R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Midwinter Meeting of the Association-for-Research-in-Otolaryngology CY FEB 05, 1997 CL ST PETERSBURG, FL SP Assoc Res Otolayngol DE organ of Corti; chinchilla; noise; R-phenylisopropyladenosine ID COCHLEAR BLOOD-FLOW; GUINEA-PIG COCHLEA; OUTER HAIR CELL; FREE-RADICALS; TISSUE-INJURY; ADENOSINE; REPERFUSION; MECHANISMS; EXPOSURE; EXCITOTOXICITY AB Reactive oxygen species, which are cytotoxic to living tissues, are thought to be partly responsible for noise-induced hearing loss. In this study R-phenylisopropyladenosine (R-PIA), a stable non-hydrolyzable adenosine analogue which has been found effective in upregulating antioxidant enzyme activity levels, was topologically applied to the round window of the right ears of chinchillas, Physiological saline was applied to the round window of the left ears (control). The animals were then exposed to a 4 kHz octave band noise at 105 dB SPL for 4 h, Inferior colliculus evoked potential thresholds and distortion product otoacoustic emissions (DPOAE) were measured and hair cell damage was documented, The mean threshold shifts immediately after the noise exposure were 70-90 dB at frequencies between 2 and 16 kHz. There were no significant differences in threshold shifts at this point between the R-PIA-treated and control ears. By 4 days after noise exposure, however, the R-PIA-treated ears showed 20-30 dB more recovery than saline-treated ears at frequencies between 4 and 16 kHz. More importantly, threshold measurements made 20 days after noise exposure showed 10-15 dB less permanent threshold shifts in R-PIA-treated ears. The amplitudes of DPOAE also recovered to a greater extent and outer hair cell losses were less severe in the R-PIA-treated ears, The results suggest that administration of R-PIA facilitates the recovery process of the outer hair cell after noise exposure. C1 SUNY BUFFALO,CTR HEARING & DEAFNESS,DEPT COMMUNICAT DISORDERS & SCI,BUFFALO,NY 14214. ALBERT EINSTEIN COLL MED,NEW YORK,NY. CR ALIO JL, 1993, OPHTHALMIC RES, V25, P331 BEAL MF, 1992, FASEB J, V6, P3338 BOBBIN RP, 1995, HEARING RES, V87, P49, DOI 10.1016/0378-5955(95)00077-H BURKEY TH, 1993, BIOCHIM BIOPHYS ACTA, V1175, P312, DOI 10.1016/0167-4889(93)90223-C Chan PH, 1996, STROKE, V27, P1124 CHARLOUX C, 1995, FREE RADICAL BIO MED, V19, P699, DOI 10.1016/0891-5849(95)00079-D CHOI DW, 1990, ANNU REV NEUROSCI, V13, P171, DOI 10.1146/annurev.ne.13.030190.001131 CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 CROSSON CE, 1992, CURR EYE RES, V11, P453, DOI 10.3109/02713689209001799 DYKENS JA, 1987, J NEUROCHEM, V49, P1222, DOI 10.1111/j.1471-4159.1987.tb10014.x EYBALIN M, 1993, PHYSIOL REV, V73, P309 FERRARI R, 1994, ADV EXP MED BIOL, V366, P99 Halliwell B., 1985, FREE RADICALS BIOL M HALLIWELL B, 1992, J NEUROCHEM, V59, P1609, DOI 10.1111/j.1471-4159.1992.tb10990.x HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321 HILLERDAL M, 1987, ACTA OTO-LARYNGOL, V104, P270, DOI 10.3109/00016488709107328 IKEDA K, 1993, ACTA OTO-LARYNGOL, V113, P137, DOI 10.3109/00016489309135781 JACONO AA, 1996, ASS RES OT ST PET BE JAESCHKE H, 1995, P SOC EXP BIOL MED, V209, P104 JEROUDI MO, 1994, AM J CARDIOL, V73, pB2, DOI 10.1016/0002-9149(94)90257-7 KARLSTEN R, 1992, ANESTH ANALG, V75, P972 KARLSTEN R, 1992, Pharmacology and Toxicology, V70, P434 LIU Z, 1992, CHIN J OTORHINOLARYN, V27, P24 MAGGIRWAR SB, 1994, BIOCHEM BIOPH RES CO, V201, P508, DOI 10.1006/bbrc.1994.1731 MONTI D, 1995, PHARMACOL BIOCHEM BE, V51, P125, DOI 10.1016/0091-3057(94)00395-Y PRAZMA J, 1988, ARCH OTOLARYNGOL, V114, P657 PRAZMA J, 1987, ARCH OTOLARYNGOL, V113, P36 Pujol R, 1990, Acta Otolaryngol Suppl, V476, P32 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 RAMKUMAR V, 1995, TRENDS PHARMACOL SCI, V16, P283, DOI 10.1016/S0165-6147(00)89051-3 ROBERFROID M, 1994, FREE RADICALS OXIDAT ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X Rohn TT, 1996, BIOCHEM PHARMACOL, V51, P471, DOI 10.1016/0006-2952(95)02222-8 SCHULZ JB, 1995, J NEUROCHEM, V64, P2239 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59 SOLLEVI A, 1986, PROG NEUROBIOL, V27, P319, DOI 10.1016/0301-0082(86)90005-5 SUBRAMANIAM M, 1992, HEARING RES, V58, P57, DOI 10.1016/0378-5955(92)90008-B THIEL M, 1992, PFLUG ARCH EUR J PHY, V420, P522, DOI 10.1007/BF00374628 TSUCHIDA A, 1992, CARDIOVASC RES, V26, P456, DOI 10.1093/cvr/26.5.456 VARANI J, 1994, SHOCK, V2, P311, DOI 10.1097/00024382-199411000-00001 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 YOKOI I, 1995, FREE RADICAL BIO MED, V19, P473, DOI 10.1016/0891-5849(95)00050-8 NR 43 TC 89 Z9 96 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 198 EP 206 DI 10.1016/S0378-5955(97)00143-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600018 PM 9387999 ER PT J AU Ofsie, MS Hennig, AK Messana, EP Cotanche, DA AF Ofsie, MS Hennig, AK Messana, EP Cotanche, DA TI Sound damage and gentamicin treatment produce different patterns of damage to the efferent innervation of the chick cochlea SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 19th Midwinter Meeting of the Association-for-Research-in-Otolaryngology CY FEB 04-08, 1996 CL ST PETERSBURG BEACH, FL SP Assoc Res Otolaryngol DE regeneration; gentamicin; sound damage; choline acetyltransferase; neurofilament; synapsin ID HAIR CELL REGENERATION; BASILAR PAPILLA; INNER-EAR; ACOUSTIC TRAUMA; SYNAPSIN-I; AMINOGLYCOSIDE OTOTOXICITY; CHOLINE-ACETYLTRANSFERASE; MONOCLONAL-ANTIBODIES; FUNCTIONAL RECOVERY; SYNAPTIC VESICLES AB zBoth sound exposure and gentamicin treatment cause damage to sensory hair cells in the peripheral chick auditory organ, the basilar papilla. This induces a regeneration response which replaces hair cells and restores auditory function. Since functional recovery requires the re-establishment of connections between regenerated hair cells and the central nervous system, we have investigated the effects of sound damage and gentamicin treatment on the neuronal elements within the cochlea. Whole-mount preparations of basilar papillae were labeled with phalloidin to label the actin cytoskeleton and antibodies to neurofilaments, choline acetyltransferase, and synapsin to label neurons; and examined by confocal laser scanning microscopy. When chicks are treated with gentamicin or exposed to acoustic overstimulation, the transverse nerve fibers show no changes from normal cochleae assayed in parallel. Efferent nerve terminals, however, disappear from areas depleted of hair cells following acoustic trauma. In contrast, efferent nerve endings are still present in the areas of hair cell loss following gentamicin treatment, although their morphological appearance is greatly altered. These differences in the response of efferent nerve terminals to sound exposure versus gentamicin treatment may account, at least in part, for the discrepancies reported in the time of recovery of auditory function. C1 BOSTON UNIV,SCH MED,DEPT ANAT & NEUROBIOL,LAB CELLULAR & MOL HEARING RES,BOSTON,MA 02118. CR CHARDIN S, 1995, SCIENCE, V267, P707, DOI 10.1126/science.7839151 CHEN L, 1993, HEARING RES, V69, P15, DOI 10.1016/0378-5955(93)90089-J CODE RA, 1994, J COMP NEUROL, V340, P161, DOI 10.1002/cne.903400203 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 Cotanche DA, 1995, HEARING RES, V91, P148, DOI 10.1016/0378-5955(95)00185-9 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 CRUZ RM, 1987, ARCH OTOLARYNGOL, V113, P1058 DEBUS E, 1983, DIFFERENTIATION, V25, P193 DUCKERT LG, 1990, HEARING RES, V48, P161, DOI 10.1016/0378-5955(90)90206-5 DUCKERT LG, 1993, J COMP NEUROL, V331, P75, DOI 10.1002/cne.903310105 EPSTEIN JE, 1995, HEARING RES, V90, P31, DOI 10.1016/0378-5955(95)00141-9 FIRBAS W, 1983, HEARING RES, V10, P109, DOI 10.1016/0378-5955(83)90021-7 FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R FRISANCHO JC, 1996, J NEUROCYTOL, V26, P121 GIROD DA, 1991, LARYNGOSCOPE, V101, P1139 HASHINO E, 1991, HEARING RES, V52, P356, DOI 10.1016/0378-5955(91)90025-5 HIROKAWA N, 1978, J COMP NEUROL, V181, P361, DOI 10.1002/cne.901810208 Janas JD, 1995, HEARING RES, V92, P17, DOI 10.1016/0378-5955(95)00190-5 JOHNSON CD, 1986, J NEUROCHEM, V46, P968, DOI 10.1111/j.1471-4159.1986.tb13064.x KELLEY MW, 1995, J NEUROSCI, V15, P3013 KEPPLER C, 1994, HEARING RES, V74, P259, DOI 10.1016/0378-5955(94)90194-5 LIPPE WR, 1991, HEARING RES, V56, P203, DOI 10.1016/0378-5955(91)90171-5 MANDELL JW, 1992, J NEUROSCI, V12, P1736 MANDELL JW, 1990, NEURON, V5, P19, DOI 10.1016/0896-6273(90)90030-J MAREAN GC, 1993, HEARING RES, V71, P125, DOI 10.1016/0378-5955(93)90028-Y MCFADDEN EA, 1989, HEARING RES, V41, P205, DOI 10.1016/0378-5955(89)90012-9 NAVONE F, 1984, SCIENCE, V226, P1209, DOI 10.1126/science.6438799 NIEMIEC AJ, 1994, HEARING RES, V75, P125 OESTERLE EC, 1992, J COMP NEUROL, V318, P64, DOI 10.1002/cne.903180105 Ofsie MS, 1996, J COMP NEUROL, V370, P281 Peters A, 1991, FINE STRUCTURE NERVO, V3rd PIERIBONE VA, 1995, NATURE, V375, P493, DOI 10.1038/375493a0 RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150 RYALS BM, 1992, EXP NEUROL, V115, P18, DOI 10.1016/0014-4886(92)90214-B RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 RYALS BM, 1994, HEARING RES, V72, P81, DOI 10.1016/0378-5955(94)90208-9 SAUNDERS JC, 1992, EXP NEUROL, V115, P13, DOI 10.1016/0014-4886(92)90213-A SCARFONE E, 1988, J NEUROSCI, V8, P4640 SHAW G, 1991, NEURONAL CYTOSKELETO, P218 STEWARD O, 1989, PRINCIPLES CELLULAR TAKASAKA T, 1971, J ULTRA MOL STRUCT R, V35, P20, DOI 10.1016/S0022-5320(71)80141-7 TANAKA K, 1978, AM J ANAT, V153, P251, DOI 10.1002/aja.1001530206 TUCCI DL, 1990, OTOLARYNG HEAD NECK, V103, P443 VALTORTA F, 1988, NEUROSCIENCE, V24, P593, DOI 10.1016/0306-4522(88)90353-3 Wang Y, 1996, HEARING RES, V97, P11, DOI 10.1016/S0378-5955(96)80003-7 WEBER K, 1983, COLD SPRING HARB SYM, V48, P717 WHITEHEAD MC, 1981, NEUROSCIENCE, V6, P2351, DOI 10.1016/0306-4522(81)90022-1 WIELAND T, 1978, CRC CR REV BIOCH MOL, V5, P185, DOI 10.3109/10409237809149870 ZIDANIC M, 1995, ABSTR ASS RES OT, V18, P193 Zidanic M, 1996, AUDIT NEUROSCI, V2, P347 NR 51 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 207 EP 223 DI 10.1016/S0378-5955(97)00150-0 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600019 PM 9388000 ER PT J AU Mire, P Watson, GM AF Mire, P Watson, GM TI Mechanotransduction of hair bundles arising from multicellular complexes in anemones SO HEARING RESEARCH LA English DT Article DE mechanotransduction; hair cell; loose-patch recording; sea anemone ID SEA-ANEMONES; MECHANOELECTRICAL TRANSDUCTION; NEMATOCYST DISCHARGE; CELLS; CHANNELS; CILIA; SITE AB Sea anemones are among the simplest animals to use hair bundles to detect vibrations. Although we previously found anemone bundles to be morphologically similar to vertebrate hair bundles, only indirect evidence implicated anemone bundles in mechanotransduction. Here, we test mechanotransduction of these bundles using loose-patch current recording from apical membranes of cells at the base of deflected bundles. Step bundle deflection results in graded membrane currents that are inward in some cells (positive) and outward in other cells (negative). Positive responses range from 5 to 30 pA, abruptly saturate with stronger stimuli, and increase in duration with prolonged deflections. Negative responses range from 10 to 150 pA, show a logarithmic relation to stimulus strength, and attenuate with prolonged deflections. Additionally, responses are reversibly inhibited by streptomycin. We present a model for anemone bundle mechanotransduction modified from the gating spring model for vertebrate mechanotransduction. Because anemone bundles comprise stereocilia arising from a multicellular complex, we propose that supporting cells on opposite sides of a bundle function as oppositely polarized hair cells. Thus, deflection induces ion channels to open in cells on one side of the complex, while allowing channels to close in cells on the opposite side of the complex. RP Mire, P (reprint author), UNIV SW LOUISIANA, DEPT BIOL, BOX 42451, LAFAYETTE, LA 70504 USA. CR ASHMORE JF, 1991, ANNU REV PHYSIOL, V53, P465, DOI 10.1146/annurev.physiol.53.1.465 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X AVENET P, 1991, J MEMBRANE BIOL, V124, P33, DOI 10.1007/BF01871362 Brinkmann M, 1996, J COMP PHYSIOL A, V178, P125 COREY DP, 1979, BIOPHYS J, V26, P499 COREY DP, 1992, SOC GEN PHY, V47, P325 COREY DP, 1983, J NEUROSCI, V3, P962 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 FRINGS S, 1990, BIOPHYS J, V57, P1091 FRINGS S, 1991, J GEN PHYSIOL, V97, P1, DOI 10.1085/jgp.97.1.1 HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 HOWARD J, 1988, ANNU REV BIOPHYS BIO, V17, P99 HUDSPETH AJ, 1992, SOC GEN PHY, V47, P357 HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845 HUDSPETH AJ, 1994, NEURON, V12, P1, DOI 10.1016/0896-6273(94)90147-3 HUDSPETH AJ, 1989, NATURE, V341, P397, DOI 10.1038/341397a0 HUDSPETH AJ, 1982, J NEUROSCI, V2, P1 JARAMILLO F, 1991, NEURON, V7, P409, DOI 10.1016/0896-6273(91)90293-9 KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 LANDOLFA MA, 1995, J COMP PHYSIOL A, V177, P749 LUMPKIN EA, 1995, P NATL ACAD SCI USA, V92, P10297, DOI 10.1073/pnas.92.22.10297 Mariscal R. N., 1974, COELENTERATE BIOL RE, P129 MIRETHIBODEAUX P, 1994, J EXP ZOOL, V270, P517, DOI 10.1002/jez.1402700605 MIRETHIBODEAUX P, 1994, J EXP ZOOL, V268, P282, DOI 10.1002/jez.1402680404 PETEYA DJ, 1975, TISSUE CELL, V7, P243, DOI 10.1016/0040-8166(75)90003-8 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 ROBERTS WM, 1988, ANNU REV CELL BIOL, V4, P63, DOI 10.1146/annurev.cb.04.110188.000431 WATSON GM, 1995, CELL MOTIL CYTOSKEL, V30, P208, DOI 10.1002/cm.970300305 Watson GM, 1997, HEARING RES, V107, P53, DOI 10.1016/S0378-5955(97)00022-1 WATSON GM, 1994, COMP BIOCHEM PHYS A, V107, P473, DOI 10.1016/0300-9629(94)90028-0 WATSON GM, 1994, INT REV CYTOL, V156, P275 WILLIAMSON R, 1990, J COMP PHYSIOL A, V167, P655 NR 32 TC 22 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 224 EP 234 DI 10.1016/S0378-5955(97)00145-7 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600020 PM 9388001 ER PT J AU Fay, RR EddsWalton, PL AF Fay, RR EddsWalton, PL TI Diversity in frequency response properties of saccular afferents of the toadfish, Opsanus tau SO HEARING RESEARCH LA English DT Article DE fish; hearing; auditory nerve; reverse correlation ID GOLDFISH CARASSIUS-AURATUS; ACOUSTIC PARTICLE MOTION; HAIR CELL; FISH; SENSITIVITY; PERCEPTION; NEURONS; SOUND; EAR AB The frequency response of primary saccular afferents of toadfish (Opsanus tau) was studied in the time and frequency domains using the reverse correlation (revcor) method, Stimuli were noise bands with flat acceleration spectra delivered as whole-body motion. The recorded acceleration waveform was averaged over epochs preceding and following each spike. This average, termed the revcor, is an estimate of the response of an equivalent linear filter intervening between body motion and spike initiation. The spectrum of the revcor estimates the shape of the equivalent linear filter. Revcor responses were brief, damped oscillations indicative of relatively broadly tuned filters. Filter shapes were generally band-pass and differed in bandwidth, band edge slope, and characteristic frequency (74 Hz to 140 Hz). Filter shapes tend to be independent of stimulus level. Afferents can be placed into two groups with respect to characteristic frequency (74-88 Hz and 140 Hz). Some high-frequency afferents share a secondary peak at the characteristic frequency of low-frequency afferents, suggesting that an afferent may receive differently tuned peripheral inputs. For some afferents having similar filter shapes, revcor responses often differ only in polarity, probably reflecting inputs from hair cells oriented in opposite directions. The origin of frequency selectivity and its diversity among saccular afferents may arise from a combination of hair cell resonance and micromechanical processes. The resulting frequency analysis is the simplest yet observed among vertebrate animals. During courtship, male toadfish produce the 'boatwhistle' call, a periodic vocalization having several harmonics of a 130 Hz fundamental frequency. The saccule encodes the waveform of acoustic particle acceleration between < 50 and about 250 Hz. Thus, the fundamental frequency component of the boatwhistle is well encoded, but the successive higher harmonics are filtered out. The boatwhistle is thus encoded as a time-domain representation of its fundamental frequency or pulse repetition rate. C1 LOYOLA UNIV,DEPT PSYCHOL,CHICAGO,IL 60626. MARINE BIOL LAB,WOODS HOLE,MA 02543. RP Fay, RR (reprint author), LOYOLA UNIV,PARMLY HEARING INST,6525 N SHERIDAN RD,CHICAGO,IL 60626, USA. CR CHAPMAN CJ, 1974, COMP BIOCHEM PHYSIOL, V47, P371, DOI 10.1016/0300-9629(74)90082-6 COOMBS SL, 1981, J ACOUST SOC AM, V71, P133 Crawford JD, 1993, J COMP PHYSIOL A, V172, P1 DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704 DENTON EJ, 1983, PROC R SOC SER B-BIO, V218, P1, DOI 10.1098/rspb.1983.0023 EDDISWALTON PL, 1996, SOC NEUR ABST EDDSWALTON PL, 1995, ACTA ZOOL-STOCKHOLM, V76, P257 EVANS EF, 1989, COCHLEAR MECH, P341 Fay R. R., 1988, HEARING VERTEBRATES FAY RR, 1995, HEARING RES, V89, P146, DOI 10.1016/0378-5955(95)00132-8 FAY RR, 1996, DIVERSITY AUDITORY M, P69 FAY RR, 1978, J EXP BIOL, V74, P83 FAY RR, 1997, IN PRESS HEARING RES FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229 FAY RR, 1984, SCIENCE, V225, P951, DOI 10.1126/science.6474161 Fay RR, 1996, AUDIT NEUROSCI, V2, P377 Fine ML, 1981, HEARING SOUND COMMUN, P257 FISH JF, 1972, CURRENT PERSPECTIVES, V2, P386 FISH JF, 1972, J ACOUST SOC AM, V51, P1314 FURUKAWA T, 1967, J NEUROPHYSIOL, V30, P1377 GRAY GA, 1961, ECOLOGY, V42, P274, DOI 10.2307/1932079 HAWKINS AD, 1975, J COMP PHYSIOL, V103, P209 HORNER K, 1981, HEARING SOUND COMMUN, P223 KOPPL C, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P489 LEWIS ER, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P163 LEWIS ER, 1988, BIOPHYS J, V53, P441 LU Z, 1993, J COMP PHYSIOL A, V173, P33 LU Z, 1995, J COMP PHYSIOL A, V176, P747 Lu Z, 1996, J COMP PHYSIOL A, V179, P227 Lu ZM, 1996, AUDIT NEUROSCI, V2, P257 MANLEY GA, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P561 MCCORMICK CA, 1984, J COMP PHYSIOL, V155, P753, DOI 10.1007/BF00611592 POPPER AN, 1993, BRAIN BEHAV EVOLUT, V41, P14, DOI 10.1159/000113821 Rogers P.H., 1988, P131 SAND O, 1986, J EXP BIOL, V125, P197 STEINACKER A, 1992, BRAIN RES, V574, P229, DOI 10.1016/0006-8993(92)90821-P VONFRISCH K, 1938, Z VERGL PHYSIOL, V25, P703 WATKINS WILLIAM A., 1967, MAR BIO ACOUSTICS, V2, P15 Webster DB, 1992, EVOLUTIONARY BIOL HE NR 39 TC 40 Z9 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 235 EP 246 DI 10.1016/S0378-5955(97)00148-2 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600021 PM 9388002 ER PT J AU Schoonhoven, R Prijs, VF Frijns, JHM AF Schoonhoven, R Prijs, VF Frijns, JHM TI Transmitter release in inner hair cell synapses: a model analysis of spontaneous and driven rate properties of cochlear nerve fibres SO HEARING RESEARCH LA English DT Article DE inner hair cell; synaptic transmission; auditory nerve; spontaneous activity; rate-intensity function; rate threshold ID RATE-INTENSITY FUNCTIONS; PIG AUDITORY-NERVE; BASILAR-MEMBRANE NONLINEARITY; GUINEA-PIG; NEUROTRANSMITTER RELEASE; PRIOR STIMULATION; LEVEL FUNCTIONS; DYNAMIC-RANGE; SINGLE-FIBER; ADAPTATION AB The inner hair cell (IHC) synapse is one of the stages of cochlear processing that determine the relation between sound pressure level and spike rate in auditory nerve fibres. Transmitter released in the non-stimulated condition is held responsible for the wide range of spontaneous spike rates (SR) observed in these fibres. Properties of stimulated spike activity in auditory nerve fibres, including rate threshold and operating range of a fibre, are known to systematically vary with SR. This paper presents a model analysis of the relation between IHC transmembrane potential and transmitter release rate as becoming manifest in these spontaneous and driven rate properties. A previously developed computational model is used to identify those transfer properties of its synapse section which lead to reproduction of the variation of rate thresholds, shapes of rate-intensity functions and maximal driven rate with SR known from the literature. First a simple additive release model, in which driven transmitter release depends linearly on IHC potential, is elaborated. Its results lead to the hypothesis that the true release function is non-linear and variable across synapses generating different SR. An exponential release function is then introduced, with parameters varying across SR in a physiologically dictated way. This approach leads to adequate reproduction of the variation in rate thresholds and rate-intensity functions with SR. Finally, the model is applied in an inverse way to directly estimate the release function from given rate-intensity functions. The conclusion of both forward and inverse model analyses is that transmitter release is a non-linear function of IHC potential which, by the systematic variation of its parameters across SR, effectively leads to the physiological variation in dynamic range across fibres of different SR. Possible relations of these results with ultrastructural morphology and basic physiology of IHC synapses are discussed. RP Schoonhoven, R (reprint author), UNIV LEIDEN HOSP, DEPT ENT AUDIOL, POB 9600, NL-2300 RC LEIDEN, NETHERLANDS. RI Frijns, Johan/H-6249-2011 CR Bledsoe Jr S.C., 1988, PHYSL HEARING, P385 Delgutte B, 1987, PSYCHOPHYSICS SPEECH, P333 EGGERMONT JJ, 1985, HEARING RES, V18, P57, DOI 10.1016/0378-5955(85)90110-8 EVANS EF, 1980, EXP BRAIN RES, V40, P115 FETTIPLACE R, 1992, SOC GEN PHY, V47, P343 GEISLER CD, 1981, BRAIN RES, V212, P198, DOI 10.1016/0006-8993(81)90051-2 GEISLER CD, 1990, HEARING RES, V44, P1, DOI 10.1016/0378-5955(90)90017-J GEISLER CD, 1985, J ACOUST SOC AM, V77, P1102, DOI 10.1121/1.392228 GLEASON E, 1994, NEURON, V13, P1109, DOI 10.1016/0896-6273(94)90049-3 GLEICH O, 1993, HEARING RES, V71, P69, DOI 10.1016/0378-5955(93)90022-S HEWITT MJ, 1991, J ACOUST SOC AM, V90, P904, DOI 10.1121/1.401957 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 KHANIN R, 1994, BIOPHYS J, V67, P966 KIDD RC, 1990, HEARING RES, V49, P181, DOI 10.1016/0378-5955(90)90104-W KLINKE R, 1986, HEARING RES, V22, P235, DOI 10.1016/0378-5955(86)90100-0 KROS CJ, 1996, HDB AUDITORY RES 8, P318 LAUGHLIN SB, 1987, PROC R SOC SER B-BIO, V231, P437, DOI 10.1098/rspb.1987.0054 Lenzi David, 1994, Current Opinion in Neurobiology, V4, P496, DOI 10.1016/0959-4388(94)90049-3 LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 LLINAS RR, 1991, ANN NY ACAD SCI, V635, P3, DOI 10.1111/j.1749-6632.1991.tb36476.x LUTKENHONER B, 1980, SCAND AUDIOL S, V11, P25 MEDDIS R, 1988, J ACOUST SOC AM, V83, P1056, DOI 10.1121/1.396050 MEDDIS R, 1990, J ACOUST SOC AM, V87, P1813, DOI 10.1121/1.399379 MERCHANPEREZ A, 1996, IN PRESS J COMP NEUR MOUNTAIN DC, 1995, AUDITORY COMPUTATION, P121 MULLER M, 1991, HEARING RES, V57, P63, DOI 10.1016/0378-5955(91)90075-K Nicholls J. G., 1992, NEURON BRAIN PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X Parnas H, 1990, Int Rev Neurobiol, V32, P1 PARNAS H, 1994, J MEMBRANE BIOL, V142, P267 PARSONS TD, 1994, NEURON, V13, P875, DOI 10.1016/0896-6273(94)90253-4 PATUZZI R, 1983, J ACOUST SOC AM, V74, P1734, DOI 10.1121/1.390282 PRIJS VF, 1993, HEARING RES, V71, P190, DOI 10.1016/0378-5955(93)90034-X RELKIN EM, 1995, HEARING RES, V83, P183, DOI 10.1016/0378-5955(95)00004-N RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 ROBERTS WM, 1993, NATURE, V363, P74, DOI 10.1038/363074a0 ROBERTS WM, 1991, ANN NY ACAD SCI, V635, P221, DOI 10.1111/j.1749-6632.1991.tb36494.x Ross S, 1996, J ACOUST SOC AM, V99, P2221, DOI 10.1121/1.415410 ROSSI ML, 1994, J PHYSIOL-LONDON, V478, P17 SACHS MB, 1989, HEARING RES, V41, P61, DOI 10.1016/0378-5955(89)90179-2 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 SCHOONHOVEN R, 1996, P 18 ARO MIDW M, P301 SCHOONHOVEN R, 1994, J ACOUST SOC AM, V95, P2104, DOI 10.1121/1.408672 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 SHAMMA SA, 1986, J ACOUST SOC AM, V80, P133, DOI 10.1121/1.394173 SIEGEL JH, 1992, HEARING RES, V59, P85, DOI 10.1016/0378-5955(92)90105-V SMITH RL, 1982, BIOL CYBERN, V44, P107, DOI 10.1007/BF00317970 STARR PA, 1991, HEARING RES, V52, P23, DOI 10.1016/0378-5955(91)90185-C VERSNEL H, 1992, HEARING RES, V59, P138, DOI 10.1016/0378-5955(92)90111-Y WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E YATES GK, 1985, HEARING RES, V17, P1, DOI 10.1016/0378-5955(85)90124-8 YATES GK, 1990, HEARING RES, V45, P203, DOI 10.1016/0378-5955(90)90121-5 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M YATES GK, 1991, HEARING RES, V57, P57, DOI 10.1016/0378-5955(91)90074-J ZAGAESKI M, 1994, J ACOUST SOC AM, V95, P3430, DOI 10.1121/1.409963 ZEDDIES DG, 1995, P 18 ARO MIDW M, P611 NR 61 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 1997 VL 113 IS 1-2 BP 247 EP 260 DI 10.1016/S0378-5955(97)00149-4 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE246 UT WOS:A1997YE24600022 PM 9388003 ER PT J AU PiekeDahl, S Ohlemiller, KK McGee, J Walsh, EJ Kimberling, WJ AF PiekeDahl, S Ohlemiller, KK McGee, J Walsh, EJ Kimberling, WJ TI Hearing loss in the RBF/DnJ mouse, a proposed animal model of usher syndrome type IIa SO HEARING RESEARCH LA English DT Article DE Usher syndrome type IIa; USH2A; rd3; RBF/DnJ ID GENETIC-LINKAGE MAP; RETINAL DEGENERATION; RETINITIS-PIGMENTOSA; LOCALIZATION; GENOME; 1Q41 AB The Usher syndromes (US) are a group of inherited disorders that feature autosomal recessive neurosensory hearing loss or deafness with retinitis pigmentosa (RP). Moderate to severe non-progressive high frequency hearing loss with RP and normal vestibular function describes Usher syndrome type IIa, which has been localized to 1q41. Severe retinal degeneration in the inbred mouse strain RBF/DnJ is caused by rd3, a recessive gene located on mouse chromosome 1 distal to akp1 in a region which is orthologous to human 1q32-q42. We evaluated rd3 as a candidate for orthology with USH2A by first reducing and refining the relatively broad region in which rd3 is thought to reside. DNA of offspring from an RBF/DnJ x MOLF/Ei backcross was genotyped with PCR markers closely flanking the predicted location of rd3. Our haplotype analysis re-positioned rd3 to a 3.6 cM region between markers D1Mit273 (cen) and D1Mit209 (tel), consistent with the expected position of an USH2A murine orthologue. Consequently, rd3 is a positional candidate for Usher type IIa. Next we assessed the rd3/rd3 audiological phenotype to see how closely it paralleled that of Usher IIa. Audiological evaluation of mice at various ages revealed evidence of high frequency progressive hearing loss, previously unreported in the RBF/DnJ strain. However, this newly discovered hearing deficit was observed to be inherited independently of rd3, establishing that a completely different gene is responsible. C1 BOYS TOWN NATL RES HOSP,OMAHA,NE 68131. CENT INST DEAF,ST LOUIS,MO 63110. CR BASCOM RA, 1992, AM J HUM GENET, V51, P1028 Bonhomme F., 1989, GENETIC VARIANTS STR, P649 CHANG B, 1993, GENOMICS, V16, P45, DOI 10.1006/geno.1993.1138 COPELAND NG, 1993, SCIENCE, V262, P57, DOI 10.1126/science.8211130 COPELAND NG, 1991, TRENDS GENET, V7, P113, DOI 10.1016/0168-9525(91)90085-5 DeBry RW, 1996, GENOMICS, V33, P337, DOI 10.1006/geno.1996.0209 DIETRICH WF, 1994, NAT GENET, V7, P220, DOI 10.1038/ng0694supp-220 DRYJA TP, 1995, HUM MOL GENET, V4, P1739 FESTING MFW, 1989, GENETIC VARIANTS STR, P636 FLETCHER RT, 1986, J NEUROCHEM, V46, P1240, DOI 10.1111/j.1471-4159.1986.tb00644.x GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0 GREEN MC, 1991, HDB GENETICALLKY STA HECKENLIVELY JR, 1993, RETINAL DEGENERATION, P273 HECKENLIVELY JR, 1989, DOC OPHTHALMOL, V71, P229 HENRY KR, 1992, AUDIOLOGY, V31, P181 *JACK LAB, 1996, MOUS GEN DAT MGD KAJIWARA K, 1994, SCIENCE, V264, P1604, DOI 10.1126/science.8202715 Kimberling W J, 1995, J Am Acad Audiol, V6, P63 KIMBERLING WJ, 1995, AM J HUM GENET, V56, P216 Naash MI, 1996, J NEUROSCI, V16, P7853 NADEAU JH, 1989, TRENDS GENET, V5, P82, DOI 10.1016/0168-9525(89)90031-0 NADEAU JH, 1991, ANN NY ACAD SCI, V630, P49, DOI 10.1111/j.1749-6632.1991.tb19575.x RODERICK TH, 1994, LOCUS MAP MOUSE Steel KP, 1995, ANNU REV GENET, V29, P675 Sumegi J, 1996, GENOMICS, V35, P79, DOI 10.1006/geno.1996.0325 TAKUMIDA M, 1989, HEARING RES, V40, P17, DOI 10.1016/0378-5955(89)90095-6 Weil D, 1995, Nature, V374, P60 Weil D, 1996, P NATL ACAD SCI USA, V93, P3232, DOI 10.1073/pnas.93.8.3232 Willott J.F., 1983, AUDITORY PSYCHOBIOLO NR 29 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 1 EP 12 DI 10.1016/S0378-5955(97)00087-7 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100001 PM 9367224 ER PT J AU Yamasoba, T Dolan, DF AF Yamasoba, T Dolan, DF TI Chronic strychnine administration into the cochlea potentiates permanent threshold shift following noise exposure SO HEARING RESEARCH LA English DT Article DE efferent system; medial olivocochlear bundle; noise-induced hearing loss; outer hair cell; guinea pig; acoustic trauma ID CROSSED OLIVOCOCHLEAR BUNDLE; GUINEA-PIG COCHLEA; OUTER HAIR CELL; ELECTRICAL-STIMULATION; FREQUENCY-SELECTIVITY; ACOUSTIC STIMULATION; AUDITORY-SENSITIVITY; EFFERENT NEURONS; INNER-EAR; TEMPORARY AB To investigate whether elimination of the medial efferent system influences permanent threshold shift following noise exposure, we developed an animal model in which strychnine was chronically delivered into the cochlea via an osmotic pump. Pigmented female guinea pigs were allocated into three groups: group I was treated with strychnine (50 mu M, 0.5 mu l/h, 14 days) in the left ear and exposed to noise (105 dB SPL broadband, 3 h) 3 weeks after the cessation of the strychnine perfusion; group II received strychnine in the left ear but no noise exposure; group III was treated with Ringer's solution in the left ear and exposed to noise. Animals in group II developed no hearing loss after the strychnine perfusion. The operated ears in group I demonstrated greatest hearing threshold shift 3 h after noise exposure. Hearing recovered during 2 weeks after noise exposure in both operated and non-operated ears in groups I and III. Two weeks after noise exposure, the operated ears in group I showed significantly greater threshold shift at 12, 16, and 20 kHz compared to the operated ears in group III and non-operated ears in groups I and III. These findings suggest that chronic strychnine administration into the cochlea inactivates the medial efferents without changing hearing threshold and that the medial efferents help to protect against permanent threshold shift following noise exposure. C1 UNIV MICHIGAN,KRESGE HEARING RES INST,ANN ARBOR,MI 48109. UNIV TOKYO,DEPT OTOLARYNGOL,BUNKYO KU,TOKYO 113,JAPAN. CR BERLIN CI, 1995, HEARING RES, V87, P96, DOI 10.1016/0378-5955(95)00082-F BOBBIN RP, 1974, ACTA OTO-LARYNGOL, V77, P56, DOI 10.3109/00016487409124598 BONFILS P, 1986, HEARING RES, V24, P277, DOI 10.1016/0378-5955(86)90026-2 BONFILS P, 1986, HEARING RES, V24, P285, DOI 10.1016/0378-5955(86)90027-4 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T BROWN MC, 1984, J PHYSIOL-LONDON, V354, P625 CAIRD D, 1980, HEARING RES, V3, P257, DOI 10.1016/0378-5955(80)90021-0 CODY AR, 1988, HEARING RES, V35, P59, DOI 10.1016/0378-5955(88)90040-8 CODY AR, 1982, HEARING RES, V6, P199, DOI 10.1016/0378-5955(82)90054-5 DOI T, 1993, HEARING RES, V67, P179, DOI 10.1016/0378-5955(93)90245-V DOLAN DF, 1994, ASS RES OT ABSTR, V17, P89 DOLAN DF, 1994, ASS RES OT ABSTR, V17, P65 GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 Guinan JJ, 1996, J ACOUST SOC AM, V100, P1680, DOI 10.1121/1.416066 Guth PS, 1996, HEARING RES, V98, P1, DOI 10.1016/0378-5955(96)00031-7 HANDROCK M, 1982, ARCH OTO-RHINO-LARYN, V234, P191, DOI 10.1007/BF00453630 HILDESHEIMER M, 1990, HEARING RES, V41, P263 KELLERHALS B, 1979, ACTA OTO-LARYNGOL, V87, P370, DOI 10.3109/00016487909126435 KLINKE R, 1974, PHYSIOL REV, V54, P316 LIBERMAN MC, 1991, J NEUROPHYSIOL, V65, P123 LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X Murugasu E, 1996, J NEUROSCI, V16, P325 PATUZZI RB, 1991, HEARING RES, V54, P45, DOI 10.1016/0378-5955(91)90135-V PUEL JL, 1988, HEARING RES, V37, P65, DOI 10.1016/0378-5955(88)90078-0 RAJAN R, 1983, HEARING RES, V9, P279, DOI 10.1016/0378-5955(83)90032-1 RAJAN R, 1988, J NEUROPHYSIOL, V60, P569 RAJAN R, 1989, HEARING RES, V39, P263, DOI 10.1016/0378-5955(89)90046-4 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 ROBERTSON D, 1985, HEARING RES, V20, P79, DOI 10.1016/0378-5955(85)90060-7 Ruggero MA, 1996, AUDIT NEUROSCI, V2, P329 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 SRIDHAR TS, 1995, J NEUROSCI, V15, P3667 TAKEYAMA M, 1992, ACTA OTO-LARYNGOL, V112, P205 TARONE RE, 1990, BIOMETRICS, V46, P515, DOI 10.2307/2531456 TRAHIOTI.C, 1970, J ACOUST SOC AM, V47, P592, DOI 10.1121/1.1911934 WARR WB, 1979, BRAIN RES, V474, P185 WIEDERHOLD ML, 1967, THESIS MASSACHUSETTS ZHANG M, 1994, ASS RES OT ABSTR, V17, P89 NR 40 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 13 EP 20 DI 10.1016/S0378-5955(97)00092-0 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100002 PM 9367225 ER PT J AU Pantoja, AM Holt, JC Guth, PS AF Pantoja, AM Holt, JC Guth, PS TI A role for chloride in the suppressive effect of acetylcholine on afferent vestibular activity SO HEARING RESEARCH LA English DT Article DE saccule; frog; acetylcholine; chloride substitution; chloride channel blocker; vestibular ID GAMMA-AMINOBUTYRIC-ACID; RAT-BRAIN SYNAPTOSOMES; OUTER HAIR-CELLS; MOLECULAR MECHANISMS; ACTIVATED CHLORIDE; BAND-3 INHIBITORS; CHANNEL BLOCKERS; VOLUME REGULATION; FROG LABYRINTH; MUSCLE-CELLS AB Afferents of the frog semicircular canal (SCC) respond to acetylcholine (ACh) application (0.3-1.0 mM) with a facilitation of their activity while frog saccular afferents respond with suppression (Guth et al., 1994). All recordings are of resting (i.e., non-stimulated) multiunit activity as previously reported (Guth et al., 1994). Substitution of 80% of external chloride (Cl-) by large, poorly permeant anions of different structures (isethionate, methanesulfonate, methylsulfate, and gluconate) reduced the suppressive effect of ACh in the frog saccular afferents. This substitution did not affect the facilitatory response of SCC afferents to ACh. Chloride channel blockers were also used to test further whether Cl- is involved in the ACh suppressive effect. These included: niflumic and flufenamic acids, picrotoxin, 5-nitro-2-(-3-phenylpropylamino)benzoic acid (NPPB), and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). As with the Cl- substitutions, all of these agents reduced the suppressive response to ACh in the saccule, but not the facilitatory response seen in the SCC. The suppressive effect of ACh on saccular afferents is considered to be due to activation of a nicotinic-like receptor (Guth et al., 1994; Guth and Norris, 1996). Taking into account the effects of both Cl- substitutions and Cl- channel blockers, we conclude that changes in Cl- availability influence the suppressive effect of ACh and that therefore Cl- may be involved in this effect. C1 TULANE UNIV,SCH MED,DEPT PHARMACOL,NEW ORLEANS,LA 70112. UNIV VALLE,DEPT FARMACOL,CALI,COLOMBIA. CR ART JJ, 1993, J PHYSIOL-LONDON, V470, P109 ATHAS GB, 1997, ASS RES OTOLARYNGOL, V20 BOYLE AE, 1993, PHARMACOL BIOCHEM BE, V46, P179, DOI 10.1016/0091-3057(93)90338-T BRETAG AH, 1987, PHYSIOL REV, V67, P618 BRIDGES RJ, 1992, AM J PHYSIOL, V10, P19 BRIDGES RJ, 1989, AM J PHYSIOL, V256, pC902 CECOLA RP, 1992, HEARING RES, V61, P65, DOI 10.1016/0378-5955(92)90037-N CHAO AC, 1992, LIFE SCI, V51, P1453, DOI 10.1016/0024-3205(92)90540-6 COUSIN JL, 1982, BIOCHIM BIOPHYS ACTA, V687, P147, DOI 10.1016/0005-2736(82)90540-5 DESMEDT JE, 1975, J PHYSIOL-LONDON, V247, P407 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X Engblom AC, 1996, BRAIN RES, V712, P74, DOI 10.1016/0006-8993(95)01484-5 EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 FALKE JJ, 1986, BIOCHEMISTRY-US, V25, P7895, DOI 10.1021/bi00372a016 FALKE JJ, 1986, BIOCHEMISTRY-US, V25, P7888, DOI 10.1021/bi00372a015 FALKE JJ, 1986, BIOCHEMISTRY-US, V25, P7899, DOI 10.1021/bi00372a017 FINDLAY I, 1985, PFLUG ARCH EUR J PHY, V403, P328, DOI 10.1007/BF00583609 FINKEL AS, 1983, J PHYSIOL-LONDON, V344, P119 Fykse EM, 1996, NEUROCHEM RES, V21, P1053, DOI 10.1007/BF02532415 GALZI JL, 1992, NATURE, V359, P500, DOI 10.1038/359500a0 GREEN JW, 1957, CARBOHYDRATES CHEM B, P299 GREENWOOD IA, 1995, BRIT J PHARMACOL, V116, P2939 GREGER R, 1990, METHOD ENZYMOL, V191, P793 GREGER R, 1991, PFLUG ARCH EUR J PHY, V419, P190, DOI 10.1007/BF00373006 GRUNEWALD JM, 1993, KIDNEY INT, V44, P509, DOI 10.1038/ki.1993.275 GUTH PS, 1986, ACTA OTO-LARYNGOL, V102, P194, DOI 10.3109/00016488609108666 GUTH PS, 1994, HEARING RES, V75, P225, DOI 10.1016/0378-5955(94)90073-6 Guth PS, 1996, HEARING RES, V98, P1, DOI 10.1016/0378-5955(96)00031-7 GUTH PS, 1991, HEARING RES, V56, P69, DOI 10.1016/0378-5955(91)90155-3 HILLMAN DE, 1976, FROG NEUROBIOLOGY, V1, P452 HOFFMANN EK, 1989, PHYSIOL REV, V69, P315 HOUSLEY GD, 1990, HEARING RES, V43, P121, DOI 10.1016/0378-5955(90)90221-A JENTSCH TJ, 1990, NATURE, V348, P510, DOI 10.1038/348510a0 Jentsch TJ, 1996, CURR OPIN NEUROBIOL, V6, P303, DOI 10.1016/S0959-4388(96)80112-7 KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227 KEHOE J, 1972, J PHYSIOL-LONDON, V225, P115 Kirkup AJ, 1996, BRIT J PHARMACOL, V117, P175 KONCZ C, 1994, AM J PHYSIOL-HEART C, V267, pH2114 KRAUT JA, 1992, AM J PHYSIOL, V263, pF401 KUJAWA SG, 1994, HEARING RES, V74, P122, DOI 10.1016/0378-5955(94)90181-3 Large WA, 1996, AM J PHYSIOL-CELL PH, V271, pC435 LIU QY, 1994, MOL PHARMACOL, V46, P1197 MACKNIGHT ADC, 1985, PFLUG ARCH EUR J PHY, V405, pS12, DOI 10.1007/BF00581773 MARTINEZZAGUILAN R, 1994, J NEUROPHYSIOL, V71, P2249 MARTY A, 1984, J PHYSIOL-LONDON, V357, P293 MAYER ML, 1983, J PHYSIOL-LONDON, V340, P19 MCCANN JD, 1990, ANNU REV PHYSIOL, V52, P115 MCGEER PL, 1987, MOL NEUROBIOLOGY MAM, P197 MURATA J, 1995, P SEND EAR S, V5, P43 NAGAHAMA T, 1993, P ROY SOC B-BIOL SCI, V254, P275, DOI 10.1098/rspb.1993.0156 NORRIS CH, 1974, ACTA OTO-LARYNGOL, V77, P318, DOI 10.3109/00016487409124631 NORRIS CH, 1987, ARCH OTOLARYNGOL, V113, P981 NORRIS CH, 1988, HEARING RES, V32, P197, DOI 10.1016/0378-5955(88)90092-5 ORLOV SN, 1993, BIOCHIM BIOPHYS ACTA, V1151, P186, DOI 10.1016/0005-2736(93)90103-7 ORSENIGO MN, 1992, BIOCHIM BIOPHYS ACTA, V1108, P140, DOI 10.1016/0005-2736(92)90018-H PEDEMONTE CH, 1988, BIOCHEMISTRY-US, V27, P7966, DOI 10.1021/bi00420a056 PEOPLES RW, 1994, BRIT J PHARMACOL, V113, P555 PERRY PB, 1993, AM J PHYSIOL, V265, pC763 PFEIFFERLINN C, 1989, SCIENCE, V245, P1249, DOI 10.1126/science.2476848 PIGGOTT SM, 1977, COMP BIOCHEM PHYS C, V57, P107, DOI 10.1016/0306-4492(77)90054-5 PORONNIK P, 1992, FEBS LETT, V269, P245 ROSSI ML, 1982, BRAIN RES, V233, P181, DOI 10.1016/0006-8993(82)90939-8 ROSSI ML, 1980, BRAIN RES, V185, P125, DOI 10.1016/0006-8993(80)90677-0 RUSSELL JM, 1976, NATURE, V264, P73, DOI 10.1038/264073a0 SANCHEZARMASS S, 1994, J NEUROPHYSIOL, V71, P2236 SNOWDOWNE KW, 1992, BIOCHIM BIOPHYS ACTA, V1108, P145, DOI 10.1016/0005-2736(92)90019-I SUGAI T, 1992, HEARING RES, V61, P56, DOI 10.1016/0378-5955(92)90036-M SUGAI T, 1989, Japanese Journal of Physiology, V39, pS168 TABB JS, 1991, J NEUROSCI, V11, P1822 TAKAHASHI T, 1990, J PHYSIOL-LONDON, V423, P47 TILMANN M, 1991, PFLUG ARCH EUR J PHY, V418, P556, DOI 10.1007/BF00370571 VALLI P, 1986, BRAIN RES, V362, P92, DOI 10.1016/0006-8993(86)91402-2 VALVERDE MA, 1995, FASEB J, V9, P509 VENGLARIK CJ, 1994, MOL CELL BIOCHEM, V140, P137, DOI 10.1007/BF00926752 WANGEMANN P, 1986, PFLUG ARCH S2, V407, P128 WELSH MJ, 1990, FASEB J, V4, P2718 WORRELL RT, 1989, AM J PHYSIOL, V256, pC1111 YAROWSKY PJ, 1978, J NEUROPHYSIOL, V41, P531 ZUFALL F, 1989, BRAIN RES, V503, P342, DOI 10.1016/0006-8993(89)91688-0 NR 79 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 21 EP 32 DI 10.1016/S0378-5955(97)00101-9 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100003 PM 9367226 ER PT J AU Franz, P Aharinejad, S Miksovsky, A Schraufnagel, DE Larson, EK Marks, SC AF Franz, P Aharinejad, S Miksovsky, A Schraufnagel, DE Larson, EK Marks, SC TI Endothelin-1 causes luminal constrictions in rat cochlear veins SO HEARING RESEARCH LA English DT Article DE rat; cochlea; endothelin-1; corrosion casting; scanning electron microscopy; transmission electron microscopy ID PULMONARY VENOUS SPHINCTERS; SMOOTH-MUSCLE CELLS; TRANSMISSION ELECTRON; PERICYTE CONTRACTILITY; BLOOD-VESSELS; HYPERTENSION; PROSTACYCLIN; PROSTAGLANDIN-E2; VASOCONSTRICTOR; ARTERIES AB Serum levels of the vasoconstrictor endothelin-l (ET-1) increase in ischemia and systemic hypertension. We examined the effects of ET-1 on the cochlear microvasculature. Blood Vessels were cast with methacrylate in adult male Wistar Kyoto rats, 10 min after intravenous injection of ET-I (1.0 mu g/kg); control animals received saline. Systemic blood pressure was recorded continuously. ET-I increased the average systolic pressure by 18% and average diastolic pressure by 22% (P < 0.01). Scanning electron microscopy of cast vessels showed multiple circumscribed luminal constrictions on: (1) postcapillary venules; (2) collecting veins; (3) where collecting veins merged with the spiral modiolar vein; (4) on the spiral modiolar vein itself. Circumscribed constrictions in arteries were not observed. In ET-1 injected animals focal contractions of collecting veins reduced luminal width by 13.4 % +/- 2.9 (P < 0.01). In control rats, constrictions on venous casts were minimal and constrictions on arteries were not observed. The present study shows that ET-1 is involved in local control of cochlear blood flow in that it focally contracts cochlear veins. II is suggested that this might be due to the high affinity of ET-1 receptors and/or the large number of ET-1 receptors on contractile cells in venous walls. C1 UNIV VIENNA,DEPT ANAT 1,MICROCIRCULAT LAB,A-1090 VIENNA,AUSTRIA. UNIV VIENNA,DEPT OTORHINOLARYNGOL,VIENNA,AUSTRIA. ST ELIZABETH HOSP,DEPT MED,VIENNA,AUSTRIA. UNIV ILLINOIS,DEPT MED,CHICAGO,IL. UNIV ILLINOIS,DEPT PATHOL,CHICAGO,IL. UNIV MASSACHUSETTS,MED CTR,DEPT CELL BIOL,WORCESTER,MA. CR AHARINEJAD S, 1993, MICROSC RES TECHNIQ, V26, P473, DOI 10.1002/jemt.1070260602 Aharinejad S, 1996, ANAT REC, V246, P356, DOI 10.1002/(SICI)1097-0185(199611)246:3<356::AID-AR6>3.0.CO;2-W AHARINEJAD S, 1993, SCANNING MICROSCOPY, V7, P629 AHARINEJAD S, 1995, J THORAC CARDIOV SUR, V110, P148 AHARINEJAD S, 1992, ANAT REC, V233, P555, DOI 10.1002/ar.1092330410 AHARINEJAD S, 1993, SCANNING MICROSCOPY, V7, P295 Aharinejad S, 1996, AM J PATHOL, V148, P281 Aharinejad SH, 1992, MICROVASCULAR CORROS ARAI H, 1990, NATURE, V348, P730, DOI 10.1038/348730a0 CHUNGWELCH N, 1988, J CELL PHYSIOL, V135, P224, DOI 10.1002/jcp.1041350209 CLARKE JG, 1989, AM J PHYSIOL, V257, pH2033 DODGE AB, 1991, CELL MOTIL CYTOSKEL, V18, P180, DOI 10.1002/cm.970180304 FRANZ P, 1992, ACTA OTO-LARYNGOL, V112, P767, DOI 10.3109/00016489209137472 Franz P, 1997, ACTA OTO-LARYNGOL, V117, P358, DOI 10.3109/00016489709113407 HAYNES WG, 1993, CLIN SCI, V84, P485 HERMAN IM, 1985, J CELL BIOL, V101, P43, DOI 10.1083/jcb.101.1.43 HLA TT, 1989, PROSTAG LEUKOTR ESS, V36, P175, DOI 10.1016/0952-3278(89)90059-8 HORNSTRAND C, 1980, ACTA OTO-LARYNGOL, V89, P1, DOI 10.3109/00016488009127102 HUDES GR, 1988, INVEST OPHTH VIS SCI, V29, P1511 HUY PTB, 1987, ACTA OTO-LARYNGOL, V103, P558 INOUE A, 1989, P NATL ACAD SCI USA, V86, P2863, DOI 10.1073/pnas.86.8.2863 JOYCE NC, 1985, J CELL BIOL, V100, P1387, DOI 10.1083/jcb.100.5.1387 JOYCE NC, 1985, J CELL BIOL, V100, P1379, DOI 10.1083/jcb.100.5.1379 JOYCE NC, 1984, MICROVASC RES, V28, P206, DOI 10.1016/0026-2862(84)90018-9 KADEL KA, 1990, BRAIN RES, V518, P78, DOI 10.1016/0006-8993(90)90956-C KELLEY C, 1987, J CELL BIOL, V104, P483, DOI 10.1083/jcb.104.3.483 LAMETSCHWANDTNE.L, 1980, MIKROSKOPIE WIEN, V36, P270 LAMM K, 1995, 18 MIDW RES M ARO, P142 LUSCHER TF, 1988, TRENDS PHARMACOL SCI, V9, P181, DOI 10.1016/0165-6147(88)90035-1 Masaki Tomoh, 1993, Circulation, V87, pV33 MATSUYAMA K, 1991, AM J CARDIOL, V68, P991, DOI 10.1016/0002-9149(91)90484-3 MCCORMICK JG, 1982, P NATL ACAD SCI-BIOL, V79, P2668, DOI 10.1073/pnas.79.8.2668 MCDONALD DM, 1995, INVEST OPHTH VIS SCI, V36, P1088 MILLER VM, 1989, AM J PHYSIOL, V257, pH1127 MIODONSKI A, 1978, ARCH OTOLARYNGOL, V104, P313 Miodonski A., 1976, BEITR ELEKTRONENMIKR, V9, P435 MIURA K, 1989, EUR J PHARMACOL, V170, P91, DOI 10.1016/0014-2999(89)90139-8 NAKAI Y, 1986, SCAN ELECTRON MICROS, V2, P543 QUIRK WS, 1994, HEARING RES, V80, P119, DOI 10.1016/0378-5955(94)90015-9 QUIRK WS, 1992, ROLE ENDOTHELIN REGU Rubanyi Gabor M., 1992, Drugs of the Future, V17, P915 SAITO Y, 1990, NEW ENGL J MED, V322, P205 SAKURAI T, 1990, NATURE, V348, P732, DOI 10.1038/348732a0 SALMINEN K, 1989, LANCET, V2, P747 SIMS DE, 1983, MICROVASC RES, V25, P333, DOI 10.1016/0026-2862(83)90023-7 STEWART DJ, 1991, ANN INTERN MED, V114, P464 SUGIYAMA Y, 1995, 18 MIDW RES M ARO, P152 TAKAHASHI H, 1992, J CARDIOVASC PHARM, V20, pS176 TILTON RG, 1979, MICROVASC RES, V18, P336, DOI 10.1016/0026-2862(79)90042-6 VANHOUTTE PM, 1989, J CARDIOVASC PHARM, V13, pS124, DOI 10.1097/00005344-198900135-00031 WANGEMANN P, 1995, MOL BIOL HEARING DEA, P170 WEBB DJ, 1993, LANCET, V342, P1439, DOI 10.1016/0140-6736(93)92928-M XU D, 1994, CELL, V78, P473, DOI 10.1016/0092-8674(94)90425-1 YANAGISAWA M, 1988, NATURE, V332, P411, DOI 10.1038/332411a0 NR 54 TC 3 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 33 EP 43 DI 10.1016/S0378-5955(97)00112-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100004 PM 9367227 ER PT J AU Ryals, B Westbrook, E Schacht, J AF Ryals, B Westbrook, E Schacht, J TI Morphological evidence of ototoxicity of the iron chelator deferoxamine SO HEARING RESEARCH LA English DT Article DE ototoxicity; iron chelator; deferoxamine ID HAIR CELL REGENERATION; ACOUSTIC TRAUMA; COTURNIX QUAIL; GENTAMICIN; METABOLITE; DESFERRIOXAMINE; RECOVERY AB Recent reports of the role of iron-catalyzed free radical formation in gentamicin ototoxicity and the successful attenuation of gentamicin ototoxicity by iron chelators led us to re-examine experimental material from a previously unpublished study of deferoxamine. Deferoxamine was injected i.m. into adult Japanese quail at either 300 or 750 mg/kg body weight for 30 days. Examination of sections from the basilar papilla at the light microscope level indicated that supporting cells were damaged after the lower drug dose, and that both supporting cells and hair cells were damaged after the higher drug dose. High, prolonged exposure to deferoxamine produced pathological changes similar to those seen in the basilar papilla after much lower, shorter doses of gentamicin. These results demonstrate that deferoxamine damages the quail inner ear and are consistent with the idea that the ototoxic actions of gentamicin may be mediated by iron chelation. C1 MCGUIRE RES INST,RICHMOND,VA. UNIV MICHIGAN,KRESGE HEARING RES INST,ANN ARBOR,MI 48109. RP Ryals, B (reprint author), JAMES MADISON UNIV,DEPT COMMUN SCI & DISORDERS,AUDITORY RES LAB,HARRISONBURG,VA 22807, USA. CR BENTUR Y, 1991, DRUG SAFETY, V6, P37 BRAUGHLER JM, 1988, BIOCHEM BIOPH RES CO, V153, P933, DOI 10.1016/S0006-291X(88)81317-2 COHEN A, 1990, SEMIN HEMATOL, V27, P86 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 CRANN SA, 1992, BIOCHEM PHARMACOL, V43, P1835, DOI 10.1016/0006-2952(92)90718-X GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 GUERIN A, 1985, LANCET, V8445, P39 HASHINO E, 1991, HEARING RES, V52, P356, DOI 10.1016/0378-5955(91)90025-5 HUANG MY, 1990, BIOCHEM PHARMACOL, V40, pR11, DOI 10.1016/0006-2952(90)90077-X KANNO H, 1995, AM J OTOLARYNG, V16, P148, DOI 10.1016/0196-0709(95)90093-4 MAREAN GC, 1993, HEARING RES, V71, P125, DOI 10.1016/0378-5955(93)90028-Y OLIVIERI NF, 1986, NEW ENGL J MED, V314, P869, DOI 10.1056/NEJM198604033141402 ORTON RB, 1985, CAN J OPHTHALMOL, V20, P254 PETERSON CM, 1979, EXP HEMATOL, V7, P74 PORTER JB, 1989, LANCET, V8655, P156 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 RUBEL EW, 1982, ACTA OTO-LARYNGOL, V93, P31, DOI 10.3109/00016488209130849 RYALS BM, 1988, HEARING RES, V36, P1, DOI 10.1016/0378-5955(88)90133-5 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Sacco M, 1994, Minerva Pediatr, V46, P225 SHIRANE M, 1987, J OTOLARYNGOL, V16, P334 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 SONG BB, 1997, IN PRESS J PHARM EXP STADTMAN ER, 1993, ANNU REV BIOCHEM, V62, P797, DOI 10.1146/annurev.bi.62.070193.004053 NR 24 TC 17 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 44 EP 48 DI 10.1016/S0378-5955(97)00094-4 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100005 PM 9367228 ER PT J AU Kirk, DL Patuzzi, RB AF Kirk, DL Patuzzi, RB TI Transient changes in cochlear potentials and DPOAEs after low-frequency tones: the 'two-minute bounce' revisited SO HEARING RESEARCH LA English DT Article DE cochlear hyperacusis; bounce phenomenon; cochlear potential; distortion product ID OUTER HAIR-CELLS; PRODUCT OTOACOUSTIC EMISSIONS; GUINEA-PIG COCHLEA; BASILAR-MEMBRANE MOTION; MAMMALIAN COCHLEA; DISTORTION-PRODUCT; INTRACELLULAR-RECORDINGS; RECEPTOR POTENTIALS; TRAVELING WAVES; AUDITORY-SYSTEM AB After exposure to a loud, non-traumatic low-frequency tone, auditory thresholds are elevated. Thresholds recover to normal in a non-monotonic manner, decreasing rapidly at first before increasing again, until they finally decrease monotonically towards normal. Although the transient elevation of thresholds after the initial improvement was originally called a 'bounce' by Hirsh and Ward (1952), Kemp (1986) suggests that the initial rapid recovery is the oddity: under some conditions a low-frequency tone can produce hypersensitivity in otoacoustic emissions, psychophysicaI thresholds, and perceived loudness (Kemp's 'bounce') without a later elevation of threshold (Hirsh and Ward's 'bounce'). Kemp also suggested that the transient hypersensitivity was caused by changes in the sensitivity of the active process within the cochlea. We have investigated the origin of this transient hypersensitivity (Kemp's bounce) in guinea pigs, recording cochlear potentials (CM, CAP, SP and EP) and otoacoustic emissions (DPOSEs at f(2)-f(1), 2f(1)-f(2), 2f(2)-2f(1) and 3f(1)-2f(2)). Our results indicate that the bounce does not require neural activity, but is probably produced by nonneural cochlear mechanisms, possibly a transient decrease in the permeability of the organ of Corti which produces a small but significant change in standing current through outer hair cells. At least part of these changes, which are reduced as the stimulation frequency increases, and absent above 2 kHz, seem due to a small and transient movement of the cochlear partition towards scala tympani, probably due to a transient osmotic imbalance. RP Kirk, DL (reprint author), UNIV WESTERN AUSTRALIA,DEPT PHYSIOL,AUDITORY LAB,NEDLANDS,WA 6907,AUSTRALIA. CR BROWN AM, 1988, HEARING RES, V34, P27, DOI 10.1016/0378-5955(88)90048-2 BRUNDIN L, 1994, HEARING RES, V73, P35, DOI 10.1016/0378-5955(94)90280-1 BUTLER RA, 1963, J ACOUST SOC AM, V35, P1188, DOI 10.1121/1.1918672 CHEATHAM MA, 1994, HEARING RES, V75, P103, DOI 10.1016/0378-5955(94)90061-2 CODY AR, 1985, NATURE, V315, P662, DOI 10.1038/315662a0 DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1982, SCIENCE, V218, P582, DOI 10.1126/science.7123260 DALLOS P, 1986, HEARING RES, V22, P185, DOI 10.1016/0378-5955(86)90095-X DALLOS P, 1983, HEARING RES, V12, P89, DOI 10.1016/0378-5955(83)90120-X DANCER A, 1980, HEARING RES, V2, P191, DOI 10.1016/0378-5955(80)90057-X DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DURRANT JD, 1974, J ACOUST SOC AM, V56, P562, DOI 10.1121/1.1903291 ENGEBRET.AM, 1968, J ACOUST SOC AM, V44, P548, DOI 10.1121/1.1911119 FERGUSON GA, 1966, STATISTICAL ANAL PSY Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 FURAKAWA T, 1985, J PHYSL, V366, P107 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 HIRSH IJ, 1952, J ACOUST SOC AM, V24, P131, DOI 10.1121/1.1906867 HIRSH IJ, 1955, J ACOUST SOC AM, V27, P1186, DOI 10.1121/1.1908157 HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 HONRUBIA V, 1969, J ACOUST SOC AM, V46, P388, DOI 10.1121/1.1911701 HUGHES JR, 1954, J ACOUST SOC AM, V26, P1064, DOI 10.1121/1.1907450 HUGHES JR, 1957, J ACOUST SOC AM, V29, P275, DOI 10.1121/1.1908854 HUGHES JR, 1958, PHYSIOL REV, V38, P91 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 Kemp D T, 1981, Ciba Found Symp, V85, P54 KEMP DT, 1982, NEW PERSPECTIVES NOI, P189 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 KIM DO, 1986, HEARING RES, V22, P105, DOI 10.1016/0378-5955(86)90088-2 Kirk DL, 1997, HEARING RES, V112, P69, DOI 10.1016/S0378-5955(97)00104-4 KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0 KIRK DL, 1993, HEARING RES, V67, P20, DOI 10.1016/0378-5955(93)90228-S KLIS JFL, 1985, HEARING RES, V20, P15, DOI 10.1016/0378-5955(85)90054-1 KLIS SFL, 1994, HEARING RES, V75, P114, DOI 10.1016/0378-5955(94)90062-0 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 NOFFSING.PD, 1970, J ACOUST SOC AM, V47, P552, DOI 10.1121/1.1911928 PATUZZI R, 1984, HEARING RES, V13, P9, DOI 10.1016/0378-5955(84)90090-X PATUZZI R, 1984, HEARING RES, V13, P19, DOI 10.1016/0378-5955(84)90091-1 PATUZZI R, 1984, HEARING RES, V13, P1, DOI 10.1016/0378-5955(84)90089-3 PATUZZI R, 1990, HEARING RES, V45, P15, DOI 10.1016/0378-5955(90)90179-S PATUZZI R, 1988, PHYSIOL REV, V68, P1009 PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 PATUZZI RB, 1987, HEARING RES, V30, P83, DOI 10.1016/0378-5955(87)90186-9 PATUZZI RB, 1995, ACTIVE HEARING, P141 PATUZZI RB, 1987, HEARING RES, V30, P73, DOI 10.1016/0378-5955(87)90185-7 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 PATUZZI RB, 1991, HEARING RES, V53, P57, DOI 10.1016/0378-5955(91)90214-T RUSSELL IJ, 1983, J PHYSIOL-LONDON, V338, P179 SALT AN, 1995, HEARING RES, V90, P12, DOI 10.1016/0378-5955(95)00142-0 SELLICK PM, 1982, HEARING RES, V7, P199, DOI 10.1016/0378-5955(82)90014-4 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 SUTTON LA, 1994, HEARING RES, V75, P161, DOI 10.1016/0378-5955(94)90067-1 ZWICKER E, 1977, J ACOUST SOC AM, V61, P1031, DOI 10.1121/1.381387 NR 57 TC 31 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 49 EP 68 DI 10.1016/S0378-5955(97)00105-6 PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100006 PM 9367229 ER PT J AU Kirk, DL Moleirinho, A Patuzzi, RB AF Kirk, DL Moleirinho, A Patuzzi, RB TI Microphonic and DPOAE measurements suggest a micromechanical mechanism for the 'bounce' phenomenon following low-frequency tones SO HEARING RESEARCH LA English DT Article DE bounce phenomenon; distortion product; low-frequency microphonic; Boltzmann transfer curve ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; OTOACOUSTIC EMISSIONS; ACOUSTIC DISTORTION; TRAVELING WAVES; F(2)-F(1); F2-F1; STIMULATION; RESPONSES; BEHAVIOR AB Neural auditory thresholds in the guinea pig can be temporarily improved by up to 6 dB about 2 min after the cessation of an moderately intense low-frequency tone (Kirk and Patuzzi, 1997). We have measured changes in the f(2)-f(1) distortion product otoacoustic emission (DPOAE) and low-frequency microphonic potential in scala tympani before, during and after a low-frequency tone (200 Hz) to determine the cause of this so-called bounce phenomenon. In particular we have analysed the low-frequency microphonic waveform in detail to estimate changes in the maximal receptor current through the outer hair cells (OHCs), the sensitivity of the OHC forward transduction process and the change in OHC operating point on the mechano-electrical transduction transfer curve. Our results indicate that a 200 Hz tone changes the maximal current and sensitivity of the OHCs minimally, but more importantly, it transiently changes the operating point on the OHC transfer curve. In particular, the operating point changes are consistent with a movement of the OHC stereocilia away from the OHC basal body at the peak of the bounce. These changes detected using the microphonic potential are associated with changes in the level of the f(2)-f(1) DPOAE that correlate well with the electrical measurements. We suggest that the shift in operating point is largely responsible for the increase in cochlear sensitivity, and is due to a disruption of the salt balance within the cochlea during the intense low-frequency tone. RP Kirk, DL (reprint author), UNIV WESTERN AUSTRALIA, DEPT PHYSIOL, AUDITORY LAB, NEDLANDS, WA 6907, AUSTRALIA. CR AVAN P, 1988, HEARING RES, V35, P159, DOI 10.1016/0378-5955(88)90115-3 Bekesy G., 1960, EXPT HEARING BROWN AM, 1993, HEARING RES, V70, P160, DOI 10.1016/0378-5955(93)90154-S BROWN AM, 1988, HEARING RES, V34, P27, DOI 10.1016/0378-5955(88)90048-2 CODY AR, 1985, NATURE, V315, P662, DOI 10.1038/315662a0 DALLOS P, 1969, J ACOUST SOC AM, V45, P999, DOI 10.1121/1.1911576 DALLOS P, 1986, HEARING RES, V22, P185, DOI 10.1016/0378-5955(86)90095-X DALLOS P, 1972, ACTA OTO-LARYNGOL, P1 ENGEBRET.AM, 1968, J ACOUST SOC AM, V44, P548, DOI 10.1121/1.1911119 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 HIRSH IJ, 1952, J ACOUST SOC AM, V24, P131, DOI 10.1121/1.1906867 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 JARAMILLO F, 1993, NATURE, V364, P527, DOI 10.1038/364527a0 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 JOHNSTONE BM, 1990, ADV AUDIOL, V7, P57 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0 KIRK DL, 1994, P AUST NEUR SOC, V5, P216 KIRK DL, 1993, HEARING RES, V67, P20, DOI 10.1016/0378-5955(93)90228-S Kirk DL, 1997, HEARING RES, V112, P49, DOI 10.1016/S0378-5955(97)00105-6 KONISHI T, 1984, HEARING RES, V15, P51, DOI 10.1016/0378-5955(84)90224-7 KUJAWA SG, 1995, HEARING RES, V85, P142, DOI 10.1016/0378-5955(95)00041-2 LOWE M, 1995, HEARING RES, V83, P133, DOI 10.1016/0378-5955(94)00198-Y NIEDER P, 1971, J ACOUST SOC AM, V49, P478, DOI 10.1121/1.1912376 PATUZZI R, 1990, HEARING RES, V45, P15, DOI 10.1016/0378-5955(90)90179-S PATUZZI RB, 1987, HEARING RES, V30, P83, DOI 10.1016/0378-5955(87)90186-9 PATUZZI RB, 1995, ACTIVE HEARING, P141 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 RUGGERO MA, 1986, J ACOUST SOC AM, V80, P1375, DOI 10.1121/1.394390 RUSSELL IJ, 1983, J PHYSIOL-LONDON, V338, P179 RUTH RA, 1994, HDB CLIN AUDIOLOGY, P339 SALT AN, 1995, HEARING RES, V90, P12, DOI 10.1016/0378-5955(95)00142-0 SHAH DM, 1995, HEARING RES, V87, P187, DOI 10.1016/0378-5955(95)00089-M SLEPECKY N, 1988, HEARING RES, V34, P119, DOI 10.1016/0378-5955(88)90099-8 SUTTON LA, 1994, HEARING RES, V75, P161, DOI 10.1016/0378-5955(94)90067-1 TASAKI I, 1952, J ACOUST SOC AM, V24, P502, DOI 10.1121/1.1906928 WHITEHEAD ML, 1991, HEARING RES, V51, P293, DOI 10.1016/0378-5955(91)90045-B ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 NR 39 TC 30 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 69 EP 86 DI 10.1016/S0378-5955(97)00104-4 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100007 PM 9367230 ER PT J AU Ren, TY Nuttall, AL Miller, JM AF Ren, TY Nuttall, AL Miller, JM TI ATP-induced cochlear blood flow changes involve the nitric oxide pathway SO HEARING RESEARCH LA English DT Article DE adenosine triphosphate; cochlear blood flow; nitric oxide; sodium nitroprusside; guinea pig ID GUINEA-PIG COCHLEA; INFERIOR CEREBELLAR ARTERY; OUTER HAIR-CELLS; SMOOTH-MUSCLE; EXTRACELLULAR ATP; ENDOTHELIAL-CELLS; RELAXING FACTOR; RELAXATION; ACETYLCHOLINE; VASODILATATION AB Although control mechanisms of cochlear blood flow (CBF) have been intensively studied since laser Doppler flowmetry was introduced for CBF measurement in animals and humans, the role of adenosine 5'-triphosphate (ATP) in CBF regulation is not known. Since ATP is a potent vasoactive agent in other organs, the aim of this study is to examine ATP-induced changes in CBF and to test whether the nitric oxide pathway is involved in ATP-induced CBF changes. The anterior inferior cerebellar artery (AICA) of anesthetized pigmented guinea pigs was exposed, and ATP was perfused into the AICA. For CBF measurement, the bulla was opened and the 0.7 mm laser probe of a Perimed PF2B flowmeter was positioned on the basal turn of the cochlea. AICA perfusion of an ATP solution caused dose-dependent transient CBF increases. The maximum CBF increase induced was 220% of the baseline. In some animals, CBF showed a dual effect; a transient decrease followed by a longer-lasting increase. The perfusions of sodium nitroprusside (SNP) also resulted in dose-dependent CBF changes. The intravenous application of N-omega-nitro-L-arginine methyl ester (L-NAME) significantly attenuated ATP-induced CBF increases, and enhanced ATP-induced decreases, but did not affect SNP-induced CBF changes. The ATP-induced CBF responses indicate that ATP plays a role in CBF regulation. The biphasic characteristic of the ATP-induced CBF change suggests the involvement of both Pt-2x- and P-2y-subtype purinoceptors. That L-NAME caused attenuation of the ATP-induced CBF increase implies that the ATP-induced CBF increase is mediated by the release of endothelium-derived relaxing factor, nitric oxide, following activation of endothelial P-2y-purinoceptors in the cochlear vascular bed and/or cochlear supplying vessels. C1 UNIV MICHIGAN,KRESGE HEARING RES INST,ANN ARBOR,MI 48109. RP Ren, TY (reprint author), OREGON HLTH SCI UNIV,OREGON HEARING RES CTR NRC04,3181 SW SAM JACKSON PK RD,PORTLAND,OR 97201, USA. CR AISAKA K, 1989, BIOCHEM BIOPH RES CO, V160, P881, DOI 10.1016/0006-291X(89)92517-5 AMEZCUA JL, 1988, BRIT J PHARMACOL, V95, P830 ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 BOETTGE K, 1957, ARZNEIMITTEL-FORSCH, V7, P24 BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8 BURNSTOCK G, 1993, DRUG DEVELOP RES, V28, P195, DOI 10.1002/ddr.430280303 BURNSTOCK G, 1986, CIRC RES, V58, P319 Burnstock G, 1978, CELL MEMBRANE RECEPT, P107 BURNSTOCK G, 1984, J CARDIOVASC PHAR S2, V6, P344 DEMEY JG, 1981, J PHYSIOL-LONDON, V316, P347 Drury AN, 1929, J PHYSIOL-LONDON, V68, P213 DULON D, 1991, NEUROREPORT, V2, P69, DOI 10.1097/00001756-199102000-00001 FURCHGOTT RF, 1981, TRENDS PHARMACOL SCI, V2, P173, DOI 10.1016/0165-6147(81)90303-5 FURCHGOTT RF, 1980, NATURE, V288, P373, DOI 10.1038/288373a0 GORDON JL, 1986, BIOCHEM J, V233, P309 HOLTON P, 1959, J PHYSIOL-LONDON, V145, P494 HOUSLEY GD, 1992, P ROY SOC LOND B BIO, V249, P73 IGNARRO LJ, 1987, P NATL ACAD SCI USA, V84, P9265, DOI 10.1073/pnas.84.24.9265 IGNARRO LJ, 1981, J PHARMACOL EXP THER, V218, P739 KENNEDY C, 1985, BLOOD VESSELS, V22, P145 Lin Xi, 1993, Journal of Neurophysiology (Bethesda), V70, P1593 MARTIN W, 1985, J PHARMACOL EXP THER, V232, P708 MOCKETT BG, 1995, HEARING RES, V84, P177, DOI 10.1016/0378-5955(95)00024-X MONCADA S, 1991, PHARMACOL REV, V43, P109 MOORE PK, 1990, BRIT J PHARMACOL, V99, P408 NAKAGAWA T, 1990, J NEUROPHYSIOL, V63, P1068 PALMER RMJ, 1987, NATURE, V327, P524, DOI 10.1038/327524a0 QUIRK WS, 1989, HEARING RES, V41, P53, DOI 10.1016/0378-5955(89)90178-0 RALEVIC V, 1991, BRIT J PHARMACOL, V103, P1108 RALEVIC V, 1991, J PHARM PHARMACOL, V43, P871 REN TY, 1994, J APPL PHYSIOL, V76, P212 REN TY, 1993, HEARING RES, V71, P91, DOI 10.1016/0378-5955(93)90024-U SHIGEMOTO T, 1990, J PHYSIOL-LONDON, V420, P127 VANHOUTTE PM, 1983, J PHYSIOL-PARIS, V78, P681 NR 34 TC 23 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 87 EP 94 DI 10.1016/S0378-5955(97)00109-3 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100008 PM 9367231 ER PT J AU Park, HJ Niedzielski, AS Wenthold, RJ AF Park, HJ Niedzielski, AS Wenthold, RJ TI Expression of the nicotinic acetylcholine receptor subunit, alpha 9, in the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE hair cell; efferent receptor; in situ hybridization; immunocytochemistry; kanamycin; ototoxicity ID OUTER HAIR-CELLS; MESSENGER-RNA; CHOLINE-ACETYLTRANSFERASE; OLIVOCOCHLEAR NEURONS; INSITU HYBRIDIZATION; AUDITORY-SYSTEM; RAT; IMMUNOREACTIVITY; ORGAN; LOCALIZATION AB Acetylcholine is a major neurotransmitter of the cochlear efferent system. Based on its high level of expression in hair cells, the recently cloned nicotinic receptor subunit, alpha 9 [Elgoyhen et al., Cell 79 (1994) 705-715], is likely to be the postsynaptic receptor for acetylcholine in hair cells either as a homomeric complex or with other subunits yet to be identified. To further study this receptor, we cloned and sequenced alpha 9 cDNA from the guinea pig organ of Corti library [Wilcox and Fex, Hear. Res. 62 (1992) 124-126]. The sequence of the guinea pig alpha 9 cDNA is similar to that of the rat, with identities of 85% and 89% al the nucleotide and amino acid levels, respectively. Most differences are in the cytoplasmic loop domain between the transmembrane segments 3 and 4. We also observed minor differences in the putative ligand binding regions. Pharmacological differences between acetylcholine receptors on outer hair cells of rat and guinea pig have been reported, and the minor structural changes we observe could account for these differences. Reverse transcription-polymerase chain reaction analysis showed a high expression of alpha 9 in the organ of Corti while expression was low or not detected in the spiral ganglion. In situ hybridization histochemistry showed expression of alpha 9 mRNA in both inner and outer hair cells, with much higher expression in outer hair cells than in inner hair cells. In the inner hair cell, silver grains were more abundant over the basal part of the cell than over the apical part. Immunocytochemistry showed a pattern of distribution of the alpha 9 protein similar to that seen for mRNA with in situ hybridization. Immunolabeling was most intense at the bases of both inner and outer hair cells. To determine the effect of hair cell loss on alpha 9 expression, hair cells were destroyed by either systemic or local application of kanamycin. This treatment led to a down regulation of alpha 9 in hair cells; this down regulation appeared to precede hair cell degeneration. In the spiral ganglion, a transient up regulation of alpha 9, as determined by RT-PCR, was seen 4-6 weeks after kanamycin treatment. C1 NIDCD,NEUROCHEM LAB,NIH,BETHESDA,MD 20892. CR ABOUMADI L, 1987, HEARING RES, V30, P135, DOI 10.1016/0378-5955(87)90131-6 ALTSCHULER RA, 1985, BRAIN RES, V338, P1, DOI 10.1016/0006-8993(85)90242-2 BOBBIN RP, 1974, ACTA OTO-LARYNGOL, V77, P56, DOI 10.3109/00016487409124598 Chen C, 1996, HEARING RES, V98, P9, DOI 10.1016/0378-5955(96)00049-4 COMIS SD, 1979, EXP BRAIN RES, V36, P119 DOI T, 1993, HEARING RES, V67, P179, DOI 10.1016/0378-5955(93)90245-V Drescher DG, 1995, COMP BIOCHEM PHYS C, V112, P267, DOI 10.1016/0742-8413(95)02020-9 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FEX J, 1976, BRAIN RES, V109, P575, DOI 10.1016/0006-8993(76)90036-6 FEX J, 1985, HEARING RES, V17, P101, DOI 10.1016/0378-5955(85)90014-0 FEX J, 1982, HEARING RES, V7, P149, DOI 10.1016/0378-5955(82)90011-9 FEX J, 1978, BRAIN RES, V159, P440, DOI 10.1016/0006-8993(78)90555-3 FEX J, 1981, P NATL ACAD SCI-BIOL, V78, P1255, DOI 10.1073/pnas.78.2.1255 GALLEY N, 1973, BRAIN RES, V64, P55, DOI 10.1016/0006-8993(73)90170-4 GALZI JL, 1991, ANNU REV PHARMACOL, V31, P37 GARNER CC, 1988, NATURE, V336, P674, DOI 10.1038/336674a0 GLOWATZKI E, 1995, P ROY SOC B-BIOL SCI, V262, P141, DOI 10.1098/rspb.1995.0188 HASHIMOTO S, 1990, ACTA OTO-LARYNGOL, V109, P228, DOI 10.3109/00016489009107438 HOOCK TC, 1991, J CELL BIOL, V112, P653, DOI 10.1083/jcb.112.4.653 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 HOUSLEY GD, 1994, HEARING RES, V75, P47, DOI 10.1016/0378-5955(94)90054-X HUGANIR RL, 1984, P NATL ACAD SCI-BIOL, V81, P6968, DOI 10.1073/pnas.81.22.6968 HUNTER C, 1992, OTOLARYNG CLIN N AM, V25, P1027 KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227 KENNELLY PJ, 1991, J BIOL CHEM, V266, P15555 LAMBOLEZ B, 1992, NEURON, V9, P247, DOI 10.1016/0896-6273(92)90164-9 LAVIGNEREBILLARD M, 1988, ACTA OTO-LARYNGOL, V105, P398, DOI 10.3109/00016488809119492 LAWRENCE JB, 1986, CELL, V45, P407, DOI 10.1016/0092-8674(86)90326-0 LENOIR M, 1980, ANAT EMBRYOL, V160, P253, DOI 10.1007/BF00305106 LEVITAN IB, 1988, ANNU REV NEUROSCI, V11, P119, DOI 10.1146/annurev.neuro.11.1.119 LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6 NADOL JB, 1983, LARYNGOSCOPE, V93, P599 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 RYAN AF, 1991, HEARING RES, V56, P148, DOI 10.1016/0378-5955(91)90164-5 SAFIEDDINE S, 1992, EUR J NEUROSCI, V4, P981, DOI 10.1111/j.1460-9568.1992.tb00124.x Safieddine S, 1996, MOL BRAIN RES, V40, P127 SIMMONS DM, 1989, J HISTOTECHNOL, V12, P169 SOBKOWICZ HM, 1994, HEARING RES, V75, P81, DOI 10.1016/0378-5955(94)90059-0 SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448 SUNDELL CL, 1991, SCIENCE, V253, P1275, DOI 10.1126/science.1891715 WARR WB, 1992, ANATOMY MAMMALIAN AU, V1, P197 WILCOX ER, 1992, HEARING RES, V62, P124, DOI 10.1016/0378-5955(92)90208-5 NR 45 TC 34 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 95 EP 105 DI 10.1016/S0378-5955(97)00111-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100009 PM 9367232 ER PT J AU Sadanaga, M Liu, JZ Wangemann, P AF Sadanaga, M Liu, JZ Wangemann, P TI Endothelin-A receptors mediate vasoconstriction of capillaries in the spiral ligament SO HEARING RESEARCH LA English DT Article DE cochlear blood flow; capillary; endothelin receptor; cochlea; labyrinth ID NITRIC-OXIDE SYNTHASE; COCHLEAR BLOOD-FLOW; ACUTE-RENAL-FAILURE; RAT; ANTAGONIST; PERMEABILITY; AGENTS; CELLS; MICE AB The purpose of this study was to determine whether endothelin-l (ET-1), endothelin-2 (ET-2) or endothelin-3 (ET-3) alter the vascular diameter of capillaries in the spiral ligament. Changes in vascular tone were measured in capillaries from the isolated spiral ligament in vitro. Capillaries were occluded on one end and opened on the other end. Red blood cells trapped in the capillaries served as markers for a luminal volume defined by the red cell itself, the capillary wall and the occluder. Movement of the red cell toward the open end was taken as evidence for vasoconstriction and movement of the red cell toward the occluder was taken as evidence for vasodilation. The inner diameter of the capillaries was 7.0 mu m and decreased maximally by a factor of 0.8 in response to ET-1 and ET-2 (both 10(-8) M). Vasoconstriction induced by ET-I and ET-2 was concentration-dependent in the range between 10(-12) and 10(-8) M whereas ET-3 (10(-8) M) had no effect. The EC(50)s for ET-1 and ET-2 were 1.2 x 10(-10) M and 1.4 x 10(-9) M, respectively. Thus, the potency order was ET-1 > ET-2 much greater than ET-3. Vasoconstriction induced by ET-1 and ET-2 was completely inhibited by the competitive antagonist 10(-6) M BQ-123 (cyclic D-Asp-L-Pro-D-Val-L-Leu-D-Trp). Vasoconstriction induced by ET-1 or ET-2 continued for more than 1 min after removal of agonist from the perfusate. Rapid vasodilation of capillaries preconstricted by ET-1 was observed in response to 10(-3) M sodium nitroprusside. Sodium nitroprusside, however, had no significant effect on the vascular diameter of resting capillaries. These results demonstrate that capillaries in the spiral ligament can constrict and the endothelin-mediated vasoconstriction occurs via ETA receptors. C1 BOYS TOWN NATL RES HOSP,CELL PHYSIOL LAB,OMAHA,NE 68131. RI Wangemann, Philine/N-2826-2013 CR CHAN L, 1994, AM J PHYSIOL, V266, pF135 CLOZEL M, 1993, NATURE, V365, P759, DOI 10.1038/365759a0 FESSENDEN JD, 1995, BRAIN RES, V675, P394 FESSENDEN JD, 1997, ASS RES OTOLARYNGOL, V20, P231 FESSENDEN JD, 1997, IN PRESS CYTOCHEM, V45 FESSENDEN JD, 1994, BRAIN RES, V668, P9, DOI 10.1016/0006-8993(94)90505-3 GELLAI M, 1994, J CLIN INVEST, V93, P900, DOI 10.1172/JCI117046 Gosepath K, 1997, BRAIN RES, V747, P26, DOI 10.1016/S0006-8993(96)01149-3 HAWKINS JE, 1972, LARYNGOSCOPE, V82, P1091, DOI 10.1288/00005537-197207000-00001 HUKEE MJ, 1985, ANN OTO RHINOL LARYN, V94, P297 Jinnouchi K, 1997, ACTA OTO-LARYNGOL, V117, P41, DOI 10.3109/00016489709117989 JONESMUMBY CJ, 1984, AM J OTOLARYNG, V5, P127, DOI 10.1016/S0196-0709(84)80031-9 Kong WJ, 1996, HEARING RES, V99, P22, DOI 10.1016/S0378-5955(96)00076-7 KURIHARA Y, 1994, NATURE, V368, P703, DOI 10.1038/368703a0 LAM HC, 1991, J CARDIOVASC PHARM, V17, pS390, DOI 10.1097/00005344-199100177-00109 Lüscher T F, 1994, Curr Opin Nephrol Hypertens, V3, P92 MCDONALD DM, 1995, INVEST OPHTH VIS SCI, V36, P1088 NAKASHIMA T, 1994, HEARING RES, V80, P241, DOI 10.1016/0378-5955(94)90115-5 OHLSEN KA, 1992, HEARING RES, V58, P19, DOI 10.1016/0378-5955(92)90004-7 POLLOCK DM, 1995, FASEB J, V9, P1196 QUIRK WS, 1992, ASS RES OTOLARYNGOL, V15, P37 RUBANYI GM, 1994, PHARMACOL REV, V46, P325 SADANAGA M, 1996, INNER EAR BIOL, V33, P93 SILLDORFF EP, 1995, J CLIN INVEST, V95, P2734, DOI 10.1172/JCI117976 STERKERS O, 1987, AM J PHYSIOL, V253, pF50 SUGIYAMA Y, 1994, P SEND S, V4, P39 UMANS JG, 1995, ANNU REV PHYSIOL, V57, P771 WANGEMANN P, 1994, AM J PHYSIOL, V266, pC1046 WANGEMANN P, 1995, MOL BIOL HEAR DEAF, V2, P170 Wangemann P, 1996, HEARING RES, V95, P49, DOI 10.1016/0378-5955(96)00007-X ZDANSKI CJ, 1994, HEARING RES, V79, P39, DOI 10.1016/0378-5955(94)90125-2 NR 31 TC 14 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 106 EP 114 DI 10.1016/S0378-5955(97)00121-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100010 PM 9367233 ER PT J AU Hartmann, R Shepherd, RK Heid, S Klinke, R AF Hartmann, R Shepherd, RK Heid, S Klinke, R TI Response of the primary auditory cortex to electrical stimulation of the auditory nerve in the congenitally deaf white cat SO HEARING RESEARCH LA English DT Article DE deaf white cat; electrical stimulation; cochlear implant; auditory cortex; auditory deprivation ID SUPERIOR COLLICULAR MAP; NEURONAL RESPONSES; EVOKED-POTENTIALS; COCHLEAR NUCLEUS; HEARING-LOSS; INFERIOR COLLICULUS; DISCHARGE PATTERNS; SPIRAL GANGLION; BRAIN-STEM; GUINEA-PIG AB Neural activity plays an important role in the development and maintenance of sensory pathways. However, while there is considerable experience using cochlear implants in both congenitally deaf adults and children, little is known of the effects of a hearing loss on the development of the auditory cortex. In the present study, cortical evoked potentials, field potentials, and multi- and single-unit activity evoked by electrical stimulation of the auditory nerve were used to study the functional organisation of the auditory cortex in the adult congenitally deaf white cat. The absence of click-evoked auditory brainstem responses during the first weeks of life demonstrated that these animals had no auditory experience. Under barbiturate anaesthesia, cortical potentials could be recorded from the contralateral auditory cortex in response to bipolar electrical stimulation of the cochlea in spite of total auditory deprivation. Threshold, morphology and latency of the evoked potentials varied with the location of the recording electrode, with response latency varying from 10 to 20 ms. There was evidence of threshold shifts with site of the cochlear stimulation in accordance with the known cochleotopic organisation of AI. Thresholds also Varied with the configuration of the stimulating electrodes in accordance with changes previously observed in normal hearing animals. Single-unit recordings exhibited properties similar to the evoked potentials. Increasing stimulus intensity resulted in an increase in spike rate and a decrease in latency to a minimum of similar to 8 ms, consistent with latencies recorded in AI of previously normal animals (Raggio and Schreiner, 1994). Single-unit thresholds also varied with the configuration of the stimulating electrodes. Strongly driven responses were followed by a suppression of spontaneous activity. Even at saturation intensities the degree of synchronisation was less than observed when recording from auditory brainstem nuclei. Taken together, in these auditory deprived animals basic response properties of the auditory cortex of the congenitally deaf white cat appear similar to those reported in normal hearing animals in response to electrical stimulation of the auditory nerve. In addition, it seems that the auditory cortex retains at least some rudimentary level of cochleotopic organisation. C1 UNIV MELBOURNE,DEPT OTOLARYNGOL,MELBOURNE,VIC,AUSTRALIA. RP Hartmann, R (reprint author), UNIV FRANKFURT,INST PHYS 3,THEODER STERN KAI 7,D-60590 FRANKFURT,GERMANY. RI Shepherd, Robert/I-6276-2012 CR BEHRENDT M, 1997, EUR J PHYSL S, V433 BLAMEY PJ, 1995, NIH CONS DEV C COCHL, P15 BOSHER SK, 1965, PROC R SOC SER B-BIO, V162, P147, DOI 10.1098/rspb.1965.0030 BRUGGE JF, 1978, J NEUROPHYSIOL, V41, P1557 BUSBY PA, 1992, AUDIOLOGY, V31, P65 CAIRD D, 1985, ELECTROEN CLIN NEURO, V61, P50, DOI 10.1016/0013-4694(85)91072-7 De Ribaupierre F, 1972, Brain Res, V48, P185, DOI 10.1016/0006-8993(72)90178-3 Dowell R. C., 1995, Annals of Otology Rhinology and Laryngology, V104, P324 EDDINGTON D K, 1978, Annals of Otology Rhinology and Laryngology, V87, P5 EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 ELVERLAND HH, 1984, ACTA NEUROL SCAND, V69, P145 HARDIE NA, 1997, IN PRESS P AUST NEUR HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R HARTMANN R, 1997, ASS RES OTOLARYNGOL, V20, P230 Hartmann R., 1995, Annals of Otology Rhinology and Laryngology, V104, P113 HARTMANN R, 1996, P 24 GOETT NEUR C, V2, P460 Hartmann R., 1990, COCHLEAR IMPLANTS MO, P135 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 HARTMANN R, 1997, IN PRESS ACOUSTICAL HARTMANN R, 1995, P 1995 C IMPL AUD PR, P5 HATSUSHIKA S, 1990, ANN OTO RHINOL LARYN, V99, P871 HEID S, 1995, P 23 GOTT NEUR C, V2, P593 HEID S, 1997, IN PRESS HEAR RES HEID S, 1996, P 24 GOETT NEUR C, V2, P515 HEID S, 1997, UNPUB HEAR RES HEIL P, 1992, HEARING RES, V63, P135, DOI 10.1016/0378-5955(92)90081-W HOCHMAIRDESOYER IJ, 1993, ADV COCHLEAR IMPLANT ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 JAVEL E, 1986, ADV NEURAL BEHAVIORA, V2, P119 KNUDSEN EI, 1995, ANNU REV NEUROSCI, V18, P19, DOI 10.1146/annurev.neuro.18.1.19 LARSEN SA, 1992, EXP NEUROL, V115, P151, DOI 10.1016/0014-4886(92)90240-Q LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LINTHICUM FH, 1991, ACTA OTO-LARYNGOL, V111, P327, DOI 10.3109/00016489109137395 Mair I W, 1973, Acta Otolaryngol Suppl, V314, P1 MATSUSHIMA JI, 1991, HEARING RES, V56, P133, DOI 10.1016/0378-5955(91)90162-3 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 MITZDORF U, 1978, EXP BRAIN RES, V33, P371 MOORE DR, 1981, BRAIN RES, V219, P29, DOI 10.1016/0006-8993(81)90265-1 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 *NIH CONS C, 1995, JAMA-J AM MED ASSOC, V274, P1955 OKAZAWA H, 1996, LARYNGOSCOPE, V119, P1297 PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48 Popelar J, 1995, HEARING RES, V92, P63, DOI 10.1016/0378-5955(95)00199-9 PUJOL R, 1968, ONTOGENESIS BRAIN, P377 RAGGIO MW, 1992, REPRESENTATIONS ELEC RAGGIO MW, 1994, J NEUROPHYSIOL, V72, P2334 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 REBILLARD G, 1980, BRAIN RES, V188, P252, DOI 10.1016/0006-8993(80)90572-7 REBILLARD G, 1977, BRAIN RES, V129, P162, DOI 10.1016/0006-8993(77)90980-5 REBILLARD M, 1981, HEARING RES, V5, P179, DOI 10.1016/0378-5955(81)90044-7 Reinoso-Suarez F., 1961, TOPOGRAPHISCHER HIRN ROMAND R, 1983, NEUROSCI LETT, V35, P271, DOI 10.1016/0304-3940(83)90329-4 Schreiner CE, 1996, J NEUROPHYSIOL, V75, P1283 SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442 SCHWARTZ IR, 1982, ACTA OTO-LARYNGOL, V93, P9, DOI 10.3109/00016488209130847 SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 SHEPHERD RK, 1994, P INT COCHL IMPL SPE, P263 SHIPLEY C, 1980, BRAIN RES, V182, P313, DOI 10.1016/0006-8993(80)91191-9 SINGER W, 1995, SCIENCE, V270, P758, DOI 10.1126/science.270.5237.758 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Stanton SG, 1996, AUDIT NEUROSCI, V2, P97 TEAS DC, 1964, EXP NEUROL, V10, P91, DOI 10.1016/0014-4886(64)90088-3 TONG YC, 1988, J ACOUST SOC AM, V84, P951, DOI 10.1121/1.396664 Tyler RS, 1996, EAR HEARING, V17, pS38, DOI 10.1097/00003446-199617031-00005 WALSH EJ, 1986, J ACOUST SOC AM, V79, P715 WALSH EJ, 1987, HEARING RES, V28, P97, DOI 10.1016/0378-5955(87)90157-2 Webster D.B., 1977, ARCH OTOLARYNGOL, V103, P329 WEBSTER WR, 1991, HEARING RES, V55, P70, DOI 10.1016/0378-5955(91)90093-O WEST CD, 1973, J COMP NEUROL, V151, P377, DOI 10.1002/cne.901510406 WITHINGTONWRAY DJ, 1990, EUR J NEUROSCI, V2, P682, DOI 10.1111/j.1460-9568.1990.tb00458.x WITHINGTONWRAY DJ, 1990, EUR J NEUROSCI, V2, P693, DOI 10.1111/j.1460-9568.1990.tb00459.x Woolsey CN, 1942, B JOHNS HOPKINS HOSP, V71, P315 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X YLIKOSKI J, 1978, ARCH OTOLARYNGOL, V104, P202 NR 77 TC 69 Z9 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 115 EP 133 DI 10.1016/S0378-5955(97)00114-7 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100011 PM 9367234 ER PT J AU Liu, Y Rao, DP Fechter, LD AF Liu, Y Rao, DP Fechter, LD TI Correspondence between middle frequency auditory loss in vivo and outer hair cell shortening in vitro SO HEARING RESEARCH LA English DT Article DE ototoxicity; toluene; outer hair cell ID INDUCED HEARING-LOSS; MOTILE RESPONSES; PHOSPHOLIPID METHYLATION; MECHANICAL RESPONSES; INDUCED OTOTOXICITY; MEMBRANE FLUIDITY; TOLUENE; RATS; EXPOSURE; SHAPE AB The aromatic hydrocarbon, toluene, has been reported to disrupt auditory system function both in occupational epidemiological and in laboratory animal investigations. This agent, along with several other organic solvents, impairs hearing preferentially at middle frequencies - a finding that distinguishes these agents from the traditional high frequency impairment observed with ototoxic drugs such as aminoglycoside antibiotics and cisplatin. Prior investigations performed in vivo have identified the outer hair cell as a probable target for toluene exposure. The purpose of this investigation was to determine directly whether outer hair cells isolated from the guinea pig cochlea show morphological alterations consistent with the toxic response seen in physiological studies with toluene exposure. The effect of toluene superfusion on outer hair cell shortening was assessed for cells harvested from different locations within the cochlea. Control studies included assessment of cell shortening among outer hair cells exposed to trimethyltin and cells exposed to benzene. Trimethyltin disrupts high frequency hearing preferentially and benzene does not produce hearing loss in vivo. Toluene at a concentration of 100 mu M produced a marked shortening of outer hair cells although the effect was significantly greater among cells isolated from the apical half of the cochlea than from the basal half of the cochlea.-By contrast, trimethyltin at the same concentration produced a preferential shortening among outer hair cells from the base of the cochlea. Benzene (100 mu M) did not disrupt outer hair cell length of cells harvested from the apex. The results indicate that intrinsic features of outer hair cells contribute significantly to the site of ototoxic impairment observed in vivo for toluene. C1 UNIV OKLAHOMA,HLTH SCI CTR,COLL PHARM,TOXICOL PROGRAM,OKLAHOMA CITY,OK 73190. CR ABBATE C, 1993, INT ARCH OCC ENV HEA, V64, P389, DOI 10.1007/BF00517943 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BENIGNUS VA, 1981, NEUROBEH TOXICOL TER, V3, P407 BENIGNUS VA, 1981, NEUROTOXICOLOGY, V2, P567 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BRUNDIN L, 1994, HEARING RES, V73, P35, DOI 10.1016/0378-5955(94)90280-1 CHERTOFF ME, 1994, AM J PHYSIOL, V266, pC467 CLERICI WJ, 1993, TOXICOL APPL PHARM, V120, P193, DOI 10.1006/taap.1993.1103 CROFTON KM, 1990, TOXICOL APPL PHARM, V105, P123, DOI 10.1016/0041-008X(90)90364-Z CROFTON KM, 1994, HEARING RES, V80, P25, DOI 10.1016/0378-5955(94)90005-1 DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1995, SCIENCE, V268, P1420, DOI 10.1126/science.7770765 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6 DULON D, 1987, ARCH OTO-RHINO-LARYN, V244, P104, DOI 10.1007/BF00458558 DULON D, 1990, J NEUROSCI, V10, P1388 EHYAI A, 1983, J NEUROL NEUROSUR PS, V46, P349, DOI 10.1136/jnnp.46.4.349 FECHTER LD, 1986, HEARING RES, V23, P275, DOI 10.1016/0378-5955(86)90116-4 FLOCK A, 1986, ARCH OTORHINOLARYNGO, V243, P93 HJELM EW, 1988, J TOXICOL ENV HEALTH, V25, P155 HUANG MY, 1990, BIOCHEM PHARMACOL, V40, pR11, DOI 10.1016/0006-2952(90)90077-X Johnson A C, 1993, Scand Audiol Suppl, V39, P1 JOHNSON AC, 1994, HEARING RES, V72, P189, DOI 10.1016/0378-5955(94)90218-6 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 KISHI R, 1988, BR J IND MED, V40, P396 KYRKLUND T, 1990, PHARMACOL TOXICOL, V67, P384 LEBEL CP, 1990, J PHARMACOL EXP THER, V253, P1189 LEBEL CP, 1989, BIOCHEM PHARMACOL, V38, P4005, DOI 10.1016/0006-2952(89)90680-1 LIU Y, 1997, TOXICOL IN VITRO, V10, P567 Liu Y, 1997, TOXICOL APPL PHARM, V142, P270, DOI 10.1006/taap.1996.8059 LOF A, 1990, CLIN PHARMACOL THER, V47, P412 METRICK SA, 1982, ANN NEUROL, V12, P553, DOI 10.1002/ana.410120609 MIYAKE H, 1983, NEUROBEH TOXICOL TER, V5, P541 MORATA TC, 1993, SCAND J WORK ENV HEA, V19, P245 OSHA, 1989, FED REGISTER, V54, P2332 PATERSON SC, 1983, MED SCI LAW, V23, P64 POU AM, 1991, HEARING RES, V52, P305, DOI 10.1016/0378-5955(91)90020-A PRYOR GT, 1984, NEUROBEH TOXICOL TER, V6, P223 Pryor GT, 1995, HDB NEUROTOXICOLOGY, P377 REBERT CS, 1983, NEUROBEH TOXICOL TER, V5, P59 REUTER G, 1990, HEARING RES, V43, P219, DOI 10.1016/0378-5955(90)90230-M RUSSELL IJ, 1995, AUDIT NEUROSCI, V1, P309 RYBAK LP, 1992, OTOLARYNG HEAD NECK, V106, P677 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 SLEPECKY N, 1988, HEARING RES, V32, P11, DOI 10.1016/0378-5955(88)90143-8 SLEPECKY N, 1989, CELL TISSUE RES, V257, P69 SPENCER PS, 1985, SCAND J ENV HLTH S, V53 SULLIVAN MJ, 1988, NEUROTOXICOL TERATOL, V10, P525, DOI 10.1016/0892-0362(88)90088-8 TAKEICHI S, 1986, FORENSIC SCI INT, V32, P109, DOI 10.1016/0379-0738(86)90146-5 *USITC, 1993, SYNTH ORG CHEM US PR ZENNER HP, 1994, EUR ARCH OTO-RHINO-L, V251, P143 ZENNER HP, 1988, ACTA OTO-LARYNGOL, V105, P39, DOI 10.3109/00016488809119443 ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 Zimmermann U, 1996, ACTA OTO-LARYNGOL, V116, P395, DOI 10.3109/00016489609137863 NR 56 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 134 EP 140 DI 10.1016/S0378-5955(97)00110-X PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100012 PM 9367235 ER PT J AU White, LJ Carlyon, RP AF White, LJ Carlyon, RP TI Detection of signals having expected and unexpected temporal structures SO HEARING RESEARCH LA English DT Article DE temporal integration; multiple looks; signal detection theory; expectation ID SENSORINEURAL HEARING-LOSS; INTEGRATION; MASKING; IMPAIRMENT; DURATIONS; TONES AB Two experiments used a variant of the 'probe-signal' method [Greenberg and Larkin, J. Acoust. Sec. Am. 44 (1968) 1513-1523] to examine the effect of expectedness on the detection of signals having fixed frequencies but uncertain temporal structures. Expectedness was manipulated by presenting one signal on 75% of the trials and the other on only 25% of trials. Experiment 1 measured sensitivity (d') to 4000-Hz sinusoidal signals having durations of 10 ms and 295 ms. The results confirmed the finding by Wright and Dai [J. Acoust. Sec. Am. 95 (1994) 931-938] that sensitivity was poorer when the duration of the signal was unexpected. The second experiment used two signals having the same overall duration: six 10-ms 4000-Hz tone pulses with a 0-ms inter-pulse interval, and two 10-ms 4000-Hz pulses separated by 40 ms. Again, sensitivity was lower when the temporal structure of the signal was unexpected. It is argued that this finding is inconsistent with 'long time constant' models of temporal integration, but can be accounted for by assuming that subjects combine information from a number of short 'looks' at the signal, with the number and temporal location of these looks being influenced by its expected temporal structure. C1 MRC,APPL PSYCHOL UNIT,CAMBRIDGE CB2 2EF,ENGLAND. RP White, LJ (reprint author), UNIV SUSSEX,EXPT PSYCHOL LAB,BRIGHTON BN1 9QG,E SUSSEX,ENGLAND. RI Carlyon, Robert/A-5387-2010 CR CAMPBELL RA, 1963, J ACOUST SOC AM, V35, P1732, DOI 10.1121/1.1918802 CARLYON RP, 1990, J ACOUST SOC AM, V87, P260, DOI 10.1121/1.399293 CARLYON RP, 1987, J ACOUST SOC AM, V82, P1078, DOI 10.1121/1.395329 CHUNG DY, 1980, SCAND AUDIOL, V9, P43, DOI 10.3109/01050398009076333 CHUNG DY, 1981, J SPEECH HEAR RES, V24, P514 DAI HP, 1995, J ACOUST SOC AM, V98, P798, DOI 10.1121/1.413572 DEBOER E, 1966, J ACOUST SOC AM, V40, P554 ELLIOTT LL, 1975, AUDIOLOGY, V14, P336 FLORENTINE M, 1988, J ACOUST SOC AM, V84, P195, DOI 10.1121/1.396964 GARNER WR, 1947, J EXP PSYCHOL, V37, P293, DOI 10.1037/h0055734 Green D. M., 1988, PROFILE ANAL GREEN DM, 1957, J ACOUST SOC AM, V29, P523, DOI 10.1121/1.1908951 GREEN DM, 1966, SIGNAL DETECTION THE GREENBER.GZ, 1968, J ACOUST SOC AM, V44, P1513, DOI 10.1121/1.1911290 HARRIS JD, 1958, ARCHIV OTOLARYNGOL, V67, P699 HUGHES JW, 1946, PROC R SOC SER B-BIO, V133, P486, DOI 10.1098/rspb.1946.0026 KOLLMEIER B, 1988, J ACOUST SOC AM, V83, P1852, DOI 10.1121/1.396521 LEVITT H, 1971, J ACOUST SOC AM, V49, P447 MISCOLSKYFODOR F, 1953, ACTA OTOLARYNGOL, V43, P573 NABELEK IV, 1978, J ACOUST SOC AM, V64, P751 OLSEN WO, 1966, J ACOUST SOC AM, V40, P591, DOI 10.1121/1.1910123 PEDERSEN CB, 1973, ACTA OTO-LARYNGOL, V75, P32, DOI 10.3109/00016487309139635 PEDERSEN CB, 1972, ACTA OTO-LARYNGOL, V74, P398, DOI 10.3109/00016487209128469 PLOMP R, 1959, J ACOUST SOC AM, V31, P749, DOI 10.1121/1.1907781 SIMON GR, 1963, J AUD RES, V3, P109 VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 WATSON CS, 1959, J ACOUST SOC AM, V46, P989 WHITE LJ, 1995, THESIS U SUSSEX WRIGHT BA, 1994, J ACOUST SOC AM, V95, P931, DOI 10.1121/1.410010 WRIGHT HN, 1968, J SPEECH HEAR RES, V1, P52 Young L. M., 1973, J AUD RES, V13, P14 ZWICKER E., 1963, JOUR ACOUSTICAL SOC AMER, V35, P691, DOI 10.1121/1.1918589 ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276 NR 33 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 141 EP 146 DI 10.1016/S0378-5955(97)00115-9 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100013 PM 9367236 ER PT J AU Tykocinski, M Shepherd, RK Clark, GM AF Tykocinski, M Shepherd, RK Clark, GM TI Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates .2. Comparison of fixed amplitude with amplitude modulated stimuli SO HEARING RESEARCH LA English DT Article DE cochlear implant; high-rate electrical stimulation; auditory nerve; neural damage; electrically evoked auditory brainstem response ID COCHLEAR IMPLANTS; NEURAL DAMAGE; 8TH NERVE; CAT; FIBERS; EXPOSURE; NUCLEUS; CHARGE; BRAIN AB We have previously shown that acute electrical stimulation of the auditory nerve using charge-balanced biphasic current pulses presented continuously can lead to a prolonged decrement in auditory nerve excitability (Tykocinski et al., Hear. Res. 88 (1995), 124-142). This work also demonstrated a reduction in electrically evoked auditory brainstem response (EABR) amplitude decrement when using an otherwise equivalent pulse train with a 50% duty cycle. In the present study we have extended this work in order to compare the effects of electrical stimulation using both fixed amplitude electrical pulse trains and amplitude modulated (AM) pulse trains that more accurately model the dynamic stimulus paradigms used in cochlear implants. EABRs were recorded from guinea pigs following acute stimulation using AM trains of charge-balanced biphasic current pulses. The extent of stimulus-induced reductions in the EABR were compared with our previous results using either fu;ed amplitude continuous, or 50% duty cycle pulse trains operating at 0.34 mu C/phase (2 mA, 170 mu s/phase) at 400 or 1000 pulses/s (Tykocinski et al., Hear. Res. 88 (1995) 124-142). The AM pulse train, operating at the same rates, was based on a 1-s sequence of the most extensively activated electrode of a Nucleus Mini-22 cochlear implant using the SPEAK speech processing strategy exposed to 4-talker babble, and delivered the same total charge as the fixed amplitude 50% duty cycle pulse train. Two hours of continuous stimulation induced a significant, rate-dependent reduction in auditory nerve excitability, and showed only a slight post-stimulus recovery for monitoring periods of up to 6 hours. Following 2 or 4 h of stimulation using an otherwise equivalent pulse train with a 50% duty cycle or the AM pulse train, significantly less reduction in the EABR was observed, and recovery to pre-stimulus levels was generally rapid and complete. These differences in the extent of the recovery between the continuous waveform and both the 50% duty cycle and AM waveforms were statistically significant for both 400 and 1000 pulses/s stimuli. Consistent with our previous results, the stimulus changes observed using AM pulse trains were rate dependent, with higher rate stimuli evoking more extensive stimulus-induced changes. The present findings show that while stimulus-induced reductions in neural excitability are dependent on the extent of stimulus-induced neuronal activity, the use of an AM stimulus paradigm further reduces post-stimulus neural fatigue. C1 UNIV MELBOURNE,DEPT OTOLARYNGOL,MELBOURNE,VIC 3052,AUSTRALIA. RI Shepherd, Robert/I-6276-2012 CR AGNEW WF, 1993, NEUROSCIENCE, V52, P45, DOI 10.1016/0306-4522(93)90180-N AGNEW WF, 1983, EXP NEUROL, V79, P347 BOWMAN BR, 1986, APPL NEUROPHYSIOL, V49, P121 BROWN WJ, 1977, J NEUROSURG, V47, P366, DOI 10.3171/jns.1977.47.3.0366 BUSBY PA, 1993, J ACOUST SOC AM, V94, P124, DOI 10.1121/1.408212 DILLIER N, 1992, ORL J OTO-RHINO-LARY, V54, P299 Forbes A, 1929, AM J PHYSIOL, V90, P119 GASSER HS, 1935, AM J PHYSIOL, V96, P35 HAENGGELI A, 1995, P 3 INT C COCHL IMPL, P202 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 HARRIS JD, 1955, J ACOUST SOC AM, V27, P117 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 HILL AV, 1936, P R SOC LOND, V19, P74 Hochmair-Desoyer I. J., 1985, COCHLEAR IMPLANTS, P291 JAVEL E, 1987, ANN OTO RHINOL LARYN, V96, P26 KILLIAN MJP, 1994, HEARING RES, V81, P66, DOI 10.1016/0378-5955(94)90154-6 Lonsbury-Martin B L, 1981, Am J Otolaryngol, V2, P321, DOI 10.1016/S0196-0709(81)80042-7 LONSBURYMARTIN BL, 1978, J NEUROPHYSIOL, V41, P987 MCCREERY DB, 1988, ANN BIOMED ENG, V16, P463, DOI 10.1007/BF02368010 MCCREERY DB, 1983, EXP NEUROL, V79, P371, DOI 10.1016/0014-4886(83)90220-0 MCCREERY DB, 1992, HEARING RES, V62, P42, DOI 10.1016/0378-5955(92)90201-W MCCREERY DB, 1990, IEEE T BIO-MED ENG, V37, P996, DOI 10.1109/10.102812 MCDERMOTT HJ, 1992, J ACOUST SOC AM, V91, P3367, DOI 10.1121/1.402826 Moxon E.C., 1971, THESIS MIT CAMBRIDGE Patrick J., 1990, COCHLEAR PROSTHESES, p99 PUDENZ RH, 1977, FUNCTIONAL ELECT STI SHEPHERD RK, 1987, ANN OTO RHINOL LARYN, V96, P50 SHEPHERD RK, 1986, THESIS U MELBOURNE M Shepherd RK, 1990, COCHLEAR PROSTHESES, P69 SIESJO BK, 1981, J CEREBR BLOOD F MET, V1, P155 TONG YC, 1990, COCHLEAR PROSTHESES, P253 TYKOCINSKI M, 1995, P 3 INT C COCHL IMPL, P156 TYKOCINSKI M, 1995, HEARING RES, V88, P124, DOI 10.1016/0378-5955(95)00108-G VANDENHONERT C, 1986, HEARING RES, V21, P109, DOI 10.1016/0378-5955(86)90033-X WARD WD, 1973, P INT C NOIS PUBL HL, P281 White RJ, 1996, J NEUROSCI, V16, P5688 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 WILSON BS, 1993, SPEECH PROCESSORS AU Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 YATES GK, 1983, HEARING RES, V12, P305, DOI 10.1016/0378-5955(83)90003-5 YOUNG E, 1973, J ACOUST SOC AM, V54, P1535, DOI 10.1121/1.1914451 YUEN TGH, 1981, NEUROSURGERY, V9, P292 NR 42 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 147 EP 157 DI 10.1016/S0378-5955(97)00117-2 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100014 PM 9367237 ER PT J AU ONeill, WE Zettel, ML Whittemore, KR Frisina, RD AF ONeill, WE Zettel, ML Whittemore, KR Frisina, RD TI Calbindin D-28k immunoreactivity in the medial nucleus of the trapezoid body declines with age in C57BL/6, but not CBA/CaJ, mice SO HEARING RESEARCH LA English DT Article DE calcium binding protein; auditory midbrain; presbycusis; temporal processing; immunocytochemistry ID SUPERIOR OLIVARY COMPLEX; SENSORINEURAL HEARING-LOSS; INFERIOR COLLICULUS NEURONS; CA2+ BINDING-PROTEINS; COCHLEAR NUCLEUS; GLYCINE IMMUNOREACTIVITY; IMPAIRED LISTENERS; AUDITORY-SYSTEM; DEVELOPING RATS; NERVOUS-SYSTEM AB This study compared calbindin D-28k immunoreactivity in the medial nucleus of the trapezoid body (MNTB) in young (3-4 month old) and old (24-26 month old) CBA/CaJ mice, and young (3-4 month old), middle-aged (6.5-8.5 month old), and old (24-29 month old) C57BL/6 mice. C57BL/6 mice exhibit progressively more severe peripheral (sensorineural) hearing loss between 4 and 12 months of age, whereas CBA/CaJ mice show little change in peripheral sensitivity until very late in life. We obtained auditory brainstem response audiograms on all subject mice. Old CBA mice were selected for study whose audiograms matched those of young CBA and C57 controls. Middle-aged C57 mice showed elevated thresholds indicative of peripheral degeneration. Brain sections were reacted with anti-calbindin D-28k (CB). Staining patterns in Nissl and anti-CB material were characterized and cells were counted. We found no significant change in the number of CB+ cells or the total number of cells in the MNTB of old CBA mice compared to young controls. However, the mean number of CB+ cells decreased by 11% in middle-aged, and by 14.8% in old C57 mice. Since the decline in C57 mice was significant by 6.5-8.5 months of age, the decrease could be the consequence of a loss of input from the cochlear nucleus where cell numbers are known to decline by this age in this strain. The total number of neurons in MNTB assessed from Nissl material showed a more modest 7.1% decline with age in C57 mice, implying that the greater loss of CB immunoreactive cells with age cannot be completely attributed to a reduction in the total number of cells. C1 UNIV ROCHESTER,SCH MED & DENT,DEPT SURG,DIV OTOLARYNGOL,ROCHESTER,NY 14642. UNIV ROCHESTER,COLL ARTS & SCI,DEPT BRAIN & COGNIT SCI,ROCHESTER,NY 14627. RP ONeill, WE (reprint author), UNIV ROCHESTER,SCH MED & DENT,DEPT NEUROBIOL & ANAT,601 ELMWOOD AVE,ROCHESTER,NY 14642, USA. CR ADAMS JC, 1990, HEARING RES, V49, P281, DOI 10.1016/0378-5955(90)90109-3 AMENTA F, 1995, MECH AGEING DEV, V77, P179 BAIMBRIDGE KG, 1992, TRENDS NEUROSCI, V15, P303, DOI 10.1016/0166-2236(92)90081-I BLEDSOE SC, 1990, BRAIN RES, V517, P189, DOI 10.1016/0006-8993(90)91025-C BRONKHORST AW, 1989, J ACOUST SOC AM, V86, P1374, DOI 10.1121/1.398697 BROWN CH, 1984, EXP AGING RES, V10, P35 Caicedo A, 1996, ANAT EMBRYOL, V194, P465 CASEY MA, 1985, J COMP NEUROL, V232, P401, DOI 10.1002/cne.902320311 CASEY MA, 1988, NEUROSCIENCE, V24, P189, DOI 10.1016/0306-4522(88)90322-3 CASEY MA, 1982, NEUROBIOL AGING, V3, P187, DOI 10.1016/0197-4580(82)90039-2 CASEY MA, 1990, NEUROBIOL AGING, V11, P391, DOI 10.1016/0197-4580(90)90004-J CASEY MA, 1985, NEUROBIOL AGING, V6, P39, DOI 10.1016/0197-4580(85)90070-3 CASPARY DM, 1990, J NEUROSCI, V10, P2363 CELIO MR, 1990, NEUROSCIENCE, V35, P375, DOI 10.1016/0306-4522(90)90091-H CHOI DW, 1988, TRENDS NEUROSCI, V11, P465, DOI 10.1016/0166-2236(88)90200-7 Committee on Hearing Bioacoustics and Biomechanics (CHABA), 1988, J ACOUST SOC AM, V83, P859 Cranford J L, 1992, J Am Acad Audiol, V3, P405 DIRKS DD, 1969, J SPEECH HEAR RES, V12, P5 DURLACH NI, 1981, AUDIOLOGY, V20, P181 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859 FRIAUF E, 1988, EXP BRAIN RES, V73, P263 FRIAUF E, 1994, J COMP NEUROL, V349, P193, DOI 10.1002/cne.903490204 FRIAUF E, 1993, J COMP NEUROL, V334, P59, DOI 10.1002/cne.903340105 Frisina R. D., 1995, Society for Neuroscience Abstracts, V21, P908 GELFAND SA, 1988, J ACOUST SOC AM, V83, P248, DOI 10.1121/1.396426 GERMAN DC, 1992, ANN NY ACAD SCI, V648, P42, DOI 10.1111/j.1749-6632.1992.tb24523.x GUTIERREZ A, 1994, J NEUROSCI, V14, P7469 Haider S., 1996, Society for Neuroscience Abstracts, V22, P1823 HARRISON JM, 1981, EXP AGING RES, V9, P35 HEFFNER RS, 1993, ARO ABSTR, V16, P49 HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6 Henry K. R., 1983, AUDITORY PSYCHOBIOLO, P470 IACOPINO AM, 1990, P NATL ACAD SCI USA, V87, P4078, DOI 10.1073/pnas.87.11.4078 KASS GEN, 1988, ARCH BIOCHEM BIOPHYS, V260, P789, DOI 10.1016/0003-9861(88)90509-7 KAZEE AM, 1995, HEARING RES, V89, P109, DOI 10.1016/0378-5955(95)00128-6 KELLEY PE, 1992, J COMP NEUROL, V319, P196 Khachaturian Z.S., 1984, HDB STUDIES PSYCHIAT, P7 KOHR G, 1991, EXP BRAIN RES, V85, P543 KRZYWKOWSKI P, 1995, NEUROBIOL AGING, V16, P29, DOI 10.1016/0197-4580(95)80005-C KUWABARA N, 1992, J COMP NEUROL, V324, P522, DOI 10.1002/cne.903240406 MARTIN DR, 1991, AM J OTOL, V12, P365 MATSUBARA JA, 1990, BRAIN RES, V508, P353, DOI 10.1016/0006-8993(90)90424-A MCFADDEN SL, 1994, HEARING RES, V78, P132, DOI 10.1016/0378-5955(94)90019-1 MILBRANDT JC, 1994, NEUROBIOL AGING, V15, P699, DOI 10.1016/0197-4580(94)90051-5 MOORE MJ, 1983, J NEUROSCI, V3, P237 MOREST D. KENT, 1968, BRAIN RES, V9, P288, DOI 10.1016/0006-8993(68)90235-7 MOREST D K, 1968, Zeitschrift fuer Anatomie und Entwicklungsgeschichte, V127, P201, DOI 10.1007/BF00526129 Morest D K, 1973, Adv Otorhinolaryngol, V20, P337 NISHIYAMA E, 1993, NEUROSCI LETT, V163, P223, DOI 10.1016/0304-3940(93)90388-2 O'Neill W. E., 1992, Society for Neuroscience Abstracts, V18, P1038 PAPAZAFIRI P, 1995, NEUROSCI LETT, V186, P65, DOI 10.1016/0304-3940(95)11285-5 PARK TJ, 1993, J NEUROSCI, V13, P2050 POTIER B, 1994, BRAIN RES, V661, P181, DOI 10.1016/0006-8993(94)91195-9 SABERI K, 1991, J ACOUST SOC AM, V90, P1355, DOI 10.1121/1.401927 SPANGLER KM, 1985, J COMP NEUROL, V238, P249, DOI 10.1002/cne.902380302 TOLBERT LP, 1978, NEUROSCI ABSTR, V4, P11 VATER M, 1994, J COMP NEUROL, V341, P534, DOI 10.1002/cne.903410409 VILLA A, 1994, EUR J NEUROSCI, V6, P1491, DOI 10.1111/j.1460-9568.1994.tb01010.x WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J WARREN LR, 1978, J GERONTOL, V33, P731 WEBSTER WR, 1990, NEUROSCI LETT, V111, P252, DOI 10.1016/0304-3940(90)90270-J WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X Willard FH, 1983, AUDITORY PSYCHOBIOLO, P201 WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 WILLOTT JF, 1994, NEUROBIOL AGING, V15, P175, DOI 10.1016/0197-4580(94)90109-0 ZETTEL ML, 1991, J COMP NEUROL, V313, P1, DOI 10.1002/cne.903130102 ZETTEL ML, 1997, IN PRESS J COMP NEUR ZETTEL ML, 1993, SOC NEUR ABSTR, V9, P1205 ZOOK JM, 1988, HEARING RES, V34, P141, DOI 10.1016/0378-5955(88)90101-3 NR 71 TC 30 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 158 EP 166 DI 10.1016/S0378-5955(97)00116-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100015 PM 9367238 ER PT J AU Zheng, YL Ohyama, K Hozawa, K Wada, H Takasaka, T AF Zheng, YL Ohyama, K Hozawa, K Wada, H Takasaka, T TI Effect of anesthetic agents and middle ear pressure application on distortion product otoacoustic emissions in the gerbil SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emission; anesthetic; middle ear pressure; gerbil ID CAT AB The functional status of the middle ear system has a crucial importance in the measurements of distortion product otoacoustic emissions (DPOAEs), because each emission signal has to be detected indirectly in the external canal. It was observed that DPOAEs were scarcely detectable in the gerbil anesthetized with pentobarbital. On the other hand, when ketamine was used as an anesthetic, the DPOAE levels were generally high. The differences in the effects of these anesthetic agents on the DPOAEs became less clear when the tympanic bulla was opened. This strongly suggests that the effects might be due to a modification of the middle ear pressure. This study was designed to elucidate the mechanisms of the effects of these anesthetics on the DPOAEs. Comparing the effects of pentobarbital and those of pressure application to the middle ear on the frequency characteristics of DPOAEs, the following conclusions emerged: (1) pentobarbital administration causes negative middle ear pressure in the gerbil; (2) the generated pressure strongly reduces DPOAE conduction through the middle ear; and thus (3) proper selection of anesthetic agents is very important in gerbil experiments that involve OAE measurements. C1 TOHOKU UNIV,DEPT MECH ENGN,SENDAI,MIYAGI 980,JAPAN. TOHOKU ROSAI HOSP,DEPT OTOLARYNGOL,SENDAI,MIYAGI 980,JAPAN. RP Zheng, YL (reprint author), TOHOKU UNIV,SCH MED,DEPT OTOLARYNGOL,AOBA KU,1-1 SEIRYO MACHI,SENDAI,MIYAGI 98077,JAPAN. CR FULLERTON BC, 1987, ELECTROEN CLIN NEURO, V66, P547, DOI 10.1016/0013-4694(87)90102-7 HAUSER R, 1993, HEARING RES, V69, P133, DOI 10.1016/0378-5955(93)90101-6 Kemp D T, 1986, Scand Audiol Suppl, V25, P71 KEMP DT, 1990, EAR HEARING, V11, P93 LONSBURYMARTIN BL, 1994, AM J OTOL, V15, P13 NAEVE SL, 1992, J ACOUST SOC AM, V91, P2091, DOI 10.1121/1.403695 OHMURA M, 1987, ACTA OTO-LARYNGOL, V104, P255, DOI 10.3109/00016488709107326 OHYAMA K, 1992, BIOPHYSICS HAIR CELL, P78 PEAKE WT, 1992, HEARING RES, V57, P245, DOI 10.1016/0378-5955(92)90155-G Prellner K, 1992, Acta Otolaryngol Suppl, V493, P93 RICHTER B, 1994, ACTA OTO-LARYNGOL, V114, P278, DOI 10.3109/00016489409126056 ROBINSON GM, 1981, CLIN PHARMACOL THER, V30, P71 SADE J, 1995, ANN OTO RHINOL LARYN, V104, P369 SCHLOTH E, 1983, HEARING RES, V11, P285, DOI 10.1016/0378-5955(83)90063-1 SMITH DI, 1991, HEARING RES, V54, P1, DOI 10.1016/0378-5955(91)90130-2 VEUILLET E, 1992, HEARING RES, V61, P47, DOI 10.1016/0378-5955(92)90035-L YEE AL, 1987, ACTA OTO-LARYNGOL, V104, P261, DOI 10.3109/00016488709107327 NR 17 TC 20 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 167 EP 174 DI 10.1016/S0378-5955(97)00118-4 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100016 PM 9367239 ER PT J AU Sugimoto, S Sakurada, M Horikawa, J Taniguchi, I AF Sugimoto, S Sakurada, M Horikawa, J Taniguchi, I TI The columnar and layer-specific response properties of neurons in the primary auditory cortex of Mongolian gerbils SO HEARING RESEARCH LA English DT Article DE single-unit recording; auditory cortex; columnar organization; layer specificity ID MEDIAL GENICULATE-BODY; AMPLITUDE-SPECTRUM REPRESENTATION; SINGLE NEURONS; FUNCTIONAL-ORGANIZATION; SPATIAL-DISTRIBUTION; INFERIOR COLLICULUS; TONAL STIMULI; FIELD AAF; CAT; DIVISION AB The columnar and layer-specific response properties of neurons in the primary auditory cortex (AI) of Mongolian gerbils were studied using single-unit recordings of responses to tone-burst stimuli presented to the ear contralateral to the recording side. During near-radial microelectrode penetrations of the AI in 100-mu m steps, the best frequency (BF), best threshold (BT), best amplitude (BA), latency, tuning curve and Q(10dB) were recorded. Neurons encountered during single penetrations showed similar BFs, indicating a columnar frequency organization, but their latencies and Q(10dB)s differed. The BAs and BTs recorded within single penetrations often showed a similar value in the middle cortical layers. The latencies and Q(10dB)s of these neurons exhibited a tendency toward a layer-specific distribution. The latencies of neurons located in layers I-V were longer than those located in layer VI. The Q(10dB)s Of neurons located in layers III and IV were higher than those located in layers I and VI. These results are almost consistent with those of previous studies on frequency representation, and indicated the existence of an integrative mechanism of frequency processing in the AI. This is the first study in which a layer-specific, partially columnar organization for stimulus amplitude is described. RP Sugimoto, S (reprint author), TOKYO MED & DENT UNIV,MED RES INST,DEPT NEUROPHYSIOL,KANDA SURUGADAI 2-3-10,TOKYO 101,JAPAN. CR ABELES M, 1970, J NEUROPHYSIOL, V33, P172 AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275 AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1196 AITKIN LM, 1972, J NEUROPHYSIOL, V35, P365 ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312 BONKE D, 1979, J COMP PHYSIOL, V132, P243 BURTON H, 1976, J COMP NEUROL, V168, P249, DOI 10.1002/cne.901680204 JONES EG, 1976, J COMP NEUROL, V168, P197, DOI 10.1002/cne.901680203 CALFORD MB, 1983, J NEUROSCI, V3, P2350 CALFORD MB, 1981, J NEUROPHYSIOL, V45, P1013 DI S, 1990, J NEUROPHYSIOL, V63, P832 EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 HASHIKAWA T, 1991, BRAIN RES, V544, P335, DOI 10.1016/0006-8993(91)90076-8 KIANG NYS, 1965, MIT MONOGRAPH, V35 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 MITANI A, 1985, J COMP NEUROL, V235, P430, DOI 10.1002/cne.902350403 MITANI A, 1984, BRAIN RES, V310, P347, DOI 10.1016/0006-8993(84)90157-4 MULLERPREUSS P, 1984, HEARING RES, V16, P133, DOI 10.1016/0378-5955(84)90003-0 MURATA K, 1986, HEARING RES, V23, P169, DOI 10.1016/0378-5955(86)90014-6 OONISHI S, 1965, JPN J PHYSIOL, V15, P342 PHILLIPS DP, 1985, HEARING RES, V19, P253, DOI 10.1016/0378-5955(85)90145-5 PHILLIPS DP, 1982, BRAIN RES, V248, P237, DOI 10.1016/0006-8993(82)90581-9 PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48 PHILLIPS DP, 1979, J NEUROPHYSIOL, V42, P123 PRIETO JJ, 1994, J COMP NEUROL, V344, P349, DOI 10.1002/cne.903440304 ROUILLER EM, 1989, HEARING RES, V39, P127, DOI 10.1016/0378-5955(89)90086-5 SCHREINER CE, 1992, J NEUROPHYSIOL, V68, P1487 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442 SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367 SUGA N, 1982, J NEUROPHYSIOL, V47, P225 SUGA N, 1977, SCIENCE, V196, P64, DOI 10.1126/science.190681 THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x WALLACE MN, 1981, EXP BRAIN RES, V86, P527 ZHENG CM, 1992, JPN J PHYSIOL, V42, P459, DOI 10.2170/jjphysiol.42.459 NR 35 TC 29 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 175 EP 185 DI 10.1016/S0378-5955(97)00119-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100017 PM 9367240 ER PT J AU Kim, SJ Juhn, SK AF Kim, SJ Juhn, SK TI Two types of K+ currents in marginal cells cultured from rat stria vascularis SO HEARING RESEARCH LA English DT Article DE marginal cell; stria vascularis; K+ current; inward rectifier; outward rectifier ID ION-TRANSPORT MECHANISMS; VESTIBULAR DARK CELLS; PIGMENT EPITHELIAL-CELLS; GUINEA-PIG; NONSELECTIVE CATION; POTASSIUM CURRENTS; LUMINAL MEMBRANE; CHANNELS; VOLTAGE; GERBIL AB Membrane currents in marginal cells cultured from rat stria vascularis were studied using the whole-cell patch-clamp technique. Two types of voltage-dependent whole-cell currents were observed in the voltage range from -150 mV to +50 mV: an outwardly rectifying current and an inwardly rectifying current. The outwardly rectifying current, which was activated by depolarizing pulses more positive than -30(.) mV, was sensitive to TEA (20 mM) and relatively not to Ba2+ (0.5 mM). Tail current analysis revealed that the outward currents were primarily K+-selective. The conductance of the current was half-maximal at 0.5 mV and a substantial portion of current was not inactivated by the depolarizing prepulses from -30 mV to +20 mV. The inwardly rectifying current with rapid exponential activation was observed with hyperpolarizing voltage pulses. The zero-current potential of this current was dependent on extracellular K+ concentration. In contrast to the outwardly rectifying current, this current was blocked by extracellular application of Ba2+, not by TEA. The conductance of this current increased with the increase in external K+ concentration. Our data suggest that marginal cells cultured from rat stria vascularis express at least two types of voltage-dependent K+ currents which may serve as K+ secretory pathways into endolymph. C1 KOREA ADV INST SCI & TECHNOL,BIOMED RES CTR,SEOUL,SOUTH KOREA. UNIV MINNESOTA,DEPT OTOLARYNGOL,MINNEAPOLIS,MN 55455. RP Kim, SJ (reprint author), SEOUL NATL UNIV,COLL MED,DEPT PHYSIOL & BIOPHYS,28 YON GON DONG CHONG RO GU,SEOUL 110799,SOUTH KOREA. RI Kim, Sang Jeong/J-2740-2012 CR Barhanin J, 1996, NATURE, V384, P78, DOI 10.1038/384078a0 CHAO TI, 1994, PFLUG ARCH EUR J PHY, V426, P51, DOI 10.1007/BF00374670 DECUORSEY TE, 1988, J PHYSIOL-LONDON, V395, P487 DECUORSEY TE, 1987, J GEN PHYSIOL, V89, P379 FOLANDER K, 1990, P NATL ACAD SCI USA, V87, P2975, DOI 10.1073/pnas.87.8.2975 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 Hibino H., 1996, Society for Neuroscience Abstracts, V22, P1752 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 HOLT JR, 1995, J NEUROPHYSIOL, V73, P1484 IKEDA K, 1989, HEARING RES, V39, P279, DOI 10.1016/0378-5955(89)90047-6 IWANO T, 1989, J HISTOCHEM CYTOCHEM, V37, P353 KERR TP, 1982, AM J OTOLARYNG, V3, P332, DOI 10.1016/S0196-0709(82)80006-9 Kim HN, 1996, ACTA OTO-LARYNGOL, V116, P805, DOI 10.3109/00016489609137930 LIU DS, 1991, ACTA OTO-LARYNGOL, V111, P298, DOI 10.3109/00016489109137391 MARCUS DC, 1985, HEARING RES, V17, P79, DOI 10.1016/0378-5955(85)90133-9 MARCUS DC, 1983, HEARING RES, V12, P17, DOI 10.1016/0378-5955(83)90116-8 MARCUS DC, 1994, AM J PHYSIOL, V267, pC857 MARCUS NY, 1987, AM J PHYSIOL, V253, pF613 MEES K, 1983, ACTA OTO-LARYNGOL, V95, P277, DOI 10.3109/00016488309130944 MELICHAR I, 1992, ACTA OTO-LARYNGOL, V112, P762, DOI 10.3109/00016489209137471 MELICHAR I, 1987, HEARING RES, V25, P35, DOI 10.1016/0378-5955(87)90077-3 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 SAKAGAMI M, 1991, HEARING RES, V56, P168, DOI 10.1016/0378-5955(91)90166-7 SAKMANN B, 1984, J PHYSIOL-LONDON, V347, P641 SEPULVEDA FV, 1991, J PHYSIOL-LONDON, V434, P351 STANDEN NB, 1978, J PHYSIOL-LONDON, V280, P169 STRAUSS O, 1993, BIOCHEM BIOPH RES CO, V191, P775, DOI 10.1006/bbrc.1993.1284 SUNOSE H, 1994, HEARING RES, V80, P86, DOI 10.1016/0378-5955(94)90012-4 SUNOSE H, 1993, AM J PHYSIOL, V265, pC72 SUZUKI M, 1995, HEARING RES, V86, P68, DOI 10.1016/0378-5955(95)00055-9 TAGLIALATELA M, 1993, MOL PHARMACOL, V44, P180 Takeuchi S, 1996, HEARING RES, V101, P181, DOI 10.1016/S0378-5955(96)00151-7 TAKEUCHI S, 1992, AM J PHYSIOL, V262, pC1430 TAKEUCHI S, 1995, HEARING RES, V83, P89, DOI 10.1016/0378-5955(94)00191-R TAO Q, 1994, J MEMBRANE BIOL, V141, P123 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WEN R, 1993, J PHYSIOL-LONDON, V465, P121 YEH T, 1995, HEARING RES, V90, P79, DOI 10.1016/0378-5955(95)00149-3 YEH TH, 1992, ACTA OTO-LARYNGOL, V112, P254 NR 40 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 186 EP 198 DI 10.1016/S0378-5955(97)00120-2 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100018 PM 9367241 ER PT J AU Hofstetter, P Ding, DL Powers, N Salvi, RJ AF Hofstetter, P Ding, DL Powers, N Salvi, RJ TI Quantitative relationship of carboplatin dose to magnitude of inner and outer hair cell loss and the reduction in distortion product otoacoustic emission amplitude in chinchillas SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emission; chinchilla; outer hair cell; inner hair cell; carboplatin; ototoxicity ID COMBINATION TONES; MUTANT MICE; OTOTOXICITY; THRESHOLDS; HEARING; COCHLEA; NOISE AB The outer hair cells (OHCs) are thought to be the dominant source of distortion product otoacoustic emissions (DPOAEs) in the mammalian cochlea; however, little is known about the quantitative relationship between reduction in DPOAE amplitude and the degree of inner hair cell (IHC) and OHC loss. To examine this relationship, we measured the DPOAE input/output functions in the chinchilla before and after destroying the IHCs and/or OHCs with carboplatin. Low-to-moderate doses (38-150 mg/kg, i.p.) of carboplatin selectively destroyed some or all of the IHCs along the entire length of the cochlea while sparing the OHCs. Selective loss of all the IHCs had little effect on DPOAE amplitude as long as the OHCs were present. With high doses of carboplatin (200 mg/kg, i.p.), there was complete destruction of IHCs plus massive OHC loss that decreased from the base towards the apex of the cochlea. OHC loss resulted in a large decrease in DPOAE amplitude. DPOAE amplitude at 9.6 kHz decreased at the rate of 4.1 dB for every 10% loss of OHCs. At 7.2 and 4.8 kHz, DPOAE amplitude decreased 3.1 dB and 2.4 dB per 10% OHC loss, respectively. These results indicate that OHCs are the dominant source of DPOAEs. C1 SUNY BUFFALO,HEARING RES LAB,BUFFALO,NY 14214. CR BOCK GR, 1982, J PHYSIOL-LONDON, V332, P20 BOCK GR, 1982, NEUROSCI LETT, V34, P19, DOI 10.1016/0304-3940(82)90086-6 BRIX J, 1994, HEARING RES, V76, P147, DOI 10.1016/0378-5955(94)90096-5 BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 BROWN AM, 1993, J ACOUST SOC AM, V93, P3298, DOI 10.1121/1.405714 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Burkard R, 1996, Audiol Neurootol, V1, P197 CALVERT AH, 1982, CANCER CHEMOTH PHARM, V9, P140, DOI 10.1007/BF00257742 DING DL, 1981, CHIN J OTORHINOLARYN, V16, P207 FROYMOVICH O, 1995, J ACOUST SOC AM, V97, P3021, DOI 10.1121/1.411867 GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 HOFSTETTER P, 1996, THESIS STATE U NEW Y HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 JARAMILLO F, 1993, NATURE, V364, P527, DOI 10.1038/364527a0 Jock BM, 1996, HEARING RES, V96, P179, DOI 10.1016/0378-5955(96)00058-5 KEMP DT, 1984, HEARING RES, V13, P39, DOI 10.1016/0378-5955(84)90093-5 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 LIM DJ, 1980, J ACOUST SOC AM, V67, P1686, DOI 10.1121/1.384295 LONSBURYMARTIN BL, 1981, J NEUROPHYSIOL, V46, P563 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P178 MACDONALD MR, 1994, J OTOLARYNGOL, V23, P151 MADDEN T, 1992, CLIN PHARMACOL THER, V51, P701 MISAWA T, 1995, JPN J CANCER RES, V86, P88 Mount R J, 1995, Acta Otolaryngol Suppl, V519, P60 NORTON SJ, 1990, ABSTR ASS RES OTOLAR, V11, P62 POWERS NL, 1995, NATURE, V375, P585, DOI 10.1038/375585a0 ROSOWSKI JJ, 1984, HEARING RES, V13, P141, DOI 10.1016/0378-5955(84)90105-9 SAITO T, 1989, Auris Nasus Larynx, V16, P13 SCHROTT A, 1989, HEARING RES, V40, P213, DOI 10.1016/0378-5955(89)90162-7 SCHROTT A, 1991, HEARING RES, V52, P245, DOI 10.1016/0378-5955(91)90204-M SIEGEL JH, 1982, NEW PERSPECTIVES NOI, P137 SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P603, DOI 10.1121/1.1913151 SMOORENBURG GF, 1976, J ACOUST SOC AM, V59, P945, DOI 10.1121/1.380954 SNYDER DL, 1994, LAB ANIMAL, V23, P42 SPONGR VP, 1992, ARCH OTOLARYNGOL, V118, P157 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAUDY M, 1992, AUDIOLOGY, V31, P293 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 Trautwein P, 1996, Audiol Neurootol, V1, P86 VANDERHULST RJAM, 1988, ANN OTO RHINOL LARYN, V97, P133 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WAKE M, 1994, LARYNGOSCOPE, V104, P488 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 ZUREK PM, 1982, J ACOUST SOC AM, V72, P774, DOI 10.1121/1.388258 NR 46 TC 66 Z9 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 199 EP 215 DI 10.1016/S0378-5955(97)00123-8 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100019 PM 9367242 ER PT J AU Parham, K AF Parham, K TI Distortion product otoacoustic emissions in the C57BL/6J mouse model of age-related hearing loss SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emission; mouse; aging; outer hair cells; auditory brainstem evoked response ID STIMULATED ACOUSTIC EMISSIONS; INFERIOR COLLICULUS NEURONS; 2 DISCRETE SOURCES; COCHLEAR MECHANICS; PHYSIOLOGICAL VULNERABILITY; AUDITORY-SENSITIVITY; MUTANT MICE; EAR; 2F1-F2; HUMANS AB One of the earliest histopathological changes associated with age-related hearing loss appears to be the disruption of outer hair cells (OHCs). To evaluate age-related changes in OHC function, distortion product otoacoustic emissions (DPOAEs) were recorded in the young and aging C57BL/6J mouse. Starting in young adulthood, the C57 mouse displays age-related elevation of auditory brainstem response thresholds, beginning in the high frequencies and progressing toward lower frequencies. The 2f(1)-f(2) DPOAEs of mice between 2 and 20 months of age were examined for f(2)s between 8 and 16 kHz. In this octave region, the features of 2f(1)-f(2) DPOAEs in the 2-month-old C57 mouse were comparable to those described for non-murine rodents in the literature in terms of optimum f(2)/f(1) ratio, optimum primary level difference, input/output (I/O) function features and microstructure. It was determined that f(2)/f(1) = 1.2 and L-1-L-2 = 20 dB were optimal stimulus parameters for investigation of the effects of age on C57 DPOAEs. Age-related changes in DPOAE I/O functions consisted of a right shift (i.e. increased DPOAE detection thresholds), disappearance of 'notches' and shallowing of the slopes after 8 months of age. As DPOAE I/O functions continued to shift to the right and DPOAE levels decreased with age, the appearance of I/O functions became complex to include regions of steep or shallow slopes and plateaus. The present results suggest that the age-related elevation of auditory thresholds in the C57 mice is associated with substantial progressive changes in OHC function. C1 UNIV CONNECTICUT, CTR HLTH, SCH MED, DEPT SURG, SURG RES CTR, FARMINGTON, CT 06030 USA. RP Parham, K (reprint author), UNIV CONNECTICUT, CTR HLTH, DIV OTOLARYNGOL, FARMINGTON, CT 06030 USA. CR ANDERSON SD, 1979, ARCH OTO-RHINO-LARYN, V224, P47, DOI 10.1007/BF00455223 ANDERSON SD, 1980, HEARING RES, V2, P273, DOI 10.1016/0378-5955(80)90063-5 BONFILS P, 1988, AUDIOLOGY, V27, P27 BREDBERG G, 1968, ACTA OTOLARYNGOL, pS236 BROWN AM, 1990, J ACOUST SOC AM, V88, P840, DOI 10.1121/1.399733 BROWN AM, 1989, HEARING RES, V19, P191 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 Brownell W. E., 1983, MECH HEARING, P5 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CASTOR X, 1994, HEARING RES, V77, P1, DOI 10.1016/0378-5955(94)90248-8 COLLET L, 1990, ANN OTO RHINOL LARYN, V99, P993 Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169 ENGSTROM B, 1987, ACTA OTO-LARYNGOL, P110 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 HAUSER R, 1991, J ACOUST SOC AM, V89, P280, DOI 10.1121/1.400511 HE NJ, 1993, J ACOUST SOC AM, V94, P2659, DOI 10.1121/1.407350 Henry K. R., 1983, AUDITORY PSYCHOBIOLO, P470 HENRY KR, 1980, AUDIOLOGY, V19, P3669 HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 HU SM, 1995, ASS RES OT ABSTR, V18, P70 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 JIMENEZ AM, 1996, ASS RES OT ABSTR, V19, P25 JINENEZ AM, 1997, ASS RES OT ABSTR, V20, P101 JOHNSSON LG, 1979, SPECIAL SENSES AGING, P119 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 KEMP DT, 1984, HEARING RES, V13, P39, DOI 10.1016/0378-5955(84)90093-5 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Kim D. O., 1984, HEARING SCI RECENT A, P241 KIM DO, 1980, HEARING RES, V2, P297, DOI 10.1016/0378-5955(80)90064-7 KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 KOSSL M, 1992, HEARING RES, V60, P156, DOI 10.1016/0378-5955(92)90018-I LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61 LONSBURYMARTIN BL, 1991, J ACOUST SOC AM, V89, P1749, DOI 10.1121/1.401009 LONSBURYMARTIN BL, 1990, ANN OTO RHINOL LARYN, V99, P3 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 MCGINN MD, 1992, HEARING RES, V59, P1, DOI 10.1016/0378-5955(92)90094-4 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 MIZUTA K, 1993, SCANNING MICROSCOPY, V7, P889 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 NORTON SJ, 1990, LECT NOTES BIOMATH, V87, P219 NORTON SJ, 1996, ASS RES OT ABSTR, V19, P82 PARHAM K, 1996, ASS RES OT ABSTR, V19, P26 SCHMIEDT RA, 1981, HEARING RES, V5, P295, DOI 10.1016/0378-5955(81)90053-8 SCHMIEDT RA, 1986, J ACOUST SOC AM, V79, P1481, DOI 10.1121/1.393675 SCHMIEDT RA, 1995, ABSTR ASS RES OT, V18, P185 SCHROTT A, 1991, HEARING RES, V52, P245, DOI 10.1016/0378-5955(91)90204-M Schuknecht H. F., 1974, PATHOLOGY EAR SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNECHT HF, 1974, LARYNGOSCOPE, V84, P177 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Shnerson A., 1982, DEV BRAIN RES, V2, P77 SHONE G, 1991, HEARING RES, V56, P173, DOI 10.1016/0378-5955(91)90167-8 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 SIEGEL JH, 1982, J NEUROPHYSIOL, V47, P303 SMURZYNSKI J, 1992, HEARING RES, V58, P227, DOI 10.1016/0378-5955(92)90132-7 STOVER L, 1993, J ACOUST SOC AM, V94, P2670, DOI 10.1121/1.407351 Strouse A L, 1996, J Am Acad Audiol, V7, P339 SUGA F, 1976, ANN OTO RHINOL LARYN, V85, P169 SUN XM, 1996, ASS RES OT ABSTR, V19, P25 Sun XM, 1996, ANN OTO RHINOL LARYN, V105, P982 SUN XM, 1997, ASS RES OT ABSTR, V20, P101 SUTTON LA, 1994, HEARING RES, V75, P161, DOI 10.1016/0378-5955(94)90067-1 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2346, DOI 10.1121/1.411959 WIEDERHOLD ML, 1986, PERIPHERAL AUDITORY, P322 WILLOTT JF, 1988, HEARING RES, V37, P15, DOI 10.1016/0378-5955(88)90074-3 Willott J. F., 1991, AGING AUDITORY SYSTE WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 ZUREK PM, 1982, J ACOUST SOC AM, V72, P774, DOI 10.1121/1.388258 ZWICKER E, 1986, J ACOUST SOC AM, V80, P163, DOI 10.1121/1.394177 NR 77 TC 36 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 216 EP 234 DI 10.1016/S0378-5955(97)00124-X PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100020 PM 9367243 ER PT J AU Sinnott, JM Street, SL Mosteller, KW Williamson, TL AF Sinnott, JM Street, SL Mosteller, KW Williamson, TL TI Behavioral measures of vowel sensitivity in Mongolian gerbils (Meriones unguiculatus): effects of age and genetic origin SO HEARING RESEARCH LA English DT Article DE gerbil; aging; vowels; hearing loss ID NERVE-FIBERS; HEARING; QUIET; POTENTIALS; FREQUENCY; RODENTS; NOISE; YOUNG AB Absolute thresholds for complex vowel stimuli were compared in Mongolian gerbils (Meriones unguiculatus) as a function of age and genetic origin. For a group of 12-month-oId 'domestic' gerbils obtained from Tumblebrook Farms, lowest thresholds averaging 14 dB SPL occurred for the vowel /alpha/ which had its most intense formant (F1) at 730 Hz. Thresholds increased to 22 dB SPL for /i/, which had its two most intense formants (FI and F3) at 270 and 3000 Hz, respectively. Highest thresholds of 30 dB SPL occurred for /u/, which had its most intense formant (F1) at 300 Hz. Thresholds increased by about IO dB per year through the ages of 12-36 months, with most of the loss occurring for /alpha/ and /u/. The domestic gerbils' /alpha/ thresholds corresponded well to those measured in aging gerbils in electrophysiological studies. Vowel thresholds were also measured in a group of first-generation offspring of 'wild' gerbils imported from Asia, first tested at the ages of 18-24 months. Thresholds were similar to those of the 12-month-old domestic gerbils, and showed no hearing loss with age up to 36 months. The wild gerbils were also free of ear impactions, which commonly occurred in the domestic gerbils. The hearing loss with age in the domestic gerbils may have a genetic basis, and might be due to inbreeding in the domestic strain, in contrast to the hybrid vigor of the wild gerbils. C1 UNIV S ALABAMA,DEPT SPEECH PATHOL & AUDIOL,MOBILE,AL 36688. RP Sinnott, JM (reprint author), UNIV S ALABAMA,DEPT PSYCHOL,COMPARAT HEARING LAB,MOBILE,AL 36688, USA. CR AGREN G, 1989, ANIM BEHAV, V37, P11, DOI 10.1016/0003-3472(89)90002-X BRAUN M, 1994, HEARING RES, V78, P98, DOI 10.1016/0378-5955(94)90048-5 CHAMBERLAIN SC, 1977, J COMP NEUROL, V171, P193, DOI 10.1002/cne.901710205 CHEAL M, 1986, EXP AGING RES, V12, P3 CHOLE R A, 1981, American Journal of Otology, V2, P204 CZIBULKA A, 1991, HEARING RES, V52, P43, DOI 10.1016/0378-5955(91)90186-D Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X Fay R. R., 1988, HEARING VERTEBRATES HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N HENRY KR, 1980, ARCH OTO-RHINO-LARYN, V228, P233, DOI 10.1007/BF00660735 KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 LAY DOUGLAS, 1972, J MORPHOL, V138, P41, DOI 10.1002/jmor.1051380103 MCGINN MD, 1987, HEARING RES, V31, P235, DOI 10.1016/0378-5955(87)90193-6 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 OHLEMILLER KK, 1990, J COMP PHYSIOL A, V167, P329 PETERSON G, 1952, READINGS ACOUSTIC PH, P118 PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SACHS MB, 1988, AUDITORY FUNCTION NE, P747 SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K SINNOTT JM, 1989, J ACOUST SOC AM, V86, P557, DOI 10.1121/1.398235 Swets J.A., 1964, SIGNAL DETECTION REC TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V NR 25 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 235 EP 246 DI 10.1016/S0378-5955(97)00125-1 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100021 PM 9367244 ER PT J AU Pfingst, BE Zwolan, TA Holloway, LA AF Pfingst, BE Zwolan, TA Holloway, LA TI Effects of stimulus configuration on psychophysical operating levels and on speech recognition with cochlear implants SO HEARING RESEARCH LA English DT Article DE cochlear implant; detection threshold; electrode configuration; electrical stimulation; human; psychophysics; pulse duration; speech recognition ID ELECTRICAL-STIMULATION; AUDITORY-NERVE; PHASE DURATION; PERFORMANCE; PROCESSOR; EXCITATION; PATTERNS; STRATEGY; INERAID; PATIENT AB Effects of electrode configuration and pulse duration on operating levels' and on speech recognition performance were studied in a group of 14 adult postlingually deaf human subjects with Nucleus cochlear implants. The operating levels (based on detection threshold and maximum comfortable loudness levels) for narrowly spaced bipolar (BP) stimulation were found to be about Il dB higher on average than those for widely spaced bipolar (BP+6) or monopolar (MP1) stimulation. Operating levels for common ground (CG) stimulation fell between those for BP and BP+6; the difference between BP and CG detection thresholds depended on pulse duration. Variation in detection thresholds and maximum comfortable loudness levels across the electrode array (electrodes 1-15) was larger for BP and CG stimulation than for BP+6 or MPI stimulation, suggesting narrower spread of activation for the BP and CG configurations despite the higher current levels. Speech recognition performance was tested using experimental processor configurations. Among the experimental electrode configurations tested (BP, CG, and BP+6), the highest speech recognition scores were obtained with the BP+6 configuration in many subjects. Effects of pulse duration on speech recognition were less consistent and usually smaller than the effects of electrode configuration. The results indicate that electrode configuration is an important variable determining speech recognition performance and suggest that restriction of the size of neural population activated by individual channels of the prosthesis is not necessarily advantageous. RP Pfingst, BE (reprint author), UNIV MICHIGAN,MED CTR,DEPT OTOLARYNGOL,KRESGE HEARING RES INST,1301 E ANN ST,ANN ARBOR,MI 48109, USA. CR Clark G., 1987, ADV OTORHINOLARYNGOL, V38, P1 Clark G M, 1988, Acta Otolaryngol Suppl, V448, P1 COLOMBO J, 1987, HEARING RES, V31, P287, DOI 10.1016/0378-5955(87)90197-3 Crosby P., 1985, U.S. Patent, Patent No. [4 532 930, 4532930] GANTZ BJ, 1988, LARYNGOSCOPE, V98, P1100 KENNEDY DW, 1987, LARYNGOSCOPE, V97, P42 KILENY PR, 1992, AM J OTOL, V13, P117 LEHNHARDT E, 1992, TRANSPLANTS IMPLANTS, P283 MERZENICH MM, 1979, ACTA OTO-LARYNGOL, V87, P196, DOI 10.3109/00016487909126407 MOON AK, 1993, HEARING RES, V67, P166, DOI 10.1016/0378-5955(93)90244-U PARKIN JL, 1993, LARYNGOSCOPE, V103, P835 PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5 PELIZZONE M, 1995, ACTA OTO-LARYNGOL, V115, P622, DOI 10.3109/00016489509139377 PFINGST BE, 1991, J ACOUST SOC AM, V90, P1857, DOI 10.1121/1.401665 Pfingst B. E., 1995, Annals of Otology Rhinology and Laryngology, V104, P127 PFINGST BE, 1995, HEARING RES, V85, P76, DOI 10.1016/0378-5955(95)00037-5 RUDDY HA, 1995, MED BIOL ENG COMPUT, V33, P793, DOI 10.1007/BF02523011 SKINNER MW, 1994, AM J OTOL, V15, P15 SKINNER MW, 1991, EAR HEARING, V12, P3, DOI 10.1097/00003446-199102000-00002 Smith D.G., 1995, ABSTR ASS RES OTOL, P177 Spelman F. A., 1995, Annals of Otology Rhinology and Laryngology, V104, P131 THORNTON AR, 1978, J SPEECH HEAR RES, V21, P507 Tyler R. S., 1983, IOWA COCHLEAR IMPLAN TYLER RS, 1995, AUDIOLOGY, V34, P135 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 VONWALLENBERG EL, 1994, ADV COCHLEAR IMPLANT, P186 White M.W., 1984, AUDIOL ITAL, V1, P77 WHITFORD LA, 1995, ACTA OTO-LARYNGOL, V115, P629, DOI 10.3109/00016489509139378 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 ZAPPIA JJ, 1991, ANN OTO RHINOL LARYN, V100, P914 Zwolan TA, 1996, AM J OTOL, V17, P717 NR 32 TC 59 Z9 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 1997 VL 112 IS 1-2 BP 247 EP 260 DI 10.1016/S0378-5955(97)00122-6 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YB181 UT WOS:A1997YB18100022 PM 9367245 ER PT J AU Fay, RR EddsWalton, PL AF Fay, RR EddsWalton, PL TI Directional response properties of saccular afferents of the toadfish, Opsanus tau SO HEARING RESEARCH LA English DT Article DE saccule; directional sensitivity; sound localization; toadfish ID ACOUSTIC PARTICLE MOTION; CARASSIUS-AURATUS; VESTIBULAR NERVE; SQUIRREL-MONKEY; OYSTER TOADFISH; SOUND DETECTION; BRAIN-STEM; HAIR-CELLS; GOLDFISH; SENSITIVITY AB The displacement sensitivity, frequency response, and directional response properties of primary saccular afferents of toadfish (Opsanus tau) were studied in response to a simulation of acoustic particle motion for which displacement magnitudes and directions were manipulated in azimuth and elevation. Stimuli were 50, 100, and 200 Hz sinusoidal, translatory oscillations of the animal at various axes in the horizontal and midsagittal planes. Thresholds in these planes defined a cell's characteristic axis (the axis having the lowest threshold) in spherical coordinates. Recordings were made from afferents in rostral, middle, and caudal bundles of the saccular nerve. The most sensitive saccular afferents responded with a phase-locked response to displacements as small as 0.1 nm. This sensitivity rivals that of the mammalian cochlea and is probably common to the sacculi and other otolith organs of most fishes. Most afferents showed lower thresholds at 100 Hz than at 50 or 200 Hz. Eighty percent of afferents have three-dimensional directional properties that would be expected if they innervated a group of hair cells having the same directional orientation on the saccular epithelium. Of the afferents that are not perfectly directional, most appear to innervate just two groups of hair cells having different orientations. The directional characteristics of afferents are qualitatively correlated with anatomically defined patterns of hair cell orientation on the saccule. In general, azimuths of best sensitivity tend to lie parallel to the plane of the otolith and sensory epithelium. Elevations of best sensitivity correspond well with hair cell orientation patterns in different regions of the saccular epithelium. Directional hearing in the horizontal plane probably depends upon the processing of interaural differences in overall response magnitude. These response differences arise from the gross orientations of the sacculi and are represented, in part, as time differences among nonspontaneous afferents that show level-dependent phase angles of synchronization. Directional hearing in the vertical plane may be derived from the processing of across-afferent profiles of activity within each saccule. Fishes were probably the first vertebrates to solve problems in sound source localization, and we suggest that their solutions formed a model for those of their terrestrial inheritors. C1 LOYOLA UNIV, DEPT PSYCHOL, CHICAGO, IL 60626 USA. MARINE BIOL LAB, WOODS HOLE, MA 02543 USA. RP Fay, RR (reprint author), LOYOLA UNIV, PARMLY HEARING INST, 6525 N SHERIDAN AVE, CHICAGO, IL 60626 USA. CR ALLEN J, 1996, IN PRESS DIVERSITY A Batschelet E, 1981, CIRCULAR STATISTICS BUDELLI R, 1979, J NEUROPHYSIOL, V42, P1479 CAZALS Y, 1980, SCIENCE, V210, P83, DOI 10.1126/science.6968092 CHAPMAN CJ, 1974, COMP BIOCHEM PHYSIOL, V47, P371, DOI 10.1016/0300-9629(74)90082-6 CHAPMAN CJ, 1973, J COMP PHYSIOL, V85, P147, DOI 10.1007/BF00696473 DENTON EJ, 1983, PROC R SOC SER B-BIO, V218, P1, DOI 10.1098/rspb.1983.0023 EDDSWALTON PL, 1996, IN PRESS SOC NEUR AB EDDSWALTON PL, 1995, ACTA ZOOL-STOCKHOLM, V76, P257 EDDSWALTON PL, 1994, THESIS U MASRYLAND C Fay R. R., 1981, HEARING SOUND COMMUN, P189 Fay R. R., 1988, HEARING VERTEBRATES Fay RR, 1996, BIOL BULL, V191, P255 FAY RR, 1983, HEARING RES, V10, P69, DOI 10.1016/0378-5955(83)90018-7 FAY RR, 1986, J ACOUST SOC AM, V79, P1883, DOI 10.1121/1.393196 FAY RR, 1997, IN PRESS DIVERSITY A FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229 FAY RR, 1980, ABNORMAL ANIMAL BEHA, V2, P63 FAY RR, 1984, SCIENCE, V225, P951, DOI 10.1126/science.6474161 FAY RR, 1979, COMP BIOCHEM PHYS A, V62, P377, DOI 10.1016/0300-9629(79)90074-4 Fay R.R., 1987, P179 FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P970 FINE ML, 1983, COMP BIOCHEM PHYS A, V74, P659, DOI 10.1016/0300-9629(83)90563-7 FINE ML, 1983, COMP BIOCHEM PHYS A, V76, P225, DOI 10.1016/0300-9629(83)90319-5 Fine ML, 1981, HEARING SOUND COMMUN, P257 FISH JF, 1972, CURRENT PERSPECTIVES, V2, P386 FISH JF, 1972, J ACOUST SOC AM, V51, P1314 FLOCK A, 1964, J CELL BIOL, V22, P413, DOI 10.1083/jcb.22.2.413 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GRAY GA, 1961, ECOLOGY, V42, P274, DOI 10.2307/1932079 HARTMANN WM, 1989, J ACOUST SOC AM, V85, P2031, DOI 10.1121/1.397855 Hawkins A. D., 1981, HEARING SOUND COMMUN, P311 HIGHSTEIN SM, 1992, J COMP NEUROL, V319, P501, DOI 10.1002/cne.903190404 HORNER K, 1981, HEARING SOUND COMMUN, P223 HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 KOYAMA H, 1982, BRAIN RES, V250, P168, DOI 10.1016/0006-8993(82)90964-7 LOWENSTEIN O, 1977, GRAVITY ORGANISM, P253 LOWENSTEIN O, 1949, J PHYSIOL-LONDON, V110, P392 LU Z, 1995, J COMP PHYSIOL A, V176, P747 Lu Z, 1996, J COMP PHYSIOL A, V179, P227 McCormick CA, 1996, BRAIN BEHAV EVOLUT, V47, P113, DOI 10.1159/000113232 MCCUE MP, 1994, J NEUROSCI, V14, P6058 NARINS PM, 1984, J ACOUST SOC AM, V76, P1384, DOI 10.1121/1.391455 OFFUTT GC, 1974, J ACOUST SOC AM, V56, P665, DOI 10.1121/1.1903306 PLATT C, 1977, J COMP NEUROL, V172, P283, DOI 10.1002/cne.901720207 PLATT C, 1973, J EXP BIOL, V59, P491 POPPER AN, 1980, AM SCI, V68, P429 POPPER AN, 1993, BRAIN BEHAV EVOLUT, V41, P14, DOI 10.1159/000113821 ROGERS PH, 1988, J ACOUST SOC AM, V83, P338, DOI 10.1121/1.396444 Rogers P.H., 1988, P131 RUGGERO M, 1992, SPRINGER HDB AUDITOR, V2 SAND O, 1986, J EXP BIOL, V125, P197 SCHELLART NAM, 1987, J ACOUST SOC AM, V82, P822, DOI 10.1121/1.395280 Schuijf A., 1981, HEARING SOUND COMMUN, P267 SCHUIJF A, 1975, J COMP PHYSIOL, V98, P307 STEINACKER A, 1992, ANN NY ACAD SCI, V656, P27, DOI 10.1111/j.1749-6632.1992.tb25198.x STEINACKER A, 1992, BRAIN RES, V574, P229, DOI 10.1016/0006-8993(92)90821-P SUGIHARA I, 1989, J NEUROPHYSIOL, V62, P1330 Tavolga WN, 1971, FISH PHYSIOL, P135 WATKINS WILLIAM A., 1967, MAR BIO ACOUSTICS, V2, P15 Weber E. H., 1820, AURE AUDITU HOMINI 1 WIGHTMAN FL, 1993, SPRINGER HDB AUDITOR, V3, P155 WIGHTMAN FL, 1991, J ACOUST SOC AM, V89, P1995, DOI 10.1121/1.2029816 WIT HP, 1984, J ACOUST SOC AM, V75, P202, DOI 10.1121/1.390396 Woodworth R. S., 1938, EXPT PSYCHOL YOUNG ED, 1977, ACTA OTO-LARYNGOL, V84, P352, DOI 10.3109/00016487709123977 NR 66 TC 73 Z9 79 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 1 EP 21 DI 10.1016/S0378-5955(97)00083-X PG 21 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400001 PM 9307307 ER PT J AU Mori, K AF Mori, K TI Across-frequency nonlinear inhibition by GABA in processing of interaural time difference SO HEARING RESEARCH LA English DT Article DE barn owl (Tyto alba); sound localization; bicuculline methiodide; gamma-aminobutyric acid type A; external nucleus of the inferior colliculus; interaural time difference ID OWLS BRAIN-STEM; COMPLEX BINAURAL STIMULI; BARN OWL; INFERIOR COLLICULUS; AUDITORY PATHWAY; TYTO-ALBA; NEURONS; RESPONSES; NUCLEUS; PHASE AB The barn owl uses the interaural time difference (ITD) to determine the azimuth of a sound source. Narrowband ITD-sensitive neurons cannot distinguish a given ITD from those that produce the same interaural phase difference (phase ambiguity). Neurons in the external nucleus of the inferior colliculus (ICx) resolve the ambiguity by gathering ITD information across many frequencies, thereby suppressing false responses (side peaks, SP) relative to the true ITD (the main peak, MP) in a response versus ITD curve. This process was quantitatively studied by comparing the ITD curve for a pair of tones presented simultaneously (two-tone curve) to the simple sum (predicted curve) of the individual ITD curves for the same tones presented separately. Sixteen of the 39 neurons tested did not show a significant difference in MP and SP responses between these curves (category I); 14 neurons showed significant SP suppression (category II). During iontophoretic application of bicuculline methiodide, a GABA(A) antagonist, most (n = 7/8) category II neurons lost nonlinear SP suppression and became linear, whereas category I neurons retained linear summation (n = 3/3). Thus, the nonlinear cross-frequency interaction of ITD responses in ICx neurons was mediated mostly by GABAergic inhibition, which enhanced SP suppression, and helped resolve phase ambiguity. C1 CALTECH,DIV BIOL,PASADENA,CA 91125. CR ADOLPHS R, 1993, J NEUROSCI, V13, P3647 ADOLPHS R, 1993, J COMP NEUROL, V329, P365, DOI 10.1002/cne.903290307 ALBECK Y, 1995, J NEUROPHYSIOL, V74, P1689 ARMSTRONGJAMES M, 1980, J NEUROSCI METH, V2, P431, DOI 10.1016/0165-0270(80)90009-6 ARMSTRONGJAMES M, 1979, J NEUROSCI METH, V1, P279, DOI 10.1016/0165-0270(79)90039-6 BRAINARD MS, 1992, J ACOUST SOC AM, V91, P1015, DOI 10.1121/1.402627 BROWN CH, 1978, J ACOUST SOC AM, V63, P1484, DOI 10.1121/1.381842 CARR CE, 1989, J COMP NEUROL, V286, P190, DOI 10.1002/cne.902860205 CARR CE, 1988, P NATL ACAD SCI USA, V85, P8311, DOI 10.1073/pnas.85.21.8311 FUJITA I, 1991, J NEUROSCI, V11, P722 GEISLER CD, 1969, J NEUROPHYSIOL, V32, P960 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 HYSON RL, 1995, BRAIN RES, V677, P117, DOI 10.1016/0006-8993(95)00130-I IRVINE DRF, 1992, MAMMALIAN AUDITORY P, V2, P153 KNUDSEN EI, 1983, J COMP NEUROL, V218, P174, DOI 10.1002/cne.902180205 KNUDSEN EI, 1983, J COMP NEUROL, V218, P187, DOI 10.1002/cne.902180206 KNUDSEN EI, 1978, J NEUROPHYSIOL, V41, P870 KONISHI M, 1986, COMP NEUROBIOLOGY MO, P163 MAZER JA, 1995, THESIS CALTECH PASAD MOISEFF A, 1983, J NEUROSCI, V3, P2553 MOISEFF A, 1989, J COMP PHYSIOL A, V164, P637, DOI 10.1007/BF00614506 MOISEFF A, 1981, J COMP PHYSIOL, V144, P299 MOISEFF A, 1981, J NEUROSCI, V1, P40 Reyes AD, 1996, J NEUROSCI, V16, P993 ROSE JE, 1966, J NEUROPHYSIOL, V29, P288 SAYERS BM, 1964, J ACOUST SOC AM, V36, P923, DOI 10.1121/1.1919121 STERN RM, 1988, J ACOUST SOC AM, V84, P156, DOI 10.1121/1.396982 SULLIVAN WE, 1984, J NEUROSCI, V4, P1787 SULLIVAN WE, 1986, P NATL ACAD SCI USA, V83, P8400, DOI 10.1073/pnas.83.21.8400 TAKAHASHI T, 1986, J NEUROSCI, V6, P3413 TAKAHASHI TT, 1988, J COMP NEUROL, V274, P190, DOI 10.1002/cne.902740206 TRAHIOTIS C, 1994, J ACOUST SOC AM, V96, P3804, DOI 10.1121/1.410570 WAGNER H, 1987, J NEUROSCI, V7, P3105 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YIN TCT, 1986, J NEUROPHYSIOL, V55, P280 YOST WA, 1981, J ACOUST SOC AM, V70, P397, DOI 10.1121/1.386775 NR 36 TC 21 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 22 EP 30 DI 10.1016/S0378-5955(97)00090-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400002 PM 9307308 ER PT J AU Thomopoulos, GN Spicer, SS Gratton, MA Schulte, BA AF Thomopoulos, GN Spicer, SS Gratton, MA Schulte, BA TI Age-related thickening of basement membrane in stria vascularis capillaries SO HEARING RESEARCH LA English DT Article DE gerbil; cochlea; inner ear; pathology; presbyacusis ID INNER-EAR; COCHLEAR DEGENERATION; DIABETES-MELLITUS; SPIRAL LIGAMENT; FINE-STRUCTURE; GUINEA-PIG; MOUSE; CELL; GERBILS; DIFFERENTIATION AB Ultrastructural examination was undertaken to investigate the pathogenesis of age-related atrophy of the stria vascularis (StV). Basement membrane (BM) thickness was increased in 65-85% of strial capillaries in gerbils aged 33 months or older and often exceeded by several-fold that observed in young controls. In an early stage of thickening the BM expanded slightly around the full capillary profile, after which nodular expansions of BM encircling slender cell processes were often observed at or near one or both poles of the elliptical vessel profile. As widening progressed, the BM consisted of 2-3 layers separated by cell processes in the nodules but fewer strata elsewhere. Association of slender processes of both endothelial cells and pericytes with focal thickening outside the process suggested their participation in genesis of the capillary lesion. In later stages of atrophy, pericytes degenerated and disappeared, while endothelial cells remained intact. Eventually, thick multilayered BM devoid of endothelial cells surrounded a narrow lumen occluded by debris. The age-related change in BM in the inner ear was confined to StV capillaries. Degenerative changes in StV epithelial cells occurred apparently as a secondary consequence of the capillary lesion. The pathologic alterations in marginal cells included extrusion of blebs from the luminal surface, separation and loss of basolateral interfoldings, alteration and depletion of mitochondria and nuclear pyknosis. At the end-stage of degeneration, the StV consisted of a simple or multiple layer of squamous cells lining the scala media. C1 MED UNIV S CAROLINA,DEPT PATHOL & LAB MED,CHARLESTON,SC 29425. MED UNIV S CAROLINA,DEPT OTOLARYNGOL & COMMUN SCI,CHARLESTON,SC 29425. CR ARNOLD W, 1984, ANN OTO RHINOL LARYN, V93, P119 CARLISLE L, 1989, HEARING RES, V38, P111, DOI 10.1016/0378-5955(89)90132-9 CHAKRABARTI S, 1993, DIABETES RES CLIN PR, V20, P123, DOI 10.1016/0168-8227(93)90005-P COHEN M P, 1980, Investigative Ophthalmology and Visual Science, V19, P90 DAS A, 1992, OPHTHALMOLOGY, V99, P1368 DEJONG GI, 1990, NEUROBIOL AGING, V11, P381, DOI 10.1016/0197-4580(90)90003-I DESJARDINS M, 1989, HISTOCHEM J, V21, P731, DOI 10.1007/BF01002839 FARAGGIANA T, 1993, ELECT MICROSCOPIC CY, P651 FARQUHAR M.G, 1991, CELL BIOL EXTRACELLU, P365 GRANT DS, 1994, PATHOL RES PRACT, V190, P854 GRATTON MA, 1997, IN PRESS HEAR RES GRATTON MA, 1995, HEARING RES, V82, P44 Gratton MA, 1996, HEARING RES, V94, P116, DOI 10.1016/0378-5955(96)00011-1 INGBER DE, 1986, ENDOCRINOLOGY, V119, P1768 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 KAWAMATA S, 1993, HEARING RES, V67, P75, DOI 10.1016/0378-5955(93)90234-R KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 KILO C, 1972, DIABETES, V21, P881 KIMURA RS, 1974, ACTA OTO-LARYNGOL, V77, P231 KUSAKARI C, 1992, ANN OTO RHINOL LARYN, V101, P82 MARSHALL GE, 1991, GRAEF ARCH CLIN EXP, V229, P157, DOI 10.1007/BF00170550 MARSHALL GE, 1992, EXP EYE RES, V54, P393, DOI 10.1016/0014-4835(92)90051-S MERKER HJ, 1994, MICROSC RES TECHNIQ, V28, P95, DOI 10.1002/jemt.1070280203 NADOL JB, 1980, AGING COMMUNICATION, P63 NADOL JB, 1979, OTOLARYNG HEAD NECK, V87, P818 NUTTALL AL, 1987, HEARING RES, V27, P121, DOI 10.1016/0378-5955(87)90013-X PAULSSON M, 1992, CRIT REV BIOCHEM MOL, V27, P93 PERLMAN H B, 1955, Ann Otol Rhinol Laryngol, V64, P1176 REGNAULT F, 1974, PATHOL BIOL, V22, P737 REYNOLDS ES, 1963, J CELL BIOL, V17, P208, DOI 10.1083/jcb.17.1.208 SAITOH Y, 1995, NEUROBIOL AGING, V16, P129, DOI 10.1016/0197-4580(94)00153-7 SAKAGAMI M, 1982, CELL TISSUE RES, V226, P511 SAKAGUCHI N, IN PRESS HEAR RES Sakaguchi N, 1997, HEARING RES, V105, P44, DOI 10.1016/S0378-5955(96)00180-3 SCHNAPER HW, 1993, KIDNEY INT, V43, P20, DOI 10.1038/ki.1993.5 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Schuknecht HF, 1993, PATHOLOGY EAR SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K SHAPOSHNIKOV VM, 1985, MECH AGEING DEV, V30, P123, DOI 10.1016/0047-6374(85)90002-8 SONE M, 1995, HEARING RES, V83, P26, DOI 10.1016/0378-5955(94)00189-W Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPICER SS, 1994, ANAT REC, V240, P149, DOI 10.1002/ar.1092400202 STRAMM LE, 1987, EXP EYE RES, V44, P17, DOI 10.1016/S0014-4835(87)80021-0 TILTON RG, 1991, J ELECTRON MICR TECH, V19, P327, DOI 10.1002/jemt.1060190308 TORIHARA K, 1994, HEARING RES, V77, P69, DOI 10.1016/0378-5955(94)90253-4 VRACKO R, 1982, J AM GERIATR SOC, V30, P201 NR 47 TC 46 Z9 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 31 EP 41 DI 10.1016/S0378-5955(97)00080-4 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400003 PM 9307309 ER PT J AU Skellett, RA Chen, C Fallon, M Nenov, AP Bobbin, RP AF Skellett, RA Chen, C Fallon, M Nenov, AP Bobbin, RP TI Pharmacological evidence that endogenous ATP modulates cochlear mechanics SO HEARING RESEARCH LA English DT Article DE ion channel; voltage clamp; otoacoustic emission; cibacron blue; suramin; Deiters' cells; outer hair cells ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; CONTINUOUS PRIMARY STIMULATION; ADENOSINE 5'-TRIPHOSPHATE ATP; F(2)-F(1) DPOAE RESPONSE; TIME-VARYING ALTERATIONS; NOISE EXPOSURE ALTERS; DISTORTION-PRODUCT; SUPPORTING CELLS; STRIA VASCULARIS AB In the cochlea, outer hair cells (OHCs) and Deiters' cells most likely contribute to the generation of active cochlear mechanics. The presence of ATP receptors on these cells indicates that endogenous ATP may have a role in cochlear mechanics. To explore this possibility, the effects of ATP antagonists were studied both in vivo on distortion product otoacoustic emissions (DPOAEs) using cochlear perfusion and in vitro on isolated OHCs and Deiters' cells using the whole-cell configuration of the patch-clamp technique. Results show that extracellular application of 5-10 mu M ATP to OHCs and Deiters' cells induced an inward current that was reduced by both suramin (100 mu M) and cibacron (100 mu M). Cibacron reduced the voltage gated currents in Deiters' cells and increased them in OHCs, while suramin had no effect. In addition, cibacron induced a hyperpolarizing shift of the half activation voltage of the whole cell currents in Deiters' cells. Suramin (0.1-1 mM) reversibly suppressed the 'slow decline' in the quadratic DPOAE that occurs during continuous stimulation with moderate level primaries. This effect of suramin may be evidence that endogenous ATP alters active cochlear mechanics. C1 LOUISIANA STATE UNIV,MED CTR,KRESGE HEARING RES LAB S,DEPT OTOHINOLARYNGOL & BIOCOMMUN,NEW ORLEANS,LA 70112. CR ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 BAILEY SJ, 1994, BRIT J PHARMACOL, V112, P219 BOBBIN RP, 1997, ASS RES OT ABSTR, V54, P14 BOBBIN RP, 1985, AUDITORY BIOCH, P102 BOBBIN RP, 1978, ANN OTO RHINOL LARYN, V87, P185 BOBBIN RP, 1996, HAIR CELLS HEARING A, P29 BROWN AM, 1988, HEARING RES, V34, P27, DOI 10.1016/0378-5955(88)90048-2 BROWNELL WE, 1996, HAIR CELLS HEARING A, P3 BURNSTOCK G, 1990, ANN NY ACAD SCI, V603, P1 BURNSTOCK G, 1987, BRIT J PHARMACOL, V90, P383 CHEN C, 1995, HEARING RES, V86, P25, DOI 10.1016/0378-5955(95)00050-E CHEN C, 1995, HEARING RES, V88, P215, DOI 10.1016/0378-5955(95)00115-K CHEN C, 1997, IN PRESS HEAR RES Collo G, 1996, J NEUROSCI, V16, P2495 Cotton KD, 1996, AM J PHYSIOL-CELL PH, V270, pC969 Dulon D., 1995, ACTIVE HEARING, P195 DULON D, 1994, BIOCHEM BIOPH RES CO, V201, P1263, DOI 10.1006/bbrc.1994.1841 DULON D, 1993, CELL CALCIUM, V14, P245, DOI 10.1016/0143-4160(93)90071-D DULON D, 1995, PFLUG ARCH EUR J PHY, V430, P365, DOI 10.1007/BF00373911 EYBALIN M, 1993, PHYSIOL REV, V73, P309 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 GHOSH J, 1993, BIOCHEM BIOPH RES CO, V194, P36, DOI 10.1006/bbrc.1993.1781 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227 KENNEDY C, 1995, TRENDS PHARMACOL SCI, V16, P168, DOI 10.1016/S0165-6147(00)89010-0 KIRK DL, 1993, HEARING RES, V67, P20, DOI 10.1016/0378-5955(93)90228-S KOPP R, 1990, CANCER RES, V50, P6490 KUJAWA SG, 1995, HEARING RES, V85, P142, DOI 10.1016/0378-5955(95)00041-2 Kujawa SG, 1996, HEARING RES, V97, P153 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 KUJAWA SG, 1994, HEARING RES, V78, P181, DOI 10.1016/0378-5955(94)90024-8 LOWE M, 1995, HEARING RES, V83, P133, DOI 10.1016/0378-5955(94)00198-Y MOCKETT BG, 1995, HEARING RES, V84, P177, DOI 10.1016/0378-5955(95)00024-X MOCKETT BG, 1994, J NEUROSCI, V14, P6992 MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5 MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 NAKAGAWA T, 1990, J NEUROPHYSIOL, V63, P1068 NILLES R, 1994, HEARING RES, V73, P27, DOI 10.1016/0378-5955(94)90279-8 SALT AN, 1986, NEUROBIOLOGY HEARING, P109 Skellett RA, 1996, HEARING RES, V98, P68, DOI 10.1016/0378-5955(96)00062-7 STEIN CA, 1993, CANCER RES, V53, P2239 Sugasawa M, 1996, J PHYSIOL-LONDON, V491, P707 SUZUKI M, 1995, HEARING RES, V86, P68, DOI 10.1016/0378-5955(95)00055-9 Vlajkovic SM, 1996, HEARING RES, V99, P31, DOI 10.1016/S0378-5955(96)00079-2 Wangemann P, 1996, AUDIT NEUROSCI, V2, P187 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 ZIGANSHIN AU, 1995, PFLUG ARCH EUR J PHY, V429, P412, DOI 10.1007/BF00374157 NR 49 TC 29 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 42 EP 54 DI 10.1016/S0378-5955(97)00093-2 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400004 PM 9307310 ER PT J AU Weiss, TF Freeman, DM AF Weiss, TF Freeman, DM TI Equilibrium behavior of an isotropic polyelectrolyte gel model of the tectorial membrane: effect of pH SO HEARING RESEARCH LA English DT Article DE cochlea; tectorial membrane; osmotic response; polyelectrolyte gel; pH ID GLYCOSAMINOGLYCANS AB An isotropic polyelectrolyte gel model (Weiss and Freeman, 1996a) of the tectorial membrane (TM) was extended to incorporate the effect of pH. The effect of pH is analyzed in order to interpret measurements of the effect of pH on the dimensions of the TM (Freeman et al., 1996a). The pH dependence of the model results from the binding of hydrogen ions to TM macromolecules-to both neutral sites with basic pK and negatively charged sites with acidic pK. Parameters of the model can be based on estimates of the concentration in the TM of collagen and glycosaminoglycans (GAGs), two identified constituents of the TM that account for approximately 40% of its dry weight. The resulting model shows swelling responses at both high and low pH that are qualitatively similar to the measurement on the TM but that differ quantitatively. Alternatively, parameters of the model can be chosen in an ad hoc fashion to closely fit the measurements of TM swelling as a function of pH. Taken together these results suggest that either estimates of the collagen and GAG content of the TM are in error or constituents of the TM, which have not yet been identified, contain appreciable pH-dependent fixed charge and contribute to the swelling behavior of the TM. C1 MIT,ELECT RES LAB,CAMBRIDGE,MA 02139. MASSACHUSETTS EYE & EAR INFIRM,EATON PEABODY LAB AUDITORY PHYSIOL,BOSTON,MA 02114. RP Weiss, TF (reprint author), MIT,DEPT ELECT ENGN & COMP SCI,ROOM 36-857,77 MASSACHUSETTS AVE,CAMBRIDGE,MA 02139, USA. CR Bekesy G., 1960, EXPT HEARING Bolz R.E., 1973, CRC HDB TABLES APPL BOWES JH, 1950, BIOCHEM J, V46, P1 BOWES JH, 1948, BIOCHEM J, V43, P358 CHAKRABARTI B, 1980, CRC CR REV BIOCH MOL, V8, P225, DOI 10.3109/10409238009102572 FREEMAN DM, 1996, 19 MIDW RES M ST PET FREEMAN DM, 1996, IN PRESS AUDIT NEURO GOSLINE JM, 1971, J EXP BIOL, V55, P775 RICHARDSON GP, 1987, HEARING RES, V25, P45, DOI 10.1016/0378-5955(87)90078-5 SCHUBERT M, 1968, PRIMER CONNECTIVE TI THALMANN I, 1986, J OTORHINOLARYNGOL, V48, P106 THALMANN I, 1993, ARCH BIOCHEM BIOPHYS, V307, P391, DOI 10.1006/abbi.1993.1605 THALMANN I, 1987, LARYNGOSCOPE, V97, P357 THALMANN I, 1993, CONNECT TISSUE RES, V29, P191, DOI 10.3109/03008209309016826 Timoshenko S. P., 1970, THEORY ELASTICITY Viidik A, 1987, HDB BIOENGINEERING WEISS TF, 1996, 19 MIDW RES M ST PET WEISS TF, 1996, IN PRESS AUDIT NEURO ZWISLOCKI JJ, 1989, HEARING RES, V42, P211, DOI 10.1016/0378-5955(89)90146-9 NR 19 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 55 EP 64 DI 10.1016/S0378-5955(97)00096-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400005 PM 9307311 ER PT J AU Chatterjee, M Zwislocki, JJ AF Chatterjee, M Zwislocki, JJ TI Cochlear mechanisms of frequency and intensity coding .1. The place code for pitch SO HEARING RESEARCH LA English DT Article DE cochlea; hair cell; peak shift; pitch; frequency coding ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; BASILAR-MEMBRANE; RECEPTOR POTENTIALS; AUDITORY-NERVE; PHASE-LOCKING; RESPONSES; INNER; SELECTIVITY; ORGAN AB In the past, several researchers have reported a substantial shift in the peak of the tone-evoked excitation pattern toward the base of the cochlea following an increase in the SPL of the stimulating tone. Evidence for such peak shifts has been found in the responses of auditory nerve fibers, cochlear microphonics, and the responses of outer hair cells and supporting cells in the cochlea, as well as in basilar membrane vibration measurements, and indirectly, in psychophysical data. However, direct evidence for such a peak shift in inner hair cell (IHC) responses has been relatively sparse. If the peak shift is preserved in the information conveyed to the auditory nerve fibers by the IHCs, the classical 'place theory' for frequency coding in the cochlea requires modification. In this study, the nature and extent of the SPL-dependent peak shift is examined with the help of recordings in the IHCs and other cells of the organ of Corti in the 0.5-2.5 kHz region of the Mongolian gerbil cochlea. It is demonstrated that the peak shift is a universal phenomenon in the diverse cell types in this region of the cochlea. Most importantly, a large SPL-dependent peak shift is demonstrated in IHC responses. On the other hand, the recordings indicate that the apical cutoff of the spatial excitation pattern is SPL-independent. We conclude, therefore, that the place theory of pitch perception must be abandoned or at least modified. C1 SYRACUSE UNIV,INST SENSORY RES,SYRACUSE,NY 13244. CR Bekesy G., 1960, EXPT HEARING Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 CHATTERJEE M, 1994, THESIS SYRACUSE U SY CHEATHAM MA, 1989, HEARING RES, V40, P187, DOI 10.1016/0378-5955(89)90159-7 CHEATHAM MA, 1993, HEARING RES, V68, P107, DOI 10.1016/0378-5955(93)90069-D COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X DALLOS P, 1982, SCIENCE, V218, P582, DOI 10.1126/science.7123260 DALLOS P, 1985, J NEUROSCI, V5, P1591 DALLOS P, 1989, J ACOUST SOC AM, V86, P1790, DOI 10.1121/1.398611 DALLOS P, 1984, HEARING RES, V14, P281, DOI 10.1016/0378-5955(84)90055-8 Delgutte B., 1996, AUDITORY COMPUTATION, P157 EHMER RH, 1969, J ACOUST SOC AM, V46, P1445, DOI 10.1121/1.1911883 GOODMAN DA, 1982, HEARING RES, V7, P161, DOI 10.1016/0378-5955(82)90012-0 Helmholtz H. L. F., 1863, SENSATIONS TONE PHYS HONRUBIA V, 1968, J ACOUST SOC AM, V45, P1443 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X MOLLER AR, 1983, HEARING RES, V11, P267, DOI 10.1016/0378-5955(83)90062-X MOORE BCJ, 1987, HEARING RES, V28, P209, DOI 10.1016/0378-5955(87)90050-5 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X PATUZZI R, 1983, J ACOUST SOC AM, V74, P1734, DOI 10.1121/1.390282 ROBERTSON D, 1980, J ACOUST SOC AM, V67, P1295, DOI 10.1121/1.384182 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 ROSE JE, 1971, J NEUROPHYSIOL, V34, P685 RUGGERO MA, 1992, PHILOS T ROY SOC B, V336, P307, DOI 10.1098/rstb.1992.0063 RUSSELL IJ, 1992, PHILOS T ROY SOC B, V336, P317, DOI 10.1098/rstb.1992.0064 RUSSELL IJ, 1986, HEARING RES, V22, P199, DOI 10.1016/0378-5955(86)90096-1 RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 Stevens SS, 1935, J ACOUST SOC AM, V6, P150, DOI 10.1121/1.1915715 WEISS TF, 1988, HEARING RES, V33, P167, DOI 10.1016/0378-5955(88)90029-9 ZHANG M, 1992, ARO ABSTR, V15, P18 ZHANG M, 1993, THESIS SYRACUSE U SY ZHANG MS, 1995, HEARING RES, V85, P1, DOI 10.1016/0378-5955(95)00026-Z Zhang MS, 1996, HEARING RES, V96, P46, DOI 10.1016/0378-5955(96)00029-9 ZWICKER E, 1990, PSYCHOPHYSICS FACTS ZWISLOCKI JJ, 1984, ACTA OTO-LARYNGOL, V97, P529, DOI 10.3109/00016488409132931 ZWISLOCKI JJ, 1991, ACTA OTO-LARYNGOL, V111, P256, DOI 10.3109/00016489109137384 ZWISLOCKI J, 1952, EXPERIENTIA, V8, P279, DOI 10.1007/BF02301400 ZWISLOCKI JJ, 1983, MECHANISMS HEARING, P21 ZWISLOCKI JJ, 1988, NATO ADV RES WORKS A, V164, P163 ZWISLOCKI JJ, 1980, J ACOUST SOC AM, V67, P1679 ZWISLOCKI JJ, 1991, ARO ABSTR, V14, P410 ZWISLOCKI JJ, 1986, P NOBEL S, V63, P155 ZWISLOCKI JJ, 1992, HEARING RES, V57, P175, DOI 10.1016/0378-5955(92)90150-L NR 45 TC 23 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 65 EP 75 DI 10.1016/S0378-5955(97)00089-0 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400006 PM 9307312 ER PT J AU Madden, VJ Henson, MM AF Madden, VJ Henson, MM TI Rapid decalcification of temporal bones with preservation of ultrastructure SO HEARING RESEARCH LA English DT Article DE temporal bone; inner ear; primate; microwave; decalcification; electron microscopy ID MICROWAVE-STIMULATED FIXATION; ELECTRON-MICROSCOPY; ENERGY AB Decalcification of temporal bones, especially from primates, has routinely required long periods of time and has been a major deterrent to many types of morphological studies. In this investigation, temporal bones from the monkey, Macaca fuscata, were decalcified with ethylene diamine tetraacetic acid (EDTA) in a microwave oven. To isolate effects of microwaves on decalcification, tissue was fixed and embedded using routine methods; only decalcification was carried out in the microwave oven. The procedure is described in detail. Instead of months, decalcification was complete in two working days. Control procedures included decalcification at room temperature and use of a regular oven at a temperature equal to that reached in the microwave. The ultrastructure of cochlear tissue was equal to or better than that obtained with routine decalcification. C1 UNIV N CAROLINA,DEPT SURG,DIV OTOLARYNGOL HEAD & NECK SURG,CHAPEL HILL,NC 27599. UNIV N CAROLINA,DEPT PATHOL & LAB MED,MICROSCOPY SERV LAB,CHAPEL HILL,NC 27599. CR ARNOLD W, 1988, ACTA OTO-LARYNGOL, V105, P392, DOI 10.3109/00016488809119491 BALATON AJ, 1989, ANN PATHOL, V9, P140 DIELER R, 1991, J NEUROCYTOL, V20, P637, DOI 10.1007/BF01187066 Faria M R, 1992, Rev Paul Med, V110, P283 GIBERSON RT, 1995, MICROSC RES TECHNIQ, V32, P246, DOI 10.1002/jemt.1070320307 Hellström S, 1992, Acta Otolaryngol Suppl, V493, P15 HOMMERICH CP, 1985, LARYNG RHINOL OTOL V, V64, P311, DOI 10.1055/s-2007-1008146 KARLSSON U, 1965, J ULTRA MOL STRUCT R, V12, P160, DOI 10.1016/S0022-5320(65)80014-4 KOK LP, 1992, MICROWAVE COOKBOOK M, P184 LOGIN GR, 1986, J HISTOCHEM CYTOCHEM, V34, P381 LOGIN GR, 1994, PROG HISTOCHEM CYTOC, V27, P1 LOGIN GR, 1994, MICROWAVE TOOL BOOK, P1 LOGIN GR, 1990, J HISTOCHEM CYTOCHEM, V38, P755 NG KH, 1992, EUR J MORPHOL, V30, P150 OHTANI H, 1991, EUR J MORPHOL, V29, P64 RONCAROLI F, 1991, Pathologica (Genoa), V83, P307 RUSSELL LD, 1978, TISSUE CELL, V9, P99 VANDORP R, 1995, EUR J MORPHOL, V33, P164 WILD P, 1991, EUR J MORPHOL, V29, P67 WIRSIGWIECHMANN CR, 1994, J NEUROSCI METH, V51, P213, DOI 10.1016/0165-0270(94)90013-2 NR 20 TC 29 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 76 EP 84 DI 10.1016/S0378-5955(97)00107-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400007 PM 9307313 ER PT J AU Mahendrasingam, S Katori, Y Furness, DN Hackney, CM AF Mahendrasingam, S Katori, Y Furness, DN Hackney, CM TI Ultrastructural localization of cadherin in the adult guinea-pig organ of Corti SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT British-Society-for-Audiology Short Papers Meeting CY SEP 23-24, 1996 CL CAMBRIDGE, ENGLAND SP Brit Soc Audiol DE cadherin; hair cell; supporting cell; cochlea ID CELL-ADHESION; EMBRYOS; JUNCTIONS; MOUSE AB The apices of the majority of cells of the organ of Corti are connected together by junctional complexes to form the reticular lamina, a barrier that prevents the mixing of endolymph and perilymph. These complexes include tight junctions, adherens junctions and desmosomes. Further information is required about the identity and distribution of the molecules involved in these connections if the function and organization of the reticular lamina are to be well understood. One major category of molecules occurring in adherens junctions and desmosomes, and involved in the maintenance of tissue integrity, is the cadherins. However, although cadherin has been identified in junctions between supporting cells in the adult mammalian organ of Corti at the light microscopic level, its ultrastructural distribution has not so far been described. A post-embedding immunogold labelling technique has therefore been used in conjunction with a monoclonal antibody to cadherin to investigate its ultrastructural distribution in the adult guineapig reticular lamina. Immunolabelling is observed in hair cell-supporting cell junctions and in supporting cell-supporting cell junctions. In addition, there is more labelling associated with inner hair cell-supporting cell junctions than with outer hair cell-supporting cell junctions. This may indicate that the junctions associated with the two types of hair cell have different functional properties. C1 TOHOKU UNIV,SCH MED,DEPT OTOLARYNGOL,SENDAI,MIYAGI 98077,JAPAN. RP Mahendrasingam, S (reprint author), UNIV KEELE,DEPT COMMUN & NEUROSCI,KEELE ST5 5BG,STAFFS,ENGLAND. CR DUVALL AJ, 1967, ANN OTO RHINOL LARYN, V76, P688 GEIGER B, 1992, ANNU REV CELL BIOL, V8, P307, DOI 10.1146/annurev.cb.08.110192.001515 GULLEY RL, 1976, J NEUROCYTOL, V5, P479, DOI 10.1007/BF01181652 HATTA K, 1987, DEV BIOL, V120, P215, DOI 10.1016/0012-1606(87)90119-9 HYAFIL F, 1980, CELL, V21, P927, DOI 10.1016/0092-8674(80)90456-0 Jahnke K, 1975, Acta Otolaryngol Suppl, V336, P1 Mahendrasingam S, 1997, BRIT J AUDIOL, V31, P73 NOSE A, 1986, J CELL BIOL, V103, P2649, DOI 10.1083/jcb.103.6.2649 NUNES F, 1996, PRELIMINARY IDENTIFI, P127 OTTERSEN OP, 1989, ANAT EMBRYOL, V180, P1, DOI 10.1007/BF00321895 PEIFER M, 1995, TRENDS CELL BIOL, V5, P224, DOI 10.1016/S0962-8924(00)89015-7 RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 Souter M, 1997, BRIT J AUDIOL, V31, P75 Souter M, 1995, HEARING RES, V91, P43, DOI 10.1016/0378-5955(95)00163-8 TAKEICHI M, 1991, SCIENCE, V251, P1451, DOI 10.1126/science.2006419 TAKEICHI M, 1988, DEVELOPMENT, V102, P639 VOLK T, 1986, J CELL BIOL, V103, P1441, DOI 10.1083/jcb.103.4.1441 WHITLON DS, 1993, J NEUROCYTOL, V22, P1030, DOI 10.1007/BF01235747 YOSHIDA C, 1982, CELL, V28, P217, DOI 10.1016/0092-8674(82)90339-7 NR 19 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 85 EP 92 DI 10.1016/S0378-5955(97)00091-9 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400008 PM 9307314 ER PT J AU Spicer, SS Gratton, MA Schulte, BA AF Spicer, SS Gratton, MA Schulte, BA TI Expression patterns of ion transport enzymes in spiral ligament fibrocytes change in relation to strial atrophy in the aged gerbil cochlea SO HEARING RESEARCH LA English DT Article DE stria vascularis; presbyacusis; Na,K-ATPase; carbonic anhydrase; creatine kinase ID PLACE-FREQUENCY; LATERAL WALL; INNER-EAR; NA,K-ATPASE; VASCULARIS; DECREASES; JUNCTIONS; CELLS AB Fibrocytes of the lateral wall function in conjunction with the stria vascularis (StV) to mediate cochlear ion homeostasis. Age related changes in the expression patterns of ion transport enzymes in spiral ligament fibrocytes were investigated to ascertain their relation to metabolic presbyacusis in the gerbil. Immunoreactivity of fibrocytes for Na,K-ATPase (Na,K), carbonic anhydrase isozyme II (CA) and creatine kinase isozyme BB (CK) varied among and within cochleas from aged but not from young gerbils. The variable immunostaining was related to the extent and location of StV atrophy. Age-dependent degeneration and loss of Na,K in the StV occurred predominantly in the apex and lower base and hook of the cochlea, largely sparing more central regions. Immunostaining intensity for Na,K, CK, and CA in fibrocytes changed in relation to declines in strial marginal cell Na,K initially showing upregulation followed by downregulation. Spiral ligament fibrocytes in cochleas with more than two remaining normal turns often disclosed overexpression of CK in regions of strial atrophy. Conversely, CA in such cochleas was often increased in regions of normal StV adjacent to foci of atrophic StV. Senescent cochleas with two or fewer functional turns generally contained fibrocytes with diminished CK or CA immunoreactivity in regions of atrophic StV but in isolated instances exhibited fibrocytes with enhanced staining. Heightened staining for CK in type Ia fibrocytes underlying regions of complete or partial strial atrophy indicated an increased metabolic demand in fibrocytes in response to strial insufficiency. The findings provide further support for the role of spiral ligament fibrocytes in cochlear fluid and ion homeostasis. C1 MED UNIV S CAROLINA,DEPT OTOLARYNGOL & COMMUN SCI,CHARLESTON,SC 29425. RP Spicer, SS (reprint author), MED UNIV S CAROLINA,DEPT PATHOL & LAB MED,171 ASHLEY AVE,CHARLESTON,SC 29425, USA. CR GRATTON MA, 1997, IN PRESS HEAR RES GRATTON MA, 1995, HEARING RES, V82, P44 Gratton MA, 1996, HEARING RES, V94, P116, DOI 10.1016/0378-5955(96)00011-1 GRATTON MA, 1995, HEARING RES, V83, P43, DOI 10.1016/0378-5955(94)00188-V IURATO S, 1962, Z ZELLFORSCH MIK ANA, V56, P40, DOI 10.1007/BF00326848 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 McGuirt JP, 1996, AUDIT NEUROSCI, V2, P135 MILLS JH, 1996, OTORHINOLARYNGOLOGY, P133 PAULER M, 1988, LARYNGOSCOPE, V98, P754 REALE E, 1975, J ULTRA MOL STRUCT R, V53, P284, DOI 10.1016/S0022-5320(75)80030-X SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPICER SS, 1996, ASS RES OT 1996 MIDW SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z THOMOPOULOS GN, 1997, IN PRESS HEAR RES WILLOTT JF, 1991, AGING AUDITORY SYSTE, P56 NR 21 TC 27 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 93 EP 102 DI 10.1016/S0378-5955(97)00097-X PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400009 PM 9307315 ER PT J AU Stengs, CHM Klis, SFL Huizing, EH Smoorenburg, GF AF Stengs, CHM Klis, SFL Huizing, EH Smoorenburg, GF TI Cisplatin-induced ototoxicity; electrophysiological evidence of spontaneous recovery in the albino guinea pig SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 19th Midwinter Research Meeting of the Association-for-Research-in-Otolaryngology CY FEB 04-08, 1996 CL ST PETERSBURG BEACH, FL SP Assoc Res Otolaryngol DE cisplatin; guinea pig; compound action potential; cochlear microphonics; summating potential; recovery ID CIS-DICHLORODIAMMINEPLATINUM-II; ACTH(4-9) ANALOG; AUDITORY-SYSTEM; HEARING-LOSS; INNER-EAR; TOXICITY; REGENERATION; CARBOPLATIN; CANCER AB For 8 days albino guinea pigs (n = 48) were treated with cisplatin (cis-diamminedichloroplatinum(II), 1.5 mg/kg body weight/day). Compound action potentials (CAP), cochlear microphonics (CM) and summating potentials (SP) were recorded from the apical surface of the cochlea in response to tone bursts ranging in frequency from 0.5 to 16 kHz. The recordings were collected in different groups of animals, 1 day, 1 week, 2, 4, 8 and 16 weeks after cisplatin treatment, respectively. One day after the 8-day treatment we found frequency-dependent loss in the amplitudes of the three cochlear potentials, with the larger losses occurring at the higher frequencies. In terms of threshold shift the losses were larger for the CAP than for the hair cell-related potentials SP and CM. A salient improvement in both CAP and CM amplitude occurred over the next 8 weeks. Also, the SP showed improvement. These results indicate that guinea pig cochlear transduction recovers spontaneously after cisplatin injury. Recovery of the hair cell-related potentials suggests that recovery occurs already at the hair cell level. The question whether this recovery originates with the formation of new hair cells or with repair of damaged hair cells should be answered on the basis of subsequent morphological investigations. RP Stengs, CHM (reprint author), UNIV UTRECHT,DEPT OTORHINOLARYNGOL,HEARING RES LAB,ROOM F02504,POB 85500,NL-3508 GA UTRECHT,NETHERLANDS. CR AGUILARMARKULIS NV, 1981, J SURG ONCOL, V16, P111, DOI 10.1002/jso.2930160203 BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3 BOUGHATTAS NA, 1990, J PHARMACOL EXP THER, V255, P672 CARENZA L, 1986, GYNECOL ONCOL, V25, P244, DOI 10.1016/0090-8258(86)90105-8 CORWIN JT, 1992, EXP NEUROL, V115, P7, DOI 10.1016/0014-4886(92)90212-9 deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4 DEKONING P, 1988, EXP NEUROL, V97, P746 DEOLIVEIRA JAA, 1989, AUDIOVESTIBULAR TOXI FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 GISPEN WH, 1990, TRENDS PHARMACOL SCI, V11, P221, DOI 10.1016/0165-6147(90)90244-3 GRATTON MA, 1990, HEARING RES, V50, P211, DOI 10.1016/0378-5955(90)90046-R HAMERS FPT, 1991, EUR J CANCER, V27, P372, DOI 10.1016/0277-5379(91)90549-S HAMERS FPT, 1994, EUR ARCH OTO-RHINO-L, V251, P23 KOHN S, 1991, LARYNGOSCOPE, V101, P709 KONISHI T, 1983, AM J OTOLARYNG, V4, P18, DOI 10.1016/S0196-0709(83)80003-9 LAGASSE LD, 1981, AM J OBSTET GYNECOL, V139, P791 LAURELL G, 1995, HEARING RES, V87, P16, DOI 10.1016/0378-5955(95)00074-E LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 MCALPINE D, 1990, HEARING RES, V47, P191, DOI 10.1016/0378-5955(90)90151-E MCHANEY VA, 1983, J PEDIATR-US, V102, P314, DOI 10.1016/S0022-3476(83)80551-4 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 NICOL KMM, 1992, HEARING RES, V61, P117, DOI 10.1016/0378-5955(92)90042-L OTTO WC, 1988, HEARING RES, V35, P79, DOI 10.1016/0378-5955(88)90042-1 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 SCHAEFER SD, 1985, CANCER, V56, P1934, DOI 10.1002/1097-0142(19851015)56:8<1934::AID-CNCR2820560807>3.0.CO;2-F SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 SMOORENBURG GF, 1996, ABSTR ASS RES OT, V19, P794 STADNICKI SW, 1975, CANCER CHEMOTH REP 1, V59, P467 TAUDY M, 1992, AUDIOLOGY, V31, P293 VANDEELEN GW, 1986, ACTA OTO-LARYNGOL, V101, P207, DOI 10.3109/00016488609132829 VANDERHOOP RG, 1990, NEW ENGL J MED, V322, P89, DOI 10.1056/NEJM199001113220204 VANDERHULST RJAM, 1988, ANN OTO RHINOL LARYN, V97, P133 VERMORKEN JB, 1983, EUR J CANCER CLIN ON, V19, P53, DOI 10.1016/0277-5379(83)90398-X WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x NR 35 TC 34 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 103 EP 113 DI 10.1016/S0378-5955(97)00095-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400010 PM 9307316 ER PT J AU McFadden, SL Campo, P Quaranta, N Henderson, D AF McFadden, SL Campo, P Quaranta, N Henderson, D TI Age-related decline of auditory function in the chinchilla (Chinchilla laniger) SO HEARING RESEARCH LA English DT Article DE presbycusis; age-related hearing loss; auditory evoked potential; distortion product otoacoustic emission; cochlear pathology ID SENSORINEURAL HEARING-LOSS; PRODUCT OTOACOUSTIC EMISSIONS; INFERIOR COLLICULUS NEURONS; HAIR CELL LOSS; C57BL/6J MICE; CBA/J MICE; AZIMUTHAL LOCATION; EVOKED POTENTIALS; MONGOLIAN GERBIL; COCHLEAR NUCLEUS AB The aim of this study was to examine the functional consequences of aging in the chinchilla, a rodent with a relatively long life span and a range of hearing similar to that of humans. Subjects were 21 chinchillas aged 10-15 years, and 23 young controls. Thresholds were determined from auditory evoked potentials (EVPs), and outer hair cell (OHC) functioning was assessed by measuring 2f(1)-f(2) distortion product otoacoustic emissions (DPOAEs). Six cochleas from 11-12-year-old animals were examined for hair cell loss and gross strial pathology. The results show that the chinchilla exhibits a small but significant decline of auditory sensitivity and OHC functioning between 3 and 15 years of age, with high-frequency losses exceeding and growing more rapidly than low-frequency losses. Compared to rodents with shorter life spans, the chinchilla has a rate of loss that is more similar to that of humans, which could make it a valuable model for understanding the etiology of human presbycusis. C1 INRS,SERV PHYSIOL ENVIRONM,F-54501 VANDOEUVRE NANCY,FRANCE. UNIV BARI,DEPT AUDIOL & OTOL,BARI,ITALY. RP McFadden, SL (reprint author), SUNY BUFFALO,CTR HEARING & DEAFNESS,HEARING RES LAB,DEPT COMMUN DISORDERS,215 PARKER HALL,BUFFALO,NY 14214, USA. CR Adams JC, 1997, HEARING RES, V104, P101, DOI 10.1016/S0378-5955(96)00184-0 AREHOLE S, 1989, AUDIOLOGY, V28, P92 Avan P, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P65 BEAL MF, 1995, ANN NEUROL, V38, P357, DOI 10.1002/ana.410380304 BHATTACHARYYA TK, 1985, ANN OTO RHINOL LARYN, V94, P75 BOETTCHER FA, 1992, HEARING RES, V62, P217, DOI 10.1016/0378-5955(92)90189-T BOETTCHER FA, 1993, HEARING RES, V71, P137, DOI 10.1016/0378-5955(93)90029-Z BOETTCHER FA, 1995, HEARING RES, V89, P1, DOI 10.1016/0378-5955(95)00116-X Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 CLARK JD, 1984, LAB ANIMAL MED COHEN GD, 1988, BRAIN HUMAN AGING CORSO JF, 1963, ARCHIV OTOLARYNGOL, V77, P385 COTMAN CW, 1989, BASIC NEUROCHEMISTRY, P523 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P56 GLORIG A, 1962, Laryngoscope, V72, P1596 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 GRATTON MA, 1995, HEARING RES, V83, P33 Hamernik RP, 1996, J ACOUST SOC AM, V100, P1003, DOI 10.1121/1.416285 HARMAN D, 1986, FREE RADICALS AGING HAYFLICK L, 1985, ENCY AGING Hayflick L., 1977, HDB BIOL AGING HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N Henry K. R., 1983, AUDITORY PSYCHOBIOLO, P470 HENRY KR, 1980, AUDIOLOGY, V19, P369 Hinchcliffe R., 1959, Acustica, V9 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 International Organization for Standardization, 1990, 1999 ISO Jerger J, 1973, Adv Otorhinolaryngol, V20, P115 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P193 KRYTER KD, 1983, J ACOUST SOC AM, V73, P1897, DOI 10.1121/1.389580 Kryter K.D., 1985, EFFECTS NOISE MAN, V2nd LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LONSBURYMARTIN BL, 1991, J ACOUST SOC AM, V89, P1749, DOI 10.1121/1.401009 MCFADDEN SL, 1994, HEARING RES, V78, P132, DOI 10.1016/0378-5955(94)90019-1 MCFADDEN SL, 1994, HEARING RES, V78, P115, DOI 10.1016/0378-5955(94)90018-3 Mikaelian D.O., 1979, LARYNGOSCOPE, V34, P1 MILLER JD, 1970, J ACOUST SOC AM, V48, P513, DOI 10.1121/1.1912166 Mills JH, 1997, J ACOUST SOC AM, V101, P1681, DOI 10.1121/1.418152 MILLS JH, 1982, ENVIRON HEALTH PERSP, V44, P119, DOI 10.2307/3429484 Mills JH, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P193 Mills JH, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P181 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 NADOL JB, 1980, AGING COMMUNICATION, P63 PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 Schmiedt RA, 1996, J NEUROPHYSIOL, V76, P2799 SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6 Schmiedt RA, 1992, NOISE INDUCED HEARIN, P246 Schuknecht H. F., 1974, PATHOLOGY EAR SCHUKNECHT HF, 1993, ANN OTOL RHINOL LA S, V158, P1 Schuknecht HF, 1989, GERIATRIC OTORHINOLA, P40 SCHULTE BA, 1992, HEARING RES, V62, P46 SHONE G, 1991, HEARING RES, V56, P173, DOI 10.1016/0378-5955(91)90167-8 SIEGEL JH, 1982, HEARING RES, V6, P245 Spoor A, 1967, INT AUDIOL, V6, P48, DOI 10.3109/05384916709074230 STEEL KP, 1983, AUDITORY PSYCHOBIOLO, P341 SUN JC, 1994, LARYNGOSCOPE, V104, P1251 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J Willott JF, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P297 WILLOTT JF, 1988, HEARING RES, V37, P15, DOI 10.1016/0378-5955(88)90074-3 WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U Willott J. F., 1991, AGING AUDITORY SYSTE WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310 WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412 Willott J F, 1996, J Am Acad Audiol, V7, P141 WILLOTT JF, 1994, NEUROBIOL AGING, V15, P175, DOI 10.1016/0197-4580(94)90109-0 WILLOTT JF, 1984, BRAIN RES, V309, P159, DOI 10.1016/0006-8993(84)91022-9 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F Working Group on Speech Understanding Committee on Hearing Bioacoustics and Biomechanics, 1988, J ACOUST SOC AM, V83, P859 NR 78 TC 26 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 114 EP 126 DI 10.1016/S0378-5955(97)00099-3 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400011 PM 9307317 ER PT J AU McFadden, SL Quaranta, N Henderson, D AF McFadden, SL Quaranta, N Henderson, D TI Suprathreshold measures of auditory function in the aging chinchilla SO HEARING RESEARCH LA English DT Article DE presbycusis; remote masking; temporal resolution; frequency resolution; distortion product otoacoustic emission ID SENSORINEURAL HEARING-LOSS; INFERIOR COLLICULUS NEURONS; FREQUENCY-SELECTIVITY; EVOKED-RESPONSE; ALTERED SUSCEPTIBILITY; PSYCHOPHYSICAL DATA; AZIMUTHAL LOCATION; IMPAIRED LISTENERS; SPEECH-PERCEPTION; MASKING FUNCTIONS AB The purpose of this study was to examine the relationship between aging and suprathreshold auditory function in the chinchilla, a rodent with a relatively long life span and a range of hearing similar to that of humans. Subjects were six 11-12-year-old chinchillas and six young controls. Tests of auditory function utilized evoked potential (EVP) recordings from electrodes implanted in the inferior colliculus and measurements of 2f(1)-f(2) distortion product otoacoustic emissions (DPOAEs). Tests of frequency resolution (EVP tuning curves for a 2 kHz probe tone), temporal resolution (EVP forward masking functions using a 2 kHz probe tone), cochlear non-linearity (remote masking), and a DPOAE 'tone challenge', in which DPOAEs at six frequencies were monitored before and after each of five 1-min exposures to a 2 kHz tone at 80 dB SPL, were performed. The results indicate that aged chinchillas can exhibit deficits in suprathreshold tests of auditory function even when the test stimulus is in a region of relatively normal-hearing sensitivity. The results support the notion that aging, independent of hearing loss, can influence suprathreshold auditory function. C1 UNIV BARI,DEPT AUDIOL & OTOL,BARI,ITALY. RP McFadden, SL (reprint author), SUNY BUFFALO,HEARING RES LAB,DEPT COMMUN DISORDERS,215 PARKER HALL,BUFFALO,NY 14214, USA. CR AREHOLE S, 1987, HEARING RES, V30, P23, DOI 10.1016/0378-5955(87)90179-1 AREHOLE S, 1987, HEARING RES, V27, P193, DOI 10.1016/0378-5955(87)90001-3 AREHOLE S, 1989, AUDIOLOGY, V28, P92 BILGER RC, 1958, J ACOUST SOC AM, V30, P817, DOI 10.1121/1.1909777 BILGER RC, 1956, J ACOUST SOC AM, V28, P623, DOI 10.1121/1.1908426 BILGER RC, 1966, J ACOUST SOC AM, V39, P103, DOI 10.1121/1.1909857 Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 BONDING P, 1979, Scandinavian Audiology, V8, P205, DOI 10.3109/01050397909076322 BONDING P, 1978, SCAND AUDIOL, V17, P317 CERVELLERA G, 1982, Journal of Auditory Research, V22, P161 CERVELLERA G, 1980, AUDIOLOGY, V19, P404 CERVELLERA G, 1978, AUDIOLOGY, V17, P317 CLARK JD, 1984, LAB ANIMAL MED CUDAHY E, 1982, NEW PERSPECTIVES NOI DEATHERAGE BH, 1957, J ACOUST SOC AM, V29, P132, DOI 10.1121/1.1908641 DRESCHLER WA, 1980, J ACOUST SOC AM, V68, P1608, DOI 10.1121/1.385215 DRESCHLER WA, 1985, J ACOUST SOC AM, V78, P1261, DOI 10.1121/1.392895 Dubno JR, 1997, J SPEECH LANG HEAR R, V40, P444 DUIFHUIS H, 1973, J ACOUST SOC AM, V54, P1471, DOI 10.1121/1.1914446 ELLIOTT LL, 1962, J ACOUST SOC AM, V34, P1116, DOI 10.1121/1.1918254 FESTEN JM, 1983, J ACOUST SOC AM, V73, P652, DOI 10.1121/1.388957 FITZGIBBONS PJ, 1982, J ACOUST SOC AM, V72, P1387 FLORENTINE M, 1980, J SPEECH HEAR RES, V23, P646 FRANKLIN DJ, 1991, HEARING RES, V53, P185, DOI 10.1016/0378-5955(91)90053-C GIRAUDIPERRY DM, 1982, J ACOUST SOC AM, V72, P1387, DOI 10.1121/1.388444 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1036 HARRIS JD, 1965, LARYNGOSCOPE, V75, P428 HUMES LE, 1990, J SPEECH HEAR RES, V33, P726 HUMES LE, 1991, J SPEECH HEAR RES, V34, P686 JERGER J, 1989, EAR HEARING, V9, P168 Jerger J, 1973, Adv Otorhinolaryngol, V20, P115 KARLOVICH RS, 1977, AUDIOLOGY, V16, P507 LUTMAN ME, 1991, ACTA OTOLARYNGOL S, V467, P120 LUTMAN ME, 1991, J ACOUST SOC AM, V89, P320, DOI 10.1121/1.400513 MCFADDEN SL, 1994, HEARING RES, V78, P132, DOI 10.1016/0378-5955(94)90019-1 MCFADDEN SL, 1994, HEARING RES, V78, P115, DOI 10.1016/0378-5955(94)90018-3 MCFADDEN SL, 1997, IN PRESS HEAR RES McFadden SL, 1997, AUDIOL NEURO-OTOL, V2, P128 MENSH BD, 1993, HEARING RES, V70, P50, DOI 10.1016/0378-5955(93)90051-2 MOORE BCJ, 1986, J ACOUST SOC AM, V80, P93, DOI 10.1121/1.394087 MOUTAIN DC, 1980, SCIENCE, V210, P71 NELSON DA, 1987, J ACOUST SOC AM, V81, P709, DOI 10.1121/1.395131 NELSON DA, 1980, PSYCHOPHYSICAL PHYSL PENNER MJ, 1974, J ACOUST SOC AM, V56, P170 PRICE PJ, 1984, J ACOUST SOC AM, V76, P405, DOI 10.1121/1.391581 QUARANTA A, 1997, UNPUB ACTA OTOLARYNG QUARANTA A, 1978, Journal of Auditory Research, V18, P125 QUARANTA A, 1991, ACTA OTOLARYNGOL S, V476, P91 SIEGEL JH, 1982, HEARING RES, V6, P245 SUN JC, 1994, LARYNGOSCOPE, V104, P1251 TYLER RS, 1986, BASIC APPL ASPECTS N TYLER RS, 1982, J ACOUST SOC AM, V72, P740, DOI 10.1121/1.388254 WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J Willott J. F., 1991, AGING AUDITORY SYSTE Working Group on Speech Understanding Committee on Hearing Bioacoustics and Biomechanics, 1988, J ACOUST SOC AM, V83, P859 ZWICKER E, 1978, AUDIOLOGY, V17, P120 ZWICKER E, 1979, HEARING RES, V1, P283, DOI 10.1016/0378-5955(79)90001-7 ZWISLOCKI J, 1959, J ACOUST SOC AM, V31, P1 NR 59 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 127 EP 135 DI 10.1016/S0378-5955(97)00100-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400012 PM 9307318 ER PT J AU Schwartz, IR Hafidi, A Sanes, DH AF Schwartz, IR Hafidi, A Sanes, DH TI In vitro induction of microcyst-like structures in the superior olivary complex SO HEARING RESEARCH LA English DT Article DE gerbil; rat; development; auditory pathway; lateral superior olive; veratridine ID GERBIL COCHLEAR NUCLEUS; ACTIVITY-DEPENDENT DEVELOPMENT; INTERAURAL PHASE DISPARITY; CENTRAL AUDITORY PATHWAY; WHOLE-NERVE AP; MONGOLIAN GERBIL; INFERIOR COLLICULUS; BRAIN-STEM; MERIONES-UNGUICULATUS; AMPLITUDE-MODULATION AB To investigate the etiology of hole formation in the gerbil and rat central auditory system, organotypic cultures were grown in control and veratridine-containing media. The latter condition is known to increase neuronal activity. Tissue was obtained at postnatal day 6 and grown for 6-9 days in vitro, a period prior to the formation of holes in vivo. In both rats and gerbils, veratridine led to the appearance of large numbers of holes, and these were phenotypically similar to those found in vivo. These results support the idea that hole formation is an activity-dependent phenomenon, and suggest that it is not restricted to the mature gerbil auditory system. C1 UNIV CLERMONT FERRAND,NEUROBIOL LAB,F-63177 AUBIERE,FRANCE. NYU,CTR NEURAL SCI,NEW YORK,NY 10003. NYU,DEPT BIOL,NEW YORK,NY 10003. RP Schwartz, IR (reprint author), YALE UNIV,SCH MED,DEPT SURG,DIV OTOLARYNGOL,POB 208041,NEW HAVEN,CT 06520, USA. CR AXELSSON A, 1986, ACTA OTO-LARYNGOL, V101, P75, DOI 10.3109/00016488609108610 BARNES S, 1988, J GEN PHYSIOL, V91, P421, DOI 10.1085/jgp.91.3.421 BURKARD R, 1993, J ACOUST SOC AM, V93, P2069, DOI 10.1121/1.406693 CATTERALL WA, 1975, J BIOL CHEM, V250, P4053 COHENCORY S, 1991, J NEUROSCI, V11, P462 COHENCORY S, 1993, EXP NEUROL, V119, P165, DOI 10.1006/exnr.1993.1018 CZIBULKA A, 1991, HEARING RES, V52, P43, DOI 10.1016/0378-5955(91)90186-D CZIBULKA A, 1993, HEARING RES, V67, P1, DOI 10.1016/0378-5955(93)90226-Q DOLAN TG, 1985, HEARING RES, V18, P203, DOI 10.1016/0378-5955(85)90038-3 DOLAN TG, 1985, HEARING RES, V17, P259, DOI 10.1016/0378-5955(85)90070-X EATON MJ, 1995, DEV BIOL, V170, P169, DOI 10.1006/dbio.1995.1205 FADDIS BT, 1993, EXP NEUROL, V120, P160, DOI 10.1006/exnr.1993.1051 FELDMAN ML, 1994, ARO ABSTR, V17, P27 FINCK A, 1972, J COMP PHYSIOL PSYCH, V78, P375, DOI 10.1037/h0032373 FRISINA RD, 1985, EXP BRAIN RES, V60, P417 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1982, HEARING RES, V6, P259, DOI 10.1016/0378-5955(82)90059-4 FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z GOODMAN DA, 1982, HEARING RES, V7, P161, DOI 10.1016/0378-5955(82)90012-0 HAFIDI A, 1995, J NEUROSCI, V15, P1298 HARRIS DM, 1984, SCIENCE, V225, P741, DOI 10.1126/science.6463651 HUANG JM, 1995, HEARING RES, V88, P14, DOI 10.1016/0378-5955(95)00094-K KALB RG, 1988, J NEUROSCI, V8, P2350 KALB RG, 1990, SCIENCE, V250, P294, DOI 10.1126/science.2145629 KALB RG, 1992, BRAIN RES REV, V17, P283, DOI 10.1016/0165-0173(92)90020-M KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 LU B, 1991, P NATL ACAD SCI USA, V88, P6289, DOI 10.1073/pnas.88.14.6289 MCGINN MD, 1987, HEARING RES, V31, P235, DOI 10.1016/0378-5955(87)90193-6 MCGINN MD, 1994, HEARING RES, V81, P57, DOI 10.1016/0378-5955(94)90153-8 McGinn MD, 1997, HEARING RES, V104, P90, DOI 10.1016/S0378-5955(96)00177-3 MCGINN MD, 1990, HEARING RES, V48, P265, DOI 10.1016/0378-5955(90)90066-X MCGINN MD, 1988, ARO ABST, V11, P161 MELZER P, 1984, HEARING RES, V15, P187, DOI 10.1016/0378-5955(84)90050-9 MOORE DR, 1986, BRAIN RES, V373, P268, DOI 10.1016/0006-8993(86)90341-0 MOORE HC, 1990, HEARING RES, V45, P253, DOI 10.1016/0378-5955(90)90125-9 NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 OSTAPOFF EM, 1989, HEARING RES, V37, P141, DOI 10.1016/0378-5955(89)90036-1 OZDAMAR O, 1978, BRAIN RES, V155, P169, DOI 10.1016/0006-8993(78)90320-7 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 RYAN AF, 1982, J COMP NEUROL, V207, P369, DOI 10.1002/cne.902070408 SANES DH, 1993, J NEUROSCI, V13, P2627 SANES DH, 1990, J NEUROSCI, V10, P3494 SANES DH, 1991, J NEUROBIOL, V22, P837, DOI 10.1002/neu.480220805 SANES DH, 1992, J COMP NEUROL, V321, P637, DOI 10.1002/cne.903210410 SANES DH, 1988, J NEUROSCI, V8, P682 SANES DH, 1987, J NEUROSCI, V7, P3793 SANES DH, 1992, DEV BRAIN RES, V67, P47, DOI 10.1016/0165-3806(92)90024-Q Sanes DH, 1996, J NEUROBIOL, V31, P503, DOI 10.1002/(SICI)1097-4695(199612)31:4<503::AID-NEU9>3.0.CO;2-D SANES DH, 1987, J NEUROSCI, V7, P3803 SCHWARTZ I R, 1988, Society for Neuroscience Abstracts, V14, P491 SEMPLE MN, 1987, J NEUROPHYSIOL, V57, P1130 SEMPLE MN, 1985, J NEUROPHYSIOL, V53, P1483 SMITH RL, 1979, J ACOUST SOC AM, V65, P166, DOI 10.1121/1.382260 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 SPITZER MW, 1993, J NEUROPHYSIOL, V69, P1245 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 SPITZER MW, 1991, SCIENCE, V254, P721, DOI 10.1126/science.1948053 STATLER KD, 1990, HEARING RES, V50, P275, DOI 10.1016/0378-5955(90)90051-P STATLER KD, 1988, ARO MIDW M, V11, P162 Stier C, 1996, NEUROREPORT, V7, P401, DOI 10.1097/00001756-199601310-00006 STOPPINI L, 1991, J NEUROSCI METH, V37, P173, DOI 10.1016/0165-0270(91)90128-M TANAKA S, 1995, DEV BIOL, V168, P166, DOI 10.1006/dbio.1995.1069 Ulbricht W, 1969, Ergeb Physiol, V61, P18 WOOLF NK, 1984, HEARING RES, V13, P277, DOI 10.1016/0378-5955(84)90081-9 WOOLF NK, 1985, DEV BRAIN RES, V17, P131, DOI 10.1016/0165-3806(85)90138-5 YAO M, 1994, THESIS YALE U SCH ME YAO M, 1995, ARO MIDW M, V18, P186 NR 67 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 136 EP 142 DI 10.1016/S0378-5955(97)00102-0 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400013 PM 9307319 ER PT J AU Ford, MS Nie, ZZ Whitworth, C Rybak, LP Ramkumar, V AF Ford, MS Nie, ZZ Whitworth, C Rybak, LP Ramkumar, V TI Up-regulation of adenosine receptors in the cochlea by cisplatin SO HEARING RESEARCH LA English DT Article DE adenosine; adenosine receptor; cisplatin; cochlea; antioxidant enzyme; cytoprotection; compound action potential; endocochlear potential ID OUTER HAIR-CELLS; GUINEA-PIG; ANTIOXIDANT ENZYMES; INDUCED OTOTOXICITY; SUPEROXIDE ANION; IN-VITRO; SYSTEM; PROTECTION; MECHANISM; DIETHYLDITHIOCARBAMATE AB In a previous study, we have demonstrated the presence of two adenosine receptor (AR) subtypes, namely A(1) and A(3)AR, in the chinchilla cochlea. One or both of these receptors couple to activation of antioxidant enzymes, with resulting decreases in lipid peroxidation. The chemotherapeutic agent, cisplatin, was shown to produce ototoxicity within a few days of administration presumably by generating reactive oxygen species (ROS) and :hereby increasing lipid peroxidation. In this study, we focused on whether lipid peroxidation induces hearing loss by assessing the cochlear antioxidant defense system over a shorter time period (24 h) following cisplatin administration. Cisplatin was administered to anesthetized chinchillas by round window membrane application and hearing loss was determined by compound action potential (CAP) and endocochlear potential (EP) 24 and 72 h post-treatment. Elevations in CAP thresholds in response to click and to 2, 4, 8 and 16 kHz tones and decreases in EP were obtained within 24 h of cisplatin treatment. These changes persisted for at least up to 72 h. Measurements of antioxidant enzymes indicate no change in the activities of superoxide dismutase, catalase or glutathione peroxidase, either 24 or 72 h following cisplatin treatment. The levels of malondialdehyde obtained at these time points were equivalent to those obtained from the controls. Furthermore, no difference in cochlear morphology was detectable by scanning electron microscopy at the basal, middle or apical turns of the cochlea within 24 h. By 72 h, however, losses in both inner and outer hair cells were observed in the basal and middle turns of the cochlea. A major finding of this study is that exposure to cisplatin led to a 5-fold up-regulation of [I-125]N-6-2-{4-amino-3-phenyl}ethyladenosine binding in the cochlea within 24 h, reflecting increases in expression of AR(s) in this tissue. These data indicate a dissociation between cisplatin acute (within 24 h) ototoxicity and lipid peroxidation. Furthermore, up-regulation of AR(s) may represent a rapid compensatory mechanism by the cochlea to counter the toxic effects of increased ROS generated by cisplatin. C1 SO ILLINOIS UNIV,SCH MED,DEPT PHARMACOL,SPRINGFIELD,IL 62794. SO ILLINOIS UNIV,SCH MED,DEPT SURG,SPRINGFIELD,IL 62794. CR AEBI H, 1984, METHOD ENZYMOL, V105, P121 ANDERSON ME, 1990, FASEB J, V4, P3251 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 CHABNER BA, 1996, GOODMAN GILMANS PHAR, P1269 CHURCH MW, 1995, HEARING RES, V86, P195, DOI 10.1016/0378-5955(95)00066-D Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 COMIS SD, 1986, J LARYNGOL OTOL, V100, P1375, DOI 10.1017/S0022215100101161 ERNST A, 1995, EUR ARCH OTO-RHINO-L, V815, P1 ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638 FLOHE L, 1984, METHOD ENZYMOL, V105, P114 FORD MS, 1997, IN PRESS HEAR RES FREI B, 1994, AM J MED, V97, pS5, DOI 10.1016/0002-9343(94)90292-5 HINOJOSA R, 1995, AM J OTOL, V16, P731 JANNING MH, 1994, 17 ANN MIDW RES M ST KOPKE RD, 1997, IN PRESS AM J OTOL LAURELL G, 1995, CANCER CHEMOTH PHARM, V36, P83 LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 MAGGIRWAR SB, 1994, BIOCHEM BIOPH RES CO, V201, P508, DOI 10.1006/bbrc.1994.1731 MARSHALL JL, 1995, HEMATOL ONCOL CLIN N, V9, P415 MASUDA H, 1994, BIOCHEM BIOPH RES CO, V203, P1175, DOI 10.1006/bbrc.1994.2306 MCALPINE D, 1990, HEARING RES, V47, P191, DOI 10.1016/0378-5955(90)90151-E MISRA HP, 1972, J BIOL CHEM, V247, P3170 NIE Z, 1997, ASS RES OT 20 ANN MI OHKAWA H, 1978, J LIPID RES, V19, P1053 PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8 RAMKUMAR V, 1991, MOL PHARMACOL, V40, P639 RAMKUMAR V, 1993, J BIOL CHEM, V268, P16887 RAMKUMAR V, 1995, TRENDS PHARMACOL SCI, V16, P283, DOI 10.1016/S0165-6147(00)89051-3 RAMKUMAR V, 1994, AM J PHYSIOL, V267, pC731 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 RAVI R, 1992, OTOLARYNGOL HEAD NEC, V107, P232 Ren HZ, 1995, MOL PHARMACOL, V48, P975 RYAN AF, 1988, PHYSL EAR, P317 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 RYBAK LP, 1996, ASS RES OT 19 ANN MI Saito T, 1996, ACTA OTO-LARYNGOL, V116, P561, DOI 10.3109/00016489609137889 SALT AN, 1987, LARYNGOSCOPE, V97, P984 Sasada T, 1996, J CLIN INVEST, V97, P2268, DOI 10.1172/JCI118668 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 SHULL S, 1991, J BIOL CHEM, V266, P24398 SOMANI SM, 1995, FUND APPL TOXICOL, V26, P293 Wang CY, 1996, SCIENCE, V274, P784, DOI 10.1126/science.274.5288.784 YAMAMOTO T, 1994, BRAIN RES, V648, P296, DOI 10.1016/0006-8993(94)91130-4 NR 45 TC 40 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 143 EP 152 DI 10.1016/S0378-5955(97)00103-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400014 PM 9307320 ER PT J AU Dirckx, JJJ Decraemer, WF vonUnge, M Larsson, C AF Dirckx, JJJ Decraemer, WF vonUnge, M Larsson, C TI Measurement and modeling of boundary shape and surface deformation of the Mongolian gerbil pars flaccida SO HEARING RESEARCH LA English DT Article DE pars flaccida; tympanic membrane; middle ear; static pressure; moire; interferometry ID HUMAN TYMPANIC MEMBRANE; MIDDLE-EAR; STATIC PRESSURE; MECHANICS; DISPLACEMENT AB The shape of the pars flaccida (PF) boundary and its pressure induced deformation was measured in five Mongolian gerbil ears, using an opto-electronic moire interferometer. To determine the PF boundary, membranes were deformed by middle ear (ME) pressures of -2 kPa and +2 kPa. The boundary of the PF was defined as the locus of points where the pressure induced deformation begins. To a very high precision, this boundary was found to be a circle with the same radius for both over- and underpressure deformations. Between animals the radius varied from 0.760 mm to 0.778 mm. We show that the shape of the PF, while being deformed by static pressure in the ME, can be modeled as part of a sphere. Volume displacement can then be calculated as the volume enclosed by the sphere cap, delimited by the circular PF boundary plane. Volume displacement was calculated for membranes deformed by 400 Pa ME overpressure and -400 Pa ME underpressure. The agreement of the experimental data with the sphere cap model is shown to be very good, and results in a volume displacement measuring accuracy which is better than 10%. C1 KAROLINSKA SJUKHUSET & KAROLINA INST,DEPT OTORHINOLARYNGOL,S-10401 STOCKHOLM,SWEDEN. RP Dirckx, JJJ (reprint author), UNIV ANTWERP,RUCA,LAB BIOMED PHYS,GROENENBORGERLAAN 171,B-2020 ANTWERP,BELGIUM. CR ARITOMO H, 1988, OTOLARYNG HEAD NECK, V98, P310 BONDY G, 1908, BEITRAGE VERGLEICH 1, V106, P295 DIRCKX JJJ, 1992, HEARING RES, V62, P99, DOI 10.1016/0378-5955(92)90206-3 DIRCKX JJJ, 1997, IN PRESS APPL OPT DIRCKX JJJ, 1997, IN PRESS J BIOMED OP DRICKX JJJ, 1991, HEARING RES, V51, P93 FERNANDEZ C, 1959, ARCHIV OTOLARYNGOL, V69, P537 HELLSTROM S, 1983, ACTA PHYSIOL SCAND, V118, P337, DOI 10.1111/j.1748-1716.1983.tb07280.x KOHLLOFFEL LUE, 1984, HEARING RES, V13, P83, DOI 10.1016/0378-5955(84)90098-4 LAY DOUGLAS, 1972, J MORPHOL, V138, P41, DOI 10.1002/jmor.1051380103 LIM DJ, 1970, ACTA OTO-LARYNGOL, V70, P176 Lim D. J., 1995, Acta Oto-Rhino-Laryngologica Belgica, V49, P101 Lim D J, 1968, Acta Otolaryngol, V66, P515, DOI 10.3109/00016486809126316 Lim D J, 1968, Acta Otolaryngol, V66, P181, DOI 10.3109/00016486809126286 PLASSMANN W, 1991, BRAIN BEHAV EVOLUT, V38, P115, DOI 10.1159/000114382 Sade J, 1996, ACTA OTO-LARYNGOL, V116, P284, DOI 10.3109/00016489609137842 Shrapnell HJ, 1832, LONDON MED GAZ, V10, P120 STENFORS LE, 1979, ACTA OTO-LARYNGOL, V88, P395, DOI 10.3109/00016487909137184 TEOH SW, 1997, UNPUB HEAR RES TONNDORF J, 1970, ANN OTO RHINOL LARYN, V79, P743 van der Klaauw CJ, 1931, B AM MUS NAT HIST, V62, P1 VONUNGE M, 1991, AM J OTOL, V12, P407 VONUNGE M, 1993, HEARING RES, V70, P229, DOI 10.1016/0378-5955(93)90161-S YOUNGS R, 1990, ACTA OTOLARYNGOL STO, V88, P395 NR 24 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 153 EP 164 DI 10.1016/S0378-5955(97)00108-1 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400015 PM 9307321 ER PT J AU Lasky, RE AF Lasky, RE TI Rate and adaptation effects on the auditory evoked brainstem response in human newborns and adults SO HEARING RESEARCH LA English DT Article DE auditory brainstem evoked response; human developmental difference; stimulus rate effect; adaptation to successive stimuli ID STEM RESPONSE; STIMULUS RATE; PRIOR STIMULATION; NERVE FIBERS; RECOVERY; POTENTIALS; MASKING; LATENCY; INFANTS; NEURONS AB Auditory evoked brainstem response (ABR) latencies increased and amplitudes decreased with increasing stimulus repetition rate for human newborns and adults. The wave V latency increases were larger for newborns than adults. The wave V amplitude decreases were smaller for newborns than adults. These differences could not be explained by developmental differences in frequency responsivity. The transition from the unadapted to the fully adapted response was less rapid in newborns than adults at short (=10 ms) inter stimulus intervals (ISIs). At longer ISIs (=20 ms) there were no developmental differences in the transition to the fully adapted response. The newborn transition occurred in a two stage process. The rapid initial stage observed in adults and newborns was complete by about 40 ms. A second slower stage was observed only in newborns although it has been observed in adults in other studies (Weatherby and Hecox, 1982; Lightfoot, 1991; Lasky et al., 1996). These effects were replicated at different stimulus intensities. After the termination of stimulation the return to the wave V unadapted response took nearly 500 ms in newborns. Neither the newborn nor the adult data can be explained by forward masking of one click on the next click. These results indicate human developmental differences in adaptation to repetitive auditory stimulation at the level of the brainstem. RP Lasky, RE (reprint author), UNIV WISCONSIN,SCH MED,DEPT NEUROL,H6-528 CLIN SCI BLDG,600 HIGHLAND AVE,MADISON,WI 53792, USA. CR ABBAS PJ, 1981, J ACOUST SOC AM, V69, P492, DOI 10.1121/1.385477 Burkard R, 1996, J ACOUST SOC AM, V100, P991, DOI 10.1121/1.416210 BURKARD R, 1983, J ACOUST SOC AM, V74, P1204, DOI 10.1121/1.390024 Burkard R, 1996, J ACOUST SOC AM, V100, P978, DOI 10.1121/1.416209 CONEWESSON BK, 1995, ABSTR ASS RES OT, V18, P443 COWAN N, 1982, CHILD DEV, V53, P984, DOI 10.1111/j.1467-8624.1982.tb01362.x DESPLAND PA, 1980, PEDIATR RES, V14, P154, DOI 10.1203/00006450-198002000-00018 DON M, 1977, ANN OTOLOGY RHINOLOG, V86, P196 DONALDSON GS, 1990, ELECTROEN CLIN NEURO, V77, P458, DOI 10.1016/0168-5597(90)90006-Y EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R EGGERMONT JJ, 1985, HEARING RES, V18, P57, DOI 10.1016/0378-5955(85)90110-8 EYSHOLDT U, 1982, AUDIOLOGY, V21, P242 HALL JW, 1992, HDB AUDITORY EVOKED, P136 JEWETT D, 1972, BRAIN RES, V36, P89 Kiang NY-s, 1965, DISCHARGE PATTERNS S LASKY RE, 1991, DEV PSYCHOBIOL, V24, P51, DOI 10.1002/dev.420240105 LASKY RE, 1987, ELECTROEN CLIN NEURO, V68, P45, DOI 10.1016/0168-5597(87)90069-4 LASKY RE, 1980, CHILD DEV, V51, P1292 Lasky RE, 1996, EAR HEARING, V17, P544, DOI 10.1097/00003446-199612000-00010 LASKY RE, 1982, HEARING RES, V6, P315, DOI 10.1016/0378-5955(82)90063-6 LASKY RE, 1993, EAR HEARING, V14, P95, DOI 10.1097/00003446-199304000-00004 LASKY RE, 1995, HEARING RES, V89, P212, DOI 10.1016/0378-5955(95)00140-7 LASKY RE, 1995, ABSTR ASS RES OT, V18, P551 Lasky R E, 1992, J Am Acad Audiol, V3, P383 LASKY RE, 1984, ELECTROEN CLIN NEURO, V59, P411, DOI 10.1016/0168-5597(84)90042-X LIGHTFOOT G, 1991, THESIS MAIR IWS, 1979, AUDIOLOGY, V18, P265 Marmarelis PZ, 1978, ANAL PHYSL SYSTEMS RELKIN EM, 1995, HEARING RES, V83, P183, DOI 10.1016/0378-5955(95)00004-N RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 SALAMY A, 1978, PSYCHOPHYSIOLOGY, V15, P214, DOI 10.1111/j.1469-8986.1978.tb01367.x SCHULMANGALAMBOS C, 1975, J SPEECH HEAR RES, V18, P456 SHI Y, 1990, THESIS Shi Y, 1991, IEEE Trans Biomed Eng, V38, P834 SHIPLEY C, 1980, BRAIN RES, V182, P313, DOI 10.1016/0006-8993(80)91191-9 Stapells D. R., 1994, PRINCIPLES APPL AUDI, P251 STARR A, 1977, PEDIATRICS, V60, P831 TEAS DONALD C, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1438, DOI 10.1121/1.1918366 THORNTON ARD, 1975, ELECTROEN CLIN NEURO, V39, P399, DOI 10.1016/0013-4694(75)90103-0 WEATHERBY L, 1982, J ACOUST SOC AM S1, V71, P599 Weber B A, 1995, J Am Acad Audiol, V6, P187 Weber B A, 1993, J Am Acad Audiol, V4, P157 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 YATES GK, 1985, HEARING RES, V17, P1, DOI 10.1016/0378-5955(85)90124-8 YOUNG E, 1973, J ACOUST SOC AM, V80, P163 NR 46 TC 45 Z9 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 165 EP 176 DI 10.1016/S0378-5955(97)00106-8 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400016 PM 9307322 ER PT J AU Lang, HN Liu, C AF Lang, HN Liu, C TI Apoptosis and hair cell degeneration in the vestibular sensory epithelia of the guinea pig following a gentamicin insult SO HEARING RESEARCH LA English DT Article DE vestibular epithelium; hair cell; apoptosis; gentamicin; guinea pig ID ACOUSTIC TRAUMA; INNER-EAR; AMINOGLYCOSIDE TOXICITY; CHICK COCHLEA; REGENERATION; DEATH; REORGANIZATION; KINETICS; TARGET; LYSIS AB Apoptosis plays a key role in the steady state of continuously renewing tissues. The goal of this study was to determine whether apoptosis was a mode of hair cell loss in mammalian inner ear sensory epithelia. Hair cell loss was induced by systemic treatment with the ototoxic aminoglycoside antibiotic gentamicin in guinea pig. The vestibular sensory epithelia were examined at different times after administration via semi-thin and thin sections in situ labeling by the terminal deoxynucleotidyl transferase catalysis of digoxigenin tagged nucleotides to the free 3'-OH ends of fragmented DNA. Apoptotic labeling was detected 3-7 days after treatment. The majority of the apoptotic nuclei was found adjacent to the luminal surface. Analysis of semi-thin and thin sections revealed two modes of hair cell degeneration: (1) Apoptosis within the epithelium, showing typical morphological changes of condensation and fragmentation of the nucleus and modifications of cytoplasmic organelles. (2) Swelling of the cell, vacuolation and distortion of cell shape, and extrusion into the lumen. The results indicated that vestibular hair cells undergo apoptosis after ototoxic traumas. RP Lang, HN (reprint author), BEIJING INST OTOLARYNGOL,2 CHONG NEI,BEIJING 100730,PEOPLES R CHINA. CR ARENDS MJ, 1990, AM J PATHOL, V136, P593 BAIRD RA, 1993, HEARING RES, V65, P164, DOI 10.1016/0378-5955(93)90211-I BALAK KJ, 1990, J NEUROSCI, V10, P2502 Bohne B.A., 1976, EFFECTS NOISE HEARIN, P41 BRUSCH W, 1990, BIOCH CELL BIOL, V88, P1071 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 CORWIN JT, 1991, ANNU REV NEUROSCI, V14, P301, DOI 10.1146/annurev.neuro.14.1.301 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 CRUZ RM, 1987, ARCH OTOLARYNGOL, V113, P1058 DUVALL E, 1986, IMMUNOL TODAY, V7, P115, DOI 10.1016/0167-5699(86)90152-0 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 GAVRIELI Y, 1992, J CELL BIOL, V119, P493, DOI 10.1083/jcb.119.3.493 KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33 Kerr J.F.R., 1987, P93 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 LOMBARTE A, 1993, HEARING RES, V64, P166, DOI 10.1016/0378-5955(93)90002-I MATTER A, 1979, IMMUNOLOGY, V36, P179 MEITELES LZ, 1994, HEARING RES, V79, P26, DOI 10.1016/0378-5955(94)90124-4 OATES PS, 1986, AM J PHYSIOL, V250, pG9 Peitsch Manuel C., 1994, Trends in Cell Biology, V4, P37, DOI 10.1016/0962-8924(94)90002-7 RAFF MC, 1992, NATURE, V356, P397, DOI 10.1038/356397a0 RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408 RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 ROTELLO RJ, 1989, AM J PATHOL, V134, P491 RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150 RUSSELL JH, 1982, J IMMUNOL, V128, P2087 RUSSELL SW, 1972, AM J PATHOL, V69, P103 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 TANYERI H, 1995, HEARING RES, V89, P194, DOI 10.1016/0378-5955(95)00137-7 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 WEISLEDER P, 1993, J COMP NEUROL, V331, P97, DOI 10.1002/cne.903310106 Wyllie A H, 1980, Int Rev Cytol, V68, P251 NR 34 TC 40 Z9 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 1997 VL 111 IS 1-2 BP 177 EP 184 DI 10.1016/S0378-5955(97)00098-1 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV944 UT WOS:A1997XV94400017 PM 9307323 ER PT J AU Dolphin, WF AF Dolphin, WF TI The envelope following response to multiple tone pair stimuli SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 16th International-Evoked-Audiometry-Study-Group Meeting CY AUG 25-30, 1995 CL LYON, FRANCE SP Int Evoked Audimetry Study Grp DE amplitude modulation; envelope following response; steady-state auditory evoked potential; gerbil ID MODULATION-FOLLOWING RESPONSE; HEARING-IMPAIRED SUBJECTS; MONGOLIAN GERBIL; DISTORTION PRODUCTS; EVOKED-POTENTIALS; SCALP POTENTIALS; YOUNG-CHILDREN; NOTCHED NOISE; AMPLITUDE; FREQUENCY AB The envelope following response (EFR) is a steady-state evoked response which follows the envelope of a stimulating waveform. A tone pair with frequencies f(1) and f(2) generates a temporal envelope whose period corresponds to the difference in frequency between the constituent tones (f(2)-f(1)=f(2,1)). EFRs were recorded from Mongolian gerbils using amplitude-modulated stimuli comprised of from 1 to 4 tone pairs. Five stimulus tone pairs were used having center frequencies of approximately 0.3, 1, 2, 3, and 5 kKz; their corresponding envelope frequencies were approximately 38, 55, 66, 85, and 142 Hz. The magnitude of the EFR to each tone pair was measured separately and in combination with other simultaneously presented tone pairs. Small decreases (1-3 dB) in response magnitude, relative to the single tone pair condition, resulted from the addition of 1-2 tone pairs of higher frequencies; this effect was more pronounced with the addition of a third and fourth tone pair. However, the addition of the 300 Hz tone pair resulted in the significant enhancement of the response to higher frequency tone pairs. These data indicate that multiple tone pair EFRs may be a useful technique for the rapid acquisition of frequency-specific audiometric information. C1 BOSTON UNIV,HEARING RES CTR,BOSTON,MA 02215. RP Dolphin, WF (reprint author), BOSTON UNIV,DEPT BIOMED ENGN,BOSTON,MA 02215, USA. CR Aoyagi M, 1994, Acta Otolaryngol Suppl, V511, P7 AOYAGI M, 1993, HEARING RES, V65, P253, DOI 10.1016/0378-5955(93)90218-P DOBIE RA, 1989, EAR HEARING, V10, P1 Dobie RA, 1996, J ACOUST SOC AM, V100, P2236, DOI 10.1121/1.417933 Dolphin WF, 1996, J COMP PHYSIOL A, V179, P113 DOLPHIN WF, 1991, PROCEEDINGS OF THE 1991 IEEE SEVENTEENTH ANNUAL NORTHEAST BIOENGINEERING CONFERENCE, P215, DOI 10.1109/NEBC.1991.154651 DOLPHIN WF, 1994, J ACOUST SOC AM, V96, P2225, DOI 10.1121/1.411382 DOLPHIN WF, 1993, J ACOUST SOC AM, V94, P3215, DOI 10.1121/1.407227 DOLPHIN WF, 1995, J COMP PHYSIOL A, V177, P235 DOLPHIN WF, 1992, HEARING RES, V58, P70, DOI 10.1016/0378-5955(92)90010-K GRIFFITHS SK, 1991, EAR HEARING, V12, P235, DOI 10.1097/00003446-199108000-00002 Jiang D, 1996, J NEUROPHYSIOL, V75, P380 KUWADA S, 1986, HEARING RES, V21, P179, DOI 10.1016/0378-5955(86)90038-9 LEVI EC, 1993, HEARING RES, V68, P42, DOI 10.1016/0378-5955(93)90063-7 Lins OG, 1996, EAR HEARING, V17, P81, DOI 10.1097/00003446-199604000-00001 LINS OG, 1995, J ACOUST SOC AM, V97, P3051, DOI 10.1121/1.411869 LINS OG, 1994, J ACOUST SOC AM, V95, P2842, DOI 10.1121/1.409573 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 Palmer AR, 1996, J NEUROPHYSIOL, V75, P780 PICTON TW, 1987, J ACOUST SOC AM, V82, P165, DOI 10.1121/1.395560 PICTON TW, 1988, ELECTROEN CLIN NEURO, V68, P119 POPOV VV, 1995, J COMP PHYSIOL A, V178, P571 RICKMAN MD, 1991, J ACOUST SOC AM, V89, P2818, DOI 10.1121/1.400720 STAPELLS DR, 1995, EAR HEARING, V16, P361, DOI 10.1097/00003446-199508000-00003 STAPELLS DR, 1990, AUDIOLOGY, V29, P262 STATLER KD, 1990, HEARING RES, V50, P275, DOI 10.1016/0378-5955(90)90051-P SUPIN A, 1997, IN PRESS HEAR RES VICTOR JD, 1991, ELECTROEN CLIN NEURO, V78, P378, DOI 10.1016/0013-4694(91)90099-P 1991, J ACOUST SOC AM, V90, P637 NR 29 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 1 EP 14 DI 10.1016/S0378-5955(97)00056-7 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100001 PM 9282884 ER PT J AU Shofner, WP Yost, WA AF Shofner, WP Yost, WA TI Discrimination of rippled-spectrum noise from flat-spectrum noise by chinchillas: evidence for a spectral dominance region SO HEARING RESEARCH LA English DT Article DE rippled noise; chinchilla; pitch; dominance region ID ANTEROVENTRAL COCHLEAR NUCLEUS; COMPLEX TONES; FREQUENCY-SELECTIVITY; PHASE SENSITIVITY; PITCH PERCEPTION; MODEL; STRENGTH AB Iterated rippled noise having infinite iterations is generated when a flat-spectrum wideband noise is delayed Tms and the delayed version is added to the undelayed noise through positive feedback. The resulting signal has a rippled spectrum, and the perceived pitch of this iterated rippled noise by human listeners corresponds to a frequency of 1/T. We have previously demonstrated that chinchillas can discriminate the rippled-spectrum noise from the flat-spectrum noise. In the present study, chinchillas discriminated a bandpass filtered rippled-spectrum noise from a bandpass flat-spectrum noise in a psychophysical task. The passbands were set to be one octave wide. Psychometric functions were obtained for 5 chinchillas and performance was measured as d'. The best behavioral performance was obtained when the center frequency of the bandpass filter generally corresponded to the 3rd-5th harmonic peak of the rippled noise (i.e., at 3/T to 5/T), but the precise location of the dominant region varied with the delay of the rippled noise such that the dominance region tended to shift to lower harmonics as 1/T increased. These results indicate that not all spectral regions are weighted equally in the discrimination task. The spectral dominance region found in chinchillas is similar to that described for human pitch perception. RP Shofner, WP (reprint author), LOYOLA UNIV, PARMLY HEARING INST, 6525 N SHERIDAN RD, CHICAGO, IL 60626 USA. CR BILSEN FA, 1970, J ACOUST SOC AM, V47, P469, DOI 10.1121/1.1911916 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 COHEN MA, 1995, J ACOUST SOC AM, V98, P862, DOI 10.1121/1.413512 Echteler SM, 1994, COMP HEARING MAMMALS, P134 EVANS EF, 1983, HEARING PHYSL BASES, P140 Fastl H., 1988, BASIC ISSUES HEARING, P370 FASTL H, 1979, HEARING RES, V1, P293, DOI 10.1016/0378-5955(79)90002-9 GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448 Gourevitch V, 1967, Psychometrika, V32, P25, DOI 10.1007/BF02289402 GREEN DM, 1988, SIGNAL DETECTION THE Hawkins H., 1996, AUDITORY COMPUTATION, P221 HEFFNER H, 1976, J ACOUST SOC AM, V59, P915, DOI 10.1121/1.380951 HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 MILLER JD, 1970, J ACOUST SOC AM, V48, P513, DOI 10.1121/1.1912166 Moore B. C. J., 1988, BASIC ISSUES HEARING, P421 MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1853, DOI 10.1121/1.391936 MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925 NIEMIEC AJ, 1992, J ACOUST SOC AM, V92, P2636, DOI 10.1121/1.404380 PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 PATTERSON RD, 1976, J ACOUST SOC AM, V59, P1450, DOI 10.1121/1.381034 PLOMP R, 1967, J ACOUST SOC AM, V41, P1526, DOI 10.1121/1.1910515 RAATGEVER J, 1992, ADV BIOSCI, V83, P215 RHODE WS, 1995, J ACOUST SOC AM, V97, P2414, DOI 10.1121/1.411963 RITSMA RJ, 1967, J ACOUST SOC AM, V42, P191, DOI 10.1121/1.1910550 SAUNDERS SS, 1987, J ACOUST SOC AM, V82, P1604, DOI 10.1121/1.395150 Schouten JF, 1940, P K NED AKAD WETENSC, V43, P356 Shofner W. P., 1995, AUDIT NEUROSCI, V1, P127 SHOFNER WP, 1991, J ACOUST SOC AM, V90, P2450, DOI 10.1121/1.402049 TENKATE JH, 1988, J ACOUST SOC AM, V84, P2092, DOI 10.1121/1.397054 TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648 WHITFIELD IC, 1980, J ACOUST SOC AM, V67, P644, DOI 10.1121/1.383889 WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592 WINTER IM, 1990, HEARING RES, V44, P161, DOI 10.1016/0378-5955(90)90078-4 YOST WA, 1978, J ACOUST SOC AM, V64, P485, DOI 10.1121/1.382021 YOST WA, 1979, J ACOUST SOC AM, V66, P400, DOI 10.1121/1.382942 Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593 Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873 YOST WA, 1982, J ACOUST SOC AM, V72, P416, DOI 10.1121/1.388094 ZATORRE RJ, 1988, J ACOUST SOC AM, V84, P566, DOI 10.1121/1.396834 NR 43 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 15 EP 24 DI 10.1016/S0378-5955(97)00063-4 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100002 PM 9282885 ER PT J AU Harel, N Kakigi, A Hirakawa, H Mount, RJ Harrison, RV AF Harel, N Kakigi, A Hirakawa, H Mount, RJ Harrison, RV TI The effects of anesthesia on otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE otoacoustic emissions; descending auditory pathway; anesthesia; cochlear efferents; auditory system; chinchilla; outer hair cells ID OUTER HAIR-CELLS; COCHLEAR MICROMECHANICAL PROPERTIES; CONTRALATERAL SOUND; STIMULATION; SUPPRESSION; RESPONSES; MECHANICS; FEEDBACK; NEURONS; NUCLEUS AB We have measured transient-evoked and distortion-product otoacoustic emissions (OAEs) in the chinchilla and compared them in the awake and anesthetized animal (using either ketamine or barbiturate agents). We report a significant increase in OAE amplitudes during anesthesia, particularly using ketamine. These effects are most evident for transient-evoked otoacoustic emissions (TEOAEs) as measured in the non-linear mode. Our data support the hypothesis that tonic activity levels in cochlear efferents may be reduced by anesthetic effects, either directly or indirectly (e.g., by general reductions in descending pathway activity), and that reduced cochlear efferent activity will result in the observed increase of OAE amplitudes. C1 HOSP SICK CHILDREN,DEPT OTOLARYNGOL,TORONTO,ON M5G 1X8,CANADA. UNIV TORONTO,DEPT PHYSIOL,TORONTO,ON M5G 1X8,CANADA. UNIV TORONTO,DEPT OTOLARYNGOL,TORONTO,ON M5G 1X8,CANADA. CR BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BRUNDIN L, 1989, NATURE, V342, P814, DOI 10.1038/342814a0 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E COLLET L, 1990, ADV AUDIOL, V7, P164 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 EVANS EF, 1973, EXP BRAIN RES, V17, P402 HAUSER R, 1992, ANN OTO RHINOL LARYN, V101, P994 Kemp D T, 1986, Scand Audiol Suppl, V25, P71 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1990, EAR HEARING, V11, P93 KETTEMBEIL S, 1995, HEARING RES, V86, P47, DOI 10.1016/0378-5955(95)00053-7 KUJAWA SG, 1994, HEARING RES, V74, P122, DOI 10.1016/0378-5955(94)90181-3 KUJAWA SG, 1995, HEARING RES, V85, P142, DOI 10.1016/0378-5955(95)00041-2 KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 RHODE WS, 1987, J NEUROPHYSIOL, V57, P414 ROBINETTE M S, 1992, Seminars in Hearing, V13, P23, DOI 10.1055/s-0028-1085139 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 WILLIAMS EA, 1994, ACTA OTO-LARYNGOL, V114, P121, DOI 10.3109/00016489409126029 NR 21 TC 27 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 25 EP 33 DI 10.1016/S0378-5955(97)00061-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100003 PM 9282886 ER PT J AU Kakigi, A Hirakawa, H Mount, RJ Harrison, RV AF Kakigi, A Hirakawa, H Mount, RJ Harrison, RV TI The effects of crossed olivocochlear bundle section on transient evoked otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE transient evoked otoacoustic emission; olivocochlear bundle; chinchilla; cochlear efferents ID COCHLEAR MICROMECHANICAL PROPERTIES; SUPERIOR OLIVARY COMPLEX; BRAIN-STEM; DISTORTION PRODUCTS; STIMULATION; PROJECTIONS; MECHANICS; NEURONS AB The purpose of this study was to investigate the effect of sectioning the crossed olivocochlear bundle (COCB) on transient evoked otoacoustic emissions (TEOAEs) in anesthetized adult chinchillas. Of particular interest is the role of cochlear efferents to the outer haircells (OHCs) and how they control mechanisms responsible for otoacoustic emissions. Specifically the experiment addressed whether a tonic level of inhibitory control is reduced by COCB section. The nonlinear component of TEOAEs was measured before and after COCB section. Analysis was made of the 1, 2, 3, 4, and 5 kHz frequency components and of the total emission, as quantified by fast Fourier transform (FFT) of the raw (time domain) response. After COCB section, the amplitude of the total response and of the 2, 3, 3, and 5 kHz components increased whereas the amplitude of the 1 kHz component decreased. The results indicate that COCB section reduces inhibitory control of the OHC mechanisms responsible for nonlinear TEOAE generation. It is not clear whether the nerve section eliminates a spontaneous level of activity in COCB efferents, or whether it results in the interruption of a stimulus-evoked feedback loop. RP Kakigi, A (reprint author), HOSP SICK CHILDREN,AUDITORY SCI LAB,DEPT OTOLARYNGOL,555 UNIV AVE,TORONTO,ON M5G 1X8,CANADA. CR ADAMS JC, 1986, ABSTR ASS RES OT, V9, P5 ALTSCHULER RA, 1983, NEUROSCIENCE, V9, P621, DOI 10.1016/0306-4522(83)90178-1 BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 Guinan J J Jr, 1986, Scand Audiol Suppl, V25, P53 Kemp D T, 1986, Scand Audiol Suppl, V25, P71 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1988, HEARING RES, V34, P49, DOI 10.1016/0378-5955(88)90050-0 KEMP DT, 1990, EAR HEARING, V11, P93 LITTMAN TA, 1992, J ACOUST SOC AM, V92, P1945, DOI 10.1121/1.405242 LONSBURYMARTIN BL, 1991, ASS RES OT ABSTR, V14, P67 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 ROBERTSON D, 1987, EXP BRAIN RES, V66, P449, DOI 10.1007/BF00270677 RYAN AF, 1987, J COMP NEUROL, V255, P606, DOI 10.1002/cne.902550411 SCHWARTZ LR, 1986, ABSTR ASS RES OT, V9, P6 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 STROMINGER NL, 1981, ANAT REC, V199, P246 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 WARR WB, 1975, J COMP NEUROL, V161, P159, DOI 10.1002/cne.901610203 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 WIER CC, 1988, J ACOUST SOC AM, V84, P230, DOI 10.1121/1.396970 NR 24 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 34 EP 38 DI 10.1016/S0378-5955(97)00062-2 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100004 PM 9282887 ER PT J AU McCormick, CA AF McCormick, CA TI Organization and connections of octaval and lateral line centers in the medulla of a clupeid, Dorosoma cepedianum SO HEARING RESEARCH LA English DT Article DE hearing; inner ear projection; utricle; lateral line projection; clupeid; auditory evolution; teleost fish ID CENTRAL PROJECTIONS; ICTALURUS-PUNCTATUS; CARASSIUS-AURATUS; BRAIN-STEM; NERVES; EAR; AFFERENT; GOLDFISH; EFFERENTS; SYSTEMS AB In the clupeid fishes, the functionally specialized utricle and cephalic lateral line respond to sound pressure by virtue of their mechanical coupling to the auditory bullae. The cytoarchitecture of, and primary inputs to, the octavolateralis area were studied in the gizzard shad, Dorosoma cepedianum, in order to determine whether first-order acoustic and lateral line areas of the medulla are likewise specialized. The octavolateralis area of Dorosoma is composed of the nuclei that have been observed in other teleosts: nucleus medialis, the descending and anterior octaval nuclei, nucleus magnocellularis, nucleus tangentialis, and a caudal granular-cell region that likely represents nucleus caudalis and the posterior octaval nucleus. The descending octaval nucleus can be divided into dorsomedial, intermediate, and ventral zones using cytoarchitectonic criteria, whereas the anterior octaval nucleus can be divided into caudal, rostral, and medial portions. Primary inputs to the octavolateralis area were determined by means of in vitro application of horseradish peroxidase to nerves from the otolithic endorgans of the inner ear and the lateral line neuromasts. These primary inputs are generally organized like those of other teleosts: the otolithic endorgans supply the posterior, descending, magnocellular, and anterior nuclei, whereas the majority of lateral line fibers project to nucleus medialis, nucleus caudalis, and to the magnocellular nucleus. However, other characteristics of these projections may be unique to clupeids. The medial subdivision of the dorsomedial zone of the descending nucleus is dominated by a bilateral projection from at least a portion of the utricle, while the lateral subdivison of the dorsomedial zone is supplied by the saccule and lagena. This pattern is not present in non-clupeid fishes; in many species, the saccule has the most dorsomedial projection zone within the descending nucleus. In Dorosoma, both lateral line nerves contribute a light, bilateral projection to the medial and lateral subdivisions of the dorsomedial zone. The apparently specialized, bilateral utricular and lateral line inputs to the dorsomedial zone of the descending nucleus may be related to the specialized sensitivity of the utricle and the cephalic lateral line to sound pressure. A prominent group of neurons, tentatively identified as a secondary octaval population, is also described. Like the secondary octaval population of otophysans, the presumed secondary octaval population of Dorosoma is composed of a dorsal, fusiform region, an intermediate spherical cell region, and a ventral fusiform cell region. RP McCormick, CA (reprint author), OBERLIN COLL,DEPT BIOL,OBERLIN,OH 44074, USA. CR ALLEN JM, 1976, J MAR BIOL ASSOC UK, V56, P471 BARRY MA, 1987, J COMP NEUROL, V266, P457, DOI 10.1002/cne.902660403 BELL CC, 1981, J COMP NEUROL, V195, P391, DOI 10.1002/cne.901950303 BELL CC, 1981, HEARING SOUND COMMUN, P383 BEST ACG, 1980, J MAR BIOL ASSOC UK, V60, P703 Blaxter J. H. S., 1981, HEARING SOUND COMMUN, P39 Braford M. R. Jr., 1993, Society for Neuroscience Abstracts, V19, P160 BRAFORD MR, 1979, SOC NEUR ABSTR, V5, P139 BUDELLI R, 1979, J NEUROPHYSIOL, V42, P1479 BUDELLI R, 1979, SOC NEUR ABST, V42, P1479 CORWIN JT, 1981, J COMP PHYSIOL, V142, P379 DEHADRAI PADMAKAR V., 1957, JOUR ZOOL SOC INDIA, V9, P50 DENTON EJ, 1993, PHILOS T ROY SOC B, V341, P113, DOI 10.1098/rstb.1993.0096 DENTON EJ, 1976, J MAR BIOL ASSOC UK, V56, P487 Denton EL, 1980, J MAR BIOL ASSOC UK, V60, P714 ECHTELER SM, 1984, J COMP NEUROL, V230, P536, DOI 10.1002/cne.902300405 FAY RR, 1984, SCIENCE, V225, P951, DOI 10.1126/science.6474161 FAY RR, 1975, J EXP BIOL, V62, P379 FINGER TE, 1984, J COMP NEUROL, V229, P129, DOI 10.1002/cne.902290110 Greenwood P. H., 1966, Bulletin of the American Museum of Natural History, V131, P339 GREENWOOD PH, 1973, INTERRELATIONSHIPS F, P1 LAUDER G V, 1983, Bulletin of the Museum of Comparative Zoology, V150, P95 LOWENSTEIN O, 1951, J PHYSIOL-LONDON, V114, P471 McCormick C.A., 1989, P341 MCCORMICK CA, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P323 McCormick CA, 1996, BRAIN BEHAV EVOLUT, V47, P113, DOI 10.1159/000113232 MCCORMICK CA, 1983, AM ZOOL, V23, P895 McCormick C.A., 1988, P733 MCCORMICK CA, 1993, BRAIN BEHAV EVOLUT, V42, P48, DOI 10.1159/000114140 MCCORMICK CA, 1981, J COMP NEUROL, V197, P1, DOI 10.1002/cne.901970102 MCCORMICK CA, 1994, BRAIN BEHAV EVOLUT, V43, P189, DOI 10.1159/000113634 MCCORMICK CA, 1984, NEUROSCI LETT, V51, P207, DOI 10.1016/0304-3940(84)90552-4 MEREDITH GE, 1987, J COMP NEUROL, V265, P507, DOI 10.1002/cne.902650405 MEREDITH GE, 1985, NEUROSCI LETT, V55, P191, DOI 10.1016/0304-3940(85)90018-7 MESULAM MM, 1978, J HISTOCHEM CYTOCHEM, V26, P106 Montgomery J. C., 1995, AUDIT NEUROSCI, V1, P207 New JG, 1996, J COMP NEUROL, V366, P534 NEW JG, 1994, BRAIN BEHAV EVOLUT, V43, P34, DOI 10.1159/000113623 PLATT C, 1973, J EXP BIOL, V59, P491 POPPER AN, 1979, NATURE, V280, P832, DOI 10.1038/280832a0 POPPER AN, 1981, J COMP PHYSIOL, V144, P27 PUZDROWSKI RL, 1989, BRAIN BEHAV EVOLUT, V34, P110, DOI 10.1159/000116496 PUZDROWSKI RL, 1993, J COMP NEUROL, V332, P21, DOI 10.1002/cne.903320103 SCHELLART NAM, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P295 STIPETIC E., 1939, ZEITSCHR VERGLEICH PHYSIOL, V26, P740, DOI 10.1007/BF00341099 WEAVER EG, 1976, EVOLUTION BRAIN BEHA, P89 NR 46 TC 16 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 39 EP 60 DI 10.1016/S0378-5955(97)00060-9 PG 22 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100005 PM 9282888 ER PT J AU Taschenberger, G Manley, GA AF Taschenberger, G Manley, GA TI Spontaneous otoacoustic emissions in the barn owl SO HEARING RESEARCH LA English DT Article DE SOAE; otoacoustic emissions; frequency tuning; suppression; barn owl; bird ID OUTER HAIR-CELLS; EVOKED ACOUSTIC EMISSIONS; FROG RANA-ESCULENTA; BOBTAIL LIZARD; SOUND LOCALIZATION; BASILAR PAPILLA; TYTO-ALBA; GENERAL-CHARACTERISTICS; COCHLEAR AMPLIFIER; AUDITORY-SYSTEM AB Spontaneous otoacoustic emissions (SOAE) were studied in a bird, the barn owl. They were found in 79% of the ears investigated, and each emitting ear generated on average 1.9 emissions. Their peak sound-pressure levels lay between -5.8 and 10.3 dB, and their centre frequencies between 2.3 and 10.5 kHz. The SOAE originated primarily in the upper quarter of the animal's hearing range, and derived from a specialized area previously described as being within an auditory fovea. Indeed, 93% of the emissions had centre frequencies above 7.5 kHz. The median of the frequency distances between neighbouring SOAE was 406 Hz (0.058 oct). The 3 dB bandwidth of the emissions depended on their amplitude above the noise: for SOAE whose level exceeded 10 dB above the noise floor, the 3 dB bandwidths ranged between 4.5 and 11.4 Hz. SOAE frequencies were temperature sensitive. Raising the temperature shifted the emissions to higher frequencies, and vice versa (the frequency shifted on average 0.039 oct/degrees C). External tones could suppress the level of SOAE, an effect that was highly tuned. For SOAE with frequencies between 2.5 and 10.5 kHz, the Q(10dB) values of 2 dB iso-suppression tuning curves (STC) varied from 1.07 to 10.40. The best thresholds of 2 dB STC were generally below 15 dB SPL. C1 TECH UNIV MUNICH,INST ZOOL,D-85747 GARCHING,GERMANY. CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Baker R. J., 1989, COCHLEAR MECHANISMS, P349 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BRUNDIN L, 1989, NATURE, V342, P814, DOI 10.1038/342814a0 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 CLARK WW, 1984, HEARING RES, V16, P299, DOI 10.1016/0378-5955(84)90119-9 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 FISCHER FP, 1994, HEARING RES, V73, P1, DOI 10.1016/0378-5955(94)90277-1 FISCHER FP, 1994, SCANNING MICROSCOPY, V8, P351 FISCHER FP, 1988, HEARING RES, V34, P87, DOI 10.1016/0378-5955(88)90053-6 FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R GENOSSA TJ, 1989, J ACOUST SOC AM, V85, P35 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 HE DZZ, 1994, HEARING RES, V78, P77, DOI 10.1016/0378-5955(94)90046-9 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 KIM DO, 1986, HEARING RES, V22, P105, DOI 10.1016/0378-5955(86)90088-2 KLINKE R, 1993, PROG BRAIN RES, V97, P31 KNUDSEN EI, 1979, J COMP PHYSIOL, V133, P1 KNUDSEN EI, 1981, SCI AM, V245, P83 KNUDSEN EI, 1990, J NEUROSCI, V10, P222 KONISHI M, 1993, SCI AM, V268, P66 KONISHI M, 1973, AM SCI, V61, P414 Koppl C, 1997, J NEUROPHYSIOL, V77, P364 KOPPL C, 1993, J COMP PHYSIOL A, V171, P695, DOI 10.1007/BF00213066 KOPPL C, 1994, HEARING RES, V72, P159, DOI 10.1016/0378-5955(94)90215-1 KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U Koppl C., 1995, ADV HEARING RES, P200 KOPPL C, 1993, J ACOUST SOC AM, V93, P2834 KOSSL M, 1985, HEARING RES, V19, P157, DOI 10.1016/0378-5955(85)90120-0 LONG GR, 1991, J ACOUST SOC AM, V89, P1201, DOI 10.1121/1.400651 Manley G. A., 1990, PERIPHERAL HEARING M MANLEY GA, 1994, HEARING RES, V72, P171, DOI 10.1016/0378-5955(94)90216-X MANLEY GA, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P561 MANLEY GA, 1993, BIOPHYSICS HAIR CELL, P33 MANLEY GA, 1995, ABSTR ASS RES OT, V18, P372 MANLEY GA, 1995, ADV HEARING RES, P219 MANLEY GA, 1989, J COMP PHYSIOL A, V164, P289, DOI 10.1007/BF00612989 Manley GA, 1996, J ACOUST SOC AM, V99, P1588, DOI 10.1121/1.414680 MANLEY GA, 1993, J ACOUST SOC AM, V93, P2820, DOI 10.1121/1.405803 MARTIN GK, 1988, HEARING RES, V33, P49, DOI 10.1016/0378-5955(88)90020-2 MOISEFF A, 1981, J COMP PHYSIOL, V144, P299 MOISEFF A, 1989, J COMP PHYSIOL A, V164, P629, DOI 10.1007/BF00614505 MOUNTAIN DC, 1989, HEARING RES, V42, P195, DOI 10.1016/0378-5955(89)90144-5 OHYAMA K, 1992, ASS RES OT ABSTR, V15, P150 OHYAMA K, 1991, HEARING RES, V56, P111, DOI 10.1016/0378-5955(91)90160-B PALMER AR, 1982, J PHYSIOL-LONDON, V324, pP66 PAYNE RS, 1971, J EXP BIOL, V54, P535 Probst R, 1990, Adv Otorhinolaryngol, V44, P1 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RABINOWITZ WM, 1984, J ACOUST SOC AM, V76, P1713, DOI 10.1121/1.391618 SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906 SCHERMULY L, 1985, J COMP PHYSIOL A, V156, P209, DOI 10.1007/BF00610863 SULLIVAN WE, 1984, J NEUROSCI, V4, P1787 TALMADGE CL, 1991, J ACOUST SOC AM, V89, P2391, DOI 10.1121/1.400958 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2 VANDIJK P, 1990, J ACOUST SOC AM, V88, P1779, DOI 10.1121/1.400199 vanDijk P, 1996, J ACOUST SOC AM, V100, P2220, DOI 10.1121/1.417931 VONDALLMAYR C, 1985, ACUSTICA, V59, P67 WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012 WILSON JP, 1990, ADV AUDIOL, V7, P47 WILSON JP, 1980, HEARING RES, V2, P527, DOI 10.1016/0378-5955(80)90090-8 WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 WIT HP, 1989, HEARING RES, V41, P199, DOI 10.1016/0378-5955(89)90011-7 Wit HP, 1996, HEARING RES, V98, P165, DOI 10.1016/0378-5955(96)00082-2 ZENNER HP, 1993, PROG BRAIN RES, V97, P21 ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 ZUREK PM, 1985, J ACOUST SOC AM, V78, P340, DOI 10.1121/1.392496 NR 71 TC 26 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 61 EP 76 DI 10.1016/S0378-5955(97)00070-1 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100006 PM 9282889 ER PT J AU Nenov, AP Skellett, RA Fallon, M Bobbin, RP AF Nenov, AP Skellett, RA Fallon, M Bobbin, RP TI Nitrosoglutathione suppresses cochlear potentials and DPOAEs but not outer hair cell currents or voltage-dependent capacitance SO HEARING RESEARCH LA English DT Article DE nitric oxide; glutathione; voltage-clamp ID GUINEA-PIG COCHLEA; RAT SYMPATHETIC NEURONS; NITRIC-OXIDE SYNTHASE; S-NITROSOTHIOLS; SALICYLATE; MEMBRANE; INHIBITION; RESPONSES; MOTILITY AB Biochemical and pharmacological evidence support a role for nitric oxide (NO) and glutathione (GSH) in the cochlea. GSH combines with NO in tissue to form nitrosoglutathione (GSNO) that can act as a storage form for GSH and NO. Therefore, we tested GSNO on sound-evoked responses of the cochlea (cochlear microphonic, CM, summating potential, SP; compound action potential, CAP; cubic distortion product otoacoustic emission, DPOAE), on the endocochlear potential (EP), on isolated outer hair cell (OHC) currents and voltage-dependent capacitance, and on Deiters' cell currents. In vivo application of GSNO in increasing concentrations reversibly reduced low-intensity sound-evoked CAP, SP and DPOAEs starting at about 1 mM (CAP) and 3.3 mM (SP, DPOAE). However, even at IO mM, GSNO had little effect on the EP. In vitro, salicylate (10 mM) but not GSNO (3 and 10 mM) suppressed the early capacitative transients of OHCs. GSNO (3 and 10 mM) had no effect on the whole cell currents of OHCs or Deiters' cells. Results show that GSNO suppresses cochlear function. This suppression may be due to an effect of GSNO on the cochlear amplifier. The actions of GSNO were different from those of other NO donors; therefore, the effects of GSNO may not be mediated by NO. The mechanisms underlying GSNO effects seem to be different from those of salicylate. C1 LOUISIANA STATE UNIV,MED CTR,KRESGE HEARING RES LAB S,DEPT OTOHINOLARYNGOL & BIOCOMMUN,NEW ORLEANS,LA 70112. CR BANNENBERG G, 1995, J PHARMACOL EXP THER, V272, P1238 BARRACHINA D, 1994, EUR J PHARMACOL, V262, P181, DOI 10.1016/0014-2999(94)90044-2 BLATTER LA, 1994, CELL CALCIUM, V15, P122, DOI 10.1016/0143-4160(94)90051-5 BOBBIN RP, 1992, NOISE INDUCED HEARIN, P38 BRECHTELSBAUER PB, 1993, ABSTR ASS RES OTOLAR, V368, P92 BUTLER AR, 1995, TRENDS PHARMACOL SCI, V16, P18, DOI 10.1016/S0165-6147(00)88968-3 CHEN C, 1995, HEARING RES, V87, P1, DOI 10.1016/0378-5955(95)00071-B CHEN C, 1995, J PHYSIOL-LONDON, V482, P521 CHEN C, 1993, EUR J PHARMACOL, V243, P83, DOI 10.1016/0014-2999(93)90171-D Dais CGD, 1996, HEARING RES, V99, P1 Dulon D., 1995, ACTIVE HEARING, P195 DULON D, 1994, BIOCHEM BIOPH RES CO, V201, P1263, DOI 10.1006/bbrc.1994.1841 EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 FESSENDEN JD, 1994, BRAIN RES, V668, P9, DOI 10.1016/0006-8993(94)90505-3 GALE JE, 1994, P ROY SOC B-BIOL SCI, V255, P243, DOI 10.1098/rspb.1994.0035 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 HUANG GJ, 1993, BIOPHYS J, V65, P2228 IGNARRO LJ, 1990, HYPERTENSION, V16, P477 Kakehata S, 1996, J NEUROSCI, V16, P4881 Kong WJ, 1996, HEARING RES, V99, P22, DOI 10.1016/S0378-5955(96)00076-7 KOWALUK EA, 1990, J PHARMACOL EXP THER, V255, P1256 KUJAWA SG, 1992, HEARING RES, V64, P73, DOI 10.1016/0378-5955(92)90169-N Kujawa SG, 1996, HEARING RES, V97, P153 MANZONI O, 1992, NEURON, V8, P653, DOI 10.1016/0896-6273(92)90087-T MONCADA S, 1991, PHARMACOL REV, V43, P109 MURASE K, 1989, NEUROSCI LETT, V103, P56, DOI 10.1016/0304-3940(89)90485-0 OHLSEN A, 1993, ACTA OTO-LARYNGOL, V113, P55, DOI 10.3109/00016489309135767 PUEL JL, 1989, COMP BIOCHEM PHYS C, V93, P73, DOI 10.1016/0742-8413(89)90013-3 PUEL JL, 1989, HEAD NECK SURG, V102, P66 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 SCHUMAN EM, 1994, ANNU REV NEUROSCI, V17, P153, DOI 10.1146/annurev.neuro.17.1.153 SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 THALMANN R, 1973, AUDIOLOGY, V12, P364 THALMANN R, 1975, NERVOUS SYSTEM, V3, P31 TUNSTALL MJ, 1995, J PHYSIOL-LONDON, V485, P739 ZDANSKI CJ, 1994, HEARING RES, V79, P39, DOI 10.1016/0378-5955(94)90125-2 NR 36 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 77 EP 86 DI 10.1016/S0378-5955(97)00065-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100007 PM 9282890 ER PT J AU Chen, C LeBlanc, C Bobbin, RP AF Chen, C LeBlanc, C Bobbin, RP TI Differences in the distribution of responses to ATP and acetylcholine between outer hair cells of rat and guinea pig SO HEARING RESEARCH LA English DT Article DE receptor; cochlea; ion channel; voltage-clamp ID ADENOSINE 5'-TRIPHOSPHATE ATP; VESTIBULAR SENSORY EPITHELIA; GATED ION CHANNELS; EXTRACELLULAR ATP; PHOSPHOINOSITIDE HYDROLYSIS; INTRACELLULAR CALCIUM; PURINERGIC RECEPTORS; COCHLEAR FUNCTION; STRIA VASCULARIS; MARGINAL CELLS AB Adenosine 5' triphosphate (ATP) and acety]choline (ACh) are neurotransmitters (ACh) and/or modulators (ATP) in the mammalian cochlea. In guinea pig, it appears that both neurotransmitters have a similar response distribution, with larger responses being evoked by the ligands in short hair cells compared to long hair cells (e.g., Chen et al., 1995b. Noise exposure alters the response of outer hair cells to ATP. Hear: Res. 88, 215-221.; Erostegui et al., 1994. In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells. Hear. Res. 74, 135-147). The purpose of the present study was to test whether the distribution of responses to ACh and ATP in the OHCs of rat is the same as guinea pig. The ligand-induced current was monitored using the whole-cell configuration of the patch-clamp technique. Results show that in guinea pig OHCs, extracellular application of 100 mu M ATP induced a current response in a majority of the same cells that responded to the application of 100 mu M ACh. In contrast in rat OHCs, 100 mu M ATP did not induce a current in the majority of cells that responded to the application of 100 mu M ACh. N-methyl-glucamine (NMG(+)) substituted for K+ in the pipette solution failed to unmask an ATP-evoked inward current in rat OHCs. In addition, no response was produced in rat or guinea pig OHCs by adenosine, adenosine 5'-monophosphate (AMP) or adenosine 5'-diphosphate (ADP) at 100 mu M. Results suggest that in guinea pig ACh-gated channels are present on most of the same OHCs that have ATP-gated ion channels, whereas in rat ACh-gated ion channels are present without ATP-gated channels on some OHCs. C1 LOUISIANA STATE UNIV,MED CTR,KRESGE HEARING RES LAB S,DEPT OTOHINOLARYNGOL & BIOCOMMUN,NEW ORLEANS,LA 70112. CR ALTSCHULER RA, 1986, NEUROBIOLOGY HEARING, P383 ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 BOBBIN RP, 1978, ANN OTO RHINOL LARYN, V87, P185 BOBBIN RP, 1996, HAIR CELLS HEARING A, P29 Borg E, 1995, SCAND AUDIOL S40, V24, P1 BRAKE AJ, 1994, NATURE, V371, P519, DOI 10.1038/371519a0 BURNSTOCK G, 1990, ANN NY ACAD SCI, V603, P1 CHEN C, 1995, HEARING RES, V86, P25, DOI 10.1016/0378-5955(95)00050-E CHEN C, 1995, HEARING RES, V88, P215, DOI 10.1016/0378-5955(95)00115-K CHEN C, 1996, 19 MIDW RES M ASS RE Chen C, 1996, HEARING RES, V98, P9, DOI 10.1016/0378-5955(96)00049-4 Collo G, 1996, J NEUROSCI, V16, P2495 Dulon D., 1995, ACTIVE HEARING, P195 DULON D, 1993, CELL CALCIUM, V14, P245, DOI 10.1016/0143-4160(93)90071-D DULON D, 1991, NEUROREPORT, V2, P69, DOI 10.1097/00001756-199102000-00001 EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FILTZ TM, 1994, MOL PHARMACOL, V46, P8 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 HOUSLEY GD, 1995, ACTIVE HEARING, P221 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 HOUSLEY GD, 1995, BIOCHEM BIOPH RES CO, V212, P501, DOI 10.1006/bbrc.1995.1998 IKEDA K, 1991, ORL J OTO-RHINO-LARY, V53, P78 KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227 KENNEDY C, 1995, TRENDS PHARMACOL SCI, V16, P168, DOI 10.1016/S0165-6147(00)89010-0 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 KUJAWA SG, 1994, HEARING RES, V78, P181, DOI 10.1016/0378-5955(94)90024-8 LUI J, 1995, AUDIT NEUROSC, V1, P331 LUSTIG KD, 1993, P NATL ACAD SCI USA, V90, P5113, DOI 10.1073/pnas.90.11.5113 McNiven AI, 1996, AUDIT NEUROSCI, V2, P63 MOCKETT BG, 1995, HEARING RES, V84, P177, DOI 10.1016/0378-5955(95)00024-X MOCKETT BG, 1994, J NEUROSCI, V14, P6992 MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5 MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 NAKAGAWA T, 1990, J NEUROPHYSIOL, V63, P1068 NIEDZIELSKI AS, 1992, NEUROREPORT, V3, P273, DOI 10.1097/00001756-199203000-00015 NILLES R, 1994, HEARING RES, V73, P27, DOI 10.1016/0378-5955(94)90279-8 OGAWA K, 1994, HEARING RES, V74, P197, DOI 10.1016/0378-5955(94)90187-2 OGAWA K, 1995, NEUROREPORT, V6, P1538 OGAWA K, 1993, HEARING RES, V69, P207, DOI 10.1016/0378-5955(93)90109-E SHIGEMOTO T, 1990, J PHYSIOL-LONDON, V420, P127 Skellett RA, 1996, HEARING RES, V98, P68, DOI 10.1016/0378-5955(96)00062-7 SURPRENANT A, 1995, TRENDS NEUROSCI, V18, P224, DOI 10.1016/0166-2236(95)93907-F SUZUKI M, 1995, HEARING RES, V86, P68, DOI 10.1016/0378-5955(95)00055-9 VALERA S, 1994, NATURE, V371, P516, DOI 10.1038/371516a0 Wangemann P, 1996, AUDIT NEUROSCI, V2, P187 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WEBB TE, 1993, FEBS LETT, V324, P219, DOI 10.1016/0014-5793(93)81397-I WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X NR 50 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 87 EP 94 DI 10.1016/S0378-5955(97)00069-5 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100008 PM 9282891 ER PT J AU Krause, G zumGottesberge, AMM Wolfram, G Gerzer, R AF Krause, G zumGottesberge, AMM Wolfram, G Gerzer, R TI Transcripts encoding three types of guanylyl-cyclase-coupled trans-membrane receptors in inner ear tissues of guinea pigs SO HEARING RESEARCH LA English DT Article DE cyclic GMP; heat-stable enterotoxin; atrial natriuretic factor; polymerase chain reaction; gene expression ID STABLE ENTEROTOXIN RECEPTOR; PEPTIDE CLEARANCE RECEPTOR; NATRIURETIC-PEPTIDE; MESSENGER-RNA; FUNCTIONAL EXPRESSION; COMPLETE SEQUENCE; ATRIAL; CDNA; RAT; KIDNEY AB The distribution of membrane-bound guanylyl cyclase (GC) transcription in inner ear tissues of the guinea pig was addressed by a reverse transcription-PCR approach using consensus primers flanking a region of about 630 bp in the intracellular domains in the target sequences. Restriction mapping of such amplificates obtained from cochlear and vestibular specimens permitted us to demonstrate GC-A, GC-B, and GC-C expression by differentiating overall PCR signals. This assay indicated that GC-A was expressed in the cochlea and vestibular organ. PCR products resulting from transcripts of the GC-B gene were obtained at considerably lower abundance than amplificates typical of the GC-A gene. The consensus primer approach with subsequent restriction mapping provided the opportunity to examine at the same time expression of GC-C in the inner ear and revealed the occurrence of GC-C transcripts in both inner ear compartments under investigation. The distribution pattern found by analysing the intracellular domains of membrane-bound guanylyl cyclases was confirmed by demonstrating transcription of the corresponding extracellular receptor domains. In addition, single-strand conformation polymorphism analysis of cDNA amplificates comprising the catalytic domain of guanylyl cyclases also indicated the presence of GC-C expression in the inner ear tissues examined. The GC-C transcripts detected in inner ear tissues appeared to correlate with functional receptor expression, since the production of cyclic GMP catalyzed by cochlear and vestibular specimens was stimulated by 1 mu M of heat-stable enterotoxin to 18 and 80% above basal levels, respectively. Thus, GC-C may be involved in the fluid regulation by typical ligands (e.g., the peptide hormone guanylin or the toxins causing travellers' diarrhea), not only in the intestine but also in the organs responsible for hearing and gravitational orientation. C1 UNIV MUNICH,KLINIKUM INNENSTADT,MED KLIN,KLIN PHARMAKOL ABT,D-80336 MUNICH,GERMANY. UNIV DUSSELDORF,HNO KLIN,FORSCHUNGSLABOR,D-40225 DUSSELDORF,GERMANY. DEUTSCH FORSCHUNGSANSTALT LUFT & RAUMFAHRT,INST LUFT & RAUMFAHRTMED,D-51147 COLOGNE,GERMANY. RI Krause, Guenter/A-1858-2012 OI Krause, Guenter/0000-0003-3905-0921 CR ARCARI P, 1984, NUCLEIC ACIDS RES, V12, P9179, DOI 10.1093/nar/12.23.9179 CANAANKUHL S, 1992, ENDOCRINOLOGY, V130, P550, DOI 10.1210/en.130.1.550 CHANG M, 1989, NATURE, V341, P68, DOI 10.1038/341068a0 CHINKERS M, 1989, NATURE, V338, P79 CURRIE MG, 1992, P NATL ACAD SCI USA, V89, P947, DOI 10.1073/pnas.89.3.947 FORTE LR, 1995, FASEB J, V9, P643 FULLER F, 1988, J BIOL CHEM, V263, P9395 FULLER HJ, 1995, N-S ARCH PHARMACOL, V351, pR72 FURUTA H, 1994, P SENDAI S, V4, P43 Furuta H, 1995, HEARING RES, V92, P78, DOI 10.1016/0378-5955(95)00203-0 GARBERS DL, 1994, J BIOL CHEM, V269, P30741 GIANNELLA RA, 1995, J LAB CLIN MED, V125, P173 Guggino Sandra E., 1994, Trends in Microbiology, V2, P91, DOI 10.1016/0966-842X(94)90541-X HEIM JM, 1988, Z KARDIOL, V77, P41 KOCH T, 1992, HEARING RES, V63, P1197 KOLLER K, 1991, SCIENCE, V252, P550 KRAUSE G, 1994, GUT, V35, P1250, DOI 10.1136/gut.35.9.1250 KRAUSE G, 1994, ELECTROPHORESIS, V15, P557, DOI 10.1002/elps.1150150175 KUHN M, 1993, FEBS LETT, V318, P205, DOI 10.1016/0014-5793(93)80022-M LANEY DW, 1992, AM J PHYSIOL, V263, P6816 LOWE DG, 1989, EMBO J, V8, P1377 MAACK T, 1992, ANNU REV PHYSIOL, V54, P11, DOI 10.1146/annurev.physiol.54.1.11 MARCUS DC, 1993, HEARING RES, V69, P124, DOI 10.1016/0378-5955(93)90100-F NAKANE M, 1988, BIOCHEM BIOPH RES CO, V157, P1139, DOI 10.1016/S0006-291X(88)80992-6 NAKANE M, 1990, J BIOL CHEM, V265, P16841 NAKAO K, 1992, J HYPERTENS, V10, P907 NUNEZ DJR, 1992, J CLIN INVEST, V90, P1966, DOI 10.1172/JCI116075 PORTER JG, 1990, BIOCHEM BIOPH RES CO, V171, P796, DOI 10.1016/0006-291X(90)91216-F RAINERI I, 1991, NUCLEIC ACIDS RES, V19, P4010, DOI 10.1093/nar/19.14.4010 SCHULZ S, 1990, CELL, V63, P941, DOI 10.1016/0092-8674(90)90497-3 SCHULZ S, 1989, CELL, V58, P1155, DOI 10.1016/0092-8674(89)90513-8 SINGH S, 1991, BIOCHEM BIOPH RES CO, V179, P1455, DOI 10.1016/0006-291X(91)91736-V SPURKLAND A, 1992, TRENDS GENET, V8, P225 STERKERS O, 1984, AM J PHYSIOL, V247, pF602 TALLERICOMELNYK T, 1992, BIOCHEM BIOPH RES CO, V189, P610, DOI 10.1016/0006-291X(92)92244-R TREMBLAY J, 1993, J CLIN INVEST, V92, P2499, DOI 10.1172/JCI116858 VOLLMAR AM, 1993, ENDOCRINOLOGY, V132, P1872, DOI 10.1210/en.132.4.1872 WHITE AA, 1989, BIOCHEM BIOPH RES CO, V159, P363, DOI 10.1016/0006-291X(89)92447-9 WILCOX JN, 1991, MOL CELL BIOL, V11, P3454 ZUMGOTTESBERGE AM, 1995, 17 MIDW RES M ASS RE, P141 ZUMGOTTESBERGE AMM, 1989, ACTA OTO-LARYNGOL, V468, P53 NR 41 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 95 EP 106 DI 10.1016/S0378-5955(97)00064-6 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100009 PM 9282892 ER PT J AU Tsuprun, V Santi, P AF Tsuprun, V Santi, P TI Ultrastructural organization of proteoglycans and fibrillar matrix of the tectorial membrane SO HEARING RESEARCH LA English DT Article DE collagen; proteoglycan; thin fibril; tectorial membrane; transmission electron microscopy ID ELECTRON-MICROSCOPY; HAIR-CELLS; COLLAGEN INTERACTIONS; ISOSMOTIC SOLUTIONS; CA2+ CONCENTRATION; OSMOTIC RESPONSE; KERATAN SULFATE; INNER-EAR; LOCALIZATION; ORGAN AB The molecular and supramolecular structure of the tectorial membrane (TM) was studied by transmission electron microscopy (TEM). Collagen (type A) fibrils in the TM were found associated with proteoglycans (PGs) and type B fibrils. Most PGs were orthogonally oriented and attached D-periodically to collagen fibrils. Computer averaged projections of PG particles and linear aggregates of PGs in crystalline arrays, stained with Cuprolinic blue, showed an elongated, electron-dense structure 50-65 nm in length and 10 nm in width. Image analysis of type B fibrils showed that they are constructed of globular domains arranged with a periodicity of 12-14 nm. Each globular domain contains two thin 'arms', extended in opposite directions, which contact the 'arms' of adjacent fibrils. Numerous type B fibrils were found between collagen fibrils. They are attached to adjacent collagen fibrils by the 'arms' of their globular domains. An association of type B fibrils and PGs with collagen seems to result in the local ordered arrangement of the TM matrix. A hypothetical model of the TR I matrix supramolecular structure is presented. C1 UNIV MINNESOTA,DEPT OTOLARYNGOL,MINNEAPOLIS,MN 55455. CR BIRK DE, 1988, J CELL BIOL, V106, P999, DOI 10.1083/jcb.106.3.999 DUNNEBIER EA, 1995, HEARING RES, V90, P139, DOI 10.1016/0378-5955(95)00155-9 FREEMAN DM, 1994, HEARING RES, V79, P197, DOI 10.1016/0378-5955(94)90141-4 HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, pC1 HASKO JA, 1988, HEARING RES, V35, P21, DOI 10.1016/0378-5955(88)90037-8 HOZAWA K, 1993, GLYCOBIOLOGY, V3, P47, DOI 10.1093/glycob/3.1.47 HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845 KHALKHALIELLIS Z, 1987, HEARING RES, V25, P185, DOI 10.1016/0378-5955(87)90090-6 KILLICK R, 1995, J CELL BIOL, V129, P535, DOI 10.1083/jcb.129.2.535 KILLICK R, 1992, HEARING RES, V64, P21, DOI 10.1016/0378-5955(92)90165-J Killick R, 1997, HEARING RES, V103, P131, DOI 10.1016/S0378-5955(96)00174-8 Kimura R S, 1966, Acta Otolaryngol, V61, P55, DOI 10.3109/00016486609127043 KRONESTERFREI A, 1979, HEARING RES, V1, P81, DOI 10.1016/0378-5955(79)90019-4 KRONESTERFREI A, 1978, CELL TISSUE RES, V193, P11 Legan PK, 1997, J BIOL CHEM, V272, P8791 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 MAYNE R, 1984, J CELL BIOL, V98, P1637, DOI 10.1083/jcb.98.5.1637 MENDLER M, 1989, J CELL BIOL, V108, P191, DOI 10.1083/jcb.108.1.191 MORGELIN M, 1989, J BIOL CHEM, V264, P12080 MUNYER PD, 1994, HEARING RES, V79, P83, DOI 10.1016/0378-5955(94)90129-5 PICKLES JO, 1992, TRENDS NEUROSCI, V15, P254, DOI 10.1016/0166-2236(92)90066-H PRIETO JJ, 1990, HEARING RES, V45, P283, DOI 10.1016/0378-5955(90)90127-B RICHARDSON GP, 1987, HEARING RES, V25, P45, DOI 10.1016/0378-5955(87)90078-5 ROUGHLEY PJ, 1994, MICROSC RES TECHNIQ, V28, P385, DOI 10.1002/jemt.1070280505 SANTI PA, 1986, HEARING RES, V24, P179, DOI 10.1016/0378-5955(86)90017-1 SANTI PA, 1990, J ELECTRON MICR TECH, V15, P293, DOI 10.1002/jemt.1060150308 SANTI PA, 1987, HEARING RES, V27, P47, DOI 10.1016/0378-5955(87)90025-6 SCOTT JE, 1985, COLLAGEN REL RES, V5, P541 SCOTT JE, 1988, BIOCHEM J, V252, P313 SCOTT JE, 1985, BIOSCIENCE REP, V5, P765, DOI 10.1007/BF01119875 SCOTT JE, 1993, DERMATAN SULFATE PRO, P185 SCOTT JE, 1992, J ANAT, V180, P155 SCOTT JE, 1980, BIOCHEM J, V187, P887 SHAH DM, 1995, HEARING RES, V87, P187, DOI 10.1016/0378-5955(95)00089-M SLEPECKY NB, 1992, CELL TISSUE RES, V267, P413, DOI 10.1007/BF00319363 STEEL KP, 1983, HEARING RES, V12, P265, DOI 10.1016/0378-5955(83)90111-9 TANAKA K, 1975, ANN OTO RHINOL LARYN, V84, P287 THALMANN I, 1993, ARCH BIOCHEM BIOPHYS, V307, P391, DOI 10.1006/abbi.1993.1605 THALMANN I, 1987, LARYNGOSCOPE, V97, P357 THALMANN I, 1993, CONNECT TISSUE RES, V29, P191, DOI 10.3109/03008209309016826 Tsuprun V, 1996, MATRIX BIOL, V15, P31, DOI 10.1016/S0945-053X(96)90124-9 VANKUPPEVELT THMSM, 1984, HISTOCHEM J, V16, P657 VANKUPPEVELT THMSM, 1987, HISTOCHEM J, V19, P520 Vater M, 1996, HEARING RES, V94, P63, DOI 10.1016/0378-5955(96)00005-6 VAUGHAN L, 1988, J CELL BIOL, V106, P991, DOI 10.1083/jcb.106.3.991 ZWISLOCKI JJ, 1988, HEARING RES, V33, P207, DOI 10.1016/0378-5955(88)90151-7 NR 46 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 107 EP 118 DI 10.1016/S0378-5955(97)00068-3 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100010 PM 9282893 ER PT J AU deSauvage, RC daCosta, DL Erre, JP Aran, JM AF deSauvage, RC daCosta, DL Erre, JP Aran, JM TI Electrical and physiological changes during short-term and chronic electrical stimulation of the normal cochlea SO HEARING RESEARCH LA English DT Article DE electrical stimulation; charge balance; VIIIth nerve action potential; electrode impedance ID BRAIN-STEM RESPONSE; AUDITORY-NERVE; GUINEA-PIG; ACTION-POTENTIALS; IMPLANT PATIENTS; RECORDINGS; HUMANS; USERS; EAR AB In the electrical stimulation (ES) of auditory pathways, the type of stimulus and the electrode/tissue interface are critical parameters for the safety and efficacy of the protocol. In this study the influence of alternate pulses, applied between round window and vertex electrodes in chronically implanted guinea pigs, and maintained during 1 and 25 daily periods of 2 h (short-term and long-term experiments, respectively), was investigated. ES consisted of monophasic current pulses of +/-70 mu A and 300 its in duration at a rate of 167/s, with alternate polarity. Compound Action Potential (CAP) audiograms, amplitudes and latencies of click-evoked CAPs, amplitudes and latencies of electrically-evoked auditory responses (EARs), and electrode impedances, were measured periodically outside or during the ES periods. Short-term ES induced no change in CAP thresholds, amplitude and latency in response to clicks at 80 dB above normal threshold, but induced a slight latency increase and amplitude decrease of the EAR, correlated with an exponential decay of the electrode impedance. On a long-term basis, CAP audiograms and latencies did not change significantly, whereas CAP amplitudes and electrode impedances increased, in correlation with each other. In control guinea pigs receiving no ES, the same CAP amplitude and impedance changes were observed over the same long-term period. The EAR and CAP changes can be explained by a variation of the electrical impedance of the electrode/tissue interface. This is possibly due to a change in electrotytes around the electrode under the influence of the ES for the short-term variation, and to an electrode encapsulation by fibrous tissue independent of the ES for the long-term change. In itself, and under the conditions of this experiment, the ES demonstrated no adverse effects on the auditory function and can be safely used for inner-ear exploration. RP deSauvage, RC (reprint author), UNIV BORDEAUX 2, HOP PELLEGRIN, LAB AUDIOL EXPT & CLIN, EQUIPE ACCUEIL UPR ES, F-33076 BORDEAUX, FRANCE. CR ABBAS PJ, 1991, HEARING RES, V51, P123, DOI 10.1016/0378-5955(91)90011-W ARAN JM, 1979, AUDITORY INVESTIGATI, P233 ARAN JM, 1977, CLIN OTOLARYNGOL, V2, P30 BROWN CJ, 1994, EAR HEARING, V15, P168, DOI 10.1097/00003446-199404000-00006 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 BROWN MC, 1994, J NEUROPHYSIOL, V71, P1828 BRUMMER SB, 1983, ANN NY ACAD SCI, V405, P159, DOI 10.1111/j.1749-6632.1983.tb31628.x CASSANDRO E, 1984, AUDIOL ITAL, V1, P127 DESAUVAGE RC, 1990, J PHYS S, V51, P115 DESAUVAGE RC, 1985, HEARING RES, V18, P121, DOI 10.1016/0378-5955(85)90003-6 DESAUVAGE RC, 1988, INNOV TECH BIOL MED, V9, P357 DESAUVAGE RC, 1989, ACTA OTO-LARYNGOL, V107, P489, DOI 10.3109/00016488909127546 DESAUVAGE RC, 1983, J ACOUST SOC AM, V73, P616 DESAUVAGE RC, 1994, ELECTROEN CLIN NEURO, V92, P462 deSauvage RC, 1996, HEARING RES, V102, P15, DOI 10.1016/S0378-5955(96)00137-2 DODSON HC, 1987, HEARING RES, V31, P65, DOI 10.1016/0378-5955(87)90214-0 DOUCET JR, 1995, AUDIT NEUROSCI, V1, P151 GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497 HALL RD, 1990, HEARING RES, V45, P123, DOI 10.1016/0378-5955(90)90188-U HARTMANN R, 1994, ACTA OTO-LARYNGOL, V114, P495, DOI 10.3109/00016489409126093 HAUSLER R, 1992, ACTA OTO-LARYNGOL, V112, P180 HIRAKAWA K, 1984, SCAN ELECT MICROSC, V3, P1413 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 KILENY PR, 1994, ARCH OTOLARYNGOL, V120, P1083 LEGOUIX JP, 1978, ACTA OTO-LARYNGOL, V85, P177 Lilly JC, 1961, ELECT STIMULATION BR, P60 MACCREERY DB, 1992, HEARING RES, V62, P42 NI DF, 1992, HEARING RES, V62, P63, DOI 10.1016/0378-5955(92)90203-Y PELIZZONE M, 1989, AUDIOLOGY, V28, P230 PRIJS VF, 1980, ACUSTICA, V45, P1 ROLAND NJ, 1993, CLIN OTOLARYNGOL, V18, P278, DOI 10.1111/j.1365-2273.1993.tb00847.x SCHMID UD, 1995, MUSCLE NERVE, V18, P487, DOI 10.1002/mus.880180503 SHALLOP JK, 1993, EAR HEARING, V14, P58, DOI 10.1097/00003446-199302000-00008 Shepherd RK, 1990, COCHLEAR PROSTHESES, P69 SHEPHERD RK, 1991, ACTA OTO-LARYNGOL, V111, P848, DOI 10.3109/00016489109138421 SMITH L, 1983, ANN OTO RHINOL LARYN, V92, P19 SPELMAN FA, 1989, COCHLEAR IMPLANTS, P36 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 TEAS DC, 1962, J ACOUST SOC AM, V24, P1431 TYKOCINSKI M, 1995, HEARING RES, V88, P124, DOI 10.1016/0378-5955(95)00108-G Tyler R.S., 1992, AM J AUDIOL, V1, P36 VANDENHONERT C, 1986, HEARING RES, V21, P109, DOI 10.1016/0378-5955(86)90033-X WALSH SM, 1982, HEARING RES, V7, P281, DOI 10.1016/0378-5955(82)90041-7 Watanabe K, 1997, AUDIOLOGY, V36, P147 WILER JA, 1989, HEARING RES, V39, P251, DOI 10.1016/0378-5955(89)90045-2 NR 45 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 119 EP 134 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100011 ER PT J AU Laurell, G Teixeira, M Sterkers, O Ferrary, E AF Laurell, G Teixeira, M Sterkers, O Ferrary, E TI Paracellular transport properties of inner ear barriers do not account for cisplatin toxicity in the rat SO HEARING RESEARCH LA English DT Article DE in vivo; plasma; inner ear fluids; radioactive mannitol; blood pressure ID GUINEA-PIG; OTOTOXICITY; ENDOLYMPH; COCHLEA; CANCER; CHEMOTHERAPY; PERILYMPH; ENTRY AB The interindividual variability for the ototoxic effect of the antineoplastic drug cisplatin has still to be explained. To examine if the variability can be related to differences in drug kinetics, the effect of cisplatin on the paracellular transport properties of the inner ear barriers was studied in vivo in cisplatin treated Long-Evans rats. The concentration of [H-3]mannitol was followed in plasma, scala vestibuli perilymph, and endolymph after an intravenous infusion of the tracer. Cisplatin had no effect on paracellular transport of the inner ear barriers 3 days after administration of 8 mg/kg cisplatin. However, an interindividual variability for the transport of [H-3]mannitol across the blood-perilymph barrier was evident, indicating a Variability for the passive transport of solutes to the inner ear. C1 UNIV PARIS 07,FAC XAVIER BICHAT,DEPT PHYSIOL,INSERM,U426,F-75018 PARIS,FRANCE. KAROLINSKA HOSP,DEPT OTOLARYNGOL,S-17176 STOCKHOLM,SWEDEN. CR AGUILARMARKULIS NV, 1981, J SURG ONCOL, V16, P111, DOI 10.1002/jso.2930160203 ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638 FERRARY E, 1987, AM J PHYSIOL, V253, pF59 FLEISCHMAN RW, 1975, TOXICOL APPL PHARM, V33, P320, DOI 10.1016/0041-008X(75)90098-8 HOEVE LJ, 1988, ARCH OTO-RHINO-LARYN, V245, P98, DOI 10.1007/BF00481444 HUY PTB, 1986, J CLIN INVEST, V77, P1492 JAHNKE, 1975, ACTA OTOLARYNGOL S, V333, P1 KOMMUNE S, 1981, OTOLARYNGOL HEAD NEC, V89, P275 KOPPELMAN J, 1988, LARYNGOSCOPE, V98, P858 LAURELL G, 1995, HEARING RES, V87, P16, DOI 10.1016/0378-5955(95)00074-E LAURELL G, 1990, LARYNGOSCOPE, V100, P724 LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 LAURELL G, 1995, HEARING RES, V88, P222, DOI 10.1016/0378-5955(95)00098-O Lum H, 1994, AM J PHYSIOL, V267, pL233 MOTZER RJ, 1988, ANN INTERN MED, V108, P513 MUGGIA FM, 1985, CANCER CHEMOTH PHARM, V15, P1 NEIJT JP, 1992, ANN ONCOL, V3, P17 ROBISON TW, 1995, J TOXICOL ENV HEALTH, V44, P57 STERKERS O, 1982, AM J PHYSIOL, V243, pF173 TANG AS, 1993, PHARMACEUT RES, V10, P1620, DOI 10.1023/A:1018976804403 TODD JH, 1994, TOXICOL PATHOL, V22, P56 VERMORKEN JB, 1983, EUR J CANCER CLIN ON, V19, P53, DOI 10.1016/0277-5379(83)90398-X NR 23 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 135 EP 140 DI 10.1016/S0378-5955(97)00067-1 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100012 PM 9282895 ER PT J AU Kalinec, F Kalinec, G Negrini, C Kachar, B AF Kalinec, F Kalinec, G Negrini, C Kachar, B TI Immunolocalization of anion exchanger 2 alpha in auditory sensory hair cells SO HEARING RESEARCH LA English DT Article DE hair cells; outer hair cells; anion exchanger proteins; auditory sensory transduction; organ of Corti ID HEREDITARY OVALOCYTOSIS; CYTOPLASMIC DOMAIN; SHAPE CHANGES; GUINEA-PIG; MEMBRANE; PROTEIN; BAND-3; TRANSDUCTION; CYTOSKELETON; GENERATION AB We have previously reported the isolation from a guinea pig organ of Corti cDNA library of a cDNA clone that encodes a novel isoform of the anion exchanger 2 (AE2) protein (Negrini, Rivolta, Kalinec and Kachar, 1995. Cloning of an organ of Corti anion exchanger 2 isoform with a truncated C-terminal domain. Biophys. Acta, 1236, 207-211). The deduced protein, named AE2 alpha, has a conserved cytoplasmic domain and a short membrane domain with only two membrane spanning regions, as opposed to the fourteen present in the conventional AE2. Now, we are showing the immunolocalization and preliminary characterization of this protein using an antipeptide antibody specific for this novel AE2 isoform. In Western blots, this antibody binds to an similar to 89 kDa polypeptide that corresponds to a phosphorylated protein with serines as main phosphate acceptor residues. In immunofluorescence experiments, the antibody labels the stereocilia and the lateral wall of the outer hair cells and the stereocilia of the inner hair cells. Our results suggest that AE2 alpha is a membrane-cytoskeletal linker in regions of the hair cell, where sensory transduction mechanisms take place. C1 NIH,NATL INST DEAFNESS & OTHER COMMUN DISORDERS,SECT STRUCT CELL BIOL,BETHESDA,MD 20850. CR ALPER SL, 1991, ANNU REV PHYSIOL, V53, P549, DOI 10.1146/annurev.ph.53.030191.003001 DRENCKHAHN D, 1991, J CELL BIOL, V112, P641, DOI 10.1083/jcb.112.4.641 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 GILLESPIE PG, 1995, CURR OPIN NEUROBIOL, V5, P449, DOI 10.1016/0959-4388(95)80004-2 GULLEY RL, 1977, ANAT REC, V189, P109, DOI 10.1002/ar.1091890108 HIROKAWA N, 1982, J CELL BIOL, V95, P249, DOI 10.1083/jcb.95.1.249 HOLLEY MC, 1992, J CELL SCI, V102, P569 HUDSPETH AJ, 1994, NEURON, V12, P1, DOI 10.1016/0896-6273(94)90147-3 IKEDA K, 1992, J PHYSIOL-LONDON, V447, P627 IWASA KH, 1991, NEUROSCI LETT, V133, P171, DOI 10.1016/0304-3940(91)90562-8 JAROLIM P, 1991, P NATL ACAD SCI USA, V88, P11022, DOI 10.1073/pnas.88.24.11022 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 Kalinec F, 1993, BIOPHYSICS HAIR CELL, P175 KENNELLY PJ, 1991, J BIOL CHEM, V266, P15555 KNIPPER M, 1995, HEARING RES, V86, P100, DOI 10.1016/0378-5955(95)00060-H Kopito R R, 1990, Int Rev Cytol, V123, P177, DOI 10.1016/S0074-7696(08)60674-9 LOW PS, 1986, BIOCHIM BIOPHYS ACTA, V864, P145, DOI 10.1016/0304-4157(86)90009-2 MOHANDAS N, 1992, J CLIN INVEST, V89, P686, DOI 10.1172/JCI115636 MORGANS CW, 1993, J CELL SCI, V106, P1275 NEGRINI C, 1995, BBA-BIOMEMBRANES, V1236, P207, DOI 10.1016/0005-2736(95)00081-D RAPHAEL Y, 1986, J SUBMICR CYTOL PATH, V18, P731 SCHOFIELD AE, 1992, J MOL BIOL, V223, P949, DOI 10.1016/0022-2836(92)90254-H YANNOUKAKOS D, 1991, BIOCHIM BIOPHYS ACTA, V1066, P70, DOI 10.1016/0005-2736(91)90252-4 NR 24 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 141 EP 146 DI 10.1016/S0378-5955(97)00076-2 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100013 PM 9282896 ER PT J AU FischelGhodsian, N Bykhovskaya, Y Taylor, K Kahen, T Cantor, R Ehrenman, K Smith, R Keithley, E AF FischelGhodsian, N Bykhovskaya, Y Taylor, K Kahen, T Cantor, R Ehrenman, K Smith, R Keithley, E TI Temporal bone analysis of patients with presbycusis reveals high frequency of mitochondrial mutations SO HEARING RESEARCH LA English DT Article DE presbycusis; mitochondrial DNA; mutations; archival temporal bones; cochlea; aging ID RIBOSOMAL-RNA GENE; DNA DELETION; HUMAN BRAIN; DEAFNESS; AGE; DEGENERATION; TISSUES AB Presbycusis is a histologically and genetically heterogenous group of disorders, which lead to progressive, primarily sensorineural hearing loss with aging. Acquired mitochondrial DNA defects have been proposed as important determinants of aging, particularly in neuro-muscular tissues. The spiral ganglion and membranous labyrinth from archival temporal bones of 5 patients with presbycusis were examined for mutations within the mitochondrially-encoded cytochrome oxidase II gene. When compared to controls, results indicate that mitochondrial mutations in the peripheral auditory system occur commonly with age-related hearing loss, that there is great individual variability in both quantity and location of mutation accumulation, and that at least a proportion of presbycusis patients have a highly significant load of mutations in auditory tissue. This work supports the hypothesis that acquired mitochondrial mutations are a determinant of hearing loss in a subgroup of presbycusis patients. C1 UNIV CALIF LOS ANGELES,SCH MED,LOS ANGELES,CA 90048. UNIV IOWA HOSP & CLIN,DEPT OTOLARYNGOL HEAD & NECK SURG,MOL OTOLARYNGOL RES LABS,IOWA CITY,IA 52242. UNIV CALIF SAN DIEGO,DEPT SURG,DIV OTOLARYNGOL HEAD & NECK SURG,LA JOLLA,CA 92093. RP FischelGhodsian, N (reprint author), CEDARS SINAI RES INST,MED GENET BIRTH DEFECTS CTR,STEVEN SPEILBERG PEDIAT RES CTR,LOS ANGELES,CA 90048, USA. CR ATTARDI G, 1988, ANNU REV CELL BIOL, V4, P289, DOI 10.1146/annurev.cb.04.110188.001445 BACINO C, 1995, PHARMACOGENETICS, V5, P165, DOI 10.1097/00008571-199506000-00005 BALLINGER SW, 1992, NAT GENET, V1, P11, DOI 10.1038/ng0492-11 BAUMER A, 1994, AM J HUM GENET, V54, P618 BIRNBOIM HC, 1983, METHOD ENZYMOL, V100, P243 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 BRINER W, 1989, NEUROBIOL AGING, V10, P295, DOI 10.1016/0197-4580(89)90039-0 CORRALDEBRINSKI M, 1992, NAT GENET, V2, P324, DOI 10.1038/ng1292-324 CORTOPASSI GA, 1990, NUCLEIC ACIDS RES, V18, P6927, DOI 10.1093/nar/18.23.6927 DAWSON DA, 1987, NATL CTR HLTH STAT C FISCHELGHODSIAN N, 1993, AM J OTOLARYNG, V14, P399, DOI 10.1016/0196-0709(93)90113-L FISCHELGHODSIAN N, 1995, AM J OTOLARYNG, V16, P403, DOI 10.1016/0196-0709(95)90078-0 FischelGhodsian N, 1997, AM J OTOLARYNG, V18, P173, DOI 10.1016/S0196-0709(97)90078-8 FISCHELGHODSIAN N, 1992, PEDIATR RES, V31, P557, DOI 10.1203/00006450-199206000-00004 FISHER RA, 1970, STATISTICAL METHODS FREEMAN GH, 1951, BIOMETRIKA, V38, P141, DOI 10.2307/2332323 GROSS NJ, 1969, J BIOL CHEM, V244, P1552 GUILD STACY R., 1931, ACTA OTO LARYNGOL, V15, P269, DOI 10.3109/00016483109119096 HSIEH RH, 1994, BIOCHEM MOL BIOL INT, V32, P109 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 JOHNSSON LG, 1972, LARYNGOSCOPE, V82, P1105, DOI 10.1288/00005537-197207000-00002 KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 LINNANE AW, 1990, BIOCHEM INT, V22, P1067 MUNSCHER C, 1993, BIOL CHEM H-S, V374, P1099, DOI 10.1515/bchm3.1993.374.7-12.1099 NAGLEY P, 1993, MITOCHONDRIAL DNA HU Oshima T, 1996, LARYNGOSCOPE, V106, P43, DOI 10.1097/00005537-199601000-00009 Pallotti F, 1996, AM J HUM GENET, V59, P591 PREZANT TR, 1993, NAT GENET, V4, P289, DOI 10.1038/ng0793-289 REID FM, 1994, HUM MUTAT, V3, P243, DOI 10.1002/humu.1380030311 RYAN A F, 1991, Molecular and Cellular Neuroscience, V2, P179, DOI 10.1016/1044-7431(91)90011-C SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Seidman MD, 1996, LARYNGOSCOPE, V106, P777, DOI 10.1097/00005537-199606000-00021 SIMPSON TA, 1995, LARYNGOSCOPE, V105, P28, DOI 10.1288/00005537-199501000-00009 SOONG NW, 1992, NAT GENET, V2, P318 VELTRI KL, 1990, J CELL PHYSIOL, V143, P160, DOI 10.1002/jcp.1041430122 YEN TC, 1989, BIOCHEM BIOPH RES CO, V165, P994, DOI 10.1016/0006-291X(89)92701-0 ZHANG CF, 1993, BIOCHEM BIOPH RES CO, V195, P1104, DOI 10.1006/bbrc.1993.2158 NR 38 TC 57 Z9 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 147 EP 154 DI 10.1016/S0378-5955(97)00077-4 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100014 PM 9282897 ER PT J AU Backoff, PM Palombi, PS Caspary, DM AF Backoff, PM Palombi, PS Caspary, DM TI Glycinergic and GABAergic inputs affect short-term suppression in the cochlear nucleus SO HEARING RESEARCH LA English DT Article DE chinchilla; cochlear nucleus; forward-masking; GABA; glycine; iontophoresis ID SINGLE UNIT-ACTIVITY; AUDITORY-NERVE; GUINEA-PIG; DESCENDING PROJECTIONS; HORSERADISH-PEROXIDASE; RESPONSE PROPERTIES; ECHO SUPPRESSION; IN-VIVO; DORSAL; NEURONS AB Most cochlear nucleus (CN) neurons exhibit short-term response suppression to a second stimulus in a paired-pulse (click), forward-masking, paradigm. The magnitude of suppression, which appears to be greater than that observed in acoustic nerve, is dependent on the temporal separation and/or relative intensities of the two stimuli. Recent evidence suggests that inhibitory circuitry ending on CN neurons may mediate this response suppression. Using extracellular recordings from single CN neurons, suppression was evaluated using a forward-masking paradigm. Responses to paired acoustic clicks (i.e., a 'masker' followed by an identical 'probe' click) were measured while the time interval between the masker and probe was varied systematically. The role of inhibitory circuitry in forward-masking in the CN was assessed by pharmacologic manipulation of the GABA(A) and glycine(I) (strychnine-sensitive) receptors. Blockade of glycinergic or GABAergic receptors by iontophoretic application of the antagonists, strychnine and bicuculline methiodide, decreased the effects of forward-masking by shortening recovery times of the probe response in 2/3 of the neurons tested. Conversely, agonist application (glycine, and GABA or muscimol) increased the magnitude of suppression and delayed recovery of the probe response relative to control values. These findings suggest that known circuits releasing glycine and/or GABA mediate short-term response suppression in some CN neurons. C1 SO ILLINOIS UNIV, SCH MED, DEPT PHARMACOL, SPRINGFIELD, IL 62702 USA. CR BACKOFF PM, 1994, ASS RES OT ABSTR, V17, P17 BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2 BUTELMAN ER, 1993, J PHARMACOL EXP THER, V264, P762 Cant NB, 1992, MAMMALIAN AUDITORY P, P66 CASPARY DM, 1984, HEARING RES, V13, P113, DOI 10.1016/0378-5955(84)90102-3 CASPARY DM, 1990, GLYCINE NEUROTRANSMI, P453 CASPARY DM, 1994, J NEUROPHYSIOL, V72, P2124 CASPARY DM, 1979, BRAIN RES, V172, P179, DOI 10.1016/0006-8993(79)90909-0 Caspary D.M., 1986, NEUROBIOLOGY HEARING, P303 CASPARY DM, 1987, BRAIN RES, V417, P273, DOI 10.1016/0006-8993(87)90452-5 DENOLORENTE R, 1981, PRIMARY ACOUSTIC NUC EBERT U, 1995, EXP BRAIN RES, V104, P310 Ebert U, 1995, HEARING RES, V91, P160, DOI 10.1016/0378-5955(96)83100-5 EVANS EF, 1993, NATO ADV SCI INST SE, V239, P253 FENG AS, 1985, J COMP NEUROL, V235, P529, DOI 10.1002/cne.902350410 Frisina RD, 1996, J ACOUST SOC AM, V99, P475, DOI 10.1121/1.414559 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 GODFREY DA, 1975, J COMP NEUROL, V162, P269, DOI 10.1002/cne.901620207 GRANT IS, 1981, BRIT J ANAESTH, V53, P805, DOI 10.1093/bja/53.8.805 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 HAVEY DC, 1980, ELECTROEN CLIN NEURO, V48, P249, DOI 10.1016/0013-4694(80)90313-2 JUIZ JM, 1993, NATO ADV SCI INST SE, V239, P167 Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G KALTENBACH JA, 1993, HEARING RES, V67, P35, DOI 10.1016/0378-5955(93)90229-T KIANG NYS, 1965, ANN OTO RHINOL LARYN, V74, P463 KYLES AE, 1993, BRIT J PHARMACOL, V108, P907 MANIS PB, 1990, J NEUROSCI, V10, P2338 MARTIN MR, 1982, NEUROPHARMACOLOGY, V21, P201, DOI 10.1016/0028-3908(82)90188-5 MUGNAINI E, 1985, J COMP NEUROL, V235, P61, DOI 10.1002/cne.902350106 OERTEL D, 1993, NATO ADV SCI INST SE, V239, P225 OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206 Osen K.K., 1990, GLYCINE NEUROTRANSMI, P417 PALOMBI PS, 1994, HEARING RES, V75, P175, DOI 10.1016/0378-5955(94)90068-X Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 PALOMBI PS, 1992, J NEUROPHYSIOL, V67, P738 Parham K, 1996, J NEUROPHYSIOL, V76, P17 PARHAM K, 1993, J ACOUST SOC AM, V94, P3227, DOI 10.1121/1.407228 RELKIN EM, 1988, J ACOUST SOC AM, V84, P584, DOI 10.1121/1.396836 RHODE WS, 1986, J NEUROPHYSIOL, V56, P287 Rhode WS, 1992, MAMMALIAN AUDITORY P, P94 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 SAINTMARIE RL, 1993, NATO ADV SCI INST SE, V239, P121 SAINTMARIE RL, 1991, HEARING RES, V51, P11, DOI 10.1016/0378-5955(91)90003-R SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 SHORE SE, 1991, HEARING RES, V52, P255, DOI 10.1016/0378-5955(91)90205-N SHORE SE, 1992, HEARING RES, V62, P16, DOI 10.1016/0378-5955(92)90199-W SHORE SE, 1995, HEARING RES, V82, P31 SHORE SE, 1994, ASS RES OT ABSTR, V17, P27 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 SNYDER RL, 1988, J COMP NEUROL, V278, P209, DOI 10.1002/cne.902780205 SOBEL EC, 1994, SCIENCE, V263, P823, DOI 10.1126/science.263.5148.823 SPANGLER KM, 1987, J COMP NEUROL, V259, P452, DOI 10.1002/cne.902590311 VIEMEISTER NF, 1993, JHUMAN PSYCHOPHYSICS, P116 VOIGT HF, 1980, J NEUROPHYSIOL, V44, P76 WATANABE T, 1971, JPN J PHYSIOL, V21, P537 WICKESBERG RE, 1990, J NEUROSCI, V10, P1762 WICKESBERG RE, 1993, MAMMALIAN COCHLEAR N, P77 WICKESBERG RE, 1988, J COMP NEUROL, V268, P389, DOI 10.1002/cne.902680308 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 WU SH, 1984, J NEUROSCI, V4, P1577 YOUNG ED, 1995, J COMP NEUROL, V268, P389 NR 62 TC 29 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 155 EP 163 DI 10.1016/S0378-5955(97)00081-6 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100015 PM 9282898 ER PT J AU Szymko, YM Zwislocki, JJ Hertig, L AF Szymko, YM Zwislocki, JJ Hertig, L TI Enhanced cochlear responses after sound exposure SO HEARING RESEARCH LA English DT Article DE enhancement; Hensen's cell; sound exposure; active feedback; cochlear mechanics ID OUTER HAIR-CELLS; INDUCED HEARING-LOSS; GUINEA-PIG COCHLEA; PRODUCT OTOACOUSTIC EMISSIONS; INTRACELLULAR-RECORDINGS; EVOKED-RESPONSES; NOISE; OVERSTIMULATION; DISTORTION; STEREOCILIA AB Alternating potentials produced in Hensen's cells of Mongolian gerbils by sinusoidal stimuli were enhanced or depressed after exposure to broad-band sound of moderately high intensity, depending on exposure-and stimulus intensities. Since Hensen's cell responses have been shown to be identical in phase and directly proportional in magnitude to outer hair cell (OHC) responses (Oesterle, E.C., Dallos, P., 1989, J. Acoust. Soc. Am. 86 (3), 1013-1032.; Zwislocki, J.J., Slepecky, N.B., Cefaratti, L., Smith, R.L., 1992, Hear. Res. 57, 175-194), it was assumed that these changes were reflections of changes in OHC receptor potentials, which were of main interest. The indirect method of intracellularly recording the Hensen's cell potentials rather than OI-IC potentials was used to minimize damage to the organ of Corti and reduce technical difficulties associated with repeated recordings from OHCs. Continuous magnitude and phase transfer functions (TFs) were obtained before and after the exposure over a range of sound pressure levels (SPLs) extending from 40-90 dB by using frequency sweeps ranging from 0.125-18 kHz. Cochlear microphonic (CM) TFs were also acquired over the same frequency and intensity ranges for monitoring purposes. The exposure stimuli were set at 80, 86, 90 or 100 dB SPL for periods ranging from 10-40 min. When response enhancement occurred, it was most clearly seen in the peak of the transfer function determined at 90 dB SPL. Enhancement ranged from approximately 12-230% of the original peak. In contrast, control Hensen's cell recordings obtained over periods of up to 130 min revealed great response stability. In all reliable recordings, response enhancement was associated with a phase lead or no phase change. The strongest exposure stimuli tended to produce sensitivity loss accompanied by phase lag at the lower SPLs, in agreement with previous work in this laboratory (Zhang and Zwislocki, 1995). In some preparations, both sensitivity loss at lower SPLs and enhancement at higher SPLs occurred simultaneously, suggesting involvement of two different mechanisms. RP Szymko, YM (reprint author), SYRACUSE UNIV,INST SENSORY RES,SYRACUSE,NY 13244, USA. CR BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 CANLON B, 1987, HEARING RES, V30, P65, DOI 10.1016/0378-5955(87)90184-5 Canlon B, 1988, Scand Audiol Suppl, V27, P1 CANLON B, 1993, NEUROSCI LETT, V150, P103, DOI 10.1016/0304-3940(93)90118-5 CODY AR, 1985, NATURE, V315, P662, DOI 10.1038/315662a0 CODY AR, 1988, HEARING RES, V35, P59, DOI 10.1016/0378-5955(88)90040-8 CODY AR, 1986, RESPONSES MAMMALIAN DALLOS P, 1982, SCIENCE, V218, P582, DOI 10.1126/science.7123260 DANCER AL, 1992, NOISE INDUCED HEARIN DAVIS H, 1953, J ACOUST SOC AM, V25, P1180, DOI 10.1121/1.1907260 HENDERSON D, 1993, EAR HEARING, V14, P152, DOI 10.1097/00003446-199306000-00002 Kirk DL, 1996, J ACOUST SOC AM, V100, P3714, DOI 10.1121/1.417335 LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633 Luft J D, 1988, Trans Pa Acad Ophthalmol Otolaryngol, V40, P770 MILLER J, 1987, LONDON S ELECTROEN S, V39 MILLER J, 1985, ABS ASS RES OT, V8, P50 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 NORTON SJ, 1991, HEARING RES, V51, P73, DOI 10.1016/0378-5955(91)90008-W OESTERLE EC, 1989, J ACOUST SOC AM, V86, P1013, DOI 10.1121/1.398092 PIETRAS BW, 1993, J ACOUST SOC AM, V93, P2368, DOI 10.1121/1.406147 POPELAR J, 1987, HEARING RES, V26, P239, DOI 10.1016/0378-5955(87)90060-8 SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 SAUNDERS JC, 1986, BASIC APPL ASPECTS N, P11 SAUNDERS JC, 1986, HEARING RES, V23, P233, DOI 10.1016/0378-5955(86)90112-7 SCHMIEDT RA, 1981, HEARING RES, V5, P295, DOI 10.1016/0378-5955(81)90053-8 SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3 SMOORENBURG GF, 1993, AUDIOLOGY, V32, P333 SOKOLICH WG, 1976, J ACOUST SOC AM, V59, P963, DOI 10.1121/1.380955 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E SUBRAMANIAM M, 1994, EAR HEARING, V15, P299, DOI 10.1097/00003446-199408000-00004 SYKA J, 1994, HEARING RES, V78, P158, DOI 10.1016/0378-5955(94)90021-3 SZYMKO YM, 1995, J COMP PHYSIOL A, V176, P727 ULFENDAHL M, 1993, EUR J NEUROSCI, V5, P713, DOI 10.1111/j.1460-9568.1993.tb00535.x XUE SW, 1993, HEARING RES, V70, P121, DOI 10.1016/0378-5955(93)90056-7 ZHANG M, 1993, THESIS SYRACUSE U ZHANG MS, 1995, HEARING RES, V85, P1, DOI 10.1016/0378-5955(95)00026-Z ZWISLOCKI JJ, 1983, MECHANISMS HEARING, P21 NR 38 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 164 EP 178 DI 10.1016/S0378-5955(97)00071-3 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100016 PM 9282899 ER PT J AU Chen, C AF Chen, C TI Hyperpolarization-activated current (I-h) in primary auditory neurons SO HEARING RESEARCH LA English DT Article DE hyperpolarization-activated current; inward rectifying channel; voltage-clamp; current-clamp; primary auditory nerve; spiral ganglion neuron ID GUINEA-PIG COCHLEA; VOLTAGE-CLAMP ANALYSIS; INWARD ANOMALOUS RECTIFICATION; BULLFROG SYMPATHETIC NEURONS; THALAMIC RELAY NEURONS; RABBIT SINOATRIAL NODE; PACE-MAKER CURRENT; CATION CURRENT; OSCILLATORY ACTIVITY; MEMBRANE-PROPERTIES AB A hyperpolarization-activated current (termed I-h) is believed to provide a pacemaker depolarization in sinoatrial node cells and in some central and peripheral neurons. In the present study, we examined if such an inward cation current exists in primary auditory neurons using the whole-cell patch-clamp technique. A large inward, non-inactivating current was seen during hyperpolarizing steps negative to the resting potential. A depolarizing sag occurred during hyperpolarizing current injection, and upon termination of the current injection there was an overshoot, or a rebound firing. A low concentration of Cs+, but not Ba2+, reversibly blocked the inward current and depolarizing sag. The activation of the current showed voltage dependence with half-activation occurring at -101 +/- 1 mV. The time course of a activation was fitted by double exponential function and was voltage-dependent (time constants: tau(1) and tau(2) = 480 and 3125 ms at -100 mV, and 66 and 404 ms at -160 mV). The reversal potential of the current was -36 mV measured from tail currents. The conductance of the current was decreased in Na+-free solution, and increased in high K+ solution. Increases in the levels of intracellular cAMP or cGMP enhanced the current. The results suggest that there exists a hyperpolarization-activated inward cation current in mammalian primary auditory neurons. This current may provide a depolarizing current during the membrane hyperpolarization following each firing of the primary auditory nerve. RP Chen, C (reprint author), LOUISIANA STATE UNIV,MED CTR,KRESGE HERING RES LAB S,DEPT OTORHINOLARYNGOL & BIOCOMMUN,NEW ORLEANS,LA 70112, USA. CR ADAMS PR, 1982, J PHYSIOL-LONDON, V330, P537 ADAMS PR, 1982, J PHYSIOL-LONDON, V332, P233 AKASU T, 1994, PFLUG ARCH EUR J PHY, V429, P117, DOI 10.1007/BF02584037 Akopian A, 1996, J NEUROPHYSIOL, V76, P1828 ANGSTADT JD, 1989, J NEUROSCI, V9, P2846 ATTWELL D, 1980, J PHYSIOL-LONDON, V309, P287 BADER CR, 1984, J PHYSIOL-LONDON, V347, P611 BAL T, 1993, J PHYSIOL-LONDON, V468, P669 BANKS MI, 1993, J NEUROPHYSIOL, V70, P1420 BOBBIN RP, 1979, EXP BRAIN RES, V34, P389 CALLEWAERT G, 1984, J PHYSIOL-LONDON, V349, P643 CHEN C, 1996, SOC NEUR ABSTR, V22, P241 CHEN C, 1995, J PHYSIOL-LONDON, V482, P521 Chen C, 1996, HEARING RES, V98, P9, DOI 10.1016/0378-5955(96)00049-4 COUSILLAS H, 1988, HEARING RES, V36, P213, DOI 10.1016/0378-5955(88)90063-9 DALDIN C, 1995, EUR ARCH OTO-RHINO-L, V252, P270 DALDIN C, 1995, HEARING RES, V90, P202, DOI 10.1016/0378-5955(95)00167-5 DIFRANCESCO D, 1986, J PHYSIOL-LONDON, V377, P61 DIFRANCESCO D, 1981, J PHYSIOL-LONDON, V314, P377 DIFRANCESCO D, 1993, ANNU REV PHYSIOL, V55, P455, DOI 10.1146/annurev.physiol.55.1.455 DIFRANCESCO D, 1995, CARDIOVASC RES, V29, P449, DOI 10.1016/S0008-6363(96)88518-X DIFRANCESCO D, 1989, SCIENCE, V243, P669, DOI 10.1126/science.2916119 DIFRANCESCO D, 1991, NATURE, V351, P145, DOI 10.1038/351145a0 EVANS EF, 1972, J PHYSIOL-LONDON, V226, P263 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FELIX D, 1992, HEARING RES, V64, P1, DOI 10.1016/0378-5955(92)90163-H GALLIGAN JJ, 1990, AM J PHYSIOL, V259, pG966 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 GUTH PS, 1991, HEARING RES, V56, P69, DOI 10.1016/0378-5955(91)90155-3 Hille B., 1992, IONIC CHANNELS EXCIT, V2nd INGRAM SL, 1994, NEURON, V13, P179, DOI 10.1016/0896-6273(94)90468-5 Ingram SL, 1996, J PHYSIOL-LONDON, V492, P97 JIANG ZG, 1993, J PHYSIOL-LONDON, V462, P753 JWOMBLE M, 1991, J NEUROPHYSIOL, V70, P2056 KAMONDI A, 1991, J NEUROPHYSIOL, V66, P1902 KAWASE T, 1992, J COMP NEUROL, V319, P312, DOI 10.1002/cne.903190210 KIEHN O, 1992, J NEUROPHYSIOL, V68, P496 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X MAYER ML, 1983, J PHYSIOL-LONDON, V340, P19 MCCORMICK DA, 1990, J PHYSIOL-LONDON, V431, P319 MCCORMICK DA, 1990, J PHYSIOL-LONDON, V431, P291 Moore EJ, 1996, ACTA OTO-LARYNGOL, V116, P552, DOI 10.3109/00016489609137888 Pape HC, 1996, ANNU REV PHYSIOL, V58, P299, DOI 10.1146/annurev.physiol.58.1.299 PAPE HC, 1992, NEURON, V9, P441, DOI 10.1016/0896-6273(92)90182-D PUEL JL, 1989, COMP BIOCHEM PHYS C, V93, P73, DOI 10.1016/0742-8413(89)90013-3 PUEL JL, 1989, BRAIN RES, V487, P9, DOI 10.1016/0006-8993(89)90934-7 SANTOS-SACCHI J, 1993, J NEUROSCI, V13, P3599 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 SOLOMON JS, 1993, J PHYSIOL-LONDON, V469, P291 SOLTESZ I, 1991, J PHYSIOL-LONDON, V441, P175 SPAIN WJ, 1987, J NEUROPHYSIOL, V57, P1555 TANAKA E, 1991, J NEUROPHYSIOL, V65, P808 TOKIMASA T, 1990, J PHYSIOL-LONDON, V420, P409 TRAVAGLI RA, 1994, J NEUROPHYSIOL, V71, P1308 VANGINNEKEN ACG, 1991, J PHYSIOL-LONDON, V434, P57 WARR WB, 1986, NEUROBIOLOGY HEARING, P33 WOLLMUTH LP, 1992, J GEN PHYSIOL, V100, P749, DOI 10.1085/jgp.100.5.749 YANAGIHARA K, 1980, PFLUG ARCH EUR J PHY, V385, P11, DOI 10.1007/BF00583909 NR 59 TC 38 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 179 EP 190 DI 10.1016/S0378-5955(97)00078-6 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100017 PM 9282900 ER PT J AU Heid, S JahnSiebert, TK Klinke, R Hartmann, R Langner, G AF Heid, S JahnSiebert, TK Klinke, R Hartmann, R Langner, G TI Afferent projection patterns in the auditory brainstem in normal and congenitally deaf white cats SO HEARING RESEARCH LA English DT Article DE cochlear implant; congenital deafness; auditory afferent projection; inferior colliculus; cat ID INFERIOR COLLICULUS; COCHLEAR NUCLEUS; ELECTRICAL-STIMULATION; STEM; ORGANIZATION; FERRET; GERBIL; TRACERS; LESIONS; NEURONS AB Cochlear implantation in congenitally deaf children is developing to a successful medical tool. Little is known, however, on morphology and pathophysiology of the central auditory system in these auditory deprived children. One form of congenital hearing loss, that seen in the deaf white cat, was investigated to see if there are differences in the afferent pathways from the cochlear nuclei to the inferior colliculus. The retrogradely transported fluorescent tracer diamidino yellow (DY) was injected into different parts of the central nucleus of the inferior colliculus (ICC) of normal cats and deaf white cats. It was found that the main afferent projection patterns in deaf white cats were unchanged in spite of congenital auditory deprivation; minor differences were seen. C1 TH DARMSTADT,INST ZOOL,D-64287 DARMSTADT,GERMANY. RP Heid, S (reprint author), UNIV FRANKFURT,INST PHYSIOL 3,THEODOR STERN KAI 7,D-60590 FRANKFURT,GERMANY. CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 BENTIVOGLIO M, 1980, NEUROSCI LETT, V18, P25, DOI 10.1016/0304-3940(80)90208-6 BOSHER SK, 1965, PROC R SOC SER B-BIO, V162, P147, DOI 10.1098/rspb.1965.0030 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 DODSON HC, 1994, DEV BRAIN RES, V80, P261, DOI 10.1016/0165-3806(94)90111-2 GOLDBERG JM, 1967, J COMP NEUROL, V129, P143, DOI 10.1002/cne.901290203 HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P296, DOI 10.3109/00016489309135812 HARTMANN R, 1997, UNPUB HEARING RES HEID S, 1995, P 23 GOTT NEUR C, V2, P593 HEID S, 1997, UNPUB HEARING RES ILLERT M, 1982, J NEUROSCI METH, V6, P199, DOI 10.1016/0165-0270(82)90084-X KEIZER K, 1983, EXP BRAIN RES, V51, P179 KITZES L M, 1984, Brain Research, V306, P171, DOI 10.1016/0006-8993(84)90366-4 LUSTIG LR, 1994, HEARING RES, V74, P29, DOI 10.1016/0378-5955(94)90173-2 Mair I W, 1973, Acta Otolaryngol Suppl, V314, P1 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 MOORE DR, 1990, DEV BRAIN RES, V54, P125, DOI 10.1016/0165-3806(90)90072-7 MOORE DR, 1988, J COMP NEUROL, V272, P503, DOI 10.1002/cne.902720405 MOORE DR, 1985, J COMP NEUROL, V240, P180, DOI 10.1002/cne.902400208 MOORE DR, 1994, J COMP NEUROL, V339, P301, DOI 10.1002/cne.903390209 MOORE DR, 1995, J COMP NEUROL, V357, P204, DOI 10.1002/cne.903570203 MOORE DR, 1992, NEUROREPORT, V3, P269, DOI 10.1097/00001756-199203000-00014 NI DF, 1993, ACTA OTO-LARYNGOL, V113, P489, DOI 10.3109/00016489309135851 NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203 PASIC TR, 1994, J COMP NEUROL, V348, P111, DOI 10.1002/cne.903480106 REBILLARD G, 1980, BRAIN RES, V188, P252, DOI 10.1016/0006-8993(80)90572-7 REBILLARD G, 1977, BRAIN RES, V129, P162, DOI 10.1016/0006-8993(77)90980-5 Reinoso-Suarez F., 1961, TOPOGRAPHISCHER HIRN ROCKEL AJ, 1973, J COMP NEUROL, V147, P11, DOI 10.1002/cne.901470103 ROMAND R, 1992, DEV AUDITORY VESTIBU, V2 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 RUSSELL FA, 1995, J COMP NEUROL, V352, P607, DOI 10.1002/cne.903520409 NR 32 TC 25 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 191 EP 199 DI 10.1016/S0378-5955(97)00074-9 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100018 PM 9282901 ER PT J AU Atoji, Y Yamamoto, Y Suzuki, Y Matsui, F Oohira, A AF Atoji, Y Yamamoto, Y Suzuki, Y Matsui, F Oohira, A TI Immunohistochemical localization of neurocan in the lower auditory nuclei of the dog SO HEARING RESEARCH LA English DT Article DE neurocan; cell membrane; axon terminal; neuron; auditory tract; ultrastructure ID CHONDROITIN SULFATE PROTEOGLYCAN; SUPERIOR OLIVARY NUCLEI; CELL-ADHESION MOLECULES; EXTRACELLULAR-MATRIX; NEURITE OUTGROWTH; KERATAN SULFATE; NERVOUS-TISSUE; IMMUNOCYTOCHEMICAL LOCALIZATION; PERINEURONAL NETS; DEVELOPING CHICK AB Chondroitin sulfate proteoglycans are present at high levels in the lower auditory system of mammals. Axon terminals on the principal neurons in the superior olivary nuclei contain chondroitin 4- and 6-sulfate, while the broad extracellular matrix around axon terminals contains chondroitin sulfate D, a highly sulfated chondroitin sulfate rich in the disaccharide unit of GlcA(2S)beta 1 --> 3GalNAc(6S), in the dog. In the present study, we investigated the immunohistochemical staining of neurocan, a brain-specific proteoglycan, in the lower auditory tract of the dog, including an analysis by immunoelectron microscopy. Immunolocalization of neurocan was conspicuous in the medial and lateral superior olivary nuclei and much less intense immunostaining was seen in the cochlear nucleus and posterior colliculus. No immunoreactivity were found in other nuclei. The immunostaining in the medial and lateral superior olivary nuclei was observed as perineuronal nets around large principal neurons at the light-microscopic level, while no immunostaining was observed in the upper segment of the medial superior olivary nucleus and the medial segment of the lateral superior olivary nucleus, in which medium-sized and small neurons were located. Immunoelectron microscopy revealed the reaction products of immunostaining on cell membranes of the perikarya of principal neurons and on cell membranes of presynaptic terminals which made axe-somatic synapses on the principal cells. No immunoreactivity was detected at synaptic junctions, in the extracellular matrix or within axon terminals. Tn the cochlear nucleus, immunoreactive perineuronal nets were found around a small number of neurons and immunoreactive nerve fibers were scattered in the anterior ventral cochlear nucleus. In the posterior colliculus. perineuronal nets, which were weakly immunostained, were sparsely distributed in the central nucleus. These results suggest that different locations of chondroitin sulfate proteoglycans, including neurocan, may be associated with focal sites composed of neuronal surface, terminal boutons and extracellular matrix in the lower auditory tract of the adult dog. C1 INST DEV RES,DEPT PERINATOL,KASUGAI,AICHI 48003,JAPAN. RP Atoji, Y (reprint author), GIFU UNIV,FAC AGR,LAB VET ANAT,GIFU 50111,JAPAN. CR ADAMS JC, 1990, HEARING RES, V49, P281, DOI 10.1016/0378-5955(90)90109-3 AQUINO DA, 1984, J CELL BIOL, V99, P1130, DOI 10.1083/jcb.99.3.1130 ATOJI Y, 1989, J NEUROCYTOL, V18, P599, DOI 10.1007/BF01187081 ATOJI Y, 1992, BRAIN RES, V585, P287, DOI 10.1016/0006-8993(92)91220-9 ATOJI Y, 1995, NEUROSCI LETT, V189, P39, DOI 10.1016/0304-3940(95)11447-5 BERTOLOTTO A, 1995, BRAIN RES, V673, P344, DOI 10.1016/0006-8993(95)00015-I BERTOLOTTO A, 1991, J NEUROSCI RES, V29, P225, DOI 10.1002/jnr.490290213 BRAUNEWELL KH, 1995, EUR J NEUROSCI, V7, P792, DOI 10.1111/j.1460-9568.1995.tb00682.x CELIO MR, 1994, BRAIN RES REV, V19, P128, DOI 10.1016/0165-0173(94)90006-X DEWITT DA, 1994, BRAIN RES, V656, P205, DOI 10.1016/0006-8993(94)91386-2 DEWITT DA, 1993, EXP NEUROL, V121, P149, DOI 10.1006/exnr.1993.1081 DOU CL, 1994, J NEUROSCI, V14, P7616 Engel M, 1996, J COMP NEUROL, V366, P34 FAISSNER A, 1994, J CELL BIOL, V126, P783, DOI 10.1083/jcb.126.3.783 FLACCUS A, 1991, J NEUROCHEM, V56, P1608, DOI 10.1111/j.1471-4159.1991.tb02058.x FRIEDLANDER DR, 1994, J CELL BIOL, V125, P669, DOI 10.1083/jcb.125.3.669 GHIRNIKAR RS, 1995, GLIA, V14, P145, DOI 10.1002/glia.440140209 GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192 GROTHE B, 1992, P NATL ACAD SCI USA, V89, P5108, DOI 10.1073/pnas.89.11.5108 GRUMET M, 1993, J CELL BIOL, V120, P815, DOI 10.1083/jcb.120.3.815 GRUMET M, 1994, J BIOL CHEM, V269, P12142 HARTIG W, 1994, BRAIN RES, V635, P307, DOI 10.1016/0006-8993(94)91452-4 HASENOHRL RU, 1995, BEHAV BRAIN RES, V70, P59, DOI 10.1016/0166-4328(94)00183-G HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6 IIJIMA N, 1991, J NEUROCHEM, V56, P706, DOI 10.1111/j.1471-4159.1991.tb08207.x KATOHSEMBA R, 1993, J CELL PHYSIOL, V156, P17, DOI 10.1002/jcp.1041560104 KATOHSEMBA R, 1995, EUR J NEUROSCI, V7, P613, DOI 10.1111/j.1460-9568.1995.tb00665.x LETOURNEAU PC, 1994, J NEUROSCI, V14, P915 MAEDA N, 1992, DEV BIOL, V151, P564, DOI 10.1016/0012-1606(92)90194-L Margolis RK, 1996, PERSPECT DEV NEUROBI, V3, P273 MARGOLIS RK, 1993, EXPERIENTIA, V49, P429, DOI 10.1007/BF01923587 MATSUI F, 1994, NEUROCHEM INT, V25, P425, DOI 10.1016/0197-0186(94)90018-3 MCADAMS BD, 1995, J COMP NEUROL, V352, P594, DOI 10.1002/cne.903520408 MeyerPuttlitz B, 1996, J COMP NEUROL, V366, P44, DOI 10.1002/(SICI)1096-9861(19960226)366:1<44::AID-CNE4>3.0.CO;2-K MILEV P, 1994, J CELL BIOL, V127, P1703, DOI 10.1083/jcb.127.6.1703 MILLER B, 1995, J COMP NEUROL, V355, P615, DOI 10.1002/cne.903550410 MUNYER PD, 1994, HEARING RES, V79, P83, DOI 10.1016/0378-5955(94)90129-5 MUNYER PD, 1995, HEARING RES, V85, P85, DOI 10.1016/0378-5955(95)00032-Y NICHOL KA, 1994, J NEUROSCI RES, V37, P623, DOI 10.1002/jnr.490370509 OKAMOTO M, 1994, BRAIN RES, V637, P57, DOI 10.1016/0006-8993(94)91217-3 OOHIRA A, 1994, NEUROSCIENCE, V60, P145, DOI 10.1016/0306-4522(94)90210-0 OOHIRA A, 1991, J NEUROSCI, V11, P822 OOHIRA A, 1994, NEUROSCI RES, V20, P195, DOI 10.1016/0168-0102(94)90088-4 RAUCH U, 1992, J BIOL CHEM, V267, P19536 RAUCH U, 1991, J BIOL CHEM, V266, P14785 RING C, 1995, DEV BIOL, V168, P11, DOI 10.1006/dbio.1995.1057 Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 SHIOI J, 1993, NEUROSCI LETT, V154, P121, DOI 10.1016/0304-3940(93)90186-O SNOW DM, 1994, DEV BIOL, V166, P87, DOI 10.1006/dbio.1994.1298 SNOW DM, 1991, DEVELOPMENT, V113, P1473 Spicer SS, 1996, J COMP NEUROL, V365, P217, DOI 10.1002/(SICI)1096-9861(19960205)365:2<217::AID-CNE2>3.0.CO;2-8 SUR M, 1988, J NEUROSCI, V8, P874 WATANABE E, 1995, EUR J NEUROSCI, V7, P547, DOI 10.1111/j.1460-9568.1995.tb00659.x ZAREMBA S, 1989, NEURON, V2, P1207, DOI 10.1016/0896-6273(89)90305-X NR 54 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 200 EP 208 DI 10.1016/S0378-5955(97)00079-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100019 PM 9282902 ER PT J AU Hu, BH Henderson, D AF Hu, BH Henderson, D TI Changes in F-actin labeling in the outer hair cell and the Deiters cell in the chinchilla cochlea following noise exposure SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 19th Midwinter Meeting of the Association-for-Research-in-Otolaryngology CY FEB 04-08, 1996 CL ST PETERSBURG BEACH, FL SP Assoc Res Otolaryngol DE organ of Corti; chinchilla; F-actin; toughening; DPOAEs ID HEARING-LOSS; CONDITIONING EXPOSURES; BINDING PROTEINS; THRESHOLD SHIFT; ATP HYDROLYSIS; PERIODIC REST; ORGAN; CORTI; POLYMERIZATION; RESISTANCE AB It has been found that 'conditioning' noise exposures can render the inner ear more resistant to traumatic noise exposures. To explore the possible mechanisms underlying this phenomenon, filamentous actin (F-actin), labeled by rhodamine-phalloidin, was examined in the chinchilla cochlea using confocal fluorescence microscopy. The conditioning noise was 0.5 kHz octave band noise (OBN) at 90 dB SPL for 6 h/day and the high-level noise was the same noise but at 105 dB SPL for 4 h. A variety of pathological changes were found in the chinchilla cochlea after exposure to noise. Subjects exposed to conditioning noise (1 day or 10 days) and only high-level noise showed an increase in F-actin labeling than unexposed controls. By contrast, subjects who had 5 days quiet after the 10-day conditioning exposure exhibited a decrease in F-actin labeling. Interestingly, subjects exposed to high-level noise with prior 10-day conditioning exposure also showed a decrease in F-actin labeling in the cuticular plate and the stereocilia. The F-actin decreases in the stereocilia and the cuticular plates may decrease the mechanical rigidity of the organ of Corti. A more pliable organ of Corti may have reduced the possibility of fracture or ripping of cell junctions during the motion of the basilar membrane induced by acoustic overstimulation. C1 SUNY BUFFALO,CTR HEARING & DEAFNESS,DEPT COMMUNICAT SCI & DISORDERS,BUFFALO,NY 14214. CR Alberts B., 1994, MOL BIOL CELL, P821 ATTANASIO G, 1994, HEARING RES, V81, P199, DOI 10.1016/0378-5955(94)90165-1 AVINASH GB, 1993, HEARING RES, V67, P139, DOI 10.1016/0378-5955(93)90241-R BOETTCHER FA, 1992, HEARING RES, V62, P217, DOI 10.1016/0378-5955(92)90189-T CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 Carlier Marie-France, 1994, Seminars in Cell Biology, V5, P183, DOI 10.1006/scel.1994.1023 CARLIER MF, 1994, ADV EXP MED BIOL, V358, P71 CLARK WW, 1987, J ACOUST SOC AM, V82, P1253, DOI 10.1121/1.395261 DULON D, 1990, J NEUROSCI, V10, P1388 FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 HARRIS GG, 1968, J ACOUST SOC AM, V44, P176, DOI 10.1121/1.1911052 HENDERSON D, 1994, HEARING RES, V76, P101, DOI 10.1016/0378-5955(94)90092-2 HENDERSON D, 1994, HEARING RES, V74, P22, DOI 10.1016/0378-5955(94)90172-4 HENSELMAN LW, 1994, HEARING RES, V78, P1, DOI 10.1016/0378-5955(94)90038-8 KARLSSON MG, 1994, PATHOL RES PRACT, V190, P799 KORN ED, 1987, SCIENCE, V238, P638, DOI 10.1126/science.3672117 KUHN B, 1995, HEARING RES, V84, P139, DOI 10.1016/0378-5955(95)00021-U Miller J. D., 1963, ACTA OTO-LARYNGOL, V176, P1 ORMAN S, 1983, HEARING RES, V11, P261, DOI 10.1016/0378-5955(83)90061-8 POLLARD TD, 1986, ANNU REV BIOCHEM, V55, P987, DOI 10.1146/annurev.biochem.55.1.987 RAPHAEL Y, 1994, HEARING RES, V76, P173, DOI 10.1016/0378-5955(94)90098-1 RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 RASTEL D, 1993, J NEUROSCI METH, V47, P123, DOI 10.1016/0165-0270(93)90028-P SAUNDERS JC, 1986, HEARING RES, V23, P233, DOI 10.1016/0378-5955(86)90112-7 SINEX DG, 1987, J ACOUST SOC AM, V82, P1265, DOI 10.1121/1.395829 SLEPECKY N, 1989, CELL TISSUE RES, V257, P69 STOSSEL TP, 1985, ANNU REV CELL BIOL, V1, P353 SUBRAMANIAM M, 1991, HEARING RES, V56, P65, DOI 10.1016/0378-5955(91)90154-2 SUBRAMANIAM M, 1991, HEARING RES, V52, P181, DOI 10.1016/0378-5955(91)90197-H WAELKENS E, 1995, ADV ENZYME REGUL, V35, P199, DOI 10.1016/0065-2571(94)00013-S YLIKOSKI J, 1992, HEARING RES, V60, P80, DOI 10.1016/0378-5955(92)90061-Q ZENNER HP, 1988, ACTA OTO-LARYNGOL, V105, P39, DOI 10.3109/00016488809119443 NR 34 TC 27 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 209 EP 218 DI 10.1016/S0378-5955(97)00075-0 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100020 PM 9282903 ER PT J AU Tanahashi, A Horikawa, J Suga, N AF Tanahashi, A Horikawa, J Suga, N TI NMDA-mediated facilitation in the echo-delay tuned areas of the auditory cortex of the mustached bat SO HEARING RESEARCH LA English DT Article DE auditory cortex; D-2-amino-5-phosphonovalerate; facilitation; mustached bat; N-methyl-D-aspartate; ranging ID COMBINATION-SENSITIVE NEURONS; TARGET RANGE; BIOSONAR SIGNALS; GENICULATE-BODY; MOUSTACHED BAT; VISUAL-CORTEX; INFORMATION; RECEPTORS; REPRESENTATION AB We recorded the responses of single delay-tuned neurons in the dorsal fringe (DF) area and the FM-FM area of the auditory cortex of the mustached bat using multi-barreled carbon-fiber electrodes. An iontophoretic application of N-methyl-D-aspartate (NMDA) or kainate (ICA) to a DF neuron evoked a burst of discharges from the neuron. The burst of discharges evoked by NMDA was always smaller than that evoked by KA. Simultaneous application of D-2-amino-5-phosphonovalerate (APV) with NMDA and KA abolished the NMDA-evoked but not the KA-evoked discharges. APV did not evoke any significant changes in the auditory responses of 43 out of the 47 delay-tuned neurons studied in the DF area, and in all 20 neurons studied in the FM-FM area. In the remaining four DF neurons, however, APV either increased the initial discharges of their auditory response or decreased the late discharges of their response. These results indicate that in the majority of neurons in the DF and FM-FM areas NMDA receptors do not play a significant role in the processing of target-distance information, and that their facilitative auditory responses are basically created by synaptic interactions occurring in the subcortical auditory nuclei. C1 WASHINGTON UNIV,DEPT BIOL,ST LOUIS,MO 63130. CR ARMSTRONGJAMES M, 1980, J NEUROSCI METH, V2, P431, DOI 10.1016/0165-0270(80)90009-6 ARMSTRONGJAMES M, 1979, J NEUROSCI METH, V1, P279, DOI 10.1016/0165-0270(79)90039-6 ARMSTRONGJAMES M, 1993, J NEUROSCI, V13, P2149 BUTMAN AJ, 1992, THESIS WASHINGTON U EDAMATSU H, 1989, J NEUROPHYSIOL, V61, P202 FOX K, 1989, J NEUROSCI, V9, P2443 MITTMANN DH, 1994, ASS RES OT ABSTR, V17, P93 OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1275 OLSEN JF, 1986, THESIS WASHINGTON U ONEILL WE, 1979, SCIENCE, V203, P69, DOI 10.1126/science.758681 ONEILL WE, 1982, J NEUROSCI, V2, P17 SUGA N, 1986, J NEUROPHYSIOL, V55, P776 SUGA N, 1990, NEURAL NETWORKS, V3, P3, DOI 10.1016/0893-6080(90)90043-K SUGA N, 1979, SCIENCE, V206, P351, DOI 10.1126/science.482944 SUGA N, 1978, SCIENCE, V200, P778, DOI 10.1126/science.644320 SUGA N, 1983, J NEUROPHYSIOL, V49, P1573 TSUMOTO T, 1987, NATURE, V327, P513, DOI 10.1038/327513a0 WENSTRUP JJ, 1995, J NEUROSCI, V15, P4693 Yan J, 1996, SCIENCE, V273, P1100, DOI 10.1126/science.273.5278.1100 NR 19 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 219 EP 228 DI 10.1016/S0378-5955(97)00073-7 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100021 PM 9282904 ER PT J AU Harrison, RV Mount, RJ Hirakawa, H AF Harrison, RV Mount, RJ Hirakawa, H TI Total ablation of cochlear haircells by perilymphatic perfusion with water SO HEARING RESEARCH LA English DT Article DE cochlear deafness; deafferentation; unilateral hearing loss AB Inner and outer haircells are destroyed within one day following perfusion of the perilymphatic spaces with water, otherwise the structural integrity of the cochlea and the organ of Corti are preserved. This technique is a reliable method to create an acute unilateral deafness model for investigations of auditory function. C1 UNIV TORONTO,DEPT OTOLARYNGOL,TORONTO,ON M5S 1A1,CANADA. UNIV TORONTO,DEPT PHYSIOL,TORONTO,ON M5S 1A1,CANADA. HIROSHIMA UNIV,SCH MED,DEPT OTOLARYNGOL,HIROSHIMA 734,JAPAN. RP Harrison, RV (reprint author), HOSP SICK CHILDREN,AUDITORY SCI LAB,DEPT OTOLARYNGOL,555 UNIV AVE,TORONTO,ON M5G 1X8,CANADA. CR BROWNING GG, 1978, ANN OTO RHINOL LARYN, V87, P875 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 Evans EF, 1976, J PHYSIOL-LONDON, V256, P43 Harrison R V, 1991, Acta Otolaryngol Suppl, V489, P5 HUNTERDUVAR IM, 1982, NEW PERSPECTIVES NOI, P3 Kiang NY, 1970, SENSORINEURAL HEARIN, P241 MOORE DR, 1994, J COMP NEUROL, V339, P301, DOI 10.1002/cne.903390209 PARKES MJ, 1991, AM J OBSTET GYNECOL, V164, P1336 Reale R A, 1987, Brain Res, V431, P281 SANDE MA, 1980, PHARMACOL BASIS THER, P1245 SCHUKNECHT HF, 1960, NEURAL MECHANISMS AU, P76 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 NR 12 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 229 EP 233 DI 10.1016/S0378-5955(97)00085-3 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100022 PM 9282905 ER PT J AU Burkard, R Palmer, AR AF Burkard, R Palmer, AR TI Responses of chopper units in the ventral cochlear nucleus of the anaesthetised guinea pig to clicks-in-noise and click trains SO HEARING RESEARCH LA English DT Article DE click; ventral cochlear nucleus; chopper; maximum length sequences ID AUDITORY-EVOKED-RESPONSE; BRAIN-STEM RESPONSES; MAXIMUM LENGTH SEQUENCES; BROAD-BAND NOISE; STIMULUS DEPENDENCIES; TRAPEZOID BODY; STOCHASTIC RESONANCE; INFERIOR COLLICULUS; NERVE FIBERS; SINGLE UNITS AB Auditory brainstem responses (ABRs) have been measured with clicks, clicks masked by noise, click trains and pseudorandom maximum length sequences (MLS) of clicks. To investigate the neuronal populations contributing to the ABR under these stimulation conditions, we measured the extracellular responses of ventral cochlear nucleus (VCN) units in the urethane-anaesthetised guinea pig. We studied 23 chopper, 7 primary-like and 7 onset units. This report focuses on the responses from chopper units. The probability of discharge for chopper units increased with increasing click level reaching nearly 100% in many units, over a range of about 20-30 dB. Following each response to a click there was a 5-10 ms suppression of the spontaneous or noise evoked activity. As the level of the noise was increased over a range of 20-30 dB, the response to the clicks gradually decreased leading to a complete abolition of the click response at high noise levels. In a few units, low level noise produced a facilitation of the response to single clicks. In response to constant level equally spaced click trains, discharge probability increased with increasing minimum pulse interval (MPI), approaching 100% for MPIs of 4-8 ms in some units. The recovery afforded by the gaps in the MLS train often resulted in higher discharge probability for MLS than click trains with the same MPI, while response probabilities for MLS and click trains were similar when compared at equivalent average click rates. At short MPIs (0.5 and 1.0 ms), peri stimulus time histograms in response to click trains resembled those to best frequency (BF) tones and noisebursts, with chopping peaks unrelated to unit BF. VCN units show highly synchronised and reliable responses to click trains, MLS trains and clicks masked by noise. The decrease in discharge rate and increase in latency of chopper units with decreasing click level, increasing click rate and increasing masker level parallel the peak amplitude and latency changes observed in the auditory brainstem response. C1 UNIV NOTTINGHAM,MRC,INST HEARING RES,NOTTINGHAM NG7 2RD,ENGLAND. UNIV BUFFALO,CTR HEARING & DEAFNESS,BUFFALO,NY 14214. CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 Benzi R, 1981, J PHYS A, V14, P453 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2 Bourk TR, 1976, THESIS MIT CAMBRIDGE BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406 BUCHWALD JS, 1975, SCIENCE, V189, P382, DOI 10.1126/science.1145206 BURKARD R, 1994, J ACOUST SOC AM, V95, P2126, DOI 10.1121/1.408674 BURKARD R, 1990, J ACOUST SOC AM, V87, P1656, DOI 10.1121/1.399413 Burkard R, 1996, J ACOUST SOC AM, V100, P991, DOI 10.1121/1.416210 BURKARD R, 1995, P 18 MIDW M ASS RES, P504 BURKARD R, 1990, AUDIOLOGY, V29, P146 BURKARD R, 1983, J ACOUST SOC AM, V74, P1204, DOI 10.1121/1.390024 BURKARD R, 1990, J ACOUST SOC AM, V88, P2222, DOI 10.1121/1.400119 Burkard R, 1996, J ACOUST SOC AM, V100, P978, DOI 10.1121/1.416209 BURKARD R, 1987, J ACOUST SOC AM, V81, P1050, DOI 10.1121/1.394677 BURKARD R, 1987, J ACOUST SOC AM, V81, P1064, DOI 10.1121/1.394678 BURKARD R, 1989, J ACOUST SOC AM, V85, P2526, DOI 10.1121/1.397747 BURKARD R, 1989, J ACOUST SOC AM, V85, P2514, DOI 10.1121/1.397746 CHIAPPA KH, 1979, ARCH NEUROL-CHICAGO, V36, P81 COSTALUPES JA, 1984, J NEUROPHYSIOL, V51, P1326 DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391 DON M, 1977, ANN OTO RHINOL LARYN, V86, P186 DOUGLASS JK, 1993, NATURE, V365, P337, DOI 10.1038/365337a0 EHRET G, 1984, HEARING RES, V14, P45, DOI 10.1016/0378-5955(84)90068-6 EYSHOLDT U, 1982, AUDIOLOGY, V21, P242 FENG JJ, 1994, J COMP NEUROL, V346, P1, DOI 10.1002/cne.903460102 GEISLER CD, 1980, HEARING RES, V3, P317 GIBSON DJ, 1985, J NEUROPHYSIOL, V53, P940 GREENWOO.DD, 1970, J ACOUST SOC AM, V47, P1022, DOI 10.1121/1.1912002 Hall J, 1992, HDB AUDITORY EVOKED Helfert RH, 1991, NEUROBIOLOGY HEARING, P1 HUANG CM, 1978, ELECTROEN CLIN NEURO, V44, P179, DOI 10.1016/0013-4694(78)90264-X Jacobson J. T., 1994, PRINCIPLES APPL AUDI JEWETT DL, 1970, ELECTROEN CLIN NEURO, V28, P609, DOI 10.1016/0013-4694(70)90203-8 Kiang N.Y.S., 1965, MIT RES MONOGRAPH, V35 LANGFORD TL, 1983, J NEUROPHYSIOL, V50, P1516 Lorente de No R., 1933, LARYNGOSCOPE, V43, P1 Lorente de No R, 1933, LARYNGOSCOPE, V43, P327 MARSH RR, 1992, EAR HEARING, V13, P396, DOI 10.1097/00003446-199212000-00004 Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 Melcher JR, 1996, HEARING RES, V93, P28, DOI 10.1016/0378-5955(95)00179-4 Melcher JR, 1996, HEARING RES, V93, P1, DOI 10.1016/0378-5955(95)00178-6 MEURICE JC, 1991, HEARING RES, V53, P209, DOI 10.1016/0378-5955(91)90054-D MOLLER A, 1994, PRINCIPLES APPL AUDI MOLLER AR, 1969, ACTA PHYSIOL SCAND, V75, P542 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 PALMER AR, 1986, J ACOUST SOC AM, V79, P100, DOI 10.1121/1.393633 Palmer AR, 1996, J NEUROPHYSIOL, V75, P780 PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 PICTON TW, 1992, ELECTROEN CLIN NEURO, V84, P90, DOI 10.1016/0168-5597(92)90071-I REES A, 1988, J ACOUST SOC AM, V83, P1488, DOI 10.1121/1.395904 RHODE W, 1996, ADV SPEECH HEARING A, V3, P169 RHODE WS, 1986, J NEUROPHYSIOL, V56, P287 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 Rhode WS, 1991, NEUROBIOLOGY HEARING, P47 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1978, J NEUROPHYSIOL, V41, P692 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 ROUILLER EM, 1984, J COMP NEUROL, V225, P167, DOI 10.1002/cne.902250203 SHORE SE, 1995, HEARING RES, V82, P31 SIMHA N, 1988, AUDIOLOGY, V27, P279 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P205, DOI 10.3109/03005369309076694 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P352, DOI 10.1016/0013-4694(83)90261-4 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P326, DOI 10.1016/0013-4694(83)90259-6 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P340, DOI 10.1016/0013-4694(83)90260-2 WARR WB, 1972, BRAIN RES, V40, P247 Warr W. B., 1982, CONTRIB SENS PHYSIOL, V7, P1 WARR WB, 1969, EXP NEUROL, V23, P140, DOI 10.1016/0014-4886(69)90040-5 WARR WB, 1966, EXP NEUROL, V14, P453, DOI 10.1016/0014-4886(66)90130-0 Wickesberg RE, 1996, J ACOUST SOC AM, V100, P1691, DOI 10.1121/1.416067 WICKESBERG RE, 1990, J NEUROSCI, V10, P1762 WIESENFELD K, 1995, NATURE, V373, P33, DOI 10.1038/373033a0 WINTER IM, 1990, HEARING RES, V44, P161, DOI 10.1016/0378-5955(90)90078-4 WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 Young E. D., 1988, AUDITORY FUNCTION NE, P277 Young E.D, 1984, HEARING SCI, P423 YOUNG ED, 1986, J ACOUST SOC AM, V79, P426, DOI 10.1121/1.393530 NR 79 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 234 EP 250 DI 10.1016/S0378-5955(97)00084-1 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100023 PM 9282906 ER PT J AU Puschner, B Schacht, J AF Puschner, B Schacht, J TI Calmodulin-dependent protein kinases mediate calcium-induced slow motility of mammalian outer hair cells SO HEARING RESEARCH LA English DT Article DE outer hair cells; motility; protein phosphorylation; calcium; calmodulin; adenosine triphosphate ID 20,000-DALTON LIGHT CHAIN; RED BLOOD-CELLS; SMOOTH-MUSCLE; MYOSIN; PHOSPHORYLATION; STAUROSPORINE; INHIBITION; ATPASE; DEPHOSPHORYLATION; PHARMACOLOGY AB Cochlear outer hair cells in vitro respond to elevation of intracellular calcium with slow shape changes over seconds to minutes ('slow motility'). This process is blocked by general calmodulin antagonists suggesting the participation of calcium/calmodulin-dependent enzymatic reactions. The present study proposes a mechanism for these reactions. Length changes of outer hair cells isolated from the guinea pig cochlea were induced by exposure to the calcium ionophore ionomycin. ATP levels remained unaffected by this treatment ruling out depletion of ATP (by activation of calcium-dependent ATPases) as a, cause of the observed shape changes. Involvement of protein kinases was suggested by the inhibition of shape changes by K252a, a broad-spectrum inhibitor of protein kinase activity. Furthermore, the inhibitors ML-7 and ML-9 blocked the shape changes at concentrations compatible with inhibition of myosin light chain kinase (MLCK). KN-62, an inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), also attenuated the length changes. Inhibitors with selectivity for cyclic nucleotide-dependent protein kinases (H-89, staurosporine) were tested to assess potential additional contributions by such enzymes. The dose dependence of their action supported the notion that the most likely mechanism of slow motility involves phosphorylation reactions catalyzed by MLCK or CaMKII or both. C1 UNIV MICHIGAN,KRESGE HEARING RES INST,ANN ARBOR,MI 48109. CR BARRON JT, 1980, J BIOL CHEM, V255, P6238 BOWERS KC, 1992, J MOL CELL CARDIOL, V24, P213, DOI 10.1016/0022-2828(92)93159-H BRAUN AP, 1995, ANNU REV PHYSIOL, V57, P417, DOI 10.1146/annurev.ph.57.030195.002221 CARAFOLI E, 1994, FASEB J, V8, P993 CHACKO S, 1977, P NATL ACAD SCI USA, V74, P129, DOI 10.1073/pnas.74.1.129 COLING D, 1995, ABSTR ASS RES OT, V18, P156 DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 de Lanerolle P, 1980, J Biol Chem, V255, P9993 DECORY L, 1991, HEARING RES, V52, P81, DOI 10.1016/0378-5955(91)90189-G DELANEROLLE P, 1991, AM J PHYSIOL, V261, pL1 DEMENEIX BA, 1990, DNA CELL BIOL, V9, P335, DOI 10.1089/dna.1990.9.335 DODSON RA, 1987, BLOOD CELLS, V12, P555 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 DULON D, 1992, AM J OTOL, V13, P108 DULON D, 1990, J NEUROSCI, V10, P1388 EVANS BN, 1991, HEARING RES, V52, P288, DOI 10.1016/0378-5955(91)90019-6 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 FUKUNAGA K, 1982, J NEUROCHEM, V39, P1607, DOI 10.1111/j.1471-4159.1982.tb07994.x HIDAKA H, 1992, ANNU REV PHARMACOL, V32, P377, DOI 10.1146/annurev.pharmtox.32.1.377 HIDAKA H, 1992, CELL CALCIUM, V13, P465, DOI 10.1016/0143-4160(92)90059-2 HIDAKA H, 1991, METHOD ENZYMOL, V201, P328 HOLLEY MC, 1996, HDB AUDITORY RES, V9, P386 MARIKOVSKY Y, 1985, MECH AGEING DEV, V29, P309, DOI 10.1016/0047-6374(85)90070-3 MEGGIO F, 1995, EUR J BIOCHEM, V234, P317, DOI 10.1111/j.1432-1033.1995.317_c.x Raabe TD, 1996, J NEUROCHEM, V66, P1214 RASMUSSEN H, 1984, ADV CYCLIC NUCL PROT, V18, P159 RASOULY D, 1992, MOL PHARMACOL, V42, P35 SCHACHT J, 1987, HEARING RES, V31, P155, DOI 10.1016/0378-5955(87)90121-3 SCHACHT J, 1995, ACTIVE HEARING, P209 SCHULMAN H, 1985, BIOCHEMISTRY-US, V24, P5320, DOI 10.1021/bi00341a008 SHEETZ MP, 1977, J CELL BIOL, V73, P638, DOI 10.1083/jcb.73.3.638 SLACK RS, 1990, BIOCHIM BIOPHYS ACTA, V1053, P89, DOI 10.1016/0167-4889(90)90030-H SLEPECKY NB, 1996, HDB AUDITORY RES, V9, P44 Strehler B L, 1968, Methods Biochem Anal, V16, P99, DOI 10.1002/9780470110348.ch2 SWEENEY HL, 1993, AM J PHYSIOL, V264, pC1085 SZIKLAI I, 1986, ARCH OTO-RHINO-LARYN, V243, P229, DOI 10.1007/BF00464435 TANAKA E, 1986, J NEUROCHEM, V47, P254 TOKUMITSU H, 1990, J BIOL CHEM, V265, P4315 TROTTER JA, 1979, J BIOL CHEM, V254, P8781 ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 NR 43 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 251 EP 258 DI 10.1016/S0378-5955(97)00086-5 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100024 PM 9282907 ER PT J AU Shi, YB Polyakov, A Pratt, H AF Shi, YB Polyakov, A Pratt, H TI Effects of interaural intensity and time disparity on transient evoked otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE transient evoked otoacoustic emission; contralateral suppression; interaural disparity; efferent system; human; click ID COCHLEAR MICROMECHANICAL PROPERTIES; CONTRALATERAL SUPPRESSION; STIMULATION AB Monaural and binaural 11/s, 65 dB pe SPL clicks with interaural time and intensity disparities known to affect central auditory processing were used to study contralateral suppression of transient evoked otoacoustic emissions (TEOAEs) in 10 subjects (20 ears). Psychophysical assessment of sound lateralization induced by the same stimuli was also conducted. TEOAEs were recorded to monaural (ipsilateral to the OAE recording probe) and to binaural clicks when clicks to the contralateral ear were synchronous and symmetrical in intensity, or, in the binaural intensity disparity conditions, synchronous but 10 dB higher or 10 dB lower in the ear contralateral to the OBE recording probe. When interaural time disparities were studied, the clicks to the contralateral ear were of the same intensity throughout, but 400 mu s earlier or 400 mu s later than to the ear with the probe. The TEOAE components at 13-15.8 ms showed suppression, relative to monaural responses, under all binaural conditions. This contralateral suppression did not correlate with the psychophysical findings. Suppression effects were more pronounced with binaural disparity than with binaurally symmetrical clicks. Thus, although contralateral click intensity was the same with time disparities, suppression was paradoxically enhanced compared to the binaurally symmetrical stimulation. To explain these results we propose that two factors are involved in TEOAE suppression with binaural clicks: (1) contralateral intensity and (2) interaural disparity (time or intensity). The latency of the suppressions observed, the effect of interaural disparity on these suppressions, coupled with the anatomical origin of the crossed efferent fibers and the disparity sensitivity of the superior olivary complex (SOC), all suggest SOC involvement in these TEOAE suppressions. C1 TECHNION ISRAEL INST TECHNOL,EVOKED POTENTIALS LAB,IL-32000 HAIFA,ISRAEL. PEOPLES LIBERAT ARMY GEN HOSP,INST OTORHINOLARYNGOL,BEIJING,PEOPLES R CHINA. CR AHARONSON V, 1995, ISRAEL J MED SCI, V31, P728 BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S CANT NB, 1982, J COMP NEUROL, V212, P313, DOI 10.1002/cne.902120308 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E KEMP DT, 1990, EAR HEARING, V11, P93 LIND O, 1994, BRIT J AUDIOL, V28, P219, DOI 10.3109/03005369409086571 MORLET T, 1994, BRAIN DEV-JPN, V16, P115, DOI 10.1016/0387-7604(94)90046-9 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 Warr WB, 1986, NEUROBIOLOGY HEARING NR 11 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 259 EP 265 DI 10.1016/S0378-5955(97)00088-9 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100025 PM 9282908 ER PT J AU Trautwein, PG Chen, L Salvi, RJ AF Trautwein, PG Chen, L Salvi, RJ TI Steady state EP is not responsible for hearing loss in adult chickens following acoustic trauma SO HEARING RESEARCH LA English DT Article DE acoustic trauma; chicken; tegmentum vasculosum; endocochlear potential ID HAIR CELL LOSS; KANAMYCIN OTOTOXICITY; TEGMENTUM VASCULOSUM; INTENSE SOUND; GUINEA-PIG; REGENERATION; MECHANISM; RECOVERY; EXPOSURE; COCHLEA AB The steady state DC endocochlear potential (EP) in young chicks shows a large decrease after acoustic overstimulation followed by a rapid recovery that parallels the recovery of threshold (Poje et al., Hear. Res. 82 (1995) 197-204). These results raise a question as to whether or not the EP could account for the hearing loss and make a significant contribution to the recovery of the threshold. In contrast to results in young chicks, we show that acoustic overstimulation, which causes extensive hair cell damage, does not cause a decrease in the steady state EP in adult chickens. However, there is a significant reduction in the negative EP seen during anoxia which persists even after 4 weeks of recovery. Thus, our results indicate that the steady state EP cannot account for the hearing loss observed in adult chickens. C1 SUNY BUFFALO, CTR HEARING & DEAFNESS, BUFFALO, NY 14214 USA. RI Chen, Lin/N-8327-2013 OI Chen, Lin/0000-0002-5847-2989 CR BOSHER SK, 1979, J PHYSIOL-LONDON, V293, P329 CHEN L, 1995, HEARING RES, V89, P28, DOI 10.1016/0378-5955(95)00119-5 Chen L, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P43 Chen L, 1996, HEARING RES, V98, P152, DOI 10.1016/0378-5955(96)00086-X CHEN L, 1993, HEARING RES, V69, P15, DOI 10.1016/0378-5955(93)90089-J CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 COTANCHE DA, 1987, HEARING RES, V30, P197, DOI 10.1016/0378-5955(87)90136-5 COTANCHE DA, 1987, HEARING RES, V25, P267, DOI 10.1016/0378-5955(87)90098-0 COTANCHE DA, 1987, HEARING RES, V25, P125, DOI 10.1016/0378-5955(87)90086-4 HENRY WJ, 1988, OTOLARYNG HEAD NECK, V98, P607 KOMUNE S, 1993, HEARING RES, V70, P197, DOI 10.1016/0378-5955(93)90158-W KOMUNE S, 1983, OTOLARYNG HEAD NECK, V91, P427 KONISHI T, 1979, ACTA OTO-LARYNGOL, V87, P506, DOI 10.3109/00016487909126459 PATUZZI RB, 1991, HEARING RES, V53, P57, DOI 10.1016/0378-5955(91)90214-T POJE CP, 1995, HEARING RES, V82, P197, DOI 10.1016/0378-5955(94)00177-R RUNHAAR G, 1991, HEARING RES, V56, P227, DOI 10.1016/0378-5955(91)90173-7 Ryals BM, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P84 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 RYALS BM, 1995, HEARING RES, V83, P51, DOI 10.1016/0378-5955(94)00190-2 RYALS BM, 1989, HEARING RES, V43, P81, DOI 10.1016/0378-5955(89)90061-0 SALVI RJ, 1994, J COMP PHYSIOL A, V174, P351 Saunders JC, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P62 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Trautwein P, 1996, Audiol Neurootol, V1, P86 TRAUTWEIN PG, 1995, ABSTR ASS RES OTOLAR, V18, P340 VOSSIECK T, 1990, EUR ARCH OTO-RHINO-L, V248, P11, DOI 10.1007/BF00634773 VOSSIECK T, 1991, HEARING RES, V56, P93, DOI 10.1016/0378-5955(91)90158-6 NR 27 TC 5 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 1997 VL 110 IS 1-2 BP 266 EP 270 DI 10.1016/S0378-5955(97)00082-8 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XR641 UT WOS:A1997XR64100026 PM 9282909 ER PT J AU Yeh, TH Tsai, MC Lee, SY Hsu, MM Huy, PTB AF Yeh, TH Tsai, MC Lee, SY Hsu, MM Huy, PTB TI Stretch-activated nonselective cation, Cl- and K+ channels in apical membrane of epithelial cells of Reissner's membrane SO HEARING RESEARCH LA English DT Article DE cochlea; Reissner's membrane; patch-clamp; ionic channel; endolymph ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; ION CHANNELS; ADENYLATE-CYCLASE; CHLORIDE CHANNELS; STRIA VASCULARIS; MARGINAL CELLS; LATERAL WALL; MAXI K+; FEATURES AB Ion channels on the apical membrane of epithelial cells (the surface facing the endolymph) of acutely isolated Reissner's membrane from guinea-pig cochlea were investigated by using patch-clamp technique in cell-attached and inside-out configurations. Three types of ion channel were identified: namely, a stretch-activated nonselective cation, a chloride and a potassium channel. When the pipette was filled with high-K+ endolymph-like solution, the most significant channel activity was nonselective cation channels (85/110, 77% patches). The current versus voltage relationship was linear with a unitary conductance of 22.1 + 0.4 pS and reversal potential (V-r) of 2.3 +/- 0.8 mV (n = 18). The channel exhibited a lower conductance (14.0 +/- 0.6 pS, n = 8) to Ca2+. The open probability was low (NPo congruent to 0.1) in cell-attached configuration under +60 mV pipette potential and increased when the membrane was stretched with negative pressure. The channel was blocked by 10 mu M extracellular Gd3+. The two other types of channels were a small voltage-sensitive Cl- channel (6.0 +/- 0.3 pS; 91/99, 92% patches) and a K+ channel (congruent to 30 pS; 29/191, 15% patches). These channels might play roles in the regulation of cell volume, in balancing the hydrostatic pressure across Reissner's membrane and in maintaining the electrochemical composition of endolymph. C1 NATL TAIWAN UNIV,COLL MED,DEPT PHARMACOL,TAIPEI 10018,TAIWAN. UNIV PARIS 07,FAC MED,LAB ORL EXPT,UFR LARIBOISIERE ST LOUIS,F-75221 PARIS 05,FRANCE. RP Yeh, TH (reprint author), NATL TAIWAN UNIV HOSP,DEPT OTOLARYNGOL,7 CHUNG SHAN S RD,TAIPEI,TAIWAN. CR ARIMA T, 1985, ACTA OTO-LARYNGOL, V100, P194, DOI 10.3109/00016488509104781 CHOU JTY, 1963, J LARYNGOL, V27, P344 DING JP, 1991, HEARING RES, V56, P19, DOI 10.1016/0378-5955(91)90149-4 DOI K, 1992, ACTA OTO-LARYNGOL, V112, P667, DOI 10.3109/00016489209137457 DUVALL AJ, 1969, ANN OTO RHINOL LARYN, V78, P1041 DUVALL AJ, 1967, ARCH OTOLARYNGOL, V68, P37 FELIX H, 1993, ACTA OTO-LARYNGOL, V113, P321, DOI 10.3109/00016489309135817 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 Hinojosa R, 1971, Acta Otolaryngol Suppl, V292, P1 HOFFMANN EK, 1992, CAN J PHYSIOL PHARM, V70, pS310 HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 HUDSPETH AJ, 1989, NATURE, V341, P397, DOI 10.1038/341397a0 IWASA KH, 1991, NEUROSCI LETT, V133, P171, DOI 10.1016/0304-3940(91)90562-8 JOHNSSON LG, 1971, ANN OTO RHINOL LARYN, V80, P425 KIM DH, 1993, CIRC RES, V72, P225 KITANO I, 1993, HEARING RES, V71, P23, DOI 10.1016/0378-5955(93)90017-U KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P176, DOI 10.3109/00016487809124734 KOTERA T, 1993, J MEMBRANE BIOL, V134, P67 LANSMAN JB, 1987, NATURE, V325, P811, DOI 10.1038/325811a0 MARUNAKA Y, 1994, AM J PHYSIOL, V266, pC1513 MEES K, 1984, ARCH OTO-RHINO-LARYN, V240, P55, DOI 10.1007/BF00464345 NAFTALIN L, 1958, J Laryngol Otol, V72, P118, DOI 10.1017/S0022215100053731 NAKAI Y, 1968, ACTA OTOLARYNGOL STO, V64, P477 PALOHEIMO S, 1977, ARCH OTO-RHINO-LARYN, V217, P347, DOI 10.1007/BF00465552 POPP R, 1992, J PHYSIOL-LONDON, V454, P435 QVORTRUP K, 1990, EUR ARCH OTO-RHINO-L, V248, P57, DOI 10.1007/BF00634783 SACKIN H, 1995, ANNU REV PHYSIOL, V57, P333 TAKEUCHI S, 1992, AM J PHYSIOL, V262, pC1430 TAKEUCHI S, 1992, HEARING RES, V61, P86, DOI 10.1016/0378-5955(92)90039-P VALVERDE MA, 1995, FASEB J, V9, P509 VANDENABBEELE T, 1994, PFLUG ARCH EUR J PHY, V427, P56 Watanuki K, 1968, Acta Otolaryngol, V66, P40, DOI 10.3109/00016486809126271 WELLNER MC, 1995, J PHYSIOL-LONDON, V482, P141 YANG XC, 1989, SCIENCE, V243, P1068, DOI 10.1126/science.2466333 YEH T, 1995, HEARING RES, V90, P79, DOI 10.1016/0378-5955(95)00149-3 YEH TH, 1993, LARYNGOSCOPE, V103, P645 NR 36 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 1 EP 10 DI 10.1016/S0378-5955(97)00030-0 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400001 PM 9259231 ER PT J AU Steinacker, A Monterrubio, J Perez, R Mensinger, AF Marin, A AF Steinacker, A Monterrubio, J Perez, R Mensinger, AF Marin, A TI Electrophysiology and pharmacology of outward potassium currents in semicircular canal hair cells of toadfish, Opsanus tau SO HEARING RESEARCH LA English DT Article DE sensory hair cells; vestibular system; patch clamp analysis; potassium current; calcium activated potassium current; a current; toadfish ID GUINEA-PIG COCHLEA; ION-DEPENDENT CONDUCTANCES; CRISTA-AMPULLARIS; RESPONSE DYNAMICS; RANA-CATESBEIANA; BULL-FROG; CALCIUM; CHANNELS; CHICK; ORGANIZATION AB Outward currents from hair cells from the horizontal semicircular canal (HSCC) of the toadfish were investigated using whole cell patch clamp methods. Two classes of hair cells are found. One class (approx, 10% of cells) showed only a non-inactivating current (IKCa) which was blocked by 2 mM TEA. A second class had both inactivating and non-inactivating currents. The former (IA) was blocked by 4-AP (1 mM) and the latter (IKCa) by TEA (2-20 mM). While the majority of the cells expressed both these outward currents, due to IA inactivation both currents are functionally present in the same cell only between -60 and -40 mV. At more depolarized membrane potentials, IA was inactivated, suggesting that a single hair cell may have two distinct signalling modes, one dominated by IA at more hyperpolarized membrane potentials and the other by IKCa at depolarized values where ICa is beginning to grow, increasing both amplitude and activation rate of IKCa. The switch between modes will be determined by the amplitude and frequency characteristics of the stimulus and possibly also by actions of efferent transmitters. In current clamp mode, 10% of the HSCC hair cells showed high Q and high frequency resonance, from 44 to 360 Hz al 12 degrees C. These cells expressed only one outward calcium dependent, non-inactivating, TEA sensitive current, characteristic of IKCa. A suggested role for high frequency resonance is as positive feedback to produce a high frequency updating of the stereociliary compliance to most faithfully transduce angular acceleration. C1 WASHINGTON UNIV,SCH MED,DEPT OTOLARYNGOL,ST LOUIS,MO 63110. UNIV SEVILLA,FAC MED,DEPT FISIOL MED & BIOFIS,SEVILLE 41009,SPAIN. RP Steinacker, A (reprint author), UNIV PUERTO RICO,INST NEUROBIOL,MED SCI CAMPUS,201 BLVD VALLE,SAN JUAN,PR 00901, USA. CR ART JJ, 1987, J PHYSL, V385, P217 ART JJ, 1995, J GEN PHYSIOL, V105, P49, DOI 10.1085/jgp.105.1.49 ASHMORE JF, 1986, NATURE, V322, P368, DOI 10.1038/322368a0 ASHMORE JF, 1985, PROC R SOC SER B-BIO, V226, P325, DOI 10.1098/rspb.1985.0098 BOYLE R, 1990, J NEUROSCI, V10, P1557 BOYLE R, 1991, J NEUROPHYSIOL, V66, P1504 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 CRAWFORD AC, 1981, J PHYSIOL-LONDON, V312, P377 FUCHS PA, 1988, J NEUROSCI, V8, P2460 FUCHS PA, 1988, J COMP PHYSIOL A, V164, P151, DOI 10.1007/BF00603947 FUCHS PA, 1990, J PHYSIOL-LONDON, V429, P529 GOODMAN MB, 1995, THESIS U CHICAGO CHI GRIGUER C, 1996, PFLUGERS ARCH, V75, P508 Griguer C, 1996, J NEUROPHYSIOL, V75, P508 GRIGUER C, 1993, PFLUG ARCH EUR J PHY, V425, P344, DOI 10.1007/BF00374185 Highstein SM, 1996, J NEUROPHYSIOL, V75, P575 HIGHSTEIN SM, 1992, J COMP NEUROL, V319, P501, DOI 10.1002/cne.903190404 HOLTON T, 1983, SCIENCE, V222, P508, DOI 10.1126/science.6623089 HOLTON T, 1983, J PHYSIOL-LONDON, V345, P241 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HOUSLEY GD, 1989, HEARING RES, V38, P259, DOI 10.1016/0378-5955(89)90070-1 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P275 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P237 KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263 LANG DG, 1989, J NEUROPHYSIOL, V62, P935 LEWIS RS, 1983, NATURE, V304, P538, DOI 10.1038/304538a0 Marquis Robert, 1996, Biophysical Journal, V70, pA365 MASETTO S, 1994, J NEUROPHYSIOL, V72, P443 NORRIS CH, 1992, J NEUROPHYSIOL, V68, P1642 OHMORI H, 1984, J PHYSIOL-LONDON, V350, P561 Platt C., 1983, P89 RABBITT RD, 1995, J NEUROPHYSIOL, V73, P2237 RENNIE KJ, 1994, J NEUROPHYSIOL, V71, P317 SCHERMULY L, 1985, J COMP PHYSIOL A, V156, P209, DOI 10.1007/BF00610863 SMOTHERMAN MS, 1995, NEUR ABSTR, V21, P397 STEINACKER A, 1990, HEARING RES, V48, P145, DOI 10.1016/0378-5955(90)90204-3 STEINACKER A, 1991, BRAIN RES, V556, P22, DOI 10.1016/0006-8993(91)90543-5 STEINACKER A, 1992, BIOL BULL, V183, P346 STEINACKER A, 1994, BIOL BULL, V187, P267 STEINACKER A, 1992, ANN NY ACAD SCI, V656, P27, DOI 10.1111/j.1749-6632.1992.tb25198.x STEINACKER A, 1992, BRAIN RES, V574, P229, DOI 10.1016/0006-8993(92)90821-P SUGIHARA I, 1994, J PHYSIOL-LONDON, V476, P373 WITT CM, 1994, J NEUROPHYSIOL, V72, P1037 NR 43 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 11 EP 20 DI 10.1016/S0378-5955(97)00038-5 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400002 PM 9259232 ER PT J AU Miller, AL Morris, DJ Pfingst, BE AF Miller, AL Morris, DJ Pfingst, BE TI Interactions between pulse separation and pulse polarity order in cochlear implants SO HEARING RESEARCH LA English DT Article DE auditory prosthesis; cochlear implant; electrical stimulation; pulse separation; polarity; nonhuman primate; psychophysics ID PSYCHOPHYSICAL DETECTION THRESHOLDS; ELECTRICAL-STIMULATION; AUDITORY-NERVE; PHASE DURATION; MODEL AB Interactions between pulse separation and pulse polarity order were examined using psychophysical studies of electrical detection thresholds in nonhuman primates. Subjects were trained using acoustic stimuli, then deafened in one ear and implanted with an electrode array for electrical stimulation of the cochlea. Threshold vs pulse separation functions for trains of biphasic electrical pulses were compared for constant and alternating leading phase polarity. When leading phase polarity was held constant, threshold vs pulse separation functions were nonmonotonic (U-shaped). Small polarity-dependent (cathodic vs anodic leading phase) differences in absolute thresholds were observed at long pulse separations, but function shape was independent of leading phase. When leading phase polarity alternated, there was a pronounced reduction in thresholds at short pulse separations (below about 1 ms), resulting in monotonically increasing threshold vs pulse separation functions. At long pulse separations, functions for alternating and constant polarity stimuli were similar. Polarity effects were most apparent for longer duration trains (20 pulses) at long pulse durations (1-2 ms/phase). For stimuli consisting of only two biphasic pulses, alternating polarity effects depended on whether cathodic or anodic phases were adjacent. The neural mechanisms underlying these effects probably include refractory properties and/or residual potentials. C1 UNIV MICHIGAN,MED CTR,DEPT OTOLARYNGOL,KRESGE HEARING RES INST,ANN ARBOR,MI 48109. CR Coste RL, 1996, J ACOUST SOC AM, V99, P3099, DOI 10.1121/1.414796 Eddington D.K., 1994, SPEECH PROCESSORS AU GANTZ BJ, 1988, LARYNGOSCOPE, V98, P1100 GARNER WR, 1947, J EXP PSYCHOL, V37, P293, DOI 10.1037/h0055734 GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726 Hill AV, 1936, PROC R SOC SER B-BIO, V119, P305, DOI 10.1098/rspb.1936.0012 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 JAVEL E, 1991, 14 MIDW RES M ASS RE, P130 Katz B, 1937, PROC R SOC SER B-BIO, V124, P244, DOI 10.1098/rspb.1937.0084 MILLER AL, 1996, 19 MIDW RES M ASS RE, P418 MOON AK, 1993, HEARING RES, V67, P166, DOI 10.1016/0378-5955(93)90244-U *NAT RES COUNC, 1996, GUID CAR US LAB AN PFINGST BE, 1991, J ACOUST SOC AM, V90, P1857, DOI 10.1121/1.401665 Pfingst BE, 1996, HEARING RES, V98, P77, DOI 10.1016/0378-5955(96)00071-8 PFINGST BE, 1983, ANN NY ACAD SCI, V405, P224, DOI 10.1111/j.1749-6632.1983.tb31635.x PFINGST BE, 1993, J ACOUST SOC AM, V94, P1287, DOI 10.1121/1.408155 PFINGST BE, 1985, COCHLEAR IMPLANTS, P305 PFINGST BE, 1979, ANN OTO RHINOL LARYN, V88, P613 PFINGST BE, 1990, HEARING RES, V50, P225, DOI 10.1016/0378-5955(90)90047-S SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X SHANNON RV, 1989, HEARING RES, V40, P197, DOI 10.1016/0378-5955(89)90160-3 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 NR 24 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 21 EP 33 DI 10.1016/S0378-5955(97)00037-3 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400003 PM 9259233 ER PT J AU Bohne, BA Harding, GW AF Bohne, BA Harding, GW TI Processing and analyzing the mouse temporal bone to identify gross, cellular and subcellular pathology SO HEARING RESEARCH LA English DT Article DE mouse; inner-ear mutation; temporal bone; histological processing ID MICE; DEGENERATION; DEAFNESS; ORGAN; CORTI; MUTATION; HEARING AB A technique has been developed for preparing the mouse temporal bone for histopathological examination: first, as a whole mount to detect any gross malformations of the bony or membranous labyrinths; second, in dissected segments to localize damage in the different sensory organs and to quantify sensory- and supporting-cell losses; and finally, in semi-thick and thin sections to identify and characterize subcellular pathology. Examples are given of the successful application of this technique to mice with very different inner-ear problems, including those with an abnormally short cochlear spiral, a defective lateral semicircular canal, abnormal otoliths over the saccular macula, an increased susceptibility to noise damage and those which lack fibroblast growth factor receptor 3. RP Bohne, BA (reprint author), WASHINGTON UNIV,SCH MED,DEPT OTOLARYNGOL,517 S EUCLID AVE,POB 8115,ST LOUIS,MO 63110, USA. RI Bohne, Barbara/A-9113-2008 OI Bohne, Barbara/0000-0003-3874-7620 CR BOHNE BA, 1996, ARO, V19, P72 BOHNE BA, 1993, HEARING RES, V71, P114, DOI 10.1016/0378-5955(93)90027-X Colvin JS, 1996, NAT GENET, V12, P390, DOI 10.1038/ng0496-390 DAVISSON M, 1991, JACKSON LAB SCI REPO, P31 DEOL MS, 1956, J EMBRYOL EXP MORPH, V4, P190 DEOL MS, 1979, NATURE, V278, P250, DOI 10.1038/278250a0 DEOL MS, 1956, PROC R SOC SER B-BIO, V145, P206, DOI 10.1098/rspb.1956.0028 DEOL MS, 1964, J EMBRYOL EXP MORPH, V12, P475 ERNFORS P, 1994, NATURE, V368, P147, DOI 10.1038/368147a0 Lane PW, 1987, MOUSE NEWS LETT, V77, P129 Lane PW, 1986, MOUSE NEWS LETT, V75, P28 LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61 MANSOUR SL, 1993, DEVELOPMENT, V117, P13 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 NEWLANDER JK, 1995, ARO, V18, P89 NOLAN PM, 1995, GENETICS, V140, P245 SANTI PA, 1986, HEARING RES, V23, P153, DOI 10.1016/0378-5955(86)90012-2 Shnerson A., 1982, DEV BRAIN RES, V2, P77 Sidman R, 1965, CATALOG NEUROLOGICAL SOKOLOV BP, 1995, J BIOL CHEM, V270, P9622 STEEL KP, 1994, TRENDS GENET, V10, P428, DOI 10.1016/0168-9525(94)90113-9 TING CN, 1994, GENETICS, V136, P247 WEBSTER DB, 1985, HEARING RES, V18, P19, DOI 10.1016/0378-5955(85)90107-8 WEBSTER DB, 1992, EXP NEUROL, V115, P27, DOI 10.1016/0014-4886(92)90216-D NR 24 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 34 EP 45 DI 10.1016/S0378-5955(97)00019-1 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400004 PM 9259234 ER PT J AU Fuzessery, ZM AF Fuzessery, ZM TI Acute sensitivity to interaural time differences in the inferior colliculus of a bat that relies on passive sound localization SO HEARING RESEARCH LA English DT Article DE inferior colliculus; bat; binaural; interaural time difference; sound localization; time-intensity trading ID AMPLITUDE-MODULATED TONES; HIGH-FREQUENCY NEURONS; BINAURAL INTERACTION; PALLID BAT; INTENSITY DIFFERENCES; LOCATION SELECTIVITY; SUPERIOR COLLICULUS; ANTROZOUS-PALLIDUS; COMPLEX WAVEFORMS; AUDITORY-CORTEX AB Gleaning bats rely on passive hearing to detect and localize terrestrial prey, and display remarkable accuracy in their passive sound localization. This study examines binaural processing in the inferior colliculus (IC) of the pallid bat (Antrozous pallidus), a gleaner that attends to prey-generated noise transients to locate prey. The primary focus is to determine whether neurons in its lateral IC, a region that appears dedicated to passive localization, possess a level of sensitivity to interaural time difference (ITD) sensitivity sufficient to indicate the use of ITDs in sound localization. Such a sensitivity was suspected because the pallid bat is capable of very accurate passive sound localization at the lower end of its audible range, where interaural intensity differences (IIDs) are small and may not provide sufficient spatial information. Because the pallid bat's audible range is too high for neurons to phase-lock to carrier frequencies, neurons were tested with square-wave, amplitude-modulated tones and noise to determine their sensitivity to ITDs in the sound envelope. Their sensitivity to the bat's behaviorally relevant ITD range of +/-70 mu s, and their low average interaural time/intensity trading ratios (18 mu s/dB) suggest that the pallid bat IC may have the greatest ITD sensitivity reported in a high-frequency mammalian auditory system. RP Fuzessery, ZM (reprint author), UNIV WYOMING,DEPT ZOOL PHYSIOL,LARAMIE,WY 82071, USA. CR BATRA R, 1993, J NEUROPHYSIOL, V70, P64 BELL GP, 1982, BEHAV ECOL SOCIOBIOL, V10, P217, DOI 10.1007/BF00299688 BELL GP, 1986, ANIM BEHAV, V43, P409 BENSON DA, 1976, BRAIN RES, V103, P313, DOI 10.1016/0006-8993(76)90801-5 BLAUERT J, 1982, LOCALIZATION SOUND T BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442 BROWN PE, 1978, J COMP PHYSIOL, V126, P169 BUTLER RA, 1993, HEARING RES, V67, P220, DOI 10.1016/0378-5955(93)90250-5 BUTLER RA, 1980, PERCEPT PSYCHOPHYS, V28, P449, DOI 10.3758/BF03204889 CAIRD D, 1987, EXP BRAIN RES, V68, P379 CARNEY LH, 1989, J NEUROPHYSIOL, V62, P144 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 COLES RB, 1989, J COMP PHYSIOL A, V165, P269, DOI 10.1007/BF00619201 Covey E, 1996, J NEUROSCI, V16, P3009 DEATHERAGE BH, 1959, J ACOUST SOC AM, V31, P486, DOI 10.1121/1.1907740 FIELDER J, 1979, BEHAV ECOL SOCIOBIOL, V6, P155 Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5 FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061 FUZESSERY ZM, 1993, J COMP PHYSIOL A, V171, P767, DOI 10.1007/BF00213073 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 FUZESSERY ZM, 1990, J NEUROPHYSIOL, V63, P1128 FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P757 FUZESSERY ZM, 1992, 3 INT C NEUR FUZESSERY ZM, 1991, J NEUROSCI METH, V36, P45, DOI 10.1016/0165-0270(91)90136-N FUZESSERY ZM, 1995, 4 INT C NEUR GEISLER CD, 1969, J NEUROPHYSIOL, V32, P960 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GRINNELL AD, 1965, J PHYSIOL-LONDON, V181, P830 GROTHE B, 1995, NATURWISSENSCHAFTEN, V82, P521, DOI 10.1007/BF01134488 GUPPY A, 1988, J COMP PHYSIOL A, V162, P653, DOI 10.1007/BF01342641 Hafter E. R., 1984, DYNAMIC ASPECTS NEOC, P425 HAFTER ER, 1983, J ACOUST SOC AM, V73, P644, DOI 10.1121/1.388956 HARNISCHFEGER G, 1985, J NEUROPHYSIOL, V53, P89 HENNING GB, 1974, J ACOUST SOC AM, V55, P84, DOI 10.1121/1.1928135 IRVINE DRF, 1995, HEARING RES, V85, P127, DOI 10.1016/0378-5955(95)00040-B JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 KELLY JB, 1991, HEARING RES, V55, P39, DOI 10.1016/0378-5955(91)90089-R Kidd SA, 1996, J NEUROSCI, V16, P7390 KITZES LM, 1980, J COMP NEUROL, V192, P455, DOI 10.1002/cne.901920306 KLEISER A, 1995, NATURWISSENSCHAFTEN, V82, P337 KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498 KUWADA S, 1983, J NEUROPHYSIOL, V50, P981 LEIMAN AL, 1972, EXP NEUROL, V35, P431, DOI 10.1016/0014-4886(72)90114-8 LUCE RD, 1974, J ACOUST SOC AM, V62, P1554 MARIMUTHU G, 1987, J COMP PHYSIOL A, V160, P509, DOI 10.1007/BF00615084 MASTERTO.RB, 1974, FED PROC, V33, P1904 MCFADDEN D, 1976, J ACOUST SOC AM, V59, P634, DOI 10.1121/1.380913 MIDDLEBROOKS JC, 1992, J ACOUST SOC AM, V92, P2607, DOI 10.1121/1.404400 MIDDLEBROOKS JC, 1990, J ACOUST SOC AM, V87, P2149, DOI 10.1121/1.399183 MOISEFF A, 1981, J NEUROSCI, V1, P40 NUETZEL JM, 1976, J ACOUST SOC AM, V60, P1339, DOI 10.1121/1.381227 ORR ROBERT T., 1954, PROC CALIFORNIA ACAD SCI, V28, P165 PENA LS, 1996, J NEUROSCI, V16, P7046 POLLAK GD, 1988, HEARING RES, V36, P107, DOI 10.1016/0378-5955(88)90054-8 Rayleigh L., 1907, PHILOS MAG, V13, P214 ROTH GL, 1980, J ACOUST SOC AM, V68, P1643, DOI 10.1121/1.385196 RYAN MJ, 1987, J COMP PHYSIOL A, V161, P59, DOI 10.1007/BF00609455 SPITZER MW, 1991, SCIENCE, V254, P721, DOI 10.1126/science.1948053 SULLIVAN WE, 1984, J NEUROSCI, V4, P1787 TRAHIOTIS C, 1986, J ACOUST SOC AM, V79, P1950, DOI 10.1121/1.393202 TUTTLE MD, 1981, SCIENCE, V214, P677, DOI 10.1126/science.214.4521.677 Wagner T, 1996, EUR J NEUROSCI, V8, P1231, DOI 10.1111/j.1460-9568.1996.tb01291.x WENSTRUP JJ, 1996, ASS RES OT 19 ANN M, P362 WHITWORTH R, 1961, J ACOUST SOC AM, V33, P925, DOI 10.1121/1.1908849 WISE LZ, 1984, HEARING RES, V16, P181, DOI 10.1016/0378-5955(84)90008-X Woodworth R. S., 1938, EXPT PSYCHOL Wu MI, 1996, J COMP PHYSIOL A, V179, P385 YIN TCT, 1985, J NEUROPHYSIOL, V53, P746 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YIN TCT, 1984, J ACOUST SOC AM, V76, P1401, DOI 10.1121/1.391457 NR 73 TC 24 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 46 EP 62 DI 10.1016/S0378-5955(97)00053-1 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400005 PM 9259235 ER PT J AU Saidel, WM Crowder, JA AF Saidel, WM Crowder, JA TI Expression of cytochrome oxidase in hair cells of the teleost utricle SO HEARING RESEARCH LA English DT Article DE cytochrome oxidase; mitochondria; vestibular hair cell; utricle; fish ID INNER-EAR; ACTIN-FILAMENTS; AFFERENT-FIBERS; TRIGGER ZONES; FISH EAR; CALCIUM; STEREOCILIA; SACCULE; TRANSDUCTION; LOCALIZATION AB Ultrastructural variation in some cytoplasmic organelles and synaptic structures is one characteristic distinguishing the types of hair cells in the teleost ear. In this study, we explored differences in mitochondria by analyzing mitochondrial reactivity for cytochrome oxidase (COX) in hair cells of the teleost utricle. The reactivity for COX within mitochondria in the subcuticular compartment directly beneath the cuticular plate differentiated among hair cells in utricles of three teleost species, Carassius auratus, Pantodon buchholzi, and Astronotus ocellatus. Mitochondria in the subcuticular region of hair cells in the striola reacted intensely. Within juxtastriola and extrastriolar hair cells near the striola, mitochondria reacted at a lowered intensity than in striolar hair cells. Subcuticular mitochondria of extrastriolar hair cells located distant from the striola reacted negligibly. The reactivity of mitochondria in other cytoplasmic compartments did not provide similar evidence for distinguishing among teleost hair cells. Mitochondria within intraepithelial branches of the eighth nerve terminals in the different utricular regions reacted to COX histochemistry commensurate with their respective presynaptic hair cells. Branches of sensory afferent neurons innervating striolar hair cells displayed a dense COX reaction. Sensory afferents innervating the extrastriolar hair cells did not display many mitochondria at synapses nor, when present, was the staining as dense. The presynaptic side of the hair cell-afferent nerve synapse usually, but not always, contained reactive mitochondria. The presynaptic side of the efferent nerve-hair cell synapse did not necessarily contain mitochondria. Mitochondria filling the cytoplasm in a type of juxtamacula cell revealed uniformly dense COX reactivity. RP Saidel, WM (reprint author), RUTGERS STATE UNIV,DEPT BIOL,CAMDEN,NJ 08102, USA. CR ASSAD JA, 1989, P NATL ACAD SCI USA, V86, P2918, DOI 10.1073/pnas.86.8.2918 BAIRD RA, 1994, J NEUROPHYSIOL, V71, P666 CHANG JSY, 1992, J COMP NEUROL, V324, P621, DOI 10.1002/cne.903240413 CORWIN JT, 1977, J MORPHOL, V152, P341, DOI 10.1002/jmor.1051520306 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 DEROSIER DJ, 1989, J CELL BIOL, V109, P2853, DOI 10.1083/jcb.109.6.2853 DRENCKHAHN D, 1991, J CELL BIOL, V112, P641, DOI 10.1083/jcb.112.4.641 Enger PS, 1981, HEARING SOUND COMMUN, P243 FERREIRA EA, 1996, ASS RES OTOLARYNGOL, V19, P19 FLOCK A, 1982, HEARING RES, V6, P75 FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339 FOSTER JD, 1993, HEARING RES, V68, P180, DOI 10.1016/0378-5955(93)90122-H GRANT W, 1987, AVIAT SPACE ENVIR MD, V58, P970 HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, pC1 HOWARD J, 1988, ANNU REV BIOPHYS BIO, V17, P99 HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845 HUDSPETH AJ, 1986, HEARING RES, V22, P21, DOI 10.1016/0378-5955(86)90070-5 HUDSPETH AJ, 1982, J NEUROSCI, V2, P1 IKEDA K, 1993, HEARING RES, V66, P169, DOI 10.1016/0378-5955(93)90138-Q JANMEY PA, 1990, NATURE, V347, P95, DOI 10.1038/347095a0 JORGENSEN JM, 1989, J MORPHOL, V201, P187, DOI 10.1002/jmor.1052010208 LAUDER G V, 1983, Bulletin of the Museum of Comparative Zoology, V150, P95 Lenzi David, 1994, Current Opinion in Neurobiology, V4, P496, DOI 10.1016/0959-4388(94)90049-3 LEWIS ER, 1985, VERTEBRATE EAR LIBERMAN MC, 1987, HEARING RES, V26, P65, DOI 10.1016/0378-5955(87)90036-0 Lodish H., 1995, MOL CELL BIOL LOMBARTE A, 1994, J COMP NEUROL, V345, P419, DOI 10.1002/cne.903450308 MJAATVEDT AE, 1988, J COMP NEUROL, V277, P155, DOI 10.1002/cne.902770202 NAKAJIMA Y, 1974, J COMP NEUROL, V156, P403, DOI 10.1002/cne.901560403 PAE SS, 1994, P NATL ACAD SCI USA, V91, P1153, DOI 10.1073/pnas.91.3.1153 Platt C., 1981, HEARING SOUND COMMUN, P3 PLATT C, 1993, ASS RES OTOLARYNGOL, V16, P141 Platt C, 1983, FISH NEUROBIOLOGY, V1, P89 POLLARD TD, 1986, ANNU REV BIOCHEM, V55, P987, DOI 10.1146/annurev.biochem.55.1.987 POPPER AN, 1981, HEARING RES, V5, P245, DOI 10.1016/0378-5955(81)90049-6 POPPER AN, 1993, BRAIN BEHAV EVOLUT, V41, P14, DOI 10.1159/000113821 POPPER AN, 1993, HEARING RES, V64, P211, DOI 10.1016/0378-5955(93)90008-O PRESSON JC, 1992, BRAIN BEHAV EVOLUT, V39, P197, DOI 10.1159/000114117 ROBERTS WM, 1994, J NEUROSCI, V14, P3246 ROBERTS WM, 1993, NATURE, V363, P74, DOI 10.1038/363074a0 SAIDEL WM, 1990, HEARING RES, V47, P139, DOI 10.1016/0378-5955(90)90171-K SAIDEL WM, 1990, J COMP NEUROL, V302, P629, DOI 10.1002/cne.903020317 SAIDEL WM, 1988, NEUROSCI LETT, V84, P161, DOI 10.1016/0304-3940(88)90401-6 Saidel WM, 1995, BRAIN BEHAV EVOLUT, V46, P362, DOI 10.1159/000113286 SENTO S, 1987, J COMP NEUROL, V258, P352, DOI 10.1002/cne.902580304 SLEPECKY N, 1985, HEARING RES, V20, P245, DOI 10.1016/0378-5955(85)90029-2 STEINACKER A, 1992, BRAIN RES, V574, P229, DOI 10.1016/0006-8993(92)90821-P SUGIHARA I, 1989, J NEUROPHYSIOL, V62, P1330 TILNEY LG, 1982, HEARING RES, V7, P181, DOI 10.1016/0378-5955(82)90013-2 TILNEY LG, 1980, J CELL BIOL, V86, P244, DOI 10.1083/jcb.86.1.244 Tzagoloff A., 1982, MITOCHONDRIA WEGNER N, 1982, ACTA ZOOL-STOCKHOLM, V63, P133 Wersall J., 1974, P123 WERSALL J, 1965, COLD SPRING HARB SYM, V30, P115 WERSALL J, 1956, Acta Otolaryngol Suppl, V126, P1 WONGRILEY M, 1979, BRAIN RES, V171, P11, DOI 10.1016/0006-8993(79)90728-5 WONGRILEY MTT, 1989, VISUAL NEUROSCI, V2, P499 WONGRILEY MTT, 1989, TRENDS NEUROSCI, V12, P94, DOI 10.1016/0166-2236(89)90165-3 YAN HY, 1991, P ROY SOC B-BIOL SCI, V245, P133, DOI 10.1098/rspb.1991.0099 NR 59 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 63 EP 77 DI 10.1016/S0378-5955(97)00042-7 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400006 PM 9259236 ER PT J AU Giraud, AL Collet, L CheryCroze, S AF Giraud, AL Collet, L CheryCroze, S TI Suppression of otoacoustic emission is unchanged after several minutes of contralateral acoustic stimulation SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; contralateral stimulation; medial olivocochlear efferent system; efferent fatigue ID GUINEA-PIG COCHLEA; SUPERIOR OLIVARY COMPLEX; AUDITORY-NERVE RESPONSES; MEDIAL EFFERENT SYSTEM; SOUND STIMULATION; MICROMECHANICAL PROPERTIES; OLIVOCOCHLEAR PROJECTIONS; STIMULUS VARIABLES; NEURONS; ORGANIZATION AB The influence of variable durations of contralateral acoustic stimulation on the suppression of click-evoked otoacoustic emissions was investigated in order to determine whether olivocochlear efferent fibers are equally effective whatever the acoustical stimulation duration or if they show fatigue. The suppression effect was measured for contralateral stimulus durations ranging from 10 to 180 s prior to the onset of otoacoustic emission recording, and continuing throughout the recording time (60 s). No significant stimulus duration effect was found. RP Giraud, AL (reprint author), HOP EDOUARD HERRIOT,CNRS,UPRESA AUDITORY PERCEPT & MECHANISMS 5020,PAVILLON U,3 PL ARSONVAL,F-69003 LYON,FRANCE. CR BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 BROWN MC, 1987, J COMP NEUROL, V260, P591, DOI 10.1002/cne.902600411 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BUNO W, 1978, EXP NEUROL, V59, P62, DOI 10.1016/0014-4886(78)90201-7 CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8 CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909 CODY AR, 1982, HEARING RES, V6, P413 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E FEX J, 1959, Acta Otolaryngol, V50, P540, DOI 10.3109/00016485909129230 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 GUMMER M, 1988, HEARING RES, V36, P41, DOI 10.1016/0378-5955(88)90136-0 HOOD LJ, 1995, ABSTR ASS RES OT, V18, P123 KEMP DT, 1978, J ACOUST SOC AM, V64, P495 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779 MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 ROBERTSON D, 1988, BRAIN RES, V462, P47, DOI 10.1016/0006-8993(88)90583-5 ROBERTSON D, 1987, EXP BRAIN RES, V66, P449, DOI 10.1007/BF00270677 ROBERTSON D, 1985, HEARING RES, V20, P63, DOI 10.1016/0378-5955(85)90059-0 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WARREN EH, 1989, HEARING RES, V37, P105, DOI 10.1016/0378-5955(89)90033-6 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 NR 28 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 78 EP 82 DI 10.1016/S0378-5955(97)00055-5 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400007 PM 9259237 ER PT J AU Sakaguchi, N Spicer, SS Thomopoulos, GN Schulte, BA AF Sakaguchi, N Spicer, SS Thomopoulos, GN Schulte, BA TI Immunoglobulin deposition in thickened basement membranes of aging strial capillaries SO HEARING RESEARCH LA English DT Article DE gerbil; autoimmunity; cochlea; laminin; stria vascularis; collagen type IV ID AGE-RELATED-CHANGES; HAIR CELL LOSS; AUDITORY-EVOKED POTENTIALS; AUTOIMMUNE STRAIN MOUSE; BROWN-NORWAY RATS; INNER-EAR DISEASE; MERCURIC-CHLORIDE; HEARING-LOSS; COCHLEAR DEGENERATION; GRADED SERIES AB The presence of immunoglobulins in the thickened basement membrane (BM) of aging strial capillaries was investigated as a possible indicator of autoimmunity in the genesis of atypical BM. Cochleas from young and old Mongolian gerbils raised in quiet were examined by immunostaining at the light microscopic level for IgG and IgM and for the BM components laminin (La) and type IV collagen (IV-C). Another age-graded series of cochleas was stained for IgG at the ultrastructural level. No immunoreactive IgG was detected in specimens from animals less than 6 months old. In contrast, 2 of 12 cochleas from 20- to 28-month-old gerbils and 11 of 20 cochleas from gerbils 30 months or older showed positive staining for Ige in strial capillary BM. IgM was not detected at any age. At the electron microscope level, no immunoreactive IgG was detected in the stria of cochleas younger than 30 months. However, labeling demonstrative of IgG was observed in the thickened BM of some strial capillaries in all six cochleas from gerbils older than 33 months. Lysosome-like granules in endothelial cells and the superiormost marginal cells also stained for content of IgG as did fibrillar material in edematous regions in the intrastrial space. In addition to showing accumulation of IgG, the findings confirm our prior demonstration of increased La deposition in the thickened strial capillary BM of all cochleas from old gerbils. The BM alterations appear confined to strial capillaries in old gerbils, since morphological observations and immunostaining for La and IgG failed to detect changes in BMs at any other site in a wide survey of aged gerbil organs including vessels in other regions of the affected cochleas. The results point more towards the development of an age-dependent permeability to IgG selectively in strial capillaries than to autoimmunity as an explanation of the IgG in BM. RP Sakaguchi, N (reprint author), MED UNIV S CAROLINA,DEPT PATHOL & LAB MED,171 ASHLEY AVE,CHARLESTON,SC 29425, USA. CR ARNOLD W, 1980, ACTA OTO-LARYNGOL, V89, P330, DOI 10.3109/00016488009127145 ARNOLD W, 1984, ANN OTO RHINOL LARYN, V93, P119 ATEN J, 1992, CLIN IMMUNOL IMMUNOP, V63, P89, DOI 10.1016/0090-1229(92)90098-9 AVILA JL, 1984, INFECT IMMUN, V43, P402 BELLON B, 1982, EUR J CLIN INVEST, V12, P127, DOI 10.1111/j.1365-2362.1982.tb00949.x BHATTACHARYYA TK, 1985, ANN OTO RHINOL LARYN, V94, P75 BOETTCHER FA, 1993, HEARING RES, V71, P137, DOI 10.1016/0378-5955(93)90029-Z BOETTCHER FA, 1993, HEARING RES, V71, P146, DOI 10.1016/0378-5955(93)90030-5 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 CALDARELLI DD, 1986, AM J OTOL, V7, P210 COLEMAN JW, 1976, ACTA OTO-LARYNGOL, V82, P33, DOI 10.3109/00016487609120860 COVELL W. P., 1957, LARYNGOSCOPE, V67, P118 DAYAL VS, 1986, ANN OTO RHINOL LARYN, V95, P510 Dayal V S, 1975, Laryngoscope, V85, P1 FOIDART JM, 1986, KIDNEY INT, V29, P1050, DOI 10.1038/ki.1986.106 FUKATSU A, 1987, CLIN IMMUNOL IMMUNOP, V45, P35, DOI 10.1016/0090-1229(87)90109-7 GABRIELLI A, 1992, CLIN EXP RHEUMATOL, V10, P31 GRATTON MA, 1995, HEARING RES, V82, P44 Gratton MA, 1996, HEARING RES, V94, P116, DOI 10.1016/0378-5955(96)00011-1 HARADA T, 1992, ANN OTO RHINOL LARYN, V101, P72 HAYNES BF, 1980, MEDICINE, V59, P426 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N HUDSON BG, 1989, LAB INVEST, V61, P256 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 KEFALIDES NA, 1986, J EXP MED, V63, P588 KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 KUSAKARI C, 1992, ANN OTO RHINOL LARYN, V101, P82 MAKKER SP, 1990, KIDNEY INT, V37, P64, DOI 10.1038/ki.1990.9 MCMENOMEY SO, 1992, OTOLARYNG HEAD NECK, V106, P288 MILLS JH, 1996, OTORHINOLARYNGOLOGY, P133 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 NADOL JB, 1980, AGING COMMUNICATION, P63 NADOL JB, 1979, OTOLARYNG HEAD NECK, V87, P818 Nariuchi H, 1994, Acta Otolaryngol Suppl, V514, P127 NOMURA Y, 1979, ARCH OHREN NASEN KEH, V222, P181, DOI 10.1007/BF00456314 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 QUICK CA, 1973, LARYNGOSCOPE, V83, P1469, DOI 10.1288/00005537-197309000-00007 ROTH J, 1981, J HISTOCHEM CYTOCHEM, V29, P663 RUCKENSTEIN MJ, 1993, ACTA OTO-LARYNGOL, V113, P160, DOI 10.3109/00016489309135785 SAITOH Y, 1995, NEUROBIOL AGING, V16, P129, DOI 10.1016/0197-4580(94)00153-7 Sakaguchi N, 1997, HEARING RES, V105, P44, DOI 10.1016/S0378-5955(96)00180-3 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Schuknecht HF, 1993, PATHOLOGY EAR SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1996, ASS RES OT 1996 MIDW SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K SONE M, 1995, HEARING RES, V83, P26, DOI 10.1016/0378-5955(94)00189-W SUGIYAMA S, 1992, HEARING RES, V58, P35, DOI 10.1016/0378-5955(92)90006-9 SZARFMAN A, 1982, J EXP MED, V155, P1161, DOI 10.1084/jem.155.4.1161 TAGO C, 1992, ANN OTO RHINOL LARYN, V101, P87 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V THOMOPOULOS GN, 1997, IN PRESS HEAR RES Trune DR, 1996, HEARING RES, V95, P57, DOI 10.1016/0378-5955(96)00018-4 TRUNE DR, 1989, HEARING RES, V38, P57, DOI 10.1016/0378-5955(89)90128-7 WILLOTT JF, 1991, AGING AUDITORY SYSTE, P56 WOLF M, 1987, AM J OTOLARYNG, V8, P105, DOI 10.1016/S0196-0709(87)80032-7 WOLFF SM, 1974, ANN INTERN MED, V81, P513 WONG ML, 1992, HEARING RES, V59, P93, DOI 10.1016/0378-5955(92)90106-W YONG JS, 1988, ABSTRACS ASS RES OTO, P225 NR 63 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 83 EP 91 DI 10.1016/S0378-5955(97)00048-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400008 PM 9259238 ER PT J AU Swartz, DJ Santi, PA AF Swartz, DJ Santi, PA TI Immunohistochemical localization of keratan sulfate in the chinchilla inner ear SO HEARING RESEARCH LA English DT Article DE keratan sulfate; immunohistochemistry; mucopolysaccharidosis IV; Morquio's syndrome ID ACID-CONTAINING GLYCOSAMINOGLYCANS; SENSORINEURAL HEARING-LOSS; SILVER METHENAMINE METHOD; TECTORIAL MEMBRANE; GELATINOUS MEMBRANES; OTITIS MEDIA; PROTEOGLYCANS; IDENTIFICATION; ULTRASTRUCTURE; MICROSCOPY AB Keratan sulfate (KS) was immunolocalized in the chinchilla cochlea and vestibular system using indirect immunohistochemistry and a monoclonal antibody (clone 5-D-4) directed against a proteoglycan core antigen. As a positive control, anti-KS Mab reactivity was found in the pericellular matrix and lacuna walls of temporal bone osteocytes. In the cochlea, anti-KS Mab reactivity was abundant in the basal cell layer of the stria vascularis and in the marginal band and Hensen's stripe of the tectorial membrane. Less anti-KS Mab reactivity was present in the cover net, Hardesty's membrane and the upper fibrous zone of the limbal layer of the tectorial membrane. In the vestibular system, anti-KS Mab reactivity was immunolocalized to a portion of the epithelium overlying the cupula of the crista ampullaris, in the apical surface of crista ampullaris epithelium, crista ampullaris stereocilia and in the otoconia. Elucidating the distribution of KS in the cochlea will improve our understanding of cochlear anatomy and is a first step toward understanding the etiology of hearing loss observed in diseases involving KS metabolism, namely, mucopolysaccharidosis type IV (Morquio's syndrome). C1 UNIV MINNESOTA,SCH MED,MINNEAPOLIS,MN 55455. CR ADAMS JC, 1987, J COMP NEUROL, V262, P375, DOI 10.1002/cne.902620305 AZUMA N, 1993, EXP EYE RES, V58, P277 BARTHEL LK, 1990, J HISTOCHEM CYTOCHEM, V38, P1383 BELANGER LF, 1953, SCIENCE, V118, P520, DOI 10.1126/science.118.3070.520 CATERSON B, 1983, J BIOL CHEM, V258, P8848 CINTRON C, 1990, J HISTOCHEM CYTOCHEM, V38, P675 ENGLISH GM, 1973, ARCH OTOLARYNGOL, V98, P18 FERMIN CD, 1990, ACTA ANAT, V138, P75 HASKO JA, 1988, HEARING RES, V35, P21, DOI 10.1016/0378-5955(88)90037-8 IGARASHI Y, 1993, HEARING RES, V67, P83, DOI 10.1016/0378-5955(93)90235-S JOHNSON GD, 1981, J IMMUNOL METHODS, V43, P349, DOI 10.1016/0022-1759(81)90183-6 Katori Y, 1996, CELL TISSUE RES, V284, P473, DOI 10.1007/s004410050608 KATORI Y, 1996, ASS RES OTOLARYNGOLO, P60 KAWAMATA S, 1993, HEARING RES, V67, P75, DOI 10.1016/0378-5955(93)90234-R Kluyskens P, 1965, Acta Otorhinolaryngol Belg, V19, P519 KRONESTERFREI A, 1978, CELL TISSUE RES, V193, P11 LIM DJ, 1972, ARCHIV OTOLARYNGOL, V96, P199 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 MAENO M, 1992, J HISTOCHEM CYTOCHEM, V40, P1779 MAROTEAUX P, 1963, PRESSE MED, V71, P2091 MUNYER PD, 1994, HEARING RES, V79, P83, DOI 10.1016/0378-5955(94)90129-5 MUNYER PD, 1991, HEARING RES, V52, P369, DOI 10.1016/0378-5955(91)90026-6 MUNYER PD, 1995, HEARING RES, V85, P85, DOI 10.1016/0378-5955(95)00032-Y OLSON H, 1993, OPHTHALMIC PAEDIAT G, V14, P87 PAPARELL.MM, 1972, ANN OTO RHINOL LARYN, V81, P632 PRIETO JJ, 1990, HEARING RES, V45, P283, DOI 10.1016/0378-5955(90)90127-B REIDNER ED, 1977, ARCH OTOLARYNGOL, V103, P518 ROBINS MM, 1963, J PEDIATR-US, V62, P881, DOI 10.1016/S0022-3476(63)80102-X SAITO H, 1970, ACTA OTO-LARYNGOL, V69, P333, DOI 10.3109/00016487009123373 SAITO H, 1982, GLYCOSAMINOGLYCANS P, P461 SANTI PA, 1990, J ELECTRON MICR TECH, V15, P293, DOI 10.1002/jemt.1060150308 SANTI PA, 1987, HEARING RES, V27, P47, DOI 10.1016/0378-5955(87)90025-6 SANTI PA, 1994, P 3 INT S MEN DIS, P471 SANTI PA, 1986, HEARING RES, V23, P153, DOI 10.1016/0378-5955(86)90012-2 SATALOFF RT, 1987, AM J OTOL, V8, P443 Schätzle W, 1967, Arch Klin Exp Ohren Nasen Kehlkopfheilkd, V188, P224, DOI 10.1007/BF01278507 SUZUKI H, 1992, HEARING RES, V60, P45, DOI 10.1016/0378-5955(92)90057-T Swartz DJ, 1996, BIOTECHNIQUES, V20, P398 TACHIBANA M, 1992, HEARING RES, V62, P11, DOI 10.1016/0378-5955(92)90198-V TACHIBAN.M, 1973, ACTA OTO-LARYNGOL, V76, P37, DOI 10.3109/00016487309121481 THALMANN I, 1993, ARCH BIOCHEM BIOPHYS, V307, P391, DOI 10.1006/abbi.1993.1605 WHITLEY CB, 1993, MCKUSICKS HERITABLE, P431 ZELLWEGER H, 1961, J PEDIATR-US, V59, P549, DOI 10.1016/S0022-3476(61)80239-4 NR 43 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 92 EP 101 DI 10.1016/S0378-5955(97)00054-3 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400009 PM 9259239 ER PT J AU Albeck, Y AF Albeck, Y TI Inhibition sensitive to interaural time difference in the barn owl's inferior colliculus SO HEARING RESEARCH LA English DT Article DE barn owl; inferior colliculus; inhibition; neural computation; sound localization ID GABAERGIC INHIBITION; MOUSTACHE BAT; RESPONSES AB In spontaneously active neurons in the external nucleus of the inferior colliculus of the barn owl, a stimulus-driven discharge was followed by a quiescent period lasting tens of milliseconds before the spontaneous activity resumed. The more favorable the interaural time difference, the longer the quiet period. The duration of the quiescent period also depended on stimulus frequency. Frequencies different from the neuron's best frequency induced shorter quiescent periods, although they could elicit similar rates of impulses. Also, the duration of the quiescent period was independent of interaural intensity difference. Thus, the quiet period is not due to an after-hyperpolarization but was an inhibitory effect that depended on the activity of other neurons. In some neurons, discharge continued after the stimulus without a quiescent period and gradually decayed over a period of 50-100 ms past the stimulus offset. The similarity between the quiescent period of the neurons mentioned above and the time course of the poststimulus discharge in these neurons suggests that these neurons serve as inhibitory interneurons. C1 CALTECH,DIV BIOL 21676,PASADENA,CA 91125. CR ADOLPHS R, 1993, J NEUROSCI, V13, P3647 CARNEY LH, 1989, J NEUROPHYSIOL, V62, P144 CARR CE, 1989, J COMP NEUROL, V286, P1960 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 FELDMAN DE, 1994, J NEUROSCI, V14, P5939 Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469 FUJITA I, 1991, J NEUROSCI, V11, P722 Keller CH, 1996, J COMP PHYSIOL A, V178, P499 PARK TJ, 1993, J NEUROSCI, V13, P5172 PARK TJ, 1994, J NEUROPHYSIOL, V72, P1080 SAITOH I, 1995, J NEUROPHYSIOL, V74, P1 WAGNER H, 1992, J NEUROPHYSIOL, V68, P2063 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 YIN TCT, 1994, J NEUROSCI, V14, P5170 NR 14 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 102 EP 108 DI 10.1016/S0378-5955(97)00052-X PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400010 PM 9259240 ER PT J AU Gao, WY Wiederhold, ML AF Gao, WY Wiederhold, ML TI The structure of the statocyst of the freshwater snail Biomphalaria glabrata (Pulmonata, Basommatophora) SO HEARING RESEARCH LA English DT Article DE statocyst; Biomphalaria glabrata; ultrastructure; cilia; ciliary orientation ID ACCELERATION RECEPTOR SYSTEM; OCTOPUS-VULGARIS; APLYSIA-CALIFORNICA; HAIR-CELLS AB The structure of the statocyst of the freshwater snail Biomphalaria glabrata has been examined by light and electron microscopy. The two statocysts are located on the dorsal-lateral side of the left and right pedal ganglion. The statocysts are spherical, fluid-filled capsules with a diameter of approximately 60 mu m for young and 110 mu m for adult snails. The wall of the cyst is composed of large receptor cells and many smaller supporting cells. The receptor cells bear cilia which are evenly distributed on the apical surface. The cilia have the typical 9+2 internal tubule configuration. Striate rootlets originate from the base of the basal body and run downward into the cytoplasm. Side-roots arise from one side of the basal body and a basal foot from the other. For each receptor cell, the basal foot always points to the periphery of the surface, indicating that the receptor cell is non-polarized. The receptor cells contain cytoplasmic organelles such as mitochondria, ribosomes, rough and smooth endoplasmic reticulum, compact Golgi bodies and multivesicular bodies. Supporting cells bearing microvilli are interposed between the receptor cells. The junction complex between the supporting cells and the receptor cells is composed of adherens and septate junctions, while between supporting cells only the adherens junctions are present. The static nerve arises from the lateral side of the cyst and contains axons in which parallel neurotubules and mitochondria are found. The axons arise directly from the base of the receptor cells without synapse. In the cyst lumen there are unattached statoconia. The statoconia have a plate-like or concentric membranous ring structure. Based on the morphology, the function of the statocyst in Biomphalaria is discussed. RP Gao, WY (reprint author), UNIV TEXAS,HLTH SCI CTR,DEPT OTOLARYNGOL HEAD & NECK SURG,7703 FLOYD CURL DR,SAN ANTONIO,TX 78284, USA. CR ARONOVA M, 1974, Zeitschrift fuer Mikroskopisch-Anatomische Forschung (Leipzig), V88, P401 Barber V. C., 1968, Symposia of the Zoological Society of London, VNo. 23, P37 BARBER VC, 1969, Z ZELLFORSCH MIK ANA, V94, P462, DOI 10.1007/BF00936053 BARBER VC, 1966, Z ZELLFORSCH MIK ANA, V70, P91, DOI 10.1007/BF00345067 Battenfeld Christiane, 1993, Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere, V123, P245 Budelmann B.-U., 1988, P757 BUDELMANN BU, 1977, CELL TISSUE RES, V182, P93 BUDELMAN.BU, 1973, BRAIN RES, V56, P25, DOI 10.1016/0006-8993(73)90325-9 BUDELMANN BU, 1977, S ZOOLOGICAL SOC LON, V38, P309 BUDELMANN BU, 1979, BRAIN RES, V160, P261, DOI 10.1016/0006-8993(79)90423-2 BUDELMANN BU, 1982, CELL TISSUE RES, V227, P475 BUDELMANN BU, 1987, PHILOS T ROY SOC B, V315, P305, DOI 10.1098/rstb.1987.0010 Budelmann BU, 1976, STRUCTURE FUNCTION P, P529 CHIA FS, 1981, CELL TISSUE RES, V214, P67 COGGESHA.RE, 1969, J MORPHOL, V127, P113, DOI 10.1002/jmor.1051270107 COLMERS WF, 1977, CELL TISSUE RES, V185, P491 COLMERS WF, 1981, J COMP NEUROL, V197, P385, DOI 10.1002/cne.901970303 CRAGG SM, 1977, J EXP MAR BIOL ECOL, V27, P23, DOI 10.1016/0022-0981(77)90051-X DANILOVA LV, 1969, Z ZELLFORSCH MIK ANA, V100, P101, DOI 10.1007/BF00343824 GEUZE J J, 1968, Netherlands Journal of Plant Pathology, V18, P155 GILULA NB, 1970, P NATL ACAD SCI USA, V67, P213, DOI 10.1073/pnas.67.1.213 JANSE C, 1980, J COMP PHYSIOL, V137, P51 KAWANO T, 1992, MALACOLOGIA, V34, P25 KHARKEEVITCH T A, 1974, Zeitschrift fuer Mikroskopisch-Anatomische Forschung (Leipzig), V88, P382 KRISCH B, 1973, Z ZELLFORSCH MIK ANA, V142, P241, DOI 10.1007/BF00307035 KUZIRIAN AM, 1981, J NEUROCYTOL, V10, P497, DOI 10.1007/BF01262418 Laverack M. S., 1968, Symposia of the Zoological Society of London, VNo. 23, P299 Markl H, 1974, HDB SENSORY PHYSL, VVI/1, P17 MCKEE AE, 1974, BRAIN RES, V78, P490 NEWELL PE, 1973, Z ZELLFORSCH, V47, P31 Pedrozo HA, 1996, HEARING RES, V102, P51, DOI 10.1016/S0378-5955(96)00147-5 PEDROZO HA, 1994, HEARING RES, V79, P137, DOI 10.1016/0378-5955(94)90135-X Platt C., 1984, P563 REYNOLDS ES, 1963, J CELL BIOL, V17, P208, DOI 10.1083/jcb.17.1.208 STAEHELI.LA, 1974, INT REV CYTOL, V39, P191, DOI 10.1016/S0074-7696(08)60940-7 STAHLSCH.V, 1972, Z ZELLFORSCH MIK ANA, V133, P529, DOI 10.1007/BF00307133 STOMMEL EW, 1980, J CELL BIOL, V87, P652, DOI 10.1083/jcb.87.3.652 TSIRULIS T P, 1974, Journal of Evolutionary Biochemistry and Physiology, V10, P158 VINNIKOV YA, 1967, S NEUR INV AK KIAD B, P29 WIEDERHOLD ML, 1986, SCANNING ELECTRON MI, V2, P781 Wiederhold M.L., 1990, P393 WIEDERHOLD ML, 1978, BRAIN RES, V156, P369, DOI 10.1016/0006-8993(78)90521-8 WIEDERHOLD ML, 1990, HEARING RES, V49, P63, DOI 10.1016/0378-5955(90)90095-7 WILLIAMSON R, 1985, J COMP PHYSIOL A, V156, P403, DOI 10.1007/BF00610733 WOLFF HG, 1969, Z ZELLFORSCH MIK ANA, V100, P251, DOI 10.1007/BF00343882 WOLFF H G, 1973, Marine Behaviour and Physiology, V1, P361 NR 46 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 109 EP 124 DI 10.1016/S0378-5955(97)00058-0 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400011 PM 9259241 ER PT J AU Gao, WY Wiederhold, M Hejl, R AF Gao, WY Wiederhold, M Hejl, R TI Development of the statocyst in the freshwater snail Biomphalaria glabrata (Pulmonata, Basommatophora) SO HEARING RESEARCH LA English DT Article DE statocyst; statoconia; Biomphalaria glabrata; development ID APLYSIA-CALIFORNICA; VOLTAGE NOISE; HAIR-CELLS AB The development of the statocyst of the freshwater snail Biomphalaria glabrata has been examined from embryo to adult. Special emphasis was put on the growth of the statoconia in the statocysts. In the statocysts of embryonic snails (90-120 h after oviposition) there is not a single statolith but an average of 40-50 statoconia per statocyst. The number of statoconia increases to 385-400 when the snails reach a shell diameter of 4 mm and remains relatively constant thereafter, irrespective of shell size. Small statoconia are found in supporting cells, which suggests that the statoconia are produced within these cells. The average diameter of statoconia and the total mass of statoconia increase with increasing shell diameter. The average number of large statoconia (diameter > 7 mu m) per statocyst continues to increase from 2 to 10 mm animals while the number of small ones (diameter < 4 mu m) initially rises and then decreases after 4 mm. These results demonstrate continuous growth of the statoconia in the cyst lumen of Biomphalaria. The single statoconia vibrate in a regular pattern in vivo, indicating beating of the statocyst cilia. The statoconia sink under the influence of gravity to load and stimulate receptor cells which are at the bottom. The length of cilia and the size of statocyst gradually increase as the animal grows. However, the increase in the volume of the statocyst is relatively small compared with the increase in body weight during normal development. RP Gao, WY (reprint author), UNIV TEXAS,HLTH SCI CTR,DEPT OTOLARYNGOL HEAD & NECK SURG,7703 FLOYD CURL DR,SAN ANTONIO,TX 78284, USA. CR Battenfeld Christiane, 1993, Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere, V123, P245 BUDELMAN.BU, 1973, J COMP PHYSIOL, V85, P283, DOI 10.1007/BF00694234 CAMEY T, 1970, T AM MICROL SCI, V65, P250 CRAGG SM, 1977, J EXP MAR BIOL ECOL, V27, P23, DOI 10.1016/0022-0981(77)90051-X DANES BS, 1972, J EXP MED, V136, P1313, DOI 10.1084/jem.136.5.1313 GALLIN EK, 1977, J PHYSIOL-LONDON, V166, P123 GAO WY, 1997, IN PRESS HEAR RES GEUZE J J, 1968, Netherlands Journal of Plant Pathology, V18, P155 GROSSMAN Y, 1979, J GEN PHYSIOL, V73, P23, DOI 10.1085/jgp.73.1.23 KAWANO T, 1992, MALACOLOGIA, V34, P25 KUZIRIAN AM, 1981, J NEUROCYTOL, V10, P497, DOI 10.1007/BF01262418 Laverack M. S., 1968, Symposia of the Zoological Society of London, VNo. 23, P299 LINDEMANN CB, 1980, J CELL BIOL, V87, P420, DOI 10.1083/jcb.87.2.420 MCKEE AE, 1974, BRAIN RES, V78, P490 MOFFETT S, 1985, J NEUROBIOL, V16, P193, DOI 10.1002/neu.480160305 PEDROZO HA, 1994, HEARING RES, V79, P137, DOI 10.1016/0378-5955(94)90135-X PERETZ B, 1982, BIOL BULL, V162, P333, DOI 10.2307/1540987 STAHLSCH.V, 1972, Z ZELLFORSCH MIK ANA, V133, P529, DOI 10.1007/BF00307133 STOMMEL EW, 1980, J CELL BIOL, V87, P652, DOI 10.1083/jcb.87.3.652 TSIRULIS T P, 1974, Journal of Evolutionary Biochemistry and Physiology, V10, P158 Wiederhold M.L., 1990, P393 WIEDERHOLD ML, 1974, BRAIN RES, V81, P310 WIEDERHOLD ML, 1978, BRAIN RES, V156, P369, DOI 10.1016/0006-8993(78)90521-8 WIEDERHOLD ML, 1990, HEARING RES, V49, P63, DOI 10.1016/0378-5955(90)90095-7 WIEDERHOLD ML, 1976, ANNU REV BIOPHYS BIO, V5, P39, DOI 10.1146/annurev.bb.05.060176.000351 WIEDERHOLD ML, 1997, IN PRESS GRAVITATION WOLFF H G, 1973, Marine Behaviour and Physiology, V1, P361 Wolff H G, 1975, Fortschr Zool, V23, P63 WOOD J, 1972, COMP BIOCHEM PHYSIOL, V43, P495, DOI 10.1016/0300-9629(72)90236-8 NR 29 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 125 EP 134 DI 10.1016/S0378-5955(97)00059-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400012 PM 9259242 ER PT J AU Horner, KC Aurousseau, C AF Horner, KC Aurousseau, C TI Immunoreactivity for taurine in the cochlea: Its abundance in supporting cells SO HEARING RESEARCH LA English DT Article DE cochlea; hair cell; tectorial membrane; supporting cell; guinea pig ID OUTER HAIR-CELLS; EXPERIMENTALLY INDUCED HYDROPS; TECTORIAL MEMBRANE; GUINEA-PIG; DEITERS CELLS; ENDOLYMPHATIC HYDROPS; ELECTRON-MICROSCOPY; ORGAN; CORTI; RAT AB Taurine is the second most abundant free amino acid in the brain where its osmoregulatory function is well established. Taurine-deprived kittens show retinal pathology leading to blindness. In the inner ear, taurine has been reported to be the most abundant free amino acid although its role in inner ear function is not known. Immunohistochemistry was employed here to investigate the localisation of taurine in normal cochleae of the guinea pig compared with two different conditions: experimentally induced endolymphatic hydrops and after oral administration of glycerol. In normal cochleae, by light microscopy, taurine-like immunoreaction was never observed in the sensory outer hair cells and appeared absent from the inner hair cells. In contrast taurine-like immunolabeling was found to be present in all supporting tissue with the striking exception of the tectorial membrane and the outer pillar cell which had no or little taurine immunoreactivity respectively. In early experimental endolymphatic hydrops, the distribution of taurine-like immunoreactivity appeared similar to that observed for normal cochleae. In long-term hydrops, degenerated outer hair cells were replaced by the swelling of the phalangeal process of the Deiters' cells which became highly immunoreactive to taurine. After glycerol administration, the tectorial membrane became more tightly bound to the apical surface of the sensory hair cells and distinctly immunoreactive to taurine. The localisation of taurine in the organ of Corti shown here is consistent with taurine being involved in the maintenance of osmotic equilibrium in the normal and perhaps also in the restructuration of the pathological organ of Corti. C1 UNIV BORDEAUX 2, LAB AUDIOL EXPT, INSERM, F-33076 BORDEAUX, FRANCE. CR ALTSHULER D, 1993, DEVELOPMENT, V119, P1317 BARBARA M, 1994, MENIERE'S DISEASE, P127 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BROWNELL WE, 1986, AUDITORY FREQUENCY S, P109 BROWNELL WE, 1990, LECT NOTES BIOMATH, V87, P52 DALLOS P, 1993, J NEUROPHYSIOL, V70, P299 Davies W.E., 1985, P244 DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 FREEMAN DM, 1994, HEARING RES, V79, P197, DOI 10.1016/0378-5955(94)90141-4 Hageman G S, 1987, Prog Clin Biol Res, V247, P497 HARDING NJ, 1993, HEARING RES, V65, P211, DOI 10.1016/0378-5955(93)90214-L HASKO JA, 1988, HEARING RES, V35, P21, DOI 10.1016/0378-5955(88)90037-8 HAYES KC, 1975, SCIENCE, V188, P947 HOLLEY MC, 1990, J CELL SCI, V96, P283 HORNER KC, 1993, HEARING RES, V58, P1 HORNER KC, 1993, HEARING RES, V70, P1, DOI 10.1016/0378-5955(93)90047-5 HORNER KC, 1988, HEARING RES, V32, P41, DOI 10.1016/0378-5955(88)90145-1 HORNER KC, 1987, ARCH OTO-RHINO-LARYN, V244, P49, DOI 10.1007/BF00453491 HORNER KC, 1995, EUR J NEUROSCI, V7, P1305, DOI 10.1111/j.1460-9568.1995.tb01121.x HUNTERDUVAR I, 1978, SCAN ELECT MICROSC, V11, P423 HUXTABLE RJ, 1992, PHYSIOL REV, V72, P101 IMAKI H, 1993, J NEUROSCI RES, V36, P290, DOI 10.1002/jnr.490360307 IURATO S, 1976, ACTA OTO-LARYNGOL, V82, P58 KAKEHATA S, 1995, BIOPHYS J, V68, P2190 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KIMURA RS, 1965, PRACT-OTO-RHINO-LARY, V27, P343 Klockhoff I, 1966, Acta Otolaryngol, V61, P459, DOI 10.3109/00016486609127084 KRONESTERFREI A, 1979, HEARING RES, V1, P81, DOI 10.1016/0378-5955(79)90019-4 LAKE N, 1994, VISUAL NEUROSCI, V11, P253 LAWRENCE M, 1980, ANN OTO RHINOL LARYN, V89, P325 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 LOMBARDINI JB, 1991, BRAIN RES REV, V16, P151, DOI 10.1016/0165-0173(91)90003-Q NADOL JB, 1994, HEARING RES, V81, P49, DOI 10.1016/0378-5955(94)90152-X NAGELHUS EA, 1993, NEUROSCIENCE, V54, P615, DOI 10.1016/0306-4522(93)90233-6 NAKAZAWA K, 1995, HEARING RES, V89, P121, DOI 10.1016/0378-5955(95)00129-8 NINOYU O, 1986, ARCH OTO-RHINO-LARYN, V243, P106, DOI 10.1007/BF00453759 POW DV, 1994, VISUAL NEUROSCI, V11, P1115 RYDMARKER S, 1990, SCANNING MICROSCOPY, V4, P705 SCHWARTZ IR, 1983, HEARING RES, V9, P185, DOI 10.1016/0378-5955(83)90027-8 SPICER SS, 1993, ANAT REC, V237, P421, DOI 10.1002/ar.1092370316 STORMMATHISEN J, 1990, GLYCINE NEUROTRANSMI, P281 SZIKLAI I, 1992, LARYNGOSCOPE, V102, P431, DOI 10.1288/00005537-199204000-00011 ULFENDAHL M, 1988, ARCH OTO-RHINO-LARYN, V245, P237, DOI 10.1007/BF00463935 USAMI S, 1995, BRAIN RES, V676, P277, DOI 10.1016/0006-8993(95)00098-B ZUMGOTTESBERGE AMM, 1993, EUR ARCH OTO-RHINO-L, V250, P88 NR 47 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 1997 VL 109 IS 1-2 BP 135 EP 142 DI 10.1016/S0378-5955(97)00057-9 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XN174 UT WOS:A1997XN17400013 PM 9259243 ER PT J AU Pratt, H Polyakov, A Kontorovich, L AF Pratt, H Polyakov, A Kontorovich, L TI Evidence for separate processing in the human brainstem of interaural intensity and temporal disparities for sound lateralization SO HEARING RESEARCH LA English DT Article DE sound localization; auditory brainstem; evoked potential; human; click ID STEM EVOKED-POTENTIALS; BINAURAL INTERACTION; RESPONSES ABRS; CLICK LATERALIZATION; TRAPEZOID BODY; GUINEA-PIGS; GENERATION; TIME; CAT; LOCALIZATION AB Sound lateralization can be induced by interaural intensity disparities (IIDs) or by interaural temporal disparities (ITDs). The purpose of this study was to indicate whether IIDs End ITDs are processed by the same central units that detect interaural disparity in timing of afferent activity. If sound lateralization to intensity and time cues was determined by the same afferent latency disparity detectors in the brainstem, lateralization would be the same, regardless of whether latency disparity was induced by IIDs or ITDs. Moreover, the disparity detectors, and thus their dipole equivalents, would be the same for equal lateralizations, whether induced by IIDs or ITDs. Auditory brainstem evoked potentials (ABEPs) were recorded in response to monaural and binaural clicks, with a variety of IIDs and ITDs. Peak II (proximal auditory nerve activity), peak III (input to the superior olivary complex), and binaural interaction components (BICs) Be-I and Be-II (binaurally activated upper pens) were identified and their latencies measured. The psychophysical lateralization of the clicks (in cm from vertex) was also measured in response to the same binaural stimuli. The correlations between interaural afferent latency disparities (difference in corresponding peak latencies originating in each ear) and psychophysical click lateralization were calculated. Similarly, the correlations with click lateralization of the BICs equivalent dipole latency as well as orientation change (relative to symmetrical clicks) were determined. A strong correlation with lateralization was found for peaks II and III latency disparities, with steeper slopes for IIDs than for ITDs. Moreover, binaural activity across the same lateralizations differed between IIDs and ITDs. These results, therefore, indicate that interaural time and intensity cues are processed by separate systems in the brainstem, both at the afferent convergence level and after interaural disparities are determined. RP Pratt, H (reprint author), TECHNION ISRAEL INST TECHNOL,EVOKED POTENTIALS LAB,GUTWIRTH BLDG,IL-32000 HAIFA,ISRAEL. RI KONTOROVICH, ARYEH/F-2375-2012 CR ARSLAN E, 1981, SCAND AUDIOL, V10, P151, DOI 10.3109/01050398109076175 BRUGGE JF, 1978, ANNU REV NEUROSCI, V1, P363, DOI 10.1146/annurev.ne.01.030178.002051 DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391 FURST M, 1995, HEARING RES, V82, P109 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 GERULL G, 1984, AUDIOLOGY, V23, P265 GORGA MP, 1985, EAR HEARING, V6, P105, DOI 10.1097/00003446-198503000-00008 HECOX K, 1974, ARCH OTOLARYNGOL, V99, P30 JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K MARTIN WH, 1986, ELECTROEN CLIN NEURO, V63, P54, DOI 10.1016/0013-4694(86)90062-3 MASTERTON RB, 1984, ANNU REV PHYSIOL, V46, P275 POLYAKOV A, 1994, ELECTROEN CLIN NEURO, V92, P396, DOI 10.1016/0168-5597(94)90016-7 Polyakov A, 1996, HEARING RES, V94, P107, DOI 10.1016/0378-5955(96)00009-3 Prasher D K, 1981, Br J Audiol, V15, P189, DOI 10.3109/03005368109081436 PRATT H, 1987, AUDIOLOGY, V26, P188 PRATT H, 1977, NEUROPHYSIOL, V43, P802 PRATT H, 1995, ACTA OTO-LARYNGOL, V115, P363, DOI 10.3109/00016489509139330 ROSENHAMER HJ, 1983, SCAND AUDIOL, V12, P201, DOI 10.3109/01050398309076247 SONTHEIMER D, 1985, ELECTROEN CLIN NEURO, V61, P539, DOI 10.1016/0013-4694(85)90973-3 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P352, DOI 10.1016/0013-4694(83)90261-4 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P326, DOI 10.1016/0013-4694(83)90259-6 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P340, DOI 10.1016/0013-4694(83)90260-2 WREGE KS, 1981, ARCH NEUROL-CHICAGO, V38, P572 NR 23 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 1 EP 8 DI 10.1016/S0378-5955(97)00033-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900001 PM 9213116 ER PT J AU Gratton, MA Smyth, BJ Lam, CF Boettcher, FA Schmiedt, RA AF Gratton, MA Smyth, BJ Lam, CF Boettcher, FA Schmiedt, RA TI Decline in the endocochlear potential corresponds to decreased Na,K-ATPase activity in the lateral wall of quiet-aged gerbils SO HEARING RESEARCH LA English DT Article DE stria vascularis; spiral ligament; cochlea; aging; ion transport; presbyacusis ID STRIA VASCULARIS; INNER-EAR; MECHANISMS; SECRETION AB The ion transport-mediating enzyme, Na,K-ATPase, is abundantly present in the cochlear lateral wall. This enzyme is essential for the generation and maintenance of the endocochlear potential. Diminished enzyme activity has been observed previously in the lateral wall of quiet-aged gerbils. The present study was designed to investigate the impact of the age-related decline in Na,K-ATPase specific activity upon auditory function. Measures of the resting endocochlear potential value and the level of Na,K-ATPase specific activity were made in cochleae obtained from gerbils aged in quiet conditions. Analysis revealed a high degree of correspondence between the level of lateral wall Na,K-ATPase specific activity and the value of the endocochlear potential measured in the round window/turn I region of the cochlea. Nonlinear regression models showed a strong relationship between the age-related reductions in enzyme activity and the magnitude of the endocochlear potential. The data suggest that during metabolic presbyacusis a decrease in Na,K-ATPase specific activity can explain most, but not all, of the decline in the endocochlear potential. C1 MED UNIV S CAROLINA,DEPT PATHOL & LAB MED,CHARLESTON,SC 29425. MED UNIV S CAROLINA,DEPT BIOMETRY & EPIDEMIOL,CHARLESTON,SC 29425. RP Gratton, MA (reprint author), MED UNIV S CAROLINA,DEPT OTOLARYNGOL & COMMUN SCI,171 ASHLEY AVE,CHARLESTON,SC 29425, USA. CR BOSHER SK, 1973, ACTA OTO-LARYNGOL, V75, P184, DOI 10.3109/00016487309139694 DOI K, 1992, HEARING RES, V58, P221, DOI 10.1016/0378-5955(92)90131-6 FERRARY E, 1993, ACTA OTO-LARYNGOL, V113, P335, DOI 10.3109/00016489309135820 Gratton MA, 1996, HEARING RES, V94, P116, DOI 10.1016/0378-5955(96)00011-1 GRATTON MA, 1995, HEARING RES, V83, P43, DOI 10.1016/0378-5955(94)00188-V KUIJPERS W, 1970, PFLUG ARCH EUR J PHY, V320, P348, DOI 10.1007/BF00588213 KUSAKARI J, 1978, ACTA OTO-LARYNGOL, V86, P336, DOI 10.3109/00016487809107512 Ma YL, 1995, HEARING RES, V91, P79, DOI 10.1016/0378-5955(95)00172-7 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 RAREY KE, 1989, ARCH OTOLARYNGOL, V115, P817 SACHS JR, 1991, SOC GEN PHY, V46, P249 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHMIEDT RA, 1993, SENSORY RESEARCH MULTIMODAL PERSPECTIVES, P91 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Segel IH, 1975, ENZYME KINETICS, P346 Shanley PF, 1996, SEMIN NEPHROL, V16, P21 SPICER SS, 1997, UNPUB HEAR RES SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z THALMANN R, 1972, LARYNGOSCOPE, V82, P2249, DOI 10.1288/00005537-197212000-00013 THOMOPOULOS GN, UNPUB ULTRASTRUCTURA WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S NR 23 TC 37 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 9 EP 16 DI 10.1016/S0378-5955(97)00034-8 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900002 PM 9213117 ER PT J AU Supin, AY Popov, VV Milekhina, ON Tarakanov, MB AF Supin, AY Popov, VV Milekhina, ON Tarakanov, MB TI Frequency-temporal resolution of hearing measured by rippled noise SO HEARING RESEARCH LA English DT Article DE frequency resolution; temporal resolution; rippled noise; auditory filter; human ID GAP DETECTION; BANDWIDTH; LEVEL; THRESHOLD; SINUSOIDS; MASKING; REGION; MASKER; WINDOW; SHAPE AB Frequency-temporal resolution of hearing was measured in normal hearers using rippled noise stimulation in conjunction with a phase-reversal test. The principle of the test was to interchange peak and trough positions (the phase reversal) and to find the highest ripple density at which such interchange is detectable depending on reversal rate. The measurements were made using narrow-band noises with center frequencies of 0.5-4 kHz. The ripple-density resolution limits were constant at phase-reversal rates below 2-3/s and diminished at higher phase-reversal rates. A model is proposed to explain the data based on the envelope fluctuations inherent in noise; these fluctuations are supposed to limit detection of frequency-temporal sound patterns. RP Supin, AY (reprint author), RUSSIAN ACAD SCI,INST ECOL & EVOLUT,33 LENINSKY PROSPEKT,MOSCOW 117071,RUSSIA. CR BERSTEIN LR, 1987, J ACOUST SOC AM, V81, P1888 DEBOER E, 1984, TIME RESOLUTION AUDI, P141 EDDINS DA, 1993, J ACOUST SOC AM, V93, P470, DOI 10.1121/1.405627 EDDINS DA, 1992, J ACOUST SOC AM, V91, P1069, DOI 10.1121/1.402633 FITZGIBBONS PJ, 1983, J ACOUST SOC AM, V74, P67, DOI 10.1121/1.389619 GLASBERG BR, 1984, J ACOUST SOC AM, V75, P536, DOI 10.1121/1.390487 Green D, 1986, AUDITORY FREQUENCY S, P351 GREEN DM, 1984, TIME RESOLUTION AUDI, P123 GROSE JH, 1989, J ACOUST SOC AM, V86, P1747, DOI 10.1121/1.398606 HOUTGAST T, 1977, J ACOUST SOC AM, V62, P409, DOI 10.1121/1.381541 Houtgast T., 1974, FACTS MODELS HEARING, P258 MOORE BCJ, 1993, J ACOUST SOC AM, V93, P1563, DOI 10.1121/1.406815 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1102, DOI 10.1121/1.396055 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1093, DOI 10.1121/1.396054 NARINS PM, 1979, IEEE T BIO-MED ENG, V26, P43, DOI 10.1109/TBME.1979.326476 PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 PENNER MJ, 1977, J ACOUST SOC AM, V61, P552, DOI 10.1121/1.381297 Pick G., 1977, PSYCHOPHYSICS PHYSL, P273 PLACK CJ, 1990, J ACOUST SOC AM, V87, P2178, DOI 10.1121/1.399185 PLOMP R, 1964, J ACOUST SOC AM, V36, P277, DOI 10.1121/1.1918946 SHAILER MJ, 1983, J ACOUST SOC AM, V74, P467, DOI 10.1121/1.389812 SHAILER MJ, 1985, J ACOUST SOC AM, V77, P635, DOI 10.1121/1.391881 SMIAROWSKI RA, 1975, J ACOUST SOC AM, V57, P1169, DOI 10.1121/1.380575 SUPIN AY, 1994, HEARING RES, V78, P31, DOI 10.1016/0378-5955(94)90041-8 VANZANTEN G, 1983, J ACOUST SOC AM, V75, P52 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 WILSON JP, 1971, 7 INT C AC, V3, P397 YOST WA, 1987, J ACOUST SOC AM, V81, P1896, DOI 10.1121/1.394754 ZWICHER E, 1982, PSYCHOACUSTIK Zwicker E., 1952, ACUSTICA S3, V2, P125 Zwicker E., 1974, FACTS MODELS HEARING, P132 NR 32 TC 12 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 17 EP 27 DI 10.1016/S0378-5955(97)00035-X PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900003 PM 9213118 ER PT J AU Hine, JE Thornton, ARD Brookes, GB AF Hine, JE Thornton, ARD Brookes, GB TI Effect of olivocochlear bundle section on evoked otoacoustic emissions recorded using maximum length sequences SO HEARING RESEARCH LA English DT Article DE evoked otoacoustic emission; maximum length sequence; olivocochlear bundle; vestibular nerve section ID COCHLEAR MICROMECHANICAL PROPERTIES; CONTRALATERAL ACOUSTIC STIMULATION; VESTIBULAR NEURECTOMY; SYSTEM; HUMANS; RATES; SUPPRESSION; MECHANICS; RESPONSES; SOUND AB Presenting clicks according to maximum length sequences (MLS) enables transient evoked otoacoustic emissions (TEOAE) to be recorded at very high stimulation rates. As the click rate is increased from 40 clicks/s up to a maximum rate of 5000 clicks/s there is a reduction in TEOAE amplitude that reaches an approximate asymptote at 1500 clicks/s. One hypothesis put forward to explain this MLS 'rate effect' is that ipsilateral efferent activity is involved. To test this hypothesis TEOAEs were recorded from both ears of five patients who had undergone a unilateral vestibular nerve section - a surgical procedure which also entails sectioning the olivocochlear bundle. TEOAEs were recorded conventionally at 40 clicks/s and using MLS stimulation at 5000 clicks/s. Increasing the rate from 40 to 5000 clicks/s was found to reduce the amplitude of the TEOAEs by equivalent amounts in ears ipsilateral and contralateral to a vestibular nerve section as well as in the ears of normal-hearing adults. Since an ear ipsilateral to a vestibular nerve section should have no efferent innervation the hypothesis that efferent activity is the major mechanism involved in the MLS rate effect is rejected. Instead, the possibility that intracochlear processes are the underlying mechanism will now be investigated. C1 UCL NATL HOSP NEUROL & NEUROSURG, DEPT NEUROOTOL, LONDON WC1N 3BG, ENGLAND. RP Hine, JE (reprint author), ROYAL S HANTS HOSP, MRC, INST HEARING RES, SOUTHAMPTON SO14 0YG, HANTS, ENGLAND. CR BROOKES GB, 1997, UNPUB RETROLABYRINTH CASTOR X, 1994, HEARING RES, V77, P1, DOI 10.1016/0378-5955(94)90248-8 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E COLLET L, 1993, BRIT J AUDIOL, V27, P155, DOI 10.3109/03005369309077907 Cope Y., 1988, PAEDIATRIC AUDIOLOGY, P221 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 GRANDORI F, 1994, ADV OTOACOUSTIC EMIS, P46 HINE JE, 1997, IN PRESS HEAR RES, V18 IOORNTON ARD, IIK LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LINAGRANADE G, 1995, HEARING RES, V87, P55, DOI 10.1016/0378-5955(95)00078-I MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 Norman M, 1996, AM J OTOL, V17, P763 PICTON TW, 1993, EAR HEARING, V14, P299, DOI 10.1097/00003446-199310000-00001 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 SCHARF B, 1994, HEARING RES, V75, P11, DOI 10.1016/0378-5955(94)90051-5 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 SILVERSTEIN H, 1990, J NEUROSURG, V72, P533, DOI 10.3171/jns.1990.72.4.0533 SILVERSTEIN H, 1982, OTOLARYNG HEAD NECK, V90, P778 STOVER L, 1993, J ACOUST SOC AM, V94, P2670, DOI 10.1121/1.407351 TAVARTKILADZE GA, 1994, ADV OTOACOUSTIC EMIS, V3, P9 Tavartkiladze GA, 1996, ACTA OTO-LARYNGOL, V116, P213, DOI 10.3109/00016489609137826 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P205, DOI 10.3109/03005369309076694 THORNTON ARD, 1995, SCAND AUDIOL, V24, P83, DOI 10.3109/01050399509047519 THORNTON ARD, 1994, BRIT J AUDIOL, V28, P227, DOI 10.3109/03005369409086572 THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512 THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WILLIAMS EA, 1993, SCAND AUDIOL, V22, P197, DOI 10.3109/01050399309047469 WILLIAMS EA, 1994, ACTA OTO-LARYNGOL, V114, P121, DOI 10.3109/00016489409126029 NR 32 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 28 EP 36 DI 10.1016/S0378-5955(97)00036-1 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900004 PM 9213119 ER PT J AU Kawase, T Hidaka, H Takasaka, T AF Kawase, T Hidaka, H Takasaka, T TI Frequency summation observed in the human acoustic reflex SO HEARING RESEARCH LA English DT Article DE acoustic reflex; middle ear muscle; summation; human ID MIDDLE-EAR MUSCLES; STAPEDIUS REFLEX; TUNING CURVES; THRESHOLDS; NOISE; MECHANISMS; IMPEDANCE; BANDWIDTH; DAMAGE AB It is known that the threshold of an acoustically induced middle-ear-muscle (MEM) reflex can be lowered by the simultaneous presentation of a second tone (facilitator), which is presented to the ipsilateral or contralateral ear at a level below the acoustic reflex threshold (ART) of the facilitator itself (Sesterhenn and Breuninger, 1976; Blood and Greenberg, 1981). In the present study, a primary elicitor and a facilitator were presented to the ear contralateral to that used for measurement of the acoustic reflex (AR), and the effects of changing frequencies and sound levels of the facilitator were investigated in human subjects with normal ears. The sound levels of facilitators, which caused a significant reduction of ART for the primary elicitors (facilitation thresholds), showed an asymmetrical pattern as a function of frequency of the facilitators. The facilitation thresholds tended to be lower when a facilitator with a frequency lower than the frequency of the elicitor (1 kHz) was used. In addition, effects of the elicitor on the masked thresholds of the facilitator were examined to observe the possible interaction between elicitor and facilitator from the viewpoint of 'spread of excitation.' The underlying mechanism of summation effects of two tones are discussed based on the possible input mechanism involved in the acoustically induced MEM reflex arc. RP Kawase, T (reprint author), TOHOKU UNIV,SCH MED,DEPT OTOLARYNGOL,AOBA KU,1-1 SEIRYO MACHI,SENDAI,MIYAGI 980,JAPAN. CR ALBERTI PWR, 1970, LARYNGOSCOPE, V80, P735, DOI 10.1288/00005537-197005000-00005 BLOOD IM, 1981, AUDIOLOGY, V20, P244 Borg E, 1968, Acta Otolaryngol, V66, P461, DOI 10.3109/00016486809126311 BORG E, 1990, BRAIN RES, V506, P79, DOI 10.1016/0006-8993(90)91201-Q Borg E., 1984, ACOUSTIC REFLEX BASI, P63 BORG E, 1975, ACTA OTO-LARYNGOL, V79, P325, DOI 10.3109/00016487509124694 Borg E, 1972, Acta Otolaryngol Suppl, V304, P1 BORG E, 1983, ACTA OTO-LARYNGOL, V96, P361, DOI 10.3109/00016488309132721 BORG E, 1974, ACTA OTO-LARYNGOL, V78, P155, DOI 10.3109/00016487409126341 BOSATRA A, 1984, ACOUSTIC REFLEX, P301 BURNS EM, 1993, HEARING RES, V67, P117, DOI 10.1016/0378-5955(93)90239-W CARMEL PW, 1963, J NEUROPHYSIOL, V26, P598 DELGUTTE B, 1990, J ACOUST SOC AM, V87, P791, DOI 10.1121/1.398891 DEUTSCH LJ, 1972, ACTA OTO-LARYNGOL, V74, P248, DOI 10.3109/00016487209128446 Djupesland G., 1965, INT AUDIOL, V4, P34, DOI 10.3109/05384916509070162 DJUPESLAND G, 1993, J ACOUST SOC AM, V54, P1157 EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661 ENGSTROM B, 1983, ACTA OTOLARYNGOL S, V402, P1 FLOTTORP G, 1971, J ACOUST SOC AM, V49, P457, DOI 10.1121/1.1912373 HENDERSON D, 1994, HEARING RES, V74, P22, DOI 10.1016/0378-5955(94)90172-4 JERGER J, 1972, ARCHIV OTOLARYNGOL, V96, P513 KEITH RW, 1977, ARCH OTOLARYNGOL, V103, P419 KIANG NYS, 1986, HEARING RES, V22, P171 KLOCKHOFF I, 1961, Acta Otolaryngol Suppl, V164, P1 KOBLER JB, 1992, J NEUROPHYSIOL, V68, P807 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X LINDEMAN HH, 1969, ACTA OTO-LARYNGOL, V67, P177, DOI 10.3109/00016486909125441 MARGOLIS RH, 1980, J ACOUST SOC AM, V68, P892, DOI 10.1121/1.384828 MARGOLIS RH, 1975, J ACOUST SOC AM, V58, P1330, DOI 10.1121/1.380787 MOLLER A R, 1965, Acta Otolaryngol, V60, P129, DOI 10.3109/00016486509126996 PANG XD, 1988, THESIS MIT CAMBRIDGE Pang X-D, 1986, PERIPHERAL AUDITORY, P36 PETERSON JL, 1972, AUDIOLOGY, V11, P97 POPELKA GR, 1976, J ACOUST SOC AM, V59, P153, DOI 10.1121/1.380834 REGER S N, 1960, Ann Otol Rhinol Laryngol, V69, P1179 SCHARF B, 1964, ACUSTICA, V14, P16 Schuknecht HF, 1993, PATHOLOGY EAR SESTERHENN G, 1976, AUDIOLOGY, V15, P523 SILMAN S, 1978, J ACOUST SOC AM, V64, P1406, DOI 10.1121/1.382107 SIMMONS FB, 1964, ANN OTO RHINOL LARYN, V73, P724 Zakrisson J. E., 1980, SCAND AUDIOL S, P326 NR 42 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 37 EP 45 DI 10.1016/S0378-5955(97)00039-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900005 PM 9213120 ER PT J AU Sato, M Henson, MM Smith, DW AF Sato, M Henson, MM Smith, DW TI Synaptic specializations associated with the outer hair cells of the Japanese macaque SO HEARING RESEARCH LA English DT Article DE outer hair cell; synapse; organ of Corti; Japanese macaque; medial olivocochlear efferent; afferent ID CROSSED OLIVOCOCHLEAR BUNDLE; AUDITORY-NERVE RESPONSE; HUMAN ORGAN; COCHLEAR MECHANICS; EFFERENT SYNAPSES; MASKED TONES; CORTI; INNERVATION; STIMULATION; CAT AB Across species the innervation of outer hair cells (OHCs) shows a remarkable similarity. There are, however, notable differences in fine structure. The present work describes the normal synaptic morphology of OHCs in the Japanese macaque (Macaca fuscata), as determined by examination of serial sections with transmission electron microscopy. The nerve endings at the base of OHCs were divided primarily into two groups: vesiculated (efferent) and non-vesiculated (afferent). In addition, we found supranuclear efferent nerve endings and reciprocal synapses in all three cochlear turns. We also found presynaptic bodies in OHCs at the afferent synapse, the branching of afferent nerve fibers and axodendritic synapses between afferent and efferent fibers in the outer spiral bundle and just beneath OHCs. In terms of synaptic structure, the data indicate that the Japanese macaque is more similar to that of the human than other species examined to date. C1 UNIV N CAROLINA,DEPT SURG,DIV OTOLARYNGOL HEAD & NECK SURG,CHAPEL HILL,NC 27599. DUKE UNIV,MED CTR,DIV OTOLARYNGOL HEAD & NECK SURG,HEARING RES LABS,DURHAM,NC 27710. RP Sato, M (reprint author), NATL DEF MED COLL,DEPT OTOLARYNGOL HEAD & NECK SURG,3-2 NAMIKI,TOKOROZAWA,SAITAMA 359,JAPAN. CR BODIAN D, 1978, P NATL ACAD SCI USA, V75, P4582, DOI 10.1073/pnas.75.9.4582 BREDBERG G, 1977, PSYCHOPHYSICS PHYSL, P1 DUNN RA, 1975, P NATL ACAD SCI USA, V72, P3599, DOI 10.1073/pnas.72.9.3599 ENGSTROM H, 1972, ULTRASTRUCTURE ANIMA, P83 EYBALIN M, 1988, NEUROSCIENCE, V24, P29, DOI 10.1016/0306-4522(88)90308-9 GINZBERG RD, 1984, HEARING RES, V14, P109, DOI 10.1016/0378-5955(84)90011-X Guinan J J Jr, 1986, Scand Audiol Suppl, V25, P53 HASHIMOTO S, 1988, ACTA OTO-LARYNGOL, V105, P64, DOI 10.3109/00016488809119447 IURATO S, 1974, AUDITORY SYSTEM ANAT, P261 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2519 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2533 KIMURA RS, 1975, INT REV CYTOL, V42, P173, DOI 10.1016/S0074-7696(08)60981-X LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 NADOL JB, 1984, ANN OTO RHINOL LARYN, V93, P247 NADOL JB, 1994, HEARING RES, V81, P49, DOI 10.1016/0378-5955(94)90152-X NADOL JB, 1990, ANN OTO RHINOL LARYN, V99, P215 NADOL JB, 1983, LARYNGOSCOPE, V93, P780 NADOL JB, 1988, HEARING RES, V34, P253, DOI 10.1016/0378-5955(88)90006-8 NAKAI Y, 1974, ACTA OTO-LARYNGOL, V77, P393, DOI 10.3109/00016487409124641 PUJOL R, 1982, DEV BRAIN RES, V3, P151, DOI 10.1016/0165-3806(82)90084-0 SCHUKNECHT HF, 1957, ARCH OTOLARNGOL HEAD, V58, P377 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 SMITH CA, 1961, J ULTRASTRUCT RES, V5, P185 SMITH DW, 1996, J ACOUST SOC AM, V100, P2630, DOI 10.1121/1.417739 SMITH DW, 1996, ABST ASS RES OT, V19, P311 SPOENDLI.H, 1972, ACTA OTO-LARYNGOL, V73, P235, DOI 10.3109/00016487209138937 Takasaka T, 1987, Acta Otolaryngol Suppl, V435, P7 VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WIEDERHOLD ML, 1986, NEUROBIOLOGY HEARING, P349 WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 NR 32 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 46 EP 54 DI 10.1016/S0378-5955(97)00049-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900006 PM 9213121 ER PT J AU Iwasaki, S Mizuta, K Gao, J Wu, R Hoshino, T AF Iwasaki, S Mizuta, K Gao, J Wu, R Hoshino, T TI Focal microcirculation disorder induced by photochemical reaction in the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE focal microcirculation disorder; photochemical reaction; endocochlear potential; compound action potential; electron microscopy; rose Bengal ID HEARING-LOSS; THROMBOSIS; MODEL; CELLS; INFARCTION; OCCLUSION AB A small region of microcirculation disorder in the cochlea of the guinea pig could be induced by a photochemical reaction. Photoillumination to the cochlea was done after systemic infusion of Rose Bengal (RE). The lateral wall of the second or third turn of the cochlea was illuminated for 10 min with a 1 mm diameter focused green light supplied by a xenon lamp. Degeneration of the stria vascularis (SV) was observed by a scanning electron microscope at 60-300 min after illumination. The range of length of degenerated area in the SV was from 111 to 1800 mu m, with a mean of 760 mu m. The organ of Corti along the illuminated lesion of the SV was well preserved in all animals at 60-300 min. In contrast, degeneration of sensory hair cells and scar formation in the SV were observed in the focal lesions of the three animals killed 1 week after illumination. The increase of diameter in the vessel of the SV from the radiating arteriole, the vessel of basilar membrane (VSBM) and limbus vessel (LVS) were observed in the illuminated area with diaminobenzidine (DAB) staining. These findings suggest that segmental microcirculation damage occurred in the SV and modiolus. In physiological studies, compound action potentials (CAP) were evaluated. Endocochlear potentials (EP) were also measured at the second turn under three different situations (groups A, B and C). A photochemically induced lesion was created at the site of EP measurement (group A), a site in the second turn 1 mm from the EP measurement site (group B) and a site in the third turn adjacent to the EP measurement site (group C). Threshold shift of CAP (up to 5.6+/-1.8 dB SPL) and reduction of EP (down to 11.4+/-10.7 mV) in the photochemically injured location were detected during about 15 min. EP did not recover to the predamaged level (79.9+/-3.7 mV) during 20 min. The morphological and physiological changes were not observed in the control group with illumination only. There were no significant decreases in EP values at the sites 1 mm from the lesion (group B) and at the inferior turn adjacent to the lesion (group C) compared to the marked decrease at the site of the photochemically induced lesion (group A). These findings suggest that CAP and EP are significantly affected by the interruption of segmental blood supply in the cochlea and remarkable decrease of EP occurs in the focal region of the guinea pig cochlea. We conclude that a localized blood circulation disorder induced by the photochemical reaction can make a focal lesion in guinea pig cochlea morphologically and physiologically. RP Iwasaki, S (reprint author), HAMAMATSU UNIV SCH MED, DEPT OTOLARYNGOL, 3600 HANDA CHO, HAMAMATSU, SHIZUOKA 43131, JAPAN. CR ALFORD BR, 1965, ANN OTO RHINOL LARYN, V74, P728 ASAI Y, 1993, EUR ARCH OTO-RHINO-L, V250, P292 BELAL A, 1979, J LARYNGOL OTOL, V93, P955, DOI 10.1017/S0022215100087958 DIETRICH WD, 1987, ACTA NEUROPATHOL, V72, P315 DULON D, 1989, INT J RADIAT BIOL, V55, P1007, DOI 10.1080/09553008914551031 GANDIN E, 1983, PHOTOCHEM PHOTOBIOL, V37, P271, DOI 10.1111/j.1751-1097.1983.tb04472.x GRAHAM RC, 1966, J HISTOCHEM CYTOCHEM, V14, P291 GUSSEN R, 1976, ANN OTO RHINOL LARYN, V85, P94 HU BH, 1995, HEARING RES, V89, P69, DOI 10.1016/0378-5955(95)00122-5 KIMURA R, 1956, Ann Otol Rhinol Laryngol, V65, P332 KIMURA RS, 1986, AM J OTOLARYNG, V7, P130, DOI 10.1016/S0196-0709(86)80042-4 KONISHI T, 1961, J ACOUST SOC AM, V33, P349, DOI 10.1121/1.1908659 MCCORD JM, 1978, ANN INTERN MED, V89, P122 NANDA SK, 1987, ARCH OPHTHALMOL-CHIC, V105, P1121 PERLMAN H B, 1959, Laryngoscope, V69, P591 PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8 POOLER JP, 1981, MED PHYS, V8, P614, DOI 10.1118/1.595020 POVLISHOCK JT, 1983, AM J PATHOL, V110, P148 SALT AN, 1990, AUDIOLOGY, V29, P135 SUGA F, 1970, ARCHIV OTOLARYNGOL, V92, P213 UMEMURA K, 1990, EUR ARCH OTO-RHINO-L, V248, P105 WACKYM PA, 1986, AM J OTOL, V7, P176 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WATSON BD, 1985, ANN NEUROL, V17, P497, DOI 10.1002/ana.410170513 NR 24 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 55 EP 64 DI 10.1016/S0378-5955(97)00045-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900007 PM 9213122 ER PT J AU Yamane, H Takayama, M Konishi, K Iguchi, H Shibata, S Sunami, K Nakai, Y AF Yamane, H Takayama, M Konishi, K Iguchi, H Shibata, S Sunami, K Nakai, Y TI Nitric oxide synthase and contractile protein in the rat cochlear lateral wall: Possible role of nitric oxide in regulation of strial blood flow SO HEARING RESEARCH LA English DT Article DE cochlea; stria vascularis; blood flow; nitric oxide synthase; tropomyosin ID GUINEA-PIGS; RELAXING FACTOR; PERICYTES; AUTOREGULATION; RELEASE; ARTERY; BRAIN AB The present study demonstrated by histochemical and immunohistochemical methods that NADPH diaphorase reactivity, endothelial nitric oxide synthase (eNOS)-like immunoreactivity, and tropomyosin-like immunoreactivity, were located within the rat cochlear lateral wall. Both NADPH diaphorase reactivity and eNOS-like immunoreactivity were found mainly in the endothelium of the strial capillaries (ESC) and that of the vessels of the spiral ligament (ESL). These reaction products appeared to be somewhat more common in the ESC than in the ESL. On the other hand, tropomyosin-like immunoreactivity was localized in tissues outside the endothelium and its intensity was greater in the ESL than in the ESC. These findings suggest that nitric oxide (NO) produced by eNOS may play a role in regulating the blood flow of the cochlear lateral wall. In addition, NADPH diaphorase reactivity, eNOS-like immunoreactivity, and tropomyosin-like immunoreactivity showed different patterns of distribution between ESC and ESL. This suggests that in these two sites blood circulation is controlled by NO through two different mechanisms that are suitable for regulating strial blood flow. RP Yamane, H (reprint author), OSAKA CITY UNIV,SCH MED,DEPT OTOLARYNGOL,ABENO KU,1-5-7 ASAHIMACHI,OSAKA 545,JAPAN. CR Axellson A, 1968, ACTA OTO-LARYNGOL, V243, P1 BERNSTEI.JM, 1966, ARCHIV OTOLARYNGOL, V83, P422 BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8 BROWN JN, 1994, AM J PHYSIOL, V266, pH458 DURANTE W, 1992, BLOOD, V79, P110 FARACI FM, 1990, AM J PHYSIOL, V259, pH1216 GUSSEN R, 1976, ANN OTO RHINOL LARYN, V85, P94 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 HULTCRANTZ E, 1977, INSERM (Institut National de la Sante et de la Recherche Medicale) Colloque, V68, P271 JOYCE NC, 1985, J CELL BIOL, V100, P1387, DOI 10.1083/jcb.100.5.1387 JOYCE NC, 1985, J CELL BIOL, V100, P1379, DOI 10.1083/jcb.100.5.1379 Kellerhals B, 1972, Adv Otorhinolaryngol, V18, P91 KOSTIC MM, 1992, CIRC RES, V70, P208 LEBEUX YJ, 1978, ANAT REC, V190, P811, DOI 10.1002/ar.1091900404 MALINSKI T, 1992, NATURE, V358, P676, DOI 10.1038/358676a0 MAZANET R, 1982, MICROVASC RES, V23, P361, DOI 10.1016/S0026-2862(82)80008-3 Miller J M, 1986, Scand Audiol Suppl, V26, P11 MILLER JM, 1983, HEARING RES, V11, P385, DOI 10.1016/0378-5955(83)90069-2 PALMER RMJ, 1987, NATURE, V327, P524, DOI 10.1038/327524a0 PASSE ERG, 1948, BRIT MED J, V2, P812 PERLMAN H B, 1962, Acta Otolaryngol, V54, P99, DOI 10.3109/00016486209126927 PERLMAN H B, 1963, Acta Otolaryngol, V56, P587, DOI 10.3109/00016486309127454 QUIRK WS, 1989, HEARING RES, V38, P119, DOI 10.1016/0378-5955(89)90133-0 REN TY, 1994, J APPL PHYSIOL, V76, P212 REN TY, 1993, ANN OTO RHINOL LARYN, V102, P378 SHORT SO, 1985, OTOLARYNG HEAD NECK, V93, P786 SUGA F, 1976, ACTA OTO-LARYNGOL, V81, P26, DOI 10.3109/00016487609107474 TAHA Z, 1992, BIOCHEM BIOPH RES CO, V188, P734, DOI 10.1016/0006-291X(92)91117-9 THRONE PR, 1987, HEARING RES, V27, P1 TODA N, 1993, HYPERTENSION, V21, P3 TODD NW, 1974, ANN OTO RHINOL LARYN, V83, P84 VINCENT SR, 1992, NEUROSCIENCE, V46, P755, DOI 10.1016/0306-4522(92)90184-4 YAMAMOTO K, 1991, ACTA OTO-LARYNGOL, V111, P312, DOI 10.3109/00016489109137393 YAMANE H, 1991, ACTA OTO-LARYNGOL, V111, P85, DOI 10.3109/00016489109137358 NR 34 TC 24 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 65 EP 73 DI 10.1016/S0378-5955(97)00041-5 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900008 PM 9213123 ER PT J AU Burgess, BJ Adams, JC Nadol, JB AF Burgess, BJ Adams, JC Nadol, JB TI Morphologic evidence for innervation of Deiters' and Hensen's cells in the guinea pig SO HEARING RESEARCH LA English DT Article DE synaptophysin; neurofilament; acetylcholinesterase; synapse; Deiters' cell; Hensen's cell ID OUTER HAIR-CELLS; IMMUNOELECTRON MICROSCOPY; EFFERENT INNERVATION; SUPPORTING CELLS; ORGAN; CORTI; COCHLEA; LOCALIZATION; SYNAPSES; AFFERENT AB The presence of nerve fibers and terminals among Deiters' and Hensen's cells of the organ of Corti of the adult guinea pig is demonstrated using immunostaining for synaptophysin and neurofilaments, acetylcholinesterase histochemistry, and transmission electron microscopy. These nerve terminals appeared to form chemical synapses with Deiters' and Hensen's cells. Nerve fibers and synapses were more common in the apical as compared to the basal cochlea. The terminals were often present on basal appendages of Hensen's cells, which were rich in mitochondria and often contained a Golgi apparatus and dense core vesicles. Electron microscopy and immunostaining for neurofilaments showed that most Hensen's cells in the apical cochlea received innervation. Few of the nerve fibers and terminals were positive for acetylcholinesterase, which suggests that they were not collaterals of cholinergic olivocochlear fibers. The density of these fibers, as shown by immunohistochemistry for neurofilaments, was far greater than previous reports of GABA-ergic fibers, which suggests that they were not GABA-ergic olivocochlear fibers. The role of such fibers and synapses with supporting cells of the outer hair cell area is unknown. Determination of the origins and functions of these fibers will provide new insights into cochlear structure and function. C1 HARVARD UNIV,SCH MED,DEPT OTOL & LARYNGOL,BOSTON,MA 02114. MASSACHUSETTS EYE & EAR INFIRM,DEPT OTOLARYNGOL,BOSTON,MA 02114. CR ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 ALTSCHULER RA, 1985, HEARING RES, V17, P249, DOI 10.1016/0378-5955(85)90069-3 ALTSCHULER RA, 1984, HEARING RES, V16, P17, DOI 10.1016/0378-5955(84)90022-4 BREDBERG G, 1977, PSYCHOPHYSICS PHYSL, P1 BREDBERG G, 1977, ACTA OTO-LARYNGOL, V83, P71, DOI 10.3109/00016487709128815 DRENCKHAHN D, 1991, HEARING RES, V54, P29, DOI 10.1016/0378-5955(91)90133-T DULON D, 1994, BIOCHEM BIOPH RES CO, V201, P1263, DOI 10.1006/bbrc.1994.1841 DULON D, 1993, CELL CALCIUM, V14, P245, DOI 10.1016/0143-4160(93)90071-D DURING MV, 1974, Z ANAT ENTWICKLUNGS, V145, P41, DOI 10.1007/BF00519125 EYBALIN M, 1988, NEUROSCIENCE, V24, P29, DOI 10.1016/0306-4522(88)90308-9 FUJITA T, 1989, ARCH HISTOL CYTOL, V52, P1, DOI 10.1679/aohc.52.Suppl_1 HASHIMOTO S, 1988, ACTA OTO-LARYNGOL, V105, P64, DOI 10.3109/00016488809119447 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 KELLY RB, 1993, CELL, V72, P43, DOI 10.1016/S0092-8674(05)80027-3 KONG WJ, 1995, 18 MIDW RES M ASS RE LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 MERCHANPEREZ A, 1993, DEV BRAIN RES, V76, P33, DOI 10.1016/0165-3806(93)90120-Y NADOL JB, 1994, HEARING RES, V81, P49, DOI 10.1016/0378-5955(94)90152-X NADOL JB, 1993, ACTA OTO-LARYNGOL, V113, P312, DOI 10.3109/00016489309135815 NAKAI Y, 1974, ACTA OTO-LARYNGOL, V77, P393, DOI 10.3109/00016487409124641 PALAY SANFORD L., 1956, JOUR BIOPHYS AND BIOCHEM CYTOL, V2, P193, DOI 10.1083/jcb.2.4.193 SMITH CA, 1973, ACTA OTO-LARYNGOL, V75, P203, DOI 10.3109/00016487309139696 STOPP PE, 1978, NEUROSCIENCE, V3, P1197, DOI 10.1016/0306-4522(78)90139-2 STOPP PE, 1979, ARCH OTO-RHINO-LARYN, V224, P11, DOI 10.1007/BF00455218 TAGO H, 1986, J HISTOCHEM CYTOCHEM, V34, P1431 VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 WRIGHT CG, 1976, ACTA OTO-LARYNGOL, V82, P41, DOI 10.3109/00016487609120861 NR 27 TC 38 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 74 EP 82 DI 10.1016/S0378-5955(97)00040-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900009 PM 9213124 ER PT J AU Shiomi, Y Tsuji, J Naito, Y Fujiki, N Yamamoto, N AF Shiomi, Y Tsuji, J Naito, Y Fujiki, N Yamamoto, N TI Characteristics of DPOAE audiogram in tinnitus patients SO HEARING RESEARCH LA English DT Article DE tinnitus; distortion product otoacoustic emission; objective evaluation ID DISTORTION PRODUCT EMISSIONS; NORMALLY HEARING SUBJECTS; OUTER HAIR-CELLS; OTOACOUSTIC EMISSIONS; COCHLEAR; TRANSDUCTION; LATENCIES; HUMANS; ORIGIN; NERVE AB To investigate cochlear activity in tinnitus, the DPOAE (distortion product otoacoustic emission) audiograms (DP-gram) of tinnitus patients were measured. Nine tinnitus patients (15 ears) with normal hearing and 55 tinnitus patients (75 ears) with hearing impairment were included in this study. Significant decreases in DPOAE amplitude over a limited frequency range were observed in 93.3% of the normal hearing tinnitus group and in 96% of the hearing-impaired tinnitus group. The averaged DP-gram of the normal hearing tinnitus group was significantly different from that of the normal subjects (repeated-measures ANOVA, P < 0.01). These results imply that tinnitus may be evaluated objectively by DPOAE. C1 KYOTO UNIV,FAC MED,DEPT SPEECH & HEARING SCI,SAKYO KU,KYOTO 606,JAPAN. RP Shiomi, Y (reprint author), KYOTO UNIV,FAC MED,DEPT OTOLARYNGOL,SAKYO KU,54 KAWAHARA CHO,KYOTO 606,JAPAN. CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BARNEA G, 1990, AUDIOLOGY, V29, P36 CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909 HOKE M, 1989, HEARING RES, V37, P281, DOI 10.1016/0378-5955(89)90028-2 IKNER CL, 1990, EAR HEARING, V11, P16, DOI 10.1097/00003446-199002000-00005 JACOBSON GP, 1991, HEARING RES, V56, P44, DOI 10.1016/0378-5955(91)90152-Y KEMP DT, 1981, TINNITUS, P54 LONSBURYMARTIN BL, 1990, ANN OTO RHINOL LARYN, V99, P3 MARTIN GK, 1990, ANN OTO RHINOL LARYN, V99, P30 MCKEE GJ, 1992, AUDIOLOGY, V31, P313 MOLLER AR, 1992, LARYNGOSCOPE, V102, P187 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 NORTON SJ, 1990, EAR HEARING, V11, P159, DOI 10.1097/00003446-199004000-00011 O-Uchi T, 1988, Acta Otolaryngol Suppl, V447, P94 PLINKERT PK, 1990, ACTA OTO-LARYNGOL, V110, P342, DOI 10.3109/00016489009107453 ROSENHALL U, 1995, SCAND AUDIOL, V24, P97, DOI 10.3109/01050399509047521 SCHROTT A, 1991, HEARING RES, V52, P245, DOI 10.1016/0378-5955(91)90204-M ZENNER HP, 1993, EUR ARCH OTO-RHINO-L, V249, P447 ZENNER HP, 1988, ACTA OTO-LARYNGOL, V105, P457, DOI 10.3109/00016488809119501 NR 19 TC 41 Z9 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 83 EP 88 DI 10.1016/S0378-5955(97)00043-9 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900010 PM 9213125 ER PT J AU Warr, WB Boche, JB Neely, ST AF Warr, WB Boche, JB Neely, ST TI Efferent innervation of the inner hair cell region: Origins and terminations of two lateral olivocochlear systems SO HEARING RESEARCH LA English DT Article DE olivocochlear bundle; lateral olivocochlear system; efferent innervation of the cochlea; inner hair cell; superior olive; cochlear nerve ID GUINEA-PIG COCHLEA; SUPERIOR OLIVARY COMPLEX; BRAIN-STEM; IMMUNOELECTRON MICROSCOPY; ANTEROGRADE TRACER; MEDIAL ZONES; CAT COCHLEA; RAT COCHLEA; NEURONS; PROJECTIONS AB The projections of lateral olivocochlear neurons (LOG), which terminate beneath inner hair cells (IHCs), were investigated by injecting biotinylated dextran amine into the lateral superior olivary nucleus (LSO) and the surrounding region in the rat. This region has been definitively shown to contain two types of olivocochlear neurons: small cells within the LSO (intrinsic neurons) and large cells (shell neurons) surrounding it (Vetter, D.E., Mugnaini, E., 1992. Distribution and dendritic features of three groups of rat olivocochlear neurons. Anat. Embryol. 185, 1-16). Labeled efferent axons were studied by light microscopy in whole mounts and radial sections of the organ of Corti (OC). It was found that injections confined to the LSO, which presumably affected mainly intrinsic neurons, labeled a cluster of axons in the osseous spiral lamina that entered the inner spiral bundle (ISB) and terminated in one or more dense patches that, in total basal-apical extent, spanned no more than 10-20% (1-2 mm) of the total length of the OC (10 mm). In contrast, injections affecting shell neurons produced labeled axons that entered the OC over a span of more than 50% of its length and which, as a group, coursed in the ISB for at least 80%, and sometimes more than 95% of total cochlear length. Study of individual axons in the OC revealed that intrinsic axons did not bifurcate upon entering the OC and traveled less than 1 mm before terminating in a discrete, dense arbor. In contrast, shell axons typically bifurcated into basal and apical branches that, in tote, traveled between 1 and 2 mm beneath the IHCs, forming numerous en passant swellings and a few terminal branches en route. The fact that localized injections of intrinsic neurons produced focal peaks of labeling in the cochlea, whereas similar injections of shell neurons produced a diffuse, non-focal projection that could extend for nearly the entire length of the cochlea, suggests that significant differences exist between these two populations in their capacity to influence localized, frequency-specific regions of the OC, and thus in their probable functional roles. The present findings in the rat not only confirm a previous study in the guinea pig which found a similar dual efferent innervation beneath the IHCs (Brown, M.C., 1987; Morphology of labeled efferent fibers in the guinea pig cochlea. J. Comp. Neurol. 260, 605-618), but extend those observations by linking two axonal types beneath the IHCs to their respective cell bodies of origin in the lateral zone of the superior olivary complex. RP Warr, WB (reprint author), BOYS TOWN NATL RES HOSP,CTR HEARING RES,555 N 30TH ST,OMAHA,NE 68131, USA. CR ADAMS JC, 1983, J COMP NEUROL, V215, P275, DOI 10.1002/cne.902150304 ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 ALTSCHULER RA, 1986, NEUROBIOLOGY HEARING, V1, P383 ARNESEN AR, 1984, ACTA OTO-LARYNGOL, V98, P255, DOI 10.3109/00016488409107562 ASCHOFF A, 1987, J COMP NEUROL, V264, P56, DOI 10.1002/cne.902640106 ASCHOFF A, 1988, EXP BRAIN RES, V71, P241 BODIAN D, 1980, J COMP NEUROL, V192, P785, DOI 10.1002/cne.901920411 BRANDT HM, 1992, J NEUROSCI METH, V45, P35, DOI 10.1016/0165-0270(92)90041-B BROWN MC, 1987, J COMP NEUROL, V260, P605, DOI 10.1002/cne.902600412 BROWN MC, 1993, J COMP NEUROL, V337, P600, DOI 10.1002/cne.903370406 BURDA H, 1988, J MORPHOL, V198, P169 CAMPBELL JP, 1988, HEARING RES, V35, P271, DOI 10.1016/0378-5955(88)90124-4 DANNHOF BJ, 1993, HEARING RES, V66, P8, DOI 10.1016/0378-5955(93)90255-Y Engstrom H, 1966, STRUCTURAL PATTERN O EYBALIN M, 1990, J ELECTRON MICR TECH, V15, P209, DOI 10.1002/jemt.1060150303 EYBALIN M, 1984, BRAIN RES, V305, P313, DOI 10.1016/0006-8993(84)90437-2 EYBALIN M, 1988, NEUROSCIENCE, V24, P29, DOI 10.1016/0306-4522(88)90308-9 EYBALIN M, 1987, EXP BRAIN RES, V65, P261 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FRIAUF E, 1988, EXP BRAIN RES, V73, P263 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x GINZBERG RD, 1984, HEARING RES, V14, P109, DOI 10.1016/0378-5955(84)90011-X GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 Guinan Jr J.J., 1996, COCHLEA, P435 KIMURA R, 1962, Acta Otolaryngol, V55, P11, DOI 10.3109/00016486209127336 KLIMENT ML, 1997, 2 TYPES LATERAL OLIV LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 LIBERMAN MC, 1980, HEARING RES, V3, P189, DOI 10.1016/0378-5955(80)90046-5 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 MATHISEN JS, 1964, ACTA ANAT, V56, P216 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 OSEN KK, 1984, ARCH ITAL BIOL, V122, P169 Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd Ramsay H, 1996, ACTA OTO-LARYNGOL, V116, P39, DOI 10.3109/00016489609137710 ROBERTSON D, 1985, HEARING RES, V20, P79, DOI 10.1016/0378-5955(85)90060-7 ROBERTSON D, 1987, HEARING RES, V25, P69, DOI 10.1016/0378-5955(87)90080-3 ROBERTSON D, 1989, DEV BRAIN RES, V47, P197, DOI 10.1016/0165-3806(89)90176-4 RYAN AF, 1987, J COMP NEUROL, V255, P606, DOI 10.1002/cne.902550411 RYAN AF, 1992, J COMP NEUROL, V326, P337, DOI 10.1002/cne.903260303 SANES DH, 1992, DEV BRAIN RES, V67, P47, DOI 10.1016/0165-3806(92)90024-Q SANES DH, 1990, J COMP NEUROL, V294, P443, DOI 10.1002/cne.902940312 SANTI PA, 1986, HEARING RES, V24, P179, DOI 10.1016/0378-5955(86)90017-1 Satake M, 1996, J COMP NEUROL, V371, P621 SCHWARTZ IR, 1986, J COMP NEUROL, V246, P500, DOI 10.1002/cne.902460407 SMITH CA, 1961, ANN OTO RHINOL LARYN, V70, P504 SOBKOWICZ HM, 1994, HEARING RES, V75, P81, DOI 10.1016/0378-5955(94)90059-0 SOMMER I, 1993, EXP BRAIN RES, V95, P223 Spoendlin H, 1966, ADV OTORHINOLARYNGOL, V13, P1 THOMPSON GC, 1986, J COMP NEUROL, V254, P246, DOI 10.1002/cne.902540208 VEENMAN CL, 1992, J NEUROSCI METH, V41, P239, DOI 10.1016/0165-0270(92)90089-V VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 VETTER DE, 1992, ANAT EMBRYOL, V185, P1, DOI 10.1007/BF00213596 WAN SXC, 1982, BRAIN RES, V243, P215 Warr W. B., 1981, NEUROANATOMICAL TRAC, P207 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WARR WB, 1975, J COMP NEUROL, V161, P159, DOI 10.1002/cne.901610203 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WARR WB, 1995, ABST ASS RES OT, V18, P194 WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 WILSON JL, 1991, HEARING RES, V55, P98, DOI 10.1016/0378-5955(91)90096-R WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 NR 63 TC 68 Z9 69 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 89 EP 111 DI 10.1016/S0378-5955(97)00044-0 PG 23 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900011 PM 9213126 ER PT J AU Harris, DM Shannon, RV Snyder, R Carney, E AF Harris, DM Shannon, RV Snyder, R Carney, E TI Multi-unit mapping of acoustic stimuli in gerbil inferior colliculus SO HEARING RESEARCH LA English DT Article DE multi-unit; sensory coding; neural map; central auditory system; inferior colliculus, gerbil; tonotopic; periodicity; chronosynclastic ID AUDITORY-NERVE FIBERS; TONOTOPIC ORGANIZATION; ELECTRICAL-STIMULATION; CAT; PITCH; REPRESENTATION; THRESHOLDS; SYSTEM; POPULATION; MECHANISMS AB Multi-unit peristimulus time (MU-PST) histograms were recorded in the gerbil inferior colliculus (IC) in response to tone burst stimuli. Histograms were collected every 100 mu m as the recording electrode was advanced along the tonotopic axis of the central nucleus of the IC, Space/time maps of neural activity were constructed from these data. In most of our sample the pattern of response changed systematically as the stimulating frequency was increased in octave steps. At low frequencies (< 500 Hz) the pattern of response was broadly distributed spatially and phase-locked to the stimulus frequency. At higher frequencies (> I kHz) the pattern of response was more localized and showed no evidence of phase locking. The location of the maximum response to tones from 1 to 32 kHz moved ventrally along the tonotopic axis at an approximate rate of 230 mu m/stimulus octave. The patterns of response were localized near stimulus threshold and spread over a larger region as level increased. This method of collecting and displaying multiunit response maps provides an overview of ensemble activity that allows concurrent observation of spatial and temporal variations in activity patterns. The quantitative analysis of components of MU-PST Maps are consistent with trends illustrated with single-unit tuning and level functions. This perspective of IC activity suggests potential processing mechanisms that are congruent with single-unit reconstructions. C1 YALE UNIV,SCH MED,NEW HAVEN,CT 06510. UNIV ILLINOIS,CHICAGO,IL 60612. HOUSE EAR RES INST,LOS ANGELES,CA 90057. UNIV CALIF SAN FRANCISCO,SAN FRANCISCO,CA 94143. UNIV MINNESOTA,MINNEAPOLIS,MN 55455. CR AITKIN LM, 1970, J NEUROPHYSIOL, V33, P421 BURNS EM, 1981, J ACOUST SOC AM, V70, P1655, DOI 10.1121/1.387220 BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 DALLOS P, 1978, J ACOUST SOC AM, V64, P151, DOI 10.1121/1.381980 DELGUTTE B, 1980, J ACOUST SOC AM, V68, P843, DOI 10.1121/1.384824 EGGERMONT JJ, 1974, ACTA OTOLARYNGOL S, V316 GERSTEIN GL, 1960, BIOPHYS J, V1, P15 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 HARRIS DM, 1987, ARO 10 MIDW RES M CL, pA177 HARRIS DM, 1990, ARO MIDW RES M, P270 HARRIS DM, 1986, J ACOUST SOC AM, V79, pA81 HARRIS DM, 1975, J ACOUST SOC AM, V57, pS53, DOI 10.1121/1.1995295 HARRIS DM, 1979, HEARING RES, V1, P133, DOI 10.1016/0378-5955(79)90024-8 HARRIS DM, 1987, HEARING RES, V26, P257 Jonas Hans, 1984, HOME UNIVERSE KIANG NYS, 1975, NERVOUS SYSTEM, V3, P81 KIANG NYS, 1980, J ACOUST SOC AM, V68, P830, DOI 10.1121/1.384822 KIM DO, 1979, J NEUROPHYSIOL, V42, P16 LANGNER G, 1983, EXP BRAIN RES, V52, P333 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIPPE WR, 1987, HEARING RES, V2, P205 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 OZDAMAR O, 1976, J ACOUST SOC AM, V59, P143 Pattee HH, 1973, HIERARCHY THEORY CHA PERKEL DH, 1968, NEUROSCI RES PROG B, V6 RYAN AF, 1982, J COMP NEUROL, V207, P369, DOI 10.1002/cne.902070408 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHANNON RV, 1990, HEARING RES, V47, P159, DOI 10.1016/0378-5955(90)90173-M SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 Stevens P. S., 1974, PATTERNS NATURE TASAKI I, 1950, J ACOUST SOC AM, V5, P509 TEAS DONALD C, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1438, DOI 10.1121/1.1918366 TONG YC, 1982, J ACOUST SOC AM, V71, P153, DOI 10.1121/1.387342 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013 NR 40 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 145 EP 156 DI 10.1016/S0378-5955(97)00047-6 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900013 PM 9213128 ER PT J AU Lin, X AF Lin, X TI Action potentials and underlying voltage-dependent currents studied in cultured spiral ganglion neurons of the postnatal gerbil SO HEARING RESEARCH LA English DT Article DE auditory spiral ganglion; action potential broadening; spontaneous firing; voltage-dependent current; accumulative inactivation; gerbil ID COCHLEAR GANGLION; HAIR-CELLS; TRANSMITTER RELEASE; IMPULSE ACTIVITY; NERVE-TERMINALS; CALCIUM-CHANNEL; CHICK-EMBRYO; MECHANISMS; CONDUCTANCES; SEGREGATION AB The excitability of cultured spiral ganglion (SG) neurons from early postnatal gerbil (PO-PI) was examined with the whole-cell patch-clamp technique. The role of voltage-gated currents in shaping the kinetics of action potentials (APs) was analyzed. Cultured SG neurons displayed spontaneous APs with a low rate (<0.1 Hz). The kinetics of APs were studied by injecting neurons with current pulses of various frequencies and duration. A single depolarizing pulse of long duration elicited only one AP in most SG neurons. When excited by a train of short current pulses given at rates greater than 50 Hz, the firing pattern displayed an adaptive mechanism with the result that successive APs fired with lower amplitude, broader duration and delayed peak time. Pulse trains of higher frequencies had higher failure rates in initiating APs. Current pulses given at 20 Hz or lower elicited APs that had very similar amplitudes. However, the width of the APs gradually broadened. Duration of APs was also found to be affected by the membrane potential of neurons. Between -75 mV and -55 mV, AP duration was broadened at a rate of about 33% per 10 mV depolarization. Voltage-gated currents that underlie the generation of APs were examined under voltage-clamp conditions. Tetrodotoxin-sensitive sodium currents and dihydropyridine-sensitive L-type calcium currents were found. More importantly, inactivation properties of the potassium current provided a direct explanation for the cumulative broadening of APs. This work demonstrated that SG neurons were able to fire APs long before hearing commences in gerbil. Possible roles of spontaneous APs in the development of the cochlea and the role of voltage-gated currents in the function of SG neurons under normal and pathological conditions are discussed. C1 NORTHWESTERN UNIV,HUGH KNOWLES CTR,AUDITORY PHYSIOL LAB,EVANSTON,IL 60208. NORTHWESTERN UNIV,DEPT NEUROBIOL & PHYSIOL,EVANSTON,IL 60208. CR ALDRICH RW, 1979, J PHYSIOL-LONDON, V291, P531 AUGUSTINE GJ, 1985, J PHYSIOL-LONDON, V367, P163 AUGUSTINE GJ, 1990, J PHYSIOL-LONDON, V431, P343 BENNDORF K, 1989, BIOMED BIOCHIM ACTA, V48, P287 BERGLUND AM, 1991, J COMP NEUROL, V306, P393, DOI 10.1002/cne.903060304 DALLOS P, 1992, J NEUROSCI, V12, P4575 ECHTELER SM, 1992, P NATL ACAD SCI USA, V89, P6324, DOI 10.1073/pnas.89.14.6324 EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z FOX AP, 1987, J PHYSIOL-LONDON, V394, P149 FRANKENHAEUSER B, 1963, J PHYSIOL-LONDON, V169, P431 GALLI L, 1988, SCIENCE, V242, P90, DOI 10.1126/science.3175637 GOODMAN CS, 1993, CELL, V72, P77, DOI 10.1016/S0092-8674(05)80030-3 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 HANCK DA, 1992, AM J PHYSIOL, V262, pH1197 HARRIS DM, 1984, SCIENCE, V225, P741, DOI 10.1126/science.6463651 HEUTTNER JE, 1986, J NEUROSCI, V6, P3044 HILLE B, 1992, IONIC CHANNELS EXCIT, P115 Hisashi K, 1995, HEARING RES, V91, P196, DOI 10.1016/0378-5955(95)00191-3 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HUME RI, 1983, NATURE, V305, P632, DOI 10.1038/305632a0 JACKSON MB, 1991, P NATL ACAD SCI USA, V88, P380, DOI 10.1073/pnas.88.2.380 JUNG TTK, 1993, OTOLARYNG CLIN N AM, V26, P791 KATZ B, 1967, PROC R SOC SER B-BIO, V167, P23, DOI 10.1098/rspb.1967.0011 Kiang NY-s, 1965, DISCHARGE PATTERNS S KIANG NYS, 1976, ANN OTO RHINOL LARYN, V85, P752 KIYOSUE T, 1993, J PHYSIOL-LONDON, V468, P85 KROS CJ, 1992, P ROY SOC B-BIOL SCI, V249, P185, DOI 10.1098/rspb.1992.0102 LEE KS, 1982, NATURE, V297, P498, DOI 10.1038/297498a0 Lenarz T., 1995, MECH TINNITUS, P101 LIN X, 1996, 19 MIDW RES M ASS RE, P87 LIN X, 1995, 25 M SOC NEUR, P398 Lin Xi, 1993, Journal of Neurophysiology (Bethesda), V70, P1593 LIPPE WR, 1994, J NEUROSCI, V14, P1486 LIPTON SA, 1987, J PHYSIOL-LONDON, V385, P361 MA MH, 1995, J NEUROSCI, V15, P6720 MCKEEHAN WL, 1977, CELL BIOL INT REP, V1, P335, DOI 10.1016/0309-1651(77)90063-7 MO ZL, 1996, 19 ANN MIDW RES M AS, P75 MOLLER AR, 1984, ANN OTO RHINOL LARYN, V93, P39 Moore EJ, 1996, ACTA OTO-LARYNGOL, V116, P552, DOI 10.3109/00016489609137888 NOWYCKY MC, 1985, NATURE, V316, P440, DOI 10.1038/316440a0 Ogielska EM, 1995, BIOPHYS J, V69, P2449 OHLEMILLER KK, 1991, J ACOUST SOC AM, V90, P274, DOI 10.1121/1.401298 Rall W, 1977, HDB PHYSL 1, P39 ROGART R, 1981, ANNU REV PHYSIOL, V43, P711, DOI 10.1146/annurev.ph.43.030181.003431 ROMAND R, 1980, ACTA OTO-LARYNGOL, V90, P391, DOI 10.3109/00016488009131740 ROTHE T, 1994, J NEUROPHYSIOL, V72, P2542 RUGGERO MA, 1992, SPRINGER HDB AUDITOR, V2, P34 RYAN AF, 1992, DEV AUDITORY VESTIBU, V2, P243 SANTOS-SACCHI J, 1993, J NEUROSCI, V13, P3599 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 SHATZ CJ, 1990, NEURON, V5, P745, DOI 10.1016/0896-6273(90)90333-B SHATZ CJ, 1988, SCIENCE, V242, P87, DOI 10.1126/science.3175636 SHEPPARD DN, 1992, NEUROSCIENCE, V51, P631, DOI 10.1016/0306-4522(92)90302-I SIEGEL JH, 1986, HEARING RES, V22, P245, DOI 10.1016/0378-5955(86)90101-2 Sobkowicz H M, 1993, Acta Otolaryngol Suppl, V502, P3 SPOENDLIN H, 1985, AM J OTOLARYNG, V6, P453, DOI 10.1016/S0196-0709(85)80026-0 STRYKER MP, 1986, J NEUROSCI, V6, P2117 TROMBLEY PQ, 1991, J NEUROSCI, V11, P435 TURRIGIANO G, 1995, J NEUROSCI, V15, P3640 VALVERDE MA, 1992, NEUROSCIENCE, V51, P621, DOI 10.1016/0306-4522(92)90301-H YAMAGUCHI K, 1990, J PHYSIOL-LONDON, V420, P185 NR 62 TC 38 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 157 EP 179 DI 10.1016/S0378-5955(97)00050-6 PG 23 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900014 PM 9213129 ER PT J AU Kuhn, B Vater, M AF Kuhn, B Vater, M TI The postnatal development of F-actin in tension fibroblasts of the spiral ligament of the gerbil cochlea SO HEARING RESEARCH LA English DT Article DE audition; cochlea; development ID OUTER HAIR-CELLS; MONGOLIAN GERBIL; IMMUNOCYTOCHEMICAL LOCALIZATION; MAMMALIAN COCHLEA; MOUSE; RAT; APPEARANCE; HEARING; MATRIX; WALL AB The tension fibroblasts of the spiral ligament of the mammalian cochlea are thought to create radial tension on the basilar membrane. Their postnatal development was investigated in the gerbil (Meriones unguiculatus) with confocal fluorescence microscopy using phallotoxin as a specific marker for F-actin. In the adult cochlea, tension fibroblasts were restricted to the basal cochlear turn and were arranged in 2-4 rows in the marginal region of the spiral ligament. They contained intensely stained parallel bundles of F-actin. In upper cochlear turns, the marginal region of the spiral ligament was occupied by sparsely distributed, unobtrusively labeled fibrocytes, the bone lining cells. The spiral ligament of young postnatal stages (newborn - 6 days after birth (DAB)) lacked F-actin labeling patterns that are characteristic for tension fibroblasts in the adult. Rather, the whole inner surface of the otic capsule throughout all cochlear turns was outlined by cell layers with distinct but diffuse cytoplasmic F-actin label. These cells may represent perichondrial fibrocytes. Around 9 DAB, the perichondrium revealed changes in morphology and F-actin patterns that indicate a further differentiation into tension fibroblasts (basal turn) or bone lining cells (more apical turns). At 12 DAB, around onset of hearing, adult-like bone lining cells were found in the marginal regions of the spiral ligament of upper cochlear turns. In the basal turn, tension fibroblasts were present, but their F-actin cytoskeleton was not fully developed. During the following days, F-actin label increased in tension fibroblasts and reached adult-like configuration at 17 DAB, coinciding with mature hearing characteristics. The role of tension fibroblasts in development of hearing characteristics is discussed. C1 UNIV POTSDAM,INST ZOOPHYSIOL & ZELLBIOL,D-14471 POTSDAM,GERMANY. RP Kuhn, B (reprint author), TUM,INST ZOOL,LICHTENBERGSTR 4,D-85747 GARCHING,GERMANY. CR ARJMAND E, 1988, HEARING RES, V32, P93, DOI 10.1016/0378-5955(88)90149-9 BURRIDGE K, 1988, ANNU REV CELL BIOL, V4, P487, DOI 10.1146/annurev.cb.04.110188.002415 CHOLE RA, 1994, HEARING RES, V75, P233, DOI 10.1016/0378-5955(94)90074-4 ECHTELER SM, 1993, STRUCTURAL ALTERATIO, P98 ECHTELER SM, 1989, NATURE, V341, P147, DOI 10.1038/341147a0 FAULSTICH H, 1988, J MUSCLE RES CELL M, V9, P370, DOI 10.1007/BF01774064 GABRION J, 1984, HEARING RES, V13, P203, DOI 10.1016/0378-5955(84)90074-1 GALIC M, 1977, ARCH OTO-RHINO-LARYN, V214, P319, DOI 10.1007/BF00457473 HARRIS DM, 1990, HEARING RES, V50, P1, DOI 10.1016/0378-5955(90)90029-O HARRIS DM, 1984, SCIENCE, V225, P741, DOI 10.1126/science.6463651 HE DZZ, 1994, HEARING RES, V78, P77, DOI 10.1016/0378-5955(94)90046-9 HENDERSON CG, 1994, J CELL SCI, V107, P589 HENDERSON CG, 1995, J CELL SCI, V108, P37 HENSON MM, 1984, HEARING RES, V16, P231, DOI 10.1016/0378-5955(84)90112-6 HENSON MM, 1985, HEARING RES, V20, P207, DOI 10.1016/0378-5955(85)90025-5 Henson MM, 1996, AUDIT NEUROSCI, V2, P3 HENSON MM, 1988, HEARING RES, V35, P237, DOI 10.1016/0378-5955(88)90121-9 Iurato S, 1967, SUBMICROSCOPIC STRUC IURATO S, 1962, Z ZELLFORSCH MIK ANA, V56, P40, DOI 10.1007/BF00326848 IWANO T, 1989, J HISTOCHEM CYTOCHEM, V37, P353 JUNQUEIRA LC, 1991, HISTOLOGIE, P180 KRAUS HJ, 1981, HEARING RES, V4, P89, DOI 10.1016/0378-5955(81)90038-1 Kuhn B, 1996, HEARING RES, V99, P47, DOI 10.1016/S0378-5955(96)00087-1 MILLER SC, 1991, BONE, V4, P1 MILLS DM, 1994, AUDIT NEUROSCI, V1, P77 Morera C, 1980, Rev Laryngol Otol Rhinol (Bord), V101, P73 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 NORTON SJ, 1991, HEARING RES, V51, P73, DOI 10.1016/0378-5955(91)90008-W PUJOL R, 1991, HEARING RES, V57, P129, DOI 10.1016/0378-5955(91)90082-K ROTH B, 1992, ANAT EMBRYOL, V185, P559, DOI 10.1007/BF00185615 RUBSAMEN R, 1990, J COMP PHYSIOL A, V167, P757 RUBSAMEN R, 1992, J COMP PHYSIOL A, V170, P129 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SCHAFER M, 1991, THESIS RUHR U BOCHUM Schweitzer L, 1996, HEARING RES, V97, P84 SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z TAKAHASHI T, 1970, Acta Oto-Laryngologica, V69, P46, DOI 10.3109/00016487009123335 Taylor J, 1992, BONE, V6, P21 TUCKER JB, 1993, CELL MOTIL CYTOSKEL, V25, P49, DOI 10.1002/cm.970250107 VATER M, 1997, IN PRESS J COMP NEUR VATER M, 1988, NATO ASI SERIES LIFE, V156, P341 VOLDRICH L, 1982, ACTA OTO-LARYNGOL, V93, P169, DOI 10.3109/00016488209130868 WOOLF NK, 1984, HEARING RES, V13, P277, DOI 10.1016/0378-5955(84)90081-9 NR 43 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 1997 VL 108 IS 1-2 BP 180 EP 190 DI 10.1016/S0378-5955(97)00051-8 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG689 UT WOS:A1997XG68900015 PM 9213130 ER PT J AU Gopen, Q Rosowski, JJ Merchant, SN AF Gopen, Q Rosowski, JJ Merchant, SN TI Anatomy of the normal human cochlear aqueduct with functional implications SO HEARING RESEARCH LA English DT Article DE temporal bone; histologic section; quantitative model analysis ID HUMAN MIDDLE-EAR; PRESSURE; PATENCY; MODEL AB There is great variation in published descriptions of the shape, size, and patency of the human cochlear aqueduct. The first part of this paper describes the anatomy of the normal human cochlear aqueduct as determined from a study of 101 temporal bones. Nineteen bones aged 0-1 years and approximately 10 bones per decade of life until age 100 years were examined. The aqueduct was found to have a funnel shaped aperture at the cranial end with a dural sheath extending into it for a varying distance. The rest of the aqueduct was filled with a meshwork of loose connective tissue, often with a central lumen within it. Four types of patencies were noted: central lumen patent throughout length of aqueduct (34%), lumen filled with loose connective tissue (59%), lumen occluded by bone (4%), and obliteration of the aqueduct (3%). The mean value (+/-SD) of the narrowest portion was 138 (+/-58) mu m which occurred 200-300 mu m from the cochlear end of the aqueduct. There was no correlation between age and narrowest diameter, or between age and category of patency. In the second part of this paper, we propose quantitative models of aqueduct function, based on measurements of ductal dimensions and known acoustical properties of the inner ear. Our model analyses suggest that in normal ears, the aqueduct (1) cannot support fluid flows large enough to explain stapedectomy gushers, (2) does filter out cardiac- and respiration-induced pulses in CSF and prevents them from affecting cochlear function, and (3) has little effect on normal ossicular transmission of sound for frequencies above 20 Hz. In pathological ears, such as those with ossicular disruption or after a type IV tympanoplasty, a patent aqueduct might affect hearing for frequencies below 150 Hz. C1 MASSACHUSETTS EYE & EAR INFIRM,DEPT OTOLARYNGOL,BOSTON,MA 02114. MIT,HARVARD MIT DIV HLTH SCI & TECHNOL,SPEECH & HEARING SCI PROGRAM,CAMBRIDGE,MA 02139. HARVARD UNIV,SCH MED,DEPT OTOL & LARYNGOL,BOSTON,MA 02115. CR ANSON BJ, 1965, LARYNGOSCOPE, V75, P1203 BEENTJES BI, 1972, ACTA OTO-LARYNGOL, V73, P112, DOI 10.3109/00016487209138919 Beranek L.L., 1986, ACOUSTICS CARLBORG B, 1982, ANN OTO RHINOL LARYN, V91, P209 KELEMEN G, 1979, LARYNGOSCOPE, V89, P639 KIMURA RS, 1974, ACTA OTO-LARYNGOL, V77, P1, DOI 10.3109/00016487409124591 KRINGLEBOTN M, 1988, SCAND AUDIOL, V17, P75, DOI 10.3109/01050398809070695 KRINGLEBOTN M, 1985, J ACOUST SOC AM, V77, P159, DOI 10.1121/1.392280 KUROKAWA H, 1995, OTOLARYNG HEAD NECK, V113, P349, DOI 10.1016/S0194-5998(95)70067-6 LINDSAY JR, 1952, ANN OTO RHINOL LARYN, V61, P697 Merchant SN, 1996, HEARING RES, V97, P30 Merchant SN, 1996, AM J OTOL, V17, P375 NAKAMURA T, 1967, J OTORHINOLARYNGOL S, V70, P932 PALVA T, 1972, ARCHIV OTOLARYNGOL, V96, P130 PALVA T, 1971, ACTA OTO-LARYNGOL, V72, P421, DOI 10.3109/00016487109122502 PALVA T, 1970, ACTA OTO-LARYNGOL, V70, P83 PALVA T, 1969, ACTA OTOLARYNGOL S S, V246, P5 PEAKE WT, 1992, HEARING RES, V57, P245, DOI 10.1016/0378-5955(92)90155-G RASKANDERSEN H, 1977, ANN OTO RHINOL LARYN, V86, P1 RITTER FN, 1965, LARYNGOSCOPE, V65, P1224 ROSOWSKI JJ, 1995, AM J OTOL, V16, P555 Schuknecht H F, 1988, Adv Otorhinolaryngol, V39, P1 Schuknecht HF, 1993, PATHOLOGY EAR, p[7, 417] SCHUKNECHT HF, 1963, ANN OTO RHINOL LARYN, V72, P687 SU WY, 1982, LARYNGOSCOPE, V92, P483 VONBEKESY G, 1936, AKUST Z, V1, P13 WALTNER JG, 1948, ARCH OTOLARYNGOL, V47, P656 Wever EG, 1954, PHYSL ACOUSTICS WLODYKA J, 1978, ANN OTO RHINOL LARYN, V87, P22 Zwislocki J. J., 1975, NERVOUS SYSTEM, P45 NR 30 TC 71 Z9 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 9 EP 22 DI 10.1016/S0378-5955(97)00017-8 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800002 PM 9165342 ER PT J AU Lautermann, J tenCate, WJF AF Lautermann, J tenCate, WJF TI Postnatal expression of the alpha-thyroid hormone receptor in the rat cochlea SO HEARING RESEARCH LA English DT Article DE thyroid hormone receptor; immunohistochemistry; cochlea ID NUCLEAR 3,5,3'-TRIIODOTHYRONINE RECEPTOR; HYPOTHYROIDISM; RESISTANCE; ISOFORM; EAR AB Thyroid hormone receptors belong to the superfamily of nuclear receptors which are expressed in many tissues. Reduced levels of thyroid hormones in acquired or congenital hypothyroidism can lead to hearing loss which may be irreversible. In this study we investigated immunohistochemically the postnatal distribution of the triiodothyronine alpha receptor in the rat cochlea. Cell regions of high sensitivity towards thyroid hormones should have a high density of thyroid hormone receptors. Strong immunoreactivity for the alpha-thyroid hormone receptor was observed in spiral ganglion cells as well as inner and outer hair cells of the cochlea. Staining could be detected during all stages investigated from the first postnatal day up to day 30 and exhibited mainly a nuclear pattern. These observations suggest that spiral ganglion cells and hair cells are target regions of thyroid hormones in the adult and developing cochlea. Thyroid hormones could thus play an important role in the maturation of the inner ear. RP Lautermann, J (reprint author), UNIV ESSEN GESAMTHSCH,DEPT OTORHINOLARYNGOL,HUFELANDSTR 55,D-45122 ESSEN,GERMANY. CR BARAKATWALTER I, 1993, EUR J NEUROSCI, V5, P319, DOI 10.1111/j.1460-9568.1993.tb00499.x BARGMAN GJ, 1967, J CLIN INVEST, V46, P1828, DOI 10.1172/JCI105673 BERARD F, 1957, Ann Otolaryngol, V74, P831 BRADLEY DJ, 1994, P NATL ACAD SCI USA, V91, P439, DOI 10.1073/pnas.91.2.439 BRENT GA, 1994, NEW ENGL J MED, V331, P847 BRUCKERDAVIS F, 1995, ANN INTERN MED, V123, P572 CHATTERJEE VKK, 1992, CANCER SURV, V14, P147 COREY DP, 1994, P NATL ACAD SCI USA, V91, P433, DOI 10.1073/pnas.91.2.433 DEOL MS, 1973, J MED GENET, V10, P235, DOI 10.1136/jmg.10.3.235 DE VOS J A, 1963, J Laryngol Otol, V77, P390 DILORENZO L, 1995, HORM RES, V43, P200, DOI 10.1159/000184278 FALCONE M, 1992, ENDOCRINOLOGY, V131, P2419, DOI 10.1210/en.131.5.2419 Forrest D, 1996, NAT GENET, V13, P354, DOI 10.1038/ng0796-354 FREEMAN S, 1993, HEARING RES, V69, P229, DOI 10.1016/0378-5955(93)90112-E GROENHOUT EG, 1994, MOL CELL ENDOCRINOL, V99, P81, DOI 10.1016/0303-7207(94)90149-X Haubrich J, 1975, Acta Otolaryngol Suppl, V332, P1 HENLEY CM, 1995, BRAIN RES REV, V20, P68, DOI 10.1016/0165-0173(94)00006-B HILGER J A, 1956, Ann Otol Rhinol Laryngol, V65, P395 JAHNKE K, 1979, HNO, V27, P1 KOHONEN A, 1971, LARYNGOSCOPE, V81, P947, DOI 10.1288/00005537-197106000-00015 LUO M, 1989, ACTA ENDOCRINOL-COP, V120, P451 MARQUET J, 1956, Acta Otorhinolaryngol Belg, V10, P423 MEYERHOFF WL, 1979, LARYNGOSCOPE, V89, P1 PRIETO JJ, 1990, DEV BRAIN RES, V51, P138, DOI 10.1016/0165-3806(90)90268-4 Puymirat J, 1991, Thyroid, V1, P173, DOI 10.1089/thy.1991.1.173 RITTER FN, 1967, LARYNGOSCOPE, V77, P1427, DOI 10.1288/00005537-196708000-00016 Schätzle W, 1967, Arch Klin Exp Ohren Nasen Kehlkopfheilkd, V188, P224, DOI 10.1007/BF01278507 STEHENS SDG, 1968, INT AUDIOL, V7, P267 UZIEL A, 1981, AUDIOLOGY, V20, P89 WITHERS BT, 1972, LARYNGOSCOPE, V82, P779, DOI 10.1288/00005537-197205000-00003 NR 30 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 23 EP 28 DI 10.1016/S0378-5955(97)00014-2 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800003 PM 9165343 ER PT J AU Salt, AN DeMott, J AF Salt, AN DeMott, J TI Longitudinal endolymph flow associated with acute volume increase in the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE endolymph; endolymphatic hydrops; endolymph flow; cochlea ID INNER-EAR; STRIA VASCULARIS; ION-TRANSPORT; SAC; ADRENOCORTICOSTEROIDS; RECEPTORS; GLYCEROL; ABSENCE; MOUSE AB Endolymph volume disturbances were induced by microinjections of artificial endolymph into the second turn of the guinea pig cochlea at rates less than 60 nl/min. Induced longitudinal movements and area changes of endolymph were quantified in the basal turn using an ionic flow marker technique. Tetramethylammonium (TMA) was used as a flow marker by iontophoresing it into endolymph in micromolar amounts. TMA movements in the apical and basal directions were monitored by ion-selective electrodes. Changes in endolymph flow and cross-sectional area of scala media were derived using a mathematical model to interpret the recorded tracer time courses. The model was validated by performing comparable volume injections and flow measurements in fine-diameter plastic tubes. The rate of flow of endolymph measured prior to injection was close to zero, in agreement with prior studies. Based on the injection of different volumes into endolymph over a 15 min period, we found that injection of up to 80 nl of artificial endolymph into the second turn would not induce flow in the basal turn. However, above this amount, flow towards the base increased at a rate which correlated with the injected volume, with endolymph moving basally by a distance of 0.0067 mm/nl of artificial endolymph injected. Flow rates measured in the third turn, on the apical side of the injection were far lower and showed characteristics consistent with there being no outlet at the apex. These results suggest that small volume disturbances are corrected locally in the cochlea, but larger disturbances produce a longitudinal flow of endolymph out of the cochlea which represents a significant mechanism contributing to homeostasis. It can be concluded that structures outside the cochlea, such as the endolymphatic sac, do play a role in the correction of endolymph volume disturbances. Although the maintenance of endolymph composition is dominated by local ion transport mechanisms, the capacity of these local mechanisms to maintain normal endolymph volume appears to be limited. RP Salt, AN (reprint author), WASHINGTON UNIV,SCH MED,DEPT OTOLARYNGOL,517 S EUCLID AVE,ST LOUIS,MO 63110, USA. CR BARTOLI E, 1989, AM J PHYSIOL, V257, pF341 DEMOTT JE, 1996, ASS RES OTOLARYNGOL, V19, P137 FRIBERG U, 1986, ACTA OTO-LARYNGOL, V101, P172, DOI 10.3109/00016488609132825 Guild SR, 1927, AM J ANAT, V39, P57, DOI 10.1002/aja.1000390103 KIMURA RS, 1965, PRACT-OTO-RHINO-LARY, V27, P343 Konishi T, 1981, MENIERES DIS PATHOGE, P47 KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P22, DOI 10.3109/00016487809124717 KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P176, DOI 10.3109/00016487809124734 LAWRENCE M, 1980, OTOLARYNG CLIN N AM, V13, P577 LAWRENCE M, 1961, ANN OTO RHINOL LARYN, V70, P753 LOHUIS PJFM, 1990, ACTA OTO-LARYNGOL, V110, P348, DOI 10.3109/00016489009107454 LUNDQUIST PG, 1964, ACTA OTOLARYNGOL S, V188, P194 NAFTALIN L, 1958, J Laryngol Otol, V72, P118, DOI 10.1017/S0022215100053731 PITOVSKI DZ, 1993, BRAIN RES, V601, P273, DOI 10.1016/0006-8993(93)91720-D Qvortrup K, 1996, AM J PHYSIOL-RENAL, V270, pF1073 RAREY KE, 1991, LARYNGOSCOPE, V101, P1081 RAREY KE, 1989, ARCH OTOLARYNGOL, V115, P817 RAREY KE, 1989, HEARING RES, V41, P217, DOI 10.1016/0378-5955(89)90013-0 RASKANDERSEN H, 1987, HEARING RES, V26, P177, DOI 10.1016/0378-5955(87)90110-9 SALT AN, 1986, HEARING RES, V23, P141, DOI 10.1016/0378-5955(86)90011-0 Salt AN, 1989, MENIERES DIS, P69 SALT AN, 1991, HEARING RES, V56, P37, DOI 10.1016/0378-5955(91)90151-X SALT AN, 1988, HEARING RES, V33, P279, DOI 10.1016/0378-5955(88)90158-X SALT AN, 1992, EUR ARCH OTO-RHINO-L, V249, P157 SALT AN, 1991, J NEUROSCI METH, V38, P233, DOI 10.1016/0165-0270(91)90173-W SALT AN, 1995, HEARING RES, V90, P12, DOI 10.1016/0378-5955(95)00142-0 STERKES O, 1982, AM J PHYSIOL, pF173 SZIKLAI I, 1992, LARYNGOSCOPE, V102, P431, DOI 10.1288/00005537-199204000-00011 TAKEUCHI S, 1991, ANN OTO RHINOL LARYN, V100, P244 TAKUMIDA M, 1989, HEARING RES, V40, P1, DOI 10.1016/0378-5955(89)90094-4 TAKUMIDA M, 1995, ORL J OTO-RHINO-LARY, V57, P5 NR 31 TC 35 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 29 EP 40 DI 10.1016/S0378-5955(97)00018-X PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800004 PM 9165344 ER PT J AU Magnan, P Avan, P Dancer, A Smurzynski, J Probst, R AF Magnan, P Avan, P Dancer, A Smurzynski, J Probst, R TI Reverse middle-ear transfer function in the guinea pig measured with cubic difference tones SO HEARING RESEARCH LA English DT Article DE cubic difference tone; distortion product otoacoustic emission; intracochlear pressure measurement ID ACOUSTIC DISTORTION PRODUCTS; OTOACOUSTIC EMISSIONS; COCHLEAR MECHANICS; BASILAR-MEMBRANE; ORIGIN; RABBIT; GAIN AB Otoacoustic emissions are increasingly useful for determining cochlear function noninvasively. It is widely agreed that these acoustic signals reflect micromechanical processes in the cochlea. However, their quantitative interpretation requires knowledge of the ways in which vibrations travelling back to the ear canal from the cochlea are shaped by the middle ear. An intracochlear source is needed to derive the reverse middle-ear transfer function (rMETF) by comparing pressure in the external ear canal to the corresponding pressure in scala vestibuli. In the present study, the rMETF was obtained in vivo in the guinea pig using as intracochlear sound source the cubic difference tones (CDTs) generated by a pair of external pure tones. With a closed ear canal and open bulla, the rMETF was found to be flat (-35 dB) over a broad frequency range (1.5-8 kHz). The differences between forward and reverse METF could be explained by different loads acting on the middle ear network, which depends on the direction of signal transmission. With knowledge of the rMETF, it becomes possible to quantify CDTs within the cochlea by measuring them noninvasively in the ear canal. C1 UNIV AUVERGNE,BIOPHYS LAB,F-63001 CLERMONT FERRAN,FRANCE. UNIV BASEL,KANTONSSPITAL,KLIN HNO,CH-4031 BASEL,SWITZERLAND. RP Magnan, P (reprint author), INST FRANCO ALLEMAND RECH,F-68301 ST LOUIS,FRANCE. CR ALLEN JB, 1992, J ACOUST SOC AM, V92, P178, DOI 10.1121/1.404281 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 DANCER A, 1980, HEARING RES, V2, P191, DOI 10.1016/0378-5955(80)90057-X DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DECORY L, 1991, NOISE INDUCED HEARIN, P73 KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KIM DO, 1980, HEARING RES, V2, P297, DOI 10.1016/0378-5955(80)90064-7 KUROKAWA H, 1995, OTOLARYNG HEAD NECK, V113, P349, DOI 10.1016/S0194-5998(95)70067-6 MAGNAN P, 1995, THESIS U MONTPELLIER MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 MILLS DM, 1994, AUDIT NEUROSCI, V1, P77 NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200 POWERS NL, 1995, NATURE, V375, P585, DOI 10.1038/375585a0 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 PURIA S, 1993, P INT S BIOPH HAIR C, P345 RAVICZ ME, 1992, J ACOUST SOC AM, V92, P157, DOI 10.1121/1.404280 Rosowski J.J., 1994, COMP HEARING MAMMALS, P172 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 ZWICKER E, 1990, J ACOUST SOC AM, V87, P2583, DOI 10.1121/1.399051 NR 22 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 41 EP 45 DI 10.1016/S0378-5955(97)00015-4 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800005 PM 9165345 ER PT J AU Oestreicher, E Arnold, W Ehrenberger, K Felix, D AF Oestreicher, E Arnold, W Ehrenberger, K Felix, D TI Dopamine regulates the glutamatergic inner hair cell activity in guinea pigs SO HEARING RESEARCH LA English DT Article DE efferent auditory system; dopamine; dopamine receptor; iontophoretic technique; guinea pig ID AFFERENT TRANSMITTER; AMINO-ACIDS; COCHLEA; NEUROTRANSMISSION; INNERVATION; SYNAPSES; NOISE AB Recent immunocytochemical and biochemical studies support a possible neurotransmitter function of dopamine (DA) in the efferent olivocochlear innervation of the guinea pig cochlea. However, the physiological role of DA in cochlear neurotransmission remains unknown. In the present study microiontophoretic techniques were used for testing the action of DA as well as D-1- and D-2-agonists and -antagonists on spontaneous and N-methyl-D-aspartic acid (NMDA)-, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-, kainic acid- or glutamate-induced firing of afferent fibres in the dendritic region of inner hair cells. Subsynaptic spike activities of anaesthetised guinea pigs were recorded after exposing the third or fourth turn of the cochlea for electrode penetration. Application of DA alone had very little effect on the spontaneous afferent firing rate, In contrast, firing induced by NMDA or AMPA could be depressed by additional administration of DA in a dose-dependent manner. A similar reduction of the induced spike activity was seen after co-administration of D-1- or D-2-agonists, The action of DA on glutamate agonist-induced firing could be blocked by D-1- as well as D-2-antagonists. These results show that DA can depress the activated firing rate of the afferent fibres and that this action is mediated by both D-1- and D-2-receptor subtypes. C1 UNIV BERN,DIV NEUROBIOL,CH-3012 BERN,SWITZERLAND. TECH UNIV MUNICH,DEPT EAR NOSE & THROAT,D-81675 MUNICH,GERMANY. UNIV VIENNA,DEPT EAR NOSE & THROAT,A-1090 VIENNA,AUSTRIA. CR BOBBIN RP, 1979, EXP BRAIN RES, V34, P389 DALDIN C, 1995, EUR ARCH OTO-RHINO-L, V252, P270 DALDIN C, 1995, HEARING RES, V90, P202, DOI 10.1016/0378-5955(95)00167-5 DENSERT O, 1975, ACTA OTO-LARYNGOL, V79, P339, DOI 10.3109/00016487509124696 Drescher D. G., 1994, Society for Neuroscience Abstracts, V20, P972 EHRENBERGER K, 1991, HEARING RES, V52, P73, DOI 10.1016/0378-5955(91)90188-F EYBALIN M, 1993, NEUROSCIENCE, V54, P133, DOI 10.1016/0306-4522(93)90389-W EYBALIN M, 1993, PHYSIOL REV, V73, P309 FELIX D, 1992, HEARING RES, V64, P1, DOI 10.1016/0378-5955(92)90163-H FELIX D, 1990, EUR ARCH OTO-RHINO-L, V248, P1, DOI 10.1007/BF00634769 GILLOYZAGA P, 1986, NEUROSCI LETT S, V26, P134 GILLOYZAGA P, 1989, DEV BRAIN RES, V48, P157, DOI 10.1016/0165-3806(89)90100-4 GILLOYZAGA P, 1994, HEARING RES, V79, P178, DOI 10.1016/0378-5955(94)90138-4 GILLOYZAGA P, 1993, BRAIN RES, V623, P177, DOI 10.1016/0006-8993(93)90027-K Jedema HP, 1996, J NEUROCHEM, V66, P1448 JONES N, 1987, HEARING RES, V30, P33, DOI 10.1016/0378-5955(87)90180-8 Kiyatkin EA, 1996, J NEUROPHYSIOL, V75, P142 KLINKE R, 1986, HEARING RES, V22, P235, DOI 10.1016/0378-5955(86)90100-0 KLINKE R, 1977, EXP BRAIN RES, V30, P145 PUJOL R, 1993, ACTA OTO-LARYNGOL, V113, P330, DOI 10.3109/00016489309135819 Pujol R., 1986, NEUROBIOLOGY HEARING, P161 SAFIEDDINE S, 1994, 59 ASS RESOT ST PET Usami S, 1988, Acta Otolaryngol Suppl, V447, P36 Warr W. B., 1986, NEUROBIOLOGY HEARING, P333 NR 24 TC 40 Z9 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 46 EP 52 DI 10.1016/S0378-5955(97)00023-3 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800006 PM 9165346 ER PT J AU Watson, GM Mire, P Hudson, RR AF Watson, GM Mire, P Hudson, RR TI Hair bundles of sea anemones as a model system for vertebrate hair bundles SO HEARING RESEARCH LA English DT Article DE sea anemone; hair bundle; tip link; streptomycin; amiloride ID REGULATING NEMATOCYST DISCHARGE; GUINEA-PIG COCHLEA; MECHANOELECTRICAL TRANSDUCTION; HYDROZOAN NEMATOCYTES; CELL COMPLEXES; CROSS-LINKS; INNER-EAR; STEREOCILIA; FREQUENCY; MECHANORECEPTORS AB Sea anemones are marine invertebrates that use hair bundles to detect swimming movements of prey. Prey are captured by nematocysts (stinging capsules) that discharge into the prey. To further characterize anemone hair bundles and to compare hair bundles in anemones with hair bundles in vertebrates, we investigated fine structure and cytochemistry of anemone hair bundles. In addition, using a biological assay based on counting nematocysts discharged into vibrating test probes, we examined sensitivity of vibration detection to aminoglycoside antibiotics, Ca2+-free seawater, and amiloride. Like vertebrate hair bundles, anemone hair bundles are composed of stereocilia, possess lateral linkages between stereocilia whose preservation for transmission electron microscopy is enhanced by ruthenium red, and possess tip links morphologically similar to vertebrate tip links. Furthermore, vibration-dependent discharge of nematocysts is reversibly inhibited by 10(-4) M streptomycin and abolished by brief exposure to Ca2+-free seawater. However, unlike vertebrate hair bundles, anemone hair bundles appear to be insensitive to amiloride since vibration-dependent discharge of nematocysts is unaffected by up to mM amiloride. Thus, anemone hair bundles may serve as a useful model system for vertebrate hair bundles with the interesting feature of being insensitive to amiloride. RP Watson, GM (reprint author), UNIV SW LOUISIANA, DEPT BIOL, BOX 42451, LAFAYETTE, LA 70504 USA. CR ASHMORE JF, 1991, ANNU REV PHYSIOL, V53, P465, DOI 10.1146/annurev.physiol.53.1.465 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X BARNES RD, 1980, INVERTEBRATE ZOOLOGY Brinkmann M, 1996, J COMP PHYSIOL A, V178, P125 Budelmann B.-U., 1988, P757 COOPER JA, 1987, J CELL BIOL, V105, P1473, DOI 10.1083/jcb.105.4.1473 COREY DP, 1992, SOC GEN PHY, V47, P325 CSUKAS SR, 1987, HEARING RES, V30, P147, DOI 10.1016/0378-5955(87)90132-8 FURNESS DN, 1985, HEARING RES, V18, P177, DOI 10.1016/0378-5955(85)90010-3 GOLZ R, 1994, J MORPHOL, V222, P49, DOI 10.1002/jmor.1052220106 GOLZ R, 1991, CELL TISSUE RES, V263, P573, DOI 10.1007/BF00327291 HACKNEY CM, 1993, BIOPHYSICS HAIR CELL, P107 HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, pC1 HACKNEY CM, 1991, SCANNING MICROSCOPY, V5, P741 Hayat MA, 1975, POSITIVE STAINING EL HOWARD J, 1988, ANNU REV BIOPHYS BIO, V17, P99 HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845 KLEYMAN TR, 1988, J MEMBRANE BIOL, V105, P1, DOI 10.1007/BF01871102 KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 Mariscal R. N., 1974, COELENTERATE BIOL RE, P129 MARISCAL RN, 1978, SCANNING ELECTRON MI, V2, P959 MINASIAN LL, 1979, BIOL BULL, V157, P478, DOI 10.2307/1541032 MIRETHIBODEAUX P, 1994, J EXP ZOOL, V270, P517, DOI 10.1002/jez.1402700605 MIRETHIBODEAUX P, 1994, J EXP ZOOL, V268, P282, DOI 10.1002/jez.1402680404 OSBORNE MP, 1988, HEARING RES, V35, P99, DOI 10.1016/0378-5955(88)90044-5 Pantin CFA, 1942, J EXP BIOL, V19, P294 PETEYA DJ, 1975, TISSUE CELL, V7, P243, DOI 10.1016/0040-8166(75)90003-8 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P ROBERTS WM, 1988, ANNU REV CELL BIOL, V4, P63, DOI 10.1146/annurev.cb.04.110188.000431 RUSCH A, 1994, J PHYSIOL-LONDON, V474, P75 RUSSELL TJ, 1995, J EXP ZOOL, V273, P175, DOI 10.1002/jez.1402730302 SLAUTTER.DB, 1967, Z ZELLFORSCH MIK ANA, V79, P296, DOI 10.1007/BF00369292 SLEPECKY N, 1985, HEARING RES, V17, P281, DOI 10.1016/0378-5955(85)90072-3 THORINGTON GU, 1988, BIOL BULL, V174, P163, DOI 10.2307/1541783 WATSON GM, 1989, SCIENCE, V243, P1589, DOI 10.1126/science.2564698 WATSON GM, 1994, J EXP ZOOL, V268, P177, DOI 10.1002/jez.1402680302 WATSON GM, 1994, J EXP ZOOL, V270, P527, DOI 10.1002/jez.1402700606 WATSON GM, 1987, TISSUE CELL, V19, P747, DOI 10.1016/0040-8166(87)90016-4 WATSON GM, 1995, CELL MOTIL CYTOSKEL, V30, P208, DOI 10.1002/cm.970300305 WATSON GM, 1994, J EXP BIOL, V187, P57 WATSON GM, 1994, INT REV CYTOL, V156, P275 WATSON GM, 1991, J CELL SCI, V99, P307 WESTFALL JA, 1970, J ULTRA MOL STRUCT R, V32, P237, DOI 10.1016/S0022-5320(70)80004-1 WILLIAMSON R, 1990, J COMP PHYSIOL A, V167, P655 NR 45 TC 30 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 53 EP 66 DI 10.1016/S0378-5955(97)00022-1 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800007 PM 9165347 ER PT J AU Wang, J Powers, NL Hofstetter, P Trautwein, P Ding, D Salvi, R AF Wang, J Powers, NL Hofstetter, P Trautwein, P Ding, D Salvi, R TI Effects of selective inner hair cell loss on auditory nerve fiber threshold, tuning and spontaneous and driven discharge rate SO HEARING RESEARCH LA English DT Article DE inner hair cell; out hair cell; auditory nerve; carboplatin; ototoxicity; chinchilla ID PRODUCT OTOACOUSTIC EMISSIONS; WALTZER MUTANT MOUSE; COCHLEAR FUNCTION; CARBOPLATIN; OTOTOXICITY; DISTORTION; HEARING; MODEL; RESPONSES; ABSENCE AB Current theories assume that the outer hair cells (OHC) are responsible for the sharp tuning and exquisite sensitivity of the ear whereas inner hair cells (IHC) are mainly responsible for transmitting acoustic information to the central nervous system. To further evaluate this model, we used a single (38 mg/kg) or double dose (38 mg/kg, 2 times) of carboplatin to produce a moderate (20-28%) or severe (60-95%) IHC loss while sparing a large proportion of the OHCs. The surviving OHCs were functionally intact as indicated by normal cochlear microphonic (CM) potentials and distortion product otoacoustic emissions (DPOAE). Single-unit responses were recorded from auditory nerve fibers to determine the effects of the moderate or severe IHC loss on the output of the surviving IHCs. Most neurons that responded to sound in the single-dose group had normal or near-normal thresholds and normal tuning. Relatively few neurons in the double-dose group responded to sound because of the severe IHC loss. The neurons that did respond to sound had narrow tuning curves. Some neurons in the double-dose group also had thresholds that were within the normal range, but most had thresholds that were elevated a mild-to-moderate degree. These results indicate that intact IHCs can retain relatively normal sensitivity and tuning despite massive IHC loss in surrounding regions of the cochlea. However, the spontaneous and driven discharge rates of neurons in the carboplatin-treated animals were significantly lower than normal. These changes could conceivably be due to sublethal damage to surviving IHCs or to postsynaptic dysfunction in the auditory nerve. RP Wang, J (reprint author), SUNY BUFFALO,HEARING RES LAB,215 PK HALL,BUFFALO,NY 14214, USA. CR BOCK GR, 1982, J PHYSIOL-LONDON, V332, P20 BOCK GR, 1982, NEUROSCI LETT, V34, P19, DOI 10.1016/0304-3940(82)90086-6 BOETTCHER FA, 1993, J ACOUST SOC AM, V94, P2123, DOI 10.1121/1.407484 CALVERT AH, 1982, CANCER CHEMOTH PHARM, V9, P140, DOI 10.1007/BF00257742 DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 DALLOS P, 1988, AUDITORY FUNCTION NE, P153 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 Dallos P, 1980, PSYCHOPHYSICAL PHYSL, P242 DEOL MS, 1979, NATURE, V278, P250, DOI 10.1038/278250a0 DING D, IN PRESS AUDIOL NEUR Evans E. F., 1975, J PHYSIOL-LONDON, V256, p43P EVANS EF, 1974, J PHYSIOL-LONDON, V238, pP65 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 LENOIR M, 1984, HEARING RES, V13, P123, DOI 10.1016/0378-5955(84)90103-5 LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6 LIBERMAN MC, 1986, BASIC APPL ASPECTS N, P163 LIBERMAN MC, 1978, ACTA OTOLARYNGOL S, V358, P5 LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1 LIM DJ, 1980, J ACOUST SOC AM, V67, P1686, DOI 10.1121/1.384295 Lorente de No R., 1937, LARYNGOSCOPE, V47, P373 MACDONALD MR, 1994, J OTOLARYNGOL, V23, P151 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 ROBERTSON D, 1979, J ACOUST SOC AM, V66, P466, DOI 10.1121/1.383097 RUGGERO MA, 1993, CURR BIOL, V3, P755, DOI 10.1016/0960-9822(93)90023-H RYAN A, 1977, ANN OTO RHINOL LARYN, V86, P176 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SALVI R, 1982, HEARING RES, V10, P37 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1367 SCHMIEDT RA, 1982, NEW PERSPECTIVES NOI, P153 SCHROTT A, 1989, HEARING RES, V40, P213, DOI 10.1016/0378-5955(89)90162-7 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WAKE M, 1994, LARYNGOSCOPE, V104, P488 ZWICKER E, 1986, J ACOUST SOC AM, V80, P163, DOI 10.1121/1.394177 ZWISLOCKI JJ, 1986, HEARING RES, V22, P217, DOI 10.1016/0378-5955(86)90097-3 NR 42 TC 65 Z9 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 67 EP 82 DI 10.1016/S0378-5955(97)00020-8 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800008 PM 9165348 ER PT J AU LinaGranade, G Liogier, X Collet, L AF LinaGranade, G Liogier, X Collet, L TI Contralateral suppression and stimulus rate effects on evoked otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; stimulus rate; pseudorandom pulse train; maximum length sequence; adaptation; olivocochlear bundle; efferent system; contralateral stimulation ID COCHLEAR MICROMECHANICAL PROPERTIES; MAXIMUM-LENGTH SEQUENCES; ACOUSTIC STIMULATION; GUINEA-PIG; RESPONSES; POTENTIALS; NEURONS; SYSTEM AB Transiently evoked otoacoustic emissions (EOAE) were recorded in normal-hearing humans using pseudorandom pulse trains. This allowed the effect of increasing stimulus rate to be studied on EOAE amplitudes, input-output (I/O) functions and suppression by contralateral stimulation. EOAEs are very probably due to micromechanical properties of cochlear outer hair cells, and contralateral suppression is considered to result from olivo-cochlear efferent activation. EOAEs at various stimulus rates showed excellent reproducibility. Total EOAE amplitude diminished as interstimulus interval (ISI) decreased from 20 to 3 ms, but not for ISIs under 3 ms. The amplitude reduction was significant only on EOAE spectrum bands below 3.4 kHz. I/O functions, which kept a linear pattern, were steeper, and contralateral suppression was lower, with the highest stimulus rate (1111 c/s) relative to other rates. The EOAE decline with increasing stimulus rate might be due to incomplete recovery after adaptation of outer hair cells. The lower contralateral suppression at high stimulus rates suggests that crossed olivo-cochlear bundle action is lessened when outer hair cells are responding to a high-rate stimulus. An explanation may be that contralateral stimulation and a high-rate ipsilateral stimulus act via the same mechanisms, i.e., that high-rate stimulation activates an ipsilateral efferent loop. RP LinaGranade, G (reprint author), UNIV LYON 1,LAB PERCEPT & MECANISMES AUDITIFS,UPRESA CNRS 5020,SERV OTORHINOLARYNGOL,F-69437 LYON 3,FRANCE. CR BERLIN CI, 1994, OTOLARYNG HEAD NECK, V110, P3, DOI 10.1016/S0194-5998(94)70788-X BURKARD R, 1990, J ACOUST SOC AM, V87, P1656, DOI 10.1121/1.399413 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E EYSHOLDT U, 1982, AUDIOLOGY, V21, P242 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1990, EAR HEARING, V11, P93 KEVANISHVILI Z, 1992, ORL J OTO-RHINO-LARY, V54, P229 LINAGRANADE G, 1994, AUDIOLOGY, V33, P218 LINAGRANADE G, 1995, HEARING RES, V87, P55, DOI 10.1016/0378-5955(95)00078-I PICTON TW, 1993, EAR HEARING, V14, P299, DOI 10.1097/00003446-199310000-00001 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 PUEL JL, 1988, HEARING RES, V37, P65, DOI 10.1016/0378-5955(88)90078-0 ROBERTSON D, 1985, HEARING RES, V20, P79, DOI 10.1016/0378-5955(85)90060-7 SMITH RL, 1985, ACTA OTO-LARYNGOL, V100, P1, DOI 10.3109/00016488509108580 SRIDHAR TS, 1995, J NEUROSCI, V15, P3667 THORNTON ARD, 1994, BRIT J AUDIOL, V28, P227, DOI 10.3109/03005369409086572 THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090 Veuillet E, 1996, HEARING RES, V93, P128, DOI 10.1016/0378-5955(95)00212-X VEUILLET E, 1992, HEARING RES, V61, P47, DOI 10.1016/0378-5955(92)90035-L VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 WEISS TF, 1984, ANNU REV PHYSIOL, V46, P247 NR 23 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 83 EP 92 DI 10.1016/S0378-5955(97)00021-X PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800009 PM 9165349 ER PT J AU Nair, TS Prieskorn, DM Miller, JM Mori, A Gray, J Carey, TE AF Nair, TS Prieskorn, DM Miller, JM Mori, A Gray, J Carey, TE TI In vivo binding and hearing loss after intracochlear infusion of KHRI-3 antibody SO HEARING RESEARCH LA English DT Article DE guinea pig; organ of Corti; hair cell loss; monoclonal antibody to supporting cells; auditory brain stem response ID INNER-EAR ANTIGENS; MONOCLONAL-ANTIBODIES; DISEASE; AUTOANTIBODIES; MOUSE; MODEL AB The IgG1 mouse monoclonal antibody (MAb) KHRI-3, binds to an antigen of 65-68 kDa expressed on inner ear supporting cells in guinea pigs. We previously showed [Nair et al. (1995) Monoclonal antibody induced hearing loss. Hear. Res. 83, 101-113] that mice carrying the KHRI-3 hybridoma develop high frequency hearing loss and loss of hair cells in the basal turn suggesting that this MAb causes immune-mediated sensorineural hearing loss. To evaluate the specificity of this effect, sterile KHRI-3 and control IgG1 preparations were infused directly into the guinea pig cochlea using Alzet(R) mini-osmotic pumps. Assessments included: (1) hearing, measured by click auditory brain stem responses (ABRs); (2) in vivo antibody binding; and (3) the structural integrity of the organ of Corti. Nine animals were infused with KHRI-3 preparations and 5 controls were infused with control IgG1. Four guinea pigs given KHRI-3 developed 25-55 dB hearing loss. Control animals showed no difference from baseline. In vivo binding of KHRI-3 was detected in the organ of Corti in 6 of the 9 animals, including all 4 that had hearing loss. No staining was observed with control antibody. Confocal microscopy revealed that the in vivo KHRI-3 antibody binding pattern was identical to that obtained by incubating fixed tissue in vitro with KHRI-3. Histologic examination revealed an increased frequency of hair cell loss in KHRI-3 treated ears when compared to either the contralateral ears of the same guinea pigs or the IgG1 treated ears of control animals. The lesions in the infused ears of guinea pigs were scattered throughout the cochlea from base to apex. These experiments demonstrate the following points: (1) Antibodies can be chronically infused directly into the cochlea of living animals. (2) The KHRI-3 antibody binds to live supporting cells within the organ of Corti. (3) Infusion of an inner ear specific antibody affects auditory function. (4) The infusion of irrelevant antibody had no effect on the structure or function of the ear. This system provides an animal model for further studies of antibody-induced sensorineural hearing loss. C1 UNIV MICHIGAN,KRESGE HEARING RES INST 6020,CELL BIOL & IMMUNOL LAB,ANN ARBOR,MI 48109. CR BILLINGS PB, 1995, ANN OTO RHINOL LARYN, V104, P181 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T Cao MY, 1996, LARYNGOSCOPE, V106, P207, DOI 10.1097/00005537-199602000-00019 CAO MY, 1995, MOL CELL BIOCHEM, V146, P157, DOI 10.1007/BF00944608 CRUZ O L M, 1990, American Journal of Otology, V11, P342 GOTTSCHLICH S, 1995, LARYNGOSCOPE, V105, P1347, DOI 10.1288/00005537-199512000-00016 HARRIS JP, 1983, OTOLARYNG HEAD NECK, V91, P18 HARRIS JP, 1990, LARYNGOSCOPE, V100, P516 HARRIS JP, 1995, OTOLARYNG HEAD NECK, V112, P639, DOI 10.1016/S0194-5998(95)70170-2 KUSAKARI C, 1992, ANN OTO RHINOL LARYN, V101, P82 LEHNHARDT E, 1958, Z Laryngol Rhinol Otol, V37, P1 MCCABE BF, 1991, ADV OTO-RHINO-LARYNG, V46, P78 MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585 MILLER JM, 1996, UNPUB INT J DEV NEUR MILLER JM, 1996, ABSTR ASS RES OT, V19, P106 MOSCICKI RA, 1994, JAMA-J AM MED ASSOC, V272, P611, DOI 10.1001/jama.272.8.611 NAIR TS, 1995, HEARING RES, V83, P101, DOI 10.1016/0378-5955(94)00194-U OROZCO CR, 1990, LARYNGOSCOPE, V100, P941 PTOK M, 1991, HEARING RES, V57, P79, DOI 10.1016/0378-5955(91)90077-M PTOK M, 1993, HEARING RES, V66, P245, DOI 10.1016/0378-5955(93)90144-P RAMAKRISHNAN A, 1996, ABSTR ASS RES OT, V19, P207 SONE M, 1995, HEARING RES, V83, P26, DOI 10.1016/0378-5955(94)00189-W TAGO C, 1992, ANN OTO RHINOL LARYN, V101, P87 VELDMAN JE, 1993, ACTA OTO-LARYNGOL, V113, P303, DOI 10.3109/00016489309135813 WONG ML, 1992, HEARING RES, V59, P93, DOI 10.1016/0378-5955(92)90106-W Yoo J., 1983, Numerical Heat Transfer, V6, DOI 10.1080/10407798308546983 ZAJIC G, 1991, HEARING RES, V52, P59, DOI 10.1016/0378-5955(91)90187-E NR 27 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 93 EP 101 DI 10.1016/S0378-5955(97)00024-5 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800010 PM 9165350 ER PT J AU Kachar, B Battaglia, A Fex, J AF Kachar, B Battaglia, A Fex, J TI Compartmentalized vesicular traffic around the hair cell cuticular plate SO HEARING RESEARCH LA English DT Article DE hair cell; cuticular plate; vesicular traffic; apical membrane recycling; bullfrog macula ID MOUSE INTERPHOTORECEPTOR MATRIX; VESTIBULAR SENSORY APPARATUS; MECHANICAL TRANSDUCTION; STRUCTURAL BASIS; ACTIN-FILAMENTS; PROTEOGLYCANS; MICROTUBULES; ORGANIZATION; TUBULIN; ORGAN AB Through thin-section and freeze-fracture electron microscopy, we identify structural correlates of an intense vesicular traffic in a narrow band of cytoplasm around the cuticular plate of the bullfrog vestibular hair cells. Myriads of coated and uncoated vesicles associated with longitudinally oriented microtubules populate the narrow cytoplasmic region between the cuticular plate and the actin network of the apical junctional belt, If microtubules in the sensory hair cells, like those in axons, are pathways for organelle transport, then the characteristic distribution of microtubules around the cuticular plate represents transport pathways across the apical region of the hair cells. This compartmentalized membrane traffic system appears to support an intense vesicular release and uptake along a band of apical plasma membrane near the cell border. Functions of this transport system may include membrane recycling as well as exocytotic and endocytotic exchange between the hair cell cytoplasm and the endolymphatic compartment. RP Kachar, B (reprint author), NATL INST DEAFNESS & OTHER COMMUN DISORDERS, SECT STRUCT CELL BIOL, NIH, BLDG 36 5D 15, BETHESDA, MD 20892 USA. CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X BRIDGMAN PC, 1986, J CELL BIOL, V102, P1510, DOI 10.1083/jcb.102.4.1510 CHENG TPO, 1988, J NEUROSCI, V8, P3190 FLOCK A, 1981, J NEUROCYTOL, V10, P133, DOI 10.1007/BF01181749 HIROKAWA N, 1982, J CELL BIOL, V95, P249, DOI 10.1083/jcb.95.1.249 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 JAEGER RG, 1994, HEARING RES, V77, P207, DOI 10.1016/0378-5955(94)90268-2 KACHAR B, 1990, HEARING RES, V45, P179, DOI 10.1016/0378-5955(90)90119-A LANDERS RA, 1991, EXP EYE RES, V52, P65, DOI 10.1016/0014-4835(91)90129-3 LEAKE PA, 1987, HEARING RES, V25, P153, DOI 10.1016/0378-5955(87)90088-8 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 NELSON WJ, 1992, SCIENCE, V258, P948, DOI 10.1126/science.1439806 PEARSE BMF, 1990, ANNU REV CELL BIOL, V6, P151, DOI 10.1146/annurev.cb.06.110190.001055 RAPHAEL Y, 1994, HEARING RES, V76, P173, DOI 10.1016/0378-5955(94)90098-1 RODRIGUEZBOULAN E, 1989, SCIENCE, V245, P718, DOI 10.1126/science.2672330 SANTOS-SACCHI J, 1980, ACTA OTO-LARYNGOL, V89, P12, DOI 10.3109/00016488009127103 STEYGER PS, 1989, HEARING RES, V42, P1, DOI 10.1016/0378-5955(89)90113-5 TAWARA A, 1989, EXP EYE RES, V48, P815, DOI 10.1016/0014-4835(89)90066-3 TILNEY LG, 1980, J CELL BIOL, V86, P244, DOI 10.1083/jcb.86.1.244 UNSWORTH CD, 1990, ANN NY ACAD SCI, V603, P353 ZENNER HP, 1986, NEUROBIOLOGY HEARING, P1 NR 21 TC 53 Z9 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 102 EP 112 DI 10.1016/S0378-5955(97)00027-0 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800011 PM 9165351 ER PT J AU Jalenques, I Burette, A Albuisson, E Romand, R AF Jalenques, I Burette, A Albuisson, E Romand, R TI Age-related changes in GFAP-immunoreactive astrocytes in the rat ventral cochlear nucleus SO HEARING RESEARCH LA English DT Article DE glia; aging; intermediate filament; central auditory system ID FIBRILLARY ACIDIC PROTEIN; CENTRAL-NERVOUS-SYSTEM; MESSENGER-RNA; MOUSE-BRAIN; (GFAP)-IMMUNOREACTIVE ASTROCYTES; NEURONAL ARCHITECTURE; INFERIOR COLLICULUS; GLIAL-CELLS; PROLIFERATION; COMPLEX AB The age-related changes in the ventral cochlear nucleus (VCN) as revealed by glial fibrillary acid protein (GFAP) immunoreactivity were analyzed in the following age groups: 3-, 6-, 12-, 18-, and 24-month-old Sprague-Dawley rats. A cartographic and a quantitative analysis showed a significant increase in the number of GFAP positive astrocytes during the first year of life and a significant decrease in older rats. We also observed an age-induced modification in the spatial distribution of GFAP positive astrocyte. In the anterior part of the VCN of the 3- and 6-month-old rats, we observed a significant decrease in the rostrocaudal as well in the dorso-ventral axes. In the posterior part of the VCN, a significant decrease in the dorso-ventral axis could be also observed, but no significant difference in the spatial distribution was obtained in the rostro-caudal axis. In older rats, the distribution appeared homogeneous throughout the nucleus. Additionally, aging was associated with a significant increase in GFAP positive astrocyte sizes, except for immunolabelled astrocytes in the granule cell layer. The different levels of GFAP expression occurring in the VCN during normal aging could reflect a progressive decline of cellular activity in the VCN, without severe cell degeneration or synaptic loss. C1 UNIV CLERMONT FERRAND,NEUROBIOL LAB,F-63177 CLERMONT FERRAN,FRANCE. CHU ST JACQUES,CTR MEDICOPSYCHOL,USN1,F-63003 CLERMONT FERRAN,FRANCE. UNIV AUVERGNE,FAC MED,LAB BIOSTAT,F-63000 CLERMONT FERRAN,FRANCE. CR BANAYSCHWARTZ M, 1989, NEUROCHEM RES, V14, P555, DOI 10.1007/BF00964918 BELL PB, 1987, J HISTOCHEM CYTOCHEM, V35, P1375 BENTZEN O, 1983, HEARING BALANCE ELDE, P123 BIANCHI R, 1995, BIOCHEM BIOPH RES CO, V208, P910, DOI 10.1006/bbrc.1995.1421 BIGNAMI A, 1972, BRAIN RES, V43, P429, DOI 10.1016/0006-8993(72)90398-8 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 CANADY KS, 1990, GLIA, V3, P368, DOI 10.1002/glia.440030508 CANT NB, 1991, MAMMALIAN AUDITORY P, P66 CASEY MA, 1990, NEUROBIOL AGING, V11, P391, DOI 10.1016/0197-4580(90)90004-J CASPARY DM, 1990, J NEUROSCI, V10, P2363 Caspary D.M., 1986, NEUROBIOLOGY HEARING, P303 ENG LF, 1988, NEUROLOGY NEUROBIOLO, V39, P79 GARBUGLIA M, 1995, BIOCHEM BIOPH RES CO, V208, P901, DOI 10.1006/bbrc.1995.1420 GLAUM SR, 1990, P NATL ACAD SCI USA, V87, P3454, DOI 10.1073/pnas.87.9.3454 GOSS JR, 1991, NEUROBIOL AGING, V12, P165, DOI 10.1016/0197-4580(91)90056-P GRAEBER MB, 1988, J NEUROCYTOL, V17, P209, DOI 10.1007/BF01674208 HAJOS F, 1989, EXP BRAIN RES, V78, P164 HANSSON E, 1990, CELL MOL BIOL, V36, P487 HARRISON JM, 1966, J COMP NEUROL, V126, P391, DOI 10.1002/cne.901260303 HERTZ L, 1992, BRAIN RES BULL, V29, P303, DOI 10.1016/0361-9230(92)90061-2 HOSLI E, 1993, PROG NEUROBIOL, V40, P477, DOI 10.1016/0301-0082(93)90019-O JALENQUES I, 1995, BRAIN RES, V686, P223, DOI 10.1016/0006-8993(95)00463-Z KALMAN M, 1989, EXP BRAIN RES, V78, P147 KANEKO T, 1988, BRAIN RES, V45, P160 KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 LURIE DI, 1994, J COMP NEUROL, V346, P276, DOI 10.1002/cne.903460207 MALHOTRA SK, 1990, CYTOBIOS, V61, P133 MARTIN PM, 1995, J NEUROSCI METH, V58, P181, DOI 10.1016/0165-0270(94)00175-G MERCHAN MA, 1993, MAMMALIAN COCHLEAR N MONTGOMERY DL, 1994, VET PATHOL, V31, P145 MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406 NORENBERG MD, 1979, J HISTOCHEM CYTOCHEM, V27, P756 OORSCHOT DE, 1994, PROG NEUROBIOL, V44, P233, DOI 10.1016/0301-0082(94)90040-X OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 RAZA A, 1994, HAR RES, V77, P211 SELMAJ K, 1991, J NEUROCHEM, V57, P823, DOI 10.1111/j.1471-4159.1991.tb08225.x SHAO YP, 1994, GLIA, V11, P147, DOI 10.1002/glia.440110209 SHAPFITZAGARDO B, 1988, GLIA, V1, P346 SHI SR, 1991, J HISTOCHEM CYTOCHEM, V39, P741 SIREVAAG AM, 1991, BRAIN RES, V540, P273, DOI 10.1016/0006-8993(91)90517-Y STEWARD O, 1990, J NEUROSCI, V10, P2373 TOLBERT LP, 1982, NEUROSCIENCE, V7, P3013, DOI 10.1016/0306-4522(82)90227-5 VANDERZEE EA, 1993, GLIA, V8, P42, DOI 10.1002/glia.440080106 VANREEMPTS J, 1988, BRAIN RES, V462, P142, DOI 10.1016/0006-8993(88)90596-3 WEBSTER DB, 1982, AM J ANAT, V163, P103, DOI 10.1002/aja.1001630202 Weibel E. R., 1979, STEREOLOGICAL METHOD, V1 WENTHOLD RJ, 1981, GLUTAMATE NEUROTRANS WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106 WILLOTT JF, 1985, J COMP NEUROL, V237, P545, DOI 10.1002/cne.902370410 YONG VW, 1991, P NATL ACAD SCI USA, V88, P7016, DOI 10.1073/pnas.88.16.7016 NR 50 TC 8 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 113 EP 124 DI 10.1016/S0378-5955(97)00026-9 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800012 PM 9165352 ER PT J AU Berggren, D Frenz, D GalinovicSchwartz, V VanDeWater, TR AF Berggren, D Frenz, D GalinovicSchwartz, V VanDeWater, TR TI Fine structure of extracellular matrix and basal laminae in two types of abnormal collagen production: L-proline analog-treated otocyst cultures and disproportionate micromelia (Dmm/Dmm) mutants SO HEARING RESEARCH LA English DT Article DE otic anlage; collagen; extracellular matrix; basal lamina; L-azetidine-2-carboxylic acid; disproportionate micromelia mouse ID OTIC CAPSULE FORMATION; BASEMENT-MEMBRANES; MESSENGER-RNAS; GROWTH-FACTOR; INNER-EAR; CHONDROGENESIS; DISRUPTION; EXPRESSION; EXPLANTS; CELLS AB L-Azetidine-2-carboxylic acid (LACA), a naturally occurring vegetable imino acid, can be incorporated into mammalian proteins in place of proline, thereby eliciting an inhibitory effect on collagen secretion. Exposure of explants of the embryonic mouse inner ear to LACA reduces the number of collagen fibrils in the otic capsule, gives rise to a dose-dependent derangement of the basal lamina, and ultimately results in dysmorphogenesis and retarded differentiation of the inner ear. Disproportionate micromelia (Dmm) is an incomplete dominant form of dwarfism characterized by a reduced quantity of type II collagen in the cartilaginous extracellular matrix (ECM). Abnormal morphogenesis in homozygotic Dmm mice resembles the abnormal morphogenesis observed in LACA-exposed otic explants, resulting in malformed inner ears with a bulky cartilaginous capsule and a lack or reduction of defined perilymphatic spaces (Van De Water and Galinovic-Schwartz, 1987). In this study, we examined by ultrastructural analysis LACA-exposed otic explants and inner ears of Dmm/Dmm mouse embryos for abnormalities in the collagenous constituents of the basal laminae and capsular ECM. We demonstrate, in comparison to normal embryonic mouse inner ears, a reduction in collagen fibrils and irregular cytodifferentiation of chondrocytes in the ECM of LACA-exposed and Dmm/Dmm inner ears as well as in the basal laminae of LACA-exposed specimens. In addition, we provide evidence of dysmorphogenesis of the otic capsule and perilymphatic spaces in LACA-exposed explants. Moreover, while previous studies demonstrated the anomalous development of sensory structures in otocyst explants following LACA exposure, in this study we provide evidence of the normal morphogenesis of otic epithelial-derived sensory structures in homozygotic Dmm/Dmm mouse embryos. C1 UMEA UNIV,DEPT OTOLARYNGOL,UMEA,SWEDEN. YESHIVA UNIV ALBERT EINSTEIN COLL MED,DEPT OTOLARYNGOL,BRONX,NY 10461. YESHIVA UNIV ALBERT EINSTEIN COLL MED,DEPT ANAT & STRUCT BIOL,BRONX,NY 10461. YESHIVA UNIV ALBERT EINSTEIN COLL MED,DEPT NEUROSCI,BRONX,NY 10461. CR BERGGREN D, 1992, HEARING RES, V57, P195, DOI 10.1016/0378-5955(92)90151-C BRADAMANTE Z, 1980, ANAT REC, V197, P305, DOI 10.1002/ar.1091970305 BRITTIS PA, 1992, SCIENCE, V255, P733, DOI 10.1126/science.1738848 BROWN KS, 1981, J EMBRYOL EXP MORPH, V62, P165 BRUCKNER P, 1994, MICROSC RES TECHNIQ, V28, P378, DOI 10.1002/jemt.1070280504 DAMICOMARTEL A, 1987, DEV BIOL, V120, P542, DOI 10.1016/0012-1606(87)90257-0 DUYK G, 1992, NAT GENET, V2, P5, DOI 10.1038/ng0992-5 FRENZ DA, 1992, DEV BIOL, V153, P324, DOI 10.1016/0012-1606(92)90117-Y FRENZ DA, 1994, DEVELOPMENT, V120, P415 FRENZ DA, 1991, DEV BIOL, V144, P38, DOI 10.1016/0012-1606(91)90476-J GROBSTEI.C, 1965, SCIENCE, V150, P626, DOI 10.1126/science.150.3696.626 Hay ED, 1981, CELL BIOL EXTRACELLU, P379 Hay E. D., 1984, ROLE EXTRACELLULAR M, P1 ISHIBE T, 1985, ABSTR ASS RES OT, P144 KARNOVSK.MJ, 1965, J CELL BIOL, V27, pA137 KEFALIDES NA, 1975, J INVEST DERMATOL, V65, P85, DOI 10.1111/1523-1747.ep12598062 LEIN PJ, 1991, J CELL BIOL, V113, P417, DOI 10.1083/jcb.113.2.417 Letourneau P C, 1992, Curr Opin Genet Dev, V2, P625, DOI 10.1016/S0959-437X(05)80183-2 MCPHEE JR, 1986, J EMBRYOL EXP MORPH, V97, P1 PROCKOP DJ, 1984, NEW ENGL J MED, V311, P376, DOI 10.1056/NEJM198408093110606 RIMOIN DL, 1983, PRINCIPLES PRACTICE, P703 SANDBERG M, 1988, DEVELOPMENT, V102, P461 SANDELL LJ, 1991, J CELL BIOL, V114, P1307, DOI 10.1083/jcb.114.6.1307 TAKEUCHI T, 1969, BIOCHIM BIOPHYS ACTA, V175, P142, DOI 10.1016/0005-2795(69)90153-6 Theiler K, 1972, HOUSE MOUSE TIMPL R, 1986, INT REV EXP PATHOL, V29, P1 Tryggvason K, 1993, Adv Nephrol Necker Hosp, V22, P1 VANDEWATER TR, 1987, HEARING RES, V30, P39, DOI 10.1016/0378-5955(87)90181-X VANDEWATER TR, 1973, ANN OTOL RHINOL L S4, V82, P19 VANDEWATER TR, 1986, J CRAN GENET DEV BIO, V6, P113 WESSELLS NK, 1968, DEV BIOL, V18, P294, DOI 10.1016/0012-1606(68)90037-7 NR 31 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 125 EP 135 DI 10.1016/S0378-5955(97)00028-2 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800013 PM 9165353 ER PT J AU Spatz, WB AF Spatz, WB TI Differences between guinea pig and rat in the dorsal cochlear nucleus: Expression of calcium-binding proteins by cartwheel and Purkinje-like cells SO HEARING RESEARCH LA English DT Article DE species difference; cochlear nucleus; auditory system; immunohistochemistry; calbindin; parvalbumin ID LATERAL GENICULATE-NUCLEUS; CENTRAL NERVOUS-SYSTEM; STEM AUDITORY NUCLEI; BRAIN-STEM; IMMUNOCYTOCHEMICAL LOCALIZATION; PARVALBUMIN IMMUNOREACTIVITY; GOLGI IMPREGNATION; CYTOCHROME-OXIDASE; CALLITHRIX-JACCHUS; MONGOLIAN GERBIL AB This study describes differences between guinea pig and rat in the immunoreactivities for calbindin (CB-IR) and parvalbumin (PV-IR) in cartwheel (CWC) and Purkinje-like (PLC) cells of the dorsal cochlear nucleus (DCN). CWCs are the most important inhibitory interneurons of the DCN. Their soma and dendrites stain intensely for CB-IR in guinea pigs but only weakly and incompletely in rats. In both species, the CWCs do not show PV-IR, PLCs, a rare type of DCN cells often interpreted as displaced cerebellar Purkinje cells misrouted during migration, are knows from rat and mouse and are here described for guinea pig DCN. PLCs are intensely and completely stained for CB-IR and PV-IR in guinea pigs. In rats, they stain with similar completeness only for CB-IR, PV-IR being weak and restricted to the cell's soma. similar staining differences between the two species are seen with the cerebellar Purkinje cells, i.e., PLCs resemble the cerebellar Purkinje cells more than do the CWCs. Based on the present material (and preliminary findings in a primate (marmoset)), we speculate that the PLCs have their place in the circuitry of the DCN receiving input via parallel fibers, like the CWCs, and possibly projecting their axon onto the cerebellum. RP Spatz, WB (reprint author), UNIV FREIBURG, DEPT OTORHINOLARYNGOL, KILLIANSTR 5, D-79106 FREIBURG, GERMANY. CR ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 ADAMS JC, 1993, NATO ADV SCI INST SE, V239, P133 AOKI E, 1990, BRAIN RES, V525, P140, DOI 10.1016/0006-8993(90)91329-F BERREBI AS, 1990, J NEUROCYTOL, V19, P643, DOI 10.1007/BF01188033 BERREBI AS, 1991, ANAT EMBRYOL, V183, P427 BERREBI AS, 1992, J CHEM NEUROANAT, V5, P235, DOI 10.1016/0891-0618(92)90048-U BERREBI AS, 1988, J NEUROCYTOL, V17, P465, DOI 10.1007/BF01189803 BERREBI AS, 1993, NATO ADV SCI INST SE, V239, P107 BRAUN K, 1993, ACTA HISTOCHEM CYTOC, V26, P543 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 BROWNER RH, 1982, J COMP NEUROL, V211, P115, DOI 10.1002/cne.902110203 Caicedo A, 1996, ANAT EMBRYOL, V194, P465 CELIO MR, 1988, CELL CALCIUM, V9, P81, DOI 10.1016/0143-4160(88)90027-9 CELIO MR, 1990, CELL CALCIUM, V11, P599, DOI 10.1016/0143-4160(90)90014-L CELIO MR, 1990, NEUROSCIENCE, V35, P375, DOI 10.1016/0306-4522(90)90091-H CHARD PS, 1993, J PHYSIOL-LONDON, V472, P341 DECAMILLI P, 1984, NEUROSCIENCE, V11, P761, DOI 10.1016/0306-4522(84)90193-3 DeCoster MA, 1995, ADV NEUROIMMUNOL, V5, P233, DOI 10.1016/0960-5428(95)00015-T DErchia AM, 1996, NATURE, V381, P597, DOI 10.1038/381597a0 DISTERHOFT JF, 1980, J COMP NEUROL, V192, P687, DOI 10.1002/cne.901920405 DUMESNILBOUSEZ N, 1993, BRAIN RES, V622, P343, DOI 10.1016/0006-8993(93)90842-B ENDO T, 1985, NEUROSCI LETT, V60, P279, DOI 10.1016/0304-3940(85)90590-7 FRIAUF E, 1994, J COMP NEUROL, V349, P193, DOI 10.1002/cne.903490204 FRISINA RD, 1995, HEARING RES, V85, P53, DOI 10.1016/0378-5955(95)00029-4 GARCIASEGURA LM, 1984, BRAIN RES, V296, P75, DOI 10.1016/0006-8993(84)90512-2 Gates TS, 1996, HEARING RES, V96, P157, DOI 10.1016/0378-5955(96)00054-8 Golding NL, 1996, J NEUROSCI, V16, P2208 GRAUR D, 1991, NATURE, V351, P649, DOI 10.1038/351649a0 HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 HEIZMANN CW, 1991, NOVEL CALCIUM BINDIN HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P577 HUANG CM, 1982, BRAIN RES, V244, P1, DOI 10.1016/0006-8993(82)90897-6 HUNTER C, 1993, J NEUROSCI, V13, P1932 HURD LB, 1994, HEARING RES, V72, P143, DOI 10.1016/0378-5955(94)90214-3 IACOPINO A, 1992, MOL BRAIN RES, V13, P251, DOI 10.1016/0169-328X(92)90033-8 JACOBS GH, 1994, BEHAV NEUROSCI, V108, P993, DOI 10.1037//0735-7044.108.5.993 JOHANSEN FF, 1990, NEUROSCI LETT, V120, P171, DOI 10.1016/0304-3940(90)90030-D KANE EC, 1974, J COMP NEUROL, V155, P301, DOI 10.1002/cne.901550303 KOLSTON J, 1992, ANAT EMBRYOL, V186, P443 LI WH, 1992, J HERED, V83, P174 Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E Lorente de No R, 1981, PRIMARY ACOUSTIC NUC MOORE JK, 1987, J COMP NEUROL, V260, P157, DOI 10.1002/cne.902600202 MUGNAINI E, 1987, ARCH ITAL BIOL, V126, P41 MUGNAINI E, 1987, P NATL ACAD SCI USA, V84, P8692, DOI 10.1073/pnas.84.23.8692 MUGNAINI E, 1985, J COMP NEUROL, V235, P61, DOI 10.1002/cne.902350106 Muller BK, 1996, EUR J CELL BIOL, V69, P360 NITSCH C, 1989, NEUROSCI LETT, V105, P263, DOI 10.1016/0304-3940(89)90631-9 OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206 OSEN KK, 1981, NEURONAL MECH HEARIN OSEN KK, 1995, J COMP NEUROL, V357, P482, DOI 10.1002/cne.903570311 Osen K.K., 1988, P65 Osen K.K., 1990, GLYCINE NEUROTRANSMI, P417 Pauls TL, 1996, BBA-GENE STRUCT EXPR, V1306, P39, DOI 10.1016/0167-4781(95)00221-9 PEYRET D, 1986, HEARING RES, V23, P115, DOI 10.1016/0378-5955(86)90008-0 PEYRET D, 1987, ACTA OTO-LARYNGOL, V104, P71, DOI 10.3109/00016488709109049 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 RODRIGO J, 1994, BRAIN RES, V634, P191, DOI 10.1016/0006-8993(94)91922-4 ROGERS JH, 1992, NEUROSCIENCE, V51, P843, DOI 10.1016/0306-4522(92)90525-7 ROSSI F, 1993, J COMP NEUROL, V337, P70, DOI 10.1002/cne.903370105 RYUGO DK, 1995, J COMP NEUROL, V358, P102, DOI 10.1002/cne.903580107 SAINTMARIE RL, 1991, HEARING RES, V51, P11, DOI 10.1016/0378-5955(91)90003-R SCHOFIELD BR, 1994, J COMP NEUROL, V344, P83, DOI 10.1002/cne.903440107 Schwartz A. M, 1986, NEUROBIOLOGY HEARING, P271 SETOOHSHIMA A, 1994, ACTA HISTOCHEM CYTOC, V27, P309 SHORE SE, 1991, HEARING RES, V52, P255, DOI 10.1016/0378-5955(91)90205-N SPATZ WB, 1996, EUR J NEUROSCI, V9, P90 SPATZ WB, 1995, HEARING RES, V86, P89, DOI 10.1016/0378-5955(95)00059-D SPATZ WB, 1994, J COMP NEUROL, V339, P519, DOI 10.1002/cne.903390405 STICHEL CC, 1988, J COMP NEUROL, V268, P29, DOI 10.1002/cne.902680104 TIGGES M, 1991, VISUAL NEUROSCI, V6, P375 VATER M, 1994, J COMP NEUROL, V341, P534, DOI 10.1002/cne.903410409 WEBSTER DB, 1982, AM J ANAT, V163, P103, DOI 10.1002/aja.1001630202 Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X WENTHOLD RJ, 1986, BRAIN RES, V380, P7, DOI 10.1016/0006-8993(86)91423-X WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X WICKESBERG RE, 1993, NATO ADV SCI INST SE, V239, P75 WOUTERLOOD FG, 1984, J COMP NEUROL, V227, P136, DOI 10.1002/cne.902270114 WOUTERLOOD FG, 1984, J NEUROCYTOL, V13, P639, DOI 10.1007/BF01148083 Wright DD, 1996, J COMP NEUROL, V364, P729, DOI 10.1002/(SICI)1096-9861(19960122)364:4<729::AID-CNE10>3.0.CO;2-K ZETTEL ML, 1991, J COMP NEUROL, V313, P1, DOI 10.1002/cne.903130102 NR 81 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 136 EP 146 DI 10.1016/S0378-5955(97)00029-4 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800014 PM 9165354 ER PT J AU Zheng, XY Henderson, D Hu, BH Ding, DL McFadden, SL AF Zheng, XY Henderson, D Hu, BH Ding, DL McFadden, SL TI The influence of the cochlear efferent system on chronic acoustic trauma SO HEARING RESEARCH LA English DT Article DE cochlear de-efferentation; noise-induced hearing loss; cubic distortion tone; cochlear mechanics; hair cell loss ID CROSSED OLIVOCOCHLEAR BUNDLE; TEMPORARY THRESHOLD SHIFTS; ELECTRICAL-STIMULATION; DISTORTION PRODUCTS; DE-EFFERENTATION; TUNING CURVES; GUINEA-PIG; SUSCEPTIBILITY; PROTECTION; DEPENDENCE AB The role of the olivocochlear bundle (OCB) in modulating noise-induced permanent injury to the auditory periphery was studied by completely sectioning the OCB fibers in chinchillas and exposing the animals while awake to a broad-band noise at 105 dB SPL for 6 h. Outer hair cell (OHC) function was assessed by measuring 2f(1)-f(2) distortion product otoacoustic emissions (DPOAE) at frequencies from 1.2 to 9.6 kHz and cochlear microphonics (CM) at frequencies from 1 to 8 kHz. As a result of de-efferentation, the CM was decreased but the DPOAEs were unchanged in de-efferented ears as compared with efferented control and sham-operated ears. Following noise exposure, the ears that were de-efferented showed significantly more depression of DPOAE input/output functions and greater decrement of CM amplitude. The differences between de-efferented and efferent-innervated ears were evident across all the frequencies. The cochlear lesions of the OHCs reflected by traditional cytocochleograms, however, were minimal in both efferented and de-efferented ears. The results indicate that cochlear de-efferentation decreases the CM in chinchilla and increases the ear's susceptibility to noise-induced permanent hearing damage. More importantly, de-efferentation increases susceptibility at low frequencies as well as high frequencies. C1 SUNY BUFFALO,HEARING RES LAB,DEPT COMMUN SCI & DISORDERS,BUFFALO,NY 14214. CR BONFILS P, 1987, HEARING RES, V30, P267, DOI 10.1016/0378-5955(87)90142-0 BROWN MC, 1987, J COMP NEUROL, V260, P605, DOI 10.1002/cne.902600412 CODY AR, 1982, HEARING RES, V6, P199, DOI 10.1016/0378-5955(82)90054-5 DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 FIORINO F, 1989, VALSALVA S1, V65, P36 FRANKLIN DJ, 1991, HEARING RES, V53, P185, DOI 10.1016/0378-5955(91)90053-C GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 Hamernik RP, 1996, J ACOUST SOC AM, V100, P1003, DOI 10.1121/1.416285 HANDROCK M, 1982, ARCH OTO-RHINO-LARYN, V234, P191, DOI 10.1007/BF00453630 KARNOVSKY MJ, 1964, J HISTOCHEM CYTOCHEM, V12, P219 KIRK DL, 1993, HEARING RES, V67, P20, DOI 10.1016/0378-5955(93)90228-S KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X LIBERMAN MC, 1995, HEARING RES, V90, P158, DOI 10.1016/0378-5955(95)00160-2 LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X LITTMAN TA, 1992, J ACOUST SOC AM, V92, P1945, DOI 10.1121/1.405242 MCINICK W, 1991, J ACOUST SOC AM, V90, P147 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 PATUZZI R, 1990, HEARING RES, V45, P15, DOI 10.1016/0378-5955(90)90179-S PATUZZI RB, 1991, HEARING RES, V54, P45, DOI 10.1016/0378-5955(91)90135-V PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 RAJAN R, 1995, J NEUROPHYSIOL, V74, P582 RAJAN R, 1983, HEARING RES, V9, P279, DOI 10.1016/0378-5955(83)90032-1 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 RAJAN R, 1995, J NEUROPHYSIOL, V74, P598 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 SCHARF B, 1994, HEARING RES, V75, P11, DOI 10.1016/0378-5955(94)90051-5 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 TRAHIOTI.C, 1970, J ACOUST SOC AM, V47, P592, DOI 10.1121/1.1911934 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WIEDERHOLD ML, 1986, NEUROBIOLOGY HEARING, P349 WIEDERHO.ML, 1966, J ACOUST SOC AM, V40, P1427, DOI 10.1121/1.1910243 Zheng XY, 1997, HEARING RES, V104, P191, DOI 10.1016/S0378-5955(96)00187-6 NR 34 TC 56 Z9 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 1997 VL 107 IS 1-2 BP 147 EP 159 DI 10.1016/S0378-5955(97)00031-2 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WZ418 UT WOS:A1997WZ41800015 PM 9165355 ER PT J AU Mandal, A Kaltenbach, JA Quirk, WS AF Mandal, A Kaltenbach, JA Quirk, WS TI Changes in dorsal cochlear nucleus blood flow during noise exposure SO HEARING RESEARCH LA English DT Article DE dorsal cochlear nucleus; noise; blood flow; intravital microscopy; laser Doppler flowmetry ID INFERIOR COLLICULUS; FLUX MOTION; GUINEA-PIG; RAT; 2-DEOXYGLUCOSE; STIMULATION; HAMSTER AB Changes in dorsal cochlear nucleus (DCN) blood flow during noise exposure were assessed using both intravital microscopy (IVM) and laser Doppler flowmetry (LDF). Mature Syrian golden hamsters were anesthetized, tracheotomized and implanted with a carotid artery catheter for monitoring blood pressure and infusion of fluorescent dye. An occipital craniectomy was performed and the cerebellum partly aspirated for access to the DCN. Fluorescent dye was infused to enhance observations of the DCN surface using a customized IVM. Red blood cell velocity, vessel diameter and blood pressure were continuously monitored. Subjects were presented with 110 dB SPL broad-band noise for 15 min. A second group was presented with the same protocol for laser Doppler assessment of blood-flow changes. Control groups included animals not exposed to noise using both IVM and laser Doppler measures. Additional control measurements were obtained for noise-exposed and control groups with laser Doppler measures obtained from the obex, a brainstem structure with no known auditory function. Arterioles of the DCN showed a low-frequency oscillatory pattern of red blood cell velocity in control animals and in baseline conditions of the noise-exposure group. Presentation of noise abolished these velocity oscillations. Additionally, significant decreases in both red blood cell velocity and vessel diameter were measured during stimulation. These microvascular measures recovered slightly during the post-stimulus period. Laser Doppler measures of the overall blood flow in the nucleus were consistent with IVM findings. Measurements from DCN and obex in groups not exposed to noise, and animals exposed to noise and measured from the obex, showed stable oscillatory flow. These data show exposure to noise eliminates oscillatory patterns of blood flow and induces decreases in vascular perfusion. Furthermore, these changes appear specific to the auditory structure studied. C1 WAYNE STATE UNIV,SCH MED,DEPT OTOLARYNGOL HEAD & NECK SURG,MICROBIOL LAB,DETROIT,MI 48201. WAYNE STATE UNIV,SCH MED,DEPT OTOLARYNGOL HEAD & NECK SURG,AUDITORY NEUROPHYSIOL LAB,DETROIT,MI 48201. CR CANLON B, 1983, HEARING RES, V10, P217, DOI 10.1016/0378-5955(83)90055-2 Craigie EH, 1920, J COMP NEUROL, V31, P429, DOI 10.1002/cne.900310504 EVANS EF, 1973, EXP BRAIN RES, V17, P402 GREENBERG J, 1979, Acta Neurologica Scandinavica Supplementum, V60, P12 HAND P, 1979, Acta Neurologica Scandinavica Supplementum, V60, P46 HUANG C, 1986, EXP BRAIN RES, V61, P506 INTAGLIETTA M, 1991, BLOOD VESSELS, V28, P1 KALTENBACH JA, 1991, HEARING RES, V51, P149, DOI 10.1016/0378-5955(91)90013-Y KENNEDY C, 1976, P NATL ACAD SCI USA, V73, P4230, DOI 10.1073/pnas.73.11.4230 LIBERMAN MC, 1983, NEW PERSPECTIVES NOI, P105 Lierse W, 1965, Acta Neurol Scand Suppl, V14, P15 LONSBURYMARTIN BL, 1981, J NEUROPHYSIOL, V46, P563 Quirk WS, 1996, OTOLARYNG HEAD NECK, V114, P613, DOI 10.1016/S0194-5998(96)70255-3 REID WD, 1989, LAB ANIM, V23, P156, DOI 10.1258/002367789780863592 REN TY, 1993, ACTA OTO-LARYNGOL, V113, P609, DOI 10.3109/00016489309135872 REN TY, 1994, ACTA OTO-LARYNGOL, V114, P254, DOI 10.3109/00016489409126052 ROSE JE, 1959, B JOHNS HOPKINS HOSP, V104, P211 Roy C S, 1890, J Physiol, V11, P85 RYAN AF, 1989, BRAIN RES, V483, P283, DOI 10.1016/0006-8993(89)90172-8 RYAN AF, 1992, HEARING RES, V61, P24, DOI 10.1016/0378-5955(92)90032-I RYAN AF, 1988, DEV BRAIN RES, V41, P61, DOI 10.1016/0165-3806(88)90169-1 SALVI RJ, 1983, HEARING RES, V10, P37, DOI 10.1016/0378-5955(83)90017-5 SCHEICH H, 1986, Society for Neuroscience Abstracts, V12, P1274 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V3, P1390 SOKOLOFF L, 1977, J NEUROCHEM, V28, P897, DOI 10.1111/j.1471-4159.1977.tb10649.x NR 25 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 1 EP 8 DI 10.1016/S0378-5955(96)00214-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800001 PM 9112102 ER PT J AU deGroot, JCMJ Hamers, FPT Gispen, WH Smoorenburg, GF AF deGroot, JCMJ Hamers, FPT Gispen, WH Smoorenburg, GF TI Co-administration of the neurotrophic ACTH((4-9)) analogue, ORG 2766, may reduce the cochleotoxic effects of cisplatin SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 32nd Workshop on Inner Ear Biology CY SEP 08-10, 1995 CL MADRID, SPAIN DE inner ear; cochlear ototoxicity; cisplatin; prophylaxis; neuropeptide ID HIGH-DOSE CISPLATIN; GUINEA-PIGS; CIS-DIAMMINEDICHLOROPLATINUM; ACTH(4-9) ANALOG; OVARIAN-CANCER; INDUCED NEUROTOXICITY; STRIA VASCULARIS; INNER-EAR; IN-VITRO; OTOTOXICITY AB In this study the effect of the neurotrophic ACTH((4-9)) analogue, ORG 2766, on cisplatin cochleotoxicity was investigated with both light- and transmission electron microscopy. Guinea pigs were treated with either cisplatin + ORG 2766 (n = 11) or cisplatin + physiological saline (n = 9). All animals treated with cisplatin + physiological saline showed complete loss of outer hair cells (OHC) and degeneration of the organ of Corti in the basal cochlear turns, while partial OHC loss was found in the middle and apical turns. The inner hair cells (IHC) and other cochlear tissues were not affected. Eight animals from the group treated with cisplatin + ORG 2766 demonstrated similar pathological changes, but to a lesser degree, especially in the middle turns. The three remaining animals demonstrated no cochlear alterations at all, light-microscopically, and only minor subcellular changes in the OHCs at the ultrastructural level. Electrophysiologically, these three animals showed normal compound action potential (CAP) amplitudes at stimulus frequencies from 0.5 to 16 kHz and normal cochlear microphonics (CM) in the frequency range from 0.5 to 8 kHz. The other animals treated with cisplatin + ORG 2766 showed a severe loss in their CAPs and CM, except for one showing intermediate loss. All animals from the group treated with cisplatin alone showed a severe loss in their CAPs and CM. Endolymphatic hydrops was present in all animals from the cisplatin- and the cisplatin + ORG 2766-treated groups. These data indicate that daily, concomitant administration of ORG 2766 may reduce OHC loss and subsequent degeneration of the organ of Corti in cisplatin-treated guinea pig cochleas. C1 UNIV UTRECHT,SCH MED,DEPT MED PHARMACOL,RUDOLF MAGNUS INST,UTRECHT,NETHERLANDS. RP deGroot, JCMJ (reprint author), UNIV UTRECHT HOSP,DEPT OTORHINOLARYNGOL,LAB HISTOPHYSIOL & EXPT PATHOL,ROOM G02531,POB 85500,NL-3508 GA UTRECHT,NETHERLANDS. CR ANNIKO M, 1986, AM J OTOLARYNG, V7, P276, DOI 10.1016/S0196-0709(86)80050-3 BAR PR, 1990, NEUROPEPTIDES BASICS, P175 BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3 BODENNER DL, 1986, CANCER RES, V46, P2751 CARENZA L, 1986, GYNECOL ONCOL, V25, P244, DOI 10.1016/0090-8258(86)90105-8 CHARY KK, 1977, CANCER TREAT REP, V61, P367 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 DEKONING P, 1988, EXP NEUROL, V97, P746 DIRE F, 1990, CANCER CHEMOTH PHARM, V25, P355 DRESCHLER WA, 1989, AUDIOLOGY, V28, P211 DUCKERS HJ, 1993, BRAIN, V116, P1059, DOI 10.1093/brain/116.5.1059 DYER JK, 1995, PEPTIDES, V16, P515, DOI 10.1016/0196-9781(95)00008-8 ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638 FERNANDEZCERVIL.F, 1994, ORL, V55, P337 GLOVER D, 1989, INT J RADIAT ONCOL, V16, P1201 HALLMARK R J, 1992, European Journal of Gynaecological Oncology, V13, P35 HAMERS FPT, 1991, EUR J CANCER, V27, P372, DOI 10.1016/0277-5379(91)90549-S HAMERS FPT, 1993, CANCER CHEMOTH PHARM, V32, P162, DOI 10.1007/BF00685621 HAMERS FPT, 1994, EUR ARCH OTO-RHINO-L, V251, P23 HASKO JA, 1990, HEARING RES, V45, P63, DOI 10.1016/0378-5955(90)90183-P HOL EM, 1994, J NEUROSCI RES, V39, P178, DOI 10.1002/jnr.490390208 HOVESTADT A, 1992, J NEUROL, V239, P143, DOI 10.1007/BF00833914 JIANG D, 1993, BRIT J AUDIOL, V27, P195, DOI 10.3109/03005369309076693 KOHN S, 1988, LARYNGOSCOPE, V98, P865 KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275 KONISHI T, 1983, AM J OTOLARYNG, V4, P18, DOI 10.1016/S0196-0709(83)80003-9 LAURELL G, 1991, J OTOLARYNGOL, V20, P158 LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 LEFEBVRE PP, 1992, HEARING RES, V58, P185, DOI 10.1016/0378-5955(92)90127-9 Lichtensteiger W, 1996, DEV BRAIN RES, V91, P93, DOI 10.1016/0165-3806(95)00167-0 LOW M, 1992, HNO, V40, P271 MARCOALGARRA J, 1985, ACTA OTO-LARYNGOL, V99, P343, DOI 10.3109/00016488509108921 MCALPINE D, 1990, HEARING RES, V47, P191, DOI 10.1016/0378-5955(90)90151-E NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 OTTO WC, 1988, HEARING RES, V35, P79, DOI 10.1016/0378-5955(88)90042-1 PATUZZI RB, 1991, HEARING RES, V54, P45, DOI 10.1016/0378-5955(91)90135-V PFEIFLE CE, 1985, J CLIN ONCOL, V3, P237 SAITO T, 1991, HEARING RES, V56, P143, DOI 10.1016/0378-5955(91)90163-4 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 SCHAEFER SD, 1985, CANCER, V56, P1934, DOI 10.1002/1097-0142(19851015)56:8<1934::AID-CNCR2820560807>3.0.CO;2-F SCHWEITZER VG, 1993, LARYNGOSCOPE S, V59, P1 SCHWEITZER VG, 1986, LARYNGOSCOPE, V96, P948 STRAND FL, 1989, PROG NEUROBIOL, V33, P45, DOI 10.1016/0301-0082(89)90035-X STRAND FL, 1991, PHYSIOL REV, V71, P1017 TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261 TANGE RA, 1982, ARCH OTO-RHINO-LARYN, V237, P17, DOI 10.1007/BF00453712 TAUDY M, 1992, AUDIOLOGY, V31, P293 VANDERHOOP RG, 1994, J NEUROL SCI, V126, P109, DOI 10.1016/0022-510X(94)90259-3 VANDERHOOP RG, 1988, EUR J CANCER CLIN ON, V24, P637 VANDERHOOP RG, 1990, NEW ENGL J MED, V322, P89, DOI 10.1056/NEJM199001113220204 WATERS GS, 1991, EAR HEARING, V12, P91, DOI 10.1097/00003446-199104000-00003 WINDEBANK AJ, 1994, NEUROLOGY, V44, P488 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C NR 54 TC 28 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 9 EP 19 DI 10.1016/S0378-5955(96)00213-4 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800002 PM 9112103 ER PT J AU Wang, XY Robertson, D AF Wang, XY Robertson, D TI Effects of bioamines and peptides on neurones in the ventral nucleus of trapezoid body and rostral periolivary regions of the rat superior olivary complex: An in vitro investigation SO HEARING RESEARCH LA English DT Article DE auditory brainstem; superior olivary complex; rat; brain slice; neurotransmitter; neuromodulator; bioamine; peptide ID AUDITORY BRAIN-STEM; INFERIOR COLLICULUS; COCHLEAR NUCLEUS; DESCENDING PROJECTIONS; OLIVOCOCHLEAR NEURONS; LOCALIZATION; INHIBITION; SYSTEM; CELLS AB Intracellular microelectrode recordings were made from single neurones of the ventral nucleus of trapezoid body and rostral periolivary regions in the rat auditory brainstem, using in vitro slice techniques. Bath application was used to examine the effects of putative neurotransmitters and neuromodulators on cell responses to constant depolarizing current pulsse. Noradrenaline exerted excitatory effects (increased firing rate) that were probably mediated by cr-receptors, whereas inhibitory effects (decreased firing rate) were probably mediated by beta-receptors. Serotonin also produced either excitatory or inhibitory effects in different cells, Of the neuroactive peptides, substance P and enkephalin were especially potent. Substance P was found to be exclusively excitatory and enkephalin was exclusively inhibitory. Choleycystokinin exerted either inhibitory or excitatory effects in a small percentage of cells, Somatostatin had only very weak or non-existent effects. These effects were able to be elicited under conditions of synaptic blockade, indicating they they were mediated by direct action on the cells in question. Most effects on firing rate were accompanied by either depolarization or hyperpolarization of the resting membrane potential although in many cases this change in membrane potential was small. Changes in cell access resistance were also relatively difficult to detect, but in the case of both noradrenaline and substance P, clear increases in cell access resistance were recorded in a number of cells. These could be obtained in the presence of tetrodotoxin, again indicating a direct action of these substances rather than an indirect action mediated via synaptic connections. Although the exact mechanisms of action remain to be investigated in each case, it is clear that neurones in this region of the auditory brainstem are potentially subject to a wide variety of modulatory influences that could be important in auditory processing. C1 UNIV WESTERN AUSTRALIA, DEPT PHYSIOL, AUDITORY LAB, NEDLANDS, WA 6907, AUSTRALIA. CR ADAMS J C, 1985, Society for Neuroscience Abstracts, V11, P32 ADAMS JC, 1993, NATO ADV SCI INST SE, V239, P133 BANKS MI, 1992, J NEUROSCI, V12, P2819 BROWN MC, 1993, J COMP NEUROL, V337, P600, DOI 10.1002/cne.903370406 CASPARY DM, 1985, AUDITORY BIOCH DAVIES WE, 1985, AUDITORY BIOCH EPELBAUM J, 1986, PROG NEUROBIOL, V27, P63, DOI 10.1016/0301-0082(86)90012-2 GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192 HARVEY JA, 1993, BRAIN RES, V619, P1, DOI 10.1016/0006-8993(93)91590-O Helfert RH, 1991, NEUROBIOLOGY HEARING, P1 HILLE B, 1992, IONIC CHANNELS EXCIT, P182 HOFFMAN DW, 1993, HEARING RES, V69, P1, DOI 10.1016/0378-5955(93)90087-H IRVINE DRF, 1986, PROGR SENSORY PHYSL, V7, P79 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H MORLEY BJ, 1985, AUDITORY BIOCH NOBLE F, 1993, BRIT J PHARMACOL, V109, P1064 OSEN KK, 1984, ARCH ITAL BIOL, V122, P169 POTASHNER SJ, 1985, AUDITORY BIOCH ROBERTSON D, 1996, AUDIT NEUROSCI, V2, P12 Ross CD, 1995, NEUROCHEM RES, V20, P1483, DOI 10.1007/BF00970598 RYAN AF, 1991, EXP BRAIN RES, V87, P259 SCHWARTZ IR, 1985, AUDITORY BIOCH SHEPHERD B, 1994, NEUROBIOLOGY, P170 SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8 SPANGLER KM, 1987, J COMP NEUROL, V259, P452, DOI 10.1002/cne.902590311 THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309 VATER M, 1995, J COMP NEUROL, V358, P155, DOI 10.1002/cne.903580202 VETTER DE, 1993, HEARING RES, V70, P173, DOI 10.1016/0378-5955(93)90156-U Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 WU SH, 1991, J NEUROPHYSIOL, V65, P230 WU SH, 1995, J NEUROPHYSIOL, V73, P256 Wynne B, 1995, J CHEM NEUROANAT, V9, P289, DOI 10.1016/0891-0618(95)00095-X Wynne B, 1996, Audiol Neurootol, V1, P54 ZOOK JM, 1993, NATO ADV SCI INST SE, V239, P143 NR 36 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 20 EP 28 DI 10.1016/S0378-5955(96)00211-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800003 PM 9112104 ER PT J AU Flock, A Flock, B Fridberger, A Jager, W AF Flock, A Flock, B Fridberger, A Jager, W TI Methods for integrating fluorimetry in the study of hearing organ structure and function SO HEARING RESEARCH LA English DT Article DE auditory system; hearing; organ of Corti; hair cell; fluorescence microscopy; cochlear potential ID OUTER HAIR-CELLS; GUINEA-PIG; COCHLEA; INNER AB The measurement of function in the intact organ of Corti has up to now been achieved by three methods: electrophysiology, mechanical measurement and biochemical analysis. The two former methods have supplied information at the level of single identified cells. We have used a fourth method, optical fluorimetry, to measure hair cell function at the cellular level in the intact organ of Corti. Here we describe the methods involved in fluorescence labelling and video-enhanced microscopy in combination with electrophysiological recording of cochlear microphonic (CM) and summating potentials (SP). The guinea pig temporal bone containing an intact ear drum, ossicular chain and cochlea can be maintained in the isolated state by perfusion of the scala tympani with oxygenated tissue culture medium. Substances added to the perfusate readily diffuse through the basilar membrane into the organ of Corti. In this way cells in the organ can be stained by a number of fluorescent probes which label different structures and functions. Here we have used two dyes which label mitochondria and fluoresce with an intensity proportional to metabolic activity. By simultaneous measurement of CM and SP the functional state of the organ can be monitored. C1 HUDDINGE HOSP,DEPT OTOLARYNGOL,S-14186 HUDDINGE,SWEDEN. RP Flock, A (reprint author), KAROLINSKA INST,DEPT PHYSIOL & PHARMACOL,DIV PHYSIOL 2,S-17177 STOCKHOLM,SWEDEN. RI Fridberger, Anders/E-8977-2010 OI Fridberger, Anders/0000-0002-7960-1559 CR VONBEKESY G, 1952, J ACOUST SOC AM, V24, P72 BRUNDIN L, 1992, HEARING RES, V58, P175, DOI 10.1016/0378-5955(92)90126-8 DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 FRIDBERGER A, 1997, UNPUB EFFECTS PRESSU IKEDA K, 1992, J PHYSIOL-LONDON, V447, P627 IKEDA K, 1993, HEARING RES, V66, P169, DOI 10.1016/0378-5955(93)90138-Q ISSA NP, 1994, P NATL ACAD SCI USA, V91, P7578, DOI 10.1073/pnas.91.16.7578 JORGENSEN JM, 1992, ACTA ZOOL-STOCKHOLM, V73, P79 OHLEMILLER KK, 1994, HEARING RES, V80, P174, DOI 10.1016/0378-5955(94)90109-0 OHMORI H, 1988, J PHYSIOL-LONDON, V399, P115 POLLICE PA, 1993, HEARING RES, V70, P187, DOI 10.1016/0378-5955(93)90157-V Rhode W. S., 1973, BASIC MECHANISMS HEA, P49 RUSSELL IJ, 1987, HEARING RES, V31, P9, DOI 10.1016/0378-5955(87)90210-3 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SOKOLICH WG, 1977, J ACOUST SOC AM, V1, pS12 ULFENDAHL M, 1989, HEARING RES, V40, P55, DOI 10.1016/0378-5955(89)90099-3 ULFENDAHL M, 1997, J NEUROPHYSIOL, V76, P3850 WANG YL, 1989, METHOD CELL BIOL, V29, P1 ZAJIC G, 1993, HEARING RES, V66, P53, DOI 10.1016/0378-5955(93)90259-4 NR 19 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 29 EP 38 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800004 PM 9112105 ER PT J AU Teoh, SW Flandermeyer, DT Rosowski, JJ AF Teoh, SW Flandermeyer, DT Rosowski, JJ TI Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: Acoustic and anatomical measurements SO HEARING RESEARCH LA English DT Article DE pars flaccida; tympanic membrane; middle ear; models; acoustics; anatomy ID MIDDLE-EAR; TYMPANIC MEMBRANE; TRANSMISSION; MECHANICS; EARDRUM; CAT; IMPEDANCE; PRESSURE; BEHAVIOR; HEARING AB This paper presents evidence on how the pars flaccida of the tympanic membrane affects the acoustic input to the middle and inner ear. Measurements of middle-ear acoustic input admittance and sound-pressure levels in both the ear canal and the middle-ear cavity were made in ears of eight gerbils before and after manipulations of the middle ear and tympanic membrane. The results are interpreted in terms of a model proposed by Kohlloffel [Hear. Res. 13 (1984) 83-88]. The input-admittance measurements show that the pars flaccida of gerbil acts as a resonator with a resonance frequency of approx. 500 Hz. The admittance of this resonator appears in parallel with the input admittance of the pars tensa and its ossicular and cochlear load. At frequencies below the resonance, the pars flaccida admittance is compliance-like and its magnitude is comparable to that of the pars tensa and its load; consequently, the presence of pars flaccida increases the overall middle-ear input admittance and decreases the pressure difference across the tympanic membrane. At higher frequencies, the admittance of pars flaccida is mass-like and small in magnitude, and it has negligible influence on the overall middle-ear input admittance and the pressure difference across the tympanic membrane. These results suggest that the presence of pars flaccida reduces low-frequency acoustic input to the middle- and inner-ear and consequently decreases hearing sensitivity in this frequency range. Our measurements suggest that with a constant sound pressure stimulus, stiffening the gerbil pars flaccida would increase the motion of the pars tensa by 3-10 dB at frequencies below the normal flaccida resonance. C1 MASSACHUSETTS EYE & EAR INFIRM,EATON PEABODY LAB,BOSTON,MA 02114. HARVARD UNIV,MIT,DIV HLTH SCI & TECHNOL,SPEECH & HEARING SCI PROGRAM,CAMBRIDGE,MA 02139. MIT,DEPT ELECT ENGN & COMP SCI,CAMBRIDGE,MA 02139. HARVARD UNIV,SCH MED,DEPT OTOL & LARYNGOL,BOSTON,MA 02114. CR ARITOMO H, 1988, OTOLARYNG HEAD NECK, V98, P310 Bekesy G., 1960, EXPT HEARING Beranek L.L., 1986, ACOUSTICS Dear S., 1987, THESIS U PENNSYLVANI Dennis Jr J. E., 1987, NEW COMPUTING ENV MI, P116 Desoer C. A., 1969, BASIC CIRCUIT THEORY EGOLF DP, 1977, J ACOUST SOC AM, V61, P200, DOI 10.1121/1.381256 FERNANDEZ C, 1959, ARCHIV OTOLARYNGOL, V69, P537 Fletcher NJC, 1992, ACOUSTIC SYSTEMS BIO FUNNELL WRJ, 1982, ORL J OTO-RHINO-LARY, V44, P181 FUNNELL WRJ, 1987, J ACOUST SOC AM, V81, P1851, DOI 10.1121/1.394749 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 HARKNESS RD, 1961, BIOL REV, V36, P399, DOI 10.1111/j.1469-185X.1961.tb01596.x HELLSTROM S, 1983, ACTA PHYSIOL SCAND, V118, P337, DOI 10.1111/j.1748-1716.1983.tb07280.x HEMILA S, 1995, HEARING RES, V85, P31, DOI 10.1016/0378-5955(95)00031-X HONJO I, 1988, EUSTACHIAN TUBE MIDD, P171 HUBBARD AE, 1983, SCIENCE, V222, P510, DOI 10.1126/science.6623090 HUTCHINGS M., 1987, J PHYSIOL-LONDON, V396, P175 Kirikae I., 1960, STRUCTURE FUNCTION M KOHLLOFFEL LUE, 1984, HEARING RES, V13, P83, DOI 10.1016/0378-5955(84)90098-4 LAY DOUGLAS, 1972, J MORPHOL, V138, P41, DOI 10.1002/jmor.1051380103 LESSER THJ, 1988, J LARYNGOL OTOL, V102, P209, DOI 10.1017/S0022215100104542 LIM DJ, 1970, ACTA OTO-LARYNGOL, V70, P176 Lim D. J., 1995, Acta Oto-Rhino-Laryngologica Belgica, V49, P101 Lim D J, 1968, Acta Otolaryngol, V66, P515, DOI 10.3109/00016486809126316 Lim D J, 1968, Acta Otolaryngol, V66, P181, DOI 10.3109/00016486809126286 Lynch T. J., 1981, THESIS MIT LYNCH TJ, 1984, J ACOUST SOC AM, V96, P2184 MOLLER A R, 1965, Acta Otolaryngol, V60, P129, DOI 10.3109/00016486509126996 NELDER JA, 1965, COMPUT J, V7, P308 NILSSON J, 1990, ELECT CIRCUITS PEAKE WT, 1992, HEARING RES, V57, P245, DOI 10.1016/0378-5955(92)90155-G PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 PLASSMANN W, 1991, BRAIN BEHAV EVOLUT, V38, P115, DOI 10.1159/000114382 Ranade A, 1980, Acta Otolaryngol Suppl, V371, P1 RAVICZ ME, 1990, ACOUSTIC IMPEDANCE G RAVICZ ME, 1997, IN PRESS J ACOUST SO RAVICZ ME, 1992, J ACOUST SOC AM, V92, P157, DOI 10.1121/1.404280 Roark R. J., 1975, FORMULAS STRESS STRA Rosowski J. J., 1986, PERIPHERAL AUDITORY, P3 Rosowski John J., 1994, Springer Handbook of Auditory Research, V4, P172 ROSOWSKI JJ, 1997, IN PRESS P DIV AUD M ROSOWSKI JJ, 1984, HEARING RES, V16, P205, DOI 10.1016/0378-5955(84)90110-2 Sade J, 1996, ACTA OTO-LARYNGOL, V116, P284, DOI 10.3109/00016489609137842 SCHMIEDT RA, 1977, J ACOUST SOC AM, V61, P133, DOI 10.1121/1.381283 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 Schuknecht H. F., 1974, PATHOLOGY EAR Shaw BAG, 1974, HDB SENSORY PHYSL, VV/1, P455 SHERA CA, 1991, J ACOUST SOC AM, V90, P253, DOI 10.1121/1.401295 Shrapnell HJ, 1832, LONDON MED GAZ, V10, P120 STENFORS LE, 1979, ACTA OTO-LARYNGOL, V88, P395, DOI 10.3109/00016487909137184 TEOH SW, 1996, 19 MIDW M ASS RES OT, P196 TEOH SW, 1996, THESIS MIT CAMBRIDGE, P195 TONNDORF J, 1970, ANN OTO RHINOL LARYN, V79, P743 VONUNGE M, 1991, AM J OTOL, V12, P407 WADA H, 1992, J ACOUST SOC AM, V92, P3157, DOI 10.1121/1.404211 WADA H, 1990, J ACOUST SOC AM, V87, P237, DOI 10.1121/1.399290 YOUNGS R, 1990, ACTA OTOLARYNGOL STO, V88, P395 ZUERCHER JC, 1988, J ACOUST SOC AM, V83, P1653, DOI 10.1121/1.395920 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 60 TC 34 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 39 EP 65 DI 10.1016/S0378-5955(97)00002-6 PG 27 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800005 PM 9112106 ER PT J AU Ungan, P Yagcioglu, S Ozmen, B AF Ungan, P Yagcioglu, S Ozmen, B TI Interaural delay-dependent changes in the binaural difference potential in cat auditory brainstem response: Implications about the origin of the binaural interaction component SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 7th National Congress on Biophysics CY OCT 11-13, 1995 CL ADANA, TURKEY DE sound lateralization; interaural time difference; auditory brainstem response; binaural difference potential; binaural interaction component; superior olivary complex; cat ID LATERAL SUPERIOR OLIVE; STEM EVOKED-POTENTIALS; TRAPEZOID BODY; TIME DIFFERENCES; COINCIDENCE DETECTION; REPETITION RATE; GUINEA-PIGS; NEURONS; INTENSITY; STIMULI AB Auditory brainstem responses (ABRs) evoked by dichotic clicks with 12 different interaural delays (ITDs) between 0 and 1500 mu s were recorded from the vertices of 10 cats under ketamine anesthesia. The so-called binaural difference potential (BDP), considered to be an indicator of binaural interaction (BI), was computed by subtracting the sum of the two monaural responses From the binaural one. The earliest and most prominent component of BDP was a negative deflection (DN1) at a latency between 4 and 4.8 ms. Like all the other components of BDP, DN1 was also due to binaural reduction rather than enhancement of the corresponding ABR wave, P4 in this case. Furthermore, the way its latency increased as a function of ITD was also not compatible with what would be predicted by the delay-line coincidence detector models based on the excitatory-excitatory units in the medial superior olive (MSG). We therefore proposed an alternative hypothesis for the origin of this BI component based on the inhibitory-excitatory (IE) units in the lateral superior olive (LSO). The computational model designed closely simulated the ITD-dependent attenuation and latency shifts observed in DN1. It was therefore concluded that the origin of this BI component in the cat's vertex-ABR could be the lateral lemniscal output of the LSO, although the delay lines which have been shown to exist also in the mammalian brain may play an important role in encoding ITDs. RP Ungan, P (reprint author), HACETTEPE UNIV,FAC MED,DEPT BIOPHYS,TR-06100 ANKARA,TURKEY. CR ACHOR LJ, 1980, ELECTROEN CLIN NEURO, V48, P154, DOI 10.1016/0013-4694(80)90301-6 Blauert J., 1983, SPATIAL HEARING BOBBIN RP, 1979, ARCH OTOLARYNGOL, V105, P467 Boudreau J C, 1970, Contrib Sens Physiol, V4, P143 BRUGGE JF, 1978, ANNU REV NEUROSCI, V1, P363, DOI 10.1146/annurev.ne.01.030178.002051 CAIRD D, 1983, EXP BRAIN RES, V52, P385 CHURCH MW, 1987, BRAIN RES, V403, P72, DOI 10.1016/0006-8993(87)90124-7 DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391 DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2 FULLERTON BC, 1987, ELECTROEN CLIN NEURO, V66, P547, DOI 10.1016/0013-4694(87)90102-7 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 GALAMBOS R, 1959, AM J PHYSIOL, V197, P527 GARDI JN, 1981, ARCH OTOLARYNGOL, V107, P164 GAUMOND RP, 1991, J ACOUST SOC AM, V89, P454, DOI 10.1121/1.400482 GLENN SL, 1992, J NEUROSCI, V12, P3688 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 HAFTER ER, 1968, J ACOUST SOC AM, V44, P563, DOI 10.1121/1.1911121 HAFTER ER, 1972, J ACOUST SOC AM, V51, P1852, DOI 10.1121/1.1913044 HALL JL, 1965, J ACOUST SOC AM, V37, P814, DOI 10.1121/1.1909447 HAN Y, 1993, HEARING RES, V68, P115, DOI 10.1016/0378-5955(93)90070-H HUANG C, 1980, BRAIN RES, V184, P215, DOI 10.1016/0006-8993(80)90601-0 HUANG CM, 1978, ELECTROEN CLIN NEURO, V44, P179, DOI 10.1016/0013-4694(78)90264-X HUANG CM, 1977, BRAIN RES, V137, P291 HYSON RL, 1989, ASS RES OTOLARYNGOL, V12, P34 HYSON RL, 1994, HEARING RES, V81, P109, DOI 10.1016/0378-5955(94)90158-9 ITO S, 1988, HEARING RES, V35, P9, DOI 10.1016/0378-5955(88)90036-6 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 JEWETT DL, 1990, ELECTROEN CLIN NEURO, V75, P105, DOI 10.1016/0013-4694(90)90158-G JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 JOSEPH AW, 1993, J NEUROPHYSIOL, V69, P1197 KUWABARA N, 1992, J COMP NEUROL, V324, P522, DOI 10.1002/cne.903240406 LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412 MASTERTO.B, 1967, J NEUROPHYSIOL, V30, P341 MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 MIDDLEBROOKS JC, 1980, BRAIN RES, V181, P31, DOI 10.1016/0006-8993(80)91257-3 MOLLER AR, 1983, SCAND AUDIOL, V12, P125, DOI 10.3109/01050398309076235 MOORE DR, 1991, AUDIOLOGY, V30, P125 MOORE JK, 1987, HEARING RES, V29, P33, DOI 10.1016/0378-5955(87)90203-6 MOORE JK, 1971, FOLIA PRIMATOL, V16, P35, DOI 10.1159/000155390 MOUSHEGIAN G, 1959, J ACOUST SOC AM, V31, P1441, DOI 10.1121/1.1907647 MOUSHEGIAN G, 1975, J NEUROPHYSIOL, V38, P1037 NUNEZ PL, 1981, ELECT FIELDS BRAIN N, P111 OVERHOLT EM, 1992, J NEUROSCI, V12, P1698 Plonsey R, 1988, BIOELECTRICITY QUANT, P149 REALE RA, 1986, J NEUROPHYSIOL, V56, P663 ROSSI GT, 1984, ELECTROEN CLIN NEURO, V57, P143, DOI 10.1016/0013-4694(84)90173-1 RUBEL EW, 1988, TXB PHYSL, P386 SANES DH, 1990, J NEUROSCI, V10, P3494 SHIPLEY C, 1984, BRAIN RES, V321, P299, DOI 10.1016/0006-8993(84)90182-3 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 SONTHEIMER D, 1985, ELECTROEN CLIN NEURO, V61, P539, DOI 10.1016/0013-4694(85)90973-3 SPANGLER KM, 1985, J COMP NEUROL, V238, P249, DOI 10.1002/cne.902380302 SUZUKI T, 1986, ELECTROEN CLIN NEURO, V65, P150, DOI 10.1016/0168-5597(86)90048-1 TSUCHITANI C, 1988, J NEUROPHYSIOL, V59, P164 van BERGEIJK WILLEM A., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1431, DOI 10.1121/1.1918364 VONBEKESY G, 1960, EXPT HEARING, P272 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P352, DOI 10.1016/0013-4694(83)90261-4 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P326, DOI 10.1016/0013-4694(83)90259-6 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P340, DOI 10.1016/0013-4694(83)90260-2 WADA SI, 1989, ELECTROEN CLIN NEURO, V72, P535, DOI 10.1016/0013-4694(89)90231-9 WERNICK JS, 1968, J NEUROPHYSIOL, V31, P428 WREGE KS, 1981, ARCH NEUROL-CHICAGO, V38, P572 WU SH, 1992, J NEUROPHYSIOL, V68, P1151 WU SH, 1991, J NEUROPHYSIOL, V65, P230 YIN TCT, 1984, DYNAMIC ASPECTS NEOC, P263 YIN TCT, 1985, J NEUROPHYSIOL, V53, P746 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YOUNG SR, 1983, J NEUROSCI, V7, P1373 ZAAROOR M, 1991, ELECTROEN CLIN NEURO, V80, P422, DOI 10.1016/0168-5597(91)90091-B ZACKSENHOUSE M, 1992, HEARING RES, V62, P105, DOI 10.1016/0378-5955(92)90207-4 NR 73 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 66 EP 82 DI 10.1016/S0378-5955(97)00003-8 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800006 PM 9112107 ER PT J AU Zhao, HB Liang, ZA AF Zhao, HB Liang, ZA TI Temporal encoding and transmitting of amplitude and frequency modulations in dorsal cochlear nucleus SO HEARING RESEARCH LA English DT Article DE AM tone; FM tone; modulation encoding cue; modulation transmission; across-frequency channel processing; dorsal cochlear nucleus ID AUDITORY-NERVE FIBERS; UNANESTHETIZED DECEREBRATE CATS; COMPLEX TONES; GUINEA-PIG; SPECTRAL CHARACTERISTICS; FINE-STRUCTURE; RESPONSES; PITCH; NEURONS; NOISE AB Amplitude- and frequency-modulated (AM and FM, respectively) tones have been considered as simplified models of natural sounds. The responses of auditory neurons can phase-lock to the modulation frequency (f(m)). The encoding and transmitting of such modulation phase-locking are interesting since there is no any f(m) physical peak in spectrum. In the present study, we approached these issues by recording the phase-locked responses of the dorsal cochlear nucleus (DCN) units in guinea pigs to different AM and FM tones. For AM noise tones without the spectral cues of f(m), the unit's discharges still phase-locked to the envelope cycles, but it was generally weaker than to sinusoidal AM (SAM) tones. At 50% modulation depth (d(m)), the mean modulation gains of Pauser/ Buildup (P/B) units (n = 7) to AM noise tones was -0.61 dB whereas they had a 6.48 dB mean to SAM tones. Similar to the case of AM tones, phase-locking to sinusoidal FM (SFM) tones represented the time courses of frequency changes, and it could be separated and changeable corresponding to the frequency increasing and decreasing. There were differences between the phase-locking to SAM and SFM tones in an identical unit. Both ON and type I/III units tended to have stronger phase-locking to the SFM tones than to the SAM tones. The phase-locking to the possible demodulated f(m) components was further examined with different carrier frequencies (f(m)) and pure tones. The DCN units showed poor or no responses to modulation tones out of their response areas even in the low characteristic frequency (CF) units, but the low-CF units had clear phase-locking to pure tones at the similar f(m) ranges. The pure-tone phase-locking had a band-pass shape different from the low-pass shape of the auditory nerve fibers. These data suggest that the modulation phase-locking in the DCN units may be based on the temporal modulation cues and transmitted in the carrier place. The temporal integration of modulation information over the unit's response area as an across-frequency temporal processing model was discussed for modulation enhancement in the CN units. C1 CHINESE ACAD SCI,SHANGHAI INST PHYSIOL,SHANGHAI 200031,PEOPLES R CHINA. CR ADAMS JC, 1983, NEUROSCI LETT, V37, P205, DOI 10.1016/0304-3940(83)90431-7 BRITT R, 1976, J NEUROPHYSIOL, V39, P179 BURNS EM, 1981, J ACOUST SOC AM, V70, P1655, DOI 10.1121/1.387220 BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 CLOPTON BM, 1991, HEARING RES, V52, P329, DOI 10.1016/0378-5955(91)90023-3 COOPER NP, 1993, J NEUROPHYSIOL, V70, P370 DEBOER E, 1976, HDB SENSORY PHYSL, V3, P479 DELGUTTE B, 1992, AUDITORY PROCESSING, P37 ERULKAR SD, 1968, J NEUROPHYSIOL, V38, P537 EVANS EF, 1973, EXP BRAIN RES, V17, P412 FERNALD RD, 1972, BRAIN RES, V45, P417, DOI 10.1016/0006-8993(72)90472-6 FORMBY C, 1985, J ACOUST SOC AM, V78, P70, DOI 10.1121/1.392456 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z FRISINA RD, 1994, EXP BRAIN RES, V102, P160 GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448 GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9 HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 HIRSCH HR, 1976, J NEUROSCI RES, V2, P337, DOI 10.1002/jnr.490020502 HORST JW, 1986, J ACOUST SOC AM, V79, P398, DOI 10.1121/1.393528 JAVEL E, 1980, J ACOUST SOC AM, V68, P133, DOI 10.1121/1.384639 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 KALTENBACH JA, 1989, HEARING RES, V41, P107, DOI 10.1016/0378-5955(89)90004-X KAY RH, 1982, PHYSIOL REV, V62, P894 KHANNA SM, 1989, HEARING RES, V39, P143, DOI 10.1016/0378-5955(89)90087-7 KHANNA SM, 1989, HEARING RES, V39, P159, DOI 10.1016/0378-5955(89)90088-9 KIM DO, 1990, HEARING RES, V45, P95, DOI 10.1016/0378-5955(90)90186-S LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F MOLLER AR, 1974, EXP NEUROL, V45, P104, DOI 10.1016/0014-4886(74)90104-6 MOLLER AR, 1969, ACTA PHYSIOL SCAND, V76, P503, DOI 10.1111/j.1748-1716.1969.tb04497.x MOLLER AR, 1972, ACTA PHYSIOL SCAND, V86, P223, DOI 10.1111/j.1748-1716.1972.tb05328.x MOLLER AR, 1971, ACTA PHYSIOL SCAND, V81, P540, DOI 10.1111/j.1748-1716.1971.tb04931.x Moore B. C. J., 1989, INTRO PSYCHOL HEARIN MUGANAINI E, 1980, J COMP NEUROL, V191, P581 Oertel D., 1988, AUDITORY FUNCTION NE, P313 PARHAM K, 1992, J NEUROPHYSIOL, V67, P1247 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 RHODE WS, 1987, J NEUROPHYSIOL, V57, P414 RHODE WS, 1994, HEARING RES, V77, P43, DOI 10.1016/0378-5955(94)90252-6 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 SIMMONS AM, 1993, J ACOUST SOC AM, V93, P3374, DOI 10.1121/1.405693 SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750 VATER M, 1982, J COMP PHYSIOL, V149, P369 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592 Young E.D, 1984, HEARING SCI, P423 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 ZHAO HB, 1995, HEARING RES, V82, P244, DOI 10.1016/0378-5955(94)00181-O ZHAO HB, 1993, CHIN J PHYSL SCI, V9, P136 ZHAO HB, 1992, THESIS CHINESE ACAD ZHAO HB, 1996, ASS RES OTOLARYNGOL, V19, P168 Zhao HB, 1996, HEARING RES, V95, P120, DOI 10.1016/0378-5955(96)00030-5 NR 52 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 83 EP 94 DI 10.1016/S0378-5955(97)00004-X PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800007 PM 9112108 ER PT J AU Frisina, DR Frisina, RD AF Frisina, DR Frisina, RD TI Speech recognition in noise and presbycusis: Relations to possible neural mechanisms SO HEARING RESEARCH LA English DT Article DE presbycusis; central auditory system; speech perception; aging; hearing; deafness ID HEARING-LOSS; ELDERLY LISTENERS; COGNITIVE-FACTORS; AUDITORY-CORTEX; GAP DETECTION; AGE; INTELLIGIBILITY; PERCEPTION; DIFFICULTIES; PERFORMANCE AB This study is part of ongoing efforts to characterize and determine the neural bases of presbycusis. These efforts utilize humans and animals in sets of overlapping hypotheses and experiments. Here, 50 young adult and elderly subjects, with normal audiometric thresholds or high-frequency hearing loss, were presented three types of linguistic materials at suprathreshold levels to determine speech recognition performance in noise. The study sought to determine how peripheral and central auditory system dysfunctions might be implicated in the speech recognition problems of elderly humans. There were four main findings. (1) Peripheral auditory nervous system pathologies, manifested as reduced sensitivity for speech-frequency pure tones and speech materials, contribute to elevated speech reception thresholds in quiet, and to reduced speech recognition in noise, (2) Good cognitive ability was demonstrated in the old subjects who took advantage of supportive context as well or better than young subjects, strongly indicating that the cortical portions of the speech/language nervous system did not account for the speech understanding dysfunctions of the old subjects. (3) When audibility and cognitive functioning were not affected, the demonstrated speech-recognition in-noise dysfunction remained in old subjects. This implicates auditory brainstem or auditory cortex temporal-resolution dysfunctions in accounting for the observed differences in speech processing. (4) Performance differences between young and elderly subjects with elevated thresholds illustrate the effects of age plus hearing loss and thereby implicate both peripheral and central dysfunctions in presbycusics. This is because the differences in performance between young and elderly subjects with normal peripheral sensitivity identified a central auditory dysfunction. C1 UNIV ROCHESTER,SCH MED & DENT,OTOLARYNGOL DIV,ROCHESTER,NY 14642. UNIV ROCHESTER,SCH MED & DENT,DEPT SURG,OTOLARYNGOL DIV,ROCHESTER,NY 14642. RP Frisina, DR (reprint author), ROCHESTER INST TECHNOL,NATL TECH INST DEAF,52 LOMB MEM DR,ROCHESTER,NY 14623, USA. CR Armour M. A., 1993, Society for Neuroscience Abstracts, V19, P1425 BILGER RC, 1984, J SPEECH HEAR RES, V27, P32 BRANT LJ, 1990, J ACOUST SOC AM, V88, P813, DOI 10.1121/1.399731 Committee on Hearing Bioacoustics and Biomechanics (CHABA), 1988, J ACOUST SOC AM, V83, P859 DAVIS AC, 1991, ACTA OTOLARYNGOL STO, V476, P16 DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P1136, DOI 10.1121/1.390037 Fitzgibbons PJ, 1995, J ACOUST SOC AM, V98, P3140, DOI 10.1121/1.413803 FITZGIBBONS PJ, 1994, J SPEECH HEAR RES, V37, P662 FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6 FRENCH NR, 1947, J ACOUST SOC AM, V19, P90, DOI 10.1121/1.1916407 Frisina R. D., 1995, Society for Neuroscience Abstracts, V21, P908 GATES GA, 1990, EAR HEARING, V11, P247, DOI 10.1097/00003446-199008000-00001 GORDONSALANT S, 1987, EAR HEARING, V8, P277, DOI 10.1097/00003446-198710000-00004 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R HUMES LE, 1990, J SPEECH HEAR RES, V33, P726 HUMES LE, 1991, J SPEECH HEAR RES, V34, P686 HUMES LE, 1994, J SPEECH HEAR RES, V37, P465 Humes L E, 1996, J Am Acad Audiol, V7, P161 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 ISON J, 1995, ASS RES OT ABSTR, V18, P60 JERGER J, 1991, EAR HEARING, V12, P103 KALIKOW DN, 1977, J ACOUST SOC AM, V61, P1337, DOI 10.1121/1.381436 KONKLE DF, 1977, J SPEECH HEAR RES, V20, P108 LEE W, 1992, ASHA, V34, P212 Levitt H. L., 1971, J ACOUST SOC AM, V49, P476 LUTERMAN DM, 1966, J SPEECH HEAR RES, V9, P226 MARSHALL L, 1981, J SPEECH HEAR DISORD, V46, P226 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1093, DOI 10.1121/1.396054 Morrell CH, 1996, J ACOUST SOC AM, V100, P1949, DOI 10.1121/1.417906 Nadol JB, 1981, AGING COMMUNICATION, P63 ORLANDO M, 1994, ASS RES OT ABSTR, V17, P58 OSTRI B, 1991, British Journal of Audiology, V25, P41, DOI 10.3109/03005369109077863 PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 SALVI RJ, 1985, J ACOUST SOC AM, V77, P1173, DOI 10.1121/1.392181 Schum D J, 1992, J Am Acad Audiol, V3, P303 SNELL KB, 1995, ASS RES OT ABSTR, V18, P54 SOUSA PE, 1994, J SPEECH HEAR RES, V37, P655 STICHT TG, 1969, J SPEECH HEAR RES, V12, P443 STRICKLAND EA, 1994, J ACOUST SOC AM, V95, P497, DOI 10.1121/1.408343 VANROOIJ JCGM, 1989, J ACOUST SOC AM, V86, P1294, DOI 10.1121/1.398744 VANROOIJ JCGM, 1992, J ACOUST SOC AM, V91, P1028, DOI 10.1121/1.402628 VANTASELL DJ, 1987, J SPEECH HEAR RES, V30, P377 WALTON JP, 1995, ASS RES OT ABSTR, V18, P71 Willott J. F., 1991, AGING AUDITORY SYSTE Willott J F, 1996, J Am Acad Audiol, V7, P141 WINGFIELD A, 1985, J GERONTOL, V40, P579 NR 49 TC 154 Z9 162 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 95 EP 104 DI 10.1016/S0378-5955(97)00006-3 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800008 PM 9112109 ER PT J AU Henzl, MT Shibasaki, O Comegys, TH Thalmann, I Thalmann, R AF Henzl, MT Shibasaki, O Comegys, TH Thalmann, I Thalmann, R TI Oncomodulin is abundant in the organ of Corti SO HEARING RESEARCH LA English DT Article DE oncomodulin; parvalbumin; organ of Corti; guinea pig ID CALCIUM-BINDING PROTEIN; CRYSTAL-STRUCTURE DETERMINATION; PIKE 4.10 PARVALBUMIN; POLYACRYLAMIDE GELS; MAGNESIUM-BINDING; RAT ONCOMODULIN; XENOPUS-LAEVIS; TUMOR PROTEIN; INNER-EAR; X-RAY AB A small, acidic Ca2+-binding protein (CBP-15) was recently detected in extracts of the mammalian auditory receptor organ, the organ of Corti [Senarita et al. (1995) Hear. Res. 90, 169-175]. N-terminal sequence data for CBP-15 [Thalmann et al. (1995) Biochem. Biophys. Res. Commun. 215, 142-147] implied membership in the parvalbumin family and possible identity with the mammalian P-parvalbumin oncomodulin. As shown herein, the latter conclusion is supported by strong cross-reactivity between CBP-15 and isoform-specific antibodies to oncomodulin. Moreover, we have succeeded in amplifying the guinea pig CBP-15 coding sequence from organ of Corti cDNA using degenerate oligonucleotide primers based on the rat oncomodulin sequence. The deduced amino acid sequence of guinea pig CBP-15 displays 90%, 92%, and 98% identity with mouse, rat, and human oncomodulin isoforms. Demonstration of the presence of oncomodulin in the organ of Corti is the first documentation of this substance in a postnatal mammalian tissue. C1 ST LOUIS UNIV,SCH MED,DEPT OTOLARYNGOL,ST LOUIS,MO 63110. RP Henzl, MT (reprint author), UNIV MISSOURI,DEPT BIOCHEM,COLUMBIA,MO 65211, USA. CR AHMED FR, 1993, J MOL BIOL, V230, P1216, DOI 10.1006/jmbi.1993.1237 AHMED FR, 1990, J MOL BIOL, V216, P127, DOI 10.1016/S0022-2836(05)80065-8 BANVILLE D, 1992, GENETICA, V86, P85, DOI 10.1007/BF00133713 BLANCUZZI Y, 1993, BIOCHEMISTRY-US, V32, P1302, DOI 10.1021/bi00056a015 BLUM JK, 1994, J CELL PHYSIOL, V160, P455, DOI 10.1002/jcp.1041600308 BREWER LM, 1987, PLACENTA, V8, P351, DOI 10.1016/0143-4004(87)90063-4 BREWER LM, 1985, DEV BIOL, V112, P49, DOI 10.1016/0012-1606(85)90117-4 CELIO MR, 1990, NEUROSCIENCE, V35, P375, DOI 10.1016/0306-4522(90)90091-H CHAFOULEAS JG, 1982, CELL, V28, P41, DOI 10.1016/0092-8674(82)90373-7 CLAYSHULTE TM, 1990, J BIOL CHEM, V265, P1800 COX JA, 1990, J BIOL CHEM, V265, P6633 DECLERCQ JP, 1988, J MOL BIOL, V202, P349, DOI 10.1016/0022-2836(88)90464-0 DECLERCQ JP, 1991, J MOL BIOL, V220, P1017, DOI 10.1016/0022-2836(91)90369-H EBERHARD M, 1994, EUR J BIOCHEM, V222, P21, DOI 10.1111/j.1432-1033.1994.tb18836.x FOHR UG, 1993, EUR J BIOCHEM, V215, P719, DOI 10.1111/j.1432-1033.1993.tb18084.x Galfrè G, 1981, Methods Enzymol, V73, P3 GERDAY C, 1991, J COMP PHYSIOL B, V161, P475 GERDAY C, 1988, CALCIUM CALCIUM BIND, P23 GILLEN MF, 1987, J BIOL CHEM, V262, P5308 GILLIS JM, 1985, BIOCHIM BIOPHYS ACTA, V811, P97, DOI 10.1016/0304-4173(85)90016-3 Goding J, 1983, MONOCLONAL ANTIBODIE GOODMAN M, 1977, J MOL EVOL, V9, P131, DOI 10.1007/BF01732745 HAIECH J, 1979, BIOCHEMISTRY-US, V18, P2752, DOI 10.1021/bi00580a010 HAPAK RC, 1989, J BIOL CHEM, V264, P18751 HEIZMANN CW, 1984, EXPERIENTIA, V40, P910, DOI 10.1007/BF01946439 HEIZMANN CW, 1988, CALCIUM CALCIUM BIND, P93 Henzl MT, 1996, BIOCHEMISTRY-US, V35, P5856, DOI 10.1021/bi952184d Hurn B A, 1980, Methods Enzymol, V70, P104 KLEE CB, 1984, BIOCHEM BIOPH RES CO, V125, P420, DOI 10.1016/S0006-291X(84)80384-8 KRETSINGER RH, 1980, CRC CR REV BIOCH MOL, V8, P119, DOI 10.3109/10409238009105467 MACMANUS JP, 1981, FEBS LETT, V126, P245, DOI 10.1016/0014-5793(81)80252-9 MACMANUS JP, 1979, CANCER RES, V39, P3000 MACMANUS JP, 1987, ROLE CALCIUM BIOL SY, P1 MACMANUS JP, 1983, CALCIUM CELL FUNCTIO, V4, P411 MACMANUS JP, 1985, CANCER LETT, V27, P145, DOI 10.1016/0304-3835(85)90103-X MAEDA N, 1984, MOL BIOL EVOL, V1, P473 MCPHALEN CA, 1991, ADV PROTEIN CHEM, V42, P77 MCPHALEN CA, 1994, J MOL BIOL, V235, P718, DOI 10.1006/jmbi.1994.1023 MOESCHLER HJ, 1980, EUR J BIOCHEM, V111, P73 MUTUS B, 1988, BIOCHEMISTRY-US, V27, P5615, DOI 10.1021/bi00415a033 MUTUS B, 1985, BIOCHEM BIOPH RES CO, V131, P500 OAKLEY BR, 1980, ANAL BIOCHEM, V105, P361, DOI 10.1016/0003-2697(80)90470-4 Pack AK, 1995, HEARING RES, V91, P119 PALMER EJ, 1990, ARCH BIOCHEM BIOPHYS, V271, P149 RASMUSSEN CD, 1989, TRENDS NEUROSCI, V12, P433, DOI 10.1016/0166-2236(89)90092-1 RINALDI ML, 1982, BIOCHEMISTRY-US, V21, P4805, DOI 10.1021/bi00262a044 ROQUET F, 1992, J MOL BIOL, V223, P705, DOI 10.1016/0022-2836(92)90985-S SAKAGUCHI N, 1997, P 20 ARO MIDW RES M, P215 SCHWARTZ LM, 1988, DEV BIOL, V128, P441, DOI 10.1016/0012-1606(88)90306-5 SENARITA M, 1995, HEARING RES, V90, P169, DOI 10.1016/0378-5955(95)00161-4 SERDA RE, 1991, J BIOL CHEM, V266, P7291 SIMONIDES WS, 1989, BIOCHIM BIOPHYS ACTA, V998, P137, DOI 10.1016/0167-4838(89)90265-3 STAHLI C, 1983, METHOD ENZYMOL, V92, P26 STRYNADKA NCJ, 1989, ANNU REV BIOCHEM, V58, P951, DOI 10.1146/annurev.bi.58.070189.004511 SWAIN AL, 1989, J BIOL CHEM, V264, P16620 THALMANN I, 1995, BIOCHEM BIOPH RES CO, V215, P142, DOI 10.1006/bbrc.1995.2444 TOWBIN H, 1979, P NATL ACAD SCI USA, V76, P4350, DOI 10.1073/pnas.76.9.4350 WILCOX ER, 1992, HEARING RES, V62, P124, DOI 10.1016/0378-5955(92)90208-5 Wnuk W., 1982, CALCIUM CELL FUNCTIO, V2, P243 NR 59 TC 25 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 105 EP 111 DI 10.1016/S0378-5955(97)00005-1 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800009 PM 9112110 ER PT J AU Tognola, G Grandori, F Ravazzani, P AF Tognola, G Grandori, F Ravazzani, P TI Time-frequency distributions of click-evoked otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE click-evoked otoacoustic emission; time-frequency distribution; OAE component; latency; wavelet transform ID BRAIN-STEM RESPONSES; HUMAN EARS; ACOUSTIC EMISSIONS; NORMALLY HEARING; SIGNAL ANALYSIS; TONE BURSTS; COCHLEA; SPECTRA; NOISE AB Emissions evoked by broad-band stimuli, such as clicks, show a 'frequency dispersion' reminiscent of the place-frequency distribution along the cochlea. Analysis of the time-frequency properties of transiently evoked otoacoustic emissions (TEOAEs) is therefore of considerable interest due to their close relation with cochlear mechanisms. In particular, since OAEs in response to click stimuli are expected to evoke a cumulative response from the whole cochlea, the analysis of click-evoked OAEs can yield a global view of cochlear function. Wavelet analysis is performed to obtain time-frequency distributions of click-evoked OAEs at various intensity levels from normal ears. By means of the inverse wavelet transform, the recorded responses are decomposed into elementary components representing the contribution within a narrow frequency band to the cumulative OAE. The relationship between the frequency of the elementary components, latency and level of stimulation is described. RP Tognola, G (reprint author), POLITECN MILAN,CNR,SYST THEORY CTR,DEPT BIOMED ENGN,VIA PONZIO 34-5,I-20133 MILAN,ITALY. RI Tognola, Gabriella/B-9025-2015; Ravazzani, Paolo/B-9139-2015 OI Ravazzani, Paolo/0000-0003-0282-3329 CR BONFILS P, 1989, ANN OTO RHINOL LARYN, V98, P326 BRASS D, 1991, J ACOUST SOC AM, V90, P2415, DOI 10.1121/1.402046 CHENG J, 1995, SCAND AUDIOL, V24, P91, DOI 10.3109/01050399509047520 Daubechies I., 1992, 10 LECT WAVELETS DAUBECHIES I, 1990, IEEE T INFORM THEORY, V36, P961, DOI 10.1109/18.57199 DON M, 1994, J ACOUST SOC AM, V96, P3476, DOI 10.1121/1.410608 DON M, 1978, J ACOUST SOC AM, V63, P1084, DOI 10.1121/1.381816 EGGERMONT JJ, 1976, J ACOUST SOC AM, V60, P1132, DOI 10.1121/1.381214 EGGERMONT JJ, 1979, J ACOUST SOC AM, V65, P463, DOI 10.1121/1.382345 ELBERLING C, 1974, SCAND AUDIOL, V3, P13, DOI 10.3109/01050397409044959 GORGA MP, 1988, J SPEECH HEAR RES, V31, P87 GOUPILLAUD P, 1984, GEOEXPLORATION, V23, P85, DOI 10.1016/0016-7142(84)90025-5 GRANDORI F, 1986, SCAND AUDIOL S, V25, P97 GRANDORI F, 1985, AUDIOLOGY, V24, P71 GRANDORI F, 1993, BRIT J AUDIOL, V27, P97, DOI 10.3109/03005369309077898 Hlawatsch F, 1992, IEEE SIGNAL PROC MAG, V9, P21, DOI 10.1109/79.127284 JOHNSEN NJ, 1988, SCAND AUDIOL, V17, P27, DOI 10.3109/01050398809042177 Kemp D T, 1986, Scand Audiol Suppl, V25, P71 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 KIMBERLEY BP, 1993, J ACOUST SOC AM, V94, P1343, DOI 10.1121/1.408162 KOLLMEIER B, 1989, COCHLEAR MECH STRUCT, P331 KULAWIEC JT, 1995, EAR HEARING, V16, P515 LUTMAN ME, 1993, BRIT J AUDIOL, V27, P103, DOI 10.3109/03005369309077899 MALLAT SG, 1989, IEEE T PATTERN ANAL, V11, P674, DOI 10.1109/34.192463 MARTIN GK, 1990, EAR HEARING, V11, P106 NEELY ST, 1988, J ACOUST SOC AM, V83, P652, DOI 10.1121/1.396542 NORTON SJ, 1987, J ACOUST SOC AM, V81, P1860, DOI 10.1121/1.394750 OMAHONEY CF, 1995, J ACOUST SOC AM, V97, P3271 PARKER D J, 1978, Scandinavian Audiology, V7, P45, DOI 10.3109/01050397809043131 Pasanen E G, 1994, Biomed Sci Instrum, V30, P75 Ravazzani P, 1996, AUDIOLOGY, V35, P73 Rioul O, 1991, IEEE SIGNAL PROC MAG, V8, P14, DOI 10.1109/79.91217 TOGNOLA G, 1995, BRIT J AUDIOL, V29, P153, DOI 10.3109/03005369509086592 TOGNOLA G, 1995, P 1995 IEEE ENG MED, P1067 WIER CC, 1984, J ACOUST SOC AM, V76, P1248, DOI 10.1121/1.391376 WIT HP, 1980, HEARING RES, V2, P253, DOI 10.1016/0378-5955(80)90061-1 WIT HP, 1994, HEARING RES, V81, P208, DOI 10.1016/0378-5955(94)90166-X WIT HP, 1981, J ACOUST SOC AM, V70, P437, DOI 10.1121/1.386786 WIT HP, 1994, HEARING RES, V73, P141, DOI 10.1016/0378-5955(94)90228-3 ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 NR 41 TC 81 Z9 83 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 112 EP 122 DI 10.1016/S0378-5955(97)00007-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800010 PM 9112111 ER PT J AU vonUnge, M Decraemer, WF BaggerSjoback, D VandenBerghe, D AF vonUnge, M Decraemer, WF BaggerSjoback, D VandenBerghe, D TI Tympanic membrane changes in experimental purulent otitis media SO HEARING RESEARCH LA English DT Article DE otitis media; purulent; tympanometry; Moire interferometry; displacement ID HEMOPHILUS-INFLUENZAE; GERBIL; DISPLACEMENT AB The stiffness properties of the gerbil tympanic membrane (TM) were investigated during the early course of experimental purulent otitis media produced by middle ear inoculation (n = 49) with type 3 Streptococcus pneumoniae. In a first approach the acoustic admittance and susceptance were measured in vitro with tympanometry and in a second approach the tympanic membrane displacement in response to static pressure was measured with moire interferometry. A histological assessment of the tympanic membrane was made concurrently. The acoustic admittance and susceptance reduced during the initial days post-inoculation. These reductions seem to correlate with an oedema simultaneously developing in the pars tensa. The pressure-induced displacement increased with time of disease, i.e. the mechanical stiffness of the TM reduced. Local deformation zones, or 'weak spots' appeared in the inferior half of the pars tensa in three out of eight cases measured at 3 or 4 days post-inoculation. The loss of stiffness in the pars tensa may affect the further course of otitis media, and the 'weak spots' are possible precursors of retraction pockets and/or perforations. The stiffness reductions may be caused by changes on a sub-microscopical, molecular level. C1 KAROLINSKA INST,S-10401 STOCKHOLM,SWEDEN. UNIV ANTWERP,RUCA,LAB BIOMED PHYS,B-2020 ANTWERP,BELGIUM. UNIV INSTELLING ANTWERP,DEPT MICROBIOL,B-2020 ANTWERP,BELGIUM. RP vonUnge, M (reprint author), KAROLINSKA HOSP,DEPT OTORHINOLARYNGOL,S-10401 STOCKHOLM,SWEDEN. CR BLUESTONE CD, 1990, PEDIATRIC OTOLARYNGO, P373 DECRAEMER WF, 1980, J BIOMECH, V13, P559, DOI 10.1016/0021-9290(80)90056-1 FULGHUM RS, 1985, INT J PEDIATR OTORHI, V9, P101, DOI 10.1016/S0165-5876(85)80010-0 FULGHUM RS, 1987, ARCH OTOLARYNGOL, V113, P521 FULGHUM RS, 1982, INFECT IMMUN, V36, P802 FULGHUM RS, 1985, INT J PEDIATR OTORHI, V10, P9, DOI 10.1016/S0165-5876(85)80052-5 Lidén G, 1969, J Laryngol Otol, V83, P507, DOI 10.1017/S0022215100070651 MAES M, 1989, J BIOMECH, V22, P1203, DOI 10.1016/0021-9290(89)90222-4 MOLLER P, 1981, ACTA OTO-LARYNGOL, V91, P215 SADE J, 1993, ANN OTO RHINOL LARYN, V102, P712 VONUNGE M, 1995, HEARING RES, V82, P184, DOI 10.1016/0378-5955(94)00017-K VONUNGE M, 1991, AM J OTOL, V12, P407 VONUNGE M, 1994, AM J OTOL, V5, P663 VONUNGE M, 1993, HEARING RES, V70, P229, DOI 10.1016/0378-5955(93)90161-S NR 14 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 123 EP 136 DI 10.1016/S0378-5955(97)00008-7 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800011 PM 9112112 ER PT J AU McAnally, KI Brown, M Clark, GM AF McAnally, KI Brown, M Clark, GM TI Acoustic and electric forward-masking of the auditory nerve compound action potential: Evidence for linearity of electro-mechanical transduction SO HEARING RESEARCH LA English DT Article DE electrical stimulation; cochlea; outer hair cell; cochlear implant ID OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; STIMULATION; RESPONSES; MODEL; CAT; SENSITIVITY; AMPLIFIER; MOVEMENTS; MOTILITY AB We investigated electro-mechanical transduction within the cochlea by comparing masking of the auditory nerve compound action potential (CAP) by acoustical and electrical maskers. Forward-masking of the CAP reflects the response to the masker of the cochlear location tuned to the probe. Electrical stimulation was delivered through bipolar stimulating electrodes within the basal turn of the scala tympani. The growth of masking of high-frequency probes which excite cochlear locations close to the stimulating electrodes was similar for both acoustic and electrical maskers, suggesting a linear transduction of electrical energy to mechanical energy. Exposure to intense acoustic stimulation caused an equal loss of sensitivity to acoustic and electrical maskers. Masking of lower-frequency probes by electrical maskers increased rapidly with masker current, suggesting the direct electrical stimulation of neural elements. This masking was reduced by the administration of strychnine suggesting a contribution by the efferents towards masking of these low-frequency probes. C1 UNIV MELBOURNE, DEPT OTOLARYNGOL, PARKVILLE, VIC 3052, AUSTRALIA. CR BLACK RC, 1981, IEEE T BIO-MED ENG, V28, P721, DOI 10.1109/TBME.1981.324668 Black R C, 1983, Acta Otolaryngol Suppl, V399, P5 BLACK RC, 1980, J ACOUST SOC AM, V67, P868, DOI 10.1121/1.383966 BROWN M, 1992, HEARING RES, V59, P224, DOI 10.1016/0378-5955(92)90119-8 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CLARK GM, 1986, OTOLARYNGOL CLIN N A, V59, P329 DALLOS P, 1976, J ACOUST SOC AM, V59, P591, DOI 10.1121/1.380903 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 DESMEDT JE, 1975, J PHYSIOL-LONDON, V247, P407 Evans B.N., 1989, COCHLEAR MECHANISMS, P205 FLOTTORP G, 1976, ACTA OTOLARYNGOL S S, V341, P1 GEISLER CD, 1995, HEARING RES, V86, P132, DOI 10.1016/0378-5955(95)00064-B GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HUBBARD AE, 1983, SCIENCE, V222, P510, DOI 10.1126/science.6623090 HUBBARD AE, 1990, LECT NOTES BIOMATH, V87, P186 HUBBARD AE, 1990, HEARING RES, V43, P269, DOI 10.1016/0378-5955(90)90234-G Kiang NY, 1970, SENSORINEURAL HEARIN, P241 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0 MCANALLY KI, 1994, ACTA OTO-LARYNGOL, V114, P366, DOI 10.3109/00016489409126071 MCANALLY KI, 1993, HEARING RES, V67, P55, DOI 10.1016/0378-5955(93)90232-P MICHELSON RP, 1975, ANN OTO RHINOL LARYN, V84, P494 MILLARD RE, 1992, J NEUROSCI METH, V44, P81, DOI 10.1016/0165-0270(92)90116-U MOUNTAIN DC, 1983, ELECTROMECHANICAL PR, P119 Moxon E.C., 1971, THESIS MIT CAMBRIDGE MURATA K, 1991, HEARING RES, V55, P201, DOI 10.1016/0378-5955(91)90105-I NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9 Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2 OLEARY SJ, 1985, HEARING RES, V18, P273, DOI 10.1016/0378-5955(85)90044-9 PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 RAJAN R, 1983, HEARING RES, V12, P405, DOI 10.1016/0378-5955(83)90009-6 Ren TY, 1995, HEARING RES, V92, P178, DOI 10.1016/0378-5955(95)00217-0 REUTER G, 1992, HEARING RES, V60, P236, DOI 10.1016/0378-5955(92)90025-I RUSSELL IJ, 1986, HEARING RES, V22, P199, DOI 10.1016/0378-5955(86)90096-1 SANTOS-SACCHI J, 1989, J NEUROSCI, V9, P2954 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 SYKA J, 1994, HEARING RES, V75, P1, DOI 10.1016/0378-5955(94)90050-7 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M ZWICKER E, 1986, J ACOUST SOC AM, V80, P146, DOI 10.1121/1.394175 NR 42 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 137 EP 145 DI 10.1016/S0378-5955(97)00011-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800012 PM 9112113 ER PT J AU McAnally, KI Brown, M Clark, GM AF McAnally, KI Brown, M Clark, GM TI Estimating mechanical responses to pulsatile electrical stimulation of the cochlea SO HEARING RESEARCH LA English DT Article DE cochlear implant; auditory nerve; hair cell; transduction; compound action potential; masking ID AUDITORY-NERVE; GUINEA-PIG; MODEL; CAT; PATTERNS AB This study estimated the mechanical response of the cochlea to pulsatile electrical stimulation of the scala tympani of the cat. The auditory nerve compound action potential evoked by an acoustic probe was forward-masked by a train of charge-balanced biphasic current pulses. Masking as a function of probe frequency reflected the excitation pattern of the response to the masker and resembled the spectrum of the electrical stimulus. Both pulse rate and pulse width influenced the degree of masking. The vibration of a region of the basilar membrane was estimated by recording the local cochlear microphonic evoked by biphasic pulses. The amplitude of the cochlear microphonic was proportional to the amplitude of the spectral component of the electrical stimulus to which the local cochlear microphonic was tuned. These results are consistent with the generation of a mechanical response to the electrical stimulus. C1 UNIV MELBOURNE,DEPT OTOLARYNGOL,PARKVILLE,VIC 3052,AUSTRALIA. CR BLACK RC, 1981, IEEE T BIO-MED ENG, V28, P721, DOI 10.1109/TBME.1981.324668 BLACK RC, 1980, J ACOUST SOC AM, V67, P868, DOI 10.1121/1.383966 BROWN M, 1992, HEARING RES, V59, P224, DOI 10.1016/0378-5955(92)90119-8 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CLARK GM, 1986, OTOLARYNGOL CLIN N A, V59, P329 DALLOS P, 1976, J ACOUST SOC AM, V59, P591, DOI 10.1121/1.380903 Dallos P, 1973, BASIC MECHANISMS HEA, P335 DESMEDT JE, 1975, J PHYSIOL-LONDON, V247, P407 GEISLER CD, 1995, HEARING RES, V86, P132, DOI 10.1016/0378-5955(95)00064-B HUBBARD AE, 1983, SCIENCE, V222, P510, DOI 10.1126/science.6623090 HUBBARD AE, 1990, HEARING RES, V43, P269, DOI 10.1016/0378-5955(90)90234-G KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0 MCANALLY KI, 1994, ACTA OTO-LARYNGOL, V114, P366, DOI 10.3109/00016489409126071 MCANALLY KI, 1993, HEARING RES, V67, P55, DOI 10.1016/0378-5955(93)90232-P McAnally KI, 1997, HEARING RES, V106, P137, DOI 10.1016/S0378-5955(97)00011-7 MICHELSON RP, 1975, ANN OTO RHINOL LARYN, V84, P494 MILLARD RE, 1992, J NEUROSCI METH, V44, P81, DOI 10.1016/0165-0270(92)90116-U MURATA K, 1991, HEARING RES, V55, P201, DOI 10.1016/0378-5955(91)90105-I NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9 Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2 OLEARY SJ, 1985, HEARING RES, V18, P273, DOI 10.1016/0378-5955(85)90044-9 PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5 RAJAN R, 1983, HEARING RES, V12, P405, DOI 10.1016/0378-5955(83)90009-6 Ren TY, 1995, HEARING RES, V92, P178, DOI 10.1016/0378-5955(95)00217-0 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103 ZWICKER E, 1986, J ACOUST SOC AM, V80, P146, DOI 10.1121/1.394175 NR 28 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 146 EP 153 DI 10.1016/S0378-5955(97)00012-9 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800013 PM 9112114 ER PT J AU Mizuta, K Adachi, M Iwasa, KH AF Mizuta, K Adachi, M Iwasa, KH TI Ultrastructural localization of the Na-K-Cl cotransporter in the lateral wall of the rabbit cochlear duct SO HEARING RESEARCH LA English DT Article DE Na-K-Cl cotransporter; antiserum raised against rabbit parotid Na-K-Cl cotransporter post-embedding immunogold method; stria vascularis ID PAROTID NA/K/CL COTRANSPORTER; ION-TRANSPORT MECHANISMS; MARGINAL CELLS; MOLECULAR-CLONING; STRIA-VASCULARIS; NA+-K+-2CL(-) COTRANSPORTER; BUMETANIDE-BINDING; ALPHA-SUBUNIT; TIME-COURSE; PURIFICATION AB Localization of the immunoreactivity in the lateral wall of the rabbit cochlear duct was examined using a post-embedding immunogold method with a polyclonal antiserum raised against the rabbit parotid Na-K-C1 cotransporter. In the stria vascularis, the labeling was significant on the basolateral membrane infolding of marginal cells, whereas no labeling was seen on the luminal membrane of these cells. Immunoreactivity was also detected on the cell membranes of various other cells. These include fibrocytes of the spiral ligament and the spiral prominence, and vascular endothelial cells in the stria vascularis and the spiral ligament. In contrast, virtually no gold particles were seen on the membrane of intermediate cells, basal cells of the stria vascularis, the epithelial cells of the spiral prominence, or Reissner's membrane. Our result on the localization of the Na-K-C1 cotransporter in marginal cells is consistent with electrophysiological studies (Wangemann et al. (1995) Hear. Res. 84, 19-29). Our result on fibrocytes is discussed in relation to K+ circulation into endolymph from perilymph (Schulte and Steel (1994) Hear. Res. 78, 65-76). C1 NATL INST DEAFNESS & OTHER COMMUN DISORDERS, LAB CELLULAR BIOL, NIH, BETHESDA, MD 20892 USA. RP Mizuta, K (reprint author), HAMAMATSU UNIV SCH MED, DEPT OTOLARYNGOL, 3600 HANDA CHO, HAMAMATSU, SHIZUOKA 43131, JAPAN. CR DELPIRE E, 1994, J BIOL CHEM, V269, P25677 GAMBA G, 1994, J BIOL CHEM, V269, P17713 GEORGE JN, 1989, J MEMBRANE BIOL, V112, P51, DOI 10.1007/BF01871163 HAAS M, 1994, AM J PHYSIOL-CELL PH, V267, pC869 Hidaka H, 1996, BIOCHEM BIOPH RES CO, V220, P425, DOI 10.1006/bbrc.1996.0421 IWANO T, 1989, J HISTOCHEM CYTOCHEM, V37, P353 KERR TP, 1982, AM J OTOLARYNG, V3, P332, DOI 10.1016/S0196-0709(82)80006-9 KITANO I, 1995, HEARING RES, V83, P37, DOI 10.1016/0378-5955(94)00187-U KUSAKARI J, 1978, ACTA OTO-LARYNGOL, V86, P336, DOI 10.3109/00016487809107512 LYTLE C, 1992, J BIOL CHEM, V267, P25428 MIZUTA K, 1996, ABSTR ASS RES OT, V19, P134 ODONNELL ME, 1993, AM J PHYSIOL, V264, pC1316 PIKE DA, 1980, HEARING RES, V3, P79, DOI 10.1016/0378-5955(80)90009-X RESHKIN SJ, 1993, J MEMBRANE BIOL, V136, P243, DOI 10.1007/BF02505766 SCHROTT A, 1989, HEARING RES, V42, P17, DOI 10.1016/0378-5955(89)90114-7 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 SELLICK P M, 1975, Progress in Neurobiology (Oxford), V5, P337, DOI 10.1016/0301-0082(75)90015-5 SUNOSE H, 1994, HEARING RES, V80, P86, DOI 10.1016/0378-5955(94)90012-4 TAKEUCHI S, 1995, HEARING RES, V83, P89, DOI 10.1016/0378-5955(94)00191-R TANIMURA A, 1995, J BIOL CHEM, V270, P25252 TURNER RJ, 1988, J MEMBRANE BIOL, V102, P71, DOI 10.1007/BF01875354 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 XU JC, 1994, P NATL ACAD SCI USA, V91, P2201, DOI 10.1073/pnas.91.6.2201 NR 24 TC 31 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 154 EP 162 DI 10.1016/S0378-5955(97)00010-5 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800014 PM 9112115 ER PT J AU ConeWesson, B Ma, E Fowler, CG AF ConeWesson, B Ma, E Fowler, CG TI Effect of stimulus level and frequency on ABR and MLR binaural interaction in human neonates SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; middle latency response; binaural interaction component; neonate ID AUDITORY EVOKED-POTENTIALS; MIDDLE-LATENCY RESPONSE; BRAIN-STEM RESPONSE; INTERACTION COMPONENT; GUINEA-PIG; ADULTS; INFANTS; CHILDREN; MASKING; SOUND AB Auditory brainstem (ABR) and middle latency (MLR) responses were evoked by click and tone-burst stimuli from human neonates. Electrophysiologic evidence of binaural interaction was measured by subtracting waveforms obtained for binaural stimulus conditions from waveforms obtained for the sum of right ear monaural and left ear monaural stimulus conditions. The effects of stimulus level and stimulus frequency on binaural interaction were evaluated by measuring the number, latency and amplitude of components found in the derived binaural interaction waveform, that is, binaural interaction components (BIG). BICs were more prevalent in the latency range of ABRs than for MLRs. Click and tonal stimuli were equally effective for deriving ABR-BICs, while tone-bursts were somewhat less effective than clicks for deriving MLR-BICs. Stimulus-response dependencies for ABR and MLR component latencies were apparent in monaural, binaural and binaural interaction waveforms. Normalized amplitudes for BICs showed that low-frequency tone-burst stimuli resulted in the largest values compared to click and high-frequency tonal stimuli. Comparison of these results with published results from adults demonstrated immaturity of binaural interaction in neonates. C1 LOS ANGELES CTY & USC MED CTR,DEPT OTOLARYNGOL HEAD & NECK SURG,LOS ANGELES,CA 90033. UNIV WISCONSIN,DEPT COMMUN DISORDERS,AUDIOL SECT,MADISON,WI 53706. RP ConeWesson, B (reprint author), UNIV MELBOURNE,DEPT OTOLARYNGOL,390 ALBERT ST,MELBOURNE,VIC 3002,AUSTRALIA. CR AINSLIE PJ, 1980, ELECTROEN CLIN NEURO, V49, P291, DOI 10.1016/0013-4694(80)90223-0 *ASHA, 1991, ASHA S5, V33, P3 CAIRD D, 1985, ELECTROEN CLIN NEURO, V61, P50, DOI 10.1016/0013-4694(85)91072-7 CELESIA GG, 1976, BRAIN, V99, P403, DOI 10.1093/brain/99.3.403 CONEWESSON B, 1993, ASS RES OT MIDW M DOBIE RA, 1985, ELECTROEN CLIN NEURO, V62, P56, DOI 10.1016/0168-5597(85)90035-8 DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391 DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2 EGGERMONT JJ, 1988, EAR HEARING, V9, P283, DOI 10.1097/00003446-198810000-00009 FOWLER CG, 1989, J SPEECH HEAR RES, V32, P767 FOWLER CG, 1988, EAR HEARING, V9, P65, DOI 10.1097/00003446-198804000-00003 FOWLER CG, 1985, AUDIOLOGY, V24, P420 FOWLER CG, 1988, SCAND AUDIOL, V17, P195, DOI 10.3109/01050398809070704 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 GARDI JN, 1981, ARCH OTOLARYNGOL, V107, P164 Hall J, 1992, HDB AUDITORY EVOKED HECOX K, 1982, ANN NY ACAD SCI, V388, P538, DOI 10.1111/j.1749-6632.1982.tb50815.x HECOX K, 1974, ARCH OTOLARYNGOL, V99, P30 HOSFORDDUNN H, 1981, AUDIOLOGY, V20, P394 HYDE ML, 1994, PRINCIPLES APPL AUDI, P47 ITO S, 1988, HEARING RES, V35, P9, DOI 10.1016/0378-5955(88)90036-6 JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K KELLYBALLWEBER D, 1984, AUDIOLOGY, V23, P181 KRAUS N, 1992, BRAIN RES, V587, P186, DOI 10.1016/0006-8993(92)90996-M KRAUS N, 1982, ELECTROEN CLIN NEURO, V54, P275, DOI 10.1016/0013-4694(82)90177-8 KRAUS N, 1985, ELECTROEN CLIN NEURO, V62, P343, DOI 10.1016/0168-5597(85)90043-7 Kraus N., 1994, PRINCIPLES APPL AUDI, P155 KRAUS N, 1989, EAR HEARING, V10, P339, DOI 10.1097/00003446-198912000-00004 KRAUS N, 1987, ELECTROEN CLIN NEURO, V68, P234, DOI 10.1016/0168-5597(87)90033-5 LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412 LITTMAN T, 1992, ELECTROEN CLIN NEURO, V84, P362, DOI 10.1016/0168-5597(92)90089-T MASTERTON RB, 1984, ANNU REV PHYSIOL, V46, P275 KRAUS N, 1993, EAR HEARING, V14, P36, DOI 10.1097/00003446-199302000-00006 MCGEE T, 1988, AUDIOLOGY, V27, P119 MCGEE T, 1992, HEARING RES, V61, P147, DOI 10.1016/0378-5955(92)90045-O MCPHERSON DL, 1985, ANN OTO RHINOL LARYN, V94, P236 MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z MCPHERSON DL, 1989, ELECTROEN CLIN NEURO, V74, P124, DOI 10.1016/0168-5597(89)90017-8 MOORE DR, 1991, AUDIOLOGY, V30, P125 MORGAN DE, 1987, ANN OTO RHINOL LARYN, V96, P142 MOUSHEGI.G, 1974, FED PROC, V33, P1924 NOZZA RJ, 1988, J SPEECH HEAR RES, V31, P212 OZDAMAR O, 1983, AUDIOLOGY, V22, P34 OZDAMAR O, 1986, ELECTROEN CLIN NEURO, V63, P476, DOI 10.1016/0013-4694(86)90129-X PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 RUBEL EW, 1984, HEARING SCI, P109 SANES DH, 1992, DEV PSYCHOACOUSTICS, P257, DOI 10.1037/10119-010 SCHNEIDER BA, 1989, PERCEPT PSYCHOPHYS, V49, P10 WADA SI, 1989, ELECTROEN CLIN NEURO, V72, P535, DOI 10.1016/0013-4694(89)90231-9 WREGE KS, 1981, ARCH NEUROL-CHICAGO, V38, P572 YANG EY, 1987, EAR HEARING, V8, P244, DOI 10.1097/00003446-198708000-00009 NR 51 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 163 EP 178 DI 10.1016/S0378-5955(97)00016-6 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800015 PM 9112116 ER PT J AU Ison, JR Payman, GH Palmer, MJ Walton, JP AF Ison, JR Payman, GH Palmer, MJ Walton, JP TI Nimodipine at a dose that slows ABR latencies does not protect the ear against noise SO HEARING RESEARCH LA English DT Article DE noise exposure; mouse; auditory threshold; calcium channel; ABR latency ID COCHLEAR BLOOD-FLOW; LOUD SOUND EXPOSURE; GUINEA-PIG; CEREBRAL-ISCHEMIA; ACOUSTIC EXPOSURE; CALCIUM; OXYGENATION; INJURY; RAT AB We tested the hypothesis that nimodipine, a dihydropyridine reported to increase blood flow, block calcium and potassium channels, and reduce ischemic damage, would alleviate noise-induced hearing loss. Young C57B1/6J mice were exposed to wide-band noise (2 min, 120 dB SPL), with ABR thresholds (4-50 kHz) determined before noise exposure, and from 1 h to 2 weeks afterwards. One group (n = 7) received nimodipine (30 mg/kg/day) in daily peanut butter food supplements beginning 24 h before exposure; the other group (n = 6) received peanut butter alone. In the pretest nimodipine significantly increased the latency of Wave Pt of the ABR (mean difference: 0.16 ms; P < 0.02), showing that calcium blockade depressed sensorineural efficiency, but ABR thresholds were not affected. Noise exposure produced a severe threshold loss that partially recovered in the first week after exposure, and then suffered a slight but significant loss in the second week. These effects were seen equally in both groups: nimodipine did not reduce the severity of the immediate hearing loss following noise exposure, nor did it benefit recovery. C1 UNIV ROCHESTER,DEPT SURG,OTOLARYNGOL DIV,ROCHESTER,NY. RP Ison, JR (reprint author), UNIV ROCHESTER,DEPT BRAIN & COGNIT SCI,MELIORA HALL,ROCHESTER,NY 14627, USA. CR AXELSSON A, 1982, NEW PERSPECTIVES NOI BIELENBERG GW, 1990, STROKE, V21, P90 BOBBIN RP, 1990, HEARING RES, V46, P277, DOI 10.1016/0378-5955(90)90009-E CHOI DW, 1994, ANN NY ACAD SCI, V747, P162 COLEMAN JKM, 1991, OTOLARYNG HEAD NECK, V105, P840 Cotran RS, 1994, PATHOLOGIC BASIS DIS DEJONG GI, 1990, NEUROBIOL AGING, V11, P381, DOI 10.1016/0197-4580(90)90003-I DENGERINK HA, 1988, CIRCULATION INNER EA, P328 DUBINSKY JM, 1993, ANN NY ACAD SCI, V679, P34, DOI 10.1111/j.1749-6632.1993.tb18287.x EHRENBERGER K, 1995, ACTA OTO-LARYNGOL, V115, P236, DOI 10.3109/00016489509139299 JACEWICZ M, 1990, J CEREBR BLOOD F MET, V10, P89 LIM DJ, 1976, ANN OTO RHINOL LARYN, V85, P740 LIN X, 1995, HEARING RES, V88, P36, DOI 10.1016/0378-5955(95)00096-M MEYER P, 1994, ARZNEIMITTEL-FORSCH, V44-2, P1108 Moller A. R., 1994, PRINCIPLES APPL AUDI, P23 RAMI A, 1994, LIFE SCI, V55, P2105, DOI 10.1016/0024-3205(94)00391-2 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 SCHEIBE F, 1993, EUR ARCH OTO-RHINO-L, V250, P281 SCHEIBE F, 1992, HEARING RES, V63, P19, DOI 10.1016/0378-5955(92)90069-Y SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 SIESJO BK, 1994, ANN NY ACAD SCI, V747, P140 Spoendlin H, 1976, EFFECTS NOISE HEARIN, P69 TEASDALE G, 1990, STROKE, V21, P123 THORNE PR, 1989, ACTA OTO-LARYNGOL, V107, P71, DOI 10.3109/00016488909127481 THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9 Yamane H, 1991, Acta Otolaryngol Suppl, V481, P182 NR 26 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 1997 VL 106 IS 1-2 BP 179 EP 183 DI 10.1016/S0378-5955(96)00216-X PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WT378 UT WOS:A1997WT37800016 PM 9112117 ER PT J AU Xu, J Shepherd, RK Millard, RE Clark, GM AF Xu, J Shepherd, RK Millard, RE Clark, GM TI Chronic electrical stimulation of the auditory nerve at high stimulus rates: A physiological and histopathological study SO HEARING RESEARCH LA English DT Article DE cochlear implant; high stimulus rate; electrical stimulation; cochlear physiology; auditory brainstem response; electrically-evoked auditory brainstem response; electrode impedance; cochlear histopathology ID BRAIN-STEM RESPONSE; COCHLEAR IMPLANT PATIENT; GUINEA-PIG COCHLEA; SPIRAL GANGLION; CALCIUM-CONCENTRATION; ENERGY-METABOLISM; PERFORANT PATH; CAT; PATHOLOGY; DAMAGE AB A major factor associated with recent improvements in the clinical performance of cochlear implant patients has been the development of speech-processing strategies based on high stimulation rates. While these processing strategies show clear clinical advantage, we know little of their long-term safety implications. The present study was designed to evaluate the physiological and histopathological effects of long-term intracochlear electrical stimulation using these high rates. Thirteen normal-hearing adult cats were bilaterally implanted with scala tympani electrode arrays and unilaterally stimulated for periods of up to 2100 h using either two pairs of bipolar or three monopolar stimulating electrodes. Stimuli consisted of short duration (25-50 mu s/phase) charge-balanced biphasic current pulses presented at 1000 pulses per second (pps) per channel for monopolar stimulation, and 2000 pps/channel for bipolar stimulation. The electrodes were shorted between current pulses to minimize any residual direct current, and the pulse trains were presented using a 50% duty cycle (500 ms on; 500 ms off) in order to simulate speech. Both acoustic (ABR) and electrical (EABR) auditory brainstem responses were recorded periodically during the chronic stimulation program. All cochleas showed an increase in the click-evoked ABR threshold following implant surgery; however, recovery to near-normal levels occurred in approximately half of the stimulated cochleas 1 month post-operatively. The use of frequency-specific stimuli indicated that the most extensive hearing loss generally occurred in the high-frequency basal region of the cochlea (12 and 24 kHz) adjacent to the stimulating electrode. However, thresholds at lower frequencies (2, 4 and 8 kHz), appeared at near-normal levels despite long-term electrode implantation and electrical stimulation. Our longitudinal EABR results showed a statistically significant increase in threshold in nearly 40% of the chronically stimulated electrodes evaluated; however, the gradient of the EABR input/output (I/O) function (evoked potential response amplitude versus stimulus current) generally remained quite stable throughout the chronic stimulation period. Histopathological examination of the cochleas showed no statistically significant difference in ganglion cell densities between cochleas using monopolar and bipolar electrode configurations (P = 0.67), and no evidence of cochlear damage caused by high-rate electrical stimulation when compared with control cochleas. Indeed, there was no statistically significant relationship between spiral ganglion cell density and electrical stimulation (P = 0.459), or between the extent of loss of inner (LHC, P = 0.86) or outer (OHC, P = 0.30) hair cells and electrical stimulation. Spiral ganglion cell loss was, however, influenced by the degree of inflammation (P = 0.016) and electrode insertion trauma. These histopathological findings were consistent with the physiological data. Finally, electrode impedance, measured at completion of the chronic stimulation program, showed close correlation with the degree of tissue response adjacent to the electrode array. These results indicated that chronic intracochlear electrical stimulation, using carefully controlled charge-balanced biphasic current pulses at stimulus rates of up to 2000 pps/channel, does not appear to adversely affect residual auditory nerve elements or the cochlea in general. This study provides an important basis for the safe application of improved speech-processing strategies based on high-rate electrical stimulation. C1 UNIV MELBOURNE,DEPT OTOLARYNGOL,PARKVILLE,VIC 3052,AUSTRALIA. COOPERAT RES CTR COCHLEAR IMPLANT SPEECH & HEARIN,MELBOURNE,VIC 3002,AUSTRALIA. RI Shepherd, Robert/I-6276-2012 CR ABBAS PJ, 1991, HEARING RES, V51, P123, DOI 10.1016/0378-5955(91)90011-W AGNEW WF, 1993, NEUROSCIENCE, V52, P45, DOI 10.1016/0306-4522(93)90180-N AGNEW WF, 1989, ANN BIOMED ENG, V17, P39, DOI 10.1007/BF02364272 AGNEW WF, 1983, DEV EVALUATION SAFE Black R C, 1983, Acta Otolaryngol Suppl, V399, P5 BROMM B, 1968, PFLUG ARCH EUR J PHY, V299, P357, DOI 10.1007/BF00602911 BUSBY PA, 1993, J ACOUST SOC AM, V94, P124, DOI 10.1121/1.408212 CLARK GM, 1984, ACTA OTOLARYNGOL S S, V410, P5 CLARK GM, 1991, EAR HEAR S, V4, P14 Clark G. M., 1995, Annals of Otology Rhinology and Laryngology, V104, P40 CLARK GM, 1977, J LARYNGOL OTOL, V91, P185, DOI 10.1017/S0022215100083560 COUSILLAS H, 1988, HEARING RES, V36, P21, DOI 10.1016/0378-5955(88)90135-9 DILLIER N, 1992, ORL J OTO-RHINO-LARY, V54, P299 DODSON HC, 1987, HEARING RES, V31, P65, DOI 10.1016/0378-5955(87)90214-0 DON M, 1978, J ACOUST SOC AM, V63, P1085 DUCKERT LG, 1982, ANN OTO RHINOL LARYN, V91, P33 EVANS EF, 1982, AUDIOLOGY, V21, P204 HALL RD, 1990, HEARING RES, V45, P123, DOI 10.1016/0378-5955(90)90188-U HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 JAVEL E, 1987, ANN OTO RHINOL LARYN, V96, P26 JOHNSSON LG, 1982, ANN OTO RHINOL LARYN, V91, P74 Kawano A, 1996, ANN OTO RHINOL LARYN, V105, P701 KILLIAN MJP, 1994, HEARING RES, V81, P66, DOI 10.1016/0378-5955(94)90154-6 KNOPFEL T, 1992, J NEUROPHYSIOL, V68, P961 LASZIG R, 1994, P INT COCHL IMPL SPE, P164 LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X LEAKE PA, 1990, NEURAL PROSTHESES FU, P253 LEAKEJONES PA, 1983, ANN NY ACAD SCI, V405, P203, DOI 10.1111/j.1749-6632.1983.tb31634.x LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836 MARSH RR, 1981, OTOLARYNG HEAD NECK, V89, P125 MCANALLY KI, 1993, HEARING RES, V67, P55, DOI 10.1016/0378-5955(93)90232-P MCCREERY DB, 1983, EXP NEUROL, V79, P371, DOI 10.1016/0014-4886(83)90220-0 MCCREERY DB, 1992, HEARING RES, V62, P42, DOI 10.1016/0378-5955(92)90201-W MCDERMOTT HJ, 1992, J ACOUST SOC AM, V91, P3367, DOI 10.1121/1.402826 Meldrum B S, 1983, Adv Neurol, V34, P261 MERZENICH MM, 1977, FUNCTIONAL ELECT STI, P321 MILLER JM, 1983, ANN OTO RHINOL LARYN, V92, P599 MITCHELL PF, 1997, HEARING RES, V105, P30 Moxon E.C., 1971, THESIS MIT CAMBRIDGE NI D, 1992, HEARING RES, V62, P62 OLNEY JW, 1983, BRAIN RES BULL, V10, P699, DOI 10.1016/0361-9230(83)90038-2 Patrick J., 1990, COCHLEAR PROSTHESES, p99 RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U SCHARFMAN HE, 1989, SCIENCE, V246, P257, DOI 10.1126/science.2508225 SCHINDLER RA, 1977, ARCH OTOLARYNGOL, V103, P691 SELDON HL, 1991, ARCH OTOLARYNGOL, V117, P1158 SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 SHEPHERD RK, 1987, ANN OTO RHINOL LARYN, V96, P50 SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 SHEPHERD RK, 1990, STUDIES PEDIAT AUDIT SHEPHERD RK, 1994, 2 EUR S PAED COCHL I Shepherd RK, 1990, COCHLEAR PROSTHESES, P69 Shepherd R K, 1983, Acta Otolaryngol Suppl, V399, P19 SHEPHERD RK, 1995, AM J OTOL, V16, P186 SHEPHERD RK, 1994, AUST J OTOLARYNG, V1, P453 SHEPHERD RK, 1991, ACTA OTO-LARYNGOL, V111, P848, DOI 10.3109/00016489109138421 SHEPHERD RK, 1985, HEARING RES, V18, P105, DOI 10.1016/0378-5955(85)90001-2 SHUTE SA, 1990, THESIS U MELBOURNE M SIESJO BK, 1989, ANN NY ACAD SCI, V568, P234, DOI 10.1111/j.1749-6632.1989.tb12513.x SIMMONS FB, 1967, LARYNGOSCOPE, V77, P171, DOI 10.1288/00005537-196702000-00003 SLOVITER RS, 1983, BRAIN RES BULL, V10, P675, DOI 10.1016/0361-9230(83)90037-0 SOKOLOFF L, 1993, DEV NEUROSCI-BASEL, V15, P194, DOI 10.1159/000111335 STYPULKOWSKI PH, 1986, OTOLARYNG CLIN N AM, V19, P249 SUTTON D, 1983, ANN OTO RHINOL LARYN, V92, P53 TONG YC, 1990, COCHLEAR PROSTHESES TYKOCINSKI M, 1995, HEARING RES, V88, P124, DOI 10.1016/0378-5955(95)00108-G Tykocinski M., 1995, Annals of Otology Rhinology and Laryngology, V104, P68 VANDENHONERT C, 1986, HEARING RES, V21, P109, DOI 10.1016/0378-5955(86)90033-X VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 WALSH SM, 1982, HEARING RES, V7, P266 WASTERLAIN CG, 1993, EPILEPSIA, V34, pS37, DOI 10.1111/j.1528-1157.1993.tb05905.x WASTERLAIN CG, 1994, BRAIN DEV-JPN, V16, P279, DOI 10.1016/0387-7604(94)90025-6 WILSON BS, 1993, RECENT DEV CIS STRAT WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 YAROWSKY PJ, 1981, FED PROC, V40, P2353 ZAPPIA JJ, 1991, ANN OTO RHINOL LARYN, V100, P914 NR 77 TC 116 Z9 120 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 1 EP 29 DI 10.1016/S0378-5955(96)00193-1 PG 29 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400001 PM 9083801 ER PT J AU Mitchell, A Miller, JM Finger, PA Heller, JW Raphael, Y Altschuler, RA AF Mitchell, A Miller, JM Finger, PA Heller, JW Raphael, Y Altschuler, RA TI Effects of chronic high-rate electrical stimulation on the cochlea and eighth nerve in the deafened guinea pig SO HEARING RESEARCH LA English DT Article DE deafness; cochlear implant; auditory nerve; electrical stimulation; guinea pig; spiral ganglion cell; otopathology ID BRAIN-STEM RESPONSE; IMPLANTS; CATS; INTENSITY; NUCLEUS; DAMAGE AB This study was undertaken to examine the effects of chronic high-rate stimulation on the eighth nerve and cochlea. Fifty-four male pigmented guinea pigs were deafened and implanted with single ball electrodes in scala tympani. Four groups of animals received chronic electrical stimulation at a level of 5 mu Col/cm(2)/ph for 1000 h as follows: Group A: 1000 Hz, 100 mu s/ph duration, 100 mu A peak; Group B: 250 Hz, 100 mu s/ph duration, 100 mu A peak; Group C: 2750 Hz, 36 mu s/ph duration, 250 mu A peak; Group D: 250 Hz, 400 mu s/ph duration, 25 mu A peak. Also, two control groups received 20 min stimulation during weekly electrically evoked auditory brainstem response (eABR) measurement (Group E) and about 5 s stimulation (Group Fl during a brief eABR 3 day postimplantation and at perfusion. On Day 50, animals were perfused, midmodiolar sections cut and a quantitative assessment of spiral ganglion cells (SGC) performed. All stimulated subjects showed a similar decrease in eABR thresholds and dynamic range over time. No stimulation conditions induced pathology. All stimulation conditions enhanced survival of SGCs compared to unimplanted ears and implanted non-stimulated ears (Group F). There were no statistically significant differences in SGC survival between any stimulated groups, including Group E stimulated once a week. In conclusion, high-rate stimulation, under the conditions of this study, provides no additional risks and the same benefits to SGC survival as low-rate stimulation. C1 UNIV MICHIGAN,KRESGE HEARING RES INST,ANN ARBOR,MI 48109. CR AGNEW WF, 1990, FUNDAMENTAL STUDIES AGNEW WF, 1993, NEUROSCIENCE, V52, P45, DOI 10.1016/0306-4522(93)90180-N AGNEW WF, 1989, ANN BIOMED ENG, V17, P39, DOI 10.1007/BF02364272 COLUMBO J, 1987, HEARING RES, V31, P287 DUCKERT LG, 1982, ANN OTO RHINOL LARYN, V91, P33 FINLEY CC, 1990, COCHLEAR IMPLANTS, P35 GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909 HALL RD, 1990, HEARING RES, V45, P123, DOI 10.1016/0378-5955(90)90188-U HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 JAVEL E, 1987, AUDITORY PROCESSING, P237 JAVEL E, 1990, COCHLEAR IMPLANTS, P35 JYUNG RW, 1989, OTOLARYNG HEAD NECK, V101, P670 KANO Y, 1987, BRAIN RES, V419, P262, DOI 10.1016/0006-8993(87)90592-0 KILENY PR, 1991, ANN OTO RHINOL LARYN, V100, P563 KILENY PR, 1988, ASHA, V10, P30 LEAKE PA, 1992, HEARING RES, V64, P99, DOI 10.1016/0378-5955(92)90172-J LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X LEAKE PA, 1995, HEARING RES, V82, P65 LOUSTEAU RJ, 1983, LARYNGOSCOPE, V97, P837 MACAULAY RB, 1995, ESTIMATED RANGE CURR MCCREERY DB, 1992, HEARING RES, V62, P42, DOI 10.1016/0378-5955(92)90201-W MCDERMOTT HJ, 1992, J ACOUST SOC AM, V91, P3367, DOI 10.1121/1.402826 Miller J. M., 1995, Annals of Otology Rhinology and Laryngology, V104, P57 Miller JM, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P378 MILLER JM, 1983, ANN OTO RHINOL LARYN, V92, P599 MILLER JM, 1994, AUDITORY PLASTICITY, P378 MILLER JM, 1995, 18 MIDW M ARO ST PET MILLER JM, 1992, NOISE INDUCED HEARIN, P130 PFINGST BE, 1981, ACTA OTO-LARYNGOL, V92, P1, DOI 10.3109/00016488109133232 PFINGST BE, 1983, ANN NY ACAD SCI, V405, P224, DOI 10.1111/j.1749-6632.1983.tb31635.x PFINGST BE, 1985, COCHLEAR IMPLANTS, P305 PFINGST BE, 1990, HEARING RES, V50, P43, DOI 10.1016/0378-5955(90)90032-K PFINGST BE, 1984, ARCH OTOLARYNGOL, V110, P140 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X SHEPHERD RK, 1990, STUDIES PEDIAT AUDIT Shepherd RK, 1990, COCHLEAR PROSTHESES, P69 SPELMAN FA, 1990, COCHLEAR IMPLANTS, P35 Spelman F. A., 1995, Annals of Otology Rhinology and Laryngology, V104, P131 Tykocinski M., 1995, Annals of Otology Rhinology and Laryngology, V104, P71 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 WILSON BS, 1993, J REHABIL RES DEV, V30, P110 Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 ZAPPIA JJ, 1989, HEARING RES, V40, P29, DOI 10.1016/0378-5955(89)90096-8 NR 46 TC 76 Z9 78 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 30 EP 43 DI 10.1016/S0378-5955(96)00202-X PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400002 PM 9083802 ER PT J AU Sakaguchi, N Spicer, SS Thomopoulos, GN Schulte, BA AF Sakaguchi, N Spicer, SS Thomopoulos, GN Schulte, BA TI Increased laminin deposition in capillaries of the stria vascularis of quiet-aged gerbils SO HEARING RESEARCH LA English DT Article DE aging; cochlea; immunohistochemistry; basement membrane; stria vascularis; collagen; type IV ID AUTOIMMUNE STRAIN MOUSE; GLOMERULAR-BASEMENT-MEMBRANES; INNER-EAR DISEASE; IV COLLAGEN; ULTRASTRUCTURAL-LOCALIZATION; COCHLEAR PATHOLOGY; HEARING-LOSS; PROTEINS; ANGIOGENESIS; COMPONENTS AB The distribution of laminin (LA) and type IV collagen (IV-C) in the gerbil inner ear was investigated by light and electron microscopic immunohistochemistry. Changes in protein expression were assessed from birth to old age to determine the relation of these constituents to maturation of the cochlea and development of presbyacusis. The distribution of LA paralleled that of IV-C during postnatal development, and both were visualized in the basement membrane (BM) of endothelial, epithelial and spiral ganglion cells in neonatal and young adult gerbils. Immunopositive BM underlying the stria vascularis disappeared at 8-12 days after birth coincident with the development and maturation of the strial capillaries. Immunoreactivity for LA afforded an index to the thickness of the BM and was found to increase with age only in the BM of strial capillaries. At 6 months of age, occasional strial capillaries in the apex of the cochlea showed thickening of the LA-positive BM. Abnormal deposition of LA in strial capillary BM spread to lower turns and increased in prevalence with advancing age, affecting apical and basal more than middle cochlear turns. Thickening of the capillary BM appeared to precede capillary obstruction which eventuated in complete strial atrophy. Staining for IV-C in the walls of the strial capillaries did not increase with age. The data show that LA and IV-C play important roles in postnatal development of the cochlea and that LA deposition increases with age only in the BM of strial capillaries. RP Sakaguchi, N (reprint author), MED UNIV S CAROLINA,DEPT PATHOL & LAB MED,171 ASHLEY AVE,CHARLESTON,SC 29425, USA. CR ABRAHAMSON DR, 1993, KIDNEY INT, V43, P73, DOI 10.1038/ki.1993.13 ABRAHAMSON DR, 1994, MICROSC RES TECHNIQ, V28, P81, DOI 10.1002/jemt.1070280202 ADLER S, 1994, J AM SOC NEPHROL, V5, P1165 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 CARBONETTO S, 1983, J NEUROSCI, V3, P2324 CASTRONOVO V, 1993, INVAS METAST, V13, P1 DESJARDINS M, 1991, J CELL BIOL, V113, P689, DOI 10.1083/jcb.113.3.689 DESJARDINS M, 1990, LAB INVEST, V63, P637 ENGEL J, 1992, BIOCHEMISTRY-US, V31, P10643, DOI 10.1021/bi00159a001 ENGVALL E, 1993, KIDNEY INT, V43, P2, DOI 10.1038/ki.1993.2 FORM DM, 1986, LAB INVEST, V55, P521 GRANT DS, 1994, PATHOL RES PRACT, V190, P854 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 GRATTON MA, 1995, HEARING RES, V82, P44 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P364 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 KLEPPEL MM, 1989, AM J PATHOL, V134, P813 KUSAKARI C, 1992, ANN OTO RHINOL LARYN, V101, P82 MANTHORPE M, 1983, J CELL BIOL, V97, P1882, DOI 10.1083/jcb.97.6.1882 MARSHALL GE, 1991, GRAEF ARCH CLIN EXP, V229, P157, DOI 10.1007/BF00170550 MCMENOMEY SO, 1992, OTOLARYNG HEAD NECK, V106, P288 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 MINER JH, 1994, J CELL BIOL, V127, P879, DOI 10.1083/jcb.127.3.879 Nariuchi H, 1994, Acta Otolaryngol Suppl, V514, P127 NICOSIA RF, 1994, DEV BIOL, V164, P197, DOI 10.1006/dbio.1994.1191 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 PAULER M, 1988, LARYNGOSCOPE, V98, P754 PAULSSON M, 1992, CRIT REV BIOCHEM MOL, V27, P93 PRAZMA J, 1990, ARCH OTOLARYNGOL, V116, P932 ROGERS SL, 1983, DEV BIOL, V98, P212, DOI 10.1016/0012-1606(83)90350-0 ROTH J, 1981, J HISTOCHEM CYTOCHEM, V29, P663 RUCKENSTEIN MJ, 1993, ACTA OTO-LARYNGOL, V113, P160, DOI 10.3109/00016489309135785 SAGARA T, 1995, HEARING RES, V83, P121, DOI 10.1016/0378-5955(94)00195-V SALT AN, 1987, LARYNGOSCOPE, V97, P984 Schmiedt RA, 1992, NOISE INDUCED HEARIN, P246 SCHNAPER HW, 1993, KIDNEY INT, V43, P20, DOI 10.1038/ki.1993.5 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K SONE M, 1995, HEARING RES, V83, P26, DOI 10.1016/0378-5955(94)00189-W SUGIYAMA S, 1992, HEARING RES, V58, P35, DOI 10.1016/0378-5955(92)90006-9 TAGO C, 1992, ANN OTO RHINOL LARYN, V101, P87 TAKAHASHI M, 1992, ANN OTO RHINOL LARYN, V101, P58 THOMOPOULOS GN, 1997, UNPUB HEAR RES TIMPL R, 1989, EUR J BIOCHEM, V180, P487, DOI 10.1111/j.1432-1033.1989.tb14673.x TIMPL R, 1994, MATRIX BIOL, V14, P275, DOI 10.1016/0945-053X(94)90192-9 TRUNE DR, 1989, HEARING RES, V38, P57, DOI 10.1016/0378-5955(89)90128-7 Tryggvason K, 1993, CURR OPIN CELL BIOL, V5, P877, DOI 10.1016/0955-0674(93)90038-R VANKUPPEVELT THMSM, 1994, MICROSC RES TECHNIQ, V28, P125, DOI 10.1002/jemt.1070280204 VANDENHEUVEL LPWJ, 1989, NEPHROL DIAL TRANSPL, V4, P770 WONG ML, 1992, HEARING RES, V59, P93, DOI 10.1016/0378-5955(92)90106-W YURCHENCO PD, 1994, CURR OPIN CELL BIOL, V6, P674, DOI 10.1016/0955-0674(94)90093-0 YURCHENCO PD, 1990, FASEB J, V4, P1577 NR 54 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 44 EP 56 DI 10.1016/S0378-5955(96)00180-3 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400003 PM 9083803 ER PT J AU Trune, DR Kempton, JB Hefeneider, SH Bennett, RM AF Trune, DR Kempton, JB Hefeneider, SH Bennett, RM TI Inner ear DNA receptors in MRL/lpr autoimmune mice: Potential 30 and 70 kDa link between autoimmune disease and hearing loss SO HEARING RESEARCH LA English DT Article DE autoimmune disease; ear; DNA receptor; auditory brainstem response ID CELL-SURFACE MOLECULES; LPR LPR MOUSE; SERUM ANTIBODIES; STRAIN MOUSE; ENDOTHELIAL-CELLS; MENIERES-DISEASE; BINDING PROTEIN; PATHOLOGY; IDENTIFICATION; COCHLEAR AB Inner ear function and systemic autoimmune disease were evaluated in the MRL/lpr mouse to determine their relationship with alterations in cell surface DNA receptors of 28-30 and 68-70 kDa size. Auditory brainstem response thresholds in the autoimmune disease mice were significantly elevated as early as 2 months of age when compared to MRL/++ controls. Hearing thresholds continued to rise with progression of the disease, manifested as increasing spleen weights, antinuclear (anti-DNA) antibodies, and serum immune complexes. Cochlear membranous labyrinth cells in the autoimmune mice bound less DNA, suggesting the DNA receptors were abnormally occupied by circulating antibodies. Western blots of a murine T-cell line probed with autoimmune mouse sera demonstrated reactivity to 28-30 and 68-70 kDa proteins after disease onset. It is hypothesized that cell surface DNA binding molecules could be masked or down-regulated by circulating antibodies in autoimmune disease. This interference with DNA receptor activity may be occurring within the inner ear and underlie the cochlear dysfunction seen in autoimmune sensorineural hearing loss. C1 OREGON HLTH SCI UNIV,DEPT MED,DIV ARTHRITIS & RHEUMAT DIS,PORTLAND,OR 97201. OREGON HLTH SCI UNIV,VET AFFAIRS MED CTR,DEPT IMMUNOL,PORTLAND,OR 97201. RP Trune, DR (reprint author), OREGON HLTH SCI UNIV,DEPT OTOLARYNGOL HEAD & NECK SURG,OREGON HEARING RES CTR NRC04,PORTLAND,OR 97201, USA. CR ARNOLD W, 1987, ACTA OTO-LARYNGOL, V103, P373 ARNOLD WJ, 1985, IMMUNOBIOLOGY AUTOIM, P131 BENNETT RM, 1992, CLIN EXP IMMUNOL, V90, P428 BENNETT RM, 1991, CLIN EXP IMMUNOL, V86, P374 BENNETT RM, 1988, J EXP MED, V166, P850 BILLINGS PB, 1995, ANN OTO RHINOL LARYN, V104, P181 BILLINGS PB, 1996, ASS RES OTOLARYNGOL, P38 BLOCH DB, 1995, ARCH OTOLARYNGOL, V121, P1167 CHAN TM, 1992, CLIN EXP IMMUNOL, V88, P68 CHAN TM, 1993, CLIN EXP IMMUNOL, V91, P110 COHEN PL, 1991, ANNU REV IMMUNOL, V9, P243, DOI 10.1146/annurev.iy.09.040191.001331 FRAMPTON G, 1991, J AUTOIMMUN, V4, P463, DOI 10.1016/0896-8411(91)90159-A GOTTSCHLICH S, 1995, LARYNGOSCOPE, V105, P1347, DOI 10.1288/00005537-199512000-00016 HARADA T, 1992, ANN OTO RHINOL LARYN, V101, P72 HEFENEIDER SH, 1992, LUPUS, V1, P167, DOI 10.1177/096120339200100308 HEFENEIDER SH, 1993, AUTOIMMUNITY, V15, P187, DOI 10.3109/08916939309019926 HEFENEIDER SH, 1992, CLIN IMMUNOL IMMUNOP, V63, P245, DOI 10.1016/0090-1229(92)90229-H HEFENEIDER SH, 1990, J INVEST DERMATOL, V94, pS79, DOI 10.1111/1523-1747.ep12875170 HUGHES GB, 1984, LARYNGOSCOPE, V94, P758 JOLIAT T, 1992, ANN OTO RHINOL LARYN, V101, P1000 KUSAKARI C, 1992, ANN OTO RHINOL LARYN, V101, P82 KYOGOKU M, 1987, ANIMAL MODELS ASSESS, P95 LIN DW, 1997, IN PRESS OTOLARYNGOL MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585 MCMENOMEY SO, 1992, OTOLARYNG HEAD NECK, V106, P288 Mitchell C R, 1994, J Am Acad Audiol, V5, P110 MOSCICKI RA, 1994, JAMA-J AM MED ASSOC, V272, P611, DOI 10.1001/jama.272.8.611 RAUCH SD, 1995, AM J OTOL, V16, P648 RUCKENSTEIN MJ, 1994, OTOLARYNGOL HEAD NEC, V111, pP68 RUCKENSTEIN MJ, 1993, ACTA OTO-LARYNGOL, V113, P160, DOI 10.3109/00016489309135785 SONE M, 1995, HEARING RES, V83, P26, DOI 10.1016/0378-5955(94)00189-W STEPHENS SDG, 1982, AUDIOLOGY, V21, P128 TAGO C, 1992, ANN OTO RHINOL LARYN, V101, P87 TOMODA K, 1992, ANN OTO RHINOL LARYN, V101, P63 Trune DR, 1996, HEARING RES, V95, P57, DOI 10.1016/0378-5955(96)00018-4 TRUNE DR, 1991, AM J OTOLARYNG, V12, P259, DOI 10.1016/0196-0709(91)90003-X TRUNE DR, 1989, HEARING RES, V38, P57, DOI 10.1016/0378-5955(89)90128-7 WATANABEFUKUNAGA R, 1992, NATURE, V356, P314, DOI 10.1038/356314a0 YAMANOBE S, 1993, LARYNGOSCOPE, V103, P319, DOI 10.1288/00005537-199303000-00013 NR 39 TC 22 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 57 EP 64 DI 10.1016/S0378-5955(96)00191-8 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400004 PM 9083804 ER PT J AU Zheng, XY Henderson, D Hu, BH McFadden, SL AF Zheng, XY Henderson, D Hu, BH McFadden, SL TI Recovery of structure and function of inner ear afferent synapses following kainic acid excitotoxicity SO HEARING RESEARCH LA English DT Article DE cochlear nerve; drug effect; glutamate neurotoxicity; hearing loss; cochlea, base vs. apex ID GUINEA-PIG COCHLEA; PRODUCT OTOACOUSTIC EMISSIONS; RAT COCHLEA; HAIR-CELLS; GLUTAMATE NEUROTOXICITY; DISTORTION PRODUCTS; MUTANT MICE; GANGLION; HEARING; NEURONS AB The present study was conducted to examine the re-establishment of IHC/VIII nerve synapses following kainic acid (KA) excitotoxicity and to discern if the re-organized afferents could render not only a normal auditory threshold but also a normal supra-threshold function. KA (60 mM) applied to the intact round window membrane in chinchilla destroyed postsynaptic endings of the auditory nerve, depressed the input-output (I/O) functions of auditory evoked potentials (EVP) and produced an average loss of sensitivity of over 80 dB at 4, 8, and 16 kHz, with less substantial losses (40-60 dB) at lower frequencies. However, there was no significant difference in 2f(1)-f(2) distortion-product otoacoustic emissions (DPOAE) before and after the application of KA. The nerve endings went through a sequence of swelling, degeneration and recovery over a 3-5 day period at higher frequency. Auditory sensitivity and supra-threshold response returned accordingly. In contrast; complete recovery at lower frequencies (1 and 2 kHz) required more than 5 days. The results provide strong evidence that (1) excitotoxically damaged cochlear afferent neurons can recover and render both a normal EVP threshold and EVP I/O function and (2) afferent innervation to IHCs is not necessary for DPOAE generation. C1 SUNY BUFFALO,HEARING RES LABS,DEPT COMMUNICAT DISORDERS & SCI,BUFFALO,NY 14214. CR ALTSCHULER RA, 1989, HEARING RES, V42, P167, DOI 10.1016/0378-5955(89)90142-1 Bergman B M, 1995, J Am Acad Audiol, V6, P150 BLEDSOE SC, 1981, HEARING RES, V4, P109, DOI 10.1016/0378-5955(81)90040-X COYLE JT, 1983, J NEUROCHEM, V41, P1 CROFTON KM, 1994, HEARING RES, V80, P129, DOI 10.1016/0378-5955(94)90104-X DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 FELIX D, 1990, EUR ARCH OTO-RHINO-L, V248, P1, DOI 10.1007/BF00634769 GODFREY DA, 1976, J HISTOCHEM CYTOCHEM, V24, P470 GODFREY DA, 1985, ANN OTO RHINOL LARYN, V94, P409 HALL JW, 1994, OTOLARYNG HEAD NECK, V110, P22, DOI 10.1016/S0194-5998(94)70789-8 HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321 HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 JANSSEN R, 1991, BRAIN RES, V552, P255, DOI 10.1016/0006-8993(91)90090-I JUIZ JM, 1988, ACTA OTO-LARYNGOL, V106, P29, DOI 10.3109/00016488809107367 JUIZ JM, 1989, HEARING RES, V40, P65, DOI 10.1016/0378-5955(89)90100-7 KUJAWA SG, 1992, HEARING RES, V61, P106, DOI 10.1016/0378-5955(92)90041-K LEFEBVRE PP, 1991, BRAIN RES, V555, P75, DOI 10.1016/0006-8993(91)90862-P LI HS, 1994, HEARING RES, V78, P235, DOI 10.1016/0378-5955(94)90029-9 LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X LONSBURYMARTIN BL, 1990, EAR HEARING, V11, P144 NAKAGAWA T, 1991, J NEUROPHYSIOL, V65, P715 OHLMS LA, 1991, OTOLARYNG HEAD NECK, V104, P159 PUEL JL, 1991, NEUROSCIENCE, V45, P63, DOI 10.1016/0306-4522(91)90103-U PUEL JL, 1991, HEARING RES, V51, P255, DOI 10.1016/0378-5955(91)90042-8 PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67 PUJOL R, 1993, ACTA OTO-LARYNGOL, V113, P330, DOI 10.3109/00016489309135819 PUJOL R, 1994, BRIT J AUDIOL, V28, P185, DOI 10.3109/03005369409086567 PUJOL R, 1995, AUDITORY PLASTICITY, P100 PUJOL R, 1985, HEARING RES, V18, P145, DOI 10.1016/0378-5955(85)90006-1 QIU CX, 1996, ARO MIDW M, V19, P112 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X ROTHMAN SM, 1987, TRENDS NEUROSCI, V10, P299, DOI 10.1016/0166-2236(87)90177-9 RUEDA J, 1989, ACTA OTO-LARYNGOL, V107, P59, DOI 10.3109/00016488909127479 SCHROTT A, 1989, HEARING RES, V40, P213, DOI 10.1016/0378-5955(89)90162-7 SCHROTT A, 1991, HEARING RES, V52, P245, DOI 10.1016/0378-5955(91)90204-M SCHWEITZER L, 1991, NEUROTOXICOL TERATOL, V13, P189, DOI 10.1016/0892-0362(91)90010-T SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 SUBRAMANIAM M, 1994, HEARING RES, V74, P204, DOI 10.1016/0378-5955(94)90188-0 TRAUTWEIN P, 1996, ABSTR ASS RES OT, P94 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 Zheng XY, 1996, HEARING RES, V95, P161, DOI 10.1016/0378-5955(96)00047-0 NR 42 TC 36 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 65 EP 76 DI 10.1016/S0378-5955(96)00188-8 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400005 PM 9083805 ER PT J AU Biasutti, M AF Biasutti, M TI Sharp low- and high-frequency limits on musical chord recognition SO HEARING RESEARCH LA English DT Article DE tonal perception; chords recognition; musical intervals; tonality; frequency resolution; critical bandwidth ID PITCH; DISCRIMINATION AB This research is concerned with the recognition of major and minor triads in low- and high-frequency regions. Tts specific; aim is to determine the limitations on the frequency range within which musicians can recognize minor and major triads. Twelve subjects were tested in a task in which the stimuli were successions of minor and major triads centered on frequencies ranging from 39 to 8372 Hz. Subjects were asked to say, for each triad, if it had or did not have the characteristics of a minor or a major chord. Minor and major chords were presented in separate blocks. Results show that subjects failed to recognize minor and major triads when placed below approximately 120 Hz and above approximately 3000 Hz. Statistical analysis of results also demonstrates that the failure to recognize triads differed at the low- and high-frequency ends of this range-occurring much more abruptly at the low-frequency border. The failures at the borders, and some differences there in the identifiability of major and minor triads, may possibly be related to inadequate spatial resolution of components at the lower-frequency border and to frequency limitations on phase-locking at the higher. RP Biasutti, M (reprint author), UNIV PADUA,DEPT EDUC SCI,PHD PROGRAM,PIAZZA CAPITANIATO 3 & VIA VIOTTI 19,I-35132 PADUA,ITALY. CR ATTNEAVE F, 1971, AM J PSYCHOL, V84, P147, DOI 10.2307/1421351 BACHEM A, 1948, J ACOUST SOC AM, V20, P704, DOI 10.1121/1.1906428 BATTISTELLI A, 1988, GIORNALE ITAL PSICOL, V15, P235 DEMANY L, 1985, J ACOUST SOC AM, V78, P1118, DOI 10.1121/1.393034 DEUTSCH D, 1972, PSYCHOPHYS, V9, P348 DOWLING WJ, 1973, PERCEPT PSYCHOPHYS, V14, P37, DOI 10.3758/BF03198614 DOWLING WJ, 1977, PERCEPT PSYCHOPHYS, V21, P60, DOI 10.3758/BF03199469 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Greenwood DD, 1996, J ACOUST SOC AM, V99, P1029, DOI 10.1121/1.414632 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 GREENWOOD DD, 1991, HEARING RES, V54, P164, DOI 10.1016/0378-5955(91)90117-R Guthrie ER, 1928, AM J PSYCHOL, V40, P624, DOI 10.2307/1414344 Handel S, 1989, LISTENING INTRO PERC HARRIS JD, 1952, J ACOUST SOC AM, V24, P750, DOI 10.1121/1.1906970 HENNING GB, 1966, J ACOUST SOC AM, V39, P366 HOUSE WJ, 1977, PERCEPT PSYCHOPHYS, V21, P586, DOI 10.3758/BF03198742 HOUTSMA AJM, 1984, MUSIC PERCEPT, V1, P296 HOUTSMA AJM, 1972, J ACOUST SOC AM, V38, P548 HURON D, 1992, MUSIC PERCEPT, V10, P129 KASTNER G, 1909, PSYCHOL STUDIEN, V4, P473 KRUMHANSL CL, 1982, J EXP PSYCHOL HUMAN, V8, P24 LOCKHEAD GR, 1981, J ACOUST SOC AM, V70, P387, DOI 10.1121/1.386773 MAYER AM, 1894, PHILOS MAG, V37, P259 MOORE BCJ, 1989, J ACOUST SOC AM, V86, P1722, DOI 10.1121/1.398603 MOORE BCJ, 1977, INTRO PSYCHOL HEARIN OHGUSHI K, 1983, J ACOUST SOC AM, V76, P1694 OHGUSHI K, 1989, P 13 INT C AC BELGR, V3, P27 PARNCUTT R., 1989, HARMONY PSYCHOACOUST PIERCE JR, 1983, SCI MUSICAL SOUNDS PLOMP R, 1968, J ACOUST SOC AM, V43, P883, DOI 10.1121/1.1910916 PLOMP R, 1965, J ACOUST SOC AM, V38, P548, DOI 10.1121/1.1909741 Rasch RA, 1982, PSYCHOL MUSIC, P1 ROBINSON DW, 1956, BR J APPL PHYS, V7 ROEDERER JG, 1975, INTRO PHYSICS PSYCHO Schole H, 1934, Z PSYCHOL PHYSIOL SI, V131, P1 SEMAL C, 1990, MUSIC PERCEPT, V8, P165 SHOWER EG, 1931, J ACOUST SOC AM, V2, P275 SMOORENB.GF, 1970, J ACOUST SOC AM, V48, P924, DOI 10.1121/1.1912232 TURNER CW, 1982, J SPEECH HEAR RES, V24, P34 WARD WD, 1954, J ACOUST SOC AM, V26, P269 WARREN RM, 1975, PERCEPT PSYCHOPHYS, V18, P273, DOI 10.3758/BF03199374 WEVER EG, 1941, PSYCHOL BULL, V38, pA727 WHITE BW, 1960, AM J PSYCHOL, V73, P100, DOI 10.2307/1419120 NR 43 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 77 EP 84 DI 10.1016/S0378-5955(96)00205-5 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400006 PM 9083806 ER PT J AU Gdowski, GT Voigt, HF AF Gdowski, GT Voigt, HF TI Response map properties of units in the dorsal cochlear nucleus of barbiturate-anesthetized gerbil (Meriones unguiculatus) SO HEARING RESEARCH LA English DT Article DE dorsal cochlear nucleus; response map; barbiturate-anesthetized; gerbil ID INFERIOR COLLICULUS; MONGOLIAN GERBIL; HORSERADISH-PEROXIDASE; AMPLITUDE-MODULATION; AUDITORY-NERVE; BRAIN-STEM; CAT; NEURONS; CELLS; SUPPRESSION AB The response map scheme introduced by Evans and Nelson (1973) and modified by others, including Davis et al. (1996) for use with gerbils, has been used primarily for classifying units recorded in the cochlear nucleus of unanesthetized decerebrate preparations. Units lacking spontaneous activity (SpAc) have been classified as either type I/III or type II units based on the relative strength of their responses to broad-band noise compared to their responses to best-frequency (BF) tones. The relative noise index (rho), a ratio of these responses after SpAc is subtracted out, provides a convenient measure of this relative strength. In this paper, responses of 320 units recorded in the dorsal cochlear nucleus (DCN) of barbiturate-anesthetized gerbils to short-duration BF tones and broad-band noise were recorded. Since 87.5% of these units lacked SpAc, their response maps resembled those of type II and type I/III units. Units were characterized by rho and the normalized slope (m) of a best line fit to the BF rate versus level plot starting from the sound level corresponding to the first inflection point of the rate curve (typically its maximum value or the start of its sloping saturation). The distributions of rho and m values do not form distinct clusters as they do for units iq the decerebrate preparation. Thus, the criteria developed for classifying DCN units in the decerebrate preparation do not appear appropriate for units in the barbiturate-anesthetized preparation. Deposits of horseradish peroxidase were used to locate 52 units. Most of the low SpAc units, 56% with poor noise responses (5/9) and nearly 70% with strong noise responses (25/36), and nearly all of the high SpAc units (6/7), were located either within or below the fusiform cell layer. C1 BOSTON UNIV,DEPT BIOMED ENGN,CTR HEARING RES,BOSTON,MA 02215. BOSTON UNIV,DEPT OTOLARYNGOL,CTR HEARING RES,BOSTON,MA 02215. BOSTON UNIV,DEPT BIOMED ENGN,BOSTON,MA 02215. CR BENSON TE, 1995, J NEUROSCI METH, V57, P81, DOI 10.1016/0165-0270(94)00131-Y BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 Bourk TR, 1976, THESIS MIT CAMBRIDGE Davis KA, 1996, J NEUROPHYSIOL, V75, P1411 DAVIS KA, 1995, J NEUROSCI METH, V57, P107, DOI 10.1016/0165-0270(94)00146-8 DAVIS KA, 1995, THESIS BOSTON U BOST DING J, 1997, IN PRESS J NEUROPHYS Ding J., 1994, Society for Neuroscience Abstracts, V20, P136 DING J, 1994, ABSTR ASS RES OT, V17, P17 DING J, 1997, THESIS BOSTON U BOST DISTERHOFT JF, 1980, J COMP NEUROL, V192, P687, DOI 10.1002/cne.901920405 EVANS EF, 1973, EXP BRAIN RES, V17, P402 FAN H, 1997, IN PRESS ABSTR ASS R, V19 FINCK A, 1966, J AUD RES, V6, P313 FRISINA RD, 1985, EXP BRAIN RES, V60, P417 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1982, HEARING RES, V6, P259, DOI 10.1016/0378-5955(82)90059-4 FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z GDOWSKI GT, 1995, THESIS BOSTON U BOST GODFREY DA, 1975, J COMP NEUROL, V162, P269, DOI 10.1002/cne.901620207 HUI GS, 1980, EXP NEUROL, V69, P675 KALTENBACH JA, 1987, EXP NEUROL, V96, P406, DOI 10.1016/0014-4886(87)90058-6 KALTENBACH JA, 1993, HEARING RES, V67, P35, DOI 10.1016/0378-5955(93)90229-T KANE EC, 1974, J COMP NEUROL, V155, P301, DOI 10.1002/cne.901550303 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 LAY DOUGLAS, 1972, J MORPHOL, V138, P41, DOI 10.1002/jmor.1051380103 Lorente de No R., 1933, LARYNGOSCOPE, V43, P1 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC MCGINN MD, 1987, HEARING RES, V31, P235, DOI 10.1016/0378-5955(87)90193-6 MCGINN MD, 1993, ABSTR ASS RES OT, V16, P154 MOORE DR, 1985, J COMP NEUROL, V240, P180, DOI 10.1002/cne.902400208 NELKEN I, 1994, J NEUROPHYSIOL, V71, P2446 NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203 OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206 OLIVER DL, 1984, J COMP NEUROL, V224, P155, DOI 10.1002/cne.902240202 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 RAVICZ ME, 1992, J ACOUST SOC AM, V92, P157, DOI 10.1121/1.404280 Ravicz ME, 1996, J ACOUST SOC AM, V99, P3044, DOI 10.1121/1.414793 RHODE WS, 1986, J NEUROPHYSIOL, V56, P287 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 RHODE WS, 1987, J NEUROPHYSIOL, V57, P414 RHODE WS, 1983, J COMP NEUROL, V213, P426, DOI 10.1002/cne.902130407 RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 SANES DH, 1987, J NEUROSCI, V7, P3793 SCHMIEDT RA, 1977, J ACOUST SOC AM, V61, P133, DOI 10.1121/1.381283 SCHMIEDT RA, 1989, HEARING RES, V42, P22 SCHWARTZ I R, 1988, Society for Neuroscience Abstracts, V14, P491 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 SMITH RL, 1971, J ACOUST SOC AM, V50, P1520, DOI 10.1121/1.1912805 SOKOLICH W G, 1973, Journal of the Acoustical Society of America, V54, P283, DOI 10.1121/1.1978024 STATLER KD, 1990, HEARING RES, V50, P275, DOI 10.1016/0378-5955(90)90051-P VANGISBERGER JAM, 1975, EXP BRAIN RES, V23, P367 VOIGT HF, 1988, J NEUROPHYSIOL, V59, P1014 VOIGT HF, 1985, EXP BRAIN RES, V60, P594 WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 YOUNG ED, 1988, J NEUROPHYSIOL, V59, P1 NR 61 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 85 EP 104 DI 10.1016/S0378-5955(96)00196-7 PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400007 PM 9083807 ER PT J AU Ochi, K Eggermont, JJ AF Ochi, K Eggermont, JJ TI Effects of quinine on neural activity in cat primary auditory cortex SO HEARING RESEARCH LA English DT Article DE quinine; cat; auditory cortex; single-unit; cross-correlation; spontaneous activity; tinnitus ID OTOACOUSTIC EMISSIONS; INFERIOR COLLICULUS; COCHLEAR POTENTIALS; IONIC CURRENTS; SINGLE UNITS; GUINEA-PIG; SALICYLATE; TINNITUS; CELLS; RATS AB The effect of systemically applied quinine on single-unit firing activity in primary auditory cortex was investigated in seven cats. A dose of 100 or 200 mg/kg of quinine hydrochloride was administered intramuscularly and recordings from the same units were performed prior to application and continuously up to on average 5.5 h after administration. All animals showed 10-40 dB of threshold shift about 30 min after administration and some animals showed recovery during the course of the investigation. Significant increases were found in spontaneous firing rates for low-firing-rate units (initial firing rate < 1 spike/s). For high-firing-rate units (initial firing rate > 1 spike/s) no significant changes were observed. There were no significant changes in modal and mean interspike interval. The time-to-rebound peak in the autocorrelation function for spontaneous firings was not altered significantly. The rate of burst occurrence showed no significant change. The best modulation frequency in response to stimulation with periodic click trains decreased after administration, but the limiting rate did not change. Peak cross-correlation coefficients for the spontaneous firings of simultaneously recorded cells showed a significant increase and the correlogram's central peak was significantly narrower after quinine application. Dose effects were only present for cross-correlation results and temporal modulation transfer functions. The results for both spontaneous firing rate, peak width in the cross-correlogram and click stimulation were similar to those observed in salicylate-treated cats (Ochi and Eggermont, 1996). The other findings were different from those observed after salicylate. It is obvious that the effects of quinine on the auditory system are not the same as those of salicylate. The increased synchronization of the spontaneous firings across different neurons observed after application of both drugs may be related to tinnitus. C1 UNIV CALGARY,DEPT PSYCHOL,CALGARY,AB T2N 1N4,CANADA. CR ARMANDOHARDY M, 1975, J PHYSIOL-LONDON, V250, P32 ATTWELL D, 1979, J PHYSIOL-LONDON, V295, P69 ATWATER I, 1979, J PHYSIOL-LONDON, V288, P575 BRENNAN JF, 1991, ACTA NEUROBIOL EXP, V51, P15 BURGIN H, 1979, J PHYSIOL-LONDON, V287, P15 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Eggermont J. J., 1984, J LARYNGOL OTOL S, V9, P31 Eggermont JJ, 1990, CORRELATIVE BRAIN TH EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z Eggermont JJ, 1995, MECH TINNITUS, P21 EGGERMONT JJ, 1994, J NEUROPHYSIOL, V71, P246 EGGERMONT JJ, 1993, J NEUROPHYSIOL, V69, P1292 EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76 EGGERMONT JJ, 1994, HEARING RES, V74, P51, DOI 10.1016/0378-5955(94)90175-9 EGGERMONT JJ, 1992, HEARING RES, V61, P1, DOI 10.1016/0378-5955(92)90029-M Eggermont JJ, 1996, NEUROREPORT, V7, P753, DOI 10.1097/00001756-199602290-00018 EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227 ELENO N, 1990, INT ARCH ALLER A IMM, V92, P162 Evans E F, 1981, Ciba Found Symp, V85, P108 HAGIWARA S, 1983, J PHYSIOL-LONDON, V336, P649 HERMANN A, 1984, J GEN PHYSIOL, V83, P919, DOI 10.1085/jgp.83.6.919 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 JASTREBOFF PJ, 1988, ANN NY ACAD SCI, P716 JASTREBOFF PJ, 1991, ARCH OTOLARYNGOL, V117, P1162 JUNG TTK, 1993, OTOLARYNG CLIN N AM, V26, P791 KARLSSON KK, 1991, SCAND AUDIOL, V20, P83, DOI 10.3109/01050399109070795 KARLSSON KK, 1990, NEUROSCI LETT, V116, P101, DOI 10.1016/0304-3940(90)90393-N LLINAS RR, 1988, SCIENCE, V242, P1654, DOI 10.1126/science.3059497 MCFADDEN D, 1994, J ACOUST SOC AM, V95, P3460, DOI 10.1121/1.410022 MOLLER AR, 1984, ANN OTO RHINOL LARYN, V93, P39 MULHERAN M, 1990, THESIS U KEELE STAFF, P1 NORENBERG W, 1994, J PHYSIOL-LONDON, V475, P15 Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 OHMORI H, 1984, J PHYSIOL-LONDON, V350, P561 PUEL JL, 1990, OTOLARYNG HEAD NECK, V102, P66 NETO FR, 1980, EUR J PHARMACOL, V68, P155, DOI 10.1016/0014-2999(80)90316-7 SAVAGE AO, 1989, COMP BIOCH PHYSL C, V92, P2 SMITH DI, 1985, AM J OTOLARYNG, V6, P280, DOI 10.1016/S0196-0709(85)80056-9 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E WANG J, 1993, HEARING RES, V68, P152 WANG XB, 1994, AM J PHYSIOL, V266, pE39 NR 44 TC 49 Z9 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 105 EP 118 DI 10.1016/S0378-5955(96)00201-8 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400008 PM 9083808 ER PT J AU ConeWesson, BK Hill, KG Liu, GB AF ConeWesson, BK Hill, KG Liu, GB TI Auditory brainstem response in tammar wallaby (Macropus eugenii) SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; wallaby; marsupial ID EVOKED-RESPONSE; STEM RESPONSES; CROSS-CORRELATION; NORMAL-HEARING; POTENTIALS; THRESHOLD; POLARITY; CAT; DEPENDENCIES; MARSUPIALS AB Auditory brainstem responses (ABR) elicited by click and tonal stimuli were recorded from the tammar wallaby (Macropus eugenii), a marsupial mammal. The morphology, threshold, amplitude, and latency of ABRs recorded in the tammar wallaby are similar to those of other marsupials and mammals used in auditory research, including humans. Thresholds determined by an algorithm employing cross-correlation and by conventional visual detection methods were comparable. The findings from this study indicate that tammar wallaby is a suitable model for auditory research and that algorithms employing cross-correlation are useful for detection of the ABR waveform. C1 AUSTRALIAN NATL UNIV, RES SCH BIOL SCI, DEV NEUROBIOL LAB, CANBERRA, ACT 2601, AUSTRALIA. RP ConeWesson, BK (reprint author), UNIV MELBOURNE, DEPT OTOLARYNGOL, 390 ALBERT ST, MELBOURNE, VIC 3002, AUSTRALIA. CR AITKIN L, 1994, J COMP NEUROL, V341, P2 AITKIN L, 1995, HEARING RES, V82, P257, DOI 10.1016/0378-5955(94)00182-P ARLINGER SD, 1978, ACTA OTO-LARYNGOL, V85, P318, DOI 10.3109/00016487809121457 ARNOLD SA, 1985, EAR HEARING, V6, P144 BRINKMANN R D, 1979, Scandinavian Audiology, V8, P27, DOI 10.3109/01050397909076298 BULLOCK TH, 1986, EVOKED POTENTIAL, P155 BURKARD R, 1990, AUDIOLOGY, V29, P146 BURKARD R, 1989, J ACOUST SOC AM, V85, P2514, DOI 10.1121/1.397746 CHIAPPA KH, 1979, ARCH NEUROL-CHICAGO, V36, P81 COLES RB, 1986, J EXP BIOL, V121, P371 Cone-Wesson B, 1995, AM J AUDIOL, V4, P14 CONEWESSON BK, 1995, 18 MIDW RES M ARO, P111 CORWIN JT, 1982, ELECTROEN CLIN NEURO, V54, P629, DOI 10.1016/0013-4694(82)90117-1 DIRKS D, 1973, MODERN DEV AUDIOLOGY, P1 DOBIE RA, 1989, EAR HEARING, V10, P2 DOBIE RA, 1993, EAR HEARING, V14, P31, DOI 10.1097/00003446-199302000-00005 DOBIE RA, 1984, J ACOUST SOC AM, V76, P1411, DOI 10.1121/1.391458 DON M, 1984, SCAND AUDIOL, V13, P1 FULLERTON BC, 1987, ELECTROEN CLIN NEURO, V66, P547, DOI 10.1016/0013-4694(87)90102-7 GALBRAITH GC, 1990, ELECTROEN CLIN NEURO, V77, P295, DOI 10.1016/0168-5597(90)90068-O GERULL G, 1985, SCAND AUDIOL, V14, P141, DOI 10.3109/01050398509045935 HECOX K, 1982, ANN NY ACAD SCI, V388, P538, DOI 10.1111/j.1749-6632.1982.tb50815.x Hermmann B.S., 1995, AM J AUDIOL, V4, P6 HILL K G, 1981, Proceedings of the Australian Physiological and Pharmacological Society, V12, p170P HOOD LJ, 1991, HEARING RES, V55, P109, DOI 10.1016/0378-5955(91)90097-S JACOBSON GP, 1994, PRINCIPLES APPL AUDI, P387 JEWETT DL, 1971, BRAIN, V94, P681, DOI 10.1093/brain/94.4.681 KELLY JB, 1989, HEARING RES, V39, P231, DOI 10.1016/0378-5955(89)90043-9 KRAUS N, 1985, HEARING RES, V17, P219, DOI 10.1016/0378-5955(85)90066-8 LIU GB, 1994, P AUSTR NEUROSCI SOC, V5, pA217 LIU GB, 1995, P AUSTR NEUROSCI SOC, V6, pA121 MAIR IWS, 1985, ACTA OTO-LARYNGOL, V99, P377, DOI 10.3109/00016488509108926 MARK RF, 1992, TRENDS NEUROSCI, V15, P51, DOI 10.1016/0166-2236(92)90026-5 *MATHW INC, 1993, MATLAB VERS 3 5 MOLLER AR, 1986, AUDIOLOGY, V25, P29 MOREY AL, 1990, DEV BRAIN RES, V52, P279, DOI 10.1016/0165-3806(90)90246-U PEAKE WT, 1962, BIOPHYS J, V2, P23 PETTIGREW AG, 1987, DEV BRAIN RES, V33, P267, DOI 10.1016/0165-3806(87)90159-3 RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U Reimer K, 1996, HEARING RES, V92, P143 Reimer K, 1995, AUDIOLOGY, V34, P334 SALT AN, 1990, AUDIOLOGY, V29, P135 SALT AN, 1984, SCAND AUDIOL, V13, P119, DOI 10.3109/01050398409043050 SALVI RJ, 1987, EAR HEARING, V8, P151, DOI 10.1097/00003446-198706000-00004 SCHWEITZER L, 1987, HEARING RES, V25, P249, DOI 10.1016/0378-5955(87)90096-7 SININGER YS, 1989, J SPEECH HEAR RES, V32, P880 STAPELLS DR, 1981, EAR HEARING, V2, P20 STAPELLS DR, 1995, EAR HEARING, V16, P361, DOI 10.1097/00003446-199508000-00003 STAPELLS DR, 1982, J ACOUST SOC AM, V72, P74, DOI 10.1121/1.388026 THORNTON AR, 1981, J ACOUST SOC AM, V70, P1814, DOI 10.1121/1.387181 WAITE PME, 1991, DEV BRAIN RES, V58, P35, DOI 10.1016/0165-3806(91)90234-A WALSH EJ, 1986, J ACOUST SOC AM, V79, P712, DOI 10.1121/1.393461 WENNGREN BI, 1988, ACTA OTO-LARYNGOL, V106, P238, DOI 10.3109/00016488809106431 WILLARD FH, 1993, NATO ADV SCI INST SE, V239, P29 NR 54 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 119 EP 129 DI 10.1016/S0378-5955(96)00199-2 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400009 PM 9083809 ER PT J AU Ford, MS Maggirwar, SB Rybak, LP Whitworth, C Ramkumar, V AF Ford, MS Maggirwar, SB Rybak, LP Whitworth, C Ramkumar, V TI Expression and function of adenosine receptors in the chinchilla cochlea SO HEARING RESEARCH LA English DT Article DE adenosine; adenosine receptor; cochlea; antioxidant enzyme; cytoprotection ID ADENYLATE CYCLASE SYSTEM; GUINEA-PIG COCHLEA; RAT COCHLEA; HAIR-CELLS; SUPEROXIDE DISMUTASE; CYCLIC-AMP; G-PROTEINS; INNER-EAR; ATP; GLUTATHIONE AB Previous studies indicate the presence of adenosine receptors in the cochlear tissues obtained from different animals. This study was initiated to determine the subtypes of adenosine receptor (AR) present in the chinchilla cochlea and to assess their function. Radioligand binding studies demonstrate the presence of both the A(1)AR and A(3)AR in membranes prepared from the cochlea, using the radioligands [H-3]DPCPX and [I-125]APNEA. Estimates of the number (B-max) of A(1)AR and A(1)AR plus A(3)AR by saturation curves were 118 +/- 13 and 417 +/- 120 fmol/mg, respectively, with the respective equilibrium dissociation constants (K-d) averaging 2.7 +/- 0.2 and 26.3 +/- 13.8 nM. No significant number of A(2a)AR were detected using [H-3]CGS21680. The nonhydrolyzable adenosine analog R-phenylisopropyladenosine (R-PIA, 1 mu M) elicited a small but significant degree of inhibition of forskolin-stimulated adenylyl cyclase activity (10.4 +/- 2.5%) in cochlear membrane preparations, which was insensitive to blockade by theophylline (100 mu M). Furthermore, R-PIA elicited an increase in inositol 1,4,5-trisphosphate production in dissociated cell preparations obtained from the cochlea. No significant effect of R-PIA was observed on auditory measures such as auditory brainstem evoked response, cochlear action potential and endocochlear potential following round window application. However, round window application of R-PIA elicited significant increases in the activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase and significantly reduced the levels of malondialdehyde, a marker of lipid peroxidation. These results suggest a potential cytoprotective role of adenosine in the cochlea against oxidative damage. C1 SO ILLINOIS UNIV,SCH MED,DEPT PHARMACOL,SPRINGFIELD,IL 62794. PENN STATE UNIV,MILTON S HERSHEY MED CTR,DEPT MICROBIOL & IMMUNOL,HERSHEY,PA 17033. SO ILLINOIS UNIV,SCH MED,DEPT SURG,SPRINGFIELD,IL 62794. CR AEBI H, 1984, METHOD ENZYMOL, V105, P121 AHLSTROM P, 1975, LARYNGOSCOPE, V85, P1241, DOI 10.1288/00005537-197507000-00016 ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 BARTOLAMI S, 1993, HEARING RES, V67, P203, DOI 10.1016/0378-5955(93)90248-Y BILLETT TE, 1989, HEARING RES, V41, P189, DOI 10.1016/0378-5955(89)90010-5 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999 Burnstock G, 1978, CELL MEMBRANE RECEPT, P107 CARLBERG I, 1985, METHOD ENZYMOL, V113, P484 CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 DELAHUNTY TM, 1988, BIOCHEM J, V255, P69 DELEAN A, 1982, MOL PHARMACOL, V21, P5 DOI K, 1992, ACTA OTO-LARYNGOL, V112, P667, DOI 10.3109/00016489209137457 DRESCHER DG, 1992, J NEUROCHEM, V59, P765, DOI 10.1111/j.1471-4159.1992.tb09436.x DULON D, 1991, NEUROREPORT, V2, P69, DOI 10.1097/00001756-199102000-00001 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FERNANDEZ C, 1959, ARCHIV OTOLARYNGOL, V69, P82 FLOHE L, 1984, METHOD ENZYMOL, V105, P114 GETTYS TW, 1994, ANAL BIOCHEM, V220, P82, DOI 10.1006/abio.1994.1302 GUIRAMAND J, 1990, BIOCHEM PHARMACOL, V39, P1913, DOI 10.1016/0006-2952(90)90609-O HANCOCK AA, 1979, MOL PHARMACOL, V16, P1 HAUPT H, 1993, EUR ARCH OTO-RHINO-L, V250, P396 HENLEY CM, 1991, HEARING RES, V55, P45, DOI 10.1016/0378-5955(91)90090-V HOUSLEY GD, 1992, P R SOC LOND, V249, P267 KITANO I, 1995, HEARING RES, V85, P11, DOI 10.1016/0378-5955(95)00027-2 KOPKE RD, 1996, UNPUB USE ORGANOTYPI KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 KURIYAMA H, 1994, HEARING RES, V80, P233, DOI 10.1016/0378-5955(94)90114-7 LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0 MAGGIRWAR SB, 1994, BIOCHEM BIOPH RES CO, V201, P508, DOI 10.1006/bbrc.1994.1731 MILLER JD, 1970, J ACOUST SOC AM, V48, P513, DOI 10.1121/1.1912166 MISRA HP, 1972, J BIOL CHEM, V247, P3170 MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 NIEDZIELSKI AS, 1995, J NEUROSCI, V15, P2338 OGAWA K, 1994, HEARING RES, V74, P197, DOI 10.1016/0378-5955(94)90187-2 OHKAWA H, 1978, J LIPID RES, V19, P1053 OTTO WC, 1988, HEARING RES, V35, P79, DOI 10.1016/0378-5955(88)90042-1 PARSONS WJ, 1987, J BIOL CHEM, V262, P841 PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8 RAMKUMAR V, 1988, J CLIN INVEST, V82, P242, DOI 10.1172/JCI113577 RAMKUMAR V, 1993, J BIOL CHEM, V268, P16887 RAMKUMAR V, 1994, AM J PHYSIOL, V267, pC731 RYAN AF, 1988, PHYSL EAR, P317 RYAN AF, 1991, NEUROREPORT, V2, P643, DOI 10.1097/00001756-199111000-00002 RYBAK LP, 1984, ARCH OTO-RHINO-LARYN, V240, P207 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 RYBAK LP, 1986, ACTA OTO-LARYNGOL, V101, P59, DOI 10.3109/00016488609108608 SAFIEDDINE S, 1992, NEUROREPORT, V3, P145 SALOMON Y, 1974, ANAL BIOCHEM, V58, P541, DOI 10.1016/0003-2697(74)90222-X SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHACHT J, 1982, AM J OTOLARYNG, V3, P328, DOI 10.1016/S0196-0709(82)80005-7 SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P457 SHIGEMOTO T, 1990, J PHYSIOL-LONDON, V420, P127 SOMANI S, 1995, PHARMACOL TOXICOL, V76, P386 TUCKER AL, 1993, CARDIOVASC RES, V27, P62, DOI 10.1093/cvr/27.1.62 ZELCK U, 1993, EUR ARCH OTO-RHINO-L, V250, P218 ZUNINO F, 1989, CHEM-BIOL INTERACT, V70, P89, DOI 10.1016/0009-2797(89)90065-3 NR 56 TC 28 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 130 EP 140 DI 10.1016/S0378-5955(96)00204-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400010 PM 9083810 ER PT J AU Laurikainen, EA Ren, TY Miller, JM Nuttall, AL Quirk, WS AF Laurikainen, EA Ren, TY Miller, JM Nuttall, AL Quirk, WS TI The tonic sympathetic input to the cochlear vasculature in guinea pig SO HEARING RESEARCH LA English DT Article DE sympathetic; vascular tone; cochlear blood flow; stellate ganglia; guinea pig ID BLOOD-FLOW; LASER-DOPPLER; FLUX MOTION; GANGLION; AUTOREGULATION; STIMULATION; RATS AB Vascular tone is an essential component in maintaining steady regional blood flow and dynamic responsiveness of a vascular bed. Sympathetic innervation can contribute to vascular tone. Although certain studies have reported evoked changes in cochlear blood flow (CBF) with activation of the sympathetic fibers to the cochlear vasculature, other studies have failed to show evidence of sympathetic contribution to CBF regulation when the cervical sympathetic fibers were unilaterally sectioned. We hypothesized that the bilateral 'sympathectomy of the stellate ganglia' would remove sufficient sympathetic input to the cochlea to yield a change in CBF resting level. To test this hypothesis a new technique was used to expose the stellate ganglia (SG) bilaterally and induce a chemical sympathectomy. We observed that unilateral SG blockade with 2 mu l of 4 mM lidocaine hydrochloride on either side produced a 5-10% increase in CBF, which recovered to baseline during the following 2 min. A subsequent blockade of the contralateral SG produced a rapid 25-35% increase, which then recovered partially during the following 3-4 min, remaining 5-15% above the baseline over a 20 min measurement period. Superior cervical ganglion transection did not affect CBF. Our results provide evidence for the existence of a tonic sympathetic component in the control of vascular tone in guinea pig cochlea. This neural effect is derived bilaterally from SG. This result is consistent with previous anatomical studies showing the bilateral innervation of the cochlea by the SG sympathetic fibers and with previous physiological studies on the bilaterality of evoked changes in CBF due to electric stimulation of SG. C1 UNIV MICHIGAN,KRESGE HEARING RES INST,DEPT OTOLARYNGOL,ANN ARBOR,MI 48109. CR ANGELBORG C, 1977, ACTA OTO-LARYNGOL, V83, P92, DOI 10.3109/00016487709128818 BENOWITZ N, 1974, CLIN PHARMACOL THER, V16, P87 BROWN JN, 1994, AM J PHYSIOL, V266, pH458 DENGERINK HA, 1985, HEARING RES, V20, P31, DOI 10.1016/0378-5955(85)90056-5 GERO J, 1978, BLOOD VESSELS, V15, P277 GOODWIN PC, 1984, ACTA OTO-LARYNGOL, V98, P403, DOI 10.3109/00016488409107581 HINOJOSALABORDE C, 1991, HYPERTENSION, V17, P1078 HULTCRANTZ E, 1977, INSERM (Institut National de la Sante et de la Recherche Medicale) Colloque, V68, P271 KUO L, 1992, NEWS PHYSIOL SCI, V7, P5 LAURIKAINEN E, 1992, ACTA OTO-LARYNGOL, V112, P800, DOI 10.3109/00016489209137477 LAURIKAINEN EA, 1993, HEARING RES, V64, P199, DOI 10.1016/0378-5955(93)90006-M MEININGER G A, 1989, FASEB Journal, V3, pA257 MILLER JM, 1990, LASER DOPPLER FLOWME, P319 MILLER JM, 1995, OTOLARYNG HEAD NECK, V112, P101, DOI 10.1016/S0194-5998(95)70308-X OHLSEN KA, 1991, CIRC RES, V69, P509 OSOL G, 1985, AM J PHYSIOL, V249, pH914 QUIRK WS, 1988, HEARING RES, V36, P175, DOI 10.1016/0378-5955(88)90059-7 REN TY, 1993, ACTA OTO-LARYNGOL, V113, P609, DOI 10.3109/00016489309135872 REN TY, 1994, J APPL PHYSIOL, V76, P212 REN TY, 1993, ACTA OTO-LARYNGOL, V113, P146, DOI 10.3109/00016489309135783 REN TY, 1993, ANN OTO RHINOL LARYN, V102, P378 REN TY, 1994, ACTA OTO-LARYNGOL, V114, P254, DOI 10.3109/00016489409126052 Spoendlin H, 1966, Acta Otolaryngol, V61, P423 Spoendlin H, 1981, Adv Otorhinolaryngol, V27, P1 NR 24 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 141 EP 145 DI 10.1016/S0378-5955(96)00198-0 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400011 PM 9083811 ER PT J AU Nenov, AP Norris, C Bobbin, RP AF Nenov, AP Norris, C Bobbin, RP TI Outwardly rectifying currents in guinea pig outer hair cells SO HEARING RESEARCH LA English DT Article DE charybdotoxin; 4-aminopyridine; cadmium; K-4 channel; outward rectifying channel ID PHARMACOLOGICAL CHARACTERIZATION; POTASSIUM CHANNELS; MEMBRANE; CALCIUM; CHARYBDOTOXIN; RECEPTOR; COCHLEA; TOXINS AB Studies of K+ conductances in hair cells report that big-conductance Ca2+-dependent K+ (BK) channels carry parts of the outwardly rectifying currents. Lin et al. (1995) suggested that in guinea pig outer hair cells (OHCs) a portion of these currents is carried via a voltage-dependent and Ca2+-independent K+ channel. The present study tests the hypothesis that there are two separable current components of the outwardly rectifying currents by using patch clamp methods in OHCs to characterize the voltage dependence and sensitivity of the outwardly rectifying currents to channel blockers. Lowering of external Ca2+ caused no change in the currents while charybdotoxin (ChTx; 100 nM), a BK K+ channel blocker, and Cd2+ (200 mu M), an L-type calcium channel blocker, abolished about 50% of the currents. Both ChTx and Cd2+ caused a depolarizing shift in the half-activation voltage paralleled by a decrease in the voltage sensitivity. 4-Aminopyridine (4-AP, 0.01 mM), an A-type and delayed rectifier type channel blocker, abolished about 50% of the currents and caused a hyperpolarizing shift in the half-activation voltage together with an increase in the voltage sensitivity. The outwardly rectifying currents were more sensitive to block by 4-AP at membrane voltages around 40 mV compared to voltages around -20 mV. The differences in the current characteristics may be due to two separate channel types, one of which is similar to the delayed rectifier type channels while the other may be similar to the BK Ca2+-dependent K+ channels. In addition, the largest outwardly rectifying currents were present in long OHCs with the smallest present in short OHCs. C1 LOUISIANA STATE UNIV,MED CTR,KRESGE HEARING RES LAB S,DEPT OTORHINOLARYNGOL & BIOCOMMUN,NEW ORLEANS,LA 70112. TULANE UNIV,SCH MED,DEPT OTORHINOLARYNGOL,NEW ORLEANS,LA 70112. CR ART JJ, 1993, J PHYSIOL-LONDON, V470, P109 ART JJ, 1995, J GEN PHYSIOL, V105, P49, DOI 10.1085/jgp.105.1.49 ASHMORE JF, 1986, NATURE, V322, P368, DOI 10.1038/322368a0 BERMANN J, 1992, PRACTICAL ELECTROPHY BONTEMS F, 1991, SCIENCE, V254, P1521, DOI 10.1126/science.1720574 CHEN C, 1995, HEARING RES, V86, P25, DOI 10.1016/0378-5955(95)00050-E EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 EROSTEGUI C, 1994, HEARING RES, V81, P119, DOI 10.1016/0378-5955(94)90159-7 GITTER AH, 1992, HEARING RES, V60, P13, DOI 10.1016/0378-5955(92)90053-P GOLDSTEIN SAN, 1994, NEURON, V12, P1377, DOI 10.1016/0896-6273(94)90452-9 GRISSMER S, 1994, MOL PHARMACOL, V45, P1227 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 HARVEY AL, 1994, ANN NY ACAD SCI, V710, P1, DOI 10.1111/j.1749-6632.1994.tb26609.x HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 LIN X, 1995, HEARING RES, V88, P36, DOI 10.1016/0378-5955(95)00096-M SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X NR 16 TC 23 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 146 EP 158 DI 10.1016/S0378-5955(96)00207-9 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400012 PM 9083812 ER PT J AU Cosgrove, D Rodgers, KD AF Cosgrove, D Rodgers, KD TI Expression of the major basement membrane-associated proteins during postnatal development in the murine cochleae SO HEARING RESEARCH LA English DT Article DE basement membrane; development; cochlea ID HEPARAN-SULFATE PROTEOGLYCAN; CREST CELL-MIGRATION; PIG INNER-EAR; IMMUNOHISTOCHEMICAL LOCALIZATION; LAMININ; FIBRONECTIN; INVIVO; MATURATION; ANTIBODY; MOUSE AB The major basement membrane-associated proteins, including laminin-1, fibronectin, heparan sulfate proteoglycan (HSP), and entactin, were examined by immunofluorescence microscopy during postnatal development of the mouse cochlea. Samples were collected every 2 days through 8 days, and again at 14 days after birth. In the neonate, staining for HSP entactin and laminin-1 was barely visible; however, antibodies against fibronectin displayed intense immunoreactivity in nearly every cochlear tissue. Fibronectin is progressively inactivated in all tissues except the basilar membrane where it persists at high levels to adulthood. Laminin-1, entactin, and HSP illustrate remarkable temporal and spatial coordinate regulation. Elevated expression of these proteins is observed at 2 postnatal days (PND), and persists in the membranes surrounding the spiral ganglion cell bodies. Transient expression of laminin-1 and entactin, and to a lesser extent HSP, is observed from PND4 to PND8 in a track of membrane running from the interdental cells of the spiral limbus down the inner sulcus, across the basilar membrane, up the external sulcus to the spiral prominence, and branching into the spiral ligament ensheathing the root cell processes. By PND 14 the abundance of these proteins is greatly reduced along this track. The abundance and dynamic regulation of these major basement membrane-associated proteins suggests that they play an important role in postnatal cochlear development. RP Cosgrove, D (reprint author), BOYS TOWN NATL RES HOSP,555 N 30TH ST,OMAHA,NE 68131, USA. CR BORGHESAN E, 1965, ACTA OTOLARYNGOL STO, V59, P259, DOI 10.3109/00016486509124560 BRONNERFRASER M, 1988, J CELL BIOL, V106, P1321, DOI 10.1083/jcb.106.4.1321 BRONNERFRASER M, 1986, DEV BIOL, V117, P528, DOI 10.1016/0012-1606(86)90320-9 CIMINO A, 1967, ACTA OTOLARYNGOL S S, V223, P1 Cosgrove D, 1996, HEARING RES, V97, P54 Cosgrove D, 1996, HEARING RES, V100, P21, DOI 10.1016/0378-5955(96)00114-1 DUVALL AJ, 1969, LARYNGOSCOPE, V79, P1, DOI 10.1288/00005537-196901000-00001 Ehret G, 1976, J Am Audiol Soc, V1, P179 Galić M, 1989, Acta Otolaryngol Suppl, V461, P1 HORIGUCHI Y, 1989, J HISTOCHEM CYTOCHEM, V37, P961 ICHIMIYA I, 1994, ACTA OTO-LARYNGOL, V114, P167, DOI 10.3109/00016489409126037 IGARASHI M, 1969, ACTA OTO-LARYNGOL, V68, P420, DOI 10.3109/00016486909121580 ITO M, 1995, HEARING RES, V88, P107, DOI 10.1016/0378-5955(95)00106-E KAWAMATA S, 1993, HEARING RES, V67, P75, DOI 10.1016/0378-5955(93)90234-R KRAUS HJ, 1981, HEARING RES, V4, P89, DOI 10.1016/0378-5955(81)90038-1 LANDER AD, 1985, J CELL BIOL, V101, P898, DOI 10.1083/jcb.101.3.898 Lim D, 1992, DEV AUDITORY VESTIBU, P33 LJUBIMOV AV, 1986, EXP CELL RES, V165, P530, DOI 10.1016/0014-4827(86)90605-1 LOFBERG J, 1989, DEV BIOL, V131, P168, DOI 10.1016/S0012-1606(89)80048-X LOFBERG J, 1985, DEV BIOL, V107, P442, DOI 10.1016/0012-1606(85)90326-4 PERRIS R, 1989, DEV BIOL, V136, P222, DOI 10.1016/0012-1606(89)90144-9 Rambourg A, 1971, Int Rev Cytol, V31, P57 SANDROCK AW, 1987, SCIENCE, V237, P1605, DOI 10.1126/science.3306923 SANES JR, 1989, ANNU REV NEUROSCI, V12, P491, DOI 10.1146/annurev.neuro.12.1.491 SANES JR, 1993, MOL CELLULAR ASPECTS, P67 SANTI PA, 1989, HEARING RES, V39, P91, DOI 10.1016/0378-5955(89)90084-1 SAXEN A, 1951, ACTA OTO-LARYNGOL, V40, P23, DOI 10.3109/00016485109138904 Sheehan DC, 1980, THEORY PRACTICE HIST, P143 TAKAHASHI M, 1992, ANN OTO RHINOL LARYN, V101, P58 WOOLF NK, 1992, DEV BRAIN RES, V65, P21, DOI 10.1016/0165-3806(92)90004-G NR 30 TC 22 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 159 EP 170 DI 10.1016/S0378-5955(96)00203-1 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400013 PM 9083813 ER PT J AU Pilz, PKD Ostwald, J Kreiter, A Schnitzler, HU AF Pilz, PKD Ostwald, J Kreiter, A Schnitzler, HU TI Effect of the middle ear reflex on sound transmission to the inner ear of rat SO HEARING RESEARCH LA English DT Article DE cochlear microphonic potential; acoustic reflex; middle ear muscle reflex; stapedius muscle; electromyography; rat ID INDUCED HEARING-LOSS; OUTER HAIR CELLS; BASILAR-MEMBRANE; MUSCLE-REFLEX; GUINEA-PIG; ALBINO-RAT; PROTECTION; POTENTIALS; EMISSIONS; BATS AB The effect of the acoustic middle ear reflex (MER) was quantified using electrodes chronically implanted in the middle ears of rats. Cochlear microphonics (CM) and middle ear muscle EMG were measured under light Ketamin anesthesia after stimulation with tone pulses of 5-20 kHz ranging between 75 and 120 dB SPL. With increasing intensity, the CM measured before the onset of the MER increased to a maximum amplitude and then decreased with higher SPLs. At 10 kHz this maximum was reached at 95 dB SPL, for other stimulus frequencies at higher SPLs. After a latency of 10-20 ms, CM to 10 kHz stimuli of 80-95 dB SPL were decreased by the attenuating action of the MER. The lowest threshold of the MER was also measured at 10 kHz (77 dB SPL in the mean). To stimuli greater than 100 dB SPL after a latency of 6-10 ms, the CM amplitude was increased. That this CM increase to intense stimuli is caused by the action of the MER was confirmed by control experiments such as cutting the tendons of the middle ear muscles. The CM decrease to stimuli below 100 dB SPL, as well as the increase to very intense stimuli, can be explained by sound attenuation caused by the MER, together with the nonlinear dependence of CM amplitude on stimulus level. The observed shift of the maxima of the CM input-output function by the MER to higher stimulus levels probably indicates an increase of the dynamic range of the ear. C1 MAX PLANCK INST HIRNFORSCH, D-60528 FRANKFURT, GERMANY. RP Pilz, PKD (reprint author), UNIV TUBINGEN, LEHRBEREICH TIERPHYSIOL, MORGENSTELLE 28, D-72076 TUBINGEN, GERMANY. RI Pilz, Peter/C-3018-2015 CR AVAN P, 1992, HEARING RES, V59, P59, DOI 10.1016/0378-5955(92)90102-S BORG E, 1972, ACTA PHYSIOL SCAND, V85, P374, DOI 10.1111/j.1748-1716.1972.tb05272.x Borg E, 1968, Acta Otolaryngol, V65, P575, DOI 10.3109/00016486809121001 BORG E, 1975, ACTA PHYSIOL SCAND, V94, P327, DOI 10.1111/j.1748-1716.1975.tb05893.x BORG E, 1973, BRAIN RES, V49, P101, DOI 10.1016/0006-8993(73)90404-6 Borg E., 1984, ACOUSTIC REFLEX BASI, P63 BORG E, 1972, ACTA OTO-LARYNGOL, V74, P163, DOI 10.3109/00016487209128437 BORG E, 1972, ACTA OTO-LARYNGOL, V74, P240, DOI 10.3109/00016487209128445 BORG E, 1973, J ACOUST SOC AM, V54, P525, DOI 10.1121/1.1913610 BORG E, 1984, ACOUSTIC REFLEX, P413 BORG E, 1971, ACTA PHYSL SCAND, V86, P175 Borg E, 1967, Acta Otolaryngol, V64, P415, DOI 10.3109/00016486709139128 BRAUN M, 1994, HEARING RES, V78, P98, DOI 10.1016/0378-5955(94)90048-5 CARMEL PW, 1964, NATURE, V202, P195, DOI 10.1038/202195a0 DALLOS P, 1989, J ACOUST SOC AM, V86, P1790, DOI 10.1121/1.398611 DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 DALLOS P, 1971, J ACOUST SOC AM, V49, P1144, DOI 10.1121/1.1912476 DALLOS P, 1976, J ACOUST SOC AM, V60, P510, DOI 10.1121/1.381086 DAVIS H, 1958, Laryngoscope, V68, P596 DAVIS H., 1959, ANN OTOL RHINOL AND LARYNGOL, V68, P665 DAVIS M, 1968, PSYCHON SCI, V12, P337 DESMEDT JE, 1971, BRAIN RES, V30, P375, DOI 10.1016/0006-8993(71)90087-4 DESMEDT JE, 1962, J ACOUST SOC AM, V34, P1487 FEX J, 1962, ACTA PHYSL SCAND, V55, P5 FEX J, 1959, Acta Otolaryngol, V50, P540, DOI 10.3109/00016485909129230 GALAMBOS R, 1959, J ACOUST SOC AM, V31, P349, DOI 10.1121/1.1907723 GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 Green K. W., 1984, ACOUSTIC REFLEX BASI, P275 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 HEFFNER HE, 1994, HEARING RES, V73, P244, DOI 10.1016/0378-5955(94)90240-2 HENDERSON D, 1994, HEARING RES, V74, P22, DOI 10.1016/0378-5955(94)90172-4 HILDING DA, 1960, ANN OTO RHINOL LARYN, V60, P51 HUBBARD AE, 1979, J ACOUST SOC AM, V66, P415, DOI 10.1121/1.383093 JEPSEN O, 1951, ACTA OTO-LARYNGOL, V39, P406, DOI 10.3109/00016485109119271 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 KOSSL M, 1985, HEARING RES, V19, P157, DOI 10.1016/0378-5955(85)90120-0 Michelsen A., 1983, P3 Michelsen A., 1983, P321 Moller A, 1984, ACOUSTIC REFLEX, P1 MOLLER AAGE R., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1524, DOI 10.1121/1.1918384 MOLLER A R, 1958, Laryngoscope, V68, P48 MOLLER A R, 1964, Acta Otolaryngol, V58, P525, DOI 10.3109/00016486409121413 MOLLER AR, 1962, ANN OTO RHINOL LARYN, V71, P89 MOLLER A R, 1965, Acta Otolaryngol, V60, P129, DOI 10.3109/00016486509126996 MOLLER AR, 1974, HDB SENSORY PHYSL, V5, P519 MURATA K, 1986, HEARING RES, V23, P169, DOI 10.1016/0378-5955(86)90014-6 NUTALL AL, 1974, J ACOUST SOC AM, V56, P1231 Pang X-D, 1986, PERIPHERAL AUDITORY, P36 PATUZZI RB, 1987, HEARING RES, V30, P73, DOI 10.1016/0378-5955(87)90185-7 Pickles JO, 1988, INTRO PHYSL HEARING PILZ PKD, 1987, J COMP PSYCHOL, V101, P67, DOI 10.1037/0735-7036.101.1.67 Pilz PKD, 1996, NEUROBIOL LEARN MEM, V66, P67, DOI 10.1006/nlme.1996.0044 RUSSELL IJ, 1986, NATURE, V321, P517, DOI 10.1038/321517a0 RYAN AF, 1994, HEARING RES, V72, P23, DOI 10.1016/0378-5955(94)90201-1 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SIMMONS FB, 1964, ANN OTO RHINOL LARYN, V73, P724 SIMMONS F. B., 1959, ANN OTOL RHINOL AND LARYNGOL, V68, P1126 SUGA N, 1975, J EXP BIOL, V62, P277 TASAKI I, 1954, J ACOUST SOC AM, V26, P765, DOI 10.1121/1.1907415 TASAKI I, 1952, J ACOUST SOC AM, V24, P502, DOI 10.1121/1.1906928 VANDENBERGE H, 1990, HEARING RES, V48, P209, DOI 10.1016/0378-5955(90)90061-S WEVER E. G., 1955, ACTA OTOL LARYNGOL, V45, P433, DOI 10.3109/00016485509124299 WHITEHEAD ML, 1991, HEARING RES, V51, P55, DOI 10.1016/0378-5955(91)90007-V Wilson R., 1984, ACOUSTIC REFLEX, P329 ZAKRISSO.JE, 1974, AUDIOLOGY, V13, P231 ZAKRISSON JE, 1975, ACTA OTO-LARYNGOL, V79, P1, DOI 10.3109/00016487509124648 NR 68 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 171 EP 182 DI 10.1016/S0378-5955(96)00206-7 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400014 PM 9083814 ER PT J AU Felder, E Kanonier, G Scholtz, A RaskAndersen, H SchrottFischer, A AF Felder, E Kanonier, G Scholtz, A RaskAndersen, H SchrottFischer, A TI Quantitative evaluation of cochlear neurons and computer-aided three-dimensional reconstruction of spiral ganglion cells in humans with a peripheral loss of nerve fibres SO HEARING RESEARCH LA English DT Article DE human; spiral ganglion; neuron; degeneration ID INNERVATION AB Quantitative data on human cochlear neuronal elements were collected from various regions in five patients with high-tone hearing loss due to presbycusis and in two patients with normal hearing. The number of nerve fibres was assessed in the spiral lamina and in the inner acoustic meatus together with counts of spiral ganglion cells. The results show that the number of neurons decreased peripherally, i.e., with increasing distance from the central nervous system in patients with high-tone hearing loss due to presbycusis. In two patients with normal hearing no significant difference in the number of neurons was found in the lamina spiralis as compared to the inner acoustic canal. Computer-aided 3-dimensional reconstruction of the human spiral ganglion displayed large bipolar neurons (type I cells), but also large ganglion cells with one missing axon. The results may indicate that a slow retrograde degeneration occurs from the periphery towards the spiral ganglion in presbycusis. Transmission electron microscopy analysis of freshly fixed human spiral ganglions displayed interneural connections. It is speculated whether a trophic supply from other neurons at the level of the spiral ganglion can prevent or delay further degeneration of the central axon. C1 UNIV INNSBRUCK, DEPT OTOLARYNGOL, HNO KLIN, A-6020 INNSBRUCK, AUSTRIA. UNIV UPPSALA, DEPT OTOLARYNGOL, S-75185 UPPSALA, SWEDEN. CR ARNOLD W, 1987, ACTA OTO-LARYNGOL, P76 BROWN MC, 1988, J COMP NEUROL, V278, P581, DOI 10.1002/cne.902780409 Felder E, 1995, HEARING RES, V91, P19, DOI 10.1016/0378-5955(95)00158-1 FELIX H, 1990, ACTA OTO-LARYNGOL, P71 HINOJOSA R, 1985, ACTA OTO-LARYNGOL, V99, P8, DOI 10.3109/00016488509119139 HOEFFDING V, 1988, J COMP NEUROL, V276, P537, DOI 10.1002/cne.902760408 JOHNSSON LG, 1971, ARCH KLIN EXP OHR, V200, P318, DOI 10.1007/BF00373313 KIANG NYS, 1982, SCIENCE, V217, P175, DOI 10.1126/science.7089553 Kiang N.Y.S., 1984, P143 KIMURA RS, 1979, ANN OTOL RHINOL LA S, V88 KIMURA RS, 1987, ACTA OTO-LARYNGOL, P1 LEAKEJONES PA, 1982, HEARING RES, V8, P199, DOI 10.1016/0378-5955(82)90075-2 NADOL JB, 1988, ORL J OTO-RHINO-LARY, V50, P363 OTA CY, 1980, ACTA OTO-LARYNGOL, V89, P53, DOI 10.3109/00016488009127108 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 PAULER M, 1986, ARCH OTO-RHINO-LARYN, V243, P200, DOI 10.1007/BF00470622 SPOENDLIN H, 1982, AM J OTOL, V3, P274 SPOENDLIN H, 1989, HEARING RES, V43, P25, DOI 10.1016/0378-5955(89)90056-7 SPOENDLIN H, 1979, ACTA OTO-LARYNGOL, V87, P381, DOI 10.3109/00016487909126437 SPOENDLIN H, 1988, ACTA OTO-LARYNGOL, V105, P403, DOI 10.3109/00016488809119493 SPOENDLIN H, 1987, ACTA OTO-LARYNGOL, P25 SPOENDLIN H, 1985, AM J OTOLARYNG, V6, P453, DOI 10.1016/S0196-0709(85)80026-0 SPOENDLIN H, 1990, ACTA OTO-LARYNGOL, P61 Spoendlin H, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P76 SUGA F, 1976, ANN OTO RHINOL LARYN, V85, P169 SUZUKA Y, 1988, ACTA OTO-LARYNGOL, P1 TYLSTEDT S, 1996, IN PRESS ACTA OTOL S NR 27 TC 22 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 183 EP 190 DI 10.1016/S0378-5955(96)00209-2 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400015 PM 9083815 ER PT J AU Kido, T AF Kido, T TI Otoconial formation in the chick: Changing patterns of tetracycline incorporation during embryonic development and after hatching SO HEARING RESEARCH LA English DT Article DE otoconial genesis; otolithic organ; calcification; fluorescence microscopy; chick embryo ID GALLUS-DOMESTICUS; STATOCONIA; MANGANESE; MICE AB The antibiotic tetracycline (TC) is incorporated into calcifying tissues and serves as a fluorescent marker for identifying calcifying sites in bone and otoconia. Fluorescent labeling was performed at different stages in chick embryos and newly hatched chicks. The stagewise changes in the intensity, location and time course of fluorescent labeling were assessed. TC/egg (1-2 mg) was injected into the yolk sacs of embryos on the 4th, 8th and 11th embryonic days (ED), and the embryos were then killed at specified times after injection. In newly hatched chicks, TC was injected daily intraperitoneally with 0.06 mg TC/g body weight for 7 days and the chicks were killed on the 8th day after hatching. Embryos injected on the 4th ED and killed on the 6th ED showed intense fluorescence in the saccular otoconial layer. All maculae from embryos killed after injection on the 4th ED showed uniformly intense fluorescence throughout the otoconial layer. By the 9th ED, otoconia in all three maculae (saccular, utricular, and lagenar) fluoresced. Maculae from embryos killed after injection on the 8th ED showed uniformly intense fluorescence throughout the otoconial layer or intense localized fluorescence mainly in the upper half of the otoconial layer. All maculae from embryos killed after injection on the 11th ED showed moderate to weak fluorescence primarily in the lower half of the otoconial layer. Al maculae from posthatched chicks showed very weak fluorescence throughout the otoconial layer. Otoconia at the periphery of the maculae generally showed weak fluorescence in embryos that had been injected on the 4th and 8th ED, but not in embryos injected on the 11th ED. TC, which competes for calcium binding sites, may inhibit the formation of some otoconia. The formation of giant otoconia may reflect subtle changes in the crystallization microenvironment on these occasions. In brief, the results suggest that: (a) otoconial formation in the saccule precedes that of the utricle and lagena; (b) otoconial formation occurs during the early period (beginning the 6th ED); (c) otoconial formation is stratified, with those in the upper layer forming first and those in the lower layer forming last. RP Kido, T (reprint author), YAMAGUCHI UNIV,SCH MED,DEPT OTOLARYNGOL,UBE,YAMAGUCHI 755,JAPAN. CR BALSAMO G, 1969, J EMBRYOL EXP MORPH, V22, P327 BEVELANDER G, 1961, J DENT RES, V40, P1020, DOI 10.1177/00220345610400050201 BEVELANDER G, 1960, DEV BIOL, V2, P298, DOI 10.1016/0012-1606(60)90011-7 COHEN GM, 1993, PHYSIOLOGIST, V36, P79 CONTI G, 1964, EXPERIENTIA, V20, P110, DOI 10.1007/BF02151272 DEVINCEN.M, 1968, EXPERIENTIA, V24, P818 DEVINCEN.M, 1966, J EMBRYOL EXP MORPH, V15, P349 ERWAY L, 1970, J NUTR, V100, P643 FERMIN CD, 1985, ACTA ANAT, V123, P148 FERMIN CD, 1990, ACTA ANAT, V138, P75 FERMIN CD, 1985, PHYSIOLOGIST, V28, P87 FERMIN CD, 1995, CELL MOL BIOL, V41, P577 FERMIN CD, 1993, MICROSC RES TECHNIQ, V25, P297, DOI 10.1002/jemt.1070250406 FERMIN CD, 1987, HEARING RES, V28, P23, DOI 10.1016/0378-5955(87)90150-X FERMIN CD, 1986, SEM, V4, P1649 HAMBURGER V, 1951, J MORPHOL, V88, P49, DOI 10.1002/jmor.1050880104 IMOTO T, 1983, ACTA OTO-LARYNGOL, V96, P227, DOI 10.3109/00016488309132895 KENYON RV, 1988, EXP BRAIN RES, V69, P260 KIDO T, 1991, AM J OTOLARYNG, V12, P191, DOI 10.1016/0196-0709(91)90119-Z Lim D J, 1973, Ann Otol Rhinol Laryngol, V82, P23 LYON MF, 1951, J PHYSIOL-LONDON, V114, P410 MARMO FRANCESCO, 1965, ACTA EMBRYOL MORPHOL EXP, V8, P170 MARMO FRANCESCO, 1966, ACTA EMBRYOL MORPHOL EXP, V9, P118 MARMO F, 1972, REV BIOL, V65, P191 MARMO F, 1982, BASIC APPL HISTOCHEM, V26, P117 PURICHIA N, 1972, DEV BIOL, V27, P395, DOI 10.1016/0012-1606(72)90178-9 ROSS MD, 1976, ANN OTO RHINOL LARYN, V85, P310 SALAMAT MS, 1980, ANN OTO RHINOL LARYN, V89, P229 SAUNDERS JE, 1992, HEARING RES, V57, P276, DOI 10.1016/0378-5955(92)90157-I SAXEN L, 1966, J EXP ZOOL, V162, P269, DOI 10.1002/jez.1401620305 STERNBERG J, 1966, J APPL RADIAT ISOTOP, V17, P497 VASQUEZ C. S., 1955, ANN OTOL RHINOL AND LARYNGOL, V64, P1019 VILSTRUP T, 1951, ANN OTO RHINOL LARYN, V60, P974 NR 33 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 191 EP 201 DI 10.1016/S0378-5955(96)00210-9 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400016 PM 9083816 ER PT J AU Koay, G Heffner, HE Heffner, RS AF Koay, G Heffner, HE Heffner, RS TI Audiogram of the big brown bat (Eptesicus fuscus) SO HEARING RESEARCH LA English DT Article DE chiroptera; evolution; hearing; mammal ID SOUND PRESSURE TRANSFORMATION; AUDITORY-CORTEX; FREQUENCY DISCRIMINATION; ECHOLOCATING BATS; EXTERNAL EAR; HEARING; SENSITIVITY; LOCALIZATION; PINNA; CAT AB The audiograms of three big brown bats (Eptesicus fuscus) were determined using a conditioned avoidance procedure. The average audiogram ranged from 0.850 kHz at 106 dB to 120 kHz at 83 dB SPL, with a best threshold of 7 dB at 20 kHz and a distinct decrease in sensitivity at 45 kHz. The results confirm those of a previous study by Dalland (1965a) that the big brown bat has good high-frequency hearing coupled with poor low-frequency hearing. Comparative analysis suggests that the bat's good high-frequency hearing initially evolved for passive sound localization and that it was later coopted for use in echolocation. In addition, the restricted low-frequency hearing of the big brown bat is typical of mammals with good high-frequency hearing. RP Koay, G (reprint author), UNIV TOLEDO,DEPT PSYCHOL,TOLEDO,OH 43606, USA. CR BUCHLER ER, 1981, ANIM BEHAV, V29, P428, DOI 10.1016/S0003-3472(81)80102-9 COVEY E, 1991, J NEUROSCI, V11, P3456 DALLAND JI, 1965, J AUD RES, V5, P95 DALLAND JI, 1965, SCIENCE, V150, P1185, DOI 10.1126/science.150.3700.1185 DEAR SP, 1993, J NEUROPHYSIOL, V70, P1988 Esser KH, 1996, J COMP PHYSIOL A, V178, P779 HEFFNER H, 1980, J ACOUST SOC AM, V68, P1584, DOI 10.1121/1.385213 Heffner H. E., 1995, METHODS COMP PSYCHOA, P79 HEFFNER HE, 1992, FARM ANIMALS AND THE ENVIRONMENT, P159 HEFFNER HE, 1994, HEARING RES, V73, P244, DOI 10.1016/0378-5955(94)90240-2 HEFFNER HE, 1997, COMP PSYCHOL HDB HEFFNER RS, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P691 HEFFNER RS, 1993, J COMP NEUROL, V331, P418, DOI 10.1002/cne.903310311 HEFFNER RS, 1995, HEARING RES, V88, P190, DOI 10.1016/0378-5955(95)00112-H HEFFNER RS, 1982, J COMP PHYSIOL PSYCH, V96, P926, DOI 10.1037/0735-7036.96.6.926 HEFFNER RS, 1985, HEARING RES, V19, P85, DOI 10.1016/0378-5955(85)90100-5 Heffner RS, 1996, HEARING RES, V99, P13, DOI 10.1016/S0378-5955(96)00074-3 HEFFNER RS, 1985, J MAMMAL, V66, P745, DOI 10.2307/1380801 JACKSON LL, 1997, IN PRESS J COMP PSYC, V111 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 LONG GR, 1975, J COMP PHYSIOL, V100, P211 MASTERS WM, 1991, J ACOUST SOC AM, V89, P1402, DOI 10.1121/1.400660 MASTERTO.B, 1969, J ACOUST SOC AM, V45, P966, DOI 10.1121/1.1911574 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 MOSS CF, 1993, J ACOUST SOC AM, V93, P1553, DOI 10.1121/1.406814 MOSS CF, 1989, J COMP PHYSIOL A, V165, P383, DOI 10.1007/BF00619357 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 MUSICANT AD, 1984, J ACOUST SOC AM, V75, P1195, DOI 10.1121/1.390770 OBRIST MK, 1993, J EXP BIOL, V180, P119 PHILLIPS DP, 1982, HEARING RES, V8, P13, DOI 10.1016/0378-5955(82)90031-4 Popper A. N., 1995, HEARING BATS POUSSIN C, 1982, J ACOUST SOC AM, V72, P340, DOI 10.1121/1.388087 RIQUIMAROUX H, 1992, J NEUROPHYSIOL, V68, P1613 Schmidt S., 1984, Myotis, V21-22, P62 SUTHERS RA, 1980, J COMP PHYSIOL, V136, P227 THOMPSON M, 1990, BEHAV RES METH INSTR, V22, P449, DOI 10.3758/BF03203193 WENSTRUP JJ, 1984, J COMP PHYSIOL, V155, P91, DOI 10.1007/BF00610934 Wotton JM, 1996, J ACOUST SOC AM, V100, P1764, DOI 10.1121/1.416073 WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410 NR 39 TC 46 Z9 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 202 EP 210 DI 10.1016/S0378-5955(96)00208-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400017 PM 9083817 ER PT J AU Tsuchitani, C AF Tsuchitani, C TI Input from the medial nucleus of trapezoid body to an interaural level detector SO HEARING RESEARCH LA English DT Article DE medial nucleus of the trapezoid body; lateral superior olive; interaural level detector; superior olivary complex; binaural processing; computational neural model; cat ID LATERAL SUPERIOR OLIVE; ANTEROVENTRAL COCHLEAR NUCLEUS; UNIT EXCITATORY RESPONSES; BINAURAL TONE BURSTS; BUSHY CELL AXONS; HORSERADISH-PEROXIDASE; NEURONAL ARCHITECTURE; REGULARITY ANALYSIS; DISCHARGE PATTERNS; NERVE EQUATIONS AB The medial nucleus of the trapezoid body (MNTB) contains components of a neural network that functions as an interaural level difference (ILD) detector. In the cat, lateral superior olivary (LSO) neurons compare the contralateral inhibitory input from the MNTB with an excitatory input from the ipsilateral anteroventral cochlear nucleus to extract information about binaural stimuli. To better specify the inhibitory inputs to the LSO and gain a better understanding of the inhibitory component of the LSO network, the response characteristics of MNTB neurons were examined in cats under stimulus conditions similar to those used to study LSO inhibitory responses. The inhibitory tuning curves of LSO units were wider than the tuning curves of MNTB units. Hence, MNTB neurons with similar, but not identical, characteristic frequencies converge to provide inhibitory input to single LSO neurons. Variations in the number of converging MNTB inputs produced a range of LSO excitatory-inhibitory threshold differences, thus creating a coding mechanism for representing the ILD. Convergence of MNTB inputs also increased the dynamic range over which contralateral stimulus level effects LSO binaural responses beyond the dynamic ranges of individual MNTB units, thus expanding the ILD range encoded by the LSO network. The differences between the first-spike latencies of MNTB and LSO tone burst responses were small and the precision of the LSO first-spike discharges was significantly greater than that of MNTB units. As tone bursts delivered simultaneously to the two ears can consistently inhibit LSO first-spike discharges, the inhibitory input must match the LSO precision by converging a number of the more variably timed MNTB discharges. Because of their precision LSO first-spike discharges may be used to encode interaural time-of-arrival differences of mid- to high-frequency transients. These findings add to the foundation for a comprehensive network model that describes the inputs to the LSO as point processes, delimits the biophysical mechanisms underlying excitatory and inhibitory interactions at the single neuron level, and reveals how these inputs determine the response to different binaural stimulus conditions. RP Tsuchitani, C (reprint author), UNIV TEXAS,HLTH SCI CTR,SCH MED,ROOM 316,6420 LAMAR FLEMING AVE,HOUSTON,TX 77030, USA. CR ABEL SM, 1983, J ACOUST SOC AM, V73, P955, DOI 10.1121/1.389020 BANKS MI, 1991, J NEUROPHYSIOL, V65, P606 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 Boudreau J C, 1970, Contrib Sens Physiol, V4, P143 BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P422 Bourk TR, 1976, THESIS MIT CAMBRIDGE BROWNELL WE, 1975, BRAIN RES, V94, P413, DOI 10.1016/0006-8993(75)90226-7 CAIRD D, 1983, EXP BRAIN RES, V52, P385 CANT NB, 1986, J COMP NEUROL, V247, P457, DOI 10.1002/cne.902470406 CANT NB, 1984, J COMP NEUROL, V227, P63, DOI 10.1002/cne.902270108 CARNEY LH, 1990, J NEUROPHYSIOL, V64, P437 GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 GRUNER C, 1996, THESIS RICE U GUINAN JJ, 1990, HEARING RES, V49, P321, DOI 10.1016/0378-5955(90)90111-2 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 HEWITT MJ, 1992, J ACOUST SOC AM, V91, P2096, DOI 10.1121/1.403696 HINES M, 1989, INT J BIOMED COMPUT, V24, P55, DOI 10.1016/0020-7101(89)90007-X HINES M, 1984, INT J BIOMED COMPUT, V15, P69, DOI 10.1016/0020-7101(84)90008-4 JEANBAPTISTE M, 1975, J COMP NEUROL, V162, P111, DOI 10.1002/cne.901620107 JOHNSON D, 1994, MIDW M ARO, V17, P18 JOHNSON DH, 1983, J ACOUST SOC AM, V74, P493, DOI 10.1121/1.389815 JOHNSON DH, 1990, HEARING RES, V49, P301, DOI 10.1016/0378-5955(90)90110-B JOHNSON DH, 1978, BIOPHYS J, V22, P413 JOHNSON DH, 1986, HEARING RES, V21, P135, DOI 10.1016/0378-5955(86)90035-3 JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 Kiang NY, 1973, BASIC MECHANISMS HEA, P455 LENN NJ, 1966, AM J ANAT, V118, P375, DOI 10.1002/aja.1001180205 LI RYS, 1971, 100 MIT RES LAB EL LIBERMAN M, 1991, J COMP NEUROL, V313, P241 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC PFEIFFER RR, 1965, BIOPHYS J, V5, P301 PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 ROUILLER EM, 1984, J COMP NEUROL, V225, P167, DOI 10.1002/cne.902250203 SANES DH, 1990, J NEUROSCI, V10, P3494 SCHEIBEL ME, 1974, EXP NEUROL, V43, P339, DOI 10.1016/0014-4886(74)90175-7 SMITH PH, 1991, J COMP NEUROL, V304, P387, DOI 10.1002/cne.903040305 SPANGLER KM, 1985, J COMP NEUROL, V238, P249, DOI 10.1002/cne.902380302 SPIROU GA, 1990, J NEUROPHYSIOL, V63, P1169 TOBIAS JV, 1959, J ACOUST SOC AM, V31, P1595, DOI 10.1121/1.1907665 TOLBERT LP, 1982, NEUROSCIENCE, V7, P3031, DOI 10.1016/0306-4522(82)90228-7 TOLBERT LP, 1982, NEUROSCIENCE, V7, P3053, DOI 10.1016/0306-4522(82)90229-9 TSUCHITANI C, 1988, J NEUROPHYSIOL, V59, P164 TSUCHITANI C, 1988, J NEUROPHYSIOL, V59, P184 TSUCHITANI C, 1994, OTOLARYNG HEAD NECK, V110, P84, DOI 10.1016/S0194-5998(94)70796-0 TSUCHITA.C, 1969, J ACOUST SOC AM, V46, P979, DOI 10.1121/1.1911818 TSUCHITANI C, 1977, J NEUROPHYSIOL, V40, P296 van Noort J, 1969, STRUCTURE CONNECTION VU ET, 1992, SCIENCE, V255, P1710, DOI 10.1126/science.1553559 WARR WB, 1972, BRAIN RES, V40, P247 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 ZACKSENHOUSE M, 1995, J ACOUST SOC AM, V98, P1410, DOI 10.1121/1.413409 ZACKSENHOUSE M, 1993, HEARING RES, V68, P202, DOI 10.1016/0378-5955(93)90124-J ZACKSENHOUSE M, 1992, HEARING RES, V62, P105, DOI 10.1016/0378-5955(92)90207-4 ZOOK JM, 1988, HEARING RES, V34, P141, DOI 10.1016/0378-5955(88)90101-3 NR 58 TC 31 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 1997 VL 105 IS 1-2 BP 211 EP 224 DI 10.1016/S0378-5955(96)00212-2 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WN014 UT WOS:A1997WN01400018 PM 9083818 ER PT J AU Hirose, K Hockenbery, DM Rubel, EW AF Hirose, K Hockenbery, DM Rubel, EW TI Reactive oxygen species in chick hair cells after gentamicin exposure in vitro SO HEARING RESEARCH LA English DT Article DE aminoglycoside; ototoxicity; reactive oxygen species ID AMINOGLYCOSIDE OTOTOXICITY; INNER-EAR; GUINEA-PIG; IN-VITRO; DEAFNESS; CULTURES; REGENERATION; CYTOTOXICITY; GLUTATHIONE; MECHANISMS AB Reactive oxygen species have been invoked as a causative agent of cell death in many different developmental and pathological states. The presence of free radicals and their importance in hair cell death due to aminoglycosides is suggested by a number of studies that have demonstrated a protective effect of antioxidants. By using dichlorofluorescin (DCFH) a fluorescent compound that is a reporter of reactive oxygen species, we have shown that free radicals are rapidly produced by avian hair cells in vitro after exposure to gentamicin. In addition, free radical scavengers, catalase and glutathione, were tested with DCFH fluorescent imaging for their ability to quench the production of reactive oxygen species in hair cells after drug exposure. Both free radical scavengers were very effective in suppressing drug-induced production of free radicals. Next, we investigated the ability of these antioxidants to preserve the structural integrity of hair cells after exposure to gentamicin. We were not able to detect any attenuation of the hair cell loss using antioxidants in conjunction with gentamicin. This result must be qualified by the fact that the antioxidants used were not effective over long-term gentamicin exposure. Therefore, methodological constraints prevented adequately testing possible protective effects of free radical scavengers in this model system. C1 UNIV WASHINGTON,DEPT OTOLARYNGOL HEAD & NECK SURG,VIRGINIA MERRILL BLOEDEL HEARING RES CTR,SEATTLE,WA 98195. FRED HUTCHINSON CANC RES CTR,SEATTLE,WA 98104. CR BOCK GR, 1983, HEARING RES, V9, P255, DOI 10.1016/0378-5955(83)90030-8 CORTOPASSI G, 1994, HEARING RES, V78, P27, DOI 10.1016/0378-5955(94)90040-X CRUZ RM, 1987, ARCH OTOLARYNGOL, V113, P1058 DUCKERT LG, 1990, HEARING RES, V48, P161, DOI 10.1016/0378-5955(90)90206-5 DUGAN LL, 1994, ANN NEUROL, V35, P817 FISCHELGHODSIAN N, 1993, AM J OTOLARYNG, V14, P399, DOI 10.1016/0196-0709(93)90113-L GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 GIROD DA, 1991, LARYNGOSCOPE, V101, P1139 HECK DE, 1992, J BIOL CHEM, V267, P21277 HELD KD, 1994, RADIAT RES, V139, P15, DOI 10.2307/3578727 HENLEY CM, 1993, OTOLARYNGOL CLIN N A, V20, P857 HOFFMAN DW, 1987, HEARING RES, V31, P217, DOI 10.1016/0378-5955(87)90190-0 HOFFMAN DW, 1988, ANN OTO RHINOL LARYN, V97, P36 HU KN, 1991, J MED GENET, V28, P79 HUTCHIN T, 1994, ANTIMICROB AGENTS CH, V38, P2517 JABER L, 1992, J MED GENET, V29, P86, DOI 10.1136/jmg.29.2.86 KORSMEYER SJ, 1993, SEMIN CANCER BIOL, V4, P327 KOTECHA B, 1994, HEARING RES, V73, P173, DOI 10.1016/0378-5955(94)90232-1 LARM JA, 1994, J BIOL CHEM, V269, P30097 MATZ GJ, 1993, OTOLARYNG CLIN N AM, V26, P705 MEISTER A, 1992, BIOCHEM PHARMACOL, V44, P1905, DOI 10.1016/0006-2952(92)90091-V NASRESFAHANI MH, 1990, DEVELOPMENT, V109, P501 OESTERLE EC, 1993, HEARING RES, V70, P85, DOI 10.1016/0378-5955(93)90054-5 OUWELAND JMW, 1992, NAT GENET, V1, P368 PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8 PIERSON MG, 1981, HEARING RES, V4, P79, DOI 10.1016/0378-5955(81)90037-X PREZANT TR, 1993, NAT GENET, V4, P289, DOI 10.1038/ng0793-289 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 REYNOLDS IJ, 1995, J NEUROSCI, V15, P3318 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E SAITO H, 1992, INT J CANCER, V51, P124, DOI 10.1002/ijc.2910510122 SCHACHT J, 1993, OTOLARYNG CLIN N AM, V26, P845 SCHACHT J, 1986, HEARING RES, V22, P297, DOI 10.1016/0378-5955(86)90105-X SHAH SV, 1992, RENAL FAILURE, V14, P363, DOI 10.3109/08860229209106644 SIESJPO B K, 1989, Cerebrovascular and Brain Metabolism Reviews, V1, P165 STONE JS, 1995, ASS RES OTOLARYNGOL, P83 Stone JS, 1996, J NEUROSCI, V16, P6157 SUZUKI H, 1993, PANCREAS, V8, P465, DOI 10.1097/00006676-199307000-00010 SWANN JD, 1990, BIOCHEM PHARMACOL, V40, P1523, DOI 10.1016/0006-2952(90)90449-U TUCCI DL, 1990, OTOLARYNG HEAD NECK, V103, P443 YANG CL, 1991, RENAL FAILURE, V13, P227, DOI 10.3109/08860229109022158 NR 42 TC 105 Z9 111 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 1 EP 14 DI 10.1016/S0378-5955(96)00169-4 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200001 PM 9119753 ER PT J AU Duncan, RK Grant, JW AF Duncan, RK Grant, JW TI A finite-element model of inner ear hair bundle micromechanics SO HEARING RESEARCH LA English DT Article DE auditory; finite-element; hair cell; stereocilia; tip link ID GUINEA-PIG COCHLEA; MECHANOELECTRICAL TRANSDUCTION CHANNELS; ACTIN-FILAMENTS; CROSS-LINKS; CELLS; STEREOCILIA; STIFFNESS; ORGANIZATION; ELASTASE; CHICK AB Understanding hair-cell micromechanics is central to the discussion of mechanotransduction in these cells. This paper presents a finite-element model that characterizes the stiffness and deflection properties of an inner-ear hair bundle. Average morphological dimensions were used for stereocilia height (6, 8, and 10 mu m), diameter (0.25 mu m), and rootlet separation (0.5 mu m) for a single bundle column containing three rows. Stereocilia material properties were described as isotropic, homogeneous, linearly elastic, and nearly incompressible. Young's modulus for the stereocilia ranged from a maximum of actin and down. The column of stereocilia were coupled by linear elastic material modeling tip and lateral links. When the hairs were deflected by a static force applied to the tip of the tallest cilium, the hair-bundle model yielded a stiffness of 9.5X10(-4) to 21X10(-4) N/m, which was in the range of typical experimental values but approximately a factor of 4-10 times the average of all experimental values. Model parameters such as bundle size, shape, and material properties were systematically varied to determine each component's contribution to bundle stiffness. Additionally, tip-link tensions were determined for a range of deflections in a five cilium model and were shown to be proportionally graded in magnitude along the bundle staircase. C1 VIRGINIA POLYTECH INST & STATE UNIV,DEPT ENGN SCI & MECH,BLACKSBURG,VA 24061. CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X BAGGERSJOBACK D, 1988, ACTA OTOLARYNGOL, V106, P383 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 DUNCAN RK, 1993, THESIS VIRGINIA POLY Duncan R. K., 1993, Society for Neuroscience Abstracts, V19, P1579 Duncan RK, 1995, AUDIT NEUROSCI, V1, P321 FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817 FRIEDMANN I, 1984, ULTRASTRUCTURAL ATLA FURNESS DN, 1985, HEARING RES, V18, P177, DOI 10.1016/0378-5955(85)90010-3 GEISLER CD, 1993, HEARING RES, V65, P79, DOI 10.1016/0378-5955(93)90203-D GITTES F, 1993, J CELL BIOL, V120, P923, DOI 10.1083/jcb.120.4.923 GOODYEAR R, 1992, J COMP NEUROL, V325, P243, DOI 10.1002/cne.903250208 HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, pC1 HACKNEY CM, 1992, P ROY SOC B-BIOL SCI, V248, P215, DOI 10.1098/rspb.1992.0064 HACKNEY CM, 1991, SCANNING MICROSCOPY, V5, P741 HACOHEN N, 1989, J NEUROSCI, V9, P3988 HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 HOWARD J, 1987, P NATL ACAD SCI USA, V84, P3064, DOI 10.1073/pnas.84.9.3064 HOWARD J, 1988, ANNU REV BIOPHYS BIO, V17, P99 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4 HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845 HUDSPETH AJ, 1982, J NEUROSCI, V2, P1 HUISKES R, 1983, J BIOMECH, V16, P385, DOI 10.1016/0021-9290(83)90072-6 JACOBS RA, 1990, COLD SH Q B, V55, P547 KATORI Y, 1996, 19 M ARO, P60 OHMORI H, 1988, J PHYSIOL-LONDON, V399, P115 OSBORNE MP, 1984, CELL TISSUE RES, V237, P43 OSBORNE MP, 1990, ACTA OTO-LARYNGOL, V110, P37, DOI 10.3109/00016489009122513 PICKLES JO, 1985, PROG NEUROBIOL, V24, P1, DOI 10.1016/0301-0082(85)90014-0 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P PICKLES JO, 1992, TRENDS NEUROSCI, V15, P254, DOI 10.1016/0166-2236(92)90066-H PREYER S, 1995, HEARING RES, V89, P187, DOI 10.1016/0378-5955(95)00136-5 Reddy J. N., 1984, INTRO FINITE ELEMENT STRELIOFF D, 1984, HEARING RES, V15, P19, DOI 10.1016/0378-5955(84)90221-1 SZYMKO YM, 1992, HEARING RES, V59, P241, DOI 10.1016/0378-5955(92)90120-C TILNEY LG, 1983, J CELL BIOL, V96, P822, DOI 10.1083/jcb.96.3.822 TILNEY LG, 1980, J CELL BIOL, V86, P244, DOI 10.1083/jcb.86.1.244 NR 39 TC 27 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 15 EP 26 DI 10.1016/S0378-5955(96)00176-1 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200002 PM 9119758 ER PT J AU Sininger, YS Abdala, C ConeWesson, B AF Sininger, YS Abdala, C ConeWesson, B TI Auditory threshold sensitivity of the human neonate as measured by the auditory brainstem response SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; auditory threshold; frequency-specific response; neonate ID NOTCHED-NOISE MASKING; STEM RESPONSE; OTOACOUSTIC EMISSIONS; EVOKED-POTENTIALS; NEWBORN-INFANTS; NORMAL-HEARING; TUNING CURVES; HUMAN ADULTS; FREQUENCY; MATURATION AB The absolute auditory sensitivity of the human newborn infant was investigated using auditory brainstem response thresholds (ABR). ABRs were elicited with clicks and tone-bursts of 0.5, 1.5, 4.0 and 8.0 kHz, embedded in notched noise, in healthy, full-term human neonates and young adults with known, normal-hearing sensitivity. Stimuli were calibrated using a probe microphone positioned near the tympanic membrane in the ear canal of each subject to control for differences in resonance characteristics of infant and adult ear canals. ABR thresholds were also characterized relative to group psychophysical thresholds (nHL) and relative to individual psychophysical threshold or sensation level (SL) for the adult subjects. infant ABR thresholds measured in p.e. SPL for all stimuli are elevated by to 3-25 dB relative to adult thresholds. Threshold elevation is greatest for the high-frequency stimuli. Result are consistent with neural immaturity for high-frequency stimuli in the auditory system of human neonates. C1 UNIV SO CALIF,MED CTR,DEPT OTOLARYNGOL HEAD & NECK SURG,LOS ANGELES,CA. RP Sininger, YS (reprint author), HOUSE EAR RES INST,CHILDRENS AUDITORY RES & EVALUAT CTR,2100 W 3RD ST,LOS ANGELES,CA 90057, USA. CR ABDALA C, 1995, J ACOUST SOC AM, V98, P921, DOI 10.1121/1.414350 ABDALA C, 1996, IN PRESS HEAR RES ADELMAN C, 1990, ELECTROEN CLIN NEURO, V77, P77, DOI 10.1016/0168-5597(90)90019-A BARGONES JY, 1988, J ACOUST SOC AM, V83, P1809, DOI 10.1121/1.396515 BONFILS P, 1988, ACTA OTO-LARYNGOL, V105, P445, DOI 10.3109/00016488809119499 BREDBERG G, 1968, ACTA OTOLARYNGOL S, V234, P6 DON M, 1984, SCAND AUDIOL, V13, P219, DOI 10.3109/01050398409042130 DON M, 1967, THESIS U ARIZONA TUC Don M, 1996, J ACOUST SOC AM, V99, P491, DOI 10.1121/1.414560 DURIEUXSMITH A, 1985, J OTOLARYNGOL, V14, P47 EGGERMONT JJ, 1988, EAR HEARING, V9, P283, DOI 10.1097/00003446-198810000-00009 EGGERMONT JJ, 1996, IN PRESS EAR HEAR EGGERMONT JJ, 1991, J ACOUST SOC AM, V90, P288, DOI 10.1121/1.401299 ELBERLING C, 1987, J ACOUST SOC AM, V81, P115, DOI 10.1121/1.395019 ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059 FOLSOM RC, 1987, J ACOUST SOC AM, V81, P412, DOI 10.1121/1.394906 FOLSOM RC, 1986, J ACOUST SOC AM, V80, P1057, DOI 10.1121/1.393847 GALAMBOS R, 1978, OTOLARYNG CLIN N AM, V11, P709 Hall J, 1992, HDB AUDITORY EVOKED HECOX K, 1982, ANN NY ACAD SCI, V388, P538, DOI 10.1111/j.1749-6632.1982.tb50815.x HECOX K, 1974, ARCH OTOLARYNGOL, V99, P30 HOSFORDDUNN H, 1983, EAR HEARING, V4, P258, DOI 10.1097/00003446-198309000-00008 HYDE ML, 1985, J OTOLARYNGOL, V14, P19 JACOBSON JT, 1984, EAR HEARING, V5, P247, DOI 10.1097/00003446-198407000-00010 JOHANSSON B, 1964, Acta Otolaryngol, V57, P188, DOI 10.3109/00016486409136960 JOHNSEN NJ, 1983, SCAND AUDIOL, V12, P17, DOI 10.3109/01050398309076220 *JOINT COMM INF HE, 1994, 1994 POS STAT AUD TO, V6, P6 KAGA K, 1980, ARCH OTOLARYNGOL, V106, P564 KEEFE DH, 1993, J ACOUST SOC AM, V94, P2617, DOI 10.1121/1.407347 King A.J., 1992, AM J AUDIOLOGY, V1, P63 KLEIN AJ, 1984, HEARING RES, V16, P291, DOI 10.1016/0378-5955(84)90118-7 Lavigne-Rebillard M, 1987, Acta Otolaryngol Suppl, V436, P43 MOORE JK, 1994, HEARING RES, V87, P21 PICTON TW, 1979, J OTOLARYNGOL, V8, P289 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 PONTON CW, 1992, J ACOUST SOC AM, V91, P1576, DOI 10.1121/1.402439 PONTON CW, 1996, IN PRESS EAR HEAR RUBEL EW, 1983, SCIENCE, V219, P512, DOI 10.1126/science.6823549 SALAMY A, 1984, J CLIN NEUROPHYSIOL, V1, P293, DOI 10.1097/00004691-198407000-00003 SALAMY A, 1976, ELECTROEN CLIN NEURO, V40, P418, DOI 10.1016/0013-4694(76)90193-0 SCHULMANGALAMBOS C, 1979, ARCH OTOLARYNGOL, V105, P86 SININGER YS, 1995, J ACOUST SOC AM, V98, P2048, DOI 10.1121/1.413321 SININGER YS, 1993, ABSTR ASS RES OT, V16, P5 SININGER YS, 1993, EAR HEARING, V14, P23, DOI 10.1097/00003446-199302000-00004 SININGER YS, 1989, J SPEECH HEAR RES, V32, P880 SMURZYNSKI J, 1993, EAR HEARING, V14, P258, DOI 10.1097/00003446-199308000-00005 STAPELLS DR, 1995, EAR HEARING, V16, P361, DOI 10.1097/00003446-199508000-00003 Stapells DR, 1985, AUDITORY BRAINSTEM R, P147 STARR A, 1976, BRAIN, V99, P543, DOI 10.1093/brain/99.3.543 STARR A, 1977, PEDIATRICS, V60, P831 STOCKARD JE, 1983, EAR HEARING, V4, P11, DOI 10.1097/00003446-198301000-00005 Suzuki J. I., 1984, SENSORY EVOKED POTEN, P85 TEAS DC, 1982, HEARING RES, V7, P19, DOI 10.1016/0378-5955(82)90080-6 TREHUB SE, 1980, J EXP CHILD PSYCHOL, V29, P282, DOI 10.1016/0022-0965(80)90020-X WERNER LA, 1993, HEARING RES, V68, P131, DOI 10.1016/0378-5955(93)90071-8 NR 55 TC 62 Z9 65 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 27 EP 38 DI 10.1016/S0378-5955(96)00178-5 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200003 PM 9119764 ER PT J AU Dagli, S Canlon, B AF Dagli, S Canlon, B TI The effect of repeated daily noise exposure on sound-conditioned and unconditioned guinea pigs SO HEARING RESEARCH LA English DT Article DE auditory; noise; hearing loss; distortion product otoacoustic emission; sound conditioning ID MIDDLE-EAR MUSCLES; INDUCED HEARING-LOSS; OUTER HAIR-CELLS; THRESHOLD SHIFT; PROTECTION; TRAUMA; LEVEL; RESISTANCE; STIMULUS AB Sound-conditioned and unconditioned guinea pigs were exposed every day for 10 consecutive days to noise exposure resulting in a temporary threshold shift (2767 Hz, 103 dB SPL, 5 min). The cubic distortion product otoacoustic emissions (DPOAE) were followed at a constant L(1) intensity of 60 dB SPL at 1.75, 2.8, 3.5, and 4.4 kHz for 90 min post-exposure. Four parameters (area under the curve, duration of loss, maximal loss, and time point for maximal threshold shift) were analyzed to determine the effect of repeated daily noise exposure for each group. The sound-conditioned group (1) was significantly less affected by overstimulation during the initial days of exposure compared to the unconditioned group and (2) gradually became more affected by overstimulation as the daily sessions progressed. The 'training effect' induced by sound conditioning gradually deteriorated after approximately 5 or 6 days of repeated stimulation. However, at day 10 the sound-conditioned group never had emissions that were worse than day 1 overstimulation for the unconditioned group. The unconditioned group, on the other hand, illustrated significantly greater threshold shifts during the initial days of overexposure and then demonstrated a gradual resistance to overstimulation during subsequent days. C1 KAROLINSKA INST,DEPT PHYSIOL & PHARMACOL,S-17177 STOCKHOLM,SWEDEN. CR BOETTCHER FA, 1992, HEARING RES, V62, P217, DOI 10.1016/0378-5955(92)90189-T CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 CANLON B, 1995, HEARING RES, V84, P112, DOI 10.1016/0378-5955(95)00020-5 CLARK WW, 1987, J ACOUST SOC AM, V82, P1253, DOI 10.1121/1.395261 DAGLI S, 1995, NEUROSCI LETT, V194, P57, DOI 10.1016/0304-3940(95)11726-D FRANKLIN DJ, 1991, HEARING RES, V53, P185, DOI 10.1016/0378-5955(91)90053-C HENDERSON D, 1994, HEARING RES, V74, P22, DOI 10.1016/0378-5955(94)90172-4 Miller J. D., 1963, ACTA OTO-LARYNGOL, V176, P1 MIYAKITA T, 1992, HEARING RES, V60, P149, DOI 10.1016/0378-5955(92)90017-H RYAN AF, 1994, HEARING RES, V72, P23, DOI 10.1016/0378-5955(94)90201-1 SUBRAMANIAM M, 1991, HEARING RES, V52, P181, DOI 10.1016/0378-5955(91)90197-H SUBRAMANIAM M, 1994, HEARING RES, V74, P204, DOI 10.1016/0378-5955(94)90188-0 NR 13 TC 15 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 39 EP 46 DI 10.1016/S0378-5955(96)00179-7 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200004 PM 9119765 ER PT J AU Yoho, ER Thomopoulos, GN Thalmann, I Thalmann, R Schulte, BA AF Yoho, ER Thomopoulos, GN Thalmann, I Thalmann, R Schulte, BA TI Localization of organ of Corti protein II in the adult and developing gerbil cochlea SO HEARING RESEARCH LA English DT Article DE immunohistochemistry; inner ear; ion transport; endolymph; development ID IMMUNOHISTOCHEMICAL LOCALIZATION; GLUCOSE-TRANSPORTER; MONGOLIAN GERBIL; INNER-EAR; NUCLEAR; POTENTIALS; EXPRESSION; CYTOPLASM; CLONING; TISSUE AB The distribution of organ of Corti protein II (OCP-II) was assessed in the developing and mature gerbil cochlea by light and electron microscopic immunohistochemistry. In the adult cochlea, OCP-II was expressed only in certain epithelial cells which included all supporting cells of the organ of Corti, inner and outer sulcus cells and interdental cells. Inner and outer hair cells lacked immunoreactivity. The highest gold particle labeling density was seen overlying intracellular regions devoid of organelles. In the developing inner ear, OCP-II was first detected at 2 days after birth (DAB) with the strongest staining in immature Deiters, inner phalangeal and pillar cells. Immunostaining intensity increased gradually in cells lying laterally and medially to the more centrally located supporting cells and reached adult levels in all reactive cell types around 18 DAB. The results demonstrate conclusively that OCP-II is a cytosolic protein and fail to support its role as a transcription factor postulated on the basis of its homology with p15 or a role in the control of the cell cycle as suggested by its near-identity with p19(Skp1), a cyclin A/CDK2-associated protein. The continued high level of expression in the mature cochlea argues against OCP-II's involvement in regulating the development and differentiation of epithelial cells. The protein's unique distribution and its gradual increase in expression prior to and during the onset and maturation of hearing, however, support its potential function in the recycling of K+ effluxed from hair cells and neurons back to endolymph. C1 MED UNIV S CAROLINA,DEPT PATHOL & LAB MED,CHARLESTON,SC 29425. WASHINGTON UNIV,SCH MED,DEPT OTOLARYNGOL,ST LOUIS,MO 63110. CR BASKIN DG, 1979, J HISTOCHEM CYTOCHEM, V27, P867 BORER RA, 1989, CELL, V56, P379, DOI 10.1016/0092-8674(89)90241-9 BOSHER SK, 1971, J PHYSIOL-LONDON, V212, P739 CHEN H, 1995, GENOMICS, V27, P389, DOI 10.1006/geno.1995.1068 GARRETT KP, 1994, P NATL ACAD SCI USA, V91, P5237, DOI 10.1073/pnas.91.12.5237 GUIOCHONMANTEL A, 1991, EMBO J, V10, P3851 IMAMOTO N, 1992, J CELL BIOL, V119, P1047, DOI 10.1083/jcb.119.5.1047 ITO M, 1993, HEARING RES, V71, P230, DOI 10.1016/0378-5955(93)90039-4 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 LASKEY RA, 1993, CELL, V74, P585, DOI 10.1016/0092-8674(93)90505-K LIM DJ, 1990, ACTA OTO-LARYNGOL, V110, P224, DOI 10.3109/00016489009122541 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 MANDELL RB, 1990, J CELL BIOL, V111, P1775, DOI 10.1083/jcb.111.5.1775 MCGUIRT JP, 1995, HEARING RES, V84, P52, DOI 10.1016/0378-5955(95)00015-V McGuirt JP, 1996, AUDIT NEUROSCI, V2, P135 MEIER UT, 1992, CELL, V70, P127 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 MOORE MS, 1994, TRENDS BIOCHEM SCI, V19, P211, DOI 10.1016/0968-0004(94)90024-8 MUNYER PD, 1995, HEARING RES, V85, P85, DOI 10.1016/0378-5955(95)00032-Y NAKAZAWA K, 1995, HEARING RES, V82, P93 NIGG EA, 1992, ADV MOL CELL BIOL, V4, P103, DOI 10.1016/S1569-2558(08)60175-7 SCHMIDTZACHMANN MS, 1993, CELL, V74, P493, DOI 10.1016/0092-8674(93)80051-F SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P1787 SCHULTE BA, 1980, AM J ANAT, V159, P369, DOI 10.1002/aja.1001590402 SOWDEN J, 1995, GENOMICS, V29, P145, DOI 10.1006/geno.1995.1225 SPICER SS, 1996, IN PRESS HEAR RES SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z STEEL KP, 1986, NEUROBIOLOGY HEARING, P139 THALMANN I, 1980, ARCH OTO-RHINO-LARYN, V226, P123, DOI 10.1007/BF00455126 THALMANN I, 1990, LARYNGOSCOPE, V100, P99 THALMANN I, 1988, J ACOUST SOC AM, V83, pS97, DOI 10.1121/1.2025614 WOOLF NK, 1984, HEARING RES, V13, P277, DOI 10.1016/0378-5955(84)90081-9 ZHANG H, 1995, CELL, V82, P915, DOI 10.1016/0092-8674(95)90271-6 NR 34 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 47 EP 56 DI 10.1016/S0378-5955(96)00183-9 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200005 PM 9119766 ER PT J AU Brown, M Webster, WR Martin, RL AF Brown, M Webster, WR Martin, RL TI The three-dimensional frequency organization of the inferior colliculus of the cat: A 2-deoxyglucose study SO HEARING RESEARCH LA English DT Article DE tonotopic organization; three-dimensional reconstruction; anatomical lamina; auditory nucleus ID CENTRAL NUCLEUS; C-14 2-DEOXYGLUCOSE; AUDITORY-SYSTEM; ADULT CAT; REPRESENTATION; DEOXYGLUCOSE; STIMULATION; AFFERENTS; NEURONS; COCHLEA AB The 3-dimensional (3-D) functional organization of the cat's inferior colliculus (IC) was examined using the 2-deoxyglucose method. Animals were dichotically stimulated with pure tone stimuli at an intensity of 80 dB SPL. Autoradiographic sections from these animals, cut in the three standard planes, were serially reconstructed to reveal the 3-D topography of the isofrequency sheets of labelling. In all 3-D reconstructions, the isofrequency sheets extend rostrocaudally through the IC with the rostral aspect of the sheet being situated more ventral than its caudal aspect. In the mediolateral dimension, sheets are angled at between 40 degrees and 60 degrees to the horizontal, running from a dorsomedial to a ventrolateral position. The low-frequency sheets (0.5 and 2 kHz) are dorsolaterally convex and situated in the dorsolateral region of the IC. The 4 and 10 kHz isofrequency sheets have a helical structure and are situated in the mid-region of the IC. The high-frequency sheets (20 and 30 kHz) are dorsolaterally concaved and situated in the ventromedial region of the IC. The topography of these isofrequency sheets generally agree with, and extended our knowledge of, the tonotopic organization of the IC as derived from electrophysiological studies. The functional organization revealed by the 2-deoxyglucose method only partially correlated with the neural laminae in the anatomical models of the IC proposed by Rockel and Jones [J. Comp. Neurol. 147 (1973) 11-60] and Oliver and Merest [J. Comp. Neurol. 222 (1984) 237-264]. It is therefore concluded that the neural laminar organization of the IC may not be a necessary substrate for the tonotopic organization seen the IC. C1 MONASH UNIV,DEPT PSYCHOL,CLAYTON,VIC 3168,AUSTRALIA. CR AITKIN L, 1985, HEARING RES, V17, P87, DOI 10.1016/0378-5955(85)90134-0 AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1196 AUKER CR, 1983, J NEUROPHYSIOL, V49, P1504 BROWN M, UNPUB INTENSITY FREQ BROWN M, 1992, HEARING RES, V59, P224, DOI 10.1016/0378-5955(92)90119-8 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 CHAN JC, 1982, NEUR ABSTR, V8, P348 Foley J.D., 1982, FUNDAMENTALS INTERAC GALLISTEL CR, 1982, NEUROSCI BIOBEHAV R, V6, P409, DOI 10.1016/0149-7634(82)90024-0 HEIL P, 1986, J COMP NEUROL, V252, P279, DOI 10.1002/cne.902520302 HUANG C, 1986, EXP BRAIN RES, V61, P506 LIPPE WR, 1980, BRAIN RES, V196, P43, DOI 10.1016/0006-8993(80)90715-5 MARTIN RL, 1988, HEARING RES, V33, P245, DOI 10.1016/0378-5955(88)90155-4 MELZER P, 1984, HEARING RES, V15, P187, DOI 10.1016/0378-5955(84)90050-9 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 MOREST DK, 1964, ANAT REC, V148, P390 MOREST DK, 1966, J COMP NEUROL, V154, P477 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 MOREST DK, 1966, ANAT REC, V154, P389 MORSET DK, 1964, ANAT REC, V148, P314 NUDO RJ, 1986, J COMP NEUROL, V245, P553, DOI 10.1002/cne.902450410 OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 RAMM P, 1984, J NEUROSCI METH, V11, P89, DOI 10.1016/0165-0270(84)90028-1 ROCKEL AJ, 1973, J COMP NEUROL, V147, P61, DOI 10.1002/cne.901470104 ROCKEL AJ, 1973, J COMP NEUROL, V147, P11, DOI 10.1002/cne.901470103 ROSE JE, 1963, J NEUROPHYSIOL, V26, P294 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823 SEMPLE MN, 1985, J NEUROPHYSIOL, V53, P1467 SEMPLE MN, 1979, J NEUROPHYSIOL, V42, P1626 SERVIERE J, 1981, NEUROSCI LETT, V27, P113, DOI 10.1016/0304-3940(81)90253-6 SERVIERE J, 1984, J COMP NEUROL, V228, P463, DOI 10.1002/cne.902280403 SHNEIDERMAN A, 1987, J COMP NEUROL, V266, P519, DOI 10.1002/cne.902660406 SOKOLOFF L, 1977, J NEUROCHEM, V28, P897, DOI 10.1111/j.1471-4159.1977.tb10649.x THEURICH M, 1984, BRAIN RES, V322, P157, DOI 10.1016/0006-8993(84)91197-1 WEBSTER WR, 1984, EXP BRAIN RES, V56, P577 WEBSTER WR, 1985, J NEUROSCI, V5, P1820 NR 37 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 57 EP 72 DI 10.1016/S0378-5955(96)00185-2 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200006 PM 9119767 ER PT J AU Brown, M Webster, WR Martin, RL AF Brown, M Webster, WR Martin, RL TI Intensity and frequency functions of [C-14]2-deoxyglucose labelling in the central nucleus of the inferior colliculus in the cat SO HEARING RESEARCH LA English DT Article DE tonotopic; acoustic stimulation; frequency selectivity ID SUPERIOR OLIVARY COMPLEX; CENTRAL AUDITORY PATHWAY; C-14 2-DEOXYGLUCOSE; GLUCOSE-UTILIZATION; COCHLEAR NUCLEUS; NEURONS; DEOXYGLUCOSE; ORGANIZATION; SELECTIVITY; STIMULATION AB The frequency organization of the central nucleus of the inferior colliculus (ICC) in the anesthetised cat was quantitatively mapped using [C-14]2-deoxyglucose. From a standardised rostrocaudal region of the ICC, the position of peak selective labelling along the tonotopic axis closely conformed to the reported tonotopic organization of this nucleus. The position of the peak was found not to significantly change its position along the tonotopic axis with increasing stimulus intensity. However, the amplitude of peak uptake and width of selective labelling were shown to monotonically increase with increase in stimulus intensity. The increase in width of selective labelling, about the position of peak uptake, showed a slight asymmetry toward the high-frequency regions of the ICC. A 2-DG frequency-position function for the ICC, similar to that for the cochlea, enabled the width of 2-DG bands to be expressed in terms of their frequency spread along the tonotopic axis. This inturn enabled 2-DG tuning curves to be plotted which, when compared to electrophysiologically determined tuning curves, showed marked similarities. The minimum threshold and width (Q(10)) of these 2-DG tuning curves fell within the range reported for single units in the cat auditory pathway. C1 MONASH UNIV,DEPT PSYCHOL,CLAYTON,VIC 3168,AUSTRALIA. CR AITKIN L, 1991, J NEUROPHYSIOL, V65, P383 AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1196 AUKER CR, 1983, J NEUROPHYSIOL, V49, P1504 BROWN M, UNPUB 3 DIMENSIONAL BROWN M, 1992, HEARING RES, V59, P224, DOI 10.1016/0378-5955(92)90119-8 CALFORD MB, 1983, HEARING RES, V11, P395, DOI 10.1016/0378-5955(83)90070-9 CANLON B, 1983, HEARING RES, V10, P217, DOI 10.1016/0378-5955(83)90055-2 CANLON B, 1984, COMP BIOCHEM PHYS A, V78, P43, DOI 10.1016/0300-9629(84)90089-6 EHERT G, 1988, HEARING RES, V35, P1 GALLISTEL CR, 1982, NEUROSCI BIOBEHAV R, V6, P409, DOI 10.1016/0149-7634(82)90024-0 GOLDBERG JM, 1973, BRAIN RES, V64, P35, DOI 10.1016/0006-8993(73)90169-8 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 GUINAN JJ, 1972, INT J NEUROSCI, V4, P101, DOI 10.3109/00207457209147165 HUANG C, 1986, EXP BRAIN RES, V61, P506 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIPPE WR, 1980, BRAIN RES, V196, P43, DOI 10.1016/0006-8993(80)90715-5 MARTIN RL, 1988, HEARING RES, V33, P245, DOI 10.1016/0378-5955(88)90155-4 MELZER P, 1984, HEARING RES, V15, P187, DOI 10.1016/0378-5955(84)90050-9 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 NUDO RJ, 1986, J COMP NEUROL, V245, P553, DOI 10.1002/cne.902450410 NUDO RJ, 1984, CONTRIBUTIONS SENSOR, V18, P79 RHODE WS, 1987, J NEUROPHYSIOL, V57, P414 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 ROSE JE, 1963, J NEUROPHYSIOL, V26, P294 RYAN AF, 1989, BRAIN RES, V483, P283, DOI 10.1016/0006-8993(89)90172-8 SEMPLE MN, 1981, THESIS MONASH U CLAY SERVIERE J, 1981, NEUROSCI LETT, V27, P113, DOI 10.1016/0304-3940(81)90253-6 SERVIERE J, 1984, J COMP NEUROL, V228, P463, DOI 10.1002/cne.902280403 SHARP FR, 1981, BRAIN RES, V230, P87, DOI 10.1016/0006-8993(81)90393-0 SHARP FR, 1983, BRAIN RES, V263, P97, DOI 10.1016/0006-8993(83)91204-0 SOKOLOFF L, 1977, J NEUROCHEM, V29, P13, DOI 10.1111/j.1471-4159.1977.tb03919.x THEURICH M, 1984, BRAIN RES, V322, P157, DOI 10.1016/0006-8993(84)91197-1 TSUCHITA.C, 1967, J ACOUST SOC AM, V42, P794, DOI 10.1121/1.1910651 TSUCHITA.C, 1966, J NEUROPHYSIOL, V29, P684 TSUCHITANI C, 1977, J NEUROPHYSIOL, V40, P296 WEBSTER WR, 1984, EXP BRAIN RES, V56, P577 WEBSTER WR, 1983, EXP BRAIN RES, V56, P425 WEBSTER WR, 1985, J NEUROSCI, V5, P1820 WEBSTER WR, 1978, NEUROSCI LETT, V10, P43, DOI 10.1016/0304-3940(78)90009-5 WILLOTT JF, 1977, EXP BRAIN RES, V28, P443 NR 41 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 73 EP 89 DI 10.1016/S0378-5955(96)00186-4 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200007 PM 9119768 ER PT J AU McGinn, MD Faddis, BT AF McGinn, MD Faddis, BT TI Kangaroo rats exhibit spongiform degeneration of the central auditory system similar to that found in gerbils SO HEARING RESEARCH LA English DT Article DE auditory threshold; cochlear nucleus; degeneration; gerbil; kangaroo rat ID VENTRAL COCHLEAR NUCLEUS; EVOKED RESPONSE BAER; MONGOLIAN GERBIL; BRAIN-STEM; STIMULUS DEPENDENCIES; SPONGY DEGENERATION; CLICK LEVEL; ENCEPHALOPATHY; POPULATIONS; MICROCYSTS AB Kangaroo rats develop spongiform degeneration of the central auditory system similar to that seen in the gerbil. Light microscopic and transmission electron microscopic study of the cochlear nucleus and auditory nerve root (ANR) of Dipodomys deserti and D. merriami show that spongiform lesions develop in dendrites and oligodendrocytes of the cochlear nucleus and in oligodendrocytes of the ANR that are morphologically indistinguishable from those extensively described in the Mongolian gerbil, Meriones unguiculatus. As in Mongolian gerbils, the spongiform degeneration in Dipodomys were much more numerous in animals continually exposed to modest levels of low-frequency noise (<75 dB SPL). The kangaroo rats with extensive spongiform degeneration also show slightly, but significantly, elevated auditory brainstem evoked response (ABR) thresholds to low-frequency stimuli, a result also found in Mongolian gerbils. These results suggest that the elevated ABR thresholds may be the result of spongiform degeneration. Because low-frequency noise-induced spongiform degeneration has now been shown in the cochlear nucleus of animals from separate families of Rodentia (Heteromyidae and Muridae), the possibility should be investigated that similar noise-induced degenerative changes occur in the central auditory system of other mammals with good low-frequency hearing. C1 CENT INST DEAF,RES DEPT,ST LOUIS,MO 63110. RP McGinn, MD (reprint author), UNIV CALIF DAVIS,SCH MED,DEPT OTOLARYNGOL,1515 NEWTON COURT,ROOM 209,DAVIS,CA 95616, USA. CR ADACHI M, 1973, ACTA NEUROPATHOL, V23, P300 ADORNATO B, 1971, ACTA NEUROPATHOL, V19, P271 ALLEN SK, 1990, ASS RES OT ABSTR, V13, P157 AZZAM NA, 1984, J NEUROPATH EXP NEUR, V43, P118, DOI 10.1097/00005072-198403000-00002 BOUSKILA A, 1995, ECOLOGY, V76, P165, DOI 10.2307/1940639 BURKARD R, 1993, J ACOUST SOC AM, V94, P2441, DOI 10.1121/1.407465 BURKARD R, 1989, J ACOUST SOC AM, V85, P2514, DOI 10.1121/1.397746 CHO DY, 1977, ACTA NEUROPATHOL, V39, P115 CZIBULKA A, 1991, HEARING RES, V52, P43, DOI 10.1016/0378-5955(91)90186-D CZIBULKA A, 1993, HEARING RES, V67, P1, DOI 10.1016/0378-5955(93)90226-Q FADDIS BT, 1993, EXP NEUROL, V120, P160, DOI 10.1006/exnr.1993.1051 Faddis B. T., 1993, Society for Neuroscience Abstracts, V19, P1342 FADDIS BT, 1994, THESIS U CALIFORNIA FADDIS BT, 1994, SOC NEUR ABSTR, V20, P93 FELDMAN ML, 1994, ASS RES OT ABSTR, V17, P106 GOMI H, 1990, J NEUROPATH EXP NEUR, V49, P250, DOI 10.1097/00005072-199005000-00006 HARRISON JM, 1966, J COMP NEUROL, V126, P391, DOI 10.1002/cne.901260303 HARRISON JM, 1965, J COMP NEUROL, V124, P15, DOI 10.1002/cne.901240103 HENRY KR, 1980, ARCH OTO-RHINO-LARYN, V228, P233, DOI 10.1007/BF00660735 Hirano A, 1981, GUIDE NEUROPATHOLOGY HOLM S, 1979, SCAND J STAT, V6, P65 JEWETT DL, 1972, BRAIN RES, V36, P101, DOI 10.1016/0006-8993(72)90769-X KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 KITZES L M, 1989, Society for Neuroscience Abstracts, V15, P743 Krinke G., 1994, PATHOBIOLOGY AGING R, V2, P3 LANTOS PL, 1992, HISTOPATHOLOGY, V20, P1, DOI 10.1111/j.1365-2559.1992.tb00909.x LAY DOUGLAS, 1972, J MORPHOL, V138, P41, DOI 10.1002/jmor.1051380103 LAY DM, 1974, J MAMMAL, V55, P608, DOI 10.2307/1379549 MCGINN MD, 1987, HEARING RES, V31, P235, DOI 10.1016/0378-5955(87)90193-6 MCGINN MD, 1994, HEARING RES, V81, P57, DOI 10.1016/0378-5955(94)90153-8 MCGINN MD, 1990, HEARING RES, V48, P265, DOI 10.1016/0378-5955(90)90066-X MCGINN MD, 1973, NATURE, V244, P235 MCGINN MD, 1991, ANN OTO RHINOL LARYN, V100, P1015 MCGINN MD, 1982, THESIS U CALIFORNIA MCGINN M D, 1991, Society for Neuroscience Abstracts, V17, P1484 MOORE HC, 1990, HEARING RES, V45, P253, DOI 10.1016/0378-5955(90)90125-9 MOREST DK, 1990, J COMP NEUROL, V300, P230, DOI 10.1002/cne.903000207 MOREST K, 1986, IUPS SAT S HEAR Morgan K T, 1973, Res Vet Sci, V15, P88 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 OSTAPOFF EM, 1989, HEARING RES, V37, P141, DOI 10.1016/0378-5955(89)90036-1 STATLER KD, 1990, HEARING RES, V50, P275, DOI 10.1016/0378-5955(90)90051-P Walker EP, 1983, WALKERS MAMMALS WORL WEBSTER DB, 1971, J COMP NEUROL, V143, P323, DOI 10.1002/cne.901430305 WEBSTER DB, 1968, J COMP NEUROL, V133, P477, DOI 10.1002/cne.901330407 WEBSTER DB, 1980, AM ZOOL, V20, P247 WEBSTER DOUGLAS B., 1962, PHYSIOL ZOOL, V35, P248 WOOD AE, 1965, EVOLUTION, V19, P115, DOI 10.2307/2406300 YAGI H, 1989, J NEUROPATH EXP NEUR, V48, P577, DOI 10.1097/00005072-198909000-00008 NR 49 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 90 EP 100 DI 10.1016/S0378-5955(96)00177-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200008 PM 9119769 ER PT J AU Adams, JC Schulte, BA AF Adams, JC Schulte, BA TI Histopathologic observations of the aging gerbil cochlea SO HEARING RESEARCH LA English DT Article DE pathology; presbycusis; organ of Corti; hair cell ID AGE-RELATED-CHANGES; HAIR CELL LOSS; REISSNERS MEMBRANE; MONGOLIAN GERBIL; GRADED SERIES; RAT COCHLEAS; DEGENERATION; QUIET; POTENTIALS; COUNTS AB Age-related histopathologic changes were examined in cochleas from 17 gerbils born and kept in a quiet environment until near the end of their life expectancy. Hearing loss varied greatly as did the loss of outer hair cells (OHC). Inner hair cells (IHC) were seldom missing even in cochleas with severe hearing losses. Flask- and spherical-shaped OHCs were frequently seen in the apical turn. Stereocilia were usually present and orderly on OHCs, but the tallest row of stereocilia on IHCs was often disarrayed and sometimes missing. Alterations in supporting cells were sometimes present in regions of extensive OHC loss. Although pillar cells were seldom missing, the nuclei of outer pillar cells were commonly displaced from their normal basal position. The density of radial fibers appeared similar to that in young gerbils except in the apical turn of one old ear where a marked loss of radial fibers occurred without an attendant loss of IHCs. All of the quiet-aged cochleas showed a characteristic clustering of epithelial cells lining the scala media surface of Reissner's membrane. This structural rearrangement was not accompanied by a significant decrease in the total number of cells forming Reissner's membrane and did not appear to be associated with hearing loss. The findings confirm and extend earlier work showing that several different types of cells are susceptible to histopathologic changes in old ears. The extent of histopathologic changes varied widely as did the degree of hearing loss in animals with a restricted genetic background and maintained under carefully controlled environmental conditions. It was not possible, based on these initial findings, to relate specific structural to specific functional changes in the aging cochlea. Further light and electron microscopic analysis of other regions from these aged cochleas may provide more conclusive data. C1 MASSACHUSETTS EYE & EAR INFIRM,DEPT OTOLARYNGOL,BOSTON,MA 02114. RP Adams, JC (reprint author), MED UNIV S CAROLINA,DEPT PATHOL & LAB MED,CHARLESTON,SC 29425, USA. CR BHATTACHARYYA TK, 1989, ANN OTO RHINOL LARYN, V223, pA6 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 CLARK G, 1960, STAINING PROCEDURES, P63 COHEN GM, 1989, CRC CRIT R CLIN NEUR, V4, P179 COLEMAN JW, 1976, ACTA OTO-LARYNGOL, V82, P33, DOI 10.3109/00016487609120860 COVELL W. P., 1957, LARYNGOSCOPE, V67, P118 DAYAL VS, 1986, ANN OTO RHINOL LARYN, V95, P510 Dayal V S, 1975, Laryngoscope, V85, P1 FELDMAN ML, 1990, ABSTR ASS RES OT, P421 GULYA AJ, 1990, ASHA REP, V13, P126 HELLSTROM LI, 1991, HEARING RES, V23, P217 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N HENRY KR, 1983, ARCH OTOLARYNGOL, V109, P19 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 JOHNSSON LG, 1971, ANN OTO RHINOL LARYN, V80, P425 KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 LIBERMAN MC, 1987, HEARING RES, V26, P65, DOI 10.1016/0378-5955(87)90036-0 MILLS JH, 1991, NOISE INDUCED HEARIN, P237 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 NADOL JB, 1980, AGING COMMUNICATION, P63 NADOL JB, 1979, OTOLARYNG HEAD NECK, V87, P818 QUIJANO ML, 1990, ORL J OTO-RHINO-LARY, V52, P273 Retzius G, 1884, GEHORORGAN WIRBELTIE, pII SCHMIEDT RA, 1982, NOISE IND HEARING LO, P246 SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Schuknecht HF, 1993, PATHOLOGY EAR SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V WATANUKI K, 1981, ACTA OTO-LARYNGOL, V91, P65, DOI 10.3109/00016488109138483 YOON TH, 1991, ANN OTO RHINOL LARYN, V100, P288 NR 35 TC 24 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 101 EP 111 DI 10.1016/S0378-5955(96)00184-0 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200009 PM 9119754 ER PT J AU Kelly, JB Li, L AF Kelly, JB Li, L TI Two sources of inhibition affecting binaural evoked responses In the rat's inferior colliculus: The dorsal nucleus of the lateral lemniscus and the superior olivary complex SO HEARING RESEARCH LA English DT Article DE binaural interaction; auditory brainstem; inferior colliculus; dorsal nucleus of lateral lemniscus; superior olivary complex; sound localization; spatial hearing ID STEM AUDITORY NUCLEI; KAINIC ACID LESIONS; VITRO BRAIN SLICE; ACOUSTIC CHIASM; MOUSTACHE BAT; ASCENDING PROJECTIONS; SINGLE NEURONS; PHYSIOLOGICAL-PROPERTIES; GABA-IMMUNOREACTIVITY; GABAERGIC PROJECTION AB The present study was undertaken to determine the influence of two extrinsic sources of inhibition on auditory binaural evoked responses recorded from the rat's inferior colliculus. The first source, the dorsal nucleus of the lateral lemniscus (DNLL), is predominantly GABAergic and has both ipsi- and contralateral projections to the central nucleus of the inferior colliculus (ICC). The second, the superior olivary complex (SOC), has a large glycinergic projection from the lateral superior olive (LSO) to the ipsilateral ICC. Thus, both structures are candidates for imposing an inhibitory effect on responses in the ICC. Neural activity was experimentally blocked by local injection of the excitatory amino acid antagonist, kynurenic acid (KYNA), into either DNLL or SOC. Binaural evoked responses were recorded from the ICC as the intensity of the sound in the ipsilateral ear was increased. Interaural intensity difference functions based on the amplitude of the evoked responses were generated before and after the KYNA injection. An injection into the contralateral DNLL greatly reduced the response suppression produced by stimulation of the ipsilateral ear. Injection into the ipsilateral DNLL, however, had no effect. Injection into the ipsilateral SOC reduced the amount of binaural suppression but the effect was apparent only in cases with surgical transection of the contralateral lateral lemniscus at a level below the DNLL. These data support the conclusion that binaural responses in the rat's ICC are shaped by inhibitory projections from both contralateral DNLL and ipsilateral SOC. RP Kelly, JB (reprint author), CARLETON UNIV,DEPT PSYCHOL,LAB SENSORY NEUROSCI,329 LIFE SCI BLDG,OTTAWA,ON K1S 5B6,CANADA. CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 AITKIN LM, 1970, J NEUROPHYSIOL, V33, P421 BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207 BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2 BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442 BRUGGE JF, 1970, J NEUROPHYSIOL, V33, P441 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 BUCKTHOUGHT AD, 1993, THESIS CARLETON U OT CAIRD D, 1983, EXP BRAIN RES, V52, P385 CARNEY LH, 1989, J NEUROPHYSIOL, V62, P144 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 COLOMBO A, 1996, ASS RES OT ABSTR, V19, P121 COVEY E, 1993, J NEUROPHYSIOL, V69, P842 ELVERLAND HH, 1978, EXP BRAIN RES, V32, P117 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K FINLAYSON PG, 1989, HEARING RES, V38, P221, DOI 10.1016/0378-5955(89)90067-1 Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469 FLAMMINO F, 1975, J ACOUST SOC AM, V57, P692, DOI 10.1121/1.380494 FRIAUF E, 1988, EXP BRAIN RES, V73, P263 GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210 GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210 GLENDENNING KK, 1983, J NEUROSCI, V3, P1521 GLENN SL, 1992, J NEUROSCI, V12, P3688 GOLDBERG JM, 1967, J COMP NEUROL, V129, P143, DOI 10.1002/cne.901290203 HENKEL CK, 1993, J COMP NEUROL, V331, P458, DOI 10.1002/cne.903310403 HUTSON KA, 1991, J COMP NEUROL, V312, P105, DOI 10.1002/cne.903120109 HUTSON K A, 1987, Society for Neuroscience Abstracts, V13, P548 INBODY SB, 1981, BRAIN RES, V210, P361, DOI 10.1016/0006-8993(81)90910-0 ITO M, 1995, WORLD C NEUR IBRO KY, V4, P197 KELLY JB, 1991, HEARING RES, V56, P273, DOI 10.1016/0378-5955(91)90177-B Kidd SA, 1996, J NEUROSCI, V16, P7390 KUDO M, 1981, BRAIN RES, V221, P57, DOI 10.1016/0006-8993(81)91063-5 LABELLE RE, 1996, ASS RES OT ABSTR, V19, P121 LI L, 1992, J NEUROSCI, V12, P4530 LI L, 1992, HEARING RES, V61, P73, DOI 10.1016/0378-5955(92)90038-O LI L, 1992, SOC NEUR ABSTR, V18, P305 MARKOVITZ NS, 1994, HEARING RES, V73, P121, DOI 10.1016/0378-5955(94)90290-9 MARKOVITZ NS, 1993, HEARING RES, V71, P51, DOI 10.1016/0378-5955(93)90020-2 MERCHAN MA, 1994, J COMP NEUROL, V342, P259, DOI 10.1002/cne.903420209 MOORE JK, 1987, J COMP NEUROL, V260, P157, DOI 10.1002/cne.902600202 OLIVER DL, 1989, J NEUROSCI, V9, P967 PARK TJ, 1993, J NEUROSCI, V13, P2050 PARK TJ, 1994, J NEUROPHYSIOL, V72, P1080 Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 ROSS LS, 1988, J COMP NEUROL, V270, P488, DOI 10.1002/cne.902700403 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B SAINTMARIE RL, 1989, J COMP NEUROL, V279, P382 SALLY SL, 1992, BRAIN RES, V572, P5, DOI 10.1016/0006-8993(92)90444-E SANES DH, 1990, J NEUROSCI, V10, P3494 SHNEIDERMAN A, 1993, J NEUROCHEM, V60, P72, DOI 10.1111/j.1471-4159.1993.tb05824.x SHNEIDERMAN A, 1987, J COMP NEUROL, V266, P519, DOI 10.1002/cne.902660406 SHNEIDERMAN A, 1989, J COMP NEUROL, V286, P28, DOI 10.1002/cne.902860103 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 SILVERMAN MS, 1977, J NEUROPHYSIOL, V40, P1266 STOTLER WA, 1953, J COMP NEUROL, V98, P401, DOI 10.1002/cne.900980303 TANAKA K, 1985, BRAIN RES, V341, P252, DOI 10.1016/0006-8993(85)91064-9 THOMPSON AM, 1991, J COMP NEUROL, V311, P495, DOI 10.1002/cne.903110405 THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6 TSUCHITANI C, 1969, J ACOUST SOC AM, V46, P978 VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205 WILLARD FH, 1984, BRAIN RES, V303, P171, DOI 10.1016/0006-8993(84)90225-7 WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302 WU SH, 1995, J NEUROPHYSIOL, V73, P794 WU SH, 1991, J NEUROPHYSIOL, V65, P230 WU SH, 1995, J NEUROPHYSIOL, V73, P780 Wu SH, 1996, J NEUROPHYSIOL, V75, P1271 WU SH, 1992, J NEUROSCI, V12, P3084 YANG L, 1994, AUDIT NEUROSCI, V1, P1 YANG LC, 1994, J NEUROPHYSIOL, V71, P1999 YIN TCT, 1994, J NEUROSCI, V14, P5170 ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103 NR 77 TC 41 Z9 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 112 EP 126 DI 10.1016/S0378-5955(96)00182-7 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200010 PM 9119755 ER PT J AU Williams, DM Brown, AM AF Williams, DM Brown, AM TI The effect of contralateral broad-band noise on acoustic distortion products from the human ear SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; efferent; distortion product; contralateral stimulation; human ID CROSSED OLIVOCOCHLEAR BUNDLE; EVOKED OTOACOUSTIC EMISSIONS; AUDITORY-NERVE FIBERS; PHYSIOLOGICAL VULNERABILITY; ELECTRICAL-STIMULATION; COCHLEAR MECHANICS; GUINEA-PIG; RESPONSES; ASPIRIN; 2F1-F2 AB In the first part of the study, the effect of ipsilateral stimulus level on contralateral suppression of the 2f(1)-f(2) distortion product by broad-band noise at 60 dB SPL RMS is examined. The levels of the primary stimuli were manipulated independently, giving f(1) and f(2) growth curves at four different f(2) frequencies for four subjects. These typically bell-shaped, growth curves are shifted vertically to lower distortion levels and, in some cases, horizontally to higher primary stimulus levels. These results can be interpreted as an attenuation of both the primary stimuli and the distortion product and could be caused by simple acoustic attenuation produced by middle ear muscle activity, efferent activity or a combination of the two. In the second part of the study, the same contralateral stimulus was used while measuring both 3f(1)-2f(2) and 2f(1)-f(2) distortion products from the ipsilateral ear. The frequency separation of the primary tones was varied. This produced an approximately bandpass shape with the level peaking when the distortion frequency was approximately half an octave below f(2), as previously described (Brown and Gaskill, 1990). This shape is thought to be linked with frequency selectivity in the cochlea. Contralateral broadband noise did not affect the tuning or the centre frequency of the bandpass shape or the mean group delay. It did reduce the size of the distortion peak and, in particular, it affected the peak-to-trough height of the 'fine structure' in the amplitude. Vector analysis revealed that the fine structure was due to a signal with substantial delay (probably from the distortion product 'place') which was summed with a larger, less delayed component (probably directly from the f(2) 'place'). The greater effect of contralateral stimulation on the more delayed component may reflect differences in efferent effect with complex (stimulus place), rather than simple (distortion product place) stimuli. C1 UNIV SUSSEX, EXPT PSYCHOL LAB, BRIGHTON BN1 9QG, E SUSSEX, ENGLAND. CR BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 BROWN AM, 1992, P ROY SOC B-BIOL SCI, V250, P29, DOI 10.1098/rspb.1992.0126 BROWN AM, 1993, J ACOUST SOC AM, V93, P3291, DOI 10.1121/1.405713 BROWN AM, 1993, J ACOUST SOC AM, V93, P3298, DOI 10.1121/1.405714 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209 BROWN AM, 1990, LECT NOTES BIOMATH, V87, P164 BROWN MC, 1984, J PHYSIOL-LONDON, V354, P625 CAPPS MJ, 1968, EXP NEUROL, V21, P147, DOI 10.1016/0014-4886(68)90133-7 CARLIER E, 1982, NEUROSCI LETT, V28, P101, DOI 10.1016/0304-3940(82)90215-4 CARMEL PW, 1963, J NEUROPHYSIOL, V26, P598 CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8 DALLMAYR C, 1987, ACUSTICA, V63, P243 DALLMAYR C, 1985, ACUSTICA, V59, P67 DALLOS P, 1992, J NEUROSCI, V12, P4575 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DEWSON JH, 1967, J NEUROPHYSIOL, V30, P817 DEWSON JH, 1968, J NEUROPHYSIOL, V31, P122 FAHEY PF, 1986, PERIPHERAL AUDITORY, P314 GALAMBOS R, 1959, J ACOUST SOC AM, V31, P39 GASKILL SG, 1989, THESIS U SUSSEX GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 Guinan JJ, 1990, MECH BIOPHYSICS HEAR, P170 GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103 GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5 HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 HAUSER R, 1992, 29 INN EAR BIOL WORK HAUSER R, 1991, J ACOUST SOC AM, V89, P280, DOI 10.1121/1.400511 IURATO S, 1978, J COMP NEUROL, V182, P57, DOI 10.1002/cne.901820105 KEMP DT, 1984, HEARING RES, V13, P39, DOI 10.1016/0378-5955(84)90093-5 LARSON VD, 1988, J ACOUST SOC AM, V84, P46, DOI 10.1121/1.396874 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633 LONG GR, 1986, PERIPHERAL AUDITORY, P213 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 MAGNAN P, 1992, 29 INN EAR BIOL WORK MANLEY GA, 1992, 29 INN EAR BIOL ENG MCFADDEN D, 1984, HEARING RES, V16, P251, DOI 10.1016/0378-5955(84)90114-X MCFADDEN D, 1984, J ACOUST SOC AM, V89, P1201 MILLS DM, 1994, AUDIT NEUROSCI, V1, P77 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 MOLLER AAGE R., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1524, DOI 10.1121/1.1918384 MOLLER AR, 1961, ANN OTO RHINOL LARYN, V70, P735 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200 NORTON SJ, 1990, LECT NOTES BIOMATH, V87, P219 REGER S N, 1960, Ann Otol Rhinol Laryngol, V69, P1179 SCHMIEDT RA, 1981, HEARING RES, V5, P295, DOI 10.1016/0378-5955(81)90053-8 SHANNON RV, 1980, J ACOUST SOC AM, V68, P825, DOI 10.1121/1.384821 SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 Silman S., 1984, ACOUSTIC REFLEX BASI SILMAN S, 1979, J SPEECH HEAR RES, V22, P697 Smith HD, 1943, ARCHIV OTOLARYNGOL, V38, P369 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E TRAHIOTI.C, 1970, J ACOUST SOC AM, V47, P592, DOI 10.1121/1.1911934 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235 WIEDERHOLD ML, 1986, NEUROBIOLOGY HEARING, P349 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WIER CC, 1988, J ACOUST SOC AM, V84, P230, DOI 10.1121/1.396970 WILLIAMS DM, 1995, J ACOUST SOC AM, V97, P1130, DOI 10.1121/1.412226 WILLIAMS DM, 1994, THESIS U SUSSEX WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X ZITO F, 1980, AUDIOLOGY, V19, P395 ZUREK PM, 1982, J ACOUST SOC AM, V72, P774, DOI 10.1121/1.388258 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 ZWICKER E, 1980, J ACOUST SOC AM, V68, P1523, DOI 10.1121/1.385079 ZWICKER E, 1988, COCHLEAR MECH, P359 NR 70 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 127 EP 146 DI 10.1016/S0378-5955(96)00189-X PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200011 PM 9119756 ER PT J AU Saitoh, M Ueda, H Yanagita, N AF Saitoh, M Ueda, H Yanagita, N TI Changes in cochlear function after double-membrane rupture in the guinea pig SO HEARING RESEARCH LA English DT Article DE cochlea; otoacoustic emissions; perilymphatic fistula ID SUDDEN HEARING-LOSS; OTOACOUSTIC EMISSIONS; RADIAL COMMUNICATION; PERILYMPHATIC SCALAE; HAIR-CELLS; INNER-EAR; FLOW-RATE; PRESSURE; RESPONSES; MOTILITY AB We measured the transiently evoked otoacoustic emissions (TEOAEs), compound action potentials (CAPs) and cochlear microphonics (CMs) in guinea pigs after rupture of the round window membrane alone (n=5) or of the round window membrane with localized cochlear damage (n=10). The localized cochlear damage entailed rupture of Reissner's membrane with damage to the stria vascularis. We determined the time course of changes in the total echo power (TEP) in TEOAEs and the minimal detectable levels of CAPs and CMs. The endocochlear potential (EP) was measured in the cochlea with localized damage. There were no changes in TEOAEs, CAPs or CMs in the guinea pigs subjected to round window membrane rupture alone, but the minimal detectable levels of CAPs and CMs were increased in all the guinea pigs in which TEOAEs were absent after rupture of the round window membrane with localized cochlear damage. Our results suggest that double-membrane rupture (rupture of the round window membrane with localized cochlear damage) produces acute sensorineural hearing loss. The hearing loss appeared to be related to damage to the cochlea, which may be induced by the influx of potassium-rich endolymph into the perilymph, and by morphological damage to the scala media. RP Saitoh, M (reprint author), NAGOYA UNIV,SCH MED,DEPT OTORHINOLARYNGOL,SHOWA KU,65 TSURUMAI CHO,NAGOYA,AICHI 466,JAPAN. CR ANGELBORG C, 1975, ACTA OTO-LARYNGOL, V79, P81, DOI 10.3109/00016487509124658 BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CARLBORG B, 1980, ACTA OTO-LARYNGOL, V90, P209, DOI 10.3109/00016488009131717 DUVALL AJ, 1967, ANN OTO RHINOL LARYN, V76, P688 Fukaya T, 1983, Acta Otolaryngol Suppl, V393, P20 GULYA AJ, 1990, OTOLARYNG HEAD NECK, V102, P132 Gyo K, 1994, Acta Otolaryngol Suppl, V514, P55 ITO S, 1987, ARCH OTOLARYNGOL, V113, P833 KASEKI Y, 1991, LARYNGOSCOPE, V101, P1085 KEMP DT, 1990, EAR HEARING, V11, P93 Kobayashi T, 1993, Nihon Jibiinkoka Gakkai Kaiho, V96, P1065 LAWRENCE M, 1966, ARCHIV OTOLARYNGOL, V83, P406 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 MASUDA Y, 1971, ARCHIV OTOLARYNGOL, V94, P240 OHYAMA K, 1988, HEARING RES, V35, P119, DOI 10.1016/0378-5955(88)90111-6 OSHIRO EM, 1989, ANN OTO RHINOL LARYN, V98, P491 PLANK J, 1952, Zentralbl Allg Pathol, V89, P252 SALT AN, 1986, HEARING RES, V23, P141, DOI 10.1016/0378-5955(86)90011-0 SALT AN, 1979, EXP BRAIN RES, V36, P87 SALT AN, 1991, HEARING RES, V56, P37, DOI 10.1016/0378-5955(91)90151-X SALT AN, 1991, HEARING RES, V56, P29, DOI 10.1016/0378-5955(91)90150-8 SANTI PA, 1989, 2 INT S MEN DIS CAMB, P223 SCHUKNECHT HF, 1963, ANN OTO RHINOL LARYN, V72, P687 SIMMONS FB, 1979, LARYNGOSCOPE, V89, P59 TASAKI I, 1952, J NEUROPHYSIOL, V15, P497 UEDA H, 1992, HEARING RES, V62, P199, DOI 10.1016/0378-5955(92)90187-R WEISSKOPF A, 1978, LARYNGOSCOPE, V88, P389, DOI 10.1288/00005537-197803000-00002 ZENNER HP, 1987, BIOCHEM BIOPH RES CO, V149, P304, DOI 10.1016/0006-291X(87)91639-1 ZENNER HP, 1986, ARCH OTO-RHINO-LARYN, V243, P108, DOI 10.1007/BF00453760 NR 30 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 147 EP 154 DI 10.1016/S0378-5955(96)00190-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200012 PM 9119757 ER PT J AU Sickmann, T Kalmring, K Muller, A AF Sickmann, T Kalmring, K Muller, A TI The auditory-vibratory system of the bushcricket Polysarcus denticauda (Phaneropterinae, Tettigoniidae) .1. Morphology of the complex tibial organs SO HEARING RESEARCH LA English DT Article DE auditory-vibratory receptor; complex tibial organ; morphology; Bushcricket; insect ID GAMPSOCLEIS-GRATIOSA TETTIGONIIDAE; FUNCTIONAL-MORPHOLOGY; RECEPTOR ORGANS; BUSH-CRICKETS; FORELEGS; ORTHOPTERA; HINDLEGS; ENSIFERA; MIDLEGS; INSECTA AB The structure of the complex tibial organs in the fore-, mid-, and hindlegs of the bushcricket Polysarcus denticauda (Tettigoniidae, Phaneropterinae) is described comparatively. As is common for bushcrickets, in each leg the tibial organs consist of the subgenual and intermediate organs and the crista acustica. Only in the forelegs are sound-transmitting structures present. They consist of the spiracle, acoustic trachea, and two tympana; the latter are not protected by tympanal covers. The tympana in P. denticauda are extremely thick, not only bordering the two tracheal branches to the outside but also forming the outer wall of the hemolymph channel. The morphology of the tracheae in the mid- and hindlegs is significantly different, causing structural differences, especially in dimensions of the hemolymph channel. The number of scolopidia of the crista acustica of the foreleg is extremely high for a bushcricket. Approximately 50 receptor cells were found, about half of them being located in the distal quarter of the long axis of this organ. Some of the receptors are positioned in parallel on the dorsal wall of the anterior tracheal branch. The number, morphology and dimensions of the scolopidia within the crista acustica of the mid- and hindlegs differ significantly from those of the forelegs, decreasing in both legs to eight and seven receptor cells, respectively. Although the dimensions of the subgenual and intermediate organs are considerably larger in the mid- and hindlegs, the number of receptor cells is approximately the same in the different legs, being somewhat higher in both receptor organs than in those of many other bushcricket species studied previously. C1 UNIV MARBURG,FACHBEREICH BIOL,ARBEITSGRP NEUROBIOL,D-35032 MARBURG,GERMANY. CR FABER A, 1953, STUTTGART BEITR NATU, V1, P1 Harz K., 1969, ORTHOPTEREN EUROPAS, VV, P1 HEINRICH R, 1993, J ACOUST SOC AM, V93, P3481, DOI 10.1121/1.405678 HOFFMANN E, 1995, J ACOUST SOC AM, V98, P1845, DOI 10.1121/1.413371 Kalmring K, 1995, ACTA BIOL HUNG, V46, P457 KALMRING K, 1994, J EXP ZOOL, V270, P155, DOI 10.1002/jez.1402700205 KALMRING K, 1995, J EXP ZOOL, V272, P103, DOI 10.1002/jez.1402720204 Kalmring K., 1985, P193 KALMRING K, 1996, IN PRESS J EXP ZOOL KEUPER A, 1988, Bioacoustics, V1, P31 LIN YZ, 1993, J EXP ZOOL, V267, P377, DOI 10.1002/jez.1402670404 LIN YZ, 1994, J MORPHOL, V221, P191, DOI 10.1002/jmor.1052210208 MOTHESWAGNER U, 1984, J MICROSC-OXFORD, V134, P307 ROSSLER W, 1994, ZOOMORPHOLOGY, V114, P39, DOI 10.1007/BF00574913 ROSSLER W, 1992, CELL TISSUE RES, V269, P505, DOI 10.1007/BF00353905 ROSSLER W, 1992, ZOOMORPHOLOGY, V112, P181, DOI 10.1007/BF01633108 SCHUMACH.R, 1973, Z MORPHOL TIERE, V75, P267, DOI 10.1007/BF00288474 SCHUMACHER R, 1979, ENTOMOL GEN, V5, P321 SPURR AR, 1969, J ULTRA MOL STRUCT R, V26, P31, DOI 10.1016/S0022-5320(69)90033-1 ZHANTIEV RD, 1978, ZOOL ZH, V57, P1012 NR 20 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 155 EP 166 DI 10.1016/S0378-5955(96)00194-3 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200013 PM 9119759 ER PT J AU Henry, KR AF Henry, KR TI Auditory nerve neurophonic tuning curves produced by masking of round window responses SO HEARING RESEARCH LA English DT Article DE cochlea; gerbil; phase-locking ID FREQUENCY-FOLLOWING RESPONSE; FIBERS; TONES; ADAPTATION; RECOVERY; GERBIL; ANN AB In response to low-intensity, low-frequency, phase-locked tonal stimuli with non-alternating polarity, the time-averaged round window (RW) response of the gerbil is a mixture of the auditory nerve neurophonic (ANN) and cochlear microphonic (CM), with the former often being of equal or greater magnitude than the latter. Forward masking (using a conservative 25% amplitude reduction criterion) can be used to generate ANN tuning curves (TC). Most of these TCs are sharply tuned V-shaped functions. Harmonic distortion is often present in the ANN, especially in response to the lower-frequency (less than or equal to 1 kz) or higher-intensity (greater than or equal to 50 dB) stimuli. The TCs created by forward masking of the harmonics are similar in appearance to those generated by masking the fundamental frequency of the ANN. When lower-frequency probe stimuli (less than or equal to approximate to 1 kHz) are used, the frequency of the TC tip tends to be higher than that of the probe; with higher probe frequencies, the tip tends to be lower. Regardless of the frequency of the probe, the TC tip threshold occurs at an intensity level lower than that of the probe. The sharpness of these TCs generally increases as a function of the frequency of the probe stimulus and the values of Q(10dB) are comparable to those of FTCs of cochlear nerve fibers of the gerbil. The amplitude of the ANN is often enhanced in response to a limited intensity range of forward maskers over a restricted range of frequencies that are outside the high-frequency boundary of the forward masker TC. By alternating the polarity of the probe stimulus, the CM can be canceled, allowing the effects of simultaneous maskers to be evaluated. RP Henry, KR (reprint author), UNIV CALIF DAVIS,DEPT PSYCHOL,DAVIS,CA 95616, USA. CR BOBBIN RP, 1974, ACTA OTO-LARYNGOL, V77, P56, DOI 10.3109/00016487409124598 CHEATHAM MA, 1982, HEARING RES, V8, P29, DOI 10.1016/0378-5955(82)90032-6 CHIMENTO TC, 1990, ELECTROEN CLIN NEURO, V75, P88, DOI 10.1016/0013-4694(90)90156-E CHIMENTO TC, 1991, J ACOUST SOC AM, V90, P263, DOI 10.1121/1.401296 CHIMENTO TC, 1992, HEARING RES, V62, P131, DOI 10.1016/0378-5955(92)90178-P DALLOS P, 1976, J ACOUST SOC AM, V59, P591, DOI 10.1121/1.380903 Dallos P, 1973, BASIC MECHANISMS HEA, P335 Davis H, 1934, AM J PHYSIOL, V107, P311 Derbyshire AJ, 1935, AM J PHYSIOL, V113, P476 EGGERMONT JJ, 1976, HDB SENSORY PHYSL, V5, P626 FURUKAWA T, 1978, J PHYSIOL-LONDON, V276, P211 HENRY KR, 1987, HEARING RES, V30, P39 HENRY KR, 1995, HEARING RES, V90, P176, DOI 10.1016/0378-5955(95)00162-6 KIM DO, 1980, J ACOUST SOC AM, V66, P470 KIM DO, 1979, J NEUROPHYSIOL, V42, P16 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 SNYDER RL, 1985, HEARING RES, V20, P45, DOI 10.1016/0378-5955(85)90058-9 SNYDER RL, 1987, HEARING RES, V31, P79, DOI 10.1016/0378-5955(87)90215-2 SNYDER RL, 1984, HEARING RES, V35, P261 Wever EG, 1930, P NATL ACAD SCI USA, V16, P344, DOI 10.1073/pnas.16.5.344 NR 20 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 167 EP 176 DI 10.1016/S0378-5955(96)00195-5 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200014 PM 9119760 ER PT J AU Flock, A Jorgensen, JM AF Flock, A Jorgensen, JM TI Synaptic body movements in the sensory cells of lateral line organs in the urodele amphibian Ambystoma mexicanum SO HEARING RESEARCH LA English DT Article DE neuromast; hair cell; synapse; plasticity ID HAIR-CELLS; FINE-STRUCTURE; MORPHOLOGY; SENSITIVITY; RIBBONS; RETINA AB Examination of the neuromasts in the tail of the living juvenile axolotl Ambystoma mexicanum with interference contrast (Nomarski) microscopy shows that their cellular structures can be identified in considerable detail. Microscopy was performed with a 40X water immersion objective or with a 100X objective in a tail insertion chamber. Thus the sensory hair bundles can be seen and their orientation can be determined. Large spheres in the basal part of the sensory cells were predicted to be synaptic bodies. Subsequent examination in the transmission electron microscope of the cells observed in the light microscope confirmed this notion. Inspection during periods of several hours reveals definite movements of the synaptic bodies. C1 AARHUS UNIV,DEPT ZOOPHYSIOL,DK-8000 AARHUS,DENMARK. RP Flock, A (reprint author), KAROLINSKA INST,DIV PHYSIOL 2,S-17177 STOCKHOLM,SWEDEN. CR ALLEN RD, 1985, J CELL BIOL, V100, P1736, DOI 10.1083/jcb.100.5.1736 FIELDS RD, 1985, SCIENCE, V228, P197, DOI 10.1126/science.3975637 FIELDS RD, 1987, SYNAPSE, V1, P335, DOI 10.1002/syn.890010407 FIELDS RD, 1988, NEUROSCIENCE, V25, P705, DOI 10.1016/0306-4522(88)90271-0 Flock A., 1965, ACTA OTO LARYNG ST S, V199, P1 FLOCK A, 1974, CELL TISSUE RES, V152, P283 GRAY EG, 1976, J NEUROCYTOL, V5, P361, DOI 10.1007/BF01175121 HARRIS GG, 1970, SCIENCE, V167, P76, DOI 10.1126/science.167.3914.76 HENRY WR, 1995, HEARING RES, V84, P81, DOI 10.1016/0378-5955(95)00014-U HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 ISSA NP, 1994, P NATL ACAD SCI USA, V91, P7578, DOI 10.1073/pnas.91.16.7578 JANDE SS, 1966, J ULTRA MOL STRUCT R, V15, P496 JORGENSE.JM, 1973, J NEUROCYTOL, V2, P133, DOI 10.1007/BF01474715 Jorgensen J. M., 1984, VIDENSK MEDDR DANSK, V145, P77 JORGENSEN JM, 1982, ACTA ZOOL-STOCKHOLM, V63, P211 JORGENSEN JM, 1976, J NEUROCYTOL, V5, P33, DOI 10.1007/BF01176181 JORGENSEN JM, 1985, J MAR BIOL ASSOC UK, V65, P751 MCNULTY JA, 1981, CELL TISSUE RES, V215, P491 JORGENSEN JM, 1982, ACTA OTO-LARYNGOL, V94, P241, DOI 10.3109/00016488209128909 SCHAEFFER SF, 1978, J CELL BIOL, V79, P802, DOI 10.1083/jcb.79.3.802 SIEGEL JH, 1981, BRAIN RES, V220, P188, DOI 10.1016/0006-8993(81)90224-9 SPADARO A, 1978, ACTA ANAT, V102, P365 VANVETTEN SM, 1986, PERIPHERAL AUDITORY, P377 NR 23 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 177 EP 182 DI 10.1016/S0378-5955(96)00197-9 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200015 PM 9119761 ER PT J AU Vasama, JP Makela, JP AF Vasama, JP Makela, JP TI Auditory cortical responses in humans with profound unilateral sensorineural hearing loss from early childhood SO HEARING RESEARCH LA English DT Article DE auditory evoked field; auditory cortex; sensorineural; hearing loss; interstimulus interval; human ID CORTEX; CHILDREN; POTENTIALS; LOBE AB We recorded auditory evoked magnetic fields from five patients with profound unilateral sensorineural hearing loss from early childhood, using a 122-channel whole-scalp neuromagnetometer. The stimuli were 50-ms 1-kHz tone bursts delivered to the healthy ear at interstimulus intervals (ISI) of 1, 2, and 4 s. As the normal-hearing controls, four patients had shorter latencies of N100m, the 100-ms response, over the hemisphere contralateral to the stimulation than over the ipsilateral hemisphere. With 1-s ISI, three patients had, instead of N100m, a deflection of opposite polarity at about 100 ms (P100m) after the stimulus onset. A 10-year-old patient had a prominent P100m response, did not produce a clear N100m at any ISI, but had a clear N50m at the 4-s ISI. Four patients had bilateral N200m deflections peaking about 200 ms after the stimulus onset; the fifth patient showed N200m over the right hemisphere. N200m was also observed in the three youngest controls in both hemispheres. The ISI dependence of N100m amplitude and latency was similar in controls and patients. The amplitudes and latencies of N200m did not show any ISI dependence. In patients, the appearance of P100m-N200m deflections of auditory evoked fields, normally present in children, is more pronounced than in controls. The defect apparently delays the development of N100m, possibly by interfering with function of callosal connections. C1 HELSINKI UNIV HOSP,DEPT OTOLARYNGOL,FIN-00170 HELSINKI,FINLAND. CENT MIL HOSP,DEPT NEUROL,HELSINKI 00301,FINLAND. CR Courchesne E, 1990, EVENT RELATED BRAIN, P210 EVERBERG G, 1960, Ann Otol Rhinol Laryngol, V69, P711 HALGREN E, 1995, ELECTROEN CLIN NEURO, V94, P191, DOI 10.1016/0013-4694(94)00259-N HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 HARI R, 1982, ELECTROEN CLIN NEURO, V54, P561, DOI 10.1016/0013-4694(82)90041-4 Hari R, 1990, ADV AUDIOL, V6, P222 HILLYARD SA, 1983, ANNU REV PSYCHOL, V34, P33, DOI 10.1146/annurev.ps.34.020183.000341 KAUKORANTA E, 1987, EXP BRAIN RES, V69, P19 KAUKORANTA E, 1986, EXP BRAIN RES, V63, P60 KITZES L M, 1984, Brain Research, V306, P171, DOI 10.1016/0006-8993(84)90366-4 Kitzes L, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P256 Makela J. P., 1993, Human Brain Mapping, V1, P48, DOI 10.1002/hbm.460010106 MAKELA JP, 1988, ELECTROEN CLIN NEURO, V69, P423, DOI 10.1016/0013-4694(88)90064-8 MAKELA JP, 1992, NEUROREPORT, V3, P94 MAKELA JP, 1990, MAGNETOENCEPHALOGRAP, P177 Makela JP, 1996, EXP BRAIN RES, V110, P446 PAETAU R, 1995, J CLIN NEUROPHYSIOL, V12, P177, DOI 10.1097/00004691-199503000-00008 POLICH J, 1990, INT J PSYCHOPHYSIOL, V9, P237, DOI 10.1016/0167-8760(90)90056-J POPELAR J, 1994, HEARING RES, V72, P125, DOI 10.1016/0378-5955(94)90212-7 REALE RA, 1987, DEV BRAIN RES, V34, P281, DOI 10.1016/0165-3806(87)90215-X ROCKSTROH B, 1991, ELECTROEN CLIN NEURO, V78, P142, DOI 10.1016/0013-4694(91)90114-J SHIBASAKI H, 1992, J CLIN NEUROPHYSIOL, V9, P408, DOI 10.1097/00004691-199207010-00007 Tarkkanen J, 1966, Acta Otolaryngol, V61, P270, DOI 10.3109/00016486609127063 VASAMA JP, 1995, HEARING RES, V87, P132, DOI 10.1016/0378-5955(95)00086-J VASAMA JP, 1994, HEARING RES, V78, P91, DOI 10.1016/0378-5955(94)90047-7 VASAMA JP, 1995, NEUROREPORT, V6, P961, DOI 10.1097/00001756-199505090-00003 NR 26 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 183 EP 190 DI 10.1016/S0378-5955(96)00200-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200016 PM 9119762 ER PT J AU Zheng, XY Henderson, D McFadden, SL Hu, BH AF Zheng, XY Henderson, D McFadden, SL Hu, BH TI The role of the cochlear efferent system in acquired resistance to noise-induced hearing loss SO HEARING RESEARCH LA English DT Article DE cochlear innervation; toughening; acoustic trauma; hair cell loss; histochemistry ID CROSSED OLIVOCOCHLEAR BUNDLE; ACOUSTIC-DISTORTION PRODUCTS; TEMPORARY THRESHOLD SHIFTS; GUINEA-PIG COCHLEA; MIDDLE-EAR MUSCLES; ELECTRICAL-STIMULATION; DE-EFFERENTATION; EXPOSURE; NEURONS; PROTECTION AB Previous work has shown that the cochlear efferent system may play a role in protecting the ear from noise-induced temporary threshold shifts (TTS) following exposures to a single tone or a series of moderate-level noises ('toughening'). However, whether the olivocochlear bundle (OCB) is important in decreasing noise-induced permanent threshold shifts (PTS) remains an open question. The importance of the OCB in decreasing the ear's susceptibility to noise, as reflected by 2f(1)-f(2) distortion product otoacoustic emissions, was assessed by sectioning both the ipsilateral and contralateral divisions of the efferent system and exposing chinchillas while awake to an octave band noise (4 kHz) at a low level (85 dB SPL) for 10 days (6 h/day) and then at a high level (95 dB SPL) for 48 h. Complete de-efferentation was verified by cochlear acetylcholinesterase staining. The ears that were de-efferented showed substantially more TTS, greater PTS and larger cochlear lesions of outer hair cells. The results suggest that the efferent system may influence the ear's ability to develop resistance to noise trauma. C1 SUNY BUFFALO,HEARING RES LABS,DEPT COMMUNICAT DISORDERS & SCI,BUFFALO,NY 14214. RI Legarth, Jonas/A-9156-2012 CR BROWN MC, 1983, SCIENCE, V222, P69, DOI 10.1126/science.6623058 BROWN MC, 1989, HEARING RES, V40, P93, DOI 10.1016/0378-5955(89)90103-2 BROWN MC, 1987, J COMP NEUROL, V260, P591, DOI 10.1002/cne.902600411 CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 FIORINO F, 1989, VALSALVA S1, V65, P36 FRANKLIN DJ, 1991, HEARING RES, V53, P185, DOI 10.1016/0378-5955(91)90053-C GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 GODFREY DA, 1985, ANN OTO RHINOL LARYN, V94, P409 GRANICH MS, 1978, ANN OTO RHINOL LARYN, V87, P875 GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 HAMERNIK RP, 1996, IN PRESS J ACOUST SO HANDROCK M, 1982, ARCH OTO-RHINO-LARYN, V234, P191, DOI 10.1007/BF00453630 HENDERSON D, 1992, NOISE INDUCED HEARIN, P476 HENDERSON D, 1994, HEARING RES, V74, P22, DOI 10.1016/0378-5955(94)90172-4 IGARASHI M, 1979, ACTA OTO-LARYNGOL, V87, P79, DOI 10.3109/00016487909126390 IURATO S, 1978, J COMP NEUROL, V182, P57, DOI 10.1002/cne.901820105 KARNOVSKY MJ, 1964, J HISTOCHEM CYTOCHEM, V12, P219 KLINKE R, 1981, ACTA OTO-LARYNGOL, V91, P541, DOI 10.3109/00016488109138540 LIBERMAN MC, 1995, HEARING RES, V90, P158, DOI 10.1016/0378-5955(95)00160-2 LIBERMAN MC, 1991, J NEUROPHYSIOL, V65, P123 LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LITTMAN TA, 1992, J ACOUST SOC AM, V92, P1945, DOI 10.1121/1.405242 LITTMAN TA, 1991, HEARING RES, V56, P281, DOI 10.1016/0378-5955(91)90178-C PATUZZI RB, 1991, HEARING RES, V54, P45, DOI 10.1016/0378-5955(91)90135-V PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 RAJAN R, 1995, J NEUROPHYSIOL, V74, P582 RAJAN R, 1983, HEARING RES, V9, P279, DOI 10.1016/0378-5955(83)90032-1 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 RAJAN R, 1990, HEARING RES, V44, P195, DOI 10.1016/0378-5955(90)90080-9 RAJAN R, 1995, J NEUROPHYSIOL, V74, P598 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 ROBERTSON D, 1985, HEARING RES, V20, P63, DOI 10.1016/0378-5955(85)90059-0 RYAN AF, 1994, HEARING RES, V72, P23, DOI 10.1016/0378-5955(94)90201-1 SCHARF B, 1994, HEARING RES, V75, P11, DOI 10.1016/0378-5955(94)90051-5 SCHUKNECHT HF, 1959, ARCHIV OTOLARYNGOL, V69, P549 TRAHIOTI.C, 1970, J ACOUST SOC AM, V47, P592, DOI 10.1121/1.1911934 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WARR WB, 1975, J COMP NEUROL, V161, P159, DOI 10.1002/cne.901610203 WIEDERHOLD ML, 1986, NEUROBIOLOGY HEARING, P349 Zheng XY, 1996, HEARING RES, V95, P161, DOI 10.1016/0378-5955(96)00047-0 NR 44 TC 50 Z9 52 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 1997 VL 104 IS 1-2 BP 191 EP 203 DI 10.1016/S0378-5955(96)00187-6 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WG852 UT WOS:A1997WG85200017 PM 9119763 ER PT J AU Finlayson, PG Adam, TJ AF Finlayson, PG Adam, TJ TI Excitatory and inhibitory response adaptation in the superior olive complex affects binaural acoustic processing SO HEARING RESEARCH LA English DT Article DE lateral superior olive; superior paraolivary nucleus; Long-Evans rat; adaptation; inhibition; excitation ID POSITION-SPECIFIC ADAPTATION; AUDITORY-NERVE FIBERS; CELL RECEPTIVE-FIELDS; CAT STRIATE CORTEX; COCHLEAR NUCLEUS; TRAPEZOID BODY; SYNAPTIC POTENTIALS; MEDIAL NUCLEUS; TONE BURSTS; NEURONS AB Short-term adaptation was examined in single unit recordings from 113 superior olive neurons of anaesthetized 3- to 6-month-old Long-Evans rats. Responses to an equal intensity BF probe tone presented 1 ms after an 'adapting' BF tone were adapted by 56.3 +/- 2.6% (mean +/- S.E.) compared to responses at a 512 ms delay. The rapid decrease in discharge rate during adapting tones often approximated exponential time courses with time constants of less than 20 ms. The recovery from adaptation was exponential with time constants of 106 +/- 20.0 ms. The magnitude of adaptation and time course of recovery following monaural stimulation of binaurally excited (EE) neurons were not significantly different in both input pathways. Additionally, in 60% of EE neurons; an 'adapting' tone presented to one ear reduced subsequent responses to probe tones presented to the opposite ear. Binaural stimulation resulted in equal or greater adaptation of responses than monaural stimulation of either ear. The recovery of binaural excitatory responses generally followed a time course between recovery functions for ipsilateral and contralateral monaural stimuli. Lateral Superior Olive (LSO) neurons encode sound source location through the interaction of ipsilateral excitation and contralateral inhibition (IE). Ipsilaterally driven excitatory responses in LSO neurons exhibited the greatest magnitude of adaptation (68.5 +/- 21.1%). Adaptation of inhibition was observed in over half of IE neurons. Responses of LSO neurons to binaural BF probe stimuli were greatest immediately after a 200 ms BF 'inhibitory adapting' stimulus to the contralateral ear, and decreased with greater interstimulus delays. Responses to binaural stimulation were constant after prior binaural adaptation, when the magnitude and recovery of adaptation to monaural stimuli were similar for excitation and inhibition (8/25 IE cells). The functional significance and possible sites of adaptation processes are discussed. RP Finlayson, PG (reprint author), UNIV BRITISH COLUMBIA,DEPT SURG OTOLARYNGOL,ROTARY HEARING CTR,2211 WESTBROOK MALL,RM F-150,VANCOUVER,BC V6T 2B5,CANADA. CR ADAM TJ, 1996, IN PRESS SOC NEUR AB Adam T. J., 1995, Society for Neuroscience Abstracts, V21, P401 BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2 Boudreau J C, 1970, Contrib Sens Physiol, V4, P143 CAIRD D, 1983, EXP BRAIN RES, V52, P385 Cant N. B., 1991, NEUROBIOLOGY HEARING, P99 CANT NB, 1992, HEARING RES, V58, P26, DOI 10.1016/0378-5955(92)90005-8 CANT NB, 1986, J COMP NEUROL, V247, P457, DOI 10.1002/cne.902470406 CANT NB, 1984, J COMP NEUROL, V227, P63, DOI 10.1002/cne.902270108 CHIMENTO TC, 1991, J ACOUST SOC AM, V90, P263, DOI 10.1121/1.401296 COSTALUPES JA, 1985, J NEUROSCI, V5, P3261 COSTALUPES JA, 1984, J NEUROPHYSIOL, V51, P1326 FINLAYSON PG, 1995, HEARING RES, V87, P84, DOI 10.1016/0378-5955(95)00081-E FINLAYSON PG, 1993, NEUROBIOL AGING, V14, P127, DOI 10.1016/0197-4580(93)90088-S Finlayson P. G., 1995, Society for Neuroscience Abstracts, V21, P401 FINLAYSON PG, 1991, J NEUROPHYSIOL, V65, P598 FINLAYSON PG, 1989, HEARING RES, V38, P221, DOI 10.1016/0378-5955(89)90067-1 FREDERICKSON CJ, 1978, J NEUROPHYSIOL, V41, P1535 FURUKAWA T, 1978, J PHYSIOL-LONDON, V276, P193 FURUKAWA T, 1978, J PHYSIOL-LONDON, V276, P211 GELFAND SA, 1988, J ACOUST SOC AM, V83, P248, DOI 10.1121/1.396426 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 HELFERT RH, 1992, J COMP NEUROL, V323, P305, DOI 10.1002/cne.903230302 KALTENBACH JA, 1993, HEARING RES, V67, P35, DOI 10.1016/0378-5955(93)90229-T MARLIN S, 1993, J NEUROPHYSIOL, V69, P2209 MARLIN SG, 1991, J NEUROPHYSIOL, V66, P1769 MOORE MJ, 1983, J NEUROSCI, V3, P237 SANES DH, 1990, J NEUROSCI, V10, P3494 SANES DH, 1988, J NEUROSCI, V8, P682 Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHORE SE, 1995, HEARING RES, V82, P31 SPANGLER KM, 1985, J COMP NEUROL, V238, P249, DOI 10.1002/cne.902380302 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 TSUCHITANI C, 1988, J NEUROPHYSIOL, V59, P164 TSUCHITANI C, 1988, J NEUROPHYSIOL, V59, P184 WATANABE T, 1971, JPN J PHYSIOL, V21, P537 WESTERMAN LA, 1987, J ACOUST SOC AM, V81, P680, DOI 10.1121/1.394836 WU SH, 1993, HEARING RES, V68, P189 Yin T. C. T., 1988, AUDITORY FUNCTION, P385 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YOUNG ED, 1983, HEARING PHYSL BASES, P119 NR 43 TC 31 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1997 VL 103 IS 1-2 BP 1 EP 18 DI 10.1016/S0378-5955(96)00158-X PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WD588 UT WOS:A1997WD58800001 PM 9007569 ER PT J AU Neumann, J Uppenkamp, S Kollmeier, B AF Neumann, J Uppenkamp, S Kollmeier, B TI Interaction of otoacoustic emissions with additional tones: Suppression or synchronization? SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; suppression; synchronization ID OTO-ACOUSTIC EMISSIONS; HUMAN EAR; COCHLEA AB The influence of an external tone on transitory evoked otoacoustic emissions (TEOAE) is investigated. Three different averaging techniques were used with the same acoustic stimulus paradigm. These techniques permitted the separation of those parts of the otoacoustic emission (OAE) that contribute to the transitory evoked otoacoustic emission and those parts of the OAE that are synchronized to the continuous tone. The experiments show that the total energy of the OAE is not reduced in the presence of an additional tone. The 'suppression' of TEOAEs is an effect of synchronization and the subsequent elimination of the 'suppressed' emission in the averaging procedure. C1 UNIV OLDENBURG,AG MED PHYS,D-26111 OLDENBURG,GERMANY. CR ARTHUR RM, 1971, J PHYSIOL-LONDON, V212, P593 HARRIS FP, 1992, HEARING RES, V64, P133, DOI 10.1016/0378-5955(92)90175-M HIND JE, 1967, J NEUROPHYSIOL, V30, P794 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Kemp DT, 1980, PSYCHOPHYSICAL PHYSL, P34 LEGOUIX PJ, 1973, J ACOUST SOC AM, V53, P409 Long GR, 1988, BASIC ISSUES HEARING, P93 PATUZZI R, 1988, PHYSIOL REV, V68, P1009 RHODE WS, 1974, J ACOUST SOC AM, V55, P588, DOI 10.1121/1.1914569 STRUBE HW, 1989, HEARING RES, V38, P35, DOI 10.1016/0378-5955(89)90126-3 SUTTON GJ, 1985, ACUSTICA, V58, P57 UPPENKAMP S, 1994, HEARING RES, V78, P210, DOI 10.1016/0378-5955(94)90027-2 WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X Wilson J P, 1981, Ciba Found Symp, V85, P82 WIT HP, 1980, HEARING RES, V2, P253, DOI 10.1016/0378-5955(80)90061-1 WIT HP, 1979, J ACOUST SOC AM, V66, P911, DOI 10.1121/1.383202 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 NR 17 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1997 VL 103 IS 1-2 BP 19 EP 27 DI 10.1016/S0378-5955(96)00160-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WD588 UT WOS:A1997WD58800002 PM 9007570 ER PT J AU Penner, MJ Zhang, T AF Penner, MJ Zhang, T TI Prevalence of spontaneous otoacoustic emissions in adults revisited SO HEARING RESEARCH LA English DT Article DE spontaneous otoacoustic emission; spectral analysis; ear difference; gender difference ID HUMAN EARS; SUPPRESSION; INFANTS; TONES AB The potential influence of spectral analysis factors on estimates of the prevalence of spontaneous otoacoustic emissions (SOAE) was explored. The detection of a SOAE was influenced by two spectral factors: (I) the frequency resolution of the spectrum, and (2) the number of spectral averages. For 15 different combinations of these two factors, the estimate of the prevalence of SOAEs for females ranged from 64 to 81% and, for males, from 39 to 55%. Combining across all 15 combinations, 83% of the females and 62% of the males were judged to have SOAEs. These results provide a context for understanding the inconsistencies in previous estimates of the prevalence of SOAEs and underscore the need to employ many different spectral analyses because some SOAEs are only detected when the spectral analyses are suitably tailored. C1 UNIV MARYLAND,DEPT PSYCHOL,COLLEGE PK,MD 20742. CR RUGGERO MA, 1983, HEARING RES, V10, P283, DOI 10.1016/0378-5955(83)90094-1 BARGONES JY, 1988, J ACOUST SOC AM, V83, P1809, DOI 10.1121/1.396515 BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 BRIGHT KE, 1984, ASHA, V26, P147 BURNS EM, 1984, HEARING RES, V16, P271, DOI 10.1016/0378-5955(84)90116-3 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 BURNS EM, 1991, ABSTR ASS RES OT, P239 CERANIC BJ, 1996, ABSTR ASS RES OT, P96 CLARK WW, 1984, HEARING RES, V16, P299, DOI 10.1016/0378-5955(84)90119-9 DALLMAYR C, 1985, ACUSTICA, V59, P67 HAMMEL DR, 1983, THESIS U ILLINOIS UR MCFADDEN D, 1995, HEARING RES, V85, P181, DOI 10.1016/0378-5955(95)00045-6 MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K MOULIN A, 1991, ACTA OTO-LARYNGOL, V111, P835, DOI 10.3109/00016489109138419 PENNER MJ, 1990, ARCH OTOLARYNGOL, V116, P428 PENNER MJ, 1993, HEARING RES, V68, P229, DOI 10.1016/0378-5955(93)90126-L PENNER MJ, 1989, J SPEECH HEAR RES, V32, P458 PENNER MJ, 1988, ARCH OTOLARYNGOL, V114, P150 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 STRICKLAND EA, 1985, J ACOUST SOC AM, V78, P931, DOI 10.1121/1.392924 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V WIER CC, 1984, J ACOUST SOC AM, V76, P1248, DOI 10.1121/1.391376 ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963 NR 24 TC 18 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1997 VL 103 IS 1-2 BP 28 EP 34 DI 10.1016/S0378-5955(96)00162-1 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WD588 UT WOS:A1997WD58800003 PM 9007571 ER PT J AU VanCampen, LE Hall, JW Grantham, DW AF VanCampen, LE Hall, JW Grantham, DW TI Human offset auditory brainstem response: Effects of stimulus acoustic ringing and rise-fall time SO HEARING RESEARCH LA English DT Article DE offset auditory brainstem response; auditory evoked response; auditory offset neuron; acoustic ringing; rise-fall time; transient stimuli ID SUPERIOR OLIVARY COMPLEX; SIMULTANEOUS MASKING; EVOKED-RESPONSES; STEM RESPONSES; TONE BURSTS; PERCEPTION; INTENSITY; FIBERS; GERBIL; UNITS AB Offset auditory brainstem response (ABR) traditionally has been thought to be an artifactual response elicited by stimulus acoustic ringing. Additionally, offset ABR's sensitivity to stimulus rise-fall time has been associated with concurrent changes in acoustic ringing. The present study tested the validity of offset ABR by recording the response in 40 young, normal-hearing adults using tone burst stimuli with varying degrees of acoustic ringing and various rise-fall times. Stimuli were computer-generated IO-ms tone bursts of 500 and 2000 Hz. In Experiment 1, offset ABR was recorded using stimuli with no acoustic ringing, normal ringing, and excessive ringing. Rise-fall time was held constant at 0.5 ms. In Experiment 2, rise-fall lime was manipulated in a stimulus with no ringing. In Experiment 3, only rise time was manipulated in a no-ringing stimulus, while fall time was held constant at 0.5 ms. Reliable offset ABRs were recorded for all degrees of acoustic ringing, including the 'no-ringing' condition. Offset ABR was sensitive to rise and fall times, and was elicited best with a 500-Hz stimulus. The results indicate that offset ABR is a real response and not an artifact produced by acoustic ringing. C1 VANDERBILT UNIV,SCH MED,DIV HEARING & SPEECH SCI,NASHVILLE,TN 37212. VANDERBILT BALANCE & HEARING CTR,NASHVILLE,TN 37212. BILL WILKERSON CTR,NASHVILLE,TN 37212. CR Antonelli A, 1984, Br J Audiol, V18, P117, DOI 10.3109/03005368409078939 BRINKMANN R D, 1979, Scandinavian Audiology, V8, P27, DOI 10.3109/01050397909076298 BURKARD R, 1984, ELECTROEN CLIN NEURO, V57, P83, DOI 10.1016/0013-4694(84)90010-5 CLARK GM, 1969, EXP NEUROL, V23, P266, DOI 10.1016/0014-4886(69)90062-4 COATS AC, 1977, ARCH OTOLARYNGOL, V103, P605 DEBRUYNE F, 1982, ORL J OTO-RHINO-LARY, V44, P36 DIXON WJ, 1985, BMDP BIOMEDICAL COMP Eggermont J J, 1974, Acta Otolaryngol Suppl, V316, P39 FAINGOLD CL, 1986, LIFE SCI, V39, P869, DOI 10.1016/0024-3205(86)90368-1 FURUI S, 1986, J ACOUST SOC AM, V80, P1016, DOI 10.1121/1.393842 GEISLER CD, 1982, J ACOUST SOC AM, V72, P781, DOI 10.1121/1.388259 GERSUNI GV, 1971, SENSORY PROCESSES NE GORGA MP, 1986, INT C BRAINST AUD EV GRANTHAM DW, 1986, J ACOUST SOC AM, V79, P1939, DOI 10.1121/1.393201 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 GUINAN JJ, 1972, INT J NEUROSCI, V4, P101, DOI 10.3109/00207457209147165 HARRIS FJ, 1978, P IEEE, V66, P51, DOI 10.1109/PROC.1978.10837 HECOX K, 1976, J ACOUST SOC AM, V60, P1187, DOI 10.1121/1.381194 HENRY KR, 1988, ELECTROEN CLIN NEURO, V69, P476, DOI 10.1016/0013-4694(88)90070-3 HENRY KR, 1985, HEARING RES, V18, P245, DOI 10.1016/0378-5955(85)90041-3 HENRY KR, 1987, HEARING RES, V30, P49, DOI 10.1016/0378-5955(87)90182-1 HENRY KR, 1987, HEARING RES, V30, P1, DOI 10.1016/0378-5955(87)90176-6 HENRY KR, 1985, HEARING RES, V19, P115, DOI 10.1016/0378-5955(85)90115-7 HENRY KR, 1988, J ACOUST SOC AM, V84, P1354, DOI 10.1121/1.396634 HENRY KR, 1986, HEARING RES, V24, P151, DOI 10.1016/0378-5955(86)90059-6 KEIDEL WD, 1976, HDB SENSORY PHYSL, V3 KIANG NYS, 1979, ACTA OTO-LARYNGOL, V87, P204, DOI 10.3109/00016487909126408 KODERA K, 1977, Scandinavian Audiology, V6, P205, DOI 10.3109/01050397709043122 KODERA K, 1983, AUDIOLOGY, V22, P209 KUROWSKI K, 1984, J ACOUST SOC AM, V76, P383, DOI 10.1121/1.391139 LAUKLI E, 1985, AUDIOLOGY, V24, P217 LEWIS ER, 1989, HEARING RES, V37, P219, DOI 10.1016/0378-5955(89)90024-5 LEWIS ER, 1989, HEARING RES, V39, P209, DOI 10.1016/0378-5955(89)90092-0 MARUSEVA AM, 1971, SENSORY PROCESSES NE MOLLER AR, 1985, ASSESSMENT CENTRAL A NOMOTO M, 1964, J NEUROPHYSIOL, V27, P768 OERTEL E, 1988, AUDITORY FUNCTION NE PEREZABALO MC, 1988, AUDIOLOGY, V27, P249 PERROTT DR, 1989, J ACOUST SOC AM, V85, P1773, DOI 10.1121/1.397968 RADIANOVA E, 1971, SENSORY PROCESSES NE RADIONOVA EA, 1988, HEARING RES, V35, P229, DOI 10.1016/0378-5955(88)90120-7 REPP BH, 1986, J ACOUST SOC AM, V79, P1987, DOI 10.1121/1.393207 RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 STAPELLS DR, 1985, AUDITORY BRAINSTEM R TSUCHITANI C, 1983, BASES AUDITORY BRAIN VANCAMPEN LE, 1994, EAR HEARING, V15, P461 VANCAMPEN LE, 1990, DISS ABSTR INT B, V51, P1726 Van Campen L E, 1992, J Am Acad Audiol, V3, P315 WEBER BA, 1981, EAR HEARING, V2, P15, DOI 10.1097/00003446-198101000-00005 YOUNG E, 1981, NEURONAL MECHANISMS YOUNG ED, 1988, AUDITORY FUNCTION NE NR 51 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1997 VL 103 IS 1-2 BP 35 EP 46 DI 10.1016/S0378-5955(96)00161-X PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WD588 UT WOS:A1997WD58800004 PM 9007572 ER PT J AU Mou, K Adamson, CL Davis, RL AF Mou, K Adamson, CL Davis, RL TI Stria vascularis morphogenesis in vitro SO HEARING RESEARCH LA English DT Article DE inner ear; cochlea; marginal cell; intermediate cell; basal cell; epithelia; melanocyte; development ID GUINEA-PIG COCHLEA; INNER-EAR; MARGINAL CELLS; MELANOCYTES; CULTURE; RAT; ULTRASTRUCTURE; DYSFUNCTION; FEATURES; GROWTH AB Explants of neonatal murine stria vascularis were maintained in vitro to evaluate the process of morphogenesis in cochlear tissue. Immunohistochemical and electron microscopic studies showed that the relatively undifferentiated cells in culture attained morphological features characteristic of the stria vascularis cell types in vivo (marginal, intermediate and basal cells). The three kinds of cells formed a trilaminated tissue, with the epithelial cells bordering the culture medium, basal-like cells resting on the culture substrate, and the melanocytes layered between. Furthermore, approximately 20% of these cultures displayed a unique alignment of melanocytes which formed elongated bands along the contour of the tissue edge. However, only limited cell extensions were formed between different cell types and interdigitation amongst these processes was abbreviated. Thus, cells from different embryological origins divided, migrated and reestablished appropriate cell-to-cell associations to form a layered tissue similar to the stria vascularis in vivo. C1 RUTGERS STATE UNIV,DEPT BIOL SCI,PISCATAWAY,NJ 08855. CR ACHOUCHE J, 1991, ANN OTO RHINOL LARYN, V100, P999 ANNIKO M, 1980, ARCH OTORHINOLARYNGO, V299, P281 ANNIKO M, 1984, ULTRASTRUCTURAL ATLA, P184 BARRENAS ML, 1992, ACTA OTO-LARYNGOL, V112, P50, DOI 10.3109/00016489209100782 BOCK GR, 1984, HEARING RES, V13, P201, DOI 10.1016/0378-5955(84)90109-6 CABLE J, 1992, HEARING RES, V64, P6, DOI 10.1016/0378-5955(92)90164-I COTANCHE DA, 1987, HEARING RES, V25, P125, DOI 10.1016/0378-5955(87)90086-4 ELLIGET KA, 1991, IN VITRO CELL DEV B, V27, P739 FUKAZAWA K, 1994, ORL J OTO-RHINO-LARY, V56, P247 Gilbert Scott F., 1988, DEV BIOL GREENWOOD J, 1992, J NEUROIMMUNOL, V39, P123, DOI 10.1016/0165-5728(92)90181-J HAZENMARTIN EJ, 1994, DEV BIOL A, V30, P356 HILDING DA, 1977, ACTA OTO-LARYNGOL, V84, P24, DOI 10.3109/00016487709123939 ITO M, 1993, HEARING RES, V71, P230, DOI 10.1016/0378-5955(93)90039-4 IURATO S, 1962, Z ZELLFORSCH MIK ANA, V56, P40, DOI 10.1007/BF00326848 Kikuchi K, 1966, Acta Otolaryngol, V62, P277, DOI 10.3109/00016486609119573 KIMURA RS, 1970, ACTA OTO-LARYNGOL, V69, P415, DOI 10.3109/00016487009123387 LAVIGNEREBILLARD M, 1992, HEARING RES, V64, P39, DOI 10.1016/0378-5955(92)90166-K LUCIANO L, 1995, HEARING RES, V85, P199, DOI 10.1016/0378-5955(95)00047-8 MARCUS DC, 1986, NEUROBIOLOGY HEARING, P123 MARTIN F, 1994, HEARING RES, V81, P33, DOI 10.1016/0378-5955(94)90150-3 MELICHAR I, 1992, ACTA OTO-LARYNGOL, V112, P762, DOI 10.3109/00016489209137471 MOTOHASHI H, 1994, HEARING RES, V80, P10, DOI 10.1016/0378-5955(94)90003-5 PETERS TA, 1995, HEARING RES, V85, P169, DOI 10.1016/0378-5955(95)00043-4 RAREY KE, 1989, HEARING RES, V38, P277, DOI 10.1016/0378-5955(89)90071-3 RUBEN RJ, 1967, ACTA OTOLARYNGOL S, V220, P5 RYBAK LP, 1991, ORL J OTO-RHINO-LARY, V53, P72 SALT AN, 1986, NEUROBIOLOGY HEARING, P109 SCHROTT A, 1987, ACTA OTO-LARYNGOL, V103, P451 SHER AE, 1971, ACTA OTOLARYNGOL S, V285, P5 STEEL KP, 1987, HEARING RES, V27, P11, DOI 10.1016/0378-5955(87)90022-0 STEEL KP, 1989, DEVELOPMENT, V107, P453 SUZUKI M, 1995, HEARING RES, V86, P68, DOI 10.1016/0378-5955(95)00055-9 VANDEWATER TR, 1973, ANN OTO RHINOL LARYN, V4, P2 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WATANABE K, 1992, ANN OTO RHINOL LARYN, V101, P355 WEIBEL E. R., 1957, ACTA ANAT, V29, P53 YEH TH, 1992, ACTA OTO-LARYNGOL, V112, P254 NR 38 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1997 VL 103 IS 1-2 BP 47 EP 62 DI 10.1016/S0378-5955(96)00163-3 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WD588 UT WOS:A1997WD58800005 PM 9007573 ER PT J AU Oshima, T Ikeda, K Furukawa, M Takasaka, T AF Oshima, T Ikeda, K Furukawa, M Takasaka, T TI Expression of voltage-dependent chloride channels in the rat cochlea SO HEARING RESEARCH LA English DT Article DE chloride channel; voltage-dependent chloride channel; RT-PCR; cochlea; (rat) ID VESTIBULAR DARK CELLS; POLYMERASE CHAIN-REACTION; ION-TRANSPORT MECHANISMS; MARGINAL CELLS; STRIA VASCULARIS; BASOLATERAL MEMBRANE; NONSELECTIVE CATION; RECEPTOR SUBUNITS; CL CHANNELS; VOLUME AB Voltage-dependent chloride (ClC) channels have not yet been identified in the cochlea. In this study, an approach utilizing the reverse transcription-polymerase chain reaction (RT-PCR) was devised to clone the cDNA of CIC channels. PCR was performed using degenerate primers corresponding to two highly conserved regions of the CIC channels. By Southern hybridization and sequencing studies, the sequences corresponding to ClC-2 and ClC-3 were found in the cochlear lateral wall, while ClC-1 was not detected. These results suggest that ClC-2 and ClC-3 might be involved in Cl- transport in the cochlear lateral wall. RP Oshima, T (reprint author), TOHOKU UNIV,SCH MED,DEPT OTOLARYNGOL,AOBA KU,1-1 SEIRYO MACHI,SENDAI,MIYAGI 98077,JAPAN. CR ADACHI S, 1994, J BIOL CHEM, V269, P17677 Ashmore J F, 1988, Prog Brain Res, V74, P3 BRETAG AH, 1987, PHYSIOL REV, V67, P618 DRESCHER DG, 1993, J NEUROCHEM, V61, P1167, DOI 10.1111/j.1471-4159.1993.tb03638.x GRUNDER S, 1992, NATURE, V360, P759, DOI 10.1038/360759a0 HOUSLEY GD, 1995, BIOCHEM BIOPH RES CO, V212, P501, DOI 10.1006/bbrc.1995.1998 HOUSLEY GD, 1994, HEARING RES, V75, P47, DOI 10.1016/0378-5955(94)90054-X JENTSCH TJ, 1995, J PHYSIOL-LONDON, V482P, pS19 JENTSCH TJ, 1990, NATURE, V348, P510, DOI 10.1038/348510a0 KAWASAKI M, 1994, NEURON, V12, P597, DOI 10.1016/0896-6273(94)90215-1 MARCUS DC, 1986, NEUROBIOLOGY HEARING, P123 MARCUS DC, 1993, HEARING RES, V69, P124, DOI 10.1016/0378-5955(93)90100-F MCCANN JD, 1990, ANNU REV PHYSIOL, V52, P115 SHIGA N, 1995, BBA-BIOMEMBRANES, V1240, P48, DOI 10.1016/0005-2736(95)00175-1 SMITH RL, 1995, J NEUROSCI, V15, P4057 STEINMEYER K, 1991, NATURE, V354, P301, DOI 10.1038/354301a0 STRANGE K, 1991, AM J PHYSIOL, V260, pF225 SUNOSE H, 1993, AM J PHYSIOL, V265, pC72 TACHIBANA M, 1992, HEARING RES, V62, P82, DOI 10.1016/0378-5955(92)90204-Z TAKEUCHI S, 1995, HEARING RES, V83, P89, DOI 10.1016/0378-5955(94)00191-R TAKEUCHI S, 1992, HEARING RES, V61, P86, DOI 10.1016/0378-5955(92)90039-P THALMANN R, 1989, 2 INT S MEN DIS, P55 THIEMANN A, 1992, NATURE, V356, P57, DOI 10.1038/356057a0 UCHIDA S, 1993, J BIOL CHEM, V268, P3821 Ueda N, 1996, HEARING RES, V94, P24, DOI 10.1016/0378-5955(95)00219-7 WANGEMANN P, 1994, AM J PHYSIOL, V266, pC1046 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WANGEMANN P, 1992, HEARING RES, V62, P149, DOI 10.1016/0378-5955(92)90180-U WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WELSH MJ, 1990, FASEB J, V4, P2718 WORRELL RT, 1989, AM J PHYSIOL, V256, pC1111 NR 31 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1997 VL 103 IS 1-2 BP 63 EP 68 DI 10.1016/S0378-5955(96)00164-5 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WD588 UT WOS:A1997WD58800006 PM 9007574 ER PT J AU Hultcrantz, M Sylven, L AF Hultcrantz, M Sylven, L TI Turner's syndrome and hearing disorders in women aged 16-34 SO HEARING RESEARCH LA English DT Article DE Turner's syndrome; sensorineural hearing loss; middle-ear infection; karyotype; age ID CHROMOSOME AB Forty women with Turner's syndrome aged 16-34 years were tested clinically and audiometrically according to their ear problems and hearing. A high incidence of middle-ear infections was demonstrated. A mid-frequency sensorineural hearing loss was frequently diagnosed and could be correlated to the karyotype. The dip showed a progression with age. Middle-ear problems were more common among women with a dip. An early high-frequency hearing loss could be noted in the present group among the older women. In some cases this had already led to social hearing problems and use of hearing aids. When comparing these women with a group of elderly Turner women the dip was not as deep, the maximum peak was seen in the 2 kHz region and social hearing problems and hearing aids were not as frequent. If no dip was found no major hearing problems could be detected or expected in future life. The data emphasize the importance of early audiological evaluation and information about predisposition to hearing impairment in Turner's syndrome. C1 KAROLINSKA INST, DEPT WOMEN & CHILD HLTH, S-17176 STOCKHOLM, SWEDEN. RP Hultcrantz, M (reprint author), KAROLINSKA HOSP, DEPT OTORHINOLARYNGOL, S-17176 STOCKHOLM, SWEDEN. CR ANDERSON H, 1969, ACTA OTOLARYNGOL S S, V247 BUCHANAN LH, 1990, SCAND AUDIOL, V19, P103, DOI 10.3109/01050399009070760 EVANS HJ, 1977, J MED GENET, V14, P309, DOI 10.1136/jmg.14.5.309 FORD CE, 1959, LANCET, V1, P711 HULTCRANTZ M, 1994, HEARING RES, V76, P127, DOI 10.1016/0378-5955(94)90094-9 Hultcrantz M, 1995, INT CONGR SER, V1089, P249 *INT ORG STAND, 1985, ISO DOC LINDSTEN J, 1963, THESIS ALMQVIST WIKS Lorente de No R., 1933, LARYNGOSCOPE, V43, P1 MAGENIS RE, 1984, J PEDIATR-US, V105, P916, DOI 10.1016/S0022-3476(84)80077-3 MONDINI C, 1791, ANATOMICA SURDI NATI, V7, P419 NIELSEN J, 1991, HUM GENET, V87, P81, DOI 10.1007/BF01213097 PEERHENTUPA J, 1975, ACTA PAEDIATR SC S, V256, P24 PHELPS P, 1994, AM J OTOL, V4, P551 SCULERATI N, 1990, ARCH OTOLARYNGOL, V116, P704 SYLVEN L, 1994, THESIS KAROLINSKA I Takano K, 1986, Acta Paediatr Scand Suppl, V325, P58 TURNER HH, 1938, ENDOCRINOLOGY, V23, P556 WATKIN PM, 1989, J LARYNGOL OTOL, V103, P731, DOI 10.1017/S0022215100109934 ZACHMANN M, 1992, EUR J PEDIATR, V151, P167, DOI 10.1007/BF01954375 NR 20 TC 37 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 1997 VL 103 IS 1-2 BP 69 EP 74 DI 10.1016/S0378-5955(96)00165-7 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WD588 UT WOS:A1997WD58800007 PM 9007575 ER EF